USE OF METHOD DETECTION LIMITS IN ENVIRONMENTAL MEASUREMENTS
Environmental measurements often produce values below the method detection limit (MDL). Because low or zero values may be used in determining compliance with regulatory limits, in determining emission factors (typical concentrations emitted by a given type of source), or in model...
Detecting spatial regimes in ecosystems
Research on early warning indicators has generally focused on assessing temporal transitions with limited application of these methods to detecting spatial regimes. Traditional spatial boundary detection procedures that result in ecoregion maps are typically based on ecological ...
Scientists, especially environmental scientists often encounter trace level concentrations that are typically reported as less than a certain limit of detection, L. Type 1, left-censored data arise when certain low values lying below L are ignored or unknown as they cannot be mea...
NASA Astrophysics Data System (ADS)
Hänscheid, H.; Lassmann, M.; Buck, A. K.; Reiners, C.; Verburg, F. A.
2014-05-01
Radioiodine scintigraphy influences staging and treatment in patients with differentiated thyroid carcinoma. The limit of detection for fractional uptake in an iodine avid focus in a scintigraphic image was determined from the number of lesion net counts and the count density of the tissue background. The count statistics were used to calculate the diagnostic activity required to elevate the signal from a lesion with a given uptake significantly above a homogeneous background with randomly distributed counts per area. The dependences of the minimal uptake and the minimal size of lesions visible in a scan on several parameters of influence were determined by linking the typical biokinetics observed in iodine avid tissue to the lesion mass and to the absorbed dose received in a radioiodine therapy. The detection limits for fractional uptake in a neck lesion of a typical patient are about 0.001% after therapy with 7000 MBq, 0.01% for activities typically administered in diagnostic assessments (74-185 MBq), and 0.1% after the administration of 10 MBq I-131. Lesions at the limit of detection in a diagnostic scan with biokinetics eligible for radioiodine therapy are small with diameters of a few millimeters. Increasing the diagnostic activity by a factor of 4 reduces the diameter of visible lesions by 25% or about 1 mm. Several other determinants have a comparable or higher influence on the limit of detection than the administered activity; most important are the biokinetics in both blood pool and target tissue and the time of measurement. A generally valid recommendation for the timing of the scan is impossible as the time of the highest probability to detect iodine avid tissue depends on the administered activity as well as on the biokinetics in the lesion and background in the individual patient.
Chen, Yi-Ting; Sarangadharan, Indu; Sukesan, Revathi; Hseih, Ching-Yen; Lee, Geng-Yen; Chyi, Jen-Inn; Wang, Yu-Lin
2018-05-29
Lead ion selective membrane (Pb-ISM) coated AlGaN/GaN high electron mobility transistors (HEMT) was used to demonstrate a whole new methodology for ion-selective FET sensors, which can create ultra-high sensitivity (-36 mV/log [Pb 2+ ]) surpassing the limit of ideal sensitivity (-29.58 mV/log [Pb 2+ ]) in a typical Nernst equation for lead ion. The largely improved sensitivity has tremendously reduced the detection limit (10 -10 M) for several orders of magnitude of lead ion concentration compared to typical ion-selective electrode (ISE) (10 -7 M). The high sensitivity was obtained by creating a strong filed between the gate electrode and the HEMT channel. Systematical investigation was done by measuring different design of the sensor and gate bias, indicating ultra-high sensitivity and ultra-low detection limit obtained only in sufficiently strong field. Theoretical study in the sensitivity consistently agrees with the experimental finding and predicts the maximum and minimum sensitivity. The detection limit of our sensor is comparable to that of Inductively-Coupled-Plasma Mass Spectrum (ICP-MS), which also has detection limit near 10 -10 M.
A search for HI in some peculiar faint dwarf galaxies
NASA Astrophysics Data System (ADS)
Begum, Ayesha; Chengalur, Jayaram N.
2005-09-01
We present a deep Giant Metrewave Radio Telescope (GMRT) search for HI 21-cm emission from three dwarf galaxies, viz. POX 186, SC 24 and KKR 25. Based, in part, on previous single-dish HI observations, these galaxies have been classified as a blue compact dwarf (BCD), a dwarf irregular and a transition galaxy, respectively. However, in conflict with previous single-dish detections, we do not detect HI in SC 24 or KKR 25. We suggest that the previous single-dish measurements were probably confused with the local Galactic emission. In the case of POX 186, we confirm the previous non-detection of HI but with substantially improved limits on its HI mass. Our derived upper limits on the HI mass of SC 24 and KKR 25 are similar to the typical HI mass limit for dwarf spheroidal (dSph) galaxies, whereas in the case of POX 186, we find that its gas content is somewhat smaller than is typical of BCD galaxies.
Early Detection Monitoring for Invasive Fish: St. Louis River (SLR) Pilot Study
Early detection of aquatic invasive species is necessary to develop and implement timely management responses. Predicting species introductions, however, is difficult and resources are typically limited. Therefore, monitoring strategies should be designed to effectively and eff...
Prediction of the limit of detection of an optical resonant reflection biosensor.
Hong, Jongcheol; Kim, Kyung-Hyun; Shin, Jae-Heon; Huh, Chul; Sung, Gun Yong
2007-07-09
A prediction of the limit of detection of an optical resonant reflection biosensor is presented. An optical resonant reflection biosensor using a guided-mode resonance filter is one of the most promising label-free optical immunosensors due to a sharp reflectance peak and a high sensitivity to the changes of optical path length. We have simulated this type of biosensor using rigorous coupled wave theory to calculate the limit of detection of the thickness of the target protein layer. Theoretically, our biosensor has an estimated ability to detect thickness change approximately the size of typical antigen proteins. We have also investigated the effects of the absorption and divergence of the incident light on the detection ability of the biosensor.
Nanopore sensing at ultra-low concentrations using single-molecule dielectrophoretic trapping
NASA Astrophysics Data System (ADS)
Freedman, Kevin J.; Otto, Lauren M.; Ivanov, Aleksandar P.; Barik, Avijit; Oh, Sang-Hyun; Edel, Joshua B.
2016-01-01
Single-molecule techniques are being developed with the exciting prospect of revolutionizing the healthcare industry by generating vast amounts of genetic and proteomic data. One exceptionally promising route is in the use of nanopore sensors. However, a well-known complexity is that detection and capture is predominantly diffusion limited. This problem is compounded when taking into account the capture volume of a nanopore, typically 108-1010 times smaller than the sample volume. To rectify this disproportionate ratio, we demonstrate a simple, yet powerful, method based on coupling single-molecule dielectrophoretic trapping to nanopore sensing. We show that DNA can be captured from a controllable, but typically much larger, volume and concentrated at the tip of a metallic nanopore. This enables the detection of single molecules at concentrations as low as 5 fM, which is approximately a 103 reduction in the limit of detection compared with existing methods, while still maintaining efficient throughput.
On the Determination of Uncertainty and Limit of Detection in Label-Free Biosensors.
Lavín, Álvaro; Vicente, Jesús de; Holgado, Miguel; Laguna, María F; Casquel, Rafael; Santamaría, Beatriz; Maigler, María Victoria; Hernández, Ana L; Ramírez, Yolanda
2018-06-26
A significant amount of noteworthy articles reviewing different label-free biosensors are being published in the last years. Most of the times, the comparison among the different biosensors is limited by the procedure used of calculating the limit of detection and the measurement uncertainty. This article clarifies and establishes a simple procedure to determine the calibration function and the uncertainty of the concentration measured at any point of the measuring interval of a generic label-free biosensor. The value of the limit of detection arises naturally from this model as the limit at which uncertainty tends when the concentration tends to zero. The need to provide additional information, such as the measurement interval and its linearity, among others, on the analytical systems and biosensor in addition to the detection limit is pointed out. Finally, the model is applied to curves that are typically obtained in immunoassays and a discussion is made on the application validity of the model and its limitations.
Nanopore sensing at ultra-low concentrations using single-molecule dielectrophoretic trapping
Freedman, Kevin J.; Otto, Lauren M.; Ivanov, Aleksandar P.; Barik, Avijit; Oh, Sang-Hyun; Edel, Joshua B.
2016-01-01
Single-molecule techniques are being developed with the exciting prospect of revolutionizing the healthcare industry by generating vast amounts of genetic and proteomic data. One exceptionally promising route is in the use of nanopore sensors. However, a well-known complexity is that detection and capture is predominantly diffusion limited. This problem is compounded when taking into account the capture volume of a nanopore, typically 108–1010 times smaller than the sample volume. To rectify this disproportionate ratio, we demonstrate a simple, yet powerful, method based on coupling single-molecule dielectrophoretic trapping to nanopore sensing. We show that DNA can be captured from a controllable, but typically much larger, volume and concentrated at the tip of a metallic nanopore. This enables the detection of single molecules at concentrations as low as 5 fM, which is approximately a 103 reduction in the limit of detection compared with existing methods, while still maintaining efficient throughput. PMID:26732171
Estimation of descriptive statistics for multiply censored water quality data
Helsel, Dennis R.; Cohn, Timothy A.
1988-01-01
This paper extends the work of Gilliom and Helsel (1986) on procedures for estimating descriptive statistics of water quality data that contain “less than” observations. Previously, procedures were evaluated when only one detection limit was present. Here we investigate the performance of estimators for data that have multiple detection limits. Probability plotting and maximum likelihood methods perform substantially better than simple substitution procedures now commonly in use. Therefore simple substitution procedures (e.g., substitution of the detection limit) should be avoided. Probability plotting methods are more robust than maximum likelihood methods to misspecification of the parent distribution and their use should be encouraged in the typical situation where the parent distribution is unknown. When utilized correctly, less than values frequently contain nearly as much information for estimating population moments and quantiles as would the same observations had the detection limit been below them.
Carr, John E; Kwok, Kaho; Webster, Gregory K; Carnahan, Jon W
2006-01-23
Atomic spectrometry, specifically inductively coupled plasma atomic emission spectrometry (ICP-AES) and mass spectrometry (ICP-MS) show promise for heteroatom-based detection of pharmaceutical compounds. The combination of ultrasonic nebulization (USN) with membrane desolvation (MD) greatly enhances detection limits with these approaches. Because pharmaceutical analyses often incorporate liquid chromatography, the study herein was performed to examine the effects of solvent composition on the analytical behaviors of these approaches. The target analyte was phosphorus, introduced as phosphomycin. AES response was examined at the 253.7 nm atom line and mass 31 ions were monitored for the MS experiments. With pure aqueous solutions, detection limits of 5 ppb (0.5 ng in 0.1 mL injection volumes) were obtained with ICP-MS. The ICP-AES detection limit was 150 ppb. Solvent compositions were varied from 0 to 80% organic (acetonitrile and methanol) with nine buffers at concentrations typically used in liquid chromatography. In general, solvents and buffers had statistically significant, albeit small, effects on ICP-AES sensitivities. A few exceptions occurred in cases where typical liquid chromatography buffer concentrations produced higher mass loadings on the plasma. Indications are that isocratic separations can be reliably performed. Within reasonable accuracy tolerances, it appears that gradient chromatography can be performed without the need for signal response normalization. Organic solvent and buffer effects were more significant with ICP-MS. Sensitivities varied significantly with different buffers and organic solvent content. In these cases, gradient chromatography will require careful analytical calibration as solvent and buffer content is varied. However, for most buffer and solvent combinations, signal and detection limits are only moderately affected. Isocratic separations and detection are feasible.
NASA Astrophysics Data System (ADS)
James, P.
2011-12-01
With a growing need for housing in the U.K., the government has proposed increased development of brownfield sites. However, old mine workings and natural cavities represent a potential hazard before, during and after construction on such sites, and add further complication to subsurface parameters. Cavities are hence a limitation to certain redevelopment and their detection is an ever important consideration. The current standard technique for cavity detection is a borehole grid, which is intrusive, non-continuous, slow and expensive. A new robust investigation standard in the detection of cavities is sought and geophysical techniques offer an attractive alternative. Geophysical techniques have previously been utilised successfully in the detection of cavities in various geologies, but still has an uncertain reputation in the engineering industry. Engineers are unsure of the techniques and are inclined to rely on well known techniques than utilise new technologies. Bad experiences with geophysics are commonly due to the indiscriminate choice of particular techniques. It is imperative that a geophysical survey is designed with the specific site and target in mind at all times, and the ability and judgement to rule out some, or all, techniques. To this author's knowledge no comparative software exists to aid technique choice. Also, previous modelling software limit the shapes of bodies and hence typical cavity shapes are not represented. Here, we introduce 3D modelling software (Matlab) which computes and compares the response to various cavity targets from a range of techniques (gravity, gravity gradient, magnetic, magnetic gradient and GPR). Typical near surface cavity shapes are modelled including shafts, bellpits, various lining and capping materials, and migrating voids. The probability of cavity detection is assessed in typical subsurface and noise conditions across a range of survey parameters. Techniques can be compared and the limits of detection distance assessed. The density of survey points required to achieve a required probability of detection can be calculated. The software aids discriminate choice of technique, improves survey design, and increases the likelihood of survey success; all factors sought in the engineering industry. As a simple example, the response from magnetometry, gravimetry, and gravity gradient techniques above an example 3m deep, 1m cube air cavity in limestone across a 15m grid was calculated. The maximum responses above the cavity are small (amplitudes of 0.018nT, 0.0013mGal, 8.3eotvos respectively), but at typical site noise levels the detection reliability is over 50% for the gradient gravity method on a single survey line. Increasing the number of survey points across the site increases the reliability of detection of the anomaly by the addition of probabilities. We can calculate the probability of detection at different profile spacings to assess the best possible survey design. At 1m spacing the overall probability of by the gradient gravity method is over 90%, and over 60% for magnetometry (at 3m spacing the probability drops to 32%). The use of modelling in near surface surveys is a useful tool to assess the feasibility of a range of techniques to detect subtle signals. Future work will integrate this work with borehole measured parameters.
Upper limit set for level of lightning activity on Titan
NASA Technical Reports Server (NTRS)
Desch, M. D.; Kaiser, M. L.
1990-01-01
Because optically thick cloud and haze layers prevent lightning detection at optical wavelength on Titan, a search was conducted for lightning-radiated signals (spherics) at radio wavelengths using the planetary radioastronomy instrument aboard Voyager 1. Given the maximum ionosphere density of about 3000/cu cm, lightning spherics should be detectable above an observing frequency of 500 kHz. Since no evidence for spherics is found, an upper limit to the total energy per flash in Titan lightning of about 10 to the 6th J, or about 1000 times weaker than that of typical terrestrial lightning, is inferred.
Effect of gap detection threshold on consistency of speech in children with speech sound disorder.
Sayyahi, Fateme; Soleymani, Zahra; Akbari, Mohammad; Bijankhan, Mahmood; Dolatshahi, Behrooz
2017-02-01
The present study examined the relationship between gap detection threshold and speech error consistency in children with speech sound disorder. The participants were children five to six years of age who were categorized into three groups of typical speech, consistent speech disorder (CSD) and inconsistent speech disorder (ISD).The phonetic gap detection threshold test was used for this study, which is a valid test comprised six syllables with inter-stimulus intervals between 20-300ms. The participants were asked to listen to the recorded stimuli three times and indicate whether they heard one or two sounds. There was no significant difference between the typical and CSD groups (p=0.55), but there were significant differences in performance between the ISD and CSD groups and the ISD and typical groups (p=0.00). The ISD group discriminated between speech sounds at a higher threshold. Children with inconsistent speech errors could not distinguish speech sounds during time-limited phonetic discrimination. It is suggested that inconsistency in speech is a representation of inconsistency in auditory perception, which causes by high gap detection threshold. Copyright © 2016 Elsevier Ltd. All rights reserved.
Electrochemical Aptamer Scaffold Biosensors for Detection of Botulism and Ricin Proteins.
Daniel, Jessica; Fetter, Lisa; Jett, Susan; Rowland, Teisha J; Bonham, Andrew J
2017-01-01
Electrochemical DNA (E-DNA) biosensors enable the detection and quantification of a variety of molecular targets, including oligonucleotides, small molecules, heavy metals, antibodies, and proteins. Here we describe the design, electrode preparation and sensor attachment, and voltammetry conditions needed to generate and perform measurements using E-DNA biosensors against two protein targets, the biological toxins ricin and botulinum neurotoxin. This method can be applied to generate E-DNA biosensors for the detection of many other protein targets, with potential advantages over other systems including sensitive detection limits typically in the nanomolar range, real-time monitoring, and reusable biosensors.
The Kepler Mission: A Photometric Search for Earthlike Planets
NASA Technical Reports Server (NTRS)
Lissauer, Jack J.; Borucki, William; Koch, David; Young, Richard E. (Technical Monitor)
1998-01-01
If Earth lies in or near the orbital plane of an extrasolar planet, that planet passes in front of the disk of its star once each orbit as viewed from Earth. Precise photometry can reveal such transits, which can be distinguished from rotationally-modulated starspots and intrinsic stellar variability by their periodicity, square-well shapes and relative spectral neutrality. Transit observations would provide the size and orbital period of the detected planet. Although geometrical considerations limit the fraction of planets detectable by this technique, many stars can be surveyed within the field of view of one telescope, so transit photometry is quite efficient. Scintillation in and variability of Earth's atmosphere limit photometric precision to roughly one-thousandth of a magnitude, allowing detection of transits by Jupiter-sized planets but not by Earth-sized planets from the ground. The COROT spacecraft will be able to detect Uranus-sized planets orbiting near stars. The Kepler Mission, which is being proposed to NASA's Discovery Program this year, will have a photometer with a larger aperture (1 meter) than will COROT, so it will be able to detect transits by planets as small as Earth. Moreover, the Kepler mission will examine the same star field for four years, allowing confirmation of planets with orbital periods of a year. If the Sun's planetary system is typical for single stars, Kepler should detect approximately 480 terrestrial planets. Assuming the statistics from radial velocity surveys are typical, Kepler should also detect transits of 150 inner giant planets and reflected light variations of 1400 giant planets with orbital periods of less than one week.
Rosen, Christian B; Hansen, Dennis J; Gothelf, Kurt V
2013-12-07
Fluoride detection through hydrogen bonding or deprotonation is most commonly achieved using amide, urea or pyrrole derivatives. The sensor molecules are often complex constructs and several synthetic steps are required for their preparation. Here we report the discovery that simple arylaldoximes have remarkable properties as fluoride anion sensors, providing distinct colorimetric or fluorescent readouts, depending on the structure of the arylaldoxime. The oximes showed exceptional selectivity towards fluoride over other typical anions, and low detection limits for fluoride in both DMSO and DMSO-water mixtures were obtained.
Zhang, Feng-Song; Xie, Yun-Feng; Li, Xue-Wen; Wang, Dai-Yi; Yang, Lin-Sheng; Nie, Zhi-Qiang
2015-12-15
Steroid hormones released from manure agricultural application are a matter of global concern. The residual levels of steroid hormones were studied in a typical intensive vegetable cultivation area in northeast China, with a long history of heavy manure application. Seven steroids (estrone, 17α-estradiol, 17β-estradiol, estriol, testosterone, androstendione and progesterone) were analyzed from soil sampled from vegetable greenhouses, from sediments and water from the adjacent drainage ditch and from the groundwater. The results showed that target steroids were detected in the soil samples, with detection frequencies varying from 3.13 to 100%. The steroid concentrations varied substantially in soils, ranging from below the detection limit to 109.7μg·kg(-1). Three steroids-progesterone, androstendione and estrone-were found to have relatively high residue concentrations in soil, with maximum concentrations of 109.7, 9.83 and 13.30μg·kg(-1), respectively. In adjacent groundwater, all the steroids, with the exception of estrone, were detected in one or more of the 13 groundwater samples. The concentrations of steroids in groundwater ranged from below the method detection limit to 2.38ng·L(-1). Six of the seven (excluding androstendione) were detected in drainage ditch water samples, with concentrations ranging from below the detection limit to 14ng·L(-1). Progesterone, androstendione and estrone accumulated relatively easily in soils; their concentrations in groundwater were lower than those of other steroids. The concentrations of testosterone and estriol were relatively low in soil, while in groundwater were higher than those of other steroids. The residual levels of steroids in soil and groundwater showed a clear spatial variation in the study area. The residual levels of steroid hormones in soil varied substantially between differently planted greenhouses. Copyright © 2015. Published by Elsevier B.V.
Performance limitations of label-free sensors in molecular diagnosis using complex samples
NASA Astrophysics Data System (ADS)
Varma, Manoj
2016-03-01
Label-free biosensors promised a paradigm involving direct detection of biomarkers from complex samples such as serum without requiring multistep sample processing typical of labelled methods such as ELISA or immunofluorescence assays. Label-free sensors have witnessed decades of development with a veritable zoo of techniques available today exploiting a multitude of physical effects. It is appropriate now to critically assess whether label-free technologies have succeeded in delivering their promise with respect to diagnostic applications, particularly, ambitious goals such as early cancer detection using serum biomarkers, which require low limits of detection (LoD). Comparison of nearly 120 limits of detection (LoD) values reported by labelled and label-free sensing approaches over a wide range of detection techniques and target molecules in serum revealed that labeled techniques achieve 2-3 orders of magnitude better LoDs. Data from experiments where labelled and label-free assays were performed simultaneously using the same assay parameters also confirm that the LoD achieved by labelled techniques is 2 to 3 orders of magnitude better than that by label-free techniques. Furthermore, label-free techniques required significant signal amplification, for e.g. using nanoparticle conjugated secondary antibodies, to achieve LoDs comparable to labelled methods substantially deviating from the original "direct detection" paradigm. This finding has important implications on the practical limits of applying label-free detection methods for molecular diagnosis.
Peng, Liying; Hua, Lei; Wang, Weiguo; Zhou, Qinghua; Li, Haiyang
2014-01-01
New techniques for the field detection of inorganic improvised explosive devices (IEDs) are urgently developed. Although ion mobility spectrometry (IMS) has been proved to be the most effective method for screening organic explosives, it still faces a major challenge to detect inorganic explosives owing to their low volatilities. Herein, we proposed a strategy for detecting trace inorganic explosives by thermal desorption ion mobility spectrometry (TD-IMS) with sample-to-sample analysis time less than 5 s based on in-situ acidification on the sampling swabs. The responses for typical oxidizers in inorganic explosives, such as KNO3, KClO3 and KClO4 were at least enhanced by a factor of 3000 and their limits of detection were found to be subnanogram. The common organic explosives and their mixtures with inorganic oxidizers were detected, indicating that the acidification process did not affect the detection of organic explosives. Moreover, the typical inorganic explosives such as black powders, firecrackers and match head could be sensitively detected as well. These results demonstrated that this method could be easily employed in the current deployed IMS for on-site sensitive detection of either inorganic explosives or organic ones. PMID:25318960
van Leeuwen, Suze M; Hendriksen, Laurens; Karst, Uwe
2004-11-26
Atmospheric pressure photoionization-mass spectrometry (APPI-MS) is used for the analysis of aldehydes and ketones after derivatization with 2,4-dinitrophenylhydrazine (DNPH) and liquid chromatographic separation. In the negative ion mode, the [M - H]- pseudomolecular ions are most abundant for the carbonyls. Compared with the established atmospheric pressure chemical ionization (APCI)-MS, limits of detection are typically lower using similar conditions. Automobile exhaust and cigarette exhaust samples were analyzed with APPI-MS and APCI-MS in combination with an ion trap mass analyzer. Due to improved limits of detection, more of the less abundant long-chain carbonyls are detected with APPI-MS in real samples. While 2,4-dinitrophenylazide, a known reaction product of DNPH with nitrogen dioxide, is detected in APCI-MS due to dissociative electron capture, it is not observed at all in APPI-MS.
Effects of capacity limits, memory loss, and sound type in change deafness.
Gregg, Melissa K; Irsik, Vanessa C; Snyder, Joel S
2017-11-01
Change deafness, the inability to notice changes to auditory scenes, has the potential to provide insights about sound perception in busy situations typical of everyday life. We determined the extent to which change deafness to sounds is due to the capacity of processing multiple sounds and the loss of memory for sounds over time. We also determined whether these processing limitations work differently for varying types of sounds within a scene. Auditory scenes composed of naturalistic sounds, spectrally dynamic unrecognizable sounds, tones, and noise rhythms were presented in a change-detection task. On each trial, two scenes were presented that were same or different. We manipulated the number of sounds within each scene to measure memory capacity and the silent interval between scenes to measure memory loss. For all sounds, change detection was worse as scene size increased, demonstrating the importance of capacity limits. Change detection to the natural sounds did not deteriorate much as the interval between scenes increased up to 2,000 ms, but it did deteriorate substantially with longer intervals. For artificial sounds, in contrast, change-detection performance suffered even for very short intervals. The results suggest that change detection is generally limited by capacity, regardless of sound type, but that auditory memory is more enduring for sounds with naturalistic acoustic structures.
Long-term kinematics and sediment flux of an active earthflow, Eel River, California
B. H. Mackey; J. J. Roering; J. A. McKean
2009-01-01
Although earthflows are the dominant erosion mechanism in many mountainous landscapes, estimates of long-term earthflow-driven sediment flux remain elusive because landslide displacement data are typically limited to contemporary time periods. Combining high-resolution topography from airborne LiDAR (light detection and ranging), total station surveying, orthorectified...
NASA Astrophysics Data System (ADS)
Ahmed, S.; Amin, R.; Gladkova, I.; Gilerson, A.; Grossberg, M.; Hlaing, S.; Shariar, F.; Alabi, P.
2010-04-01
The detection and monitoring of harmful algal blooms using in-situ field measurements is both labor intensive and is practically limited on achievable temporal and spatial resolutions, since field measurements are typically carried out at a series of discrete points and at discrete times, with practical limitations on temporal continuity. The planning and preparation of remedial measures to reduce health risks, etc., requires detection approaches which can effectively cover larger areas with contiguous spatial resolutions, and at the same time offer a more comprehensive and contemporaneous snapshot of entire blooms as they occur. This is beyond capabilities of in-situ measurements and it is in this context that satellite Ocean Color sensors offer potential advantages for bloom detection and monitoring. In this paper we examine the applications and limitations of an approach we have recently developed for the detection of K. brevis blooms from satellite Ocean Color Sensors measurements, the Red Band Difference Technique, and compare it to other detection algorithm approaches, including a new statistical based approach also proposed here. To achieve more uniform standards of comparisons, the performance of different techniques for detection are applied to the same specific verified blooms occurring off the West Florida Shelf (WFS) that have been verified by in-situ measurements.
Detection method of flexion relaxation phenomenon based on wavelets for patients with low back pain
NASA Astrophysics Data System (ADS)
Nougarou, François; Massicotte, Daniel; Descarreaux, Martin
2012-12-01
The flexion relaxation phenomenon (FRP) can be defined as a reduction or silence of myoelectric activity of the lumbar erector spinae muscle during full trunk flexion. It is typically absent in patients with chronic low back pain (LBP). Before any broad clinical utilization of this neuromuscular response can be made, effective, standardized, and accurate methods of identifying FRP limits are needed. However, this phenomenon is clearly more difficult to detect for LBP patients than for healthy patients. The main goal of this study is to develop an automated method based on wavelet transformation that would improve time point limits detection of surface electromyography signals of the FRP in case of LBP patients. Conventional visual identification and proposed automated methods of time point limits detection of relaxation phase were compared on experimental data using criteria of accuracy and repeatability based on physiological properties. The evaluation demonstrates that the use of wavelet transform (WT) yields better results than methods without wavelet decomposition. Furthermore, methods based on wavelet per packet transform are more effective than algorithms employing discrete WT. Compared to visual detection, in addition to demonstrating an obvious saving of time, the use of wavelet per packet transform improves the accuracy and repeatability in the detection of the FRP limits. These results clearly highlight the value of the proposed technique in identifying onset and offset of the flexion relaxation response in LBP subjects.
Fast Coherent Differential Imaging for Exoplanet Imaging
NASA Astrophysics Data System (ADS)
Gerard, Benjamin; Marois, Christian; Galicher, Raphael; Veran, Jean-Pierre; Macintosh, B.; Guyon, O.; Lozi, J.; Pathak, P.; Sahoo, A.
2018-06-01
Direct detection and detailed characterization of exoplanets using extreme adaptive optics (ExAO) is a key science goal of future extremely large telescopes and space observatories. However, quasi-static wavefront errors will limit the sensitivity of this endeavor. Additional limitations for ground-based telescopes arise from residual AO-corrected atmospheric wavefront errors, generating short-lived aberrations that will average into a halo over a long exposure, also limiting the sensitivity of exoplanet detection. We develop the framework for a solution to both of these problems using the self-coherent camera (SCC), to be applied to ground-based telescopes, called Fast Atmospheric SCC Technique (FAST). Simulations show that for typical ExAO targets the FAST approach can reach ~100 times better in raw contrast than what is currently achieved with ExAO instruments if we extrapolate for an hour of observing time, illustrating that the sensitivity improvement from this method could play an essential role in the future ground-based detection and characterization of lower mass/colder exoplanets.
Chuang, Yen-Jun; Liu, Feng; Wang, Wei; Kanj, Mazen Y; Poitzsch, Martin E; Pan, Zhengwei
2016-06-15
Current fluorescent nanoparticles-based tracer sensing techniques for oilfield applications suffer from insufficient sensitivity, with the tracer detection limit typically at the several hundred ppm level in untreated oil/water mixtures, which is mainly caused by the interference of the background fluorescence from the organic residues in crude oil under constant external excitation. Here we report the use of a persistent luminescence phenomenon, which enables an external excitation-free and thus background fluorescence-free measurement condition, for ultrahigh-sensitivity crude oil sensing. By using LiGa5O8:Cr(3+) near-infrared persistent luminescent nanoparticles as a tracer nanoagent, we achieved a tracer detection limit at the single-digit ppb level (down to 1 ppb concentration of nanoparticles) in high oil fraction (up to 65 wt.%) oil/water mixtures via a convenient, CCD camera-based imaging technique without any pretreatment or phase separation of the fluid samples. This detection limit is about four to five orders of magnitude lower than that obtained using conventional spectral methods. This study introduces a new type of tracer nanoagents and a new detection method for water tracer sensing in oil reservoir characterization and management.
100-kHz shot-to-shot broadband data acquisition for high-repetition-rate pump-probe spectroscopy.
Kanal, Florian; Keiber, Sabine; Eck, Reiner; Brixner, Tobias
2014-07-14
Shot-to-shot broadband detection is common in ultrafast pump-probe spectroscopy. Taking advantage of the intensity correlation of subsequent laser pulses improves the signal-to-noise ratio. Finite data readout times of CCD chips in the employed spectrometer and the maximum available speed of mechanical pump-beam choppers typically limit this approach to lasers with repetition rates of a few kHz. For high-repetition (≥ 100 kHz) systems, one typically averages over a larger number of laser shots leading to inferior signal-to-noise ratios or longer measurement times. Here we demonstrate broadband shot-to-shot detection in transient absorption spectroscopy with a 100-kHz femtosecond laser system. This is made possible using a home-built high-speed chopper with external laser synchronization and a fast CCD line camera. Shot-to-shot detection can reduce the data acquisition time by two orders of magnitude compared to few-kHz lasers while keeping the same signal-to-noise ratio.
ERIC Educational Resources Information Center
Northrup, Jessie Bolz
2017-01-01
The present article proposes a new developmental model of how young infants adapt and respond to complex contingencies in their environment, and how this influences development. The model proposes that typically developing infants adjust to an increasingly complex environment in ways that make it easier for them to allocate limited attentional…
NASA Astrophysics Data System (ADS)
Markwardt, Niklas; Götz, Marcus; Haj-Hosseini, Neda; Hollnburger, Bastian; Sroka, Ronald; Stepp, Herbert; Zelenkov, Petr; Rühm, Adrian
2016-04-01
5-aminolevulinic-acid-(5-ALA)-induced protoporphyrin IX (PpIX) fluorescence may be used to improve stereotactic brain tumor biopsies. In this study, the sensitivity of PpIX-based tumor detection has been investigated for two potential excitation wavelengths (405 nm, 633 nm). Using a 200 μm fiber in contact with semi-infinite optical phantoms containing ink and Lipovenös, PpIX detection limits of 4.0 nM and 200 nM (relating to 1 mW excitation power) were determined for 405 nm and 633 nm excitation, respectively. Hence, typical PpIX concentrations in glioblastomas of a few μM should be well detectable with both wavelengths. Additionally, blood layers of selected thicknesses were placed between fiber and phantom. Red excitation was shown to be considerably less affected by blood interference: A 50 μm blood layer, for instance, blocked the 405- nm-excited fluorescence completely, but reduced the 633-nm-excited signal by less than 50%. Ray tracing simulations demonstrated that - without blood layer - the sensitivity advantage of 405 nm rises for decreasing fluorescent volume from 50-fold to a maximum of 100-fold. However, at a tumor volume of 1 mm3, which is a typical biopsy sample size, the 633-nm-excited fluorescence signal is only reduced by about 10%. Further simulations revealed that with increasing fiber-tumor distance, the signal drops faster for 405 nm. This reduces the risk of detecting tumor tissue outside the needle's coverage, but diminishes the overlap between optically and mechanically sampled volumes. While 405 nm generally offers a higher sensitivity, 633 nm is more sensitive to distant tumors and considerably superior in case of blood-covered tumor tissue.
Fair, Damien A.; Bathula, Deepti; Nikolas, Molly A.; Nigg, Joel T.
2012-01-01
Research and clinical investigations in psychiatry largely rely on the de facto assumption that the diagnostic categories identified in the Diagnostic and Statistical Manual (DSM) represent homogeneous syndromes. However, the mechanistic heterogeneity that potentially underlies the existing classification scheme might limit discovery of etiology for most developmental psychiatric disorders. Another, perhaps less palpable, reality may also be interfering with progress—heterogeneity in typically developing populations. In this report we attempt to clarify neuropsychological heterogeneity in a large dataset of typically developing youth and youth with attention deficit/hyperactivity disorder (ADHD), using graph theory and community detection. We sought to determine whether data-driven neuropsychological subtypes could be discerned in children with and without the disorder. Because individual classification is the sine qua non for eventual clinical translation, we also apply support vector machine-based multivariate pattern analysis to identify how well ADHD status in individual children can be identified as defined by the community detection delineated subtypes. The analysis yielded several unique, but similar subtypes across both populations. Just as importantly, comparing typically developing children with ADHD children within each of these distinct subgroups increased diagnostic accuracy. Two important principles were identified that have the potential to advance our understanding of typical development and developmental neuropsychiatric disorders. The first tenet suggests that typically developing children can be classified into distinct neuropsychological subgroups with high precision. The second tenet proposes that some of the heterogeneity in individuals with ADHD might be “nested” in this normal variation. PMID:22474392
Multiscale limited penetrable horizontal visibility graph for analyzing nonlinear time series
NASA Astrophysics Data System (ADS)
Gao, Zhong-Ke; Cai, Qing; Yang, Yu-Xuan; Dang, Wei-Dong; Zhang, Shan-Shan
2016-10-01
Visibility graph has established itself as a powerful tool for analyzing time series. We in this paper develop a novel multiscale limited penetrable horizontal visibility graph (MLPHVG). We use nonlinear time series from two typical complex systems, i.e., EEG signals and two-phase flow signals, to demonstrate the effectiveness of our method. Combining MLPHVG and support vector machine, we detect epileptic seizures from the EEG signals recorded from healthy subjects and epilepsy patients and the classification accuracy is 100%. In addition, we derive MLPHVGs from oil-water two-phase flow signals and find that the average clustering coefficient at different scales allows faithfully identifying and characterizing three typical oil-water flow patterns. These findings render our MLPHVG method particularly useful for analyzing nonlinear time series from the perspective of multiscale network analysis.
Indirect detection constraints on s- and t-channel simplified models of dark matter
NASA Astrophysics Data System (ADS)
Carpenter, Linda M.; Colburn, Russell; Goodman, Jessica; Linden, Tim
2016-09-01
Recent Fermi-LAT observations of dwarf spheroidal galaxies in the Milky Way have placed strong limits on the gamma-ray flux from dark matter annihilation. In order to produce the strongest limit on the dark matter annihilation cross section, the observations of each dwarf galaxy have typically been "stacked" in a joint-likelihood analysis, utilizing optical observations to constrain the dark matter density profile in each dwarf. These limits have typically been computed only for singular annihilation final states, such as b b ¯ or τ+τ- . In this paper, we generalize this approach by producing an independent joint-likelihood analysis to set constraints on models where the dark matter particle annihilates to multiple final-state fermions. We interpret these results in the context of the most popular simplified models, including those with s- and t-channel dark matter annihilation through scalar and vector mediators. We present our results as constraints on the minimum dark matter mass and the mediator sector parameters. Additionally, we compare our simplified model results to those of effective field theory contact interactions in the high-mass limit.
Shallow Reflection Method for Water-Filled Void Detection and Characterization
NASA Astrophysics Data System (ADS)
Zahari, M. N. H.; Madun, A.; Dahlan, S. H.; Joret, A.; Hazreek, Z. A. M.; Mohammad, A. H.; Izzaty, R. A.
2018-04-01
Shallow investigation is crucial in enhancing the characteristics of subsurface void commonly encountered in civil engineering, and one such technique commonly used is seismic-reflection technique. An assessment of the effectiveness of such an approach is critical to determine whether the quality of the works meets the prescribed requirements. Conventional quality testing suffers limitations including: limited coverage (both area and depth) and problems with resolution quality. Traditionally quality assurance measurements use laboratory and in-situ invasive and destructive tests. However geophysical approaches, which are typically non-invasive and non-destructive, offer a method by which improvement of detection can be measured in a cost-effective way. Of this seismic reflection have proved useful to assess void characteristic, this paper evaluates the application of shallow seismic-reflection method in characterizing the water-filled void properties at 0.34 m depth, specifically for detection and characterization of void measurement using 2-dimensional tomography.
Enhanced speed in fluorescence imaging using beat frequency multiplexing
NASA Astrophysics Data System (ADS)
Mikami, Hideharu; Kobayashi, Hirofumi; Wang, Yisen; Hamad, Syed; Ozeki, Yasuyuki; Goda, Keisuke
2016-03-01
Fluorescence imaging using radiofrequency-tagged emission (FIRE) is an emerging technique that enables higher imaging speed (namely, temporal resolution) in fluorescence microscopy compared to conventional fluorescence imaging techniques such as confocal microscopy and wide-field microscopy. It works based on the principle that it uses multiple intensity-modulated fields in an interferometric setup as excitation fields and applies frequency-division multiplexing to fluorescence signals. Unfortunately, despite its high potential, FIRE has limited imaging speed due to two practical limitations: signal bandwidth and signal detection efficiency. The signal bandwidth is limited by that of an acousto-optic deflector (AOD) employed in the setup, which is typically 100-200 MHz for the spectral range of fluorescence excitation (400-600 nm). The signal detection efficiency is limited by poor spatial mode-matching between two interfering fields to produce a modulated excitation field. Here we present a method to overcome these limitations and thus to achieve higher imaging speed than the prior version of FIRE. Our method achieves an increase in signal bandwidth by a factor of two and nearly optimal mode matching, which enables the imaging speed limited by the lifetime of the target fluorophore rather than the imaging system itself. The higher bandwidth and better signal detection efficiency work synergistically because higher bandwidth requires higher signal levels to avoid the contribution of shot noise and amplifier noise to the fluorescence signal. Due to its unprecedentedly high-speed performance, our method has a wide variety of applications in cancer detection, drug discovery, and regenerative medicine.
X-ray spectral hardening and radio non-detection of MAXI J1535-571
NASA Astrophysics Data System (ADS)
Russell, T. D.; Altamirano, S. Rapisarda. D.; Miller-Jones, J. C. A.; Plotkin, R.; Tetarenko, A. J.; Sivakoff, G. R.; JACPOT XRB Collaboration
2018-05-01
MAXI J1535-571 (ATels #10699, #10700, #10702, #10704, #10708, #10711, #10716) has been in a soft X-ray spectral state since late November (ATel #11020). The source has remained in this soft state down to X-ray luminosities much lower than typically seen (ATel #11568), and is currently below MAXI and BAT sensitivity limits.
Relationship between LiDAR-derived forest canopy height and Landsat images
Cristina Pascual; Antonio Garcia-Abril; Warren B. Cohen; Susana Martin-Fernandez
2010-01-01
The mean and standard deviation (SD) of light detection and ranging (LiDAR)-derived canopy height are related to forest structure. However, LiDAR data typically cover a limited area and have a high economic cost compared with satellite optical imagery. Optical images may be required to extrapolate LiDAR height measurements across a broad landscape. Different spectral...
USDA-ARS?s Scientific Manuscript database
High-throughput sequencing is often used for studies of the transcriptome, particularly for comparisons between experimental conditions. Due to sequencing costs, a limited number of biological replicates are typically considered in such experiments, leading to low detection power for differential ex...
Kinetic Modeling of Accelerated Stability Testing Enabled by Second Harmonic Generation Microscopy.
Song, Zhengtian; Sarkar, Sreya; Vogt, Andrew D; Danzer, Gerald D; Smith, Casey J; Gualtieri, Ellen J; Simpson, Garth J
2018-04-03
The low limits of detection afforded by second harmonic generation (SHG) microscopy coupled with image analysis algorithms enabled quantitative modeling of the temperature-dependent crystallization of active pharmaceutical ingredients (APIs) within amorphous solid dispersions (ASDs). ASDs, in which an API is maintained in an amorphous state within a polymer matrix, are finding increasing use to address solubility limitations of small-molecule APIs. Extensive stability testing is typically performed for ASD characterization, the time frame for which is often dictated by the earliest detectable onset of crystal formation. Here a study of accelerated stability testing on ritonavir, a human immunodeficiency virus (HIV) protease inhibitor, has been conducted. Under the condition for accelerated stability testing at 50 °C/75%RH and 40 °C/75%RH, ritonavir crystallization kinetics from amorphous solid dispersions were monitored by SHG microscopy. SHG microscopy coupled by image analysis yielded limits of detection for ritonavir crystals as low as 10 ppm, which is about 2 orders of magnitude lower than other methods currently available for crystallinity detection in ASDs. The four decade dynamic range of SHG microscopy enabled quantitative modeling with an established (JMAK) kinetic model. From the SHG images, nucleation and crystal growth rates were independently determined.
A Sensitive DNA Capacitive Biosensor Using Interdigitated Electrodes
Wang, Lei; Veselinovic, Milena; Yang, Lang; Geiss, Brian J.; Dandy, David S.; Chen, Tom
2017-01-01
This paper presents a label-free affinity-based capacitive biosensor using interdigitated electrodes. Using an optimized process of DNA probe preparation to minimize the effect of contaminants in commercial thiolated DNA probe, the electrode surface was functionalized with the 24-nucleotide DNA probes based on the West Nile virus sequence (Kunjin strain). The biosensor has the ability to detect complementary DNA fragments with a detection limit down to 20 DNA target molecules (1.5 aM range), making it suitable for a practical point-of-care (POC) platform for low target count clinical applications without the need for amplification. The reproducibility of the biosensor detection was improved with efficient covalent immobilization of purified single-stranded DNA probe oligomers on cleaned gold microelectrodes. In addition to the low detection limit, the biosensor showed a dynamic range of detection from 1 μL−1 to 105 μL−1 target molecules (20 to 2 million targets), making it suitable for sample analysis in a typical clinical application environment. The binding results presented in this paper were validated using fluorescent oligomers. PMID:27619528
Reporter gene bioassays in environmental analysis.
Köhler, S; Belkin, S; Schmid, R D
2000-01-01
In parallel to the continuous development of increasingly more sophisticated physical and chemical analytical technologies for the detection of environmental pollutants, there is a progressively more urgent need also for bioassays which report not only on the presence of a chemical but also on its bioavailability and its biological effects. As a partial fulfillment of that need, there has been a rapid development of biosensors based on genetically engineered bacteria. Such microorganisms typically combine a promoter-operator, which acts as the sensing element, with reporter gene(s) coding for easily detectable proteins. These sensors have the ability to detect global parameters such as stress conditions, toxicity or DNA-damaging agents as well as specific organic and inorganic compounds. The systems described in this review, designed to detect different groups of target chemicals, vary greatly in their detection limits, specificity, response times and more. These variations reflect on their potential applicability which, for most of the constructs described, is presently rather limited. Nevertheless, present trends promise that additional improvements will make microbial biosensors an important tool for future environmental analysis.
Optical GRB Afterglows Detected with UVOT
NASA Astrophysics Data System (ADS)
Marshall, F. E.
2008-05-01
The automated response of the UltraViolet and Optical Telescope (UVOT) on Swift to new GRBs has several parameters, including exposure time, filter sequence and data mode, that can be adjusted to optimize the science return of early afterglow observations. After some initial changes, the response has remained stable since March 15, 2006. From then through August 10, 2007, UVOT observed 122 of the 130 GRBs detected with Swift's Burst Alert Telescope (BAT). UVOT typically takes an initial 100-s exposure with the White filter (160-650 nm) starting 60-180 s after the trigger and then takes exposures with the other 6 filters. In its first finding chart exposure UVOT detected 39% of the 84 long (T90>2.0 s) GRBs that were not heavily reddened in the Milky Way (EB-V<0.5) and were observed within 500 seconds of the trigger. Another 4% were detected after including subsequent exposures. Afterglow magnitudes ranged from 12.8 to the sensitivity limit of ~21. Only 1 of 11 short GRBs were detected, and its magnitude was near the sensitivity limit. We also report correlations of afterglow magnitudes with other GRB properties.
Speckle Interferometry at the Blanco and SOAR Telescopes in 2008 and 2009
NASA Technical Reports Server (NTRS)
Tokovinin, Andrei; Mason, Brian D.; Hartkopf, William I.
2010-01-01
The results of speckle interferometric measurements of binary and multiple stars conducted in 2008 and 2009 at the Blanco and Southern Astrophysical Research (SOAR) 4 m telescopes in Chile are presented. A tot al of 1898 measurements of 1189 resolved pairs or sub-systems and 394 observations of 285 un-resolved targets are listed. We resolved for the first time 48 new pairs, 21 of which are new sub-systems in close visual multiple stars. Typical internal measurement precision is 0.3 mas in both coordinates, typical companion detection capability is delta m approximately 4.2 at 0.15 degree separation. These data were obtained with a new electron-multiplication CCD camera; data processing is described in detail, including estimation of magnitude difference, observational errors, detection limits, and analysis of artifacts. We comment on some newly discovered pairs and objects of special interest.
SPECKLE INTERFEROMETRY AT THE BLANCO AND SOAR TELESCOPES IN 2008 AND 2009
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tokovinin, Andrei; Mason, Brian D.; Hartkopf, William I.
2010-02-15
The results of speckle interferometric measurements of binary and multiple stars conducted in 2008 and 2009 at the Blanco and SOAR 4 m telescopes in Chile are presented. A total of 1898 measurements of 1189 resolved pairs or sub-systems and 394 observations of 285 un-resolved targets are listed. We resolved for the first time 48 new pairs, 21 of which are new sub-systems in close visual multiple stars. Typical internal measurement precision is 0.3 mas in both coordinates, typical companion detection capability is {delta}m {approx} 4.2 at 0.''15 separation. These data were obtained with a new electron-multiplication CCD camera; datamore » processing is described in detail, including estimation of magnitude difference, observational errors, detection limits, and analysis of artifacts. We comment on some newly discovered pairs and objects of special interest.« less
NASA Astrophysics Data System (ADS)
Gottwald, Georg A.; Wormell, J. P.; Wouters, Jeroen
2016-09-01
Using a sensitive statistical test we determine whether or not one can detect the breakdown of linear response given observations of deterministic dynamical systems. A goodness-of-fit statistics is developed for a linear statistical model of the observations, based on results for central limit theorems for deterministic dynamical systems, and used to detect linear response breakdown. We apply the method to discrete maps which do not obey linear response and show that the successful detection of breakdown depends on the length of the time series, the magnitude of the perturbation and on the choice of the observable. We find that in order to reliably reject the assumption of linear response for typical observables sufficiently large data sets are needed. Even for simple systems such as the logistic map, one needs of the order of 106 observations to reliably detect the breakdown with a confidence level of 95 %; if less observations are available one may be falsely led to conclude that linear response theory is valid. The amount of data required is larger the smaller the applied perturbation. For judiciously chosen observables the necessary amount of data can be drastically reduced, but requires detailed a priori knowledge about the invariant measure which is typically not available for complex dynamical systems. Furthermore we explore the use of the fluctuation-dissipation theorem (FDT) in cases with limited data length or coarse-graining of observations. The FDT, if applied naively to a system without linear response, is shown to be very sensitive to the details of the sampling method, resulting in erroneous predictions of the response.
Formation of disinfection byproducts in typical Chinese drinking water.
Liu, Wenbo; Zhao, Yanmei; Chow, Christopher W K; Wang, Dongsheng
2011-01-01
Eight typical drinking water supplies in China were selected in this study. Both source and tap water were used to investigate the occurrence of chlorinated disinfection byproducts (DBPs), and seasonal variation in the concentrations of trihalomethanes (THMs) of seven water sources was compared. The results showed that the pollution level for source water in China, as shown by DBP formation potential, was low. The most encountered DBPs were chloroform, dichloroacetic acid, trichloroacetic acid, and chlorodibromoacetic acid. The concentration of every THMs and haloacetic acid (HAA) compound was under the limit of standards for drinking water quality. The highest total THMs concentrations were detected in spring.
Color object detection using spatial-color joint probability functions.
Luo, Jiebo; Crandall, David
2006-06-01
Object detection in unconstrained images is an important image understanding problem with many potential applications. There has been little success in creating a single algorithm that can detect arbitrary objects in unconstrained images; instead, algorithms typically must be customized for each specific object. Consequently, it typically requires a large number of exemplars (for rigid objects) or a large amount of human intuition (for nonrigid objects) to develop a robust algorithm. We present a robust algorithm designed to detect a class of compound color objects given a single model image. A compound color object is defined as having a set of multiple, particular colors arranged spatially in a particular way, including flags, logos, cartoon characters, people in uniforms, etc. Our approach is based on a particular type of spatial-color joint probability function called the color edge co-occurrence histogram. In addition, our algorithm employs perceptual color naming to handle color variation, and prescreening to limit the search scope (i.e., size and location) for the object. Experimental results demonstrated that the proposed algorithm is insensitive to object rotation, scaling, partial occlusion, and folding, outperforming a closely related algorithm based on color co-occurrence histograms by a decisive margin.
Schäfer, Klaus; Brockmann, Klaus; Heland, Jörg; Wiesen, Peter; Jahn, Carsten; Legras, Olivier
2005-04-10
The detection limits for NO and NO2 in turbine exhausts by nonintrusive monitoring have to be improved. Multipass mode Fourier-transform infrared (FTIR) absorption spectrometry and use of a White mirror system were found from a sensitivity study with spectra simulations in the mid-infrared to be essential for the retrieval of NO2 abundances. A new White mirror system with a parallel infrared beam was developed and tested successfully with a commercial FTIR spectrometer in different turbine test beds. The minimum detection limits for a typical turbine plume of 50 cm in diameter are approximately 6 parts per million (ppm) for NO and 9 ppm for NO2 (as well 100 ppm for CO2 and 4 ppm for CO).
Oliveira, Fabiano Aurélio da Silva; Pereira, Elba Nathália Corrêa; Gobbi, Jennifer Mattedi; Soto-Blanco, Benito; Melo, Marília Martins
2018-01-01
Beef meat is an important food that can be contaminated by pesticides. This study aimed to optimize a multiresidue method for identification and quantification of pesticides in beef meat by liquid chromatography coupled to mass spectrometry detection (LC-MS). The extraction and clean-up procedures were adapted from the QuECHERS method. From the 188 analytes tested, the method was validated as qualitative method for 19 compounds and as quantitative method for 152 compounds. The results were satisfactory, yielding coefficients of variation of less than 20% and recoveries ranging from 70% to 120% and expanded uncertainty of less than 50%. The quantification limit was typically 10 µg kg -1 (but 25 µg kg -1 for 12 of the compounds) and the detection limit was 5.0 µg kg -1 . Thirty-two real samples of commercialized beef meat were analyzed without any residual pesticide being found. Thus, the results showed that the multiresidue method for detecting 171 pesticides, using adapted QuECHERS for extraction and LC-MS for detection, is suitable for analyzing beef meat.
On the limits of the hadronic energy resolution of calorimeters
NASA Astrophysics Data System (ADS)
Lee, Sehwook; Livan, Michele; Wigmans, Richard
2018-02-01
In particle physics experiments, the quality of calorimetric particle detection is typically considerably worse for hadrons than for electromagnetic showers. In this paper, we investigate the root causes of this problem and evaluate two different methods that have been exploited to remedy this situation: compensation and dual readout. It turns out that the latter approach is more promising, as evidenced by experimental results.
USDA-ARS?s Scientific Manuscript database
The favored method of organic P identification over the last few decades has been 31P NMR. While this technique has the distinct advantage of speciating the organic P fraction, it has a relatively poor detection threshold (0.05 mg/ml), which typically limits 31P NMR to qualitative or confirmative ap...
Distinguishing the albedo of exoplanets from stellar activity
NASA Astrophysics Data System (ADS)
Serrano, L. M.; Barros, S. C. C.; Oshagh, M.; Santos, N. C.; Faria, J. P.; Demangeon, O.; Sousa, S. G.; Lendl, M.
2018-03-01
Context. Light curves show the flux variation from the target star and its orbiting planets as a function of time. In addition to the transit features created by the planets, the flux also includes the reflected light component of each planet, which depends on the planetary albedo. This signal is typically referred to as phase curve and could be easily identified if there were no additional noise. As well as instrumental noise, stellar activity, such as spots, can create a modulation in the data, which may be very difficult to distinguish from the planetary signal. Aims: We analyze the limitations imposed by the stellar activity on the detection of the planetary albedo, considering the limitations imposed by the predicted level of instrumental noise and the short duration of the obervations planned in the context of the CHEOPS mission. Methods: As initial condition, we have assumed that each star is characterized by just one orbiting planet. We built mock light curves that included a realistic stellar activity pattern, the reflected light component of the planet and an instrumental noise level, which we have chosen to be at the same level as predicted for CHEOPS. We then fit these light curves to try to recover the reflected light component, assuming the activity patterns can be modeled with a Gaussian process. Results: We estimate that at least one full stellar rotation is necessary to obtain a reliable detection of the planetary albedo. This result is independent of the level of noise, but it depends on the limitation of the Gaussian process to describe the stellar activity when the light curve time-span is shorter than the stellar rotation. As an additional result, we found that with a 6.5 magnitude star and the noise level of CHEOPS, it is possible to detect the planetary albedo up to a lower limit of Rp = 0.03 R*. Finally, in presence of typical CHEOPS gaps in the simulations, we confirm that it is still possible to obtain a reliable albedo.
Olfaction in the autism spectrum.
Galle, Sara A; Courchesne, Valérie; Mottron, Laurent; Frasnelli, Johannes
2013-01-01
The autism spectrum (AS) is characterised by enhanced perception in vision and audition, described by the enhanced perceptual functioning (EPF) model. This model predicts enhanced low-level (discrimination of psychophysical dimensions), and mid- and high-level (pattern detection and identification) perception. The EPF model is here tested for olfaction by investigating olfactory function in autistic and Asperger participants. Experiment 1 targeted higher-order olfactory processing by assessing olfactory identification in nine Asperger, ten autistic, and eleven typically developed individuals. Experiment 2 focused on low-level olfactory processing; we assessed odour detection thresholds and odour discrimination in five Asperger, five autistic, and five typically developed males. Olfactory identification was impaired in autistic participants relative to control and Asperger participants. Typical performance in low-level olfactory processing suggests that neural mechanisms involved in the perceptual phenotype of AS do not affect structures implicated in olfactory processing. Reduced olfactory identification is limited to autistic participants who displayed speech delay and may be due to a reduced facility to use verbal labels. The apparent absence of enhanced olfactory perception of AS participants distinguishes the olfactory system from the other sensory modalities and might be caused by the absence of an obligatory thalamic relay.
Explosives Detection: Exploitation of the Physical Signatures
NASA Astrophysics Data System (ADS)
Atkinson, David
2010-10-01
Explosives based terrorism is an ongoing threat that is evolving with respect to implementation, configuration and materials used. There are a variety of devices designed to detect explosive devices, however, each technology has limitations and operational constraints. A full understanding of the signatures available for detection coupled with the array of detection choices can be used to develop a conceptual model of an explosives screening operation. Physics based sensors provide a robust approach to explosives detection, typically through the identification of anomalies, and are currently used for screening in airports around the world. The next generation of detectors for explosives detection will need to be more sensitive and selective, as well as integrate seamlessly with devices focused on chemical signatures. An appreciation for the details of the physical signature exploitation in cluttered environments with time, space, and privacy constraints is necessary for effective explosives screening of people, luggage, cargo, and vehicles.
Fletcher, Carl; Sleeman, Richard; Luke, John; Luke, Peter; Bradley, James W
2018-03-01
The detection of explosives is of great importance, as is the need for sensitive, reliable techniques that require little or no sample preparation and short run times for high throughput analysis. In this work, a novel ionisation source is presented based on a dielectric barrier discharge (DBD). This not only affects desorption and ionisation but also forms an ionic wind, providing mass transportation of ions towards the mass spectrometer. Furthermore, the design incorporates 2 asymmetric alumina sheets, each containing 3 DBDs, so that a large surface area can be analysed. The DBD operates in ambient air, overcoming the limitation of other plasma-based techniques which typically analyse smaller surface areas and require solvents or gases. A range of explosives across 4 different functional groups was analysed using the DBD with low limits of detection for cyclotrimethylene trinitramine (RDX) (100 pg), pentaerythritol trinitrate (PETN) (100 pg), hexamethylene triperoxide diamide (HMTD) (1 ng), and trinitrotoluene (TNT) (5 ng). Detection was achieved without any sample preparation or the addition of reagents to facilitate adduct formation. Copyright © 2017 John Wiley & Sons, Ltd.
Novel optical strategies for biodetection
NASA Astrophysics Data System (ADS)
Sakamuri, Rama M.; Wolfenden, Mark S.; Anderson, Aaron S.; Swanson, Basil I.; Schmidt, Jurgen S.; Mukundan, Harshini
2013-09-01
Although bio-detection strategies have significantly evolved in the past decade, they still suffer from many disadvantages. For one, current approaches still require confirmation of pathogen viability by culture, which is the `gold-standard' method, and can take several days to result. Second, current methods typically target protein and nucleic acid signatures and cannot be applied to other biochemical categories of biomarkers (e.g.; lipidated sugars). Lipidated sugars (e.g.; lipopolysaccharide, lipoarabinomannan) are bacterial virulence factors that are significant to pathogenicity. Herein, we present two different optical strategies for biodetection to address these two limitations. We have exploited bacterial iron sequestration mechanisms to develop a simple, specific assay for the selective detection of viable bacteria, without the need for culture. We are currently working on the use of this technology for the differential detection of two different bacteria, using siderophores. Second, we have developed a novel strategy termed `membrane insertion' for the detection of amphiphilic biomarkers (e.g. lipidated glycans) that cannot be detected by conventional approaches. We have extended this technology to the detection of small molecule amphiphilic virulence factors, such as phenolic glycolipid-1 from leprosy, which could not be directly detected before. Together, these strategies address two critical limitations in current biodetection approaches. We are currently working on the optimization of these methods, and their extension to real-world clinical samples.
Intelligent monitoring and control of semiconductor manufacturing equipment
NASA Technical Reports Server (NTRS)
Murdock, Janet L.; Hayes-Roth, Barbara
1991-01-01
The use of AI methods to monitor and control semiconductor fabrication in a state-of-the-art manufacturing environment called the Rapid Thermal Multiprocessor is described. Semiconductor fabrication involves many complex processing steps with limited opportunities to measure process and product properties. By applying additional process and product knowledge to that limited data, AI methods augment classical control methods by detecting abnormalities and trends, predicting failures, diagnosing, planning corrective action sequences, explaining diagnoses or predictions, and reacting to anomalous conditions that classical control systems typically would not correct. Research methodology and issues are discussed, and two diagnosis scenarios are examined.
Tong, Changlun; Zhuo, Xiajun; Guo, Yun
2011-07-13
A sensitive liquid chromatography-fluorescence detection method, combined with one-step solid-phase extraction, was established for detecting the residual levels of the four typical fluoroquinolone antibiotics (ofloxacin, norfloxacin, ciprofloxacin, and enrofloxacin) in influent, effluent, and surface waters from Hangzhou, China. For the various environmental water matrices, the overall recoveries were from 76.8 to 122%, and no obvious interferences of matrix effect were observed. The limit of quantitation of this method was estimated to be 17 ng/L for ciprofloxacin and norfloxacin, 20 ng/L for ofloxacin, and 27 ng/L for enrofloxacin. All of the four typical fluoroquinolone antibiotics were found in the wastewaters and surface waters. The residual contents of the four typical fluoroquinolone antibiotics in influent, effluent, and surface water samples are 108-1405, 54-429, and 7.0-51.6 ng/L, respectively. The removal rates of the selected fluoroquinolone antibiotics were 69.5 (ofloxacin), 61.3 (norfloxacin), and 50% (enrofloxacin), indicating that activated sludge treatment is effective except for ciprofloxacin and necessary to remove these fluoroquinolone antibiotics in municipal sewage. The risk to the aquatic environment was estimated by a ratio of measured environmental concentration and predicted no-effect concentration. At the concentrations, these fluoroquinolone antibiotics were found in influent, effluent, and surface waters, and they should not pose a risk for the aquatic environment.
Waks, Zeev; Weissbrod, Omer; Carmeli, Boaz; Norel, Raquel; Utro, Filippo; Goldschmidt, Yaara
2016-12-23
Compiling a comprehensive list of cancer driver genes is imperative for oncology diagnostics and drug development. While driver genes are typically discovered by analysis of tumor genomes, infrequently mutated driver genes often evade detection due to limited sample sizes. Here, we address sample size limitations by integrating tumor genomics data with a wide spectrum of gene-specific properties to search for rare drivers, functionally classify them, and detect features characteristic of driver genes. We show that our approach, CAnceR geNe similarity-based Annotator and Finder (CARNAF), enables detection of potentially novel drivers that eluded over a dozen pan-cancer/multi-tumor type studies. In particular, feature analysis reveals a highly concentrated pool of known and putative tumor suppressors among the <1% of genes that encode very large, chromatin-regulating proteins. Thus, our study highlights the need for deeper characterization of very large, epigenetic regulators in the context of cancer causality.
Jones, Pete R
2018-05-16
During psychophysical testing, a loss of concentration can cause observers to answer incorrectly, even when the stimulus is clearly perceptible. Such lapses limit the accuracy and speed of many psychophysical measurements. This study evaluates an automated technique for detecting lapses based on body movement (postural instability). Thirty-five children (8-11 years of age) and 34 adults performed a typical psychophysical task (orientation discrimination) while seated on a Wii Fit Balance Board: a gaming device that measures center of pressure (CoP). Incorrect responses on suprathreshold catch trials provided the "reference standard" measure of when lapses in concentration occurred. Children exhibited significantly greater variability in CoP on lapse trials, indicating that postural instability provides a feasible, real-time index of concentration. Limitations and potential applications of this method are discussed.
Generation of squeezing in a driven many-body system
NASA Astrophysics Data System (ADS)
Hebbe Madhusudhana, Bharath; Boguslawski, Matthew; Anquez, Martin; Robbins, Bryce; Barrios, Maryrose; Hoang, Thai; Chapman, Michael
2016-05-01
In a spin-1 Bose-Einstein condensate, the non-linear spin-dependent collisional interactions can create entanglement and squeezing. Typically, the condensate is initialized at an unstable fixed point of the phase space, and subsequent free evolution under a time-independent Hamiltonian creates the squeezed state. Alternatively, it is possible to generate squeezing by driving the system localized at a stable fixed point. Here, we demonstrate that periodic modulation of the Hamiltonian can generate highly squeezed states. Our measurements show -5 dB of squeezing, limited by the detection, but calculations indicate that a theoretical potential of -20 dB of squeezing. We discuss the advantages of this method compared with the typical techniques.
Carbon Nanotube-based microelectrodes for enhanced detection of neurotransmitters
NASA Astrophysics Data System (ADS)
Jacobs, Christopher B.
Fast-scan cyclic voltammetry (FSCV) is one of the common techniques used for rapid measurement of neurotransmitters in vivo. Carbon-fiber microelectrodes (CFMEs) are typically used for neurotransmitter detection because of sub-second measurement capabilities, ability to measure changes in neurotransmitter concentration during neurotransmission, and the small size electrode diameter, which limits the amount of damage caused to tissue. Cylinder CFMEs, typically 50 -- 100 microm long, are commonly used for in vivo experiments because the electrode sensitivity is directly related to the electrode surface area. However the length of the electrode can limit the spatial resolution of neurotransmitter detection, which can restrict experiments in Drosophila and other small model systems. In addition, the electrode sensitivity toward dopamine and serotonin detection drops significantly for measurements at rates faster than 10 Hz, limiting the temporal resolution of CFMEs. While the use of FSCV at carbon-fiber microelectrodes has led to substantial strides in our understanding of neurotransmission, techniques that expand the capabilities of CFMEs are crucial to fully maximize the potential uses of FSCV. This dissertation introduces new methods to integrate carbon nanotubes (CNT) into microelectrodes and discusses the electrochemical enhancements of these CNT-microelectrodes. The electrodes are specifically designed with simple fabrication procedures so that highly specialized equipment is not necessary, and they utilize commercially available materials so that the electrodes could be easily integrated into existing systems. The electrochemical properties of CNT modified CFMEs are characterized using FSCV and the effect of CNT functionalization on these properties is explored in Chapter 2. For example, CFME modification using carboxylic acid functionalized CNTs yield about a 6-fold increase in dopamine oxidation current, but modification with octadecylamine CNTs results in a negligible change to the signal. Chapter 3 is devoted to the development and characterization of new CNT-Yarn Microelectrodes (CNTYME) which display a beneficial enhancement in sensitivity and reduction in both electron transfer kinetics and overpotential. Chapter 4 introduces the high-speed dopamine detection capabilities of CNTYMEs, almost two orders of magnitude faster than at CFMEs without any compromise in electrochemical sensitivity, and discusses how adsorption and desorption relate to this phenomenon.
NASA Astrophysics Data System (ADS)
You, Juneseok; Song, Yeongjin; Park, Chanho; Jang, Kuewhan; Na, Sungsoo
2017-06-01
Silver ions have been used to sterilize many products, however, it has recently been demonstrated that silver ions can be toxic. This toxicity has been studied over many years with the lethal concentration at 10 μM. Silver ions can accumulate through the food chain, causing serious health problems in many species. Hence, there is a need for a commercially available silver ion sensor, with high detection sensitivity. In this work, we develop an ultra-sensitive silver ion sensor platform, using cytosine based DNA and gold nanoparticles as the mass amplifier. We achieve a lower detection limit for silver ions of 10 pM; this detection limit is one million times lower than the toxic concentration. Using our sensor platform we examine highly selective characteristics of other typical ions in water from natural sources. Furthermore, our sensor platform is able to detect silver ions in a real practical sample of commercially available drinking water. Our sensor platform, which we have termed a ‘MAIS’ (mass amplifier ion sensor), with a simple detection procedure, high sensitivity, selectivity and real practical applicability has shown potential as an early toxicity assessment of silver ions in the environment.
Improved Limits for Higgs-Portal Dark Matter from LHC Searches.
Hoferichter, Martin; Klos, Philipp; Menéndez, Javier; Schwenk, Achim
2017-11-03
Searches for invisible Higgs decays at the Large Hadron Collider constrain dark matter Higgs-portal models, where dark matter interacts with the standard model fields via the Higgs boson. While these searches complement dark matter direct-detection experiments, a comparison of the two limits depends on the coupling of the Higgs boson to the nucleons forming the direct-detection nuclear target, typically parametrized in a single quantity f_{N}. We evaluate f_{N} using recent phenomenological and lattice-QCD calculations, and include for the first time the coupling of the Higgs boson to two nucleons via pion-exchange currents. We observe a partial cancellation for Higgs-portal models that makes the two-nucleon contribution anomalously small. Our results, summarized as f_{N}=0.308(18), show that the uncertainty of the Higgs-nucleon coupling has been vastly overestimated in the past. The improved limits highlight that state-of-the-art nuclear physics input is key to fully exploiting experimental searches.
Xiong, Jukun; An, Taicheng; Zhang, Chaosheng; Li, Guiying
2015-06-01
The aim of this study was to assess the pollution profiles of various typical brominated flame retardants in water and surface sediment near a typical electronic waste dismantling region in southern China. We found that polybrominated diphenyl ethers (PBDEs), 2,4,6-tribromophenol (TBP), pentabromophenol (PeBP), tetrabromobisphenol A (TBBPA), and bisphenol A (BPA) were ubiquitous in the water and sediment samples collected in the study region. In water, Σ19PBDEs (sum of all 20 PBDE congeners studied except BDE-209, which was below the detection limit) levels ranged from 0.31 to 8.9 × 10(2) ng L(-1). TBP, PeBP, TBBPA, and BPA concentrations in the water samples ranged from not being detectable (nd-under the detection limit) to 3.2 × 10(2) (TBP), from nd to 37 (PeBP), from nd to 9.2 × 10(2) (TBBPA) and from nd-8.6 × 10(2) ng L(-1) (BPA). In sediment, Σ19PBDEs ranged from nd to 5.6 × 10(3) ng g(-1), while BDE-209 was the predominant congener, with a range of nd to 3.5 × 10(3) ng g(-1). Tri- to hepta-BDE concentrations were significantly (p < 0.01) correlated with each other, except for BDE-71 and BDE-183, and octa- to nona-BDEs concentrations were significantly (p < 0.05) correlated with each other, except for BDE-208. BDE-209 was not significantly correlated with tri- to nona-BDEs. Risk assessments indicated that the water and sediment across the sampling sites posed no estrogenic risk. However, different eco-toxicity risk degrees at three trophic levels did exist at most sampling sites.
Verstraeten, B.; Sermeus, J.; Salenbien, R.; Fivez, J.; Shkerdin, G.; Glorieux, C.
2015-01-01
The underlying working principle of detecting impulsive stimulated scattering signals in a differential configuration of heterodyne diffraction detection is unraveled by involving optical scattering theory. The feasibility of the method for the thermoelastic characterization of coating-substrate systems is demonstrated on the basis of simulated data containing typical levels of noise. Besides the classical analysis of the photoacoustic part of the signals, which involves fitting surface acoustic wave dispersion curves, the photothermal part of the signals is analyzed by introducing thermal wave dispersion curves to represent and interpret their grating wavelength dependence. The intrinsic possibilities and limitations of both inverse problems are quantified by making use of least and most squares analysis. PMID:26236643
Hemizygosity at the elastin locus and clinical features of Williams syndrome
DOE Office of Scientific and Technical Information (OSTI.GOV)
Morimoto, Y; Kuwano, A.; Kuwajima, K.
1994-09-01
Williams syndrome is a recognizable syndrome characterized by distinctive facial appearance, gregarious personality, mental retardation, congenital heart defect, particularly supravalvular aortic stenosis (SVAS), and joint limitation. SVAS is an autosomal vascular disorder and the elastin gene was disrupted in patients with SVAS. Ewat et al. reported that hemizygosity at the elastin locus was detected in four familial and five sporadic cases of Williams syndrome. However, three patients did not have SVAS. We reconfirmed hemizygosity at the elastin locus in five patients with typical clinical features of Williams syndrome. Hemizygosity was detected in four cases with SVAS. However, one patient withmore » distinctive facial appearance and typical Williams syndrome personality had two alleles of the elastin gene, but he did not have the congenital heart anomaly. Williams syndrome is thought to be a contiguous gene disorder. Thus, our data suggest that the elastin gene is responsible for the vascular defect in patients with Williams syndrome, and flanking genes are responsible for characteristic facial appearance and personality.« less
Xi, Zhijiang; Gong, Quan; Wang, Chao; Zheng, Bing
2018-06-21
Hepatitis B virus (HBV) infection is a major global public health problem and one of the leading causes of chronic liver disease. HBsAg is the first serological marker to appear in the blood and is the most important marker of HBV infection. Detection of HBsAg in serum samples is commonly carried out using an immunoassay such as an enzyme-linked immunosorbent assay (ELISA), which is complex to perform, time-consuming, and unsatisfactory for testing sensitivity. Therefore, new methods for highly sensitive detection of HBV infection are urgently needed. Aptamers are specific recognition molecules with high affinity and specificity toward their targets. Biosensors that employ aptamers as biorecognition elements are known as aptasensors. In this study, we select an HBsAg-specific aptamer and use it to develop a new chemiluminescent aptasensor based on rapid magnetic separation and double-functionalized gold nanoparticles. This sensor enables rapid magnetic separation and highly sensitive detection of HBsAg in HBV-positive serum. The detection limit of this HBsAg-detecting chemiluminescent aptasensor is as low as 0.05 ng/mL, which is much lower than the 0.5 ng/mL limit of a typical ELISA used in hospitals. Furthermore, this aptasensor works well and is highly specific to HBV infection.
Random phase detection in multidimensional NMR.
Maciejewski, Mark W; Fenwick, Matthew; Schuyler, Adam D; Stern, Alan S; Gorbatyuk, Vitaliy; Hoch, Jeffrey C
2011-10-04
Despite advances in resolution accompanying the development of high-field superconducting magnets, biomolecular applications of NMR require multiple dimensions in order to resolve individual resonances, and the achievable resolution is typically limited by practical constraints on measuring time. In addition to the need for measuring long evolution times to obtain high resolution, the need to distinguish the sign of the frequency constrains the ability to shorten measuring times. Sign discrimination is typically accomplished by sampling the signal with two different receiver phases or by selecting a reference frequency outside the range of frequencies spanned by the signal and then sampling at a higher rate. In the parametrically sampled (indirect) time dimensions of multidimensional NMR experiments, either method imposes an additional factor of 2 sampling burden for each dimension. We demonstrate that by using a single detector phase at each time sample point, but randomly altering the phase for different points, the sign ambiguity that attends fixed single-phase detection is resolved. Random phase detection enables a reduction in experiment time by a factor of 2 for each indirect dimension, amounting to a factor of 8 for a four-dimensional experiment, albeit at the cost of introducing sampling artifacts. Alternatively, for fixed measuring time, random phase detection can be used to double resolution in each indirect dimension. Random phase detection is complementary to nonuniform sampling methods, and their combination offers the potential for additional benefits. In addition to applications in biomolecular NMR, random phase detection could be useful in magnetic resonance imaging and other signal processing contexts.
Very-Long-Distance Remote Hearing and Vibrometry
NASA Technical Reports Server (NTRS)
Maleki, Lute; Yu, Nan; Matsko, Andrey; Savchenkov, Anatoliy
2009-01-01
A proposed development of laser-based instrumentation systems would extend the art of laser Doppler vibrometry beyond the prior limits of laser-assisted remote hearing and industrial vibrometry for detecting defects in operating mechanisms. A system according to the proposal could covertly measure vibrations of objects at distances as large as thousands of kilometers and could process the measurement data to enable recognition of vibrations characteristic of specific objects of interest, thereby enabling recognition of the objects themselves. A typical system as envisioned would be placed in orbit around the Earth for use as a means of determining whether certain objects on or under the ground are of interest as potential military targets. Terrestrial versions of these instruments designed for airborne or land- or sea-based operation could be similarly useful for military or law-enforcement purposes. Prior laser-based remote-hearing systems are not capable of either covert operation or detecting signals beyond modest distances when operated at realistic laser power levels. The performances of prior systems for recognition of objects by remote vibrometry are limited by low signal-to-noise ratios and lack of filtering of optical signals returned from targets. The proposed development would overcome these limitations. A system as proposed would include a narrow-band laser as its target illuminator, a lock-in-detection receiver subsystem, and a laser-power-control subsystem that would utilize feedback of the intensity of background illumination of the target to adjust the laser power. The laser power would be set at a level high enough to enable the desired measurements but below the threshold of detectability by an imaginary typical modern photodetector located at the target and there exposed to the background illumination. The laser beam would be focused tightly on the distant target, such that the receiving optics would be exposed to only one speckle. The return signal would be extremely-narrow-band filtered (to sub-kilohertz bandwidth) in the optical domain by a whispering-gallery- mode filter so as to remove most of the background illumination. The filtered optical signal would be optically amplified. This combination of optical filtering and optical amplification would provide an optical signal that would be strong enough to be detectable but not so strong as to saturate the detector in the lock-in detection subsystem.
Identification of microbial pigments in evaporitic matrices using Raman spectroscopy
NASA Astrophysics Data System (ADS)
Vítek, Petr; Jehlička, Jan; Edwards, Howell G. M.; Wierzchos, Jacek
2010-05-01
An evaporitic environment is considered as one of the possible habitats for life on Mars. From terrestrial geological scenarios we know that microorganisms inhabiting such an extreme environment (halophiles) are rich in protective pigments, depending on the metabolic pathways and specific adaptation to the harsh environmental conditions. Carotenoids typically occur within the cells of halophiles (bacteria, archaea as well as eukaryotic algae) in large amounts as part of their photosystem and protective adaptation to high doses of UV radiation that are typical for most recent evaporitic environments. Chlorophyll occurs in halophilic cyanobacteria together with carotenoids and possibly other pigments which are synthetised in response to the high UV radiation insolation. Here we present the results of Raman spectroscopic investigations of a) beta-carotene in experimentally prepared mixtures with halite, gypsum and epsomite; and b) cyanobacterial colonies inhabiting real halite and gypsum matrices in the Atacama Desert. Our results demonstrate the possibility of detection of beta-carotene - a typical carotenoid - in relatively low concentrations within the evaporitic powdered mixtures; the lowest concentration of carotenoid signal detected was 0,1 mg kg-1, which represents 100 ppb. Raman spectroscopic analyses of natural specimens (endolithic cyanobacteria) from the Atacama desert revealed the presence of scytonemin, an extremely efficient UV protective pigment, carotenoids of various types and chlorophyll. The detection potential as well as limitations of Raman spectroscopy as a part of a payload within future robotic space missions focused on the search for life on Mars is discussed.
Failure Control Techniques for the SSME
NASA Technical Reports Server (NTRS)
Taniguchi, M. H.
1987-01-01
Since ground testing of the Space Shuttle Main Engine (SSME) began in 1975, the detection of engine anomalies and the prevention of major damage have been achieved by a multi-faceted detection/shutdown system. The system continues the monitoring task today and consists of the following: sensors, automatic redline and other limit logic, redundant sensors and controller voting logic, conditional decision logic, and human monitoring. Typically, on the order of 300 to 500 measurements are sensed and recorded for each test, while on the order of 100 are used for control and monitoring. Despite extensive monitoring by the current detection system, twenty-seven (27) major incidents have occurred. This number would appear insignificant compared with over 1200 hot-fire tests which have taken place since 1976. However, the number suggests the requirement for and future benefits of a more advanced failure detection system.
NASA Astrophysics Data System (ADS)
Cazorla, M.; Wolfe, G. M.; Bailey, S. A.; Swanson, A. K.; Arkinson, H. L.; Hanisco, T. F.
2015-02-01
The NASA In Situ Airborne Formaldehyde (ISAF) instrument is a high-performance laser-based detector for gas-phase formaldehyde (HCHO). ISAF uses rotational-state specific laser excitation at 353 nm for laser-induced fluorescence (LIF) detection of HCHO. A number of features make ISAF ideal for airborne deployment, including (1) a compact, low-maintenance fiber laser, (2) a single-pass design for stable signal response, (3) a straightforward inlet design, and (4) a stand-alone data acquisition system. A full description of the instrument design is given, along with detailed performance characteristics. The accuracy of reported mixing ratios is ±10% based on calibration against IR and UV absorption of a primary HCHO standard. Precision at 1 Hz is typically better than 20% above 100 pptv, with uncertainty in the signal background contributing most to variability at low mixing ratios. The 1 Hz detection limit for a signal / noise ratio of 2 is 36 pptv for 10 mW of laser power, and the e fold time response at typical sample flow rates is 0.19 s. ISAF has already flown on several field missions and platforms with excellent results.
NASA Astrophysics Data System (ADS)
Cazorla, M.; Wolfe, G. M.; Bailey, S. A.; Swanson, A. K.; Arkinson, H. L.; Hanisco, T. F.
2014-08-01
The NASA In Situ Airborne Formaldehyde (ISAF) instrument is a high-performance laser-based detector for gas phase formaldehyde (HCHO). ISAF uses rotational-state specific laser excitation at 353 nm for laser-induced fluorescence (LIF) detection of HCHO. A number of features make ISAF ideal for airborne deployment, including (1) a compact, low-maintenance fiber laser, (2) a single-pass design for stable signal response, (3) a straightforward inlet design, and (4) a standalone data acquisition system. A full description of the instrument design is given, along with detailed performance characteristics. The accuracy of reported mixing ratios is ±10% based on calibration against IR and UV absorption of a primary HCHO standard. Precision at 1 Hz is typically better than 20% above 100 pptv, with uncertainty in the signal background contributing most to variability at low mixing ratios. The 1 Hz detection limit for a signal/noise ratio of 2 is 36 pptv for 10 mW of laser power, and the e-fold time response at typical sample flow rates is 0.19 s. ISAF has already flown on several field missions and platforms with excellent results.
VLA observations of A and B stars with kilogauss magnetic fields
NASA Technical Reports Server (NTRS)
Drake, S. A.; Abbott, D. C.; Linsky, J. L.; Bieging, J. H.; Churchwell, E.
1985-01-01
The serendipitous discovery that the star Sigma Ori E is a 3.5 mJy radio continuum source at 6 cm has stimulated a radio survey of other early-type stars with strong magnetic fields. No Ap stars have been detected of the eight observed, with typical 3-sigma upper limits of 0.5 mJy at 2 cm. Of the six Bp stars examined, only HR 1890, a helium-strong star, was detected. Possible emission mechanisms for the observed radio emission are discussed, and it is concluded that nonthermal emission seems the most plausible, on the basis of the present data.
Colorimetric sensor array for determination and identification of toxic industrial chemicals.
Feng, Liang; Musto, Christopher J; Kemling, Jonathan W; Lim, Sung H; Zhong, Wenxuan; Suslick, Kenneth S
2010-11-15
A low-cost yet highly sensitive colorimetric sensor array for the detection and identification of toxic industrial chemicals (TICs) has been developed. The sensor consists of a disposable array of cross-responsive nanoporous pigments whose colors are changed by diverse chemical interactions with analytes. Clear differentiation among 20 different TICs has been easily achieved at both their IDLH (immediately dangerous to life or health) concentration within 2 min of exposure and PEL (permissible exposure limit) concentration within 5 min of exposure with no errors or misclassifications. Detection limits are generally well below the PEL (in most cases below 5% of PEL) and are typically in the low ppb range. The colorimetric sensor array is not responsive to changes in humidity or temperature over a substantial range. The printed arrays show excellent batch to batch reproducibility and long shelf life (greater than 3 months).
Lu, Tao
2017-01-01
The joint modeling of mean and variance for longitudinal data is an active research area. This type of model has the advantage of accounting for heteroscedasticity commonly observed in between and within subject variations. Most of researches focus on improving the estimating efficiency but ignore many data features frequently encountered in practice. In this article, we develop a mixed-effects location scale joint model that concurrently accounts for longitudinal data with multiple features. Specifically, our joint model handles heterogeneity, skewness, limit of detection, measurement errors in covariates which are typically observed in the collection of longitudinal data from many studies. We employ a Bayesian approach for making inference on the joint model. The proposed model and method are applied to an AIDS study. Simulation studies are performed to assess the performance of the proposed method. Alternative models under different conditions are compared.
Qiu, Zhenzhen; Zhang, Jingdong; Liu, Wenchu; Liu, Chaoyang; Zeng, Guangming
2017-01-01
Heavy metal and metalloid (Cr, Pb, Cd, Zn, Cu, Ni, As and Hg) concentrations in groundwater from 19 typical sites throughout a typical brownfield were detected. Mean concentrations of toxic metals in groundwater decreased in the order of Cr > Zn > Cu > Cd > Ni > Pb > Hg > As. Concentration of Cr6+ in groundwater was detected to further study chromium contamination. Cr6+ and Cd in groundwater were recommended as the priority pollutants because they were generally 1399-fold and 12-foldgreater than permissible limits, respectively. Owing to the fact that a waterproof curtain (WPC) in the brownfield is about to pass the warranty period, a steady two-dimensional water quality model and health risk assessment were applied to simulate and evaluate adverse effects of Cr6 + and Cd on the water quality of Xiangjiang River and the drinking-water intake of Wangcheng Waterworks. The results indicated that when groundwater in the brownfield leaked with valid curtain prevention, the water quality in Xiangjiang River and drinking-water intake downstream were temporarily unaffected. However, if there was no curtain prevention, groundwater leakage would have adverse impact on water quality of Xiangjiang River. Under the requirements of Class III surface water quality, the pollution belt for Cr6+ was 7500 m and 200 m for Cd. The non-carcinogenic risk of toxic metals in Xiangjiang River exceeded the threshold in a limited area, but did not threaten Wangcheng Waterworks. By contrast, the carcinogenic risk area for adults was at a transverse distance of 200 m and a longitudinal distance of 18,000 m, which was close to the Wangcheng Waterworks (23,000 m). Therefore, it was essential to reconstruct the WPC in the brownfield for preventing pollution diffusion. PMID:28703781
Li, Fei; Qiu, Zhenzhen; Zhang, Jingdong; Liu, Wenchu; Liu, Chaoyang; Zeng, Guangming
2017-07-13
Heavy metal and metalloid (Cr, Pb, Cd, Zn, Cu, Ni, As and Hg) concentrations in groundwater from 19 typical sites throughout a typical brownfield were detected. Mean concentrations of toxic metals in groundwater decreased in the order of Cr > Zn > Cu > Cd > Ni > Pb > Hg > As. Concentration of Cr 6+ in groundwater was detected to further study chromium contamination. Cr 6+ and Cd in groundwater were recommended as the priority pollutants because they were generally 1399-fold and 12-foldgreater than permissible limits, respectively. Owing to the fact that a waterproof curtain (WPC) in the brownfield is about to pass the warranty period, a steady two-dimensional water quality model and health risk assessment were applied to simulate and evaluate adverse effects of Cr 6 + and Cd on the water quality of Xiangjiang River and the drinking-water intake of Wangcheng Waterworks. The results indicated that when groundwater in the brownfield leaked with valid curtain prevention, the water quality in Xiangjiang River and drinking-water intake downstream were temporarily unaffected. However, if there was no curtain prevention, groundwater leakage would have adverse impact on water quality of Xiangjiang River. Under the requirements of Class III surface water quality, the pollution belt for Cr 6+ was 7500 m and 200 m for Cd. The non-carcinogenic risk of toxic metals in Xiangjiang River exceeded the threshold in a limited area, but did not threaten Wangcheng Waterworks. By contrast, the carcinogenic risk area for adults was at a transverse distance of 200 m and a longitudinal distance of 18,000 m, which was close to the Wangcheng Waterworks (23,000 m). Therefore, it was essential to reconstruct the WPC in the brownfield for preventing pollution diffusion.
Characterizing heterogeneity in children with and without ADHD based on reward system connectivity
Costa Dias, Taciana G.; Iyer, Swathi P.; Carpenter, Samuel D.; Cary, Robert P.; Wilson, Vanessa B.; Mitchell, Suzanne H.; Nigg, Joel T.; Fair, Damien A.
2015-01-01
One potential obstacle limiting our ability to clarify ADHD etiology is the heterogeneity within the disorder, as well as in typical samples. In this study, we utilized a community detection approach on 106 children with and without ADHD (aged 7–12 years), in order to identify potential subgroups of participants based on the connectivity of the reward system. Children with ADHD were compared to typically developing children within each identified community, aiming to find the community-specific ADHD characteristics. Furthermore, to assess how the organization in subgroups relates to behavior, we evaluated delay-discounting gradient and impulsivity-related temperament traits within each community. We found that discrete subgroups were identified that characterized distinct connectivity profiles in the reward system. Importantly, which connections were atypical in ADHD relative to the control children were specific to the community membership. Our findings showed that children with ADHD and typically developing children could be classified into distinct subgroups according to brain functional connectivity. Results also suggested that the differentiation in “functional” subgroups is related to specific behavioral characteristics, in this case impulsivity. Thus, combining neuroimaging data and community detection might be a valuable approach to elucidate heterogeneity in ADHD etiology and examine ADHD neurobiology. PMID:25660033
Automated Propulsion Data Screening demonstration system
NASA Technical Reports Server (NTRS)
Hoyt, W. Andes; Choate, Timothy D.; Whitehead, Bruce A.
1995-01-01
A fully-instrumented firing of a propulsion system typically generates a very large quantity of data. In the case of the Space Shuttle Main Engine (SSME), data analysis from ground tests and flights is currently a labor-intensive process. Human experts spend a great deal of time examining the large volume of sensor data generated by each engine firing. These experts look for any anomalies in the data which might indicate engine conditions warranting further investigation. The contract effort was to develop a 'first-cut' screening system for application to SSME engine firings that would identify the relatively small volume of data which is unusual or anomalous in some way. With such a system, limited and expensive human resources could focus on this small volume of unusual data for thorough analysis. The overall project objective was to develop a fully operational Automated Propulsion Data Screening (APDS) system with the capability of detecting significant trends and anomalies in transient and steady-state data. However, the effort limited screening of transient data to ground test data for throttle-down cases typical of the 3-g acceleration, and for engine throttling required to reach the maximum dynamic pressure limits imposed on the Space Shuttle. This APDS is based on neural networks designed to detect anomalies in propulsion system data that are not part of the data used for neural network training. The delivered system allows engineers to build their own screening sets for application to completed or planned firings of the SSME. ERC developers also built some generic screening sets that NASA engineers could apply immediately to their data analysis efforts.
Optical Detection of Lightning from Space
NASA Technical Reports Server (NTRS)
Boccippio, Dennis J.; Christian, Hugh J.
1998-01-01
Optical sensors have been developed to detect lightning from space during both day and night. These sensors have been fielded in two existing satellite missions and may be included on a third mission in 2002. Satellite-hosted, optically-based lightning detection offers three unique capabilities: (1) the ability to reliably detect lightning over large, often remote, spatial regions, (2) the ability to sample all (IC and CG) lightning, and (3) the ability to detect lightning with uniform (i.e., not range-dependent) sensitivity or detection efficiency. These represent significant departures from conventional RF-based detection techniques, which typically have strong range dependencies (biases) or range limitations in their detection capabilities. The atmospheric electricity team of the NASA Marshall Space Flight Center's Global Hydrology and Climate Center has implemented a three-step satellite lightning research program which includes three phases: proof-of-concept/climatology, science algorithm development, and operational application. The first instrument in the program, the Optical Transient Detector (OTD), is deployed on a low-earth orbit (LEO) satellite with near-polar inclination, yielding global coverage. The sensor has a 1300 x 1300 sq km field of view (FOV), moderate detection efficiency, moderate localization accuracy, and little data bias. The OTD is a proof-of-concept instrument and its mission is primarily a global lightning climatology. The limited spatial accuracy of this instrument makes it suboptimal for use in case studies, although significant science knowledge has been gained from the instrument as deployed.
Molecular interferometric imaging study of molecular interactions
NASA Astrophysics Data System (ADS)
Zhao, Ming; Wang, Xuefeng; Nolte, David
2008-02-01
Molecular Interferometric Imaging (MI2) is a sensitive detection platform for direct optical detection of immobilized biomolecules. It is based on inline common-path interferometry combined with far-field optical imaging. The substrate is a simple thermal oxide on a silicon surface with a thickness at or near the quadrature condition that produces a π/2 phase shift between the normal-incident wave reflected from the top oxide surface and the bottom silicon surface. The presence of immobilized or bound biomolecules on the surface produces a relative phase shift that is converted to a far-field intensity shift and is imaged by a reflective microscope onto a CCD camera. Shearing interferometry is used to remove the spatial 1/f noise from the illumination to achieve shot-noise-limited detection of surface dipole density profiles. The lateral resolution of this technique is diffraction limited at 0.4 micron, and the best longitudinal resolution is 10 picometers. The minimum detectable mass at the metrology limit is 2 attogram, which is 8 antibody molecules of size 150 kDa. The corresponding scaling mass sensitivity is 5 fg/mm compared with 1 pg/mm for typical SPR sensitivity. We have applied MI2 to immunoassay applications, and real-time binding kinetics has been measured for antibody-antigen reactions. The simplicity of the substrate and optical read-out make MI2 a promising analytical assay tool for high-throughput screening and diagnostics.
Truta, Liliana; Castro, André L; Tarelho, Sónia; Costa, Pedro; Sales, M Goreti F; Teixeira, Helena M
2016-09-05
Depression is among the most prevalent psychiatric disorders of our society, leading to an increase in antidepressant drug consumption that needs to be accurately determined in whole blood samples in Forensic Toxicology Laboratories. For this purpose, this work presents a new gas chromatography tandem mass spectrometry (GC-MS/MS) method targeting the simultaneous and rapid determination of 14 common Antidepressants in whole blood: 13 Antidepressants (amitriptyline, citalopram, clomipramine, dothiepin, fluoxetine, imipramine, mianserin, mirtazapine, nortryptiline, paroxetine, sertraline, trimipramine and venlafaxine) and 1 Metabolite (N-desmethylclomipramine). Solid-phase extraction was used prior to chromatographic separation. Chromatographic and MS/MS parameters were selected to improve sensitivity, peak resolution and unequivocal identification of the eluted analyte. The detection was performed on a triple quadrupole tandem MS in selected ion monitoring (SIM) mode in tandem, using electronic impact ionization. Clomipramine-D3 and trimipramine-D3 were used as deutered internal standards. The validation parameters included linearity, limits of detection, lower limit of quantification, selectivity/specificity, extraction efficiency, carry-over, precision and robustness, and followed internationally accepted guidelines. Limits of quantification and detection were lower than therapeutic and sub-therapeutic concentration ranges. Overall, the method offered good selectivity, robustness and quick response (<16min) for typical concentration ranges, both for therapeutic and lethal levels. Copyright © 2016 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Penny, Matthew T., E-mail: penny@astronomy.ohio-state.edu
2014-08-01
Extensive simulations of planetary microlensing are necessary both before and after a survey is conducted: before to design and optimize the survey and after to understand its detection efficiency. The major bottleneck in such computations is the computation of light curves. However, for low-mass planets, most of these computations are wasteful, as most light curves do not contain detectable planetary signatures. In this paper, I develop a parameterization of the binary microlens that is conducive to avoiding light curve computations. I empirically find analytic expressions describing the limits of the parameter space that contain the vast majority of low-mass planetmore » detections. Through a large-scale simulation, I measure the (in)completeness of the parameterization and the speed-up it is possible to achieve. For Earth-mass planets in a wide range of orbits, it is possible to speed up simulations by a factor of ∼30-125 (depending on the survey's annual duty-cycle) at the cost of missing ∼1% of detections (which is actually a smaller loss than for the arbitrary parameter limits typically applied in microlensing simulations). The benefits of the parameterization probably outweigh the costs for planets below 100 M{sub ⊕}. For planets at the sensitivity limit of AFTA-WFIRST, simulation speed-ups of a factor ∼1000 or more are possible.« less
Accuracy of acoustic velocity metering systems for measurement of low velocity in open channels
Laenen, Antonius; Curtis, R. E.
1989-01-01
Acoustic velocity meter (AVM) accuracy depends on equipment limitations, the accuracy of acoustic-path length and angle determination, and the stability of the mean velocity to acoustic-path velocity relation. Equipment limitations depend on path length and angle, transducer frequency, timing oscillator frequency, and signal-detection scheme. Typically, the velocity error from this source is about +or-1 to +or-10 mms/sec. Error in acoustic-path angle or length will result in a proportional measurement bias. Typically, an angle error of one degree will result in a velocity error of 2%, and a path-length error of one meter in 100 meter will result in an error of 1%. Ray bending (signal refraction) depends on path length and density gradients present in the stream. Any deviation from a straight acoustic path between transducer will change the unique relation between path velocity and mean velocity. These deviations will then introduce error in the mean velocity computation. Typically, for a 200-meter path length, the resultant error is less than one percent, but for a 1,000 meter path length, the error can be greater than 10%. Recent laboratory and field tests have substantiated assumptions of equipment limitations. Tow-tank tests of an AVM system with a 4.69-meter path length yielded an average standard deviation error of 9.3 mms/sec, and the field tests of an AVM system with a 20.5-meter path length yielded an average standard deviation error of a 4 mms/sec. (USGS)
Potentiometric chemical sensors for the detection of paralytic shellfish toxins.
Ferreira, Nádia S; Cruz, Marco G N; Gomes, Maria Teresa S R; Rudnitskaya, Alisa
2018-05-01
Potentiometric chemical sensors for the detection of paralytic shellfish toxins have been developed. Four toxins typically encountered in Portuguese waters, namely saxitoxin, decarbamoyl saxitoxin, gonyautoxin GTX5 and C1&C2, were selected for the study. A series of miniaturized sensors with solid inner contact and plasticized polyvinylchloride membranes containing ionophores, nine compositions in total, were prepared and their characteristics evaluated. Sensors displayed cross-sensitivity to four studied toxins, i.e. response to several toxins together with low selectivity. High selectivity towards paralytic shellfish toxins was observed in the presence of inorganic cations with selectivity coefficients ranging from 0.04 to 0.001 for Na + and K + and 3.6*10 -4 to 3.4*10 -5 for Ca 2+ . Detection limits were in the range from 0.25 to 0.9 μmolL -1 for saxitoxin and decarbamoyl saxitoxin, and from 0.08 to 1.8 μmolL -1 for GTX5 and C1&C2, which allows toxin detection at the concentration levels corresponding to the legal limits. Characteristics of the developed sensors allow their use in the electronic tongue multisensor system for simultaneous quantification of paralytic shellfish toxins. Copyright © 2018 Elsevier B.V. All rights reserved.
Absolute charge calibration of scintillating screens for relativistic electron detection
NASA Astrophysics Data System (ADS)
Buck, A.; Zeil, K.; Popp, A.; Schmid, K.; Jochmann, A.; Kraft, S. D.; Hidding, B.; Kudyakov, T.; Sears, C. M. S.; Veisz, L.; Karsch, S.; Pawelke, J.; Sauerbrey, R.; Cowan, T.; Krausz, F.; Schramm, U.
2010-03-01
We report on new charge calibrations and linearity tests with high-dynamic range for eight different scintillating screens typically used for the detection of relativistic electrons from laser-plasma based acceleration schemes. The absolute charge calibration was done with picosecond electron bunches at the ELBE linear accelerator in Dresden. The lower detection limit in our setup for the most sensitive scintillating screen (KODAK Biomax MS) was 10 fC/mm2. The screens showed a linear photon-to-charge dependency over several orders of magnitude. An onset of saturation effects starting around 10-100 pC/mm2 was found for some of the screens. Additionally, a constant light source was employed as a luminosity reference to simplify the transfer of a one-time absolute calibration to different experimental setups.
Adaptive distributed outlier detection for WSNs.
De Paola, Alessandra; Gaglio, Salvatore; Lo Re, Giuseppe; Milazzo, Fabrizio; Ortolani, Marco
2015-05-01
The paradigm of pervasive computing is gaining more and more attention nowadays, thanks to the possibility of obtaining precise and continuous monitoring. Ease of deployment and adaptivity are typically implemented by adopting autonomous and cooperative sensory devices; however, for such systems to be of any practical use, reliability and fault tolerance must be guaranteed, for instance by detecting corrupted readings amidst the huge amount of gathered sensory data. This paper proposes an adaptive distributed Bayesian approach for detecting outliers in data collected by a wireless sensor network; our algorithm aims at optimizing classification accuracy, time complexity and communication complexity, and also considering externally imposed constraints on such conflicting goals. The performed experimental evaluation showed that our approach is able to improve the considered metrics for latency and energy consumption, with limited impact on classification accuracy.
2014-05-01
vulnerable to failure is air. This could be a discharge through an air medium or along an air/surface interface. Achieving robustness in dc power...sputtering” arcs) are discharges that are most commonly located in series with the intended load; the electrical impedance of the load limits the...particularly those used at voltages > 1000 V, is detection and measurement of partial- discharge (PD) activity. The presence of PD in a component typically
2013-08-04
were at or below the limit of detection of our rhe- ometer, whereas the stress-responsive gelation resulted in a modulus increase of greater than two...in a wide variety of organic solvents. The absence of gelation in nucleophilically inactive 2 provides good evidence that gelation does, indeed...did not lead to precipitation, gelation or changes in the carbonyl region of the infrared spectrum. The same result was obtained with a polymer that
Supervised target detection in hyperspectral images using one-class Fukunaga-Koontz Transform
NASA Astrophysics Data System (ADS)
Binol, Hamidullah; Bal, Abdullah
2016-05-01
A novel hyperspectral target detection technique based on Fukunaga-Koontz transform (FKT) is presented. FKT offers significant properties for feature selection and ordering. However, it can only be used to solve multi-pattern classification problems. Target detection may be considered as a two-class classification problem, i.e., target versus background clutter. Nevertheless, background clutter typically contains different types of materials. That's why; target detection techniques are different than classification methods by way of modeling clutter. To avoid the modeling of the background clutter, we have improved one-class FKT (OC-FKT) for target detection. The statistical properties of target training samples are used to define tunnel-like boundary of the target class. Non-target samples are then created synthetically as to be outside of the boundary. Thus, only limited target samples become adequate for training of FKT. The hyperspectral image experiments confirm that the proposed OC-FKT technique provides an effective means for target detection.
A CO trace gas detection system based on continuous wave DFB-QCL
NASA Astrophysics Data System (ADS)
Dang, Jingmin; Yu, Haiye; Sun, Yujing; Wang, Yiding
2017-05-01
A compact and mobile system was demonstrated for the detection of carbon monoxide (CO) at trace level. This system adopted a high-power, continuous wave (CW), distributed feedback quantum cascade laser (DFB-QCL) operating at ∼22 °C as excitation source. Wavelength modulation spectroscopy (WMS) as well as second harmonic detection was used to isolate complex, overlapping spectral absorption features typical of ambient pressures and to achieve excellent specificity and high detection sensitivity. For the selected P(11) absorption line of CO molecule, located at 2099.083 cm-1, a limit of detection (LoD) of 26 ppb by volume (ppbv) at atmospheric pressure was achieved with a 1 s acquisition time. Allan deviation analysis was performed to investigate the long term performance of the CO detection system, and a measurement precision of 3.4 ppbv was observed with an optimal integration time of approximate 114 s, which verified the reliable and robust operation of the developed system.
Optimizing signal recycling for detecting a stochastic gravitational-wave background
NASA Astrophysics Data System (ADS)
Tao, Duo; Christensen, Nelson
2018-06-01
Signal recycling is applied in laser interferometers such as the Advanced Laser Interferometer Gravitational-Wave Observatory (aLIGO) to increase their sensitivity to gravitational waves. In this study, signal recycling configurations for detecting a stochastic gravitational wave background are optimized based on aLIGO parameters. Optimal transmission of the signal recycling mirror (SRM) and detuning phase of the signal recycling cavity under a fixed laser power and low-frequency cutoff are calculated. Based on the optimal configurations, the compatibility with a binary neutron star (BNS) search is discussed. Then, different laser powers and low-frequency cutoffs are considered. Two models for the dimensionless energy density of gravitational waves , the flat model and the model, are studied. For a stochastic background search, it is found that an interferometer using signal recycling has a better sensitivity than an interferometer not using it. The optimal stochastic search configurations are typically found when both the SRM transmission and the signal recycling detuning phase are low. In this region, the BNS range mostly lies between 160 and 180 Mpc. When a lower laser power is used the optimal signal recycling detuning phase increases, the optimal SRM transmission increases and the optimal sensitivity improves. A reduced low-frequency cutoff gives a better sensitivity limit. For both models of , a typical optimal sensitivity limit on the order of 10‑10 is achieved at a reference frequency of Hz.
A short gamma-ray burst apparently associated with an elliptical galaxy at redshift z = 0.225.
Gehrels, N; Sarazin, C L; O'Brien, P T; Zhang, B; Barbier, L; Barthelmy, S D; Blustin, A; Burrows, D N; Cannizzo, J; Cummings, J R; Goad, M; Holland, S T; Hurkett, C P; Kennea, J A; Levan, A; Markwardt, C B; Mason, K O; Meszaros, P; Page, M; Palmer, D M; Rol, E; Sakamoto, T; Willingale, R; Angelini, L; Beardmore, A; Boyd, P T; Breeveld, A; Campana, S; Chester, M M; Chincarini, G; Cominsky, L R; Cusumano, G; de Pasquale, M; Fenimore, E E; Giommi, P; Gronwall, C; Grupe, D; Hill, J E; Hinshaw, D; Hjorth, J; Hullinger, D; Hurley, K C; Klose, S; Kobayashi, S; Kouveliotou, C; Krimm, H A; Mangano, V; Marshall, F E; McGowan, K; Moretti, A; Mushotzky, R F; Nakazawa, K; Norris, J P; Nousek, J A; Osborne, J P; Page, K; Parsons, A M; Patel, S; Perri, M; Poole, T; Romano, P; Roming, P W A; Rosen, S; Sato, G; Schady, P; Smale, A P; Sollerman, J; Starling, R; Still, M; Suzuki, M; Tagliaferri, G; Takahashi, T; Tashiro, M; Tueller, J; Wells, A A; White, N E; Wijers, R A M J
2005-10-06
Gamma-ray bursts (GRBs) come in two classes: long (> 2 s), soft-spectrum bursts and short, hard events. Most progress has been made on understanding the long GRBs, which are typically observed at high redshift (z approximately 1) and found in subluminous star-forming host galaxies. They are likely to be produced in core-collapse explosions of massive stars. In contrast, no short GRB had been accurately (< 10'') and rapidly (minutes) located. Here we report the detection of the X-ray afterglow from--and the localization of--the short burst GRB 050509B. Its position on the sky is near a luminous, non-star-forming elliptical galaxy at a redshift of 0.225, which is the location one would expect if the origin of this GRB is through the merger of neutron-star or black-hole binaries. The X-ray afterglow was weak and faded below the detection limit within a few hours; no optical afterglow was detected to stringent limits, explaining the past difficulty in localizing short GRBs.
Taking Halo-Independent Dark Matter Methods Out of the Bin
Fox, Patrick J.; Kahn, Yonatan; McCullough, Matthew
2014-10-30
We develop a new halo-independent strategy for analyzing emerging DM hints, utilizing the method of extended maximum likelihood. This approach does not require the binning of events, making it uniquely suited to the analysis of emerging DM direct detection hints. It determines a preferred envelope, at a given confidence level, for the DM velocity integral which best fits the data using all available information and can be used even in the case of a single anomalous scattering event. All of the halo-independent information from a direct detection result may then be presented in a single plot, allowing simple comparisons betweenmore » multiple experiments. This results in the halo-independent analogue of the usual mass and cross-section plots found in typical direct detection analyses, where limit curves may be compared with best-fit regions in halo-space. The method is straightforward to implement, using already-established techniques, and its utility is demonstrated through the first unbinned halo-independent comparison of the three anomalous events observed in the CDMS-Si detector with recent limits from the LUX experiment.« less
Affinity Biosensors for Detection of Mycotoxins in Food.
Evtugyn, Gennady; Subjakova, Veronika; Melikishvili, Sopio; Hianik, Tibor
2018-01-01
This chapter reviews recent achievements in methods of detection of mycotoxins in food. Special focus is on the biosensor technology that utilizes antibodies and nucleic acid aptamers as receptors. Development of biosensors is based on the immobilization of antibodies or aptamers onto various conventional supports like gold layer, but also on nanomaterials such as graphene oxide, carbon nanotubes, and quantum dots that provide an effective platform for achieving high sensitivity of detection using various physical methods, including electrochemical, mass sensitive, and optical. The biosensors developed so far demonstrate high sensitivity typically in subnanomolar limit of detection. Several biosensors have been validated in real samples. The sensitivity of biosensors is similar and, in some cases, even better than traditional analytical methods such as ELISA or chromatography. We believe that future trends will be focused on improving biosensor properties toward practical application in food industry. © 2018 Elsevier Inc. All rights reserved.
Natarajan, Annamalai; Angarita, Gustavo; Gaiser, Edward; Malison, Robert; Ganesan, Deepak; Marlin, Benjamin M
2016-09-01
Mobile health research on illicit drug use detection typically involves a two-stage study design where data to learn detectors is first collected in lab-based trials, followed by a deployment to subjects in a free-living environment to assess detector performance. While recent work has demonstrated the feasibility of wearable sensors for illicit drug use detection in the lab setting, several key problems can limit lab-to-field generalization performance. For example, lab-based data collection often has low ecological validity, the ground-truth event labels collected in the lab may not be available at the same level of temporal granularity in the field, and there can be significant variability between subjects. In this paper, we present domain adaptation methods for assessing and mitigating potential sources of performance loss in lab-to-field generalization and apply them to the problem of cocaine use detection from wearable electrocardiogram sensor data.
Progress in Life Marker Chip Technology for Detection of Life on Mars
NASA Astrophysics Data System (ADS)
Sims, M. R.; Cullen, D. C.; Laan, E.; Borst, G.; Prak, A.; Richter, L.; Gaubert, F.; Steele, A.; Parnell, J.; Sephton, M.
2007-12-01
Detection of Life on Mars will rely on detection of biomarkers, physical or chemical structures that can be associated with Life. As a possible payload for the ESA ExoMars rover mission planned in 2013 and other future missions a Life Marker Chip instrument is being developed. This instrument uses immuno-assay techniques to detect the relevant biomarkers. This paper describes the typical targets it will search for, its operating principle and the status of development. 63 biomarker targets have been identified and assays have been developed for a limited subset. Assay development includes use of recombinant DNA techniques to generate the molecular receptors (antibodies). This type of instrument has applications in terrestrial research e.g. sub-glacial lakes as well as planetary exploration. Breadboard demonstrators have been built of the assay system and key components of the micro-fluidics. Results from these breadboards will be presented, along with plans for future development.
Simultaneous detection of iodine and iodide on boron doped diamond electrodes.
Fierro, Stéphane; Comninellis, Christos; Einaga, Yasuaki
2013-01-15
Individual and simultaneous electrochemical detection of iodide and iodine has been performed via cyclic voltammetry on boron doped diamond (BDD) electrodes in a 1M NaClO(4) (pH 8) solution, representative of typical environmental water conditions. It is feasible to compute accurate calibration curve for both compounds using cyclic voltammetry measurements by determining the peak current intensities as a function of the concentration. A lower detection limit of about 20 μM was obtained for iodide and 10 μM for iodine. Based on the comparison between the peak current intensities reported during the oxidation of KI, it is probable that iodide (I(-)) is first oxidized in a single step to yield iodine (I(2)). The latter is further oxidized to obtain IO(3)(-). This technique, however, did not allow for a reasonably accurate detection of iodate (IO(3)(-)) on a BDD electrode. Copyright © 2012 Elsevier B.V. All rights reserved.
NMR spectroscopy of single sub-nL ova with inductive ultra-compact single-chip probes
Grisi, Marco; Vincent, Franck; Volpe, Beatrice; Guidetti, Roberto; Harris, Nicola; Beck, Armin; Boero, Giovanni
2017-01-01
Nuclear magnetic resonance (NMR) spectroscopy enables non-invasive chemical studies of intact living matter. However, the use of NMR at the volume scale typical of microorganisms is hindered by sensitivity limitations, and experiments on single intact organisms have so far been limited to entities having volumes larger than 5 nL. Here we show NMR spectroscopy experiments conducted on single intact ova of 0.1 and 0.5 nL (i.e. 10 to 50 times smaller than previously achieved), thereby reaching the relevant volume scale where life development begins for a broad variety of organisms, humans included. Performing experiments with inductive ultra-compact (1 mm2) single-chip NMR probes, consisting of a low noise transceiver and a multilayer 150 μm planar microcoil, we demonstrate that the achieved limit of detection (about 5 pmol of 1H nuclei) is sufficient to detect endogenous compounds. Our findings suggest that single-chip probes are promising candidates to enable NMR-based study and selection of microscopic entities at biologically relevant volume scales. PMID:28317887
Improving Broadband Displacement Detection with Quantum Correlations
NASA Astrophysics Data System (ADS)
Kampel, N. S.; Peterson, R. W.; Fischer, R.; Yu, P.-L.; Cicak, K.; Simmonds, R. W.; Lehnert, K. W.; Regal, C. A.
2017-04-01
Interferometers enable ultrasensitive measurement in a wide array of applications from gravitational wave searches to force microscopes. The role of quantum mechanics in the metrological limits of interferometers has a rich history, and a large number of techniques to surpass conventional limits have been proposed. In a typical measurement configuration, the trade-off between the probe's shot noise (imprecision) and its quantum backaction results in what is known as the standard quantum limit (SQL). In this work, we investigate how quantum correlations accessed by modifying the readout of the interferometer can access physics beyond the SQL and improve displacement sensitivity. Specifically, we use an optical cavity to probe the motion of a silicon nitride membrane off mechanical resonance, as one would do in a broadband displacement or force measurement, and observe sensitivity better than the SQL dictates for our quantum efficiency. Our measurement illustrates the core idea behind a technique known as variational readout, in which the optical readout quadrature is changed as a function of frequency to improve broadband displacement detection. And, more generally, our result is a salient example of how correlations can aid sensing in the presence of backaction.
Maximizing the Biochemical Resolving Power of Fluorescence Microscopy
Esposito, Alessandro; Popleteeva, Marina; Venkitaraman, Ashok R.
2013-01-01
Most recent advances in fluorescence microscopy have focused on achieving spatial resolutions below the diffraction limit. However, the inherent capability of fluorescence microscopy to non-invasively resolve different biochemical or physical environments in biological samples has not yet been formally described, because an adequate and general theoretical framework is lacking. Here, we develop a mathematical characterization of the biochemical resolution in fluorescence detection with Fisher information analysis. To improve the precision and the resolution of quantitative imaging methods, we demonstrate strategies for the optimization of fluorescence lifetime, fluorescence anisotropy and hyperspectral detection, as well as different multi-dimensional techniques. We describe optimized imaging protocols, provide optimization algorithms and describe precision and resolving power in biochemical imaging thanks to the analysis of the general properties of Fisher information in fluorescence detection. These strategies enable the optimal use of the information content available within the limited photon-budget typically available in fluorescence microscopy. This theoretical foundation leads to a generalized strategy for the optimization of multi-dimensional optical detection, and demonstrates how the parallel detection of all properties of fluorescence can maximize the biochemical resolving power of fluorescence microscopy, an approach we term Hyper Dimensional Imaging Microscopy (HDIM). Our work provides a theoretical framework for the description of the biochemical resolution in fluorescence microscopy, irrespective of spatial resolution, and for the development of a new class of microscopes that exploit multi-parametric detection systems. PMID:24204821
NASA Astrophysics Data System (ADS)
Schaibley, J. R.; Burgers, A. P.; McCracken, G. A.; Steel, D. G.; Bracker, A. S.; Gammon, D.; Sham, L. J.
2013-03-01
Optical Rabi oscillations are coherent population oscillations of a two-level system coupled by an electric dipole transition when driven by a strong nearly resonant optical field. In quantum dot structures, these measurements have typically been performed as a function of the total pulse area ∫Ω0(t)dt where the pulse area varies as a function of Rabi frequency. Here, we report direct detection of the time-resolved coherent transient response of the resonance fluorescence to measure the time evolution of the optical Rabi oscillations in a single charged InAs quantum dot. We extract a decoherence rate consistent with the limit from the excited state lifetime.
Mesoscopic Magnetic Resonance Spectroscopy with a Remote Spin Sensor
NASA Astrophysics Data System (ADS)
Xie, Tianyu; Shi, Fazhan; Chen, Sanyou; Guo, Maosen; Chen, Yisheng; Zhang, Yixing; Yang, Yu; Gao, Xingyu; Kong, Xi; Wang, Pengfei; Tateishi, Kenichiro; Uesaka, Tomohiro; Wang, Ya; Zhang, Bo; Du, Jiangfeng
2018-06-01
Quantum sensing based on nitrogen-vacancy (N -V ) centers in diamond has been developed as a powerful tool for microscopic magnetic resonance. However, the reported sensor-to-sample distance is limited within tens of nanometers resulting from the cubic decrease of the signal of spin fluctuation with the increasing distance. Here we extend the sensing distance to tens of micrometers by detecting spin polarization rather than spin fluctuation. We detect the mesoscopic magnetic resonance spectra of polarized electrons of a pentacene-doped crystal, measure its two typical decay times, and observe the optically enhanced spin polarization. This work paves the way for the N -V -based mesoscopic magnetic resonance spectroscopy and imaging at ambient conditions.
Perspectives for short timescale variability studies with Gaia
NASA Astrophysics Data System (ADS)
Roelens, M.; Eyer, L.; Mowlavi, N.; Lecoeur-Taïbi, I.; Rimoldini, L.; Blanco-Cuaresma, S.; Palaversa, L.; Süveges, M.; Charnas, J.; Wevers, T.
2017-12-01
We assess the potential of Gaia for detecting and characterizing short timescale variables, i.e. at timescale from a few seconds to a dozen hours, through extensive light-curve simulations for various short timescale variable types, including both periodic and non-periodic variability. We evidence that the variogram analysis applied to Gaia photometry should enable to detect such fast variability phenomena, down to amplitudes of a few millimagnitudes, with limited contamination from longer timescale variables or constant sources. This approach also gives valuable information on the typical timescale(s) of the considered variation, which could complement results of classical period search methods, and help prepare ground-based follow-up of the Gaia short timescale candidates.
Visual search and emotion: how children with autism spectrum disorders scan emotional scenes.
Maccari, Lisa; Pasini, Augusto; Caroli, Emanuela; Rosa, Caterina; Marotta, Andrea; Martella, Diana; Fuentes, Luis J; Casagrande, Maria
2014-11-01
This study assessed visual search abilities, tested through the flicker task, in children diagnosed with autism spectrum disorders (ASDs). Twenty-two children diagnosed with ASD and 22 matched typically developing (TD) children were told to detect changes in objects of central interest or objects of marginal interest (MI) embedded in either emotion-laden (positive or negative) or neutral real-world pictures. The results showed that emotion-laden pictures equally interfered with performance of both ASD and TD children, slowing down reaction times compared with neutral pictures. Children with ASD were faster than TD children, particularly in detecting changes in MI objects, the most difficult condition. However, their performance was less accurate than performance of TD children just when the pictures were negative. These findings suggest that children with ASD have better visual search abilities than TD children only when the search is particularly difficult and requires strong serial search strategies. The emotional-social impairment that is usually considered as a typical feature of ASD seems to be limited to processing of negative emotional information.
Atmospheric trace gas analysis using matrix isolation-Fourier Transform Infrared Spectroscopy
NASA Astrophysics Data System (ADS)
Griffith, David W. T.; Schuster, Gerhard
1987-03-01
A novel cryogenic sampling method combining the matrix isolation technique with FTIR spectroscopy has been developed for atmospheric trace gas analysis. It is applicable to a wide range of molecules with detection limits typically in the 10-50 ppt range. The method is described along with some measurements of N2O, CFCl3, CF2Cl2, OCS, CS2, SO2 and PAN from samples collected at ground level and from an aircraft between 9 and 14 km.
Gamma-ray emission from Cataclysmic variables. 1: The Compton EGRET survey
NASA Technical Reports Server (NTRS)
Schlegel, Eric M.; Barrett, Paul E.; De Jager, O. C.; Chanmugam, G.; Hunter, S.; Mattox, J.
1995-01-01
We report the results of the first gamma-ray survey of cataclysmic variables (CVs) using observations obtained with the Energetic Gamma Ray Experiment Telescope (EGRET) instrument on the Compton Observatory. We briefly describe the theoretical models that are applicable to gamma-ray emission from CVs. These models are particularly relevant to magnetic CVs containing asynchronously rotating white dwarfs. No magnetic CV was detected with an upper limit on the flux at 1 GeV of approximately 2 x 10(exp -8)/sq cm/sec, which corresponds to an upper limit on the gamma-ray luminosity of approximately 10(exp 31) ergs/sec, assuming a typical CV distance of 100 pc.
Detection of cat-eye effect echo based on unit APD
NASA Astrophysics Data System (ADS)
Wu, Dong-Sheng; Zhang, Peng; Hu, Wen-Gang; Ying, Jia-Ju; Liu, Jie
2016-10-01
The cat-eye effect echo of optical system can be detected based on CCD, but the detection range is limited within several kilometers. In order to achieve long-range even ultra-long-range detection, it ought to select APD as detector because of the high sensitivity of APD. The detection system of cat-eye effect echo based on unit APD is designed in paper. The implementation scheme and key technology of the detection system is presented. The detection performances of the detection system including detection range, detection probability and false alarm probability are modeled. Based on the model, the performances of the detection system are analyzed using typical parameters. The results of numerical calculation show that the echo signal-to-noise ratio is greater than six, the detection probability is greater than 99.9% and the false alarm probability is less tan 0.1% within 20 km detection range. In order to verify the detection effect, we built the experimental platform of detection system according to the design scheme and carry out the field experiments. The experimental results agree well with the results of numerical calculation, which prove that the detection system based on the unit APD is feasible to realize remote detection for cat-eye effect echo.
Study and optimisation of SIMS performed with He+ and Ne+ bombardment
NASA Astrophysics Data System (ADS)
Pillatsch, L.; Vanhove, N.; Dowsett, D.; Sijbrandij, S.; Notte, J.; Wirtz, T.
2013-10-01
The combination of the high-brightness He+/Ne+ atomic level ion source with the detection capabilities of secondary ion mass spectrometry (SIMS) opens up the prospect of obtaining chemical information with high lateral resolution and high sensitivity on the Zeiss ORION helium ion microscope (HIM). A feasibility study with He+ and Ne+ ion bombardment is presented in order to determine the performance of SIMS analyses using the HIM. Therefore, the sputtering yields, useful yields and detection limits obtained for metallic (Al, Ni and W) as well as semiconductor samples (Si, Ge, GaAs and InP) were investigated. All the experiments were performed on a Cameca IMS4f SIMS instrument which was equipped with a caesium evaporator and oxygen flooding system. For most of the elements, useful yields in the range of 10-4 to 3 × 10-2 were measured with either O2 or Cs flooding. SIMS experiments performed directly on the ORION with a prototype secondary ion extraction and detection system lead to results that are consistent with those obtained on the IMS4f. Taking into account the obtained useful yields and the analytical conditions, such as the ion current and typical dwell time on the ORION HIM, detection limits in the at% range and better can be obtained during SIMS imaging at 10 nm lateral resolution with Ne+ bombardment and down to the ppm level when a lateral resolution of 100 nm is chosen. Performing SIMS on the HIM with a good detection limit while maintaining an excellent lateral resolution (<50 nm) is therefore very promising.
Guo, Longhua; Yang, Huanghao; Qiu, Bin; Xiao, Xueyang; Xue, Linlin; Kim, Donghwan; Chen, Guonan
2009-12-01
A capillary electrophoresis coupled with electrochemiluminescent detection system (CE-ECL) was developed for the detection of polymerase chain reaction (PCR) amplicons. The ECL luminophore, tris(1,10-phenanthroline) ruthenium(II) (Ru(phen)(3)(2+)), was labeled to the PCR primers before amplification. Ru(phen)(3)(2+) was then introduced to PCR amplicons by PCR amplification. Eventually, the PCR amplicons were separated and detected by the homemade CE-ECL system. The detection of a typical genetically modified organism (GMO), Roundup Ready Soy (RRS), was shown as an example to demonstrate the reliability of the proposed approach. Four pairs of primers were amplified by multiple PCR (MPCR) simultaneously, three of which were targeted on the specific sequence of exogenous genes of RRS, and another was targeted on the endogenous reference gene of soybean. Both the conditions for PCR amplification and CE-ECL separation and detection were investigated in detail. Results showed that, under the optimal conditions, the proposed method can accurately identifying RRS. The corresponding limit of detection (LOD) was below 0.01% with 35 PCR cycles.
Yi, Zi; Li, Xiao-Yan; Gao, Qing; Tang, Li-Juan; Chu, Xia
2013-04-07
A novel aptamer biosensor for cancer cell assay has been reported on the basis of ultrasensitive electrochemical detection. Cancer cell capturing is first accomplished via aptamer-aided recognition, and the cell-aptamer binding events then mediate an alkaline phosphatase-catalyzed silver deposition reaction which can be probed by electrochemical detection. Following biocatalytic silver deposition, an efficient amplification approach for sensitive electrochemical measurements is demonstrated, for cell detection with high sensitivity. Ramos cell are used as a model case, a typical biomarker of the acute blood cell cancer, Burkitt's lymphoma. The results reveal that the developed technique displays desirable selectivity in Ramos cell discrimination, and linear response range from 10 to 10(6) cells with a detection limit as low as 10 cells. Due to the simple procedures, label-free and electrochemistry based detection format, this technique is simple and cost-effective, and exhibits excellent compatibility with miniaturization technologies. The electrochemical cell detection strategy may create an intrinsically specific and sensitive platform for cancer cell assay and associated studies.
A detection method for X-ray images based on wavelet transforms: the case of the ROSAT PSPC.
NASA Astrophysics Data System (ADS)
Damiani, F.; Maggio, A.; Micela, G.; Sciortino, S.
1996-02-01
The authors have developed a method based on wavelet transforms (WT) to detect efficiently sources in PSPC X-ray images. The multiscale approach typical of WT can be used to detect sources with a large range of sizes, and to estimate their size and count rate. Significance thresholds for candidate detections (found as local WT maxima) have been derived from a detailed study of the probability distribution of the WT of a locally uniform background. The use of the exposure map allows good detection efficiency to be retained even near PSPC ribs and edges. The algorithm may also be used to get upper limits to the count rate of undetected objects. Simulations of realistic PSPC images containing either pure background or background+sources were used to test the overall algorithm performances, and to assess the frequency of spurious detections (vs. detection threshold) and the algorithm sensitivity. Actual PSPC images of galaxies and star clusters show the algorithm to have good performance even in cases of extended sources and crowded fields.
Comparison of 16-Channel Laser Photoreceivers for Topographic Mapping
NASA Technical Reports Server (NTRS)
Krainak, Michael A.; Yang, Guangning; Sun, XiaoIi; Lu, Wei; Bai, Xiaogang; Yuan, Ping; McDonald, Paul; Boisvert, Joseph; Woo, Robyn; Wan, Kam;
2011-01-01
Topographic mapping lidar instruments must be able to detect extremely weak laser return signals from high altitudes including orbital distance. The signals have a wide dynamic range caused by the variability in atmospheric transmission and surface reflectance under a fast moving spacecraft. Ideally, lidar detectors should be able to detect laser signal return pulses at the single photon level and produce linear output for multiple photon events. Silicon avalanche photodiode (APO) detectors have been used in most space lidar receivers to date. Their sensitivity is typically hundreds of photons per pulse, and is limited by the quantum efficiency, APO gain noise, dark current, and preamplifier noise. NASA is pursuing three approaches for a 16-channel laser photoreceiver for use on the next generation direct-detection airborne and spacebome lidars. We present our measurement results and a comparison of their performance.
Protein-nucleotide contacts in motor proteins detected by DNP-enhanced solid-state NMR.
Wiegand, Thomas; Liao, Wei-Chih; Ong, Ta Chung; Däpp, Alexander; Cadalbert, Riccardo; Copéret, Christophe; Böckmann, Anja; Meier, Beat H
2017-11-01
DNP (dynamic nuclear polarization)-enhanced solid-state NMR is employed to directly detect protein-DNA and protein-ATP interactions and identify the residue type establishing the intermolecular contacts. While conventional solid-state NMR can detect protein-DNA interactions in large oligomeric protein assemblies in favorable cases, it typically suffers from low signal-to-noise ratios. We show here, for the oligomeric DnaB helicase from Helicobacter pylori complexed with ADP and single-stranded DNA, that this limitation can be overcome by using DNP-enhanced spectroscopy. Interactions are established by DNP-enhanced 31 P- 13 C polarization-transfer experiments followed by the recording of a 2D 13 C- 13 C correlation experiment. The NMR spectra were obtained in less than 2 days and allowed the identification of residues of the motor protein involved in nucleotide binding.
NO2 trace measurements by optical-feedback cavity-enhanced absorption spectroscopy
NASA Astrophysics Data System (ADS)
Ventrillard-Courtillot, I.; Foldes, T.; Romanini, D.
2009-04-01
In order to reach the sub-ppb NO2 detection level required for environmental applications in remote areas, we are developing a spectrometer that exploits a technique that we introduced several years ago, named Optical-Feedback Cavity-Enhanced Absorption Spectroscopy (OF-CEAS) [1]. It allows very sensitive and selective measurements, together with the realization of compact and robust set-ups as was subsequently demonstrated during measurements campaigns in harsh environments [2,3]. OF-CEAS benefits from the optical feedback (OF) to efficiently inject a cw-laser in a high finesse cavity (typically F >10 000). Absorption spectra are acquired on a small spectral region (~1 cm-1) that enables selective and quantitative measurements at a fast acquisition rate (~10 Hz) with a detection limit of several 10-10 cm-1 as reported in this paper. Spectra are obtained with high spectral resolution (~150 MHz) and are self calibrated by cavity rind-down measurements regularly performed (typically every second). Therefore, OF-CEAS appears very attractive for NO2 trace detection. This work is performed in the blue spectral region where NO2 has intense electronic transitions. Our setup involves a commercial extended cavity diode laser (ECDL) working at room temperature around 411nm. A first setup was developed [4] to demonstrate that OF sensitivity of ECDL is fully consistent with this technique, initially introduced with distributed feedback diode lasers in the near infrared region. In this paper we will report on a new set-up developed for in-situ measurements with proper mechanical, acoustic and thermal insulation. Additionally, new data processing was implemented allowing real time concentration measurements. It is based on a reference spectra recorded under controlled conditions by OF-CEAS and used later to fit the observed spectra. We will present measurements performed with calibrated NO2 reference samples demonstrating a good linearity of the apparatus. The minimum detectable absorption loss is estimated by considering the standard deviation of the spectra. We achieved better than 2x10-10 cm-1 for a single spectrum recorded in less than 100ms at 100mbar. This limit constitutes an improved of more than one order of magnitude as compare to the previous measurements reported in [4]. It leads to a detection limit of 3x108 molecules/cm3, corresponding to about 150pptv at 100mbar. At atmospheric pressure the same measurement would yield a detection limit of 15pptv assuming we can maintain the same level of sensitivity. But currently, works are under development to transfer the low minimum detectable absorption limit, already obtained for one spectrum, to a set of real time measurements. These are now limited by amplitude fluctuations of a few ppb from one spectrum to another one. [1] J. Morville, S. Kassi, M. Chenevier, and D. Romanini, Appl. Phys. B, 80, 1027 (2005). [2] D. Romanini, M. Chenevrier, S. Kassi, M. Schmidt, C. Valant, M. Ramonet, J. Lopez, and H.-J. Jost, Appl. Phys. B, 83, 659 (2006). [2] E.R.T. Kerstel, R.Q. Iannone, M. Chenevrier, S. Kassi, H.-J. Jost and D. Romanini, Appl. Phys. B, 84, 343 (2006). [4] I. Courtillot, J. Morville, V. Motto-Ros, and D. Romanini, Appl. Phys. B, 85, 407 (2006).
Nuclear Containment Inspection Using AN Array of Guided Wave Sensors for Damage Localization
NASA Astrophysics Data System (ADS)
Cobb, A. C.; Fisher, J. L.
2010-02-01
Nuclear power plant containments are typically both the last line of defense against the release of radioactivity to the environment and the first line of defense to protect against intrusion from external objects. As such, it is important to be able to locate any damage that would limit the integrity of the containment itself. Typically, a portion of the containment consists of a metallic pressure boundary that encloses the reactor primary circuit. It is made of thick steel plates welded together, lined with concrete and partially buried, limiting areas that can be visually inspected for corrosion damage. This study presents a strategy using low frequency (<50 kHz) guided waves to find corrosion-like damage several meters from the probe in a mock-up of the containment vessel. A magnetostrictive sensor (MsS) is scanned across the width of the vessel, acquiring waveforms at a fixed interval. A beam forming strategy is used to localize the defects. Experimental results are presented for a variety of damage configurations, demonstrating the efficacy of this technique for detecting damage smaller than the ultrasonic wavelength.
Sun, Liangliang; Zhu, Guijie; Yan, Xiaojing; Champion, Mathew M.
2014-01-01
The vast majority of proteomic studies employ reversed-phase high-performance liquid chromatography coupled with tandem mass spectrometry for analysis of the tryptic digest of a cellular lysate. This technology is quite mature, and typically provides identification of hundreds to thousands of peptides, which is used to infer the identity of hundreds to thousands of proteins. These approaches usually require milligrams to micrograms of starting material. Capillary zone electrophoresis provides an interesting alternative separation method based on a different separation mechanism than HPLC. Capillary electrophoresis received some attention for protein analysis beginning 25 years ago. Those efforts stalled because of the limited performance of the electrospray interfaces and the limited speed and sensitivity of mass spectrometers of that era. This review considers a new electrospray interface design coupled with Orbitrap Velos and linear Q-trap mass spectrometers. Capillary zone electrophoresis coupled with this interface and these detectors provides single shot detection of >1,250 peptides from an E. coli digest in less than one hour, identification of nearly 5,000 peptides from analysis of seven fractions produced by solid-phase extraction of the E. coli digest in a six hour total analysis time, low attomole detection limits for peptides generated from standard proteins, and high zeptomole detection limits for selected ion monitoring of peptides. Incorporation of an integrated on-line immobilized trypsin microreactor allows digestion and analysis of picogram amounts of a complex eukaryotic proteome. PMID:24277677
Genzel, Yvonne; König, Susanne; Reichl, Udo
2004-12-01
The direct separation detection of amino acids by anion exchange chromatography with integrated pulsed amperometric detection was optimized for the analysis of typical mammalian cell culture broth samples. Existing gradient elution conditions were adapted, considering the additions of peptone (2 g/L) and 10 vol% fetal calf serum to the medium as well as changing concentrations of glucose from 5.5 g/L up to complete consumption. Samples had to be analyzed in two dilutions with water (1:33.3 and 1:200) due to the strongly varying amino acid concentrations in the samples as a result of the medium composition and cell metabolism. The method was validated in a linear working range for the most common amino acids (2.5-7.5 and 1.25-3.75 microM for cystine/cysteine with 15 microl injection volume). The relative standard deviation of the method for all amino acids was less than 5%, with detection limits of less than 0.6 microM and quantitation limits of less than 1.6 microM. As an example, data for the amino acid composition of different media used for the production of inactivated influenza vaccines in cell culture are shown.
Soejima, Takashi; Xiao, Jin-Zhong; Abe, Fumiaki
2016-06-23
Typically, polymerase chain reaction (PCR) is performed after DNA isolation. Real-time PCR (qPCR), also known as direct qPCR in mammalian cells with weak membranes, is a common technique using crude samples subjected to preliminary boiling to elute DNA. However, applying this methodology to prokaryotic cells, which have solid cell walls, in contrast to mammalian cells which immediately burst in water, can result in poor detection. We successfully achieved PCR elongation with the addition of 1.3 cfu of Cronobacter muytjensii to a newly developed direct qPCR master mix without performing any crude DNA extraction (detection limit of 1.6 × 10(0) cfu/ml for the test sample compared with a detection limit of 1.6 × 10(3) cfu/ml primarily for crude (boiling) or classical DNA isolation). We revealed that the chromosomal DNA retained in prokaryotic cells can function as a PCR template, similarly to the mechanism in in situ PCR. Elucidating this reaction mechanism may contribute to the development of an innovative master mix for direct qPCR to detect genes in a single bacterium with solid cell walls and might lead to numerous novel findings in prokaryotic genomics research.
A digital boxcar integrator for IMS spectra
NASA Technical Reports Server (NTRS)
Cohen, Martin J.; Stimac, Robert M.; Wernlund, Roger F.; Parker, Donald C.
1995-01-01
When trying to detect or quantify a signal at or near the limit of detectability, it is invariably embeded in the noise. This statement is true for nearly all detectors of any physical phenomena and the limit of detectability, hopefully, occurs at very low signal-to-noise levels. This is particularly true of IMS (Ion Mobility Spectrometers) spectra due to the low vapor pressure of several chemical compounds of great interest and the small currents associated with the ionic detection process. Gated Integrators and Boxcar Integrators or Averagers are designed to recover fast, repetitive analog signals. In a typical application, a time 'Gate' or 'Window' is generated, characterized by a set delay from a trigger or gate pulse and a certain width. A Gated Integrator amplifies and integrates the signal that is present during the time the gate is open, ignoring noise and interference that may be present at other times. Boxcar Integration refers to the practice of averaging the output of the Gated Integrator over many sweeps of the detector. Since any signal present during the gate will add linearly, while noise will add in a 'random walk' fashion as the square root of the number of sweeps, averaging N sweeps will improve the 'Signal-to-Noise Ratio' by a factor of the square root of N.
Small values in big data: The continuing need for appropriate metadata
Stow, Craig A.; Webster, Katherine E.; Wagner, Tyler; Lottig, Noah R.; Soranno, Patricia A.; Cha, YoonKyung
2018-01-01
Compiling data from disparate sources to address pressing ecological issues is increasingly common. Many ecological datasets contain left-censored data – observations below an analytical detection limit. Studies from single and typically small datasets show that common approaches for handling censored data — e.g., deletion or substituting fixed values — result in systematic biases. However, no studies have explored the degree to which the documentation and presence of censored data influence outcomes from large, multi-sourced datasets. We describe left-censored data in a lake water quality database assembled from 74 sources and illustrate the challenges of dealing with small values in big data, including detection limits that are absent, range widely, and show trends over time. We show that substitutions of censored data can also bias analyses using ‘big data’ datasets, that censored data can be effectively handled with modern quantitative approaches, but that such approaches rely on accurate metadata that describe treatment of censored data from each source.
Levin-Rector, Alison; Wilson, Elisha L; Fine, Annie D; Greene, Sharon K
2015-02-01
Since the early 2000s, the Bureau of Communicable Disease of the New York City Department of Health and Mental Hygiene has analyzed reportable infectious disease data weekly by using the historical limits method to detect unusual clusters that could represent outbreaks. This method typically produced too many signals for each to be investigated with available resources while possibly failing to signal during true disease outbreaks. We made method refinements that improved the consistency of case inclusion criteria and accounted for data lags and trends and aberrations in historical data. During a 12-week period in 2013, we prospectively assessed these refinements using actual surveillance data. The refined method yielded 74 signals, a 45% decrease from what the original method would have produced. Fewer and less biased signals included a true citywide increase in legionellosis and a localized campylobacteriosis cluster subsequently linked to live-poultry markets. Future evaluations using simulated data could complement this descriptive assessment.
Oxygen measurements at high pressures with vertical cavity surface-emitting lasers
NASA Astrophysics Data System (ADS)
Wang, J.; Sanders, S. T.; Jeffries, J. B.; Hanson, R. K.
Measurements of oxygen concentration at high pressures (to 10.9 bar) were made using diode-laser absorption of oxygen A-band transitions near 760 nm. The wide current-tuning frequency range (>30 cm-1) of vertical cavity surface-emitting lasers (VCSELs) was exploited to enable the first scanned-wavelength demonstration of diode-laser absorption at high pressures; this strategy is more robust than fixed-wavelength strategies, particularly in hostile environments. The wide tuning range and rapid frequency response of the current tuning were further exploited to demonstrate wavelength-modulation absorption spectroscopy in a high-pressure environment. The minimum detectable absorbance demonstrated, 1×10-4, corresponds to 800 ppm-m oxygen detectivity at room temperature and is limited by etalon noise. The rapid- and wide-frequency tunability of VCSELs should significantly expand the application domain of absorption-based sensors limited in the past by the small current-tuning frequency range (typically <2 cm-1) of conventional edge-emitting diode lasers.
Deep Optical Observations of Unusual Neutron Star Calvera with the GTC
NASA Astrophysics Data System (ADS)
Shibanov, Yury; Danilenko, Andrey; Zharikov, Sergey; Shternin, Peter; Zyuzin, Dima
2016-11-01
Calvera is an unusual, isolated neutron star with a pure thermal X-ray spectrum typical of central compact objects in supernova remnants. On the other hand, its rotation period and spin-down rate are typical of ordinary rotation-powered pulsars. It was discovered and studied through X-rays, and has not yet been detected in other spectral domains. We present deep optical imaging of the Calvera field, obtained with the Gran Telescopio Canarias, in the g\\prime and I\\prime bands. Within the vicinity of ≈ 1\\prime\\prime of Calvera, we detected two point-like objects that were invisible at previous shallow observations. However, accurate astrometry showed that neither of them can be identified with the pulsar. We put new upper limits of g\\prime \\gt 27.87 and I\\prime \\gt 26.84 on its optical brightness. We also reanalyzed all available archival X-ray data on Calvera. Comparison of the Calvera thermal emission parameters and upper limits on optical and non-thermal X-ray emission with respective data on rotation-powered pulsars shows that Calvera might belong to the class of ordinary middle-aged pulsars, if we assume that its distance is in the range of 1.5-5 kpc. Based on observations made with the Gran Telescopio Canarias (GTC), installed in the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofisica de Canarias, on the island of La Palma, program GTC1-14AMEX.
NASA Astrophysics Data System (ADS)
Oelkers, Ryan J.; Rodriguez, Joseph E.; Stassun, Keivan G.; Pepper, Joshua; Somers, Garrett; Kafka, Stella; Stevens, Daniel J.; Beatty, Thomas G.; Siverd, Robert J.; Lund, Michael B.; Kuhn, Rudolf B.; James, David; Gaudi, B. Scott
2018-01-01
The Kilodegree Extremely Little Telescope (KELT) has been surveying more than 70% of the celestial sphere for nearly a decade. While the primary science goal of the survey is the discovery of transiting, large-radii planets around bright host stars, the survey has collected more than 106 images, with a typical cadence between 10–30 minutes, for more than four million sources with apparent visual magnitudes in the approximate range 7< V< 13. Here, we provide a catalog of 52,741 objects showing significant large-amplitude fluctuations likely caused by stellar variability, as well as 62,229 objects identified with likely stellar rotation periods. The detected variability ranges in rms-amplitude from ∼3 mmag to ∼2.3 mag, and the detected periods range from ∼0.1 to ≳2000 days. We provide variability upper limits for all other ∼4,000,000 sources. These upper limits are principally a function of stellar brightness, but we achieve typical 1σ sensitivity on 30 min timescales down to ∼5 mmag at V∼ 8, and down to ∼43 mmag at V∼ 13. We have matched our catalog to the TESS Input catalog and the AAVSO Variable Star Index to precipitate the follow-up and classification of each source. The catalog is maintained as a living database on the Filtergraph visualization portal at the URL https://filtergraph.com/kelt_vars.
THE GHOSTS SURVEY. I. HUBBLE SPACE TELESCOPE ADVANCED CAMERA FOR SURVEYS DATA
DOE Office of Scientific and Technical Information (OSTI.GOV)
Radburn-Smith, D. J.; Dalcanton, J. J.; De Jong, R. S.
2011-08-01
We present an overview of the GHOSTS survey, the largest study to date of the resolved stellar populations in the outskirts of disk galaxies. The sample consists of 14 disk galaxies within 17 Mpc, whose outer disks and halos are imaged with the Hubble Space Telescope Advanced Camera for Surveys (ACS). In the first paper of this series, we describe the sample, explore the benefits of using resolved stellar populations, and discuss our ACS F606W and F814W photometry. We use artificial star tests to assess completeness and use overlapping regions to estimate photometric uncertainties. The median depth of the surveymore » at 50% completeness is 2.7 mag below the tip of the red giant branch (TRGB). We comprehensively explore and parameterize contamination from unresolved background galaxies and foreground stars using archival fields of high-redshift ACS observations. Left uncorrected, these would account for 10{sup 0.65xF814W-19.0} detections per mag per arcsec{sup 2}. We therefore identify several selection criteria that typically remove 95% of the contaminants. Even with these culls, background galaxies are a significant limitation to the surface brightness detection limit which, for this survey, is typically V {approx} 30 mag arcsec{sup -2}. The resulting photometric catalogs are publicly available and contain some 3.1 million stars across 76 ACS fields, predominantly of low extinction. The uniform magnitudes of TRGB stars in these fields enable galaxy distance estimates with 2%-7% accuracy.« less
Novel vehicle detection system based on stacked DoG kernel and AdaBoost
Kang, Hyun Ho; Lee, Seo Won; You, Sung Hyun
2018-01-01
This paper proposes a novel vehicle detection system that can overcome some limitations of typical vehicle detection systems using AdaBoost-based methods. The performance of the AdaBoost-based vehicle detection system is dependent on its training data. Thus, its performance decreases when the shape of a target differs from its training data, or the pattern of a preceding vehicle is not visible in the image due to the light conditions. A stacked Difference of Gaussian (DoG)–based feature extraction algorithm is proposed to address this issue by recognizing common characteristics, such as the shadow and rear wheels beneath vehicles—of vehicles under various conditions. The common characteristics of vehicles are extracted by applying the stacked DoG shaped kernel obtained from the 3D plot of an image through a convolution method and investigating only certain regions that have a similar patterns. A new vehicle detection system is constructed by combining the novel stacked DoG feature extraction algorithm with the AdaBoost method. Experiments are provided to demonstrate the effectiveness of the proposed vehicle detection system under different conditions. PMID:29513727
Petti, Stefano; Moroni, Catia; Messano, Giuseppe Alessio; Polimeni, Antonella
2013-03-01
Oral streptococci detected in water from dental unit water lines (DUWLs) are a surrogate marker of patients' biological fluid retraction during therapy. We investigated oral streptococci detection rate in DUWLs in a representative sample of private offices in real-life conditions. Samples of nondisinfected water (100 ml) were collected from the DUWL designated for the air turbine handpiece in 81 dental units, immediately after dental treatment of patients with extensive air turbine handpiece use. Water was filtered and plated on a selective medium for oral streptococci and, morphologically, typical colonies of oral streptococci were counted. The lowest detection limit was 0.01 CFU/ml. The oral streptococci detection rate was 72% (95% CI: 62-81%), with a mean level of 0.7 CFU/ml. Oral streptococci detection was not affected by handpiece age or dental treatment type, but was associated with dental unit age. Biological fluid retraction into DUWLs during patient treatment and, possibly, the risk for patient-to-patient blood- or air-borne pathogen transmission are more frequent than expected.
NASA Astrophysics Data System (ADS)
Gomer, Nathaniel R.; Gardner, Charles W.; Nelson, Matthew P.
2016-05-01
Hyperspectral imaging (HSI) is a valuable tool for the investigation and analysis of targets in complex background with a high degree of autonomy. HSI is beneficial for the detection of threat materials on environmental surfaces, where the concentration of the target of interest is often very low and is typically found within complex scenery. Two HSI techniques that have proven to be valuable are Raman and shortwave infrared (SWIR) HSI. Unfortunately, current generation HSI systems have numerous size, weight, and power (SWaP) limitations that make their potential integration onto a handheld or field portable platform difficult. The systems that are field-portable do so by sacrificing system performance, typically by providing an inefficient area search rate, requiring close proximity to the target for screening, and/or eliminating the potential to conduct real-time measurements. To address these shortcomings, ChemImage Sensor Systems (CISS) is developing a variety of wide-field hyperspectral imaging systems. Raman HSI sensors are being developed to overcome two obstacles present in standard Raman detection systems: slow area search rate (due to small laser spot sizes) and lack of eye-safety. SWIR HSI sensors have been integrated into mobile, robot based platforms and handheld variants for the detection of explosives and chemical warfare agents (CWAs). In addition, the fusion of these two technologies into a single system has shown the feasibility of using both techniques concurrently to provide higher probability of detection and lower false alarm rates. This paper will provide background on Raman and SWIR HSI, discuss the applications for these techniques, and provide an overview of novel CISS HSI sensors focused on sensor design and detection results.
The CfA Einstein Observatory extended deep X-ray survey
NASA Technical Reports Server (NTRS)
Primini, F. A.; Murray, S. S.; Huchra, J.; Schild, R.; Burg, R.
1991-01-01
All IPC exposures in the Einstein Extended Deep X-ray Survey program have been reanalyzed. The current survey covers about 2.3 sq deg with a typical limiting sensitivity of about 5 x 10 to the -14th ergs/sq cm/s in the energy range from 0.8-3.5 keV. A total of 25 IPC sources are detected above a threshold of 4.5 sigma. A total of 18 are detected independently in the HRI, leading to the identification of six with stars and 11 with extragalactic objects. The remaining sources are classified as extragalactic. The population of identified extragalactic objects is dominated by QSOs, with one or two possible clusters. The basic conclusions of the original survey remain unchanged.
The WSRT Virgo Hi filament survey. II. Cross correlation data
NASA Astrophysics Data System (ADS)
Popping, A.; Braun, R.
2011-04-01
Context. The extended environment of galaxies contains a wealth of information about the formation and life cycle of galaxies which are regulated by accretion and feedback processes. Observations of neutral hydrogen are routinely used to image the high brightness disks of galaxies and to study their kinematics. Deeper observations will give more insight into the distribution of diffuse gas in the extended halo of the galaxies and the inter-galactic medium, where numerical simulations predict a cosmic web of extended structures and gaseous filaments. Aims: To observe the extended environment of galaxies, column density sensitivities have to be achieved that probe the regime of Lyman limit systems. H i observations are typically limited to a brightness sensitivity of NHI ~ 1019 cm-2, but this must be improved upon by ~2 orders of magnitude. Methods: In this paper we present the interferometric data of the Westerbork Virgo H i Filament Survey (WVFS) - the total power product of this survey has been published in an earlier paper. By observing at extreme hour angles, a filled aperture is simulated of 300 × 25 m in size, that has the typical collecting power and sensitivity of a single dish telescope, but the well defined bandpass characteristics of an interferometer. With the very good surface brightness sensitivity of the data, we hope to make new H i detections of diffuse systems with moderate angular resolution. Results: The survey maps 135 degrees in Right Ascension between 8 and 17 h and 11 degrees in Declination between - 1 and 10 degrees, including the galaxy filament connecting the Local Group with the Virgo Cluster. Only positive declinations could be completely processed and analysed due to projection effects. A typical flux sensitivity of 6 mJy beam-1 over 16 km s-1 is achieved, that corresponds to a brightness sensitivity of NHI ~ 1018 cm-2. An unbiased search has been done with a high significance threshold as well a search with a lower significance limit but requiring an optical counterpart. In total, 199 objects have been detected, of which 17 are new H i detections. Conclusions: By observing at extreme hour angles with the WSRT, a filled aperture can be simulated in projection, with a very good brightness sensitivity, comparable to that of a single dish telescope. Despite some technical challenges, the data provide valuable constraints on faint, circum-galactic H i features. Appendix is only available at electronic form at http://www.aanda.org
Guillo, Christelle; Ferrance, Jerome P; Landers, James P
2006-04-28
Highly selective and sensitive assays are required for detection and quantitation of the small masses of DNA typically encountered in clinical and forensic settings. High detection sensitivity is achieved using fluorescent labeling dyes and detection techniques such as spectrofluorometers, microplate readers and cytometers. This work describes the use of a laser-induced fluorescence (LIF) detector in conjunction with a commercial capillary electrophoresis instrument for DNA quantitation. PicoGreen and YO-PRO-1, two fluorescent DNA labeling dyes, were used to assess the potential of the system for routine DNA analysis. Linearity, reproducibility, sensitivity, limits of detection and quantitation, and sample stability were examined for the two assays. The LIF detector response was found to be linear (R2 > 0.999) and reproducible (RSD < 9%) in both cases. The PicoGreen assay displayed lower limits of detection and quantitation (20 pg and 60 pg, respectively) than the YO-PRO-1 assay (60 pg and 260 pg, respectively). Although a small variation in fluorescence was observed for the DNA/dye complexes over time, quantitation was not significantly affected and the solutions were found to be relatively stable for 80 min. The advantages of the technique include a 4- to 40-fold reduction in the volume of sample required compared to traditional assays, a 2- to 20-fold reduction in the volume of reagents consumed, fast and automated analysis, and low cost (no specific instrumentation required).
[Radiographic findings in raptors affected with a mycosis of the respiratory tract].
Vorbrüggen, S; Bailey, T; Krautwald-Junghanns, M-E
2013-01-01
Summary of typical radiographic signs in birds of prey with aspergillosis compared to signs previously established in parrots. Evaluation of radiographs of 110 falcons (Falco spp.) with aspergillosis confirmed by endoscopy. Compared to parrots primarily subtle radiographic signs were detected in falcons (especially inhomogeneously increased radiodensities of the airsacs/lungs). Two typical signs for diseased falcons consisted of the poor delineation of the cardiac silhouette and the line-shaped increased radiodensity of the caudal lung border. Radiographic diagnosis of the lung is limited due to the strong flight musculature. The varying results between avian species can be explained by the different radiographic anatomy, husbandry conditions and x-ray technique (digital versus analog). A pet bird-experienced practitioner should be aware of specific radiographic signs in birds of prey suspected of having aspergillosis.
A compact high resolution ion mobility spectrometer for fast trace gas analysis.
Kirk, Ansgar T; Allers, Maria; Cochems, Philipp; Langejuergen, Jens; Zimmermann, Stefan
2013-09-21
Drift tube ion mobility spectrometers (IMS) are widely used for fast trace gas detection in air, but portable compact systems are typically very limited in their resolving power. Decreasing the initial ion packet width improves the resolution, but is generally associated with a reduced signal-to-noise-ratio (SNR) due to the lower number of ions injected into the drift region. In this paper, we present a refined theory of IMS operation which employs a combined approach for the analysis of the ion drift and the subsequent amplification to predict both the resolution and the SNR of the measured ion current peak. This theoretical analysis shows that the SNR is not a function of the initial ion packet width, meaning that compact drift tube IMS with both very high resolution and extremely low limits of detection can be designed. Based on these implications, an optimized combination of a compact drift tube with a length of just 10 cm and a transimpedance amplifier has been constructed with a resolution of 183 measured for the positive reactant ion peak (RIP(+)), which is sufficient to e.g. separate the RIP(+) from the protonated acetone monomer, even though their drift times only differ by a factor of 1.007. Furthermore, the limits of detection (LODs) for acetone are 180 pptv within 1 s of averaging time and 580 pptv within only 100 ms.
Optical Detection of Ultrasound in Photoacoustic Imaging
Dong, Biqin; Sun, Cheng; Zhang, Hao F.
2017-01-01
Objective Photoacoustic (PA) imaging emerges as a unique tool to study biological samples based on optical absorption contrast. In PA imaging, piezoelectric transducers are commonly used to detect laser-induced ultrasonic waves. However, they typically lack adequate broadband sensitivity at ultrasonic frequency higher than 100 MHz while their bulky size and optically opaque nature cause technical difficulties in integrating PA imaging with conventional optical imaging modalities. To overcome these limitations, optical methods of ultrasound detection were developed and shown their unique applications in photoacoustic imaging. Methods We provide an overview of recent technological advances in optical methods of ultrasound detection and their applications in PA imaging. A general theoretical framework describing sensitivity, bandwidth, and angular responses of optical ultrasound detection is also introduced. Results Optical methods of ultrasound detection can provide improved detection angle and sensitivity over significantly extended bandwidth. In addition, its versatile variants also offer additional advantages, such as device miniaturization, optical transparency, mechanical flexibility, minimal electrical/mechanical crosstalk, and potential noncontact PA imaging. Conclusion The optical ultrasound detection methods discussed in this review and their future evolution may play an important role in photoacoustic imaging for biomedical study and clinical diagnosis. PMID:27608445
Imaging with Mass Spectrometry of Bacteria on the Exoskeleton of Fungus-Growing Ants.
Gemperline, Erin; Horn, Heidi A; DeLaney, Kellen; Currie, Cameron R; Li, Lingjun
2017-08-18
Mass spectrometry imaging is a powerful analytical technique for detecting and determining spatial distributions of molecules within a sample. Typically, mass spectrometry imaging is limited to the analysis of thin tissue sections taken from the middle of a sample. In this work, we present a mass spectrometry imaging method for the detection of compounds produced by bacteria on the outside surface of ant exoskeletons in response to pathogen exposure. Fungus-growing ants have a specialized mutualism with Pseudonocardia, a bacterium that lives on the ants' exoskeletons and helps protect their fungal garden food source from harmful pathogens. The developed method allows for visualization of bacterial-derived compounds on the ant exoskeleton. This method demonstrates the capability to detect compounds that are specifically localized to the bacterial patch on ant exoskeletons, shows good reproducibility across individual ants, and achieves accurate mass measurements within 5 ppm error when using a high-resolution, accurate-mass mass spectrometer.
Multitarget detection algorithm for automotive FMCW radar
NASA Astrophysics Data System (ADS)
Hyun, Eugin; Oh, Woo-Jin; Lee, Jong-Hun
2012-06-01
Today, 77 GHz FMCW (Frequency Modulation Continuous Wave) radar has strong advantages of range and velocity detection for automotive applications. However, FMCW radar brings out ghost targets and missed targets in multi-target situations. In this paper, in order to resolve these limitations, we propose an effective pairing algorithm, which consists of two steps. In the proposed method, a waveform with different slopes in two periods is used. In the 1st pairing processing, all combinations of range and velocity are obtained in each of two wave periods. In the 2nd pairing step, using the results of the 1st pairing processing, fine range and velocity are detected. In that case, we propose the range-velocity windowing technique in order to compensate for the non-ideal beat-frequency characteristic that arises due to the non-linearity of the RF module. Based on experimental results, the performance of the proposed algorithm is improved compared with that of the typical method.
Su, Huilan; Yuan, Ruo; Chai, Yaqin; Mao, Li; Zhuo, Ying
2011-07-15
A multiple amplification immunoassay was proposed to detect alpha-fetoprotein (AFP), which was based on ferrocenemonocarboxylic-HRP conjugated on Pt nanoparticles as labels for rolling circle amplification (RCA). Firstly, the capture antibody (anti-AFP) was immobilized on glass carbon electrode (GCE) deposited nano-sized gold particles. After a typical immuno-sandwich protocol, primary DNA was immobilized by labeling secondary antibody, which acted as a precursor to initiate RCA. The products of RCA provide large amount of sites to link detection DNAs, which were labeled by signal probes (ferrocenemonocarboxylic) and horseradish peroxidase (HRP). Moreover, the enzymatic amplification signals could be produced by the catalysis of HRP and Pt nanoparticles with the addition of H₂O₂. These lead to multiple amplification signals monitoring by electrochemical instrument and further resulted in high sensitivity of the immunoassay with the detection limit of 1.7 pg/mL. Copyright © 2011 Elsevier B.V. All rights reserved.
Wide-field optical detection of nanoparticles using on-chip microscopy and self-assembled nanolenses
NASA Astrophysics Data System (ADS)
Mudanyali, Onur; McLeod, Euan; Luo, Wei; Greenbaum, Alon; Coskun, Ahmet F.; Hennequin, Yves; Allier, Cédric P.; Ozcan, Aydogan
2013-03-01
The direct observation of nanoscale objects is a challenging task for optical microscopy because the scattering from an individual nanoparticle is typically weak at optical wavelengths. Electron microscopy therefore remains one of the gold standard visualization methods for nanoparticles, despite its high cost, limited throughput and restricted field-of-view. Here, we describe a high-throughput, on-chip detection scheme that uses biocompatible wetting films to self-assemble aspheric liquid nanolenses around individual nanoparticles to enhance the contrast between the scattered and background light. We model the effect of the nanolens as a spatial phase mask centred on the particle and show that the holographic diffraction pattern of this effective phase mask allows detection of sub-100 nm particles across a large field-of-view of >20 mm2. As a proof-of-concept demonstration, we report on-chip detection of individual polystyrene nanoparticles, adenoviruses and influenza A (H1N1) viral particles.
A symmetry measure for damage detection with mode shapes
NASA Astrophysics Data System (ADS)
Chen, Justin G.; Büyüköztürk, Oral
2017-11-01
This paper introduces a feature for detecting damage or changes in structures, the continuous symmetry measure, which can quantify the amount of a particular rotational, mirror, or translational symmetry in a mode shape of a structure. Many structures in the built environment have geometries that are either symmetric or almost symmetric, however damage typically occurs in a local manner causing asymmetric changes in the structure's geometry or material properties, and alters its mode shapes. The continuous symmetry measure can quantify these changes in symmetry as a novel indicator of damage for data-based structural health monitoring approaches. This paper describes the concept as a basis for detecting changes in mode shapes and detecting structural damage. Application of the method is demonstrated in various structures with different symmetrical properties: a pipe cross-section with a finite element model and experimental study, the NASA 8-bay truss model, and the simulated IASC-ASCE structural health monitoring benchmark structure. The applicability and limitations of the feature in applying it to structures of varying geometries is discussed.
Photo-vibrational spectroscopy using quantum cascade laser and laser Doppler vibrometer
NASA Astrophysics Data System (ADS)
Liu, Huan; Hu, Qi; Xie, Jiecheng; Fu, Yu
2017-06-01
Photoacoustic/photothermal spectroscopy is an established technique for detection of chemicals and explosives. However, prior sample preparation is required and the analysis is conducted in a sealed space with a high-sensitivity sensor coupled with a lock-in amplifier, limiting the technique to applications in a controllable laboratory environment. Hence, this technique may not be suitable for defense and security applications where the detection of explosives or hazardous chemicals is required in an open environment at a safe standoff distance. In this study, chemicals in various forms were excited by an intensity-modulated quantum cascade laser (QCL), while a laser Doppler vibrometer (LDV) was applied to detect the vibration signal resulting from the photocoustic/photothermal effect. The photo-vibrational spectrum obtained by scanning the QCL's wavelength in MIR range, coincides well with the corresponding spectrum obtained using typical FTIR equipment. The experiment in short and long standoff distances demonstrated that the LDV is a capable sensor for chemical detection in an open environment.
A label-free immunoassay for Flavivirus detection by the Reflective Phantom Interface technology.
Tagliabue, Giovanni; Faoro, Valentina; Rizzo, Serena; Sblattero, Daniele; Saccani, Andrea; Riccio, Gabriele; Bellini, Tommaso; Salina, Matteo; Buscaglia, Marco; Marcello, Alessandro
2017-10-28
Flaviviruses are widespread and cause clinically relevant arboviral diseases that impact locally and as imported travel-related infections. Direct detection of viraemia is limited, being typically undetectable at onset of symptoms. Therefore, diagnosis is primarily based on serology, which is complicated by high cross-reactivity across different species. The overlapping geographical distribution of the vectors in areas with a weak healthcare system, the increase of international travel and the similarity of symptoms highlight the need for rapid and reliable multi-parametric diagnostic tests in point-of-care formats. To this end we developed a bi-parametric serological microarray using recombinant NS1 proteins from Tick-borne encephalitis virus and West Nile virus coupled to a low-cost, label-free detection device based on the Reflective Phantom Interface (RPI) principle. Specific sequential detection of antibodies in solution demonstrates the feasibility of the approach for the surveillance and diagnosis of Flaviviruses. Copyright © 2017 Elsevier Inc. All rights reserved.
Online Detection of Functional Groups in SEC via Quantum Cascade Laser IR Spectroscopy.
Morlock, Sascha; Kübel, Jennifer M; Beskers, Timo F; Lendl, Bernhard; Wilhelm, Manfred
2018-01-01
The development of coupled techniques based on chemically sensitive detectors, such as FTIR or NMR spectrometers, for size exclusion chromatography (SEC) provides sophisticated methods for determining the molecular-weight-dependent chemical composition in polymers. However, the detection of rare functionalities such as end groups or branching points presents a challenge, especially for online coupled SEC detection, which is based on low-concentration chromatography. To address this issue, for the first time, an external cavity quantum cascade laser (EC-QCL) infrared spectrometer is coupled to an SEC. The system is evaluated using polystyrene/poly(methyl methacrylate) (PS/PMMA) blends. The current limit of detection for the carbonyl (PMMA) stretch vibration at 1730 cm -1 with this technique is 3.5 µg PMMA on a semipreparative column (typical load of 2.5 mg polymer in total). That equals 0.15 mol% of PMMA in the PS/PMMA blend and corresponds to one carbonyl group per 70 kg mol -1 polymer. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Wide-field optical detection of nanoparticles using on-chip microscopy and self-assembled nanolenses
Mudanyali, Onur; McLeod, Euan; Luo, Wei; Greenbaum, Alon; Coskun, Ahmet F.; Hennequin, Yves; Allier, Cédric P.; Ozcan, Aydogan
2013-01-01
The direct observation of nanoscale objects is a challenging task for optical microscopy because the scattering from an individual nanoparticle is typically weak at optical wavelengths. Electron microscopy therefore remains one of the gold standard visualization methods for nanoparticles, despite its high cost, limited throughput and restricted field-of-view. Here, we describe a high-throughput, on-chip detection scheme that uses biocompatible wetting films to self-assemble aspheric liquid nanolenses around individual nanoparticles to enhance the contrast between the scattered and background light. We model the effect of the nanolens as a spatial phase mask centred on the particle and show that the holographic diffraction pattern of this effective phase mask allows detection of sub-100 nm particles across a large field-of-view of >20 mm2. As a proof-of-concept demonstration, we report on-chip detection of individual polystyrene nanoparticles, adenoviruses and influenza A (H1N1) viral particles. PMID:24358054
Mobile flow cytometer for mHealth.
Balsam, Joshua; Bruck, Hugh Alan; Rasooly, Avraham
2015-01-01
Flow cytometry is used for cell counting and analysis in numerous clinical and environmental applications. However flow cytometry is not used in mHealth mainly because current flow cytometers are large, expensive, power-intensive devices designed to operate in a laboratory. Their design results in a lack of portability and makes them unsuitable for mHealth applications. Another limitation of current technology is the low volumetric throughput rates that are not suitable for rapid detection of rare cells.To address these limitations, we describe here a novel, low-cost, mobile flow cytometer based on wide-field imaging with a webcam for large volume and high throughput fluorescence detection of rare cells as a simulation for circulating tumor cells (CTCs) detection. The mobile flow cytometer uses a commercially available webcam capable of 187 frames per second video capture at a resolution of 320 × 240 pixels. For fluorescence detection, a 1 W 450 nm blue laser is used for excitation of Syto-9 fluorescently stained cells detected at 535 nm. A wide-field flow cell was developed for large volume analysis that allows for the linear velocity of target cells to be lower than in conventional hydrodynamic focusing flow cells typically used in cytometry. The mobile flow cytometer was found to be capable of detecting low concentrations at flow rates of 500 μL/min, suitable for rare cell detection in large volumes. The simplicity and low cost of this device suggests that it may have a potential clinical use for mHealth flow cytometry for resource-poor settings associated with global health.
Application of infrared uncooled cameras in surveillance systems
NASA Astrophysics Data System (ADS)
Dulski, R.; Bareła, J.; Trzaskawka, P.; PiÄ tkowski, T.
2013-10-01
The recent necessity to protect military bases, convoys and patrols gave serious impact to the development of multisensor security systems for perimeter protection. One of the most important devices used in such systems are IR cameras. The paper discusses technical possibilities and limitations to use uncooled IR camera in a multi-sensor surveillance system for perimeter protection. Effective ranges of detection depend on the class of the sensor used and the observed scene itself. Application of IR camera increases the probability of intruder detection regardless of the time of day or weather conditions. It also simultaneously decreased the false alarm rate produced by the surveillance system. The role of IR cameras in the system was discussed as well as technical possibilities to detect human being. Comparison of commercially available IR cameras, capable to achieve desired ranges was done. The required spatial resolution for detection, recognition and identification was calculated. The simulation of detection ranges was done using a new model for predicting target acquisition performance which uses the Targeting Task Performance (TTP) metric. Like its predecessor, the Johnson criteria, the new model bounds the range performance with image quality. The scope of presented analysis is limited to the estimation of detection, recognition and identification ranges for typical thermal cameras with uncooled microbolometer focal plane arrays. This type of cameras is most widely used in security systems because of competitive price to performance ratio. Detection, recognition and identification range calculations were made, and the appropriate results for the devices with selected technical specifications were compared and discussed.
Steele, L. P. [Commonwealth Scientific and Industrial Research Organization (CSIRO), Aspendale, Victoria, Australia; Krummel, P. B. [Commonwealth Scientific and Industrial Research Organization (CSIRO), Aspendale, Victoria, Australia; Langenfelds, R. L. [Commonwealth Scientific and Industrial Research Organization (CSIRO), Aspendale, Victoria, Australia
2003-01-01
The listed data were obtained from flask air samples returned to the CSIRO GASLAB for analysis. Typical sample storage times ranged from days to weeks for some sites (e.g., Cape Grim) to as much as one year for Macquarie Island and the Antarctic sites. Experiments carried out to test for any change in sample CH4 mixing ratio during storage have shown no drift to within detection limits over test periods of several months to years (Cooper et al., 1999).
Gates, Paul M.; Furlong, E.T.; Dorsey, T.F.; Burkhardt, M.R.
1996-01-01
Mass spectrometry and tandem mass spectrometry, coupled by a thermospray interface to a high-performance liguid chromatography system and equipped with a photodiode array detector, were used to determine the presence of nitroaromatic explosives and their degradation products in USA unsaturated-zone water samples. Using this approach, the lower limits of quantitation for explosives determined by mass spectrometry in this study typically ranged from 10 to 100 ng/l.
Continuous Particulate Filter State of Health Monitoring Using Radio Frequency Sensing
Sappok, Alexander; Ragaller, Paul; Herman, Andrew; ...
2018-04-03
Reliable means for on-board detection of particulate filter failures or malfunctions are needed to meet diagnostics (OBD) requirements. Detecting these failures, which result in tailpipe particulate matter (PM) emissions exceeding the OBD limit, over all operating conditions is challenging. Current approaches employ differential pressure sensors and downstream PM sensors, in combination with particulate filter and engine-out soot models. These conventional monitors typically operate over narrowly-defined time windows and do not provide a direct measure of the filter’s state of health. In contrast, radio frequency (RF) sensors, which transmit a wireless signal through the filter substrate provide a direct means formore » interrogating the condition of the filter itself. Here, this study investigated the use of RF sensors for the continuous measurement of filter trapping efficiency, which was compared to downstream measurements with an AVL Microsoot Sensor, and a PM sampling probe simulating the geometry and installation configuration of a conventional PM sensor. The study included several particulate filter failure modes, both above and below the OBD threshold. Finally, the results confirmed the use of RF sensors to provide a direct and continuous measure of the particulate filter’s state of health over a range of typical in-use operating conditions, thereby significantly increasing the time window over which filter failures may be detected.« less
Continuous Particulate Filter State of Health Monitoring Using Radio Frequency Sensing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sappok, Alexander; Ragaller, Paul; Herman, Andrew
Reliable means for on-board detection of particulate filter failures or malfunctions are needed to meet diagnostics (OBD) requirements. Detecting these failures, which result in tailpipe particulate matter (PM) emissions exceeding the OBD limit, over all operating conditions is challenging. Current approaches employ differential pressure sensors and downstream PM sensors, in combination with particulate filter and engine-out soot models. These conventional monitors typically operate over narrowly-defined time windows and do not provide a direct measure of the filter’s state of health. In contrast, radio frequency (RF) sensors, which transmit a wireless signal through the filter substrate provide a direct means formore » interrogating the condition of the filter itself. Here, this study investigated the use of RF sensors for the continuous measurement of filter trapping efficiency, which was compared to downstream measurements with an AVL Microsoot Sensor, and a PM sampling probe simulating the geometry and installation configuration of a conventional PM sensor. The study included several particulate filter failure modes, both above and below the OBD threshold. Finally, the results confirmed the use of RF sensors to provide a direct and continuous measure of the particulate filter’s state of health over a range of typical in-use operating conditions, thereby significantly increasing the time window over which filter failures may be detected.« less
Reduced change blindness suggests enhanced attention to detail in individuals with autism.
Smith, Hayley; Milne, Elizabeth
2009-03-01
The phenomenon of change blindness illustrates that a limited number of items within the visual scene are attended to at any one time. It has been suggested that individuals with autism focus attention on less contextually relevant aspects of the visual scene, show superior perceptual discrimination and notice details which are often ignored by typical observers. In this study we investigated change blindness in autism by asking participants to detect continuity errors deliberately introduced into a short film. Whether the continuity errors involved central/marginal or social/non-social aspects of the visual scene was varied. Thirty adolescent participants, 15 with autistic spectrum disorder (ASD) and 15 typically developing (TD) controls participated. The participants with ASD detected significantly more errors than the TD participants. Both groups identified more errors involving central rather than marginal aspects of the scene, although this effect was larger in the TD participants. There was no difference in the number of social or non-social errors detected by either group of participants. In line with previous data suggesting an abnormally broad attentional spotlight and enhanced perceptual function in individuals with ASD, the results of this study suggest enhanced awareness of the visual scene in ASD. The results of this study could reflect superior top-down control of visual search in autism, enhanced perceptual function, or inefficient filtering of visual information in ASD.
NASA Astrophysics Data System (ADS)
Chan, Chun-Kai; Loh, Chin-Hsiung; Wu, Tzu-Hsiu
2015-04-01
In civil engineering, health monitoring and damage detection are typically carry out by using a large amount of sensors. Typically, most methods require global measurements to extract the properties of the structure. However, some sensors, like LVDT, cannot be used due to in situ limitation so that the global deformation remains unknown. An experiment is used to demonstrate the proposed algorithms: a one-story 2-bay reinforce concrete frame under weak and strong seismic excitation. In this paper signal processing techniques and nonlinear identification are used and applied to the response measurements of seismic response of reinforced concrete structures subject to different level of earthquake excitations. Both modal-based and signal-based system identification and feature extraction techniques are used to study the nonlinear inelastic response of RC frame using both input and output response data or output only measurement. From the signal-based damage identification method, which include the enhancement of time-frequency analysis of acceleration responses and the estimation of permanent deformation using directly from acceleration response data. Finally, local deformation measurement from dense optical tractor is also use to quantify the damage of the RC frame structure.
Wu, Chunying; Gu, Feng; Bai, Lu; Lu, Wenlong
2015-08-01
An analytical method for simultaneous determination of 22 typical pharmaceuticals and personal care products (PPCPs) in environmental water samples was developed by ultra performance liquid chromatography-triple quadrupole mass spectrometry (UPLC-MS/MS). An Oasis HLB solid phase extraction cartridge, methanol as washing solution, water containing 0. 1% formic acid-methanol (7:3, v/v) as the mobile phases were selected for sample pretreatment and chromatographic separation. Based on the optimized sample pretreatment procedures and separation condition, the target recoveries ranged from 73% to 125% in water with the relative standard deviations ( RSDs) from 8.8% to 17.5%, and the linear ranges were from 2 to 2 000 µg/L with correlation coefficients (R2) not less than 0.997. The method can be applied to simultaneous determination of the 22 typical PPCPs in environmental water samples because of its low detection limits and high recoveries. It can provide support and help for the related research on water environmental risk assessment and control of the micro-organic pollutants.
A Strong Limit on the Very-high-energy Emission from GRB 150323A
NASA Astrophysics Data System (ADS)
Abeysekara, A. U.; Archer, A.; Benbow, W.; Bird, R.; Brose, R.; Buchovecky, M.; Bugaev, V.; Connolly, M. P.; Cui, W.; Errando, M.; Falcone, A.; Feng, Q.; Finley, J. P.; Flinders, A.; Fortson, L.; Furniss, A.; Gillanders, G. H.; Hütten, M.; Hanna, D.; Hervet, O.; Holder, J.; Hughes, G.; Humensky, T. B.; Johnson, C. A.; Kaaret, P.; Kar, P.; Kelley-Hoskins, N.; Kertzman, M.; Kieda, D.; Krause, M.; Krennrich, F.; Lang, M. J.; Lin, T. T. Y.; Maier, G.; McArthur, S.; Moriarty, P.; Mukherjee, R.; O’Brien, S.; Ong, R. A.; Park, N.; Perkins, J. S.; Petrashyk, A.; Pohl, M.; Popkow, A.; Pueschel, E.; Quinn, J.; Ragan, K.; Reynolds, P. T.; Richards, G. T.; Roache, E.; Rulten, C.; Sadeh, I.; Santander, M.; Sembroski, G. H.; Shahinyan, K.; Tyler, J.; Wakely, S. P.; Weiner, O. M.; Weinstein, A.; Wells, R. M.; Wilcox, P.; Wilhelm, A.; Williams, D. A.; Zitzer, B.; VERITAS Collaboration; Vurm, Indrek; Beloborodov, Andrei
2018-04-01
On 2015 March 23, the Very Energetic Radiation Imaging Telescope Array System (VERITAS) responded to a Swift-Burst Alert Telescope (BAT) detection of a gamma-ray burst, with observations beginning 270 s after the onset of BAT emission, and only 135 s after the main BAT emission peak. No statistically significant signal is detected above 140 GeV. The VERITAS upper limit on the fluence in a 40-minute integration corresponds to about 1% of the prompt fluence. Our limit is particularly significant because the very-high-energy (VHE) observation started only ∼2 minutes after the prompt emission peaked, and Fermi-Large Area Telescope observations of numerous other bursts have revealed that the high-energy emission is typically delayed relative to the prompt radiation and lasts significantly longer. Also, the proximity of GRB 150323A (z = 0.593) limits the attenuation by the extragalactic background light to ∼50% at 100–200 GeV. We conclude that GRB 150323A had an intrinsically very weak high-energy afterglow, or that the GeV spectrum had a turnover below ∼100 GeV. If the GRB exploded into the stellar wind of a massive progenitor, the VHE non-detection constrains the wind density parameter to be A ≳ 3 × 1011 g cm‑1, consistent with a standard Wolf–Rayet progenitor. Alternatively, the VHE emission from the blast wave would be weak in a very tenuous medium such as the interstellar medium, which therefore cannot be ruled out as the environment of GRB 150323A.
NASA Astrophysics Data System (ADS)
Nick, C.; Yadav, S.; Joshi, R.; Schneider, J. J.; Thielemann, C.
2015-07-01
Electrodes based on carbon nanotubes are a promising approach to manufacture highly sensitive sensors with a low limit of signal detection and a high signal-to-noise ratio. This is achieved by dramatically increasing the electrochemical active surface area without increasing the overall geometrical dimensions. Typically, carbon nanotube electrodes are nearly planar and composed of randomly distributed carbon nanotube networks having a limited surface gain for a specific geometrical surface area. To overcome this limitation, we have introduced vertically aligned carbon nanotube (VACNT) networks as electrodes, which are arranged in a microelectrode pattern of 60 single electrodes. Each microelectrode features a very high aspect ratio of more than 300 and thus a dramatically increased surface area. These microelectrodes composed of VACNT networks display dramatically decreased impedance over the entire frequency range compared to planar microelectrodes caused by the enormous capacity increase. This is experimentally verified by electrochemical impedance spectroscopy and cyclic voltammetry.
Directional Limits on Persistent Gravitational Waves Using LIGO S5 Science Data
NASA Astrophysics Data System (ADS)
Abadie, J.; Abbott, B. P.; Abbott, R.; Abernathy, M.; Accadia, T.; Acernese, F.; Adams, C.; Adhikari, R.; Ajith, P.; Allen, B.; Allen, G. S.; Amador Ceron, E.; Amin, R. S.; Anderson, S. B.; Anderson, W. G.; Antonucci, F.; Arain, M. A.; Araya, M. C.; Aronsson, M.; Arun, K. G.; Aso, Y.; Aston, S. M.; Astone, P.; Atkinson, D.; Aufmuth, P.; Aulbert, C.; Babak, S.; Baker, P.; Ballardin, G.; Ballmer, S.; Barker, D.; Barnum, S.; Barone, F.; Barr, B.; Barriga, P.; Barsotti, L.; Barsuglia, M.; Barton, M. A.; Bartos, I.; Bassiri, R.; Bastarrika, M.; Bauchrowitz, J.; Bauer, Th. S.; Behnke, B.; Beker, M. G.; Belletoile, A.; Benacquista, M.; Bertolini, A.; Betzwieser, J.; Beveridge, N.; Beyersdorf, P. T.; Bigotta, S.; Bilenko, I. A.; Billingsley, G.; Birch, J.; Birindelli, S.; Biswas, R.; Bitossi, M.; Bizouard, M. A.; Black, E.; Blackburn, J. K.; Blackburn, L.; Blair, D.; Bland, B.; Blom, M.; Boccara, C.; Bock, O.; Bodiya, T. P.; Bondarescu, R.; Bondu, F.; Bonelli, L.; Bonnand, R.; Bork, R.; Born, M.; Bose, S.; Bosi, L.; Bouhou, B.; Boyle, M.; Braccini, S.; Bradaschia, C.; Brady, P. R.; Braginsky, V. B.; Brau, J. E.; Breyer, J.; Bridges, D. O.; Brillet, A.; Brinkmann, M.; Brisson, V.; Britzger, M.; Brooks, A. F.; Brown, D. A.; Budzyński, R.; Bulik, T.; Bulten, H. J.; Buonanno, A.; Burguet-Castell, J.; Burmeister, O.; Buskulic, D.; Buy, C.; Byer, R. L.; Cadonati, L.; Cagnoli, G.; Cain, J.; Calloni, E.; Camp, J. B.; Campagna, E.; Campsie, P.; Cannizzo, J.; Cannon, K.; Canuel, B.; Cao, J.; Capano, C.; Carbognani, F.; Caride, S.; Caudill, S.; Cavaglià, M.; Cavalier, F.; Cavalieri, R.; Cella, G.; Cepeda, C.; Cesarini, E.; Chalermsongsak, T.; Chalkley, E.; Charlton, P.; Chassande-Mottin, E.; Chelkowski, S.; Chen, Y.; Chincarini, A.; Christensen, N.; Chua, S. S. Y.; Chung, C. T. Y.; Clark, D.; Clark, J.; Clayton, J. H.; Cleva, F.; Coccia, E.; Colacino, C. N.; Colas, J.; Colla, A.; Colombini, M.; Conte, R.; Cook, D.; Corbitt, T. R.; Cornish, N.; Corsi, A.; Costa, C. A.; Coulon, J.-P.; Coward, D. M.; Coyne, D. C.; Creighton, J. D. E.; Creighton, T. D.; Cruise, A. M.; Culter, R. M.; Cumming, A.; Cunningham, L.; Cuoco, E.; Dahl, K.; Danilishin, S. L.; Dannenberg, R.; D'Antonio, S.; Danzmann, K.; Das, K.; Dattilo, V.; Daudert, B.; Davier, M.; Davies, G.; Davis, A.; Daw, E. J.; Day, R.; Dayanga, T.; de Rosa, R.; Debra, D.; Degallaix, J.; Del Prete, M.; Dergachev, V.; Derosa, R.; Desalvo, R.; Devanka, P.; Dhurandhar, S.; di Fiore, L.; di Lieto, A.; di Palma, I.; di Paolo Emilio, M.; di Virgilio, A.; Díaz, M.; Dietz, A.; Donovan, F.; Dooley, K. L.; Doomes, E. E.; Dorsher, S.; Douglas, E. S. D.; Drago, M.; Drever, R. W. P.; Driggers, J. C.; Dueck, J.; Dumas, J.-C.; Eberle, T.; Edgar, M.; Edwards, M.; Effler, A.; Ehrens, P.; Engel, R.; Etzel, T.; Evans, M.; Evans, T.; Fafone, V.; Fairhurst, S.; Fan, Y.; Farr, B. F.; Fazi, D.; Fehrmann, H.; Feldbaum, D.; Ferrante, I.; Fidecaro, F.; Finn, L. S.; Fiori, I.; Flaminio, R.; Flanigan, M.; Flasch, K.; Foley, S.; Forrest, C.; Forsi, E.; Fotopoulos, N.; Fournier, J.-D.; Franc, J.; Frasca, S.; Frasconi, F.; Frede, M.; Frei, M.; Frei, Z.; Freise, A.; Frey, R.; Fricke, T. T.; Friedrich, D.; Fritschel, P.; Frolov, V. V.; Fulda, P.; Fyffe, M.; Galimberti, M.; Gammaitoni, L.; Garofoli, J. A.; Garufi, F.; Gemme, G.; Genin, E.; Gennai, A.; Gholami, I.; Ghosh, S.; Giaime, J. A.; Giampanis, S.; Giardina, K. D.; Giazotto, A.; Gill, C.; Goetz, E.; Goggin, L. M.; González, G.; Gorodetsky, M. L.; Goßler, S.; Gouaty, R.; Graef, C.; Granata, M.; Grant, A.; Gras, S.; Gray, C.; Greenhalgh, R. J. S.; Gretarsson, A. M.; Greverie, C.; Grosso, R.; Grote, H.; Grunewald, S.; Guidi, G. M.; Gustafson, E. K.; Gustafson, R.; Hage, B.; Hall, P.; Hallam, J. M.; Hammer, D.; Hammond, G.; Hanks, J.; Hanna, C.; Hanson, J.; Harms, J.; Harry, G. M.; Harry, I. W.; Harstad, E. D.; Haughian, K.; Hayama, K.; Hayau, J.-F.; Hayler, T.; Heefner, J.; Heitmann, H.; Hello, P.; Heng, I. S.; Heptonstall, A. W.; Hewitson, M.; Hild, S.; Hirose, E.; Hoak, D.; Hodge, K. A.; Holt, K.; Hosken, D. J.; Hough, J.; Howell, E. J.; Hoyland, D.; Huet, D.; Hughey, B.; Husa, S.; Huttner, S. H.; Huynh–Dinh, T.; Ingram, D. R.; Inta, R.; Isogai, T.; Ivanov, A.; Jaranowski, P.; Johnson, W. W.; Jones, D. I.; Jones, G.; Jones, R.; Ju, L.; Kalmus, P.; Kalogera, V.; Kandhasamy, S.; Kanner, J. B.; Katsavounidis, E.; Kawabe, K.; Kawamura, S.; Kawazoe, F.; Kells, W.; Keppel, D. G.; Khalaidovski, A.; Khalili, F. Y.; Khazanov, E. A.; Kim, H.; King, P. J.; Kinzel, D. L.; Kissel, J. S.; Klimenko, S.; Kondrashov, V.; Kopparapu, R.; Koranda, S.; Kowalska, I.; Kozak, D.; Krause, T.; Kringel, V.; Krishnamurthy, S.; Krishnan, B.; Królak, A.; Kuehn, G.; Kullman, J.; Kumar, R.; Kwee, P.; Landry, M.; Lang, M.; Lantz, B.; Lastzka, N.; Lazzarini, A.; Leaci, P.; Leong, J.; Leonor, I.; Leroy, N.; Letendre, N.; Li, J.; Li, T. G. F.; Liguori, N.; Lin, H.; Lindquist, P. E.; Lockerbie, N. A.; Lodhia, D.; Lorenzini, M.; Loriette, V.; Lormand, M.; Losurdo, G.; Lu, P.; Luan, J.; Lubinski, M.; Lucianetti, A.; Lück, H.; Lundgren, A. D.; Machenschalk, B.; Macinnis, M.; Mageswaran, M.; Mailand, K.; Majorana, E.; Mak, C.; Maksimovic, I.; Man, N.; Mandel, I.; Mandic, V.; Mantovani, M.; Marchesoni, F.; Marion, F.; Márka, S.; Márka, Z.; Maros, E.; Marque, J.; Martelli, F.; Martin, I. W.; Martin, R. M.; Marx, J. N.; Mason, K.; Masserot, A.; Matichard, F.; Matone, L.; Matzner, R. A.; Mavalvala, N.; McCarthy, R.; McClelland, D. E.; McGuire, S. C.; McIntyre, G.; McIvor, G.; McKechan, D. J. A.; Meadors, G.; Mehmet, M.; Meier, T.; Melatos, A.; Melissinos, A. C.; Mendell, G.; Menéndez, D. F.; Mercer, R. A.; Merill, L.; Meshkov, S.; Messenger, C.; Meyer, M. S.; Miao, H.; Michel, C.; Milano, L.; Miller, J.; Minenkov, Y.; Mino, Y.; Mitra, S.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Moe, B.; Mohan, M.; Mohanty, S. D.; Mohapatra, S. R. P.; Moraru, D.; Moreau, J.; Moreno, G.; Morgado, N.; Morgia, A.; Morioka, T.; Mors, K.; Mosca, S.; Moscatelli, V.; Mossavi, K.; Mours, B.; Mow–Lowry, C. M.; Mueller, G.; Mukherjee, S.; Mullavey, A.; Müller-Ebhardt, H.; Munch, J.; Murray, P. G.; Nash, T.; Nawrodt, R.; Nelson, J.; Neri, I.; Newton, G.; Nishizawa, A.; Nocera, F.; Nolting, D.; Ochsner, E.; O'Dell, J.; Ogin, G. H.; Oldenburg, R. G.; O'Reilly, B.; O'Shaughnessy, R.; Osthelder, C.; Ottaway, D. J.; Ottens, R. S.; Overmier, H.; Owen, B. J.; Page, A.; Pagliaroli, G.; Palladino, L.; Palomba, C.; Pan, Y.; Pankow, C.; Paoletti, F.; Papa, M. A.; Pardi, S.; Pareja, M.; Parisi, M.; Pasqualetti, A.; Passaquieti, R.; Passuello, D.; Patel, P.; Pathak, D.; Pedraza, M.; Pekowsky, L.; Penn, S.; Peralta, C.; Perreca, A.; Persichetti, G.; Pichot, M.; Pickenpack, M.; Piergiovanni, F.; Pietka, M.; Pinard, L.; Pinto, I. M.; Pitkin, M.; Pletsch, H. J.; Plissi, M. V.; Poggiani, R.; Postiglione, F.; Prato, M.; Predoi, V.; Price, L. R.; Prijatelj, M.; Principe, M.; Prix, R.; Prodi, G. A.; Prokhorov, L.; Puncken, O.; Punturo, M.; Puppo, P.; Quetschke, V.; Raab, F. J.; Rabeling, D. S.; Radke, T.; Radkins, H.; Raffai, P.; Rakhmanov, M.; Rankins, B.; Rapagnani, P.; Raymond, V.; Re, V.; Reed, C. M.; Reed, T.; Regimbau, T.; Reid, S.; Reitze, D. H.; Ricci, F.; Riesen, R.; Riles, K.; Roberts, P.; Robertson, N. A.; Robinet, F.; Robinson, C.; Robinson, E. L.; Rocchi, A.; Roddy, S.; Röver, C.; Rolland, L.; Rollins, J.; Romano, J. D.; Romano, R.; Romie, J. H.; Rosińska, D.; Rowan, S.; Rüdiger, A.; Ruggi, P.; Ryan, K.; Sakata, S.; Sakosky, M.; Salemi, F.; Sammut, L.; Sancho de La Jordana, L.; Sandberg, V.; Sannibale, V.; Santamaría, L.; Santostasi, G.; Saraf, S.; Sassolas, B.; Sathyaprakash, B. S.; Sato, S.; Satterthwaite, M.; Saulson, P. R.; Savage, R.; Schilling, R.; Schnabel, R.; Schofield, R. M. S.; Schulz, B.; Schutz, B. F.; Schwinberg, P.; Scott, J.; Scott, S. M.; Searle, A. C.; Seifert, F.; Sellers, D.; Sengupta, A. S.; Sentenac, D.; Sergeev, A.; Shaddock, D. A.; Shapiro, B.; Shawhan, P.; Shoemaker, D. H.; Sibley, A.; Siemens, X.; Sigg, D.; Singer, A.; Sintes, A. M.; Skelton, G.; Slagmolen, B. J. J.; Slutsky, J.; Smith, J. R.; Smith, M. R.; Smith, N. D.; Somiya, K.; Sorazu, B.; Speirits, F. C.; Sperandio, L.; Stein, A. J.; Stein, L. C.; Steinlechner, S.; Steplewski, S.; Stochino, A.; Stone, R.; Strain, K. A.; Strigin, S.; Stroeer, A. S.; Sturani, R.; Stuver, A. L.; Summerscales, T. Z.; Sung, M.; Susmithan, S.; Sutton, P. J.; Swinkels, B.; Szokoly, G. P.; Talukder, D.; Tanner, D. B.; Tarabrin, S. P.; Taylor, J. R.; Taylor, R.; Thomas, P.; Thorne, K. A.; Thorne, K. S.; Thrane, E.; Thüring, A.; Titsler, C.; Tokmakov, K. V.; Toncelli, A.; Tonelli, M.; Torre, O.; Torres, C.; Torrie, C. I.; Tournefier, E.; Travasso, F.; Traylor, G.; Trias, M.; Trummer, J.; Tseng, K.; Turner, L.; Ugolini, D.; Urbanek, K.; Vahlbruch, H.; Vaishnav, B.; Vajente, G.; Vallisneri, M.; van den Brand, J. F. J.; van den Broeck, C.; van der Putten, S.; van der Sluys, M. V.; van Veggel, A. A.; Vass, S.; Vaulin, R.; Vavoulidis, M.; Vecchio, A.; Vedovato, G.; Veitch, J.; Veitch, P. J.; Veltkamp, C.; Verkindt, D.; Vetrano, F.; Viceré, A.; Villar, A. E.; Vinet, J.-Y.; Vocca, H.; Vorvick, C.; Vyachanin, S. P.; Waldman, S. J.; Wallace, L.; Wanner, A.; Ward, R. L.; Was, M.; Wei, P.; Weinert, M.; Weinstein, A. J.; Weiss, R.; Wen, L.; Wen, S.; Wessels, P.; West, M.; Westphal, T.; Wette, K.; Whelan, J. T.; Whitcomb, S. E.; White, D.; Whiting, B. F.; Wilkinson, C.; Willems, P. A.; Williams, L.; Willke, B.; Winkelmann, L.; Winkler, W.; Wipf, C. C.; Wiseman, A. G.; Woan, G.; Wooley, R.; Worden, J.; Yakushin, I.; Yamamoto, H.; Yamamoto, K.; Yeaton-Massey, D.; Yoshida, S.; Yu, P.; Yvert, M.; Zanolin, M.; Zhang, L.; Zhang, Z.; Zhao, C.; Zotov, N.; Zucker, M. E.; Zweizig, J.
2011-12-01
The gravitational-wave (GW) sky may include nearby pointlike sources as well as stochastic backgrounds. We perform two directional searches for persistent GWs using data from the LIGO S5 science run: one optimized for pointlike sources and one for arbitrary extended sources. Finding no evidence to support the detection of GWs, we present 90% confidence level (C.L.) upper-limit maps of GW strain power with typical values between 2-20×10-50strain2Hz-1 and 5-35×10-49strain2Hz-1sr-1 for pointlike and extended sources, respectively. The latter result is the first of its kind. We also set 90% C.L. limits on the narrow-band root-mean-square GW strain from interesting targets including Sco X-1, SN 1987A and the Galactic center as low as ≈7×10-25 in the most sensitive frequency range near 160 Hz.
Single-Source Gravitational Wave Limits From the J1713+0747 24-hr Global Campaign
NASA Astrophysics Data System (ADS)
Dolch, T.; NANOGrav Collaboration; Ellis, J. A.; Chatterjee, S.; Cordes, J. M.; Lam, M. T.; Bassa, C.; Bhattacharyya, B.; Champion, D. J.; Cognard, I.; Crowter, K.; Demorest, P. B.; Hessels, J. W. T.; Janssen, G.; Jenet, F. A.; Jones, G.; Jordan, C.; Karuppusamy, R.; Keith, M.; Kondratiev, V. I.; Kramer, M.; Lazarus, P.; Lazio, T. J. W.; Lorimer, D. R.; Madison, D. R.; McLaughlin, M. A.; Palliyaguru, N.; Perrodin, D.; Ransom, S. M.; Roy, J.; Shannon, R. M.; Smits, R.; Stairs, I. H.; Stappers, B. W.; Stinebring, D. R.; Stovall, K.; Verbiest, J. P. W.; Zhu, W. W.
2016-05-01
Dense, continuous pulsar timing observations over a 24-hr period provide a method for probing intermediate gravitational wave (GW) frequencies from 10 microhertz to 20 millihertz. The European Pulsar Timing Array (EPTA), the North American Nanohertz Observatory for Gravitational Waves (NANOGrav), the Parkes Pulsar Timing Array (PPTA), and the combined International Pulsar Timing Array (IPTA) all use millisecond pulsar observations to detect or constrain GWs typically at nanohertz frequencies. In the case of the IPTA's nine-telescope 24-Hour Global Campaign on millisecond pulsar J1713+0747, GW limits in the intermediate frequency regime can be produced. The negligible change in dispersion measure during the observation minimizes red noise in the timing residuals, constraining any contributions from GWs due to individual sources. At 10-5 Hz, the 95% upper limit on strain is 10-11 for GW sources in the pulsar's direction.
Randomized Prediction Games for Adversarial Machine Learning.
Rota Bulo, Samuel; Biggio, Battista; Pillai, Ignazio; Pelillo, Marcello; Roli, Fabio
In spam and malware detection, attackers exploit randomization to obfuscate malicious data and increase their chances of evading detection at test time, e.g., malware code is typically obfuscated using random strings or byte sequences to hide known exploits. Interestingly, randomization has also been proposed to improve security of learning algorithms against evasion attacks, as it results in hiding information about the classifier to the attacker. Recent work has proposed game-theoretical formulations to learn secure classifiers, by simulating different evasion attacks and modifying the classification function accordingly. However, both the classification function and the simulated data manipulations have been modeled in a deterministic manner, without accounting for any form of randomization. In this paper, we overcome this limitation by proposing a randomized prediction game, namely, a noncooperative game-theoretic formulation in which the classifier and the attacker make randomized strategy selections according to some probability distribution defined over the respective strategy set. We show that our approach allows one to improve the tradeoff between attack detection and false alarms with respect to the state-of-the-art secure classifiers, even against attacks that are different from those hypothesized during design, on application examples including handwritten digit recognition, spam, and malware detection.In spam and malware detection, attackers exploit randomization to obfuscate malicious data and increase their chances of evading detection at test time, e.g., malware code is typically obfuscated using random strings or byte sequences to hide known exploits. Interestingly, randomization has also been proposed to improve security of learning algorithms against evasion attacks, as it results in hiding information about the classifier to the attacker. Recent work has proposed game-theoretical formulations to learn secure classifiers, by simulating different evasion attacks and modifying the classification function accordingly. However, both the classification function and the simulated data manipulations have been modeled in a deterministic manner, without accounting for any form of randomization. In this paper, we overcome this limitation by proposing a randomized prediction game, namely, a noncooperative game-theoretic formulation in which the classifier and the attacker make randomized strategy selections according to some probability distribution defined over the respective strategy set. We show that our approach allows one to improve the tradeoff between attack detection and false alarms with respect to the state-of-the-art secure classifiers, even against attacks that are different from those hypothesized during design, on application examples including handwritten digit recognition, spam, and malware detection.
Robust and efficient anomaly detection using heterogeneous representations
NASA Astrophysics Data System (ADS)
Hu, Xing; Hu, Shiqiang; Xie, Jinhua; Zheng, Shiyou
2015-05-01
Various approaches have been proposed for video anomaly detection. Yet these approaches typically suffer from one or more limitations: they often characterize the pattern using its internal information, but ignore its external relationship which is important for local anomaly detection. Moreover, the high-dimensionality and the lack of robustness of pattern representation may lead to problems, including overfitting, increased computational cost and memory requirements, and high false alarm rate. We propose a video anomaly detection framework which relies on a heterogeneous representation to account for both the pattern's internal information and external relationship. The internal information is characterized by slow features learned by slow feature analysis from low-level representations, and the external relationship is characterized by the spatial contextual distances. The heterogeneous representation is compact, robust, efficient, and discriminative for anomaly detection. Moreover, both the pattern's internal information and external relationship can be taken into account in the proposed framework. Extensive experiments demonstrate the robustness and efficiency of our approach by comparison with the state-of-the-art approaches on the widely used benchmark datasets.
Varying face occlusion detection and iterative recovery for face recognition
NASA Astrophysics Data System (ADS)
Wang, Meng; Hu, Zhengping; Sun, Zhe; Zhao, Shuhuan; Sun, Mei
2017-05-01
In most sparse representation methods for face recognition (FR), occlusion problems were usually solved via removing the occlusion part of both query samples and training samples to perform the recognition process. This practice ignores the global feature of facial image and may lead to unsatisfactory results due to the limitation of local features. Considering the aforementioned drawback, we propose a method called varying occlusion detection and iterative recovery for FR. The main contributions of our method are as follows: (1) to detect an accurate occlusion area of facial images, an image processing and intersection-based clustering combination method is used for occlusion FR; (2) according to an accurate occlusion map, the new integrated facial images are recovered iteratively and put into a recognition process; and (3) the effectiveness on recognition accuracy of our method is verified by comparing it with three typical occlusion map detection methods. Experiments show that the proposed method has a highly accurate detection and recovery performance and that it outperforms several similar state-of-the-art methods against partial contiguous occlusion.
Quantum-Dot-Based Lateral Flow Immunoassay for Detection of Neonicotinoid Residues in Tea Leaves.
Wang, Shuangjie; Liu, Ying; Jiao, Shasha; Zhao, Ying; Guo, Yirong; Wang, Mengcen; Zhu, Guonian
2017-11-22
Neonicotinoid insecticides are commonly used for pest control on tea plantations as a result of their broad-spectrum activity. However, neonicotinoid residues released from tea leaves into tea infusions pose a dietary risk to consumers. Therefore, a rapid, sensitive, and reliable on-site detection method for neonicotinoids is needed. We developed a quantum-dot-based fluorescent lateral flow immunochromatographic strip (LFICS) combined with a broad-specific antibody for detection of typical neonicotinoids (imidacloprid, imidaclothiz, and clothianidin), with sensitivities [50% inhibitory concentration (IC 50 )] of 0.104-0.33 ng/mL and visual detection limits of 0.5-1 ng/mL. The strip assay could be completed in less than 30 min. Using the LFICS to analyze spiked tea samples (green tea, black tea, and oolong tea), the average recovery of the three neonicotinoids ranged between 71 and 111%, with the coefficient of variation below 12%. The results from the LFICS tests for field samples were consistent with results from ultraperformance liquid chromatography-tandem mass spectrometry. The newly developed strip is a useful tool for the on-site detection of neonicotinoid residues in tea.
Direct protein detection with a nano-interdigitated array gate MOSFET.
Tang, Xiaohui; Jonas, Alain M; Nysten, Bernard; Demoustier-Champagne, Sophie; Blondeau, Franoise; Prévot, Pierre-Paul; Pampin, Rémi; Godfroid, Edmond; Iñiguez, Benjamin; Colinge, Jean-Pierre; Raskin, Jean-Pierre; Flandre, Denis; Bayot, Vincent
2009-08-15
A new protein sensor is demonstrated by replacing the gate of a metal oxide semiconductor field effect transistor (MOSFET) with a nano-interdigitated array (nIDA). The sensor is able to detect the binding reaction of a typical antibody Ixodes ricinus immunosuppressor (anti-Iris) protein at a concentration lower than 1 ng/ml. The sensor exhibits a high selectivity and reproducible specific detection. We provide a simple model that describes the behavior of the sensor and explains the origin of its high sensitivity. The simulated and experimental results indicate that the drain current of nIDA-gate MOSFET sensor is significantly increased with the successive binding of the thiol layer, Iris and anti-Iris protein layers. It is found that the sensor detection limit can be improved by well optimizing the geometrical parameters of nIDA-gate MOSFET. This nanobiosensor, with real-time and label-free capabilities, can easily be used for the detection of other proteins, DNA, virus and cancer markers. Moreover, an on-chip associated electronics nearby the sensor can be integrated since its fabrication is compatible with complementary metal oxide semiconductor (CMOS) technology.
Calvano, C D; Cataldi, T R I; Kögel, J F; Monopoli, A; Palmisano, F; Sundermeyer, J
2016-07-30
Here hardly ionizable and low molecular weight compounds are detected in negative ion mode by using novel superbasic proton sponges based on 1,8-bisphosphazenylnaphthalene (PN) as MALDI matrices. Among the selected proton sponges, 1,8-bis(trispyrrolidinophosphazenyl)naphthalene (TPPN) has shown the best behaviour as matrix since it allows the direct detection of intact cholesterol without derivatization also in real challenging samples. Very weakly acidic compounds such as sterols, steroids, fatty alcohols and saccharides were detected in reflectron negative ion mode by a MALDI TOF/TOF system equipped with a neodymium-doped yttrium lithium fluoride (Nd:YLF) laser (345 nm) with typical mass accuracy of 10 ppm. MS/MS experiments were performed by using ambient air as the collision gas. Contrary to traditional MALDI matrices, superbasic proton sponges allowed the easy deprotonation of an alcohol functional group without a previous chemical derivatization step. Experimental evidence indicates that analyte deprotonation is achieved in the condensed phase, i.e. PN superbasic proton sponges operate according to a recently proposed model named matrix assisted ionization/laser desorption (MAILD). A detection limit of 3 pmol/spot of cholesterol (model compound) with a signal-to-noise ratio ≥ 10 was typically obtained. For the first time, the usefulness of novel superbasic proton sponges is demonstrated for MALDI detection of hardly ionizable compounds such as sterols, steroids, fatty alcohols and saccharides. The leading candidate TPPN has been successfully applied for negative ion MAILD-MS analysis of cholesterol, fatty acids and phospholipids in egg yolk and brain tissue extracts. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
Qi, Yingying; Xiu, Fu-Rong; Yu, Gending; Huang, Lili; Li, Baoxin
2017-01-15
Detection of ultralow concentration of heavy metal ion Hg 2+ is important for human health protection and environment monitoring because of the gradual accumulation in environmental and biological fields. Herein, we report a convenient chemiluminescence (CL) biosensing platform for ultrasensitive Hg 2+ detection by signal amplification mechanism from positively charged gold nanoparticles ((+)AuNPs). It is based on (+)AuNPs charge effect and aptamer conformation change induced by target to stimulate the generation of CL in the presence of H 2 O 2 and luminol without high salt medium. Notably particularly, the typical problem of the high salt medium from (-) AuNPs system, like influencing aptamers' bind with target and hindering CL reaction can be effectively addressed through the direct introduction of (+)AuNPs. Therefore, the proposed biosensing exhibits a high sensitivity toward target Hg 2+ with a detection limit of 16 pM, which is far below the limit (10nM) defined by the U.S. Environmental Protection Agency in drinkable water, and is about 10-fold lower than the previously reported aptamer-based assays for Hg 2+ . This sensing platform provides a simple, rapid, and cost-effective approach for label-free sensitive detection of Hg 2+ . Moreover, it is universal for the detection of other targets. Undoubtedly, such a direct utilizing of (+)AuNPs' charge effect will provide a new signal amplification way for label-free aptamer-based CL analysis. Copyright © 2016 Elsevier B.V. All rights reserved.
Introduction of the ASGARD Code
NASA Technical Reports Server (NTRS)
Bethge, Christian; Winebarger, Amy; Tiwari, Sanjiv; Fayock, Brian
2017-01-01
ASGARD stands for 'Automated Selection and Grouping of events in AIA Regional Data'. The code is a refinement of the event detection method in Ugarte-Urra & Warren (2014). It is intended to automatically detect and group brightenings ('events') in the AIA EUV channels, to record event parameters, and to find related events over multiple channels. Ultimately, the goal is to automatically determine heating and cooling timescales in the corona and to significantly increase statistics in this respect. The code is written in IDL and requires the SolarSoft library. It is parallelized and can run with multiple CPUs. Input files are regions of interest (ROIs) in time series of AIA images from the JSOC cutout service (http://jsoc.stanford.edu/ajax/exportdata.html). The ROIs need to be tracked, co-registered, and limited in time (typically 12 hours).
NASA Astrophysics Data System (ADS)
Aktas, Metin; Maral, Hakan; Akgun, Toygar
2018-02-01
Extinction ratio is an inherent limiting factor that has a direct effect on the detection performance of phase-OTDR based distributed acoustics sensing systems. In this work we present a model based analysis of Rayleigh scattering to simulate the effects of extinction ratio on the received signal under varying signal acquisition scenarios and system parameters. These signal acquisition scenarios are constructed to represent typically observed cases such as multiple vibration sources cluttered around the target vibration source to be detected, continuous wave light sources with center frequency drift, varying fiber optic cable lengths and varying ADC bit resolutions. Results show that an insufficient ER can result in high optical noise floor and effectively hide the effects of elaborate system improvement efforts.
Chromatographic separation of radioactive noble gases from xenon
NASA Astrophysics Data System (ADS)
Akerib, D. S.; Araújo, H. M.; Bai, X.; Bailey, A. J.; Balajthy, J.; Beltrame, P.; Bernard, E. P.; Bernstein, A.; Biesiadzinski, T. P.; Boulton, E. M.; Bramante, R.; Cahn, S. B.; Carmona-Benitez, M. C.; Chan, C.; Chiller, A. A.; Chiller, C.; Coffey, T.; Currie, A.; Cutter, J. E.; Davison, T. J. R.; Dobi, A.; Dobson, J. E. Y.; Druszkiewicz, E.; Edwards, B. N.; Faham, C. H.; Fiorucci, S.; Gaitskell, R. J.; Gehman, V. M.; Ghag, C.; Gibson, K. R.; Gilchriese, M. G. D.; Hall, C. R.; Hanhardt, M.; Haselschwardt, S. J.; Hertel, S. A.; Hogan, D. P.; Horn, M.; Huang, D. Q.; Ignarra, C. M.; Ihm, M.; Jacobsen, R. G.; Ji, W.; Kamdin, K.; Kazkaz, K.; Khaitan, D.; Knoche, R.; Larsen, N. A.; Lee, C.; Lenardo, B. G.; Lesko, K. T.; Lindote, A.; Lopes, M. I.; Manalaysay, A.; Mannino, R. L.; Marzioni, M. F.; McKinsey, D. N.; Mei, D.-M.; Mock, J.; Moongweluwan, M.; Morad, J. A.; Murphy, A. St. J.; Nehrkorn, C.; Nelson, H. N.; Neves, F.; O'Sullivan, K.; Oliver-Mallory, K. C.; Palladino, K. J.; Pease, E. K.; Pech, K.; Phelps, P.; Reichhart, L.; Rhyne, C.; Shaw, S.; Shutt, T. A.; Silva, C.; Solovov, V. N.; Sorensen, P.; Stephenson, S.; Sumner, T. J.; Szydagis, M.; Taylor, D. J.; Taylor, W.; Tennyson, B. P.; Terman, P. A.; Tiedt, D. R.; To, W. H.; Tripathi, M.; Tvrznikova, L.; Uvarov, S.; Verbus, J. R.; Webb, R. C.; White, J. T.; Whitis, T. J.; Witherell, M. S.; Wolfs, F. L. H.; Yazdani, K.; Young, S. K.; Zhang, C.
2018-01-01
The Large Underground Xenon (LUX) experiment operates at the Sanford Underground Research Facility to detect nuclear recoils from the hypothetical Weakly Interacting Massive Particles (WIMPs) on a liquid xenon target. Liquid xenon typically contains trace amounts of the noble radioactive isotopes 85Kr and 39Ar that are not removed by the in situ gas purification system. The decays of these isotopes at concentrations typical of research-grade xenon would be a dominant background for a WIMP search experiment. To remove these impurities from the liquid xenon, a chromatographic separation system based on adsorption on activated charcoal was built. 400 kg of xenon was processed, reducing the average concentration of krypton from 130 ppb to 3.5 ppt as measured by a cold-trap assisted mass spectroscopy system. A 50 kg batch spiked to 0.001 g/g of krypton was processed twice and reduced to an upper limit of 0.2 ppt.
Solid motor diagnostic instrumentation. [design of self-contained instrumentation
NASA Technical Reports Server (NTRS)
Nakamura, Y.; Arens, W. E.; Wuest, W. S.
1973-01-01
A review of typical surveillance and monitoring practices followed during the flight phases of representative solid-propellant upper stages and apogee motors was conducted to evaluate the need for improved flight diagnostic instrumentation on future spacecraft. The capabilities of the flight instrumentation package were limited to the detection of whether or not the solid motor was the cause of failure and to the identification of probable primary failure modes. Conceptual designs of self-contained flight instrumentation packages capable of meeting these reqirements were generated and their performance, typical cost, and unit characteristics determined. Comparisons of a continuous real time and a thresholded hybrid design were made on the basis of performance, mass, power, cost, and expected life. The results of this analysis substantiated the feasibility of a self-contained independent flight instrumentation module as well as the existence of performance margins by which to exploit growth option applications.
Peckner, Ryan; Myers, Samuel A; Jacome, Alvaro Sebastian Vaca; Egertson, Jarrett D; Abelin, Jennifer G; MacCoss, Michael J; Carr, Steven A; Jaffe, Jacob D
2018-05-01
Mass spectrometry with data-independent acquisition (DIA) is a promising method to improve the comprehensiveness and reproducibility of targeted and discovery proteomics, in theory by systematically measuring all peptide precursors in a biological sample. However, the analytical challenges involved in discriminating between peptides with similar sequences in convoluted spectra have limited its applicability in important cases, such as the detection of single-nucleotide polymorphisms (SNPs) and alternative site localizations in phosphoproteomics data. We report Specter (https://github.com/rpeckner-broad/Specter), an open-source software tool that uses linear algebra to deconvolute DIA mixture spectra directly through comparison to a spectral library, thus circumventing the problems associated with typical fragment-correlation-based approaches. We validate the sensitivity of Specter and its performance relative to that of other methods, and show that Specter is able to successfully analyze cases involving highly similar peptides that are typically challenging for DIA analysis methods.
Chromatographic separation of radioactive noble gases from xenon
Akerib, DS; Araújo, HM; Bai, X; ...
2017-10-31
The Large Underground Xenon (LUX) experiment operates at the Sanford Underground Research Facility to detect nuclear recoils from the hypothetical Weakly Interacting Massive Particles (WIMPs) on a liquid xenon target. Liquid xenon typically contains trace amounts of the noble radioactive isotopesmore » $$^{85}$$Kr and $$^{39}$$Ar that are not removed by the in situ gas purification system. The decays of these isotopes at concentrations typical of research-grade xenon would be a dominant background for a WIMP search exmperiment. To remove these impurities from the liquid xenon, a chromatographic separation system based on adsorption on activated charcoal was built. 400 kg of xenon was processed, reducing the average concentration of krypton from 130 ppb to 3.5 ppt as measured by a cold-trap assisted mass spectroscopy system. A 50 kg batch spiked to 0.001 g/g of krypton was processed twice and reduced to an upper limit of 0.2 ppt.« less
NASA Astrophysics Data System (ADS)
Wu, Hsin-Yu; Cunningham, Brian T.
2014-04-01
We demonstrate an approach for detection, identification, and kinetic monitoring of drugs flowing within tubing, through the use of a plasmonic nanodome array (PNA) surface. The PNA structures are fabricated using a low-cost nanoreplica molding process upon a flexible plastic substrate that is subsequently integrated with a flow cell that connects in series with ordinary intravenous (IV) drug delivery tubing. To investigate the potential clinical applications for point-of-care detection and real-time monitoring, we perform SERS detection of ten pharmaceutical compounds (hydrocodone, levorphanol, morphine, oxycodone, methadone, phenobarbital, dopamine, diltiazem, promethazine, and mitoxantrone). We demonstrate dose-dependent SERS signal magnitude, resulting in detection limits (ng ml-1) well below typical administered dosages (mg ml-1). Further, we show that the detected drugs are not permanently attached to the PNA surface, and thus our approach is capable of performing continuous monitoring of drug delivery as materials flow through IV tubing that is connected in series with the sensor. Finally, we demonstrate the potential co-detection of multiple drugs when they are mixed together, and show excellent reproducibility and stability of SERS measurements for periods extending at least five days. The capabilities reported here demonstrate the potential to use PNA SERS surfaces for enhancing the safety of IV drug delivery.We demonstrate an approach for detection, identification, and kinetic monitoring of drugs flowing within tubing, through the use of a plasmonic nanodome array (PNA) surface. The PNA structures are fabricated using a low-cost nanoreplica molding process upon a flexible plastic substrate that is subsequently integrated with a flow cell that connects in series with ordinary intravenous (IV) drug delivery tubing. To investigate the potential clinical applications for point-of-care detection and real-time monitoring, we perform SERS detection of ten pharmaceutical compounds (hydrocodone, levorphanol, morphine, oxycodone, methadone, phenobarbital, dopamine, diltiazem, promethazine, and mitoxantrone). We demonstrate dose-dependent SERS signal magnitude, resulting in detection limits (ng ml-1) well below typical administered dosages (mg ml-1). Further, we show that the detected drugs are not permanently attached to the PNA surface, and thus our approach is capable of performing continuous monitoring of drug delivery as materials flow through IV tubing that is connected in series with the sensor. Finally, we demonstrate the potential co-detection of multiple drugs when they are mixed together, and show excellent reproducibility and stability of SERS measurements for periods extending at least five days. The capabilities reported here demonstrate the potential to use PNA SERS surfaces for enhancing the safety of IV drug delivery. Electronic supplementary information (ESI) available: Fabrication of PNA substrates, fabrication details of the flow cell, details of FDTD simulation, characterization of the scattering volume, and detection of diltiazem diluted in DI water and PBS. See DOI: 10.1039/c4nr00027g
Microcomputer aided tracking (MCAT)
NASA Astrophysics Data System (ADS)
Mays, A. B.; Cross, D. C.; Walters, J. L.
1983-07-01
The goal of the MCAT project was to investigate the effectiveness of operator initiated tracks followed by automatic tracking. Adding this capability to a display was intended to relieve operator overload and fatigue which results when the operator is limited to grease pencil tracking. MCAT combines several microprocessors and a microcomputer-driven PPI(Plan Position Indications) with graphics capability. The operator is required to make the initial detection and MCAT then performs automatic detection and tracking in a limited area centered around the detection. This approach was chosen because it is far less costly than a full-up auto detect and track approach. MCAT is intended for use in a non-NTDS (Naval Tactical Data System) environment where operator aids are minimal at best. There are approximately 200 non-NTDS ships in today's Navy. Each of these ships has a combat information center (CIC) which includes numerous PPIs typically SPA-25s, SPA-66s, SPA-50s) and various manual means (e.g., air summary plotboards, NC-2 plotters) of producing summary plots and performing calculations (e.g., maneuvering board paper) pertinent to tracks in progress. The operator's duties are time-consuming and there are many things that could be done via computer control and graphics displays that the non-NTDS operate must now do manually. Because there is much manual information handling, accumulation of data is slow and there is a large probability of error.
A search for radio emission from exoplanets around evolved stars
NASA Astrophysics Data System (ADS)
O'Gorman, E.; Coughlan, C. P.; Vlemmings, W.; Varenius, E.; Sirothia, S.; Ray, T. P.; Olofsson, H.
2018-04-01
The majority of searches for radio emission from exoplanets have to date focused on short period planets, i.e., the so-called hot Jupiter type planets. However, these planets are likely to be tidally locked to their host stars and may not generate sufficiently strong magnetic fields to emit electron cyclotron maser emission at the low frequencies used in observations (typically ≥150 MHz). In comparison, the large mass-loss rates of evolved stars could enable exoplanets at larger orbital distances to emit detectable radio emission. Here, we first show that the large ionized mass-loss rates of certain evolved stars relative to the solar value could make them detectable with the LOw Frequency ARray (LOFAR) at 150 MHz (λ = 2 m), provided they have surface magnetic field strengths >50 G. We then report radio observations of three long period (>1 au) planets that orbit the evolved stars β Gem, ι Dra, and β UMi using LOFAR at 150 MHz. We do not detect radio emission from any system but place tight 3σ upper limits of 0.98, 0.87, and 0.57 mJy on the flux density at 150 MHz for β Gem, ι Dra, and β UMi, respectively. Despite our non-detections these stringent upper limits highlight the potential of LOFAR as a tool to search for exoplanetary radio emission at meter wavelengths.
Li, Shan; Cheng, Ming; Liu, Guannan; Zhao, Lianjing; Zhang, Bo; Gao, Yuan; Lu, Huiying; Wang, Haiyu; Zhao, Jing; Liu, Fangmeng; Yan, Xu; Zhang, Tong; Lu, Geyu
2018-04-10
Nitrogen dioxide (NO 2 ), as a typical threatening atmospheric pollutant, is hazardous to the environment and human health. Thus, the development of a gas sensor with high response and low detection limit for NO 2 detection is highly important. The highly ordered mesoporous indium trioxide (In 2 O 3 ) prepared by simple nanocasting method using mesoporous silica as template and decorated with Au nanoparticles was investigated for NO 2 detection. The prepared materials were characterized by X-ray diffraction, transmission electron microscopy, and X-ray photoelectron spectroscopy. Characterization results showed that the samples exhibited ordered mesostructure and were successfully decorated with Au. The gas sensing performance of the sensors based on a series of Au-loaded mesoporous In 2 O 3 were systematically investigated. The Au loading level strongly affected the sensing performance toward NO 2 . The optimal sensor, which was based on 0.5 wt% Au-loaded In 2 O 3 , displayed high sensor response and low detection limit of 10 ppb at low operating temperature of 65 °C. The excellent sensing properties were mainly attributed to the ordered mesoporous structure and the catalytic performance of Au. We believe that the Au-loaded mesoporous In 2 O 3 can provide a promising platform for NO 2 gas sensors with excellent performance. Copyright © 2018 Elsevier Inc. All rights reserved.
A quantitative x-ray detection system for gold nanoparticle tumour biomarkers.
Ricketts, K; Castoldi, A; Guazzoni, C; Ozkan, C; Christodoulou, C; Gibson, A P; Royle, G J
2012-09-07
X-ray fluorescence techniques have proven beneficial for identifying and quantifying trace elements in biological tissues. A novel approach is being developed that employs x-ray fluorescence with an aim to locate heavy nanoparticles, such as gold, which are embedded into tissues. Such nanoparticles can be functionalized to act as markers for tumour characteristics to map the disease state, with the future aim of imaging them to inform cancer therapy regimes. The uptake of functionalized nanoparticles by cancer cells will also enable detection of small clusters of infiltrating cancer cells which are currently missed by commonly used imaging modalities. The novel system, consisting of an energy-resolving silicon drift detector with high spectral resolution, shows potential in both quantification of and sensitivity to nanoparticle concentrations typically found in tumours. A series of synchrotron measurements are presented; a linear relationship between fluorescence intensity and gold nanoparticle (GNP) concentration was found down to 0.005 mgAu ml(-1), the detection limit of the system. Successful use of a bench-top source, suitable for possible future clinical use, is also demonstrated, and found not to degrade the detection limit or accuracy of the GNP concentration measurement. The achieved system sensitivity suggests possible future clinical usefulness in measuring tumour uptake in vivo, particularly in shallow tumour sites and small animals, in ex vivo tissue and in 3D in vitro research samples.
Mathurand, Prateek; Schaffner, Donald W
2013-06-01
Ceviche is a raw fish dish common in Peru and other Latin American counties. The most characteristic feature of ceviche is the use of lime juice for marinating or "cooking" the raw fish. Confirmed cases of cholera in Peru, New Jersey, and Florida have been associated with ceviche. Although the effect of organic acids on pathogenic bacteria has been well characterized, few data exist on the effect of these acids in seafood systems. The objective of the study was to evaluate the effects of lime juice marination on pathogens likely to be present in ceviche. Tilapia (Oreochromis niloticus) fillet pieces were inoculated with Vibrio parahaemolyticus and Salmonella enterica (>7 log CFU/g) and incubated at 25 and 4°C for 30 or 120 min in the presence of fresh lime juice at concentrations typical for the preparation of ceviche. Similar levels of cells were also inoculated into fresh lime juice without tilapia. Surviving cells were enumerated on selective (xylose lysine Tergitol 4 and thiosulfate-bile-citrate-sucrose) and nonselective (tryptic soy agar) media. V. parahaemolyticus levels were reduced to below detection limits (∼5-log reduction) under all conditions studied. Salmonella strains on tilapia were much more resistant to inactivation and were only slightly reduced (∼1- to 2-log reduction). Salmonella and V. parahaemolyticus inoculated directly into lime juice without tilapia were all reduced to below detection limits (∼5-log reduction). A typical ceviche recipe reduces V. parahaemolyticus risk significantly but is less effective for control of S. enterica.
Micrometeoroid and Lunar Secondary Ejecta Flux Measurements: Comparison of Three Acoustic Systems
NASA Technical Reports Server (NTRS)
Corsaro, R. D.; Giovane, F.; Liou, Jer-Chyi; Burtchell, M.; Pisacane, V.; Lagakos, N.; Williams, E.; Stansbery, E.
2010-01-01
This report examines the inherent capability of three large-area acoustic sensor systems and their applicability for micrometeoroids (MM) and lunar secondary ejecta (SE) detection and characterization for future lunar exploration activities. Discussion is limited to instruments that can be fabricated and deployed with low resource requirements. Previously deployed impact detection probes typically have instrumented capture areas less than 0.2 square meters. Since the particle flux decreases rapidly with increased particle size, such small-area sensors rarely encounter particles in the size range above 50 microns, and even their sampling the population above 10 microns is typically limited. Characterizing the sparse dust population in the size range above 50 microns requires a very large-area capture instrument. However it is also important that such an instrument simultaneously measures the population of the smaller particles, so as to provide a complete instantaneous snapshot of the population. For lunar or planetary surface studies, the system constraints are significant. The instrument must be as large as possible to sample the population of the largest MM. This is needed to reliably assess the particle impact risks and to develop cost-effective shielding designs for habitats, astronauts, and critical instrument. The instrument should also have very high sensitivity to measure the flux of small and slow SE particles. is the SE environment is currently poorly characterized, and possess a contamination risk to machinery and personnel involved in exploration. Deployment also requires that the instrument add very little additional mass to the spacecraft. Three acoustic systems are being explored for this application.
NASA Astrophysics Data System (ADS)
Flach, Milan; Mahecha, Miguel; Gans, Fabian; Rodner, Erik; Bodesheim, Paul; Guanche-Garcia, Yanira; Brenning, Alexander; Denzler, Joachim; Reichstein, Markus
2016-04-01
The number of available Earth observations (EOs) is currently substantially increasing. Detecting anomalous patterns in these multivariate time series is an important step in identifying changes in the underlying dynamical system. Likewise, data quality issues might result in anomalous multivariate data constellations and have to be identified before corrupting subsequent analyses. In industrial application a common strategy is to monitor production chains with several sensors coupled to some statistical process control (SPC) algorithm. The basic idea is to raise an alarm when these sensor data depict some anomalous pattern according to the SPC, i.e. the production chain is considered 'out of control'. In fact, the industrial applications are conceptually similar to the on-line monitoring of EOs. However, algorithms used in the context of SPC or process monitoring are rarely considered for supervising multivariate spatio-temporal Earth observations. The objective of this study is to exploit the potential and transferability of SPC concepts to Earth system applications. We compare a range of different algorithms typically applied by SPC systems and evaluate their capability to detect e.g. known extreme events in land surface processes. Specifically two main issues are addressed: (1) identifying the most suitable combination of data pre-processing and detection algorithm for a specific type of event and (2) analyzing the limits of the individual approaches with respect to the magnitude, spatio-temporal size of the event as well as the data's signal to noise ratio. Extensive artificial data sets that represent the typical properties of Earth observations are used in this study. Our results show that the majority of the algorithms used can be considered for the detection of multivariate spatiotemporal events and directly transferred to real Earth observation data as currently assembled in different projects at the European scale, e.g. http://baci-h2020.eu/index.php/ and http://earthsystemdatacube.net/. Known anomalies such as the Russian heatwave are detected as well as anomalies which are not detectable with univariate methods.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wetzel, D.; Shi, Y; Reffner, J
This reports the first detection of chemical heterogeneity in octenyl succinic anhydride modified single starch granules using a Fourier transform infrared (FT-IR) microspectroscopical technique that combines diffraction-limited infrared microspectroscopy with a step size that is less than the mask projected spot size focused on the plane of the sample. The high spatial resolution was achieved with the combination of the application of a synchrotron infrared source and the confocal image plane masking system of the double-pass single-mask Continuum{reg_sign} infrared microscope. Starch from grains such as corn and wheat exists in granules. The size of the granules depends on the plantmore » producing the starch. Granules used in this study typically had a median size of 15 {micro}m. In the production of modified starch, an acid anhydride typically is reacted with OH groups of the starch polymer. The resulting esterification adds the ester carbonyl (1723 cm{sup -1}) organic functional group to the polymer and the hydrocarbon chain of the ester contributes to the CH{sub 2} stretching vibration to enhance the intensity of the 2927 cm{sup -1} band. Detection of the relative modifying population on a single granule was accomplished by ratioing the baseline adjusted peak area of the carbonyl functional group to that of a carbohydrate band. By stepping a confocally defined infrared beam as small as 5 {micro}m x 5 {micro}m across a starch granule 1 {micro}m at a time in both the x and y directions, the heterogeneity is detected with the highest possible spatial resolution.« less
Anatomical background noise power spectrum in differential phase contrast breast images
NASA Astrophysics Data System (ADS)
Garrett, John; Ge, Yongshuai; Li, Ke; Chen, Guang-Hong
2015-03-01
In x-ray breast imaging, the anatomical noise background of the breast has a significant impact on the detection of lesions and other features of interest. This anatomical noise is typically characterized by a parameter, β, which describes a power law dependence of anatomical noise on spatial frequency (the shape of the anatomical noise power spectrum). Large values of β have been shown to reduce human detection performance, and in conventional mammography typical values of β are around 3.2. Recently, x-ray differential phase contrast (DPC) and the associated dark field imaging methods have received considerable attention as possible supplements to absorption imaging for breast cancer diagnosis. However, the impact of these additional contrast mechanisms on lesion detection is not yet well understood. In order to better understand the utility of these new methods, we measured the β indices for absorption, DPC, and dark field images in 15 cadaver breast specimens using a benchtop DPC imaging system. We found that the measured β value for absorption was consistent with the literature for mammographic acquisitions (β = 3.61±0.49), but that both DPC and dark field images had much lower values of β (β = 2.54±0.75 for DPC and β = 1.44±0.49 for dark field). In addition, visual inspection showed greatly reduced anatomical background in both DPC and dark field images. These promising results suggest that DPC and dark field imaging may help provide improved lesion detection in breast imaging, particularly for those patients with dense breasts, in whom anatomical noise is a major limiting factor in identifying malignancies.
Smalling, Kelly L.; Reilly, Timothy J.; Sandstrom, Mark W.; Kuivila, Kathryn
2013-01-01
To document the environmental occurrence and persistence of fungicides, a robust and sensitive analytical method was used to measure 34 fungicides and an additional 57 current-use pesticides in bed sediments and suspended solids collected from areas of intense fungicide use within three geographic areas across the United States. Sampling sites were selected near or within agricultural research farms using prophylactic fungicides at rates and types typical of their geographic location. At least two fungicides were detected in 55% of the bed and 83% of the suspended solid samples and were detected in conjunction with herbicides and insecticides. Six fungicides were detected in all samples including pyraclostrobin (75%), boscalid (53%), chlorothalonil (41%) and zoxamide (22%). Pyraclostrobin, a strobilurin fungicide, used frequently in the United States on a variety of crops, was detected more frequently than p,p′-DDE, the primary degradate of p,p′-DDT, which is typically one of the most frequently occurring pesticides in sediments collected within highly agricultural areas. Maximum fungicide concentrations in bed sediments and suspended solids were 198 and 56.7 μg/kg dry weight, respectively. There is limited information on the occurrence, fate, and persistence of many fungicides in sediment and the environmental impacts are largely unknown. The results of this study indicate the importance of documenting the persistence of fungicides in the environment and the need for a better understanding of off-site transport mechanisms, particularly in areas where crops are grown that require frequent treatments to prevent fungal diseases.
NASA Astrophysics Data System (ADS)
Roessler, D.; Weber, B.; Ellguth, E.; Spazier, J.
2017-12-01
The geometry of seismic monitoring networks, site conditions and data availability as well as monitoring targets and strategies typically impose trade-offs between data quality, earthquake detection sensitivity, false detections and alert times. Network detection capabilities typically change with alteration of the seismic noise level by human activity or by varying weather and sea conditions. To give helpful information to operators and maintenance coordinators, gempa developed a range of tools to evaluate earthquake detection and network performance including qceval, npeval and sceval. qceval is a module which analyzes waveform quality parameters in real-time and deactivates and reactivates data streams based on waveform quality thresholds for automatic processing. For example, thresholds can be defined for latency, delay, timing quality, spikes and gaps count and rms. As changes in the automatic processing have a direct influence on detection quality and speed, another tool called "npeval" was designed to calculate in real-time the expected time needed to detect and locate earthquakes by evaluating the effective network geometry. The effective network geometry is derived from the configuration of stations participating in the detection. The detection times are shown as an additional layer on the map and updated in real-time as soon as the effective network geometry changes. Yet another new tool, "sceval", is an automatic module which classifies located seismic events (Origins) in real-time. sceval evaluates the spatial distribution of the stations contributing to an Origin. It confirms or rejects the status of Origins, adds comments or leaves the Origin unclassified. The comments are passed to an additional sceval plug-in where the end user can customize event types. This unique identification of real and fake events in earthquake catalogues allows to lower network detection thresholds. In real-time monitoring situations operators can limit the processing to events with unclassified Origins, reducing their workload. Classified Origins can be treated specifically by other procedures. These modules have been calibrated and fully tested by several complex seismic monitoring networks in the region of Indonesia and Northern Chile.
Can Detectability Analysis Improve the Utility of Point Counts for Temperate Forest Raptors?
Temperate forest breeding raptors are poorly represented in typical point count surveys because these birds are cryptic and typically breed at low densities. In recent years, many new methods for estimating detectability during point counts have been developed, including distanc...
Experimental study on anomalous neutron production in deuterium/solid system
NASA Astrophysics Data System (ADS)
He, Jianyu; Zhu, Rongbao; Wang, Xiaozhong; Lu, Feng; Luo, Longjun; Liu, Hengjun; Jiang, Jincai; Tian, Baosheng; Chen, Guoan; Yuan, Yuan; Dong, Baiting; Yang, Liucheng; Qiao, Shengzhong; Yi, Guoan; Guo, Hua; Ding, Dazhao; Menlove, H. O.
1991-05-01
A series of experiments on both D2O electrolysis and thermal cycle of deuterium absorbed Ti Turnings has been designed to examine the anomalous phenomena in Deuterium/Solid System. A neutron detector containing 16 BF3 tubes with a detection limit of 0.38 n/s for two hour counting was used for electrolysis experiments. No neutron counting rate statistically higher than detection limit was observed from Fleischmann & Pons type experiments. An HLNCC neutron detector equipped with 18 3He tubes and a JSR-11 shift register unit with a detection limit of 0.20 n/s for a two hour run was employed to study the neutron signals in D2 gas experiments. Different material pretreatments were selected to review the changes in frequency and size of the neutron burst production. Experiment sequence was deliberately designed to distinguish the neutron burst from fake signals, e.g. electronic noise pickup, the cosmic rays and other sources of environmental background. Ten batches of dry fusion samples were tested, among them, seven batches with neutron burst signals occurred roughly at the temperature from -100 degree centigrade to near room temperature. In the first four runs of a typical sample batch, seven neutron bursts were observed with neutron numbers from 15 to 482, which are 3 and 75 times, respectively, higher than the uncertainty of background. However, no bursts happened for H2 dummy samples running in-between and afterwards and for sample batch after certain runs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yasui, Chikako; Kobayashi, Naoto; Izumi, Natsuko
To study star formation in low-metallicity environments ([M/H] ∼ −1 dex), we obtained deep near-infrared (NIR) images of Sh 2-207 (S207), which is an H ii region in the outer Galaxy with a spectroscopically determined metallicity of [O/H] ≃ −0.8 dex. We identified a young cluster in the western region of S207 with a limiting magnitude of K{sub S} = 19.0 mag (10σ) that corresponds to a mass detection limit of ≲0.1 M{sub ⊙} and enables the comparison of star-forming properties under low metallicity with those of the solar neighborhood. From the fitting of the K-band luminosity function (KLF), the age and distance of the S207more » cluster are estimated at 2–3 Myr and ∼4 kpc, respectively. The estimated age is consistent with the suggestion of small extinctions of stars in the cluster (A{sub V} ∼ 3 mag) and the non-detection of molecular clouds. The reasonably good fit between the observed KLF and the model KLF suggests that the underlying initial mass function (IMF) of the cluster down to the detection limit is not significantly different from the typical IMFs in the solar metallicity. From the fraction of stars with NIR excesses, a low disk fraction (<10%) in the cluster with a relatively young age is suggested, as we had previously proposed.« less
Koutilellis, G D; Economou, A; Efstathiou, C E
2016-03-01
This work reports the design and construction of a novel potentiostat which features an integrator transimpedance amplifier as a current-monitoring unit. The integration approach addresses the limitations of the feedback resistor approach used for current monitoring in conventional potentiostat designs. In the present design, measurement of the current is performed by a precision switched integrator transimpedance amplifier operated in the dual sampling mode which enables sub-pA resolution. The potentiostat is suitable for measuring very low currents (typical dynamic range: 5 pA-4.7 μA) with a 16 bit resolution, and it can support 2-, 3- and 4-electrode cell configurations. Its operation was assessed by using it as a detection module in a home-made capillary electrophoresis system for the separation and amperometric detection of paracetamol and p-aminophenol at a 3-electrode microfluidic chip. The potential and limitations of the proposed potentiostat to implement fast potential-scan voltammetric techniques were demonstrated for the case of cyclic voltammetry.
Poisson Approximation-Based Score Test for Detecting Association of Rare Variants.
Fang, Hongyan; Zhang, Hong; Yang, Yaning
2016-07-01
Genome-wide association study (GWAS) has achieved great success in identifying genetic variants, but the nature of GWAS has determined its inherent limitations. Under the common disease rare variants (CDRV) hypothesis, the traditional association analysis methods commonly used in GWAS for common variants do not have enough power for detecting rare variants with a limited sample size. As a solution to this problem, pooling rare variants by their functions provides an efficient way for identifying susceptible genes. Rare variant typically have low frequencies of minor alleles, and the distribution of the total number of minor alleles of the rare variants can be approximated by a Poisson distribution. Based on this fact, we propose a new test method, the Poisson Approximation-based Score Test (PAST), for association analysis of rare variants. Two testing methods, namely, ePAST and mPAST, are proposed based on different strategies of pooling rare variants. Simulation results and application to the CRESCENDO cohort data show that our methods are more powerful than the existing methods. © 2016 John Wiley & Sons Ltd/University College London.
NASA Astrophysics Data System (ADS)
Koutilellis, G. D.; Economou, A.; Efstathiou, C. E.
2016-03-01
This work reports the design and construction of a novel potentiostat which features an integrator transimpedance amplifier as a current-monitoring unit. The integration approach addresses the limitations of the feedback resistor approach used for current monitoring in conventional potentiostat designs. In the present design, measurement of the current is performed by a precision switched integrator transimpedance amplifier operated in the dual sampling mode which enables sub-pA resolution. The potentiostat is suitable for measuring very low currents (typical dynamic range: 5 pA-4.7 μA) with a 16 bit resolution, and it can support 2-, 3- and 4-electrode cell configurations. Its operation was assessed by using it as a detection module in a home-made capillary electrophoresis system for the separation and amperometric detection of paracetamol and p-aminophenol at a 3-electrode microfluidic chip. The potential and limitations of the proposed potentiostat to implement fast potential-scan voltammetric techniques were demonstrated for the case of cyclic voltammetry.
Establishing the behavioural limits for countershaded camouflage.
Penacchio, Olivier; Harris, Julie M; Lovell, P George
2017-10-20
Countershading is a ubiquitous patterning of animals whereby the side that typically faces the highest illumination is darker. When tuned to specific lighting conditions and body orientation with respect to the light field, countershading minimizes the gradient of light the body reflects by counterbalancing shadowing due to illumination, and has therefore classically been thought of as an adaptation for visual camouflage. However, whether and how crypsis degrades when body orientation with respect to the light field is non-optimal has never been studied. We tested the behavioural limits on body orientation for countershading to deliver effective visual camouflage. We asked human participants to detect a countershaded target in a simulated three-dimensional environment. The target was optimally coloured for crypsis in a reference orientation and was displayed at different orientations. Search performance dramatically improved for deviations beyond 15 degrees. Detection time was significantly shorter and accuracy significantly higher than when the target orientation matched the countershading pattern. This work demonstrates the importance of maintaining body orientation appropriate for the displayed camouflage pattern, suggesting a possible selective pressure for animals to orient themselves appropriately to enhance crypsis.
Quasars with P v broad absorption in BOSS data release 9
NASA Astrophysics Data System (ADS)
Capellupo, D. M.; Hamann, F.; Herbst, H.; Brandt, W. N.; Ge, J.; Pâris, I.; Petitjean, P.; Schneider, D. P.; Streblyanska, A.; York, D.
2017-07-01
Broad absorption lines (BALs) found in a significant fraction of quasar spectra identify high-velocity outflows that might be present in all quasars and could be a major factor in feedback to galaxy evolution. Understanding the nature of these flows requires further constraints on their physical properties, including their column densities, for which well-studied BALs, such as C IV λλ1548,1551, typically provide only a lower limit because of saturation effects. Low-abundance lines, such as P v λλ1118,1128, indicate large column densities, implying that outflows more powerful than measurements of C IV alone would indicate. We search through a sample of 2694 BAL quasars from the Sloan Digital Sky Survey III/Baryon Oscillation Spectroscopic Survey data release 9 quasar catalogue for such absorption, and we identify 81 'definite' and 86 'probable' detections of P v broad absorption, yielding a firm lower limit of 3.0-6.2 per cent for the incidence of such absorption among BAL quasars. The P v-detected quasars tend to have stronger C IV and Si IV absorption, as well as a higher incidence of LoBAL absorption, than the overall BAL quasar population. Many of the P v-detected quasars have C IV troughs that do not reach zero intensity (at velocities where P v is detected), confirming that the outflow gas only partially covers the UV continuum source. P v appears significantly in a composite spectrum of non-P v-detected BAL quasars, indicating that P v absorption (and large column densities) is much more common than indicated by our search results. Our sample of P v detections significantly increases the number of known P v detections, providing opportunities for follow-up studies to better understand BAL outflow energetics.
Evanescent-wave and ambient chiral sensing by signal-reversing cavity ringdown polarimetry.
Sofikitis, Dimitris; Bougas, Lykourgos; Katsoprinakis, Georgios E; Spiliotis, Alexandros K; Loppinet, Benoit; Rakitzis, T Peter
2014-10-02
Detecting and quantifying chirality is important in fields ranging from analytical and biological chemistry to pharmacology and fundamental physics: it can aid drug design and synthesis, contribute to protein structure determination, and help detect parity violation of the weak force. Recent developments employ microwaves, femtosecond pulses, superchiral light or photoionization to determine chirality, yet the most widely used methods remain the traditional methods of measuring circular dichroism and optical rotation. However, these signals are typically very weak against larger time-dependent backgrounds. Cavity-enhanced optical methods can be used to amplify weak signals by passing them repeatedly through an optical cavity, and two-mirror cavities achieving up to 10(5) cavity passes have enabled absorption and birefringence measurements with record sensitivities. But chiral signals cancel when passing back and forth through a cavity, while the ubiquitous spurious linear birefringence background is enhanced. Even when intracavity optics overcome these problems, absolute chirality measurements remain difficult and sometimes impossible. Here we use a pulsed-laser bowtie cavity ringdown polarimeter with counter-propagating beams to enhance chiral signals by a factor equal to the number of cavity passes (typically >10(3)); to suppress the effects of linear birefringence by means of a large induced intracavity Faraday rotation; and to effect rapid signal reversals by reversing the Faraday rotation and subtracting signals from the counter-propagating beams. These features allow absolute chiral signal measurements in environments where background subtraction is not feasible: we determine optical rotation from α-pinene vapour in open air, and from maltodextrin and fructose solutions in the evanescent wave produced by total internal reflection at a prism surface. The limits of the present polarimeter, when using a continuous-wave laser locked to a stable, high-finesse cavity, should match the sensitivity of linear birefringence measurements (3 × 10(-13) radians), which is several orders of magnitude more sensitive than current chiral detection limits and is expected to transform chiral sensing in many fields.
A Simple Metallothionein-Based Biosensor for Enhanced Detection of Arsenic and Mercury
Irvine, Gordon W.; Tan, Swee Ngin; Stillman, Martin J.
2017-01-01
Metallothioneins (MTs) are a family of cysteine-rich proteins whose biological roles include the regulation of essential metal ions and protection against the harmful effects of toxic metals. Due to its high affinity for many toxic, soft metals, recombinant human MT isoform 1a was incorporated into an electrochemical-based biosensor for the detection of As3+ and Hg2+. A simple design was chosen to maximize its potential in environmental monitoring and MT was physically adsorbed onto paper discs placed on screen-printed carbon electrodes (SPCEs). This system was tested with concentrations of arsenic and mercury typical of contaminated water sources ranging from 5 to 1000 ppb. The analytical performance of the MT-adsorbed paper discs on SPCEs demonstrated a greater than three-fold signal enhancement and a lower detection limit compared to blank SPCEs, 13 ppb for As3+ and 45 ppb for Hg2+. While not being as low as some of the recommended drinking water limits, the sensitivity of the simple MT-biosensor would be potentially useful in monitoring of areas of concern with a known contamination problem. This paper describes the ability of the metal binding protein metallothionein to enhance the effectiveness of a simple, low-cost electrochemical sensor. PMID:28335390
The Swift/BAT Hard X-Ray Survey
NASA Technical Reports Server (NTRS)
Tueller, Jack; Markwardt, C. B.; Mushotzky, R. F.; Barthelmy, S. D.; Gehrels, N.; Krimm, H. A.; Skinner, G. K.; Falcone, A.; Kennea, J. A.
2006-01-01
The BAT instrument on Swift is a wide field (70 deg. '100 deg.) coded aperture instrument with a CdZnTe detector array sensitive to energies of 14-200 keV. Each day, the BAT survey typically covers 60% of the sky to a detection limit of 30 millicrab. BAT makes hard X-ray light curves of similar sensitivity and coverage to the X-ray light curves from XTE/ASM, but in an energy range where sources show remarkably different behavior. Integrating the BAT data produces an all sky map with a source detection limit at 15 months of a few 10(exp -11) ergs per square centimeter per second, depending on the exposure. This is the first uniform all-sky survey at energies high enough to be unaffected by absorption since HEAO 1 in 1977-8. BAT has detected greater than 200 AGN and greater than 180 galactic sources. At high galactic latitudes, the BAT sources are usually easy to identify, but many are heavily absorbed and there are a few quite surprising identifications. The BAT selected galaxies can be used to calculate LogN/LogS and the luminosity function for AGN which are complete and free from common systematics. Several crucial parameters for understanding the cosmic hard x-ray background are now determined.
Assessing the Suitability of Historical PM(2.5) Element Measurements for Trend Analysis.
Hyslop, Nicole P; Trzepla, Krystyna; White, Warren H
2015-08-04
The IMPROVE (Interagency Monitoring of Protected Visual Environments) network has characterized fine particulate matter composition at locations throughout the United States since 1988. A main objective of the network is to evaluate long-term trends in aerosol concentrations. Measurements inevitably advance over time, but changes in measurement technique have the potential to confound the interpretation of long-term trends. Problems of interpretation typically arise from changing biases, and changes in bias can be difficult to identify without comparison data that are consistent throughout the measurement series, which rarely exist. We created a consistent measurement series for exactly this purpose by reanalyzing the 15-year archives (1995-2009) of aerosol samples from three sites - Great Smoky Mountains National Park, Mount Rainier National Park, and Point Reyes National Seashore-as single batches using consistent analytical methods. In most cases, trend estimates based on the original and reanalysis measurements are statistically different for elements that were not measured above the detection limit consistently over the years (e.g., Na, Cl, Si, Ti, V, Mn). The original trends are more reliable for elements consistently measured above the detection limit. All but one of the 23 site-element series with detection rates >80% had statistically indistinguishable original and reanalysis trends (overlapping 95% confidence intervals).
Optical readout of displacements of nanowires along two mutually perpendicular directions
NASA Astrophysics Data System (ADS)
Fu, Chenghua
2017-05-01
Nanowires are good force transducers due to their low mass. The singleness of the direction of the motion detection in a certain system is an existing limitation, and to overcome the limitation is the key point in this article. Optical methods, such as polarized light interferometry and light scattering, are generally used for detecting the displacement of nanowires. Typically, either light interference or light scattering is considered when relating the displacement of a nanowire with the photodetector's measurements. In this work, we consider both the light interference along the optical axis and light scattering perpendicular to the optical axis of a micro-lens fiber optic interferometer. Identifying the displacement along the two directions and the corresponding vibration conversion efficiency coefficients for the nanowire is a significant part of our study. Our analysis shows that the optimal working point of the micro-lens fiber optic interferometer can realize the detection of displacement along the optical axis without the disturbance coming from the motion perpendicular to the optical axis, and vice versa. We use Mie scattering theory to calculate the scattering light for the reason that the size of the nanowire is comparable to the wavelength of light. Our results could provide a guide for optical readout experiments of the displacement of nanowires.
Discrimination Report: ESTCP UXO Discrimination Study, ESTCPProject #MM-0437
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gasperikova, Erika; Smith, J. Torquil; Morrison, H. Frank
2007-12-21
The FY06 Defense Appropriation contains funding for the 'Development of Advanced, Sophisticated, Discrimination Technologies for UXO Cleanup' in the Environmental Security Technology Certification Program. In 2003, the Defense Science Board observed: 'The problem is that instruments that can detect the buried UXOs also detect numerous scrap metal objects and other artifacts, which leads to an enormous amount of expensive digging. Typically 100 holes may be dug before a real UXO is unearthed! The Task Force assessment is that much of this wasteful digging can be eliminated by the use of more advanced technology instruments that exploit modern digital processing andmore » advanced multi-mode sensors to achieve an improved level of discrimination of scrap from UXOs.' Significant progress has been made in discrimination technology. To date, testing of these approaches has been primarily limited to test sites with only limited application at live sites. Acceptance of discrimination technologies requires demonstration of system capabilities at real UXO sites under real world conditions. Any attempt to declare detected anomalies to be harmless and requiring no further investigation require demonstration to regulators of not only individual technologies, but of an entire decision making process. This discrimination study was be the first phase in what is expected to be a continuing effort that will span several years.« less
Water-borne protozoa parasites: The Latin American perspective.
Rosado-García, Félix Manuel; Guerrero-Flórez, Milena; Karanis, Gabriele; Hinojosa, María Del Carmen; Karanis, Panagiotis
2017-07-01
Health systems, sanitation and water access have certain limitations in nations of Latin America (LA): typical matters of developing countries. Water is often contaminated and therefore unhealthy for the consumers and users. Information on prevalence and detection of waterborne parasitic protozoa are limited or not available in LA. Only few reports have documented in this field during the last forty years and Brazil leads the list, including countries in South America and Mexico within Central America region and Caribbean islands. From 1979 to 2015, 16 outbreaks of waterborne-protozoa, were reported in Latin American countries. T. gondii and C. cayetanensis were the protozoa, which caused more outbreaks and Giardia spp. and Cryptosporidium spp. were the most frequently found protozoa in water samples. On the other hand, Latin America countries have not got a coherent methodology for detection of protozoa in water samples despite whole LA is highly vulnerable to extreme weather events related to waterborne-infections; although Brazil and Colombia have some implemented laws in their surveillance systems. It would be important to coordinate all surveillance systems in between all countries for early detection and measures against waterborne-protozoan and to establish effective and suitable diagnosis tools according to the country's economic strength and particular needs. Copyright © 2017 Elsevier GmbH. All rights reserved.
Sub-micron Hard X-ray Fluorescence Imaging of Synthetic Elements
Jensen, Mark P.; Aryal, Baikuntha P.; Gorman-Lewis, Drew; Paunesku, Tatjana; Lai, Barry; Vogt, Stefan; Woloschak, Gayle E.
2013-01-01
Synchrotron-based X-ray fluorescence microscopy (SXFM) using hard X-rays focused into sub-micron spots is a powerful technique for elemental quantification and mapping, as well as microspectroscopic measurement such as μ-XANES (X-ray absorption near edge structure). We have used SXFM to image and simultaneously quantify the transuranic element plutonium at the L3 or L2 edge as well as lighter biologically essential elements in individual rat pheochromocytoma (PC12) cells after exposure to the long-lived plutonium isotope 242Pu. Elemental maps reveal that plutonium localizes principally in the cytoplasm of the cells and avoids the cell nucleus, which is marked by the highest concentrations of phosphorus and zinc, under the conditions of our experiments. The minimum detection limit under typical acquisition conditions for an average 202 μm2 cell is 1.4 fg Pu/cell or 2.9 × 10−20 moles Pu/μm2, which is similar to the detection limit of K-edge SXFM of transition metals at 10 keV. Copper electron microscopy grids were used to avoid interference from gold X-ray emissions, but traces of strontium present in naturally occurring calcium can still interfere with plutonium detection using its Lα X-ray emission. PMID:22444530
Anderson, Kim A.; Szelewski, Michael J.; Wilson, Glenn; Quimby, Bruce D.; Hoffman, Peter D.
2015-01-01
We describe modified gas chromatography electron-impact/triple-quadrupole mass spectrometry (GC–EI/MS/MS) utilizing a newly developed hydrogen-injected self-cleaning ion source and modified 9 mm extractor lens. This instrument, with optimized parameters, achieves quantitative separation of 62 polycyclic aromatic hydrocarbons (PAHs). Existing methods historically limited rigorous identification and quantification to a small subset, such as the 16 PAHs the US EPA has defined as priority pollutants. Without the critical source and extractor lens modifications, the off-the-shelf GC–EI/MS/MS system was unsuitable for complex PAH analysis. Separations were enhanced by increased gas flow, a complex GC temperature profile incorporating multiple isothermal periods, specific ramp rates, and a PAH-optimized column. Typical determinations with our refined GC–EI/MS/MS have a large linear range of 1–10,000 pg μl−1 and detection limits of <2 pg μl−1. Included in the 62 PAHs, multiple-reaction-monitoring (MRM) mode enabled GC-EI/MS/MS identification and quantitation of several constituents of the MW 302 PAHs isomers. Using calibration standards, values determined were within 5% of true values over many months. Standard curve r2 values were typically >0.998, exceptional for compounds which are archetypally difficult. With this method benzo[a]fluorene, benzo[b]fluorene, benzo[c]fluorene were fully separated as was benzo[b]fluoranthene, benzo[k]fluoranthene, and benzo[j]fluoranthene. Chrysene and triphenylene, were sufficiently separated to allow accurate quantitation. Mean limits of detection (LODs) across all PAHs were 1.02 ± 0.84 pg μl−1 with indeno[1,2,3-c,d] pyrene having the lowest LOD at 0.26 pg μl−1 and only two analytes above 2.0 pg μl−1; acenaphthalene (2.33 pg μl−1) and dibenzo[a,e]pyrene (6.44 pg μl−1). PMID:26454790
Computed tomography of coxofemoral injury in five mute swans (Cygnus olor).
Gumpenberger, Michaela; Scope, Alexandra
2012-10-01
Five mute swans (Cygnus olor) were presented with inability to stand or with abnormal positioning of a leg. Clinical examinations indicated the possibility of femoral fractures or coxofemoral luxations. The suspected diagnosis was proven by means of computed tomography (CT), while superimposition of gastrointestinal contents or other artefacts limited radiographic diagnosis in three birds. A typical CT sign for lesions of the coxofemoral joint apart from femoral displacement was haemorrhage within the pelvic bones (especially around the acetabulum), found in four of the five birds. Small femoral head avulsion fractures could be detected only with CT.
kpLogo: positional k-mer analysis reveals hidden specificity in biological sequences
2017-01-01
Abstract Motifs of only 1–4 letters can play important roles when present at key locations within macromolecules. Because existing motif-discovery tools typically miss these position-specific short motifs, we developed kpLogo, a probability-based logo tool for integrated detection and visualization of position-specific ultra-short motifs from a set of aligned sequences. kpLogo also overcomes the limitations of conventional motif-visualization tools in handling positional interdependencies and utilizing ranked or weighted sequences increasingly available from high-throughput assays. kpLogo can be found at http://kplogo.wi.mit.edu/. PMID:28460012
Connor, Brooke F.; Rose, Donna L.; Noriega, Mary C.; Murtaugh, Lucinda K.; Abney, Sonja R.
1998-01-01
This report presents precision and accuracy data for volatile organic compounds (VOCs) in the nanogram-per-liter range, including aromatic hydrocarbons, reformulated fuel components, and halogenated hydrocarbons using purge and trap capillary-column gas chromatography/mass spectrometry. One-hundred-four VOCs were initially tested. Of these, 86 are suitable for determination by this method. Selected data are provided for the 18 VOCs that were not included. This method also allows for the reporting of semiquantitative results for tentatively identified VOCs not included in the list of method compounds. Method detection limits, method performance data, preservation study results, and blank results are presented. The authors describe a procedure for reporting low-concentration detections at less than the reporting limit. The nondetection value (NDV) is introduced as a statistically defined reporting limit designed to limit false positives and false negatives to less than 1 percent. Nondetections of method compounds are reported as ?less than NDV.? Positive detections measured at less than NDV are reported as estimated concentrations to alert the data user to decreased confidence in accurate quantitation. Instructions are provided for analysts to report data at less than the reporting limits. This method can support the use of either method reporting limits that censor detections at lower concentrations or the use of NDVs as reporting limits. The data-reporting strategy for providing analytical results at less than the reporting limit is a result of the increased need to identify the presence or absence of environmental contaminants in water samples at increasingly lower concentrations. Long-term method detection limits (LTMDLs) for 86 selected compounds range from 0.013 to 2.452 micrograms per liter (?g/L) and differ from standard method detection limits (MDLs) in that the LTMDLs include the long-term variance of multiple instruments, multiple operators, and multiple calibrations over a longer time. For these reasons, LTMDLs are expected to be slightly higher than standard MDLs. Recoveries for all of the VOCs tested ranged from 36 (tert-butyl formate) to 155 percent (pentachlorobenzene). The majority of the compounds ranged from 85 to 115 percent recovery and had less than 5 percent relative standard deviation for concentrations spiked between 1 to 500 ?g/L in volatile blank-, surface-, and ground-water samples. Recoveries of 60 set spikes at low concentrations ranged from 70 to 114 percent (1,2,3- trimethylbenzene and acetone). Recovery data were collected over 6 months with multiple instruments, operators, and calibrations. In this method, volatile organic compounds are extracted from a water sample by actively purging with helium. The VOCs are collected onto a sorbent trap, thermally desorbed, separated by a Megabore gas chromatographic capillary column, and finally determined by a full-scan quadrupole mass spectrometer. Compound identification is confirmed by the gas chromatographic retention time and by the resultant mass spectrum, typically identified by three unique ions. An unknown compound detected in a sample can be tentatively identified by comparing the unknown mass spectrum to reference spectra in the mass-spectra computer-data system library compiled by the National Institute of Standards and Technology.
USDA-ARS?s Scientific Manuscript database
Introduction: Detection of foodborne pathogens typically involves microbiological enrichment with subsequent isolation and identification of a pure culture. This is typically followed by strain typing, which provides information critical to outbreak and source investigations. In the early 1990’s pul...
The relationship of global form and motion detection to reading fluency.
Englund, Julia A; Palomares, Melanie
2012-08-15
Visual motion processing in typical and atypical readers has suggested aspects of reading and motion processing share a common cortical network rooted in dorsal visual areas. Few studies have examined the relationship between reading performance and visual form processing, which is mediated by ventral cortical areas. We investigated whether reading fluency correlates with coherent motion detection thresholds in typically developing children using random dot kinematograms. As a comparison, we also evaluated the correlation between reading fluency and static form detection thresholds. Results show that both dorsal and ventral visual functions correlated with components of reading fluency, but that they have different developmental characteristics. Motion coherence thresholds correlated with reading rate and accuracy, which both improved with chronological age. Interestingly, when controlling for non-verbal abilities and age, reading accuracy significantly correlated with thresholds for coherent form detection but not coherent motion detection in typically developing children. Dorsal visual functions that mediate motion coherence seem to be related maturation of broad cognitive functions including non-verbal abilities and reading fluency. However, ventral visual functions that mediate form coherence seem to be specifically related to accurate reading in typically developing children. Copyright © 2012 Elsevier Ltd. All rights reserved.
A plant growth-promoting symbiosis between Mycena galopus and Vaccinium corymbosum seedlings.
Grelet, Gwen-Aëlle; Ba, Ren; Goeke, Dagmar F; Houliston, Gary J; Taylor, Andy F S; Durall, Daniel M
2017-11-01
Typically, Mycena species are viewed as saprotrophic fungi. However, numerous detections of Mycena spp. in the roots of green plants suggest that a continuum from saprotrophy to biotrophy could exist. In particular, mycenoid species have repeatedly been found in Ericaceae plant roots. Our study asked whether (1) Mycena species are commonly found in the roots of green Ericaceae plants; (2) Mycena sequences are limited to a single group/lineage within the genus; and (3) a Mycena sp. can behave as a beneficial root associate with a typical ericoid mycorrhizal plant (Vaccinium corymbosum), regardless of how much external labile carbon is available. We detected Mycena sequences in roots of all sampled Ericaceae plants. Our Mycena sequences clustered in four different groups distributed across the Mycena genus. Only one group could be assigned with confidence to a named species (M. galopus). Our Mycena sequences clustered with other Mycena sequences detected in roots of ericoid mycorrhizal plant species collected throughout Europe, America, and Australia. An isolate of M. galopus promoted growth of V. corymbosum seedlings in vitro regardless of external carbon supply in the media. Seedlings inoculated with M. galopus grew as well as those inoculated with the ericoid mycorrhizal fungus Rhizoscyphus ericae. Surprisingly, this M. galopus isolate colonized Vaccinium roots and formed distinctive peg-like structures. Our results suggest that Mycena species might operate along a saprotroph-symbiotic continuum with a range of ericoid mycorrhizal plant species. We discuss our results in terms of fungal partner recruitment by Ericaceae plants.
Detecting spatial regimes in ecosystems
Sundstrom, Shana M.; Eason, Tarsha; Nelson, R. John; Angeler, David G.; Barichievy, Chris; Garmestani, Ahjond S.; Graham, Nicholas A.J.; Granholm, Dean; Gunderson, Lance; Knutson, Melinda; Nash, Kirsty L.; Spanbauer, Trisha; Stow, Craig A.; Allen, Craig R.
2017-01-01
Research on early warning indicators has generally focused on assessing temporal transitions with limited application of these methods to detecting spatial regimes. Traditional spatial boundary detection procedures that result in ecoregion maps are typically based on ecological potential (i.e. potential vegetation), and often fail to account for ongoing changes due to stressors such as land use change and climate change and their effects on plant and animal communities. We use Fisher information, an information theory-based method, on both terrestrial and aquatic animal data (U.S. Breeding Bird Survey and marine zooplankton) to identify ecological boundaries, and compare our results to traditional early warning indicators, conventional ecoregion maps and multivariate analyses such as nMDS and cluster analysis. We successfully detected spatial regimes and transitions in both terrestrial and aquatic systems using Fisher information. Furthermore, Fisher information provided explicit spatial information about community change that is absent from other multivariate approaches. Our results suggest that defining spatial regimes based on animal communities may better reflect ecological reality than do traditional ecoregion maps, especially in our current era of rapid and unpredictable ecological change.
Braun-Kiewnick, A; Altenbach, D; Oberhänsli, T; Bitterlin, W; Duffy, B
2011-10-01
Fire blight is an invasive disease caused by Erwinia amylovora that threatens pome fruit production globally. Effective implementation of phytosanitary control measures depends upon rapid, reliable pathogen detection and disease diagnosis. We developed a lateral-flow immunoassay specific for E. amylovora with a detection limit of log 5.7 CFU/ml, typical of pathogen concentrations in symptomatic plant material. The simple assay had comparable sensitivity to standard culture plating, serum agglutination and nested PCR when validated for application in a phytosanitary laboratory as a confirmatory test of cultured isolates and for first-line diagnosis of phytosanitary samples that represent the full range of commercial, ornamental and forestry host species. On-site validation in ring-trials with local plant inspectors demonstrated robust and reliable detection (compared to subsequent plating and PCR analysis). The simplicity, inspector acceptance and facilitation of expedited diagnosis (from 2 days for laboratory submitted samples to 15 min with the immunoassay), offers a valuable tool for improved phytosanitary control of fire blight. Copyright © 2011 Elsevier B.V. All rights reserved.
Ground Testing Strategies for Verifying the Slew Rate Tolerance of Star Trackers
Dzamba, Tom; Enright, John
2014-01-01
The performance of a star tracker is largely based on the availability of its attitude solution. Several methods exist to assess star tracker availability under both static and dynamic imaging conditions. However, these methods typically make various idealizations that can limit the accuracy of these results. This study aims to increase the fidelity of star tracker availability modeling by accounting for the effects of detection logic and pixel saturation on star detection. We achieve this by developing an analytical model for the focal plane intensity distribution of a star in the presence of sensor slew. Using the developed model, we examine the effects of slew rate on star detection using simulations and lab tests. The developed approach allows us to determine the maximum slew rate for which a star of a given stellar magnitude can still be detected. This information can then be used to describe the availability of a star tracker attitude solution as a function of slew rate, both spatially, across the entire celestial sphere, or locally, along a specified orientation track. PMID:24577522
Yang, Li; Li, Minglin; Qu, Yanli; Dong, Zaili; Li, Wen J
2009-09-01
This paper presents the development of a chemical sensor employing electronic-grade carbon nanotubes (EG-CNTs) as the active sensing element for sodium hypochlorite detection. The sensor, integrated in a PDMS-glass microfluidic chamber, was fabricated by bulk aligning of EG-CNTs between gold microelectrode pairs using dielectrophoretic technique. Upon exposure to sodium hypochlorite solution, the characteristics of the carbon nanotube chemical sensor were investigated at room temperature under constant current mode. The sensor exhibited responsivity, which fits a linear logarithmic dependence on concentration in the range of 1/32 to 8 ppm, a detection limit lower than 5 ppb, while saturating at 16 ppm. The typical response time of the sensor at room temperature is on the order of minutes and the recovery time is a few hours. In particular, the sensor showed an obvious sensitivity to the volume of detected solution. It was found that the activation power of the sensor was extremely low, i.e. in the range of nanowatts. These results indicate great potential of EG-CNT for advanced nanosensors with superior sensitivity, ultra-low power consumption, and less fabrication complexity.
NASA Astrophysics Data System (ADS)
Standvoss, K.; Crijns, T.; Goerke, L.; Janssen, D.; Kern, S.; van Niedek, T.; van Vugt, J.; Alfonso Burgos, N.; Gerritse, E. J.; Mol, J.; van de Vooren, D.; Ghafoorian, M.; van den Heuvel, T. L. A.; Manniesing, R.
2018-02-01
The number and location of cerebral microbleeds (CMBs) in patients with traumatic brain injury (TBI) is important to determine the severity of trauma and may hold prognostic value for patient outcome. However, manual assessment is subjective and time-consuming due to the resemblance of CMBs to blood vessels, the possible presence of imaging artifacts, and the typical heterogeneity of trauma imaging data. In this work, we present a computer aided detection system based on 3D convolutional neural networks for detecting CMBs in 3D susceptibility weighted images. Network architectures with varying depth were evaluated. Data augmentation techniques were employed to improve the networks' generalization ability and selective sampling was implemented to handle class imbalance. The predictions of the models were clustered using a connected component analysis. The system was trained on ten annotated scans and evaluated on an independent test set of eight scans. Despite this limited data set, the system reached a sensitivity of 0.87 at 16.75 false positives per scan (2.5 false positives per CMB), outperforming related work on CMB detection in TBI patients.
QPO detection in superluminal black hole GRS 1915+105
NASA Astrophysics Data System (ADS)
Bhulla, Yashpal; Jaaffrey, S. N. A.
2018-05-01
We report on the first superluminal Black Hole GRS 1915+105 observed by the Rossi X-ray Timing Explorer - Proportion Counter Array (RXTE/PCA). We detect the Quasi Periodic Oscillations (QPOs) in the Power Density Spectrum (PDS) of source which have luminosity very near to Eddington limit and long variability in X-ray light curve. In power density spectrum, we deal with the study of highly variability amplitude, time evolution of the characteristic timescale, Quality Factor and Full Width at Half Maximum (FWHM). We find significant QPOs in 15 different observation IDs with frequency around 67 Hz although quality factor nearly 20 but in two IDs frequency is found just double. Typical fractional rms for GRS 1915+105 is dominating the hard band increasing steeply with energy more than 13% at 20-40 keV band.
Transmissive Nanohole Arrays for Massively-Parallel Optical Biosensing
2015-01-01
A high-throughput optical biosensing technique is proposed and demonstrated. This hybrid technique combines optical transmission of nanoholes with colorimetric silver staining. The size and spacing of the nanoholes are chosen so that individual nanoholes can be independently resolved in massive parallel using an ordinary transmission optical microscope, and, in place of determining a spectral shift, the brightness of each nanohole is recorded to greatly simplify the readout. Each nanohole then acts as an independent sensor, and the blocking of nanohole optical transmission by enzymatic silver staining defines the specific detection of a biological agent. Nearly 10000 nanoholes can be simultaneously monitored under the field of view of a typical microscope. As an initial proof of concept, biotinylated lysozyme (biotin-HEL) was used as a model analyte, giving a detection limit as low as 0.1 ng/mL. PMID:25530982
Halliday, Jo E B; Hampson, Katie; Hanley, Nick; Lembo, Tiziana; Sharp, Joanne P; Haydon, Daniel T; Cleaveland, Sarah
2017-07-14
Emerging infectious diseases (EIDs) threaten the health of people, animals, and crops globally, but our ability to predict their occurrence is limited. Current public health capacity and ability to detect and respond to EIDs is typically weakest in low- and middle-income countries (LMICs). Many known drivers of EID emergence also converge in LMICs. Strengthening capacity for surveillance of diseases of relevance to local populations can provide a mechanism for building the cross-cutting and flexible capacities needed to tackle both the burden of existing diseases and EID threats. A focus on locally relevant diseases in LMICs and the economic, social, and cultural contexts of surveillance can help address existing inequalities in health systems, improve the capacity to detect and contain EIDs, and contribute to broader global goals for development. Copyright © 2017, American Association for the Advancement of Science.
From Sequences to Insights in Microbial Ecology
Knight, R.
2010-01-01
s4-3 Rapid declines in the cost of sequencing have made large volumes of DNA sequence data available to individual investigators. Now, data analysis is the rate-limiting step: providing a user with sequences alone typically leads to bewilderment, frustration, and skepticism about the technology. In this talk, I focus on how to extract insights from 16S rRNA data, including key lab steps (barcoding and normalization) and on which tools are available to perform routine but essential processing steps such as denoising, chimera detection, taxonomy assignment, and diversity analyses (including detection of biological clusters and gradients in the samples). Providing users with advice on these points and with a standard pipeline they can exploit (but modify if circumstances require) can greatly accelerate the rate of understanding, publication, and acquisition of funding for further studies.
D'Andrea, Rafael; Ostling, Annette; O'Dwyer, James P
2018-06-01
Traits can provide a window into the mechanisms that maintain coexistence among competing species. Recent theory suggests that competitive interactions will lead to groups, or clusters, of species with similar traits. However, theoretical predictions typically assume complete knowledge of the map between competition and measured traits. These assumptions limit the plausible application of these patterns for inferring competitive interactions in nature. Here, we relax these restrictions and find that the clustering pattern is robust to contributions of unknown or unobserved niche axes. However, it may not be visible unless measured traits are close proxies for niche strategies. We conclude that patterns along single niche axes may reveal properties of interspecific competition in nature, but detecting these patterns requires natural history expertise firmly tying traits to niches. © 2018 John Wiley & Sons Ltd/CNRS.
Wu, Hsin-Yu; Cunningham, Brian T
2014-05-21
We demonstrate an approach for detection, identification, and kinetic monitoring of drugs flowing within tubing, through the use of a plasmonic nanodome array (PNA) surface. The PNA structures are fabricated using a low-cost nanoreplica molding process upon a flexible plastic substrate that is subsequently integrated with a flow cell that connects in series with ordinary intravenous (IV) drug delivery tubing. To investigate the potential clinical applications for point-of-care detection and real-time monitoring, we perform SERS detection of ten pharmaceutical compounds (hydrocodone, levorphanol, morphine, oxycodone, methadone, phenobarbital, dopamine, diltiazem, promethazine, and mitoxantrone). We demonstrate dose-dependent SERS signal magnitude, resulting in detection limits (ng ml(-1)) well below typical administered dosages (mg ml(-1)). Further, we show that the detected drugs are not permanently attached to the PNA surface, and thus our approach is capable of performing continuous monitoring of drug delivery as materials flow through IV tubing that is connected in series with the sensor. Finally, we demonstrate the potential co-detection of multiple drugs when they are mixed together, and show excellent reproducibility and stability of SERS measurements for periods extending at least five days. The capabilities reported here demonstrate the potential to use PNA SERS surfaces for enhancing the safety of IV drug delivery.
NASA Astrophysics Data System (ADS)
Xiao-Hong, Zhou; Lan-Hua, Liu; Wei-Qi, Xu; Bao-Dong, Song; Jian-Wu, Sheng; Miao, He; Han-Chang, Shi
2014-04-01
This paper proposed a compact and portable planar waveguide evanescent wave immunosensor (EWI) for highly sensitive detection of BPA. The incident light is coupled into the planar waveguide chip via a beveled angle through undergoing total internal reflection, where the evanescent wave field forms and excites the binding fluorophore-tagged antibodies on the chip surface. Typical calibration curves obtained for BPA has detection limits of 0.03 μg/L. Linear response for BPA ranged from 0.124 μg/L-9.60 μg/L with 50% inhibition concentration for BPA of 1.09 +/- 0.25 μg/L. The regeneration of the planar optical waveguide chip allows the performance of more than 300 assay cycles within an analysis time of about 20 min for each assay cycle. By application of effective pretreatment procedure, the recoveries of BPA in real water samples gave values from 88.3% +/- 8.5% to 103.7% +/- 3.5%, confirming its application potential in the measurement of BPA in reality.
NASA Astrophysics Data System (ADS)
Ranamukhaarachchi, Sahan A.; Padeste, Celestino; Dübner, Matthias; Häfeli, Urs O.; Stoeber, Boris; Cadarso, Victor J.
2016-07-01
Therapeutic drug monitoring (TDM) typically requires painful blood drawn from patients. We propose a painless and minimally-invasive alternative for TDM using hollow microneedles suitable to extract extremely small volumes (<1 nL) of interstitial fluid to measure drug concentrations. The inner lumen of a microneedle is functionalized to be used as a micro-reactor during sample collection to trap and bind target drug candidates during extraction, without requirements of sample transfer. An optofluidic device is integrated with this microneedle to rapidly quantify drug analytes with high sensitivity using a straightforward absorbance scheme. Vancomycin is currently detected by using volumes ranging between 50-100 μL with a limit of detection (LoD) of 1.35 μM. The proposed microneedle-optofluidic biosensor can detect vancomycin with a sample volume of 0.6 nL and a LoD of <100 nM, validating this painless point of care system with significant potential to reduce healthcare costs and patients suffering.
Novel Carbon Dioxide Microsensor Based on Tin Oxide Nanomaterial Doped With Copper Oxide
NASA Technical Reports Server (NTRS)
Xu, Jennifer C.; Hunter, Gary W.; Lukco, Dorothy; Liu, Chung-Chiun; Ward, Benjamin J.
2008-01-01
Carbon dioxide (CO2) is one of the major indicators of fire and therefore its measurement is very important for low-false-alarm fire detection and emissions monitoring. However, only a limited number of CO2 sensing materials exist due to the high chemical stability of CO2. In this work, a novel CO2 microsensor based on nanocrystalline tin oxide (SnO2) doped with copper oxide (CuO) has been successfully demonstrated. The CuO-SnO2 based CO2 microsensors are fabricated by means of microelectromechanical systems (MEMS) technology and sol-gel nanomaterial-synthesis processes. At a doping level of CuO: SnO2 = 1:8 (molar ratio), the resistance of the sensor has a linear response to CO2 concentrations for the range of 1 to 4 percent CO2 in air at 450 C. This approach has demonstrated the use of SnO2, typically used for the detection of reducing gases, in the detection of an oxidizing gas.
Mass spectrometric detection of siRNA in plasma samples for doping control purposes.
Kohler, Maxie; Thomas, Andreas; Walpurgis, Katja; Schänzer, Wilhelm; Thevis, Mario
2010-10-01
Small interfering ribonucleic acid (siRNA) molecules can effect the expression of any gene by inducing the degradation of mRNA. Therefore, these molecules can be of interest for illicit performance enhancement in sports by affecting different metabolic pathways. An example of an efficient performance-enhancing gene knockdown is the myostatin gene that regulates muscle growth. This study was carried out to provide a tool for the mass spectrometric detection of modified and unmodified siRNA from plasma samples. The oligonucleotides are purified by centrifugal filtration and the use of an miRNA purification kit, followed by flow-injection analysis using an Exactive mass spectrometer to yield the accurate masses of the sense and antisense strands. Although chromatography and sensitive mass spectrometric analysis of oligonucleotides are still challenging, a method was developed and validated that has adequate sensitivity (limit of detection 0.25-1 nmol mL(-1)) and performance (precision 11-21%, recovery 23-67%) for typical antisense oligonucleotides currently used in clinical studies.
Dumont, Quentin; Bárcenas, Mariana; Dossmann, Héloïse; Bailloux, Isabelle; Buisson, Corinne; Mechin, Nathalie; Molina, Adeline; Lasne, Françoise; Rannulu, Nalaka S; Cole, Richard B
2016-04-05
Nonpolar anabolic steroids are doping agents that typically do not provide strong signals by electrospray ionization-mass spectrometry (ESI-MS) owing especially to the low polarity of the functional groups present. We have investigated the addition of anions, in ammonium salt form, to anabolic steroid samples as ionization enhancers and have confirmed that lower instrumental limits of detection (as low as 10 ng/mL for fluoxymesterone-M) are obtained by fluoride anion attachment mass spectrometry, as compared to ESI(+)/(-) or atmospheric pressure photoionization (APPI)(+). Moreover, collision-induced decomposition (CID) spectra of precursor fluoride adducts of the bifunctional steroid "reduced pregnenolone" (containing two hydroxyl groups) and its d4-analogue provide evidence of regiospecific decompositions after attachment of fluoride anion to a specific hydroxyl group of the steroid. This type of charting of specific CID reaction pathways can offer value to selected reaction monitoring experiments (SRM) as it may result in a gain in selectivity in detection as well as in improvements in quantification.
Integration of minisolenoids in microfluidic device for magnetic bead-based immunoassays
NASA Astrophysics Data System (ADS)
Liu, Yan-Jun; Guo, Shi-Shang; Zhang, Zhi-Ling; Huang, Wei-Hua; Baigl, Damien; Chen, Yong; Pang, Dai-Wen
2007-10-01
Microfluidic devices with integrated minisolenoids, microvalves, and channels have been fabricated for fast and low-volume immunoassay using superparamagnetic beads and well-known surface bioengineering protocols. A magnetic reaction area can be formed in the microchannel, featuring a high surface-to-volume ratio and low diffusion distances for the reagents to the bead surface. Such a method has the obvious advantage of easy implementation at low cost. Moreover, the minisolenoids can be switched on or off and the magnetic field intensity can be tuned on demand. Fluids can be manipulated by controlling the integrated air-pressure-actuated microvalves. Accordingly, magnetic bead-based immunoassay, as a typical example of biochemical detection and analysis, has been successfully performed on the integrated microfluidic device automatically in longitudinal mode. With a sample consumption of 0.5μl and a total assay time of less than 15min, goat immunoglobulin G was detected and the method exhibited a detection limit of 4.7ng/ml.
Ranamukhaarachchi, Sahan A.; Padeste, Celestino; Dübner, Matthias; Häfeli, Urs O.; Stoeber, Boris; Cadarso, Victor J.
2016-01-01
Therapeutic drug monitoring (TDM) typically requires painful blood drawn from patients. We propose a painless and minimally-invasive alternative for TDM using hollow microneedles suitable to extract extremely small volumes (<1 nL) of interstitial fluid to measure drug concentrations. The inner lumen of a microneedle is functionalized to be used as a micro-reactor during sample collection to trap and bind target drug candidates during extraction, without requirements of sample transfer. An optofluidic device is integrated with this microneedle to rapidly quantify drug analytes with high sensitivity using a straightforward absorbance scheme. Vancomycin is currently detected by using volumes ranging between 50–100 μL with a limit of detection (LoD) of 1.35 μM. The proposed microneedle-optofluidic biosensor can detect vancomycin with a sample volume of 0.6 nL and a LoD of <100 nM, validating this painless point of care system with significant potential to reduce healthcare costs and patients suffering. PMID:27380889
Annoyance, detection and recognition of wind turbine noise.
Van Renterghem, Timothy; Bockstael, Annelies; De Weirt, Valentine; Botteldooren, Dick
2013-07-01
Annoyance, recognition and detection of noise from a single wind turbine were studied by means of a two-stage listening experiment with 50 participants with normal hearing abilities. In-situ recordings made at close distance from a 1.8-MW wind turbine operating at 22 rpm were mixed with road traffic noise, and processed to simulate indoor sound pressure levels at LAeq 40 dBA. In a first part, where people were unaware of the true purpose of the experiment, samples were played during a quiet leisure activity. Under these conditions, pure wind turbine noise gave very similar annoyance ratings as unmixed highway noise at the same equivalent level, while annoyance by local road traffic noise was significantly higher. In a second experiment, listeners were asked to identify the sample containing wind turbine noise in a paired comparison test. The detection limit of wind turbine noise in presence of highway noise was estimated to be as low as a signal-to-noise ratio of -23 dBA. When mixed with local road traffic, such a detection limit could not be determined. These findings support that noticing the sound could be an important aspect of wind turbine noise annoyance at the low equivalent levels typically observed indoors in practice. Participants that easily recognized wind-turbine(-like) sounds could detect wind turbine noise better when submersed in road traffic noise. Recognition of wind turbine sounds is also linked to higher annoyance. Awareness of the source is therefore a relevant aspect of wind turbine noise perception which is consistent with previous research. Copyright © 2013 Elsevier B.V. All rights reserved.
Kwon, Hyukin; Jiang, Wei
2015-01-01
Many existing irrigation, industrial and chemical storage sites are currently introducing hazardous anions into groundwater, making the monitoring of such sites a high priority. Detecting and quantifying anions in water samples typically requires complex instrumentation, adding cost and delaying analysis. Here we address these challenges by development of an optical molecular method to detect and discriminate a broad range of anionic contaminants with DNA-based fluorescent sensors. A library of 1296 tetrameric-length oligodeoxyfluorosides (ODFs) composed of metal ligand and fluorescence modulating monomers was constructed with a DNA synthesizer on PEG-polystyrene microbeads. These oligomers on beads were incubated with YIII or ZnII ions to provide affinity and responsiveness to anions. Seventeen anions were screened with the library under an epifluorescence microscope, ultimately yielding eight chemosensors that could discriminate 250 μM solutions of all 17 anions in buffered water using their patterns of response. This sensor set was able to identify two unknown anion samples from ten closely-responding anions and could also function quantitatively, determining unknown concentrations of anions such as cyanide (as low as 1 mM) and selenate (as low as 50 μM). Further studies with calibration curves established detection limits of selected anions including thiocyanate (detection limit ∼300 μM) and arsenate (∼800 μM). The results demonstrate DNA-like fluorescent chemosensors as versatile tools for optically analyzing environmentally hazardous anions in aqueous environments. PMID:26146537
NASA Astrophysics Data System (ADS)
Nguyen, An; Gonzalez, Christina M.; Sinelnikov, Regina; Newman, W.; Sun, Sarah; Lockwood, Ross; Veinot, Jonathan G. C.; Meldrum, Al
2016-03-01
Silicon quantum dots (Si-QDs) represent a well-known QD fluorophore that can emit throughout the visible spectrum depending on the interface structure and surface functional group. Detection of nitroaromatic compounds by monitoring the luminescence response of the sensor material (typically fluorescent polymers) currently forms the basis of new explosives sensing technologies. Freestanding silicon QDs may represent a benign alternative with a high degree of chemical and physical versatility. Here, we investigate dodecyl and amine-terminated Si-QD luminescence response to the presence of nitrobenzene and dinitrotoluene (DNT) in various solid, solution, and vapor forms. For dinitrotoluene vapor the 3σ detection limit was 6 ppb for monomer-terminated QDs. For nitroaromatics dissolved in toluene the detection limit was on the order of 400 nM, corresponding to ∼100 pg of material distributed over ∼1 cm2 on the sensor surface. Solid traces of nitroaromatics were also easily detectable via a simple ‘touch test’. The samples showed minimal interference effects from common contaminants such as water, ethanol, and acetonitrile. The sensor can be as simple and inexpensive as a small circle of filter paper dipped into a QD solution, with a single vial of QDs able to make hundreds of these sensors. Additionally, a trial fiber-optic sensor device was tested by applying the QDs to one end of a 2 × 2 fiber coupler and exposing them to controlled DNT vapor. Finally, the quenching mechanism was explored via luminescence dynamics measurements and is different for blue (amine) and red (dodecyl) fluorescent silicon QDs.
Mao, Hui; Liang, Jiachen; Ji, Chunguang; Zhang, Haifeng; Pei, Qi; Zhang, Yuyang; Zhang, Yu; Hisaeda, Yoshio; Song, Xi-Ming
2016-08-01
Poly(3-(1-vinylimidazolium-3-yl)propane-1-sulfonate) (PVIPS), a novel kind of poly(zwitterionic liquids) (PZILs) containing both imidazolium cation and sulfonate anion, was successfully modified on the surface of polypyrrole/graphene oxide nanosheets (PPy/GO) by covalent bonding. The obtained novel PZILs functionalized PPy/GO nanosheets (PVIPS/PPy/GO) modified glassy carbon electrode (GCE) presented the excellent electrochemical catalytic activity towards dopamine (DA) with high stability, sensitivity, selectivity and wide linear range (40-1220nM), especially having a lower detection limit (17.3nM). The excellent analytical performance is attributed to the strongly negative charges on the surface of modified GCE in aqueous solution, which is different from conventional poly(ionic liquids) modified GCE. DA cations could be quickly enriched on the electrode surface by electrostatic interaction in solution due to the existence of SO3(-) groups with negative charge at the end of pendant groups in zwitterionic PVIPS, resulting in a change of the electrons transmission mode in the oxidation of DA, that is, from a typical diffusion-controlled process at conventional poly(1-vinyl-3-ethylimidazole bromide) (PVEIB)/PPy/GO modified GCE to a typical surface-controlled process. Copyright © 2016 Elsevier B.V. All rights reserved.
Colletes, T C; Garcia, P T; Campanha, R B; Abdelnur, P V; Romão, W; Coltro, W K T; Vaz, B G
2016-03-07
The analytical performance for paper spray (PS) using a new insert sample approach based on paper with paraffin barriers (PS-PB) is presented. The paraffin barrier is made using a simple, fast and cheap method based on the stamping of paraffin onto a paper surface. Typical operation conditions of paper spray such as the solvent volume applied on the paper surface, and the paper substrate type are evaluated. A paper substrate with paraffin barriers shows better performance on analysis of a range of typical analytes when compared to the conventional PS-MS using normal paper (PS-NP) and PS-MS using paper with two rounded corners (PS-RC). PS-PB was applied to detect sugars and their inhibitors in sugarcane bagasse liquors from a second generation ethanol process. Moreover, the PS-PB proved to be excellent, showing results for the quantification of glucose in hydrolysis liquors with excellent linearity (R(2) = 0.99), limits of detection (2.77 mmol L(-1)) and quantification (9.27 mmol L(-1)). The results are better than for PS-NP and PS-RC. The PS-PB was also excellent in performance when compared with the HPLC-UV method for glucose quantification on hydrolysis of liquor samples.
A 3000 TNOs Survey Project at ESO La Silla
NASA Astrophysics Data System (ADS)
Boehnhardt, H.; Hainaut, O.
We propose a wide-shallow TNO search to be done with the Wide Field Imager (WFI) instrument at the 2.2m MPG/ESO telescope in La Silla/Chile. The WFI is a half-deg camera equipped with an 8kx8k CCD (0.24 arcsec/pixel). The telescope can support excellent seeing quality down to 0.5arcsec FWHM. A TNO search pilot project was run with the 2.2m+WFI in 1999: images with just 1.6sdeg sky coverage and typically 24mag limiting brightness revealed 6 new TNOs when processed with our new automatic detection program MOVIE. The project is now continued on a somewhat larger scale in order to find more TNOs and to fine-tune the operational environment for a full automatic on-line detection, astrometry and photometry of the objects at the telescope. The future goal is to perform - with the 2.2m+WFI and in an international colaboration - an even larger TNO survey over a major part of the sky (typically 2000sdeg in and out of Ecliptic) down to 24mag. Follow-up astrometry and photometry of the expected more than 3000 discovered objects will secure their orbital and physical characterisation for synoptic dynamical and taxonomic studies of the Transneptunian population.
Khezeli, Tahere; Daneshfar, Ali; Sahraei, Reza
2016-04-01
A simple, inexpensive and sensitive ultrasonic-assisted liquid-liquid microextraction method based on deep eutectic solvent (UALLME-DES) was used for the extraction of three phenolic acids (ferulic, caffeic and cinnamic) from vegetable oils. In a typical experiment, deep eutectic solvent as green extraction solvent was added to n-hexane (as a typical oil medium) containing target analytes. Subsequently, the extraction was accelerated by sonication. After the extraction, phase separation (DES rich phase/n-hexane phase) was performed by centrifugation. DES rich phase (lower phase) was withdrawn by a micro-syringe and submitted to isocratic reverse-phase HPLC with UV detection. Under optimum conditions obtained by response surface methodology (RSM) and desirability function (DF), the method has good linear calibration ranges (between 1.30 and 1000 µg L(-1)), coefficients of determination (r(2)>0.9949) and low limits of detection (between 0.39 and 0.63 µg L(-1)). This procedure was successfully applied to the determination of target analytes in olive, almond, sesame and cinnamon oil samples. The relative mean recoveries ranged from 94.7% to 104.6%. Copyright © 2015 Elsevier B.V. All rights reserved.
Air sampling with solid phase microextraction
NASA Astrophysics Data System (ADS)
Martos, Perry Anthony
There is an increasing need for simple yet accurate air sampling methods. The acceptance of new air sampling methods requires compatibility with conventional chromatographic equipment, and the new methods have to be environmentally friendly, simple to use, yet with equal, or better, detection limits, accuracy and precision than standard methods. Solid phase microextraction (SPME) satisfies the conditions for new air sampling methods. Analyte detection limits, accuracy and precision of analysis with SPME are typically better than with any conventional air sampling methods. Yet, air sampling with SPME requires no pumps, solvents, is re-usable, extremely simple to use, is completely compatible with current chromatographic equipment, and requires a small capital investment. The first SPME fiber coating used in this study was poly(dimethylsiloxane) (PDMS), a hydrophobic liquid film, to sample a large range of airborne hydrocarbons such as benzene and octane. Quantification without an external calibration procedure is possible with this coating. Well understood are the physical and chemical properties of this coating, which are quite similar to those of the siloxane stationary phase used in capillary columns. The log of analyte distribution coefficients for PDMS are linearly related to chromatographic retention indices and to the inverse of temperature. Therefore, the actual chromatogram from the analysis of the PDMS air sampler will yield the calibration parameters which are used to quantify unknown airborne analyte concentrations (ppb v to ppm v range). The second fiber coating used in this study was PDMS/divinyl benzene (PDMS/DVB) onto which o-(2,3,4,5,6- pentafluorobenzyl) hydroxylamine (PFBHA) was adsorbed for the on-fiber derivatization of gaseous formaldehyde (ppb v range), with and without external calibration. The oxime formed from the reaction can be detected with conventional gas chromatographic detectors. Typical grab sampling times were as small as 5 seconds. With 300 seconds sampling, the formaldehyde detection limit was 2.1 ppbv, better than any other 5 minute sampling device for formaldehyde. The first-order rate constant for product formation was used to quantify formaldehyde concentrations without a calibration curve. This spot sampler was used to sample the headspace of hair gel, particle board, plant material and coffee grounds for formaldehyde, and other carbonyl compounds, with extremely promising results. The SPME sampling devices were also used for time- weighted average sampling (30 minutes to 16 hours). Finally, the four new SPME air sampling methods were field tested with side-by-side comparisons to standard air sampling methods, showing a tremendous use of SPME as an air sampler.
Miniaturized low-cost ion mobility spectrometer for fast detection of chemical warfare agents.
Zimmermann, Stefan; Barth, Sebastian; Baether, Wolfgang K M; Ringer, Joachim
2008-09-01
Ion mobility spectrometry (IMS) is a well-known method for detecting hazardous compounds in air. Typical applications are the detection of chemical warfare agents, highly toxic industrial compounds, explosives, and drugs of abuse. Detection limits in the low part per billion range, fast response times, and simple instrumentation make this technique more and more popular. In particular, there is an increasing demand for miniaturized low-cost IMS for hand-held devices and air monitoring of public areas by sensor networks. In this paper, we present a miniaturized aspiration condenser type ion mobility spectrometer for fast detection of chemical warfare agents. The device is easy to manufacture and allows single substance identification down to low part per billion-level concentrations within seconds. The improved separation power results from ion focusing by means of geometric constraints and fluid dynamics. A simple pattern recognition algorithm is used for the identification of trained substances in air. The device was tested at the German Armed Forces Scientific Institute for Protection Technologies-NBC-Protection. Different chemical warfare agents, such as sarin, tabun, soman, US-VX, sulfur mustard, nitrogen mustard, and lewisite were tested. The results are presented here.
SCOUT: simultaneous time segmentation and community detection in dynamic networks
Hulovatyy, Yuriy; Milenković, Tijana
2016-01-01
Many evolving complex real-world systems can be modeled via dynamic networks. An important problem in dynamic network research is community detection, which finds groups of topologically related nodes. Typically, this problem is approached by assuming either that each time point has a distinct community organization or that all time points share a single community organization. The reality likely lies between these two extremes. To find the compromise, we consider community detection in the context of the problem of segment detection, which identifies contiguous time periods with consistent network structure. Consequently, we formulate a combined problem of segment community detection (SCD), which simultaneously partitions the network into contiguous time segments with consistent community organization and finds this community organization for each segment. To solve SCD, we introduce SCOUT, an optimization framework that explicitly considers both segmentation quality and partition quality. SCOUT addresses limitations of existing methods that can be adapted to solve SCD, which consider only one of segmentation quality or partition quality. In a thorough evaluation, SCOUT outperforms the existing methods in terms of both accuracy and computational complexity. We apply SCOUT to biological network data to study human aging. PMID:27881879
Harwood, Valerie J.; Levine, Audrey D.; Scott, Troy M.; Chivukula, Vasanta; Lukasik, Jerzy; Farrah, Samuel R.; Rose, Joan B.
2005-01-01
The validity of using indicator organisms (total and fecal coliforms, enterococci, Clostridium perfringens, and F-specific coliphages) to predict the presence or absence of pathogens (infectious enteric viruses, Cryptosporidium, and Giardia) was tested at six wastewater reclamation facilities. Multiple samplings conducted at each facility over a 1-year period. Larger sample volumes for indicators (0.2 to 0.4 liters) and pathogens (30 to 100 liters) resulted in more sensitive detection limits than are typical of routine monitoring. Microorganisms were detected in disinfected effluent samples at the following frequencies: total coliforms, 63%; fecal coliforms, 27%; enterococci, 27%; C. perfringens, 61%; F-specific coliphages, ∼40%; and enteric viruses, 31%. Cryptosporidium oocysts and Giardia cysts were detected in 70% and 80%, respectively, of reclaimed water samples. Viable Cryptosporidium, based on cell culture infectivity assays, was detected in 20% of the reclaimed water samples. No strong correlation was found for any indicator-pathogen combination. When data for all indicators were tested using discriminant analysis, the presence/absence patterns for Giardia cysts, Cryptosporidium oocysts, infectious Cryptosporidium, and infectious enteric viruses were predicted for over 71% of disinfected effluents. The failure of measurements of single indicator organism to correlate with pathogens suggests that public health is not adequately protected by simple monitoring schemes based on detection of a single indicator, particularly at the detection limits routinely employed. Monitoring a suite of indicator organisms in reclaimed effluent is more likely to be predictive of the presence of certain pathogens, and a need for additional pathogen monitoring in reclaimed water in order to protect public health is suggested by this study. PMID:15933017
Picón-Camacho, Sara M; Thompson, William P; Blaylock, Reginald B; Lotz, Jeffrey M
2013-09-23
Amyloodinium ocellatum is a highly pathogenic dinoflagellate parasite with global distribution that causes high mortalities in the culture of tropical and sub-tropical marine and estuarine fishes. Diagnosis typically occurs through gross examination following the onset of morbidity, at which point treatment is of limited benefit. In the present study, a new molecular diagnostic tool for the rapid detection of A. ocellatum (AO) was developed using the loop-mediated isothermal amplification method (LAMP). The AO-LAMP assay designed is highly specific using a set of four primers - two outer and two inner primers targeting six different regions on the 5' end of the Small Subunit rDNA region (SSU rDNA) of A. ocellatum. The AO-LAMP assay, optimized for 25-30 min at 62°C, amplified the DNA from A. ocellatum extracted from both water and gill tissue samples and did not amplify DNA from four closely related dinoflagellate sp ecies. The detection limit of the AO-LAMP assay was 10 fg, exceptionally higher than the conventional PCR (1 pg). In addition, the standardized AO-LAMP assay was capable of detecting single tomonts and trophonts; the assay was not affected by the presence of possible inhibitory substances present in environmental water samples or gill samples. The AO-LAMP assay developed in the present study provides a novel useful tool for the simple, rapid and sensitive detection of A. ocellatum in water and gill tissue samples, which could assist in the early detection and improved control of A. ocellatum infections in aquaculture systems. Copyright © 2013 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Bufon, J.; Schillani, S.; Altissimo, M.; Bellutti, P.; Bertuccio, G.; Billè, F.; Borghes, R.; Borghi, G.; Cautero, G.; Cirrincione, D.; Fabiani, S.; Ficorella, F.; Gandola, M.; Gianoncelli, A.; Giuressi, D.; Kourousias, G.; Mele, F.; Menk, R. H.; Picciotto, A.; Rachevski, A.; Rashevskaya, I.; Sammartini, M.; Stolfa, A.; Zampa, G.; Zampa, N.; Zorzi, N.; Vacchi, A.
2018-03-01
Low-energy X-ray fluorescence (LEXRF) is an essential tool for bio-related research of organic samples, whose composition is dominated by light elements. Working at energies below 2 keV and being able to detect fluorescence photons of lightweight elements such as carbon (277 eV) is still a challenge, since it requires in-vacuum operations to avoid in-air photon absorption. Moreover, the detectors must have a thin entrance window and collect photons at an angle of incidence near 90 degrees to minimize the absorption by the protective coating. Considering the low fluorescence yield of light elements, it is important to cover a substantial part of the solid angle detecting ideally all emitted X-ray fluorescence (XRF) photons. Furthermore, the energy resolution of the detection system should be close to the Fano limit in order to discriminate elements whose XRF emission lines are often very close within the energy spectra. To ensure all these features, a system consisting of four monolithic multi-element silicon drift detectors was developed. The use of four separate detector units allows optimizing the incidence angle on all the sensor elements. The multi-element approach in turn provides a lower leakage current on each anode, which, in combination with ultra-low noise preamplifiers, is necessary to achieve an energy resolution close to the Fano limit. The potential of the new detection system and its applicability for typical LEXRF applications has been proved on the Elettra TwinMic beamline.
Analysis of anaerobic BTX biodegradation in a subarctic aquifer using isotopes and benzylsuccinates.
McKelvie, Jennifer R; Lindstrom, Jon E; Beller, Harry R; Richmond, Sharon A; Sherwood Lollar, Barbara
2005-12-01
In situ biodegradation of benzene, toluene, and xylenes in a petroleum hydrocarbon contaminated aquifer near Fairbanks, Alaska was assessed using carbon and hydrogen compound specific isotope analysis (CSIA) of benzene and toluene and analysis of signature metabolites for toluene (benzylsuccinate) and xylenes (methylbenzylsuccinates). Carbon and hydrogen isotope ratios of benzene were between -25.9 per thousand and -26.8 per thousand for delta13C and -119 per thousand and -136 per thousand for delta2H, suggesting that biodegradation of benzene is unlikely at this site. However, biodegradation of both xylenes and toluene were documented in this subarctic aquifer. Biodegradation of xylenes was indicated by the presence of methylbenzylsuccinates with concentrations of 17-50 microg/L in three wells. Anaerobic toluene biodegradation was also indicated by benzylsuccinate concentrations of 10-49 microg/L in the three wells with the highest toluene concentrations (1500-5000 microg/L toluene). Since benzylsuccinate typically accounts for a very small fraction of the toluene present in groundwater (generally <1 mol%), the signature metabolite approach works best at higher toluene concentrations when it is not constrained by detection limits. In wells with lower toluene concentrations (410-640 microg/L), carbon and hydrogen isotopic values were enriched by up to approximately 2 per thousand for delta13C and approximately 70 per thousand for delta2H. This evidence of isotopic fractionation verifies the effects of biodegradation in these low concentration wells where metabolites may already be below detection limits. The combined use of signature metabolite and CSIA data is particularly valuable given the challenge of verifying biodegradation in subarctic environments where degradation rates are typically much slower than in temperate environments.
NASA Astrophysics Data System (ADS)
Farnes, J. S.; Rudnick, L.; Gaensler, B. M.; Haverkorn, M.; O'Sullivan, S. P.; Curran, S. J.
2017-06-01
Protogalactic environments are typically identified using quasar absorption lines and can manifest as Damped Lyman-alpha Absorbers (DLAs) and Lyman Limit Systems (LLSs). We use radio observations of Faraday effects to test whether these galactic building blocks host a magnetized medium, by combining DLA and LLS detections with 1.4 GHz polarization data from the NRAO VLA Sky Survey (NVSS). We obtain a control, a DLA, and an LLS sample consisting of 114, 19, and 27 lines of sight, respectively. Using a Bayesian framework and weakly informative priors, we are unable to detect either coherent or random magnetic fields in DLAs: the regular coherent fields must be ≤slant 2.8 μG, and the lack of depolarization suggests the weakly magnetized gas in DLAs is non-turbulent and quiescent. However, we find a mild suggestive indication that LLSs have coherent magnetic fields, with a 71.5% probability that LLSs have higher | {RM}| than a control, although this is sensitive to the redshift distribution. We also find a strong indication that LLSs host random magnetic fields, with a 95.5% probability that LLS lines of sight have lower polarized fractions than a control. The regular coherent fields within the LLSs must be ≤slant 2.4 μG, and the magnetized gas must be highly turbulent with a typical turbulent length scale on the order of ≈5-20 pc. Our results are consistent with the standard dynamo paradigm, whereby magnetism in protogalaxies increases in coherence over cosmic time, and with a hierarchical galaxy formation scenario, with the DLAs and LLSs exploring different stages of magnetic field evolution in galaxies.
Learning by observation: insights from Williams syndrome.
Foti, Francesca; Menghini, Deny; Mandolesi, Laura; Federico, Francesca; Vicari, Stefano; Petrosini, Laura
2013-01-01
Observing another person performing a complex action accelerates the observer's acquisition of the same action and limits the time-consuming process of learning by trial and error. Observational learning makes an interesting and potentially important topic in the developmental domain, especially when disorders are considered. The implications of studies aimed at clarifying whether and how this form of learning is spared by pathology are manifold. We focused on a specific population with learning and intellectual disabilities, the individuals with Williams syndrome. The performance of twenty-eight individuals with Williams syndrome was compared with that of mental age- and gender-matched thirty-two typically developing children on tasks of learning of a visuo-motor sequence by observation or by trial and error. Regardless of the learning modality, acquiring the correct sequence involved three main phases: a detection phase, in which participants discovered the correct sequence and learned how to perform the task; an exercise phase, in which they reproduced the sequence until performance was error-free; an automatization phase, in which by repeating the error-free sequence they became accurate and speedy. Participants with Williams syndrome beneficiated of observational training (in which they observed an actor detecting the visuo-motor sequence) in the detection phase, while they performed worse than typically developing children in the exercise and automatization phases. Thus, by exploiting competencies learned by observation, individuals with Williams syndrome detected the visuo-motor sequence, putting into action the appropriate procedural strategies. Conversely, their impaired performances in the exercise phases appeared linked to impaired spatial working memory, while their deficits in automatization phases to deficits in processes increasing efficiency and speed of the response. Overall, observational experience was advantageous for acquiring competencies, since it primed subjects' interest in the actions to be performed and functioned as a catalyst for executed action.
Theoretical detection threshold of the proton-acoustic range verification technique.
Ahmad, Moiz; Xiang, Liangzhong; Yousefi, Siavash; Xing, Lei
2015-10-01
Range verification in proton therapy using the proton-acoustic signal induced in the Bragg peak was investigated for typical clinical scenarios. The signal generation and detection processes were simulated in order to determine the signal-to-noise limits. An analytical model was used to calculate the dose distribution and local pressure rise (per proton) for beams of different energy (100 and 160 MeV) and spot widths (1, 5, and 10 mm) in a water phantom. In this method, the acoustic waves propagating from the Bragg peak were generated by the general 3D pressure wave equation implemented using a finite element method. Various beam pulse widths (0.1-10 μs) were simulated by convolving the acoustic waves with Gaussian kernels. A realistic PZT ultrasound transducer (5 cm diameter) was simulated with a Butterworth bandpass filter with consideration of random noise based on a model of thermal noise in the transducer. The signal-to-noise ratio on a per-proton basis was calculated, determining the minimum number of protons required to generate a detectable pulse. The maximum spatial resolution of the proton-acoustic imaging modality was also estimated from the signal spectrum. The calculated noise in the transducer was 12-28 mPa, depending on the transducer central frequency (70-380 kHz). The minimum number of protons detectable by the technique was on the order of 3-30 × 10(6) per pulse, with 30-800 mGy dose per pulse at the Bragg peak. Wider pulses produced signal with lower acoustic frequencies, with 10 μs pulses producing signals with frequency less than 100 kHz. The proton-acoustic process was simulated using a realistic model and the minimal detection limit was established for proton-acoustic range validation. These limits correspond to a best case scenario with a single large detector with no losses and detector thermal noise as the sensitivity limiting factor. Our study indicated practical proton-acoustic range verification may be feasible with approximately 5 × 10(6) protons/pulse and beam current.
Theoretical detection threshold of the proton-acoustic range verification technique
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ahmad, Moiz; Yousefi, Siavash; Xing, Lei, E-mail: lei@stanford.edu
2015-10-15
Purpose: Range verification in proton therapy using the proton-acoustic signal induced in the Bragg peak was investigated for typical clinical scenarios. The signal generation and detection processes were simulated in order to determine the signal-to-noise limits. Methods: An analytical model was used to calculate the dose distribution and local pressure rise (per proton) for beams of different energy (100 and 160 MeV) and spot widths (1, 5, and 10 mm) in a water phantom. In this method, the acoustic waves propagating from the Bragg peak were generated by the general 3D pressure wave equation implemented using a finite element method.more » Various beam pulse widths (0.1–10 μs) were simulated by convolving the acoustic waves with Gaussian kernels. A realistic PZT ultrasound transducer (5 cm diameter) was simulated with a Butterworth bandpass filter with consideration of random noise based on a model of thermal noise in the transducer. The signal-to-noise ratio on a per-proton basis was calculated, determining the minimum number of protons required to generate a detectable pulse. The maximum spatial resolution of the proton-acoustic imaging modality was also estimated from the signal spectrum. Results: The calculated noise in the transducer was 12–28 mPa, depending on the transducer central frequency (70–380 kHz). The minimum number of protons detectable by the technique was on the order of 3–30 × 10{sup 6} per pulse, with 30–800 mGy dose per pulse at the Bragg peak. Wider pulses produced signal with lower acoustic frequencies, with 10 μs pulses producing signals with frequency less than 100 kHz. Conclusions: The proton-acoustic process was simulated using a realistic model and the minimal detection limit was established for proton-acoustic range validation. These limits correspond to a best case scenario with a single large detector with no losses and detector thermal noise as the sensitivity limiting factor. Our study indicated practical proton-acoustic range verification may be feasible with approximately 5 × 10{sup 6} protons/pulse and beam current.« less
Theoretical detection threshold of the proton-acoustic range verification technique
Ahmad, Moiz; Xiang, Liangzhong; Yousefi, Siavash; Xing, Lei
2015-01-01
Purpose: Range verification in proton therapy using the proton-acoustic signal induced in the Bragg peak was investigated for typical clinical scenarios. The signal generation and detection processes were simulated in order to determine the signal-to-noise limits. Methods: An analytical model was used to calculate the dose distribution and local pressure rise (per proton) for beams of different energy (100 and 160 MeV) and spot widths (1, 5, and 10 mm) in a water phantom. In this method, the acoustic waves propagating from the Bragg peak were generated by the general 3D pressure wave equation implemented using a finite element method. Various beam pulse widths (0.1–10 μs) were simulated by convolving the acoustic waves with Gaussian kernels. A realistic PZT ultrasound transducer (5 cm diameter) was simulated with a Butterworth bandpass filter with consideration of random noise based on a model of thermal noise in the transducer. The signal-to-noise ratio on a per-proton basis was calculated, determining the minimum number of protons required to generate a detectable pulse. The maximum spatial resolution of the proton-acoustic imaging modality was also estimated from the signal spectrum. Results: The calculated noise in the transducer was 12–28 mPa, depending on the transducer central frequency (70–380 kHz). The minimum number of protons detectable by the technique was on the order of 3–30 × 106 per pulse, with 30–800 mGy dose per pulse at the Bragg peak. Wider pulses produced signal with lower acoustic frequencies, with 10 μs pulses producing signals with frequency less than 100 kHz. Conclusions: The proton-acoustic process was simulated using a realistic model and the minimal detection limit was established for proton-acoustic range validation. These limits correspond to a best case scenario with a single large detector with no losses and detector thermal noise as the sensitivity limiting factor. Our study indicated practical proton-acoustic range verification may be feasible with approximately 5 × 106 protons/pulse and beam current. PMID:26429247
NASA Astrophysics Data System (ADS)
Puget, P.
The reliable and fast detection of chemical or biological molecules, or the measurement of their concentrations in a sample, are key problems in many fields such as environmental analysis, medical diagnosis, or the food industry. There are traditionally two approaches to this problem. The first aims to carry out a measurement in situ in the sample using chemical and biological sensors. The constraints imposed by detection limits, specificity, and in some cases stability are entirely imputed to the sensor. The second approach uses so-called total analysis systems to process the sample according to a protocol made up of different steps, such as extractions, purifications, concentrations, and a final detection stage. The latter is made in better conditions than with the first approach, which may justify the greater complexity of the process. It is this approach that is implemented in most methods for identifying pathogens, whether they be in biological samples (especially for in vitro diagnosis) or samples taken from the environment. The instrumentation traditionally used to carry out these protocols comprises a set of bulky benchtop apparatus, which needs to be plugged into the mains in order to function. However, there are many specific applications (to be discussed in this chapter) for which analysis instruments with the following characteristics are needed: Possibility of use outside the laboratory, i.e., instruments as small as possible, consuming little energy, and largely insensitive to external conditions of temperature, humidity, vibrations, and so on. Possibility of use by non-specialised agents, or even unmanned operation. Possibility of handling a large number of samples in a limited time, typically for high-throughput screening applications. Possibility of handling small samples. At the same time, a high level of performance is required, in particular in terms of (1) the detection limit, which must be as low as possible, (2) specificity, i.e., the ability to detect a particular molecule in a complex mixture, and (3) speed.
A search for optical bursts from the repeating fast radio burst FRB 121102
NASA Astrophysics Data System (ADS)
Hardy, L. K.; Dhillon, V. S.; Spitler, L. G.; Littlefair, S. P.; Ashley, R. P.; De Cia, A.; Green, M. J.; Jaroenjittichai, P.; Keane, E. F.; Kerry, P.; Kramer, M.; Malesani, D.; Marsh, T. R.; Parsons, S. G.; Possenti, A.; Rattanasoon, S.; Sahman, D. I.
2017-12-01
We present a search for optical bursts from the repeating fast radio burst FRB 121102 using simultaneous observations with the high-speed optical camera ULTRASPEC on the 2.4-m Thai National Telescope and radio observations with the 100-m Effelsberg Radio Telescope. A total of 13 radio bursts were detected, but we found no evidence for corresponding optical bursts in our 70.7-ms frames. The 5σ upper limit to the optical flux density during our observations is 0.33 mJy at 767 nm. This gives an upper limit for the optical burst fluence of 0.046 Jy ms, which constrains the broad-band spectral index of the burst emission to α ≤ -0.2. Two of the radio pulses are separated by just 34 ms, which may represent an upper limit on a possible underlying periodicity (a rotation period typical of pulsars), or these pulses may have come from a single emission window that is a small fraction of a possible period.
Zhang, Yong; Yan, Dongmei; Zhu, Shuangli; Wen, Ning; Li, Li; Wang, Haiyan; Liu, Jianfeng; Ye, Xufang; Ding, Zhengrong; Wang, Dongyan; Zhu, Hui; Chen, Li; Hou, Xiaohui; An, Hongqiu; Liang, Xiaofeng; Luo, Huiming; Kew, Olen; Xu, Wenbo
2010-12-15
In China, 5 patients with acute flaccid paralysis (AFP) associated with type 2 vaccine-derived poliovirus (VDPV) were identified by an AFP surveillance system from 1996 through 2009. A maximum-likelihood tree shows that all 5 Chinese VDPVs were independent. These 5 VDPVs were 100-216 d old according to the number of synonymous substitutions per synonymous site and 176-292 d old according to the number of substitutions per site. This result indicates limited virus replication since the administration of the initiating oral polio vaccine (OPV) dose, which is consistent with the rapid evolution rate of poliovirus genomes. The above-mentioned VDPVs have important implications in the global polio eradication initiative. Localized, limited, and transient circulation may be typical of OPVs; hence, independent VDPVs could be found because of the large population and excellent surveillance system, which permitted early detection and response, but sustained transmission was limited because of high population immunity.
Ultrafast VHE Gamma-Ray Flares of IC 310
NASA Astrophysics Data System (ADS)
Barkov, Maxim V.; Aharonian, Felix; Khangulyan, Dmitriy V.
In 2012 November MAGIC detected a bright flare from IC 310. The flare consisted of two sharp peaks with a typical duration of ~ 5 min. The energy released during that event has been estimated to be at the level of 2 × 1044 erg s-1. In this work we derive an upper limit on the possible luminosity of flares generated in black hole (BH) magnetosphere, which depends very weakly on the mass of BH and is determined by disk magnetisation, viewing angle, and pair multiplicity. Since all these parameters are smaller than a unit, the luminosity 2 × 1043 erg s-1 can be taken as a strict upper limit for flare luminosity for several minutes variability time. This upper limit appears to be approximately an order of magnitude below the value measured with MAGIC. Thus, we conclude that it seems very unfeasible that the magnetospheric processes can be indeed behind the bright flaring activity recorded from IC 310.
Coronal Emission from dG Halo Stars
NASA Technical Reports Server (NTRS)
Mushotzky, Richard (Technical Monitor); Harnden, F. R.
2005-01-01
The halo dG star HD 114762 was observed with the XMM-Newton satellite on 28-29 June 2004, during orbit 834, and the data were processed using the XMM-Newton Science Analysis System (SAS), version 6.0.0. Somewhat surprisingly, the target was NOT detected during this approx.30 ks exposure, which yielded instead a count rate upper limit of less than 0.0041 cts/s. We computed an X-ray flux upper limit by assuming a Raymond-Smith thermal spectrum of coronal temperature 1 million degrees K, typical of quiet old stars, a hydrogen column density of 2-10$^{19)$ cm$^{-2)$ and sub-solar abundances of 0.2. Our calculated X-ray luminosity upper limit in the 0.25-7.8 keV band is L$_x < 4.95 $\\time$10$^{26)$ erg/s, where we have assumed a stellar distance of 28 pc. This relatively low upper limit has implications for the capability of metal poor stars to host solar-like dynamos, as we will report in a forthcoming paper (now in preparation).
Use of heat of adsorption to quantify amorphous content in milled pharmaceutical powders.
Alam, Shamsul; Omar, Mahmoud; Gaisford, Simon
2014-01-01
Isothermal calorimetry operated in gas perfusion mode (IGPC) is often used to quantify the amorphous content of pharmaceutical powders. Typically, the calibration line is constructed using the heat of crystallisation as the sample is exposed to high levels of a plasticising vapour. However, since the physical form to which the amorphous fraction crystallises may be dependent on the presence of any crystalline seed, the calibration line is often seen to be non-linear, especially as the amorphous content of the sample approaches 100% w/w. Redesigning the experiment so that the calibration line is constructed with the heat of adsorption is an alternative approach that, because it is not dependent upon crystallisation to a physical form should ameliorate this problem. The two methods are compared for a model compound, salbutamol sulphate, which forms either a hydrate or an anhydrate depending on the amorphous content. The heat of adsorption method was linear between amorphous contents of 0 and 100% w/w and resulted in a detection limit of 0.3% w/w and a quantification limit of 0.92% w/w. The heat of crystallisation method was linear only between amorphous contents of 0 and 80% w/w and resulted in a detection limit of 1.7% w/w and a quantification limit of 5.28% w/w. Thus, the use of heat of adsorption is shown to be a better method for quantifying amorphous contents to better than 1% w/w. Copyright © 2013 Elsevier B.V. All rights reserved.
Rodriguez, Estrella Sanz; Poynter, Sam; Curran, Mark; Haddad, Paul R; Shellie, Robert A; Nesterenko, Pavel N; Paull, Brett
2015-08-28
Preservation of ionic species within Antarctic ice yields a unique proxy record of the Earth's climate history. Studies have been focused until now on two proxies: the ionic components of sea salt aerosol and methanesulfonic acid. Measurement of the all of the major ionic species in ice core samples is typically carried out by ion chromatography. Former methods, whilst providing suitable detection limits, have been based upon off-column preconcentration techniques, requiring larger sample volumes, with potential for sample contamination and/or carryover. Here, a new capillary ion chromatography based analytical method has been developed for quantitative analysis of limited volume Antarctic ice core samples. The developed analytical protocol applies capillary ion chromatography (with suppressed conductivity detection) and direct on-column sample injection and focusing, thus eliminating the requirement for off-column sample preconcentration. This limits the total sample volume needed to 300μL per analysis, allowing for triplicate sample analysis with <1mL of sample. This new approach provides a reliable and robust analytical method for the simultaneous determination of organic and inorganic anions, including fluoride, methanesulfonate, chloride, sulfate and nitrate anions. Application to composite ice-core samples is demonstrated, with coupling of the capillary ion chromatograph to high resolution mass spectrometry used to confirm the presence and purity of the observed methanesulfonate peak. Copyright © 2015 Elsevier B.V. All rights reserved.
Zhou, Xu; Yang, Long; Tan, Xiaoping; Zhao, Genfu; Xie, Xiaoguang; Du, Guanben
2018-07-30
Prostate specific antigen (PSA) is the most significant biomarker for the screening of prostate cancer in human serum. However, most methods for the detection of PSA often require major laboratories, precisely analytical instruments and complicated operations. Currently, the design and development of satisfying electrochemical biosensors based on biomimetic materials (e.g. synthetic receptors) and nanotechnology is highly desired. Thus, we focused on the combination of molecular recognition and versatile nanomaterials in electrochemical devices for advancing their analytical performance and robustness. Herein, by using the present prepared multifunctional hydroxyl pillar[5]arene@gold nanoparticles@graphitic carbon nitride (HP5@AuNPs@g-C 3 N 4 ) hybrid nanomaterial as robust biomimetic element, a high-performance electrochemical immunosensor for detection of PSA was constructed. The as-prepared immunosensor, with typically competitive advantages of low cost, simple preparation and fast detection, exhibited remarkable robustness, ultra-sensitivity, excellent selectivity and reproducibility. The limit of detection (LOD) and linear range were 0.12 pg mL -1 (S/N = 3) and 0.0005-10.00 ng mL -1 , respectively. The satisfying results provide a promising approach for clinical detection of PSA in human serum. Copyright © 2018 Elsevier B.V. All rights reserved.
Lu, Zhan; Zhang, Jianyi; Xu, Lizhou; Li, Yanbin; Chen, Siyu; Ye, Zunzhong; Wang, Jianping
2017-01-01
A simple, highly-automated instrument system used for on-site detection of foodborne pathogens based on fluorescence was designed, fabricated, and preliminarily tested in this paper. A corresponding method has been proved effective in our previous studies. This system utilizes a light-emitting diode (LED) to excite fluorescent labels and a spectrometer to record the fluorescence signal from samples. A rotation stage for positioning and switching samples was innovatively designed for high-throughput detection, ten at most in one single run. We also developed software based on LabVIEW for data receiving, processing, and the control of the whole system. In the test of using a pure quantum dot (QD) solution as a standard sample, detection results from this home-made system were highly-relevant with that from a well-commercialized product and even slightly better reproducibility was found. And in the test of three typical kinds of food-borne pathogens, fluorescence signals recorded by this system are highly proportional to the variation of the sample concentration, with a satisfied limit of detection (LOD) (nearly 102–103 CFU·mL−1 in food samples). Additionally, this instrument system is low-cost and easy-to-use, showing a promising potential for on-site rapid detection of food-borne pathogens. PMID:28241478
Lu, Zhan; Zhang, Jianyi; Xu, Lizhou; Li, Yanbin; Chen, Siyu; Ye, Zunzhong; Wang, Jianping
2017-02-23
A simple, highly-automated instrument system used for on-site detection of foodborne pathogens based on fluorescence was designed, fabricated, and preliminarily tested in this paper. A corresponding method has been proved effective in our previous studies. This system utilizes a light-emitting diode (LED) to excite fluorescent labels and a spectrometer to record the fluorescence signal from samples. A rotation stage for positioning and switching samples was innovatively designed for high-throughput detection, ten at most in one single run. We also developed software based on LabVIEW for data receiving, processing, and the control of the whole system. In the test of using a pure quantum dot (QD) solution as a standard sample, detection results from this home-made system were highly-relevant with that from a well-commercialized product and even slightly better reproducibility was found. And in the test of three typical kinds of food-borne pathogens, fluorescence signals recorded by this system are highly proportional to the variation of the sample concentration, with a satisfied limit of detection (LOD) (nearly 10²-10³ CFU·mL -1 in food samples). Additionally, this instrument system is low-cost and easy-to-use, showing a promising potential for on-site rapid detection of food-borne pathogens.
Integral Battery Power Limiting Circuit for Intrinsically Safe Applications
NASA Technical Reports Server (NTRS)
Burns, Bradley M.; Blalock, Norman N.
2010-01-01
A circuit topology has been designed to guarantee the output of intrinsically safe power for the operation of electrical devices in a hazardous environment. This design uses a MOSFET (metal oxide semiconductor field-effect transistor) as a switch to connect and disconnect power to a load. A test current is provided through a separate path to the load for monitoring by a comparator against a preset threshold level. The circuit is configured so that the test current will detect a fault in the load and open the switch before the main current can respond. The main current passes through the switch and then an inductor. When a fault occurs in the load, the current through the inductor cannot change immediately, but the voltage drops immediately to safe levels. The comparator detects this drop and opens the switch before the current in the inductor has a chance to respond. This circuit protects both the current and voltage from exceeding safe levels. Typically, this type of protection is accomplished by a fuse or a circuit breaker, but in order for a fuse or a circuit breaker to blow or trip, the current must exceed the safe levels momentarily, which may be just enough time to ignite anything in a hazardous environment. To prevent this from happening, a fuse is typically current-limited by the addition of the resistor to keep the current within safe levels while the fuse reacts. The use of a resistor is acceptable for non-battery applications where the wasted energy and voltage drop across the resistor can be tolerated. The use of the switch and inductor minimizes the wasted energy. For example, a circuit runs from a 3.6-V battery that must be current-limited to 200 mA. If the circuit normally draws 10 mA, then an 18-ohm resistor would drop 180 mV during normal operation, while a typical switch (0.02 ohm) and inductor (0.97 ohm) would only drop 9.9 mV. From a power standpoint, the current-limiting resistor protection circuit wastes about 18 times more power than the switch and the inductor configuration. In the fault condition, both the resistor and the inductor react immediately. The resistor reacts by allowing more current to flow and dropping the voltage. Initially, the inductor reacts by dropping the voltage, and then by not allowing the current to change. When the comparator detects the drop in voltage, it opens the switch, thus preventing any further current flow. The inductor alone is not sufficient protection, because after the voltage drop has settled, the inductor would then allow the current to change, in this example, the current would be 3.7 A. In the fault condition, the resistor is flowing 200 mA until the fuse blows (anywhere from 1 ms to 100 s), while the switch and inductor combination is flowing about 2 A test current while monitoring for the fault to be corrected. Finally, as an additional safety feature, the circuit can be configured to hold the switch opened until both the load and source are disconnected.
NASA Astrophysics Data System (ADS)
Gatto, A.; Parolari, P.; Boffi, P.
2018-05-01
Frequency division multiplexing (FDM) is attractive to achieve high capacities in multiple access networks characterized by direct modulation and direct detection. In this paper we take into account point-to-point intra- and inter-datacenter connections to understand the performance of FDM operation compared with the ones achievable with standard multiple carrier modulation approach based on discrete multitone (DMT). DMT and FDM allow to match the non-uniform and bandwidth-limited response of the system under test, associated with the employment of low-cost directly-modulated sources, such as VCSELs with high-frequency chirp, and with fibre-propagation in presence of chromatic dispersion. While for very short distances typical of intra-datacentre communications, the huge number of DMT subcarriers permits to increase the transported capacity with respect to the FDM employment, in case of few tens-km reaches typical of inter-datacentre connections, the capabilities of FDM are more evident, providing system performance similar to the case of DMT application.
NASA Technical Reports Server (NTRS)
Asner, Gregory P.; Heidebrecht, Kathleen B.
2001-01-01
Remote sensing of vegetation cover and condition is critically needed to understand the impacts of land use and climate variability in and and semi-arid regions. However, remote sensing of vegetation change in these environments is difficult for several reasons. First, individual plant canopies are typically small and do not reach the spatial scale of typical Landsat-like satellite image pixels. Second, the phenological status and subsequent dry carbon (or non-photosynthetic) fraction of plant canopies varies dramatically in both space and time throughout and and semi-arid regions. Detection of only the 'green' part of the vegetation using a metric such as the normalized difference vegetation index (NDVI) thus yields limited information on the presence and condition of plants in these ecosystems. Monitoring of both photosynthetic vegetation (PV) and non-photosynthetic vegetation (NPV) is needed to understand a range of ecosystem characteristics including vegetation presence, cover and abundance, physiological and biogeochemical functioning, drought severity, fire fuel load, disturbance events and recovery from disturbance.
Characterisation of lab in typical Salento Pecorino cheese.
Cappello, M S; Laddomada, B; Poltronieri, P; Zacheo, G
2001-01-01
Twenty-nine strains of Lactic Acid Bacteria isolated from the typical Pecorino cheese of the Salento area of Italy, were identified and grouped according to their genetic similarity. A preliminary characterisation of the strains was conducted by means of morphological and biochemical analysis, but molecular approaches were necessary for the clear identification of the species. For the species detection, the amplification and sequencing of the 16S rDNA gene was employed In addition, restriction analysis of amplified rDNA (ARDRA) and PCR and AFLP fingerprinting enabled inter- and intra-specific variation to be estimated UPGMA cluster analysis was used to divide the strains into distinct clusters which corresponded with the species delineation obtained by molecular identification. The data obtained show that the community of lactobacilli responsible for the fermentation and aging of Pecorino cheese is composed of a limited number of species. The main identified strains were Lactobacillus brevis, L. plantarum, L. casei, L. sakei, L. pentosus, L. farciminis and Leuconostoc mesenteroides.
Andrade, Fernanda B; Abreu, Afonso G; Nunes, Kamila O; Gomes, Tânia A T; Piazza, Roxane M F; Elias, Waldir P
2017-06-01
Enteroaggregative Escherichia coli (EAEC) is an agent of acute and persistent diarrhea worldwide, categorized in typical or atypical subgroups. Some EAEC virulence factors are members of the serine protease autotransporters of Enterobacteriaceae (SPATE). The presence of SPATE-encoding genes of different E. coli pathotypes was searched in a large collection of EAEC strains, and a possible association between SPATEs and E. coli phylogroups was investigated. Among 108 typical and 85 atypical EAEC, pic was the most prevalent gene, detected in 47.1% of the strains, followed by sat (24.3%), espI (21.2%), pet (19.2%), sepA (13.5%), sigA (4.1%), eatA (4.1%), vat (1.0%), espP and tsh, detected in one strain (0.5%) each; while epeA and espC were not detected. Phylogenetic analysis demonstrated that 39.9% of the strains belonged to group A, 23.3% to B1, 10.9% to B2, 7.8% to D, 8.8% to E and 1.5% to F. The majority of the SPATE genes were distributed in typical and atypical strains without association with any phylogroup. In addition, pic and pet were strongly associated with typical EAEC and sepA was detected in close association with atypical EAEC. Our data indicate that SPATEs may represent important virulence traits in both subgroups of EAEC. Copyright © 2017 Elsevier B.V. All rights reserved.
A non-invasive blood glucose meter design using multi-type sensors
NASA Astrophysics Data System (ADS)
Nguyen, D.; Nguyen, Hienvu; Roveda, Janet
2012-10-01
In this paper, we present a design of a multi optical modalities blood glucose monitor. The Monte Carlo tissues optics simulation with typical human skin model suggests the SNR ratio for a detector sensor is 104 with high sensitivity that can detect low blood sugar limit at 1 mMole/dL ( <20 mg/dL). A Bayesian filtering algorithm is proposed for multisensor fusion to identify whether e user has the danger of having diabetes. The new design has real time response (on the average of 2 minutes) and provides great potential to perform real time monitoring for blood glucose.
Phase-space foundations of electron holography
NASA Astrophysics Data System (ADS)
Lubk, A.; Röder, F.
2015-09-01
We present a unified formalism for describing various forms of electron holography in quantum mechanical phase space including their extensions to quantum-state reconstructions. The phase-space perspective allows for taking into account partial coherence as well as the quantum mechanical detection process typically hampering the unique reconstruction of a wave function. We elaborate on the limitations imposed by the electron optical elements of the transmission electron microscope as well as the scattering at the target. The results provide the basis for vastly extending the scope of electron holographic techniques towards analyzing partially coherent signals such as inelastically scattered electrons or electron pulses used in ultrafast transmission electron microscopy.
Molybdenum Dichalcogenides for Environmental Chemical Sensing
Zappa, Dario
2017-01-01
2D transition metal dichalcogenides are attracting a strong interest following the popularity of graphene and other carbon-based materials. In the field of chemical sensors, they offer some interesting features that could potentially overcome the limitation of graphene and metal oxides, such as the possibility of operating at room temperature. Molybdenum-based dichalcogenides in particular are among the most studied materials, thanks to their facile preparation techniques and promising performances. The present review summarizes the advances in the exploitation of these MoX2 materials as chemical sensors for the detection of typical environmental pollutants, such as NO2, NH3, CO and volatile organic compounds. PMID:29231879
Secure information transport by transverse localization of light
Leonetti, Marco; Karbasi, Salman; Mafi, Arash; DelRe, Eugenio; Conti, Claudio
2016-01-01
A single-photon beating with itself can produce even the most elaborate optical fringe pattern. However, the large amount of information enclosed in such a pattern is typically inaccessible, since the complete distribution can be visualized only after many detections. In fact this limitation is only true for delocalized patterns. Here we demonstrate how reconfigurable localized optical patterns allow to encode up to 6 bits of information in disorder-induced high transmission channels, even using a small number of photon counts. We developed a quantum key distribution scheme for fiber communication in which high information capacity is achieved through position and momentum complementarity. PMID:27436283
Secure information transport by transverse localization of light.
Leonetti, Marco; Karbasi, Salman; Mafi, Arash; DelRe, Eugenio; Conti, Claudio
2016-07-20
A single-photon beating with itself can produce even the most elaborate optical fringe pattern. However, the large amount of information enclosed in such a pattern is typically inaccessible, since the complete distribution can be visualized only after many detections. In fact this limitation is only true for delocalized patterns. Here we demonstrate how reconfigurable localized optical patterns allow to encode up to 6 bits of information in disorder-induced high transmission channels, even using a small number of photon counts. We developed a quantum key distribution scheme for fiber communication in which high information capacity is achieved through position and momentum complementarity.
Complex organic molecules during low-mass star formation: Pilot survey results
DOE Office of Scientific and Technical Information (OSTI.GOV)
Öberg, Karin I.; Graninger, Dawn; Lauck, Trish, E-mail: koberg@cfa.harvard.edu
Complex organic molecules (COMs) are known to be abundant toward some low-mass young stellar objects (YSOs), but how these detections relate to typical COM abundance are not yet understood. We aim to constrain the frequency distribution of COMs during low-mass star formation, beginning with this pilot survey of COM lines toward six embedded YSOs using the IRAM 30 m Telescope. The sample was selected from the Spitzer c2d ice sample and covers a range of ice abundances. We detect multiple COMs, including CH{sub 3}CN, toward two of the YSOs, and tentatively toward a third. Abundances with respect to CH{sub 3}OHmore » vary between 0.7% and 10%. This sample is combined with previous COM observations and upper limits to obtain a frequency distributions of CH{sub 3}CN, HCOOCH{sub 3}, CH{sub 3}OCH{sub 3}, and CH{sub 3}CHO. We find that for all molecules more than 50% of the sample have detections or upper limits of 1%-10% with respect to CH{sub 3}OH. Moderate abundances of COMs thus appear common during the early stages of low-mass star formation. A larger sample is required, however, to quantify the COM distributions, as well as to constrain the origins of observed variations across the sample.« less
Submicron hard X-ray fluorescence imaging of synthetic elements.
Jensen, Mark P; Aryal, Baikuntha P; Gorman-Lewis, Drew; Paunesku, Tatjana; Lai, Barry; Vogt, Stefan; Woloschak, Gayle E
2012-04-13
Synchrotron-based X-ray fluorescence microscopy (XFM) using hard X-rays focused into sub-micron spots is a powerful technique for elemental quantification and mapping, as well as microspectroscopic measurements such as μ-XANES (X-ray absorption near edge structure). We have used XFM to image and simultaneously quantify the transuranic element plutonium at the L(3) or L(2)-edge as well as Th and lighter biologically essential elements in individual rat pheochromocytoma (PC12) cells after exposure to the long-lived plutonium isotope (242)Pu. Elemental maps demonstrate that plutonium localizes principally in the cytoplasm of the cells and avoids the cell nucleus, which is marked by the highest concentrations of phosphorus and zinc, under the conditions of our experiments. The minimum detection limit under typical acquisition conditions with an incident X-ray energy of 18 keV for an average 202 μm(2) cell is 1.4 fg Pu or 2.9×10(-20) moles Pu μm(-2), which is similar to the detection limit of K-edge XFM of transition metals at 10 keV. Copper electron microscopy grids were used to avoid interference from gold X-ray emissions, but traces of strontium present in naturally occurring calcium can still interfere with plutonium detection using its L(α) X-ray emission. Copyright © 2012 Elsevier B.V. All rights reserved.
A 125 GeV fat Higgs at large tan β
Menon, Arjun; Raj, Nirmal
2015-12-02
In this paper, we study the viability of regions of large tan β within the frame-work of Fat Higgs/λ-SUSY Models. We compute the one-loop effective potential to find the corrections to the Higgs boson mass due to the heavy non-standard Higgs bosons. As the tree level contribution to the Higgs boson mass is suppressed at large tan β, these one-loop corrections are crucial to raising the Higgs boson mass to the measured LHC value. By raising the Higgsino and singlino mass parameters, typical electroweak precision constraints can also be avoided. We illustrate these new regions of Fat Higgs/λ-SUSY parameter spacemore » by finding regions of large tan β that are consistent with all experimental constraints including direct dark matter detection experiments, relic density limits and the invisible decay width of the Z boson. We find that there exist regions around λ = 1.25, tan β = 50 and a uniform psuedo-scalar 4 TeV ≲ M A ≲ 8 TeV which are consistent will all present phenomenological constraints. In this region the dark matter relic abundance and direct detection limits are satisfied by a lightest neutralino that is mostly bino or singlino. As an interesting aside we also find a region of low tan β and small singlino mass parameter where a well-tempered neutralino avoids all cosmological and direct detection constraints.« less
A 125 GeV fat Higgs at large tan β
DOE Office of Scientific and Technical Information (OSTI.GOV)
Menon, Arjun; Raj, Nirmal
In this paper, we study the viability of regions of large tan β within the frame-work of Fat Higgs/λ-SUSY Models. We compute the one-loop effective potential to find the corrections to the Higgs boson mass due to the heavy non-standard Higgs bosons. As the tree level contribution to the Higgs boson mass is suppressed at large tan β, these one-loop corrections are crucial to raising the Higgs boson mass to the measured LHC value. By raising the Higgsino and singlino mass parameters, typical electroweak precision constraints can also be avoided. We illustrate these new regions of Fat Higgs/λ-SUSY parameter spacemore » by finding regions of large tan β that are consistent with all experimental constraints including direct dark matter detection experiments, relic density limits and the invisible decay width of the Z boson. We find that there exist regions around λ = 1.25, tan β = 50 and a uniform psuedo-scalar 4 TeV ≲ M A ≲ 8 TeV which are consistent will all present phenomenological constraints. In this region the dark matter relic abundance and direct detection limits are satisfied by a lightest neutralino that is mostly bino or singlino. As an interesting aside we also find a region of low tan β and small singlino mass parameter where a well-tempered neutralino avoids all cosmological and direct detection constraints.« less
Huang, Yang; Siwo, Geoffrey; Wuchty, Stefan; Ferdig, Michael T; Przytycka, Teresa M
2012-04-01
It is being increasingly recognized that many important phenotypic traits, including various diseases, are governed by a combination of weak genetic effects and their interactions. While the detection of epistatic interactions that involve a non-additive effect of two loci on a quantitative trait is particularly challenging, this interaction type is fundamental for the understanding of genome organization and gene regulation. However, current methods that detect epistatic interactions typically rely on the existence of a strong primary effect, considerably limiting the sensitivity of the search. To fill this gap, we developed a new method, SEE (Symmetric Epistasis Estimation), allowing the genome-wide detection of epistatic interactions without the need for a strong primary effect. We applied our approach to progeny crosses of the human malaria parasite P. falciparum and S. cerevisiae. We found an abundance of epistatic interactions in the parasite and a much smaller number of such interactions in yeast. The genome of P. falciparum also harboured several epistatic interaction hotspots that putatively play a role in drug resistance mechanisms. The abundance of observed epistatic interactions might suggest a mechanism of compensation for the extremely limited repertoire of transcription factors. Interestingly, epistatic interaction hotspots were associated with elevated levels of linkage disequilibrium, an observation that suggests selection pressure acting on P. falciparum, potentially reflecting host-pathogen interactions or drug-induced selection.
NASA Astrophysics Data System (ADS)
Liamsuwan, T.; Wonglee, S.; Channuie, J.; Esoa, J.; Monthonwattana, S.
2017-06-01
The objective of this work was to systematically investigate the response characteristics of optically stimulated luminescence Albedo neutron (OSLN) dosimeters to ensure reliable personal dosimetry service provided by Thailand Institute of Nuclear Technology (TINT). Several batches of InLight® OSLN dosimeters were irradiated in a reference neutron field generated by the in-house 241AmBe neutron irradiator. The OSL signals were typically measured 24 hours after irradiation using the InLight® Auto 200 Reader. Based on known values of delivered neutron dose equivalent, the reading correction factor to be used by the reader was evaluated. Subsequently, batch homogeneity, dose linearity, lower limit of detection and fading of the OSLN dosimeters were examined. Batch homogeneity was evaluated to be 0.12 ± 0.05. The neutron dose response exhibited a linear relationship (R2=0.9974) within the detectable neutron dose equivalent range under test (0.4-3 mSv). For this neutron field, the lower limit of detection was between 0.2 and 0.4 mSv. Over different post-irradiation storage times of up to 180 days, the readings fluctuated within ±5%. Personal dosimetry based on the investigated OSLN dosimeter is considered to be reliable under similar neutron exposure conditions, i.e. similar neutron energy spectra and dose equivalent values.
Representation of photon limited data in emission tomography using origin ensembles
NASA Astrophysics Data System (ADS)
Sitek, A.
2008-06-01
Representation and reconstruction of data obtained by emission tomography scanners are challenging due to high noise levels in the data. Typically, images obtained using tomographic measurements are represented using grids. In this work, we define images as sets of origins of events detected during tomographic measurements; we call these origin ensembles (OEs). A state in the ensemble is characterized by a vector of 3N parameters Y, where the parameters are the coordinates of origins of detected events in a three-dimensional space and N is the number of detected events. The 3N-dimensional probability density function (PDF) for that ensemble is derived, and we present an algorithm for OE image estimation from tomographic measurements. A displayable image (e.g. grid based image) is derived from the OE formulation by calculating ensemble expectations based on the PDF using the Markov chain Monte Carlo method. The approach was applied to computer-simulated 3D list-mode positron emission tomography data. The reconstruction errors for a 10 000 000 event acquisition for simulated ranged from 0.1 to 34.8%, depending on object size and sampling density. The method was also applied to experimental data and the results of the OE method were consistent with those obtained by a standard maximum-likelihood approach. The method is a new approach to representation and reconstruction of data obtained by photon-limited emission tomography measurements.
Western blotting using capillary electrophoresis.
Anderson, Gwendolyn J; M Cipolla, Cynthia; Kennedy, Robert T
2011-02-15
A microscale Western blotting system based on separating sodium-dodecyl sulfate protein complexes by capillary gel electrophoresis followed by deposition onto a blotting membrane for immunoassay is described. In the system, the separation capillary is grounded through a sheath capillary to a mobile X-Y translation stage which moves a blotting membrane past the capillary outlet for protein deposition. The blotting membrane is moistened with a methanol and buffer mixture to facilitate protein adsorption. Although discrete protein zones could be detected, bands were broadened by ∼1.7-fold by transfer to membrane. A complete Western blot for lysozyme was completed in about one hour with 50 pg mass detection limit from low microgram per milliliter samples. These results demonstrate substantial reduction in time requirements and improvement in mass sensitivity compared to conventional Western blots. Western blotting using capillary electrophoresis shows promise to analyze low volume samples with reduced reagents and time, while retaining the information content of a typical Western blot.
Struvite urolithiasis in a litter of miniature Schnauzer dogs.
Klausner, J S; Osborne, C A; O'Leary, T P; Gebhart, R N; Griffith, D P
1980-05-01
Magnesium ammonium phosphate calculi developed in the urinary bladders and urethras of four of five offspring of Miniature Schnauzer parents with recurrent struvite urolithiasis. Calculi were detected by radiograhy when the dogs were 12 to 15 months old. Males and females were affected. A significant number of urease-producing staphylococci were identified in the urine of three of four dogs before urolith formation, and in one dog after urolith formation. The dogs were evaluated until they were 26 months old. Serum concentrations of calcium, phosphorus, and magnesium were inside usual limits throughout the study. Abnormalities that might predispose to urinary tract infection were not identified by radiography or necropsy studies. In one dog, bladder calculi recurred after surgical removal of multiple cystoliths. In another, urethral obstruction and acute generalized pyelonephritis induced a lethal uremic crisis. Gross and microscopic lesions, detected after necropsy of all dogs with uroliths, were typical of bacterial infection.
Experimental collaboration for thick concrete structures with alkali-silica reaction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ezell, N Dianne Bull; Hayes, Nolan W.; Lenarduzzi, Roberto
Alkali-Silica Reaction (ASR) is a reaction that occurs over time in concrete between alkaline cement paste and reactive, non-crystalline silica in aggregates. An expansive gel is formed within the aggregates which results in micro-cracks in aggregates and adjacent cement paste. The reaction requires the presence of water and has been predominantly detected in groundwater-impacted portions of below grade structures, with limited impact to exterior surfaces in above grade structures. ASR can potentially affect concrete properties and performance characteristics such as compressive strength, modulus of elasticity, shear strength, and tensile strength. Since ASR degradation often takes significant amounts of time, developingmore » ASR detection techniques is important to the sustainability and extended operation lifetimes of nuclear power plants (NPPs). The University of Tennessee, Knoxville (UTK) in collaboration with Oak Ridge National Laboratory (ORNL) designed and built an experiment representative of typical NPP structures to study ASR in thick concrete structures.« less
Development of gait segmentation methods for wearable foot pressure sensors.
Crea, S; De Rossi, S M M; Donati, M; Reberšek, P; Novak, D; Vitiello, N; Lenzi, T; Podobnik, J; Munih, M; Carrozza, M C
2012-01-01
We present an automated segmentation method based on the analysis of plantar pressure signals recorded from two synchronized wireless foot insoles. Given the strict limits on computational power and power consumption typical of wearable electronic components, our aim is to investigate the capability of a Hidden Markov Model machine-learning method, to detect gait phases with different levels of complexity in the processing of the wearable pressure sensors signals. Therefore three different datasets are developed: raw voltage values, calibrated sensor signals and a calibrated estimation of total ground reaction force and position of the plantar center of pressure. The method is tested on a pool of 5 healthy subjects, through a leave-one-out cross validation. The results show high classification performances achieved using estimated biomechanical variables, being on average the 96%. Calibrated signals and raw voltage values show higher delays and dispersions in phase transition detection, suggesting a lower reliability for online applications.
Extending Raman's reach: enabling applications via greater sensitivity and speed
NASA Astrophysics Data System (ADS)
Creasey, David; Sullivan, Mike; Paul, Chris; Rathmell, Cicely
2018-02-01
Over the last decade, miniature fiber optic spectrometers have greatly expanded the ability of Raman spectroscopy to tackle practical applications in the field, from mobile pharmaceutical ID to hazardous material assessment in remote locations. There remains a gap, however, between the typical diode array spectrometer and their more sensitive benchtop analogs. High sensitivity, cooled Raman spectrometers have the potential to narrow that gap by providing greater sensitivity, better SNR, and faster measurement times. In this paper, we'll look at the key factors in the design of high sensitivity miniature Raman spectrometers and their associated accessories, as well as the key metric for direct comparison of these systems - limit of detection. With the availability of our high sensitivity Raman systems operating at wavelengths from the UV to NIR, many applications are now becoming practical in the field, from trace level detection to analysis of complex biological samples.
Base pair mismatch recognition using plasmon resonant particle labels.
Oldenburg, Steven J; Genick, Christine C; Clark, Keith A; Schultz, David A
2002-10-01
We demonstrate the use of silver plasmon resonant particles (PRPs), as reporter labels, in a microarray-based DNA hybridization assay in which we screen for a known polymorphic site in the breast cancer gene BRCA1. PRPs (40-100 nm in diameter) image as diffraction-limited points of colored light in a standard microscope equipped with dark-field illumination, and can be individually identified and discriminated against background scatter. Rather than overall intensity, the number of PRPs counted in a CCD image by a software algorithm serves as the signal in these assays. In a typical PRP hybridization assay, we achieve a detection sensitivity that is approximately 60 x greater than that achieved by using fluorescent labels. We conclude that single particle counting is robust, generally applicable to a wide variety of assay platforms, and can be integrated into low-cost and quantitative detection systems for single nucleotide polymorphism analysis.
Experimental collaboration for thick concrete structures with alkali-silica reaction
NASA Astrophysics Data System (ADS)
Ezell, N. Dianne Bull; Hayes, Nolan; Lenarduzzi, Roberto; Clayton, Dwight; Ma, Z. John; Le Pape, Sihem; Le Pape, Yann
2018-04-01
Alkali-Silica Reaction (ASR) is a reaction that occurs over time in concrete between alkaline cement paste and reactive, non-crystalline silica in aggregates. An expansive gel is formed within the aggregates which results in micro-cracks in aggregates and adjacent cement paste. The reaction requires the presence of water and has been predominantly detected in groundwater-impacted portions of below grade structures, with limited impact to exterior surfaces in above grade structures. ASR can potentially affect concrete properties and performance characteristics such as compressive strength, modulus of elasticity, shear strength, and tensile strength. Since ASR degradation often takes significant amounts of time, developing ASR detection techniques is important to the sustainability and extended operation lifetimes of nuclear power plants (NPPs). The University of Tennessee, Knoxville (UTK) in collaboration with Oak Ridge National Laboratory (ORNL) designed and built an experiment representative of typical NPP structures to study ASR in thick concrete structures.
NASA Astrophysics Data System (ADS)
Velychko, T. P.; Soldatkin, O. O.; Melnyk, V. G.; Marchenko, S. V.; Kirdeciler, S. K.; Akata, B.; Soldatkin, A. P.; El'skaya, A. V.; Dzyadevych, S. V.
2016-02-01
Development of a conductometric biosensor for the urea detection has been reported. It was created using a non-typical method of the recombinant urease immobilization via adsorption on nanoporous particles of silicalite. It should be noted that this biosensor has a number of advantages, such as simple and fast performance, the absence of toxic compounds during biosensor preparation, and high reproducibility (RSD = 5.1 %). The linear range of urea determination by using the biosensor was 0.05-15 mM, and a lower limit of urea detection was 20 μM. The bioselective element was found to be stable for 19 days. The characteristics of recombinant urease-based biomembranes, such as dependence of responses on the protein and ion concentrations, were investigated. It is shown that the developed biosensor can be successfully used for the urea analysis during renal dialysis.
Some Improvements in Utilization of Flash Memory Devices
NASA Technical Reports Server (NTRS)
Gender, Thomas K.; Chow, James; Ott, William E.
2009-01-01
Two developments improve the utilization of flash memory devices in the face of the following limitations: (1) a flash write element (page) differs in size from a flash erase element (block), (2) a block must be erased before its is rewritten, (3) lifetime of a flash memory is typically limited to about 1,000,000 erases, (4) as many as 2 percent of the blocks of a given device may fail before the expected end of its life, and (5) to ensure reliability of reading and writing, power must not be interrupted during minimum specified reading and writing times. The first development comprises interrelated software components that regulate reading, writing, and erasure operations to minimize migration of data and unevenness in wear; perform erasures during idle times; quickly make erased blocks available for writing; detect and report failed blocks; maintain the overall state of a flash memory to satisfy real-time performance requirements; and detect and initialize a new flash memory device. The second development is a combination of hardware and software that senses the failure of a main power supply and draws power from a capacitive storage circuit designed to hold enough energy to sustain operation until reading or writing is completed.
A Search for Interstellar Oxiranecarbonitrile (C3H3NO)
NASA Technical Reports Server (NTRS)
Dicken, J. E.; Irvine, W. M.; Ohishi, M.; Arrhenius, G.; Bauder, A.; Mueller, F.; Eschenmoser, A.
1996-01-01
We report a search in cold, quiescent and in 'hot core' type interstellar molecular clouds for the small cyclic molecule oxiranecarbonitrile (C3H3NO), which has been suggested as a precursor of important prebiotic molecules. We have determined upper limits to the column density and fractional abundance for the observed sources and find that, typically, the fractional abundance by number relative to molecular hydrogen Of C3H3NO is less than a few times 10(exp -10). This limit is one to two orders of magnitude less than the measured abundance of such similarly complex species as CH3CH2CN and HCOOCH3 in well-studied hot cores. A number of astrochemical discoveries were made, including the first detection of the species CH3CH2CN in the massive star-forming clouds G34.3+0.2 and W51M and the first astronomical detections of some eight rotational transitions of CH3CH2CN, CH3CCH, and HCOOCH3. In addition, we found 8 emission lines in the 89 GHz region and 18 in the 102 GHz region which we were unable to assign.
The "Polar Light Sign" is a useful tool to detect discrete membranous supravalvular mitral stenosis.
Hertwig, Christine; Haas, Nikolaus A; Habash, Sheeraz; Hanslik, Andreas; Kececioglu, Deniz; Sandica, Eugen; Laser, Kai-Thorsten
2015-02-01
Mitral valve stenosis caused by a discrete supravalvular membrane is a rare congenital malformation haemodynamically leading to significant mitral valve stenosis. When the supravalvular mitral stenosis consists of a discrete supravalvular membrane adherent to the mitral valve, it is usually not clearly detectable by routine echocardiography. We report about the typical echocardiographic finding in three young patients with this rare form of a discrete membranous supravalvular stenosis caused by a membrane adherent to the mitral valve. These cases present a typical echocardiographic feature in colour Doppler generated by the pathognomonic supramitral flow acceleration. Whereas typical supravalvular mitral stenosis caused by cor triatriatum or a clearly visible supravalvular ring is easily detectable by echocardiography, a discrete supravalvular membrane adjacent to the mitral valve leaflets resembling valvular mitral stenosis is difficult to differentiate by routine echocardiography. In our opinion, this colour phenomenon does resemble the visual impression of polar lights in the northern hemisphere; owing to its typical appearance, it may therefore be named as "Polar Light Sign". This phenomenon may help to detect this anatomical entity by echocardiography in time and therefore improve the prognosis for repair.
Double-codified gold nanolabels for enhanced immunoanalysis.
Ambrosi, Adriano; Castañeda, Maria Teresa; Killard, Anthony J; Smyth, Malcolm R; Alegret, Salvador; Merkoçi, Arben
2007-07-15
A novel double-codified nanolabel (DC-AuNP) based on gold nanoparticle (AuNP) modified with anti-human IgG peroxidase (HRP)-conjugated antibody is reported. It represents a simple assay that allows enhanced spectrophotometric and electrochemical detection of antigen human IgG as a model protein. The method takes advantage of two properties of the DC-AuNP label: first, the HRP label activity toward the OPD chromogen that can be related to the analyte concentration and measured spectrophotometrically; second, the intrinsic electrochemical properties of the gold nanoparticle labels that being proportional to the protein concentration can be directly quantified by stripping voltammetry. Beside these two main direct determinations of human IgG, a secondary indirect detection was also applicable to this system, exploiting the high molar absorptivity of gold colloids, by which, the color intensity of their solution was proportional to the concentration of the antigen used in the assay. Paramagnetic beads were used as supporting material to immobilize the sandwich-type immunocomplexes resulting in incubation and washing times shorter than those typically needed in classical ELISA tests by means of a rapid magnetic separation of the unbound components. A built-in magnet graphite-epoxy-composite electrode allowed a sensibly enhanced adsorption and electrochemical quantification of the specifically captured AuNPs. The used DC-AuNP label showed an excellent specificity/selectivity, as a matter of fact using a different antigen (goat IgG) a minimal nonspecific electrochemical or spectrophotometric signal was measured. The detection limits for this novel double-codified nanoparticle-based assay were 52 and 260 pg of human IgG/mL for the spectrophotometric (HRP-based) and electrochemical (AuNP-based) detections, respectively, much lower than those typically achieved by ELISA tests. The developed label and method is versatile, offers enhanced performances, and can be easily extended to other protein detection schemes as well as in DNA analysis.
Croteau, Marie-Noële; Dybowska, Agnieszka D.; Luoma, Samuel N.; Misra, Superb K.; Valsami-Jones, Eugenia
2014-01-01
A major challenge in understanding the environmental implications of nanotechnology lies in studying nanoparticle uptake in organisms at environmentally realistic exposure concentrations. Typically, high exposure concentrations are needed to trigger measurable effects and to detect accumulation above background. But application of tracer techniques can overcome these limitations. Here we synthesised, for the first time, citrate-coated Ag nanoparticles using Ag that was 99.7 % 109Ag. In addition to conducting reactivity and dissolution studies, we assessed the bioavailability and toxicity of these isotopically modified Ag nanoparticles (109Ag NPs) to a freshwater snail under conditions typical of nature. We showed that accumulation of 109Ag from 109Ag NPs is detectable in the tissues of Lymnaea stagnalis after 24-h exposure to aqueous concentrations as low as 6 ng L–1 as well as after 3 h of dietary exposure to concentrations as low as 0.07 μg g–1. Silver uptake from unlabelled Ag NPs would not have been detected under similar exposure conditions. Uptake rates of 109Ag from 109Ag NPs mixed with food or dispersed in water were largely linear over a wide range of concentrations. Particle dissolution was most important at low waterborne concentrations. We estimated that 70 % of the bioaccumulated 109Ag concentration in L. stagnalis at exposures –1 originated from the newly solubilised Ag. Above this concentration, we predicted that 80 % of the bioaccumulated 109Ag concentration originated from the 109Ag NPs. It was not clear if agglomeration had a major influence on uptake rates.
Colorimetric detection for paper-based biosensing applications
NASA Astrophysics Data System (ADS)
Brink, C.; Joubert, T.-H.
2016-02-01
Research on affordable point-of-care health diagnostics is rapidly advancing1. Colorimetric biosensor applications are typically qualitative, but recently the focus has been shifted to quantitative measurements2,3. Although numerous qualitative point-of-care (POC) health diagnostic devices are available, the challenge exists of developing a quantitative colorimetric array reader system that complies with the ASSURED (Affordable, Sensitive, Specific, User-friendly, Rapid and Robust, Equipment-free, Deliverable to end-users) principles of the World Health Organization4. This paper presents a battery powered 8-bit tonal resolution colorimetric sensor circuit for paper microfluidic assays using low cost photo-detection circuitry and a low-power LED light source. A colorimetric 3×3-pixel array reader was developed for rural environments where resources and personnel are limited. The device sports an ultralow-power E-ink paper display. The colorimetric device includes integrated GPS functionality and EEPROM memory to log measurements with geo-tags for possible analysis of regional trends. The device competes with colour intensity measurement techniques using smartphone cameras, but proves to be a cheaper solution, compensating for the typical performance variations between cameras of different brands of smartphones. Inexpensive methods for quantifying bacterial assays have been shown using desktop scanners, which are not portable, and cameras, which suffer severely from changes in ambient light in different environments. Promising colorimetric detection results have been demonstrated using devices such as video cameras5, digital colour analysers6, flatbed scanners7 or custom portable readers8. The major drawback of most of these methods is the need for specialized instrumentation and for image analysis on a computer.
Moloney, Eoin; O'Connor, Joanne; Craig, Dawn; Robalino, Shannon; Chrysos, Alexandros; Javanbakht, Mehdi; Sims, Andrew; Stansby, Gerard; Wilkes, Scott; Allen, John
2018-04-23
Peripheral arterial disease (PAD) is a common condition, in which atherosclerotic narrowing in the arteries restricts blood supply to the leg muscles. In order to support future model-based economic evaluations comparing methods of diagnosis in this area, a systematic review of economic modelling studies was conducted. A systematic literature review was performed in June 2017 to identify model-based economic evaluations of diagnostic tests to detect PAD, with six individual databases searched. The review was conducted in accordance with the methods outlined in the Centre for Reviews and Dissemination's guidance for undertaking reviews in healthcare, and appropriate inclusion criteria were applied. Relevant data were extracted, and studies were quality assessed. Seven studies were included in the final review, all of which were published between 1995 and 2014. There was wide variation in the types of diagnostic test compared. The majority of the studies (six of seven) referenced the sources used to develop their model, and all studies stated and justified the structural assumptions. Reporting of the data within the included studies could have been improved. Only one identified study focused on the cost-effectiveness of a test typically used in primary care. This review brings together all applied modelling methods for tests used in the diagnosis of PAD, which could be used to support future model-based economic evaluations in this field. The limited modelling work available on tests typically used for the detection of PAD in primary care, in particular, highlights the importance of future work in this area.
Attending to unrelated targets boosts short-term memory for color arrays.
Makovski, Tal; Swallow, Khena M; Jiang, Yuhong V
2011-05-01
Detecting a target typically impairs performance in a second, unrelated task. It has been recently reported however, that detecting a target in a stream of distractors can enhance long-term memory of faces and scenes that were presented concurrently with the target (the attentional boost effect). In this study we ask whether target detection also enhances performance in a visual short-term memory task, where capacity limits are severe. Participants performed two tasks at once: a one shot, color change detection task and a letter-detection task. In Experiment 1, a central letter appeared at the same time as 3 or 5 color patches (memory display). Participants encoded the colors and pressed the spacebar if the letter was a T (target). After a short retention interval, a probe display of color patches appeared. Performance on the change detection task was enhanced when a target, rather than a distractor, appeared with the memory display. This effect was not modulated by memory load or the frequency of trials in which a target appeared. However, there was no enhancement when the target appeared at the same time as the probe display (Experiment 2a) or during the memory retention interval (Experiment 2b). Together these results suggest that detecting a target facilitates the encoding of unrelated information into visual short-term memory. Copyright © 2010 Elsevier Ltd. All rights reserved.
Einstein Observatory magnitude-limited X-ray survey of late-type giant and supergiant stars
NASA Technical Reports Server (NTRS)
Maggio, A.; Vaiana, G. S.; Haisch, B. M.; Stern, R. A.; Bookbinder, J.
1990-01-01
Results are presented of an extensive X-ray survey of 380 giant and supergiant stars of spectral types from F to M, carried out with the Einstein Observatory. It was found that the observed F giants or subgiants (slightly evolved stars with a mass M less than about 2 solar masses) are X-ray emitters at the same level of main-sequence stars of similar spectral type. The G giants show a range of emissions more than 3 orders of magnitude wide; some single G giants exist with X-ray luminosities comparable to RS CVn systems, while some nearby large G giants have upper limits on the X-ray emission below typical solar values. The K giants have an observed X-ray emission level significantly lower than F and F giants. None of the 29 M giants were detected, except for one spectroscopic binary.
Optical Spectroscopic Survey of a Sample of Unidentified Fermi Objects
NASA Astrophysics Data System (ADS)
Paiano, Simona; Falomo, Renato; Franceschini, Alberto; Treves, Aldo; Scarpa, Riccardo
2017-12-01
We present optical spectroscopy secured at the 10 m Gran Telescopio Canarias of the counterparts of 20 extragalactic γ-ray sources detected by the Fermi satellite. The observations allow us to investigate the nature of these sources and to determine their redshift. We find that all optical counterparts have a spectrum that is consistent with a BL Lac object nature. We are able to determine the redshift for 11 objects and set spectroscopic redshift limits for five targets. The optical spectrum is found featureless for only four sources. In the latter cases, we can set lower limits on the redshift based on the assumption that they are hosted by a typical massive elliptical galaxy whose spectrum is diluted by the nonthermal continuum. The observations allow us to unveil the nature of these gamma-ray sources and provide a sanity check of a tool to discover the counterparts of γ-ray emitters/blazars based on their multiwavelength emission.
High-stability compact atomic clock based on isotropic laser cooling
DOE Office of Scientific and Technical Information (OSTI.GOV)
Esnault, Francois-Xavier; Holleville, David; Rossetto, Nicolas
2010-09-15
We present a compact cold-atom clock configuration where isotropic laser cooling, microwave interrogation, and clock signal detection are successively performed inside a spherical microwave cavity. For ground operation, a typical Ramsey fringe width of 20 Hz has been demonstrated, limited by the atom cloud's free fall in the cavity. The isotropic cooling light's disordered properties provide a large and stable number of cold atoms, leading to a high signal-to-noise ratio limited by atomic shot noise. A relative frequency stability of 2.2x10{sup -13{tau}-1/2} has been achieved, averaged down to 4x10{sup -15} after 5x10{sup 3} s of integration. Development of such amore » high-performance compact clock is of major relevance for on-board applications, such as satellite-positioning systems. As a cesium clock, it opens the door to a new generation of compact primary standards and timekeeping devices.« less
Liu, Ruxiu; Wang, Ningquan; Kamili, Farhan; Sarioglu, A Fatih
2016-04-21
Numerous biophysical and biochemical assays rely on spatial manipulation of particles/cells as they are processed on lab-on-a-chip devices. Analysis of spatially distributed particles on these devices typically requires microscopy negating the cost and size advantages of microfluidic assays. In this paper, we introduce a scalable electronic sensor technology, called microfluidic CODES, that utilizes resistive pulse sensing to orthogonally detect particles in multiple microfluidic channels from a single electrical output. Combining the techniques from telecommunications and microfluidics, we route three coplanar electrodes on a glass substrate to create multiple Coulter counters producing distinct orthogonal digital codes when they detect particles. We specifically design a digital code set using the mathematical principles of Code Division Multiple Access (CDMA) telecommunication networks and can decode signals from different microfluidic channels with >90% accuracy through computation even if these signals overlap. As a proof of principle, we use this technology to detect human ovarian cancer cells in four different microfluidic channels fabricated using soft lithography. Microfluidic CODES offers a simple, all-electronic interface that is well suited to create integrated, low-cost lab-on-a-chip devices for cell- or particle-based assays in resource-limited settings.
Detecting spatial regimes in ecosystems | Science Inventory ...
Research on early warning indicators has generally focused on assessing temporal transitions with limited application of these methods to detecting spatial regimes. Traditional spatial boundary detection procedures that result in ecoregion maps are typically based on ecological potential (i.e. potential vegetation), and often fail to account for ongoing changes due to stressors such as land use change and climate change and their effects on plant and animal communities. We use Fisher information, an information theory based method, on both terrestrial and aquatic animal data (US Breeding Bird Survey and marine zooplankton) to identify ecological boundaries, and compare our results to traditional early warning indicators, conventional ecoregion maps, and multivariate analysis such as nMDS (non-metric Multidimensional Scaling) and cluster analysis. We successfully detect spatial regimes and transitions in both terrestrial and aquatic systems using Fisher information. Furthermore, Fisher information provided explicit spatial information about community change that is absent from other multivariate approaches. Our results suggest that defining spatial regimes based on animal communities may better reflect ecological reality than do traditional ecoregion maps, especially in our current era of rapid and unpredictable ecological change. Use an information theory based method to identify ecological boundaries and compare our results to traditional early warning
KONGKAPAN, Jutamart; POAPOLATHEP, Saranya; ISARIYODOM, Supaporn; KUMAGAI, Susumu; POAPOLATHEP, Amnart
2015-01-01
Mycotoxins are secondary fungal metabolites that are typically present in grain and feed ingredients used for animal feeds. An analytical method using LC-ESI-MS/MS was developed to quantify nine mycotoxins, consisting of aflatoxin B1 (AFB1), AFB2, AFG1, AFG2, T-2 toxin, deoxynivalenol (DON), nivalenol (NIV), zearalenone (ZEA) and ochratoxin A (OTA) in broiler feeds. In total, 100 samples of broiler feeds were collected from poultry farms in Central Thailand. The survey found that AFB1 and ZEA were the most prevalent mycotoxins in the feed samples at percentages of 93% and 63%, respectively. The limit of detections (LODs) of investigated mycotoxins was 0.20–0.78 ng/g. AFB2, DON, AFG1, NIV and T-2 toxin were also detectable at low contamination levels with percentages of 20%, 9%, 7%, 5% and 1%, respectively, whereas OTA and AFG2 were not detected in any of the feed samples. These results suggest that there is a very low level of risk of the exposure to mycotoxins in feeds obtained from broiler farms in Central Thailand. PMID:26477362
New, high-efficiency ion trap mobility detection system for narcotics and explosives
NASA Astrophysics Data System (ADS)
McGann, William J.; Bradley, V.; Borsody, A.; Lepine, S.
1994-10-01
A new patented Ion Trap Mobility Spectrometer (ITMS) design is presented. Conventional IMS designs typically operate below 0.1% efficiency. This is due primarily to electric field driven, sample ion discharge on a shutter grid. Since 99.9% of the sample ions generated in the reaction region are lost in this discharge process, the sensitivity of conventional systems is limited. The new design provides greater detection efficiency than conventional designs through the use of an `ion trap' concept. The paper describes the plasma and sample ion dynamics in the reaction region of the new detector and discusses the advantages of utilizing a `field-free' space to generate sample ions with high efficiency. Fast electronic switching is described which is used to perturb the field-free space and pulse the sample ions into the drift region for separation and subsequent detection using pseudo real-time software for analysis and display of the data. Many applications for this new detector are now being considered including the detection of narcotics and explosives. Preliminary ion spectra, reduced mobility data and sensitivity data are presented for fifteen narcotics, including cocaine, THC and LSD are reported.
New high-efficiency ion-trap mobility detection system for narcotics
NASA Astrophysics Data System (ADS)
McGann, William J.
1997-02-01
A new patented Ion Trap Mobility Spectrometer design is presented. Conventional IMS designs typically operate below 0.1 percent efficiency. This is due primarily to electric field driven, sample ion discharge on a shutter grid. Since 99.9 percent of the sample ions generated in the reaction region are lost int his discharge process, the sensitivity of conventional systems is limited. The new design provides greater detection efficiency than conventional designs through the use of an 'ion trap' concept. The paper describes the plasma and sample ion dynamics in the reaction region of the new detector and discusses the advantages of utilizing a 'field-free' space to generate sample ions with high efficiency. Fast electronic switching is described which is used to perturb the field-free space and pulse the sample ions into the drift region for separation and subsequent detection using pseudo real-time software for analysis and display of the data. One application for this new detector is now being developed, a portable, hand-held system with switching capability for the detection of drugs and explosives. Preliminary ion spectra and sensitivity data are presented for cocaine and heroin using a hand sniffer configuration.
New high-efficiency ion trap mobility detection system for narcotics and explosives
NASA Astrophysics Data System (ADS)
McGann, William J.; Jenkins, Anthony; Ribiero, K.; Napoli, J.
1994-03-01
A new patented ion trap mobility spectrometer design is presented. Conventional IMS designs typically operate below 0.1% efficiency. This is due primarily to electrical-field-driven, sample ion discharge on a shutter grid. Since 99.9% of the sample ions generated in the reaction region are lost in this discharge process, the sensitivity of conventional systems is limited. The new design provides greater detection efficiency than conventional designs through the use of an `ion trap' concept. The paper describes the plasma and sample ion dynamics in the reaction region of the new detector and discusses the advantages of utilizing a `field-free' space to generate sample ions with high efficiency. Fast electronic switching is described which is used to perturb the field-free space and pulse the sample ions into the drift region for separation and subsequent detection using pseudo real-time software for analysis and display of the data. Many applications for this new detector are now being considered including the detection of narcotics and explosives. Preliminary ion spectra, reduced mobility data and sensitivity data are presented for fifteen narcotics, including cocaine, THC, and LSD are reported.
Goller, K V; Dill, V; Madi, M; Martin, P; Van der Stede, Y; Vandenberge, V; Haas, B; Van Borm, S; Koenen, F; Kasanga, C J; Ndusilo, N; Beer, M; Liu, L; Mioulet, V; Armson, B; King, D P; Fowler, V L
2018-04-01
Highly contagious transboundary animal diseases such as foot-and-mouth disease (FMD) are major threats to the productivity of farm animals. To limit the impact of outbreaks and to take efficient steps towards a timely control and eradication of the disease, rapid and reliable diagnostic systems are of utmost importance. Confirmatory diagnostic assays are typically performed by experienced operators in specialized laboratories, and access to this capability is often limited in the developing countries with the highest disease burden. Advances in molecular technologies allow implementation of modern and reliable techniques for quick and simple pathogen detection either in basic laboratories or even at the pen-side. Here, we report on a study to evaluate a fully automated cartridge-based real-time RT-PCR diagnostic system (Enigma MiniLab ® ) for the detection of FMD virus (FMDV). The modular system integrates both nucleic acid extraction and downstream real-time RT-PCR (rRT-PCR). The analytical sensitivity of this assay was determined using serially diluted culture grown FMDV, and the performance of the assay was evaluated using a selected range of FMDV positive and negative clinical samples of bovine, porcine and ovine origin. The robustness of the assay was evaluated in an international inter-laboratory proficiency test and by deployment into an African laboratory. It was demonstrated that the system is easy to use and can detect FMDV with high sensitivity and specificity, roughly on par with standard laboratory methods. This cartridge-based automated real-time RT-PCR system for the detection of FMDV represents a reliable and easy to use diagnostic tool for the early and rapid disease detection of acutely infected animals even in remote areas. This type of system could be easily deployed for routine surveillance within endemic regions such as Africa or could alternatively be used in the developed world. © 2017 The Authors. Transboundary and Emerging Diseases Published by Blackwell Verlag GmbH.
Yun, Heather C; Kreft, Rachael E; Castillo, Mayra A; Ehrlich, Garth D; Guymon, Charles H; Crouch, Helen K; Chung, Kevin K; Wenke, Joseph C; Hsu, Joseph R; Spirk, Tracy L; Costerton, J William; Mende, Katrin; Murray, Clinton K
2012-10-10
Understanding nosocomial pathogen transmission is restricted by culture limitations. Novel platforms, such as PCR-based electron spray ionization-time-of-flight-mass spectrometry (ESI-TOF-MS), may be useful as investigational tools. Traditional clinical microbiology (TCM) and PCR/ESI-TOF-MS were used to recover and detect microorganisms from the hands and personal protective equipment of 10 burn intensive care unit (ICU) healthcare workers providing clinical care at a tertiary care military referral hospital. High-use environmental surfaces were assessed in 9 burn ICU and 10 orthopedic patient rooms. Clinical cultures during the study period were reviewed for pathogen comparison with investigational molecular diagnostic methods. From 158 samples, 142 organisms were identified by TCM and 718 by PCR/ESI-TOF-MS. The molecular diagnostic method detected more organisms (4.5 ± 2.1 vs. 0.9 ± 0.8, p < 0.01) from 99% vs. 67% of samples (p < 0.01). TCM detected S. aureus in 13 samples vs. 21 by PCR/ESI-TOF-MS. Gram-negative organisms were less commonly identified than gram-positive by both methods; especially by TCM. Among all detected bacterial species, similar percentages were typical nosocomial pathogens (18-19%) for TCM vs. PCR/ESI-TOF-MS. PCR/ESI-TOF-MS also detected mecA in 112 samples, vanA in 13, and KPC-3 in 2. MecA was associated (p < 0.01) with codetection of coagulase negative staphylococci but not S. aureus. No vanA was codetected with enterococci; one KPC-3 was detected without Klebsiella spp. In this pilot study, PCR/ESI-TOF-MS detected more organisms, especially gram-negatives, compared to TCM, but the current assay format is limited by the number of antibiotic resistance determinants it covers. Further large-scale assessments of PCR/ESI-TOF-MS for hospital surveillance are warranted.
The wisdom of crowds for visual search
Juni, Mordechai Z.; Eckstein, Miguel P.
2017-01-01
Decision-making accuracy typically increases through collective integration of people’s judgments into group decisions, a phenomenon known as the wisdom of crowds. For simple perceptual laboratory tasks, classic signal detection theory specifies the upper limit for collective integration benefits obtained by weighted averaging of people’s confidences, and simple majority voting can often approximate that limit. Life-critical perceptual decisions often involve searching large image data (e.g., medical, security, and aerial imagery), but the expected benefits and merits of using different pooling algorithms are unknown for such tasks. Here, we show that expected pooling benefits are significantly greater for visual search than for single-location perceptual tasks and the prediction given by classic signal detection theory. In addition, we show that simple majority voting obtains inferior accuracy benefits for visual search relative to averaging and weighted averaging of observers’ confidences. Analysis of gaze behavior across observers suggests that the greater collective integration benefits for visual search arise from an interaction between the foveated properties of the human visual system (high foveal acuity and low peripheral acuity) and observers’ nonexhaustive search patterns, and can be predicted by an extended signal detection theory framework with trial to trial sampling from a varying mixture of high and low target detectabilities across observers (SDT-MIX). These findings advance our theoretical understanding of how to predict and enhance the wisdom of crowds for real world search tasks and could apply more generally to any decision-making task for which the minority of group members with high expertise varies from decision to decision. PMID:28490500
Stacking the Cosmic Web in fluorescent Ly α emission with MUSE
NASA Astrophysics Data System (ADS)
Gallego, Sofia G.; Cantalupo, Sebastiano; Lilly, Simon; Marino, Raffaella Anna; Pezzulli, Gabriele; Schaye, Joop; Wisotzki, Lutz; Bacon, Roland; Inami, Hanae; Akhlaghi, Mohammad; Tacchella, Sandro; Richard, Johan; Bouche, Nicolas F.; Steinmetz, Matthias; Carollo, Marcella
2018-04-01
Cosmological simulations suggest that most of the matter in the Universe is distributed along filaments connecting galaxies. Illuminated by the cosmic UV background (UVB), these structures are expected to glow in fluorescent Ly α emission with a surface brightness (SB) that is well below current limits for individual detections. Here, we perform a stacking analysis of the deepest MUSE/VLT data using three-dimensional regions (subcubes) with orientations determined by the position of neighbouring Ly α galaxies at 3 < z < 4. Our method increase the probability of detecting filamentary Ly α emission, provided that these structures are Lyman-limit systems (LLSs). By stacking 390 oriented subcubes we reach a 2σ sensitivity level of SB ≈ 0.44 × 10-20 erg s-1 cm-2 arcsec-2 in an aperture of 1 arcsec2 × 6.25 Å, three times below the expected fluorescent Ly α signal from the Haardt & Madau UVB at z ˜ 3.5. No detectable emission is found on intergalactic scales, implying that at least two thirds of our subcubes do not contain oriented LLSs. On the other hand, significant emission is detected in the circumgalactic medium (CGM) in the direction of the neighbours. The signal is stronger for galaxies with a larger number of neighbours and appears to be independent of any other galaxy properties. We estimate that preferentially oriented satellite galaxies cannot contribute significantly to this signal, suggesting instead that gas densities in the CGM are typically larger in the direction of neighbouring galaxies on cosmological scales.
Ren, Yan; Zhao, Juanjuan; Shi, Yanan; Chen, Caiyun; Chen, Xiangming; Lv, Changjun
2017-08-05
L-Hydroxyproline (L-Hyp) is an important biomarker for idiopathic pulmonary fibrosis (IPF). The quantitative methods based on high-performance liquid chromatography coupled with fluorescence detection after pre-column derivatization typically requires complicated derivatization conditions and obtains unstable derivatives. Here, a novel derivatization reagent, 9-acetylimidazol-carbazole, was synthesized for the first time to efficiently and rapidly label the amino groups of L-Hyp. The high-performance liquid chromatography method with pre-column derivatization was performed on an Agilent ZORBAX SB-C 18 column (4.6×250mm, 5μm). The product was measured using fluorescence detection at excitation and emission wavelengths of 232 and 370nm, respectively. The method was validated in specificity, linearity, limit of detection (66.7 fmol), limit of quantification (333.3fmol), intra-day precision (0.75%), inter-day precision (3.82%), stability (3.15%), and recovery (90.7-109.4%). The validated method was successfully applied to the determination of L-Hyp in the lung tissues of healthy and IPF rats. The results showed that the concentration of L-Hyp (3.64mg/g) in the IPF model was significantly higher than the concentration (2.33mg/g) in the healthy control group with P<0.01. This is a new method for the determination of L-Hyp and can be used for other amino acid-related studies in the future. Copyright © 2017. Published by Elsevier B.V.
Kuyper, Brett; Labuschagne, Casper; Philibert, Raïssa; Moyo, Nicholas; Waldron, Howard; Reason, Chris; Palmer, Carl
2012-01-01
Wherever measurements have been made bromoform was found to be ubiquitous in the surface ocean in pmolar-nmolar concentrations. These measurements show concentrations in coastal regions orders of magnitude higher than in the pelagic oceans. Its atmospheric presence is primarily due to its release from algae and rapid transport to the marine boundary troposphere where it is known to participate in ozone chemistry via photochemical and catalytic pathways. Until quite recently, a limited number of studies existed (compared to other marine volatile organic compounds (VOCs)), mainly due to the analytical challenge(s) presented by the low environmental mixing ratios. In this work we detail the development of a simplified, cost effective method to detect and quantify bromoform in environmental air samples. Air samples (1.5 L) were preconcentrated onto a precooled adsorbent (Carbopack X/Carboxen 1016) trap. These samples were injected by means of rapid thermal desorption for separation and detection by GC-ECD. The system was calibrated by means of a custom-built permeation oven. A linear system response was achieved, having a detection limit of 0.73 ± 0.09 ppt. A range of environmental samples was analysed to demonstrate the ability of the technique to separate and identify bromoform from air samples. The results showed that bromoform concentrations typically averaged 24.7 ± 17.3 ppt in marine air samples, 68.5 ± 26.3 ppt in Cape Town urban air samples and 33.9 ± 40.5 ppt in simulated biomass burning plumes (SBBP). PMID:23202011
Exploring cosmic origins with CORE: Extragalactic sources in cosmic microwave background maps
NASA Astrophysics Data System (ADS)
De Zotti, G.; González-Nuevo, J.; Lopez-Caniego, M.; Negrello, M.; Greenslade, J.; Hernández-Monteagudo, C.; Delabrouille, J.; Cai, Z.-Y.; Bonato, M.; Achúcarro, A.; Ade, P.; Allison, R.; Ashdown, M.; Ballardini, M.; Banday, A. J.; Banerji, R.; Bartlett, J. G.; Bartolo, N.; Basak, S.; Bersanelli, M.; Biesiada, M.; Bilicki, M.; Bonaldi, A.; Bonavera, L.; Borrill, J.; Bouchet, F.; Boulanger, F.; Brinckmann, T.; Bucher, M.; Burigana, C.; Buzzelli, A.; Calvo, M.; Carvalho, C. S.; Castellano, M. G.; Challinor, A.; Chluba, J.; Clements, D. L.; Clesse, S.; Colafrancesco, S.; Colantoni, I.; Coppolecchia, A.; Crook, M.; D'Alessandro, G.; de Bernardis, P.; de Gasperis, G.; Diego, J. M.; Di Valentino, E.; Errard, J.; Feeney, S. M.; Fernández-Cobos, R.; Ferraro, S.; Finelli, F.; Forastieri, F.; Galli, S.; Génova-Santos, R. T.; Gerbino, M.; Grandis, S.; Hagstotz, S.; Hanany, S.; Handley, W.; Hervias-Caimapo, C.; Hills, M.; Hivon, E.; Kiiveri, K.; Kisner, T.; Kitching, T.; Kunz, M.; Kurki-Suonio, H.; Lagache, G.; Lamagna, L.; Lasenby, A.; Lattanzi, M.; Le Brun, A.; Lesgourgues, J.; Lewis, A.; Liguori, M.; Lindholm, V.; Luzzi, G.; Maffei, B.; Mandolesi, N.; Martinez-Gonzalez, E.; Martins, C. J. A. P.; Masi, S.; Massardi, M.; Matarrese, S.; McCarthy, D.; Melchiorri, A.; Melin, J.-B.; Molinari, D.; Monfardini, A.; Natoli, P.; Notari, A.; Paiella, A.; Paoletti, D.; Partridge, R. B.; Patanchon, G.; Piat, M.; Pisano, G.; Polastri, L.; Polenta, G.; Pollo, A.; Poulin, V.; Quartin, M.; Remazeilles, M.; Roman, M.; Rossi, G.; Roukema, B. F.; Rubiño-Martín, J.-A.; Salvati, L.; Scott, D.; Serjeant, S.; Tartari, A.; Toffolatti, L.; Tomasi, M.; Trappe, N.; Triqueneaux, S.; Trombetti, T.; Tucci, M.; Tucker, C.; Väliviita, J.; van de Weygaert, R.; Van Tent, B.; Vennin, V.; Vielva, P.; Vittorio, N.; Young, K.; Zannoni, M.
2018-04-01
We discuss the potential of a next generation space-borne Cosmic Microwave Background (CMB) experiment for studies of extragalactic sources. Our analysis has particular bearing on the definition of the future space project, CORE, that has been submitted in response to ESA's call for a Medium-size mission opportunity as the successor of the Planck satellite. Even though the effective telescope size will be somewhat smaller than that of Planck, CORE will have a considerably better angular resolution at its highest frequencies, since, in contrast with Planck, it will be diffraction limited at all frequencies. The improved resolution implies a considerable decrease of the source confusion, i.e. substantially fainter detection limits. In particular, CORE will detect thousands of strongly lensed high-z galaxies distributed over the full sky. The extreme brightness of these galaxies will make it possible to study them, via follow-up observations, in extraordinary detail. Also, the CORE resolution matches the typical sizes of high-z galaxy proto-clusters much better than the Planck resolution, resulting in a much higher detection efficiency; these objects will be caught in an evolutionary phase beyond the reach of surveys in other wavebands. Furthermore, CORE will provide unique information on the evolution of the star formation in virialized groups and clusters of galaxies up to the highest possible redshifts. Finally, thanks to its very high sensitivity, CORE will detect the polarized emission of thousands of radio sources and, for the first time, of dusty galaxies, at mm and sub-mm wavelengths, respectively.
Non-targeted analysis of unexpected food contaminants using LC-HRMS.
Kunzelmann, Marco; Winter, Martin; Åberg, Magnus; Hellenäs, Karl-Erik; Rosén, Johan
2018-03-29
A non-target analysis method for unexpected contaminants in food is described. Many current methods referred to as "non-target" are capable of detecting hundreds or even thousands of contaminants. However, they will typically still miss all other possible contaminants. Instead, a metabolomics approach might be used to obtain "true non-target" analysis. In the present work, such a method was optimized for improved detection capability at low concentrations. The method was evaluated using 19 chemically diverse model compounds spiked into milk samples to mimic unknown contamination. Other milk samples were used as reference samples. All samples were analyzed with UHPLC-TOF-MS (ultra-high-performance liquid chromatography time-of-flight mass spectrometry), using reversed-phase chromatography and electrospray ionization in positive mode. Data evaluation was performed by the software TracMass 2. No target lists of specific compounds were used to search for the contaminants. Instead, the software was used to sort out all features only occurring in the spiked sample data, i.e., the workflow resembled a metabolomics approach. Procedures for chemical identification of peaks were outside the scope of the study. Method, study design, and settings in the software were optimized to minimize manual evaluation and faulty or irrelevant hits and to maximize hit rate of the spiked compounds. A practical detection limit was established at 25 μg/kg. At this concentration, most compounds (17 out of 19) were detected as intact precursor ions, as fragments or as adducts. Only 2 irrelevant hits, probably natural compounds, were obtained. Limitations and possible practical use of the approach are discussed.
Karimi-Ashtiani, Shahryar; Arsanjani, Reza; Fish, Mathews; Kavanagh, Paul; Germano, Guido; Berman, Daniel; Slomka, Piotr
2012-01-01
Changes in myocardial wall motion and thickening during myocardial perfusion single-photon emission computed tomography (MPS) are typically assessed separately from gated studies to assess for stress induced functional abnormalities. We sought to develop and validate a novel approach for automatic quantification of post-stress-rest myocardial motion and thickening changes (MTC). Methods Endocardial surfaces at the end-diastolic and end-systolic frames for post-stress and rest studies were registered automatically to each other by matching ventricular surfaces. Myocardial MTCs were computed and normal limits of change were determined as the mean and standard deviation for each polar sample. Normal limits were utilized to quantify the MTCs for each map and the accumulated sample values were used for abnormality assessments in segmental regions. A hybrid method was devised by combining the Total Perfusion Deficit (TPD) and MTC for each vessel territory. Normal limits were obtained from 100 subjects with low likelihood (LLK) of coronary artery disease (CAD). For validation, 623 subjects with correlating invasive angiography were studied. All subjects had a stress/rest 99mTc-sestamibi exercise or adenosine test, and all had coronary angiography within 3 months of MPS. All MTC and TPD measurements were derived automatically. The diagnostic accuracy for detection of coronary artery disease for MTC+TPD was compared to TPD alone. Results Segmental normal values for motion change were between −1.3 and −4.1 mm and between −30.1% and −9.8% for thickening change. MTC combined with TPD achieved 61% sensitivity for 3-vessel disease (3VD), 63% for 2-vessel disease (2VD), and 90% for 1-vessel disease (1VD) detection vs. 32% for 3VD (P <0.0001), 53% for 2VD (P < 0.001), and 90% for 1VD (P = 1.0) detection with TPD alone method. The specificity for the combined method was 71% for 3VD, 72% for 2VD, and 47% for 1 VD detection vs. 90% for 3VD (P < 0.0001), 80% for 2VD (P <0.001), and 50% for 1VD detection (P=0.0625) for TPD alone method. The accuracy of 3VD detection by MTC+TPD was higher (69%) than the accuracy of TPD + change in ejection fraction (63%), (P< 0.004). Conclusion We established normal limits and a novel method for computation of regional functional changes between post-stress and rest. Combination of (TPD) with MTC improved the sensitivity for the detection of 3VD and 2VD as compared to TPD alone. PMID:22872739
Orellana, Luis H.; Rodriguez-R, Luis M.; Konstantinidis, Konstantinos T.
2016-10-07
Functional annotation of metagenomic and metatranscriptomic data sets relies on similarity searches based on e-value thresholds resulting in an unknown number of false positive and negative matches. To overcome these limitations, we introduce ROCker, aimed at identifying position-specific, most-discriminant thresholds in sliding windows along the sequence of a target protein, accounting for non-discriminative domains shared by unrelated proteins. ROCker employs the receiver operating characteristic (ROC) curve to minimize false discovery rate (FDR) and calculate the best thresholds based on how simulated shotgun metagenomic reads of known composition map onto well-curated reference protein sequences and thus, differs from HMM profiles andmore » related methods. We showcase ROCker using ammonia monooxygenase (amoA) and nitrous oxide reductase (nosZ) genes, mediating oxidation of ammonia and the reduction of the potent greenhouse gas, N 2O, to inert N 2, respectively. ROCker typically showed 60-fold lower FDR when compared to the common practice of using fixed e-values. Previously uncounted ‘atypical’ nosZ genes were found to be two times more abundant, on average, than their typical counterparts in most soil metagenomes and the abundance of bacterial amoA was quantified against the highly-related particulate methane monooxygenase (pmoA). Therefore, ROCker can reliably detect and quantify target genes in short-read metagenomes.« less
New photon-counting detectors for single-molecule fluorescence spectroscopy and imaging
Michalet, X.; Colyer, R. A.; Scalia, G.; Weiss, S.; Siegmund, Oswald H. W.; Tremsin, Anton S.; Vallerga, John V.; Villa, F.; Guerrieri, F.; Rech, I.; Gulinatti, A.; Tisa, S.; Zappa, F.; Ghioni, M.; Cova, S.
2013-01-01
Solution-based single-molecule fluorescence spectroscopy is a powerful new experimental approach with applications in all fields of natural sciences. Two typical geometries can be used for these experiments: point-like and widefield excitation and detection. In point-like geometries, the basic concept is to excite and collect light from a very small volume (typically femtoliter) and work in a concentration regime resulting in rare burst-like events corresponding to the transit of a single-molecule. Those events are accumulated over time to achieve proper statistical accuracy. Therefore the advantage of extreme sensitivity is somewhat counterbalanced by a very long acquisition time. One way to speed up data acquisition is parallelization. Here we will discuss a general approach to address this issue, using a multispot excitation and detection geometry that can accommodate different types of novel highly-parallel detector arrays. We will illustrate the potential of this approach with fluorescence correlation spectroscopy (FCS) and single-molecule fluorescence measurements. In widefield geometries, the same issues of background reduction and single-molecule concentration apply, but the duration of the experiment is fixed by the time scale of the process studied and the survival time of the fluorescent probe. Temporal resolution on the other hand, is limited by signal-to-noise and/or detector resolution, which calls for new detector concepts. We will briefly present our recent results in this domain. PMID:24729836
New photon-counting detectors for single-molecule fluorescence spectroscopy and imaging.
Michalet, X; Colyer, R A; Scalia, G; Weiss, S; Siegmund, Oswald H W; Tremsin, Anton S; Vallerga, John V; Villa, F; Guerrieri, F; Rech, I; Gulinatti, A; Tisa, S; Zappa, F; Ghioni, M; Cova, S
2011-05-13
Solution-based single-molecule fluorescence spectroscopy is a powerful new experimental approach with applications in all fields of natural sciences. Two typical geometries can be used for these experiments: point-like and widefield excitation and detection. In point-like geometries, the basic concept is to excite and collect light from a very small volume (typically femtoliter) and work in a concentration regime resulting in rare burst-like events corresponding to the transit of a single-molecule. Those events are accumulated over time to achieve proper statistical accuracy. Therefore the advantage of extreme sensitivity is somewhat counterbalanced by a very long acquisition time. One way to speed up data acquisition is parallelization. Here we will discuss a general approach to address this issue, using a multispot excitation and detection geometry that can accommodate different types of novel highly-parallel detector arrays. We will illustrate the potential of this approach with fluorescence correlation spectroscopy (FCS) and single-molecule fluorescence measurements. In widefield geometries, the same issues of background reduction and single-molecule concentration apply, but the duration of the experiment is fixed by the time scale of the process studied and the survival time of the fluorescent probe. Temporal resolution on the other hand, is limited by signal-to-noise and/or detector resolution, which calls for new detector concepts. We will briefly present our recent results in this domain.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Orellana, Luis H.; Rodriguez-R, Luis M.; Konstantinidis, Konstantinos T.
Functional annotation of metagenomic and metatranscriptomic data sets relies on similarity searches based on e-value thresholds resulting in an unknown number of false positive and negative matches. To overcome these limitations, we introduce ROCker, aimed at identifying position-specific, most-discriminant thresholds in sliding windows along the sequence of a target protein, accounting for non-discriminative domains shared by unrelated proteins. ROCker employs the receiver operating characteristic (ROC) curve to minimize false discovery rate (FDR) and calculate the best thresholds based on how simulated shotgun metagenomic reads of known composition map onto well-curated reference protein sequences and thus, differs from HMM profiles andmore » related methods. We showcase ROCker using ammonia monooxygenase (amoA) and nitrous oxide reductase (nosZ) genes, mediating oxidation of ammonia and the reduction of the potent greenhouse gas, N 2O, to inert N 2, respectively. ROCker typically showed 60-fold lower FDR when compared to the common practice of using fixed e-values. Previously uncounted ‘atypical’ nosZ genes were found to be two times more abundant, on average, than their typical counterparts in most soil metagenomes and the abundance of bacterial amoA was quantified against the highly-related particulate methane monooxygenase (pmoA). Therefore, ROCker can reliably detect and quantify target genes in short-read metagenomes.« less
2017-01-01
Abstract Functional annotation of metagenomic and metatranscriptomic data sets relies on similarity searches based on e-value thresholds resulting in an unknown number of false positive and negative matches. To overcome these limitations, we introduce ROCker, aimed at identifying position-specific, most-discriminant thresholds in sliding windows along the sequence of a target protein, accounting for non-discriminative domains shared by unrelated proteins. ROCker employs the receiver operating characteristic (ROC) curve to minimize false discovery rate (FDR) and calculate the best thresholds based on how simulated shotgun metagenomic reads of known composition map onto well-curated reference protein sequences and thus, differs from HMM profiles and related methods. We showcase ROCker using ammonia monooxygenase (amoA) and nitrous oxide reductase (nosZ) genes, mediating oxidation of ammonia and the reduction of the potent greenhouse gas, N2O, to inert N2, respectively. ROCker typically showed 60-fold lower FDR when compared to the common practice of using fixed e-values. Previously uncounted ‘atypical’ nosZ genes were found to be two times more abundant, on average, than their typical counterparts in most soil metagenomes and the abundance of bacterial amoA was quantified against the highly-related particulate methane monooxygenase (pmoA). Therefore, ROCker can reliably detect and quantify target genes in short-read metagenomes. PMID:28180325
Liu, Xing-Pei; Chen, Jing-Shuai; Mao, Chang-Jie; Niu, He-Lin; Song, Ji-Ming; Jin, Bao-Kang
2018-09-26
Herein, we established a novel ultrasensitive photoelectrochemical biosensor for detecting urokinase-type plasminogen activator (u-PA), based on a g-C 3 N 4 /CdS nanocomposite. The prepared nanocomposite was characterized by transmission electron microscopy, X-ray photoelectron spectroscopy, ultraviolet-visible absorption spectroscopy, and Fourier transform infrared spectroscopy, thus indicating that the nanocomposite was prepared successfully. In the typical process, the prepared nanocomposite was deposited on the surface of a bare FTO electrode. After being air-dried, the g-C 3 N 4 /CdS nanocomposite modified electrode was successively incubated with antibody against urokinase-type plasminogen activator and the blocking agent BSA to produce a photoelectrochemical biosensor for u-PA. In the presence of target u-PA antigen, the photocurrent response of the prepared biosensor electrode decreased significantly. The proposed novel photoelectrochemical biosensor exhibited good sensitivity, specificity, and reproducibility for u-PA detection, and a low detection limit of 33 fg mL -1 , ranging from 1 μg mL -1 -0.1 pg mL -1 . The proposed strategy should provide a promising method for detection of other biomarkers. Copyright © 2018 Elsevier B.V. All rights reserved.
On the Detectability of CO Molecules in the Interstellar Medium via X-Ray Spectroscopy
NASA Technical Reports Server (NTRS)
Joachimi, Katerine; Gatuzz, Efrain; Garcia, Javier; Kallman, Timothy R.
2016-01-01
We present a study of the detectability of CO molecules in the Galactic interstellar medium using high-resolution X-ray spectra obtained with the XMM-Newton Reflection Grating Spectrometer. We analysed 10 bright low mass X-ray binaries (LMXBs) to study the CO contribution in their line of sights. A total of 25 observations were fitted with the ISMabs X-ray absorption model which includes photoabsorption cross-sections for Oi, Oii, Oiii and CO. We performed a Monte Carlo (MC) simulation analysis of the goodness of fit in order to estimate the significance of the CO detection. We determine that the statistical analysis prevents a significant detection of CO molecular X-ray absorption features, except for the lines of sight towards XTE J1718-330 and 4U 1636-53. In the case of XTE J1817-330, this is the first report of the presence of CO along its line of sight. Our results reinforce the conclusion that molecules have a minor contribution to the absorption features in the O K-edge spectral region. We estimate a CO column density lower limit to perform a significant detection with XMM-Newton of N(CO) greater than 6 x 10(exp 16) per sq cm for typical exposure times.
Trainable Cataloging for Digital Image Libraries with Applications to Volcano Detection
NASA Technical Reports Server (NTRS)
Burl, M. C.; Fayyad, U. M.; Perona, P.; Smyth, P.
1995-01-01
Users of digital image libraries are often not interested in image data per se but in derived products such as catalogs of objects of interest. Converting an image database into a usable catalog is typically carried out manually at present. For many larger image databases the purely manual approach is completely impractical. In this paper we describe the development of a trainable cataloging system: the user indicates the location of the objects of interest for a number of training images and the system learns to detect and catalog these objects in the rest of the database. In particular we describe the application of this system to the cataloging of small volcanoes in radar images of Venus. The volcano problem is of interest because of the scale (30,000 images, order of 1 million detectable volcanoes), technical difficulty (the variability of the volcanoes in appearance) and the scientific importance of the problem. The problem of uncertain or subjective ground truth is of fundamental importance in cataloging problems of this nature and is discussed in some detail. Experimental results are presented which quantify and compare the detection performance of the system relative to human detection performance. The paper concludes by discussing the limitations of the proposed system and the lessons learned of general relevance to the development of digital image libraries.
Mull, Bonnie J.; Narayanan, Jothikumar; Hill, Vincent R.
2013-01-01
Primary amebic meningoencephalitis (PAM) is a rare and typically fatal infection caused by the thermophilic free-living ameba, Naegleria fowleri. In 2010, the first confirmed case of PAM acquired in Minnesota highlighted the need for improved detection and quantification methods in order to study the changing ecology of N. fowleri and to evaluate potential risk factors for increased exposure. An immunomagnetic separation (IMS) procedure and real-time PCR TaqMan assay were developed to recover and quantify N. fowleri in water and sediment samples. When one liter of lake water was seeded with N. fowleri strain CDC:V212, the method had an average recovery of 46% and detection limit of 14 amebas per liter of water. The method was then applied to sediment and water samples with unknown N. fowleri concentrations, resulting in positive direct detections by real-time PCR in 3 out of 16 samples and confirmation of N. fowleri culture in 6 of 16 samples. This study has resulted in a new method for detection and quantification of N. fowleri in water and sediment that should be a useful tool to facilitate studies of the physical, chemical, and biological factors associated with the presence and dynamics of N. fowleri in environmental systems. PMID:24228172
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Yue; Duan, Yan-Ping, E-mail: duanyanping@tongji.edu.cn; Huang, Fan
Highlights: • PBDEs were detected in the majority of e-waste. • PBDEs were found in TVs made in China after 1990. • The levels of ΣPBDEs in e-waste made in Japan far exceed the threshold limit of RoHS. • The inappropriate recycling and disposal of e-waste is an important source of PBDEs. - Abstract: Very few data for polybrominated diphenyl ethers (PBDEs) were available in the electronic waste (e-waste) as one of the most PBDEs emission source. This study reported concentrations of PBDEs in e-waste including printer, rice cooker, computer monitor, TV, electric iron and water dispenser, as well asmore » dust from e-waste, e-waste dismantling workshop and surface soil from inside and outside of an e-waste recycling plant in Shanghai, Eastern China. The results showed that PBDEs were detected in the majority of e-waste, and the concentrations of ΣPBDEs ranged from not detected to 175 g/kg, with a mean value of 10.8 g/kg. PBDEs were found in TVs made in China after 1990. The mean concentrations of ΣPBDEs in e-waste made in Korea, Japan, Singapore and China were 1.84 g/kg, 20.5 g/kg, 0.91 g/kg, 4.48 g/kg, respectively. The levels of ΣPBDEs in e-waste made in Japan far exceed the threshold limit of RoHS (1.00 g/kg). BDE-209 dominated in e-waste, accounting for over 93%. The compositional patterns of PBDEs congeners resembled the profile of Saytex 102E, indicating the source of deca-BDE. Among the samples of dust and surface soil from a typical e-waste recycling site, the highest concentrations of Σ{sub 18}PBDEs and BDE-209 were found in dust in e-waste, ranging from 1960 to 340,710 ng/g and from 910 to 320,400 ng/g, which were 1–2 orders of magnitude higher than other samples. It suggested that PBDEs released from e-waste via dust, and then transferred to surrounding environment.« less
Li, Xiaofang; Bond, Philip L.; Van Nostrand, Joy D.; Zhou, Jizhong; Huang, Longbin
2015-01-01
Engineering microbial diversity to enhance soil functions may improve the success of direct revegetation in sulphidic mine tailings. Therefore, it is essential to explore how remediation and initial plant establishment can alter microbial communities, and, which edaphic factors control these changes under field conditions. A long-term revegetation trial was established at a Pb-Zn-Cu tailings impoundment in northwest Queensland. The control and amended and/or revegetated treatments were sampled from the 3-year-old trial. In total, 24 samples were examined using pyrosequencing of 16S rRNA genes and various chemical properties. The results showed that the microbial diversity was positively controlled by soil soluble Si and negatively controlled by soluble S, total Fe and total As, implying that pyrite weathering posed a substantial stress on microbial development in the tailings. All treatments were dominated by typical extremophiles and lithotrophs, typically Truepera, Thiobacillus, Rubrobacter; significant increases in microbial diversity, biomass and frequency of organotrophic genera (typically Nocardioides and Altererythrobacter) were detected in the revegetated and amended treatment. We concluded that appropriate phytostabilization options have the potential to drive the microbial diversity and community structure in the tailings toward those of natural soils, however, inherent environmental stressors may limit such changes. PMID:26268667
Histochemistry of lectin-binding sites in Halicryptus spinulosus (Priapulida).
Busch, A; Schumacher, U; Storch, V
2001-02-01
Priapulida represent one of the phylogenetically oldest multicellular animal groups. In multicellular animals (Metazoa) cell-to-cell and cell-to-matrix interactions are often mediated by carbohydrate residues of glycoconjugates. To analyze the carbohydrate composition of a phylogenetically old species, lectin histochemistry was employed on 5 specimens of the priapulid Halicryptus spinulosus. Many lectins bound to the chitin-containing cuticle, including those specific for carbohydrates other than N-acetylglucosamine, the principle building block of chitin. The connective tissue of the animals contained both N-acetylglucosamine and N-acetylgalactosamine. Mannose residues were widely distributed with the exception of the cuticle, but complex type carbohydrates were not present in the entire animal. Sialic acid residues were only detected in the cuticle and brush border of the intestinal epithelium, while fucose was limited to the cuticle. Thus, the lectin-binding pattern indicated that sugars typical for the linking region of both N- and O-glycoproteins in mammals are also present in H. spinulosus. Carbohydrate residues that are typical for the complex type of N-linked glycans in vertebrates are not present as are carbohydrate residues typical for the termination of O-linked carbohydrate chains. Hence, a truncated form of both N- and O-linked glycosylation is present in H. spinulosus indicating that more complex patterns of glycosylation developed later during evolution.
Limited view angle iterative CT reconstruction
NASA Astrophysics Data System (ADS)
Kisner, Sherman J.; Haneda, Eri; Bouman, Charles A.; Skatter, Sondre; Kourinny, Mikhail; Bedford, Simon
2012-03-01
Computed Tomography (CT) is widely used for transportation security to screen baggage for potential threats. For example, many airports use X-ray CT to scan the checked baggage of airline passengers. The resulting reconstructions are then used for both automated and human detection of threats. Recently, there has been growing interest in the use of model-based reconstruction techniques for application in CT security systems. Model-based reconstruction offers a number of potential advantages over more traditional direct reconstruction such as filtered backprojection (FBP). Perhaps one of the greatest advantages is the potential to reduce reconstruction artifacts when non-traditional scan geometries are used. For example, FBP tends to produce very severe streaking artifacts when applied to limited view data, which can adversely affect subsequent processing such as segmentation and detection. In this paper, we investigate the use of model-based reconstruction in conjunction with limited-view scanning architectures, and we illustrate the value of these methods using transportation security examples. The advantage of limited view architectures is that it has the potential to reduce the cost and complexity of a scanning system, but its disadvantage is that limited-view data can result in structured artifacts in reconstructed images. Our method of reconstruction depends on the formulation of both a forward projection model for the system, and a prior model that accounts for the contents and densities of typical baggage. In order to evaluate our new method, we use realistic models of baggage with randomly inserted simple simulated objects. Using this approach, we show that model-based reconstruction can substantially reduce artifacts and improve important metrics of image quality such as the accuracy of the estimated CT numbers.
Xiao-hong, Zhou; Lan-hua, Liu; Wei-qi, Xu; Bao-dong, Song; Jian-wu, Sheng; Miao, He; Han-chang, Shi
2014-01-01
This paper proposed a compact and portable planar waveguide evanescent wave immunosensor (EWI) for highly sensitive detection of BPA. The incident light is coupled into the planar waveguide chip via a beveled angle through undergoing total internal reflection, where the evanescent wave field forms and excites the binding fluorophore-tagged antibodies on the chip surface. Typical calibration curves obtained for BPA has detection limits of 0.03 μg/L. Linear response for BPA ranged from 0.124 μg/L–9.60 μg/L with 50% inhibition concentration for BPA of 1.09 ± 0.25 μg/L. The regeneration of the planar optical waveguide chip allows the performance of more than 300 assay cycles within an analysis time of about 20 min for each assay cycle. By application of effective pretreatment procedure, the recoveries of BPA in real water samples gave values from 88.3% ± 8.5% to 103.7% ± 3.5%, confirming its application potential in the measurement of BPA in reality. PMID:24699239
Detection of extrasolar planets by the large deployable reflector
NASA Technical Reports Server (NTRS)
Hollenbach, D. J.; Takahashi, T.
1984-01-01
The best wavelength for observing Jupiter-size planetary companions to stars other than the Sun is one at which a planet's thermal emission is strongest; typically this would occur in the far-infrared region. It is assumed that the orbiting infrared telescope used is diffraction-limited so that the resolution of the planet from the central star is accomplished in the wings of the star's Airy pattern. Proxima Centauri, Barnard's Star, Wolf 359, and Epsilon Eridani are just a few of the many nearest main-sequence stars that could be studied with the large deployable relfector (LDR). The detectability of a planet improves for warmer planets and less luminous stars; therefore, planets around white dwarfs and those young planets which have sufficient internal gravitational energy release so as to cause a significant increase in their temperatures are considered. If white dwarfs are as old as they are usually assumed to be (5-10 billion yr), then only the nearest white dwarf (Sirius B) is within the range of LDR. The Ursa Major cluster and Perseu cluster are within LDR's detection range mainly because of their proximity and young age, respectively.
On Chip Protein Pre-Concentration for Enhancing the Sensitivity of Porous Silicon Biosensors.
Arshavsky-Graham, Sofia; Massad-Ivanir, Naama; Paratore, Federico; Scheper, Thomas; Bercovici, Moran; Segal, Ester
2017-12-22
Porous silicon (PSi) nanomaterials have been widely studied as label-free optical biosensors for protein detection. However, these biosensors' performance, specifically in terms of their sensitivity (which is typically in the micromolar range), is insufficient for many applications. Herein, we present a proof-of-concept application of the electrokinetic isotachophoresis (ITP) technique for real-time preconcentration of a target protein on a PSi biosensor. With ITP, a highly concentrated target zone is delivered to the sensing area, where the protein target is captured by immobilized aptamers. The detection of the binding events is conducted in a label-free manner by reflective interferometric Fourier transformation spectroscopy (RIFTS). Up to 1000-fold enhancement in local concentration of the protein target and the biosensor's sensitivity are achieved, with a measured limit of detection of 7.5 nM. Furthermore, the assay is successfully performed in complex media, such as bacteria lysate samples, while the selectivity of the biosensor is retained. The presented assay could be further utilized for other protein targets, and to promote the development of clinically useful PSi biosensors.
NASA Astrophysics Data System (ADS)
Wulandari, A.; Sunarti, TC; Fahma, F.; Noor, E.
2018-05-01
Bioactive compounds such as anthocyanin are a natural ingredient that produces color with typical specificity. Anthocyanin from Ayamurasaki purple sweet potato (Ipomoea batatas L.) was extracted in ethanol and used as crude anthocyanin extracts. The color of bioactive anthocyanin can be used as a biosensor to detect chemical of food products because it provides a unique color change. However, the each bioactive has a particular sensitivity and selectivity to a specific chemical, so it is necessary to select and test the selectivity. Six chemicals, which were sodium nitrite, sodium benzoate, sodium cyclamate (food additives), formalin, borax (illegal food preservatives), and residue fertilizer (urea) were tested and observed for its color change. The results showed that the bioactive anthocyanin of purple sweet potato with the concentration of ± 42.65 ppm had better selectivity and sensitivity to sodium nitrite with a detection limit of 100 ppm, where the color change response time ranged from 15-20 minutes. The selectivity and sensitivity of this bioactive can be used as the basic information for the development of biosensor.
G-index: A new metric to describe dynamic refractive index effects in HPLC absorbance detection.
Kraiczek, Karsten G; Rozing, Gerard P; Zengerle, Roland
2018-09-01
High performance liquid chromatography (HPLC) with a solvent gradient and absorbance detection is one of the most widely used methods in analytical chemistry. The observed absorbance baseline is affected by the changes in the refractive index (RI) of the mobile phase. Near the limited of detection, this complicates peak quantitation. The general aspects of these RI-induced apparent absorbance effects are discussed. Two different detectors with fundamentally different optics and flow cell concepts, a variable-wavelength detector equipped with a conventional flow cell and a diode-array detector equipped with a liquid core waveguide flow cell, are compared with respect to their RI behavior. A simple method to separate static - partly unavoidable - RI effects from dynamic RI effects is presented. It is shown that the dynamic RI behavior of an absorbance detector can be well described using a single, relatively easy-to-determine metric called the G-index. The G-index is typically in the order of a few seconds and its sign depends on the optical flow cell concept. Copyright © 2018 Elsevier B.V. All rights reserved.
What's the object of object working memory in infancy? Unraveling 'what' and 'how many'.
Kibbe, Melissa M; Leslie, Alan M
2013-06-01
Infants have a bandwidth-limited object working memory (WM) that can both individuate and identify objects in a scene, (answering 'how many?' or 'what?', respectively). Studies of infants' WM for objects have typically looked for limits on either 'how many' or 'what', yielding different estimates of infant capacity. Infants can keep track of about three individuals (regardless of identity), but appear to be much more limited in the number of specific identities they can recall. Why are the limits on 'how many' and 'what' different? Are the limits entirely separate, do they interact, or are they simply two different aspects of the same underlying limit? We sought to unravel these limits in a series of experiments which tested 9- and 12-month-olds' WM for object identities under varying degrees of difficulty. In a violation-of-expectation looking-time task, we hid objects one at a time behind separate screens, and then probed infants' WM for the shape identity of the penultimate object in the sequence. We manipulated the difficulty of the task by varying both the number of objects in hiding locations and the number of means by which infants could detect a shape change to the probed object. We found that 9-month-olds' WM for identities was limited by the number of hiding locations: when the probed object was one of two objects hidden (one in each of two locations), 9-month-olds succeeded, and they did so even though they were given only one means to detect the change. However, when the probed object was one of three objects hidden (one in each of three locations), they failed, even when they were given two means to detect the shape change. Twelve-month-olds, by contrast, succeeded at the most difficult task level. Results show that WM for 'how many' and for 'what' are not entirely separate. Individuated objects are tracked relatively cheaply. Maintaining bindings between indexed objects and identifying featural information incurs a greater attentional/memory cost. This cost reduces with development. We conclude that infant WM supports a small number of featureless object representations that index the current locations of objects. These can have featural information bound to them, but only at substantial cost. Copyright © 2013 Elsevier Inc. All rights reserved.
Mills, Kathryn; Idris, Aula; Pham, Thu-An; Porte, John; Wiggins, Mark; Kavakli, Manolya
2017-12-18
To determine the validity and reliability of the peak frontal plane knee angle evaluated by a virtual reality (VR) netball game when landing from a drop vertical jump (DVJ). Laboratory Methods: Forty participants performed 3 DVJs evaluated by 3-dimensional (3D) motion analysis and 3 DVJs evaluated by the VR game. Limits of agreement for the peak projected frontal plane knee angle and peak knee abduction were determined. Participants were given a consensus category of "Above threshold" or "Below threshold" based on a pre-specified threshold angle of 9˚ during landing. Classification agreement was determined using kappa coefficient and accuracy was determined using specificity and sensitivity. Ten participants returned 1-week later to determine intra-rater reliability, standard error of the measure and typical error. The mean difference in detected frontal plane knee angle was 3.39˚ (1.03˚, 5.74˚). Limits of agreement were -10.27˚ (-14.36˚, -6.19˚) to 17.05˚ (12.97˚, 21.14˚). Substantial agreement, specificity and sensitivity were observed for the threshold classification (ĸ = 0.66, [0.42, 0.88] specificity= 0.96 [0.78, 1.0], sensitivity= 0.75 [0.43, 0.95]). The game exhibited acceptable reliability over time (ICC (3,1) = 0.844) and error was approximately 2˚. The VR game reliably evaluated a projected frontal plane knee angle. While the knee angle detected by the VR game is strongly related peak knee abduction, the accuracy of detecting the exact angle was limited. A threshold approach may be a more accurate approach for gaming technology to evaluate frontal plane knee angles when landing from a jump.
Microbial mineralization of dichloroethene and vinyl chloride under hypoxic conditions
Bradley, Paul M.; Chapelle, Francis H.
2011-01-01
Mineralization of 14C-radiolabled vinyl chloride ([1,2-14C] VC) and cis-dichloroethene ([1,2-14C] cis-DCE) under hypoxic (initial dissolved oxygen (DO) concentrations about 0.1 mg/L) and nominally anoxic (DO minimum detection limit = 0.01 mg/L) was examined in chloroethene-exposed sediments from two groundwater and two surface water sites. The results show significant VC and dichloroethene (DCE) mineralization under hypoxic conditions. All the sample treatments exhibited pseudo-first-order kinetics for DCE and VC mineralization over an extended range of substrate concentrations. First-order rates for VC mineralization were approximately 1 to 2 orders of magnitude higher in hypoxic groundwater sediment treatments and at least three times higher in hypoxic surface water sediment treatments than in the respective anoxic treatments. For VC, oxygen-linked processes accounted for 65 to 85% of mineralization at DO concentrations below 0.1 mg/L, and 14CO2 was the only degradation product observed in VC treatments under hypoxic conditions. Because the lower detection limit for DO concentrations measured in the field is typically 0.1 to 0.5 mg/L, these results indicate that oxygen-linked VC and DCE biodegradation can be significant under field conditions that appear anoxic. Furthermore, because rates of VC mineralization exceeded rates of DCE mineralization under hypoxic conditions, DCE accumulation without concomitant accumulation of VC may not be evidence of a DCE degradative “stall” in chloroethene plumes. Significantly, mineralization of VC above the level that could reasonably be attributed to residual DO contamination was also observed in several nominally anoxic (DO minimum detection limit = 0.01 mg/L) microcosm treatments.
2015-01-01
We have demonstrated a multistep 2-dimensional paper network immunoassay based on controlled rehydration of patterned, dried reagents. Previous work has shown that signal enhancement improves the limit of detection in 2-dimensional paper network assays, but until now, reagents have only been included as wet or dried in separate conjugate pads placed at the upstream end of the assay device. Wet reagents are not ideal for point-of-care because they must be refrigerated and typically limit automation and require more user steps. Conjugate pads allow drying but do not offer any control of the reagent distribution upon rehydration and can be a source of error when pads do not contact the assay membrane uniformly. Furthermore, each reagent is dried on a separate pad, increasing the fabrication complexity when implementing multistep assays that require several different reagents. Conversely, our novel method allows for consistent, controlled rehydration from patterned reagent storage depots directly within the paper membrane. In this assay demonstration, four separate reagents were patterned in different regions of the assay device: a gold-antibody conjugate used for antigen detection and three different signal enhancement components that must not be mixed until immediately before use. To show the viability of patterning and drying reagents directly onto a paper device for dry reagent storage and subsequent controlled release, we tested this device with the malaria antigen Plasmodium falciparum histidine-rich protein 2 (PfHRP2) as an example of target analyte. In this demonstration, the signal enhancement step increases the visible signal by roughly 3-fold and decreases the analytical limit of detection by 2.75-fold. PMID:24882058
National review of ambient air toxics observations.
Strum, Madeleine; Scheffe, Richard
2016-02-01
Ambient air observations of hazardous air pollutant (HAPs), also known as air toxics, derived from routine monitoring networks operated by states, local agencies, and tribes (SLTs), are analyzed to characterize national concentrations and risk across the nation for a representative subset of the 187 designated HAPs. Observations from the National Air Toxics Trend Sites (NATTS) network of 27 stations located in most major urban areas of the contiguous United States have provided a consistent record of HAPs that have been identified as posing the greatest risk since 2003 and have also captured similar concentration patterns of nearly 300 sites operated by SLTs. Relatively high concentration volatile organic compounds (VOCs) such as benzene, formaldehyde, and toluene exhibit the highest annual average concentration levels, typically ranging from 1 to 5 µg/m(3). Halogenated (except for methylene chloride) and semivolatile organic compounds (SVOCs) and metals exhibit concentrations typically 2-3 orders of magnitude lower. Formaldehyde is the highest national risk driver based on estimated cancer risk and, nationally, has not exhibited significant changes in concentration, likely associated with the large pool of natural isoprene and formaldehyde emissions. Benzene, toluene, ethylbenzene, and 1,3-butadiene are ubiquitous VOC HAPs with large mobile source contributions that continue to exhibit declining concentrations over the last decade. Common chlorinated organic compounds such as ethylene dichloride and methylene chloride exhibit increasing concentrations. The variety of physical and chemical attributes and measurement technologies across 187 HAPs result in a broad range of method detection limits (MDLs) and cancer risk thresholds that challenge confidence in risk results for low concentration HAPs with MDLs near or greater than risk thresholds. From a national monitoring network perspective, the ability of the HAPs observational database to characterize the multiple pollutant and spatial scale patterns influencing exposure is severely limited and positioned to benefit by leveraging a variety of emerging measurement technologies. Ambient air toxics observation networks have limited ability to characterize the broad suite of hazardous air pollutants (HAPs) that affect exposures across multiple spatial scales. While our networks are best suited to capture major urban-scale signals of ubiquitous volatile organic compound HAPs, incorporation of sensing technologies that address regional and local-scale exposures should be pursued to address major gaps in spatial resolution. Caution should be exercised in interpreting HAPs observations based on data proximity to minimum detection limit and risk thresholds.
Protection of Renewable-dominated Microgrids: Challenges and Potential Solutions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Elkhatib, Mohamed; Ellis, Abraham; Milan Biswal
keywords : Microgrid Protection, Impedance Relay, Signal Processing-based Fault Detec- tion, Networked Microgrids, Communication-Assisted Protection In this report we address the challenge of designing efficient protection system for inverter- dominated microgrids. These microgrids are characterised with limited fault current capacity as a result of current-limiting protection functions of inverters. Typically, inverters limit their fault contribution in sub-cycle time frame to as low as 1.1 per unit. As a result, overcurrent protection could fail completely to detect faults in inverter-dominated microgrids. As part of this project a detailed literature survey of existing and proposed microgrid protection schemes were conducted. The surveymore » concluded that there is a gap in the available microgrid protection methods. The only credible protection solution available in literature for low- fault inverter-dominated microgrids is the differential protection scheme which represents a robust transmission-grade protection solution but at a very high cost. Two non-overcurrent protection schemes were investigated as part of this project; impedance-based protection and transient-based protection. Impedance-based protection depends on monitoring impedance trajectories at feeder relays to detect faults. Two communication-based impedance-based protection schemes were developed. the first scheme utilizes directional elements and pilot signals to locate the fault. The second scheme depends on a Central Protection Unit that communicates with all feeder relays to locate the fault based on directional flags received from feeder relays. The later approach could potentially be adapted to protect networked microgrids and dynamic topology microgrids. Transient-based protection relies on analyzing high frequency transients to detect and locate faults. This approach is very promising but its implementation in the filed faces several challenges. For example, high frequency transients due to faults can be confused with transients due to other events such as capacitor switching. Additionally, while detecting faults by analyzing transients could be doable, locating faults based on analyzing transients is still an open question.« less
Protection of Renewable-dominated Microgrids: Challenges and Potential Solutions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Elkhatib, Mohamed; Ellis, Abraham; Biswal, Milan
In this report we address the challenge of designing efficient protection system for inverter- dominated microgrids. These microgrids are characterised with limited fault current capacity as a result of current-limiting protection functions of inverters. Typically, inverters limit their fault contribution in sub-cycle time frame to as low as 1.1 per unit. As a result, overcurrent protection could fail completely to detect faults in inverter-dominated microgrids. As part of this project a detailed literature survey of existing and proposed microgrid protection schemes were conducted. The survey concluded that there is a gap in the available microgrid protection methods. The only crediblemore » protection solution available in literature for low- fault inverter-dominated microgrids is the differential protection scheme which represents a robust transmission-grade protection solution but at a very high cost. Two non-overcurrent protection schemes were investigated as part of this project; impedance-based protection and transient-based protection. Impedance-based protection depends on monitoring impedance trajectories at feeder relays to detect faults. Two communication-based impedance-based protection schemes were developed. the first scheme utilizes directional elements and pilot signals to locate the fault. The second scheme depends on a Central Protection Unit that communicates with all feeder relays to locate the fault based on directional flags received from feeder relays. The later approach could potentially be adapted to protect networked microgrids and dynamic topology microgrids. Transient-based protection relies on analyzing high frequency transients to detect and locate faults. This approach is very promising but its implementation in the filed faces several challenges. For example, high frequency transients due to faults can be confused with transients due to other events such as capacitor switching. Additionally, while detecting faults by analyzing transients could be doable, locating faults based on analyzing transients is still an open question.« less
Toward high-resolution NMR spectroscopy of microscopic liquid samples
DOE Office of Scientific and Technical Information (OSTI.GOV)
Butler, Mark C.; Mehta, Hardeep S.; Chen, Ying
A longstanding limitation of high-resolution NMR spectroscopy is the requirement for samples to have macroscopic dimensions. Commercial probes, for example, are designed for volumes of at least 5 mL, in spite of decades of work directed toward the goal of miniaturization. Progress in miniaturizing inductive detectors has been limited by a perceived need to meet two technical requirements: (1) minimal separation between the sample and the detector, which is essential for sensitivity, and (2) near-perfect magnetic-field homogeneity at the sample, which is typically needed for spectral resolution. The first of these requirements is real, but the second can be relaxed,more » as we demonstrate here. By using pulse sequences that yield high-resolution spectra in an inhomogeneous field, we eliminate the need for near-perfect field homogeneity and the accompanying requirement for susceptibility matching of microfabricated detector components. With this requirement removed, typical imperfections in microfabricated components can be tolerated, and detector dimensions can be matched to those of the sample, even for samples of volume << 5 uL. Pulse sequences that are robust to field inhomogeneity thus enable small-volume detection with optimal sensitivity. We illustrate the potential of this approach to miniaturization by presenting spectra acquired with a flat-wire detector that can easily be scaled to subnanoliter volumes. In particular, we report high-resolution NMR spectroscopy of an alanine sample of volume 500 pL.« less
Subpixel target detection and enhancement in hyperspectral images
NASA Astrophysics Data System (ADS)
Tiwari, K. C.; Arora, M.; Singh, D.
2011-06-01
Hyperspectral data due to its higher information content afforded by higher spectral resolution is increasingly being used for various remote sensing applications including information extraction at subpixel level. There is however usually a lack of matching fine spatial resolution data particularly for target detection applications. Thus, there always exists a tradeoff between the spectral and spatial resolutions due to considerations of type of application, its cost and other associated analytical and computational complexities. Typically whenever an object, either manmade, natural or any ground cover class (called target, endmembers, components or class) gets spectrally resolved but not spatially, mixed pixels in the image result. Thus, numerous manmade and/or natural disparate substances may occur inside such mixed pixels giving rise to mixed pixel classification or subpixel target detection problems. Various spectral unmixing models such as Linear Mixture Modeling (LMM) are in vogue to recover components of a mixed pixel. Spectral unmixing outputs both the endmember spectrum and their corresponding abundance fractions inside the pixel. It, however, does not provide spatial distribution of these abundance fractions within a pixel. This limits the applicability of hyperspectral data for subpixel target detection. In this paper, a new inverse Euclidean distance based super-resolution mapping method has been presented that achieves subpixel target detection in hyperspectral images by adjusting spatial distribution of abundance fraction within a pixel. Results obtained at different resolutions indicate that super-resolution mapping may effectively aid subpixel target detection.
Development of nanosecond time-resolved infrared detection at the LEAF pulse radiolysis facility
Grills, David C.; Farrington, Jaime A.; Layne, Bobby H.; ...
2015-04-27
When coupled with transient absorption spectroscopy, pulse radiolysis, which utilizes high-energy electron pulses from an accelerator, is a powerful tool for investigating the kinetics and thermodynamics of a wide range of radiation-induced redox and electron transfer processes. The majority of these investigations detect transient species in the UV, visible, or near-IR spectral regions. Unfortunately, the often-broad and featureless absorption bands in these regions can make the definitive identification of intermediates difficult. Time-resolved vibrational spectroscopy would offer much improved structural characterization, but has received only limited application in pulse radiolysis. In this paper, we describe in detail the development of amore » unique nanosecond time-resolved infrared (TRIR) detection capability for condensed-phase pulse radiolysis on a new beam line at the LEAF facility of Brookhaven National Laboratory. The system makes use of a suite of high-power, continuous wave external-cavity quantum cascade lasers as the IR probe source, with coverage from 2330-1051 cm⁻¹. The response time of the TRIR detection setup is ~40 ns, with a typical sensitivity of ~100 µOD after 4-8 signal averages using a dual-beam probe/reference normalization detection scheme. As a result, this new detection method has enabled mechanistic investigations of a range of radiation-induced chemical processes, some of which are highlighted here.« less
Application of Digital PCR in Detecting Human Diseases Associated Gene Mutation.
Tong, Yu; Shen, Shizhen; Jiang, Hui; Chen, Zhi
2017-01-01
Gene mutation has been considered a research hotspot, and the rapid development of biomedicine has enabled significant advances in the evaluation of gene mutations. The advent of digital polymerase chain reaction (dPCR) elevates the detection of gene mutations to unprecedented levels of precision, especially in cancer-associated genes. dPCR has been utilized in the detection of tumor markers in cell-free DNA (cfDNA) samples from patients with different types of cancer in samples such as plasma, cerebrospinal fluid, urine and sputum, which confers significant value for dPCR in both clinical applications and basic research. Moreover, dPCR is extensively used in detecting pathogen mutations related to typical features of infectious diseases (e.g., drug resistance) and mutation status of heteroplasmic mitochondrial DNA, which determines the manifestation and progression of mtDNA-related diseases, as well as allows for the prenatal diagnosis of monogenic diseases and the assessment of the genome editing effects. Compared with real-time PCR (qPCR) and sequencing, the higher sensitivity and accuracy of dPCR indicates a great advantage in the detection of rare mutation. As a new technique, dPCR has some limitations, such as the necessity of highly allele-specific probes and a large sample volume. In this review, we summarize the application of dPCR in the detection of human disease-associated gene mutations. © 2017 The Author(s). Published by S. Karger AG, Basel.
NASA Technical Reports Server (NTRS)
Delin, K. A.; Harvey, R. P.; Chabot, N. A.; Jackson, S. P.; Adams, Mike; Johnson, D. W.; Britton, J. T.
2003-01-01
The most rigorous tests of the ability to detect extant life will occur where biotic activity is limited by severe environmental conditions. Cryogenic environments are among the most severe-the energy and nutrients needed for biological activity are in short supply while the climate itself is actively destructive to biological mechanisms. In such settings biological activity is often limited to brief flourishes, occurring only when and where conditions are at their most favorable. The closer that typical regional conditions approach conditions that are actively hostile , the more widely distributed biological blooms will be in both time and space. On a spatial dimension of a few meters or a time dimension of a few days, biological activity becomes much more difficult to detect. One way to overcome this difficulty is to establish a Sensor Web that can monitor microclimates over appropriate scales of time and distance, allowing a continuous virtual presence for instant recognition of favorable conditions. A more sophisticated Sensor Web, incorporating metabolic sensors, can effectively meet the challenge to be in "the right place in the right time". This is particularly of value in planetary surface missions, where limited mobility and mission timelines require extremely efficient sample and data acquisition. Sensor Webs can be an effective way to fill the gap between broad scale orbital data collection and fine-scale surface lander science. We are in the process of developing an intelligent, distributed and autonomous Sensor Web that will allow us to monitor microclimate under severe cryogenic conditions, approaching those extant on the surface of Mars. Ultimately this Sensor Web will include the ability to detect and/or establish limits on extant microbiological activity through incorporation of novel metabolic gas sensors. Here we report the results of our first deployment of a Sensor Web prototype in a previously unexplored high altitude East Antarctic Plateau "micro-oasis" at the MacAlpine Hills, Law Glacier, Antarctica.
Xu, Bruce S; Lollar, Barbara Sherwood; Passeport, Elodie; Sleep, Brent E
2016-04-15
Aqueous phase diffusion-related isotope fractionation (DRIF) for carbon isotopes was investigated for common groundwater contaminants in systems in which transport could be considered to be one-dimensional. This paper focuses not only on theoretically observable DRIF effects in these systems but introduces the important concept of constraining "observable" DRIF based on constraints imposed by the scale of measurements in the field, and on standard limits of detection and analytical uncertainty. Specifically, constraints for the detection of DRIF were determined in terms of the diffusive fractionation factor, the initial concentration of contaminants (C0), the method detection limit (MDL) for isotopic analysis, the transport time, and the ratio of the longitudinal mechanical dispersion coefficient to effective molecular diffusion coefficient (Dmech/Deff). The results allow a determination of field conditions under which DRIF may be an important factor in the use of stable carbon isotope measurements for evaluation of contaminant transport and transformation for one-dimensional advective-dispersive transport. This study demonstrates that for diffusion-dominated transport of BTEX, MTBE, and chlorinated ethenes, DRIF effects are only detectable for the smaller molar mass compounds such as vinyl chloride for C0/MDL ratios of 50 or higher. Much larger C0/MDL ratios, corresponding to higher source concentrations or lower detection limits, are necessary for DRIF to be detectable for the higher molar mass compounds. The distance over which DRIF is observable for VC is small (less than 1m) for a relatively young diffusive plume (<100years), and DRIF will not easily be detected by using the conventional sampling approach with "typical" well spacing (at least several meters). With contaminant transport by advection, mechanical dispersion, and molecular diffusion this study suggests that in field sites where Dmech/Deff is larger than 10, DRIF effects will likely not be observable for common groundwater contaminants. Importantly, under most field conditions, Dmech/Deff≥10 is usually satisfied in the longitudinal direction, suggesting that DRIF is not likely to be observable in most groundwater systems in which contaminant transport is predominantly one-dimensional. Given the importance in the MDL it is recommended that MDL should always be explicitly reported in both modeling and field studies. Copyright © 2016. Published by Elsevier B.V.
Directional Limits on Persistent Gravitational Waves Using LIGO S5 Science Data
NASA Technical Reports Server (NTRS)
Abadie, J.; Abbott, B. P.; Abbott, R.; Abernathy, M.; Accadia, T.; Acernese, F.; Adams, C.; Adhikari, R.; Ajith, P.; Allen, B.;
2011-01-01
The gravitational-wave (GW) sky may include nearby pointlike sources as well as astrophysical and cosmological stochastic backgrounds. Since the relative strength and angular distribution of the many possible sources of GWs are not well constrained, searches for GW signals must be performed in a model-independent way. To that end we perform two directional searches for persistent GWs using data from the LIGO S5 science run: one optimized for pointlike sources and one for arbitrary extended sources. The latter result is the first of its kind. Finding no evidence to support the detection of GWs, we present 90% confidence level (CL) upper-limit maps of GW strain power with typical values between 2 - 20 X 10 (exp -50) strain2Hz(exp -1) and 5 - 35 X 10 (exp -49) strain2Hz(exp -1)/sr for pointlike and extended sources respectively. The limits on pointlike sources constitute a factor of 30 improvement over the previous best limits. We also set 90% CL limits on the narrow-band root-mean-square GW strain from interesting targets including Sco X-1, SN1987A and the Galactic Center as low as approximately equal 7 X 10(exp -25) in the most sensitive frequency range near 160Hz. These limits are the most constraining to date and constitute a factor of 5 improvement over the previous best limits.
NASA Astrophysics Data System (ADS)
Duxbury, Geoffrey; Hay, Kenneth G.; Langford, Nigel; Johnson, Mark P.; Black, John D.
2011-09-01
It has been demonstrated that an intra-pulse scanned quantum cascade laser spectrometer may be used to obtain real-time diagnostics of the amounts of carbon monoxide, carbon dioxide, and water, in the exhaust of an aero gas turbine (turbojet) engine operated in a sea level test cell. Measurements have been made of the rapid changes in composition following ignition, the composition under steady state operating conditions, and the composition changes across the exhaust plume. The minimum detection limit for CO in a double pass through a typical gas turbine plume of 50 cm in diameter, with 0.4 seconds integration time, is approximately 2 ppm.
In Vivo and Real-time Monitoring of Secondary Metabolites of Living Organisms by Mass Spectrometry
NASA Astrophysics Data System (ADS)
Hu, Bin; Wang, Lei; Ye, Wen-Cai; Yao, Zhong-Ping
2013-07-01
Secondary metabolites are compounds that are important for the survival and propagation of animals and plants. Our current understanding on the roles and secretion mechanism of secondary metabolites is limited by the existing techniques that typically cannot provide transient and dynamic information about the metabolic processes. In this manuscript, by detecting venoms secreted by living scorpion and toad upon attack and variation of alkaloids in living Catharanthus roseus upon stimulation, which represent three different sampling methods for living organisms, we demonstrated that in vivo and real-time monitoring of secondary metabolites released from living animals and plants could be readily achieved by using field-induced direct ionization mass spectrometry.
NASA Technical Reports Server (NTRS)
Fordyce, J. S.; Sheibley, D. W.
1974-01-01
Samples of ASTM type A jet fuel were analyzed for trace-element content by instrumental neutron activation techniques. Forty-nine elements were sought. Only ten, aluminum, gold, indium, lanthanum, titanium, vandium, barium, dysprosium, tellurium, and uranium, were observed at levels above the detection limits encountered; of these only aluminum, titanium, and barium were present at concentrations greater than 0.1 ppm. Estimates of exhaust gas concentrations are made, and the ambient contribution at or near airports is calculated by using the Los Angeles International Airport dispersion model. It is shown that the ambient contribution is about an order of magnitude below typical urban levels for virtually all elements sought.
NASA Technical Reports Server (NTRS)
Fordyce, J. S.; Sheibley, D. W.
1975-01-01
Samples of ASTM type A jet fuel were analyzed for trace element content by instrumental neutron activation techniques. Forty-nine elements were sought. Only ten, aluminum, gold, indium, lanthanum, titanium, vanadium, barium, dysprosium, tellurium, and uranium, were observed at levels above the detection limits encountered; of these only aluminum, titanium, and barium were present at concentrations greater than 0.1 ppm. Estimates of exhaust gas concentrations are made, and the ambient contribution at or near airports is calculated by using the Los Angeles International Airport dispersion model. It is shown that the ambient contribution is about an order of magnitude below typical urban levels for virtually all elements sought.
Smartphone-based integrated PDR/GPS/Bluetooth pedestrian location
NASA Astrophysics Data System (ADS)
Li, Xianghong; Wei, Dongyan; Lai, Qifeng; Xu, Ying; Yuan, Hong
2017-02-01
Typical indoor location method is fingerprint and traditional outdoor location system is GPS. Both of them are of poor accuracy and limited only for indoor or outdoor environments. As the smartphones are equipped with MEMS sensors, it means PDR can be widely used. In this paper, an algorithm of smartphone-based integrated PDR/GPS/Bluetooth for pedestrian location in the indoor/outdoor is proposed, which can be highly expected to realize seamless indoor/outdoor localization of the pedestrian. In addition, we also provide technologies to estimate orientation with Magnetometer and Gyroscope and detect context with output of sensors. The extensive experimental results show that the proposed algorithm can realize seamless indoor/outdoor localization.
Rapid method for the determination of 226Ra in hydraulic fracturing wastewater samples
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maxwell, Sherrod L.; Culligan, Brian K.; Warren, Richard A.
A new method that rapidly preconcentrates and measures 226Ra from hydraulic fracturing wastewater samples was developed in the Savannah River Environmental Laboratory. The method improves the quality of 226Ra measurements using gamma spectrometry by providing up to 100x preconcentration of 226Ra from this difficult sample matrix, which contains very high levels of calcium, barium, strontium, magnesium and sodium. The high chemical yield, typically 80-90%, facilitates a low detection limit, important for lower level samples, and indicates method ruggedness. Ba-133 tracer is used to determine chemical yield and correct for geometry-related counting issues. The 226Ra sample preparation takes < 2 hours.
Rapid method for the determination of 226Ra in hydraulic fracturing wastewater samples
Maxwell, Sherrod L.; Culligan, Brian K.; Warren, Richard A.; ...
2016-03-24
A new method that rapidly preconcentrates and measures 226Ra from hydraulic fracturing wastewater samples was developed in the Savannah River Environmental Laboratory. The method improves the quality of 226Ra measurements using gamma spectrometry by providing up to 100x preconcentration of 226Ra from this difficult sample matrix, which contains very high levels of calcium, barium, strontium, magnesium and sodium. The high chemical yield, typically 80-90%, facilitates a low detection limit, important for lower level samples, and indicates method ruggedness. Ba-133 tracer is used to determine chemical yield and correct for geometry-related counting issues. The 226Ra sample preparation takes < 2 hours.
Handbook of International alloy Compositions and Designations. Volume II. Superalloys
1978-12-01
Offered in Italy 169 Table 12 . Typical Superalloys Offered in Japan 170 Table 13. Typical Superalloys Specified by Sweden 171 Table 14... 12 . Typical Superalloys Offered in Japan Table 13. Typical Superalloys Specified by Sweden Table 14. Typical Superalloys Offered in the Union of...Engineering Properties, INCO Europe Limited, London, England (1976), 12 pp. 8. IN-657 Cast-Nickel-Chromium-Niobium Alloy for Service Against Fuel + Ash
NASA Astrophysics Data System (ADS)
Geers, V. C.; van Dishoeck, E. F.; Visser, R.; Pontoppidan, K. M.; Augereau, J.-C.; Habart, E.; Lagrange, A. M.
2007-12-01
Aims:Our aim is to determine the presence and location of the emission from polycyclic aromatic hydrocarbons (PAHs) towards low and intermediate mass young stars with disks using large aperture telescopes. Methods: VLT-VISIR N-band spectra and VLT-ISAAC and VLT-NACO L-band spectra of 29 sources are presented, spectrally resolving the 3.3, 8.6, 11.2, and 12.6 μm PAH features. Spatial-extent profiles of the features and the continuum emission have been derived and used to associate the PAH emission with the disks. The results are discussed in the context of recent PAH-emission disk models. Results: The 3.3, 8.6, and 11.2 μm PAH features are detected toward a small fraction of the T Tauri stars, with typical upper limits between 1 × 10-15 and 5 × 10-17 W m-2. All 11.2 μm detections from a previous Spitzer survey are confirmed with (tentative) 3.3 μm detections, and both the 8.6 and the 11.2 μm features are detected in all PAH sources. For 6 detections, the spatial extent of the PAH features is confined to scales typically smaller than 0.12-0.34'', consistent with the radii of 12-60 AU disks at their distances (typically 150 pc). For 3 additional sources, WL 16, HD 100546, and TY CrA, one or more of the PAH features are more extended than the hot dust continuum of the disk, whereas for Oph IRS 48, the size of the resolved PAH emission is confirmed as smaller than for the large grains. For HD 100546, the 3.3 μm emission is confined to a small radial extent of 12±3 AU, most likely associated with the outer rim of the gap in this disk. Gaps with radii out to 10-30 AU may also affect the observed PAH extent for other sources. For both Herbig Ae and T Tauri stars, the small measured extents of the 8.6 and 11.2 μm features are consistent with larger (≥100 carbon atoms) PAHs. Based on observations obtained at the European Southern Observatory, Paranal, Chile, within the observing programs 164.I-0605 (ISAAC May 2002), 074.C-0413 (NACO, March/April 2005), 075.C-0420 (ISAAC August 2005), 077.C-0668 (VISIR/ISAAC April/May 2006). Appendix A is only available in electronic form at http://www.aanda.org
Resonance-inclined optical nuclear spin polarization of liquids in diamond structures
NASA Astrophysics Data System (ADS)
Chen, Q.; Schwarz, I.; Jelezko, F.; Retzker, A.; Plenio, M. B.
2016-02-01
Dynamic nuclear polarization (DNP) of molecules in a solution at room temperature has the potential to revolutionize nuclear magnetic resonance spectroscopy and imaging. The prevalent methods for achieving DNP in solutions are typically most effective in the regime of small interaction correlation times between the electron and nuclear spins, limiting the size of accessible molecules. To solve this limitation, we design a mechanism for DNP in the liquid phase that is applicable for large interaction correlation times. Importantly, while this mechanism makes use of a resonance condition similar to solid-state DNP, the polarization transfer is robust to a relatively large detuning from the resonance due to molecular motion. We combine this scheme with optically polarized nitrogen-vacancy (NV) center spins in nanodiamonds to design a setup that employs optical pumping and is therefore not limited by room temperature electron thermal polarization. We illustrate numerically the effectiveness of the model in a flow cell containing nanodiamonds immobilized in a hydrogel, polarizing flowing water molecules 4700-fold above thermal polarization in a magnetic field of 0.35 T, in volumes detectable by current NMR scanners.
Probing the effects of surface hydrophobicity and tether orientation on antibody-antigen binding
NASA Astrophysics Data System (ADS)
Bush, Derek B.; Knotts, Thomas A.
2017-04-01
Antibody microarrays have the potential to revolutionize molecular detection for many applications, but their current use is limited by poor reliability, and efforts to change this have not yielded fruitful results. One difficulty which limits the rational engineering of next-generation devices is that little is known, at the molecular level, about the antibody-antigen binding process near solid surfaces. Atomic-level structural information is scant because typical experimental techniques (X-ray crystallography and NMR) cannot be used to image proteins bound to surfaces. To overcome this limitation, this study uses molecular simulation and an advanced, experimentally validated, coarse-grain, protein-surface model to compare fab-lysozyme binding in bulk solution and when the fab is tethered to hydrophobic and hydrophilic surfaces. The results show that the tether site in the fab, as well as the surface hydrophobicity, significantly impacts the binding process and suggests that the optimal design involves tethering fabs upright on a hydrophilic surface. The results offer an unprecedented, molecular-level picture of the binding process and give hope that the rational design of protein-microarrays is possible.
Horowitz-Kraus, Tzipi
2016-05-01
The error-detection mechanism aids in preventing error repetition during a given task. Electroencephalography demonstrates that error detection involves two event-related potential components: error-related and correct-response negativities (ERN and CRN, respectively). Dyslexia is characterized by slow, inaccurate reading. In particular, individuals with dyslexia have a less active error-detection mechanism during reading than typical readers. In the current study, we examined whether a reading training programme could improve the ability to recognize words automatically (lexical representations) in adults with dyslexia, thereby resulting in more efficient error detection during reading. Behavioural and electrophysiological measures were obtained using a lexical decision task before and after participants trained with the reading acceleration programme. ERN amplitudes were smaller in individuals with dyslexia than in typical readers before training but increased following training, as did behavioural reading scores. Differences between the pre-training and post-training ERN and CRN components were larger in individuals with dyslexia than in typical readers. Also, the error-detection mechanism as represented by the ERN/CRN complex might serve as a biomarker for dyslexia and be used to evaluate the effectiveness of reading intervention programmes. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
Wang, Kun; Lin, Kunde; Huang, Xinwen; Chen, Meng
2017-06-21
The purpose of this study was to develop and validate a simple, fast, and specific extraction method for the analysis of 64 antibiotics from nine classes (including sulfonamides, quinolones, tetracyclines, macrolides, lincosamide, nitrofurans, β-lactams, nitromidazoles, and cloramphenicols) in chicken eggs. Briefly, egg samples were simply extracted with a mixture of acetonitrile-water (90:10, v/v) and 0.1 mol·L -1 Na 2 EDTA solution assisted with ultrasonic. The extract was centrifuged, condensed, and directly analyzed on a liquid chromatography coupled to tandem mass spectrometry. Compared with conventional cleanup methods (passing through solid phase extract cartridges), the established method demonstrated comparable efficiencies in eliminating matrix effects and higher or equivalent recoveries for most of the target compounds. Typical validation parameters including specificity, linearity, matrix effect, limits of detection (LODs) and quantification (LOQs), the decision limit, detection capability, trueness, and precision were evaluated. The recoveries of target compounds ranged from 70.8% to 116.1% at three spiking levels (5, 20, and 50 μg·kg -1 ), with relative standard deviations less than 14%. LODs and LOQs were in the ranges of 0.005-2.00 μg·kg -1 and 0.015-6.00 μg·kg -1 for all of the antibiotics, respectively. A total of five antibiotics were successfully detected in 22 commercial eggs from local markets. This work suggests that the method is suitable for the analysis of multiclass antibiotics in eggs.
Rodriguez, E; Moreno-Bondi, M C; Marazuela, M D
2008-10-31
This paper describes a new method for the effective extraction, clean-up and chromatographic analysis of residues of four fluoroquinolones (ciprofloxacin, enrofloxacin, danofloxacin and sarafloxacin) in powdered infant formulae and follow-on preparations. Samples were reconstituted following the manufacturer's recommendations and treated with trichloroacetic acid in methanol 10% (w/v) for deproteinization. Two solid-phase extraction cartridges have been evaluated for sample clean-up and preconcentration, Strata Screen A and Strata X and the later provided the best recoveries for all the analytes tested. Chromatographic analysis has been carried out using a polar endcapped column (AQUA C(18)) and fluorescence detection, with lomefloxacin (LOME) as internal standard. Method validation has been performed according to European Commission Decision 2002/657/EC criteria, in terms of linearity, recovery, precision, specificity, decision limit (CC(alpha)) and detection capability (CC(beta)). Typical recoveries ranged between 70 and 110% at levels below and above the maximum residue limits of the target analytes in bovine milk, with an excellent intralab reproducibility (RSDs<7%). Matrix effects did not significantly affect method accuracy, as evidenced by analyzing different brands of milk. The method has been successfully applied to the analysis of 100 samples of infant and follow-on formulae of the Spanish and Latin American market, using LC-MS/MS as confirmatory technique.
Discrimination Report ESTCP Project #MM-0437
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gasperikova, Erika
2008-10-01
The FY06 Defense Appropriation contains funding for the 'Development of Advanced, Sophisticated, and Discrimination Technologies for UXO Cleanup' in the Environmental Security Technology Certification Program. In 2003, the Defense Science Board observed: 'The...problem is that instruments that can detect the buried UXOs also detect numerous scrap metal objects and other artifacts, which leads to an enormous amount of expensive digging. Typically 100 holes may be dug before a real UXO is unearthed. The Task Force assessment is that much of this wasteful digging can be eliminated by the use of more advanced technology instruments that exploit modern digital processing andmore » advanced multi-mode sensors to achieve an improved level of discrimination of scrap from UXOs'. Significant progress has been made in discrimination technology. To date, testing of these approaches has been primarily limited to test sites with only limited application at live sites. Acceptance of discrimination technologies requires demonstration of system capabilities at UXO sites under real world conditions. FE Warren Air Force Base (AFB) in Cheyenne, WY is one such site. The demonstration objective was to determine the discrimination capabilities, cost and reliability of the Berkeley UXO Discriminator (BUD) in discrimination of UXO from scrap metal in real life conditions. Lawrence Berkeley National Laboratory performed a detection and discrimination survey of the Priority 1 area ({approx}5 acres) of the FE Warren AFB. The data included a system characterization with the emplaced calibration items and targets in the Geophysical Prove Out (GPO) area.« less
NASA Technical Reports Server (NTRS)
Dunham, A. J.; Barkley, R. M.; Sievers, R. E.; Clarkson, T. W. (Principal Investigator)
1995-01-01
An improved method of flow injection analysis for aqueous nitrite ion exploits the sensitivity and selectivity of the nitric oxide (NO) chemilluminescence detector. Trace analysis of nitrite ion in a small sample (5-160 microL) is accomplished by conversion of nitrite ion to NO by aqueous iodide in acid. The resulting NO is transported to the gas phase through a semipermeable membrane and subsequently detected by monitoring the photoemission of the reaction between NO and ozone (O3). Chemiluminescence detection is selective for measurement of NO, and, since the detection occurs in the gas-phase, neither sample coloration nor turbidity interfere. The detection limit for a 100-microL sample is 0.04 ppb of nitrite ion. The precision at the 10 ppb level is 2% relative standard deviation, and 60-180 samples can be analyzed per hour. Samples of human saliva and food extracts were analyzed; the results from a standard colorimetric measurement are compared with those from the new chemiluminescence method in order to further validate the latter method. A high degree of selectivity is obtained due to the three discriminating steps in the process: (1) the nitrite ion to NO conversion conditions are virtually specific for nitrite ion, (2) only volatile products of the conversion will be swept to the gas phase (avoiding turbidity or color in spectrophotometric methods), and (3) the NO chemiluminescence detector selectively detects the emission from the NO + O3 reaction. The method is free of interferences, offers detection limits of low parts per billion of nitrite ion, and allows the analysis of up to 180 microL-sized samples per hour, with little sample preparation and no chromatographic separation. Much smaller samples can be analyzed by this method than in previously reported batch analysis methods, which typically require 5 mL or more of sample and often need chromatographic separations as well.
Mapping the Recent US Hurricanes Triggered Flood Events in Near Real Time
NASA Astrophysics Data System (ADS)
Shen, X.; Lazin, R.; Anagnostou, E. N.; Wanik, D. W.; Brakenridge, G. R.
2017-12-01
Synthetic Aperture Radar (SAR) observations is the only reliable remote sensing data source to map flood inundation during severe weather events. Unfortunately, since state-of-art data processing algorithms cannot meet the automation and quality standard of a near-real-time (NRT) system, quality controlled inundation mapping by SAR currently depends heavily on manual processing, which limits our capability to quickly issue flood inundation maps at global scale. Specifically, most SAR-based inundation mapping algorithms are not fully automated, while those that are automated exhibit severe over- and/or under-detection errors that limit their potential. These detection errors are primarily caused by the strong overlap among the SAR backscattering probability density functions (PDF) of different land cover types. In this study, we tested a newly developed NRT SAR-based inundation mapping system, named Radar Produced Inundation Diary (RAPID), using Sentinel-1 dual polarized SAR data over recent flood events caused by Hurricanes Harvey, Irma, and Maria (2017). The system consists of 1) self-optimized multi-threshold classification, 2) over-detection removal using land-cover information and change detection, 3) under-detection compensation, and 4) machine-learning based correction. Algorithm details are introduced in another poster, H53J-1603. Good agreements were obtained by comparing the result from RAPID with visual interpretation of SAR images and manual processing from Dartmouth Flood Observatory (DFO) (See Figure 1). Specifically, the over- and under-detections that is typically noted in automated methods is significantly reduced to negligible levels. This performance indicates that RAPID can address the automation and accuracy issues of current state-of-art algorithms and has the potential to apply operationally on a number of satellite SAR missions, such as SWOT, ALOS, Sentinel etc. RAPID data can support many applications such as rapid assessment of damage losses and disaster alleviation/rescue at global scale.
The First Thousand Exoplanets: Twenty Years of Excitement and Discovery
NASA Astrophysics Data System (ADS)
Impey, Chris
The recent "explosion" in the number of extrasolar planets, or exoplanets, is perhaps the most exciting phenomenon in all of science. Two decades ago, no planets were known beyond the Solar System, and now there are more than 770 confirmed exoplanets and several thousand more candidates, while the mass detection limit has marched steadily downwards from Jupiter mass in 1995 to Neptune mass in the early 2000s to Earth mass now. The vast majority of these exoplanets are detected indirectly, by their gravitational influence on the parent star or the partial eclipse they cause when they periodically pass in front of it. Doppler detection of the planet's reflex motion yields a period and an estimate of the mass, while transits or eclipses yield the size. Exoplanet detection taxes the best observatories in space, yet useful contributions can be made by amateur astronomers armed with 6-inch telescopes. The early discoveries were surprising; no one predicted "hot Jupiters" or the wild diversity of exoplanet properties that has been seen. It is still unclear if the Solar System is "typical" or not, but at current detection limits at least 10 % of Sun-like stars harbor planets and architectures similar to the Solar System are now being found. Over a hundred multiple planet systems are known and the data are consistent with every star in the Milky Way having at least one planet, with an implication of millions of habitable, Earth-like planets, and of which could harbor life. Doppler and transit data can be combined to give average density, and additional methods are beginning to give diagnostics of atmospheric composition. When this work can be extended to rocky and low mass exoplanets, and the imprint of biology on a global atmosphere can be measured, this might be the way that life beyond Earth is finally detected for the first time.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Visser, Ate; Bibby, Richard K.; Moran, Jean E.
A capability for the analysis of krypton-85 ( 85Kr) in groundwater samples was developed at LLNL. Samples are collected by extracting gas from 2000-4000 L of groundwater at the well, yielding approximately 0.2 cm 3 STP krypton. Sample collection takes 1 to 4 hours. Krypton is purified in the laboratory using a combination of molecular sieve and activated charcoal traps, and transferred to a liquid scintillation vial. The 85Kr activity is measured by liquid scintillation on a Quantulus 1220 liquid scintillation counter from PerkinElmer. The detection limit for a typical 0.2 cm 3Kr sample size is 11% of the presentmore » day activity in air, corresponding to the decay corrected activity in air in 1987. The typical measurement uncertainty is below 10% for recently recharged samples. Six groundwater samples were collected, purified and counted. 85Kr was not detected in any of the samples counted at LLNL. 85Kr was detected by the low level counting laboratory of Bern University in all samples between 1.5 and 6.6 decays per minute per cm 3 krypton, corresponding to decay corrected activities in air between 1971 and 1985. The new capability is an excellent complement to tritium-helium, expanding the existing suite of age dating tools available to the GAMA program ( 35S, 3H/ 3He, 14C and radiogenic helium). 85Kr can replace 3H/ 3He in settings where 3H/ 3He ages are impossible to determine (for example where terrigenic helium overwhelms tritiogenic helium) and provides additional insight into travel time distributions in complex mixed groundwater systems.« less
NASA Astrophysics Data System (ADS)
Gierens, Rosa T.; Henriksson, Svante; Josipovic, Micky; Vakkari, Ville; van Zyl, Pieter G.; Beukes, Johan P.; Wood, Curtis R.; O'Connor, Ewan J.
2018-05-01
The atmospheric boundary layer (BL) is the atmospheric layer coupled to the Earth's surface at relatively short timescales. A key quantity is the BL depth, which is important in many applied areas of weather and climate such as air-quality forecasting. Studying BLs in climates and biomes across the globe is important, particularly in the under-sampled southern hemisphere. The present study is based on a grazed grassland-savannah area in northwestern South Africa during October 2012-August 2014. Ceilometers are probably the cheapest method for measuring continuous aerosol profiles up to several kilometers above ground and are thus an ideal tool for long-term studies of BLs. A ceilometer-estimated BL depth is based on profiles of attenuated backscattering coefficients from atmospheric aerosols; the sharpest drop often occurs at BL top. Based on this, we developed a new method for layer detection that we call the signal-limited layer method. The new algorithm was applied to ceilometer profiles which thus classified BL into classic regime types: daytime convective mixing, and a double layer at night of surface-based stable with a residual layer above it. We employed wavelet fitting to increase successful BL estimation for noisy profiles. The layer-detection algorithm was supported by an eddy-flux station, rain gauges, and manual inspection. Diurnal cycles were often clear, with BL depth detected for 50% of the daytime typically being 1-3 km, and for 80% of the night-time typically being a few hundred meters. Variability was also analyzed with respect to seasons and years. Finally, BL depths were compared with ERA-Interim estimates of BL depth to show reassuring agreement.
Measurement of the Shape of the Optical-IR Spectrum of Prompt Emission from Gamma-Ray Bursts
NASA Astrophysics Data System (ADS)
Grossan, Bruce; Kistaubayev, M.; Smoot, G.; Scherr, L.
2017-06-01
While the afterglow phase of gamma-ray bursts (GRBs) has been extensively measured, detections of prompt emission (i.e. during bright X-gamma emission) are more limited. Some prompt optical measurements are regularly made, but these are typically in a single wide band, with limited time resolution, and no measurement of spectral shape. Some models predict a synchrotron self-absorption spectral break somewhere in the IR-optical region. Measurement of the absorption frequency would give extensive information on each burst, including the electron Lorentz factor, the radius of emission, and more (Shen & Zhang 2008). Thus far the best prompt observations have been explained invoking a variety of models, but often with a non-unique interpretation. To understand this apparently heterogeneous behavior, and to reduce the number of possible models, it is critical to add data on the optical - IR spectral shape.Long GRB prompt X-gamma emission typically lasts ~40-80 s. The Swift BAT instrument rapidly measures GRB positions to within a few arc minutes and communicates them via the internet within a few seconds. We have measured the time for a fast-moving D=700 mm telescope to point and settle to be less than 9 s anywhere on the observable sky. Therefore, the majority of prompt optical-IR emission can be measured responding to BAT positions with this telescope. In this presentation, we describe our observing and science programs, and give our design for the Burst Simultaneous Three-channel Instrument (BSTI), which uses dichroics to send eparate bands to 3 cameras. Two EMCCD cameras, give high-time resolution in B and V; a third camera with a HgCdTe sensor covers H band, allowing us to study extinguished bursts. For a total exposure time of 10 s, we find a 5 sigma sensitivity of 21.3 and 20.3 mag in B and R for 1" seeing and Kitt Peak sky brightness, much fainter than typical previous prompt detections. We estimate 5 sigma H-band sensitivity for an IR optimized telescope to be ~16.9 mag in 20 s. With three channels broadly separated in wavelength, two separate slopes would be measured, or if present between our bands, the absorption frequency would be determined, a brand-new window into GRB physics.
Visual-Vestibular Conflict Detection Depends on Fixation.
Garzorz, Isabelle T; MacNeilage, Paul R
2017-09-25
Visual and vestibular signals are the primary sources of sensory information for self-motion. Conflict among these signals can be seriously debilitating, resulting in vertigo [1], inappropriate postural responses [2], and motion, simulator, or cyber sickness [3-8]. Despite this significance, the mechanisms mediating conflict detection are poorly understood. Here we model conflict detection simply as crossmodal discrimination with benchmark performance limited by variabilities of the signals being compared. In a series of psychophysical experiments conducted in a virtual reality motion simulator, we measure these variabilities and assess conflict detection relative to this benchmark. We also examine the impact of eye movements on visual-vestibular conflict detection. In one condition, observers fixate a point that is stationary in the simulated visual environment by rotating the eyes opposite head rotation, thereby nulling retinal image motion. In another condition, eye movement is artificially minimized via fixation of a head-fixed fixation point, thereby maximizing retinal image motion. Visual-vestibular integration performance is also measured, similar to previous studies [9-12]. We observe that there is a tradeoff between integration and conflict detection that is mediated by eye movements. Minimizing eye movements by fixating a head-fixed target leads to optimal integration but highly impaired conflict detection. Minimizing retinal motion by fixating a scene-fixed target improves conflict detection at the cost of impaired integration performance. The common tendency to fixate scene-fixed targets during self-motion [13] may indicate that conflict detection is typically a higher priority than the increase in precision of self-motion estimation that is obtained through integration. Copyright © 2017 Elsevier Ltd. All rights reserved.
Angus, Douglas Jozef; de Rosnay, Marc; Lunenburg, Patty; Meerum Terwogt, Mark; Begeer, Sander
2015-07-01
Anticipating future interactions is characteristic of our everyday social experiences, yet has received limited empirical attention. Little is known about how children with autism spectrum disorder, known for their limitations in social interactive skills, engage in social anticipation. We asked children with autism spectrum disorder and their typically developing counterparts to consider an interaction with another person in the near future. Our results suggest that children with autism spectrum disorder and typically developing children performed similarly when anticipating the age, gender, and possible questions of another person, but children with autism spectrum disorder struggled more to anticipate what they would say in response to an anticipated interaction. Furthermore, such responses were robustly associated with imaginative capacities in typically developing children but not children with autism spectrum disorder. Our findings suggest that the cognitive mechanisms of social anticipation may differ between these groups. © The Author(s) 2014.
Estimated communication range of social sounds used by bottlenose dolphins (Tursiops truncatus).
Quintana-Rizzo, Ester; Mann, David A; Wells, Randall S
2006-09-01
Bottlenose dolphins, Tursiops truncatus, exhibit flexible associations in which the compositions of groups change frequently. We investigated the potential distances over which female dolphins and their dependent calves could remain in acoustic contact. We quantified the propagation of sounds in the frequency range of typical dolphin whistles in shallow water areas and channels of Sarasota Bay, Florida. Our results indicated that detection range was noise limited as opposed to being limited by hearing sensitivity. Sounds were attenuated to a greater extent in areas with seagrass than any other habitat. Estimates of active space of whistles showed that in seagrass shallow water areas, low-frequency whistles (7-13 kHz) with a 165 dB source level could be heard by dolphins at 487 m. In shallow areas with a mud bottom, all whistle frequency components of the same whistle could be heard by dolphins travel up to 2 km. In channels, high-frequency whistles (13-19 kHz) could be detectable potentially over a much longer distance (> 20 km). Our findings indicate that the communication range of social sounds likely exceeds the mean separation distances between females and their calves. Ecological pressures might play an important role in determining the separation distances within communication range.
Dust in a compact, cold, high-velocity cloud: A new approach to removing foreground emission
NASA Astrophysics Data System (ADS)
Lenz, D.; Flöer, L.; Kerp, J.
2016-02-01
Context. Because isolated high-velocity clouds (HVCs) are found at great distances from the Galactic radiation field and because they have subsolar metallicities, there have been no detections of dust in these structures. A key problem in this search is the removal of foreground dust emission. Aims: Using the Effelsberg-Bonn H I Survey and the Planck far-infrared data, we investigate a bright, cold, and clumpy HVC. This cloud apparently undergoes an interaction with the ambient medium and thus has great potential to form dust. Methods: To remove the local foreground dust emission we used a regularised, generalised linear model and we show the advantages of this approach with respect to other methods. To estimate the dust emissivity of the HVC, we set up a simple Bayesian model with mildly informative priors to perform the line fit instead of an ordinary linear least-squares approach. Results: We find that the foreground can be modelled accurately and robustly with our approach and is limited mostly by the cosmic infrared background. Despite this improvement, we did not detect any significant dust emission from this promising HVC. The 3σ-equivalent upper limit to the dust emissivity is an order of magnitude below the typical values for the Galactic interstellar medium.
Rhodes-Mordov, Elisheva; Katz, Ben; Oberegelsbacher, Claudia; Yasin, Bushra; Tzadok, Hanan; Huber, Armin
2017-01-01
Drosophila photoreceptors respond to oscillating light of high frequency (∼100 Hz), while the detected maximal frequency is modulated by the light rearing conditions, thus enabling high sensitivity to light and high temporal resolution. However, the molecular basis for this adaptive process is unclear. Here, we report that dephosphorylation of the light-activated transient receptor potential (TRP) ion channel at S936 is a fast, graded, light-dependent, and Ca2+-dependent process that is partially modulated by the rhodopsin phosphatase retinal degeneration C (RDGC). Electroretinogram measurements of the frequency response to oscillating lights in vivo revealed that dark-reared flies expressing wild-type TRP exhibited a detection limit of oscillating light at relatively low frequencies, which was shifted to higher frequencies upon light adaptation. Strikingly, preventing phosphorylation of the S936-TRP site by alanine substitution in transgenic Drosophila (trpS936A) abolished the difference in frequency response between dark-adapted and light-adapted flies, resulting in high-frequency response also in dark-adapted flies. In contrast, inserting a phosphomimetic mutation by substituting the S936-TRP site to aspartic acid (trpS936D) set the frequency response of light-adapted flies to low frequencies typical of dark-adapted flies. Light-adapted rdgC mutant flies showed relatively high S936-TRP phosphorylation levels and light–dark phosphorylation dynamics. These findings suggest that RDGC is one but not the only phosphatase involved in pS936-TRP dephosphorylation. Together, this study indicates that TRP channel dephosphorylation is a regulatory process that affects the detection limit of oscillating light according to the light rearing condition, thus adjusting dynamic processing of visual information under varying light conditions. SIGNIFICANCE STATEMENT Drosophila photoreceptors exhibit high temporal resolution as manifested in frequency response to oscillating light of high frequency (≤∼100 Hz). Light rearing conditions modulate the maximal frequency detected by photoreceptors, thus enabling them to maintain high sensitivity to light and high temporal resolution. However, the precise mechanisms for this process are not fully understood. Here, we show by combination of biochemistry and in vivo electrophysiology that transient receptor potential (TRP) channel dephosphorylation at a specific site is a fast, light-activated and Ca2+-dependent regulatory process. TRP dephosphorylation affects the detection limit of oscillating light according to the adaptation state of the photoreceptor cells by shifting the detection limit to higher frequencies upon light adaptation. This novel mechanism thus adjusts dynamic processing of visual information under varying light conditions. PMID:28314815
Six New Millisecond Pulsars From Arecibo Searches Of Fermi Gamma-Ray Sources
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cromartie, H. T.; Camilo, F.; Kerr, M.
2016-02-25
We have discovered six radio millisecond pulsars (MSPs) in a search with the Arecibo telescope of 34 unidentified gamma-ray sources from the Fermi Large Area Telescope (LAT) 4-year point source catalog. Among the 34 sources, we also detected two MSPs previously discovered elsewhere. Each source was observed at a center frequency of 327 MHz, typically at three epochs with individual integration times of 15 minutes. The new MSP spin periods range from 1.99 to 4.66 ms. Five of the six pulsars are in interacting compact binaries (period ≤ 8.1 hr), while the sixth is a more typical neutron star-white dwarfmore » binary with an 83-day orbital period. This is a higher proportion of interacting binaries than for equivalent Fermi-LAT searches elsewhere. The reason is that Arecibo’s large gain afforded us the opportunity to limit integration times to 15 minutes, which significantly increased our sensitivity to these highly accelerated systems. Seventeen of the remaining 26 gamma-ray sources are still categorized as strong MSP candidates, and will be re-searched.« less
SIX NEW MILLISECOND PULSARS FROM ARECIBO SEARCHES OF FERMI GAMMA-RAY SOURCES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cromartie, H. T.; Camilo, F.; Kerr, M.
2016-03-01
We have discovered six radio millisecond pulsars (MSPs) in a search with the Arecibo telescope of 34 unidentified gamma-ray sources from the Fermi Large Area Telescope (LAT) four year point source catalog. Among the 34 sources, we also detected two MSPs previously discovered elsewhere. Each source was observed at a center frequency of 327 MHz, typically at three epochs with individual integration times of 15 minutes. The new MSP spin periods range from 1.99 to 4.66 ms. Five of the six pulsars are in interacting compact binaries (period ≤ 8.1 hr), while the sixth is a more typical neutron star-whitemore » dwarf binary with an 83 day orbital period. This is a higher proportion of interacting binaries than for equivalent Fermi-LAT searches elsewhere. The reason is that Arecibo's large gain afforded us the opportunity to limit integration times to 15 minutes, which significantly increased our sensitivity to these highly accelerated systems. Seventeen of the remaining 26 gamma-ray sources are still categorized as strong MSP candidates, and will be re-searched.« less
Fiber-optic microsensor for high resolution pCO2 sensing in marine environment.
Neurauter, G; Klimant, I; Wolfbeis, O S
2000-03-01
A fast responding fiber-optic microsensor for sensing pCO2 in marine sediments with high spatial resolution is presented. The tip diameter varies typically between 20 and 50 microm. In order to make the pH-indicator 8-hydroxypyrene-1,3,6-trisulfonate soluble in the ethyl cellulose matrix, it was lipophilized with tetraoctylammonium as the counterion [HPTS-(TOA)4]. The microsensor was tuned to sense very low levels of dissolved carbon dioxide which are typically present in marine systems. The detection limit is 0.04 hPa pCO2 which corresponds to 60 ppb CO2 of dissolved carbon dioxide. A soluble Teflon derivative with an extraordinarily high gas permeability was chosen as a protective coating to eliminate interferences by ionic species like chloride or pH. Response times of less than 1 min were observed. The performance of the new microsensor is described with respect to reproducibility of the calibration curves, dynamic range, temperature behavior, long term stability and storage stability. The effect of hydrogen sulfide as an interferent, which is frequently present in anaerobic sediment layers, was studied in detail.
Volumetric full-range magnetomotive optical coherence tomography
Ahmad, Adeel; Kim, Jongsik; Shemonski, Nathan D.; Marjanovic, Marina; Boppart, Stephen A.
2014-01-01
Abstract. Magnetomotive optical coherence tomography (MM-OCT) can be utilized to spatially localize the presence of magnetic particles within tissues or organs. These magnetic particle-containing regions are detected by using the capability of OCT to measure small-scale displacements induced by the activation of an external electromagnet coil typically driven by a harmonic excitation signal. The constraints imposed by the scanning schemes employed and tissue viscoelastic properties limit the speed at which conventional MM-OCT data can be acquired. Realizing that electromagnet coils can be designed to exert MM force on relatively large tissue volumes (comparable or larger than typical OCT imaging fields of view), we show that an order-of-magnitude improvement in three-dimensional (3-D) MM-OCT imaging speed can be achieved by rapid acquisition of a volumetric scan during the activation of the coil. Furthermore, we show volumetric (3-D) MM-OCT imaging over a large imaging depth range by combining this volumetric scan scheme with full-range OCT. Results with tissue equivalent phantoms and a biological tissue are shown to demonstrate this technique. PMID:25472770
The observational case for Jupiter being a typical massive planet.
Lineweaver, Charles H; Grether, Daniel
2002-01-01
We identify a subsample of the recently detected extrasolar planets that is minimally affected by the selection effects of the Doppler detection method. With a simple analysis we quantify trends in the surface density of this subsample in the period-Msin(i) plane. A modest extrapolation of these trends puts Jupiter in the most densely occupied region of this parameter space, thus indicating that Jupiter is a typical massive planet rather than an outlier. Our analysis suggests that Jupiter is more typical than indicated by previous analyses. For example, instead of MJup mass exoplanets being twice as common as 2 MJup exoplanets, we find they are three times as common.
Arrowsmith, Stephen John; Young, Christopher J.; Ballard, Sanford; ...
2016-01-01
The standard paradigm for seismic event monitoring breaks the event detection problem down into a series of processing stages that can be categorized at the highest level into station-level processing and network-level processing algorithms (e.g., Le Bras and Wuster (2002)). At the station-level, waveforms are typically processed to detect signals and identify phases, which may subsequently be updated based on network processing. At the network-level, phase picks are associated to form events, which are subsequently located. Furthermore, waveforms are typically directly exploited only at the station-level, while network-level operations rely on earth models to associate and locate the events thatmore » generated the phase picks.« less
In Vitro Morphology and Maturation of Lymphocystis Virus 1
Midlige, F. H.; Malsberger, R. G.
1968-01-01
The temporal sequence of development of lymphocystis disease virus (LDV) was studied by electron microscopy of thin sections of infected tissue-culture monolayers. Neither the typical cytoplasmic inclusion nor virus was detected at 4 days postinfection (PI). Inclusions, but no viruses, were detected at 8 days PI. Inclusions and associated virions were detected at 15 days PI, and by 28 days PI the undisrupted cells were filled with the typical virions. No release mechanism was detected, and severe clumping of particles was noted. Negatively stained preparations revealed particles 200 nm in diameter with no capsomere structure and apparent spikes associated with the particle. The relationship of LDV to the well-defined deoxyribonucleic acid virus groups is discussed. Images PMID:5701821
"Smoke": Characterization Of Smoke Particulate For Spacecraft Fire Detection
NASA Technical Reports Server (NTRS)
Urban, David L.; Mulholland, George W.; Yang, Jiann; Cleary, Thomas G.; Yuan, Zeng-Guang
2003-01-01
The "Smoke" experiment is a flight definition investigation that seeks to increase our understanding of spacecraft fire detection through measurements of particulate size distributions of preignition smokes from typical spacecraft materials. Owing to the catastrophic risk posed by even a very small fire in a spacecraft, the design goal for spacecraft fire detection is to detect the fire as quickly as possible, preferably in the preignition phase before a real flaming fire has developed. Consequently the target smoke for detection is typically not soot (typical of established hydrocarbon fires) but instead, pyrolysis products, and recondensed polymer particles. At the same time, false alarms are extremely costly as the crew and the ground team must respond quickly to every alarm. The U.S. Space Shuttle (STS: Space Transportation System) and the International Space Station (ISS) both use smoke detection as the primary means of fire detection. These two systems were designed in the absence of any data concerning low-gravity smoke particle (and background dust) size distributions. The STS system uses an ionization detector coupled with a sampling pump and the ISS system is a forward light scattering detector operating in the near IR. These two systems have significantly different sensitivities with the ionization detector being most sensitive (on a mass concentration basis) to smaller particulate and the light scattering detector being most sensitive to particulate that is larger than 1 micron. Since any smoke detection system has inherent size sensitivity characteristics, proper design of future smoke detection systems will require an understanding of the background and alarm particle size distributions that can be expected in a space environment.
Arnquist, Isaac J; Hoppe, Eric J; Bliss, Mary; Grate, Jay W
2017-03-07
A rapid new method for determining the U and Th mass concentrations in high radiopurity plastics is described, consisting of (1) dry ashing the plastic sample and tracers in low mass crucibles made of ultra low background electroformed copper (ULB EF-Cu) foil cut and folded into boats, (2) dissolving both the ash and the boat in acid, (3) performing a column separation to remove copper, and (4) determining the elements of interest by isotope dilution mass spectrometry. This method was demonstrated on both unfluorinated and fluorinated plastics, demonstrating high tracer recoveries and detection limits to pg/g (i.e., parts per trillion) levels or below, corresponding to μBq/kg of material. Samples of biomedical polyester (Max-Prene 955) and a fluoropolymer (polyvinylidene fluoride, PVDF) were analyzed in powder raw material forms as well as solids in the form of pellets or injection molded parts. The polyester powder contained 6 pg/g and 2 pg/g for 232 Th and 238 U, respectively. These levels correspond to 25 and 25 μBq/kg radioactivity, respectively. Determinations on samples of PVDF powder were typically below 1 pg/g for 232 Th and 2 pg/g for 238 U, corresponding to 4 and 25 μBq/kg radioactivity, respectively. The use of low mass ULB EF-Cu boats for dry ashing successfully overcame the problem of crucible-generated contaminants in the analysis; absolute detection limits, calculated as 3 × standard deviation of the process blanks, were typically 20-100 fg within a sample set. Complete dissolution of the ash and low mass boat provided high tracer recoveries and provides a convincing method to recover both the tracer and sample isotopes when full equilibration of tracer isotopes with sample isotopes is not possible prior to beginning chemical sample processing on solids.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Arnquist, Isaac J.; Hoppe, Eric J.; Bliss, Mary
A rapid new method for determining the U and Th mass concentrations in high radiopurity plastics is described, consisting of 1) dry ashing the plastic sample and tracers in low mass crucibles made of ultra low background electroformed copper (ULB EF-Cu) foil cut and folded into boats, 2) dissolving both the ash and the boat in acid, 3) performing a column separation to remove copper, and 4) determining the elements of interest by isotope dilution mass spectrometry. This method was demonstrated on both unfluorinated and fluorinated plastics, demonstrating high tracer recoveries and detection limits to pg/g (i.e., parts per trillion)more » levels or below, corresponding to μBq/kg of material. Samples of biomedical polyester (Max-Prene® 955) and a fluoropolymer (polyvinylidene fluoride, PVDF) were analyzed in powder raw material forms as well as solids in the form of pellets or injection molded parts. The polyester powder contained 6 pg/g and 2 pg/g for Th and U respectively. These levels correspond to 25 and 25 μBq/kg radioactivity, respectively. Determinations on samples of PVDF powder were typically below 1 pg/g for Th and 2 pg/g for U, corresponding to 4 and 25 μBq/kg radioactivity, respectively. The use of low mass ULB EF-Cu boats for dry ashing successfully overcame the problem of crucible-generated contaminants in the analysis; absolute detection limits, calculated as 3 × standard deviation of the process blanks, were typically 20-100 fg within a sample set. Complete dissolution of the ash and low mass boat provided high tracer recoveries, and provides a convincing method to recover both the tracer and sample isotopes when full equilibration of tracer isotopes with sample isotopes is not possible prior to beginning chemical sample processing on solids.« less
Kong, Weiheng; Wu, Di; Xia, Lian; Chen, Xuefeng; Li, Guoliang; Qiu, Nannan; Chen, Guang; Sun, Zhiwei; You, Jinmao; Wu, Yongning
2017-06-22
Recently, α-glucosidase inhibitor has been widely used in clinic for diabetic therapy. In the present study, a facile and sensitive fluorescent assay based on enzyme activated inner filter effect (IFE) on nitrogen-doped carbon dots (CDs) was first developed for the detection of α-glucosidase. The N-doped CDs with green emission were prepared by a one-step hydrothermal synthesis and gave the fluorescence quantum yield of 30%, which were used as the signal output. Through α-glucosidase catalysis, 4-nitrophenol was released from 4-nitrophenyl-α-d-glucopyranoside (NGP). Interestingly, the absorption of 4-nitrophenol and the excitation of CDs were completely overlapping. Due to its great molar absorptivity, 4-nitrophenol was capable of acting as a powerful absorber to affect the fluorescent signal of CDs (i.e. IFE). By converting the absorption signals into fluorescence signals, the facile fluorescence assay strategy could be realized for α-glucosidase activity sensing, which effectively avoided the complex modification of the surface of CDs or construction of the nanoprobes. The established IFE-based sensing platform offered a low detection limit of 0.01 U/mL (S/N = 3). This proposed sensing approach has also been expanded to the inhibitor screening and showed excellent applicability. As a typical α-glucosidase inhibitor, acarbose was investigated with a low detection limit of 10 -8 M. This developed method enjoyed many merits including simplicity, lost cost, high sensitivity, good reproducibility and excellent selectivity, which also provided a new insight on the application of CDs to develop the facile and sensitive biosensor. Copyright © 2017 Elsevier B.V. All rights reserved.
Cheung, Melody; Lee, Wendy W Y; McCracken, John N; Larmour, Iain A; Brennan, Steven; Bell, Steven E J
2016-04-19
Raman analysis of dilute aqueous solutions is normally prevented by their low signal levels. A very general method to increase the concentration to detectable levels is to evaporate droplets of the sample to dryness, creating solid deposits which are then Raman probed. Here, superhydrophobic (SHP) wires with hydrophilic tips have been used as supports for drying droplets, which have the advantage that the residue is automatically deposited at the tip. The SHP wires were readily prepared in minutes using electroless galvanic deposition of Ag onto copper wires followed by modification with a polyfluorothiol (3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,10-heptadecafluoro-1-decanethiol, HDFT). Cutting the coated wires with a scalpel revealed hydrophilic tips which could support droplets whose maximum size was determined by the wire diameter. Typically, 230 μm wires were used to support 0.6 μL droplets. Evaporation of dilute melamine droplets gave solid deposits which could be observed by scanning electron microscopy (SEM) and Raman spectroscopy. The limit of detection for melamine using a two stage evaporation procedure was 1 × 10(-6) mol dm(-3). The physical appearance of dried droplets of sucrose and glucose showed that the samples retained significant amounts of water, even under high vacuum. Nonetheless, the Raman detection limits of sucrose and glucose were 5 × 10(-4) and 2.5 × 10(-3) mol dm(-3), respectively, which is similar to the sensitivity reported for surface-enhanced Raman spectroscopy (SERS) detection of glucose. It was also possible to quantify the two sugars in mixtures at concentrations which were similar to those found in human blood through multivariate analysis.
NASA Astrophysics Data System (ADS)
Tian, Giselle; Zeng, Haishan; Zhao, Jianhua; Wu, Zhenguo; Al Jasser, Mohammed; Lui, Harvey; Mclean, David I.
2016-02-01
Porphyrins produced by Propionibacterium acnes represent the principal fluorophore associated with acne, and appear as orange-red luminescence under the Wood's lamp. Assessment of acne based on Wood's lamp (UV) or visible light illumination is limited by photon penetration depth and has limited sensitivity for earlier stage lesions. Inducing fluorescence with near infrared (NIR) excitation may provide an alternative way to assess porphyrin-related skin disorders. We discovered that under 785 nm CW laser excitation PpIX powder exhibits fluorescence emission in the shorter wavelength range of 600-715 nm with an intensity that is linearly dependent on the excitation power. We attribute this shorter wavelength emission to anti-Stokes fluorescence. Similar anti-Stokes fluorescence was also detected focally in all skin-derived samples containing porphyrins. Regular (Stokes) fluorescence was present under UV and visible light excitation on ex vivo nasal skin and sebum from uninflamed acne, but not on nose surface smears or sebum from inflamed acne. Co-registered CW laser-excited anti-Stokes fluorescence and fs laser-excited multi-photon fluorescence images of PpIX powder showed similar features. In the skin samples because of the anti-Stokes effect, the NIR-induced fluorescence was presumably specific for porphyrins since there appeared to be no anti-Stokes emission signals from other typical skin fluorophores such as lipids, keratins and collagen. Anti-Stokes fluorescence under NIR CW excitation is more sensitive and specific for porphyrin detection than UV- or visible light-excited regular fluorescence and fs laser-excited multi-photon fluorescence. This approach also has higher image contrast compared to NIR fs laser-based multi-photon fluorescence imaging. The anti-Stokes fluorescence of porphyrins within sebum could potentially be applied to detecting and targeting acne lesions for treatment via fluorescence image guidance.
NASA Astrophysics Data System (ADS)
Poddubny, Alexander N.; Sukhorukov, Andrey A.
2015-09-01
The practical development of quantum plasmonic circuits incorporating non-classical interference [1] and sources of entangled states calls for a versatile quantum theoretical framework which can fully describe the generation and detection of entangled photons and plasmons. However, majority of the presently used theoretical approaches are typically limited to the toy models assuming loss-less and nondispersive elements or including just a few resonant modes. Here, we present a rigorous Green function approach describing entangled photon-plasmon state generation through spontaneous wave mixing in realistic metal-dielectric nanostructures. Our approach is based on the local Huttner-Barnett quantization scheme [2], which enables problem formulation in terms of a Hermitian Hamiltonian where the losses and dispersion are fully encoded in the electromagnetic Green functions. Hence, the problem can be addressed by the standard quantum mechanical perturbation theory, overcoming mathematical difficulties associated with other quantization schemes. We derive explicit expressions with clear physical meaning for the spatially dependent two-photon detection probability, single-photon detection probability and single-photon density matrix. In the limiting case of low-loss nondispersive waveguides our approach reproduces the previous results [3,4]. Importantly, our technique is far more general and can quantitatively describe generation and detection of spatially-entangled photons in arbitrary metal-dielectric structures taking into account actual losses and dispersion. This is essential to perform the design and optimization of plasmonic structures for generation and control of quantum entangled states. [1] J.S. Fakonas, H. Lee, Y.A. Kelaita and H.A. Atwater, Nature Photonics 8, 317(2014) [2] W. Vogel and D.-G. Welsch, Quantum Optics, Wiley (2006). [3] D.A. Antonosyan, A.S. Solntsev and A.A. Sukhorukov, Phys. Rev. A 90 043845 (2014) [4] L.-G. Helt, J.E. Sipe and M.J. Steel, arXiv: 1407.4219
Toward a dose reduction strategy using model-based reconstruction with limited-angle tomosynthesis
NASA Astrophysics Data System (ADS)
Haneda, Eri; Tkaczyk, J. E.; Palma, Giovanni; Iordache, Rǎzvan; Zelakiewicz, Scott; Muller, Serge; De Man, Bruno
2014-03-01
Model-based iterative reconstruction (MBIR) is an emerging technique for several imaging modalities and appli- cations including medical CT, security CT, PET, and microscopy. Its success derives from an ability to preserve image resolution and perceived diagnostic quality under impressively reduced signal level. MBIR typically uses a cost optimization framework that models system geometry, photon statistics, and prior knowledge of the recon- structed volume. The challenge of tomosynthetic geometries is that the inverse problem becomes more ill-posed due to the limited angles, meaning the volumetric image solution is not uniquely determined by the incom- pletely sampled projection data. Furthermore, low signal level conditions introduce additional challenges due to noise. A fundamental strength of MBIR for limited-views and limited-angle is that it provides a framework for constraining the solution consistent with prior knowledge of expected image characteristics. In this study, we analyze through simulation the capability of MBIR with respect to prior modeling components for limited-views, limited-angle digital breast tomosynthesis (DBT) under low dose conditions. A comparison to ground truth phantoms shows that MBIR with regularization achieves a higher level of fidelity and lower level of blurring and streaking artifacts compared to other state of the art iterative reconstructions, especially for high contrast objects. The benefit of contrast preservation along with less artifacts may lead to detectability improvement of microcalcification for more accurate cancer diagnosis.
Do GSM 900MHz signals affect cerebral blood circulation? A near-infrared spectrophotometry study
NASA Astrophysics Data System (ADS)
Wolf, Martin; Haensse, Daniel; Morren, Geert; Froehlich, Juerg
2006-06-01
Effects of GSM 900MHz signals (EMF) typical for a handheld mobile phone on the cerebral blood circulation were investigated using near-infrared spectrophotometry (NIRS) in a three armed (12W/kg, 1.2W/kg, sham), double blind, randomized crossover trial in 16 healthy volunteers. During exposure we observed borderline significant short term responses of oxyhemoglobin and deoxyhemoglobin concentration, which correspond to a decrease of cerebral blood flow and volume and were smaller than regular physiological changes. Due to the relatively high number of statistical tests, these responses may be spurious and require further studies. There was no detectable dose-response relation or long term response within 20min. The detection limit was a fraction of the regular physiological changes elicited by functional activation. Compared to previous studies using PET, NIRS provides a much higher time resolution, which allowed investigating the short term effects efficiently, noninvasively, without the use of radioactive tracers and with high sensitivity.
Compressed sensing approach for wrist vein biometrics.
Lantsov, Aleksey; Ryabko, Maxim; Shchekin, Aleksey
2018-04-01
The work describes features of the compressed sensing (CS) approach utilized for development of a wearable system for wrist vein recognition with single-pixel detection; we consider this system useful for biometrics authentication purposes. The CS approach implies use of a spatial light modulation (SLM) which, in our case, can be performed differently-with a liquid crystal display or diffusely scattering medium. We show that compressed sensing combined with above-mentioned means of SLM allows us to avoid using an optical system-a limiting factor for wearable devices. The trade-off between the 2 different SLM approaches regarding issues of practical implementation of CS approach for wrist vein recognition purposes is discussed. A possible solution of a misalignment problem-a typical issue for imaging systems based upon 2D arrays of photodiodes-is also proposed. Proposed design of the wearable device for wrist vein recognition is based upon single-pixel detection. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Mądry, Wojciech; Karolczak, Maciej A; Grabowski, Krzysztof
2017-09-01
The authors present a case of echocardiographic diagnosis of supravalvar mitral ring (a fibromembranous structure that arose from the atrial surface of the mitral leaflets) in a child with a parachute mitral valve, a ventricular septal defect, and mild narrowing of the aortic isthmus. The supravalvar mitral stenosis is a typical but very infrequently detected element of the complex of anatomical abnormalities located within the left heart and the proximal aorta, called the Shone's complex (syndrome). Diagnosing an additional, hemodynamically significant anatomic defect during echocardiography was possible thanks to the detection of marked mobility limitation of the ring-adjacent part of the mitral valve mural leaflet as well as of an atypical image of turbulence occurring during the inflow from the left atrium to the left ventricle. The early diagnosis made it possible to perform complete correction of this complex congenital defect within a single operation.
Lee, Hae Won; Kang, Dong-Ho; Cho, Jeong Ho; Lee, Sungjoo; Jun, Dong-Hwan; Park, Jin-Hong
2018-05-30
In recent years when the demand for high-performance biosensors has been aroused, a field-effect transistor (FET)-type biosensor (BioFET) has attracted great interest because of its high sensitivity, label-free detection, fast detection speed, and miniaturization. However, the insulating membrane in the conventional BioFET, which is essential in preventing the surface dangling bonds of typical semiconductors from nonspecific bindings, has limited the sensitivity of biosensors. Here, we present a highly sensitive and reusable membraneless BioFET based on a defect-free van der Waals material, tungsten diselenide (WSe 2 ). We intentionally generated a few surface defects that serve as extra binding sites for the bioreceptor immobilization through weak oxygen plasma treatment, consequently magnifying the sensitivity values to 2.87 × 10 5 A/A for 10 mM glucose. The WSe 2 BioFET also maintained its high sensitivity even after several cycles of rinsing and glucose application were repeated.
Patel, Katan; Fussell, Richard J; Hetmanski, Mike; Goodall, David M; Keely, Brendan J
2005-03-18
A gas chromatography-tandem quadrupole mass spectrometry multi-residue method for the analysis of 19 organochlorine pesticides in fats and oils has been developed. Gel permeation chromatography was employed to remove lipid material prior to GC-MS/MS analysis. Average recoveries of the pesticides spiked at 10 and 50 microg kg(-1) into fish oil, pork fat, olive oil and hydrogenated vegetable oil were typically in the range 70-110% with relative standard deviations generally less than 10%. Calculated limits of detection are between 0.1 and 2.0 microg kg(-1) and results obtained for the analysis of proficiency test materials are in good agreement with assigned values. The higher selectivity of the GC-MS/MS compared to electron capture detection and GC-MS in selective ion monitoring mode allowed unambiguous identification and confirmation of all the target pesticides at low microg kg(-1) levels in fats and oils in a single analysis.
Zhang, Wei; Chen, Chuanhui; Cui, Jian; Bai, Wei; Zhou, Jing
2015-01-01
The present study explores the application of LAMP for rapid diagnosis of pathogenic bacteria in clinical sputum specimens of AECOPD as compared with conventional sputum culturing method. 120 sputum specimens of AECOPD patients, 46 sputum specimens of healthy controls, as well as 166 serum specimens as negative controls, were evaluated by LAMP assay using primers of eight typical respiratory pathogens. No cross-reactivity was observed in these negative control species using LAMP assay. The lower detection limit of LAMP assay was approximately 10(3) copies. 25 cases (20.8%) were detected at least one positive bacteria species by conventional sputum culturing method, while 73 cases (60.8%) were tested positive in LAMP assay. Moreover, compared with sputum culture, bacterial titers results of LAMP assay were more consistent with FEV1/FVC value of AECOPD patients. These results indicated that the sensitivity of LAMP assay was significantly higher than that of sputum culturing method.
Hu, Bin; Peng, Xuejiao; Yang, Shuiping; Gu, Haiwei; Chen, Huanwen; Huan, Yanfu; Zhang, Tingting; Qiao, Xiaolin
2010-02-01
Without any sample pretreatment, effervescent beverage fluids were manually sprayed into the primary ion plume created by using a nanoelectrospray ionization source for direct ionization, and the analyte ions of interest were guided into an ion trap mass spectrometer for tandem mass analysis. Functional ingredients (e.g., vitamins, taurine, and caffeine, etc.) and spiked impurity (e.g., cocaine) in various beverages, such as Red Bull energy drink, Coco-cola, and Pepsi samples were rapidly identified within 1.5 s. The limit of detection was found to be 7-15 fg (S/N = 3) for cocaine in different samples using the characteristic fragment (m/z 150) observed in the MS(3) experiments. Typical relative standard deviation and recovery of this method were 6.9%-8.6% and 104%-108% for direct analysis of three actual samples, showing that nanoextractive electrospray ionization tandem mass spectrometry is a useful technique for fast screening cocaine presence in beverages. 2010. Published by Elsevier Inc.
Dysmorphometrics: the modelling of morphological abnormalities.
Claes, Peter; Daniels, Katleen; Walters, Mark; Clement, John; Vandermeulen, Dirk; Suetens, Paul
2012-02-06
The study of typical morphological variations using quantitative, morphometric descriptors has always interested biologists in general. However, unusual examples of form, such as abnormalities are often encountered in biomedical sciences. Despite the long history of morphometrics, the means to identify and quantify such unusual form differences remains limited. A theoretical concept, called dysmorphometrics, is introduced augmenting current geometric morphometrics with a focus on identifying and modelling form abnormalities. Dysmorphometrics applies the paradigm of detecting form differences as outliers compared to an appropriate norm. To achieve this, the likelihood formulation of landmark superimpositions is extended with outlier processes explicitly introducing a latent variable coding for abnormalities. A tractable solution to this augmented superimposition problem is obtained using Expectation-Maximization. The topography of detected abnormalities is encoded in a dysmorphogram. We demonstrate the use of dysmorphometrics to measure abrupt changes in time, asymmetry and discordancy in a set of human faces presenting with facial abnormalities. The results clearly illustrate the unique power to reveal unusual form differences given only normative data with clear applications in both biomedical practice & research.
A laboratory demonstration of the capability to image an Earth-like extrasolar planet.
Trauger, John T; Traub, Wesley A
2007-04-12
The detection and characterization of an Earth-like planet orbiting a nearby star requires a telescope with an extraordinarily large contrast at small angular separations. At visible wavelengths, an Earth-like planet would be 1 x 10(-10) times fainter than the star at angular separations of typically 0.1 arcsecond or less. There are several proposed space telescope systems that could, in principle, achieve this. Here we report a laboratory experiment that reaches these limits. We have suppressed the diffracted and scattered light near a star-like source to a level of 6 x 10(-10) times the peak intensity in individual coronagraph images. In a series of such images, together with simple image processing, we have effectively reduced this to a residual noise level of about 0.1 x 10(-10). This demonstrates that a coronagraphic telescope in space could detect and spectroscopically characterize nearby exoplanetary systems, with the sensitivity to image an 'Earth-twin' orbiting a nearby star.
King, Jonathan P.; Jeong, Keunhong; Vassiliou, Christophoros C.; ...
2015-12-07
Low detection sensitivity stemming from the weak polarization of nuclear spins is a primary limitation of magnetic resonance spectroscopy and imaging. Methods have been developed to enhance nuclear spin polarization but they typically require high magnetic fields, cryogenic temperatures or sample transfer between magnets. Here we report bulk, room-temperature hyperpolarization of 13C nuclear spins observed via high-field magnetic resonance. The technique harnesses the high optically induced spin polarization of diamond nitrogen vacancy centres at room temperature in combination with dynamic nuclear polarization. We observe bulk nuclear spin polarization of 6%, an enhancement of ~170,000 over thermal equilibrium. The signal ofmore » the hyperpolarized spins was detected in situ with a standard nuclear magnetic resonance probe without the need for sample shuttling or precise crystal orientation. In conclusion, hyperpolarization via optical pumping/dynamic nuclear polarization should function at arbitrary magnetic fields enabling orders of magnitude sensitivity enhancement for nuclear magnetic resonance of solids and liquids under ambient conditions.« less
On the distribution of saliency.
Berengolts, Alexander; Lindenbaum, Michael
2006-12-01
Detecting salient structures is a basic task in perceptual organization. Saliency algorithms typically mark edge-points with some saliency measure, which grows with the length and smoothness of the curve on which these edge-points lie. Here, we propose a modified saliency estimation mechanism that is based on probabilistically specified grouping cues and on curve length distributions. In this framework, the Shashua and Ullman saliency mechanism may be interpreted as a process for detecting the curve with maximal expected length. Generalized types of saliency naturally follow. We propose several specific generalizations (e.g., gray-level-based saliency) and rigorously derive the limitations on generalized saliency types. We then carry out a probabilistic analysis of expected length saliencies. Using ergodicity and asymptotic analysis, we derive the saliency distributions associated with the main curves and with the rest of the image. We then extend this analysis to finite-length curves. Using the derived distributions, we derive the optimal threshold on the saliency for discriminating between figure and background and bound the saliency-based figure-from-ground performance.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Artuso, M.; et al.,
Sensors play a key role in detecting both charged particles and photons for all three frontiers in Particle Physics. The signals from an individual sensor that can be used include ionization deposited, phonons created, or light emitted from excitations of the material. The individual sensors are then typically arrayed for detection of individual particles or groups of particles. Mounting of new, ever higher performance experiments, often depend on advances in sensors in a range of performance characteristics. These performance metrics can include position resolution for passing particles, time resolution on particles impacting the sensor, and overall rate capabilities. In additionmore » the feasible detector area and cost frequently provides a limit to what can be built and therefore is often another area where improvements are important. Finally, radiation tolerance is becoming a requirement in a broad array of devices. We present a status report on a broad category of sensors, including challenges for the future and work in progress to solve those challenges.« less
Sensor Compendium - A Snowmass Whitepaper-
DOE Office of Scientific and Technical Information (OSTI.GOV)
Artuso, M.; Battaglia, M.; Bolla, G.
Sensors play a key role in detecting both charged particles and photons for all three frontiers in Particle Physics. The signals from an individual sensor that can be used include ionization deposited, phonons created, or light emitted from excitations of the material. The individual sensors are then typically arrayed for detection of individual particles or groups of particles. Mounting of new, ever higher performance experiments, often depend on advances in sensors in a range of performance characteristics. These performance metrics can include position resolution for passing particles, time resolution on particles impacting the sensor, and overall rate capabilities. In additionmore » the feasible detector area and cost frequently provides a limit to what can be built and therefore is often another area where improvements are important. Finally, radiation tolerance is becoming a requirement in a broad array of devices. We present a status report on a broad category of sensors, including challenges for the future and work in progress to solve those challenges.« less
Development of a continuous multisite accelerometry system for studying movements during sleep.
Terrill, Philip I; Mason, David G; Wilson, Stephen J
2010-01-01
Actigraphy has proven to be a useful tool in the assessment of circadian rhythms, and more recently in the automatic staging of sleep and wake states. Whilst accuracy of commercial systems appears good over 24 hour periods, the sensitivity of detecting wake during time in bed is poor. One possible explanation for these poor results is the technical limitations of currently available commercial actigraphs. In particular, raw data is generally not available to the user. Instead, activity counts for each epoch (typically between 10-60 secs) are calculated using various algorithms, from which sleep state is identified. Consequently morphologically different movements observed during sleep and wake states may not be detected as such. In this paper, the development of a continuous multisite, accelerometry system (CMAS) is described. Initial results, comparing data collected using a commercial actigraph (Actiwatch- Mini Motionlogger), and the continuous multisite accelerometry system are presented. The CMAS is able to differentiate brief movement "twitches" from postural changes.
Etiological role of human papillomavirus infection for inverted papilloma of the bladder.
Shigehara, Kazuyoshi; Sasagawa, Toshiyuki; Doorbar, John; Kawaguchi, Shohei; Kobori, Yoshitomo; Nakashima, Takao; Shimamura, Masayoshi; Maeda, Yuji; Miyagi, Tohru; Kitagawa, Yasuhide; Kadono, Yoshifumi; Konaka, Hiroyuki; Mizokami, Atsushi; Koh, Eitetsu; Namiki, Mikio
2011-02-01
The status of human papillomavirus (HPV) infection in urothelial inverted papilloma was examined in the present study. Formalin-fixed and paraffin-embedded tissues from eight cases of inverted papilloma of the bladder were studied. The presence of HPV-DNA was examined by modified GP5/6+PCR using archival tissue sections by microdissection. HPV genotype was determined with a Hybri-Max HPV genotyping kit. Immunohistochemical analysis for p16-INK4a, mcm7, HPV-E4, and L1, and in situ hybridization for the HPV genome were performed. HPV was detected in seven of eight cases (87.5%) of inverted papilloma. Three cases were diagnosed as inverted papilloma with atypia, while the remaining five were typical cases. HPV-18 was detected in two cases, including one inverted papilloma with atypia, and HPV-16 was detected in four cases, including one inverted papilloma with atypia. Multiple HPV type infection was detected in one typical case and one atypical case. High-risk HPV was present in all HPV-positive cases. Cellular proteins, p16-INK4a and mcm7, which are surrogate markers for HPV-E7 expression, were detected in all HPV-positive cases, and their levels were higher in inverted papilloma with atypia than in typical cases. In contrast, HPV-E4 and L1, which are markers for HPV propagation, were observed in some parts of the typical inverted papilloma tissue. High-risk HPV infection may be one of the causes of urothelial inverted papilloma, and inverted papilloma with atypia may have malignant potential. 2010 Wiley-Liss, Inc.
Boon, Nele A M; Fannes, Wouter; Rombouts, Sara; Polman, Katja; Volckaert, Filip A M; Huyse, Tine
2017-06-01
Hybrid parasites may have an increased transmission potential and higher virulence compared to their parental species. Consequently, hybrid detection is critical for disease control. Previous crossing experiments showed that hybrid schistosome eggs have distinct morphotypes. We therefore compared the performance of egg morphology with molecular markers with regard to detecting hybridization in schistosomes. We studied the morphology of 303 terminal-spined eggs, originating from 19 individuals inhabiting a hybrid zone with natural crosses between the human parasite Schistosoma haematobium and the livestock parasite Schistosoma bovis in Senegal. The egg sizes showed a high variability and ranged between 92·4 and 176·4 µm in length and between 35·7 and 93·0 µm in width. No distinct morphotypes were found and all eggs resembled, to varying extent, the typical S. haematobium egg type. However, molecular analyses on the same eggs clearly showed the presence of two distinct partial mitochondrial cox1 profiles, namely S. bovis and S. haematobium, and only a single nuclear ITS rDNA profile (S. haematobium). Therefore, in these particular crosses, egg morphology appears not a good indicator of hybrid ancestry. We conclude by discussing strengths and limitations of molecular methods to detect hybrids in the context of high-throughput screening of field samples.
Rapid detection of microbial cell abundance in aquatic systems
Rocha, Andrea M.; Yuan, Quan; Close, Dan M.; ...
2016-06-01
The detection and quantification of naturally occurring microbial cellular densities is an essential component of environmental systems monitoring. While there are a number of commonly utilized approaches for monitoring microbial abundance, capacitance-based biosensors represent a promising approach because of their low-cost and label-free detection of microbial cells, but are not as well characterized as more traditional methods. Here, we investigate the applicability of enhanced alternating current electrokinetics (ACEK) capacitive sensing as a new application for rapidly detecting and quantifying microbial cellular densities in cultured and environmentally sourced aquatic samples. ACEK capacitive sensor performance was evaluated using two distinct and dynamicmore » systems the Great Australian Bight and groundwater from the Oak Ridge Reservation in Oak Ridge, TN. Results demonstrate that ACEK capacitance-based sensing can accurately determine microbial cell counts throughout cellular concentrations typically encountered in naturally occurring microbial communities (10 3 – 10 6 cells/mL). A linear relationship was observed between cellular density and capacitance change correlations, allowing a simple linear curve fitting equation to be used for determining microbial abundances in unknown samples. As a result, this work provides a foundation for understanding the limits of capacitance-based sensing in natural environmental samples and supports future efforts focusing on evaluating the robustness ACEK capacitance-based within aquatic environments.« less
Rapid detection of microbial cell abundance in aquatic systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rocha, Andrea M.; Yuan, Quan; Close, Dan M.
The detection and quantification of naturally occurring microbial cellular densities is an essential component of environmental systems monitoring. While there are a number of commonly utilized approaches for monitoring microbial abundance, capacitance-based biosensors represent a promising approach because of their low-cost and label-free detection of microbial cells, but are not as well characterized as more traditional methods. Here, we investigate the applicability of enhanced alternating current electrokinetics (ACEK) capacitive sensing as a new application for rapidly detecting and quantifying microbial cellular densities in cultured and environmentally sourced aquatic samples. ACEK capacitive sensor performance was evaluated using two distinct and dynamicmore » systems the Great Australian Bight and groundwater from the Oak Ridge Reservation in Oak Ridge, TN. Results demonstrate that ACEK capacitance-based sensing can accurately determine microbial cell counts throughout cellular concentrations typically encountered in naturally occurring microbial communities (10 3 – 10 6 cells/mL). A linear relationship was observed between cellular density and capacitance change correlations, allowing a simple linear curve fitting equation to be used for determining microbial abundances in unknown samples. As a result, this work provides a foundation for understanding the limits of capacitance-based sensing in natural environmental samples and supports future efforts focusing on evaluating the robustness ACEK capacitance-based within aquatic environments.« less
Utilization of optical emission endpoint in photomask dry etch processing
NASA Astrophysics Data System (ADS)
Faure, Thomas B.; Huynh, Cuc; Lercel, Michael J.; Smith, Adam; Wagner, Thomas
2002-03-01
Use of accurate and repeatable endpoint detection during dry etch processing of photomask is very important for obtaining good mask mean-to-target and CD uniformity performance. It was found that the typical laser reflectivity endpoint detecting system used on photomask dry etch systems had several key limitations that caused unnecessary scrap and non-optimum image size performance. Consequently, work to develop and implement use of a more robust optical emission endpoint detection system for chrome dry etch processing of photomask was performed. Initial feasibility studies showed that the emission technique was sensitive enough to monitor pattern loadings on contact and via level masks down to 3 percent pattern coverage. Additional work was performed to further improve this to 1 percent pattern coverage by optimizing the endpoint detection parameters. Comparison studies of mask mean-to-target performance and CD uniformity were performed with the use of optical emission endpoint versus laser endpoint for masks built using TOK IP3600 and ZEP 7000 resist systems. It was found that an improvement in mean-to-target performance and CD uniformity was realized on several types of production masks. In addition, part-to-part endpoint time repeatability was found to be significantly improved with the use of optical emission endpoint.
Rosenberg, M. J.; Séguin, F. H.; Waugh, C. J.; ...
2014-04-14
CR-39 solid-state nuclear track detectors are widely used in physics and in many inertial confinement fusion (ICF) experiments, and under ideal conditions these detectors have 100% detection efficiency for ~0.5–8 MeV protons. When the fluence of incident particles becomes too high, the overlap of particle tracks leads to under-counting at typical processing conditions (5h etch in 6N NaOH at 80°C). Short etch times required to avoid overlap can cause under-counting as well, as tracks are not fully developed. Experiments have determined the minimum etch times for 100% detection of 1.7–4.3-MeV protons and established that for 2.4-MeV protons, relevant for detectionmore » of DD protons, the maximum fluence that can be detected using normal processing techniques is ≲3 ×10 6 cm -2. A CR-39-based proton detector has been developed to mitigate issues related to high particle fluences on ICF facilities. Using a pinhole and scattering foil several mm in front of the CR-39, proton fluences at the CR-39 are reduced by more than a factor of ~50, increasing the operating yield upper limit by a comparable amount.« less
Seto, Yasuo; Sekiguchi, Hiroshi; Maruko, Hisashi; Yamashiro, Shigeharu; Sano, Yasuhiro; Takayama, Yasuo; Sekioka, Ryoji; Yamaguchi, Shintaro; Kishi, Shintaro; Satoh, Takafumi; Sekiguchi, Hiroyuki; Iura, Kazumitsu; Nagashima, Hisayuki; Nagoya, Tomoki; Tsuge, Kouichiro; Ohsawa, Isaac; Okumura, Akihiko; Takada, Yasuaki; Ezawa, Naoya; Watanabe, Susumu; Hashimoto, Hiroaki
2014-05-06
A highly sensitive and specific real-time field-deployable detection technology, based on counterflow air introduction atmospheric pressure chemical ionization, has been developed for a wide range of chemical warfare agents (CWAs) comprising gaseous (two blood agents, three choking agents), volatile (six nerve gases and one precursor agent, five blister agents), and nonvolatile (three lachrymators, three vomiting agents) agents in air. The approach can afford effective chemical ionization, in both positive and negative ion modes, for ion trap multiple-stage mass spectrometry (MS(n)). The volatile and nonvolatile CWAs tested provided characteristic ions, which were fragmented into MS(3) product ions in positive and negative ion modes. Portions of the fragment ions were assigned by laboratory hybrid mass spectrometry (MS) composed of linear ion trap and high-resolution mass spectrometers. Gaseous agents were detected by MS or MS(2) in negative ion mode. The limits of detection for a 1 s measurement were typically at or below the microgram per cubic meter level except for chloropicrin (submilligram per cubic meter). Matrix effects by gasoline vapor resulted in minimal false-positive signals for all the CWAs and some signal suppression in the case of mustard gas. The moisture level did influence the measurement of the CWAs.
Experimental damage detection of wind turbine blade using thin film sensor array
NASA Astrophysics Data System (ADS)
Downey, Austin; Laflamme, Simon; Ubertini, Filippo; Sarkar, Partha
2017-04-01
Damage detection of wind turbine blades is difficult due to their large sizes and complex geometries. Additionally, economic restraints limit the viability of high-cost monitoring methods. While it is possible to monitor certain global signatures through modal analysis, obtaining useful measurements over a blade's surface using off-the-shelf sensing technologies is difficult and typically not economical. A solution is to deploy dedicated sensor networks fabricated from inexpensive materials and electronics. The authors have recently developed a novel large-area electronic sensor measuring strain over very large surfaces. The sensing system is analogous to a biological skin, where local strain can be monitored over a global area. In this paper, we propose the utilization of a hybrid dense sensor network of soft elastomeric capacitors to detect, localize, and quantify damage, and resistive strain gauges to augment such dense sensor network with high accuracy data at key locations. The proposed hybrid dense sensor network is installed inside a wind turbine blade model and tested in a wind tunnel to simulate an operational environment. Damage in the form of changing boundary conditions is introduced into the monitored section of the blade. Results demonstrate the ability of the hybrid dense sensor network, and associated algorithms, to detect, localize, and quantify damage.
Quantum cascade laser-based sensor system for nitric oxide detection
NASA Astrophysics Data System (ADS)
Tittel, Frank K.; Allred, James J.; Cao, Yingchun; Sanchez, Nancy P.; Ren, Wei; Jiang, Wenzhe; Jiang, Dongfang; Griffin, Robert J.
2015-01-01
Sensitive detection of nitric oxide (NO) at ppbv concentration levels has an important impact in diverse fields of applications including environmental monitoring, industrial process control and medical diagnostics. For example, NO can be used as a biomarker of asthma and inflammatory lung diseases such as chronic obstructive pulmonary disease. Trace gas sensor systems capable of high sensitivity require the targeting of strong rotational-vibrational bands in the mid-IR spectral range. These bands are accessible using state-of-the-art high heat load (HHL) packaged, continuous wave (CW), distributed feedback (DFB) quantum cascade lasers (QCLs). Quartz-enhanced photoacoustic spectroscopy (QEPAS) permits the design of fast, sensitive, selective, and compact sensor systems. A QEPAS sensor was developed employing a room-temperature CW DFB-QCL emitting at 5.26 μm with an optical excitation power of 60 mW. High sensitivity is achieved by targeting a NO absorption line at 1900.08 cm-1 free of interference by H2O and CO2. The minimum detection limit of the sensor is 7.5 and 1 ppbv of NO with 1and 100 second averaging time respectively . The sensitivity of the sensor system is sufficient for detecting NO in exhaled human breath, with typical concentration levels ranging from 24.0 ppbv to 54.0 ppbv.
Leaching of N-nitrosodimethylamine (NDMA) in turfgrass soils during wastewater irrigation.
Gan, J; Bondarenko, S; Ernst, F; Yang, W; Ries, S B; Sedlak, D L
2006-01-01
N-nitrosodimethylamine (NDMA) is a carcinogenic by-product of chlorination that is frequently found in municipal wastewater effluent. NDMA is miscible in water and negligibly adsorbed to soil, and therefore may pose a threat to ground water when treated wastewater is used for landscape irrigation. A field study was performed in the summer months under arid Southern California weather conditions to evaluate the leaching potential of NDMA in turfgrass soils during wastewater irrigation. Wastewater was used to irrigate multiple turfgrass plots at 110 to 160% evapotranspiration rate for about 4 mo, and leachate was continuously collected and analyzed for NDMA. The treated wastewater contained relatively high levels of NDMA (114-1820 ng L(-1); mean 930 ng L(-1)). NDMA was detected infrequently in the leachate regardless of the soil type or irrigation schedule. At a method detection limit of 2 ng L(-1), NDMA was only detected in 9 out of 400 leachate samples and when it was detected, the NDMA concentration was less than 5 ng L(-1). NDMA was relatively persistent in the turfgrass soils during laboratory incubation, indicating that mechanisms other than biotransformation, likely volatilization and/or plant uptake, contributed to the rapid dissipation. Under conditions typical of turfgrass irrigation with wastewater effluent it is unlikely that NDMA will contaminate ground water.
Raman spectroscopic detection of peripheral nerves towards nerve-sparing surgery
NASA Astrophysics Data System (ADS)
Minamikawa, Takeo; Harada, Yoshinori; Takamatsu, Tetsuro
2017-02-01
The peripheral nervous system plays an important role in motility, sensory, and autonomic functions of the human body. Preservation of peripheral nerves in surgery, namely nerve-sparing surgery, is now promising technique to avoid functional deficits of the limbs and organs following surgery as an aspect of the improvement of quality of life of patients. Detection of peripheral nerves including myelinated and unmyelinated nerves is required for the nerve-sparing surgery; however, conventional nerve identification scheme is sometimes difficult to identify peripheral nerves due to similarity of shape and color to non-nerve tissues or its limited application to only motor peripheral nerves. To overcome these issues, we proposed a label-free detection technique of peripheral nerves by means of Raman spectroscopy. We found several fingerprints of peripheral myelinated and unmyelinated nerves by employing a modified principal component analysis of typical spectra including myelinated nerve, unmyelinated nerve, and adjacent tissues. We finally realized the sensitivity of 94.2% and the selectivity of 92.0% for peripheral nerves including myelinated and unmyelinated nerves against adjacent tissues. Although further development of an intraoperative Raman spectroscopy system is required for clinical use, our proposed approach will serve as a unique and powerful tool for peripheral nerve detection for nerve-sparing surgery in the future.
Geier, Manfred; Arienti, Marco
2014-07-19
Increasing interest in polarimetric characterization of atmospheric aerosols has led to the development of complete sample-measuring (Mueller) polarimeters that are capable of measuring the entire backscattering phase matrix of a probed volume. The Mueller polarimeters consist of several moving parts, which limit measurement rates and complicate data analysis. In this paper, we present the concept of a less complex polarization lidar setup for detection of preferential orientation of atmospheric particulates. On the basis of theoretical considerations of data inversion stability and propagation of measurement uncertainties, an optimum optical configuration is established for two modes of operation (with either a linearmore » or a circular polarized incident laser beam). We discovered that the conceptualized setup falls in the category of incomplete sample-measuring polarimeters and uses four detection channels for simultaneous measurement of the backscattered light. Likewise, the expected performance characteristics are discussed through an example of a typical aerosol with a small fraction of particles oriented in a preferred direction. As a result, the theoretical analysis suggests that achievable accuracies in backscatter cross-sections and depolarization ratios are similar to those with conventional two-channel configurations, while in addition preferential orientation can be detected with the proposed four-channel system for a wide range of conditions.« less
MALDI-based identification of stable hazelnut protein derived tryptic marker peptides.
Cucu, T; De Meulenaer, B; Devreese, B
2012-01-01
Food allergy is an important health problem especially in industrialised countries. Tree nuts, among which are hazelnuts (Corylus avellana), are typically causing serious and life-threatening symptoms in sensitive subjects. Hazelnut is used as a food ingredient in pastry, confectionary products, ice cream and meat products, therefore undeclared hazelnut can be often present as a cross-contaminant representing a threat for allergic consumers. Mass spectrometric techniques are used for the detection of food allergens in processed foods, but limited information regarding stable tryptic peptide markers for hazelnut is available. The aim of this study was to detect stable peptide markers from modified hazelnut protein through the Maillard reaction and oxidation in a buffered solution. Peptides ³⁹⁵Gly-Arg⁴⁰³ from Cor a 11 and ²⁰⁹Gln-Arg²¹⁷, ³⁵¹Ile-Arg³⁶³, ⁴⁶⁴Ala-Arg⁴⁷⁸ and ⁴⁰¹Val-Arg⁴¹⁷ from Cor a 9 hazelnut allergens proved to be the most stable and could be detected and confirmed with high scores in most of the modified samples. The identified peptides can be further used as analytical targets for the development of more robust quantitative methods for hazelnut detection in processed foods.
NASA Astrophysics Data System (ADS)
Eibl, Matthias; Karpf, Sebastian; Hakert, Hubertus; Weng, Daniel; Pfeiffer, Tom; Kolb, Jan Philip; Huber, Robert
2017-07-01
Newly developed microscopy methods have the goal to give researches in bio-molecular science a better understanding of processes ongoing on a cellular level. Especially two-photon excited fluorescence (TPEF) microscopy is a readily applied and widespread modality. Compared to one photon fluorescence imaging, it is possible to image not only the surface but also deeper lying structures. Together with fluorescence lifetime imaging (FLIM), which provides information on the chemical composition of a specimen, deeper insights on a molecular level can be gained. However, the need for elaborate light sources for TPEF and speed limitations for FLIM hinder an even wider application. In this contribution, we present a way to overcome this limitations by combining a robust and inexpensive fiber laser for nonlinear excitation with a fast analog digitization method for rapid FLIM imaging. The applied sub nanosecond pulsed laser source is perfectly suited for fiber delivery as typically limiting non-linear effects like self-phase or cross-phase modulation (SPM, XPM) are negligible. Furthermore, compared to the typically applied femtosecond pulses, our longer pulses produce much more fluorescence photons per single shot. In this paper, we show that this higher number of fluorescence photons per pulse combined with a high analog bandwidth detection makes it possible to not only use a single pulse per pixel for TPEF imaging but also to resolve the exponential time decay for FLIM. To evaluate our system, we acquired FLIM images of a dye solution with single exponential behavior to assess the accuracy of our lifetime determination and also FLIM images of a plant stem at a pixel rate of 1 MHz to show the speed performance of our single pulse two-photon FLIM (SP-FLIM) system.
Kumar, Neeraj; Garg, Ravindra Kumar; Malhotra, Hardeep Singh; Gupta, Rakesh Kumar; Verma, Rajesh; Sharma, Praveen Kumar
2016-02-01
To evaluate the role of advanced magnetic resonance (MR) sequences (fast imaging employing steady-state acquisition (FIESTA), T2 star-weighted angiography (SWAN) and spoiled gradient recalled echo (SPGR)) in patients with single small enhancing computed tomography lesions and scolex demonstration in typical and atypical parenchymal neurocysticercosis. In this study, 59 patients of new-onset seizures with single small enhancing computed tomography lesions of the brain were included. Along with routine MR sequences, advanced MR sequences, like SWAN, FIESTA, and pre and post-contrast SPGR, were performed. Follow-up MR studies focussing on the morphology of the lesions and demonstration of scolex were performed 6 monthly for 3 years. The majority of patients (62.7%) were men with partial seizure as the most common manifestation. On SPGR, contrast lesions were identified as either 'typical' (42, 71.2%) or 'atypical' (17, 28.8%). In the typical lesion group, SWAN and FIESTA sequences detected scolex in 30 (71.4%) and 32 (76.2%), respectively. The combination of SPGR-contrast, FIESTA and SWAN sequences detected scolex in 35 (83.3%) patients compared to 19 (45.2%) by routine sequences (P < 0.001). In the atypical lesion group, SWAN and FIESTA sequences detected scolex in 15 (88.2%) and 16 (94.1%) patients, respectively. The combination of SPGR-contrast, FIESTA and SWAN sequences detected scolex in 16 (94.1%) patients compared to 10 (58.8%) by routine sequences (P < 0.001). Follow-up showed greater resolution with lesser calcification in the typical group compared to the atypical group. This study provides an insight into the natural course of typical and atypical solitary cysticercus granuloma lesions, and the utility of SPGR-contrast, FIESTA and SWAN MR sequences in scolex demonstration and identification of atypical lesions. © The Author(s) 2015.
NASA Astrophysics Data System (ADS)
Zhang, Qian; Wang, Xiang-Dong; Tian, Ting; Chu, Li-Qiang
2017-06-01
Surface-enhanced Raman scattering (SERS) sensors have been extensively studied for ultrasensitive detection of diverse chemical or biological analytes. Facile fabrication of highly sensitive SERS substrates is believed to be of crucial importance in these analytical applications. In this regard, the preparation of 3-dimensional (3D) SERS substrates are explored via the incorporation of multilayered silver nanoparticles (AgNPs) into poly (oligo(ethylene glycol) methacrylate) (POEGMA) brushes by repeating the immersion-rinsing-drying steps for different lengths of time (i.e., the so-called in-stacking method). The POEGMA brushes of different chain lengths are synthesized by surface-initiated atom transfer radical polymerization (ATRP) with various reaction time. The resulting POEGMA/AgNP nanocomposites are characterized by FE-SEM, UV-vis and Raman spectroscopy. FE-SEM and UV-vis results indicate that the AgNPs are successfully incorporated into the POEGMA brushes with a 3D configuration. The nanocomposite films are employed as SERS substrates for the detection of a Raman reporter molecule (i.e., 4-aminothiophenol), giving rise to an enhancement factor of up to 1.29 × 107 and also having relatively good uniformity and reproducibility. The obtained 3D SERS substrates are also used for the detection of a typical gram-positive bacterium, Staphylococcus aureus. The limit of detection is found to be as low as ca. 8 CFU/mL.
Carbon nanopipette electrodes for dopamine detection in Drosophila.
Rees, Hillary R; Anderson, Sean E; Privman, Eve; Bau, Haim H; Venton, B Jill
2015-04-07
Small, robust, sensitive electrodes are desired for in vivo neurotransmitter measurements. Carbon nanopipettes have been previously manufactured and used for single-cell drug delivery and electrophysiological measurements. Here, a modified fabrication procedure was developed to produce batches of solid carbon nanopipette electrodes (CNPEs) with ∼250 nm diameter tips, and controllable lengths of exposed carbon, ranging from 5 to 175 μm. The electrochemical properties of CNPEs were characterized with fast-scan cyclic voltammetry (FSCV) for the first time. CNPEs were used to detect the electroactive neurotransmitters dopamine, serotonin, and octopamine. CNPEs were significantly more sensitive for serotonin detection than traditional carbon-fiber microelectrodes (CFMEs). Similar to CFMEs, CNPEs have a linear response for dopamine concentrations ranging from 0.1 to 10 μM and a limit of detection of 25 ± 5 nM. Recordings with CNPEs were stable for over 3 h when the applied triangle waveform was scanned between -0.4 and +1.3 V vs Ag/AgCl/Cl(-) at 400 V/s. CNPEs were used to detect endogenous dopamine release in Drosophila larvae using optogenetics, which verified the utility of CNPEs for in vivo neuroscience studies. CNPEs are advantageous because they are 1 order of magnitude smaller in diameter than typical CFMEs and have a sharp, tunable geometry that facilitates penetration and implantation for localized measurements in distinct regions of small organisms, such as the Drosophila brain.
The Outer Solar System Origins Survey (OSSOS): a status update
NASA Astrophysics Data System (ADS)
Kavelaars, J. J.; Bannister, Michele T.; Gladman, Brett; Petit, Jean-Marc; Gwyn, S.; Chen, Ying-Tung Charles; Alexandersen, Mike; Volk, Kat
2015-11-01
OSSOS is a 560 hour imaging survey using MegaPrime on the CFHT designed to produce a well characterized sample of Kuiper belt objects whose orbital and physical properties will provide useful constraints on the evolutionary history of the outer solar system. Started in 2013, this 4 year project has now entered the finally year of survey operation. With 1/2 (84 square degrees) of the observation fully analyzed, OSOSS has detected and tracked 219 TNOs brighter than our typical flux limit of r' ~ 24.5. This is 30% more detections than the entire Canada-France Ecliptic Plane Survey (CFEPS), a precursor project.Based on the first quarter of the survey the OSSOS project confirms the CFEPS-L7 orbital model of the orbital structure of the TNO population (Petit et al., 2011) and has provided additional evidence of complex structure in the size distribution of scatterin TNOs (Shankman et al., 2015). A number of the OSSOS science teams are presenting results at this meeting: Bannister et al., Benecchi et al., Fraser et al., Volk et al. on a variety of aspects of the orbital and physical properties the OSSOS detected samples. Here we present a summary of the current status of the survey: field locations, basic characterization, detection rates and some global detection statistics.More details on the OSSOS project are available from our web site: www.ossos-survey.org
Bacterial community structure transformed after thermophilically composting human waste in Haiti
Kramer, Sasha; Roy, Monika; Reid, Francine C.; Dubinsky, Eric A.
2017-01-01
Recycling human waste for beneficial use has been practiced for millennia. Aerobic (thermophilic) composting of sewage sludge has been shown to reduce populations of opportunistically pathogenic bacteria and to inactivate both Ascaris eggs and culturable Escherichia coli in raw waste, but there is still a question about the fate of most fecal bacteria when raw material is composted directly. This study undertook a comprehensive microbial community analysis of composting material at various stages collected over 6 months at two composting facilities in Haiti. The fecal microbiota signal was monitored using a high-density DNA microarray (PhyloChip). Thermophilic composting altered the bacterial community structure of the starting material. Typical fecal bacteria classified in the following groups were present in at least half the starting material samples, yet were reduced below detection in finished compost: Prevotella and Erysipelotrichaceae (100% reduction of initial presence), Ruminococcaceae (98–99%), Lachnospiraceae (83–94%, primarily unclassified taxa remained), Escherichia and Shigella (100%). Opportunistic pathogens were reduced below the level of detection in the final product with the exception of Clostridium tetani, which could have survived in a spore state or been reintroduced late in the outdoor maturation process. Conversely, thermotolerant or thermophilic Actinomycetes and Firmicutes (e.g., Thermobifida, Bacillus, Geobacillus) typically found in compost increased substantially during the thermophilic stage. This community DNA-based assessment of the fate of human fecal microbiota during thermophilic composting will help optimize this process as a sanitation solution in areas where infrastructure and resources are limited. PMID:28570610
X-Ray Cargo Inspection: Status and Trends
NASA Astrophysics Data System (ADS)
Chen, Gongyin; Bjorkholm, Paul; Fox, Timothy R.; Wilson, Zane; Bonsergent, Xavier
2009-03-01
Over the past several years, x-ray cargo inspection has experienced tremendous growth. There are several hundred systems in use world wide and a few new units are installed every week. Fielded systems are mostly located in north and West Africa, Middle East, Europe (especially Russia), East Asia, and South America. The majority of systems are powered by Varian M3, M6 or M9 Linac x-ray sources. The spatial resolution of these systems is typically 3-5 mm, penetration ranges from around 200 mm to 450 mm of steel and contrast sensitivity is typically 1-4%. Inspection throughput ranges from about 20 trucks per hour to 200 trucks per hour. Currently the systems are primarily used to fight import tax evasion and smuggling of controlled substances. There are a few clear trends: Imaging performance has been steadily improving; a variety of systems have been developed to fit different needs; also, there is a strong effort in material discrimination, or even identification and automatic detection. The last, but not least trend is a shift to security applications. The US government has launched major efforts such as CAARS and JINII to fight nuclear threat and systems that can automatically detect a small amount of high atomic number materials are being developed. This paper only covers RF linear accelerator based X-ray sources, which prevail in the industry. Induction accelerators (Betatrons) have some limited use in low-end imaging systems and high duty factors sources have recently been proposed for study.
Where is the fuzz? Undetected Lyman α nebulae around quasars at z ~ 2.3
NASA Astrophysics Data System (ADS)
Herenz, Edmund Christian; Wisotzki, Lutz; Roth, Martin; Anders, Friedrich
2015-04-01
We observed a small sample of five radio-quiet quasars with integral field spectroscopy to search for possible extended emission in the Lyα line. We subtracted the quasar point sources using a simple point spread function (PSF) self-calibration technique that takes advantage of the simultaneous availability of spatial and spectral information. In four of the five objects we find no significant traces of extended Lyα emission beyond the contribution of the quasar nuclei itself, while in UM 247 there is evidence for a weak and spatially quite compact excess in the Lyα line at several kpc outside the nucleus. For all objects in our sample we estimated detection limits for extended, smoothly distributed Lyα emission by adding fake nebulosities into the datacubes and trying to recover them after PSF subtraction. Our observations are consistent with other studies showing that giant Lyα nebulae such as those found recently around some quasars are very rare. Lyα fuzz around typical radio-quiet quasars is fainter and less extended and is therefore much harder to detect. The faintness of these structures is consistent with the idea that radio-quiet quasars typically reside in dark matter haloes of modest masses. Based on observations collected at the Centro Astronómico Hispano Alemán (CAHA) at Calar Alto, operated jointly by the Max-Planck Institut für Astronomie and the Instituto de Astrofísica de Andalucía (CSIC).
Making great leaps forward: Accounting for detectability in herpetological field studies
Mazerolle, Marc J.; Bailey, Larissa L.; Kendall, William L.; Royle, J. Andrew; Converse, Sarah J.; Nichols, James D.
2007-01-01
Detecting individuals of amphibian and reptile species can be a daunting task. Detection can be hindered by various factors such as cryptic behavior, color patterns, or observer experience. These factors complicate the estimation of state variables of interest (e.g., abundance, occupancy, species richness) as well as the vital rates that induce changes in these state variables (e.g., survival probabilities for abundance; extinction probabilities for occupancy). Although ad hoc methods (e.g., counts uncorrected for detection, return rates) typically perform poorly in the face of no detection, they continue to be used extensively in various fields, including herpetology. However, formal approaches that estimate and account for the probability of detection, such as capture-mark-recapture (CMR) methods and distance sampling, are available. In this paper, we present classical approaches and recent advances in methods accounting for detectability that are particularly pertinent for herpetological data sets. Through examples, we illustrate the use of several methods, discuss their performance compared to that of ad hoc methods, and we suggest available software to perform these analyses. The methods we discuss control for imperfect detection and reduce bias in estimates of demographic parameters such as population size, survival, or, at other levels of biological organization, species occurrence. Among these methods, recently developed approaches that no longer require marked or resighted individuals should be particularly of interest to field herpetologists. We hope that our effort will encourage practitioners to implement some of the estimation methods presented herein instead of relying on ad hoc methods that make more limiting assumptions.
Thielen, Beth K; Friedlander, Hannah; Bistodeau, Sarah; Shu, Bo; Lynch, Brian; Martin, Karen; Bye, Erica; Como-Sabetti, Kathryn; Boxrud, David; Strain, Anna K; Chaves, Sandra S; Steffens, Andrea; Fowlkes, Ashley L; Lindstrom, Stephen; Lynfield, Ruth
2018-03-19
Existing literature suggests that influenza C typically causes mild respiratory tract disease. However, clinical and epidemiological data are limited. Four outpatient clinics and 3 hospitals submitted clinical data and respiratory specimens through a surveillance network for acute respiratory infection (ARI) from May 2013 through December 2016. Specimens were tested using multitarget nucleic acid amplification for 19-22 respiratory pathogens, including influenza C. Influenza C virus was detected among 59 of 10 202 (0.58%) hospitalized severe ARI cases and 11 of 2282 (0.48%) outpatients. Most detections occurred from December to March, 73% during the 2014-2015 season. Influenza C detections occurred among patients of all ages, with rates being similar between inpatients and outpatients. The highest rate of detection occurred among children aged 6-24 months (1.2%). Among hospitalized cases, 7 required intensive care. Medical comorbidities were reported in 58% of hospitalized cases and all who required intensive care. At least 1 other respiratory pathogen was detected in 40 (66%) cases, most commonly rhinovirus/enterovirus (25%) and respiratory syncytial virus (20%). The hemagglutinin-esterase-fusion gene was sequenced in 37 specimens, and both C/Kanagawa and C/Sao Paulo lineages were detected in inpatients and outpatients. We found seasonal circulation of influenza C with year-to-year variability. Detection was most frequent among young children but occurred in all ages. Some cases that were positive for influenza C, particularly those with comorbid conditions, had severe disease, suggesting a need for further study of the role of influenza C virus in the pathogenesis of respiratory disease.
NASA Astrophysics Data System (ADS)
Gomer, Nathaniel R.; Tazik, Shawna; Gardner, Charles W.; Nelson, Matthew P.
2017-05-01
Hyperspectral imaging (HSI) is a valuable tool for the detection and analysis of targets located within complex backgrounds. HSI can detect threat materials on environmental surfaces, where the concentration of the target of interest is often very low and is typically found within complex scenery. Unfortunately, current generation HSI systems have size, weight, and power limitations that prohibit their use for field-portable and/or real-time applications. Current generation systems commonly provide an inefficient area search rate, require close proximity to the target for screening, and/or are not capable of making real-time measurements. ChemImage Sensor Systems (CISS) is developing a variety of real-time, wide-field hyperspectral imaging systems that utilize shortwave infrared (SWIR) absorption and Raman spectroscopy. SWIR HSI sensors provide wide-area imagery with at or near real time detection speeds. Raman HSI sensors are being developed to overcome two obstacles present in standard Raman detection systems: slow area search rate (due to small laser spot sizes) and lack of eye-safety. SWIR HSI sensors have been integrated into mobile, robot based platforms and handheld variants for the detection of explosives and chemical warfare agents (CWAs). In addition, the fusion of these two technologies into a single system has shown the feasibility of using both techniques concurrently to provide higher probability of detection and lower false alarm rates. This paper will provide background on Raman and SWIR HSI, discuss the applications for these techniques, and provide an overview of novel CISS HSI sensors focusing on sensor design and detection results.
NASA Technical Reports Server (NTRS)
1985-01-01
Typical R&D limited partnership arrangements, advantages and disadvantages of R&D limited partnership (RDLPs) and antitrust and tax implications are described. A number of typical forms of RDLPs are described that may be applicable for use in stimulating R&D and experimental programs using the advanced communications technology satellite. The ultimate goal is to increase the rate of market penetration of goods and/or services based upon advanced satellite communications technology. The conditions necessary for these RDLP forms to be advantageous are outlined.
Super-Resolution Community Detection for Layer-Aggregated Multilayer Networks
Taylor, Dane; Caceres, Rajmonda S.; Mucha, Peter J.
2017-01-01
Applied network science often involves preprocessing network data before applying a network-analysis method, and there is typically a theoretical disconnect between these steps. For example, it is common to aggregate time-varying network data into windows prior to analysis, and the trade-offs of this preprocessing are not well understood. Focusing on the problem of detecting small communities in multilayer networks, we study the effects of layer aggregation by developing random-matrix theory for modularity matrices associated with layer-aggregated networks with N nodes and L layers, which are drawn from an ensemble of Erdős–Rényi networks with communities planted in subsets of layers. We study phase transitions in which eigenvectors localize onto communities (allowing their detection) and which occur for a given community provided its size surpasses a detectability limit K*. When layers are aggregated via a summation, we obtain K∗∝O(NL/T), where T is the number of layers across which the community persists. Interestingly, if T is allowed to vary with L, then summation-based layer aggregation enhances small-community detection even if the community persists across a vanishing fraction of layers, provided that T/L decays more slowly than 𝒪(L−1/2). Moreover, we find that thresholding the summation can, in some cases, cause K* to decay exponentially, decreasing by orders of magnitude in a phenomenon we call super-resolution community detection. In other words, layer aggregation with thresholding is a nonlinear data filter enabling detection of communities that are otherwise too small to detect. Importantly, different thresholds generally enhance the detectability of communities having different properties, illustrating that community detection can be obscured if one analyzes network data using a single threshold. PMID:29445565
Super-Resolution Community Detection for Layer-Aggregated Multilayer Networks.
Taylor, Dane; Caceres, Rajmonda S; Mucha, Peter J
2017-01-01
Applied network science often involves preprocessing network data before applying a network-analysis method, and there is typically a theoretical disconnect between these steps. For example, it is common to aggregate time-varying network data into windows prior to analysis, and the trade-offs of this preprocessing are not well understood. Focusing on the problem of detecting small communities in multilayer networks, we study the effects of layer aggregation by developing random-matrix theory for modularity matrices associated with layer-aggregated networks with N nodes and L layers, which are drawn from an ensemble of Erdős-Rényi networks with communities planted in subsets of layers. We study phase transitions in which eigenvectors localize onto communities (allowing their detection) and which occur for a given community provided its size surpasses a detectability limit K * . When layers are aggregated via a summation, we obtain [Formula: see text], where T is the number of layers across which the community persists. Interestingly, if T is allowed to vary with L , then summation-based layer aggregation enhances small-community detection even if the community persists across a vanishing fraction of layers, provided that T/L decays more slowly than ( L -1/2 ). Moreover, we find that thresholding the summation can, in some cases, cause K * to decay exponentially, decreasing by orders of magnitude in a phenomenon we call super-resolution community detection. In other words, layer aggregation with thresholding is a nonlinear data filter enabling detection of communities that are otherwise too small to detect. Importantly, different thresholds generally enhance the detectability of communities having different properties, illustrating that community detection can be obscured if one analyzes network data using a single threshold.
Trapped atomic ions for quantum-limited metrology
NASA Astrophysics Data System (ADS)
Wineland, David
2017-04-01
Laser-beam-manipulated trapped ions are a candidate for large-scale quantum information processing and quantum simulation but the basic techniques used can also be applied to quantum-limited metrology and sensing. Some examples being explored at NIST are: 1) As charged harmonic oscillators, trapped ions can be used to sense electric fields; this can be used to characterize the electrode-surface-based noisy electric fields that compromise logic-gate fidelities and may eventually be used as a tool in surface science. 2) Since typical qubit logic gates depend on state-dependent forces, we can adapt the gate dynamics to sensitively detect additional forces. 3) We can use extensions of Bell inequality measurements to further restrict the degree of local realism possessed by Bell states. 4) We also briefly describe experiments for creation of Bell states using Hilbert space engineering. This work is a joint effort including the Ion-Storage group, the Quantum processing group, and the Computing and Communications Theory group at NIST, Boulder. Supported by IARPA, ONR, and the NIST Quantum Information Program.
A new bomb-combustion system for tritium extraction.
Marsh, Richard I; Croudace, Ian W; Warwick, Phillip E; Cooper, Natasha; St-Amant, Nadereh
2017-01-01
Quantitative extraction of tritium from a sample matrix is critical to efficient measurement of the low-energy pure beta emitter. Oxidative pyrolysis using a tube furnace (Pyrolyser) has been adopted as an industry standard approach for the liberation of tritium (Warwick et al. in Anal Chim Acta 676:93-102, 2010) however pyrolysis of organic-rich materials can be problematic. Practically, the mass of organic rich sample combusted is typically limited to <1 g to minimise the possibility of incomplete combustion. This can have an impact on both the limit of detection that can be achieved and how representative the subsample is of the bulk material, particularly in the case of heterogeneous soft waste. Raddec International Ltd (Southampton, UK), in conjunction with GAU-Radioanalytical, has developed a new high-capacity oxygen combustion bomb (the Hyperbaric Oxidiser; HBO 2 ) to address this challenge. The system is capable of quantitatively combusting samples of 20-30 g under an excess of oxygen, facilitating rapid extraction of total tritium from a wide range sample types.
Balsam, Joshua; Bruck, Hugh Alan; Rasooly, Avraham
2014-09-07
Here we describe a novel low-cost flow cytometer based on a webcam capable of low cell number detection in a large volume which may overcome the limitations of current flow cytometry. Several key elements have been combined to yield both high throughput and high sensitivity. The first element is a commercially available webcam capable of 187 frames per second video capture at a resolution of 320 × 240 pixels. The second element in this design is a 1 W 450 nm laser module for area-excitation, which combined with the webcam allows for rapid interrogation of a flow field. The final element is a 2D flow-cell which overcomes the flow limitation of hydrodynamic focusing and allows for higher sample throughput in a wider flow field. This cell allows for the linear velocity of target cells to be lower than in a conventional "1D" hydrodynamic focusing flow-cells typically used in cytometry at similar volumetric flow rates. It also allows cells to be imaged at the full frame rate of the webcam. Using this webcam-based flow cytometer with wide-field imaging, it was confirmed that the detection of fluorescently tagged 5 μm polystyrene beads in "1D" hydrodynamic focusing flow-cells was not practical for low cell number detection due to streaking from the motion of the beads, which did not occur with the 2D flow-cell design. The sensitivity and throughput of this webcam-based flow cytometer was then investigated using THP-1 human monocytes stained with SYTO-9 florescent dye in the 2D flow-cell. The flow cytometer was found to be capable of detecting fluorescently tagged cells at concentrations as low as 1 cell per mL at flow rates of 500 μL min(-1) in buffer and in blood. The effectiveness of detection was concentration dependent: at 100 cells per mL 84% of the cells were detected compared to microscopy, 10 cells per mL 79% detected and 1 cell per mL 59% of the cells were detected. With the blood samples spiked to 100 cells per mL, the average concentration for all samples was 91.4 cells per mL, with a 95% confidence interval of 86-97 cells per mL. These low cell concentrations and the large volume capabilities of the system may overcome the limitations of current cytometry, and are applicable to rare cell (such as circulating tumor cell) detection The simplicity and low cost of this device suggests that it may have a potential use in developing point-of-care clinical flow cytometry for resource-poor settings associated with global health.
A new approach for structural health monitoring by applying anomaly detection on strain sensor data
NASA Astrophysics Data System (ADS)
Trichias, Konstantinos; Pijpers, Richard; Meeuwissen, Erik
2014-03-01
Structural Health Monitoring (SHM) systems help to monitor critical infrastructures (bridges, tunnels, etc.) remotely and provide up-to-date information about their physical condition. In addition, it helps to predict the structure's life and required maintenance in a cost-efficient way. Typically, inspection data gives insight in the structural health. The global structural behavior, and predominantly the structural loading, is generally measured with vibration and strain sensors. Acoustic emission sensors are more and more used for measuring global crack activity near critical locations. In this paper, we present a procedure for local structural health monitoring by applying Anomaly Detection (AD) on strain sensor data for sensors that are applied in expected crack path. Sensor data is analyzed by automatic anomaly detection in order to find crack activity at an early stage. This approach targets the monitoring of critical structural locations, such as welds, near which strain sensors can be applied during construction and/or locations with limited inspection possibilities during structural operation. We investigate several anomaly detection techniques to detect changes in statistical properties, indicating structural degradation. The most effective one is a novel polynomial fitting technique, which tracks slow changes in sensor data. Our approach has been tested on a representative test structure (bridge deck) in a lab environment, under constant and variable amplitude fatigue loading. In both cases, the evolving cracks at the monitored locations were successfully detected, autonomously, by our AD monitoring tool.
Nshanian, Michael; Lakshmanan, Rajeswari; Chen, Hao; Ogorzalek Loo, Rachel R; Loo, Joseph A
2018-04-01
Trifluoroacetic acid (TFA) is often used as a mobile phase modifier to enhance reversed phase chromatographic performance. TFA adjusts solution pH and is an ion-pairing agent, but it is not typically suitable for electrospray ionization-mass spectrometry (ESI-MS) and liquid chromatography/MS (LC/MS) because of its significant signal suppression. Supercharging agents elevate peptide and protein charge states in ESI, increasing tandem MS (MS/MS) efficiency. Here, LC/MS protein supercharging was effected by adding agents to LC mobile phase solvents. Significantly, the ionization suppression generally observed with TFA was, for the most part, rescued by supercharging agents, with improved separation efficiency (higher number of theoretical plates) and lowered detection limits.
Verweij, Jaco J; Stensvold, C Rune
2014-04-01
Over the past few decades, nucleic acid-based methods have been developed for the diagnosis of intestinal parasitic infections. Advantages of nucleic acid-based methods are numerous; typically, these include increased sensitivity and specificity and simpler standardization of diagnostic procedures. DNA samples can also be stored and used for genetic characterization and molecular typing, providing a valuable tool for surveys and surveillance studies. A variety of technologies have been applied, and some specific and general pitfalls and limitations have been identified. This review provides an overview of the multitude of methods that have been reported for the detection of intestinal parasites and offers some guidance in applying these methods in the clinical laboratory and in epidemiological studies.
Mastalerz, Maria; Gurba, L.W.
2001-01-01
This paper discusses nitrogen determination with the Cameca SX50 electron microprobe using PCO as an analyzing crystal. A set of conditions using differing accelerating voltages, beam currents, beam sizes, and counting times were tested to determine parameters that would give the most reliable nitrogen determination. The results suggest that, for the instrumentation used, 10 kV, current 20 nA, and a counting time of 20 s provides the most reliable nitrogen determination, with a much lower detection limit than the typical concentration of this element in coal. The study demonstrates that the electron microprobe technique can be used to determine the nitrogen content of coal macerals successfully and accurately. ?? 2001 Elsevier Science B.V. All rights reserved.
Stensvold, C. Rune
2014-01-01
SUMMARY Over the past few decades, nucleic acid-based methods have been developed for the diagnosis of intestinal parasitic infections. Advantages of nucleic acid-based methods are numerous; typically, these include increased sensitivity and specificity and simpler standardization of diagnostic procedures. DNA samples can also be stored and used for genetic characterization and molecular typing, providing a valuable tool for surveys and surveillance studies. A variety of technologies have been applied, and some specific and general pitfalls and limitations have been identified. This review provides an overview of the multitude of methods that have been reported for the detection of intestinal parasites and offers some guidance in applying these methods in the clinical laboratory and in epidemiological studies. PMID:24696439
Katrina and Rita were lit up with lightning
NASA Astrophysics Data System (ADS)
Shao, X.-M.; Harlin, J.; Stock, M.; Stanley, M.; Regan, A.; Wiens, K.; Hamlin, T.; Pongratz, M.; Suszcynsky, D.; Light, T.
Hurricanes generally produce very little lightning activity compared to other noncyclonic storms, and lightning is especially sparse in the eye wall and inner regions within tens of kilometers surrounding the eye [Molinari et al., 1994, 1999]. (The eye wall is the wall of clouds that encircles the eye of the hurricane.) Lightning can sometimes be detected in the outer, spiral rainbands, but the lightning occurrence rate varies significantly from hurricane to hurricane as well as within an individual hurricane's lifetime.Hurricanes Katrina and Rita hit the U.S. Gulf coasts of Louisiana, Mississippi, and Texas, and their distinctions were not just limited to their tremendous intensity and damage caused. They also differed from typical hurricanes in their lightning production rate.
On the stellar rotation-activity connection
NASA Technical Reports Server (NTRS)
Rosner, R.
1983-01-01
The relationship between rotation rates and surface activity in late-type dwarf stars is explored in a survey of recent theoretical and observational studies. Current theoretical models of stellar-magnetic-field production and coronal activity are examined, including linear kinematic dynamo theory, nonlinear dynamos using approximations, and full numerical simulations of the MHD equations; and some typical results are presented graphically. The limitations of the modeling procedures and the constraints imposed by the physics are indicated. The statistical techniques used in establishing correlations between various observational parameters are analyzed critically, and the methods developed for quasar luminosity functions by Avni et al. (1980) are used to evaluate the effects of upper detection bounds, incomplete samples, and missing data for the case of rotation and X-ray flux data.
Nakai, Yasushi; Takiguchi, Tetsuya; Matsui, Gakuyo; Yamaoka, Noriko; Takada, Satoshi
2017-10-01
Abnormal prosody is often evident in the voice intonations of individuals with autism spectrum disorders. We compared a machine-learning-based voice analysis with human hearing judgments made by 10 speech therapists for classifying children with autism spectrum disorders ( n = 30) and typical development ( n = 51). Using stimuli limited to single-word utterances, machine-learning-based voice analysis was superior to speech therapist judgments. There was a significantly higher true-positive than false-negative rate for machine-learning-based voice analysis but not for speech therapists. Results are discussed in terms of some artificiality of clinician judgments based on single-word utterances, and the objectivity machine-learning-based voice analysis adds to judging abnormal prosody.
NASA Astrophysics Data System (ADS)
Wilson, Rod; Brittain, Alan H.
1997-01-01
When a vehicle is used to transport narcotic contraband material trace levels of that material can be found on surfaces of the vehicle, people associated with the vehicle and surface they contact. The detection of these trace levels can help to target vehicles associated with the smuggling of the contraband. A study to determine the typical levels of narcotic material that can be detected from these surfaces has been performed by personnel from Graseby, using a variety of drug materials. The size and packaging of the drug materials has been prepared to try to reflect that typically found in smuggling operations. These tests show that for all hard drugs easily detectable traces of drug material can be found on the vehicle, the proxy and secondary surfaces handled by the proxy. For detection of cannabis, the condition of the original material had a great bearing ont he reliability of detection.
Hijazi, Hassan Y; Bottaro, Christina S
2018-02-26
Water-compatible molecularly imprinted polymer (MIP) thin films are coupled with headspace gas chromatography sulfur chemiluminescence detection (HS-GC-SCD) to create a new approach for the determination of trace concentrations of thiophene compounds in water samples. Thiophene compounds are persistent, typically petrogenic, organic pollutants of concern due to their potential for biomagnification and bioaccumulation, mutagenicity, and carcinogenicity in terrestrial and aquatic fauna. Identification and quantitation in water, particularly following oil spills, is a priority. Following adsorption of the thiophenes to the MIPs, the MIP-bound analytes are analyzed directly by HS-GC-SCD, with minimal sample manipulation and virtually no organic solvent. Calibration curves of spiked seawater were linear from 5 μg L -1 to 100 μg L -1 and limits of detection (LOD) were in the range of 0.24-0.82 μg L -1 . Low matrix effects were observed in the analysis of thiophene compounds in seawater making the method suitable for use in fresh and saline waters without modification. Acceptable reproducibility was obtained for analysis of thiophene compounds from spiked seawater samples at RSDs ≤7.0% (n = 3).
Engine Icing Modeling and Simulation (Part 2): Performance Simulation of Engine Rollback Phenomena
NASA Technical Reports Server (NTRS)
May, Ryan D.; Guo, Ten-Huei; Veres, Joseph P.; Jorgenson, Philip C. E.
2011-01-01
Ice buildup in the compressor section of a commercial aircraft gas turbine engine can cause a number of engine failures. One of these failure modes is known as engine rollback: an uncommanded decrease in thrust accompanied by a decrease in fan speed and an increase in turbine temperature. This paper describes the development of a model which simulates the system level impact of engine icing using the Commercial Modular Aero-Propulsion System Simulation 40k (C-MAPSS40k). When an ice blockage is added to C-MAPSS40k, the control system responds in a manner similar to that of an actual engine, and, in cases with severe blockage, an engine rollback is observed. Using this capability to simulate engine rollback, a proof-of-concept detection scheme is developed and tested using only typical engine sensors. This paper concludes that the engine control system s limit protection is the proximate cause of iced engine rollback and that the controller can detect the buildup of ice particles in the compressor section. This work serves as a feasibility study for continued research into the detection and mitigation of engine rollback using the propulsion control system.
Molecular gated nanoporous anodic alumina for the detection of cocaine
NASA Astrophysics Data System (ADS)
Ribes, Àngela; Xifré-Pérez, Elisabet; Aznar, Elena; Sancenón, Félix; Pardo, Teresa; Marsal, Lluís F.; Martínez-Máñez, Ramόn
2016-12-01
We present herein the use of nanoporous anodic alumina (NAA) as a suitable support to implement “molecular gates” for sensing applications. In our design, a NAA support is loaded with a fluorescent reporter (rhodamine B) and functionalized with a short single-stranded DNA. Then pores are blocked by the subsequent hybridisation of a specific cocaine aptamer. The response of the gated material was studied in aqueous solution. In a typical experiment, the support was immersed in hybridisation buffer solution in the absence or presence of cocaine. At certain times, the release of rhodamine B from pore voids was measured by fluorescence spectroscopy. The capped NAA support showed poor cargo delivery, but presence of cocaine in the solution selectively induced rhodamine B release. By this simple procedure a limit of detection as low as 5 × 10-7 M was calculated for cocaine. The gated NAA was successfully applied to detect cocaine in saliva samples and the possible re-use of the nanostructures was assessed. Based on these results, we believe that NAA could be a suitable support to prepare optical gated probes with a synergic combination of the favourable features of selected gated sensing systems and NAA.
Molecular gated nanoporous anodic alumina for the detection of cocaine.
Ribes, Àngela; Xifré-Pérez, Elisabet; Aznar, Elena; Sancenón, Félix; Pardo, Teresa; Marsal, Lluís F; Martínez-Máñez, Ramόn
2016-12-07
We present herein the use of nanoporous anodic alumina (NAA) as a suitable support to implement "molecular gates" for sensing applications. In our design, a NAA support is loaded with a fluorescent reporter (rhodamine B) and functionalized with a short single-stranded DNA. Then pores are blocked by the subsequent hybridisation of a specific cocaine aptamer. The response of the gated material was studied in aqueous solution. In a typical experiment, the support was immersed in hybridisation buffer solution in the absence or presence of cocaine. At certain times, the release of rhodamine B from pore voids was measured by fluorescence spectroscopy. The capped NAA support showed poor cargo delivery, but presence of cocaine in the solution selectively induced rhodamine B release. By this simple procedure a limit of detection as low as 5 × 10 -7 M was calculated for cocaine. The gated NAA was successfully applied to detect cocaine in saliva samples and the possible re-use of the nanostructures was assessed. Based on these results, we believe that NAA could be a suitable support to prepare optical gated probes with a synergic combination of the favourable features of selected gated sensing systems and NAA.
Detecting and Quantifying Topography in Neural Maps
Yarrow, Stuart; Razak, Khaleel A.; Seitz, Aaron R.; Seriès, Peggy
2014-01-01
Topographic maps are an often-encountered feature in the brains of many species, yet there are no standard, objective procedures for quantifying topography. Topographic maps are typically identified and described subjectively, but in cases where the scale of the map is close to the resolution limit of the measurement technique, identifying the presence of a topographic map can be a challenging subjective task. In such cases, an objective topography detection test would be advantageous. To address these issues, we assessed seven measures (Pearson distance correlation, Spearman distance correlation, Zrehen's measure, topographic product, topological correlation, path length and wiring length) by quantifying topography in three classes of cortical map model: linear, orientation-like, and clusters. We found that all but one of these measures were effective at detecting statistically significant topography even in weakly-ordered maps, based on simulated noisy measurements of neuronal selectivity and sparse sampling of the maps. We demonstrate the practical applicability of these measures by using them to examine the arrangement of spatial cue selectivity in pallid bat A1. This analysis shows that significantly topographic arrangements of interaural intensity difference and azimuth selectivity exist at the scale of individual binaural clusters. PMID:24505279
Studies of the field-of-view resolution tradeoff in virtual-reality systems
NASA Technical Reports Server (NTRS)
Piantanida, Thomas P.; Boman, Duane; Larimer, James; Gille, Jennifer; Reed, Charles
1992-01-01
Most virtual-reality systems use LCD-based displays that achieve a large field-of-view at the expense of resolution. A typical display will consist of approximately 86,000 pixels uniformly distributed over an 80-degree by 60-degree image. Thus, each pixel subtends about 13 minutes of arc at the retina; about the same as the resolvable features of the 20/200 line of a Snellen Eye Chart. The low resolution of LCD-based systems limits task performance in some applications. We have examined target-detection performance in a low-resolution virtual world. Our synthesized three-dimensional virtual worlds consisted of target objects that could be positioned at a fixed distance from the viewer, but at random azimuth and constrained elevation. A virtual world could be bounded by chromatic walls or by wire-frame, or it could be unbounded. Viewers scanned these worlds and indicated by appropriate gestures when they had detected the target object. By manipulating the viewer's field size and the chromatic and luminance contrast of annuli surrounding the field-of-view, we were able to assess the effect of field size on the detection of virtual objects in low-resolution synthetic worlds.
Identification of lapis-lazuli pigments in paint layers by PIGE measurements
NASA Astrophysics Data System (ADS)
Grassi, N.; Migliori, A.; Mandò, P. A.; Calvo del Castillo, H.
2004-06-01
Lapis-lazuli is a semi-precious stone used in the past to produce a blue pigment. Its main component is lazurite, 3Na 2O·3Al 2O 3·6SiO 2·2Na 2S. The possibility of using PIXE to identify this pigment in canvas and wood painting is severely limited by the strong absorption of low-energy X-rays in the protective varnish and - when, as typical, the pigment is mixed with lead white - by the overlapping of Pb M lines with S K α. In this work we discuss the possibility of identifying lapis-lazuli by detecting sodium with PIGE. PIXE and PIGE measurements have been performed on samples containing lapis-lazuli mixed to lead white in different percentage, covered with polymeric foils to simulate the presence of varnish. At a percentage of lapis-lazuli below 50%, Na X-rays are hardly detectable even with the thinner foil; on the contrary the characteristic γ-rays are clearly detected down to about 1%. A first application has been successfully performed on the "Madonna dei fusi" by Leonardo da Vinci, in the framework of an extensive scientific investigation on the painting techniques used by the Renaissance genius.
Barron, Leon; O'Toole, Martina; Diamond, Dermot; Nesterenko, Pavel N; Paull, Brett
2008-12-05
The selectivity, retention and separation of transition metals on a short (2 mm x 50 mm) column packed with a poly-iminodiacetic acid functionalised polymer 10 microm resin (Dionex ProPac IMAC-10) are presented. This stationary phase, typically used for the separation of proteins, is composed of long chain poly-iminodiacetic acid groups grafted to a hydrophilic layer surrounding a 10 microm polymeric bead. Through the use of a combination of a multi-step pH and picolinic acid gradient, the separation of magnesium, iron, cobalt, cadmium, zinc, lead and copper was possible, followed by post-column reaction with 4-(2-pyridylazo) resorcinol (PAR) and absorbance detection at 510 nm using a novel and inexpensive optical detector, comprised of two light emitting diodes with one acting as a light source and the other as a detector. Column efficiency for selective transition metals was in excess of N=10,000, with the baseline separation of seven metal cations in <3 min possible under optimised conditions. Detection limits of between 5 and 81 microg/L were possible based upon a 50 microL injection volume.
Molecular gated nanoporous anodic alumina for the detection of cocaine
Ribes, Àngela; Xifré -Pérez, Elisabet; Aznar, Elena; Sancenón, Félix; Pardo, Teresa; Marsal, Lluís F.; Martínez-Máñez, Ramόn
2016-01-01
We present herein the use of nanoporous anodic alumina (NAA) as a suitable support to implement “molecular gates” for sensing applications. In our design, a NAA support is loaded with a fluorescent reporter (rhodamine B) and functionalized with a short single-stranded DNA. Then pores are blocked by the subsequent hybridisation of a specific cocaine aptamer. The response of the gated material was studied in aqueous solution. In a typical experiment, the support was immersed in hybridisation buffer solution in the absence or presence of cocaine. At certain times, the release of rhodamine B from pore voids was measured by fluorescence spectroscopy. The capped NAA support showed poor cargo delivery, but presence of cocaine in the solution selectively induced rhodamine B release. By this simple procedure a limit of detection as low as 5 × 10−7 M was calculated for cocaine. The gated NAA was successfully applied to detect cocaine in saliva samples and the possible re-use of the nanostructures was assessed. Based on these results, we believe that NAA could be a suitable support to prepare optical gated probes with a synergic combination of the favourable features of selected gated sensing systems and NAA. PMID:27924950
The optimal on-source region size for detections with counting-type telescopes
NASA Astrophysics Data System (ADS)
Klepser, S.
2017-03-01
Source detection in counting type experiments such as Cherenkov telescopes often involves the application of the classical Eq. (17) from the paper of Li & Ma (1983) to discrete on- and off-source regions. The on-source region is typically a circular area with radius θ in which the signal is expected to appear with the shape of the instrument point spread function (PSF). This paper addresses the question of what is the θ that maximises the probability of detection for a given PSF width and background event density. In the high count number limit and assuming a Gaussian PSF profile, the optimum is found to be at ζ∞2 ≈ 2.51 times the squared PSF width σPSF392. While this number is shown to be a good choice in many cases, a dynamic formula for cases of lower count numbers, which favour larger on-source regions, is given. The recipe to get to this parametrisation can also be applied to cases with a non-Gaussian PSF. This result can standardise and simplify analysis procedures, reduce trials and eliminate the need for experience-based ad hoc cut definitions or expensive case-by-case Monte Carlo simulations.
Yan, Wenwu; Wang, Nani; Zhang, Peimin; Zhang, Jiajie; Wu, Shuchao; Zhu, Yan
2016-08-01
Sucralose is widely used in food and beverages as sweetener. Current synthesis approaches typically provide sucralose products with varying levels of related chlorinated carbohydrates which can affect the taste and flavor-modifying properties of sucralose. Quantification of related compounds in sucralose is often hampered by the lack of commercially available standards. In this work, nine related compounds were purified (purity>97%) and identified by liquid chromatography-mass spectrometry (LC-MS) and nuclear magnetic resonance (NMR), then a rapid and simple HPLC coupled with evaporative light scattering detection (ELSD) method has been developed for the simultaneous determination of sucralose and related compounds. Under optimized conditions, the method showed good linearity in the range of 2-600μgmL(-1) with determination coefficients R(2)⩾0.9990. Moreover, low limits of detection in the range of 0.5-2.0μgmL(-1) and good repeatability (RSD<3%, n=6) were obtained. Recoveries were from 96.8% to 101.2%. Finally, the method has been successfully applied to sucralose quality control and purification process monitoring. Copyright © 2016 Elsevier Ltd. All rights reserved.
Bazan, I; Ramos, A; Balay, G; Negreira, C
2018-07-01
The aim of this work is to develop a new type of ultrasonic analysis of the mechanical properties of an arterial wall with improved resolution, and to confirm its feasibility under laboratory conditions. it is expected that this would facilitate a non-invasive path for accurate predictive diagnosis that enables an early detection & therapy of vascular pathologies. In particular, the objective is to detect and quantify the small elasticity changes (in Young's modulus E) of arterial walls, which precede pathology. A submicron axial resolution is required for this analysis, as the periodic widening of the wall (under oscillatory arterial pressure) varies between ±10 and 20 μm. This high resolution represents less than 1% of the parietal thickness (e.g., < 7 μm in carotid arteries). The novelty of our proposal is the new technique used to estimate the modulus E of the arterial walls, which achieves the requisite resolution. It calculates the power spectral evolution associated with the temporal dynamics in higher harmonics of the wall internal resonance f 0 . This was attained via the implementation of an autoregressive parametric algorithm that accurately detects parietal echo-dynamics during a heartbeat. Thus, it was possible to measure the punctual elasticity of the wall, with a higher resolution (> an order of magnitude) compared to conventional approaches. The resolution of a typical ultrasonic image is limited to several hundred microns, and thus, such small changes are undetected. The proposed procedure provides a non-invasive and direct measure of elasticity by doing an estimation of changes in the Nf 0 harmonics and wall thickness with a resolution of 0.1%, for first time. The results obtained by using the classic temporal cross-correlation method (TCC) were compared to those obtained with the new procedure. The latter allowed the evaluation of alterations in the elastic properties of arterial walls that are 30 times smaller than those being detectable with TCC; in fact, the depth resolution of the TCC approach is limited to ≈20 μm for typical SNRs. These values were calculated based on echoes obtained using a reference pattern (rubber tube). The application of the proposed procedure was also confirmed via "ex-vivo" measurements in pig carotid segments. Copyright © 2018 Elsevier B.V. All rights reserved.
2012-01-01
Background Understanding nosocomial pathogen transmission is restricted by culture limitations. Novel platforms, such as PCR-based electron spray ionization-time-of-flight-mass spectrometry (ESI-TOF-MS), may be useful as investigational tools. Methods Traditional clinical microbiology (TCM) and PCR/ESI-TOF-MS were used to recover and detect microorganisms from the hands and personal protective equipment of 10 burn intensive care unit (ICU) healthcare workers providing clinical care at a tertiary care military referral hospital. High-use environmental surfaces were assessed in 9 burn ICU and 10 orthopedic patient rooms. Clinical cultures during the study period were reviewed for pathogen comparison with investigational molecular diagnostic methods. Results From 158 samples, 142 organisms were identified by TCM and 718 by PCR/ESI-TOF-MS. The molecular diagnostic method detected more organisms (4.5 ± 2.1 vs. 0.9 ± 0.8, p < 0.01) from 99% vs. 67% of samples (p < 0.01). TCM detected S. aureus in 13 samples vs. 21 by PCR/ESI-TOF-MS. Gram-negative organisms were less commonly identified than gram-positive by both methods; especially by TCM. Among all detected bacterial species, similar percentages were typical nosocomial pathogens (18-19%) for TCM vs. PCR/ESI-TOF-MS. PCR/ESI-TOF-MS also detected mecA in 112 samples, vanA in 13, and KPC-3 in 2. MecA was associated (p < 0.01) with codetection of coagulase negative staphylococci but not S. aureus. No vanA was codetected with enterococci; one KPC-3 was detected without Klebsiella spp. Conclusions In this pilot study, PCR/ESI-TOF-MS detected more organisms, especially gram-negatives, compared to TCM, but the current assay format is limited by the number of antibiotic resistance determinants it covers. Further large-scale assessments of PCR/ESI-TOF-MS for hospital surveillance are warranted. PMID:23050585
Schreier, Stefan; Doungchawee, Galayanee; Triampo, Darapond; Wangroongsarb, Piyada; Hartskeerl, Rudi A; Triampo, Wannapong
2012-04-01
Climate change, world population growth, and poverty have led to an increase in the incidence of leptospirosis. Leptospirosis is caused by pathogenic spirochaete bacteria that belong to the genus Leptospira. The bacteria are maintained in the renal tubules of the reservoir hosts (typically a rodent), then shed into the environment via the urine. Water is key for environmental survival and transmission, as leptospires can survive for several weeks in a moist environment. Therefore, environmental epidemiological studies are needed to study the contamination of environmental water sources. However, few such studies have been performed using cultivation of the isolates and PCR assays. But, leptospira cultivation can be easily contaminated by other organisms and takes usually several weeks. Moreover, PCR is a complex and costly analysis for the underdeveloped countries that have the highest incidence of leptospirosis. In this study, we describe two modifications of a fluorescence microscopy assay based on immuno-magnetic separation (IMS) to detect leptospires in environmental water samples that mainly differ in fluorescent dye staining. The first type uses acridine orange fluorescent dye staining combined with multiplexed IMS for sample screening. The detection limit ranged from 10(2) to 10(3) organisms per mL and largely depended on the capture efficiency (CE) of the immuno-magnetic particles. The second type uses serogroup-specific immuno-particles and direct fluorescence antibody staining (DFA) to detect leptospires; the detection limit of this second assay was approximately 10(1) cells per mL. Both assay types were applied to natural and experimentally infected water samples, which were also analysed with DFM and real-time PCR. Our data show that the fluorescent microscopy immunoassay successfully identified experimental leptospire contamination and was as sensitive as PCR. This modified immune-fluorescence assay may therefore enable epidemiological studies of leptospirosis. Copyright © 2012 Elsevier B.V. All rights reserved.
Companions in Color: High-Resolution Imaging of Kepler’s Sub-Neptune Host Stars
NASA Astrophysics Data System (ADS)
Ware, Austin; Wolfgang, Angie; Kannan, Deepti
2018-01-01
A current problem in astronomy is determining how sub-Neptune-sized exoplanets form in planetary systems. These kinds of planets, which fall between 1 and 4 times the size of Earth, were discovered in abundance by the Kepler Mission and were typically found with relatively short orbital periods. The combination of their size and orbital period make them unusual in relation to the Solar System, leading to the question of how these exoplanets form and evolve. One possibility is that they have been influenced by distant stellar companions. To help assess the influence of these objects on the present-day, observed properties of exoplanets, we conduct a NIR search for visual stellar companions to the stars around which the Kepler Mission discovered planets. We use high-resolution images obtained with the adaptive optics systems at the Lick Observatory Shane-3m telescope to find these companion stars. Importantly, we also determine the effective brightness and distance from the planet-hosting star at which it is possible to detect these companions. Out of the 200 KOIs in our sample, 42 KOIs (21%) have visual companions within 3”, and 90 (46%) have them within 6”. These findings are consistent with recent high-resolution imaging from Furlan et al. 2017 that found at least one visual companion within 4” for 31% of sampled KOIs (37% within 4" for our sample). Our results are also complementary to Furlan et al. 2017, with only 17 visual companions commonly detected in the same filter. As for detection limits, our preliminary results indicate that we can detect companion stars < 3-5 magnitudes fainter than the planet-hosting star at a separation of ~ 1”. These detection limits will enable us to determine the probability that possible companion stars could be hidden within the noise around the planet-hosting star, an important step in determining the frequency with which these short-period, sub-Neptune-sized planets occur within binary star systems.
NASA Astrophysics Data System (ADS)
Schmidt, F.; Doute, S.; Schmitt, B.
In order to understand Mars' current climate it is necessary to detect, characterize and monitor CO2 and H2O at the surface (permanent and seasonal icy deposits) and in the atmosphere (vapor and clouds). Here we will focus on the South Seasonal Polar Cap (SSPC) whose recession was previously observed with different techniques : from earth in the visible range with HST [James 1996], or from MGS spacecraft with MOC images [Benson 2005], in the thermal IR range by the TES [Kieffer 2000], in the near infrared by OMEGA/MEX [Langevin submitted]. The time and space evolutions of the SSPC is a major annual climatic signal both at the global and the regional scales. In particular the measurement of the temporal and spatial distributions of CO2 constrains exchange processes between both surface and atmosphere. This exchange may involve preponderant species : H2O, CO2 and dust. In this work we will apply a new detection technique : "wavanglet" in order to follow the recession of the SSPC thanks to OMEGA/MEX observations. This method was especially developed in the goal to classify a huge dataset, such OMEGA ones. We propose to use "wavanglet" as a supervised automatic classification method that identifies spectral features and classifies the image in spectrally homogeneous units. Additionally we will evaluate quantitative detection limits of "wavanglet" based on synthetic dataset simulating OMEGA spectra in typical situation of the SSPC. This detection limit will be discussed in terms of abundance for H2O and CO2 ices in order to improve the interpretation of the classification. Finally we will present the recession of the SSPC using "wavanglet" and we will compare the results with those of earlier investigation. An interpretation of the similarities and disagreements between those maps will be done.
Validation of the CrIS fast physical NH3 retrieval with ground-based FTIR
NASA Astrophysics Data System (ADS)
Dammers, Enrico; Shephard, Mark W.; Palm, Mathias; Cady-Pereira, Karen; Capps, Shannon; Lutsch, Erik; Strong, Kim; Hannigan, James W.; Ortega, Ivan; Toon, Geoffrey C.; Stremme, Wolfgang; Grutter, Michel; Jones, Nicholas; Smale, Dan; Siemons, Jacob; Hrpcek, Kevin; Tremblay, Denis; Schaap, Martijn; Notholt, Justus; Erisman, Jan Willem
2017-07-01
Presented here is the validation of the CrIS (Cross-track Infrared Sounder) fast physical NH3 retrieval (CFPR) column and profile measurements using ground-based Fourier transform infrared (FTIR) observations. We use the total columns and profiles from seven FTIR sites in the Network for the Detection of Atmospheric Composition Change (NDACC) to validate the satellite data products. The overall FTIR and CrIS total columns have a positive correlation of r = 0.77 (N = 218) with very little bias (a slope of 1.02). Binning the comparisons by total column amounts, for concentrations larger than 1.0 × 1016 molecules cm-2, i.e. ranging from moderate to polluted conditions, the relative difference is on average ˜ 0-5 % with a standard deviation of 25-50 %, which is comparable to the estimated retrieval uncertainties in both CrIS and the FTIR. For the smallest total column range (< 1.0 × 1016 molecules cm-2) where there are a large number of observations at or near the CrIS noise level (detection limit) the absolute differences between CrIS and the FTIR total columns show a slight positive column bias. The CrIS and FTIR profile comparison differences are mostly within the range of the single-level retrieved profile values from estimated retrieval uncertainties, showing average differences in the range of ˜ 20 to 40 %. The CrIS retrievals typically show good vertical sensitivity down into the boundary layer which typically peaks at ˜ 850 hPa (˜ 1.5 km). At this level the median absolute difference is 0.87 (std = ±0.08) ppb, corresponding to a median relative difference of 39 % (std = ±2 %). Most of the absolute and relative profile comparison differences are in the range of the estimated retrieval uncertainties. At the surface, where CrIS typically has lower sensitivity, it tends to overestimate in low-concentration conditions and underestimate in higher atmospheric concentration conditions.
Staggs, Sarah E.; Beckman, Erin M.; Keely, Scott P.; Mackwan, Reena; Ware, Michael W.; Moyer, Alan P.; Ferretti, James A.; Sayed, Abu; Xiao, Lihua; Villegas, Eric N.
2013-01-01
Quantitative real-time polymerase chain reaction (qPCR) assays to detect Cryptosporidium oocysts in clinical samples are increasingly being used to diagnose human cryptosporidiosis, but a parallel approach for detecting and identifying Cryptosporidium oocyst contamination in surface water sources has yet to be established for current drinking water quality monitoring practices. It has been proposed that Cryptosporidium qPCR-based assays could be used as viable alternatives to current microscopic-based detection methods to quantify levels of oocysts in drinking water sources; however, data on specificity, analytical sensitivity, and the ability to accurately quantify low levels of oocysts are limited. The purpose of this study was to provide a comprehensive evaluation of TaqMan-based qPCR assays, which were developed for either clinical or environmental investigations, for detecting Cryptosporidium oocyst contamination in water. Ten different qPCR assays, six previously published and four developed in this study were analyzed for specificity and analytical sensitivity. Specificity varied between all ten assays, and in one particular assay, which targeted the Cryptosporidium 18S rRNA gene, successfully detected all Cryptosporidium spp. tested, but also cross-amplified T. gondii, fungi, algae, and dinoflagellates. When evaluating the analytical sensitivity of these qPCR assays, results showed that eight of the assays could reliably detect ten flow-sorted oocysts in reagent water or environmental matrix. This study revealed that while a qPCR-based detection assay can be useful for detecting and differentiating different Cryptosporidium species in environmental samples, it cannot accurately measure low levels of oocysts that are typically found in drinking water sources. PMID:23805235
DOE Office of Scientific and Technical Information (OSTI.GOV)
King, W. D.
In order to appropriately model and predict the chemical integrity and performance of cementitious materials used for waste immobilization at the Savannah River Site (SRS), it is critical to understand the I-129 solubility and distribution within the tank farm. Iodine in radioactive waste and in environmental media is typically highly mobile and long lived. Iodine is ubiquitous in SRS tank waste and waste forms. The iodine is assumed to be soluble and present at low levels in Performance Assessments (PAs) for SRS Tank Farms, and is one of the dose drivers in the PAs for both the SRS Salt Disposalmore » Facility (SDF) and the H-Area Tank Farm (HTF). Analysis of tank waste samples is critical to understanding the Tank Farm iodine inventory and reducing disposal uncertainty. Higher than expected iodine levels have recently been observed in residual solids isolated from some SRS tanks prior to closure, indicating uncertainty regarding the chemical species involved. If the iodine inventory uncertainty is larger than anticipated, future work may be necessary to reduce the uncertainty. This memorandum satisfies a portion of the work scope identified in Task Plan SRNL-RP-2016-00651. A separate memorandum issued previously, reported historical unpublished I-129 data, a significant portion of which was below detectable analytical limits. This memorandum includes iodine and general chemical analysis results for six archived SRNL samples which were previously reported to have I-129 concentrations below detectable limits. Lower sample dilution factors were used for the current analyses in order to obtain concentrations above detection. The samples analyzed included surface and depth samples from SRS tanks 30, 32, and 39.« less
Cloud Point Extraction for Electroanalysis: Anodic Stripping Voltammetry of Cadmium
Rusinek, Cory A.; Bange, Adam; Papautsky, Ian; Heineman, William R.
2016-01-01
Cloud point extraction (CPE) is a well-established technique for the pre-concentration of hydrophobic species from water without the use of organic solvents. Subsequent analysis is then typically performed via atomic absorption spectroscopy (AAS), UV-Vis spectroscopy, or high performance liquid chromatography (HPLC). However, the suitability of CPE for electroanalytical methods such as stripping voltammetry has not been reported. We demonstrate the use of CPE for electroanalysis using the determination of cadmium (Cd2+) by anodic stripping voltammetry (ASV) as a representative example. Rather than using the chelating agents which are commonly used in CPE to form a hydrophobic, extractable metal complex, we used iodide and sulfuric acid to neutralize the charge on Cd2+ to form an extractable ion pair. Triton X-114 was chosen as the surfactant for the extraction because its cloud point temperature is near room temperature (22–25° C). Bare glassy carbon (GC), bismuth-coated glassy carbon (Bi-GC), and mercury-coated glassy carbon (Hg-GC) electrodes were compared for the CPE-ASV. A detection limit for Cd2+ of 1.7 nM (0.2 ppb) was obtained with the Hg-GC electrode. Comparison of ASV analysis without CPE was also investigated and a 20x decrease (4.0 ppb) in the detection limit was observed. The suitability of this procedure for the analysis of tap and river water samples was also demonstrated. This simple, versatile, environmentally friendly and cost-effective extraction method is potentially applicable to a wide variety of transition metals and organic compounds that are amenable to detection by electroanalytical methods. PMID:25996561
How big can a black hole grow?
NASA Astrophysics Data System (ADS)
King, Andrew
2016-02-01
I show that there is a physical limit to the mass of a black hole, above which it cannot grow through luminous accretion of gas, and so cannot appear as a quasar or active galactic nucleus (AGN). The limit is Mmax ≃ 5 × 1010 M⊙ for typical parameters, but can reach Mmax ≃ 2.7 × 1011 M⊙ in extreme cases (e.g. maximal prograde spin). The largest black hole masses so far found are close to but below the limit. The Eddington luminosity ≃6.5 × 1048 erg s-1 corresponding to Mmax is remarkably close to the largest AGN bolometric luminosity so far observed. The mass and luminosity limits both rely on a reasonable but currently untestable hypothesis about AGN disc formation, so future observations of extreme supermassive black hole masses can therefore probe fundamental disc physics. Black holes can in principle grow their masses above Mmax by non-luminous means such as mergers with other holes, but cannot become luminous accretors again. They might nevertheless be detectable in other ways, for example through gravitational lensing. I show further that black holes with masses ˜Mmax can probably grow above the values specified by the black-hole-host-galaxy scaling relations, in agreement with observation.
Real-time subsecond voltammetric analysis of Pb in aqueous environmental samples.
Yang, Yuanyuan; Pathirathna, Pavithra; Siriwardhane, Thushani; McElmurry, Shawn P; Hashemi, Parastoo
2013-08-06
Lead (Pb) pollution is an important environmental and public health concern. Rapid Pb transport during stormwater runoff significantly impairs surface water quality. The ability to characterize and model Pb transport during these events is critical to mitigating its impact on the environment. However, Pb analysis is limited by the lack of analytical methods that can afford rapid, sensitive measurements in situ. While electrochemical methods have previously shown promise for rapid Pb analysis, they are currently limited in two ways. First, because of Pb's limited solubility, test solutions that are representative of environmental systems are not typically employed in laboratory characterizations. Second, concerns about traditional Hg electrode toxicity, stability, and low temporal resolution have dampened opportunities for in situ analyses with traditional electrochemical methods. In this paper, we describe two novel methodological advances that bypass these limitations. Using geochemical models, we first create an environmentally relevant test solution that can be used for electrochemical method development and characterization. Second, we develop a fast-scan cyclic voltammetry (FSCV) method for Pb detection on Hg-free carbon fiber microelectrodes. We assess the method's sensitivity and stability, taking into account Pb speciation, and utilize it to characterize rapid Pb fluctuations in real environmental samples. We thus present a novel real-time electrochemical tool for Pb analysis in both model and authentic environmental solutions.
Gilmartin, Gregory; Gingrich, Diane
2018-04-15
The determination and speciation of arsenic in natural resources such as drinking water and agricultural soils has been a growing concern in recent years due to its many toxicological effects [1-3]. To speciate and quantitate concentrations of <1 ppm of arsenic, typically an ion chromatograph (IC) interfaced to an inductively coupled plasma mass spectrometer (ICP-MS) is employed [4-9]. This methodology may be very robust and sensitive, but it is expensive and not as ubiquitous as high performance liquid chromatography (HPLC) with ultraviolet (UV) absorbance detection or electrospray ionization mass spectrometry (ESI-MS). Anion exchange chromatography is a well-documented means of speciating arsenite (As(III), As 2 O 3 ) and arsenate (As(V), AsO 4 ) using UV [10], conductivity [11], or ESI-MS detection [12,13]. This paper demonstrates the utilization of common liquid chromatographic instrumentation to speciate and determines inorganic Arsenic compounds using UV or MS via selected ion recording (SIR) or multiple reaction monitoring (MRM) detection. This paper describes the analysis of arsenite and arsenate samples prepared using both deionized and ground water. The limit of quantitation for the techniques described in this paper for samples spiked in ground water were 454 ppb (As(III)) and 562 ppb (As(V)) for UV detection, 45.4 ppb (As(III)) and 56.2 ppb (As(V)) for SIR detection, and 4.54 ppb (As(III)) and 5.62 ppb (As(V)) for MRM detection. Copyright © 2018 Elsevier B.V. All rights reserved.
Development of Smartphone based Optical Device
NASA Astrophysics Data System (ADS)
Jung, Youngkee
Due to the economy of scale, smartphones are becoming more affordable while their computing powers are increasing dramatically every year. Here we propose a ubiquitous and portable instrument for analyte quantitation by utilizing the characteristics of typical smartphone imaging system and specific design of transducers for different applications. Three testbeds included in this work are: quantitative colorimetric analysis, ultra-low radiant flux detection, and portable spectrometer. As a proof-of-principle for each device, 3-D printed cradle and theoretical simulation with MATLAB have been implemented. First example utilizes the native CMOS camera with their respective RGB channel data and perform an analyte quantitation for typical lateral flow devices (LFD). Histogram analysis method has been employed to detect the analyte concentration and calibration results show good correlation between perceived color change and analyte concentration. The second example shows the possibility of using a conventional CMOS camera for pico Watt level photon flux detection. Since most of consumer grade CMOS cameras cannot detect this level of light intensity and their dark current are relatively higher, a new algorithm called NREA (Noise Reduction by Ensemble Averaging) algorithm was developed to effectively reduce the noise level and increase the SNR (signal to noise ratio). This technique is effective for bioanalytical assays that has lower flux intensity such as fluorescence and luminescence. As a proof-of-principle, we tested the device with Pseudomonas fluorescens M3A and achieved a limit of detection of high 10? CFU/ml. In addition to basic schematic of detection model, another experiment with a silicon photomultiplier (SiPM) has been studied for more sensitive light detectability. Based on both the laser experiment and tw bioluminescent experiments, named Pseudomonas fluorescens M3A and NanoLuc, we found that the miniSM based device has a superior ability than the smartphone to detect the low light intensity. Finally, smartphone based spectrometers have been developed and experiments have been performed to demonstrate its availability. Smartphone spectrometers were designed with two kinds of spectrometer functions, absorbance and reflection spectrometer. Based on the diffraction theory, the experimental results were compared with simulation results and demonstrated the feasibility as a spectrometer. Peak locations were calibrated with diode lasers in three wavelengths (405 nm, 532 nm and 635 nm) and specific software application was developed to capture a spectrum. A Biuret test was done to test its feasibility as an absorbance spectrometer. To show the possibility as a reflection spectrometer, the real meat test was done using a standard experimental process of meat freshness analysis.
Detection ratios of riparian songbirds
Susan L. Earnst; Jeannie Heltzel
2005-01-01
This paper presents preliminary results from the first year of a two-year study designed to evaluate bias in a typical songbird survey by examining differences in detection ratios among species, cover types, and time of the season. Detection ratios, calculated as number of individuals detected during a 15-25 minute fixed-width transect survey divided by the number of...
Evaluation of experimental UAV video change detection
NASA Astrophysics Data System (ADS)
Bartelsen, J.; Saur, G.; Teutsch, C.
2016-10-01
During the last ten years, the availability of images acquired from unmanned aerial vehicles (UAVs) has been continuously increasing due to the improvements and economic success of flight and sensor systems. From our point of view, reliable and automatic image-based change detection may contribute to overcoming several challenging problems in military reconnaissance, civil security, and disaster management. Changes within a scene can be caused by functional activities, i.e., footprints or skid marks, excavations, or humidity penetration; these might be recognizable in aerial images, but are almost overlooked when change detection is executed manually. With respect to the circumstances, these kinds of changes may be an indication of sabotage, terroristic activity, or threatening natural disasters. Although image-based change detection is possible from both ground and aerial perspectives, in this paper we primarily address the latter. We have applied an extended approach to change detection as described by Saur and Kruger,1 and Saur et al.2 and have built upon the ideas of Saur and Bartelsen.3 The commercial simulation environment Virtual Battle Space 3 (VBS3) is used to simulate aerial "before" and "after" image acquisition concerning flight path, weather conditions and objects within the scene and to obtain synthetic videos. Video frames, which depict the same part of the scene, including "before" and "after" changes and not necessarily from the same perspective, are registered pixel-wise against each other by a photogrammetric concept, which is based on a homography. The pixel-wise registration is used to apply an automatic difference analysis, which, to a limited extent, is able to suppress typical errors caused by imprecise frame registration, sensor noise, vegetation and especially parallax effects. The primary concern of this paper is to seriously evaluate the possibilities and limitations of our current approach for image-based change detection with respect to the flight path, viewpoint change and parametrization. Hence, based on synthetic "before" and "after" videos of a simulated scene, we estimated the precision and recall of automatically detected changes. In addition and based on our approach, we illustrate the results showing the change detection in short, but real video sequences. Future work will improve the photogrammetric approach for frame registration, and extensive real video material, capable of change detection, will be acquired.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kearney, Sean Patrick
A simple spectral focusing scheme for bandwidth optimization of gas-phase rotational coherent anti-Stokes Raman scattering (CARS) spectra is presented. The method is useful when femtosecond pump/Stokes preparation of the Raman coherence is utilized. The approach is of practical utility when working with laser pulses that are not strictly transform limited, or when windows or other sources of pulse chirp may be present in the experiment. A delay between the femtosecond preparation pulses is introduced to shift the maximum Raman preparation away from zero frequency and toward the Stokes or anti-Stokes side of the spectrum with no loss in total preparationmore » bandwidth. Shifts of 100 cm -1 or more are attainable and allow for enhanced detection of high-energy (150-300 cm -1) rotational Raman transitions at near transform-limited optimum sensitivity. A simple theoretical treatment for the case of identical pump and Stokes pulses with linear frequency chirp is presented. The approach is then demonstrated experimentally for typical levels of transform-limited laser performance obtained our laboratory with nonresonant CARS in argon and Raman-resonant spectra from a lean H 2/air flat flame.« less
Kearney, Sean Patrick
2014-07-01
A simple spectral focusing scheme for bandwidth optimization of gas-phase rotational coherent anti-Stokes Raman scattering (CARS) spectra is presented. The method is useful when femtosecond pump/Stokes preparation of the Raman coherence is utilized. The approach is of practical utility when working with laser pulses that are not strictly transform limited, or when windows or other sources of pulse chirp may be present in the experiment. A delay between the femtosecond preparation pulses is introduced to shift the maximum Raman preparation away from zero frequency and toward the Stokes or anti-Stokes side of the spectrum with no loss in total preparationmore » bandwidth. Shifts of 100 cm -1 or more are attainable and allow for enhanced detection of high-energy (150-300 cm -1) rotational Raman transitions at near transform-limited optimum sensitivity. A simple theoretical treatment for the case of identical pump and Stokes pulses with linear frequency chirp is presented. The approach is then demonstrated experimentally for typical levels of transform-limited laser performance obtained our laboratory with nonresonant CARS in argon and Raman-resonant spectra from a lean H 2/air flat flame.« less
The space density of post-period minimum Cataclysmic Variables
NASA Astrophysics Data System (ADS)
Hernández Santisteban, J. V.; Knigge, C.; Pretorius, M. L.; Sullivan, M.; Warner, B.
2018-01-01
Binary evolution theory predicts that accreting white dwarfs with substellar companions dominate the Galactic population of cataclysmic variables (CVs). In order to test these predictions, it is necessary to identify these systems, which may be difficult if the signatures of accretion become too weak to be detected. The only chance to identify such 'dead' CVs is by exploiting their close binary nature. We have therefore searched the Sloan Digital Sky Survey (SDSS) Stripe 82 area for apparently isolated white dwarfs that undergo eclipses by a dark companion. We found no such eclipses in either the SDSS or Palomar Transient Factory data sets among our sample of 2264 photometrically selected white dwarf candidates within Stripe 82. This null result allows us to set a firm upper limit on the space density, ρ0, of dead CVs. In order to determine this limit, we have used Monte Carlo simulations to fold our selection criteria through a simple model of the Galactic CV distribution. Assuming a TWD = 7500 K, the resulting 2σ limit on the space density of dead CVs is ρ0 ≲ 2 × 10-5 pc-3, where TWD is the typical effective temperature of the white dwarf in such systems.
Genomic Data Quality Impacts Automated Detection of Lateral Gene Transfer in Fungi
Dupont, Pierre-Yves; Cox, Murray P.
2017-01-01
Lateral gene transfer (LGT, also known as horizontal gene transfer), an atypical mechanism of transferring genes between species, has almost become the default explanation for genes that display an unexpected composition or phylogeny. Numerous methods of detecting LGT events all rely on two fundamental strategies: primary structure composition or gene tree/species tree comparisons. Discouragingly, the results of these different approaches rarely coincide. With the wealth of genome data now available, detection of laterally transferred genes is increasingly being attempted in large uncurated eukaryotic datasets. However, detection methods depend greatly on the quality of the underlying genomic data, which are typically complex for eukaryotes. Furthermore, given the automated nature of genomic data collection, it is typically impractical to manually verify all protein or gene models, orthology predictions, and multiple sequence alignments, requiring researchers to accept a substantial margin of error in their datasets. Using a test case comprising plant-associated genomes across the fungal kingdom, this study reveals that composition- and phylogeny-based methods have little statistical power to detect laterally transferred genes. In particular, phylogenetic methods reveal extreme levels of topological variation in fungal gene trees, the vast majority of which show departures from the canonical species tree. Therefore, it is inherently challenging to detect LGT events in typical eukaryotic genomes. This finding is in striking contrast to the large number of claims for laterally transferred genes in eukaryotic species that routinely appear in the literature, and questions how many of these proposed examples are statistically well supported. PMID:28235827
Network Algorithms for Detection of Radiation Sources
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rao, Nageswara S; Brooks, Richard R; Wu, Qishi
In support of national defense, Domestic Nuclear Detection Office s (DNDO) Intelligent Radiation Sensor Systems (IRSS) program supported the development of networks of radiation counters for detecting, localizing and identifying low-level, hazardous radiation sources. Industry teams developed the first generation of such networks with tens of counters, and demonstrated several of their capabilities in indoor and outdoor characterization tests. Subsequently, these test measurements have been used in algorithm replays using various sub-networks of counters. Test measurements combined with algorithm outputs are used to extract Key Measurements and Benchmark (KMB) datasets. We present two selective analyses of these datasets: (a) amore » notional border monitoring scenario that highlights the benefits of a network of counters compared to individual detectors, and (b) new insights into the Sequential Probability Ratio Test (SPRT) detection method, which lead to its adaptations for improved detection. Using KMB datasets from an outdoor test, we construct a notional border monitoring scenario, wherein twelve 2 *2 NaI detectors are deployed on the periphery of 21*21meter square region. A Cs-137 (175 uCi) source is moved across this region, starting several meters from outside and finally moving away. The measurements from individual counters and the network were processed using replays of a particle filter algorithm developed under IRSS program. The algorithm outputs from KMB datasets clearly illustrate the benefits of combining measurements from all networked counters: the source was detected before it entered the region, during its trajectory inside, and until it moved several meters away. When individual counters are used for detection, the source was detected for much shorter durations, and sometimes was missed in the interior region. The application of SPRT for detecting radiation sources requires choosing the detection threshold, which in turn requires a source strength estimate, typically specified as a multiplier of the background radiation level. A judicious selection of this source multiplier is essential to achieve optimal detection probability at a specified false alarm rate. Typically, this threshold is chosen from the Receiver Operating Characteristic (ROC) by varying the source multiplier estimate. ROC is expected to have a monotonically increasing profile between the detection probability and false alarm rate. We derived ROCs for multiple indoor tests using KMB datasets, which revealed an unexpected loop shape: as the multiplier increases, detection probability and false alarm rate both increase until a limit, and then both contract. Consequently, two detection probabilities correspond to the same false alarm rate, and the higher is achieved at a lower multiplier, which is the desired operating point. Using the Chebyshev s inequality we analytically confirm this shape. Then, we present two improved network-SPRT methods by (a) using the threshold off-set as a weighting factor for the binary decisions from individual detectors in a weighted majority voting fusion rule, and (b) applying a composite SPRT derived using measurements from all counters.« less
Limitation in thin-film sensing with transmission-mode terahertz time-domain spectroscopy.
Withayachumnankul, Withawat; O'Hara, John F; Cao, Wei; Al-Naib, Ibraheem; Zhang, Weili
2014-01-13
Thin-film sensing with a film thickness much less than a wavelength is an important challenge in conventional transmission-mode terahertz time-domain spectroscopy (THz-TDS). Since the interaction length between terahertz waves and a sample film is short, a small change in the transmitted signal compared with the reference is considerably obscured by system uncertainties. In this article, several possible thin-film measurement procedures are carefully investigated. It is suggested that an alternating sample and reference measurement approach is most robust for thin-film sensing. In addition, a closed-form criterion is developed to determine the critical thickness, i.e., the minimal thickness of a film unambiguously detectable by transmission-mode THz-TDS. The analysis considers influences from the Fresnel transmission at interfaces and the Fabry-Pérot reflections, in addition to the propagation across the film. The experimental results show that typical THz-TDS systems can detect polymer films with a thickness down to a few microns, two orders of magnitude less than the wavelength. For reasonably accurate characterization, it is recommended that the film thickness be at least ten times above this limit. The analysis is readily extended to biomolecular and semiconductor films. The criterion can be used to estimate the system-dependent performance in thin-film sensing applications, and can help to ascertain whether an alternative terahertz sensing modality is necessary.
NASA Astrophysics Data System (ADS)
Rohyami, Yuli; Pribadi, Rizki Maulana
2017-12-01
Formalin is a food preservative that is prohibited by the government, but the abuse of these chemicals is still widely found. The presence of formalin can be detected by using a typical reagent that can ensure the presence of formaldehyde qualitatively and quantitatively. This research was conducted to validate the method of determining formalin in tofu by using Nash reagent in UV-Vis spectrophotometry. The addition of Nash reagent will lead to the formation of diacetyldihydrolutidin complex. The study was performed by stability test of deacetyldihydrolutidine complex against time and pH. Validation of methods for formalin testing in tofu with diacetyldihydrolutidine by UV-Vis spectrophotometry. The results showed that 3,5-diacetyl-dihydrolutidine complex is stable at pH of 7 and stable in the range of 70-120 minutes. The validation shows that the method gives good precision and accuracy of 83.78%. The method has the limit of detection of 1.3681 µg/mL, limit of quantification of 4,5603 µg/mL, and the estimated uncertainty of measurement of 1.30 µg/mL. The test showed that the tofu contained formalin 3.09 ± 1.30 µg/mL. These values provide information that this method can be used as a procedure for the determination of formalin on tofu.
A state space based approach to localizing single molecules from multi-emitter images.
Vahid, Milad R; Chao, Jerry; Ward, E Sally; Ober, Raimund J
2017-01-28
Single molecule super-resolution microscopy is a powerful tool that enables imaging at sub-diffraction-limit resolution. In this technique, subsets of stochastically photoactivated fluorophores are imaged over a sequence of frames and accurately localized, and the estimated locations are used to construct a high-resolution image of the cellular structures labeled by the fluorophores. Available localization methods typically first determine the regions of the image that contain emitting fluorophores through a process referred to as detection. Then, the locations of the fluorophores are estimated accurately in an estimation step. We propose a novel localization method which combines the detection and estimation steps. The method models the given image as the frequency response of a multi-order system obtained with a balanced state space realization algorithm based on the singular value decomposition of a Hankel matrix, and determines the locations of intensity peaks in the image as the pole locations of the resulting system. The locations of the most significant peaks correspond to the locations of single molecules in the original image. Although the accuracy of the location estimates is reasonably good, we demonstrate that, by using the estimates as the initial conditions for a maximum likelihood estimator, refined estimates can be obtained that have a standard deviation close to the Cramér-Rao lower bound-based limit of accuracy. We validate our method using both simulated and experimental multi-emitter images.
MRSI of the Medial Temporal Lobe at 7T in Explosive Blast Mild Traumatic Brain Injury
Hetherington, HP; Hamid, H; Kulas, J; Ling, G; Bandak, F; de Lanerolle, NC; Pan, JW
2013-01-01
Purpose Up to 19% of veterans returning from the wars in Iraq and Afghanistan have a history of mild traumatic brain injury (mTBI) with 70% associated with blast exposure. Tragically, 20–50% of this group reports persistent symptoms, including memory loss. Unfortunately, routine clinical imaging is typically normal, making diagnosis and clinical management difficult. The goal of this work was to develop methods to acquire hippocampal MRSI at 7T and evaluate their sensitivity to detect injury in veterans with mTBI. Methods At 7T, hippocampal MRSI measurements are limited by: 1) poor B0 homogeneity; 2) insufficient B1+ strength and homogeneity; and 3) chemical shift dispersion artifacts. To overcome these limitations we: 1) used 3rd degree B0 shimming; 2) an inductively decoupled transceiver array with RF shimming and 3) a volume localized single slice sequence using RF shimming based outer volume suppression. Results In 20 controls and 25 veterans with mTBI due to blast exposure with memory impairment, hippocampal NAA/Cho (P<0.001) and NAA/Cr (P<0.001) were decreased in comparison to control subjects. Conclusion With the appropriate methods robust spectroscopic imaging of the hippocampus can be carried out at 7T. MRSI at 7T can detect hippocampal injury in veterans with mild traumatic brain injury. PMID:23918077
Helfer, Andreas G; Michely, Julian A; Weber, Armin A; Meyer, Markus R; Maurer, Hans H
2017-02-01
Comprehensive urine screening for drugs and metabolites by LC-HR-MS/MS using Orbitrap technology has been described with precipitation as simple workup. In order to fasten, automate, and/or simplify the workup, on-line extraction by turbulent flow chromatography and a dilute-and-shoot approach were developed and compared. After chromatographic separation within 10min, the Q-Exactive mass spectrometer was run in full scan mode with positive/negative switching and subsequent data dependent acquisition mode. The workup approaches were validated concerning selectivity, recovery, matrix effects, process efficiency, and limits of identification and detection for typical drug representatives and metabolites. The total workup time for on-line extraction was 6min, for the dilution approach 3min. For comparison, the established urine precipitation and evaporation lasted 10min. The validation results were acceptable. The limits for on-line extraction were comparable with those described for precipitation, but lower than for dilution. Thanks to the high sensitivity of the LC-HR-MS/MS system, all three workup approaches were sufficient for comprehensive urine screening and allowed fast, reliable, and reproducible detection of cardiovascular drugs, drugs of abuse, and other CNS acting drugs after common doses. Copyright © 2016 Elsevier B.V. All rights reserved.
Code of Federal Regulations, 2010 CFR
2010-07-01
... calculated method detection limit. To insure that the estimate of the method detection limit is a good...) where: MDL = the method detection limit t(n-1,1- α=.99) = the students' t value appropriate for a 99... Determination of the Method Detection Limit-Revision 1.11 B Appendix B to Part 136 Protection of Environment...
Gaze Direction Detection in Autism Spectrum Disorder
ERIC Educational Resources Information Center
Forgeot d'Arc, Baudouin; Delorme, Richard; Zalla, Tiziana; Lefebvre, Aline; Amsellem, Frédérique; Moukawane, Sanaa; Letellier, Laurence; Leboyer, Marion; Mouren, Marie-Christine; Ramus, Franck
2017-01-01
Detecting where our partners direct their gaze is an important aspect of social interaction. An atypical gaze processing has been reported in autism. However, it remains controversial whether children and adults with autism spectrum disorder interpret indirect gaze direction with typical accuracy. This study investigated whether the detection of…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zackay, Barak; Ofek, Eran O.
Image coaddition is one of the most basic operations that astronomers perform. In Paper I, we presented the optimal ways to coadd images in order to detect faint sources and to perform flux measurements under the assumption that the noise is approximately Gaussian. Here, we build on these results and derive from first principles a coaddition technique that is optimal for any hypothesis testing and measurement (e.g., source detection, flux or shape measurements, and star/galaxy separation), in the background-noise-dominated case. This method has several important properties. The pixels of the resulting coadded image are uncorrelated. This image preserves all themore » information (from the original individual images) on all spatial frequencies. Any hypothesis testing or measurement that can be done on all the individual images simultaneously, can be done on the coadded image without any loss of information. The PSF of this image is typically as narrow, or narrower than the PSF of the best image in the ensemble. Moreover, this image is practically indistinguishable from a regular single image, meaning that any code that measures any property on a regular astronomical image can be applied to it unchanged. In particular, the optimal source detection statistic derived in Paper I is reproduced by matched filtering this image with its own PSF. This coaddition process, which we call proper coaddition, can be understood as the maximum signal-to-noise ratio measurement of the Fourier transform of the image, weighted in such a way that the noise in the entire Fourier domain is of equal variance. This method has important implications for multi-epoch seeing-limited deep surveys, weak lensing galaxy shape measurements, and diffraction-limited imaging via speckle observations. The last topic will be covered in depth in future papers. We provide an implementation of this algorithm in MATLAB.« less
Pharmaceuticals in water, fish and osprey nestlings in Delaware River and Bay
Bean, Thomas G.; Rattner, Barnett A.; Lazarus, Rebecca S.; Day, Daniel D.; Burket, S. Rebekah; Brooks, Bryan W.; Haddad, Samuel P.; Bowerman, William W.
2018-01-01
Exposure of wildlife to Active Pharmaceutical Ingredients (APIs) is likely to occur but studies of risk are limited. One exposure pathway that has received attention is trophic transfer of APIs in a water-fish-osprey food chain. Samples of water, fish plasma and osprey plasma were collected from Delaware River and Bay, and analyzed for 21 APIs. Only 2 of 21 analytes exceeded method detection limits in osprey plasma (acetaminophen and diclofenac) with plasma levels typically 2–3 orders of magnitude below human therapeutic concentrations (HTC). We built upon a screening level model used to predict osprey exposure to APIs in Chesapeake Bay and evaluated whether exposure levels could have been predicted in Delaware Bay had we just measured concentrations in water or fish. Use of surface water and BCFs did not predict API concentrations in fish well, likely due to fish movement patterns, and partitioning and bioaccumulation uncertainties associated with these ionizable chemicals. Input of highest measured API concentration in fish plasma combined with pharmacokinetic data accurately predicted that diclofenac and acetaminophen would be the APIs most likely detected in osprey plasma. For the majority of APIs modeled, levels were not predicted to exceed 1 ng/mL or method detection limits in osprey plasma. Based on the target analytes examined, there is little evidence that APIs represent a significant risk to ospreys nesting in Delaware Bay. If an API is present in fish orders of magnitude below HTC, sampling of fish-eating birds is unlikely to be necessary. However, several human pharmaceuticals accumulated in fish plasma within a recommended safety factor for HTC. It is now important to expand the scope of diet-based API exposure modeling to include alternative exposure pathways (e.g., uptake from landfills, dumps and wastewater treatment plants) and geographic locations (developing countries) where API contamination of the environment may represent greater risk.
Material limitations on the detection limit in refractometry.
Skafte-Pedersen, Peder; Nunes, Pedro S; Xiao, Sanshui; Mortensen, Niels Asger
2009-01-01
We discuss the detection limit for refractometric sensors relying on high-Q optical cavities and show that the ultimate classical detection limit is given by min {Δn} ≳ η, with n + iη being the complex refractive index of the material under refractometric investigation. Taking finite Q factors and filling fractions into account, the detection limit declines. As an example we discuss the fundamental limits of silicon-based high-Q resonators, such as photonic crystal resonators, for sensing in a bio-liquid environment, such as a water buffer. In the transparency window (λ ≳ 1100 nm) of silicon the detection limit becomes almost independent on the filling fraction, while in the visible, the detection limit depends strongly on the filling fraction because the silicon absorbs strongly.
Simultaneous X-Ray, Gamma-Ray, and Radio Observations of the Repeating Fast Radio Burst FRB 121102
NASA Astrophysics Data System (ADS)
Scholz, P.; Bogdanov, S.; Hessels, J. W. T.; Lynch, R. S.; Spitler, L. G.; Bassa, C. G.; Bower, G. C.; Burke-Spolaor, S.; Butler, B. J.; Chatterjee, S.; Cordes, J. M.; Gourdji, K.; Kaspi, V. M.; Law, C. J.; Marcote, B.; McLaughlin, M. A.; Michilli, D.; Paragi, Z.; Ransom, S. M.; Seymour, A.; Tendulkar, S. P.; Wharton, R. S.
2017-09-01
We undertook coordinated campaigns with the Green Bank, Effelsberg, and Arecibo radio telescopes during Chandra X-ray Observatory and XMM-Newton observations of the repeating fast radio burst FRB 121102 to search for simultaneous radio and X-ray bursts. We find 12 radio bursts from FRB 121102 during 70 ks total of X-ray observations. We detect no X-ray photons at the times of radio bursts from FRB 121102 and further detect no X-ray bursts above the measured background at any time. We place a 5σ upper limit of 3 × 10‑11 erg cm‑2 on the 0.5–10 keV fluence for X-ray bursts at the time of radio bursts for durations < 700 ms, which corresponds to a burst energy of 4 × 1045 erg at the measured distance of FRB 121102. We also place limits on the 0.5–10 keV fluence of 5 × 10‑10 and 1 × 10‑9 erg cm‑2 for bursts emitted at any time during the XMM-Newton and Chandra observations, respectively, assuming a typical X-ray burst duration of 5 ms. We analyze data from the Fermi Gamma-ray Space Telescope Gamma-ray Burst Monitor and place a 5σ upper limit on the 10–100 keV fluence of 4 × 10‑9 erg cm‑2 (5 × 1047 erg at the distance of FRB 121102) for gamma-ray bursts at the time of radio bursts. We also present a deep search for a persistent X-ray source using all of the X-ray observations taken to date and place a 5σ upper limit on the 0.5–10 keV flux of 4 × 10‑15 erg s‑1 cm‑2 (3 × 1041 erg s‑1 at the distance of FRB 121102). We discuss these non-detections in the context of the host environment of FRB 121102 and of possible sources of fast radio bursts in general.
Pozo, Oscar J; Van Eenoo, Peter; Deventer, Koen; Elbardissy, Hisham; Grimalt, Susana; Sancho, Juan V; Hernandez, Felix; Ventura, Rosa; Delbeke, Frans T
2011-01-17
Triple quadrupole (QqQ), time of flight (TOF) and quadrupole-time of flight (QTOF) analysers have been compared for the detection of anabolic steroids in human urine. Ten anabolic steroids were selected as model compounds based on their ionization and the presence of endogenous interferences. Both qualitative and quantitative analyses were evaluated. QqQ allowed for the detection of all analytes at the minimum required performance limit (MRPL) established by the World Anti-Doping Agency (between 2 and 10 ng mL(-1) in urine). TOF and QTOF approaches were not sensitive enough to detect some of the analytes (3'-hydroxy-stanozolol or the metabolites of boldenone and formebolone) at the established MRPL. Although a suitable accuracy was obtained, the precision was unsatisfactory (RSD typically higher than 20%) for quantitative purposes irrespective of the analyser used. The methods were applied to 30 real samples declared positives either for the misuse of boldenone, stanozolol and/or methandienone. Most of the compounds were detected by every technique, however QqQ was necessary for the detection of some metabolites in a few samples. Finally, the possibility to detect non-target steroids has been explored by the use of TOF and QTOF. The use of this approach revealed that the presence of boldenone and its metabolite in one sample was due to the intake of androsta-1,4,6-triene-3,17-dione. Additionally, the intake of methandienone was confirmed by the post-target detection of a long-term metabolite. Copyright © 2010 Elsevier B.V. All rights reserved.
Unveiling the population of orphan γ-ray bursts
NASA Astrophysics Data System (ADS)
Ghirlanda, G.; Salvaterra, R.; Campana, S.; Vergani, S. D.; Japelj, J.; Bernardini, M. G.; Burlon, D.; D'Avanzo, P.; Melandri, A.; Gomboc, A.; Nappo, F.; Paladini, R.; Pescalli, A.; Salafia, O. S.; Tagliaferri, G.
2015-06-01
Gamma-ray bursts (GRBs) are detectable in the γ-ray band if their jets are oriented toward the observer. However, for each GRB with a typical θjet, there should be ~2/θ2jet bursts whose emission cone is oriented elsewhere in space. These off-axis bursts can eventually be detected when, due to the deceleration of their relativistic jets, the beaming angle becomes comparable to the viewing angle. Orphan afterglows (OAs) should outnumber the current population of bursts detected in the γ-ray band even if they have not been conclusively observed so far at any frequency. We compute the expected flux of the population of orphan afterglows in the mm, optical, and X-ray bands through a population synthesis code of GRBs and the standard afterglow emission model. We estimate the detection rate of OAs with ongoing and forthcoming surveys. The average duration of OAs as transients above a given limiting flux is derived and described with analytical expressions: in general OAs should appear as daily transients in optical surveys and as monthly/yearly transients in the mm/radio band. We find that ~2 OA yr-1 could already be detected by Gaia and up to 20 OA yr-1 could be observed by the ZTF survey. A larger number of 50 OA yr-1 should be detected by LSST in the optical band. For the X-ray band, ~26 OA yr-1 could be detected by the eROSITA. For the large population of OA detectable by LSST, the X-ray and optical follow up of the light curve (for the brightest cases) and/or the extensive follow up of their emission in the mm and radio band could be the key to disentangling their GRB nature from other extragalactic transients of comparable flux density.
Leusch, Frederic D L; Neale, Peta A; Hebert, Armelle; Scheurer, Marco; Schriks, Merijn C M
2017-02-01
The presence of endocrine disrupting chemicals in the aquatic environment poses a risk for ecosystem health. Consequently there is a need for sensitive tools, such as in vitro bioassays, to monitor endocrine activity in environmental waters. The aim of the current study was to assess whether current in vitro bioassays are suitable to detect endocrine activity in a range of water types. The reviewed assays included androgenic (n=11), progestagenic (n=6), glucocorticoid (n=5), thyroid (n=5) and estrogenic (n=8) activity in both agonist and antagonist mode. Existing in vitro bioassay data were re-evaluated to determine assay sensitivity, with the calculated method detection limit compared with measured hormonal activity in treated wastewater, surface water and drinking water to quantify whether the studied assays were sufficiently sensitive for environmental samples. With typical sample enrichment, current in vitro bioassays are sufficiently sensitive to detect androgenic activity in treated wastewater and surface water, with anti-androgenic activity able to be detected in most environmental waters. Similarly, with sufficient enrichment, the studied mammalian assays are able to detect estrogenic activity even in drinking water samples. Fewer studies have focused on progestagenic and glucocorticoid activity, but some of the reviewed bioassays are suitable for detecting activity in treated wastewater and surface water. Even less is known about (anti)thyroid activity, but the available data suggests that the more sensitive reviewed bioassays are still unlikely to detect this type of activity in environmental waters. The findings of this review can help provide guidance on in vitro bioassay selection and required sample enrichment for optimised detection of endocrine activity in environmental waters. Copyright © 2016 Elsevier Ltd. All rights reserved.
Evaluation of Vehicle Detection Systems for Traffic Signal Operations
DOT National Transportation Integrated Search
2016-10-16
Typical vehicle detection systems used in traffic signal operations are comprised of inductive loop detectors. Because of costs, installation challenges, and operation and maintenance issues, many alternative non-intrusive systems have been dev...
Water Quality and Evaluation of Pesticides in Lakes in the Ridge Citrus Region of Central Florida
Choquette, Anne F.; Kroening, Sharon E.
2009-01-01
Water chemistry, including major inorganic constituents, nutrients, and pesticide compounds, was compared between seven lakes surrounded by citrus agriculture and an undeveloped lake on the Lake Wales Ridge (herein referred to as the Ridge) in central Florida. The region has been recognized for its vulnerability to the leaching of agricultural chemicals into the subsurface due to factors including soils, climate, and land use. About 40 percent of Florida's citrus cultivation occurs in 'ridge citrus' areas characterized by sandy well drained soils, with the remainder in 'flatwoods citrus' characterized by high water tables and poorly drained soils. The lakes on the Ridge are typically flow-through lakes that exchange water with adjacent and underlying aquifer systems. This study is the first to evaluate the occurrence of pesticides in lakes on the Ridge, and also represents one of the first monitoring efforts nationally to focus on regional-scale assessment of current-use pesticides in small- to moderate-sized lakes (5 to 393 acres). The samples were collected between December 2003 and September 2005. The lakes in citrus areas contained elevated concentrations of major inorganic constituents (including alkalinity, total dissolved solids, calcium, magnesium, sodium, potassium, chloride, and sulfate), total nitrogen, pH, and pesticides compared to the undeveloped lake. Nitrate (as N) and total nitrogen concentrations were typically elevated in the citrus lakes, with maximum values of 4.70 and 5.19 mg/L (milligrams per liter), respectively. Elevated concentrations of potassium, nitrate, and other inorganic constituents in the citrus lakes likely reflect inputs from the surficial ground-water system that originated predominantly from agricultural fertilizers, soil amendments, and inorganic pesticides. A total of 20 pesticide compounds were detected in the lakes, of which 12 compounds exceeded the standardized reporting level of 0.06 ug/L (microgram per liter). Those most frequently detected above the 0.06-ug/L level were aldicarb sulfoxide, diuron, simazine degradates hydroxysimazine and didealkylatrazine (DDA), bromacil, norflurazon, and demethyl norflurazon which occurred at detection rates ranging from 25 to 86 percent of samples, respectively. Typically, pesticide concentrations in the lake samples were less than 1 microgram per liter. The number of targeted pesticide compounds detected per lake in the citrus areas ranged from 9 to 14 compared to 3 compounds detected at trace levels in the undeveloped lake. Consistent detections of parents and degradates in quarterly samples indicated the presence of pesticide compounds in the lakes many months or years (for example, bromacil) after their application, signaling the persistence of some pesticide compounds in the lakes and/or ground-water systems. Pesticide degradate concentrations frequently exceeded parent concentrations in the lakes. This study was the first in the Ridge citrus region to analyze for glyphosate - widely used in citrus - and its degradate aminomethylphosphonic acid (AMPA), neither of which were detected, as well as a number of triazine degradates, including hydroxysimazine, which were detected. The lake pesticide concentrations did not exceed current Federal aquatic-life benchmarks, available for 10 of the 20 detected pesticide compounds. Limited occurrences of bromacil, diuron, or norflurazon concentrations were within about 10 to 90 percent of benchmark guidelines for acute effects on nonvascular aquatic plants in one or two of the lakes. The lake pesticide concentrations for several targeted pesticides were relatively high compared to corresponding national stream-water percentiles, which is consistent with this region's vulnerability for pesticide leaching into water resources. Several factors were evaluated to gain insight into the processes controlling pesticide transport and fate, and to assess their utility for estimating th
ERIC Educational Resources Information Center
McNeil, Nicole M.
2008-01-01
Do typical arithmetic problems hinder learning of mathematical equivalence? Second and third graders (7-9 years old; N= 80) received lessons on mathematical equivalence either with or without typical arithmetic problems (e.g., 15 + 13 = 28 vs. 28 = 28, respectively). Children then solved math equivalence problems (e.g., 3 + 9 + 5 = 6 + __),…
Kikuchi, Yukiko; Senju, Atsushi; Tojo, Yoshikuni; Osanai, Hiroo; Hasegawa, Toshikazu
2009-01-01
Two experiments investigated attention of children with autism spectrum disorder (ASD) to faces and objects. In both experiments, children (7- to 15-year-olds) detected the difference between 2 visual scenes. Results in Experiment 1 revealed that typically developing children (n = 16) detected the change in faces faster than in objects, whereas children with ASD (n = 16) were equally fast in detecting changes in faces and objects. These results were replicated in Experiment 2 (n = 16 in children with ASD and 22 in typically developing children), which does not require face recognition skill. Results suggest that children with ASD lack an attentional bias toward others' faces, which could contribute to their atypical social orienting.
Interictal spike detection comparing subdural and depth electrodes during electrocorticography.
Privitera, M D; Quinlan, J G; Yeh, H S
1990-11-01
We compared the ability of subdural and depth electrodes to detect and localize interictal epileptiform discharges (IEDs) in the temporal lobe. Sixteen patients had simultaneous intraoperative recordings with depth and subdural electrodes while undergoing anterior temporal lobe resections under local anesthesia for medically intractable seizures. IEDs that were focal (detected at just 1 or 2 electrode contacts) typically registered at the nearest contact, regardless of type. IEDs that were regional (engaging more than 2 electrode contacts) typically appeared simultaneously at both electrode types. Neither method was better able to indicate whether an IED was mesial or lateral, posterior or anterior. Subdural and depth electrodes seem to provide complementary information on the location of IEDs within the temporal lobe.
NASA Astrophysics Data System (ADS)
Chauvin, G.; Vigan, A.; Bonnefoy, M.; Desidera, S.; Bonavita, M.; Mesa, D.; Boccaletti, A.; Buenzli, E.; Carson, J.; Delorme, P.; Hagelberg, J.; Montagnier, G.; Mordasini, C.; Quanz, S. P.; Segransan, D.; Thalmann, C.; Beuzit, J.-L.; Biller, B.; Covino, E.; Feldt, M.; Girard, J.; Gratton, R.; Henning, T.; Kasper, M.; Lagrange, A.-M.; Messina, S.; Meyer, M.; Mouillet, D.; Moutou, C.; Reggiani, M.; Schlieder, J. E.; Zurlo, A.
2015-01-01
Context. Young, nearby stars are ideal targets for direct imaging searches for giant planets and brown dwarf companions. After the first-imaged planet discoveries, vast efforts have been devoted to the statistical analysis of the occurence and orbital distributions of giant planets and brown dwarf companions at wide (≥5-6 AU) orbits. Aims: In anticipation of the VLT/SPHERE planet-imager, guaranteed-time programs, we have conducted a preparatory survey of 86 stars between 2009 and 2013 to identify new faint comoving companions to ultimately analyze the occurence of giant planets and brown dwarf companions at wide (10-2000 AU) orbits around young, solar-type stars. Methods: We used NaCo at VLT to explore the occurrence rate of giant planets and brown dwarfs between typically 0.1 and 8''. Diffraction-limited observations in H-band combined with angular differential imaging enabled us to reach primary star-companion brightness ratios as small as 10-6 at 1.5''. Repeated observations at several epochs enabled us to discriminate comoving companions from background objects. Results: During our survey, twelve systems were resolved as new binaries, including the discovery of a new white dwarf companion to the star HD 8049. Around 34 stars, at least one companion candidate was detected in the observed field of view. More than 400 faint sources were detected; 90% of them were in four crowded fields. With the exception of HD 8049 B, we did not identify any new comoving companions. The survey also led to spatially resolved images of the thin debris disk around HD 61005 that have been published earlier. Finally, considering the survey detection limits, we derive a preliminary upper limit on the frequency of giant planets for the semi-major axes of [10, 2000] AU: typically less than 15% between 100 and 500 AU and less than 10% between 50 and 500 AU for exoplanets that are more massive than 5 MJup and 10 MJup respectively, if we consider a uniform input distribution and a confidence level of 95%. Conclusions: The results from this survey agree with earlier programs emphasizing that massive, gas giant companions on wide orbits around solar-type stars are rare. These results will be part of a broader analysis of a total of ~210 young, solar-type stars to bring further statistical constraints for theoretical models of planetary formation and evolution. Based on observations collected at the European Southern Observatory, Chile (ESO Large Program 184.C-0157 and Open Time 089.C-0137A and 090.C-0252A).Tables 2 and 6 are available in electronic form at http://www.aanda.org
Zhou, Yuan; Zhou, Tao; Zhou, Rui; Hu, Yonggang
2014-06-01
A rapid, simple, facile, sensitive and enzyme-amplified chemiluminescence immunoassay (CLIA) method to detect antibodies against porcine parvovirus has been developed. Horseradish peroxidase (HRP) and the detection antibody were simultaneously co-immobilized on the surface of gold nanoparticles using the electrostatic method to form gold nanoparticle-based nanoprobes. This nanoprobe was employed in a sandwich-type CLIA, which enables CL signal readout from enzymatic catalysis and results in signal amplification. The presence of porcine parvovirus infection was determined in porcine parvovirus antibodies by measuring the CL intensity caused by the reaction of HRP-luminol with H2 O2 . Under optimal conditions, the obtained calibration plot for the standard positive serum was approximately linear within the dilution range of 1:80 to 1:5120. The limit of detection for the assay was 1:10,240 (S/N = 3), which is much lower than that typically achieved with an enzyme-linked immunosorbent assay (1:160; S/N = 3). A series of repeatability measurements using 1:320-fold diluted standard positive serum gave reproducible results with a relative standard deviation of 4.9% (n = 11). The ability of the immunosensor to analyze clinical samples was tested on porcine sera. The immunosensor had an efficiency of 90%, a sensitivity of 93.3%, and a specificity of 87.5% relative to the enzyme-linked immunosorbent assay results. Copyright © 2013 John Wiley & Sons, Ltd.
Watson, Christopher M; Camm, Nick; Crinnion, Laura A; Clokie, Samuel; Robinson, Rachel L; Adlard, Julian; Charlton, Ruth; Markham, Alexander F; Carr, Ian M; Bonthron, David T
2017-12-01
Diagnostic genetic testing programmes based on next-generation DNA sequencing have resulted in the accrual of large datasets of targeted raw sequence data. Most diagnostic laboratories process these data through an automated variant-calling pipeline. Validation of the chosen analytical methods typically depends on confirming the detection of known sequence variants. Despite improvements in short-read alignment methods, current pipelines are known to be comparatively poor at detecting large insertion/deletion mutations. We performed clinical validation of a local reassembly tool, ABRA (assembly-based realigner), through retrospective reanalysis of a cohort of more than 2000 hereditary cancer cases. ABRA enabled detection of a 96-bp deletion, 4-bp insertion mutation in PMS2 that had been initially identified using a comparative read-depth approach. We applied an updated pipeline incorporating ABRA to the entire cohort of 2000 cases and identified one previously undetected pathogenic variant, a 23-bp duplication in PTEN. We demonstrate the effect of read length on the ability to detect insertion/deletion variants by comparing HiSeq2500 (2 × 101-bp) and NextSeq500 (2 × 151-bp) sequence data for a range of variants and thereby show that the limitations of shorter read lengths can be mitigated using appropriate informatics tools. This work highlights the need for ongoing development of diagnostic pipelines to maximize test sensitivity. We also draw attention to the large differences in computational infrastructure required to perform day-to-day versus large-scale reprocessing tasks.
Fast T Wave Detection Calibrated by Clinical Knowledge with Annotation of P and T Waves.
Elgendi, Mohamed; Eskofier, Bjoern; Abbott, Derek
2015-07-21
There are limited studies on the automatic detection of T waves in arrhythmic electrocardiogram (ECG) signals. This is perhaps because there is no available arrhythmia dataset with annotated T waves. There is a growing need to develop numerically-efficient algorithms that can accommodate the new trend of battery-driven ECG devices. Moreover, there is also a need to analyze long-term recorded signals in a reliable and time-efficient manner, therefore improving the diagnostic ability of mobile devices and point-of-care technologies. Here, the T wave annotation of the well-known MIT-BIH arrhythmia database is discussed and provided. Moreover, a simple fast method for detecting T waves is introduced. A typical T wave detection method has been reduced to a basic approach consisting of two moving averages and dynamic thresholds. The dynamic thresholds were calibrated using four clinically known types of sinus node response to atrial premature depolarization (compensation, reset, interpolation, and reentry). The determination of T wave peaks is performed and the proposed algorithm is evaluated on two well-known databases, the QT and MIT-BIH Arrhythmia databases. The detector obtained a sensitivity of 97.14% and a positive predictivity of 99.29% over the first lead of the validation databases (total of 221,186 beats). We present a simple yet very reliable T wave detection algorithm that can be potentially implemented on mobile battery-driven devices. In contrast to complex methods, it can be easily implemented in a digital filter design.
Rast, Philippe; Hofer, Scott M.
2014-01-01
We investigated the power to detect variances and covariances in rates of change in the context of existing longitudinal studies using linear bivariate growth curve models. Power was estimated by means of Monte Carlo simulations. Our findings show that typical longitudinal study designs have substantial power to detect both variances and covariances among rates of change in a variety of cognitive, physical functioning, and mental health outcomes. We performed simulations to investigate the interplay among number and spacing of occasions, total duration of the study, effect size, and error variance on power and required sample size. The relation between growth rate reliability (GRR) and effect size to the sample size required to detect power ≥ .80 was non-linear, with rapidly decreasing sample sizes needed as GRR increases. The results presented here stand in contrast to previous simulation results and recommendations (Hertzog, Lindenberger, Ghisletta, & von Oertzen, 2006; Hertzog, von Oertzen, Ghisletta, & Lindenberger, 2008; von Oertzen, Ghisletta, & Lindenberger, 2010), which are limited due to confounds between study length and number of waves, error variance with GCR, and parameter values which are largely out of bounds of actual study values. Power to detect change is generally low in the early phases (i.e. first years) of longitudinal studies but can substantially increase if the design is optimized. We recommend additional assessments, including embedded intensive measurement designs, to improve power in the early phases of long-term longitudinal studies. PMID:24219544
Samaan, John; Ferrer, Gerardo F; Akinyemi, Boye; Junquera, Patricia; Oms, Juan; Dumenigo, Rhaisa
2016-01-01
Introduction . Marijuana has been used for its psychotropic effects including enhanced relaxation and perceptual alterations. However, the use of synthetic marijuana (SM) leads to more frequent and drastic side effects than the typical use of regular marijuana, owing to the fact that SM has a shorter duration and an earlier peak of action. Despite all the potential adverse health effects associated with SM use, current health policies on SM are very limited. It is believed that the popularity of SM has increased, due to its easy accessibility in the US and lack of detection in typical urine drug screens for THC. Case Report . One case presented is of a young adult patient, with histories of recurrent synthetic cannabis and recreational cannabis use, who had developed drastic physiological and psychiatric symptoms, including the development of acute-onset psychosis. Conclusion/Discussion . This case, as many others nationwide, exemplifies the impact of synthetic cannabinoid use and abuse in adolescents. Side effects and adverse health consequences of synthetic cannabinoid use warrant stricter regulations and policies in order to decrease psychiatric hospital admissions and associated healthcare costs.
NASA Astrophysics Data System (ADS)
Wang, Yu-Wei; Tesdahl, Curtis; Owens, Jim; Dorn, David
2012-06-01
Advancements in uncooled microbolometer technology over the last several years have opened up many commercial applications which had been previously cost prohibitive. Thermal technology is no longer limited to the military and government market segments. One type of thermal sensor with low NETD which is available in the commercial market segment is the uncooled amorphous silicon (α-Si) microbolometer image sensor. Typical thermal security cameras focus on providing the best image quality by auto tonemaping (contrast enhancing) the image, which provides the best contrast depending on the temperature range of the scene. While this may provide enough information to detect objects and activities, there are further benefits of being able to estimate the actual object temperatures in a scene. This thermographic ability can provide functionality beyond typical security cameras by being able to monitor processes. Example applications of thermography[2] with thermal camera include: monitoring electrical circuits, industrial machinery, building thermal leaks, oil/gas pipelines, power substations, etc...[3][5] This paper discusses the methodology of estimating object temperatures by characterizing/calibrating different components inside a thermal camera utilizing an uncooled amorphous silicon microbolometer image sensor. Plots of system performance across camera operating temperatures will be shown.
CCD scanning for asteroids and comets
NASA Technical Reports Server (NTRS)
Gehrels, T.; Mcmillan, R. S.
1986-01-01
A change coupled device (CCD) is used in a scanning mode to find new asteroids and recover known asteroids and comet nuclei. Current scientific programs include recovery of asteroids and comet nuclei requested by the Minor Planet Center (MPC), discovery of new asteroids in the main belt and of unusual orbital types, and follow-up astrometry of selected new asteroids discovered. The routine six sigma limiting visual magnitude is 19.6 and slightly more than a square degree is scanned three times every 90 minutes of observing time during the fortnight centered on New Moon. Semiautomatic software for detection of moving objects is in routine use; angular speeds as low as 11.0 arcseconds per hour were distinguished from the effects of the Earth's atmosphere on the field of view. A typical set of three 29-minute scans near the opposition point along the ecliptic typically nets at least 5 new main-belt asteroids down to magnitude 19.6. In 18 observing runs (months) 43 asteroids were recovered, astrometric and photometric data on 59 new asteroids were reported, 10 new asteroids with orbital elements were consolidated, and photometry and positions of 22 comets were reported.
Emergency Dose Estimation Using Optically Stimulated Luminescence from Human Tooth Enamel.
Sholom, S; Dewitt, R; Simon, S L; Bouville, A; McKeever, S W S
2011-09-01
Human teeth were studied for potential use as emergency Optically Stimulated Luminescence (OSL) dosimeters. By using multiple-teeth samples in combination with a custom-built sensitive OSL reader, (60)Co-equivalent doses below 0.64 Gy were measured immediately after exposure with the lowest value being 27 mGy for the most sensitive sample. The variability of OSL sensitivity, from individual to individual using multiple-teeth samples, was determined to be 53%. X-ray and beta exposure were found to produce OSL curves with the same shape that differed from those due to ultraviolet (UV) exposure; as a result, correlation was observed between OSL signals after X-ray and beta exposure and was absent if compared to OSL signals after UV exposure. Fading of the OSL signal was "typical" for most teeth with just a few of incisors showing atypical behavior. Typical fading dependences were described by a bi-exponential decay function with "fast" (decay time around of 12 min) and "slow" (decay time about 14 h) components. OSL detection limits, based on the techniques developed to-date, were found to be satisfactory from the point-of-view of medical triage requirements if conducted within 24 hours of the exposure.
Compact atom interferometer using single laser
NASA Astrophysics Data System (ADS)
Chiow, Sheng-Wey; Yu, Nan
2017-04-01
Atom interferometer (AI) based sensors exhibit precision and accuracy unattainable with classical sensors, thanks to the inherent stability of atomic properties. The complexity of required laser system and the size of vacuum chamber driven by optical access requirement limit the applicability of such technology in size, weight, and power (SWaP) challenging environments, such as in space. For instance, a typical physics package of AI includes six viewports for laser cooling and trapping, two for AI beams, and two more for detection and a vacuum pump. Similarly, a typical laser system for an AI includes two lasers for cooling and repumping, and two for Raman transitions as AI beam splitters. In this presentation, we report our efforts in developing a miniaturized atomic accelerometer for planetary exploration. We will describe a physics package configuration having minimum optical access (thus small volume), and a laser and optics system utilizing a single laser for the sensor operation. Preliminary results on acceleration sensitivity will be discussed. We will also illustrate a path for further packaging and integration based on the demonstrated concepts. This research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration.
A simulation study of detection of weapon of mass destruction based on radar
NASA Astrophysics Data System (ADS)
Sharifahmadian, E.; Choi, Y.; Latifi, S.
2013-05-01
Typical systems used for detection of Weapon of Mass Destruction (WMD) are based on sensing objects using gamma rays or neutrons. Nonetheless, depending on environmental conditions, current methods for detecting fissile materials have limited distance of effectiveness. Moreover, radiation related to gamma- rays can be easily shielded. Here, detecting concealed WMD from a distance is simulated and studied based on radar, especially WideBand (WB) technology. The WB-based method capitalizes on the fact that electromagnetic waves penetrate through different materials at different rates. While low-frequency waves can pass through objects more easily, high-frequency waves have a higher rate of absorption by objects, making the object recognition easier. Measuring the penetration depth allows one to identify the sensed material. During simulation, radar waves and propagation area including free space, and objects in the scene are modeled. In fact, each material is modeled as a layer with a certain thickness. At start of simulation, a modeled radar wave is radiated toward the layers. At the receiver side, based on the received signals from every layer, each layer can be identified. When an electromagnetic wave passes through an object, the wave's power will be subject to a certain level of attenuation depending of the object's characteristics. Simulation is performed using radar signals with different frequencies (ranges MHz-GHz) and powers to identify different layers.
Autonomous physics-based color learning under daylight
NASA Astrophysics Data System (ADS)
Berube Lauziere, Yves; Gingras, Denis J.; Ferrie, Frank P.
1999-09-01
An autonomous approach for learning the colors of specific objects assumed to have known body spectral reflectances is developed for daylight illumination conditions. The main issue is to be able to find these objects autonomously in a set of training images captured under a wide variety of daylight illumination conditions, and to extract their colors to determine color space regions that are representative of the objects' colors and their variations. The work begins by modeling color formation under daylight using the color formation equations and the semi-empirical model of Judd, MacAdam and Wyszecki (CIE daylight model) for representing the typical spectral distributions of daylight. This results in color space regions that serve as prior information in the initial phase of learning which consists in detecting small reliable clusters of pixels having the appropriate colors. These clusters are then expanded by a region growing technique using broader color space regions than those predicted by the model. This is to detect objects in a way that is able to account for color variations which the model cannot due to its limitations. Validation on the detected objects is performed to filter out those that are not of interest and to eliminate unreliable pixel color values extracted from the remaining ones. Detection results using the color space regions determined from color values obtained by this procedure are discussed.
Transient survey rates for orphan afterglows from compact merger jets
NASA Astrophysics Data System (ADS)
Lamb, Gavin P.; Tanaka, Masaomi; Kobayashi, Shiho
2018-06-01
Orphan afterglows from short γ-ray bursts (GRBs) are potential candidates for electromagnetic (EM) counterpart searches to gravitational wave (GW) detected neutron star or neutron star black hole mergers. Various jet dynamical and structure models have been proposed that can be tested by the detection of a large sample of GW-EM counterparts. We make predictions for the expected rate of optical transients from these jet models for future survey telescopes, without a GW or GRB trigger. A sample of merger jets is generated in the redshift limits 0 ≤ z ≤ 3.0, and the expected peak r-band flux and time-scale above the Large Synoptic Survey Telescope (LSST) or Zwicky Transient Factory (ZTF) detection threshold, mr = 24.5 and 20.4, respectively, is calculated. General all-sky rates are shown for mr ≤ 26.0 and mr ≤ 21.0. The detected orphan and GRB afterglow rate depends on jet model, typically 16≲ R≲ 76 yr-1 for the LSST, and 2≲ R ≲ 8 yr-1 for ZTF. An excess in the rate of orphan afterglows for a survey to a depth of mr ≤ 26 would indicate that merger jets have a dominant low-Lorentz factor population, or the jets exhibit intrinsic jet structure. Careful filtering of transients is required to successfully identify orphan afterglows from either short- or long-GRB progenitors.
Material Limitations on the Detection Limit in Refractometry
Skafte-Pedersen, Peder; Nunes, Pedro S.; Xiao, Sanshui; Mortensen, Niels Asger
2009-01-01
We discuss the detection limit for refractometric sensors relying on high-Q optical cavities and show that the ultimate classical detection limit is given by min {Δn} ≳ η, with n + iη being the complex refractive index of the material under refractometric investigation. Taking finite Q factors and filling fractions into account, the detection limit declines. As an example we discuss the fundamental limits of silicon-based high-Q resonators, such as photonic crystal resonators, for sensing in a bio-liquid environment, such as a water buffer. In the transparency window (λ ≳ 1100 nm) of silicon the detection limit becomes almost independent on the filling fraction, while in the visible, the detection limit depends strongly on the filling fraction because the silicon absorbs strongly. PMID:22291513
Smart Cup: A Minimally-Instrumented, Smartphone-Based Point-of-Care Molecular Diagnostic Device.
Liao, Shih-Chuan; Peng, Jing; Mauk, Michael G; Awasthi, Sita; Song, Jinzhao; Friedman, Harvey; Bau, Haim H; Liu, Changchun
2016-06-28
Nucleic acid amplification-based diagnostics offer rapid, sensitive, and specific means for detecting and monitoring the progression of infectious diseases. However, this method typically requires extensive sample preparation, expensive instruments, and trained personnel. All of which hinder its use in resource-limited settings, where many infectious diseases are endemic. Here, we report on a simple, inexpensive, minimally-instrumented, smart cup platform for rapid, quantitative molecular diagnostics of pathogens at the point of care. Our smart cup takes advantage of water-triggered, exothermic chemical reaction to supply heat for the nucleic acid-based, isothermal amplification. The amplification temperature is regulated with a phase-change material (PCM). The PCM maintains the amplification reactor at a constant temperature, typically, 60-65°C, when ambient temperatures range from 12 to 35°C. To eliminate the need for an optical detector and minimize cost, we use the smartphone's flashlight to excite the fluorescent dye and the phone camera to record real-time fluorescence emission during the amplification process. The smartphone can concurrently monitor multiple amplification reactors and analyze the recorded data. Our smart cup's utility was demonstrated by amplifying and quantifying herpes simplex virus type 2 (HSV-2) with LAMP assay in our custom-made microfluidic diagnostic chip. We have consistently detected as few as 100 copies of HSV-2 viral DNA per sample. Our system does not require any lab facilities and is suitable for use at home, in the field, and in the clinic, as well as in resource-poor settings, where access to sophisticated laboratories is impractical, unaffordable, or nonexistent.
Total energy expenditure and body composition of children with developmental disabilities.
Polfuss, Michele; Sawin, Kathleen J; Papanek, Paula E; Bandini, Linda; Forseth, Bethany; Moosreiner, Andrea; Zvara, Kimberley; Schoeller, Dale A
2018-07-01
Obesity prevalence is increased in children with developmental disabilities, specifically in children with spina bifida and Down syndrome. Energy expenditure, a critical aspect of weight management, has been extensively studied in the typically developing population, but not adequately studied in children with developmental disabilities. Determine energy expenditure, fat-free mass and body fat percentile and the impact of these findings on recommended caloric intake in children with spina bifida and Down syndrome. This pilot study included 36 children, 18 with spina bifida, 9 with Down syndrome and 9 typically developing children. Half of the children with spina bifida were non-ambulatory. Doubly labeled water was used to measure energy expenditure and body composition. Descriptive statistics described the sample and MANOVA and ANOVA methods were used to evaluate differences between groups. Energy expenditure was significantly less for children with spina bifida who primarily used a wheelchair (p = .001) and children with Down syndrome (p = .041) when compared to children without a disability when adjusted for fat-free mass. However, no significant difference was detected in children with spina bifida who ambulated without assistance (p = .072). Children with spina bifida and Down syndrome have a significantly decreased energy expenditure which directly impacts recommended caloric intake. No significant difference was detected for children with spina bifida who ambulated, although the small sample size of this pilot study may have limited these findings. Validating these results in a larger study is integral to supporting successful weight management of these children. Copyright © 2017 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Heinzelman, K M; Mansfield, W G
This document evaluates the expected radiation dose due to the consumption of several specific food classes (dairy, meat, produce, etc.) contaminated with specific radionuclides, and relates concentration levels in food to the detection abilities of typical aboratory analysis/measurement methods. The attached charts present the limiting organ dose as a function of the radionuclide concentration in a particular food class, and allow the user to compare these concentrations and doses to typical analytical detection apabilities. The expected radiation dose depends on several factors: the age of the individual; the radionuclide present in the food; the concentration of the radionuclide in themore » food; and the amount of food consumed. Food consumption rates for individuals of various ges were taken from the 1998 United States Food and Drug Administration (FDA) document, Accidental Radioactive Contamination of HUman Food and Animal Feeds: Recommendations for State and Local Agencies. In that document, the FDA defines the erived Intervention Level (DIL), which is the concentration of a particular radionuclide in food that if consumed could result in an individual receiving a radiation dose exceeding the Protection Action Guide (PAG) thresholds for intervention. This document also resents odified, food class specific DIL, which is calculated using a somewhat modified version of the FDA's procedure. This document begins with an overview of the FDA's DIL calculation, followed by a description of the food class specific DIL calculations, and finally charts of the radiation dose per radioactivity concentration for several food class/radionuclide combinations.« less