Sample records for typical material test

  1. Effect of moisture on typical Virginia surface treatment materials.

    DOT National Transportation Integrated Search

    1970-01-01

    Several aspects of the stripping and whip off characteristics of typical Virginia surface treatment materials were investigated. Sixty different binder-aggregate combinations were tested with the AASHO Designation T182-57 stripping test, a plate imme...

  2. Quantification Of Fire Signatures For Practical Spacecraft Materials

    NASA Technical Reports Server (NTRS)

    VanderWal, Randy L.; Ruff, Gary A.; Tomasek, Aaron J.

    2003-01-01

    The overall objective of this project is to measure the fire signatures of typical spacecraft materials in 1-g and determine how these signatures may be altered in a microgravity environment. During this project, we will also develop a test technique to obtain representative low-gravity signatures. The specific tasks that will be accomplished to achieve these objectives are to: (1) measure the time history of various fire signatures of typical spacecraft materials in 1-g at varying heating rates, temperatures, convective velocities, and oxygen concentrations, (2) conduct tests in the Zero-Gravity Facility at NASA John H. Glenn Research Center to investigate the manner that a microgravity environment alters the fire signature,(3) compare 0-g and 1-g time histories and determine if 0-g data exhibits the same dependence on the test parameters as experienced in 1-g (4) develop a 1-g test technique by which 0-g fire signatures can be measured. The proposed study seeks to investigate the differences in the identities and relative concentrations of the volatiles produced by pyrolyzing and/or smoldering materials between normal gravity and microgravity environments. Test materials will be representative of typical spacecraft materials and, where possible, will be tested in appropriate geometries. Wire insulation materials of Teflon, polyimide, silicone, and PVC will be evaluated using either cylindrical samples or actual wire insulation. Other materials such as polyurethane, polyimide, melamine, and silicone-based foams will be tested using cylindrical samples, in addition to fabric materials, such as Nomex. Electrical components, such as resistors, capacitors, circuit board will also be tested.

  3. Resilient moduli of typical Missouri soils and unbound granular base materials.

    DOT National Transportation Integrated Search

    2009-01-01

    The objective of this project was to determine the resilient moduli for common Missouri subgrade soils and typical unbound granular base materials in accordance with the AASHTO T 307 test method. The results allow Missouri Department of Transportatio...

  4. Pre-Test Assessment

    ERIC Educational Resources Information Center

    Berry, Thomas

    2008-01-01

    Pre-tests are a non-graded assessment tool used to determine pre-existing subject knowledge. Typically pre-tests are administered prior to a course to determine knowledge baseline, but here they are used to test students prior to topical material coverage throughout the course. While counterintuitive, the pre-tests cover material the student is…

  5. Adaptable Holders for Arc-Jet Screening Candidate Thermal Protection System Repair Materials

    NASA Technical Reports Server (NTRS)

    Riccio, Joe; Milhoan, Jim D.

    2010-01-01

    Reusable holders have been devised for evaluating high-temperature, plasma-resistant re-entry materials, especially fabrics. Typical material samples tested support thermal-protection-system damage repair requiring evaluation prior to re-entry into terrestrial atmosphere. These tests allow evaluation of each material to withstand the most severe predicted re-entry conditions.

  6. Special nuclear material simulation device

    DOEpatents

    Leckey, John H.; DeMint, Amy; Gooch, Jack; Hawk, Todd; Pickett, Chris A.; Blessinger, Chris; York, Robbie L.

    2014-08-12

    An apparatus for simulating special nuclear material is provided. The apparatus typically contains a small quantity of special nuclear material (SNM) in a configuration that simulates a much larger quantity of SNM. Generally the apparatus includes a spherical shell that is formed from an alloy containing a small quantity of highly enriched uranium. Also typically provided is a core of depleted uranium. A spacer, typically aluminum, may be used to separate the depleted uranium from the shell of uranium alloy. A cladding, typically made of titanium, is provided to seal the source. Methods are provided to simulate SNM for testing radiation monitoring portals. Typically the methods use at least one primary SNM spectral line and exclude at least one secondary SNM spectral line.

  7. Rolling-element fatigue life of silicon nitride balls: Preliminary test results

    NASA Technical Reports Server (NTRS)

    Parker, R. J.; Zaretsky, E. V.

    1972-01-01

    Hot pressed silicon nitride was evaluated as a rolling element bearing material. The five-ball fatigue tester was used to test 12.7 mm (0.500 in.) diameter balls at a maximum Hertz stress of 800,000 psi at a race temperature of 130 F. The fatigue spalls in the silicon nitride resembled those in typical bearing steels. The ten-percent fatigue life of the silicon nitride balls was approximately one-eighth to one-fifth that of typical bearing steels (52100 and M-50). The load capacity of the silicon nitride was approximately one-third that of typical bearing steels. The load capacity of the silicon nitride was significantly higher than previously tested ceramic materials for rolling element bearings.

  8. Locking Nut with Stress-Distributing Insert

    NASA Technical Reports Server (NTRS)

    Daniels, Christopher C.

    2010-01-01

    Reusable holders have been devised for evaluating high-temperature, plasma-resistant re-entry materials, especially fabrics. Typical material samples tested support thermal-protection-system damage repair requiring evaluation prior to re-entry into terrestrial atmosphere. These tests allow evaluation of each material to withstand the most severe predicted re-entry conditions.

  9. Can Testing Immunize Memories against Interference?

    ERIC Educational Resources Information Center

    Potts, Rosalind; Shanks, David R.

    2012-01-01

    Testing typically enhances subsequent recall of tested material. In contrast, it has been proposed that consolidated memories can be destabilized when reactivated and then need to be reconsolidated in order to persist. Learning new material immediately after reactivation may disrupt reconsolidation. We investigated whether the well-known benefits…

  10. Cylinder Test Specification

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Richard Catanach; Larry Hill; Herbert Harry

    1999-10-01

    The purpose of the cylinder testis two-fold: (1) to characterize the metal-pushing ability of an explosive relative to that of other explosives as evaluated by the E{sub 19} cylinder energy and the G{sub 19} Gurney energy and (2) to help establish the explosive product equation-of-state (historically, the Jones-Wilkins-Lee (JWL) equation). This specification details the material requirements and procedures necessary to assemble and fire a typical Los Alamos National Laboratory (LANL) cylinder test. Strict adherence to the cylinder. material properties, machining tolerances, material heat-treatment and etching processes, and high explosive machining tolerances is essential for test-to-test consistency and to maximize radialmore » wall expansions. Assembly and setup of the cylinder test require precise attention to detail, especially when placing intricate pin wires on the cylinder wall. The cylinder test is typically fired outdoors and at ambient temperature.« less

  11. Fatigue of restorative materials.

    PubMed

    Baran, G; Boberick, K; McCool, J

    2001-01-01

    Failure due to fatigue manifests itself in dental prostheses and restorations as wear, fractured margins, delaminated coatings, and bulk fracture. Mechanisms responsible for fatigue-induced failure depend on material ductility: Brittle materials are susceptible to catastrophic failure, while ductile materials utilize their plasticity to reduce stress concentrations at the crack tip. Because of the expense associated with the replacement of failed restorations, there is a strong desire on the part of basic scientists and clinicians to evaluate the resistance of materials to fatigue in laboratory tests. Test variables include fatigue-loading mode and test environment, such as soaking in water. The outcome variable is typically fracture strength, and these data typically fit the Weibull distribution. Analysis of fatigue data permits predictive inferences to be made concerning the survival of structures fabricated from restorative materials under specified loading conditions. Although many dental-restorative materials are routinely evaluated, only limited use has been made of fatigue data collected in vitro: Wear of materials and the survival of porcelain restorations has been modeled by both fracture mechanics and probabilistic approaches. A need still exists for a clinical failure database and for the development of valid test methods for the evaluation of composite materials.

  12. System and method for measuring permeability of materials

    DOEpatents

    Hallman, Jr., Russell Louis; Renner, Michael John

    2013-07-09

    Systems and methods are provided for measuring the permeance of a material. The permeability of the material may also be derived. Systems typically provide a liquid or high concentration fluid bath on one side of a material test sample, and a gas flow across the opposing side of the material test sample. The mass flow rate of permeated fluid as a fraction of the combined mass flow rate of gas and permeated fluid is used to calculate the permeance of the material. The material test sample may be a sheet, a tube, or a solid shape. Operational test conditions may be varied, including concentration of the fluid, temperature of the fluid, strain profile of the material test sample, and differential pressure across the material test sample.

  13. Resilient moduli of typical Missouri soils and unbound granular base materials

    DOT National Transportation Integrated Search

    2008-03-01

    The objective of this project is to accurately determine the resilient moduli for common Missouri subgrade soils and unbound granular base materials in accordance with the AASHTO T 307 test method. The test results included moduli data from 27 common...

  14. Suggested Procedures for Installing Strain Gauges on Langley Research Center Wind Tunnel Balances, Custom Force Measuring Transducers, Metallic and Composite Structural Test Articles

    NASA Technical Reports Server (NTRS)

    Moore, Thomas C., Sr.

    2004-01-01

    The character of force and strain measurement testing at LaRC is such that the types of strain gauge installations, the materials upon which the strain gauges are applied, and the test environments encountered, require many varied approaches. In 1997, a NASA Technical Memorandum (NASA TM 110327) was generated to provide the strain gauge application specialist with a listing of recommended procedures for strain gauging various transducers and test articles at LaRC. The technical memorandum offered here is an effort to keep the strain gauge user informed of new technological enhancements in strain-gauging methodology while preserving the strain-gauging guidelines set forth in the 1997 TM. This document provides detailed recommendations for strain gauging LaRC-designed balances and custom transducers, composite materials, cryogenic and high-temperature test articles, and selected non-typical or unique materials or test conditions. Additionally, one section offers details for installing Bragg-Grating type fiber-optic strain sensors for non-typical test scenarios.

  15. Electrical Arc Ignition Testing of Spacesuit Materials

    NASA Technical Reports Server (NTRS)

    Smith, Sarah; Gallus, Tim; Tapia, Susana; Ball, Elizabeth; Beeson, Harold

    2006-01-01

    A viewgraph presentation on electrical arc ignition testing of spacesuit materials is shown. The topics include: 1) Background; 2) Test Objectives; 3) Test Sample Materials; 4) Test Methods; 5) Scratch Test Objectives; 6) Cotton Scratch Test Video; 7) Scratch Test Results; 8) Entire Date Plot; 9) Closeup Data Plot; 10) Scratch Test Problems; 11) Poke Test Objectives; 12) Poke Test Results; 13) Poke Test Problems; 14) Wire-break Test Objectives; 15) Cotton Wire-Break Test Video; 16) High Speed Cotton Wire-break Test Video; 17) Typical Data Plot; 18) Closeup Data Plot; 19) Wire-break Test Results; 20) Wire-break Tests vs. Scratch Tests; 21) Urethane-coated Nylon; and 22) Moleskin.

  16. Rain droplet erosion mechanisms in transparent plastic materials

    NASA Technical Reports Server (NTRS)

    Schmitt, G. F., Jr.

    1974-01-01

    Tests were conducted to determine the damaging effects of rain erosion on optically transparent materials. The rotating arm test equipment used for the tests is described. Typical transparent materials such as those found in windshields, infrared windows, lasers, and television systems were tested. Nominal velocities of 400, 500, and 600 miles per hour and rainfall conditions of one inch per hour simulated rainfall were used in the tests. It was determined that an 80 percent reduction in laser transmittance can occur in plastics submitted to rain erosion. Significant results of the environmental tests are explained.

  17. Persistence Testing of Brucella suis on Outdoor Materials ...

    EPA Pesticide Factsheets

    Report This report presents the results of an investigation to evaluate Brucella suis persistence on five materials (typically found in the outdoor environment) under various environmental conditions and exposure durations.

  18. LLNL Small-Scale Friction sensitivity (BAM) Test

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Simpson, L.R.; Foltz, M.F.

    1996-06-01

    Small-scale safety testing of explosives, propellants and other energetic materials, is done to determine their sensitivity to various stimuli including friction, static spark, and impact. Testing is done to discover potential handling problems for either newly synthesized materials of unknown behavior, or materials that have been stored for long periods of time. This report describes the existing {open_quotes}BAM{close_quotes} Small-Scale Friction Test, and the methods used to determine the friction sensitivity pertinent to handling energetic materials. The accumulated data for the materials tested is not listed here - that information is in a database. Included is, however, a short list ofmore » (1) materials that had an unusual response, and (2), a few {open_quotes}standard{close_quotes} materials representing the range of typical responses usually seen.« less

  19. Environmental effects on FOD resistance of composite fan blade

    NASA Technical Reports Server (NTRS)

    Murphy, G. C.; Selemme, C. T.

    1981-01-01

    The sensitivity of the impact characteristics of typical polymeric composite fan blade materials to potential limiting combinations of moisture, temperature level and temperature transients was established. The following four technical tasks are reported: (1) evaluation and characterization of constituent blade materials; (2) ballistic impact tests; (3) leading edge impact protection systems; and (4) simulated blade spin impact tests.

  20. Iodine Beam Dump Design and Fabrication

    NASA Technical Reports Server (NTRS)

    Polzin, K. A.; Bradley, D. E.

    2017-01-01

    During the testing of electric thrusters, high-energy ions impacting the walls of a vacuum chamber can cause corrosion and/or sputtering of the wall materials, which can damage the chamber walls. The sputtering can also introduce the constituent materials of the chamber walls into an experiment, with those materials potentially migrating back to the test article and coating it with contaminants over time. The typical method employed in this situation is to install a beam dump fabricated from materials that have a lower sputter yield, thus reducing the amount of foreign material that could migrate towards the test article or deposit on anything else present in the vacuum facility.

  1. Summary of noise reduction characteristics of typical general aviation materials

    NASA Technical Reports Server (NTRS)

    Roskam, J.; Grosveld, F.; Van Aken, J.

    1979-01-01

    The paper presents the results of a large number of systematic tests to determine noise reduction characteristics of general aviation materials. Effects of material type (metallic and composite), thickness, panel stiffening, vibration damping materials, sound absorption materials and pressurization on noise reduction are included. Several promising methods for reducing cabin interior noise in light airplanes are discussed based on the results.

  2. Simulation of ultrasonic NCF composites testing using 3D finite element model

    NASA Astrophysics Data System (ADS)

    Liu, Z.; Saffari, N.; Fromme, P.

    2012-04-01

    Composite materials offer many advantages for aerospace applications, e.g., good strength to weight ratio. Different types of composites, such as non-crimp fabrics (NCF), are currently being investigated as they offer reduced manufacturing costs and improved damage tolerance as compared to traditional pre-impregnated composite materials. NCF composites are made from stitched fiber bundles (tows), which typically have a width and thickness in the order of millimeter. This results in strongly inhomogeneous and anisotropic material properties. Different types of manufacturing imperfections, such as porosity, resin pockets, tow crimp and misalignment can lead to reduced material strength and thus to defects following excessive loads or impact, e.g. fracture and delaminations. The ultrasonic non-destructive testing of NCF composites is difficult, as the tow size is comparable to the wavelength, leading to multiple scattering in this inherently three-dimensional structure. For typical material properties and geometry of an NCF composite, a full three-dimensional Finite Element (FE) model has been developed in ABAQUS. The propagation of longitudinal ultrasonic waves has been simulated and the effect of multiple scattering at the fiber tows investigated. The effect of porosity as a typical manufacturing imperfection has been considered. The potential for the detection and quantification of such defects is discussed based on the observed influence on the ultrasonic wave propagation and attenuation.

  3. 3D finite element simulation of non-crimp fabric composites ultrasonic testing

    NASA Astrophysics Data System (ADS)

    Liu, Z.; Saffari, N.; Fromme, P.

    2012-05-01

    Composite materials offer many advantages for aerospace applications, e.g., good strength to weight ratio. Different types of composites, such as non-crimp fabrics (NCF), are currently being investigated as they offer reduced manufacturing costs and improved damage tolerance as compared to traditional pre-impregnated composite materials. NCF composites are made from stitched fiber bundles (tows), which typically have a width and thickness of less than a millimeter. This results in strongly inhomogeneous and anisotropic material properties. Different types of manufacturing imperfections, such as porosity, resin pockets, tow crimp and misalignment can lead to reduced material strength and thus to defects following excessive loads or impact, e.g., fracture and delaminations. The ultrasonic non-destructive testing of NCF composites is difficult, as the tow size is comparable to the wavelength, leading to multiple scattering in this inherently three-dimensional structure. For typical material properties and geometry of an NCF composite, a full three-dimensional Finite Element (FE) model has been developed in ABAQUS. The propagation of longitudinal ultrasonic waves has been simulated and the effect of multiple scattering at the fiber tows investigated. The influence of porosity in the epoxy matrix as a typical manufacturing defect on the ultrasonic wave propagation and attenuation has been studied.

  4. Involving Students in Developing Math Tests

    ERIC Educational Resources Information Center

    Rapke, Tina

    2017-01-01

    Many studies have claimed that traditional testing actually promotes students' use of superficial approaches to learning. When preparing to take tests, students typically memorize and cram rather than understanding the material and gaining new perspectives. This article describes how the author recast traditional tests by having students take a…

  5. Synthesis of carbon core–shell pore structures and their performance as supercapacitors

    DOE PAGES

    Ariyanto, Teguh; Dyatkin, Boris; Zhang, Gui-Rong; ...

    2015-07-15

    High-power supercapacitors require excellent electrolyte mobility within the pore network and high electrical conductivity for maximum capacitance and efficiency. Achieving high power typically requires sacrificing energy densities, as the latter demands a high specific surface area and narrow porosity that impedes ion transport. Here, we present a novel solution for this optimization problem: a nanostructured core–shell carbonaceous material that exhibits a microporous carbon core surrounded by a mesoporous, graphitic shell. The tunable synthesis parameters yielded a structure that features either a sharp or a gradual transition between the core and shell sections. Electrochemical supercapacitor testing using organic electrolyte revealed thatmore » these novel core–shell materials outperform carbons with homogeneous pore structures. The hybrid core–shell materials showed a combination of good capacitance retention, typical for the carbon present in the shell and high specific capacitance, typical for the core material. These materials achieved power densities in excess of 40 kW kg -1 at energy densities reaching 27 Wh kg -1.« less

  6. Ballistic Performance Model of Crater Formation in Monolithic, Porous Thermal Protection Systems

    NASA Technical Reports Server (NTRS)

    Miller, J. E.; Christiansen, E. L.; Deighton, K. D.

    2014-01-01

    Porous monolithic ablative systems insulate atmospheric reentry vehicles from reentry plasmas generated by atmospheric braking from orbital and exo-orbital velocities. Due to the necessity that these materials create a temperature gradient up to several thousand Kelvin over their thickness, it is important that these materials are near their pristine state prior to reentry. These materials may also be on exposed surfaces to space environment threats like orbital debris and meteoroids leaving a probability that these exposed surfaces will be below their prescribed values. Owing to the typical small size of impact craters in these materials, the local flow fields over these craters and the ablative process afford some margin in thermal protection designs for these locally reduced performance values. In this work, tests to develop ballistic performance models for thermal protection materials typical of those being used on Orion are discussed. A density profile as a function of depth of a typical monolithic ablator and substructure system is shown in Figure 1a.

  7. LLNL small-scale static spark machine: static spark sensitivity test

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Foltz, M F; Simpson, L R

    1999-08-23

    Small-scale safety testing of explosives and other energetic materials is done in order to determine their sensitivity to various stimuli, such as friction, static spark, and impact. Typically this testing is done to discover potential handling problems that may exist for either newly synthesized materials of unknown behavior, or materials that have been stored for long periods of time. This report describes the existing ''Static Spark Test Apparatus'' at Lawrence Livermore National Laboratory (LLNL), as well as the method used to evaluate the relative static spark sensitivity of energetic materials. The basic design, originally developed by the Picatinny Arsenal inmore » New Jersey, is discussed. The accumulated data for the materials tested to date is not included here, with the exception of specific examples that have yielded interesting or unusual results during the tests.« less

  8. Hairy carbon electrodes studied by cyclic voltammetry and battery discharge testing

    NASA Technical Reports Server (NTRS)

    Chung, Deborah D. L.; Shui, Xiaoping; Frysz, Christine A.

    1993-01-01

    Hairy carbon is a new material developed by growing submicron carbon filaments on conventional carbon substrates. Typical substrate materials include carbon black, graphite powder, carbon fibers, and glassy carbon. A catalyst is used to initiate hair growth with carbonaceous gases serving as the carbon source. To study the electrochemical behavior of hairy carbons, cyclic voltammetry (CV) and discharge testing were conducted. In both cases, hairy carbon results surpassed those of the substrate material alone.

  9. Investigation of the ElectroPuls E3000 Test Machine for Fatigue Testing of Structural Materials

    DTIC Science & Technology

    2016-12-01

    sharpening of the crack tip and deformation of a portion of the newly formed surface (the surface created during loading portion of the cycle) during...cracking process is that the size of the final plastic zone formed by pre-cracking can affect the crack growth rate in subsequent testing. To...similar. In other structural materials, such as aluminium , striations are often well-defined. Typically, fatigue striations on an aluminium fracture

  10. Optimizing skin protection with semipermeable gloves.

    PubMed

    Wulfhorst, Britta; Schwanitz, Hans Joachim; Bock, Meike

    2004-12-01

    Occlusion due to gloves is one important cause of glove irritation. Macerated softened skin gives poor protection against microbes and chemical injuries. The introduction of a breathable protective glove material would represent a significant step toward improved prevention of occupational skin disease. Performance levels of semipermeable and occlusive gloves were examined under conditions typical of the hairdressing profession. In two studies, tests comparing breathable semipermeable gloves to single-use gloves made of occlusive materials were conducted. In an initial study, a user survey was carried out in conjunction with bioengineering examinations. Values at baseline and values after gloves were worn were recorded by measuring transepidermal water loss (TEWL), skin humidity (SH), and skin surface hydrogen ion concentration (pH) in 20 healthy volunteers. In a second study, the gloves were tested for penetrability and permeability with three chemical compounds typically used in the hairdressing profession. Bioengineering examination objectively confirmed users' reports of reduced hand perspiration when semipermeable gloves were worn. The TEWL, SH, and skin surface pH values remained largely stable after 20 minutes of wearing semipermeable gloves, in contrast to the reactions observed with gloves of occlusive materials. Permeability tests indicated that the semipermeable material is effective, with some restrictions. Air leakage testing revealed that all 50 gloves tested were not airtight. Following the optimization of manufacturing methods, additional tests of the penetrability of semipermeable gloves will be necessary.

  11. Combustion toxicology of epoxy/carbon fiber composites

    NASA Technical Reports Server (NTRS)

    Cagliostro, D. E.

    1981-01-01

    A combustion toxicology test was developed to screen materials for aerospace applications. The system is called the radiant panel test facility. A description of the facility and some preliminary results from tests on a Navy 3501-6AS composite, a typical composite for fighter aircraft, are presented.

  12. The foamed structures in numerical testing

    NASA Astrophysics Data System (ADS)

    John, Antoni; John, Małgorzata

    2018-01-01

    In the paper numerical simulation of the foamed metal structures using numerical homogenization algorithm is prescribed. From the beginning, numerical model of heterogeneous porous simplified structures of typical foamed metal, based on the FEM was built and material parameters (coefficients of elasticity matrix of the considered structure) were determined with use of numerical homogenization algorithm. During the work the different RVE models of structure were created and their properties were compared at different relative density, different numbers and the size and structure of the arrangement of voids. Finally, obtained results were used in modeling of typical elements made from foam metals structures - sandwich structure and profile filled with metal foam. Simulation were performed for different dimensions of cladding and core. Additionally, the test of influence material orientation (arrangement of voids in RVE element) on the maximum stresses and displacement during bending test was performed.

  13. Thermoplastics for aircraft interiors

    NASA Technical Reports Server (NTRS)

    Silverman, B.

    1978-01-01

    The goal for this contract is the development of processes and techniques for molding thermally stable, fire retardant, low smoke emitting polymeric materials. Outlined in this presentation are: (1) the typical molding types; (2) a program schedule; (3) physical properties of molding types with the test methods to be used; (4) general properties of injection molding materials; and (5) preliminary materials selection.

  14. Durability Testing of Commercial Ceramic Materials

    NASA Technical Reports Server (NTRS)

    Schienle, J. L.

    1996-01-01

    Technical efforts by AlliedSignal Engines in DOE/NASA-funded project from February, 1978 through December, 1995 are reported in the fields ceramic materials for gas turbine engines and cyclic thermal durability testing. A total of 29 materials were evaluated in 40 cyclic oxidation exposure durability tests. Ceramic test bars were cyclically thermally exposed to a hot combustion environment at temperatures up to 1371 C (2500 F) for periods of up to 3500 hours, simulating conditions typically encountered by hot flowpath components in an automotive gas turbine engine. Before and after exposure, quarter-point flexure strength tests were performed on the specimens, and fractography examinations including scanning electron microscopy (SEM) were performed to determine failure origins.

  15. Performance of Metal and Polymeric O-Ring Seals during Beyond-Design-Basis Thermal Conditions.

    PubMed

    Yang, Jiann C; Hnetkovsky, Edward; Rinehart, Doris; Fernandez, Marco; Gonzalez, Felix; Borowsky, Joseph

    2017-04-01

    This paper summarizes the small scale thermal exposure test results of the performance of metallic and polymeric O-ring seals typically used in radioactive material transportation packages. Five different O-ring materials were evaluated: Inconel/silver, ethylene-propylene diene monomer (EPDM), polytetrafluoroethylene (PTFE), silicone, butyl, and Viton. The overall objective of this study is to provide test data and insights to the performance of these Oring seals when exposed to beyond-design-basis temperature conditions due to a severe fire. Tests were conducted using a small-scale stainless steel pressure vessel pressurized with helium to 2 bar or 5 bar at room temperature. The vessel was then heated in an electric furnace to temperatures up to 900 °C for a pre-determined period (typically 8 h to 9 h). The pressure drop technique was used to determine if leakage occurred during thermal exposure. Out of a total of 46 tests performed, leakage (loss of vessel pressure) was detected in 13 tests.

  16. Performance of Metal and Polymeric O-Ring Seals during Beyond-Design-Basis Thermal Conditions*

    PubMed Central

    Yang, Jiann C.; Hnetkovsky, Edward; Rinehart, Doris; Fernandez, Marco; Gonzalez, Felix; Borowsky, Joseph

    2017-01-01

    This paper summarizes the small scale thermal exposure test results of the performance of metallic and polymeric O-ring seals typically used in radioactive material transportation packages. Five different O-ring materials were evaluated: Inconel/silver, ethylene-propylene diene monomer (EPDM), polytetrafluoroethylene (PTFE), silicone, butyl, and Viton. The overall objective of this study is to provide test data and insights to the performance of these Oring seals when exposed to beyond-design-basis temperature conditions due to a severe fire. Tests were conducted using a small-scale stainless steel pressure vessel pressurized with helium to 2 bar or 5 bar at room temperature. The vessel was then heated in an electric furnace to temperatures up to 900 °C for a pre-determined period (typically 8 h to 9 h). The pressure drop technique was used to determine if leakage occurred during thermal exposure. Out of a total of 46 tests performed, leakage (loss of vessel pressure) was detected in 13 tests. PMID:28503009

  17. Study to investigate the trace levels of contamination on surfaces when narcotic contraband is concealed in a vehicle

    NASA Astrophysics Data System (ADS)

    Wilson, Rod; Brittain, Alan H.

    1997-01-01

    When a vehicle is used to transport narcotic contraband material trace levels of that material can be found on surfaces of the vehicle, people associated with the vehicle and surface they contact. The detection of these trace levels can help to target vehicles associated with the smuggling of the contraband. A study to determine the typical levels of narcotic material that can be detected from these surfaces has been performed by personnel from Graseby, using a variety of drug materials. The size and packaging of the drug materials has been prepared to try to reflect that typically found in smuggling operations. These tests show that for all hard drugs easily detectable traces of drug material can be found on the vehicle, the proxy and secondary surfaces handled by the proxy. For detection of cannabis, the condition of the original material had a great bearing ont he reliability of detection.

  18. Materials Genome Initiative Element

    NASA Technical Reports Server (NTRS)

    Vickers, John

    2015-01-01

    NASA is committed to developing new materials and manufacturing methods that can enable new missions with ever increasing mission demands. Typically, the development and certification of new materials and manufacturing methods in the aerospace industry has required more than 20 years of development time with a costly testing and certification program. To reduce the cost and time to mature these emerging technologies, NASA is developing computational materials tools to improve understanding of the material and guide the certification process.

  19. Incorporating the site variability and laboratory/in-situ testing variability of soil properties in geotechnical engineering design : research project capsule : technology transfer program.

    DOT National Transportation Integrated Search

    2016-04-01

    While structural engineering deals with mostly homogeneous manmade materials : (e.g., concrete and steel), geotechnical engineering typically involves highly varied : natural materials (e.g., soil and rock). As a result, high variance of the resistan...

  20. The design and fabrication of a prototype trash compacting unit. [for long duration space missions

    NASA Technical Reports Server (NTRS)

    1973-01-01

    A prototype trash compactor, that is compatible with the anticipated requirements of future long-term space missions, is described. Preliminary problem definition studies were conducted to identify typical types and quantities of waste materials to be expected from a typical mission. Bench-scale compaction tests were then conducted on typical waste materials to determine force/compaction curves. These data were used to design a boilerplate compactor that was fabricated to prove the feasibility of the basic design concept. A final design was then prepared from which the deliverable unit was fabricated. Design concepts are presented for suggested further development of the compactor, including a version that is capable of handling wet biodegradable wastes.

  1. Thermal Design, Analysis, and Testing of the Quench Module Insert Bread Board

    NASA Technical Reports Server (NTRS)

    Breeding Shawn; Khodabandeh, Julia; Turner, Larry D. (Technical Monitor)

    2001-01-01

    The science requirements for materials processing is to provide the desired PI requirements of thermal gradient, solid/liquid interface front velocity for a given processing temperature desired by the PI. Processing is performed by translating the furnace with the sample in a stationary position to minimize any disturbances to the solid/liquid interface front during steady state processing. Typical sample materials for this metals and alloys furnace are lead-tin alloys, lead-antimony alloys, and aluminum alloys. Samples must be safe to process and therefore typically are contained with hermetically sealed cartridge tubes (gas tight) with inner ceramic liners (liquid tight) to prevent contamination and/or reaction of the sample material with the cartridge tube.

  2. Research into material behaviour of the polymeric samples obtained after 3D-printing and subjected to compression test

    NASA Astrophysics Data System (ADS)

    Petrov, Mikhail A.; Kosatchyov, Nikolay V.; Petrov, Pavel A.

    2016-10-01

    The paper represents the results of the study concerning the investigation of the influence of the filling grade (material density) on the force characteristic during the uniaxial compression test of the cylindrical polymer probes produced by additive technology based on FDM. The authors have shown that increasing of the filling grate follows to the increase of the deformation forces. However, the dependency is not a linear function and characterized by soft-elastic model of material behaviour, which is typical for polymers partly crystallized structure.

  3. Determination of design allowable strength properties of elevated-temperature alloys. Part 1: Coated columbium alloys

    NASA Technical Reports Server (NTRS)

    Favor, R. J.; Maykuth, D. J.; Bartlett, E. S.; Mindlin, H.

    1972-01-01

    A program to determine the characteristics of two coated columbium alloy systems for spacecraft structures is discussed. The alloy was evaluated as coated base material, coated butt-welded material, and material thermal/pressure cycled prior to testing up to 30 cycles. Evaluation was by means of tensile tests covering the temperature range to 2400 F. Design allowables were computed and are presented as tables of data. The summary includes a room temperature property table, effect of temperature curves, and typical stress-strain curves.

  4. The Lewis Research Center geomagnetic substorm simulation facility

    NASA Technical Reports Server (NTRS)

    Berkopec, F. D.; Stevens, N. J.; Sturman, J. C.

    1977-01-01

    A simulation facility was established to determine the response of typical spacecraft materials to the geomagnetic substorm environment and to evaluate instrumentation that will be used to monitor spacecraft system response to this environment. Space environment conditions simulated include the thermal-vacuum conditions of space, solar simulation, geomagnetic substorm electron fluxes and energies, and the low energy plasma environment. Measurements for spacecraft material tests include sample currents, sample surface potentials, and the cumulative number of discharges. Discharge transients are measured by means of current probes and oscilloscopes and are verified by a photomultiplier. Details of this facility and typical operating procedures are presented.

  5. Comparative evaluation of subgrade resilient modulus from non-destructive, in-situ, and laboratory methods : technical summary report.

    DOT National Transportation Integrated Search

    2008-09-01

    The Resilient Modulus (Mr) of pavement materials and subgrades is an important input : parameter for the design of pavement structures. The Repeated Loading Triaxial (RLT) test : typically determines Mr. However, the RLT test requires well trained pe...

  6. Simplified through-transmission test method for determination of a material's acoustic properties

    USDA-ARS?s Scientific Manuscript database

    Accepted acoustic testing standards are available; however, they require specialized hardware and software that are typically out of reach economically to the occasional practitioner. What is needed is a simple and inexpensive screening method that can provide a quick comparison for rapid identifica...

  7. Composite structural materials

    NASA Technical Reports Server (NTRS)

    Ansell, G. S.; Loewy, R. G.; Wiberley, S. E.

    1982-01-01

    Research in the basic composition, characteristics, and processng science of composite materials and their constituents is balanced against the mechanics, conceptual design, fabrication, and testing of generic structural elements typical of aerospace vehicles so as to encourage the discovery of unusual solutions to problems. Detailed descriptions of the progress achieved in the various component parts of his program are presented.

  8. Phenomenological study of a cellular material behaviour under dynamic loadings

    NASA Astrophysics Data System (ADS)

    Bouix, R.; Viot, Ph.; Lataillade, J.-L.

    2006-08-01

    Polypropylene foams are cellular materials, which are often use to fill structures subjected to crash or violent impacts. Therefore, it is necessary to know and to characterise in experiments their mechanical behaviour in compression at high strain rates. So, several apparatus have been used in order to highlight the influence of strain rate, material density and also temperature. A split Hopkinson Pressure Bar has been used for impact tests, a fly wheel to test theses materials at medium strain rate and an electro-mechanical testing machine associated to a climatic chamber for temperature tests. Then, a rheological model has been used in order to describe the material behaviour. The mechanical response to compression of these foams presents three typical domains: a linear elastic step, a wide collapse plateau stress, which leads to a densification, which are related to a standard rheological model.

  9. Evaluation of asbestos-containing products and released fibers in home appliances.

    PubMed

    Hwang, Sung Ho; Park, Wha Me

    2016-09-01

    The purpose of this study was to detect asbestos-containing products and released asbestos fibers from home appliances. The authors investigated a total of 414 appliances manufactured between 1986 and 2007. Appliances were divided into three categories: large-sized electric appliances, small-sized electric appliances, and household items. Analysis for asbestos-containing material (ACM) was performed using polarized light microscopy (PLM) and stereoscopic microscopy. Air sampling was performed to measure airborne concentration of asbestos using a phase-contrast microscope (PCM). The results of the analysis for ACM in appliances show that large-sized electric appliances (refrigerators, washing machines, kimchi-refrigerators) and household items (bicycles, motorcycles, gas boilers) contain asbestos material and small-sized electric appliances do not contain asbestos material. All appliances with detected asbestos material showed typical characteristics of chrysotile (7-50%) and tremolite (7-10%). No released fibers of ACM were detected from the tested appliances when the appliances were operating. This study gives the basic information on asbestos risk to people who use home appliances. All appliances with detected asbestos material showed typical characteristics of chrysotile (7-50%) and tremolite (7-10%). No released fibers of ACM were detected from the tested appliances when the appliances were operating.

  10. Experimental investigation of the crashworthiness of scaled composite sailplane fuselages

    NASA Technical Reports Server (NTRS)

    Kampf, Karl-Peter; Crawley, Edward F.; Hansman, R. John, Jr.

    1989-01-01

    The crash dynamics and energy absorption of composite sailplane fuselage segments undergoing nose-down impact were investigated. More than 10 quarter-scale structurally similar test articles, typical of high-performance sailplane designs, were tested. Fuselages segments were fabricated of combinations of fiberglass, graphite, Kevlar, and Spectra fabric materials. Quasistatic and dynamic tests were conducted. The quasistatic tests were found to replicate the strain history and failure modes observed in the dynamic tests. Failure modes of the quarter-scale model were qualitatively compared with full-scale crash evidence and quantitatively compared with current design criteria. By combining material and structural improvements, substantial increases in crashworthiness were demonstrated.

  11. Environmental Exposure Effects on Composite Materials for Commercial Aircraft

    NASA Technical Reports Server (NTRS)

    Hoffman, D. J.

    1981-01-01

    This period's activities were highlighted by continued long term and accelerated lab exposure testing, and by completion of all fabrication tasks on the optional material systems, AS1/3501-6 and Kevlar 49/F161-188. Initial baseline testing was performed on the two optional material systems. Long term exposure specimens were returned from three of the four ground rack sites and from two of the three aircraft locations. Test data from specimens returned from Dryden after 2 years exposure do not indicate continuing trends of strength reduction from the 1 year data. Test data from specimens returned from the Wellington, new Zealand ground rack and on Air New Zealand aircraft after 1 year exposure show strength changes fairly typical of other locations.

  12. A Novel Water Delivery System for Administering Volatile Chemicals while Minimizing Chemical Waste in Rodent Toxicity Studies

    EPA Science Inventory

    Rodent toxicity studies typically use water bottles to administer test chemicals via drinking water. However, water bottles provide inconsistent exposure of volatile chemicals due to varying headspace, as well as lead to excessive waste of test material. In order to refine drin...

  13. A novel water delivery system for administering volatile chemicals while minimizing chemical waste in rodent toxicity sutdies

    EPA Science Inventory

    Rodent toxicity studies typically use water bottles to administer test chemicals via drinking water. However, water bottles provide inconsistent exposure of volatile chemicals due to varying headspace, as well as lead to excessive waste of test material. In order to refine drinki...

  14. Cryogenic Moisture Apparatus

    NASA Technical Reports Server (NTRS)

    Fesmire, James; Smith, Trent; Breakfield, Robert; Baughner, Kevin; Heckle, Kenneth; Meneghelli, Barry

    2010-01-01

    The Cryogenic Moisture Apparatus (CMA) is designed for quantifying the amount of moisture from the surrounding air that is taken up by cryogenic-tank-insulating material specimens while under typical conditions of use. More specifically, the CMA holds one face of the specimen at a desired low temperature (e.g., the typical liquid-nitrogen temperature of 77 K) while the opposite face remains exposed to humid air at ambient or near-ambient temperature. The specimen is weighed before and after exposure in the CMA. The difference between the "after" and "before" weights is determined to be the weight of moisture absorbed by the specimen. Notwithstanding the term "cryogenic," the CMA is not limited to cryogenic applications: the low test temperature can be any temperature below ambient, and the specimen can be made of any material affected by moisture in air. The CMA is especially well suited for testing a variety of foam insulating materials, including those on the space-shuttle external cryogenic tanks, on other cryogenic vessels, and in refrigerators used for transporting foods, medicines, and other perishables. Testing is important because absorbed moisture not only adds weight but also, in combination with thermal cycling, can contribute to damage that degrades insulating performance. Materials are changed internally when subjected to large sub-ambient temperature gradients.

  15. Hybrid statistical testing for nuclear material accounting data and/or process monitoring data in nuclear safeguards

    DOE PAGES

    Burr, Tom; Hamada, Michael S.; Ticknor, Larry; ...

    2015-01-01

    The aim of nuclear safeguards is to ensure that special nuclear material is used for peaceful purposes. Historically, nuclear material accounting (NMA) has provided the quantitative basis for monitoring for nuclear material loss or diversion, and process monitoring (PM) data is collected by the operator to monitor the process. PM data typically support NMA in various ways, often by providing a basis to estimate some of the in-process nuclear material inventory. We develop options for combining PM residuals and NMA residuals (residual = measurement - prediction), using a hybrid of period-driven and data-driven hypothesis testing. The modified statistical tests canmore » be used on time series of NMA residuals (the NMA residual is the familiar material balance), or on a combination of PM and NMA residuals. The PM residuals can be generated on a fixed time schedule or as events occur.« less

  16. Corrosion assessment of refractory materials for high temperature waste vitrification

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marra, J.C.; Congdon, J.W.; Kielpinski, A.L.

    1995-11-01

    A variety of vitrification technologies are being evaluated to immobilize radioactive and hazardous wastes following years of nuclear materials production throughout the Department of Energy (DOE) complex. The compositions and physical forms of these wastes are diverse ranging from inorganic sludges to organic liquids to heterogeneous debris. Melt and off-gas products can be very corrosive at the high temperatures required to melt many of these waste streams. Ensuring material durability is required to develop viable treatment processes. Corrosion testing of materials in some of the anticipated severe environments is an important aspect of the materials identification and selection process. Corrosionmore » coupon tests on typical materials used in Joule heated melters were completed using glass compositions with high salt contents. The presence of chloride in the melts caused the most severe attack. In the metal alloys, oxidation was the predominant corrosion mechanism, while in the tested refractory material enhanced dissolution of the refractory into the glass was observed. Corrosion testing of numerous different refractory materials was performed in a plasma vitrification system using a surrogate heterogeneous debris waste. Extensive corrosion was observed in all tested materials.« less

  17. Testing Plastic Deformations of Materials in the Introductory Undergraduate Mechanics Laboratory

    ERIC Educational Resources Information Center

    Romo-Kroger, C. M.

    2012-01-01

    Normally, a mechanics laboratory at the undergraduate level includes an experiment to verify compliance with Hooke's law in materials, such as a steel spring and an elastic rubber band. Stress-strain curves are found for these elements. Compression in elastic bands is practically impossible to achieve due to flaccidity. A typical experiment for…

  18. Effect of different packaging materials containing poly-[2-(tert-butylamino) methylstyrene] on the growth of spoilage and pathogenic bacteria on fresh meat.

    PubMed

    Dohlen, S; Braun, C; Brodkorb, F; Fischer, B; Ilg, Y; Kalbfleisch, K; Lorenz, R; Kreyenschmidt, M; Kreyenschmidt, J

    2017-09-18

    The objective of this study was to investigate the effect of novel antimicrobial packaging materials containing poly-[2-(tertbutylamino) methylstyrene] (poly(TBAMS)) on the growth of typical spoilage and pathogenic bacteria present on meat. The antimicrobial activity of materials containing different poly(TBAMS) concentrations was determined by comparing the bacterial counts on reference and sample materials at different temperatures and times and in the presence of meat components. Storage tests with poultry fillets and veal cutlets were conducted with samples vacuum packaged in the reference foil and foil containing 10% poly(TBAMS). After specific time intervals, typical spoilage microorganisms, total viable count (TVC), sensory changes and pH value were analysed. The results of the different poly(TBAMS) containing packaging materials showed an increase of the antimicrobial activity with an increasing amount of poly(TBAMS) in the base polymer. A high antimicrobial activity against inoculum of spoilage and pathogenic organisms typical for meat products was detected of a multilayer foil containing 10% poly(TBAMS) in the inner layer after 24h at 7°C. Gram positive-bacteria were more sensitive to poly(TBAMS) foil than gram-negative bacteria. In storage tests however, over the entire storage, a significant effect of this poly(TBAMS) foil on microbial growth on chicken breast fillets and veal cutlets could not be identified. Poly(TBAMS) packaging materials showed very good antimicrobial properties against a wide range of bacteria. However, for a significant inhibition of microbial growth on fresh meat, a higher amount of poly(TBAMS) was necessary to prolong the shelf life of meat. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Silicon quantum dots for energetic material applications

    NASA Astrophysics Data System (ADS)

    Adams, Sarah K.; Piekiel, Nicholas W.; Ervin, Matthew H.; Morris, Christopher J.

    2018-06-01

    In its history as an energetic material, porous silicon has demonstrated flame speeds in excess of 3 km s-1, tunable combustion behavior, and high energy output, which in theory makes it a very attractive energetic system. In practice, its application within the field is limited by porous silicon's typical substrate-adhered form and caustic chemical processing requirements that limit how and when porous silicon is made. In this work, we have relieved porous silicon of these constraints by creating reactive silicon quantum dots from free-standing porous silicon films. The resulting material is composed of crystalline silicon nanoparticles with diameters as small as 2 nm that retain the chemical properties of the original films including the SiH2 termination layer. The fabricated silicon particles were characterized using FTIR Spectroscopy, TEM, and EDS for determining the size and the chemical composition. For testing as an energetic material fuel, porous silicon was mixed with an oft used oxidizer, sodium perchlorate. During open-channel combustion tests, silicon quantum dots mixed with sodium perchlorate demonstrated flame speeds over 2.5 km s-1, while bomb calorimetry tests showed an average heat of combustion of 7.4 kJ g-1. These results demonstrate the ability to retain the porous silicon material properties that allow for highly energetic material reactions to occur, despite the additional processing steps to create silicon quantum dots. This opens the door for the use of porous silicon in the bulk of the energetic material application space, much of which was previously limited due to the substrate-attached nature of typical porous silicon.

  20. Design considerations for a Space Shuttle Main Engine turbine blade made of single crystal material

    NASA Technical Reports Server (NTRS)

    Abdul-Aziz, A.; August, R.; Nagpal, V.

    1993-01-01

    Nonlinear finite-element structural analyses were performed on the first stage high-pressure fuel turbopump blade of the Space Shuttle Main Engine. The analyses examined the structural response and the dynamic characteristics at typical operating conditions. Single crystal material PWA-1480 was considered for the analyses. Structural response and the blade natural frequencies with respect to the crystal orientation were investigated. The analyses were conducted based on typical test stand engine cycle. Influence of combined thermal, aerodynamic, and centrifugal loadings was considered. Results obtained showed that the single crystal secondary orientation effects on the maximum principal stresses are not highly significant.

  1. Composite structural materials

    NASA Technical Reports Server (NTRS)

    Loewy, R.; Wiberley, S. E.

    1986-01-01

    Overall emphasis is on basic long-term research in the following categories: constituent materials, composite materials, generic structural elements, processing science technology; and maintaining long-term structural integrity. Research in basic composition, characteristics, and processing science of composite materials and their constituents is balanced against the mechanics, conceptual design, fabrication, and testing of generic structural elements typical of aerospace vehicles so as to encourage the discovery of unusual solutions to present and future problems. Detailed descriptions of the progress achieved in the various component parts of this comprehensive program are presented.

  2. Electrical resistivity measurement of mechanically stabilized Earth wall backfill : technical summary.

    DOT National Transportation Integrated Search

    2016-06-01

    In Kansas, mechanically stabilized earth (MSE) retaining walls are typically : backfilled with coarse aggregate. Current backfill material testing procedures used : by the Kansas Department of Transportation (KDOT) utilize on-site observations for : ...

  3. BURNER RIG TESTING OF A500 C/SiC

    DTIC Science & Technology

    2018-03-17

    test program characterized the durability behavior of A500® C/SiC ceramic matrix composite material at room and elevated temperature . Specimens were...7 Figure 6. Typical Room- Temperature Tensile Stress-Versus-Strain Trace for As-Manufactured A500...Operation ......................................... 18 Figure 17. Example of the Burner Rig Temperature Profiles Used

  4. Recommended Strain Gage Application Procedures for Various Langley Research Center Balances and Test Articles

    NASA Technical Reports Server (NTRS)

    Moore, Thomas C., Sr.

    1997-01-01

    The NASA Langley Research Center uses more than 10000 strain gages per year in supporting its various research programs. The character of the testing at LaRC is such that the types of strain gage installations, the materials they are applied to, and the test environments encountered, require many varied approaches for installing strain gages. These installations must be accomplished in the most technically discerning and appropriate manner. This technical memorandum is offered as an assisting guide in helping the strain gage user to determine the appropriate approach for a given strain gage application requirement. Specifically, this document offers detailed recommendations for strain gaging the following: LaRC-Designed balances, LARC custom transducers, certain composite materials and alloys, high-temperature test articles, and selected non-typical or unique materials or test conditions.

  5. Experimental assessment of the performance of ablative heat shield materials from plasma wind tunnel testing

    NASA Astrophysics Data System (ADS)

    Löhle, S.; Hermann, T.; Zander, F.

    2018-06-01

    A method for assessing the performance of typical heat shield materials is presented in this paper. Three different material samples, the DLR material Zuram, the Airbus material Asterm and the carbon preform Calcarb were tested in the IRS plasma wind tunnel PWK1 at the same nominal condition. State of the art diagnostic tools, i.e., surface temperature with pyrometry and thermography and boundary layer optical emission spectroscopy were completed by photogrammetric surface recession measurements. These data allow the assessment of the net heat flux for each material. The analysis shows that the three materials each have a different effect on heat flux mitigation with ASTERM showing the largest reduction in surface heat flux. The effect of pyrolysis and blowing is clearly observed and the heat flux reduction can be determined from an energy balance.

  6. Electrical resistivity measurement of mechanically stabilized Earth wall backfill : final report.

    DOT National Transportation Integrated Search

    2016-06-01

    In Kansas, mechanically stabilized earth (MSE) retaining walls are typically backfilled with coarse aggregate. : Current backfill material testing procedures used by the Kansas Department of Transportation (KDOT) utilize on-site : observations for co...

  7. The ultimate state of polymeric materials and laminated and fibrous composites under asymmetric high-cycle loading

    NASA Astrophysics Data System (ADS)

    Golub, V. P.; Pogrebniak, A. D.; Kochetkova, E. S.

    2008-01-01

    The prediction of the high-cycle fatigue strength of polymeric and composite materials in asymmetric loading is considered. The problem is solved on the basis of a nonlinear model of ultimate state allowing us to describe all typical forms of the diagrams of ultimate stresses. The material constants of the model are determined from the results of fatigue tests in symmetric reversed cycling, in a single fatigue test with the minimum stress equal to zero, and in a short-term strength test. The fatigue strength characteristics of some polymers, glass-fiber laminates, glass-fiber-reinforced plastics, organic-fiber-reinforced plastics, and wood laminates in asymmetric tension-compression, bending, and torsion have been calculated and approved experimentally.

  8. Life test results for an ensemble of CO2 lasers

    NASA Technical Reports Server (NTRS)

    Peruso, C. J.; Degnan, J. J.; Hochuli, U. E.

    1978-01-01

    The effects of cathode material, cathode operating temperature, anode configuration, window materials, and hydrogen additives on laser lifetime are determined. Internally oxidized copper and silber-copper alloy cathodes were tested. The cathode operating temperature was raised in some tubes through the use of thermal insulation. Lasers incorporating thermally insulated silver copper oxide cathodes clearly yielded the longest lifetimes-typically in excess of 22,000 hours. The use of platinum sheet versus platinum pin anodes had no observable effect on laser lifetime. Similarly, the choice of germanium, cadmium telluride, or zinc selenide as the optical window material appears to have no impact on lifetime.

  9. Cavitation Fracture of the Typical Materials Used in Hydraulic Machines and Units

    NASA Astrophysics Data System (ADS)

    Kovalev, A. A.; Kuznetsov, N. N.

    2017-12-01

    The cavitation fracture of AMg6, BrAZh9-4, grade 20 steel, 12Kh18N10T, 20Kh13, and VT1-0 alloys, which are used in hydraulic machines and units, is studied. In tests, the materials are subjected to ultrasonic waves and the sample mass loss and the microhardness are measured. It is shown that new cavitation- resistant materials, which have a sufficient strength and plasticity, should be designed.

  10. Measurements of VOC adsorption/desorption characteristics of typical interior building materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    An, Y.; Zhang, J.S.; Shaw, C.Y.

    2000-07-01

    The adsorption/desorption of volatile organic compounds (VOCs) on interior building material surfaces (i.e., the sink effect) can affect the VOC concentrations in a building, and thus need to be accounted for an indoor air quality (IAQ) prediction model. In this study, the VOC adsorption/desorption characteristics (sink effect) were measured for four typical interior building materials including carpet, vinyl floor tile, painted drywall, and ceiling tile. The VOCs tested were ethylbenzene, cyclohexanone, 1,4-dichlorobenzene, benzaldehyde, and dodecane. These five VOCs were selected because they are representative of hydrocarbons, aromatics, ketones, aldehydes, and chlorine substituted compounds. The first order reversible adsorption/desorption model wasmore » based on the Langmuir isotherm was used to analyze the data and to determine the equilibrium constant of each VOC-material combination. It was found that the adsorption/desorption equilibrium constant, which is a measure of the sink capacity, increased linearly with the inverse of the VOC vapor pressure. For each compound, the adsorption/desorption equilibrium constant, and the adsorption rate constant differed significantly among the four materials tested. A detailed characterization of the material structure in the micro-scale would improve the understanding and modeling of the sink effect in the future. The results of this study can be used to estimate the impact of sink effect on the VOC concentrations in buildings.« less

  11. Shuttle filter study. Volume 2: Contaminant generation and sensitivity studies

    NASA Technical Reports Server (NTRS)

    1974-01-01

    Contaminant generation studies were conducted at the component level using two different methods, radioactive tracer technique and gravimetric analysis test procedure. Both of these were reduced to practice during this program. In the first of these methods, radioactively tagged components typical of those used in spacecraft were studied to determine their contaminant generation characteristics under simulated operating conditions. Because the purpose of the work was: (1) to determine the types and quantities of contaminants generated; and (2) to evaluate improved monitoring and detection schemes, no attempt was made to evaluate or qualify specific components. The components used in this test program were therefore not flight hardware items. Some of them had been used in previous tests; some were obsolete; one was an experimental device. In addition to the component tests, various materials of interest to contaminant and filtration studies were irradiated and evaluated for use as autotracer materials. These included test dusts, plastics, valve seat materials, and bearing cage materials.

  12. A rare allergy to a polyether dental impression material.

    PubMed

    Mittermüller, Pauline; Szeimies, Rolf-Markus; Landthaler, Michael; Schmalz, Gottfried

    2012-08-01

    Polyether impression materials have been used in dentistry for more than 40 years. Allergic reactions to these materials such as reported in the 1970s ceased after replacement of a catalyst. Very recently, however, patients have started to report symptoms that suggest a new allergic reaction from polyether impression materials. Here, we report on the results of allergy testing with polyether impression materials as well as with its components. Eight patients with clinical symptoms of a contact allergy (swelling, redness or blisters) after exposure to a polyether impression material were subjected to patch tests, two of them additionally to a prick test. A further patient with atypical symptoms of an allergy (nausea and vomiting after contact with a polyether impression material in the oral cavity) but with a history of other allergic reaction was also patch tested. The prick tests showed no immediate reactions in the two patients tested. In the patch tests, all eight patients with typical clinical symptoms showed positive reactions to the mixed polyether impression materials, to the base paste or to a base paste component. The patient with the atypical clinical symptoms did not show any positive patch test reactions. Polyether impression materials may evoke type IV allergic reactions. The causative agent was a component of the base paste. In consideration of the widespread use of this impression material (millions of applications per year) and in comparison to the number of adverse reactions from other dental materials, the number of such allergic reactions is very low. In very scarce cases, positive allergic reactions to polyether impression materials are possible.

  13. Curling and warping of concrete pavement: an investigation and proof of concept study : technical summary.

    DOT National Transportation Integrated Search

    2016-06-01

    In Kansas, mechanically stabilized earth (MSE) retaining walls are typically : backfilled with coarse aggregate. Current backfill material testing procedures used : by the Kansas Department of Transportation (KDOT) utilize on-site observations for : ...

  14. Experimental assessment of the performance of ablative heat shield materials from plasma wind tunnel testing

    NASA Astrophysics Data System (ADS)

    Löhle, S.; Hermann, T.; Zander, F.

    2017-12-01

    A method for assessing the performance of typical heat shield materials is presented in this paper. Three different material samples, the DLR material uc(Zuram), the Airbus material uc(Asterm) and the carbon preform uc(Calcarb) were tested in the IRS plasma wind tunnel PWK1 at the same nominal condition. State of the art diagnostic tools, i.e., surface temperature with pyrometry and thermography and boundary layer optical emission spectroscopy were completed by photogrammetric surface recession measurements. These data allow the assessment of the net heat flux for each material. The analysis shows that the three materials each have a different effect on heat flux mitigation with ASTERM showing the largest reduction in surface heat flux. The effect of pyrolysis and blowing is clearly observed and the heat flux reduction can be determined from an energy balance.

  15. Use of the micro-deval test for assessing Alaska aggregates : [summary].

    DOT National Transportation Integrated Search

    2012-12-01

    Choosing the right material is half the battle in building roads for Alaska. The extreme conditions typical to cold regions require a : durable, abrasion resistant and freeze-thaw resistant aggregate. Recently the state has been wondering exactly how...

  16. Design values of resilient modulus of stabilized and non-stabilized base.

    DOT National Transportation Integrated Search

    2010-10-01

    The primary objective of this research study is to determine design value ranges for typical base materials, as allowed by LADOTD specifications, through laboratory tests with respect to resilient modulus and other parameters used by pavement design ...

  17. Curling and warping of concrete pavement: an investigation and proof of concept study : final report.

    DOT National Transportation Integrated Search

    2016-06-01

    In Kansas, mechanically stabilized earth (MSE) retaining walls are typically backfilled with coarse aggregate. : Current backfill material testing procedures used by the Kansas Department of Transportation (KDOT) utilize on-site : observations for co...

  18. Dynamic MEMS devices for multi-axial fatigue and elastic modulus measurement

    NASA Astrophysics Data System (ADS)

    White, Carolyn D.; Xu, Rui; Sun, Xiaotian; Komvopoulos, Kyriakos

    2003-01-01

    For reliable MEMS device fabrication and operation, there is a continued demand for precise characterization of materials at the micron scale. This paper presents a novel material characterization device for fatigue lifetime testing. The fatigue specimen is subjected to multi-axial loading, which is typical of most MEMS devices. Polycrystalline silicon (polysilicon) fatigue devices were fabricated using the MUMPS process with a three layer mask process ground plane, anchor, and structural layer of polysilicon. A fatigue device consists of two or three beams, attached to a rotating ring and anchored to the substrate on each end. In order to generate a sufficiently large stress, the fatigue devices were tested in resonance to produce a von Mises equivalent stress as high as 1 GPa, which is in the fracture strength range reported for polysilicon. A further increase of the stress in the beam specimens was obtained by introducing a notch with a focused ion beam. The notch resulted into a stress concentration factor of about 3.8, thereby producing maximum von Mises equivalent stress in the range of 1 through 4 GPa. This study provides insight into multi-axial fatigue testing under typical MEMS conditions and additional information about micron-scale polysilicon mechanical behavior, which is the current basic building material for MEMS devices.

  19. Application of laser spot cutting on spring contact probe for semiconductor package inspection

    NASA Astrophysics Data System (ADS)

    Lee, Dongkyoung; Cho, Jungdon; Kim, Chan Ho; Lee, Seung Hwan

    2017-12-01

    A packaged semiconductor has to be electrically tested to make sure they are free of any manufacturing defects. The test interface, typically employed between a Printed Circuit Board and the semiconductor devices, consists of densely populated Spring Contact Probe (SCP). A standard SCP typically consists of a plunger, a barrel, and an internal spring. Among these components, plungers are manufactured by a stamping process. After stamping, plunger connecting arms need to be cut into pieces. Currently, mechanical cutting has been used. However, it may damage to the body of plungers due to the mechanical force engaged at the cutting point. Therefore, laser spot cutting is considered to solve this problem. The plunger arm is in the shape of a rectangular beam, 50 μm (H) × 90 μm (W). The plunger material used for this research is gold coated beryllium copper. Laser parameters, such as power and elapsed time, have been selected to study laser spot cutting. Laser material interaction characteristics such as a crater size, material removal zone, ablation depth, ablation threshold, and full penetration are observed. Furthermore, a carefully chosen laser parameter (Etotal = 1000mJ) to test feasibility of laser spot cutting are applied. The result show that laser spot cutting can be applied to cut SCP.

  20. Finite Element Simulations for Investigating the Effects of Specimen Geometry in Superplastic Tensile Tests

    NASA Astrophysics Data System (ADS)

    Nazzal, Mohammad; Abu-Farha, Fadi; Curtis, Richard

    2011-08-01

    Characterizing the behavior of superplastic materials is largely based on the uniaxial tensile test; yet the unique nature of these materials requires a particularly tailored testing methodology, different to that used with conventional materials. One of the crucial testing facets is the specimen geometry, which has a great impact on the outcome of a superplastic tensile test, as a result of the associated extreme conditions. And while researchers agree that it should take a notably different form than the typical dog-bone shape; there is no universal agreement on the specimen's particular size and dimensions, as evident by the disparities in test specimens used in the various superplastic testing efforts found throughout the literature. In view of that, this article is dedicated to understanding the effects of specimen geometry on the superplastic behavior of the material during tensile testing. Deformation of the Ti6Al4V titanium alloy is FE simulated based on a multitude of specimen geometries, covering a wide range of gauge length, gauge width, grip length, and grip width values. The study provides key insights on the influences of each geometrical parameter as well as their interactions, and provides recommendations on selecting the specimen's proportions for accurate and unified tensile testing of superplastic materials.

  1. Dielectric Heaters for Testing Spacecraft Nuclear Reactors

    NASA Technical Reports Server (NTRS)

    Sims, William Herbert; Bitteker, Leo; Godfroy, Thomas

    2006-01-01

    A document proposes the development of radio-frequency-(RF)-driven dielectric heaters for non-nuclear thermal testing of the cores of nuclear-fission reactors for spacecraft. Like the electrical-resistance heaters used heretofore for such testing, the dielectric heaters would be inserted in the reactors in place of nuclear fuel rods. A typical heater according to the proposal would consist of a rod of lossy dielectric material sized and shaped like a fuel rod and containing an electrically conductive rod along its center line. Exploiting the dielectric loss mechanism that is usually considered a nuisance in other applications, an RF signal, typically at a frequency .50 MHz and an amplitude between 2 and 5 kV, would be applied to the central conductor to heat the dielectric material. The main advantage of the proposal is that the wiring needed for the RF dielectric heating would be simpler and easier to fabricate than is the wiring needed for resistance heating. In some applications, it might be possible to eliminate all heater wiring and, instead, beam the RF heating power into the dielectric rods from external antennas.

  2. Vibration and Thermal Cycling Effects on Bulk-fill Insulation Materials for Cryogenic Tanks

    NASA Astrophysics Data System (ADS)

    Fesmire, J. E.; Augustynowicz, S. D.; Nagy, Z. F.; Sojourner, S. J.; Morris, D. L.

    2006-04-01

    Large-scale (1,000,000 liters or more) cryogenic storage tanks are typically perlite-insulated double-walled vessels. Associated problems with perlite, such as mechanical compaction and settling, could be greatly reduced by using newer bulk-fill materials such as glass bubbles or aerogel beads. Using the newer materials should translate to lower life cycle costs and improved system reliability. NASA Kennedy Space Center is leveraging its experience in the areas of materials development, insulation testing, and cryogenic systems design to develop an insulation retrofit option that will meet both industry and NASA requirements. A custom 10-liter dewar test apparatus, developed by the KSC Cryogenics Test Laboratory, was used to determine the vibration and thermal cycling effects on different bulk-fill insulation materials for cryogenic tanks. The testing included liquid-nitrogen boiloff testing and thermal cycling (with vibration) of a number of test dewars. Test results show that glass bubbles have better thermal performance and less mechanical compaction compared to perlite powder. The higher cost of the bulk material should be offset by reduced commodity loss from boiloff and improvements in material handling, evacuation, and vacuum retention. The long-term problem with settling and compaction of perlite should also be eliminated. Aerogel beads are superior for the no-vacuum condition and can now be considered in some applications. Further studies on large-scale systems are presently being pursued.

  3. HOT CELL BUILDING, TRA632. FIRST FLOOR FOUNDATION PLAN SHOWS SECTIONALIZED ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    HOT CELL BUILDING, TRA-632. FIRST FLOOR FOUNDATION PLAN SHOWS SECTIONALIZED FLOOR LOADINGS AND CONCRETE SLAB THICKNESSES, A TYPICAL FEATURE OF NUCLEAR ARCHITECTURE. IDAHO OPERATIONS OFFICE MTR-632-IDO-2, 11/1952. INL INDEX NO. 531-0632-62-396-110561, REV. 1. - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID

  4. Predicting Material Performance in the Space Environment from Laboratory Test Data, Static Design Environments, and Space Weather Models

    NASA Technical Reports Server (NTRS)

    Minow, Josep I.; Edwards, David L.

    2008-01-01

    Qualifying materials for use in the space environment is typically accomplished with laboratory exposures to simulated UV/EUV, atomic oxygen, and charged particle radiation environments with in-situ or subsequent measurements of material properties of interest to the particular application. Choice of environment exposure levels are derived from static design environments intended to represent either mean or extreme conditions that are anticipated to be encountered during a mission. The real space environment however is quite variable. Predictions of the on orbit performance of a material qualified to laboratory environments can be done using information on 'space weather' variations in the real environment. This presentation will first review the variability of space environments of concern for material degradation and then demonstrate techniques for using test data to predict material performance in a variety of space environments from low Earth orbit to interplanetary space using historical measurements and space weather models.

  5. Tested Demonstrations: Diffusion of Gases--Kinetic Molecular Theory of Gases.

    ERIC Educational Resources Information Center

    Gilbert, George L., Ed.

    1984-01-01

    Provided are procedures and list of materials needed to demonstrate that the pressure inside a container with a porous surface can be changed due to the rate of diffusion of low molecular weight gases. Typical results obtained are included. (JN)

  6. Preliminary analysis of accelerated space flight ionizing radiation testing

    NASA Technical Reports Server (NTRS)

    Wilson, J. W.; Stock, L. V.; Carter, D. J.; Chang, C. K.

    1982-01-01

    A preliminary analysis shows that radiation dose equivalent to 30 years in the geosynchronous environment can be accumulated in a typical composite material exposed to space for 2 years or less onboard a spacecraft orbiting from perigee of 300 km out to the peak of the inner electron belt (approximately 2750 km). Future work to determine spacecraft orbits better tailored to materials accelerated testing is indicated. It is predicted that a range of 10 to the 9th power to 10 to the 10th power rads would be accumulated in 3-6 mil thick epoxy/graphite exposed by a test spacecraft orbiting in the inner electron belt. This dose is equivalent to the accumulated dose that this material would be expected to have after 30 years in a geosynchronous orbit. It is anticipated that material specimens would be brought back to Earth after 2 years in the radiation environment so that space radiation effects on materials could be analyzed by laboratory methods.

  7. Language Lateralization in Children Aged 10 to 11 Years: A Combined fMRI and Dichotic Listening Study

    PubMed Central

    Norrelgen, Fritjof; Lilja, Anders; Ingvar, Martin; Gisselgård, Jens; Fransson, Peter

    2012-01-01

    Objective The aims of this study were to develop and assess a method to map language networks in children with two auditory fMRI protocols in combination with a dichotic listening task (DL). The method is intended for pediatric patients prior to epilepsy surgery. To evaluate the potential clinical usefulness of the method we first wanted to assess data from a group of healthy children. Methods In a first step language test materials were developed, intended for subsequent implementation in fMRI protocols. An evaluation of this material was done in 30 children with typical development, 10 from the 1st, 4th and the 7th grade, respectively. The language test material was then adapted and implemented in two fMRI protocols intended to target frontal and posterior language networks. In a second step language lateralization was assessed in 17 typical 10–11 year olds with fMRI and DL. To reach a conclusion about language lateralization, firstly, quantitative analyses of the index data from the two fMRI tasks and the index data from the DL task were done separately. In a second step a set of criteria were applied to these results to reach a conclusion about language lateralization. The steps of these analyses are described in detail. Results The behavioral assessment of the language test material showed that it was well suited for typical children. The results of the language lateralization assessments, based on fMRI data and DL data, showed that for 15 of the 17 subjects (88%) a conclusion could be reached about hemispheric language dominance. In 2 cases (12%) DL provided critical data. Conclusions The employment of DL combined with language mapping using fMRI for assessing hemispheric language dominance is novel and it was deemed valuable since it provided additional information compared to the results gained from each method individually. PMID:23284796

  8. Heat flux sensor research and development: The cool film calorimeter

    NASA Technical Reports Server (NTRS)

    Abtahi, A.; Dean, P.

    1990-01-01

    The goal was to meet the measurement requirement of the NASP program for a gauge capable of measuring heat flux into a 'typical' structure in a 'typical' hypersonic flight environment. A device is conceptually described that has fast response times and is small enough to fit in leading edge or cowl lip structures. The device relies heavily on thin film technology. The main conclusion is the description of the limitations of thin film technology both in the art of fabrication and in the assumption that thin films have the same material properties as the original bulk material. Three gauges were designed and fabricated. Thin film deposition processes were evaluated. The effect of different thin film materials on the performance and fabrication of the gauge was studied. The gauges were tested in an arcjet facility. Survivability and accuracy were determined under various hostile environment conditions.

  9. Real-Time X-ray Radiography Diagnostics of Components in Solid Rocket Motors

    NASA Technical Reports Server (NTRS)

    Cortopassi, A. C.; Martin, H. T.; Boyer, E.; Kuo, K. K.

    2012-01-01

    Solid rocket motors (SRMs) typically use nozzle materials which are required to maintain their shape as well as insulate the underlying support structure during the motor operation. In addition, SRMs need internal insulation materials to protect the motor case from the harsh environment resulting from the combustion of solid propellant. In the nozzle, typical materials consist of high density graphite, carbon-carbon composites and carbon phenolic composites. Internal insulation of the motor cases is typically a composite material with carbon, asbestos, Kevlar, or silica fibers in an ablative matrix such as EPDM or NBR. For both nozzle and internal insulation materials, the charring process occurs when the hot combustion products heat the material intensely. The pyrolysis of the matrix material takes away a portion of the thermal energy near the wall surface and leaves behind a char layer. The fiber reinforcement retains the porous char layer which provides continued thermal protection from the hot combustion products. It is of great interest to characterize both the total erosion rates of the material and the char layer thickness. By better understanding of the erosion process for a particular ablative material in a specific flow environment, the required insulation material thickness can be properly selected. The recession rates of internal insulation and nozzle materials of SRMs are typically determined by testing in some sort of simulated environment; either arc-jet testing, flame torch testing, or subscale SRMs of different size. Material recession rates are deduced by comparison of pre- and post-test measurements and then averaging over the duration of the test. However, these averaging techniques cannot be used to determine the instantaneous recession rates of the material. Knowledge of the variation in recession rates in response to the instantaneous flow conditions during the motor operation is of great importance. For example, in many SRM configurations the recession of the solid propellant grain can drastically alter the flow-field and effect the recession of internal insulation and nozzle materials. Simultaneous measurement of the overall erosion rate, the development of the char layer, and the recession of the char-virgin interface during the motor operation can be rather difficult. While invasive techniques have been used with limited success, they have serious drawbacks. Break wires or make wire sensors can be installed into a sufficient number of locations in the charring material from which a time history of the charring surface can be deduced. These sensors fundamentally alter the local structure of the material in which they are imbedded. Also, the location of these sensors within the material is not known precisely without the use of an X-ray. To determine instantaneous recession rates, real-time X-ray radiography (X-ray RTR) has been utilized in several SRM experiments at PSU. The X-ray RTR system discussed in this paper consists of an X-ray source, X-ray image intensifier, and CCD camera connected to a capture computer. The system has been used to examine the ablation process of internal insulation as well as nozzle material erosion in a subscale SRM. The X-ray source is rated to 320 kV at 10 mA and has both a large (5.5 mm) and small (3.0 mm) focal spot. The lead-lined cesium iodide X-ray image intensifier produces an image which is captured by a CCD camera with a 1,000 x 1,000 pixel resolution. To produce accurate imagery of the object of interest, the alignment of the X-ray source to the X-ray image intensifier is crucial. The image sequences captured during the operation of an SRM are then processed to enhance the quality of the images. This procedure allows for computer software to extract data on the total erosion rate and the char layer thickness. Figure 1 Error! Reference source not found.shows a sequence of images captured during the operation the subscale SRM with the X-ray RTR system. The X-rayTR system, alignment procedure, uncertainty determination, and image analysis process will be discussed in detail in the full manuscript.

  10. 32 CFR 22.105 - Definitions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... applying existing technology to new products and processes in a general way. Advanced research is most... Category 6.3A) programs within Research, Development, Test and Evaluation (RDT&E). Applied research... technology such as new materials, devices, methods and processes. It typically is funded in Applied Research...

  11. 24 CFR 3280.304 - Materials.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ...—Structural Glued Laminated Timber—ANSI/AITC A190.1-1992. Construction and Industrial Plywood (With Typical... shall comply with these requirements. (3) Engineering analysis and testing methods contained in these references shall be utilized to judge conformance with accepted engineering practices required in § 3280.303...

  12. 24 CFR 3280.304 - Materials.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ...—Structural Glued Laminated Timber—ANSI/AITC A190.1-1992. Construction and Industrial Plywood (With Typical... shall comply with these requirements. (3) Engineering analysis and testing methods contained in these references shall be utilized to judge conformance with accepted engineering practices required in § 3280.303...

  13. Influence of Specimen Preparation and Specimen Size on Composite Transverse Tensile Strength and Scatter

    NASA Technical Reports Server (NTRS)

    OBrien, T. Kevin; Chawan, Arun D.; DeMarco, Kevin; Paris, Isabelle

    2001-01-01

    The influence of specimen polishing, configuration, and size on the transverse tension strength of two glass-epoxy materials, and one carbon-epoxy material, loaded in three and four point bending was evaluated. Polishing machined edges, arid/or tension side failure surfaces, was detrimental to specimen strength characterization instead of yielding a higher, more accurate, strength as a result of removing inherent manufacture and handling flaws. Transverse tension strength was typically lower for longer span lengths due to the classical weakest link effect. However, strength was less sensitive to volume changes achieved by increasing specimen width. The Weibull scaling law typically over-predicted changes in transverse tension strengths in three point bend tests and under-predicted changes in transverse tension strengths in four point bend tests. Furthermore, the Weibull slope varied with specimen configuration, volume, and sample size. Hence, this scaling law was not adequate for predicting transverse tension strength of heterogeneous, fiber-reinforced, polymer matrix composites.

  14. Mechanical characterization of a short fiber-reinforced polymer at room temperature: experimental setups evaluated by an optical measurement system

    NASA Astrophysics Data System (ADS)

    Röhrig, C.; Scheffer, T.; Diebels, S.

    2017-09-01

    Composite materials are of great interest for industrial applications because of their outstanding properties. Each composite material has its own characteristics due to the large number of possible combinations of matrix and filler. As a result of their compounding, composites usually show a complex material behavior. This work is focused on the experimental testing of a short fiber-reinforced thermoplastic composite at room temperature. The characteristic behavior of this material class is often based on a superposition of typical material effects. The predicted characteristic material properties such as elasto-plasticity, damage and anisotropy of the investigated material are obtained from results of cyclic uniaxial tensile tests at constant strain rate. Concerning the manufacturing process as well as industrial applications, the experimental investigations are extended to multiaxial loading situations. Therefore, the composite material is examined with a setup close to a deep-drawing process, the Nakajima test (Nakazima et al. in Study on the formability of steel sheets. Yawate Technical Report No. 264, pp 8517-8530, 1968). The evaluation of the experimental investigations is provided by an optical analysis system using a digital image correlation software. Finally, based on the results of the uniaxial tensile tests, a one-dimensional macroscopic model is introduced and first results of the simulation are provided.

  15. A study of the effects of long-term exposure to fuels and fluids on the behavior of advanced composite materials

    NASA Technical Reports Server (NTRS)

    Tanimoto, E. Y.

    1981-01-01

    The periodic testing and evaluation of graphite/epoxy and Kevlar/epoxy material systems after subjecting test specimens to prolonged exposure to several laboratory-controlled environments deemed typical of normal aircraft operations is discussed. It is noted that specimen immersion in water or water-based fluids resulted in the greatest effect on the mechanical properties tested. Also, the environmental fluids showed a tendency to affect Kevlar/epoxy systems at an earlier exposure period than the graphite/epoxy systems. Results also indicate mechanical property strength retention generally being lower for the Kevlar/epoxy systems when compared to the corresponding graphite/epoxy systems in similar environments, after prolonged exposure.

  16. Intelligent Unmanned Monitoring of Remediated Sites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Emile Fiesler, Ph.D.

    During this Phase I project, IOS demonstrated the feasibility of combining digital signal processing and neural network analysis to analyze spectral signals from pure samples of several typical contaminants. We fabricated and tested a prototype system by automatically analyzing Raman spectral data taken in the Vadose zone at the 321 M site in the M area of DOE's Savannah River Site in South Carolina. This test demonstration proved the ability of IOS's technology to detect the target contaminants, tetrachloroethylene (PCE) and trichloroethylene (TCE), in isolation, and to detect the spectra of these contaminants in real-world noisy samples taken from amore » mixture of materials obtained from this typical remediation target site.« less

  17. Development and Sliding Wear Response of Epoxy Composites Filled with Coal Mine Overburden Material

    NASA Astrophysics Data System (ADS)

    Das, Prithika; Satapathy, Alok; Mishra, M. K.

    2018-03-01

    The paper reports on development and characterization of epoxy based composites filled with micro-sized mine overburden material. Coal mine overburden material is typically highly heterogeneous and is considered as waste material. For excavating each ton of coal, roughly 5 tons of overburden materials are removed and is dumped nearby occupying large space. Gainful utilization of this waste is a major challenge. In the present work, this material is used as filler materials in making a new class of epoxy matrix composites. Composites with different weight proportions of fillers (0, 10, 20, 30 and 40) wt. % are prepared by hand layup technique. Compression tests are performed as per corresponding ASTM standards to assess the compressive strength of these composites. Further, dry sliding tests are performed following ASTM G99 standards using a pin on disk machine. A design of experiment approach based on Taguchi’s L16 orthogonal arrays is adopted. Tests are performed at different sliding velocities for multiple sliding distances under varying normal loads. Specific wear rates of the composites under different test conditions are obtained. The analysis of the test results revealed that the filler content and the sliding velocity are the most predominant control factors affecting the wear rate. This work thus, opens up a new avenue for the value added utilization of coal mine overburden material.

  18. Friction and wear behavior of aluminum and composite airplane skins

    NASA Technical Reports Server (NTRS)

    Jackson, K. E.

    1984-01-01

    Friction and wear behavior was determined for small skin specimens under abrasive loading conditions typical of those occurring on the underside of a transport airplane during emergency belly landing. A test apparatus consisting of a standard belt sander provided the sliding surface. Small test specimens constructed of aluminum, standard graphite-epoxy composite, aramid-epoxy composite, and toughened-resin composites were tested undar a range of pressures, belt velocities, and belt-surface textures. The effects of these test variables on the wear rate and the coefficient of friction are discussed and comparisons are made between the composite materials and aluminum. The effect of fiber orientation in the composite materials on wear rate was also investigated. In addition, tests were performed in which thermocouples were imbedded into the various test specimens to obtain temperature-time histories during abrasion.

  19. Properties of Smoke from Overheated Materials in Low-Gravity

    NASA Technical Reports Server (NTRS)

    Urban, David L.; Ruff, Gary A.; Sheredy, William; Cleary, Thomas; Yang, Jiann; Mulholland, George; Yuan, Zeng-Guang

    2009-01-01

    Smoke particle size measurements were obtained under low-gravity conditions by overheating several materials typical of those found in spacecraft. The measurements included integral measurements of the smoke particles and physical sample of the particles for Transmission Electron Microscope analysis. The integral moments were combined to obtain geometric mean particle sizes and geometric standard deviations. These results are presented with the details of the instrument calibrations. The experimental results show that, for the materials tested, a substantial portion of the smoke particles are below 500 nm in diameter.

  20. Task 4 : testing Iowa Portland cement concrete mixtures for the AASHTO mechanistic-empirical pavement design procedure.

    DOT National Transportation Integrated Search

    2008-05-01

    The present research project was designed to identify the typical Iowa material input values that are required by the Mechanistic- : Empirical Pavement Design Guide (MEPDG) for the Level 3 concrete pavement design. It was also designed to investigate...

  1. Mirrors & Windows into Student Noticing

    ERIC Educational Resources Information Center

    Dominguez, Higinio

    2016-01-01

    In many classrooms, students solve problems posed by others--teachers, textbooks, and test materials. These problems typically describe a contrived situation followed by a question about an unknown that students are expected to resolve. Unsurprisingly, many students avoid reading these problems for meaning and instead engage in a suspension of…

  2. Methods for measuring plating thicknesses on TAB lead frames

    NASA Technical Reports Server (NTRS)

    Hagen, M. P.

    1977-01-01

    Plating three layer tape lead frames, used for tape automated bonding, offers a challenge to the electroplater because of nonuniform topography. Each lead frame contains large (typically .05 x. .05 inch) flat test pads located around the perimeter of the frame. These test pads are electrically connected to the bondable lead frame fingers which extend into an area in the center of the frame called the feature hole. The feature hole exposes these fingers to plating on all sides, while the test pads are exposed on only one side. In addition, the fingers are small in cross section (typically .003 x .0015 inches). Recent thickness measurements indicate that plating around the lead frame fingers is nearly twice as thick as that on test pad areas. Procedures and equipment were developed for measuring the thickness of the deposited material. Discussion was centered on the data obtained using the various measurement techniques and equipment.

  3. Friction and wear behavior of aluminum and composite I-beam stiffened airplane skins

    NASA Technical Reports Server (NTRS)

    Jackson, K. E.

    1985-01-01

    Friction and wear behavior was determined for I-beam stiffened skins constructed of aluminum, graphite-epoxy composite, and glass hybrid composite under abrasive loading conditions typical of those occurring on the underside of a transport airplane during an emergency belly landing. A test apparatus was developed to abrade the test specimens on actual runway surface under a range of pressures (2-5 psi) and velocities (16-50 mph). These parameters were chosen to fall within the range of conditions typical of an airframe sliding on a runway surface. The effects of the test variables on the wear rate and the coefficient of friction are discussed and comparisons are made between the composite materials and aluminum. In addition, the test apparatus was equipped to monitor the temperature variations on the backside of the skins during abrasion and these results are presented.

  4. Improved Spacecraft Materials for Radiation Shielding

    NASA Technical Reports Server (NTRS)

    Wilson, J. W.; Shinn, J. L.; Singleterry, R. C.; Tai, H.; Thibeault, S. A.; Simonsen, L. C.; Cucinotta, F. A.; Miller, J.

    1999-01-01

    In the execution of this proposal, we will first examine current and developing spacecraft materials and evaluate their ability to attenuate adverse biological mutational events in mammalian cell systems and reduce the rate of cancer induction in mice harderian glands as a measure of their protective qualities. The HZETRN code system will be used to generate a database on GCR attenuation in each material. If a third year of funding is granted, the most promising and mission-specific materials will be used to study the impact on mission cost for a typical Mars mission scenario as was planned in our original two year proposal at the original funding level. The most promising candidate materials will be further tested as to their transmission characteristics in Fe and Si ion beams to evaluate the accuracy of the HZETRN transmission factors. Materials deemed critical to mission success may also require testing as well as materials developed by industry for their radiation protective qualities (e.g., Physical Sciences Inc.) A study will be made of designing polymeric materials and composite materials with improved radiation shielding properties as well as the possible improvement of mission-specific materials.

  5. Combustion Gas Heating Tests of C/C Composites Coated with SiC Layer

    NASA Astrophysics Data System (ADS)

    Sato, Masaki; Moriya, Shin-ichi; Sato, Masahiro; Tadano, Makoto; Kusaka, Kazuo; Hasegawa, Keiichi; Kumakawa, Akinaga; Yoshida, Makoto

    2008-02-01

    In order to examine the applicability of carbon fiber/carbon matrix composites coated with a silicon carbide layer (C/C-SiCs) to an advanced nozzle for the future reusable rocket engines, two series of combustion gas heating tests were conducted using a small rocket combustor. In the first series of heating tests, five different kinds of C/C-SiCs were tested with specimens in the shape of a square plate for material screening. In the second series of heating tests, two selected C/C-SiCs were tested with specimens in the shape of a small nozzle. The effectiveness of an interlayer between a C/C composite and a SiC layer, which was introduced to improve the durability based on the concept of functionally graded materials (FGMs), can be observed. The typical damage mode was also pointed out in the results of heating test using the small nozzle specimens.

  6. Multipurpose Thermal Insulation Test Apparatus

    NASA Technical Reports Server (NTRS)

    Fesmire, James E. (Inventor); Augustynowicz, Stanislaw D. (Inventor)

    2002-01-01

    A multi-purpose thermal insulation test apparatus is used for testing insulation materials, or other components. The test apparatus is a fluid boil-off calorimeter system for calibrated measurement of the apparent thermal conductivity (k-value) of a specimen material at a fixed vacuum level. The apparatus includes an inner vessel for receiving a fluid with a normal boiling point below ambient temperature, such as liquid nitrogen, enclosed within a vacuum chamber. A cold mass assembly, including the inner vessel and thermal guards, is suspended from the top of the vacuum chamber. Handling tools attach to the cold mass assembly for convenient manipulation of the assembly and for the installation or wrapping of insulation test materials. Liquid nitrogen is typically supplied to the inner vessel using a fill tube with funnel. A single port through the top of the vacuum chamber facilitates both filling and venting. Aerogel composite stacks with reflective films are fastened to the top and the bottom of the inner vessel as thermal guards. The comparative k-value of the insulation material is determined by measuring the boil-off flow rate of gas, the temperature differential across the insulation thickness, and the dimensions (length and diameters) of the test specimen.

  7. Examination of a size-change test for photovoltaic encapsulation materials

    NASA Astrophysics Data System (ADS)

    Miller, David C.; Gu, Xiaohong; Ji, Liang; Kelly, George; Nickel, Nichole; Norum, Paul; Shioda, Tsuyoshi; Tamizhmani, Govindasamy; Wohlgemuth, John H.

    2012-10-01

    We examine a proposed test standard that can be used to evaluate the maximum representative change in linear dimensions of sheet encapsulation products for photovoltaic modules (resulting from their thermal processing). The proposed protocol is part of a series of material-level tests being developed within Working Group 2 of the Technical Committee 82 of the International Electrotechnical Commission. The characterization tests are being developed to aid module design (by identifying the essential characteristics that should be communicated on a datasheet), quality control (via internal material acceptance and process control), and failure analysis. Discovery and interlaboratory experiments were used to select particular parameters for the size-change test. The choice of a sand substrate and aluminum carrier is explored relative to other options. The temperature uniformity of +/-5°C for the substrate was confirmed using thermography. Considerations related to the heating device (hot-plate or oven) are explored. The time duration of 5 minutes was identified from the time-series photographic characterization of material specimens (EVA, ionomer, PVB, TPO, and TPU). The test procedure was revised to account for observed effects of size and edges. The interlaboratory study identified typical size-change characteristics, and also verified the absolute reproducibility of +/-5% between laboratories.

  8. Eddy current crack detection capability assessment approach using crack specimens with differing electrical conductivity

    NASA Astrophysics Data System (ADS)

    Koshti, Ajay M.

    2018-03-01

    Like other NDE methods, eddy current surface crack detectability is determined using probability of detection (POD) demonstration. The POD demonstration involves eddy current testing of surface crack specimens with known crack sizes. Reliably detectable flaw size, denoted by, a90/95 is determined by statistical analysis of POD test data. The surface crack specimens shall be made from a similar material with electrical conductivity close to the part conductivity. A calibration standard with electro-discharged machined (EDM) notches is typically used in eddy current testing for surface crack detection. The calibration standard conductivity shall be within +/- 15% of the part conductivity. This condition is also applicable to the POD demonstration crack set. Here, a case is considered, where conductivity of the crack specimens available for POD testing differs by more than 15% from that of the part to be inspected. Therefore, a direct POD demonstration of reliably detectable flaw size is not applicable. Additional testing is necessary to use the demonstrated POD test data. An approach to estimate the reliably detectable flaw size in eddy current testing for part made from material A using POD crack specimens made from material B with different conductivity is provided. The approach uses additional test data obtained on EDM notch specimens made from materials A and B. EDM notch test data from the two materials is used to create a transfer function between the demonstrated a90/95 size on crack specimens made of material B and the estimated a90/95 size for part made of material A. Two methods are given. For method A, a90/95 crack size for material B is given and POD data is available. Objective of method A is to determine a90/95 crack size for material A using the same relative decision threshold that was used for material B. For method B, target crack size a90/95 for material A is known. Objective is to determine decision threshold for inspecting material A.

  9. 49 CFR 179.200-7 - Materials.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... suitable for welding and comply with one of the following specifications (IBR, see § 171.7 of this... to testing. (A typical sensitizing treatment is 1 hour at 1250 F.) (e) Nickel plate: Nickel plate... must be suitable for fusion welding and comply with the following specification (IBR, see § 171.7 of...

  10. Effects of Speaking Task on Intelligibility in Parkinson's Disease

    ERIC Educational Resources Information Center

    Tjaden, Kris; Wilding, Greg

    2011-01-01

    Intelligibility tests for dysarthria typically provide an estimate of overall severity for speech materials elicited through imitation or read from a printed script. The extent to which these types of tasks and procedures reflect intelligibility for extemporaneous speech is not well understood. The purpose of this study was to compare…

  11. Bond expectations for milled surfaces and typical tack coat materials used in Virginia.

    DOT National Transportation Integrated Search

    2009-01-01

    The ultimate purpose of the program of research of which this study was a part is to identify a test method and acceptance criteria for bonding of HMA layers. In this study, three tasks were performed to help achieve that purpose: a laboratory compar...

  12. Surface Power Radiative Cooling Tests

    NASA Astrophysics Data System (ADS)

    Vaughn, Jason; Schneider, Todd

    2006-01-01

    Terrestrial nuclear power plants typically maintain their temperature through convective cooling, such as water and forced air. However, the space environment is a vacuum environment, typically 10-8 Torr pressure, therefore in proposed missions to the lunar surface, power plants would have to rely on radiative cooling to remove waste heat. Also, the Martian surface has a very tenuous atmosphere (e.g. ~5 Torr CO2), therefore, the main heat transfer method on the Martian surface is also radiative. Because of the lack of atmosphere on the Moon and the tenuous atmosphere on Mars, surface power systems on both the Lunar and Martian surface must rely heavily on radiative heat transfer. Because of the large temperature swings on both the lunar and the Martian surfaces, trying to radiate heat is inefficient. In order to increase power system efficiency, an effort is underway to test various combinations of materials with high emissivities to demonstrate their ability to survive these degrading atmospheres to maintain a constant radiator temperature improving surface power plant efficiency. An important part of this effort is the development of a unique capability that would allow the determination of a materials emissivity at high temperatures. A description of the test capability as well as initial data is presented.

  13. High-temperature erosion of plasma-sprayed, yttria-stabilized zirconia in a simulated turbine environment

    NASA Technical Reports Server (NTRS)

    Hanschuh, R. F.

    1984-01-01

    A series of rig calibration and high temperature tests simulating gas path seal erosion in turbine engines were performed at three impingement angles and at three downstream locations. Plasma sprayed, yttria stablized zirconia specimens were tested. Steady state erosion curves presented for 19 test specimens indicate a brittle type of material erosion despite scanning electron microscopy evidence of plastic deformation. Steady state erosion results were not sensitive to downstream location but were sensitive to impingement angle. At difference downstream locations specimen surface temperature varied from 1250 to 1600 C (2280 to 2900 F) and particle velocity varied from 260 to 320 m/s (850 to 1050 ft/s). The mass ratio of combustion products to erosive grit material was typically 240.

  14. Evaluation of moisture ingress from the perimeter of photovoltaic modules: Evaluation of moisture ingress

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kempe, Michael D.; Dameron, Arrelaine A.; Reese, Matthew O.

    2013-05-14

    Many thin film photovoltaic (PV) technologies can be sensitive to corrosion induced by the presence of water vapor in the packaging materials. Typically impermeable front and backsheets are used in conjunction with an edge-seal around the perimeter to prevent water vapor ingress. These edge-seal materials are often made of a polyisobutylene resin filled with desiccant, which dramatically increases the time for moisture to reach sensitive module components. While edge-seals can prevent moisture ingress, even the lowest diffusivity transparent encapsulant materials are insufficient for the lifetime of a module. To evaluate the performance of edge-seal and encapsulant materials in a mannermore » that simulates their function in a PV module, an optical method was devised where ingress is detected by reaction of a Ca film with water. Using this method, we have exposed test samples to heat and humidity allowing quantitative comparison of different edge-seal and encapsulant materials. Next, we use measurements of polymer diffusivity and solubility to evaluate the ability to model this moisture ingress. Here, we find good agreement between these two methods highlighting the much greater ability of polyisobutylene materials to keep moisture out as compared with typical encapsulant materials used in the PV industry.« less

  15. In Vitro Evaluation and Mechanism Analysis of the Fiber Shedding Property of Textile Pile Debridement Materials

    PubMed Central

    Fu, Yijun; Xie, Qixue; Lao, Jihong; Wang, Lu

    2016-01-01

    Fiber shedding is a critical problem in biomedical textile debridement materials, which leads to infection and impairs wound healing. In this work, single fiber pull-out test was proposed as an in vitro evaluation for the fiber shedding property of a textile pile debridement material. Samples with different structural design (pile densities, numbers of ground yarns and coating times) were prepared and estimated under this testing method. Results show that single fiber pull-out test offers an appropriate in vitro evaluation for the fiber shedding property of textile pile debridement materials. Pull-out force for samples without back-coating exhibited a slight escalating trend with the supplement in pile density and number of ground yarn plies, while back-coating process significantly raised the single fiber pull-out force. For fiber shedding mechanism analysis, typical pull-out behavior and failure modes of the single fiber pull-out test were analyzed in detail. Three failure modes were found in this study, i.e., fiber slippage, coating point rupture and fiber breakage. In summary, to obtain samples with desirable fiber shedding property, fabric structural design, preparation process and raw materials selection should be taken into full consideration. PMID:28773428

  16. Performance of Silica Gel in the Role of Residual Air Drying

    NASA Technical Reports Server (NTRS)

    Jan, Darrell L.; Hogan, John A.; Koss, Brian; Palmer, Gary H.; Richardson, Justine; Linggi, Paul

    2014-01-01

    Removal of carbon dioxide (CO2) is a necessary step in air revitalization and is often accomplished with sorbent materials. Since moisture competes with CO2 in sorbent materials, it is necessary to remove the water first. This is typically accomplished in two stages: bulk removal and residual drying. Silica gel is used as the bulk drying material in the Carbon Dioxide Removal Assembly (CDRA) in operation on ISS. There has been some speculation that silica gel may also be capable of serving as the residual drying material. This paper will describe test apparatus and procedures for determining the performance of silica gel in residual air drying.

  17. Failure evolution in granular material retained by rigid wall in active mode

    NASA Astrophysics Data System (ADS)

    Pietrzak, Magdalena; Leśniewska, Danuta

    2012-10-01

    This paper presents a detailed study of a selected small scale model test, performed on a sample of surrogate granular material, retained by a rigid wall (typical geotechnical problem of earth thrust on a retaining wall). The experimental data presented in this paper show that the deformation of granular sample behind retaining wall can undergo some cyclic changes. The nature of these cycles is not clear - it is probably related to some micromechanical features of granular materials, which are recently extensively studied in many research centers in the world. Employing very precise DIC (PIV) method can help to relate micro and macro-scale behavior of granular materials.

  18. Additively Manufactured Main Fuel Valve Housing

    NASA Technical Reports Server (NTRS)

    Eddleman, David; Richard, Jim

    2015-01-01

    Selective Laser Melting (SLM) was utilized to fabricate a liquid hydrogen valve housing typical of those found in rocket engines and main propulsion systems. The SLM process allowed for a valve geometry that would be difficult, if not impossible to fabricate by traditional means. Several valve bodies were built by different SLM suppliers and assembled with valve internals. The assemblies were then tested with liquid nitrogen and operated as desired. One unit was also burst tested and sectioned for materials analysis. The design, test results, and planned testing are presented herein.

  19. Verification of cardiac mechanics software: benchmark problems and solutions for testing active and passive material behaviour.

    PubMed

    Land, Sander; Gurev, Viatcheslav; Arens, Sander; Augustin, Christoph M; Baron, Lukas; Blake, Robert; Bradley, Chris; Castro, Sebastian; Crozier, Andrew; Favino, Marco; Fastl, Thomas E; Fritz, Thomas; Gao, Hao; Gizzi, Alessio; Griffith, Boyce E; Hurtado, Daniel E; Krause, Rolf; Luo, Xiaoyu; Nash, Martyn P; Pezzuto, Simone; Plank, Gernot; Rossi, Simone; Ruprecht, Daniel; Seemann, Gunnar; Smith, Nicolas P; Sundnes, Joakim; Rice, J Jeremy; Trayanova, Natalia; Wang, Dafang; Jenny Wang, Zhinuo; Niederer, Steven A

    2015-12-08

    Models of cardiac mechanics are increasingly used to investigate cardiac physiology. These models are characterized by a high level of complexity, including the particular anisotropic material properties of biological tissue and the actively contracting material. A large number of independent simulation codes have been developed, but a consistent way of verifying the accuracy and replicability of simulations is lacking. To aid in the verification of current and future cardiac mechanics solvers, this study provides three benchmark problems for cardiac mechanics. These benchmark problems test the ability to accurately simulate pressure-type forces that depend on the deformed objects geometry, anisotropic and spatially varying material properties similar to those seen in the left ventricle and active contractile forces. The benchmark was solved by 11 different groups to generate consensus solutions, with typical differences in higher-resolution solutions at approximately 0.5%, and consistent results between linear, quadratic and cubic finite elements as well as different approaches to simulating incompressible materials. Online tools and solutions are made available to allow these tests to be effectively used in verification of future cardiac mechanics software.

  20. Comparison Testings between Two High-temperature Strain Measurement Systems

    NASA Technical Reports Server (NTRS)

    Lei, J.-F.; Castelli, M. G.; Androjna, D.; Blue, C.; Blue, R.; Lin, R. Y.

    1996-01-01

    An experimental evaluation was conducted at NASA Lewis Research Center to compare and contrast the performance of a newly developed resistance strain gage, the PdCr temperature-compensated wire strain gage, to that of a conventional high-temperature extensometry. The evaluation of the two strain measurement systems was conducted through the application of various thermal and mechanical loading spectra using a high-temperature thermomechanical uniaxial testing system equipped with quartz lamp heating. The purpose of the testing was not only to compare and contrast the two strain sensors but also to investigate the applicability of the PdCr strain gage to the testing environment typically employed when characterizing the high-temperature mechanical behavior of structural materials. Strain measurement capabilities to 8OO C were investigated with a nickel base superalloy IN100 substrate material, and application to titanium matrix composite (TMC) materials was examined with the SCS-6/Ti-15-3 08 system. PdCr strain gages installed by three attachment techniques, namely, flame spraying, spot welding and rapid infrared joining were investigated.

  1. Development and validation of cryogenic foam insulation for LH2 subsonic transports

    NASA Technical Reports Server (NTRS)

    Anthony, F. M.; Colt, J. Z.; Helenbrook, R. G.

    1981-01-01

    Fourteen foam insulation specimens were tested. Some were plain foam while others contained flame retardants, chopped fiberglass reinforcement and/or vapor barriers. The thermal performance of the insulation was determined by measuring the rate at which LH2 boiled from an aluminum tank insulated with the test material. The test specimens were approximately 50 mm (2 in.) thick. They were structurally scaled so that the test cycle would duplicate the maximum thermal stresses predicted for the thicker insulation of an aircraft liquid hydrogen fuel tank during a typical subsonic flight. The simulated flight cycle of approximately 10 minutes duration heated the other insulation surface to 316 K (110 F) and cooled it to 226 K (20 F) while the inner insulation surface remained at liquid hydrogen temperature of 20 K (-423 F). Two urethane foam insulations exceeded the initial life goal of 2400 simulated flight cycles and sustained 4400 cycles with only minor damage. The addition of fiberglass reinforcement of flame retardant materials to an insulation degraded thermal performance and/or the life of the foam material. Installation of vapor barriers enhanced the structural integrity of the material but did not improve thermal performance. All of the foams tested were available materials; none were developed specifically for LH2 service.

  2. Toughened and corrosion- and wear-resistant composite structures and fabrication methods thereof

    DOEpatents

    Seals, Roland D; Ripley, Edward B; Hallman, Russell L

    2014-04-08

    Composite structures having a reinforced material interjoined with a substrate and methods of creating a composite material interjoined with a substrate. In some embodiments the composite structure may be a line or a spot or formed by reinforced material interjoined with the substrate. The methods typically include disposing a precursor material comprising titanium diboride and/or titanium monoboride on at least a portion of the substrate and heating the precursor material and the at least a portion of the substrate in the presence of an oxidation preventative until at least a portion of the precursor material forms reinforced material interjoined with the substrate. The precursor material may be disposed on the substrate as a sheet or a tape or a slurry or a paste. Localized surface heating may be used to heat the precursor material. The reinforced material typically comprises a titanium boron compound, such as titanium monoboride, and preferably comprises .beta.-titanium. The substrate is typically titanium-bearing, iron-bearing, or aluminum-bearing. A welding rod is provided as an embodiment. The welding rod includes a metal electrode and a precursor material is disposed adjacent at least a portion of the metal electrode. A material for use in forming a composite structure is provided. The material typically includes a precursor material that includes one or more materials selected from the following group: titanium diboride and titanium monoboride. The material also typically includes a flux.

  3. Investigation of the mechanical properties of organoplastic under shock wave loading conditions

    NASA Astrophysics Data System (ADS)

    Bragov, A. M.; Igumnov, L. A.; Konstantinov, A. Yu; Lomunov, A. K.

    2018-04-01

    The paper presents results of dynamic tests of a typical representative of new composite and damping materials: organoplastics. Compression testing was performed using the traditional Kolsky method and its original modification. The strength and deformation properties of organoplastics under conditions of uniaxial stress and uniaxial deformation were studied. When the organoplastic is compressed transversely to the Kevlar fabric layers under conditions of a uniaxial stress state, the material begins to break down (to lose the layer cohesion) at a stress of about 200 MPa, while under the conditions of uniaxial strain, it retains its apparent integrity at stresses up to 500 MPa. The small value of the lateral thrust factor indicates a large internal strength of the material in tension in the radial direction.

  4. A Study on the Mechanical Properties and Impact-Induced Initiation Characteristics of Brittle PTFE/Al/W Reactive Materials.

    PubMed

    Ge, Chao; Maimaitituersun, Wubuliaisan; Dong, Yongxiang; Tian, Chao

    2017-04-26

    Polytetrafluoroethylene/aluminum/tungsten (PTFE/Al/W) reactive materials of three different component mass ratios (73.5/26.5/0, 68.8/24.2/7 and 63.6/22.4/14) were studied in this research. Different from the PTFE/Al/W composites published elsewhere, the materials in our research were fabricated under a much lower sintering temperature and for a much shorter duration to achieve a brittle property, which aims to provide more sufficient energy release upon impact. Quasi-static compression tests, dynamic compression tests at room and elevated temperatures, and drop weight tests were conducted to evaluate the mechanical and impact-induced initiation characteristics of the materials. The materials before and after compression tests were observed by a scanning electron microscope to relate the mesoscale structural characteristics to their macro properties. All the three types of materials fail at very low strains during both quasi-static and dynamic compression. The stress-strain curves for quasi-static tests show obvious deviations while that for the dynamic tests consist of only linear-elastic and failure stages typically. The materials were also found to exhibit thermal softening at elevated temperatures and were strain-rate sensitive during dynamic tests, which were compared using dynamic increase factors (DIFs). Drop-weight test results show that the impact-initiation sensitivity increases with the increase of W content due to the brittle mechanical property. The high-speed video sequences and recovered sample residues of the drop-weight tests show that the reaction is initiated at two opposite positions near the edges of the samples, where the shear force concentrates the most intensively, indicating a shear-induced initiation mechanism.

  5. A Study on the Mechanical Properties and Impact-Induced Initiation Characteristics of Brittle PTFE/Al/W Reactive Materials

    PubMed Central

    Ge, Chao; Maimaitituersun, Wubuliaisan; Dong, Yongxiang; Tian, Chao

    2017-01-01

    Polytetrafluoroethylene/aluminum/tungsten (PTFE/Al/W) reactive materials of three different component mass ratios (73.5/26.5/0, 68.8/24.2/7 and 63.6/22.4/14) were studied in this research. Different from the PTFE/Al/W composites published elsewhere, the materials in our research were fabricated under a much lower sintering temperature and for a much shorter duration to achieve a brittle property, which aims to provide more sufficient energy release upon impact. Quasi-static compression tests, dynamic compression tests at room and elevated temperatures, and drop weight tests were conducted to evaluate the mechanical and impact-induced initiation characteristics of the materials. The materials before and after compression tests were observed by a scanning electron microscope to relate the mesoscale structural characteristics to their macro properties. All the three types of materials fail at very low strains during both quasi-static and dynamic compression. The stress-strain curves for quasi-static tests show obvious deviations while that for the dynamic tests consist of only linear-elastic and failure stages typically. The materials were also found to exhibit thermal softening at elevated temperatures and were strain-rate sensitive during dynamic tests, which were compared using dynamic increase factors (DIFs). Drop-weight test results show that the impact-initiation sensitivity increases with the increase of W content due to the brittle mechanical property. The high-speed video sequences and recovered sample residues of the drop-weight tests show that the reaction is initiated at two opposite positions near the edges of the samples, where the shear force concentrates the most intensively, indicating a shear-induced initiation mechanism. PMID:28772812

  6. Comparison of gravimetric and gas chromatographic methods for assessing performance of textile materials against liquid pesticide penetration.

    PubMed

    Shaw, Anugrah; Abbi, Ruchika

    2004-01-01

    Penetration of liquid pesticides through textile materials is a criterion for determining the performance of protective clothing used by pesticide handlers. The pipette method is frequently used to apply liquid pesticides onto textile materials to measure penetration. Typically, analytical techniques such as Gas Chromatography (GC) are used to measure percentage penetration. These techniques are labor intensive and costly. A simpler gravimetric method was developed, and tests were conducted to compare the gravimetric and GC methods of analysis. Three types of pesticide formulations and 4 fabrics were used for the study. Diluted pesticide formulations were pipetted onto the test specimens and percentage penetration was measured using the 2 methods. For homogeneous formulation, the results of the two methods were fairly comparable. However, due to the filtering action of the textile materials, there were differences in the percentage penetration between the 2 methods for formulations that were not homogeneous.

  7. Wind tunnel tests of Space Shuttle external tank insulation material in the aerothermal tunnel at elevated (1440 deg F) total temperatures

    NASA Technical Reports Server (NTRS)

    Hartman, A. S.; Nutt, K. W.

    1982-01-01

    Tests of the space shuttle external tank foam insulation were conducted in the von Karman Gas Dynamics Facility Tunnel C. For these tests, Tunnel C was run at Mach 4 with a total temperature of 1440 F and a total pressure which varied from 30-100 psia. Cold wall heating rates were changed by varying the test article support wedge angle and by adding and removing a shock generator or a cylindrical protuberance. Selected results are presented to illustrate the test techniques and typical data obtained.

  8. Statistical Evaluation of Molecular Contamination During Spacecraft Thermal Vacuum Test

    NASA Technical Reports Server (NTRS)

    Chen, Philip; Hedgeland, Randy; Montoya, Alex; Roman-Velazquez, Juan; Dunn, Jamie; Colony, Joe; Petitto, Joseph

    1998-01-01

    The purpose of this paper is to evaluate the statistical molecular contamination data with a goal to improve spacecraft contamination control. The statistical data was generated in typical thermal vacuum tests at the National Aeronautics and Space Administration, Goddard Space Flight Center (GSFC). The magnitude of material outgassing was measured using a Quartz Crystal Microbalance (QCM) device during the test. A solvent rinse sample was taken at the conclusion of each test. Then detailed qualitative and quantitative measurements were obtained through chemical analyses. All data used in this study encompassed numerous spacecraft tests in recent years.

  9. Statistical Evaluation of Molecular Contamination During Spacecraft Thermal Vacuum Test

    NASA Technical Reports Server (NTRS)

    Chen, Philip; Hedgeland, Randy; Montoya, Alex; Roman-Velazquez, Juan; Dunn, Jamie; Colony, Joe; Petitto, Joseph

    1999-01-01

    The purpose of this paper is to evaluate the statistical molecular contamination data with a goal to improve spacecraft contamination control. The statistical data was generated in typical thermal vacuum tests at the National Aeronautics and Space Administration, Goddard Space Flight Center (GSFC). The magnitude of material outgassing was measured using a Quartz Crystal Microbalance (QCNO device during the test. A solvent rinse sample was taken at the conclusion of each test. Then detailed qualitative and quantitative measurements were obtained through chemical analyses. All data used in this study encompassed numerous spacecraft tests in recent years.

  10. Statistical Evaluation of Molecular Contamination During Spacecraft Thermal Vacuum Test

    NASA Technical Reports Server (NTRS)

    Chen, Philip; Hedgeland, Randy; Montoya, Alex; Roman-Velazquez, Juan; Dunn, Jamie; Colony, Joe; Petitto, Joseph

    1997-01-01

    The purpose of this paper is to evaluate the statistical molecular contamination data with a goal to improve spacecraft contamination control. The statistical data was generated in typical thermal vacuum tests at the National Aeronautics and Space Administration, Goddard Space Flight Center (GSFC). The magnitude of material outgassing was measured using a Quartz Crystal Microbalance (QCM) device during the test. A solvent rinse sample was taken at the conclusion of the each test. Then detailed qualitative and quantitative measurements were obtained through chemical analyses. All data used in this study encompassed numerous spacecraft tests in recent years.

  11. Thermomechanical Multiaxial Fatigue Testing Capability Developed

    NASA Technical Reports Server (NTRS)

    1996-01-01

    Structural components in aeronautical gas turbine engines typically experience multiaxial states of stress under nonisothermal conditions. To estimate the durability of the various components in the engine, one must characterize the cyclic deformation and fatigue behavior of the materials used under thermal and complex mechanical loading conditions. To this end, a testing protocol and associated test control software were developed at the NASA Lewis Research Center for thermomechanical axial-torsional fatigue tests. These tests are to be performed on thin-walled, tubular specimens fabricated from the cobalt-based superalloy Haynes 188. The software is written in C and runs on an MS-DOS based microcomputer.

  12. Operation Ivy. Project 8. 4. Report to the Scientific Director. High-resolution spectroscopy at Ivy compared with previous tests

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beck, C.A.

    1985-04-01

    The high-resolution ultraviolet and visible spectra of typical test nuclear detonations up to and including Operation Ivy were analyzed and compared. Topics studied include the types of atomc and molecular material observed (with calculations, in some cases, of the relative quantities involved), the ultraviolet cutoff, and rotational temperatures. Variation of these quantities with the radiochemical yield of the bomb is indicated.

  13. Evaluation of In-Package Performance of Antistatic Materials. Phase 2

    DTIC Science & Technology

    1982-01-01

    voltage levels were anticipated from those observed in Phase I due to the greater mobility of test pouches resulting from established resonances of...this report refers to the point at which greatest sensor mobility occurs within a typical test pack as evidenced by a rapid increase in static charge...data were not recorded but there should be cause for concern in such future aplications . Polyvinylchloride (PVC) film particularly showed danqerous

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Doyle, Jamie L.; Kuhn, Kevin John; Byerly, Benjamin

    Nuclear forensic publications, performance tests, and research and development efforts typically target the bulk global inventory of intentionally safeguarded materials, such as plutonium (Pu) and uranium (U). Other materials, such as neptunium (Np), pose a nuclear security risk as well. Trafficking leading to recovery of an interdicted Np sample is a realistic concern especially for materials originating in countries that reprocesses fuel. Using complementary forensic methods, potential signatures for an unknown Np oxide sample were investigated. Measurement results were assessed against published Np processes to present hypotheses as to the original intended use, method of production, and origin for thismore » Np oxide.« less

  15. Evaluation of AK-225(R), Vertrel(R) MCA and HFE A 7100 as Alternative Solvents for Precision Cleaning and Verification Technology

    NASA Technical Reports Server (NTRS)

    Melendez, Orlando; Trizzino, Mary; Fedderson, Bryan

    1997-01-01

    The National Aeronautics and Space Administration (NASA), Kennedy Space Center (KSC) Materials Science Division conducted a study to evaluate alternative solvents for CFC-113 in precision cleaning and verification on typical samples that are used in the KSC environment. The effects of AK-225(R), Vertrel(R), MCA, and HFE A 7100 on selected metal and polymer materials were studied over 1, 7 and 30 day test times. This report addresses a study on the compatibility aspects of replacement solvents for materials in aerospace applications.

  16. Advanced Fatigue Damage Development in Graphite Epoxy Laminates.

    DTIC Science & Technology

    1982-12-01

    8217essary and identify by block number) Composite Materials Stiffness Changes Nondestructive Graphite/Epoxy Laminates Delamination Evaluation (NDE...30 3. Specimen in the Testing Machine with Extensometer Mounted ................................................. 32 4. Initial...for Micocrack Formation in [0,±45]. Laminat •s....115 43. Typical Stiffness Reduction Curve for a [0,90,±45]sLaminate

  17. Effects of Event Knowledge in Processing Verbal Arguments

    ERIC Educational Resources Information Center

    Bicknell, Klinton; Elman, Jeffrey L.; Hare, Mary; McRae, Ken; Kutas, Marta

    2010-01-01

    This research tests whether comprehenders use their knowledge of typical events in real time to process verbal arguments. In self-paced reading and event-related brain potential (ERP) experiments, we used materials in which the likelihood of a specific patient noun ("brakes" or "spelling") depended on the combination of an agent and verb…

  18. Some Aspects of Grading Java Code Submissions in MOOCs

    ERIC Educational Resources Information Center

    Király, Sándor; Nehéz, Károly; Hornyák, Olivér

    2017-01-01

    Recently, massive open online courses (MOOCs) have been offering a new online approach in the field of distance learning and online education. A typical MOOC course consists of video lectures, reading material and easily accessible tests for students. For a computer programming course, it is important to provide interactive, dynamic, online coding…

  19. Standoff Acoustic Shear Wave Imaging Using LFM Chirps

    DTIC Science & Technology

    2011-03-21

    is typically ignored due to the large wavelengths in biological tissue. For the test material presented in this paper ( expanded polystyrene foam...inhomogeneous sound speed, 1( )c x , for a 2.5×5×7 cm steel parallelepiped embedded in a 15×23×23 cm block of expanded polystyrene foam, which

  20. An Evaluation of Web Enhanced Instruction in College Level Biology Courses

    ERIC Educational Resources Information Center

    Keasar, Tamar; Baruch, Rachel; Grobgeld-Dahan, Esther

    2005-01-01

    Websites that accompany science courses typically aim to provide easy access to learning materials, and to facilitate student-instructor communication. We tested whether these aims were achieved in two web enhanced, lower division undergraduate biology courses in an Israeli college. We collected data on the students' attitudes through pre- and…

  1. Simulated Single Tooth Bending of High Temperature Alloys

    NASA Technical Reports Server (NTRS)

    Handschuh, Robert, F.; Burke, Christopher

    2012-01-01

    Future unmanned space missions will require mechanisms to operate at extreme conditions in order to be successful. In some of these mechanisms, very high gear reductions will be needed to permit very small motors to drive other components at low rotational speed with high output torque. Therefore gearing components are required that can meet the mission requirements. In mechanisms such as this, bending fatigue strength capacity of the gears is very important. The bending fatigue capacity of a high temperature, nickel-based alloy, typically used for turbine disks in gas turbine engines and two tool steel materials with high vanadium content, were compared to that of a typical aerospace alloy-AISI 9310. Test specimens were fabricated by electro-discharge machining without post machining processing. Tests were run at 24 and at 490 C. As test temperature increased from 24 to 490 C the bending fatigue strength was reduced by a factor of five.

  2. Application of advanced material systems to composite frame elements

    NASA Technical Reports Server (NTRS)

    Llorente, Steven; Minguet, Pierre; Fay, Russell; Medwin, Steven

    1992-01-01

    A three phase program has been conducted to investigate DuPont's Long Discontinuous Fiber (LDF) composites. Additional tests were conducted to compare LDF composites against toughened thermosets and a baseline thermoset system. Results have shown that the LDF AS4/PEKK offers improved interlaminar (flange bending) strength with little reduction in mechanical properties due to the discontinuous nature of the fibers. In the third phase, a series of AS4/PEKK LDF C-section curved frames (representing a typical rotorcraft light frame) were designed, manufactured and tested. Specimen reconsolidation after 'stretch forming' and frame thickness were found to be key factors in this light frame's performance. A finite element model was constructed to correlate frame test results with expected strain levels determined from material property tests. Adequately reconsolidated frames performed well and failed at strain levels at or above baseline thermoset material test strains. Finally a cost study was conducted which has shown that the use of LDF for this frame would result in a significant cost savings, for moderate to large lot sizes compared with the hand lay-up of a thermoset frame.

  3. The Constitutive Modeling of Thin Films with Randon Material Wrinkles

    NASA Technical Reports Server (NTRS)

    Murphey, Thomas W.; Mikulas, Martin M.

    2001-01-01

    Material wrinkles drastically alter the structural constitutive properties of thin films. Normally linear elastic materials, when wrinkled, become highly nonlinear and initially inelastic. Stiffness' reduced by 99% and negative Poisson's ratios are typically observed. This paper presents an effective continuum constitutive model for the elastic effects of material wrinkles in thin films. The model considers general two-dimensional stress and strain states (simultaneous bi-axial and shear stress/strain) and neglects out of plane bending. The constitutive model is derived from a traditional mechanics analysis of an idealized physical model of random material wrinkles. Model parameters are the directly measurable wrinkle characteristics of amplitude and wavelength. For these reasons, the equations are mechanistic and deterministic. The model is compared with bi-axial tensile test data for wrinkled Kaptong(Registered Trademark) HN and is shown to deterministically predict strain as a function of stress with an average RMS error of 22%. On average, fitting the model to test data yields an RMS error of 1.2%

  4. Test model designs for advanced refractory ceramic materials

    NASA Technical Reports Server (NTRS)

    Tran, Huy Kim

    1993-01-01

    The next generation of space vehicles will be subjected to severe aerothermal loads and will require an improved thermal protection system (TPS) and other advanced vehicle components. In order to ensure the satisfactory performance system (TPS) and other advanced vehicle materials and components, testing is to be performed in environments similar to space flight. The design and fabrication of the test models should be fairly simple but still accomplish test objectives. In the Advanced Refractory Ceramic Materials test series, the models and model holders will need to withstand the required heat fluxes of 340 to 817 W/sq cm or surface temperatures in the range of 2700 K to 3000 K. The model holders should provide one dimensional (1-D) heat transfer to the samples and the appropriate flow field without compromising the primary test objectives. The optical properties such as the effective emissivity, catalytic efficiency coefficients, thermal properties, and mass loss measurements are also taken into consideration in the design process. Therefore, it is the intent of this paper to demonstrate the design schemes for different models and model holders that would accommodate these test requirements and ensure the safe operation in a typical arc jet facility.

  5. Material Modeling of Space Shuttle Leading Edge and External Tank Materials For Use in the Columbia Accident Investigation

    NASA Technical Reports Server (NTRS)

    Carney, Kelly; Melis, Matthew; Fasanella, Edwin L.; Lyle, Karen H.; Gabrys, Jonathan

    2004-01-01

    Upon the commencement of the analytical effort to characterize the impact dynamics and damage of the Space Shuttle Columbia leading edge due to External Tank insulating foam, the necessity of creating analytical descriptions of these materials became evident. To that end, material models were developed of the leading edge thermal protection system, Reinforced Carbon Carbon (RCC), and a low density polyurethane foam, BX-250. Challenges in modeling the RCC include its extreme brittleness, the differing behavior in compression and tension, and the anisotropic fabric layup. These effects were successfully included in LS-DYNA Material Model 58, *MAT_LAMINATED_ COMPOSITE_ FABRIC. The differing compression and tension behavior was modeled using the available damage parameters. Each fabric layer was given an integration point in the shell element, and was allowed to fail independently. Comparisons were made to static test data and coupon ballistic impact tests before being utilized in the full scale analysis. The foam's properties were typical of elastic automotive foams; and LS-DYNA Material Model 83, *MAT_FU_CHANG_FOAM, was successfully used to model its behavior. Material parameters defined included strain rate dependent stress-strain curves for both loading and un-loading, and for both compression and tension. This model was formulated with static test data and strain rate dependent test data, and was compared to ballistic impact tests on load-cell instrumented aluminum plates. These models were subsequently utilized in analysis of the Shuttle leading edge full scale ballistic impact tests, and are currently being used in the Return to Flight Space Shuttle re-certification effort.

  6. Effects of thermal cycling on composite materials for space structures

    NASA Technical Reports Server (NTRS)

    Tompkins, Stephen S.

    1989-01-01

    The effects of thermal cycling on the thermal and mechanical properties of composite materials that are candidates for space structures are briefly described. The results from a thermal analysis of the orbiting Space Station Freedom is used to define a typical thermal environment and the parameters that cause changes in the thermal history. The interactions of this environment with composite materials are shown and described. The effects of this interaction on the integrity as well as the properties of GR/thermoset, Gr/thermoplastic, Gr/metal and Gr/glass composite materials are discussed. Emphasis is placed on the effects of the interaction that are critical to precision spacecraft. Finally, ground test methodology are briefly discussed.

  7. Impact tests on fibrous composite sandwich structures

    NASA Technical Reports Server (NTRS)

    Rhodes, M. D.

    1978-01-01

    The effect of low velocity impact on the strength of laminates fabricated from graphite/epoxy and Kevlar 49/epoxy composite materials was studied. The test laminates were loaded statically either in uniaxial tension or compression when impact occurred to evaluate the effect of loading on the initiation of damage and/or failure. Typical aircraft service conditions such as runway debris encountered during landing were simulated by impacting 1.27-cm-diameter projectiles normal to the plane of the test laminates at velocities between 5.2 and 48.8 m/s.

  8. Measuring unsteady pressure on rotating compressor blades

    NASA Technical Reports Server (NTRS)

    Englund, D. R.; Grant, H. P.; Lanati, G. A.

    1979-01-01

    Miniature semiconductor strain gage pressure transducers mounted in several arrangements were studied. Both surface mountings and recessed flush mountings were tested. Test parameters included mounting arrangement, blade material, temperature, local strain in the acceleration normal to the transducer diaphragm, centripetal acceleration, and pressure. Test results show no failures of transducers or mountings and indicate an uncertainty of unsteady pressure measurement of approximately + or - 6 percent + 0.1 kPa for a typical application. Two configurations were used on a rotating fan flutter program. Examples of transducer data and correction factors are presented.

  9. Meso-modeling of Carbon Fiber Composite for Crash Safety Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, Shih-Po; Chen, Yijung; Zeng, Danielle

    2017-04-06

    In the conventional approach, the material properties for crash safety simulations are typically obtained from standard coupon tests, where the test results only provide single layer material properties used in crash simulations. However, the lay-up effects for the failure behaviors of the real structure were not considered in numerical simulations. Hence, there was discrepancy between the crash simulations and experimental tests. Consequently, an intermediate stage is required for accurate predictions. Some component tests are required to correlate the material models in the intermediate stage. In this paper, a Mazda Tube under high-impact velocity is chosen as an example for themore » crash safety analysis. The tube consists of 24 layers of uni-directional (UD) carbon fiber composite materials, in which 4 layers are perpendicular to, while the other layers are parallel to the impact direction. An LS-DYNA meso-model was constructed with orthotropic material models counting for the single-layer material behaviors. Between layers, a node-based tie-break contact was used for modeling the delamination of the composite material. Since fiber directions are not single-oriented, the lay-up effects could be an important effect. From the first numerical trial, premature material failure occurred due to the use of material parameters obtained directly from the coupon tests. Some parametric studies were conducted to identify the cause of the numerical instability. The finding is that the material failure strength used in the numerical model needs to be enlarged to stabilize the numerical model. Some hypothesis was made to provide the foundation for enlarging the failure strength and the corresponding experiments will be conducted to validate the hypothesis.« less

  10. Dry-heat Resistance of Bacillus Subtilis Var. Niger Spores on Mated Surfaces

    NASA Technical Reports Server (NTRS)

    Simko, G. J.; Devlin, J. D.; Wardle, M. D.

    1971-01-01

    Bacillus subtilis var. niger spores were placed on the surfaces of test coupons manufactured from typical spacecraft materials including stainless steel, magnesium, titanium, and aluminum. These coupons were then juxtaposed at the inoculated surfaces and subjected to test pressures of 0, 1000, 5000, and 10,000 psi. Tests were conducted in ambient, nitrogen, and helium atmospheres. While under the test pressure condition, the spores were exposed to 125 C for intervals of 5, 10, 20, 50, or 80 min. Survivor data were subjected to a linear regression analysis that calculated decimal reduction times.

  11. Effects of surface removal on rolling-element fatigue

    NASA Technical Reports Server (NTRS)

    Zaretsky, Erwin V.

    1987-01-01

    The Lundberg-Palmgren equation was modified to show the effect on rolling-element fatigue life of removing by grinding a portion of the stressed volume of the raceways of a rolling-element bearing. Results of this analysis show that depending on the amount of material removed, and depending on the initial running time of the bearing when material removal occurs, the 10-percent life of the reground bearings ranges from 74 to 100 percent of the 10-percent life of a brand new bearing. Three bearing types were selected for testing. A total of 250 bearings were reground. Of this matter, 30 bearings from each type were endurance tested to 1600 hr. No bearing failure occurred related to material removal. Two bearing failures occurred due to defective rolling elements and were typical of those which may occur in new bearings.

  12. Energy Performance and Optimal Control of Air-conditioned Buildings Integrated with Phase Change Materials

    NASA Astrophysics Data System (ADS)

    Zhu, Na

    This thesis presents an overview of the previous research work on dynamic characteristics and energy performance of buildings due to the integration of PCMs. The research work on dynamic characteristics and energy performance of buildings using PCMs both with and without air-conditioning is reviewed. Since the particular interest in using PCMs for free cooling and peak load shifting, specific research efforts on both subjects are reviewed separately. A simplified physical dynamic model of building structures integrated with SSPCM (shaped-stabilized phase change material) is developed and validated in this study. The simplified physical model represents the wall by 3 resistances and 2 capacitances and the PCM layer by 4 resistances and 2 capacitances respectively while the key issue is the parameter identification of the model. This thesis also presents the studies on the thermodynamic characteristics of buildings enhanced by PCM and on the investigation of the impacts of PCM on the building cooling load and peak cooling demand at different climates and seasons as well as the optimal operation and control strategies to reduce the energy consumption and energy cost by reducing the air-conditioning energy consumption and peak load. An office building floor with typical variable air volume (VAV) air-conditioning system is used and simulated as the reference building in the comparison study. The envelopes of the studied building are further enhanced by integrating the PCM layers. The building system is tested in two selected cities of typical climates in China including Hong Kong and Beijing. The cold charge and discharge processes, the operation and control strategies of night ventilation and the air temperature set-point reset strategy for minimizing the energy consumption and electricity cost are studied. This thesis presents the simulation test platform, the test results on the cold storage and discharge processes, the air-conditioning energy consumption and demand reduction potentials in typical air-conditioning seasons in typical China cites as well as the impacts of operation and control strategies.

  13. Very Low Frequency Breakdown Properties of Electrical Insulation Materials at Cryogenic Temperatures

    NASA Astrophysics Data System (ADS)

    Sauers, I.; Tuncer, E.; Polizos, G.; James, D. R.; Ellis, A. R.; Pace, M. O.

    2010-04-01

    For long cables or equipment with large capacitance it is not always possible to conduct high voltage withstand tests at 60 Hz due to limitations in charging currents of the power supply. Very low frequency (typically at a frequency of 0.1 Hz) has been used for conventional cables as a way of getting around the charging current limitation. For superconducting grid applications the same issues apply. However there is very little data at cryogenic temperatures on how materials perform at low frequency compared to 60 Hz and whether higher voltages should be applied when performing a high voltage acceptability test. Various materials including G10 (fiberglass reinforced plastic or FRP), Cryoflex™ (a tape insulation used in some high temperature superconducting cables), kapton (commonly used polyimide), polycarbonate, and polyetherimide, and in liquid nitrogen alone have been tested using a step method for frequencies of 60 Hz, 0.1 Hz, and dc. The dwell time at each step was chosen so that the aging factor would be the same in both the 60 Hz and 0.1 Hz tests. The data indicated that, while there is a small frequency dependence for liquid nitrogen, there are significant differences for the solid materials studied. Breakdown data for these materials and for model cables will be shown and discussed.

  14. Modeling of acoustic emission signal propagation in waveguides.

    PubMed

    Zelenyak, Andreea-Manuela; Hamstad, Marvin A; Sause, Markus G R

    2015-05-21

    Acoustic emission (AE) testing is a widely used nondestructive testing (NDT) method to investigate material failure. When environmental conditions are harmful for the operation of the sensors, waveguides are typically mounted in between the inspected structure and the sensor. Such waveguides can be built from different materials or have different designs in accordance with the experimental needs. All these variations can cause changes in the acoustic emission signals in terms of modal conversion, additional attenuation or shift in frequency content. A finite element method (FEM) was used to model acoustic emission signal propagation in an aluminum plate with an attached waveguide and was validated against experimental data. The geometry of the waveguide is systematically changed by varying the radius and height to investigate the influence on the detected signals. Different waveguide materials were implemented and change of material properties as function of temperature were taken into account. Development of the option of modeling different waveguide options replaces the time consuming and expensive trial and error alternative of experiments. Thus, the aim of this research has important implications for those who use waveguides for AE testing.

  15. Experimental Techniques for Evaluating the Effects of Aging on Impact and High Strain Rate Properties of Triaxial Braided Composite Materials

    NASA Technical Reports Server (NTRS)

    Pereira, J. Michael; Roberts, Gary D.; Ruggeri, Charles R.; Gilat, Amos; Matrka, Thomas

    2010-01-01

    An experimental program is underway to measure the impact and high strain rate properties of triaxial braided composite materials and to quantify any degradation in properties as a result of thermal and hygroscopic aging typically encountered during service. Impact tests are being conducted on flat panels using a projectile designed to induce high rate deformation similar to that experienced in a jet engine fan case during a fan blade-out event. The tests are being conducted on as-fabricated panels and panels subjected to various numbers of aging cycles. High strain rate properties are being measured using a unique Hopkinson bar apparatus that has a larger diameter than conventional Hopkinson bars. This larger diameter is needed to measure representative material properties because of the large unit cell size of the materials examined in this work. In this paper the experimental techniques used for impact and high strain rate testing are described and some preliminary results are presented for both as-fabricated and aged composites.

  16. Characterization of holding brake friction pad surface after pin-on-plate wear test

    NASA Astrophysics Data System (ADS)

    Drago, N.; Gonzalez Madruga, D.; De Chiffre, L.

    2018-03-01

    This article concerns the metrological characterization of the surface on a holding brake friction material pin after a pin-on-plate (POP) wear test. The POP test induces the formation of surface plateaus that affect brake performances such as wear, friction, noise and heat. Three different materials’ surfaces have been characterized after wear from data obtained with a focus variation 3D microscope. A new surface characterization approach with plateau identification is proposed, using the number of plateau on the surface, equivalent diameter, length and breadth as measurands. The identification method is based on determining and imposing ISO 27158-2 lower plateau limit (LPL) in material probability curves; and on applying a combined criterion of height segmentation threshold and equivalent diameter threshold. The method determines the criterion thresholds for each material since LPL appears typical by material. The proposed method has allowed quantifying the surface topography at two different levels of wear. An expanded measurement uncertainty of 3.5 µm for plateau dimensions in the range 50–2000 µm and one of 0.15 µm for plateau heights up to 10 µm have been documented.

  17. A Survey of Thermal Decomposition of Solid Insulations and Its Relevance to Breakdown Mechanisms in Partial Vacuum

    DTIC Science & Technology

    1995-07-01

    and a ductile, rubber compound ( EPDM ) utilized in applications requiring flexible insulation. These tests were typically performed in a vacuum or... EPDM ) rt7l materials, as indicated by the "x". In addition to the more common groups, data is included for a relatively new dielectric film (PBO

  18. Exploring the Efficacy of "The Word within the Word" for Gifted and Typically Developing Students

    ERIC Educational Resources Information Center

    Gallagher, Shelagh A.

    2017-01-01

    An exploratory study of the efficacy of "The Word Within the Word" tested students' abilities to recognize, use, and recall vocabulary. Ten middle school teachers and their 493 students participated. Five teachers used "The Word Within the Word", and five used traditional vocabulary materials. Students completed an out-of-level…

  19. Nuclear forensic analysis of a non-traditional actinide sample

    DOE PAGES

    Doyle, Jamie L.; Kuhn, Kevin John; Byerly, Benjamin; ...

    2016-06-15

    Nuclear forensic publications, performance tests, and research and development efforts typically target the bulk global inventory of intentionally safeguarded materials, such as plutonium (Pu) and uranium (U). Other materials, such as neptunium (Np), pose a nuclear security risk as well. Trafficking leading to recovery of an interdicted Np sample is a realistic concern especially for materials originating in countries that reprocesses fuel. Using complementary forensic methods, potential signatures for an unknown Np oxide sample were investigated. Measurement results were assessed against published Np processes to present hypotheses as to the original intended use, method of production, and origin for thismore » Np oxide.« less

  20. Nuclear forensic analysis of a non-traditional actinide sample.

    PubMed

    Doyle, Jamie L; Kuhn, Kevin; Byerly, Benjamin; Colletti, Lisa; Fulwyler, James; Garduno, Katherine; Keller, Russell; Lujan, Elmer; Martinez, Alexander; Myers, Steve; Porterfield, Donivan; Spencer, Khalil; Stanley, Floyd; Townsend, Lisa; Thomas, Mariam; Walker, Laurie; Xu, Ning; Tandon, Lav

    2016-10-01

    Nuclear forensic publications, performance tests, and research and development efforts typically target the bulk global inventory of intentionally safeguarded materials, such as plutonium (Pu) and uranium (U). Other materials, such as neptunium (Np), pose a nuclear security risk as well. Trafficking leading to recovery of an interdicted Np sample is a realistic concern especially for materials originating in countries that reprocesses fuel. Using complementary forensic methods, potential signatures for an unknown Np oxide sample were investigated. Measurement results were assessed against published Np processes to present hypotheses as to the original intended use, method of production, and origin for this Np oxide. Published by Elsevier B.V.

  1. Dynamic Mechanical Testing Techniques for Cortical and Cancellous Bone

    NASA Astrophysics Data System (ADS)

    Cloete, Trevor

    2017-06-01

    Bone fracture typically occurs as an impact loading event (sporting accidents, vehicle collisions), the simulation of which requires in-depth understanding of dynamic bone behavior. Bone is a natural composite material with a complex multi length-scale hierarchical microstructure. At a macroscopic level, it is classified into hard/compact cortical bone and soft/spongy cancellous (trabecular) bone, though both are low-impedance materials relative to steels. Cortical bone is predominant in long bones, while in complex bone geometries (joints, flat bones) a cancellous bone core supports a thin cortical shell. Bone has primarily been studied at quasi-static strain rates (ɛ˙ < 1s-1), with some dynamic studies (300s-1 <ɛ˙ < 3000s-1), but rarely at intermediate strain rates (ISR) (1s-1 <ɛ˙ < 100s-1). The data shows bone to be viscoelastic, which suggests that more dynamic and ISR data is required. Furthermore, bone exhibits quasi-brittle failure, with interrupted quasi-static tests revealing a strong microstructure dependence. However, bone specimens are typically destroyed during dynamic tests, leading to a lack of dynamic microstructural damage investigations. In this paper, a short overview of dynamic bone testing is presented to give context to the challenges of testing low impedance, strain-rate dependent, non-linear, visco-elastic-brittle materials. Recent state-of-the-art experimental developments in dynamic bone testing are reviewed, with emphasis on pulse shaping, momentum trapping and ISR testing. These techniques allow for dynamic bone testing at small strains and near-constant strain rates with intact specimen recovery. The results are compared to those obtained with varying strain rate tests. Interrupted dynamic test results with microstructural analysis of the recovered specimens are presented and discussed. The paper concludes with a discussion of the experimental and modeling challenges that lie ahead in the field of dynamic bone behavior. The financial assistance of the National Research Foundation and the University of Cape Town towards this research is hereby acknowledged. Opinions expressed and conclusions arrived at are those of the author alone.

  2. Nanorobotic System iTRo for Controllable 1D Micro/nano Material Twisting Test.

    PubMed

    Lu, Haojian; Shang, Wanfeng; Wei, Xueyong; Yang, Zhan; Fukuda, Toshio; Shen, Yajing

    2017-06-08

    In-situ micro/nano characterization is an indispensable methodology for material research. However, the precise in-situ SEM twisting of 1D material with large range is still challenge for current techniques, mainly due to the testing device's large size and the misalignment between specimen and the rotation axis. Herein, we propose an in-situ twist test robot (iTRo) to address the above challenges and realize the precise in-situ SEM twisting test for the first time. Firstly, we developed the iTRo and designed a series of control strategies, including assembly error initialization, triple-image alignment (TIA) method for rotation axis alignment, deformation-based contact detection (DCD) method for sample assembly, and switch control for robots cooperation. After that, we chose three typical 1D material, i.e., magnetic microwire Fe 74 B 13 Si 11 C 2 , glass fiber, and human hair, for twisting test and characterized their properties. The results showed that our approach is able to align the sample to the twisting axis accurately, and it can provide large twisting range, heavy load and high controllability. This work fills the blank of current in-situ mechanical characterization methodologies, which is expected to give significant impact in the fundamental nanomaterial research and practical micro/nano characterization.

  3. Compact Fuel Element Environment Test

    NASA Technical Reports Server (NTRS)

    Bradley, D. E.; Mireles, O. R.; Hickman, R. R.; Broadway, J. W.

    2012-01-01

    Deep space missions with large payloads require high specific impulse (I(sub sp)) and relatively high thrust to achieve mission goals in reasonable time frames. Conventional, storable propellants produce average I(sub sp). Nuclear thermal rockets (NTRs) capable of high I(sub sp) thrust have been proposed. NTR employs heat produced by fission reaction to heat and therefore accelerate hydrogen, which is then forced through a rocket nozzle providing thrust. Fuel element temperatures are very high (up to 3,000 K) and hydrogen is highly reactive with most materials at high temperatures. Data covering the effects of high-temperature hydrogen exposure on fuel elements are limited. The primary concern is the mechanical failure of fuel elements that employ high melting point metals, ceramics, or a combination (cermet) as a structural matrix into which the nuclear fuel is distributed. It is not necessary to include fissile material in test samples intended to explore high-temperature hydrogen exposure of the structural support matrices. A small-scale test bed designed to heat fuel element samples via noncontact radio frequency heating and expose samples to hydrogen for typical mission durations has been developed to assist in optimal material and manufacturing process selection without employing fissile material. This Technical Memorandum details the test bed design and results of testing conducted to date.

  4. Deep flaws in weldments of aluminum and titanium

    NASA Technical Reports Server (NTRS)

    Masters, J. N.; Engstrom, W. L.; Bixler, W. D.

    1974-01-01

    Surface flawed specimens of 2219-T87 and 6Al-4V STA titanium weldments were tested to determine static failure modes, failure strength, and fatigue flaw growth characteristics. Thicknesses selected for this study were purposely set at values where, for most test conditions, abrupt instability of the flaw at fracture would not be expected. Static tests for the aluminum weldments were performed at room, LN2 and LH2 temperatures. Titanium static tests for tests were performed at room and LH2 temperatures. Results of the static tests were used to plot curves relating initial flaw size to leakage- or failure-stresses (i.e. "failure" locus curves). Cyclic tests, for both materials, were then performed at room temperature, using initial flaws only slightly below the previously established failure locus for typical proof stress levels. Cyclic testing was performed on pairs of specimens, one with and one without a simulated proof test cycle. Comparisons were made then to determine the value and effect of proof testing as affected by the various variables of proof and operating stress, flaw shape, material thickness, and alloy.

  5. Thermal transport and thermopower of bcc U-Mo splat-cooled alloys

    NASA Astrophysics Data System (ADS)

    Falkowski, M.; Buturlim, V.; Paukov, M.; Havela, L.

    2018-05-01

    In order to characterize the electron and thermal transport properties in splat-cooled U-T alloys (T is transition metal), we measured the thermopower S and thermal conductivity κ of selected splat-cooled U-Mo alloys with 0, 11, 12.5, 15 and 17 at % Mo concentrations, as a function of temperature. Additionally, we compare our data with the results of S(T) and κ(T) for pure α-U bulk material. Moreover, what particularly motivated us for undertaking above mentioned investigation was the opportunity for prove the functionality of the TTO (Thermal Transport Option) insert of PPMS apparatus for such form of samples. Working with rapidly solidified materials in the form of splats, i.e. foils of typical thickness ∼ 0.2 mm, or even less, we need to test first whether the TTO output can be taken as reliable for the sample geometry, being far from typical bulk bar-shaped samples.

  6. Processing research and development of 'green' polymer nanoclay composites containing a polyhydroxybutyrate, vinyl acetates, and modified montmorillonite clay

    NASA Astrophysics Data System (ADS)

    McKirahan, James N., Jr.

    The purpose of this research was to determine the feasibility of direct melt-blending (intercalation) montmorillonite nanoclay to polyhydroxybutyrate along with vinyl acetate, at different weight percentages, to enhance plasticization using typical plastic processing equipment and typical processing methodology. The purpose was to determine and compare the specific mechanical properties of tensile strength and flexural strength developed as a result from this processing. Single screw and twin screw extrusion, Banbury mixer compounding, and compression molding were used to intercalate montmorillonite, and for sample preparation purposes, to test tensile and flexural strength of the resultant polymer clay nanocomposites (PCN). Results indicate Polyhydroxybutyrate and Ethylene vinyl acetate, and weight percentages of 70%, 65% and 60% PHB, and 15%, 20%, and 25% of EVA, respectively, influenced mechanical properties. The resultant materials remained in a mostly amorphous state. The nanoclay, at specific weight percentage of 10%, acted as an antimicrobial and preservative for the materials produced during the research. The intention of the research was to promote knowledge and understanding concerning these materials and processes so technology transfer regarding the use, mechanical properties, manufacture, and process ability of these bio-friendly materials to academia, industry, and society can occur.

  7. An evaluation of dental operative simulation materials.

    PubMed

    He, Li-Hong; Foster Page, Lyndie; Purton, David

    2012-01-01

    The study was to evaluate the performance of different materials used in dental operative simulation and compare them with those of natural teeth. Three typical phantom teeth materials were compared with extracted permanent teeth by a nanoindentation system and evaluated by students and registered dentists on the drilling sensation of the materials. Moreover, the tool life (machinability) of new cylindrical diamond burs on cutting the sample materials was tested and the burs were observed. Although student and dentist evaluations were scattered and inconclusive, it was found that elastic modulus (E) and hardness (H) were not the main factors in determining the drilling sensation of the materials. The sensation of drilling is a reflection of cutting force and power consumption.An ideal material for dental simulation should be able to generate similar drilling resistance to that of natural tooth, which is the machinability of the material.

  8. Applications of laser ultrasound NDT methods on composite structures in aerospace industry

    NASA Astrophysics Data System (ADS)

    Kalms, Michael; Focke, Oliver; v. Kopylow, Christoph

    2008-09-01

    Composite materials are used more and more in aircraft production. Main composite types are Carbon Fiber Reinforced Plastics (CFRP), Glass Fiber Reinforced Plastics (GFRP) and metal-aluminium laminates (e. g. Glass Fiber Aluminium Reinforced GLARE©). Typical parts made of CFRP material are flaps, vertical and horizontal tail planes, center wing boxes, rear pressure bulkheads, ribs and stringers. These composite parts require adequate nondestructive testing (NDT) methods. Flaws to be detected are delaminations and debondings, porosity and foreign body inclusion. Manual ultrasonic testing with single element transducers is still the most applied method for composite parts with small and medium size. The extension of the conventional ultrasound technique for nondestructive testing with the laser ultrasound method brings new possibilities into the production processes for example the inspection of complex CFRP-components and the possibilities of online observation under remote control. In this paper we describe the principle of laser ultrasound with respect to the demands of nondestructive testing especially of small complex CFRP and C/PPS parts. We report applications of laser-based ultrasound options with generated types of guided and bulk waves on modern aircraft materials.

  9. Engagement of Metal Debris into Gear Mesh

    NASA Technical Reports Server (NTRS)

    handschuh, Robert F.; Krantz, Timothy L.

    2010-01-01

    A series of bench-top experiments was conducted to determine the effects of metallic debris being dragged through meshing gear teeth. A test rig that is typically used to conduct contact fatigue experiments was used for these tests. Several sizes of drill material, shim stock and pieces of gear teeth were introduced and then driven through the meshing region. The level of torque required to drive the "chip" through the gear mesh was measured. From the data gathered, chip size sufficient to jam the mechanism can be determined.

  10. A new method to assess the influence of migration from polymeric materials on the biostability of drinking water.

    PubMed

    Bucheli-Witschel, Margarete; Kötzsch, Stefan; Darr, Stephan; Widler, Roland; Egli, Thomas

    2012-09-01

    After having produced drinking water of high quality it is of vital interest to distribute the water without compromising its quality neither by recontamination nor by microbial regrowth. To minimize regrowth, the strategy of distributing biostable water is followed in several European countries. This implies on one hand the production of water that has a low level of growth-supporting nutrients, in particular organic carbon compounds, and, on the other hand, using materials for storage/distribution that have a low biofilm formation potential and from which only low amounts of total organic carbon (TOC) leach into the water phase. Currently, the approval of materials in contact with drinking water relies on two tests, a migration test and a biofilm formation test. Here we describe an extended migration testing procedure that allows to obtain information not only on the amount of chemical compounds but also on the amount of growth-supporting compounds leaching into the water. In short, the test developed combines several migration cycles and subsequent measurement of the TOC with a novel, fast and reliable test method for determining the assimilable organic carbon (AOC) in the migration waters. AOC gives an indication on the growth-supporting properties of the material. Thus, an initial characterisation of a material with respect to its suitability for usage in contact with drinking water can be performed in a single assay. Results obtained with the new assay for a number of materials typically used in drinking water and sanitary installations are reported. Copyright © 2012 Elsevier Ltd. All rights reserved.

  11. Derivation and test of elevated temperature thermal-stress-free fastener concept

    NASA Technical Reports Server (NTRS)

    Sawyer, J. W.; Blosser, M. L.; Mcwithey, R. R.

    1985-01-01

    Future aerospace vehicles must withstand high temperatures and be able to function over a wide temperature range. New composite materials are being developed for use in designing high-temperature lightweight structures. Due to the difference between coefficients of thermal expansion for the new composite materials and conventional high-temperature metallic fasteners, innovative joining techniques are needed to produce tight joints at all temperatures without excessive thermal stresses. A thermal-stress-free fastening technique is presented that can be used to provide structurally tight joints at all temperatures even when the fastener and joined materials have different coefficients of thermal expansion. The derivation of thermal-stress-free fasteners and joint shapes is presented for a wide variety of fastener materials and materials being joined together. Approximations to the thermal-stress-free shapes that result in joints with low-thermal-stresses and that simplify the fastener/joint shape are discussed. The low-thermal-stress fastener concept is verified by thermal and shear tests in joints using oxide-dispersion-strengthened alloy fasteners in carbon-carbon material. The test results show no evidence of thermal stress damage for temperatures up to 2000 F and the resulting joints carried shear loads at room temperature typical of those for conventional joints.

  12. Calibrating Nonlinear Soil Material Properties for Seismic Analysis Using Soil Material Properties Intended for Linear Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Spears, Robert Edward; Coleman, Justin Leigh

    2015-08-01

    Seismic analysis of nuclear structures is routinely performed using guidance provided in “Seismic Analysis of Safety-Related Nuclear Structures and Commentary (ASCE 4, 1998).” This document, which is currently under revision, provides detailed guidance on linear seismic soil-structure-interaction (SSI) analysis of nuclear structures. To accommodate the linear analysis, soil material properties are typically developed as shear modulus and damping ratio versus cyclic shear strain amplitude. A new Appendix in ASCE 4-2014 (draft) is being added to provide guidance for nonlinear time domain SSI analysis. To accommodate the nonlinear analysis, a more appropriate form of the soil material properties includes shear stressmore » and energy absorbed per cycle versus shear strain. Ideally, nonlinear soil model material properties would be established with soil testing appropriate for the nonlinear constitutive model being used. However, much of the soil testing done for SSI analysis is performed for use with linear analysis techniques. Consequently, a method is described in this paper that uses soil test data intended for linear analysis to develop nonlinear soil material properties. To produce nonlinear material properties that are equivalent to the linear material properties, the linear and nonlinear model hysteresis loops are considered. For equivalent material properties, the shear stress at peak shear strain and energy absorbed per cycle should match when comparing the linear and nonlinear model hysteresis loops. Consequently, nonlinear material properties are selected based on these criteria.« less

  13. Effects of Testing Method on Stretch-Flangeability of Dual-Phase 980/1180 Steel Grades

    NASA Astrophysics Data System (ADS)

    Madrid, Mykal; Van Tyne, Chester J.; Sadagopan, Sriram; Pavlina, Erik J.; Hu, Jun; Clarke, Kester D.

    2018-04-01

    Challenging fuel economy and safety standards in the automotive industry have led to the need for materials with higher strength while maintaining levels of formability that meet component manufacturing requirements. Advanced high-strength steels, such as dual-phase steels with tensile strengths of 980 MPa and 1180 MPa, are of interest to address this need. Increasing the strength of these materials typically comes at the expense of ductility, which may result in problems when stamping parts with trimmed or sheared edges, as cracking at the sheared edge may occur at lower strains. Here, hole expansion tests were performed with different punch geometries (conical and flat-bottom) and different edge conditions (sheared and machined) to understand the effects of testing conditions on performance, and these results are discussed in terms of mechanical properties and microstructures.

  14. Effects of Testing Method on Stretch-Flangeability of Dual-Phase 980/1180 Steel Grades

    NASA Astrophysics Data System (ADS)

    Madrid, Mykal; Van Tyne, Chester J.; Sadagopan, Sriram; Pavlina, Erik J.; Hu, Jun; Clarke, Kester D.

    2018-06-01

    Challenging fuel economy and safety standards in the automotive industry have led to the need for materials with higher strength while maintaining levels of formability that meet component manufacturing requirements. Advanced high-strength steels, such as dual-phase steels with tensile strengths of 980 MPa and 1180 MPa, are of interest to address this need. Increasing the strength of these materials typically comes at the expense of ductility, which may result in problems when stamping parts with trimmed or sheared edges, as cracking at the sheared edge may occur at lower strains. Here, hole expansion tests were performed with different punch geometries (conical and flat-bottom) and different edge conditions (sheared and machined) to understand the effects of testing conditions on performance, and these results are discussed in terms of mechanical properties and microstructures.

  15. Effects of High-Density Impacts on Shielding Capability

    NASA Technical Reports Server (NTRS)

    Christiansen, Eric L.; Lear, Dana M.

    2014-01-01

    Spacecraft are shielded from micrometeoroids and orbital debris (MMOD) impacts to meet requirements for crew safety and/or mission success. In the past, orbital debris particles have been considered to be composed entirely of aluminum (medium-density material) for the purposes of MMOD shielding design and verification. Meteoroids have been considered to be low-density porous materials, with an average density of 1 g/cu cm. Recently, NASA released a new orbital debris environment model, referred to as ORDEM 3.0, that indicates orbital debris contains a substantial fraction of high-density material for which steel is used in MMOD risk assessments [Ref.1]. Similarly, an update to the meteoroid environment model is also under consideration to include a high-density component of that environment. This paper provides results of hypervelocity impact tests and hydrocode simulations on typical spacecraft MMOD shields using steel projectiles. It was found that previous ballistic limit equations (BLEs) that define the protection capability of the MMOD shields did not predict the results from the steel impact tests and hydrocode simulations (typically, the predictions from these equations were too optimistic). The ballistic limit equations required updates to more accurately represent shield protection capability from the range of densities in the orbital debris environment. Ballistic limit equations were derived from the results of the work and are provided in the paper.

  16. 49 CFR 178.358-6 - Typical assembly detail.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Typical assembly detail. 178.358-6 Section 178.358-6 Transportation Other Regulations Relating to Transportation PIPELINE AND HAZARDOUS MATERIALS... PACKAGINGS Specifications for Packagings for Class 7 (Radioactive) Materials § 178.358-6 Typical assembly...

  17. 49 CFR 178.356-5 - Typical assembly detail.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Typical assembly detail. 178.356-5 Section 178.356-5 Transportation Other Regulations Relating to Transportation PIPELINE AND HAZARDOUS MATERIALS... PACKAGINGS Specifications for Packagings for Class 7 (Radioactive) Materials § 178.356-5 Typical assembly...

  18. Linear viscoelastic limits of asphalt concrete at low and intermediate temperatures

    NASA Astrophysics Data System (ADS)

    Mehta, Yusuf A.

    The purpose of this dissertation is to demonstrate the hypothesis that a region at which the behavior of asphalt concrete can be represented as a linear viscoelastic material can be determined at low and intermediate temperatures considering the stresses and strains typically developed in the pavements under traffic loading. Six mixtures containing different aggregate gradations and nominal maximum aggregate sizes varying from 12.5 to 37.5 mm were used in this study. The asphalt binder grade was the same for all mixtures. The mixtures were compacted to 7 +/- 1% air voids, using the Superpave Gyratory Compactor. Tests were conducted at low temperatures (-20°C and -10°C), using the indirect tensile test machine, and at intermediate temperatures (4°C and 20°C), using the Superpave shear machine. To determine the linear viscoelastic range of asphalt concrete, a relaxation test for 150 s, followed by a creep test for another 150 s, was conducted at 150 and 200 microstrains (1 microstrain = 1 x 10-6), at -20°C, and at 150 and 300 microstrains, at -10°C. A creep test for 200 s, followed by a recovery test for another 200 s, was conducted at stress levels up to 800 kPa at 4°C and up to 500 kPa at 20°C. At -20°C and -10°C, the behavior of the mixtures was linear viscoelastic at 200 and 300 microstrains, respectively. At intermediate temperatures (4°C and 20°C), an envelope defining the linear and nonlinear region in terms of stress as a function of shear creep compliance was constructed for all the mixtures. For creep tests conducted at 20°C, it was discovered that the commonly used protocol to verify the proportionality condition of linear viscoelastic behavior was unable to detect the appearance of nonlinear behavior at certain imposed shear stress levels. Said nonlinear behavior was easily detected, however, when checking the satisfaction of the superposition condition. The envelope constructed for determining when the material becomes nonlinear should be valid for mixtures similar to the ones tested in this study. Different envelopes should be used in the case of mixtures containing a very soft or a very stiff polymer modified binder. At 4°C, the typical values of stresses and material properties of mixtures fell within the linear viscoelastic region, considering the typical shear creep compliance values at loading times and stresses experienced in the field. However, typical values at 20°C fell within a region in which some, but not all of the mixtures tested in this study behaved linearly. It is known that the behavior of asphalt concrete mixture changes from linear to nonlinear, depending on the temperature and loading conditions. However, this study is the first of its kind in which both the proportionality and the superposition condition were evaluated. The experimental design and the analysis procedures presented in this study can be applied to similar experiments that may be conducted in the future to evaluate linearity of different types of asphalt concrete mixtures.

  19. Macro-mesoscopic Fracture and Strength Character of Pre-cracked Granite Under Stress Relaxation Condition

    NASA Astrophysics Data System (ADS)

    Liu, Junfeng; Yang, Haiqing; Xiao, Yang; Zhou, Xiaoping

    2018-05-01

    The fracture characters are important index to study the strength and deformation behavior of rock mass in rock engineering. In order to investigate the influencing mechanism of loading conditions on the strength and macro-mesoscopic fracture character of rock material, pre-cracked granite specimens are prepared to conduct a series of uniaxial compression experiments. For parts of the experiments, stress relaxation tests of different durations are also conducted during the uniaxial loading process. Furthermore, the stereomicroscope is adopted to observe the microstructure of the crack surfaces of the specimens. The experimental results indicate that the crack surfaces show several typical fracture characters in accordance with loading conditions. In detail, some cleavage fracture can be observed under conventional uniaxial compression and the fractured surface is relatively rough, whereas as stress relaxation tests are attached, relative slip trace appears between the crack faces and some shear fracture starts to come into being. Besides, the crack faces tend to become smoother and typical terrace structures can be observed in local areas. Combining the macroscopic failure pattern of the specimens, it can be deduced that the duration time for the stress relaxation test contributes to the improvement of the elastic-plastic strain range as well as the axial peak strength for the studied material. Moreover, the derived conclusion is also consistent with the experimental and analytical solution for the pre-peak stage of the rock material. The present work may provide some primary understanding about the strength character and fracture mechanism of hard rock under different engineering environments.

  20. Field Testing of Energy-Efficient Flood-Damage-Resistant Residential Envelope Systems Summary Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aglan, H.

    2005-08-04

    The primary purpose of the project was to identify materials and methods that will make the envelope of a house flood damage resistant. Flood damage resistant materials and systems are intended to be used to repair houses subsequent to flooding. This project was also intended to develop methods of restoring the envelopes of houses that have been flooded but are repairable and may be subject to future flooding. Then if the house floods again, damage will not be as extensive as in previous flood events and restoration costs and efforts will be minimized. The purpose of the first pair ofmore » field tests was to establish a baseline for typical current residential construction practice. The first test modules used materials and systems that were commonly found in residential envelopes throughout the U.S. The purpose of the second pair of field tests was to begin evaluating potential residential envelope materials and systems that were projected to be more flood-damage resistant and restorable than the conventional materials and systems tested in the first pair of tests. The purpose of testing the third slab-on-grade module was to attempt to dry flood proof the module (no floodwater within the structure). If the module could be sealed well enough to prevent water from entering, then this would be an effective method of making the interior materials and systems flood damage resistant. The third crawl space module was tested in the same manner as the previous modules and provided an opportunity to do flood tests of additional residential materials and systems. Another purpose of the project was to develop the methodology to collect representative, measured, reproducible (i.e. scientific) data on how various residential materials and systems respond to flooding conditions so that future recommendations for repairing flood damaged houses could be based on scientific data. An additional benefit of collecting this data is that it will be used in the development of a standard test procedure which could lead to the certification of building materials and systems as flood damage resistant.« less

  1. Tensile Properties of Polymeric Matrix Composites Subjected to Cryogenic Environments

    NASA Technical Reports Server (NTRS)

    Whitley, Karen S.; Gates, Thomas S.

    2004-01-01

    Polymer matrix composites (PMC s) have seen limited use as structural materials in cryogenic environments. One reason for the limited use of PMC s in cryogenic structures is a design philosophy that typically requires a large, validated database of material properties in order to ensure a reliable and defect free structure. It is the intent of this paper to provide an initial set of mechanical properties developed from experimental data of an advanced PMC (IM7/PETI-5) exposed to cryogenic temperatures and mechanical loading. The application of this data is to assist in the materials down-select and design of cryogenic fuel tanks for future reusable space vehicles. The details of the material system, test program, and experimental methods will be outlined. Tension modulus and strength were measured at room temperature, -196 C, and -269 C on five different laminates. These properties were also tested after aging at -186 C with and without loading applied. Microcracking was observed in one laminate.

  2. Tensile strengths of polyamide based 3D printed polymers in liquid nitrogen

    NASA Astrophysics Data System (ADS)

    Cruz, P.; Shoemake, E. D.; Adam, P.; Leachman, J.

    2015-12-01

    Advances in additive manufacturing technology have made 3D printing a viable solution for many industries, allowing for the manufacture of designs that could not be made through traditional subtractive methods. Applicability of additive manufacturing in cryogenic applications is hindered, however, by a lack of accurate material properties information. Nylon is available for printing using fused deposition modeling (FDM) and selective laser sintering (SLS). We selected 5 SLS (DuraForm® EX, DuraForm® HST, DuraForm® PA, PA 640-GSL, and PA 840-GSL) and 2 FDM (Nylon 12, ULTEM) nylon variants based on the bulk material properties and printed properties at room temperature. Tensile tests were performed on five samples of each material while immersed in liquid nitrogen at approximately 77 Kelvin. Samples were tested in XY and, where available, Z printing directions to determine influence on material properties. Results show typical SLS and FDM nylon ultimate strength retention at 77 K, when compared to (extruded or molded) nylon ultimate strength.

  3. Influence of hydride orientation on fracture toughness of CWSR Zr-2.5%Nb pressure tube material between RT and 300 °C

    NASA Astrophysics Data System (ADS)

    Sharma, Rishi K.; Sunil, Saurav; Kumawat, B. K.; Singh, R. N.; Tewari, Asim; Kashyap, B. P.

    2017-05-01

    An experimental setup was designed, fabricated and used to form radial hydrides in Zr-2.5%Nb alloy pressure tube spool. The design of setup was based on ensuring a hoop stress in the spool greater than threshold stress for reorientation of hydrides in this alloy, which was achieved by manipulating the thermal expansion coefficient of the plunger and pressure tube material and diametral interference between them. The experimental setup was loaded on a universal testing machine (UTM) fitted with an environmental chamber and subjected to a temperature cycle for the stress reorientation treatment. The metallographic examination of the hydrogen charged spools subjected to stress re-orientation treatment using this set up revealed formation of predominantly radial hydrides. The variation of fracture toughness of material containing radial hydride with test temperature showed typical 'S' curve behavior with transition temperatures more than that of the material containing circumferential hydride.

  4. Analysis and comparison of wrist splint designs using the finite element method: Multi-material three-dimensional printing compared to typical existing practice with thermoplastics.

    PubMed

    Cazon, Aitor; Kelly, Sarah; Paterson, Abby M; Bibb, Richard J; Campbell, R Ian

    2017-09-01

    Rheumatoid arthritis is a chronic disease affecting the joints. Treatment can include immobilisation of the affected joint with a custom-fitting splint, which is typically fabricated by hand from low temperature thermoplastic, but the approach poses several limitations. This study focused on the evaluation, by finite element analysis, of additive manufacturing techniques for wrist splints in order to improve upon the typical splinting approach. An additive manufactured/3D printed splint, specifically designed to be built using Objet Connex multi-material technology and a virtual model of a typical splint, digitised from a real patient-specific splint using three-dimensional scanning, were modelled in computer-aided design software. Forty finite element analysis simulations were performed in flexion-extension and radial-ulnar wrist movements to compare the displacements and the stresses. Simulations have shown that for low severity loads, the additive manufacturing splint has 25%, 76% and 27% less displacement in the main loading direction than the typical splint in flexion, extension and radial, respectively, while ulnar values were 75% lower in the traditional splint. For higher severity loads, the flexion and extension movements resulted in deflections that were 24% and 60%, respectively, lower in the additive manufacturing splint. However, for higher severity loading, the radial defection values were very similar in both splints and ulnar movement deflection was higher in the additive manufacturing splint. A physical prototype of the additive manufacturing splint was also manufactured and was tested under normal conditions to validate the finite element analysis data. Results from static tests showed maximum displacements of 3.46, 0.97, 3.53 and 2.51 mm flexion, extension, radial and ulnar directions, respectively. According to these results, the present research argues that from a technical point of view, the additive manufacturing splint design stands at the same or even better level of performance in displacements and stress values in comparison to the typical low temperature thermoplastic approach and is therefore a feasible approach to splint design and manufacture.

  5. Electromagnetic Cavity Effects from Transmitters Inside a Launch Vehicle Fairing

    NASA Technical Reports Server (NTRS)

    Trout, Dawn; Stanley, James; Wahid, Parveen

    2009-01-01

    This paper provides insight into the difficult analytical issue for launch vehicles and spacecraft that has applicability outside of the launch industry. Radiation from spacecraft or launch vehicle antennas located within enclosures in the launch vehicle generates an electromagnetic environment that is difficult to accurately predict. This paper discusses the test results of power levels produced by a transmitter within a representative scaled vehicle fairing model and provides preliminary modeling results at the low end of the frequency test range using a commercial tool. Initially, the walls of the fairing are aluminum and later, layered with materials to simulate acoustic blanketing structures that are typical in payload fairings. The effects of these blanketing materials on the power levels within the fairing are examined.

  6. The impact of experimental measurement errors on long-term viscoelastic predictions. [of structural materials

    NASA Technical Reports Server (NTRS)

    Tuttle, M. E.; Brinson, H. F.

    1986-01-01

    The impact of flight error in measured viscoelastic parameters on subsequent long-term viscoelastic predictions is numerically evaluated using the Schapery nonlinear viscoelastic model. Of the seven Schapery parameters, the results indicated that long-term predictions were most sensitive to errors in the power law parameter n. Although errors in the other parameters were significant as well, errors in n dominated all other factors at long times. The process of selecting an appropriate short-term test cycle so as to insure an accurate long-term prediction was considered, and a short-term test cycle was selected using material properties typical for T300/5208 graphite-epoxy at 149 C. The process of selection is described, and its individual steps are itemized.

  7. The benefits of the 3T3 NRU test in the safety assessment of cosmetics: long-term experience from pre-marketing testing in the Czech Republic.

    PubMed

    Jírová, D; Kejlová, K; Brabec, M; Bendová, H; Kolárová, H

    2003-01-01

    We have introduced the 3T3 NRU cytotoxicity test for methodological, economical and ethical reasons as a regular part of tier pre-marketing testing to assess local tolerance of raw materials for cosmetics, household chemicals and final cosmetic products. Using the 3T3 cell line according to the standard INVITTOX protocol No.64 (NRU Assay) the borderline concentration, relevant to the highest tolerated dose, is determined for each material. The toxic effect is reached at different concentration levels specific for individual cosmetics categories, depending on their chemical characteristics. Typical ranges of cytotoxicity for specific categories of cosmetics were established after testing of hundreds of materials. The range lies between 1 microg/ml (anti-dandruff shampoos), up to 2000 microg/ml (toothpastes and mouthwashes). The 3T3 NRU cytotoxicity test is a sensitive tool able to identify more aggressive products, that are also more likely to evoke irritation in human skin. It was even possible to detect protective effects of one natural herbal ingredient. The comparative study of cytotoxicity test results and human patch test results from a group of essential oils is presented. Cytotoxicity tests represent a highly ethical approach for estimation of irritancy. On the basis of in vitro test results suggesting low risk we can proceed to confirmatory tests in human volunteers.

  8. Application of operational radiographic inspection method for flaw detection of blade straightener from polymeric composite materials

    NASA Astrophysics Data System (ADS)

    Anoshkin, A. N.; Osokin, V. M.; Tretyakov, A. A.; Potrakhov, N. N.; Bessonov, V. B.

    2017-02-01

    In the article on the example of the straightener blade made of polymer composite materials, discusses the advantages of using the method of microfocus X-ray for nondestructive testing of aviation products. Described basic types of defects characteristics occurring in a similar type parts both during their manufacture and during their operation, namely, interlayer delamination, pores and wrinkles. Peculiarities of microfocus X-ray are shown, which is the use of radiation sources with a focal spot size of less than 100 μm. These features make it possible to increase the details and therefore, to minimize the size of detected defects in transmission. On the basis of experimental studies were defined radiographic signs of major types of defects, typical for products made of polymeric composite materials. Calculated time costs of personnel required for high-resolution X-ray recording and evaluation of test results.

  9. Research on mechanical properties of silver-bearing antibacterial duplex stainless steel

    NASA Astrophysics Data System (ADS)

    Liu, Dong; Xiang, Hongliang

    2017-04-01

    In this paper, silver-bearing antibacterial duplex stainless steels were prepared by adding Ag or Cu-Ag alloy particles. The microstructure, mechanical properties and fracture morphology were investigated in detail by OM, ESEM and tensile testing machine. Tensile tests indicate that the tensile fractures of Ag-bearing antibacterial duplex stainless steel and CD4MCu have the typical ductile character and toughening nests are isometric. After the solution treatment at 1050 ℃, for the material prepared by adding 150-300 µm Cu-Ag master alloy after the solution treatment at 1050 ℃, its plasticity is superior to that of CD4MCu, the strength and hardness are equivalent. But for the material prepared by adding pure Ag alloy particles, its plasticity, strength and hardness are less than that of CD4MCu. When the solution temperature rises, the plastic, strength and hardness of the material prepared by adding 150-300 µm Cu-Ag decrease.

  10. Evaluation of Containment Boxes as a Fire Mitigation Method in Elevated Oxygen Conditions

    NASA Technical Reports Server (NTRS)

    Juarez, Alfredo; Harper, Susana; Perez, Horacio

    2016-01-01

    NASA performed testing to evaluate the efficacy of fire containment boxes without forced ventilation. Configurational flammability testing was performed on a simulation avionics box replicating critical design features and filled with materials possessing representative flammability characteristics. This paper discusses the box's ability, under simulated end-use conditions, to inhibit the propagation of combustion to surrounding materials. Analysis was also performed to evaluate the potential for the fire containment box to serve as an overheat/ignition source to temperature sensitive equipment (such as items with lithium-ion batteries). Unrealistically severe combustion scenarios were used as a means to better understand the fire containment mechanism. These scenarios were achieved by utilizing materials/fuels not typically used in space vehicles due to flammability concerns. Oxygen depletion, during combustion within the fire containment boxes, drove self-extinguishment and proved an effective method of fire containment

  11. Design, fabrication, and test of lightweight shell structure, phase 2

    NASA Technical Reports Server (NTRS)

    1974-01-01

    A cylindrical shell skirt structure 4.57 m (180 in.) in diameter and 3.66 m (144 in.) high was subjected to a design and analysis study using a wide variety of structural materials and concepts. The design loading of 1225.8 N/cm (700 lb/in.) axial compression and 245.2 N/cm (140 lb/in.) torsion is representative of that expected on a typical space tug skirt section. Structural concepts evaluated included honeycomb sandwich, truss, isogrid, and skin/stringer/frame. The materials considered included a wide variety of structural metals as well as glass, graphite, and boron-reinforced composites. The most unique characteristic of the candidate designs is that they involve the use of very thin-gage material. Fabrication and structural test of small panels and components representative of many of the candidate designs served to demonstrate proposed fabrication techniques and to verify design and analysis methods.

  12. Effect of Sodium Hydroxide Pretreatment of UOP IONSIV IE-911 Crystalline Silicotitanate Sorbent

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wilmarth, W.R.

    2000-08-29

    Use of crystalline silicotitanate (CST) to remove cesium represents one of the alternatives identified for High Level Waste pretreatment at the Savannah River Site (SRS). Previous deployment of CST in the Department of Energy complex subjected the material to mildly caustic environments. Processing of SRS waste will expose CST to very alkaline solutions for extended period of time (typically 12 months in the proposed design). Results of elevated temperature stability tests showed that silicon and one of the proprietary materials leached from the CST. UOP personnel indicated to SRS personnel that these materials exist in the sorbent in excess ofmore » required stoichiometry. The authors examined the pretreatment of CST with sodium hydroxide to remove these components prior to placing the CST in radioactive service. Additionally, researchers analyzed solids discovered in the feed line during a test by non-destructive techniques.« less

  13. High Curie temperature drive layer materials for ion-implanted magnetic bubble devices

    NASA Technical Reports Server (NTRS)

    Fratello, V. J.; Wolfe, R.; Blank, S. L.; Nelson, T. J.

    1984-01-01

    Ion implantation of bubble garnets can lower the Curie temperature by 70 C or more, thus limiting high temperature operation of devices with ion-implanted propagation patterns. Therefore, double-layer materials were made with a conventional 2-micron bubble storage layer capped by an ion-implantable drive layer of high Curie temperature, high magnetostriction material. Contiguous disk test patterns were implanted with varying doses of a typical triple implant. Quality of propagation was judged by quasistatic tests on 8-micron period major and minor loops. Variations of magnetization, uniaxial anisotropy, implant dose, and magnetostriction were investigated to ensure optimum flux matching, good charged wall coupling, and wide operating margins. The most successful drive layer compositions were in the systems (SmDyLuCa)3(FeSi)5O12 and (BiGdTmCa)3(FeSi)5O12 and had Curie temperatures 25-44 C higher than the storage layers.

  14. CRISPR/Cas9 Technology-Based Xenograft Tumors as Candidate Reference Materials for Multiple EML4-ALK Rearrangements Testing.

    PubMed

    Peng, Rongxue; Zhang, Rui; Lin, Guigao; Yang, Xin; Li, Ziyang; Zhang, Kuo; Zhang, Jiawei; Li, Jinming

    2017-09-01

    The echinoderm microtubule-associated protein-like 4 and anaplastic lymphoma kinase (ALK) receptor tyrosine kinase (EML4-ALK) rearrangement is an important biomarker that plays a pivotal role in therapeutic decision making for non-small-cell lung cancer (NSCLC) patients. Ensuring accuracy and reproducibility of EML4-ALK testing by fluorescence in situ hybridization, immunohistochemistry, RT-PCR, and next-generation sequencing requires reliable reference materials for monitoring assay sensitivity and specificity. Herein, we developed novel reference materials for various kinds of EML4-ALK testing. CRISPR/Cas9 was used to edit various NSCLC cell lines containing EML4-ALK rearrangement variants 1, 2, and 3a/b. After s.c. inoculation, the formalin-fixed, paraffin-embedded (FFPE) samples from xenografts were prepared and tested for suitability as candidate reference materials by fluorescence in situ hybridization, immunohistochemistry, RT-PCR, and next-generation sequencing. Sample validation and commutability assessments showed that all types of FFPE samples derived from xenograft tumors have typical histological structures, and EML4-ALK testing results were similar to the clinical ALK-positive NSCLC specimens. Among the four methods for EML4-ALK detection, the validation test showed 100% concordance. Furthermore, these novel FFPE reference materials showed good stability and homogeneity. Without limitations on variant types and production, our novel FFPE samples based on CRISPR/Cas9 editing and xenografts are suitable as candidate reference materials for the validation, verification, internal quality control, and proficiency testing of EML4-ALK detection. Copyright © 2017 American Society for Investigative Pathology and the Association for Molecular Pathology. Published by Elsevier Inc. All rights reserved.

  15. Defense Scrap Yard Handbook

    DTIC Science & Technology

    1985-06-01

    34thermosetting" is an adjective position and the basic resin used. The major class- applied to plastics (such as melamine , phenoliL, es are:a. Acrylics...to heat or flame e. Melamine resins : melamine formalde- test plastic materials for identification purposes. hyde. They must therefore work closely...plastics, together with helpful information as to 1. Polystyrenes. their composition , characteristics and typical ap- m. Polyurethane resins (isocyanate

  16. Using Diagrams versus Text for Spaced Restudy: Effects on Learning in 10th Grade Biology Classes

    ERIC Educational Resources Information Center

    Bergey, Bradley W.; Cromley, Jennifer G.; Kirchgessner, Mandy L.; Newcombe, Nora S.

    2015-01-01

    Background and Aim: Spaced restudy has been typically tested with written learning materials, but restudy with visual representations in actual classrooms is under-researched. We compared the effects of two spaced restudy interventions: A Diagram-Based Restudy (DBR) warm-up condition and a business-as-usual Text-Based Restudy (TBR) warm-up…

  17. Leveraging Available Data to Support Extension of Transportation Packages Service Life

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dunn, K.; Abramczyk, G.; Bellamy, S.

    Data obtained from testing shipping package materials have been leveraged to support extending the service life of select shipping packages while in nuclear materials transportation. Increasingly, nuclear material inventories are being transferred to an interim storage location where they will reside for extended periods of time. Use of a shipping package to store nuclear materials in an interim storage location has become more attractive for a variety of reasons. Shipping packages are robust and have a qualified pedigree for their performance in normal operation and accident conditions within the approved shipment period and storing nuclear material within a shipping packagemore » results in reduced operations for the storage facility. However, the shipping package materials of construction must maintain a level of integrity as specified by the safety basis of the storage facility through the duration of the storage period, which is typically well beyond the one year transportation window. Test programs have been established to obtain aging data on materials of construction that are the most sensitive/susceptible to aging in certain shipping package designs. The collective data are being used to support extending the service life of shipping packages in both transportation and storage.« less

  18. Cleanliness verification process at Martin Marietta Astronautics

    NASA Astrophysics Data System (ADS)

    King, Elizabeth A.; Giordano, Thomas J.

    1994-06-01

    The Montreal Protocol and the 1990 Clean Air Act Amendments mandate CFC-113, other chlorinated fluorocarbons (CFC's) and 1,1,1-Trichloroethane (TCA) be banned from production after December 31, 1995. In response to increasing pressures, the Air Force has formulated policy that prohibits purchase of these solvents for Air Force use after April 1, 1994. In response to the Air Force policy, Martin Marietta Astronautics is in the process of eliminating all CFC's and TCA from use at the Engineering Propulsion Laboratory (EPL), located on Air Force property PJKS. Gross and precision cleaning operations are currently performed on spacecraft components at EPL. The final step of the operation is a rinse with a solvent, typically CFC-113. This solvent is then analyzed for nonvolatile residue (NVR), particle count and total filterable solids (TFS) to determine cleanliness of the parts. The CFC-113 used in this process must be replaced in response to the above policies. Martin Marietta Astronautics, under contract to the Air Force, is currently evaluating and testing alternatives for a cleanliness verification solvent. Completion of test is scheduled for May, 1994. Evaluation of the alternative solvents follows a three step approach. This first is initial testing of solvents picked from literature searches and analysis. The second step is detailed testing of the top candidates from the initial test phase. The final step is implementation and validation of the chosen alternative(s). Testing will include contaminant removal, nonvolatile residue, material compatibility and propellant compatibility. Typical materials and contaminants will be tested with a wide range of solvents. Final results of the three steps will be presented as well as the implementation plan for solvent replacement.

  19. Damage accumulation in closed cross-section, laminated, composite structures

    NASA Technical Reports Server (NTRS)

    Bucinell, Ronald B.

    1996-01-01

    The need for safe, lightweight, less expensive, and more reliable launch vehicle components is being driven by the competitiveness of the commercial launch market. The United States has lost 2/3 of the commercial lunch market to Europe. As low cost Russian and Chinese vehicles become available, the US market share could be reduced even further. This international climate is driving the Single Stage To Orbit (SSTO) program at NASA. The goal of the SSTO program is to radically reduce the cost of safe, routine transportation to and from space with a totally reusable launch vehicle designed for low-cost aircraft-like operations. Achieving this goal will require more efficient uses of materials. Composite materials can provide this program with the material and structural efficiencies needed to stay competitive in the international launch market place. In satellite systems the high specific properties, design flexibility, improved corrosion and wear resistance, increased fatigue life, and low coefficient of thermal expansion that are characteristic of composite materials can all be used to improve the overall satellite performance. Some of the satellites that may be able to take advantage of these performance characteristics are the Tethered Satellite Systems (TOSCIFER, AIRSEDS, TSS2, SEDS1, and SEDS2), AXAF, GRO, and the next generation Hubble Space Telescope. These materials can also be utilized in projects at the NASAIMSFC Space Optics Technology and System Center of Excellence. The successful implementation of composite materials requires accurate performance characterization. Materials characterization data for composite materials is typically generated using flat coupons of finite width. At the free edge of these coupons the stress state is exacerbated by the presence of stiffness and geometric discontinuities. The exacerbated stress state has been shown to dominate the damage accumulation in these materials and to have a profound affect on the material constants. Space structures typically have closed cross-sections, absent of free edges. As a result, composite material characterization data generated using finite width flat specimens does not accurately reflect the performance of the composite materials used in a closed cross-section structural configuration. Several investigators have recognized the need to develop characterization techniques for composite materials in closed cross-sectioned structures. In these investigations test methods were developed and cylindrical specimens were evaluated. The behavior of the cylindrical specimens were observed to depart from behavior typical of flat coupons. However, no attempts were made to identify and monitor the progression of damage in these cylindrical specimens during loading. The identification and monitoring of damage is fundamental to the characterization of composite materials in closed cross-section configurations. In the study reported here, a closed cross-sectioned test method was developed to monitor damage progression in 2 in. diameter cylindrical specimens and 1.5 in. finite width flat coupons subjected to quasi-static, tensile loading conditions. Damage in these specimen configurations was monitored using pulse echo ultrasonic, acoustic emission, and X-ray techniques.

  20. Development of high-speed balancing technology

    NASA Technical Reports Server (NTRS)

    Demuth, R.; Zorzi, E.

    1981-01-01

    An investigation into laser material removal showed that laser burns act in a manner typical of mechanical stress raisers causing a reduction in fatigue strength; the fatigue strength is lowered relative to the smooth specimen fatigue strength. Laser-burn zones were studied for four materials: Alloy Steel 4340, Stainless Steel 17-4 PH, Inconel 718, and Aluminum Alloy 6061-T6. Calculations were made of stress concentration factors K, for laser-burn grooves of each material type. A comparison was then made to experimentally determine the fatigue strength reduction factor. These calculations and comparisons indicated that, except for the 17-4 PH material, good agreement (a ratio of close to 1.0) existed between Kt and Kf. The performance of the 17-4 PH material has been attributed to early crack initiation due to the lower fatigue resistance of the soft, unaged laser-affected zone. Also covered in this report is the development, implementation, and testing of an influence coefficient approach to balancing a long, slender shaft under applied-torque conditions. Excellent correlation existed between the analytically predicted results and those data obtained from testing.

  1. Thermal performance of 625-kg/cu m elastomeric ablative materials on spherically blunted 0.44-radian cones

    NASA Technical Reports Server (NTRS)

    Champman, A. J.

    1972-01-01

    Spherically blunted 0.44-radian (25 deg) half-angle conical models coated with elastomeric ablative materials were tested in supersonic arc-heated wind tunnels to evaluate performance of the ablators over a range of conditions typical of lifting entry. Four test conditions were combinations of stagnation point-heat transfer rates of 2.3 and 4.5 MW/m2 and stagnation pressures of 20 and 2kN/m2. Afterbody values of heat transfer rate and pressure were 0.05 to 0.20 of stagnation point values. Stagnation enthalpy varied from 4.4 to 25 MJ/kg (1900 to 11000 Btu/lbm) and free-stream Mach number was in a range from 3.5 to 4. Ablative materials retained the spherical nose shape throughout tests at the lower heat transfer level, but receded, assuming a flattened nose shape, during tests at the high heat transfer level. The residue layer that formed on the conical after-body was weak, friable, and extensively cracked. The reference ablative material, which contained phenolic microspheres, generally retained the conical shape on the model afterbody. However, a modified ablator, in which phenolic microspheres were replaced with silica microspheres, deformed and separated from the undegraded material, and thereby produced a very uneven surface. Substrate temperatures and ablator recession were in good agreement with values computed by a numerical analysis.

  2. Mechanical Properties of Materials with Nanometer Scale Microstructures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    William D. Nix

    2004-10-31

    We have been engaged in research on the mechanical properties of materials with nanometer-scale microstructural dimensions. Our attention has been focused on studying the mechanical properties of thin films and interfaces and very small volumes of material. Because the dimensions of thin film samples are small (typically 1 mm in thickness, or less), specialized mechanical testing techniques based on nanoindentation, microbeam bending and dynamic vibration of micromachined structures have been developed and used. Here we report briefly on some of the results we have obtained over the past three years. We also give a summary of all of the dissertations,more » talks and publications completed on this grant during the past 15 years.« less

  3. Boron nitride as desalting material in combination with phosphopeptide enrichment in shotgun proteomics.

    PubMed

    Furuhashi, Takeshi; Nukarinen, Ella; Ota, Shigenori; Weckwerth, Wolfram

    2014-05-01

    Hydrophilic peptides in shotgun proteomics have been shown to be problematic in conventional chromatography. Typically, C18 solid phase extraction or peptide traps are used for desalting the sample prior to mass spectrometry analysis, but the capacity to retain hydrophilic peptides is not very high, causing a bias toward more hydrophobic peptides. This is particularly problematic in phosphoproteomic studies. We tested the compatibility of commercially available boron nitride as a novel material for peptide desalting. Boron nitride can be used to recover a wide range of peptides with different physicochemical properties comparable to combined C18 and graphite carbon material. Copyright © 2014. Published by Elsevier Inc.

  4. Sensitization of Laser-beam Welded Martensitic Stainless Steels

    NASA Astrophysics Data System (ADS)

    Dahmen, Martin; Rajendran, Kousika Dhasanur; Lindner, Stefan

    Ferritic and martensitic stainless steels are an attractive alternative in vehicle production due to their inherent corrosion resistance. By the opportunity of press hardening, their strength can be increased to up to 2000 MPa, making them competitors for unalloyed ultra-high strength steels. Welding, nevertheless, requires special care, especially when it comes to joining of high strength heat treated materials. With an adopted in-line heat treatment of the welds in as-rolled as well as press hardened condition, materials with sufficient fatigue strength and acceptable structural behavior can be produced. Because of microstructural transformations in the base material such as grain coarsening and forced carbide precipitation, the corrosion resistance of the weld zone may be locally impaired. Typically the material in the heat-affected zone becomes sensitive to intergranular cracking in the form of knife-edge corrosion besides the fusion line. The current study comprises of two text scenarios. By an alternating climate test, general response in a corroding environment is screened. In order to understand the corrosion mechanisms and to localize the sensitive zones, sensitisation tests were undertaken. Furthermore, the applicability of a standard test according to ASTM 763-83 was examined. It was found that the alternative climate test does not reveal any corrosion effects. Testing by the oxalic acid test revealed clearly the effect of welding, weld heat treatment and state of thermal processing. Also application of the standard which originally suited for testing ferritic stainless steels could have been justified.

  5. Performance of a plastic-wrapped composting system for biosecure emergency disposal of disease-related swine mortalities.

    PubMed

    Glanville, Thomas D; Ahn, Heekwon; Akdeniz, Neslihan; Crawford, Benjamin P; Koziel, Jacek A

    2016-02-01

    A passively-ventilated plastic-wrapped composting system initially developed for biosecure disposal of poultry mortalities caused by avian influenza was adapted and tested to assess its potential as an emergency disposal option for disease-related swine mortalities. Fresh air was supplied through perforated plastic tubing routed through the base of the compost pile. The combined air inlet and top vent area is ⩽∼1% of the gas exchange surface of a conventional uncovered windrow. Parameters evaluated included: (1) spatial and temporal variations in matrix moisture content (m.c.), leachate production, and matrix O2 concentrations; (2) extent of soft tissue decomposition; and (3) internal temperature and the success rate in achieving USEPA time/temperature (T) criteria for pathogen reduction. Six envelope materials (wood shavings, corn silage, ground cornstalks, ground oat straw, ground soybean straw, or ground alfalfa hay) and two initial m.c.'s (15-30% w.b. for materials stored indoors, and 45-65% w.b. to simulate materials exposed to precipitation) were tested to determine their effect on performance parameters (1-3). Results of triple-replicated field trials showed that the composting system did not accumulate moisture despite the 150kg carcass water load (65% of 225kg total carcass mass) released during decomposition. Mean compost m.c. in the carcass layer declined by ∼7 percentage points during 8-week trials, and a leachate accumulation was rare. Matrix O2 concentrations for all materials other than silage were ⩾10% using the equivalent of 2m inlet/vent spacing. In silage O2 dropped below 5% in some cases even when 0.5m inlet/vent spacing was used. Eight week soft tissue decomposition ranged from 87% in cornstalks to 72% in silage. Success rates for achievement of USEPA Class B time/temperature criteria ranged from 91% for silage to 33-57% for other materials. Companion laboratory biodegradation studies suggest that Class B success rates can be improved by slightly increasing envelope material m.c. Moistening initially dry (15% m.c.) envelope materials to 35% m.c. nearly doubled their heat production potential, boosting it to levels ⩾silage. The 'contradictory' silage test results showing high temperatures paired with slow soft tissue degradation are likely due to this material's high density, low gas permeability and low water vapor loss. While slow decomposition typically suggests low microbial activity and heat production, it does not rule out high internal temperatures if the heat produced is conserved. Occasional short-term odor releases during the first 2weeks of composting were associated with top-to-bottom gas flow which is contrary to the typical bottom-to-top flow typically observed in conventional compost piles. In cases where biosecurity concerns are paramount, results of this study show the plastic-wrapped passively-ventilated composting method to have good potential for above-ground swine mortality disposal. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Apparatus for in situ prediction of the thermal conductivity of fiberglass batts using acoustic propagation constant

    NASA Astrophysics Data System (ADS)

    Tinianov, Brandon D.; Nakagawa, Masami; Muñoz, David R.

    2006-02-01

    This article describes a novel technique for the measurement of the thermal conductivity of low-density (12-18kg/m3) fiberglass insulation and other related fibrous insulation materials using a noninvasive acoustic apparatus. The experimental method is an extension of earlier acoustic methods based upon the evaluation of the propagation constant from the acoustic pressure transfer function across the test material. To accomplish this, an analytical model is employed that describes the behavior of sound waves at the outlet of a baffled waveguide. The model accounts for the behavior of the mixed impedance interface introduced by the test material. Current results show that the technique is stable for a broad range of absorber thicknesses and densities. Experimental results obtained in the laboratory show excellent correlation between the thermal conductivity and both the real and imaginary components of the propagation constant. Correlation of calculated propagation constant magnitude versus measured thermal conductivity gave an R2 of 0.94 for the bulk density range (12-18kg/m3) typical for manufactured fiberglass batt materials. As an improvement to earlier acoustic techniques, measurement is now possible in noisy manufacturing environments with a moving test material. Given the promise of such highly correlated measurements in a robust method, the acoustic technique is well suited to continuously measure the thermal conductivity of the material during its production, replacing current expensive off-line methods. Test cycle time is reduced from hours to seconds.

  7. Thermally-Conductive Metallic Coatings and Applications for Heat Removal on In-Space Cryogenic Vehicles

    NASA Technical Reports Server (NTRS)

    Ameen, Lauren; Hervol, David; Waters, Deborah

    2017-01-01

    For large in-space cryogenic upper stages, substantial axial heat removal from a forward skirt by vapor-based heat interception may not be achieved by simple attachment methods unless sufficient thermal conductance from the skirt to the cooling fluid can be achieved. Preferable methods would allow for the addition of the cooling system to existing structure with minimal impact on the structure. Otherwise, significant modification to the basic structural design andor novel and complex attachment mechanisms with high effective thermal conductance are likely to be required. The approach being pursued by evolvable Cryogenics (eCryo) is to increase the thermal performance of a relatively simple attachment system by applying metallic or other thermally conductive material coatings to the mating surface area of the fluid channel where it is attached the skirt wall. The expectation of candidate materials is that the dramatic increase in conductivity of pure metals at temperatures close to liquid hydrogen vapor temperature will compensate for the reduced actual contact area typical of mechanical joints. Basic contact conductance data at low temperatures for candidate interface materials is required to enable the test approach. A test rig was designed at NASA Glenn Research Center to provide thermal contact resistance testing between small sample coupons coated with conductive material via electron beam evaporation, a low-temperature option that will not affect physical properties of base materials. Average coating thicknesses were 10 k. The test fixture was designed to mount directly to a cryocooler cold head within a vacuum test chamber. The purpose of this test was to determine qualitative contact conductance between various test samples. Results from this effort will be implemented in a sub-scale vapor-based heat interception test, where the applicability for increased heat removal on large structural skirts will be considered.

  8. Subscale Carbon-Carbon Nozzle Extension Development and Hot Fire Testing in Support of Upper Stage Liquid Rocket Engines

    NASA Technical Reports Server (NTRS)

    Gradl, Paul; Valentine, Peter; Crisanti, Matthew; Greene, Sandy Elam

    2016-01-01

    Upper stage and in-space liquid rocket engines are optimized for performance through the use of high area ratio nozzles to fully expand combustion gases to low exit pressures increasing exhaust velocities. Due to the large size of such nozzles and the related engine performance requirements, carbon-carbon (C/C) composite nozzle extensions are being considered for use in order to reduce weight impacts. NASA and industry partner Carbon-Carbon Advanced Technologies (C-CAT) are working towards advancing the technology readiness level of large-scale, domestically-fabricated, C/C nozzle extensions. These C/C extensions have the ability to reduce the overall costs of extensions relative to heritage metallic and composite extensions and to decrease weight by 50%. Material process and coating developments have advanced over the last several years, but hot fire testing to fully evaluate C/C nozzle extensions in relevant environments has been very limited. NASA and C-CAT have designed, fabricated and hot fire tested multiple subscale nozzle extension test articles of various C/C material systems, with the goal of assessing and advancing the manufacturability of these domestically producible materials as well as characterizing their performance when subjected to the typical environments found in a variety of liquid rocket and scramjet engines. Testing at the MSFC Test Stand 115 evaluated heritage and state-of-the-art C/C materials and coatings, demonstrating the capabilities of the high temperature materials and their fabrication methods. This paper discusses the design and fabrication of the 1.2k-lbf sized carbon-carbon nozzle extensions, provides an overview of the test campaign, presents results of the hot fire testing, and discusses potential follow-on development work.

  9. Application of IDT Sensors for Structural Health Monitoring of Windmill Turbine Blades Made of Composite Material

    NASA Astrophysics Data System (ADS)

    Nalladega, V.; Na, J. K.; Druffner, C.

    2011-06-01

    Interdigital transducers (IDT) generate and receive ultrasonic surface waves without the complexity involved with secondary devices such as angled wedges or combs. The IDT sensors have been successfully applied for the NDE of homogeneous materials like metals in order to detect cracks and de-bond. However, these transducers have not been yet adapted for complex and anisotropic materials like fiber-reinforced composites. This work presents the possibility of using IDT sensors for monitoring structural damages in wind turbine blades, typically made of fiberglass composites. IDT sensors with a range of operating frequency between 250 kHz and 1 MHz are initially tested on representative composite test panels for ultrasonic surface wave properties including beam spread, propagation distance and effect of material's anisotropy. Based on these results, an optimum frequency range for the IDT sensor is found to be 250-500 kHz. Subsequently, IDT sensors with operating frequency 500 kHz are used to detect and quantify artificial defects created in the composite test samples. Discussions are made on the interaction of ultrasonic fields with these defects along with the effects of fiber directionality and composite layer stacking.

  10. Fractographic study of epoxy fractured under mode I loading and mixed mode I/III loading

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ren, Fei; Wang, Jy-An John; Bertelsen, Williams D.

    2011-01-01

    Fiber reinforced polymeric composite materials are widely used in structural components such as wind turbine blades, which are typically subject to complicated loading conditions. Thus, material response under mixed mode loading is of great significance to the reliability of these structures. Epoxy is a thermosetting polymer that is currently used in manufacturing wind turbine blades. The fracture behavior of epoxy is relevant to the mechanical integrity of the wind turbine composite materials. In this study, a novel fracture testing methodology, the spiral notch torsion test (SNTT), was applied to study the fracture behavior of an epoxy material. SNTT samples weremore » tested using either monotonic loading or cyclic loading, while both mode I and mixed mode I/III loading conditions were used. Fractographic examination indicated the epoxy samples included in this study were prone to mode I failure even when the samples were subject to mixed mode loading. Different fatigue precracks were observed on mode I and mixed mode samples, i.e. precracks appeared as a uniform band under mode I loading, and a semi-ellipse under mixed mode loading. Fracture toughness was also estimated using quantitative fractography.« less

  11. The NISTmAb Reference Material 8671 lifecycle management and quality plan.

    PubMed

    Schiel, John E; Turner, Abigail

    2018-03-01

    Comprehensive analysis of monoclonal antibody therapeutics involves an ever expanding cadre of technologies. Lifecycle-appropriate application of current and emerging techniques requires rigorous testing followed by discussion between industry and regulators in a pre-competitive space, an effort that may be facilitated by a widely available test metric. Biopharmaceutical quality materials, however, are often difficult to access and/or are protected by intellectual property rights. The NISTmAb, humanized IgG1κ Reference Material 8671 (RM 8671), has been established with the intent of filling that void. The NISTmAb embodies the quality and characteristics of a typical biopharmaceutical product, is widely available to the biopharmaceutical community, and is an open innovation tool for development and dissemination of results. The NISTmAb lifecyle management plan described herein provides a hierarchical strategy for maintenance of quality over time through rigorous method qualification detailed in additional submissions in the current publication series. The NISTmAb RM 8671 is a representative monoclonal antibody material and provides a means to continually evaluate current best practices, promote innovative approaches, and inform regulatory paradigms as technology advances. Graphical abstract The NISTmAb Reference Material (RM) 8671 is intended to be an industry standard monoclonal antibody for pre-competitive harmonization of best practices and designing next generation characterization technologies for identity, quality, and stability testing.

  12. Application of Hydrophilic Silanol-Based Chemical Grout for Strengthening Damaged Reinforced Concrete Flexural Members

    PubMed Central

    Ju, Hyunjin; Lee, Deuck Hang; Cho, Hae-Chang; Kim, Kang Su; Yoon, Seyoon; Seo, Soo-Yeon

    2014-01-01

    In this study, hydrophilic chemical grout using silanol (HCGS) was adopted to overcome the performance limitations of epoxy materials used for strengthening existing buildings and civil engineering structures. The enhanced material performances of HCGS were introduced, and applied to the section enlargement method, which is one of the typical structural strengthening methods used in practice. To evaluate the excellent structural strengthening performance of the HCGS, structural tests were conducted on reinforced concrete beams, and analyses on the flexural behaviors of test specimens were performed by modified partial interaction theory (PIT). In particular, to improve the constructability of the section enlargement method, an advanced strengthening method was proposed, in which the precast panel was directly attached to the bottom of the damaged structural member by HCGS, and the degree of connection of the test specimens, strengthened by the section enlargement method, were quantitatively evaluated by PIT-based analysis. PMID:28788708

  13. Application of Hydrophilic Silanol-Based Chemical Grout for Strengthening Damaged Reinforced Concrete Flexural Members.

    PubMed

    Ju, Hyunjin; Lee, Deuck Hang; Cho, Hae-Chang; Kim, Kang Su; Yoon, Seyoon; Seo, Soo-Yeon

    2014-06-23

    In this study, hydrophilic chemical grout using silanol (HCGS) was adopted to overcome the performance limitations of epoxy materials used for strengthening existing buildings and civil engineering structures. The enhanced material performances of HCGS were introduced, and applied to the section enlargement method, which is one of the typical structural strengthening methods used in practice. To evaluate the excellent structural strengthening performance of the HCGS, structural tests were conducted on reinforced concrete beams, and analyses on the flexural behaviors of test specimens were performed by modified partial interaction theory (PIT). In particular, to improve the constructability of the section enlargement method, an advanced strengthening method was proposed, in which the precast panel was directly attached to the bottom of the damaged structural member by HCGS, and the degree of connection of the test specimens, strengthened by the section enlargement method, were quantitatively evaluated by PIT-based analysis.

  14. Life Test Approach for Refractory Metal/Sodium Heat Pipes

    NASA Technical Reports Server (NTRS)

    Martin, James J.; Reid, Robert S.

    2006-01-01

    Heat pipe life tests described in the literature have seldom been conducted on a systematic basis. Typically one or more heat pipes are built and tested for an extended period at a single temperature with simple condenser loading. This paper describes an approach to generate carefully controlled data that can conclusively establish heat pipe operating life with material-fluid combinations capable of extended operation. Approximately 10 years of operational life might be compressed into 3 years of laboratory testing through a combination of increased temperature and mass fluence. Two specific test series have been identified and include: investigation of long term corrosion rates based on the guidelines contained in ASTM G-68-80 (using 7 heat pipes); and investigation of corrosion trends in a cross correlation sequence at various temperatures and mass fluences based on a central composite test design (using 9 heat pipes). The heat pipes selected for demonstration purposes are fabricated from a Mo-44.5%Re alloy with a length of 0.3 meters and a diameter of 1.59 cm(to conserve material) with a condenser to evaporator length ratio of approximately 3. The wick is a crescent annular design formed from 400-mesh Mo-Re alloy material hot isostatically pressed to produce a final wick core of 20 microns or less.

  15. Boulder damage symposium annual thin film laser damage competition

    DOE PAGES

    Stolz, Christopher J.

    2012-11-28

    Optical instruments and laser systems are often fluence-limited by multilayer thin films deposited on the optical surfaces. When comparing publications within the laser damage literature, there can be confusing and conflicting laser damage results. This is due to differences in testing protocols between research groups studying very different applications. In this series of competitions, samples from multiple vendors are compared under identical testing parameters and a single testing service. Unlike a typical study where a hypothesis is tested within a well-controlled experiment with isolated variables, this competition isolates the laser damage testing variables so that trends can be observed betweenmore » different deposition processes, coating materials, cleaning techniques, and multiple coating suppliers. The resulting series of damage competitions has also been designed to observe general trends of damage morphologies and mechanisms over a wide range of coating types (high reflector and antireflector), wavelengths (193 to 1064 nm), and pulse lengths (180 fs to 13 ns). A double blind test assured sample and submitter anonymity were used in each of the competitions so only a summary of the deposition process, coating materials, layer count and spectral results are presented. Laser resistance was strongly affected by substrate cleaning, coating deposition method, and coating material selection whereas layer count and spectral properties had minimal impact.« less

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mandell, John F.; Ashwill, Thomas D.; Wilson, Timothy J.

    This report presents an analysis of trends in fatigue results from the Montana State University program on the fatigue of composite materials for wind turbine blades for the period 2005-2009. Test data can be found in the SNL/MSU/DOE Fatigue of Composite Materials Database which is updated annually. This is the fifth report in this series, which summarizes progress of the overall program since its inception in 1989. The primary thrust of this program has been research and testing of a broad range of structural laminate materials of interest to blade structures. The report is focused on current types of infusedmore » and prepreg blade materials, either processed in-house or by industry partners. Trends in static and fatigue performance are analyzed for a range of materials, geometries and loading conditions. Materials include: sixteen resins of three general types, five epoxy based paste adhesives, fifteen reinforcing fabrics including three fiber types, three prepregs, many laminate lay-ups and process variations. Significant differences in static and fatigue performance and delamination resistance are quantified for particular materials and process conditions. When blades do fail, the likely cause is fatigue in the structural detail areas or at major flaws. The program is focused strongly on these issues in addition to standard laminates. Structural detail tests allow evaluation of various blade materials options in the context of more realistic representations of blade structure than do the standard test methods. Types of structural details addressed in this report include ply drops used in thickness tapering, and adhesive joints, each tested over a range of fatigue loading conditions. Ply drop studies were in two areas: (1) a combined experimental and finite element study of basic ply drop delamination parameters for glass and carbon prepreg laminates, and (2) the development of a complex structured resin-infused coupon including ply drops, for comparison studies of various resins, fabrics and pry drop thicknesses. Adhesive joint tests using typical blade adhesives included both generic testing of materials parameters using a notched-lap-shear test geometry developed in this study, and also a series of simulated blade web joint geometries fabricated by an industry partner.« less

  17. The Analysis of Weak Rock Using the Pressuremeter

    NASA Astrophysics Data System (ADS)

    Dafni, Jacob

    The pressuremeter is a versatile in situ testing instrument capable of testing a large range of materials from very soft clay to weak rock. Due to limitations of other testing devices, the pressuremeter is one of the few instruments capable of capturing stiffness and strength properties of weak rock. However, data collected is only useful if the material tested is properly modeled and desirable material properties can be obtained. While constitutive models with various flows rules have been developed for pressuremeter analysis in soil, less research has been directed at model development for pressuremeter tests in weak rock. The result is pressuremeter data collected in rock is typically analyzed using models designed for soil. The aim of this study was to explore constitutive rock models for development into a pressuremeter framework. Three models were considered, with two of those three implemented for pressuremeter analysis. A Mohr-Coulomb model with a tensile cutoff developed by Haberfield (1987) and a Hoek-Brown model initiated by Yang et al (2011) and further developed by the author were implemented and calibrated against a data set of pressuremeter tests from 5 project test sites including a total of 115 pressuremeter tests in a number of different rock formations. Development of a multiscale damage model established by Kondo et al (2008) was explored. However, this model requires further development to be used for pressuremeter data analysis.

  18. Controlled-Temperature Hot-Air Gun

    NASA Technical Reports Server (NTRS)

    Munoz, M. C.

    1986-01-01

    Materials that find applications in wind tunnels first tested in laboratory. Hot-Air Gun differs from commercial units in that flow rate and temperature monitored and controlled. With typical compressed-airsupply pressure of 25 to 38 psi (170 to 260 kPa), flow rate and maximum temperature are 34 stdft3/min (0.96 stdm3/min) and 1,090 degrees F (590 degrees C), respectively. Resembling elaborate but carefully regulated hot-air gun, setup used to apply blasts of air temperatures above 1,500 degrees F (815 degrees C) to test specimens.

  19. Engagement of Metal Debris into a Gear Mesh

    NASA Technical Reports Server (NTRS)

    Handschuh, Robert F.; Krantz, Timothy L.

    2010-01-01

    A series of bench top experiments was conducted to determine the effects of metallic debris being dragged through meshing gear teeth. A test rig that is typically used to conduct contact fatigue experiments was used for these tests. Several sizes of drill material, shim stock, and pieces of gear teeth were introduced and then driven through the meshing region. The level of torque required to drive the "chip" through the gear mesh was measured. From the data gathered, chip size sufficient to jam the mechanism can be determined.

  20. A Review of Optical NDT Technologies

    PubMed Central

    Zhu, Yong-Kai; Tian, Gui-Yun; Lu, Rong-Sheng; Zhang, Hong

    2011-01-01

    Optical non-destructive testing (NDT) has gained more and more attention in recent years, mainly because of its non-destructive imaging characteristics with high precision and sensitivity. This paper provides a review of the main optical NDT technologies, including fibre optics, electronic speckle, infrared thermography, endoscopic and terahertz technology. Among them, fibre optics features easy integration and embedding, electronic speckle focuses on whole-field high precision detection, infrared thermography has unique advantages for tests of combined materials, endoscopic technology provides images of the internal surface of the object directly, and terahertz technology opens a new direction of internal NDT because of its excellent penetration capability to most of non-metallic materials. Typical engineering applications of these technologies are illustrated, with a brief introduction of the history and discussion of recent progress. PMID:22164045

  1. SSME main combustion chamber life prediction

    NASA Technical Reports Server (NTRS)

    Cook, R. T.; Fryk, E. E.; Newell, J. F.

    1983-01-01

    Typically, low cycle fatigue life is a function of the cyclic strain range, the material properties, and the operating temperature. The reusable life is normally defined by the number of strain cycles that can be accrued before severe material degradation occurs. Reusable life is normally signified by the initiation or propagation of surface cracks. Hot-fire testing of channel wall combustors has shown significant mid-channel wall thinning or deformation during accrued cyclic testing. This phenomenon is termed cyclic-creep and appears to be significantly accelerated at elevated surface temperatures. This failure mode was analytically modelled. The cyclic life of the baseline SSME-MCC based on measured calorimeter heat transfer data, and the life sensitivity of local hot spots caused by injector effects were determined. Four life enhanced designs were assessed.

  2. Materials International Space Station Experiment (MISSE) 5 Developed to Test Advanced Solar Cell Technology Aboard the ISS

    NASA Technical Reports Server (NTRS)

    Wilt, David M.

    2004-01-01

    The testing of new technologies aboard the International Space Station (ISS) is facilitated through the use of a passive experiment container, or PEC, developed at the NASA Langley Research Center. The PEC is an aluminum suitcase approximately 2 ft square and 5 in. thick. Inside the PEC are mounted Materials International Space Station Experiment (MISSE) plates that contain the test articles. The PEC is carried to the ISS aboard the space shuttle or a Russian resupply vehicle, where astronauts attach it to a handrail on the outer surface of the ISS and deploy the PEC, which is to say the suitcase is opened 180 deg. Typically, the PEC is left in this position for approximately 1 year, at which point astronauts close the PEC and it is returned to Earth. In the past, the PECs have contained passive experiments, principally designed to characterize the durability of materials subjected to the ultraviolet radiation and atomic oxygen present at the ISS orbit. The MISSE5 experiment is intended to characterize state-of-art (SOA) and beyond photovoltaic technologies.

  3. Large Scale Magnetostrictive Valve Actuator

    NASA Technical Reports Server (NTRS)

    Richard, James A.; Holleman, Elizabeth; Eddleman, David

    2008-01-01

    Marshall Space Flight Center's Valves, Actuators and Ducts Design and Development Branch developed a large scale magnetostrictive valve actuator. The potential advantages of this technology are faster, more efficient valve actuators that consume less power and provide precise position control and deliver higher flow rates than conventional solenoid valves. Magnetostrictive materials change dimensions when a magnetic field is applied; this property is referred to as magnetostriction. Magnetostriction is caused by the alignment of the magnetic domains in the material s crystalline structure and the applied magnetic field lines. Typically, the material changes shape by elongating in the axial direction and constricting in the radial direction, resulting in no net change in volume. All hardware and testing is complete. This paper will discuss: the potential applications of the technology; overview of the as built actuator design; discuss problems that were uncovered during the development testing; review test data and evaluate weaknesses of the design; and discuss areas for improvement for future work. This actuator holds promises of a low power, high load, proportionally controlled actuator for valves requiring 440 to 1500 newtons load.

  4. Finite element analysis of the end notched flexure specimen for measuring Mode II fracture toughness

    NASA Technical Reports Server (NTRS)

    Gillespie, J. W., Jr.; Carlsson, L. A.; Pipes, R. B.

    1986-01-01

    The paper presents a finite element analysis of the end-notched flexure (ENF) test specimen for Mode II interlaminar fracture testing of composite materials. Virtual crack closure and compliance techniques employed to calculate strain energy release rates from linear elastic two-dimensional analysis indicate that the ENF specimen is a pure Mode II fracture test within the constraints of small deflection theory. Furthermore, the ENF fracture specimen is shown to be relatively insensitive to process-induced cracks, offset from the laminate midplane. Frictional effects are investigated by including the contact problem in the finite element model. A parametric study investigating the influence of delamination length, span, thickness, and material properties assessed the accuracy of beam theory expressions for compliance and strain energy release rate, GII. Finite element results indicate that data reduction schemes based upon beam theory underestimate GII by approximately 20-40 percent for typical unidirectional graphite fiber composite test specimen geometries. Consequently, an improved data reduction scheme is proposed.

  5. In-Pile Qualification of the Fast-Neutron-Detection-System

    NASA Astrophysics Data System (ADS)

    Fourmentel, D.; Villard, J.-F.; Destouches, C.; Geslot, B.; Vermeeren, L.; Schyns, M.

    2018-01-01

    In order to improve measurement techniques for neutron flux assessment, a unique system for online measurement of fast neutron flux has been developed and recently qualified in-pile by the French Alternative Energies and Atomic Energy Commission (CEA) in cooperation with the Belgian Nuclear Research Centre (SCK•ECEN). The Fast-Neutron-Detection-System (FNDS) has been designed to monitor accurately high-energy neutrons flux (E > 1 MeV) in typical Material Testing Reactor conditions, where overall neutron flux level can be as high as 1015 n.cm-2.s-1 and is generally dominated by thermal neutrons. Moreover, the neutron flux is coupled with a high gamma flux of typically a few 1015 γ.cm-2.s-1, which can be highly disturbing for the online measurement of neutron fluxes. The patented FNDS system is based on two detectors, including a miniature fission chamber with a special fissile material presenting an energy threshold near 1 MeV, which can be 242Pu for MTR conditions. Fission chambers are operated in Campbelling mode for an efficient gamma rejection. FNDS also includes a specific software that processes measurements to compensate online the fissile material depletion and to adjust the sensitivity of the detectors, in order to produce a precise evaluation of both thermal and fast neutron flux even after long term irradiation. FNDS has been validated through a two-step experimental program. A first set of tests was performed at BR2 reactor operated by SCK•CEN in Belgium. Then a second test was recently completed at ISIS reactor operated by CEA in France. FNDS proved its ability to measure online the fast neutron flux with an overall accuracy better than 5%.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kolopus, James A.; Boatner, Lynn A.

    Nanoindenters are commonly used for measuring the mechanical properties of a wide variety of materials with both industrial and scientific applications. Typically, these instruments employ an indenter made of a material of suitable hardness bonded to an appropriate shaft or holder to create an indentation on the material being tested. While a variety of materials may be employed for the indenter, diamond and boron carbide are by far the most common materials used due to their hardness and other desirable properties. However, as the increasing complexity of new materials demands a broader range of testing capabilities, conventional indenter materials exhibitmore » significant performance limitations. Among these are the inability of diamond indenters to perform in-situ measurements at temperatures above 600oC in air due to oxidation of the diamond material and subsequent degradation of the indenters mechanical properties. Similarly, boron carbide also fails at high temperature due to fracture. [1] Transition metal carbides possess a combination of hardness and mechanical properties at high temperatures that offer an attractive alternative to conventional indenter materials. Here we describe the technical aspects for the growth of single-crystal tungsten carbide (WC) for use as a high-temperature indenter material, and we examine a possible approach to brazing these crystals to a suitable mount for grinding and attachment to the indenter instrument. The use of a by-product of the recovery process is also suggested as possibly having commercial value.« less

  7. Preserved Statistical Learning of Tonal and Linguistic Material in Congenital Amusia

    PubMed Central

    Omigie, Diana; Stewart, Lauren

    2011-01-01

    Congenital amusia is a lifelong disorder whereby individuals have pervasive difficulties in perceiving and producing music. In contrast, typical individuals display a sophisticated understanding of musical structure, even in the absence of musical training. Previous research has shown that they acquire this knowledge implicitly, through exposure to music's statistical regularities. The present study tested the hypothesis that congenital amusia may result from a failure to internalize statistical regularities – specifically, lower-order transitional probabilities. To explore the specificity of any potential deficits to the musical domain, learning was examined with both tonal and linguistic material. Participants were exposed to structured tonal and linguistic sequences and, in a subsequent test phase, were required to identify items which had been heard in the exposure phase, as distinct from foils comprising elements that had been present during exposure, but presented in a different temporal order. Amusic and control individuals showed comparable learning, for both tonal and linguistic material, even when the tonal stream included pitch intervals around one semitone. However analysis of binary confidence ratings revealed that amusic individuals have less confidence in their abilities and that their performance in learning tasks may not be contingent on explicit knowledge formation or level of awareness to the degree shown in typical individuals. The current findings suggest that the difficulties amusic individuals have with real-world music cannot be accounted for by an inability to internalize lower-order statistical regularities but may arise from other factors. PMID:21779263

  8. Heavy-section steel irradiation program. Progress report, April 1996--September 1996

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Corwin, W.R.

    1997-09-01

    The Heavy-Section Steel Irradiation Program was established to quantitatively assess the effects of neutron irradiation on the material behavior of typical reactor pressure vessel (RPV) steels. During this period, fracture mechanics testing of specimens of the irradiated low upper shelf (LUS) weld were completed and analyses performed. Heat treatment of five RPV plate materials was initiated to examine phosphorus segregation effects on the fracture toughness of the heat affected zone of welds. Initial results show that all five materials exhibited very large prior austenite grain sizes as a consequence of the initial heat treatment. Irradiated and annealed specimens of LUSmore » weld material were tested and analyzed. Four sets of Charpy V-notch (CVN) specimens were aged at various temperatures and tested to examine the reason for overrecovery of upper shelf energy that has been observed. Molecular dynamics cascade simulations were extended to 40 keV and have provided information representative of most of the fast neutron spectrum. Investigations of the correlation between microstructural changes and hardness changes in irradiated model alloys was also completed. Preliminary planning for test specimen machining for the Japan Power Development Reactor was completed. A database of Charpy impact and fracture toughness data for RPV materials that have been tested in the unirradiated and irradiated conditions is being assembled and analyzed. Weld metal appears to have similar CVN and fracture toughness transition temperature shifts, whereas the fracture toughness shifts are greater than CVN shifts for base metals. Draft subcontractor reports on precracked cylindrical tensile specimens were completed, reviewed, and are being revised. Testing on precracked CVN specimens, both quasi-static and dynamic, was evaluated. Additionally, testing of compact specimens was initiated as an experimental comparison of constraint limitations. 16 figs., 2 tabs.« less

  9. Airborne Transducer Integrity under Operational Environment for Structural Health Monitoring

    PubMed Central

    Salmanpour, Mohammad Saleh; Sharif Khodaei, Zahra; Aliabadi, Mohammad Hossein

    2016-01-01

    This paper investigates the robustness of permanently mounted transducers used in airborne structural health monitoring systems, when exposed to the operational environment. Typical airliners operate in a range of conditions, hence, structural health monitoring (SHM) transducer robustness and integrity must be demonstrated for these environments. A set of extreme temperature, altitude and vibration environment test profiles are developed using the existing Radio Technical Commission for Aeronautics (RTCA)/DO-160 test methods. Commercially available transducers and manufactured versions bonded to carbon fibre reinforced polymer (CFRP) composite materials are tested. It was found that the DuraAct transducer is robust to environmental conditions tested, while the other transducer types degrade under the same conditions. PMID:27973450

  10. Design, analysis, and testing of a metal matrix composite web/flange intersection

    NASA Technical Reports Server (NTRS)

    Biggers, S. B.; Knight, N. F., Jr.; Moran, S. G.; Olliffe, R.

    1992-01-01

    An experimental and analytical program to study the local design details of a typical T-shaped web/flange intersection made from a metal matrix composite is described. Loads creating flange bending were applied to specimens having different designs and boundary conditions. Finite element analyses were conducted on models of the test specimens to predict the structural response. The analyses correctly predict failure load, mode, and location in the fillet material in the intersection region of the web and the flange when specimen quality is good. The test program shows the importance of fabrication quality in the intersection region. The full-scale test program that led to the investigation of this local detail is also described.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pezeshki, Alan M.; Sacci, Robert L.; Veith, Gabriel M.

    Here, we demonstrate a novel method to accelerate electrode degradation in redox flow batteries and apply this method to the all-vanadium chemistry. Electrode performance degradation occurred seven times faster than in a typical cycling experiment, enabling rapid evaluation of materials. This method also enables the steady-state study of electrodes. In this manner, it is possible to delineate whether specific operating conditions induce performance degradation; we found that both aggressively charging and discharging result in performance loss. Post-mortem x-ray photoelectron spectroscopy of the degraded electrodes was used to resolve the effects of state of charge (SoC) and current on the electrodemore » surface chemistry. For the electrode material tested in this work, we found evidence that a loss of oxygen content on the negative electrode cannot explain decreased cell performance. Furthermore, the effects of decreased electrode and membrane performance on capacity fade in a typical cycling battery were decoupled from crossover; electrode and membrane performance decay were responsible for a 22% fade in capacity, while crossover caused a 12% fade.« less

  12. Genesis of Augite-Bearing Ureilites: Evidence From LA-ICP-MS Analyses of Pyroxenes and Olivine

    NASA Technical Reports Server (NTRS)

    Herrin, J. S.; Lee, C-T. A.; Mittlefehldt, D. W.

    2008-01-01

    Ureilites are ultramafic achondrites composed primarily of coarse-grained low-Ca pyroxene and olivine with interstitial carbonaceous material, but a number of them contain augite [1]. Ureilites are considered to be restites after partial melting of a chondritic precursor, although at least some augite-bearing ureilites may be partially cumulate [1, 2]. In this scenario, the augite is a cumulus phase derived from a melt that infiltrated a restite composed of typical ureilite material (olivine+low-Ca pyroxene) [2]. To test this hypothesis, we examined the major and trace element compositions of silicate minerals in select augite-bearing ureilites with differing mg#. Polished thick sections of the augite-bearing ureilites ALH 84136 , EET 87511, EET 96293, LEW 88201, and META78008 and augite-free typical ureilite EET 90019 were examined by EPMA for major and minor elements and laser ablation ICP-MS (LA-ICP-MS) for trace elements, REE in particular. Although EET 87511 is reported to contain augite, the polished section that we obtained did not.

  13. Pressure-Sensitive Paints Advance Rotorcraft Design Testing

    NASA Technical Reports Server (NTRS)

    2013-01-01

    The rotors of certain helicopters can spin at speeds as high as 500 revolutions per minute. As the blades slice through the air, they flex, moving into the wind and back out, experiencing pressure changes on the order of thousands of times a second and even higher. All of this makes acquiring a true understanding of rotorcraft aerodynamics a difficult task. A traditional means of acquiring aerodynamic data is to conduct wind tunnel tests using a vehicle model outfitted with pressure taps and other sensors. These sensors add significant costs to wind tunnel testing while only providing measurements at discrete locations on the model's surface. In addition, standard sensor solutions do not work for pulling data from a rotor in motion. "Typical static pressure instrumentation can't handle that," explains Neal Watkins, electronics engineer in Langley Research Center s Advanced Sensing and Optical Measurement Branch. "There are dynamic pressure taps, but your costs go up by a factor of five to ten if you use those. In addition, recovery of the pressure tap readings is accomplished through slip rings, which allow only a limited amount of sensors and can require significant maintenance throughout a typical rotor test." One alternative to sensor-based wind tunnel testing is pressure sensitive paint (PSP). A coating of a specialized paint containing luminescent material is applied to the model. When exposed to an LED or laser light source, the material glows. The glowing material tends to be reactive to oxygen, explains Watkins, which causes the glow to diminish. The more oxygen that is present (or the more air present, since oxygen exists in a fixed proportion in air), the less the painted surface glows. Imaged with a camera, the areas experiencing greater air pressure show up darker than areas of less pressure. "The paint allows for a global pressure map as opposed to specific points," says Watkins. With PSP, each pixel recorded by the camera becomes an optical pressure tap. "Instead of having 100 or 200 pressure taps, you can have in theory several million, up to whatever the resolution of your camera is." Watkins explains that typical wind tunnel testing requires two models: one with very little instrumentation, and a pressure model with a significant amount of sensors applied. "If you can make all of your measurements on one model with PSP, you've decreased your model costs by at least a factor of two and preferably your testing costs by about that much," he says. PSP technology has been around for almost 20 years, but a PSP solution for gathering instantaneous dynamic pressure data from surfaces moving at high speeds, such as rotor blades, was not available until a NASA partnership led to a game-changing innovation.

  14. Resilient and Corrosion-Proof Rolling Element Bearings Made from Superelastic Ni-Ti Alloys for Aerospace Mechanism Applications

    NASA Technical Reports Server (NTRS)

    DellaCorte, Christopher; Noebe, Ronald D.; Stanford, Malcolm; Padula, Santo A.

    2011-01-01

    Mechanical components (bearings, gears, mechanisms) typically utilize hard materials to minimize wear and attain long life. In such components, heavily loaded contact points (e.g., meshing gear teeth, bearing ball-raceway contacts) experience high contact stresses. The combination of high hardness, heavy loads and high elastic modulus often leads to damaging contact stress. In addition, mechanical component materials, such as tool steel or silicon nitride exhibit limited recoverable strain (typically less than 1 percent). These material attributes can lead to Brinell damage (e.g., denting) particularly during transient overload events such as shock impacts that occur during the launching of space vehicles or the landing of aircraft. In this paper, a superelastic alloy, 60NiTi, is considered for rolling element bearing applications. A series of Rockwell and Brinell hardness, compressive strength, fatigue and tribology tests are conducted and reported. The combination of high hardness, moderate elastic modulus, large recoverable strain, low density, and intrinsic corrosion immunity provide a path to bearings largely impervious to shock load damage. It is anticipated that bearings and components made from alloys with such attributes can alleviate many problems encountered in advanced aerospace applications.

  15. Energy dissipation in quasi-linear viscoelastic tissues, cells, and extracellular matrix.

    PubMed

    Babaei, Behzad; Velasquez-Mao, A J; Pryse, Kenneth M; McConnaughey, William B; Elson, Elliot L; Genin, Guy M

    2018-05-21

    Characterizing how a tissue's constituents give rise to its viscoelasticity is important for uncovering how hidden timescales underlie multiscale biomechanics. These constituents are viscoelastic in nature, and their mechanics must typically be assessed from the uniaxial behavior of a tissue. Confounding the challenge is that tissue viscoelasticity is typically associated with nonlinear elastic responses. Here, we experimentally assessed how fibroblasts and extracellular matrix (ECM) within engineered tissue constructs give rise to the nonlinear viscoelastic responses of a tissue. We applied a constant strain rate, "triangular-wave" loading and interpreted responses using the Fung quasi-linear viscoelastic (QLV) material model. Although the Fung QLV model has several well-known weaknesses, it was well suited to the behaviors of the tissue constructs, cells, and ECM tested. Cells showed relatively high damping over certain loading frequency ranges. Analysis revealed that, even in cases where the Fung QLV model provided an excellent fit to data, the the time constant derived from the model was not in general a material parameter. Results have implications for design of protocols for the mechanical characterization of biological materials, and for the mechanobiology of cells within viscoelastic tissues. Copyright © 2018. Published by Elsevier Ltd.

  16. Evaluation of Low-Gravity Smoke Particulate for Spacecraft Fire Detection

    NASA Technical Reports Server (NTRS)

    Urban, David; Ruff, Gary A.; Mulholland George; Meyer, Marit; Yuan, Zeng guang; Cleary, Thomas; Yang, Jiann; Greenberg, Paul; Bryg, Victoria

    2013-01-01

    Tests were conducted on the International Space Station to evaluate the smoke particulate size from materials and conditions that are typical of those expected in spacecraft fires. Five different materials representative of those found in spacecraft (Teflon, Kapton, cotton, silicone rubber and Pyrell) were heated to temperatures below the ignition point with conditions controlled to provide repeatable sample surface temperatures and air flow. The air flow past the sample during the heating period ranged from quiescent to 8 cm/s. The effective transport time to the measurement instruments was varied from 11 to 800 seconds to simulate different smoke transport conditions in spacecraft. The resultant aerosol was evaluated by three instruments which measured different moments of the particle size distribution. These moment diagnostics were used to determine the particle number concentration (zeroth moment), the diameter concentration (first moment), and the mass concentration (third moment). These statistics were combined to determine the diameter of average mass and the count mean diameter and by assuming a log-normal distribution, the geometric mean diameter and the geometric standard deviations were also calculated. Smoke particle samples were collected on TEM grids using a thermal precipitator for post flight analysis. The TEM grids were analyzed to determine the particle morphology and shape parameters. The different materials produced particles with significantly different morphologies. Overall the majority of the average smoke particle sizes were found to be in the 200 to 400 nanometer range with the quiescent cases and the cases with increased transport time typically producing with substantially larger particles. The results varied between materials but the smoke particles produced in low gravity were typically twice the size of particles produced in normal gravity. These results can be used to establish design requirements for future spacecraft smoke detectors.

  17. Advanced Composites: Mechanical Properties and Hardware Programs for Selected Resin Matrix Materials. [considering space shuttle applications

    NASA Technical Reports Server (NTRS)

    Welhart, E. K.

    1976-01-01

    This design note presents typical mechanical properties tabulated from industrial and governmental agencies' test programs. All data are correlated to specific products and all of the best known products are presented. The data include six epoxies, eight polyimides and one polyquinoxaline matrix material. Bron and graphite are the fiber reinforcements. Included are forty-two summaries of advanced (resin matrix) composite programs in existence in the United States. It is concluded that the selection of appropriate matrices, the geometric manner in which the fibers are incorporated in the matrix and the durability of the bond between fiber and matrix establish the end properties of the composite material and the performance of the fabricated structure.

  18. Fragmentation of Structural Energetic Materials: Implications for Performance

    NASA Astrophysics Data System (ADS)

    Aydelotte, Brady; Braithwaite, Christopher; Thadhani, Naresh

    2013-06-01

    Fragmentation results for structural energetic materials based on intermetallic forming mixtures are reviewed and the implications of the fragment populations are discussed. Cold Sprayed Ni+Al and explosively compacted mixtures of Ni+Al+W and Ni+Al+W+Zr powders were fabricated into ring shaped samples and subjected to fragmentation tests. Ring velocity was monitored and fragments were soft captured in order to study the fragmentation process. It was determined that the fragments produced by these structural energetic materials are much smaller than those typically produced by ductile metals such as steel or aluminum. This has implications for combustion processes that may occur subsequent to the fragmentation process. ONR/MURI grant No. N00014-07-1-0740 Dr. Cliff Bedford PM.

  19. Sound absorption of a porous material with a perforated facing at high sound pressure levels

    NASA Astrophysics Data System (ADS)

    Peng, Feng

    2018-07-01

    A semi-empirical model is proposed to predict the sound absorption of an acoustical unit consisting of a rigid-porous material layer with a perforated facing under the normal incidence at high sound pressure levels (SPLs) of pure tones. The nonlinearity of the perforated facing and the porous material, and the interference between them are considered in the model. The sound absorptive performance of the acoustical unit is tested at different incident SPLs and in three typical configurations: 1) when the perforated panel (PP) directly contacts with the porous layer, 2) when the PP is separated from the porous layer by an air gap and 3) when an air cavity is set between the porous material and the hard backing wall. The test results agree well with the corresponding theoretical predictions. Moreover, the results show that the interference effect is correlated to the width of the air gap between the PP and the porous layer, which alters not only the linear acoustic impedance but also the nonlinear acoustic impedance of the unit and hence its sound absorptive properties.

  20. Measuring predictability in ultrasonic signals: an application to scattering material characterization.

    PubMed

    Carrión, Alicia; Miralles, Ramón; Lara, Guillermo

    2014-09-01

    In this paper, we present a novel and completely different approach to the problem of scattering material characterization: measuring the degree of predictability of the time series. Measuring predictability can provide information of the signal strength of the deterministic component of the time series in relation to the whole time series acquired. This relationship can provide information about coherent reflections in material grains with respect to the rest of incoherent noises that typically appear in non-destructive testing using ultrasonics. This is a non-parametric technique commonly used in chaos theory that does not require making any kind of assumptions about attenuation profiles. In highly scattering media (low SNR), it has been shown theoretically that the degree of predictability allows material characterization. The experimental results obtained in this work with 32 cement probes of 4 different porosities demonstrate the ability of this technique to do classification. It has also been shown that, in this particular application, the measurement of predictability can be used as an indicator of the percentages of porosity of the test samples with great accuracy. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lau, Sarah J.; Moore, David G.; Stair, Sarah L.

    Ultrasonic analysis is being explored as a way to capture events during melting of highly dispersive wax. Typical events include temperature changes in the material, phase transition of the material, surface flows and reformations, and void filling as the material melts. Melt tests are performed with wax to evaluate the usefulness of different signal processing algorithms in capturing event data. Several algorithm paths are being pursued. The first looks at changes in the velocity of the signal through the material. This is only appropriate when the changes from one ultrasonic signal to the next can be represented by a linearmore » relationship, which is not always the case. The second tracks changes in the frequency content of the signal. The third algorithm tracks changes in the temporal moments of a signal over a full test. This method does not require that the changes in the signal be represented by a linear relationship, but attaching changes in the temporal moments to physical events can be difficult. This study describes the algorithm paths applied to experimental data from ultrasonic signals as wax melts and explores different ways to display the results.« less

  2. The role of beliefs on learning about homosexuality in a college course.

    PubMed

    Vaughn, James; Kennison, Shelia; Byrd-Craven, Jennifer

    2014-01-01

    The present research investigated how personal beliefs about homosexuality influence learning in a college course. We tested students in introductory psychology over material on the science of homosexuality by Simon LeVay (2010). All students reported information about their typical academic habits and the extent to which homosexuality was consistent with their beliefs and values. The results showed that students' personal beliefs were related to academic behaviors (e.g., reading assignments, skipping class) and retention of the course material. The results also showed that students' recall of course material six weeks later was predicted by the extent to which they reported studying information that is inconsistent with their beliefs for an exam and then forgetting it. Students who reported the material to be inconsistent with their beliefs engaged in selective forgetting of the material on homosexuality. The results provide evidence that personal beliefs can reduce the retention of belief-inconsistent information in a college course.

  3. 1200 to 1400 K slow strain rate compressive properties of NiAl/Ni2AlTi-base materials

    NASA Technical Reports Server (NTRS)

    Whittenberger, J. Daniel; Viswanadham, R. K.; Mannan, S. K.; Kumar, K. S.

    1989-01-01

    An attempt to apply the Martin Marietta Corporation's XD technology to the fabrication of NiAl-Ni2AlTi materials with improved creep properties is presented. Composite materials, containing from 0 to 30 vol pct of nominally 1-micron-diameter TiB2 particles in the intermetallic matrix have been produced by the XD process and compacted by hot pressing. Such composites demonstrated significant strength increases, approaching 3-fold for the 20 vol pct materials, in comparison to the unreinforced aluminide. This behavior was accomplished without deleterious side effects as the grain boundaries and particle-matrix interfaces were intact after compressive deformation to 10 percent or more strain. Typical true compressive stress-strain diagrams for materials tested in air between 1200 and 1400 K at approximate strain rates of 1.7 x 10 to the -6th/sec are presented.

  4. A Comparison of Atomic Oxygen Degradation in Low Earth Orbit and in a Plasma Etcher

    NASA Technical Reports Server (NTRS)

    Townsend, Jacqueline A.; Park, Gloria

    1997-01-01

    In low Earth orbit (LEO) significant degradation of certain materials occurs from exposure to atomic oxygen (AO). Orbital opportunities to study this degradation for specific materials are limited and expensive. While plasma etchers are commonly used in ground-based studies because of their low cost and convenience, the environment produced in an etcher chamber differs greatly from the LEO environment. Because of the differences in environment, the validity of using etcher data has remained an open question. In this paper, degradation data for 22 materials from the orbital experiment Evaluation of Oxygen Interaction with Materials (EOIM-3) are compared with data from EOIM-3 control specimens exposed in a typical plasma etcher. This comparison indicates that, when carefully considered, plasma etcher results can produce order-of-magnitude estimates of orbital degradation. This allows the etcher to be used to screen unacceptable materials from further, more expensive tests.

  5. Pre-Clinical Testing of New Hydroxybutyrate Analogues

    DTIC Science & Technology

    2012-07-01

    representative of any past or future Batches/Lots. The methodology and/or techniques of analysis used to obtailrthese results may or may not be...purpose. For additional information regarding this product and its analysis , please contact your Eastman representative. This material is NOT for human...COMPOSITION INFORMATION ON INGREDIENTS (Typical romposition is given. and it may vaty. A cerlifica /8 of analysis em be provided, if avalabl8.) WeiQht

  6. Microchannel plate special nuclear materials sensor

    NASA Astrophysics Data System (ADS)

    Feller, W. B.; White, P. L.; White, P. B.; Siegmund, O. H. W.; Martin, A. P.; Vallerga, J. V.

    2011-10-01

    Nova Scientific Inc., is developing for the Domestic Nuclear Detection Office (DNDO SBIR #HSHQDC-08-C-00190), a solid-state, high-efficiency neutron detection alternative to 3He gas tubes, using neutron-sensitive microchannel plates (MCPs) containing 10B and/or Gd. This work directly supports DNDO development of technologies designed to detect and interdict nuclear weapons or illicit nuclear materials. Neutron-sensitized MCPs have been shown theoretically and more recently experimentally, to be capable of thermal neutron detection efficiencies equivalent to 3He gas tubes. Although typical solid-state neutron detectors typically have an intrinsic gamma sensitivity orders of magnitude higher than that of 3He gas detectors, we dramatically reduce gamma sensitivity by combining a novel electronic coincidence rejection scheme, employing a separate but enveloping gamma scintillator. This has already resulted in a measured gamma rejection ratio equal to a small 3He tube, without in principle sacrificing neutron detection efficiency. Ongoing improvements to the MCP performance as well as the coincidence counting geometry will be described. Repeated testing and validation with a 252Cf source has been underway throughout the Phase II SBIR program, with ongoing comparisons to a small commercial 3He gas tube. Finally, further component improvements and efforts toward integration maturity are underway, with the goal of establishing functional prototypes for SNM field testing.

  7. Specimens and Reusable Fixturing for Testing Advanced Aeropropulsion Materials Under In-Plane Biaxial Loading. Part 1; Results of Conceptual Design Study

    NASA Technical Reports Server (NTRS)

    Ellis, J. R.; Sandlass, G. S.; Bayyari, M.

    2001-01-01

    A design study was undertaken to investigate the feasibility of using simple specimen designs and reusable fixturing for in-plane biaxial tests planned for advanced aeropropulsion materials. Materials of interest in this work include: advanced metallics, polymeric matrix composites, metal and intermetallic matrix composites, and ceramic matrix composites. Early experience with advanced metallics showed that the cruciform specimen design typically used in this type of testing was impractical for these materials, primarily because of concerns regarding complexity and cost. The objective of this research was to develop specimen designs, fixturing, and procedures which would allow in-plane biaxial tests to be conducted on a wide range of aeropropulsion materials while at the same time keeping costs within acceptable limits. With this goal in mind. a conceptual design was developed centered on a specimen incorporating a relatively simple arrangement of slots and fingers for attachment and loading purposes. The ANSYS finite element code was used to demonstrate the feasibility of the approach and also to develop a number of optimized specimen designs. The same computer code was used to develop the reusable fixturing needed to position and grip the specimens in the load frame. The design adopted uses an assembly of slotted fingers which can be reconfigured as necessary to obtain optimum biaxial stress states in the specimen gage area. Most recently, prototype fixturing was manufactured and is being evaluated over a range of uniaxial and biaxial loading conditions.

  8. Use of DSC and DMA Techniques to Help Investigate a Material Anomaly for PTFE Used in Processing a Piston Cup for the Urine Processor Assembly (UPA) on International Space Station (ISS)

    NASA Technical Reports Server (NTRS)

    Wingard, Doug

    2010-01-01

    Human urine and flush water are eventually converted into drinking water with the Urine Processor Assembly (UPA) aboard the International Space Station (ISS). This conversion is made possible through the Distillation Assembly (DA) of the UPA. One component of the DA is a molded circular piston cup made of virgin polytetrafluoroethylene (PTFE). The piston cup is assembled to a titanium component using eight fasteners and washers. Molded PTFE produced for spare piston cups in the first quarter of 2010 was different in appearance and texture, and softer than material molded for previous cups. For the suspect newer PTFE material, cup fasteners were tightened to only one-half the required torque value, yet the washers embedded almost halfway into the material. The molded PTFE used in the DA piston cup should be Type II, based on AMS 3667D and ASTM D4894 specifications. The properties of molded PTFE are considerably different between Type I and II materials. Engineers working with the DA thought that if Type I PTFE was molded by mistake instead of Type II material, that could have resulted in the anomalous material properties. Typically, the vendor molds flat sheet PTFE from the same material lot used to mold the piston cups, and tensile testing as part of quality control should verify that the PTFE is Type II material. However, for this discrepant lot of material, such tensile data was not available. Differential scanning calorimetry (DSC) and dynamic mechanical analysis (DMA) were two of the testing techniques used at the NASA/Marshall Space Flight Center (MSFC) to investigate the anomaly for the PTFE material. Other techniques used on PTFE specimens were: Shore D hardness testing, tensile testing on dog bone specimens and a qualitative estimation of porosity by optical and scanning electron microscopy.

  9. Experimental investigation of the strength and failure behavior of layered sandstone under uniaxial compression and Brazilian testing

    NASA Astrophysics Data System (ADS)

    Yin, Peng-Fei; Yang, Sheng-Qi

    2018-05-01

    As a typical inherently anisotropic rock, layered sandstones can differ from each other in several aspects, including grain size, type of material, type of cementation, and degree of compaction. An experimental study is essential to obtain and convictive evidence to characterize the mechanical behavior of such rock. In this paper, the mechanical behavior of a layered sandstone from Xuzhou, China, is investigated under uniaxial compression and Brazilian test conditions. The loading tests are conducted on 7 sets of bedding inclinations, which are defined as the angle between the bedding plane and horizontal direction. The uniaxial compression strength (UCS) and elastic modulus values show an undulatory variation when the bedding inclination increases. The overall trend of the UCS and elastic modulus values with bedding inclination is decreasing. The BTS value decreases with respect to the bedding inclination and the overall trend of it is approximating a linear variation. The 3D digital high-speed camera images reveal that the failure and fracture of a specimen are related to the surface deformation. Layered sandstone tested under uniaxial compression does not show a typical failure mode, although shear slip along the bedding plane occurs at high bedding inclinations. Strain gauge readings during the Brazilian tests indicate that the normal stress on the bedding plane transforms from compression to tension as the bedding inclination increases. The stress parallel to the bedding plane in a rock material transforms from tension to compression and agrees well with the fracture patterns; "central fractures" occur at bedding inclinations of 0°-75°, "layer activation" occurs at high bedding inclinations of 75°-90°, and a combination of the two occurs at 75°.

  10. A Monte Carlo approach applied to ultrasonic non-destructive testing

    NASA Astrophysics Data System (ADS)

    Mosca, I.; Bilgili, F.; Meier, T.; Sigloch, K.

    2012-04-01

    Non-destructive testing based on ultrasound allows us to detect, characterize and size discrete flaws in geotechnical and architectural structures and materials. This information is needed to determine whether such flaws can be tolerated in future service. In typical ultrasonic experiments, only the first-arriving P-wave is interpreted, and the remainder of the recorded waveform is neglected. Our work aims at understanding surface waves, which are strong signals in the later wave train, with the ultimate goal of full waveform tomography. At present, even the structural estimation of layered media is still challenging because material properties of the samples can vary widely, and good initial models for inversion do not often exist. The aim of the present study is to combine non-destructive testing with a theoretical data analysis and hence to contribute to conservation strategies of archaeological and architectural structures. We analyze ultrasonic waveforms measured at the surface of a variety of samples, and define the behaviour of surface waves in structures of increasing complexity. The tremendous potential of ultrasonic surface waves becomes an advantage only if numerical forward modelling tools are available to describe the waveforms accurately. We compute synthetic full seismograms as well as group and phase velocities for the data. We invert them for the elastic properties of the sample via a global search of the parameter space, using the Neighbourhood Algorithm. Such a Monte Carlo approach allows us to perform a complete uncertainty and resolution analysis, but the computational cost is high and increases quickly with the number of model parameters. Therefore it is practical only for defining the seismic properties of media with a limited number of degrees of freedom, such as layered structures. We have applied this approach to both synthetic layered structures and real samples. The former contributed to benchmark the propagation of ultrasonic surface waves in typical materials tested with a non-destructive technique (e.g., marble, unweathered and weathered concrete and natural stone).

  11. Determination of mechanical properties of carbon/epoxy plates by tensile stress test

    NASA Astrophysics Data System (ADS)

    Bere, Paul; Krolczyk, Jolanta B.

    2017-10-01

    The polymeric composite materials used in aerospace, military, medical or racing cars manufacturing end up being used in our daily life Whether we refer to the performing vehicles, subassemblies or parts for aircrafts, wind, telegraph poles, or medical prostheses they all are present in our lives and they are made of composite materials (CM). This paper presents research regarding three different composite materials, plates by carbon fiber, in epoxy matrix. Starting with materials presentation, manufacturing methodology and determination of mechanical properties at carbon fiber/epoxy were done. Vacuum bag technology to obtain the composite structure offer opportunity to get a very compact and homogeny composite structure. For the moment this technology are adequate for high performances pieces. The mechanical characteristics of plates made of composite materials reinforced presented indicates closed value like metal materials. Based on the results, a comparative study between the reinforced materials typically used to manufacture the plates of CM is carried out.

  12. Species identification of Cannabis sativa using real-time quantitative PCR (qPCR).

    PubMed

    Johnson, Christopher E; Premasuthan, Amritha; Satkoski Trask, Jessica; Kanthaswamy, Sree

    2013-03-01

    Most narcotics-related cases in the United States involve Cannabis sativa. Material is typically identified based on the cystolithic hairs on the leaves and with chemical tests to identify of the presence of cannabinoids. Suspect seeds are germinated into a viable plant so that morphological and chemical tests can be conducted. Seed germination, however, causes undue analytical delays. DNA analyses that involve the chloroplast and nuclear genomes have been developed for identification of C. sativa materials, but they require several nanograms of template DNA. Using the trnL 3' exon-trnF intragenic spacer regions within the C. sativa chloroplast, we have developed a real-time quantitative PCR assay that is capable of identifying picogram amounts of chloroplast DNA for species determination of suspected C. sativa material. This assay provides forensic science laboratories with a quick and reliable method to identify an unknown sample as C. sativa. © 2013 American Academy of Forensic Sciences.

  13. Effect of Temperature on Galling Behavior of SS 316, 316 L and 416 Under Self-Mated Condition

    NASA Astrophysics Data System (ADS)

    Harsha, A. P.; Limaye, P. K.; Tyagi, Rajnesh; Gupta, Ankit

    2016-11-01

    Galling behavior of three different stainless steels (SS 316, 316 L and 416) was evaluated at room temperature and 300 °C under a self-mated condition. An indigenously fabricated galling tester was used to evaluate the galling performance of mated materials as per ASTM G196-08 standard. The variation in frictional torque was recorded online during the test to assess the onset of galling. The galling50 (G50) stress value was used to compare the galling resistance of a combination of materials, and the results indicate a significant influence of temperature on the galling resistance of the materials tested. This has been attributed to the decrease in hardness and yield strength at elevated temperature which results in softening of the steel and limits its ability to resist severe deformation. Scanning electron micrographs of the galled surface reflected a severe plastic deformation in sliding direction, and a typical adhesive wear mechanism is prevalent during the galling process.

  14. Corrosion Evaluation of Stellite Alloys 12 and 712

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mickalonis, J.I.

    2000-10-30

    The High Level Waste Division requested the Materials Technology Section (MTS) to evaluate the use of Waukesha Metal 88 (WM88) and Stellite alloys 12 (S12) and 712 (S712) as materials of construction for slurry pumps. As candidate materials, WM88 was chosen for the tilt pad column bearings and S12 and S712 were selected for the impeller bearings. The Stellite alloys are cobalt-based alloys typically used for their resistance to both corrosion and wear. WM88 is noted for resistance to galling and seizing. These materials, however, had not been evaluated for use in high level radioactive waste, which have a highmore » pH. A series of electrochemical corrosion tests were performed in support of this evaluation to determine the general corrosion rate and corrosion characteristics of these alloys. The tests were conducted at room temperature in simulated three waste tank environments. For WM88, the test solution was inhibited water, which is commonly used in the tank farm. For S12 and S712, the test solutions were a simulated Tank 8 waste solution and a 3 M sodium hydroxide solution. The general corrosion rates of all alloys in these solutions were less than 0.1 mils per year (mpy). The alloys displayed passive behavior in these solutions due to the protective nature of their oxides.« less

  15. Design of a Resistively Heated Thermal Hydraulic Simulator for Nuclear Rocket Reactor Cores

    NASA Technical Reports Server (NTRS)

    Litchford, Ron J.; Foote, John P.; Ramachandran, Narayanan; Wang, Ten-See; Anghaie, Samim

    2007-01-01

    A preliminary design study is presented for a non-nuclear test facility which uses ohmic heating to replicate the thermal hydraulic characteristics of solid core nuclear reactor fuel element passages. The basis for this testing capability is a recently commissioned nuclear thermal rocket environments simulator, which uses a high-power, multi-gas, wall-stabilized constricted arc-heater to produce high-temperature pressurized hydrogen flows representative of reactor core environments, excepting radiation effects. Initially, the baseline test fixture for this non-nuclear environments simulator was configured for long duration hot hydrogen exposure of small cylindrical material specimens as a low cost means of evaluating material compatibility. It became evident, however, that additional functionality enhancements were needed to permit a critical examination of thermal hydraulic effects in fuel element passages. Thus, a design configuration was conceived whereby a short tubular material specimen, representing a fuel element passage segment, is surrounded by a backside resistive tungsten heater element and mounted within a self-contained module that inserts directly into the baseline test fixture assembly. With this configuration, it becomes possible to create an inward directed radial thermal gradient within the tubular material specimen such that the wall-to-gas heat flux characteristics of a typical fuel element passage are effectively simulated. The results of a preliminary engineering study for this innovative concept are fully summarized, including high-fidelity multi-physics thermal hydraulic simulations and detailed design features.

  16. TOPICAL REVIEW: Tribology of dental materials: a review

    NASA Astrophysics Data System (ADS)

    Zhou, Z. R.; Zheng, J.

    2008-06-01

    The application of tribology in dentistry is a growing and rapidly expanding field. Intensive research has been conducted to develop an understanding of dental tribology for successful design and selection of artificial dental materials. In this paper, the anatomy and function of human teeth is presented in brief, three types of current artificial dental materials are summarized, and their advantages and disadvantages, as well as typical clinical applications, are compared based on the literature. Possible tribological damage of tooth structure, which is induced by complex interfacial motion, and friction-wear test methods are reported. According to results obtained by the authors and from the literature, the main progress in the area of dental tribology on both natural teeth and artificial dental materials is reviewed. Problems and challenges are discussed and future research directions for dental tribology are recommended.

  17. Ballistic Puncture Self-Healing Polymeric Materials

    NASA Technical Reports Server (NTRS)

    Gordon, Keith L.; Siochi, Emilie J.; Yost, William T.; Bogert, Phil B.; Howell, Patricia A.; Cramer, K. Elliott; Burke, Eric R.

    2017-01-01

    Space exploration launch costs on the order of $10,000 per pound provide an incentive to seek ways to reduce structural mass while maintaining structural function to assure safety and reliability. Damage-tolerant structural systems provide a route to avoiding weight penalty while enhancing vehicle safety and reliability. Self-healing polymers capable of spontaneous puncture repair show promise to mitigate potentially catastrophic damage from events such as micrometeoroid penetration. Effective self-repair requires these materials to quickly heal following projectile penetration while retaining some structural function during the healing processes. Although there are materials known to possess this capability, they are typically not considered for structural applications. Current efforts use inexpensive experimental methods to inflict damage, after which analytical procedures are identified to verify that function is restored. Two candidate self-healing polymer materials for structural engineering systems are used to test these experimental methods.

  18. Grout Isolation and Stabilization of Structures and Materials within Nuclear Facilities at the U.S. Department of Energy, Hanford Site, Summary - 12309

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Phillips, S.J.; Phillips, M.; Etheridge, D.

    2012-07-01

    Per regulatory agreement and facility closure design, U.S. Department of Energy Hanford Site nuclear fuel cycle structures and materials require in situ isolation in perpetuity and/or interim physicochemical stabilization as a part of final disposal or interim waste removal, respectively. To this end, grout materials are being used to encase facilities structures or are being incorporated within structures containing hazardous and radioactive contaminants. Facilities where grout materials have been recently used for isolation and stabilization include: (1) spent fuel separations, (2) uranium trioxide calcining, (3) reactor fuel storage basin, (4) reactor fuel cooling basin transport rail tanker cars and casks,more » (5) cold vacuum drying and reactor fuel load-out, and (6) plutonium fuel metal finishing. Grout components primarily include: (1) portland cement, (2) fly ash, (3) aggregate, and (4) chemical admixtures. Mix designs for these typically include aggregate and non aggregate slurries and bulk powders. Placement equipment includes: (1) concrete piston line pump or boom pump truck for grout slurry, (2) progressive cavity and shearing vortex pump systems, and (3) extendable boom fork lift for bulk powder dry grout mix. Grout slurries placed within the interior of facilities were typically conveyed utilizing large diameter slick line and the equivalent diameter flexible high pressure concrete conveyance hose. Other facilities requirements dictated use of much smaller diameter flexible grout conveyance hose. Placement required direct operator location within facilities structures in most cases, whereas due to radiological dose concerns, placement has also been completed remotely with significant standoff distances. Grout performance during placement and subsequent to placement often required unique design. For example, grout placed in fuel basin structures to serve as interim stabilization materials required sufficient bearing i.e., unconfined compressive strength, to sustain heavy equipment yet, low breakout force to permit efficient removal by track hoe bucket or equivalent construction equipment. Further, flow of slurries through small orifice geometries of moderate head pressures was another typical design requirement. Phase separation of less than 1 percent was a typical design requirement for slurries. On the order of 30,000 cubic meters of cementitious grout have recently been placed in the above noted U.S. Department of Energy Hanford Site facilities or structures. Each has presented a unique challenge in mix design, equipment, grout injection or placement, and ultimate facility or structure performance. Unconfined compressive and shear strength, flow, density, mass attenuation coefficient, phase separation, air content, wash-out, parameters and others, unique to each facility or structure, dictate the grout mix design for each. Each mix design was tested under laboratory and scaled field conditions as a precursor to field deployment. Further, after injection or placement of each grout formulation, the material was field inspected either by standard laboratory testing protocols, direct physical evaluation, or both. (authors)« less

  19. Stress distribution in composite flatwise tension test specimens

    NASA Technical Reports Server (NTRS)

    Scott, Curtis A.; Pereira, J. Michael

    1993-01-01

    A finite element analysis was conducted to determine the stress distribution in typical graphite/epoxy composite flat wise tension (FWT) specimens under normal loading conditions. The purpose of the analysis was to determine the relationship between the applied load and the stress in the sample to evaluate the validity of the test as a means of measuring the out-of-plane strength of a composite laminate. Three different test geometries and three different material lay ups were modeled. In all cases, the out-of-plane component of stress in the test section was found to be uniform, with no stress concentrations, and very close to the nominal applied stress. The stress in the sample was found to be three-dimensional, and the magnitude of in-plane normal and shear stresses varied with the anisotropy of the test specimen. However, in the cases considered here, these components of stress were much smaller than the out-of-plane normal stress. The geometry of the test specimen had little influence on the results. It was concluded that the flat wise tension test provides a good measure of the out-of-plane strength for the representative materials that were studied.

  20. Towards zero industrial waste: Utilisation of brick dust waste in sustainable construction.

    PubMed

    Kinuthia, J M; Nidzam, R M

    2011-08-01

    Laboratory investigations were carried out to establish the potential utilisation of brick dust (BD) in construction. The dust is a waste material from the cutting of fired clay bricks. Currently, the disposal of the dust is a problem to the brick fabrication company, and hence an environmental pollution concern. The dust was stabilised either used on its own or in combination with Pulverised Fuel Ash (PFA), a by-product material from coal combustion. The traditional stabilisers of lime and/or Portland Cement (PC) were used as controls. The main aim was to use a sustainable stabiliser material, where these stabilisers were partially replaced with Ground Granulated Blastfurnace Slag (GGBS), a by-product material from steel manufacture. Compacted cylinder test specimens were made at typical stabiliser contents and moist cured for up to 56 days prior to testing for compressive and California Bearing Ratio (CBR) strength tests, and to linear expansion during moist curing and subsequent soaking in water. The results obtained showed that partial substitution of the dust with PFA resulted in stronger material compared to using it on its own. The blended stabilisers achieved better performance. These results suggest technological, economic as well as environmental advantages of using the brick dust and similar industrial by-products to achieve sustainable infrastructure development with near zero industrial waste. Copyright © 2011 Elsevier Ltd. All rights reserved.

  1. Post-impact fatigue of cross-plied, through-the-thickness reinforced carbon/epoxy composites

    NASA Astrophysics Data System (ADS)

    Serdinak, Thomas E.

    1994-05-01

    An experimental investigation of the post-impact fatigue response of integrally woven carbon/epoxy composites was conducted. Five different through-the-thickness (TTT) reinforcing fibers were used in an experimental textile process that produced an integrally woven (0/90/0/90/0/90/0/90/0)(sub T) ply layup with 21K AS4 carbon tow fiber. The resin was Hercules 3501-6, and the five TTT reinforcing fibers were Kevlar, Toray carbon, AS4 carbon, glass, and IM6 carbon. The purpose of this investigation was to study the post-impact fatigue response of these material systems and to identify the optimum TTT fiber. Samples were impacted with one half inch diameter aluminum balls with an average velocity of 543 ft/sec. Post-impact static compression and constant amplitude tension-compression fatigue tests were conducted. Fatigue tests were conducted with a loading ratio of R=-5, and frequency of 4 Hz. Damage growth was monitored using x-radiographic and sectioning techniques and by examining the stress-strain response (across the impact site) throughout the fatigue tests. The static compressive stress versus far-field strain response was nearly linear for all material groups. All the samples had a transverse shear failure mode. The average compressive modulus (from far-field strain) was about 10 Msi. The average post-impact static compressive strength was about 35.5 Ksi. The IM6 carbon sample had a strength of over 40 Ksi, more than 16 percent stronger than average. There was considerable scatter in the S-N data. However, the IM6 carbon samples clearly had the best fatigue response. The response of the other materials, while worse than IM6 carbon, could not be ranked definitively. The initial damage zones caused by the impact loading and damage growth from fatigue loading were similar for all five TTT reinforcing materials. The initial damage zones were circular and consisted of delaminations, matrix cracks and ply cracks.

  2. Post-impact fatigue of cross-plied, through-the-thickness reinforced carbon/epoxy composites. M.S. Thesis - Clemson Univ.

    NASA Technical Reports Server (NTRS)

    Serdinak, Thomas E.

    1994-01-01

    An experimental investigation of the post-impact fatigue response of integrally woven carbon/epoxy composites was conducted. Five different through-the-thickness (TTT) reinforcing fibers were used in an experimental textile process that produced an integrally woven (0/90/0/90/0/90/0/90/0)(sub T) ply layup with 21K AS4 carbon tow fiber. The resin was Hercules 3501-6, and the five TTT reinforcing fibers were Kevlar, Toray carbon, AS4 carbon, glass, and IM6 carbon. The purpose of this investigation was to study the post-impact fatigue response of these material systems and to identify the optimum TTT fiber. Samples were impacted with one half inch diameter aluminum balls with an average velocity of 543 ft/sec. Post-impact static compression and constant amplitude tension-compression fatigue tests were conducted. Fatigue tests were conducted with a loading ratio of R=-5, and frequency of 4 Hz. Damage growth was monitored using x-radiographic and sectioning techniques and by examining the stress-strain response (across the impact site) throughout the fatigue tests. The static compressive stress versus far-field strain response was nearly linear for all material groups. All the samples had a transverse shear failure mode. The average compressive modulus (from far-field strain) was about 10 Msi. The average post-impact static compressive strength was about 35.5 Ksi. The IM6 carbon sample had a strength of over 40 Ksi, more than 16 percent stronger than average. There was considerable scatter in the S-N data. However, the IM6 carbon samples clearly had the best fatigue response. The response of the other materials, while worse than IM6 carbon, could not be ranked definitively. The initial damage zones caused by the impact loading and damage growth from fatigue loading were similar for all five TTT reinforcing materials. The initial damage zones were circular and consisted of delaminations, matrix cracks and ply cracks. Post-impact fatigue loading caused delamination growth, ply cracking and fiber bundle failures, typically 45 deg from impact load direction. During the initial 97 percent of fatigue life, delaminations, ply cracks and fiber bundle failures primarily grew at and near the impact site. During the final 3 percent of life, damage grew rapidly transverse to the loading direction as a through-the-thickness transverse shear failure. The stress-strain response was typically linear during the initial 50 percent of life, and stiffness dropped about 20 percent during this period. During the next 47 percent of life, stiffness dropped about 34 percent, and the stress-strain response was no longer linear. The stiffness decreased about 23 percent during the final 3 percent of life. These trends were typical of all the materials tested. Therefore, by monitoring stiffness loss, fatigue failure could be accurately anticipated.

  3. Manufacture and quality control of interconnecting wire hardnesses, Volume 1

    NASA Technical Reports Server (NTRS)

    1972-01-01

    A standard is presented for manufacture, installation, and quality control of eight types of interconnecting wire harnesses. The processes, process controls, and inspection and test requirements reflected are based on acknowledgment of harness design requirements, acknowledgment of harness installation requirements, identification of the various parts, materials, etc., utilized in harness manufacture, and formulation of a typical manufacturing flow diagram for identification of each manufacturing and quality control process, operation, inspection, and test. The document covers interconnecting wire harnesses defined in the design standard, including type 1, enclosed in fluorocarbon elastomer convolute, tubing; type 2, enclosed in TFE convolute tubing lines with fiberglass braid; type 3, enclosed in TFE convolute tubing; and type 5, combination of types 3 and 4. Knowledge gained through experience on the Saturn 5 program coupled with recent advances in techniques, materials, and processes was incorporated.

  4. Anchored nanostructure materials and method of fabrication

    DOEpatents

    Seals, Roland D; Menchhofer, Paul A; Howe, Jane Y; Wang, Wei

    2012-11-27

    Anchored nanostructure materials and methods for their fabrication are described. The anchored nanostructure materials may utilize nano-catalysts that include powder-based or solid-based support materials. The support material may comprise metal, such as NiAl, ceramic, a cermet, or silicon or other metalloid. Typically, nanoparticles are disposed adjacent a surface of the support material. Nanostructures may be formed as anchored to nanoparticles that are adjacent the surface of the support material by heating the nano-catalysts and then exposing the nano-catalysts to an organic vapor. The nanostructures are typically single wall or multi-wall carbon nanotubes.

  5. In-flight and laboratory vacuum-friction test results

    NASA Technical Reports Server (NTRS)

    Devine, E. J.; Evans, H. E.; Leasure, W. A.

    1973-01-01

    Coefficient of friction measurements were made for six unlubricated metal couples exposed to the space environment aboard the OV-1-13 spacecraft and exposed to laboratory vacuum. Materials studied included mutually soluble, partially soluble, and insoluble metal combinations. Two samples of each material couple were tested in space and in the laboratory using the disk and rider technique. Linear velocity was 0.10 cm/s (2.5 in/min) and rider normal load was 4.45 N (1 lb) for the gold versus silver couples and 8.90 N (2lb) for the other combinations. Results showed that friction data obtained in a clean ion-pumped laboratory vacuum of 10 to the minus 10 power materials with low mutual solubility can be correlated to operation in the vicinity of a typical scientific spacecraft that is exposed to an ambient pressure as low as 10 to the minus 12 power torr. The expected increase in coefficient of friction with solubility was shown. Material couples with high mutual solubility present the hazard of unpredictable drastic friction increase in orbit which may not be evident in laboratory testing at levels down to 10 to the minus 10 power torr. It was also shown that gross cold welding of unlubricated metals exposed to a satellite environment does not occur.

  6. Life prediction and constitutive models for engine hot section anisotropic materials

    NASA Technical Reports Server (NTRS)

    Swanson, G. A.; Linask, I.; Nissley, D. M.; Norris, P. P.; Meyer, T. G.; Walker, K. P.

    1987-01-01

    The results are presented of a program designed to develop life prediction and constitutive models for two coated single crystal alloys used in gas turbine airfoils. The two alloys are PWA 1480 and Alloy 185. The two oxidation resistant coatings are PWA 273, an aluminide coating, and PWA 286, an overlay NiCoCrAlY coating. To obtain constitutive and fatigue data, tests were conducted on uncoated and coated specimens loaded in the CH76 100 CH110 , CH76 110 CH110 , CH76 111 CH110 and CH76 123 CH110 crystallographic directions. Two constitutive models are being developed and evaluated for the single crystal materials: a micromechanic model based on crystallographic slip systems, and a macroscopic model which employs anisotropic tensors to model inelastic deformation anisotropy. Based on tests conducted on the overlay coating material, constitutive models for coatings also appear feasible and two initial models were selected. A life prediction approach was proposed for coated single crystal materials, including crack initiation either in the coating or in the substrate. The coating initiated failures dominated in the tests at load levels typical of gas turbine operation. Coating life was related to coating stress/strain history which was determined from specimen data using the constitutive models.

  7. Precision Mechanical Measurement Using the Levitation Mass Method (LMM)

    NASA Astrophysics Data System (ADS)

    Fujii, Yusaku; Jin, Tao; Maru, Koichi

    2010-12-01

    The present status and the future prospects of a method for precision mass and force measurement, the levitation mass method (LMM), are reviewed. The LMM has been proposed and improved by the authors. In the LMM, the inertial force of a mass levitated using a pneumatic linear bearing is used as the reference force applied to the objects under test, such as force transducers, materials or structures. The inertial force of the levitated mass is measured using an optical interferometer. The three typical applications of the LMM, i.e. the dynamic force calibration, the micro force material tester and the space scale, are reviewed in this paper.

  8. Erosion Coatings Developed to Increase the Life and Durability of Composites

    NASA Technical Reports Server (NTRS)

    Sutter, James K.; Naik, Subhash K.; Bowman, Cheryl L.; Siefker, Robert; Miyoshi, Kazuhisa; Perusek, Gail P.

    2004-01-01

    Both the NASA Glenn Research Center and the Allison Advanced Development Company (AADC) have worked to develop and demonstrate erosion-resistant coatings that would increase the life and durability of composite materials used in commercial aircraft engines. These composite materials reduce component weight by 20 to 30 percent and result in less fuel burn and emissions and more fuel savings. Previously, however, their use was limited because of poor erosion resistance, which causes concerns about safety and leads to high maintenance costs. The coatings were tested by the University of Cincinnati, and the composites were manufactured by Texas Composites and coated by Engelhard and NASA Glenn. Rolls-Royce Corporation uses composite materials, which are stronger and less dense than steel or titanium, to make bypass vanes for their AE3007 engines. These engines are widely used in regional jet aircraft (Embraer) and unmanned air vehicles such as the Northrop Grumman Global Hawk. Coatings developed by NASA/Rolls-Royce can reduce erosion from abrasive materials and from impurities in the air that pass over these vanes, allowing Rolls-Royce to take advantage of the benefits of composite materials over titanium without the added costs of increased maintenance and/or engine failure. The Higher Operating Temperature Propulsion Components (HOTPC) Project developed cost-effective, durable coatings as part of NASA's goal to increase aviation system capacity growth. These erosion coatings will reduce the number of special inspections or instances of discontinued service due to erosion, allowing aircraft capacity to be maintained without inconveniencing the traveling public. A specific example of extending component life showed that these coatings increased the life of graphite fiber and polymer composite bypass vanes up to 8 times over that of the uncoated vanes. This increased durability allows components to operate to full design life without the fear of wear or failure. Recently, Rolls-Royce completed over 2000 hr of engine testing with the coated fan exit bypass vanes. There was no loss of coating after nearly 5000 typical engine cycles. Midway through the engine tests, the coated vanes were removed from the engine during a scheduled maintenance and inspection period. The vanes were shipped back to Glenn, where they underwent further stress testing in the Structural Dynamics Lab, mimicking more extreme conditions than those typical of the AE3007 engine cycle. These vanes were then replaced in the AE3007 and subjected to another 1000 hr of engine tests. Once again, there was no loss of coating and only a minimal appearance of cracking.

  9. Investigation of a Wedge Adhesion Test for Edge Seals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kempe, Michael; Wohlgemuth, John; Miller, David

    2016-09-26

    Many photovoltaic (PV) technologies have been found to be sensitive to moisture that diffuses into a PV package. Even with the use of impermeable frontsheets and backsheets, moisture can penetrate from the edges of a module. To limit this moisture ingress pathway from occurring, manufacturers often use a low permeability polyisobutylene (PIB) based edge seal filled with desiccant to further restrict moisture ingress. Moisture ingress studies have shown that these materials are capable of blocking moisture for the 25-year life of a module; but to do so, they must remain well-adhered and free of cracks. This work focuses on adaptingmore » the Boeing Wedge test for use with edge seals laminated using glass substrates as part of a strategy to assess the long-term durability of edge seals. The advantage of this method is that it duplicates the residual stresses and strains that a glass/glass module may have when the lamination process results in some residual glass bending that puts the perimeter in tension. Additionally, this method allows one to simultaneously expose the material to thermal stress, humidity, mechanical stress, and ultraviolet radiation. The disadvantage of this method generally is that we are limited by the fracture toughness of the glass substrates that the edge seal is adhered to. However, the low toughness of typical uncrosslinked or sparsely crosslinked PIB makes them suitable for this technique. We present data obtained during the development of the wedge test for use with PV edge seal materials. This includes development of the measuring techniques and evaluation of the test method with relevant materials. We find consistent data within a given experiment, along with the theoretical independence of fracture toughness measurements with wedge thickness. This indicates that the test methodology is reproducible. However, even though individual experimental sets are consistent, the reproducibility between experimental sets is poor. We believe this may be due to inconsistencies in sample history, sample batch, or small changes in sample preparation/assembly from one month to the next. Because the fracture strength of typical edge seal materials is so low, they cannot be relied upon for mechanical strength. A small stress or strain on the edge seal is capable of promoting delamination or tearing causing the edge seal to fail. Because of this, edge seals are very dependent on the processing and construction parameters in the full size PV module such that any long term evaluation of their durability must be conducted on full size modules to be accurate.« less

  10. Experimental and theoretical investigation of fatigue life in reusable rocket thrust chambers

    NASA Technical Reports Server (NTRS)

    Hannum, N. P.; Kasper, H. J.; Pavli, A. J.

    1976-01-01

    During a test program to investigate low-cycle thermal fatigue, 13 rocket combustion chambers were fabricated and cyclically test fired to failure. Six oxygen-free, high-conductivity (OFHC) copper and seven Amzirc chambers were tested. The failures in the OFHC copper chambers were not typical fatigue failures but are described as creep rupture enhanced by ratcheting. The coolant channels bulged toward the chamber centerline, resulting in progressive thinning of the wall during each cycle. The failures in the Amzirc alloy chambers were caused by low-cycle thermal fatigue. The zirconium in this alloy was not evenly distributed in the chamber materials. The life that was achieved was nominally the same as would have been predicted from OFHC copper isothermal test data.

  11. Evaluation of flawed composite structural components under static and cyclic loading. [fatigue life of graphite-epoxy composite materials

    NASA Technical Reports Server (NTRS)

    Porter, T. R.

    1979-01-01

    The effects of initial defects on the fatigue and fracture response of graphite-epoxy composite laminates are presented. The structural laminates investigated were a typical angle ply laminate, a polar/hoop wound pressure vessel laminate, and a typical engine fan blade laminate. Defects investigated were full and half penetration circular holes, full and half penetration slits, and countersink holes. The effects of the defect size and type on the static fracture strength, fatigue performance, and residual static strength are shown as well as the results of loadings on damage propagation in composite laminates. The data obtained were used to define proof test levels as a qualification procedure in composite structure subjected to cyclic loading.

  12. The Use of TOC Reconciliation as a Means of Establishing the Degree to Which Chromatographic Screening of Plastic Material Extracts for Organic Extractables Is Complete.

    PubMed

    Jenke, Dennis; Couch, Thomas R; Robinson, Sarah J; Volz, Trent J; Colton, Raymond H

    2014-01-01

    Extracts of plastic packaging, manufacturing, and delivery systems (or their materials of construction) are analyzed by chromatographic methods to establish the system's extractables profile. The testing strategy consists of multiple orthogonal chromatographic methods, for example, gas and liquid chromatography with multiple detection strategies. Although this orthogonal testing strategy is comprehensive, it is not necessarily complete and members of the extractables profile can elude detection and/or accurate identification/quantification. Because the chromatographic methods rarely indicate that some extractables have been missed, another means of assessing the completeness of the profiling activity must be established. If the extracts are aqueous and contain no organic additives (e.g., pH buffers), then they can be analyzed for their total organic carbon content (TOC). Additionally, the TOC of an extract can be calculated based on the extractables revealed by the screening analyses. The measured and calculated TOC can be reconciled to establish the completeness and accuracy of the extractables profile. If the reconciliation is poor, then the profile is either incomplete or inaccurate and additional testing is needed to establish the complete and accurate profile. Ten test materials and components of systems were extracted and their extracts characterized for organic extractables using typical screening procedures. Measured and calculated TOC was reconciled to establish the completeness of the revealed extractables profile. When the TOC reconciliation was incomplete, the profiling was augmented with additional analytical testing to reveal the missing members of the organic extractables profile. This process is illustrated via two case studies involving aqueous extracts of sterile filters. Plastic materials and systems used to manufacture, contain, store, and deliver pharmaceutical products are extracted and the extracts analyzed to establish the materials' (or systems') organic extractables profile. Such testing typically consists of multiple chromatographic approaches whose differences help to ensure that all organic extractables are revealed, measured, and identified. Nevertheless, this rigorous screening process is not infallible and certain organic extractables may elude detection. If the extraction medium is aqueous, the process of total organic carbon (TOC) reconciliation is proposed as a means of establishing when some organic extractables elude detection. In the reconciliation, the TOC of the extracts is both directly measured and calculated from the chromatographic data. The measured and calculated TOC is compared (or reconciled), and the degree of reconciliation is an indication of the completeness and accuracy of the organic extractables profiling. If the reconciliation is poor, then the extractables profile is either incomplete or inaccurate and additional testing must be performed to establish the complete and accurate profile. This article demonstrates the TOC reconciliation process by considering aqueous extracts of 10 different test articles. Incomplete reconciliations were augmented with additional testing to produce a more complete TOC reconciliation. © PDA, Inc. 2014.

  13. Simultaneous Contact Sensing and Characterizing of Mechanical and Dynamic Heat Transfer Properties of Porous Polymeric Materials

    PubMed Central

    Yao, Bao-Guo; Peng, Yun-Liang; Zhang, De-Pin

    2017-01-01

    Porous polymeric materials, such as textile fabrics, are elastic and widely used in our daily life for garment and household products. The mechanical and dynamic heat transfer properties of porous polymeric materials, which describe the sensations during the contact process between porous polymeric materials and parts of the human body, such as the hand, primarily influence comfort sensations and aesthetic qualities of clothing. A multi-sensory measurement system and a new method were proposed to simultaneously sense the contact and characterize the mechanical and dynamic heat transfer properties of porous polymeric materials, such as textile fabrics in one instrument, with consideration of the interactions between different aspects of contact feels. The multi-sensory measurement system was developed for simulating the dynamic contact and psychological judgment processes during human hand contact with porous polymeric materials, and measuring the surface smoothness, compression resilience, bending and twisting, and dynamic heat transfer signals simultaneously. The contact sensing principle and the evaluation methods were presented. Twelve typical sample materials with different structural parameters were measured. The results of the experiments and the interpretation of the test results were described. An analysis of the variance and a capacity study were investigated to determine the significance of differences among the test materials and to assess the gage repeatability and reproducibility. A correlation analysis was conducted by comparing the test results of this measurement system with the results of Kawabata Evaluation System (KES) in separate instruments. This multi-sensory measurement system provides a new method for simultaneous contact sensing and characterizing of mechanical and dynamic heat transfer properties of porous polymeric materials. PMID:29084152

  14. Simultaneous Contact Sensing and Characterizing of Mechanical and Dynamic Heat Transfer Properties of Porous Polymeric Materials.

    PubMed

    Yao, Bao-Guo; Peng, Yun-Liang; Zhang, De-Pin

    2017-10-30

    Porous polymeric materials, such as textile fabrics, are elastic and widely used in our daily life for garment and household products. The mechanical and dynamic heat transfer properties of porous polymeric materials, which describe the sensations during the contact process between porous polymeric materials and parts of the human body, such as the hand, primarily influence comfort sensations and aesthetic qualities of clothing. A multi-sensory measurement system and a new method were proposed to simultaneously sense the contact and characterize the mechanical and dynamic heat transfer properties of porous polymeric materials, such as textile fabrics in one instrument, with consideration of the interactions between different aspects of contact feels. The multi-sensory measurement system was developed for simulating the dynamic contact and psychological judgment processes during human hand contact with porous polymeric materials, and measuring the surface smoothness, compression resilience, bending and twisting, and dynamic heat transfer signals simultaneously. The contact sensing principle and the evaluation methods were presented. Twelve typical sample materials with different structural parameters were measured. The results of the experiments and the interpretation of the test results were described. An analysis of the variance and a capacity study were investigated to determine the significance of differences among the test materials and to assess the gage repeatability and reproducibility. A correlation analysis was conducted by comparing the test results of this measurement system with the results of Kawabata Evaluation System (KES) in separate instruments. This multi-sensory measurement system provides a new method for simultaneous contact sensing and characterizing of mechanical and dynamic heat transfer properties of porous polymeric materials.

  15. Stress analysis of advanced attack helicopter composite main rotor blade root end lug

    NASA Technical Reports Server (NTRS)

    Baker, D. J.

    1982-01-01

    Stress analysis of the Advanced Attack Helicopter (AAH) composite main rotor blade root end lug is described. The stress concentration factor determined from a finite element analysis is compared to an empirical value used in the lug design. The analysis and test data indicate that the stress concentration is primarily a function of configuration and independent of the range of material properties typical of Kevlar-49/epoxy and glass epoxy.

  16. Detectability of Delaminations in Solid Rocket Motors with Embedded Stress Sensors

    DTIC Science & Technology

    2012-05-04

    thick, respectively. The propellant is a typical HTPB/AP composite grain with an EPDM insulation layer. The temperature-dependent elastic mechanical...properties of HTPB/AP and EPDM were obtained from in-house testing at AFRL/RZSM (Edwards AFB). The motor case is assumed to be a filament-wound...collection of EPDM insulation material. REFERENCES   1 Ruderman, G. A., “Health Management Issues and Strategy for Air Force Missiles,” International

  17. Research on mechanical and sensoric set-up for high strain rate testing of high performance fibers

    NASA Astrophysics Data System (ADS)

    Unger, R.; Schegner, P.; Nocke, A.; Cherif, C.

    2017-10-01

    Within this research project, the tensile behavior of high performance fibers, such as carbon fibers, is investigated under high velocity loads. This contribution (paper) focuses on the clamp set-up of two testing machines. Based on a kinematic model, weight optimized clamps are designed and evaluated. By analyzing the complex dynamic behavior of conventional high velocity testing machines, it has been shown that the impact typically exhibits an elastic characteristic. This leads to barely predictable breaking speeds and will not work at higher speeds when acceleration force exceeds material specifications. Therefore, a plastic impact behavior has to be achieved, even at lower testing speeds. This type of impact behavior at lower speeds can be realized by means of some minor test set-up adaptions.

  18. Effect of shoe insert construction on foot and leg movement.

    PubMed

    Nigg, B M; Khan, A; Fisher, V; Stefanyshyn, D

    1998-04-01

    The purpose of this study was to quantify changes in foot eversion and tibial rotation during running resulting from systematic changes of material composition of five shoe inserts of the same shape. Tests were performed with 12 subjects. The inserts had a bilayer design using two different materials at the top and bottom of the insert. The functional kinematic variables examined in this study were the foot-leg in-eversion angle, beta, and the leg-foot tibial rotation, rho. Additionally, the subject characteristics of arch height, relative arch deformation, and active range of motion were quantified. The statistical analysis used was a two way repeated measures MANOVA (within trials and inserts). The average group changes resulting from the studied inserts in total shoe eversion, total foot eversion, and total internal tibial rotation were typically smaller than 1 degree when compared with the no-insert condition and were statistically not significant. The measured ranges of total foot eversion for all subjects were smallest for the softest and about twice as large for the hardest insert construction. Thus, the soft insert construction was more restrictive, forcing all feet into a similar movement pattern, whereas the harder combinations allowed for more individual variation of foot and leg movement and did not force the foot into a preset movement pattern. The individual results showed substantial differences between subjects and a trend: Subjects who generally showed a reduction of tibial rotation with all tested inserts typically had a flexible foot. However, subjects who generally showed an increase of tibial rotation typically had a stiff foot. The results of this study suggest that subject specific factors such as static, dynamic, and neuro-physiological characteristics of foot and leg are important to match specific feet and shoe inserts optimally.

  19. Foreign Object Damage Behavior of Two Gas-turbine Grade Silicon Nitrides by Steel Ball Projectiles at Ambient Temperature

    NASA Technical Reports Server (NTRS)

    Choi, Sung R.; Pereira, J. Michael; Janosik, Lesley A.; Bhatt, Ramakrishna T.

    2002-01-01

    Foreign object damage (FOD) behavior of two commercial gas-turbine grade silicon nitrides, AS800 and SN282, was determined at ambient temperature through strength testing of flexure test specimens impacted by steel-ball projectiles with a diameter of 1.59 mm in a velocity range from 220 to 440 m/s. AS800 silicon nitride exhibited a greater FOD resistance than SN282, primarily due to its greater value of fracture toughness (K(sub IC)). Additionally, the FOD response of an equiaxed, fine-grained silicon nitride (NC132) was also investigated to provide further insight. The NC132 silicon nitride exhibited the lowest fracture toughness of the three materials tested, providing further evidence that K(sub IC) is a key material parameter affecting FOD resistance. The observed damage generated by projectile impact was typically in the forms of well- or ill-developed ring or cone cracks with little presence of radial cracks.

  20. The Effects of Foam Thermal Protection System on the Damage Tolerance Characteristics of Composite Sandwich Structures for Launch Vehicles

    NASA Technical Reports Server (NTRS)

    Nettles, A. T.; Hodge, A. J.; Jackson, J. R.

    2011-01-01

    For any structure composed of laminated composite materials, impact damage is one of the greatest risks and therefore most widely tested responses. Typically, impact damage testing and analysis assumes that a solid object comes into contact with the bare surface of the laminate (the outer ply). However, most launch vehicle structures will have a thermal protection system (TPS) covering the structure for the majority of its life. Thus, the impact response of the material with the TPS covering is the impact scenario of interest. In this study, laminates representative of the composite interstage structure for the Ares I launch vehicle were impact tested with and without the planned TPS covering, which consists of polyurethane foam. Response variables examined include maximum load of impact, damage size as detected by nondestructive evaluation techniques, and damage morphology and compression after impact strength. Results show that there is little difference between TPS covered and bare specimens, except the residual strength data is higher for TPS covered specimens.

  1. USV UHTC- Based Nose And WLE Experimental Test In SCIROCCO And CFD Rebuilding

    NASA Astrophysics Data System (ADS)

    Marino, G.; De Filippis, F.; Di Clement, M.; Russo, G.

    2011-05-01

    It is well known that sharp aerodynamic configurations could provide much more efficiency in “flying” during the re-entry phase of spacecrafts, and/or the hypersonic cruise of futuristic aerospace planes. However such innovation in the design criteria, implies a dramatic increase of the localized heat fluxes at the stagnation points of the leading edges of the aerodynamic surfaces that, as matter of fact, might then require dedicated thermal protection systems, able to sustain thermal loads much higher than those typically experienced by conventional materials applied on blunt bodies. In this perspective CIRA started its own investigations on the design methodology [1], characterization methods, manufacturing procedures, and qualification tests of medium size components based on exotic ceramic materials able to sustain temperatures even exceeding 2000°C, the so called Ultra High Temperature Ceramics (UHTC’s). This paper summarizes CIRA experience achieved so far trough the test opportunities conducted on-ground in the SCIROCCO plasma wind tunnel.

  2. Particulate fuel bed tests

    NASA Astrophysics Data System (ADS)

    Horn, F. L.; Powell, J. R.; Savino, J. M.

    Gas-cooled reactors using packed beds of small-diameter, coated fuel particles have been proposed for compact, high-power systems. To test the thermal-hydraulic performance of the particulate reactor fuel under simulated reactor conditions, a bed of 800-micrometer diameter particles was heated by its electrical resistance current and cooled by flowing helium gas. The specific resistance of the bed composed of pyrocarbon-coated particles was measured at several temperatures, and found to be 0.09 ohm-cm at 1273 K and 0.06 ohm-cm at 1600 K. The maximum bed power density reached was 1500 W/cu cm at 1500 K. The pressure drop followed the packed-bed correlation, typically 100,000 Pa/cm. The various frit materials used to contain the bed were also tested to 2000 K in helium and hydrogen to determine their properties and reactions with the fuel. Rhenium metal, zirconium carbide, and zirconium oxide appeared to be the best candidate materials, while tungsten and tungsten-rhenium lost mass and strength.

  3. Results of Two-Stage Light-Gas Gun Development Efforts and Hypervelocity Impact Tests of Advanced Thermal Protection Materials

    NASA Technical Reports Server (NTRS)

    Cornelison, C. J.; Watts, Eric T.

    1998-01-01

    Gun development efforts to increase the launching capabilities of the NASA Ames 0.5-inch two-stage light-gas gun have been investigated. A gun performance simulation code was used to guide initial parametric variations and hardware modifications, in order to increase the projectile impact velocity capability to 8 km/s, while maintaining acceptable levels of gun barrel erosion and gun component stresses. Concurrent with this facility development effort, a hypervelocity impact testing series in support of the X-33/RLV program was performed in collaboration with Rockwell International. Specifically, advanced thermal protection system materials were impacted with aluminum spheres to simulate impacts with on-orbit space debris. Materials tested included AETB-8, AETB-12, AETB-20, and SIRCA-25 tiles, tailorable advanced blanket insulation (TABI), and high temperature AFRSI (HTA). The ballistic limit for several Thermal Protection System (TPS) configurations was investigated to determine particle sizes which cause threshold TPS/structure penetration. Crater depth in tiles was measured as a function of impact particle size. The relationship between coating type and crater morphology was also explored. Data obtained during this test series was used to perform a preliminary analysis of the risks to a typical orbital vehicle from the meteoroid and space debris environment.

  4. Design and application of permanent magnet flux sources for mechanical testing of magnetoactive elastomers at variable field directions.

    PubMed

    Hiptmair, F; Major, Z; Haßlacher, R; Hild, S

    2015-08-01

    Magnetoactive elastomers (MAEs) are a class of smart materials whose mechanical properties can be rapidly and reversibly changed by an external magnetic field. Due to this tunability, they are useable for actuators or in active vibration control applications. An extensive magnetomechanical characterization is necessary for MAE material development and requires experiments under cyclic loading in uniform but variable magnetic fields. MAE testing apparatus typically rely on fields of adjustable strength, but fixed (transverse) direction, often provided by electromagnets. In this work, two permanent magnet flux sources were developed as an add-on for a modular test stand, to allow for mechanical testing in uniform fields of variable direction. MAE specimens, based on a silicone matrix with isotropic and anisotropic carbonyl iron particle distributions, were subjected to dynamic mechanical analysis under different field and loading configurations. The magneto-induced increase of stiffness and energy dissipation was determined by the change of the hysteresis loop area and dynamic modulus values. A distinct influence of the composite microstructure and the loading state was observed. Due to the very soft and flexible matrix used for preparing the MAE samples, the material stiffness and damping behavior could be varied over a wide range via the applied field direction and intensity.

  5. Nonlinear structural analysis of a turbine airfoil using the Walker viscoplastic material model for B1900 + Hf

    NASA Technical Reports Server (NTRS)

    Meyer, T. G.; Hill, J. T.; Weber, R. M.

    1988-01-01

    A viscoplastic material model for the high temperature turbine airfoil material B1900 + Hf was developed and was demonstrated in a three dimensional finite element analysis of a typical turbine airfoil. The demonstration problem is a simulated flight cycle and includes the appropriate transient thermal and mechanical loads typically experienced by these components. The Walker viscoplastic material model was shown to be efficient, stable and easily used. The demonstration is summarized and the performance of the material model is evaluated.

  6. Improved electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material synthesized by citric acid assisted sol-gel method for lithium ion batteries

    NASA Astrophysics Data System (ADS)

    Li, Shiyou; Liang, Youwei; Lei, Dan; Xie, Yingchun; Ai, Ling; Xie, Jing

    2018-03-01

    A citric acid assisted sol-gel method is employed for synthesizing Li1.2Mn0.54Ni0.13Co0.13O2 used as a cathode material in lithium-ion batteries. Powder X-ray diffraction (XRD) and scanning electron microscopy (SEM) characterizations prove that materials have a typical a-NaFeO2 structure with primary nano-sized particles. Electrochemical performances have been investigated by charge-discharge test and results show that the synthesized product exhibits excellent electrochemical performance with a high initial discharge capacity of 253.5 mAh g-1 at 0.1 C and a preferable capacity retention of 84.8% after 50 cycles.

  7. Contact material optimization and contact physics in metal-contact microelectromechanical systems (MEMS) switches

    NASA Astrophysics Data System (ADS)

    Yang, Zhenyin

    Metal-contact MEMS switches hold great promise for implementing agile radio frequency (RF) systems because of their small size, low fabrication cost, low power consumption, wide operational band, excellent isolation and exceptionally low signal insertion loss. Gold is often utilized as a contact material for metal-contact MEMS switches due to its excellent electrical conductivity and corrosion resistance. However contact wear and stiction are the two major failure modes for these switches due to its material softness and high surface adhesion energy. To strengthen the contact material, pure gold was alloyed with other metal elements. We designed and constructed a new micro-contacting test facility that closely mimic the typical MEMS operation and utilized this facility to efficiently evaluate optimized contact materials. Au-Ni binary alloy system as the candidate contact material for MEMS switches was systematically investigated. A correlation between contact material properties (etc. microstructure, micro-hardness, electrical resistivity, topology, surface structures and composition) and micro-contacting performance was established. It was demonstrated nano-scale graded two-phase Au-Ni film could possibly yield an improved device performance. Gold micro-contact degradation mechanisms were also systematically investigated by running the MEMS switching tests under a wide range of test conditions. According to our quantitative failure analysis, field evaporation could be the dominant failure mode for highfield (> critical threshold field) hot switching; transient thermal-assisted wear could be the dominant failure mode for low-field hot switching; on the other hand, pure mechanical wear and steady current heating (1 mA) caused much less contact degradation in cold switching tests. Results from low-force (50 muN/micro-contact), low current (0.1 mA) tests on real MEMS switches indicated that continuous adsorbed films from ambient air could degrade the switch contact resistance. Our work also contributes to the field of general nano-science and technology by resolving the transfer directionality of field evaporation of gold in atomic force microscope (AFM)/scanning tunneling microscope (STM).

  8. Spacecraft Fire Safety: A Human Space Flight Program Perspective

    NASA Technical Reports Server (NTRS)

    Pedley, Michael D.

    2003-01-01

    This paper presents viewgraphs on the International Space Station's fire safety program from a human space flight perspective. The topics include: 1) Typical Manned Spacecraft Materials; 2) Typical Flammable Hardware Protection; 3) Materials Flammability; 4) Fire Retardants; 5) Nonflammable Foam Cushion Material; 6) Electrical Wire and Cable; 7) Russian Solid-Fuel Oxygen Generator (SFOG); 8) GOX Ignition Mechanisms; 9) Fire Detection; and 10) Fire Suppression.

  9. NASA GRC's High Pressure Burner Rig Facility and Materials Test Capabilities

    NASA Technical Reports Server (NTRS)

    Robinson, R. Craig

    1999-01-01

    The High Pressure Burner Rig (HPBR) at NASA Glenn Research Center is a high-velocity. pressurized combustion test rig used for high-temperature environmental durability studies of advanced materials and components. The facility burns jet fuel and air in controlled ratios, simulating combustion gas chemistries and temperatures that are realistic to those in gas turbine engines. In addition, the test section is capable of simulating the pressures and gas velocities representative of today's aircraft. The HPBR provides a relatively inexpensive. yet sophisticated means for researchers to study the high-temperature oxidation of advanced materials. The facility has the unique capability of operating under both fuel-lean and fuel-rich gas mixtures. using a fume incinerator to eliminate any harmful byproduct emissions (CO, H2S) of rich-burn operation. Test samples are easily accessible for ongoing inspection and documentation of weight change, thickness, cracking, and other metrics. Temperature measurement is available in the form of both thermocouples and optical pyrometery. and the facility is equipped with quartz windows for observation and video taping. Operating conditions include: (1) 1.0 kg/sec (2.0 lbm/sec) combustion and secondary cooling airflow capability: (2) Equivalence ratios of 0.5- 1.0 (lean) to 1.5-2.0 (rich), with typically 10% H2O vapor pressure: (3) Gas temperatures ranging 700-1650 C (1300-3000 F): (4) Test pressures ranging 4-12 atmospheres: (5) Gas flow velocities ranging 10-30 m/s (50-100) ft/sec.: and (6) Cyclic and steady-state exposure capabilities. The facility has historically been used to test coupon-size materials. including metals and ceramics. However complex-shaped components have also been tested including cylinders, airfoils, and film-cooled end walls. The facility has also been used to develop thin-film temperature measurement sensors.

  10. Relationship between influence function accuracy and polishing quality in magnetorheological finishing

    NASA Astrophysics Data System (ADS)

    Schinhaerl, Markus; Schneider, Florian; Rascher, Rolf; Vogt, Christian; Sperber, Peter

    2010-10-01

    Magnetorheological finishing is a typical commercial application of a computer-controlled polishing process in the manufacturing of precision optical surfaces. Precise knowledge of the material removal characteristic of the polishing tool (influence function) is essential for controlling the material removal on the workpiece surface by the dwell time method. Results from the testing series with magnetorheological finishing have shown that a deviation of only 5% between the actual material removal characteristic of the polishing tool and that represented by the influence function caused a considerable reduction in the polishing quality. The paper discusses reasons for inaccuracies in the influence function and the effects on the polishing quality. The generic results of this research serve for the development of improved polishing strategies, and may be used in alternative applications of computer-controlled polishing processes that quantify the material removal characteristic by influence functions.

  11. Development of coin-type cell and engineering of its compartments for rechargeable seawater batteries

    NASA Astrophysics Data System (ADS)

    Han, Jinhyup; Hwang, Soo Min; Go, Wooseok; Senthilkumar, S. T.; Jeon, Donghoon; Kim, Youngsik

    2018-01-01

    Cell design and optimization of the components, including active materials and passive components, play an important role in constructing robust, high-performance rechargeable batteries. Seawater batteries, which utilize earth-abundant and natural seawater as the active material in an open-structured cathode, require a new platform for building and testing the cells other than typical Li-ion coin-type or pouch-type cells. Herein, we present new findings based on our optimized cell. Engineering the cathode components-improving the wettability of cathode current collector and seawater catholyte flow-improves the battery performance (voltage efficiency). Optimizing the cell component and design is the key to identifying the electrochemical processes and reactions of active materials. Hence, the outcome of this research can provide a systematic study of potentially active materials used in seawater batteries and their effectiveness on the electrochemical performance.

  12. Pressure Flammability Thresholds in Oxygen of Selected Aerospace Materials

    NASA Technical Reports Server (NTRS)

    Hirsch, David; Williams, Jim; Harper, Susana; Beeson, Harold; Ruff, Gary; Pedley, Mike

    2010-01-01

    The experimental approach consisted of concentrating the testing in the flammability transition zone following the Bruceton Up-and-Down Method. For attribute data, the method has been shown to be very repeatable and most efficient. Other methods for characterization of critical levels (Karberand Probit) were also considered. The data yielded the upward limiting pressure index (ULPI), the pressure level where approx.50% of materials self-extinguish in a given environment.Parametric flammability thresholds other than oxygen concentration can be determined with the methodology proposed for evaluating the MOC when extinguishment occurs. In this case, a pressure threshold in 99.8% oxygen was determined with the methodology and found to be 0.4 to 0.9 psia for typical spacecraft materials. Correlation of flammability thresholds obtained with chemical, hot wire, and other ignition sources will be conducted to provide recommendations for using alternate ignition sources to evaluate flammability of aerospace materials.

  13. A systematic analysis of online marketing materials used by providers of expanded carrier screening.

    PubMed

    Chokoshvili, Davit; Borry, Pascal; Vears, Danya F

    2017-12-14

    PurposeExpanded carrier screening (ECS) for a large number of recessive disorders is available to prospective parents through commercial providers. This study aimed to analyze the content of marketing materials on ECS providers' websites.MethodsTo identify providers of ECS tests, we undertook a comprehensive online search, reviewed recent academic literature on commercial carrier screening, and consulted with colleagues familiar with the current ECS landscape. The identified websites were archived in April 2017, and inductive content analysis was performed on website text, brochures and educational materials, and video transcripts.ResultsWe identified 18 ECS providers, including 16 commercial genetic testing companies. Providers typically described ECS as an important family planning tool. The content differed in both the tone used to promote ECS and the accuracy and completeness of the test information provided. We found that most providers offered complimentary genetic counseling to their consumers, although this was often optional, limited to the posttest context, and, in some cases, appeared to be available only to test-positive individuals.ConclusionThe quality of ECS providers' websites could be improved by offering more complete and accurate information about ECS and their tests. Providers should also ensure that all carrier couples receive posttest genetic counseling to inform their subsequent reproductive decision making.Genet Med advance online publication, 14 December 2017; doi:10.1038/gim.2017.222.

  14. Cold-welding test environment

    NASA Technical Reports Server (NTRS)

    Wang, J. T.

    1972-01-01

    A flight test was conducted and compared with ground test data. Sixteen typical spacecraft material couples were mounted on an experimental research satellite in which a motor intermittently drove the spherical moving specimens across the faces of the fixed flat specimens in an oscillating motion. Friction coefficients were measured over a period of 14-month orbital time. Surface-to-surface sliding was found to be the controlling factor of generating friction in a vacuum environment. Friction appears to be independent of passive vacuum exposure time. Prelaunch and postlaunch tests identical to the flight test were performed in an oil-diffusion-pumped ultrahigh vacuum chamber. Only 50% of the resultant data agreed with the flight data owing to pump oil contamination. Identical ground tests were run in an ultrahigh vacuum facility and a ion-pumped vacuum chamber. The agreement (90%) between data from these tests and flight data established the adequacy of these test environments and facilities.

  15. Behavior of auxetic structures under compression and impact forces

    NASA Astrophysics Data System (ADS)

    Yang, Chulho; Vora, Hitesh D.; Chang, Young

    2018-02-01

    In recent years, various auxetic material structures have been designed and fabricated for diverse applications that utilize normal materials that follow Hooke’s law but still show the properties of negative Poisson’s ratios (NPR). One potential application is body protection pads that are comfortable to wear and effective in protecting body parts by reducing impact force and preventing injuries in high-risk individuals such as elderly people, industrial workers, law enforcement and military personnel, and athletes. This paper reports an integrated theoretical, computational, and experimental investigation conducted for typical auxetic materials that exhibit NPR properties. Parametric 3D CAD models of auxetic structures such as re-entrant hexagonal cells and arrowheads were developed. Then, key structural characteristics of protection pads were evaluated through static analyses of FEA models. Finally, impact analyses were conducted through dynamic simulations of FEA models to validate the results obtained from the static analyses. Efforts were also made to relate the individual and/or combined effect of auxetic structures and materials to the overall stiffness and shock-absorption performance of the protection pads. An advanced additive manufacturing (3D printing) technique was used to build prototypes of the auxetic structures. Three different materials typically used for fused deposition modeling technology, namely polylactic acid (PLA) and thermoplastic polyurethane material (NinjaFlex® and SemiFlex®), were used for different stiffness and shock-absorption properties. The 3D printed prototypes were then tested and the results were compared to the computational predictions. The results showed that the auxetic material could be effective in reducing the shock forces. Each structure and material combination demonstrated unique structural properties such as stiffness, Poisson’s ratio, and efficiency in shock absorption. Auxetic structures showed better shock absorption performance than non-auxetic ones. The mechanism for ideal input force distribution or shunting could be suggested for designing protectors using various shapes, thicknesses, and materials of auxetic materials to reduce the risk of injury.

  16. SMART empirical approaches for predicting field performance of PV modules from results of reliability tests

    NASA Astrophysics Data System (ADS)

    Hardikar, Kedar Y.; Liu, Bill J. J.; Bheemreddy, Venkata

    2016-09-01

    Gaining an understanding of degradation mechanisms and their characterization are critical in developing relevant accelerated tests to ensure PV module performance warranty over a typical lifetime of 25 years. As newer technologies are adapted for PV, including new PV cell technologies, new packaging materials, and newer product designs, the availability of field data over extended periods of time for product performance assessment cannot be expected within the typical timeframe for business decisions. In this work, to enable product design decisions and product performance assessment for PV modules utilizing newer technologies, Simulation and Mechanism based Accelerated Reliability Testing (SMART) methodology and empirical approaches to predict field performance from accelerated test results are presented. The method is demonstrated for field life assessment of flexible PV modules based on degradation mechanisms observed in two accelerated tests, namely, Damp Heat and Thermal Cycling. The method is based on design of accelerated testing scheme with the intent to develop relevant acceleration factor models. The acceleration factor model is validated by extensive reliability testing under different conditions going beyond the established certification standards. Once the acceleration factor model is validated for the test matrix a modeling scheme is developed to predict field performance from results of accelerated testing for particular failure modes of interest. Further refinement of the model can continue as more field data becomes available. While the demonstration of the method in this work is for thin film flexible PV modules, the framework and methodology can be adapted to other PV products.

  17. Distilled Water Distribution Systems. Laboratory Design Notes.

    ERIC Educational Resources Information Center

    Sell, J.C.

    Factors concerning water distribution systems, including an evaluation of materials and a recommendation of materials best suited for service in typical facilities are discussed. Several installations are discussed in an effort to bring out typical features in selected applications. The following system types are included--(1) industrial…

  18. Manufacturability of the X Architecture at the 90-nm technology node

    NASA Astrophysics Data System (ADS)

    Smayling, Michael C.; Sarma, Robin C.; Nagata, Toshiyuki; Arora, Narain; Duane, Michael P.; Oemardani, Shiany; Shah, Santosh

    2004-05-01

    In this paper, we discuss the results from a test chip that demonstrate the manufacturability and integration-worthiness of the X Architecture at the 90-nm technology node. We discuss how a collaborative effort between the design and chip making communities used the current generation of mask, lithography, wafer processing, inspection and metrology equipment to create 45 degree wires in typical metal pitches for the upper layers on a 90-nm device in a production environment. Cadence Design Systems created the test structure design and chip validation tools for the project. Canon"s KrF ES3 and ArF AS2 scanners were used for the lithography. Applied Materials used its interconnect fabrication technologies to produce the multilayer copper, low-k interconnect on 300-mm wafers. The results were confirmed for critical dimension and defect levels using Applied Materials" wafer inspection and metrology systems.

  19. Thermomechanical Property Data Base Developed for Ceramic Fibers

    NASA Technical Reports Server (NTRS)

    1996-01-01

    A key to the successful application of metal and ceramic composite materials in advanced propulsion and power systems is the judicious selection of continuous-length fiber reinforcement. Appropriate fibers can provide these composites with the required thermomechanical performance. To aid in this selection, researchers at the NASA Lewis Research Center, using in-house state-of-the-art test facilities, developed an extensive data base of the deformation and fracture properties of commercial and developmental ceramic fibers at elevated temperatures. Lewis' experimental focus was primarily on fiber compositions based on silicon carbide or alumina because of their oxidation resistance, low density, and high modulus. Test approaches typically included tensile and flexural measurements on single fibers or on multifilament tow fibers in controlled environments of air or argon at temperatures from 800 to 1400 C. Some fiber specimens were pretreated at composite fabrication temperatures to simulate in situ composite conditions, whereas others were precoated with potential interphase and matrix materials.

  20. The uncertainty of reference standards--a guide to understanding factors impacting uncertainty, uncertainty calculations, and vendor certifications.

    PubMed

    Gates, Kevin; Chang, Ning; Dilek, Isil; Jian, Huahua; Pogue, Sherri; Sreenivasan, Uma

    2009-10-01

    Certified solution standards are widely used in forensic toxicological, clinical/diagnostic, and environmental testing. Typically, these standards are purchased as ampouled solutions with a certified concentration. Vendors present concentration and uncertainty differently on their Certificates of Analysis. Understanding the factors that impact uncertainty and which factors have been considered in the vendor's assignment of uncertainty are critical to understanding the accuracy of the standard and the impact on testing results. Understanding these variables is also important for laboratories seeking to comply with ISO/IEC 17025 requirements and for those preparing reference solutions from neat materials at the bench. The impact of uncertainty associated with the neat material purity (including residual water, residual solvent, and inorganic content), mass measurement (weighing techniques), and solvent addition (solution density) on the overall uncertainty of the certified concentration is described along with uncertainty calculations.

  1. Universal Responses of Cyclic-Oxidation Models Studied

    NASA Technical Reports Server (NTRS)

    Smialek, James L.

    2003-01-01

    Oxidation is an important degradation process for materials operating in the high-temperature air or oxygen environments typical of jet turbine or rocket engines. Reaction of the combustion gases with the component material forms surface layer scales during these oxidative exposures. Typically, the instantaneous rate of reaction is inversely proportional to the existing scale thickness, giving rise to parabolic kinetics. However, more realistic applications entail periodic startup and shutdown. Some scale spallation may occur upon cooling, resulting in loss of the protective diffusion barrier provided by a fully intact scale. Upon reheating, the component will experience accelerated oxidation due to this spallation. Cyclic-oxidation testing has, therefore, been a mainstay of characterization and performance ranking for high-temperature materials. Models simulate this process by calculating how a scale spalls upon cooling and regrows upon heating (refs. 1 to 3). Recently released NASA software (COSP for Windows) allows researchers to specify a uniform layer or discrete segments of spallation (ref. 4). Families of model curves exhibit consistent regularity and trends with input parameters, and characteristic features have been empirically described in terms of these parameters. Although much insight has been gained from experimental and model curves, no equation has been derived that can describe this behavior explicitly as functions of the key oxidation parameters.

  2. A study of RSI under combined stresses

    NASA Technical Reports Server (NTRS)

    Kibler, J. J.; Rosen, B. W.

    1974-01-01

    The behavior of typical rigidized surface insulation material (RSI) under combined loading states was investigated. In particular, the thermal stress states induced during reentry of the space shuttle were of prime concern. A typical RSI tile was analyzed for reentry thermal stresses under computed thermal gradients for a model of the RSI material. The results of the thermal stress analyses were then used to aid in defining typical combined stress states for the failure analysis of RSI.

  3. The cell-in-series method: A technique for accelerated electrode degradation in redox flow batteries

    DOE PAGES

    Pezeshki, Alan M.; Sacci, Robert L.; Veith, Gabriel M.; ...

    2015-11-21

    Here, we demonstrate a novel method to accelerate electrode degradation in redox flow batteries and apply this method to the all-vanadium chemistry. Electrode performance degradation occurred seven times faster than in a typical cycling experiment, enabling rapid evaluation of materials. This method also enables the steady-state study of electrodes. In this manner, it is possible to delineate whether specific operating conditions induce performance degradation; we found that both aggressively charging and discharging result in performance loss. Post-mortem x-ray photoelectron spectroscopy of the degraded electrodes was used to resolve the effects of state of charge (SoC) and current on the electrodemore » surface chemistry. For the electrode material tested in this work, we found evidence that a loss of oxygen content on the negative electrode cannot explain decreased cell performance. Furthermore, the effects of decreased electrode and membrane performance on capacity fade in a typical cycling battery were decoupled from crossover; electrode and membrane performance decay were responsible for a 22% fade in capacity, while crossover caused a 12% fade.« less

  4. 16 CFR Figure 7 to Part 1203 - Typical Test Apparatus for Positional Stability Test

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 16 Commercial Practices 2 2010-01-01 2010-01-01 false Typical Test Apparatus for Positional Stability Test 7 Figure 7 to Part 1203 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION CONSUMER...—Typical Test Apparatus for Positional Stability Test ER10MR98.007 ...

  5. 16 CFR Figure 7 to Part 1203 - Typical Test Apparatus for Positional Stability Test

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 16 Commercial Practices 2 2011-01-01 2011-01-01 false Typical Test Apparatus for Positional Stability Test 7 Figure 7 to Part 1203 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION CONSUMER...—Typical Test Apparatus for Positional Stability Test ER10MR98.007 ...

  6. Application of temporal moments and other signal processing algorithms to analysis of ultrasonic signals through melting wax

    DOE PAGES

    Lau, Sarah J.; Moore, David G.; Stair, Sarah L.; ...

    2016-01-01

    Ultrasonic analysis is being explored as a way to capture events during melting of highly dispersive wax. Typical events include temperature changes in the material, phase transition of the material, surface flows and reformations, and void filling as the material melts. Melt tests are performed with wax to evaluate the usefulness of different signal processing algorithms in capturing event data. Several algorithm paths are being pursued. The first looks at changes in the velocity of the signal through the material. This is only appropriate when the changes from one ultrasonic signal to the next can be represented by a linearmore » relationship, which is not always the case. The second tracks changes in the frequency content of the signal. The third algorithm tracks changes in the temporal moments of a signal over a full test. This method does not require that the changes in the signal be represented by a linear relationship, but attaching changes in the temporal moments to physical events can be difficult. This study describes the algorithm paths applied to experimental data from ultrasonic signals as wax melts and explores different ways to display the results.« less

  7. Nonassociative plasticity model for cohesionless materials and its implementation in soil-structure interaction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hashmi, Q.S.E.

    A constitutive model based on rate-independent elastoplasticity concepts is developed and used to simulate the behavior of geologic materials under arbitrary three-dimensional stress paths. The model accounts for various factors such as friction, stress path, and stress history that influence the behavior of geologic materials. A hierarchical approach is adopted whereby models of progressively increasing sophistication are developed from a basic isotropic-hardening associate model. Nonassociativeness is introduced as correction or perturbation to the basic model. Deviation of normality of the plastic-strain increments to the yield surface F is captured through nonassociativeness. The plastic potential Q is obtained by applying amore » correction to F. This simplified approach restricts the number of extra parameters required to define the plastic potential Q. The material constants associated with the model are identified, and they are evaluated for three different sands (Leighton Buzzard, Munich and McCormick Ranch). The model is then verified by comparing predictions with laboratory tests from which the constants were found, and typical tests not used for finding the constants. Based on the above findings, a soil-footing system is analyzed using finite-element techniques.« less

  8. Platform for Testing Robotic Vehicles on Simulated Terrain

    NASA Technical Reports Server (NTRS)

    Lindemann, Randel

    2006-01-01

    The variable terrain tilt platform (VTTP) is a means of providing simulated terrain for mobility testing of engineering models of the Mars Exploration Rovers. The VTTP could also be used for testing the ability of other robotic land vehicles (and small vehicles in general) to move across terrain under diverse conditions of slope and surface texture, and in the presence of obstacles of various sizes and shapes. The VTTP consists mostly of a 16-ft-(4.88-m)-square tilt table. The tilt can be adjusted to any angle between 0 (horizontal) and 25 . The test surface of the table can be left bare; can be covered with hard, high-friction material; or can be covered with sand, gravel, and/or other ground-simulating material or combination of materials to a thickness of as much as 6 in. (approx. 15 cm). Models of rocks, trenches, and other obstacles can be placed on the simulated terrain. For example, for one of the Mars- Rover tests, a high-friction mat was attached to the platform, then a 6-in.- ( 15 cm) deep layer of dry, loose beach sand was deposited on the mat. The choice of these two driving surface materials was meant to bound the range of variability of terrain that the rover was expected to encounter on the Martian surface. At each of the different angles at which tests were performed, for some of the tests, rocklike concrete obstacles ranging in height from 10 to 25 cm were placed in the path of the rover (see figure). The development of the VTTP was accompanied by development of a methodology of testing to characterize the performance and modes of failure of a vehicle under test. In addition to variations in slope, ground material, and obstacles, testing typically includes driving up-slope, down-slope, cross-slope, and at intermediate angles relative to slope. Testing includes recording of drive-motor currents, wheel speeds, articulation of suspension mechanisms, and the actual path of the vehicle over the simulated terrain. The collected data can be used to compute curves that summarize torque, speed, power-demand, and slip characteristics of wheels during the traverse.

  9. A diffusivity model for predicting VOC diffusion in porous building materials based on fractal theory.

    PubMed

    Liu, Yanfeng; Zhou, Xiaojun; Wang, Dengjia; Song, Cong; Liu, Jiaping

    2015-12-15

    Most building materials are porous media, and the internal diffusion coefficients of such materials have an important influences on the emission characteristics of volatile organic compounds (VOCs). The pore structure of porous building materials has a significant impact on the diffusion coefficient. However, the complex structural characteristics bring great difficulties to the model development. The existing prediction models of the diffusion coefficient are flawed and need to be improved. Using scanning electron microscope (SEM) observations and mercury intrusion porosimetry (MIP) tests of typical porous building materials, this study developed a new diffusivity model: the multistage series-connection fractal capillary-bundle (MSFC) model. The model considers the variable-diameter capillaries formed by macropores connected in series as the main mass transfer paths, and the diameter distribution of the capillary bundles obeys a fractal power law in the cross section. In addition, the tortuosity of the macrocapillary segments with different diameters is obtained by the fractal theory. Mesopores serve as the connections between the macrocapillary segments rather than as the main mass transfer paths. The theoretical results obtained using the MSFC model yielded a highly accurate prediction of the diffusion coefficients and were in a good agreement with the VOC concentration measurements in the environmental test chamber. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Frequency of celiac disease in adult patients with typical or atypical malabsorption symptoms in isfahan, iran.

    PubMed

    Emami, Mohammad Hassan; Kouhestani, Soheila; Karimi, Somayeh; Baghaei, Abdolmahdi; Janghorbani, Mohsen; Jamali, Nahid; Gholamrezaei, Ali

    2012-01-01

    Aim. Atypical presentations of celiac disease (CD) have now been shown to be much more common than classical (typical) form. We evaluated the frequency of CD among adult patients with typical or atypical symptoms of CD. Materials and Methods. Patients referred to two outpatient gastroenterology clinics in Isfahan (IRAN) were categorized into those with typical or atypical symptoms of CD. IgA antitissue transglutaminase antibody was assessed and followed by duodenal biopsy. In patients for whom endoscopy was indicated (independent of the serology), duodenal biopsy was taken. Histopathological changes were assessed according to the Marsh classification. Results. During the study period, 151 and 173 patients with typical and atypical symptoms were evaluated (mean age = 32.8 ± 12.6 and 35.8 ± 14.8 years, 47.0% and 56.0% female, resp.). Frequency of CD in patients with typical and atypical symptoms was calculated, respectively, as 5.9% (9/151) and 1.25% (3/173) based on positive serology and pathology. The overall frequency was estimated as at least 9.2% (14/151) and 4.0% (7/173) when data of seronegative patients were also considered. Conclusions. CD is more frequent among patients with typical symptoms of malabsorption and these patients should undergo duodenal biopsy, irrespective of the serology. In patients with atypical symptoms, serological tests should be performed followed by endoscopic biopsy, and routine duodenal biopsy is recommended when endoscopic evaluation is indicated because of symptoms.

  11. Bulk metallic glass matrix composites: Processing, microstructure, and application as a kinetic energy penetrator

    NASA Astrophysics Data System (ADS)

    Dandliker, Richard B.

    The development of alloys with high glass forming ability allows fabrication of bulk samples of amorphous metal. This capability makes these materials available for applications which require significant material thickness in all three dimensions. Superior mechanical properties and advantages in processing make metallic glass a choice candidate as a matrix material for composites. This study reports techniques for making composites by melt-infiltration casting using the alloy Zrsb{41.2}Tisb{13.8}Cusb{12.5}Nisb{10.0}Besb{22.5} (VitreloyspTM 1) as a matrix material. Composite rods 5 cm in length and 7 mm in diameter were made and found to have a nearly fully amorphous matrix; there was less than 3 volume percent crystallized matrix material. The samples were reinforced by continuous metal wires, tungsten powder, or silicon carbide particulate preforms. The most easily processed samples were made with uniaxially aligned tungsten and carbon steel continuous wire reinforcement; the majority of the analysis presented is of these samples. The measured porosity was typically less than 3%. The results also indicate necessary guidelines for developing processing techniques for large scale production, new reinforcement materials, and other metallic glass compositions. Analysis of the microstructure of the tungsten wire and steel wire reinforced composites was performed by x-ray diffraction, scanning electron microscopy, scanning Auger microscopy, transmission electron microscopy, and energy dispersive x-ray spectroscopy. The most common phase in the crystallized matrix is most likely a Laves phase with the approximate formula Besb{12}Zrsb3TiNiCu. In tungsten-reinforced composites, a crystalline reaction layer 240 nm thick of tungsten nanocrystals in an amorphous matrix formed. In the steel reinforced composites, the reaction layer was primarily composed of a mixed metal carbide, mainly ZrC. One promising application of the metallic glass matrix composite is as a kinetic energy penetrator material. Ballistic tests show that a composite of 80 volume percent uniaxially aligned tungsten wires and a VitreloyspTM 1 matrix has self-sharpening behavior, which is a necessary characteristic of superior penetrator materials. Small-scale tests with both aluminum and steel targets show that this composite performs better than tungsten heavy alloys typically used for penetrator applications, and comparably with depleted uranium.

  12. Roles of chemical metrology in electronics industry and associated environment in Korea: a tutorial.

    PubMed

    Kang, Namgoo; Joong Kim, Kyung; Seog Kim, Jin; Hae Lee, Joung

    2015-03-01

    Chemical metrology is gaining importance in electronics industry that manufactures semiconductors, electronic displays, and microelectronics. Extensive and growing needs from this industry have raised the significance of accurate measurements of the amount of substances and material properties. For the first time, this paper presents information on how chemical metrology is being applied to meet a variety of needs in the aspects of quality control of electronics products and environmental regulations closely associated with electronics industry. For a better understanding of the roles of the chemical metrology within electronics industry, the recent research activities and results in chemical metrology are presented using typical examples in Korea where electronic industry is leading a national economy. Particular attention is paid to the applications of chemical metrology for advancing emerging electronics technology developments. Such examples are a novel technique for the accurate quantification of gas composition at nano-liter levels within a MEMS package, the surface chemical analysis of a semiconductor device. Typical metrological tools are also presented for the development of certified reference materials for fluorinated greenhouse gases and proficiency testing schemes for heavy metals and chlorinated toxic gas in order to cope properly with environmental issues within electronics industry. In addition, a recent technique is presented for the accurate measurement of the destruction and removal efficiency of a typical greenhouse gas scrubber. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Corrosion resistance of ceramic refractories to simulated waste glasses at high temperature

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xing, S.B.; Lin, Y.; Mohr, R.K.

    1996-08-01

    In many vitrification processes, refractory materials are used to contain the waste glass melt. The corrosive nature of the high-temperature melt consumes the waste feed materials but also limits refractory life. As vitrification is applied to more diverse waste streams, and particularly in higher-temperature applications, increasingly severe demands are placed on the refractory materials. A variety of potential refractory materials including Fused-cast AZS, Monofrax K3, Monofrax E, and the Corhart refractories ER1195, ER2161, C1215, C1215Z, Rechrome, and T1186, were subjected to corrosion testing at 1,450 C using the ASTM C-621 procedure. A series of simulated waste glasses was used whichmore » included F, Cl, S, Cu, Zn, Pb; these minor components were found to cause significant, and in some cases drastic, increases in corrosion rates. The corrosion tests were conducted over a range of time intervals extending to 144 hrs in order to investigate the kinetics of the corrosion processes. The change of the concentrations of constituents in the glass was monitored by compositional analysis of glass samples and correlated to the observed extent of corrosion; typically, components of the material under test increase with time while key minor components, such as Co and Pb, decrease. The rate of corrosion of high-zirconia refractories was slowed considerably by adding zirconia to the waste glass composition; this has the added benefit of improving the aqueous leach resistance of the waste form that is produced.« less

  14. Ozone reactions with indoor materials during building disinfection

    NASA Astrophysics Data System (ADS)

    Poppendieck, D.; Hubbard, H.; Ward, M.; Weschler, C.; Corsi, R. L.

    There is scant information related to heterogeneous indoor chemistry at ozone concentrations necessary for the effective disinfection of buildings, i.e., hundreds to thousands of ppm. In the present study, 24 materials were exposed for 16 h to ozone concentrations of 1000-1200 ppm in the inlet streams of test chambers. Initial ozone deposition velocities were similar to those reported in the published literature for much lower ozone concentrations, but decayed rapidly as reaction sites on material surfaces were consumed. For every material, deposition velocities converged to a relatively constant, and typically low, value after approximately 11 h. The four materials with the highest sustained deposition velocities were ceiling tile, office partition, medium density fiberboard and gypsum wallboard backing. Analysis of ozone reaction probabilities indicated that throughout each experiment, and particularly after several hours of disinfection, surface reaction resistance dominated the overall resistance to ozone deposition for nearly all materials. Total building disinfection by-products (all carbonyls) were quantified per unit area of each material for the experimental period. Paper, office partition, and medium density fiberboard each released greater than 38 mg m -2 of by-products.

  15. The Mechanical Properties of Candidate Superalloys for a Hybrid Turbine Disk

    NASA Technical Reports Server (NTRS)

    Gabb, Timothy P.; MacKay, Rebecca A.; Draper, Susan L.; Sudbrack, Chantal K.; Nathal, Michael V.

    2013-01-01

    The mechanical properties of several cast blade superalloys and one powder metallurgy disk superalloy were assessed for potential use in a dual alloy hybrid disk concept of joined dissimilar bore and web materials. Grain size was varied for each superalloy class. Tensile, creep, fatigue, and notch fatigue tests were performed at 704 to 815 degC. Typical microstructures and failure modes were determined. Preferred materials were then selected for future study as the bore and rim alloys in this hybrid disk concept. Powder metallurgy superalloy LSHR at 15 micron grain size and single crystal superalloy LDS-1101+Hf were selected for further study, and future work is recommended to develop the hybrid disk concept.

  16. Effects of fine porosity on the fatigue behavior of a powder metallurgy superalloy

    NASA Technical Reports Server (NTRS)

    Miner, R. V.; Dreshfield, R. L.

    1980-01-01

    Hot-isostatically-pressed powder-metallurgy Astroloy was obtained which contained 1.4 percent porosity at the grain boundaries produced by argon entering the powder container during pressing. This material was tested at 650 C in fatigue, creep-fatigue, tension, and stress-rupture and the results compared with data on sound Astroloy. They influenced fatigue crack initiation and produced a more intergranular mode of propagation but fatigue life was not drastically reduced. Fatigue behavior of the porous material showed typical correlation with tensile behavior. The plastic strain range-life relation was reduced proportionately with the reduction in tensile ductility, but the elastic strain range-life relation was changed little.

  17. Photometry in the dark: time dependent visibility of low intensity light sources.

    PubMed

    Poelman, Dirk; Smet, Philippe F

    2010-12-06

    This paper aims at describing the perceived brightness of persistent luminescent materials for emergency signage. In case of emergency, typically, a fully light adapted person is left in the dark, except for the emergency sign. The available photometric models cannot describe visibility of such light source, as they do not consider the slow dark adaptation of the human eye. The model proposed here fully takes into account the shift from photopic to scotopic vision, the related shift in spectral sensitivity and the dark adaptation. The resulting metric is a 'visibility index' and preliminary tests show that it more realistically describes the perceived brightness of persistent luminescent materials than the common photometric standards.

  18. Nickel-Tin Electrode Materials for Nonaqueous Li-Ion Cells

    NASA Technical Reports Server (NTRS)

    Ehrlich, Grant M.; Durand, Christopher

    2005-01-01

    Experimental materials made from mixtures of nickel and tin powders have shown promise for use as the negative electrodes of rechargeable lithium-ion electrochemical power cells. During charging (or discharging) of a lithium-ion cell, lithium ions are absorbed into (or desorbed from, respectively) the negative electrode, typically through an intercalation or alloying process. The negative electrodes (for this purpose, designated as anodes) in state-of-the-art Li-ion cells are made of graphite, in which intercalation occurs. Alternatively, the anodes can be made from metals, in which alloying can occur. For reasons having to do with the electrochemical potential of intercalated lithium, metallic anode materials (especially materials containing tin) are regarded as safer than graphite ones; in addition, such metallic anode materials have been investigated in the hope of obtaining reversible charge/discharge capacities greater than those of graphite anodes. However, until now, each of the tin-containing metallic anode formulations tested has been found to be inadequate in some respect.

  19. Design and Fabrication of DebriSat - A Representative LEO Satellite for Improvements to Standard Satellite Breakup Models

    NASA Technical Reports Server (NTRS)

    Clark, S.; Dietrich, A.; Fitz-Coy, N.; Weremeyer, M.; Liou, J.-C.

    2012-01-01

    This paper discusses the design and fabrication of DebriSat, a 50 kg satellite developed to be representative of a modern low Earth orbit satellite in terms of its components, materials used, and fabrication procedures. DebriSat will be the target of a future hypervelocity impact experiment to determine the physical characteristics of debris generated after an on-orbit collision of a modern LEO satellite. The major ground-based satellite impact experiment used by DoD and NASA in their development of satellite breakup models was SOCIT, conducted in 1992. The target used for that experiment was a Navy transit satellite (40 cm, 35 kg) fabricated in the 1960's. Modern satellites are very different in materials and construction techniques than those built 40 years ago. Therefore, there is a need to conduct a similar experiment using a modern target satellite to improve the fidelity of the satellite breakup models. To ensure that DebriSat is truly representative of typical LEO missions, a comprehensive study of historical LEO satellite designs and missions within the past 15 years for satellites ranging from 1 kg to 5000 kg was conducted. This study identified modern trends in hardware, material, and construction practices utilized in recent LEO missions. Although DebriSat is an engineering model, specific attention is placed on the quality, type, and quantity of the materials used in its fabrication to ensure the integrity of the outcome. With the exception of software, all other aspects of the satellite s design, fabrication, and assembly integration and testing will be as rigorous as that of an actual flight vehicle. For example, to simulate survivability of launch loads, DebriSat will be subjected to a vibration test. As well, the satellite will undergo thermal vacuum tests to verify that the components and overall systems meet typical environmental standards. Proper assembly and integration techniques will involve comprehensive joint analysis, including the precise torqueing of fasteners and thread locking. Finally, the implementation of process documentation and verification procedures is discussed to provide a comprehensive overview of the design and fabrication of this representative LEO satellite.

  20. High-order shock-fitted detonation propagation in high explosives

    NASA Astrophysics Data System (ADS)

    Romick, Christopher M.; Aslam, Tariq D.

    2017-03-01

    A highly accurate numerical shock and material interface fitting scheme composed of fifth-order spatial and third- or fifth-order temporal discretizations is applied to the two-dimensional reactive Euler equations in both slab and axisymmetric geometries. High rates of convergence are not typically possible with shock-capturing methods as the Taylor series analysis breaks down in the vicinity of discontinuities. Furthermore, for typical high explosive (HE) simulations, the effects of material interfaces at the charge boundary can also cause significant computational errors. Fitting a computational boundary to both the shock front and material interface (i.e. streamline) alleviates the computational errors associated with captured shocks and thus opens up the possibility of high rates of convergence for multi-dimensional shock and detonation flows. Several verification tests, including a Sedov blast wave, a Zel'dovich-von Neumann-Döring (ZND) detonation wave, and Taylor-Maccoll supersonic flow over a cone, are utilized to demonstrate high rates of convergence to nontrivial shock and reaction flows. Comparisons to previously published shock-capturing multi-dimensional detonations in a polytropic fluid with a constant adiabatic exponent (PF-CAE) are made, demonstrating significantly lower computational error for the present shock and material interface fitting method. For an error on the order of 10 m /s, which is similar to that observed in experiments, shock-fitting offers a computational savings on the order of 1000. In addition, the behavior of the detonation phase speed is examined for several slab widths to evaluate the detonation performance of PBX 9501 while utilizing the Wescott-Stewart-Davis (WSD) model, which is commonly used in HE modeling. It is found that the thickness effect curve resulting from this equation of state and reaction model using published values is dramatically more steep than observed in recent experiments. Utilizing the present fitting strategy, in conjunction with a nonlinear optimizer, a new set of reaction rate parameters improves the correlation of the model to experimental results. Finally, this new model is tested against two dimensional slabs as a validation test.

  1. Deformable image registration with content mismatch: a demons variant to account for added material and surgical devices in the target image

    NASA Astrophysics Data System (ADS)

    Nithiananthan, S.; Uneri, A.; Schafer, S.; Mirota, D.; Otake, Y.; Stayman, J. W.; Zbijewski, W.; Khanna, A. J.; Reh, D. D.; Gallia, G. L.; Siewerdsen, J. H.

    2013-03-01

    Fast, accurate, deformable image registration is an important aspect of image-guided interventions. Among the factors that can confound registration is the presence of additional material in the intraoperative image - e.g., contrast bolus or a surgical implant - that was not present in the prior image. Existing deformable registration methods generally fail to account for tissue excised between image acquisitions and typically simply "move" voxels within the images with no ability to account for tissue that is removed or introduced between scans. We present a variant of the Demons algorithm to accommodate such content mismatch. The approach combines segmentation of mismatched content with deformable registration featuring an extra pseudo-spatial dimension representing a reservoir from which material can be drawn into the registered image. Previous work tested the registration method in the presence of tissue excision ("missing tissue"). The current paper tests the method in the presence of additional material in the target image and presents a general method by which either missing or additional material can be accommodated. The method was tested in phantom studies, simulations, and cadaver models in the context of intraoperative cone-beam CT with three examples of content mismatch: a variable-diameter bolus (contrast injection); surgical device (rod), and additional material (bone cement). Registration accuracy was assessed in terms of difference images and normalized cross correlation (NCC). We identify the difficulties that traditional registration algorithms encounter when faced with content mismatch and evaluate the ability of the proposed method to overcome these challenges.

  2. Testing in Support of Fission Surface Power System Qualification

    NASA Technical Reports Server (NTRS)

    Houts, Mike; Bragg-Sitton, Shannon; Godfroy, Tom; Martin, Jim; Pearson, Boise; VanDyke, Melissa

    2007-01-01

    The strategy for qualifying a FSP system could have a significant programmatic impact. The US has not qualified a space fission power system since launch of the SNAP-10A in 1965. This paper explores cost-effective options for obtaining data that would be needed for flight qualification of a fission system. Qualification data could be obtained from both nuclear and non-nuclear testing. The ability to perform highly realistic nonnuclear testing has advanced significantly throughout the past four decades. Instrumented thermal simulators were developed during the 1970s and 1980s to assist in the development, operation, and assessment of terrestrial fission systems. Instrumented thermal simulators optimized for assisting in the development, operation, and assessment of modern FSP systems have been under development (and utilized) since 1998. These thermal simulators enable heat from fission to be closely mimicked (axial power profile, radial power profile, temperature, heat flux, etc.) and extensive data to be taken from the core region. For transient testing, pin power during a transient is calculated based on the reactivity feedback that would occur given measured values of test article temperature and/or dimensional changes. The reactivity feedback coefficients needed for the test are either calculated or measured using cold/warm zero-power criticals. In this way non-nuclear testing can be used to provide very realistic information related to nuclear operation. Non-nuclear testing can be used at all levels, including component, subsystem, and integrated system testing. FSP fuels and materials are typically chosen to ensure very high confidence in operation at design burnups, fluences, and temperatures. However, facilities exist (e.g. ATR, HFIR) for affordably performing in-pile fuel and materials irradiations, if such testing is desired. Ex-core materials and components (such as alternator materials, control drum drives, etc.) could be irradiated in university or DOE reactors to ensure adequate radiation resistance. Facilities also exist for performing warm and cold zero-power criticals.

  3. Support Services for Ceramic Fiber-Ceramic Matrix Composites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hurley, JP

    2001-08-16

    To increase national energy self-sufficiency for the near future, power systems will be required to fire low-grade fuels more efficiently than is currently possible. The typical coal-fired steam cycle used at present is limited to a maximum steam temperature of 540 C and a conversion efficiency of 35%. Higher working-fluid temperatures are required to boost efficiency, exposing subsystems to very damaging conditions. Issues of special concern to materials developers are corrosion and warping of hot-gas particulate filters and corrosion and erosion of high-temperature heat exchangers. The University of North Dakota Energy and Environmental Research Center (EERC) is working with themore » National Energy Technology Laboratory in conjunction with NCC Engineering, Inc., to provide technical assistance and coal by-products to the Fossil Energy Materials Advanced Research and Technology Development Materials Program investigating materials failure in fossil energy systems. The main activities of the EERC are to assemble coal slag and hot-gas filter ash samples for use by materials researchers, to assist in providing opportunities for realistic tests of advanced materials in pilot-scale fossil energy systems, and to provide analytical support in determining corrosion mechanisms of the exposed materials. In this final report for the project year of September 2000 through August 2001, the facilities at the EERC that can be used by researchers for realistic testing of materials are described. Researchers can include sample coupons in each of these facilities at no cost since they are being operated under separate funding. In addition, two pilot-scale coal combustion tests are described in which material sample coupons were included from researchers involved in the development of fossil energy materials. The results of scanning electron microscopy (SEM) energy dispersive x-ray analyses of the corrosion products and interactions between the surface scales of the coupons and the products of coal combustion found on the coupons exposed during those tests are reported. Finally, a relative comparison of ceramic and alloy material performance based on the SEM results is presented.« less

  4. Cryogenic Insulation Standard Data and Methodologies Project

    NASA Technical Reports Server (NTRS)

    Summerfield, Burton; Thompson, Karen; Zeitlin, Nancy; Mullenix, Pamela; Fesmire, James; Swanger, Adam

    2015-01-01

    Extending some recent developments in the area of technical consensus standards for cryogenic thermal insulation systems, a preliminary Inter-Laboratory Study of foam insulation materials was performed by NASA Kennedy Space Center and LeTourneau University. The initial focus was ambient pressure cryogenic boil off testing using the Cryostat-400 flat-plate instrument. Completion of a test facility at LETU has enabled direct, comparative testing, using identical cryostat instruments and methods, and the production of standard thermal data sets for a number of materials under sub-ambient conditions. The two sets of measurements were analyzed and indicate there is reasonable agreement between the two laboratories. Based on cryogenic boiloff calorimetry, new equipment and methods for testing thermal insulation systems have been successfully developed. These boiloff instruments (or cryostats) include both flat plate and cylindrical models and are applicable to a wide range of different materials under a wide range of test conditions. Test measurements are generally made at large temperature difference (boundary temperatures of 293 K and 78 K are typical) and include the full vacuum pressure range. Results are generally reported in effective thermal conductivity (ke) and mean heat flux (q) through the insulation system. The new cryostat instruments provide an effective and reliable way to characterize the thermal performance of materials under subambient conditions. Proven in through thousands of tests of hundreds of material systems, they have supported a wide range of aerospace, industry, and research projects. Boiloff testing technology is not just for cryogenic testing but is a cost effective, field-representative methodology to test any material or system for applications at sub-ambient temperatures. This technology, when adequately coupled with a technical standards basis, can provide a cost-effective, field-representative methodology to test any material or system for applications at sub-ambient to cryogenic temperatures. A growing need for energy efficiency and cryogenic applications is creating a worldwide demand for improved thermal insulation systems for low temperatures. The need for thermal characterization of these systems and materials raises a corresponding need for insulation test standards and thermal data targeted for cryogenic-vacuum applications. Such standards have a strong correlation to energy, transportation, and environment and the advancement of new materials technologies in these areas. In conjunction with this project, two new standards on cryogenic insulation were recently published by ASTM International: C1774 and C740. Following the requirements of NPR 7120.10, Technical Standards for NASA Programs and Projects, the appropriate information in this report can be provided to the NASA Chief Engineer as input for NASA's annual report to NIST, as required by OMB Circular No. A-119, describing NASA's use of voluntary consensus standards and participation in the development of voluntary consensus standards and bodies.

  5. Understanding the differences between the wear of metal-on-metal and ceramic-on-metal total hip replacements.

    PubMed

    Figueiredo-Pina, C G; Yan, Y; Neville, A; Fisher, J

    2008-04-01

    Hip simulator studies have been carried out extensively to understand and test artificial hip implants in vitro as an efficient alternative to obtaining long-term results in vivo. Recent studies have shown that a ceramic-on-metal material combination lowers the wear by up to 100 times in comparison with a typical metal-on-metal design. The reason for this reduction remains unclear and for this reason this study has undertaken simple tribometer tests to understand the fundamental material loss mechanisms in two material combinations: metal-on-metal and ceramic-on-ceramic. A simple-configuration reciprocating pin-on-plate wear study was performed under open-circuit potential (OCP) and with applied cathodic protection (CP) in a serum solution using two tribological couples: firstly, cobalt-chromium (Co-Cr) pins against Co-Cr plates; secondly, Co-Cr pins against alumina (Al2O3) plates. The pin and plate surfaces prior to and after testing were examined by profilometry and scanning electron microscopy. The results showed a marked reduction in wear when CP was applied, indicating that total material degradation under the OCP condition was attributed to corrosion processes. The substitution of the Co-Cr pin with an Al2O3 plate also resulted in a dramatic reduction in wear, probably due to the reduction in the corrosion-wear interactions between the tribological pair.

  6. Low temperature impact toughness of the main gas pipeline steel after long-term degradation

    NASA Astrophysics Data System (ADS)

    Maruschak, Pavlo O.; Danyliuk, Iryna M.; Bishchak, Roman T.; Vuherer, Tomaž

    2014-12-01

    The correlation of microstructure, temperature and Charpy V-notch impact properties of a steel 17G1S pipeline steel was investigated in this study. Within the concept of physical mesomechanics, the dynamic failure of specimens is represented as a successive process of the loss of shear stability, which takes place at different structural/scale levels of the material. Characteristic stages are analyzed for various modes of failure, moreover, typical levels of loading and oscillation periods, etc. are determined. Relations between low temperature derived through this test, microstructures and Charpy (V-notch) toughness test results are also discussed in this paper.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wohlgemuth, J.

    Description and history of the IEC 61215 qualification test, what it accomplishes, and what it does not accomplish that would be useful to the community. The commercial success of PV is based on long term reliability of the PV modules. Today's modules are typically qualified/certified to: (1) IEC 61215 for Crystalline Silicon Modules; (2) IEC 61646 for Thin Film Modules; and (3) IEC 62108 for CPV Modules. These qualification tests do an excellent job of identifying design, materials and process flaws that could lead to premature field failures. This talk will provide a summary of how IEC 61215 was developed,more » how well it works and what its limitations are.« less

  8. A Monte Carlo approach applied to ultrasonic non-destructive testing

    NASA Astrophysics Data System (ADS)

    Mosca, I.; Bilgili, F.; Meier, T. M.; Sigloch, K.

    2011-12-01

    Non-destructive testing based on ultrasound allows us to detect, characterize and size discrete flaws in geotechnical and engineering structures and materials. This information is needed to determine whether such flaws can be tolerated in future service. In typical ultrasonic experiments, only the first-arriving P-wave is interpreted, and the remainder of the recorded waveform is neglected. Our work aims at understanding surface waves, which are strong signals in the later wave train, with the ultimate goal of full waveform tomography. At present, even the structural estimation of layered media is still challenging because material properties of the samples can vary widely, and good initial models for inversion do not often exist. The aim of the present study is to analyze ultrasonic waveforms measured at the surface of Plexiglas and rock samples, and to define the behaviour of surface waves in structures of increasing complexity. The tremendous potential of ultrasonic surface waves becomes an advantage only if numerical forward modelling tools are available to describe the waveforms accurately. We compute synthetic full seismograms as well as group and phase velocities for the data. We invert them for the elastic properties of the sample via a global search of the parameter space, using the Neighbourhood Algorithm. Such a Monte Carlo approach allows us to perform a complete uncertainty and resolution analysis, but the computational cost is high and increases quickly with the number of model parameters. Therefore it is practical only for defining the seismic properties of media with a limited number of degrees of freedom, such as layered structures. We have applied this approach to both synthetic layered structures and real samples. The former contributed to benchmark the propagation of ultrasonic surface waves in typical materials tested with a non-destructive technique (e.g., marble, unweathered and weathered concrete and natural stone).

  9. Flow Curve Analysis of 17-4 PH Stainless Steel under Hot Compression Test

    NASA Astrophysics Data System (ADS)

    Mirzadeh, Hamed; Najafizadeh, Abbas; Moazeny, Mohammad

    2009-12-01

    The hot compression behavior of a 17-4 PH stainless steel (AISI 630) has been investigated at temperatures of 950 °C to 1150 °C and strain rates of 10-3 to 10 s-1. Glass powder in the Rastegaev reservoirs of the specimen was used as a lubricant material. A step-by-step procedure for data analysis in the hot compression test was given. The work hardening rate analysis was performed to reveal if dynamic recrystallization (DRX) occurred. Many samples exhibited typical DRX stress-strain curves with a single peak stress followed by a gradual fall toward the steady-state stress. At low Zener-Hollomon ( Z) parameter, this material showed a new DRX flow behavior, which was called multiple transient steady state (MTSS). At high Z, as a result of adiabatic deformation heating, a drop in flow stress was observed. The general constitutive equations were used to determine the hot working constants of this material. Moreover, after a critical discussion, the deformation activation energy of 17-4 PH stainless steel was determined as 337 kJ/mol.

  10. Applying the Theory of Constraints to a Base Civil Engineering Operations Branch

    DTIC Science & Technology

    1991-09-01

    Figure Page 1. Typical Work Order Processing . .......... 7 2. Typical Job Order Processing . .......... 8 3. Typical Simplified In-Service Work Plan for...Customers’ Customer Request Service Planning Unit Production] Control Center Material Control Scheduling CE Shops Figure 1.. Typical Work Order Processing 7

  11. Plasma source development for fusion-relevant material testing

    DOE PAGES

    Caughman, John B. O.; Goulding, Richard H.; Biewer, Theodore M.; ...

    2017-05-01

    Plasma facing materials in the divertor of a magnetic fusion reactor will have to tolerate steady-state plasma heat fluxes in the range of 10 MW/m2 for ~107 sec, in addition to fusion neutron fluences, which can damage the plasma facing materials to high displacements per atom (dpa) of ~50 dpa . Material solutions needed for the plasma facing components are yet to be developed and tested. The Materials Plasma Exposure eXperiment (MPEX) is a newly proposed steady state linear plasma device that is designed to deliver the necessary plasma heat flux to a target for this material testing, including themore » capability to expose a-priori neutron damaged material samples to those plasmas. The requirements of the plasma source needed to deliver this plasma heat flux are being developed on the Proto-MPEX device, which is a linear high-intensity radio frequency (RF) plasma source that combines a high-density helicon plasma generator with electron and ion heating sections. It is being used to study the physics of heating over-dense plasmas in a linear configuration. The helicon plasma is operated at 13.56 MHz with RF power levels up to 120 kW. Microwaves at 28 GHz (~30 kW) are coupled to the electrons in the over-dense helicon plasma via Electron Bernstein Waves (EBW), and ion cyclotron heating at 7-9 MHz (~30 kW) is via a magnetic beach approach. High plasma densities >6x1019/m3 have been produced in deuterium, with electron temperatures that can range from 2 to >10 eV. Operation with on-axis magnetic field strengths between 0.6 and 1.4 T is typical. The plasma heat flux delivered to a target can be > 10 MW/m2, depending on the operating conditions.« less

  12. Plasma source development for fusion-relevant material testing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Caughman, John B. O.; Goulding, Richard H.; Biewer, Theodore M.

    Plasma facing materials in the divertor of a magnetic fusion reactor will have to tolerate steady-state plasma heat fluxes in the range of 10 MW/m2 for ~107 sec, in addition to fusion neutron fluences, which can damage the plasma facing materials to high displacements per atom (dpa) of ~50 dpa . Material solutions needed for the plasma facing components are yet to be developed and tested. The Materials Plasma Exposure eXperiment (MPEX) is a newly proposed steady state linear plasma device that is designed to deliver the necessary plasma heat flux to a target for this material testing, including themore » capability to expose a-priori neutron damaged material samples to those plasmas. The requirements of the plasma source needed to deliver this plasma heat flux are being developed on the Proto-MPEX device, which is a linear high-intensity radio frequency (RF) plasma source that combines a high-density helicon plasma generator with electron and ion heating sections. It is being used to study the physics of heating over-dense plasmas in a linear configuration. The helicon plasma is operated at 13.56 MHz with RF power levels up to 120 kW. Microwaves at 28 GHz (~30 kW) are coupled to the electrons in the over-dense helicon plasma via Electron Bernstein Waves (EBW), and ion cyclotron heating at 7-9 MHz (~30 kW) is via a magnetic beach approach. High plasma densities >6x1019/m3 have been produced in deuterium, with electron temperatures that can range from 2 to >10 eV. Operation with on-axis magnetic field strengths between 0.6 and 1.4 T is typical. The plasma heat flux delivered to a target can be > 10 MW/m2, depending on the operating conditions.« less

  13. NASA and ESA Collaboration on Hexavalent Chrome Alternatives Pretreatments Only Interim Test Report

    NASA Technical Reports Server (NTRS)

    Kessel, Kurt R.

    2015-01-01

    NASA and ESA continue to search for an alternative to hexavalent chromium in coatings applications that meet their performance requirements in corrosion protection, cost, operability, and health and safety, while typically specifying that performance must be equal to or greater than existing systems. The overall objective of the collaborative effort between NASA TEERM and ESA is to test and evaluate coating systems (pretreatments, pretreatments with primer, and pretreatments with primer and topcoat) as replacements for hexavalent chrome coatings in aerospace applications. This objective will be accomplished by testing promising coatings identified from previous NASA, ESA, Department of Defense (DOD), and other project experience. Additionally, several new materials will be analyzed according to ESA-identified specifications.

  14. The testing of balloon fabrics

    NASA Technical Reports Server (NTRS)

    Edwards, Junius David; Moore, Irwin L

    1920-01-01

    Report describes methods and materials used in waterproofing and fireproofing airplane fabrics using dopes. The determination of the probable life of a balloon fabric in service by experimental means is of great value in choosing the most suitable fabrics for a given purpose and in pointing the way to improvements in compounding and construction. The usefulness of exposure to the weather for this purpose has been amply demonstrated. Various attempts have been made to reproduce by artificial means the conditions promoting deterioration in service, but without marked success. Exposure to the weather remains the most satisfactory method for this purpose, and a consideration of the characteristics of such tests is therefore important. This report presents the results of a typical series of exposure tests made in 1917.

  15. Gas-turbine critical research and advanced technology support project

    NASA Technical Reports Server (NTRS)

    Clark, J. S.; Hodge, P. E.; Lowell, C. E.; Anderson, D. N.; Schultz, D. F.

    1981-01-01

    A technology data base for utility gas turbine systems capable of burning coal derived fuels was developed. The following areas are investigated: combustion; materials; and system studies. A two stage test rig is designed to study the conversion of fuel bound nitrogen to NOx. The feasibility of using heavy fuels in catalytic combustors is evaluated. A statistically designed series of hot corrosion burner rig tests was conducted to measure the corrosion rates of typical gas turbine alloys with several fuel contaminants. Fuel additives and several advanced thermal barrier coatings are tested. Thermal barrier coatings used in conjunction with low critical alloys and those used in a combined cycle system in which the stack temperature was maintained above the acid corrosion temperature are also studied.

  16. Optimal shielding design for minimum materials cost or mass

    DOE PAGES

    Woolley, Robert D.

    2015-12-02

    The mathematical underpinnings of cost optimal radiation shielding designs based on an extension of optimal control theory are presented, a heuristic algorithm to iteratively solve the resulting optimal design equations is suggested, and computational results for a simple test case are discussed. A typical radiation shielding design problem can have infinitely many solutions, all satisfying the problem's specified set of radiation attenuation requirements. Each such design has its own total materials cost. For a design to be optimal, no admissible change in its deployment of shielding materials can result in a lower cost. This applies in particular to very smallmore » changes, which can be restated using the calculus of variations as the Euler-Lagrange equations. Furthermore, the associated Hamiltonian function and application of Pontryagin's theorem lead to conditions for a shield to be optimal.« less

  17. Corrosion behavior of biodegradable material AZ31 coated with beeswax-colophony resin

    NASA Astrophysics Data System (ADS)

    Gumelar, Muhammad Dikdik; Putri, Nur Ajrina; Anggaravidya, Mahendra; Anawati, Anawati

    2018-05-01

    Magnesium (Mg) and its alloys are potential candidates for biodegradable implant materials owing to their ability to degrade spontaneously in a physiological environment. However, the degradation rate is still considered too fast in human body solution. A coating is typically applied to slowdown corrosion rate of Mg alloys. In this work, an organic coating of mixture beeswax-colophony with ratios of 40-60, 50-50, and 60-40 in wt% was synthesized and applied on commercial magnesium alloyAZ31. The coated specimens were then characterized with SEM and XRF. The corrosion behavior of the coated specimens was evaluated by immersion test in 0.9 wt% NaCl solution at 37°C for 14 days. The results indicated that the coating material improved the corrosion resistance of the AZ31 alloy.

  18. Identification of approximately duplicate material records in ERP systems

    NASA Astrophysics Data System (ADS)

    Zong, Wei; Wu, Feng; Chu, Lap-Keung; Sculli, Domenic

    2017-03-01

    The quality of master data is crucial for the accurate functioning of the various modules of an enterprise resource planning (ERP) system. This study addresses specific data problems arising from the generation of approximately duplicate material records in ERP databases. Such problems are mainly due to the firm's lack of unique and global identifiers for the material records, and to the arbitrary assignment of alternative names for the same material by various users. Traditional duplicate detection methods are ineffective in identifying such approximately duplicate material records because these methods typically rely on string comparisons of each field. To address this problem, a machine learning-based framework is developed to recognise semantic similarity between strings and to further identify and reunify approximately duplicate material records - a process referred to as de-duplication in this article. First, the keywords of the material records are extracted to form vectors of discriminating words. Second, a machine learning method using a probabilistic neural network is applied to determine the semantic similarity between these material records. The approach was evaluated using data from a real case study. The test results indicate that the proposed method outperforms traditional algorithms in identifying approximately duplicate material records.

  19. Low-Melt Poly(Amic Acids) and Polyimides and Their Uses

    NASA Technical Reports Server (NTRS)

    Parrish, Clyde F. (Inventor); Jolley, Scott T. (Inventor); Gibson, Tracy L. (Inventor); Snyder, Sarah J. (Inventor); Williams, Martha K. (Inventor)

    2016-01-01

    Provided are low-melt polyimides and poly(amic acids) (PAAs) for use as adhesives, and methods of using the materials for attaching two substrates. The methods typically form an adhesive bond that is hermetically sealed to both substrates. Additionally, the method typically forms a cross-linked bonding material that is flexible.

  20. Characterization of Nitinol Laser-Weld Joints by Nondestructive Testing

    NASA Astrophysics Data System (ADS)

    Wohlschlögel, Markus; Gläßel, Gunter; Sanchez, Daniela; Schüßler, Andreas; Dillenz, Alexander; Saal, David; Mayr, Peter

    2015-12-01

    Joining technology is an integral part of today's Nitinol medical device manufacturing. Besides crimping and riveting, laser welding is often applied to join components made from Nitinol to Nitinol, as well as Nitinol components to dissimilar materials. Other Nitinol joining techniques include adhesive bonding, soldering, and brazing. Typically, the performance of joints is assessed by destructive mechanical testing, on a process validation base. In this study, a nondestructive testing method—photothermal radiometry—is applied to characterize small Nitinol laser-weld joints used to connect two wire ends via a sleeve. Two different wire diameters are investigated. Effective joint connection cross sections are visualized using metallography techniques. Results of the nondestructive testing are correlated to data from destructive torsion testing, where the maximum torque at fracture is evaluated for the same joints and criteria for the differentiation of good and poor laser-welding quality by nondestructive testing are established.

  1. The Generating Mechanism of Non-Sustained Disruptive Discharges in Vacuum Interrupters

    NASA Astrophysics Data System (ADS)

    Hara, Daisuke; Taki, Masayuki; Tanaka, Hitoshi; Okawa, Mikio; Yanabu, Satoru

    To develop vacuum circuit breaker (VCB) for higher voltage application, it may be important to understand generating mechanism and its influence of non-sustained disruptive discharges (NSDD) to the systems. So, we carried out the tests using equivalent testing circuit and observed the contacts after testing, For the test, by using commercial vacuum circuit interrupters, AC voltages of 50Hz was applied between contacts for 4 seconds after current interruption, and measured generating frequencies of NSDD vs. the voltages and vs. currents. Typical contact material used in the commercial switching equipment, such as AgWC, CuW, CuCr were tested and compared. Then CuCr's of different composition and manufacturing process are investigated. And CuCr-50 (manufactured by melting process) showed the best performance in all tests. We point out that surface condition may affect the generation of NSDD and also conditioning effect is very important.

  2. Trace Contaminant Testing with the Orion Atmosphere Revitalization Technology

    NASA Technical Reports Server (NTRS)

    Button, Amy Lin; Sweterlitsch, Jeffrey; Broerman, Craig

    2009-01-01

    Every spacecraft atmosphere contains trace contaminants resulting from offgassing by cabin materials and human passengers. An amine-based carbon dioxide (CO2) and water vapor sorbent in pressure-swing regenerable beds has been developed by Hamilton Sundstrand and baselined for the Orion Atmosphere Revitalization System (ARS). Part of the risk mitigation effort for this new technology is the study of how atmospheric trace contaminants will affect and be affected by the technology. One particular area of concern is ammonia, which, in addition to the normal spacecraft sources, can also be off-gassed by the amine-based sorbent. In the first half of 2009, tests were performed with typical cabin atmosphere levels of five of the most common trace gases, most of which had not yet been tested with this technology. A subscale sample of the sorbent was exposed to each of the chemicals mixed into a stream of moist, CO2-laden air, and the CO2 adsorption capacity of the sorbent was compared before and after the exposure. After these typical-concentration chemicals were proven to have negligible effect on the subscale sample, tests proceeded on a full-scale test article in a sealed chamber with a suite of eleven contaminants. To isolate the effects of various test rig components, several extended-duration tests were run: without injection or scrubbing, with injection and without scrubbing, with injection and scrubbing by both the test article and dedicated trace contaminant filters, and with injection and scrubbing by only the test article. The high-level results of both the subscale and full-scale tests are examined in this paper.

  3. Source of released carbon fibers

    NASA Technical Reports Server (NTRS)

    Bell, V. L.

    1979-01-01

    The potential for the release of carbon fibers from aircraft crashes/fires is addressed. Simulation of the conditions of aircraft crash fires in order to predict the quantities and forms of fibrous materials which might be released from civilian aircraft crashes/fires is considered. Figures are presented which describe some typical fiber release test activities together with some very preliminary results of those activities. The state of the art of carbon fiber release is summarized as well as some of the uncertainties concerning accidental fiber release.

  4. Nonlinear Properties in Langasite Isomorphs for Advanced Frequency Control Devices and Clocks

    DTIC Science & Technology

    2006-11-01

    or LGN), and langatate (La3Ga5.5Ta0.5O14 or LGT), have emerged as new materials to replace quartz in advanced frequency control devices and clocks...application and of angle Ψ. Fig. 1. Langatate boule (photo courtesy of the Univ. Central Florida) and typical resonators for testing. Table 1...langanite and y-cut langatate ,” IEEE Tr. Ultrason. Ferroelec. Freq. Contr., pp. 1678-1682, 2003. Kim, Y., “Amplitude-frequency effect of Y-cut langanite

  5. Corrosion of steel members strengthenened with carbon fiber reinforced polymer sheets

    NASA Astrophysics Data System (ADS)

    Bumadian, Ibrahim

    Due to many years of service at several cases of exposure at various environments there are many of steel bridges which are in need of rehabilitation. The infrastructure needs upgrading, repair or maintenance, and also strengthening, but by using an alternative as retrofits methods. The alternative retrofit method, which used fiber reinforced polymer (FRP) composite materials which their strength materials comes largely from the fiber such as carbon, glass, and aramid fiber. Of the most important materials used in the rehabilitation of infrastructure is a composite material newly developed in bonded externally carbon fiber and polymer (CFRP) sheets, which has achieved remarkable success in the rehabilitation and upgrading of structural members. This technique has many disadvantages one of them is galvanic corrosion. This study presents the effect of galvanic corrosion on the interfacial strength between carbon fiber reinforced polymer (CFRP) sheets and a steel substrate. A total of 35 double-lap joint specimens and 19 beams specimens are prepared and exposed to an aggressive service environment in conjunction with an electrical potential method accelerating corrosion damage. Six test categories are planned at a typical exposure interval of 12 hours, including five specimens per category for double-lap joint specimens. And six test categories are planned at a typical exposure interval of 12 hours, including three specimens per category for Beam section specimens. In addition one beam section specimen is control. The degree of corrosion is measured. Fourier transform infrared (FTIR) reflectance spectroscopy has been used to monitor and confirm the proposed corrosion mechanisms on the surface of CFRP. In this study we are using FTIR-spectroscopic measurement systems in the mid infrared (MIR) wavelength region (4000 - 400) cm-1 to monitor characteristic spectral features. Upon completion of corrosion processes, all specimens are monotonically loaded until failure occurs to measure their residual capacity. A relationship between the level of galvanic corrosion and the failure characteristics of steel-composite interface is established.

  6. Static and dynamic strain energy release rates in toughened thermosetting composite laminates

    NASA Technical Reports Server (NTRS)

    Cairns, Douglas S.

    1992-01-01

    In this work, the static and dynamic fracture properties of several thermosetting resin based composite laminates are presented. Two classes of materials are explored. These are homogeneous, thermosetting resins and toughened, multi-phase, thermosetting resin systems. Multi-phase resin materials have shown enhancement over homogenous materials with respect to damage resistance. The development of new dynamic tests are presented for composite laminates based on Width Tapered Double Cantilevered Beam (WTDCB) for Mode 1 fracture and the End Notched Flexure (ENF) specimen. The WTDCB sample was loaded via a low inertia, pneumatic cylinder to produce rapid cross-head displacements. A high rate, piezo-electric load cell and an accelerometer were mounted on the specimen. A digital oscilloscope was used for data acquisition. Typical static and dynamic load versus displacement plots are presented. The ENF specimen was impacted in three point bending with an instrumented impact tower. Fracture initiation and propagation energies under static and dynamic conditions were determined analytically and experimentally. The test results for Mode 1 fracture are relatively insensitive to strain rate effects for the laminates tested in this study. The test results from Mode 2 fracture indicate that the toughened systems provide superior fracture initiation and higher resistance to propagation under dynamic conditions. While the static fracture properties of the homogeneous systems may be relatively high, the apparent Mode 2 dynamic critical strain energy release rate drops significantly. The results indicate that static Mode 2 fracture testing is inadequate for determining the fracture performance of composite structures subjected to conditions such as low velocity impact. A good correlation between the basic Mode 2 dynamic fracture properties and the performance is a combined material/structural Compression After Impact (CAI) test is found. These results underscore the importance of examining rate-dependent behavior for determining the longevity of structures manufactured from composite materials.

  7. Modeling the dynamic crush of impact mitigating materials

    NASA Astrophysics Data System (ADS)

    Logan, R. W.; McMichael, L. D.

    1995-05-01

    Crushable materials are commonly utilized in the design of structural components to absorb energy and mitigate shock during the dynamic impact of a complex structure, such as an automobile chassis or drum-type shipping container. The development and application of several finite-element material models which have been developed at various times at LLNL for DYNA3D are discussed. Between the models, they are able to account for several of the predominant mechanisms which typically influence the dynamic mechanical behavior of crushable materials. One issue we addressed was that no single existing model would account for the entire gambit of constitutive features which are important for crushable materials. Thus, we describe the implementation and use of an additional material model which attempts to provide a more comprehensive model of the mechanics of crushable material behavior. This model combines features of the pre-existing DYNA models and incorporates some new features as well in an invariant large-strain formulation. In addition to examining the behavior of a unit cell in uniaxial compression, two cases were chosen to evaluate the capabilities and accuracy of the various material models in DYNA. In the first case, a model for foam filled box beams was developed and compared to test data from a four-point bend test. The model was subsequently used to study its effectiveness in energy absorption in an aluminum extrusion, spaceframe, vehicle chassis. The second case examined the response of the AT-400A shipping container and the performance of the overpack material during accident environments selected from 10CFR71 and IAEA regulations.

  8. The effect of low dose rate irradiation on the tensile properties and microstructure of austenitic stainless steel.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Allen, T. R.; Tsai, H.; Cole, J. I.

    2002-09-17

    To assess the effects of long-term, low-dose-rate neutron exposure on mechanical strength and ductility, tensile properties were measured on 12% and 20% cold-worked Type 316 stainless steel. Samples were prepared from reactor core components retrieved from the EBR-II reactor following final shutdown. Sample locations were chosen to cover a dose range of 1-56 dpa at temperatures from 371-440 C and dose rates from 0.5-5.8 x10{sup -7} dpa/s. These dose rates are approximately an order of magnitude lower than those of typical EBR-II test sample locations. The tensile tests for the 12% CW material were performed at 380 C and 430more » C while those for the 20% CW samples were performed at 370 C. In each case, the tensile test temperature approximately matched the irradiation temperature. To help understand the tensile properties, microstructural samples with similar irradiation history were also examined. The strength and loss of work hardening increase the fastest as a function of irradiation dose for the 12% CW material irradiated at lower temperature. The decrease in ductility with increasing dose occurs more rapidly for the 12% CW material irradiated at lower temperature and the 20% cold-worked material. Post-tensile test fractography indicates that at higher dose, the 20% CW samples begin a shift in fracture mode from purely ductile to mainly small facets and slip bands, suggesting a transition toward channel fracture. The fracture for all of the 12% cold-worked samples was ductile. For both the 12% and 20% CW materials, the yield strength increases correlate with changes in void and loop density and size.« less

  9. Nanoindentation of Electropolished FeCrAl Alloy Welds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weaver, Jordan; Aydogan, Eda; Mara, Nathan Allan

    The present report summarizes Berkovich nanoindentation modulus and hardness measurements on two candidate FeCrAl alloys (C35M and C37M) on as-received (AR) and welded samples. In addition, spherical nanoindentation stress-strain measurements were performed on individual grains to provide further information and demonstrate the applicability of these protocols to mechanically characterizing welds in FeCrAl alloys. The indentation results are compared against the reported tensile properties for these alloys to provide relationships between nanoindentation and tensile tests and insight into weldsoftening for these FeCrAl alloys. Hardness measurements revealed weld-softening for both alloys in good agreement with tensile test results. C35M showed a largermore » reduction in hardness at the weld center from the AR material compared to C37M; this is also consistent with tensile tests. In general, nanohardness was shown to be a good predictor of tensile yield strength and ultimate tensile stress for FeCrAl alloys. Spherical nanoindentation measurements revealed that the fusion zone (FZ) + heat affected zone (HAZ) has a very low defect density typical of well-annealed metals as indicated by the frequent pop-in events. Spherical nanoindentation yield strength, Berkovich hardness, and tensile yield strength measurements on the welded material all show that the C37M welded material has a higher strength than C35M welded material. From the comparison of nanoindentation and tensile tests, EBSD microstructure analysis, and information on the processing history, it can be deduced that the primary driver for weld-softening is a change in the defect structure at the grain-scale between the AR and welded material. These measurements serve as baseline data for utilizing nanoindentation for studying the effects of radiation damage on these alloys.« less

  10. Thermostructural Analysis of Carbon Cloth Phenolics "Ply Lifting" and Correlation to LHMEL Test Results

    NASA Technical Reports Server (NTRS)

    Clayton, Louie

    2004-01-01

    This paper provides a discussion of the history of Carbon Cloth Phenolic (CCP) ply lifting in the Redesigned Solid Rocket Motor (RSRM) Program, a brief presentation of theoretical methods used for analytical evaluation, and results of parametric analyses of CCP material subject to test conditions of the Laser Hardened Material Evaluation Laboratory. CCP ply lift can occur in regions of the RSRM nozzle where ply angle to flame surface is generally less than about 20 degrees. There is a heat rate dependence on likelihood and severity of the condition with the higher heating rates generally producing more ply lift. The event occurs in-depth, near the heated surface, where the load necessary to mechanically separate the CCP plies is produced by the initial stages of pyrolysis gas generation due to the thermal decomposition of the phenolic resin matrix. Due to the shallow lay-up angle of the composite, normal components of the indepth mechanical load, due to "pore pressure", are imparted primarily as a cross-ply tensile force on the interlaminar ply boundaries. Tensile capability in the cross-ply (out of plane) direction is solely determined by the matrix material capability. The elevated temperature matrix material capabilities are overcome by pressure induced mechanical normal stress and ply-lift occurs. A theoretical model used for CCP in-depth temperature, pressure, and normal stress prediction, based on first principles, is briefly discussed followed by a parametric evaluation of response variables subject to boundary conditions typical of on-going test programs at the LHMEL facility. Model response demonstrates general trends observed in test and provides insight into the interactivity of material properties and constitutive relationships.

  11. Vibration reduction on automotive shafts using piezoceramics

    NASA Astrophysics Data System (ADS)

    Kunze, Holger; Riedel, Mathias; Schmidt, Knut; Bianchini, Emanuele

    2003-08-01

    This paper reports an experimental study on active vibration reduction for automotive shafts with the use of piezoelectric material. The work focuses on an axle of an Audi A2. The demand in the automobile sector for higher comfort in the vehicle is of a great importance alongside the requirements of lighter weight and low fuel consumption. These requirements are typically in conflict with each other. One solution is the use of intelligent materials instead of viscoelastic materials and proof mass absorbers. These solutions are quite heavy especially at low frequencies. Active vibration control and piezoelectric devices are advantageous in this application due to their low mass to performance ratio. Our research study explores the use of such piezoelectric devices for an axle. In conjunction with electronics it will reduce vibrations in the first natural bending mode of the axle. Laboratory tests simulated the condition present in the road. At first a stationary set up was used, then a simulated disturbance was input at the attachment points of the shaft. Finally, a test with rotating shaft was performed. Piezoelectric devices (custom QuickPacks from ACX, a Division of Cymer) were used as sensors and as actuators to properly control the axle during the different operating conditions. The power consumption of each actuator pair was less than 20W. The work described here details the test setup, the control strategy, the hardware implementation as well as the test results obtained.

  12. Delamination growth in composite materials

    NASA Technical Reports Server (NTRS)

    Gillespie, J. W., Jr.; Carlsson, L. A.; Pipes, R. B.; Rothschilds, R.; Trethewey, B.; Smiley, A.

    1986-01-01

    The Double Cantilever Beam (DCB) and the End Notched Flexure (ENF) specimens are employed to characterize MODE I and MODE II interlaminar fracture resistance of graphite/epoxy (CYCOM 982) and graphite/PEEK (APC2) composites. Sizing of test specimen geometries to achieve crack growth in the linear elastic regime is presented. Data reduction schemes based upon beam theory are derived for the ENF specimen and include the effects of shear deformation and friction between crack surfaces on compliance, C, and strain energy release rate, G sub II. Finite element (FE) analyses of the ENF geometry including the contact problem with friction are presented to assess the accuracy of beam theory expressions for C and G sub II. Virtual crack closure techniques verify that the ENF specimen is a pure Mode II test. Beam theory expressions are shown to be conservative by 20 to 40 percent for typical unidirectional test specimen geometries. A FE parametric study investigating the influence of delamination length and depth, span, thickness and material properties on G sub II is presented. Mode I and II interlaminar fracture test results are presented. Important experimental parameters are isolated, such as precracking techniques, rate effects, and nonlinear load-deflection response. It is found that subcritical crack growth and inelastic materials behavior, responsible for the observed nonlinearities, are highly rate-dependent phenomena with high rates generally leading to linear elastic response.

  13. The materials irradiation experiment for testing plasma facing materials at fusion relevant conditions

    DOE PAGES

    Garrison, L. M.; Zenobia, Samuel J.; Egle, Brian J.; ...

    2016-08-01

    The Materials Irradiation Experiment (MITE-E) was constructed at the University of Wisconsin-Madison Inertial Electrostatic Confinement Laboratory to test materials for potential use as plasma-facing materials (PFMs) in fusion reactors. PFMs in fusion reactors will be bombarded with x-rays, neutrons, and ions of hydrogen and helium. More needs to be understood about the interactions between the plasma and the materials to validate their use for fusion reactors. The MITE-E simulates some of the fusion reactor conditions by holding samples at temperatures up to 1000°C while irradiating them with helium or deuterium ions with energies from 10 to 150 keV. The ionmore » gun can irradiate the samples with ion currents of 20 μA–500 μA; the typical current used is 72 μA, which is an average flux of 9 × 10 14 ions/(cm 2 s). The ion gun uses electrostatic lenses to extract and shape the ion beam. A variable power (1-20 W), steady-state, Nd:YAG laser provides additional heating to maintain a constant sample temperature during irradiations. The ion beam current reaching the sample is directly measured and monitored in real-time during irradiations. The ion beam profile has been investigated using a copper sample sputtering experiment. In conclusion, the MITE-E has successfully been used to irradiate polycrystalline and single crystal tungsten samples with helium ions and will continue to be a source of important data for plasma interactions with materials.« less

  14. The materials irradiation experiment for testing plasma facing materials at fusion relevant conditions.

    PubMed

    Garrison, L M; Zenobia, S J; Egle, B J; Kulcinski, G L; Santarius, J F

    2016-08-01

    The Materials Irradiation Experiment (MITE-E) was constructed at the University of Wisconsin-Madison Inertial Electrostatic Confinement Laboratory to test materials for potential use as plasma-facing materials (PFMs) in fusion reactors. PFMs in fusion reactors will be bombarded with x-rays, neutrons, and ions of hydrogen and helium. More needs to be understood about the interactions between the plasma and the materials to validate their use for fusion reactors. The MITE-E simulates some of the fusion reactor conditions by holding samples at temperatures up to 1000 °C while irradiating them with helium or deuterium ions with energies from 10 to 150 keV. The ion gun can irradiate the samples with ion currents of 20 μA-500 μA; the typical current used is 72 μA, which is an average flux of 9 × 10(14) ions/(cm(2) s). The ion gun uses electrostatic lenses to extract and shape the ion beam. A variable power (1-20 W), steady-state, Nd:YAG laser provides additional heating to maintain a constant sample temperature during irradiations. The ion beam current reaching the sample is directly measured and monitored in real-time during irradiations. The ion beam profile has been investigated using a copper sample sputtering experiment. The MITE-E has successfully been used to irradiate polycrystalline and single crystal tungsten samples with helium ions and will continue to be a source of important data for plasma interactions with materials.

  15. The materials irradiation experiment for testing plasma facing materials at fusion relevant conditions

    NASA Astrophysics Data System (ADS)

    Garrison, L. M.; Zenobia, S. J.; Egle, B. J.; Kulcinski, G. L.; Santarius, J. F.

    2016-08-01

    The Materials Irradiation Experiment (MITE-E) was constructed at the University of Wisconsin-Madison Inertial Electrostatic Confinement Laboratory to test materials for potential use as plasma-facing materials (PFMs) in fusion reactors. PFMs in fusion reactors will be bombarded with x-rays, neutrons, and ions of hydrogen and helium. More needs to be understood about the interactions between the plasma and the materials to validate their use for fusion reactors. The MITE-E simulates some of the fusion reactor conditions by holding samples at temperatures up to 1000 °C while irradiating them with helium or deuterium ions with energies from 10 to 150 keV. The ion gun can irradiate the samples with ion currents of 20 μA-500 μA; the typical current used is 72 μA, which is an average flux of 9 × 1014 ions/(cm2 s). The ion gun uses electrostatic lenses to extract and shape the ion beam. A variable power (1-20 W), steady-state, Nd:YAG laser provides additional heating to maintain a constant sample temperature during irradiations. The ion beam current reaching the sample is directly measured and monitored in real-time during irradiations. The ion beam profile has been investigated using a copper sample sputtering experiment. The MITE-E has successfully been used to irradiate polycrystalline and single crystal tungsten samples with helium ions and will continue to be a source of important data for plasma interactions with materials.

  16. Oxygen Compatibility of Brass-Filled PTFE Compared to Commonly Used Fluorinated Polymers for Oxygen Systems

    NASA Technical Reports Server (NTRS)

    Herald, Stephen D.; Frisby, Paul M.; Davis, Samuel Eddie

    2009-01-01

    Safe and reliable seal materials for high-pressure oxygen systems sometimes appear to be extinct species when sought out by oxygen systems designers. Materials that seal well are easy to find, but these materials are typically incompatible with oxygen, especially in cryogenic liquid form. This incompatibility can result in seals that leak, or much worse, seals that easily ignite and burn during use. Materials that are compatible with oxygen are easy to find, such as the long list of compatible metals, but these metallic materials are limiting as seal materials. A material that seals well and is oxygen compatible has been the big game in the designer's safari. Scientists at the Materials Combustion Research Facility (MCRF), part of NASA/Marshall Space Flight Center (MSFC), are constantly searching for better materials and processes to improve the safety of oxygen systems. One focus of this effort is improving the characteristics of polymers used in the presence of an oxygen enriched environment. Very few systems can be built which contain no polymeric materials; therefore, materials which have good impact resistance, low heat of combustion, high auto-ignition temperature and that maintain good mechanical properties are essential. The scientists and engineers at the Materials Combustion Research Facility, in cooperation with seal suppliers, are currently testing a new formulation of polytetrafluoroethylene (PTFE) with Brass filler. This Brass-filled PTFE is showing great promise as a seal and seat material for high pressure oxygen systems. Early research has demonstrated very encouraging results, which could rank this material as one of the best fluorinated polymers ever tested. This paper will compare the data obtained for Brass-filled PTFE with other fluorinated polymers, such as TFE-Teflon (PTFE) , Kel-F 81, Viton A, Viton A-500, Fluorel , and Algoflon . A similar metal filled fluorinated polymer, Salox-M , was tested in comparison to Brass-filled PTFE to demonstrate the importance of the metal chosen and relative percentage of filler. General conclusions on the oxygen compatibility of this formulation are drawn, with an emphasis on comparing and contrasting the materials performance to the performance of the current state-of-the-art oxygen compatible polymers.

  17. Damage Tolerance Enhancement of Carbon Fiber Reinforced Polymer Composites by Nanoreinforcement of Matrix

    NASA Astrophysics Data System (ADS)

    Fenner, Joel Stewart

    Nanocomposites are a relatively new class of materials which incorporate exotic, engineered nanoparticles to achieve superior material properties. Because of their extremely small size and well-ordered structure, many nanoparticles possess properties that exceed those offered by a wide range of other known materials, making them attractive candidates for novel materials engineering development. Their small size is also an impediment to their practical use, as they typically cannot be employed by themselves to realize those properties in large structures. Furthermore, nanoparticles typically possess strong self-affinity, rendering them difficult to disperse uniformly into a composite. However, contemporary research has shown that, if well-dispersed, nanoparticles have great capacity to improve the mechanical properties of composites, especially damage tolerance, in the form of fracture toughness, fatigue life, and impact damage mitigation. This research focuses on the development, manufacturing, and testing of hybrid micro/nanocomposites comprised of woven carbon fibers with a carbon nanotube reinforced epoxy matrix. Material processing consisted of dispersant-and-sonication based methods to disperse nanotubes into the matrix, and a vacuum-assisted wet lay-up process to prepare the hybrid composite laminates. Various damage tolerance properties of the hybrid composite were examined, including static strength, fracture toughness, fatigue life, fatigue crack growth rate, and impact damage behavior, and compared with similarly-processed reference material produced without nanoreinforcement. Significant improvements were obtained in interlaminar shear strength (15%), Mode-I fracture toughness (180%), shear fatigue life (order of magnitude), Mode-I fatigue crack growth rate (factor of 2), and effective impact damage toughness (40%). Observations by optical microscopy, scanning electron microscopy, and ultrasonic imaging showed significant differences in failure behavior and fracture morphology between the two materials, related to the differences in properties. Altogether these results provided a means for proposing an explanation of the mechanism of reinforcement (and damage tolerance enhancement) provided by carbon nanotubes in hybrid composite materials.

  18. Mechanical properties of 2D and 3D braided textile composites

    NASA Technical Reports Server (NTRS)

    Norman, Timothy L.

    1991-01-01

    The purpose of this research was to determine the mechanical properties of 2D and 3D braided textile composite materials. Specifically, those designed for tension or shear loading were tested under static loading to failure to investigate the effects of braiding. The overall goal of the work was to provide a structural designer with an idea of how textile composites perform under typical loading conditions. From test results for unnotched tension, it was determined that the 2D is stronger, stiffer, and has higher elongation to failure than the 3D. It was also found that the polyetherether ketone (PEEK) resin system was stronger, stiffer, and had higher elongation at failure than the resin transfer molding (RTM) epoxy. Open hole tension tests showed that PEEK resin is more notch sensitive than RTM epoxy. Of greater significance, it was found that the 3D is less notch sensitive than the 2D. Unnotched compression tests indicated, as did the tension tests, that the 2D is stronger, stiffer, and has higher elongation at failure than the RTM epoxy. The most encouraging results were from compression after impact. The 3D braided composite showed a compression after impact failure stress equal to 92 percent of the unimpacted specimen. The 2D braided composite failed at about 67 percent of the unimpacted specimen. Higher damage tolerance is observed in textiles over conventional composite materials. This is observed in the results, especially in the 3D braided materials.

  19. Aerogel Beads as Cryogenic Thermal Insulation System

    NASA Technical Reports Server (NTRS)

    Fesmire, J. E.; Augustynowicz, S. D.; Rouanet, S.; Thompson, Karen (Technical Monitor)

    2001-01-01

    An investigation of the use of aerogel beads as thermal insulation for cryogenic applications was conducted at the Cryogenics Test Laboratory of NASA Kennedy Space Center. Steady-state liquid nitrogen boiloff methods were used to characterize the thermal performance of aerogel beads in comparison with conventional insulation products such as perlite powder and multilayer insulation (MLI). Aerogel beads produced by Cabot Corporation have a bulk density below 100 kilograms per cubic meter (kg/cubic m) and a mean particle diameter of 1 millimeter (mm). The apparent thermal conductivity values of the bulk material have been determined under steady-state conditions at boundary temperatures of approximately 293 and 77 kelvin (K) and at various cold vacuum pressures (CVP). Vacuum levels ranged from 10(exp -5) torr to 760 torr. All test articles were made in a cylindrical configuration with a typical insulation thickness of 25 mm. Temperature profiles through the thickness of the test specimens were also measured. The results showed the performance of the aerogel beads was significantly better than the conventional materials in both soft-vacuum (1 to 10 torr) and no-vacuum (760 torr) ranges. Opacified aerogel beads performed better than perlite powder under high-vacuum conditions. Further studies for material optimization and system application are in progress.

  20. Two-year performance study of porous, thermoset, shape memory polyurethanes intended for vascular medical devices

    NASA Astrophysics Data System (ADS)

    Weems, Andrew C.; Boyle, Anthony J.; Maitland, Duncan J.

    2017-03-01

    The long-term shape-recovery behavior of shape memory polymers has often been shown to be dependent on the length of time the material has been stored in the secondary shape. Typically, recovery performance and shape fixity will decrease with increased time in the secondary shape. In medical materials, a shelf-life is crucial to establish as it sets the upper threshold for device performance in a clinical setting, and a reduction in shape recovery would limit the development of SMP medical devices. Here, we present a two-year study of strain recovery, strain fixity, and shape recovery kinetics for passively and actively actuated SMPs intended for vascular devices. While kinetic experiments using immersion DMA indicate slight material relaxation and a decrease in the time to recovery, these changes are not found for bulk recovery experiments. The results indicate that a two-year shelf-life for these SMPs is very reasonable, as there is no change in the recovery kinetics, strain recovery, or strain fixity associated with this aging time. Further, a thermal accelerated aging test is presented for more rapid testing of the shape memory behavior of these SMPs and is compared with the real time aging results, indicating that this test is a reasonable indicator of the two-year behavior.

  1. Atypical transitions in material response during constant strain rate, hot deformation of austenitic steel

    NASA Astrophysics Data System (ADS)

    Borah, Utpal; Aashranth, B.; Samantaray, Dipti; Kumar, Santosh; Davinci, M. Arvinth; Albert, Shaju K.; Bhaduri, A. K.

    2017-10-01

    Work hardening, dynamic recovery and dynamic recrystallization (DRX) occurring during hot working of austenitic steel have been extensively studied. Various empirical models describe the nature and effects of these phenomena in a typical framework. However, the typical model is sometimes violated following atypical transitions in deformation mechanisms of the material. To ascertain the nature of these atypical transitions, researchers have intentionally introduced discontinuities in the deformation process, such as interrupting the deformation as in multi-step rolling and abruptly changing the rate of deformation. In this work, we demonstrate that atypical transitions are possible even in conventional single-step, constant strain rate deformation of austenitic steel. Towards this aim, isothermal, constant true strain rate deformation of austenitic steel has been carried out in a temperature range of 1173-1473 K and strain rate range of 0.01-100 s-1. The microstructural response corresponding to each deformation condition is thoroughly investigated. The conventional power-law variation of deformation grain size (D) with peak stress (σp) during DRX is taken as a typical model and experimental data is tested against it. It is shown that σp-D relations exhibit an atypical two-slope linear behaviour rather than a continuous power law relation. Similarly, the reduction in σp with temperature (T) is found to consist of two discrete linear segments. In practical terms, the two linear segments denote two distinct microstructural responses to deformation. As a consequence of this distinction, the typical model breaks down and is unable to completely relate microstructural evolution to flow behaviour. The present work highlights the microstructural mechanisms responsible for this atypical behavior and suggests strategies to incorporate the two-slope behaviour in the DRX model.

  2. Verification of Ceramic Structures

    NASA Astrophysics Data System (ADS)

    Behar-Lafenetre, Stephanie; Cornillon, Laurence; Rancurel, Michael; De Graaf, Dennis; Hartmann, Peter; Coe, Graham; Laine, Benoit

    2012-07-01

    In the framework of the “Mechanical Design and Verification Methodologies for Ceramic Structures” contract [1] awarded by ESA, Thales Alenia Space has investigated literature and practices in affiliated industries to propose a methodological guideline for verification of ceramic spacecraft and instrument structures. It has been written in order to be applicable to most types of ceramic or glass-ceramic materials - typically Cesic®, HBCesic®, Silicon Nitride, Silicon Carbide and ZERODUR®. The proposed guideline describes the activities to be performed at material level in order to cover all the specific aspects of ceramics (Weibull distribution, brittle behaviour, sub-critical crack growth). Elementary tests and their post-processing methods are described, and recommendations for optimization of the test plan are given in order to have a consistent database. The application of this method is shown on an example in a dedicated article [7]. Then the verification activities to be performed at system level are described. This includes classical verification activities based on relevant standard (ECSS Verification [4]), plus specific analytical, testing and inspection features. The analysis methodology takes into account the specific behaviour of ceramic materials, especially the statistical distribution of failures (Weibull) and the method to transfer it from elementary data to a full-scale structure. The demonstration of the efficiency of this method is described in a dedicated article [8]. The verification is completed by classical full-scale testing activities. Indications about proof testing, case of use and implementation are given and specific inspection and protection measures are described. These additional activities are necessary to ensure the required reliability. The aim of the guideline is to describe how to reach the same reliability level as for structures made of more classical materials (metals, composites).

  3. Engineering of a multi-station shoulder simulator.

    PubMed

    Smith, Simon L; Li, Lisa; Joyce, Thomas J

    2016-05-01

    This work aimed to engineer a multi-station shoulder simulator in order to wear test shoulder prostheses using recognized shoulder activities of daily living. A bespoke simulator was designed, built and subject to commissioning trials before a first wear test was conducted. Five JRI Orthopaedics Reverse Shoulder VAIOS 42 mm prostheses were tested for 2.0 million cycles and a mean wear rate and standard deviation of 14.2 ± 2.1 mm(3)/10(6) cycles measured for the polymeric glenoid components. This result when adjusted for prostheses diameters and test conditions showed excellent agreement with results from hip simulator studies of similar materials in a lubricant of bovine serum. The Newcastle Shoulder Simulator is the first multi-station shoulder simulator capable of applying physiological motion and loading for typical activities of daily living. © IMechE 2016.

  4. A study of facilities and fixtures for testing of a high speed civil transport wing component

    NASA Technical Reports Server (NTRS)

    Cerro, J. A.; Vause, R. F.; Bowman, L. M.; Jensen, J. K.; Martin, C. J., Jr.; Stockwell, A. E.; Waters, W. A., Jr.

    1996-01-01

    A study was performed to determine the feasibility of testing a large-scale High Speed Civil Transport wing component in the Structures and Materials Testing Laboratory in Building 1148 at NASA Langley Research Center. The report includes a survey of the electrical and hydraulic resources and identifies the backing structure and floor hard points which would be available for reacting the test loads. The backing structure analysis uses a new finite element model of the floor and backstop support system in the Structures Laboratory. Information on the data acquisition system and the thermal power requirements is also presented. The study identified the hardware that would be required to test a typical component, including the number and arrangement of hydraulic actuators required to simulate expected flight loads. Load introduction and reaction structure concepts were analyzed to investigate the effects of experimentally induced boundary conditions.

  5. 16 CFR Figure 7 to Part 1203 - Typical Test Apparatus for Positional Stability Test

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 16 Commercial Practices 2 2014-01-01 2014-01-01 false Typical Test Apparatus for Positional Stability Test 7 Figure 7 to Part 1203 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION CONSUMER PRODUCT SAFETY ACT REGULATIONS SAFETY STANDARD FOR BICYCLE HELMETS Pt. 1203, Fig. 7 Figure 7 to Part 1203—Typical Test Apparatus for Positional...

  6. 16 CFR Figure 7 to Part 1203 - Typical Test Apparatus for Positional Stability Test

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 16 Commercial Practices 2 2012-01-01 2012-01-01 false Typical Test Apparatus for Positional Stability Test 7 Figure 7 to Part 1203 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION CONSUMER PRODUCT SAFETY ACT REGULATIONS SAFETY STANDARD FOR BICYCLE HELMETS Pt. 1203, Fig. 7 Figure 7 to Part 1203—Typical Test Apparatus for Positional...

  7. 16 CFR Figure 7 to Part 1203 - Typical Test Apparatus for Positional Stability Test

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 16 Commercial Practices 2 2013-01-01 2013-01-01 false Typical Test Apparatus for Positional Stability Test 7 Figure 7 to Part 1203 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION CONSUMER PRODUCT SAFETY ACT REGULATIONS SAFETY STANDARD FOR BICYCLE HELMETS Pt. 1203, Fig. 7 Figure 7 to Part 1203—Typical Test Apparatus for Positional...

  8. Damping in aerospace composite materials

    NASA Astrophysics Data System (ADS)

    Agneni, A.; Balis Crema, L.; Castellani, A.

    Experimental results are presented on specimens of carbon and Kevlar fibers in epoxy resin, materials used in many aerospace structures (control surfaces and wings in aircraft, large antennas in spacecraft, etc.). Some experimental methods of estimating damping ratios are first reviewed, either in the time domain or in the frequency domain. Some damping factor estimates from experimental tests are then shown; in order to evaluate the effects of the aerospace environment, damping factors have been obtained in a typical range of temperature, namely between +120 C and -120 C, and in the pressure range from room pressure to 10 exp -6 torr. Finally, a theoretical approach for predicting the bounds of the damping coefficients is shown, and prediction data are compared with experimental results.

  9. The influence of fire exposure on austenitic stainless steel for pressure vessel fitness-for-service assessment: Experimental research

    NASA Astrophysics Data System (ADS)

    Li, Bo; Shu, Wenhua; Zuo, Yantian

    2017-04-01

    The austenitic stainless steels are widely applied to pressure vessel manufacturing. The fire accident risk exists in almost all the industrial chemical plants. It is necessary to make safety evaluation on the chemical equipment including pressure vessels after fire. Therefore, the present research was conducted on the influences of fire exposure testing under different thermal conditions on the mechanical performance evolution of S30408 austenitic stainless steel for pressure vessel equipment. The metallurgical analysis described typical appearances in micro-structure observed in the material suffered by fire exposure. Moreover, the quantitative degradation of mechanical properties was investigated. The material thermal degradation mechanism and fitness-for-service assessment process of fire damage were further discussed.

  10. Design of Refractory Metal Life Test Heat Pipe and Calorimeter

    NASA Technical Reports Server (NTRS)

    Martin, J. J.; Reid, R. S.; Bragg-Sitton, S. M.

    2010-01-01

    Heat pipe life tests have seldom been conducted on a systematic basis. Typically, one or more heat pipes are built and tested for an extended period at a single temperature with simple condenser loading. Results are often reported describing the wall material, working fluid, test temperature, test duration, and occasionally the nature of any failure. Important information such as design details, processing procedures, material assay, power throughput, and radial power density are usually not mentioned. We propose to develop methods to generate carefully controlled data that conclusively establish heat pipe operating life with material-fluid combinations capable of extended operation. The test approach detailed in this Technical Publication will use 16 Mo-44.5%Re alloy/sodium heat pipe units that have an approximate12-in length and 5/8-in diameter. Two specific test series have been identified: (1) Long-term corrosion rates based on ASTM-G-68-80 (G-series) and (2) corrosion trends in a cross-correlation sequence at various temperatures and mass fluences based on a Fisher multifactor design (F-series). Evaluation of the heat pipe hardware will be performed in test chambers purged with an inert purified gas (helium or helium/argon mixture) at low pressure (10-100 torr) to provide thermal coupling between the heat pipe condenser and calorimeter. The final pressure will be selected to minimize the potential for voltage breakdown between the heat pipe and radio frequency (RF) induction coil (RF heating is currently the planned method of powering the heat pipes). The proposed calorimeter is constructed from a copper alloy and relies on a laminar flow water-coolant channel design to absorb and transport energy

  11. Monitoring Crack Propagation in Turbine Blades Caused by Thermosonics

    NASA Astrophysics Data System (ADS)

    Bolu, G.; Gachagan, A.; Pierce, G.; Harvey, G.; Choong, L.

    2010-02-01

    High-power acoustic excitation of components during a thermosonic (or Sonic IR) inspection may degrade the structural integrity of the component by propagating existing cracks. Process Compensated Resonance Testing (PCRT) technology can be used to detect changes in material properties by comparing a components resonant spectra to a reference spectra at regular intervals after systematic exposure to high-power excitation associated with thermosonic inspection. The objective of this work is to determine whether a typical thermosonic inspection degrades the structural integrity of a turbine blade. In this work, the resonant spectra of six cracked and six uncracked turbine blades are captured before and after a series of thermosonic inspections. Next, these spectra are analyzed using proprietary software for changes in resonant behavior. Results from this work indicate no change in blade resonant behavior for a typical thermosonic inspection.

  12. Index change of chalcogenide materials from precision glass molding processes

    NASA Astrophysics Data System (ADS)

    Deegan, J.; Walsh, K.; Lindberg, G.; Benson, R.; Gibson, D.; Bayya, S.; Sanghera, J.; Stover, E.

    2015-05-01

    With the increase in demand for infrared optics for thermal applications and the use of glass molding of chalcogenide materials to support these higher volume optical designs, an investigation of changes to the optical properties of these materials is required. Typical precision glass molding requires specific thermal conditions for proper lens molding of any type of optical glass. With these conditions a change (reduction) of optical index occurs after molding of all oxide glass types and it is presumed that a similar behavior will happen with chalcogenide based materials. We will discuss the effects of a typical molding thermal cycle for use with commercially and newly developed chalcogenide materials and show results of index variation from nominally established material data.

  13. Feasibility Study on S-Band Microwave Radiation and 3D-Thermal Infrared Imaging Sensor-Aided Recognition of Polymer Materials from End-of-Life Vehicles

    PubMed Central

    Huang, Jiu; Zhu, Zhuangzhuang; Tian, Chuyuan; Bian, Zhengfu

    2018-01-01

    With the increase the worldwide consumption of vehicles, end-of-life vehicles (ELVs) have kept rapidly increasing in the last two decades. Metallic parts and materials of ELVs can be easily reused and recycled, but the automobile shredder residues (ASRs), of which elastomer and plastic materials make up the vast majority, are difficult to recycle. ASRs are classified as hazardous materials in the main industrial countries, and are required to be materially recycled up to 85–95% by mass until 2020. However, there is neither sufficient theoretical nor practical experience for sorting ASR polymers. In this research, we provide a novel method by using S-Band microwave irradiation together with 3D scanning as well as infrared thermal imaging sensors for the recognition and sorting of typical plastics and elastomers from the ASR mixture. In this study, an industrial magnetron array with 2.45 GHz irradiation was utilized as the microwave source. Seven kinds of ELV polymer (PVC, ABS, PP, EPDM, NBR, CR, and SBR) crushed scrap residues were tested. After specific power microwave irradiation for a certain time, the tested polymer materials were heated up to different extents corresponding to their respective sensitivities to microwave irradiation. Due to the variations in polymer chemical structure and additive agents, polymers have different sensitivities to microwave radiation, which leads to differences in temperature rises. The differences of temperature increase were obtained by a thermal infrared sensor, and the position and geometrical features of the tested scraps were acquired by a 3D imaging sensor. With this information, the scrap material could be recognized and then sorted. The results showed that this method was effective when the tested polymer materials were heated up to more than 30 °C. For full recognition of the tested polymer scraps, the minimum temperature variations of 5 °C and 10.5 °C for plastics and elastomers were needed, respectively. The sorting efficiency was independent of particle sizes but depended on the power and time of the microwave irradiation. Generally, more than 75% (mass) of the tested polymer materials could be successfully recognized and sorted under an irradiation power of 3 kW. Plastics were much more insensitive to microwave irradiation than elastomers. With this method, the tested mixture of the plastic group (PVC, ABS, PP) and the mixture of elastomer group (EPDM, NBR, CR, and SBR) could be fully separated with an efficiency of 100%. PMID:29702564

  14. Feasibility Study on S-Band Microwave Radiation and 3D-Thermal Infrared Imaging Sensor-Aided Recognition of Polymer Materials from End-of-Life Vehicles.

    PubMed

    Huang, Jiu; Zhu, Zhuangzhuang; Tian, Chuyuan; Bian, Zhengfu

    2018-04-27

    With the increase the worldwide consumption of vehicles, end-of-life vehicles (ELVs) have kept rapidly increasing in the last two decades. Metallic parts and materials of ELVs can be easily reused and recycled, but the automobile shredder residues (ASRs), of which elastomer and plastic materials make up the vast majority, are difficult to recycle. ASRs are classified as hazardous materials in the main industrial countries, and are required to be materially recycled up to 85⁻95% by mass until 2020. However, there is neither sufficient theoretical nor practical experience for sorting ASR polymers. In this research, we provide a novel method by using S-Band microwave irradiation together with 3D scanning as well as infrared thermal imaging sensors for the recognition and sorting of typical plastics and elastomers from the ASR mixture. In this study, an industrial magnetron array with 2.45 GHz irradiation was utilized as the microwave source. Seven kinds of ELV polymer (PVC, ABS, PP, EPDM, NBR, CR, and SBR) crushed scrap residues were tested. After specific power microwave irradiation for a certain time, the tested polymer materials were heated up to different extents corresponding to their respective sensitivities to microwave irradiation. Due to the variations in polymer chemical structure and additive agents, polymers have different sensitivities to microwave radiation, which leads to differences in temperature rises. The differences of temperature increase were obtained by a thermal infrared sensor, and the position and geometrical features of the tested scraps were acquired by a 3D imaging sensor. With this information, the scrap material could be recognized and then sorted. The results showed that this method was effective when the tested polymer materials were heated up to more than 30 °C. For full recognition of the tested polymer scraps, the minimum temperature variations of 5 °C and 10.5 °C for plastics and elastomers were needed, respectively. The sorting efficiency was independent of particle sizes but depended on the power and time of the microwave irradiation. Generally, more than 75% (mass) of the tested polymer materials could be successfully recognized and sorted under an irradiation power of 3 kW. Plastics were much more insensitive to microwave irradiation than elastomers. With this method, the tested mixture of the plastic group (PVC, ABS, PP) and the mixture of elastomer group (EPDM, NBR, CR, and SBR) could be fully separated with an efficiency of 100%.

  15. Press-hardening of zinc coated steel - characterization of a new material for a new process

    NASA Astrophysics Data System (ADS)

    Kurz, T.; Larour, P.; Lackner, J.; Steck, T.; Jesner, G.

    2016-11-01

    Press-hardening of zinc-coated PHS has been limited to the indirect process until a pre-cooling step was introduced before the hot forming to prevent liquid metal embrittlement. Even though that's only a minor change in the process itself it does not only eliminate LME, but increases also the demands on the base material especially in terms of hardenability or phase transformations at temperatures below 700 °C in general. This paper deals with the characterization of a modified zinc-coated material for press-hardening with pre-cooling that assures a robust process. The pre-cooling step itself and especially the transfer of the blank in the hot-forming die is more demanding than the standard 22MnB5 can stand to ensure full hardenability. Therefore the transformation behavior of the modified material is shown in CCT and TTT diagrams. Of the same importance are the changed hot forming temperature and flow curves for material at lower temperatures than typically used in direct hot forming. The resulting mechanical properties after hardening from tensile testing and bending tests are shown in detail. Finally some results from side impact crash tests and correlations of the findings with mechanical properties such as fracture elongation, tensile strength, VDA238 bending angle at maximum force as well as postuniform bending slope are given as well. Fracture elongation is shown to be of little help for damage prediction in side impact crash. Tensile strength and VDA bending properties enable however some accurate prediction of the PHS final damage behavior in bending dominated side impact load case.

  16. High-resolution nondestructive testing of multilayer dielectric materials using wideband microwave synthetic aperture radar imaging

    NASA Astrophysics Data System (ADS)

    Kim, Tae Hee; James, Robin; Narayanan, Ram M.

    2017-04-01

    Fiber Reinforced Polymer or Plastic (FRP) composites have been rapidly increasing in the aerospace, automotive and marine industry, and civil engineering, because these composites show superior characteristics such as outstanding strength and stiffness, low weight, as well as anti-corrosion and easy production. Generally, the advancement of materials calls for correspondingly advanced methods and technologies for inspection and failure detection during production or maintenance, especially in the area of nondestructive testing (NDT). Among numerous inspection techniques, microwave sensing methods can be effectively used for NDT of FRP composites. FRP composite materials can be produced using various structures and materials, and various defects or flaws occur due to environmental conditions encountered during operation. However, reliable, low-cost, and easy-to-operate NDT methods have not been developed and tested. FRP composites are usually produced as multilayered structures consisting of fiber plate, matrix and core. Therefore, typical defects appearing in FRP composites are disbondings, delaminations, object inclusions, and certain kinds of barely visible impact damages. In this paper, we propose a microwave NDT method, based on synthetic aperture radar (SAR) imaging algorithms, for stand-off imaging of internal delaminations. When a microwave signal is incident on a multilayer dielectric material, the reflected signal provides a good response to interfaces and transverse cracks. An electromagnetic wave model is introduced to delineate interface widths or defect depths from the reflected waves. For the purpose of numerical analysis and simulation, multilayered composite samples with various artificial defects are assumed, and their SAR images are obtained and analyzed using a variety of high-resolution wideband waveforms.

  17. Compact forced simple-shear sample for studying shear localization in materials

    DOE PAGES

    Gray, George Thompson; Vecchio, K. S.; Livescu, Veronica

    2015-11-06

    In this paper, a new specimen geometry, the compact forced-simple-shear specimen (CFSS), has been developed as a means to achieve simple shear testing of materials over a range of temperatures and strain rates. The stress and strain state in the gage section is designed to produce essentially “pure” simple shear, mode II in-plane shear, in a compact-sample geometry. The 2-D plane of shear can be directly aligned along specified directional aspects of a material's microstructure of interest; i.e., systematic shear loading parallel, at 45°, and orthogonal to anisotropic microstructural features in a material such as the pancake-shaped grains typical inmore » many rolled structural metals, or to specified directions in fiber-reinforced composites. Finally, the shear-stress shear-strain response and the damage evolution parallel and orthogonal to the pancake grain morphology in 7039-Al are shown to vary significantly as a function of orientation to the microstructure.« less

  18. Characterization of refractory brick based on local raw material from Lampung Province - Indonesia

    NASA Astrophysics Data System (ADS)

    Amin, Muhammad; Suryana, Yayat I.; Isnugroho, Kusno; Aji, Bramantyo B.; Birawidha, David C.; Hendronursito, Yusup

    2018-04-01

    Refractories are non-metallic inorganic materials that are difficult to melt at high temperatures and used in high-temperature casting industries. Refractories are classified into their constituent mineral feed stocks, refractories having typical plot properties commonly called fire bricks. In the manufacture of refractory bricks that exist in the market during the use of mangrove materials derived from abroad that is from China. In this research the refractory brick materials used are quartz sand, feldspart, kaolin, bentonite, and ball clay. All materials come from local Lampung Province - Indonesia. The experiment, there are 7 kinds of experimental composition, made of plot shape with size 230 mm, 65 mm in thickness, 114 mm height mould using manual press machine with 10 tons power and burning at 1400°C for 5 hours. Refractory brick product is done by physical test in the form of porosity, specific gravity, compressive strength and XRF and SEM characteristics. The result of XRF characteristic of refractory brick composition of 1 to 5 compared to the refractory brick type SK 34 in the market and the result of composition 1 is a composition close to refractory brick composition type SK 34 namely SiO2 is 54.21 %, Al2O3 is 25.38 % and test Physical of Bulk density is 2.25 g/cm3, porosity is 18.98 % and compressive strength is 325 kg/cm2.

  19. Microstructure and Mechanical Properties of Reaction-Formed Joints in Reaction Bonded Silicon Carbide Ceramics

    NASA Technical Reports Server (NTRS)

    Singh, M.

    1998-01-01

    A reaction-bonded silicon carbide (RB-SiC) ceramic material (Carborundum's Cerastar RB-SIC) has been joined using a reaction forming approach. Microstructure and mechanical properties of three types of reaction-formed joints (350 micron, 50-55 micron, and 20-25 micron thick) have been evaluated. Thick (approximately 350 micron) joints consist mainly of silicon with a small amount of silicon carbide. The flexural strength of thick joints is about 44 plus or minus 2 MPa, and fracture always occurs at the joints. The microscopic examination of fracture surfaces of specimens with thick joints tested at room temperature revealed the failure mode to be typically brittle. Thin joints (<50-55 micron) consist of silicon carbide and silicon phases. The room and high temperature flexural strengths of thin (<50-55 micron) reaction-formed joints have been found to be at least equal to that of the bulk Cerastar RB-SIC materials because the flexure bars fracture away from the joint regions. In this case, the fracture origins appear to be inhomogeneities inside the parent material. This was always found to be the case for thin joints tested at temperatures up to 1350C in air. This observation suggests that the strength of Cerastar RB-SIC material containing a thin joint is not limited by the joint strength but by the strength of the bulk (parent) materials.

  20. Mechanism of chromium poisoning the conventional cathode material for solid oxide fuel cells

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaoqiang; Yu, Guangsen; Zeng, Shumao; Parbey, Joseph; Xiao, Shuhao; Li, Baihai; Li, Tingshuai; Andersson, Martin

    2018-03-01

    Chromium poisoning the La0.875Sr0.125MnO3 (LSM) cathode for solid oxide fuel cells is a critical issue that can strongly affect the stability. In this study, we evaluate the temperature distribution in a SOFC based on a 3D model and then combine conductivity test and material computation to reveal the effects of chromium in SUS430 stainless steels on LSM conductivities. The starch concentration in LSM pellets and the applied pressure on the contact with interconnect materials show close relationships with the chromium poisoning behavior. The density functional theory (DFT) computing results indicate that chromium atoms preferably adsorb on the MnO2-terminated and La (Sr)-O-terminated (001) surfaces. The resulting conclusions are expected to deeply understand mechanism of chromium deactivating conventional cathodes at some typical operational conditions, and offer crucial information to optimize the structure to avoid the poisoning effect.

  1. Femtosecond ablation of ultrahard materials

    NASA Astrophysics Data System (ADS)

    Dumitru, G.; Romano, V.; Weber, H. P.; Sentis, M.; Marine, W.

    Several ultrahard materials and coatings of definite interest for tribological applications were tested with respect to their response when irradiated with fs laser pulses. Results on cemented tungsten carbide and on titanium carbonitride are reported for the first time and compared with outcomes of investigations on diamond and titanium nitride. The experiments were carried out in air, in a regime of 5-8 J/cm2 fluences, using the beam of a commercial Ti:sapphire laser. The changes induced in the surface morphology were analysed with a Nomarski optical microscope, and with SEM and AFM techniques. From the experimental data and from the calculated incident energy density distributions, the damage and ablation threshold values were determined. As expected, the diamond showed the highest threshold, while the cemented tungsten carbide exhibited typical values for metallic surfaces. The ablation rates determined (under the above-mentioned experimental conditions) were in the range 0.1-0.2 μm per pulse for all the materials investigated.

  2. Modeling of solid-state and excimer laser processes for 3D micromachining

    NASA Astrophysics Data System (ADS)

    Holmes, Andrew S.; Onischenko, Alexander I.; George, David S.; Pedder, James E.

    2005-04-01

    An efficient simulation method has recently been developed for multi-pulse ablation processes. This is based on pulse-by-pulse propagation of the machined surface according to one of several phenomenological models for the laser-material interaction. The technique allows quantitative predictions to be made about the surface shapes of complex machined parts, given only a minimal set of input data for parameter calibration. In the case of direct-write machining of polymers or glasses with ns-duration pulses, this data set can typically be limited to the surface profiles of a small number of standard test patterns. The use of phenomenological models for the laser-material interaction, calibrated by experimental feedback, allows fast simulation, and can achieve a high degree of accuracy for certain combinations of material, laser and geometry. In this paper, the capabilities and limitations of the approach are discussed, and recent results are presented for structures machined in SU8 photoresist.

  3. A high-capacity, low-cost layered sodium manganese oxide material as cathode for sodium-ion batteries.

    PubMed

    Guo, Shaohua; Yu, Haijun; Jian, Zelang; Liu, Pan; Zhu, Yanbei; Guo, Xianwei; Chen, Mingwei; Ishida, Masayoshi; Zhou, Haoshen

    2014-08-01

    A layered sodium manganese oxide material (NaMn3 O5 ) is introduced as a novel cathode materials for sodium-ion batteries. Structural characterizations reveal a typical Birnessite structure with lamellar stacking of the synthetic nanosheets. Electrochemical tests reveal a particularly large discharge capacity of 219 mAh g(-1) in the voltage rang of 1.5-4.7 V vs. Na/Na(+) . With an average potential of 2.75 V versus sodium metal, layered NaMn3 O5 exhibits a high energy density of 602 Wh kg(-1) , and also presents good rate capability. Furthermore, the diffusion coefficient of sodium ions in the layered NaMn3 O5 electrode is investigated by using the galvanostatic intermittent titration technique. The results greatly contribute to the development of room-temperature sodium-ion batteries based on earth-abundant elements. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Effects of Control Mode and R-Ratio on the Fatigue Behavior of a Metal Matrix Composite

    NASA Technical Reports Server (NTRS)

    2005-01-01

    Composite Because of their high specific stiffness and strength at elevated temperatures, continuously reinforced metal matrix composites (MMC's) are under consideration for a future generation of aeropropulsion systems. Since components in aeropropulsion systems experience substantial cyclic thermal and mechanical loads, the fatigue behavior of MMC's is of great interest. Almost without exception, previous investigations of the fatigue behavior of MMC's have been conducted in a tension-tension, load-controlled mode. This has been due to the fact that available material is typically less than 2.5-mm thick and, therefore, unable to withstand high compressive loads without buckling. Since one possible use of MMC's is in aircraft skins, this type of testing mode may be appropriate. However, unlike aircraft skins, most engine components are thick. In addition, the transient thermal gradients experienced in an aircraft engine will impose tension-compression loading on engine components, requiring designers to understand how the MMC will behave under fully reversed loading conditions. The increased thickness of the MMC may also affect the fatigue life. Traditionally, low-cycle fatigue (LCF) tests on MMC's have been performed in load control. For monolithic alloys, low-cycle fatigue tests are more typically performed in strain control. Two reasons justify this choice: (1) the critical volume from which cracks initiate and grow is generally small and elastically constrained by the larger surrounding volume of material, and (2) load-controlled, low-cycle fatigue tests of monolithics invariably lead to unconstrained ratcheting and localized necking--an undesired material response because the failure mechanism is far more severe than, and unrelated to, the fatigue mechanism being studied. It is unknown if this is the proper approach to composite testing. However, there is a lack of strain-controlled data on which to base any decisions. Consequently, this study addresses the isothermal, LCF behavior of a [0]_32 MMC tested under strain- and load-controlled conditions for both zero-tension and tension-compression loading conditions. These tests were run at 427 C on thick specimens of SiC-reinforced Ti-15-3. For the fully-reversed tests, no difference was observed in the lives between the load- and strain-controlled tests. However, for the zero-tension tests, the strain-controlled tests had longer lives by a factor of 3 in comparison to the load-controlled tests. This was due to the fact that under strain-control the specimens cyclically softened, reducing the cracking potential. In contrast, the load-controlled tests ratcheted toward larger tensile strains leading to an eventual overload of the fibers. Fatigue tests revealed that specimens tested under fully-reversed conditions had lives approximately an order of magnitude longer than for those specimens tested under zero tension. When examined on a strain-range basis, the fully reversed specimens had similar, but still shorter lives than those of the unreinforced matrix material. However, the composite had a strain limitation at short lives because of the limited strain capacity of the brittle ceramic fiber. The composite also suffered at very high lives because of the lack of an apparent fatigue limit in comparison to the unreinforced matrix. The value of adding fibers to the matrix is apparent when the fatigue lives are plotted as a function of stress range. Here, the composite is far superior to the unreinforced matrix because of the additional load-carrying capacity of the fibers.

  5. Hybrid Encapsulated Ionic Liquids for Post-Combustion Carbon Dioxide (CO 2) Capture

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brennecke, Joan; Degnan, Thomas; McCready, Mark

    Ionic liquids (ILs) and Phase Change Ionic Liquids (PCILs) are excellent materials for selective removal of carbon dioxide from dilute post-combustion streams. However, they are typically characterized as having high viscosities, which impairs their effectiveness due to mass transfer limitations, caused by the high viscosities. In this project, we are examining the benefits of encapsulating ILs and PCILs in thin polymeric shells to produce particles of approximately 100 to 600 μm in diameter that can be used in a fluidized bed absorber. The particles are produced by microencapsulation of the ILs and PCILs in CO 2-permeable polymer shells. Here wemore » report on the synthesis of the IL and PCIL materials, measurements of thermophysical properties including CO 2 capacity and reprotonation equilibrium and kinetics, encapsulation of the ILs and PCILs, mechanical and thermodynamic testing of the encapsulated materials, development of a rate based model of the absorber, and the design of a laboratory scale unit to test the encapsulated particles for CO 2 capture ability and efficiency. We show that the IL/PCIL materials can be successfully encapsulated, that they retain CO 2 uptake capacity, and that the uptake rates are increased relative to a stagnant sample of IL liquid or PCIL powder.« less

  6. Simulated Space Environmental Effects on Thin Film Solar Array Components

    NASA Technical Reports Server (NTRS)

    Finckenor, Miria; Carr, John; SanSoucie, Michael; Boyd, Darren; Phillips, Brandon

    2017-01-01

    The Lightweight Integrated Solar Array and Transceiver (LISA-T) experiment consists of thin-film, low mass, low volume solar panels. Given the variety of thin solar cells and cover materials and the lack of environmental protection typically afforded by thick coverglasses, a series of tests were conducted in Marshall Space Flight Center's Space Environmental Effects Facility to evaluate the performance of these materials. Candidate thin polymeric films and nitinol wires used for deployment were also exposed. Simulated space environment exposures were selected based on SSP 30425 rev. B, "Space Station Program Natural Environment Definition for Design" or AIAA Standard S-111A-2014, "Qualification and Quality Requirements for Space Solar Cells." One set of candidate materials were exposed to 5 eV atomic oxygen and concurrent vacuum ultraviolet (VUV) radiation for low Earth orbit simulation. A second set of materials were exposed to 1 MeV electrons. A third set of samples were exposed to 50, 100, 500, and 700 keV energy protons, and a fourth set were exposed to >2,000 hours of near ultraviolet (NUV) radiation. A final set was rapidly thermal cycled between -55 and +125 C. This test series provides data on enhanced power generation, particularly for small satellites with reduced mass and volume resources. Performance versus mass and cost per Watt is discussed.

  7. Simulated Space Environmental Effects on Thin Film Solar Array Components

    NASA Technical Reports Server (NTRS)

    Finckenor, Miria; Carr, John; SanSoucie, Michael; Boyd, Darren; Phillips, Brandon

    2017-01-01

    The Lightweight Integrated Solar Array and Transceiver (LISA-T) experiment consists of thin-film, low mass, low volume solar panels. Given the variety of thin solar cells and cover materials and the lack of environmental protection typically afforded by thick coverglasses, a series of tests were conducted in Marshall Space Flight Center's Space Environmental Effects Facility to evaluate the performance of these materials. Candidate thin polymeric films and nitinol wires used for deployment were also exposed. Simulated space environment exposures were selected based on SSP 30425 rev. B, "Space Station Program Natural Environment Definition for Design" or AIAA Standard S-111A-2014, "Qualification and Quality Requirements for Space Solar Cells." One set of candidate materials were exposed to 5 eV atomic oxygen and concurrent vacuum ultraviolet (VUV) radiation for low Earth orbit simulation. A second set of materials were exposed to 1 MeV electrons. A third set of samples were exposed to 50, 100, 500, and 700 keV energy protons, and a fourth set were exposed to >2,000 hours of near ultraviolet (NUV) radiation. A final set was rapidly thermal cycled between -55 and +125degC. This test series provides data on enhanced power generation, particularly for small satellites with reduced mass and volume resources. Performance versus mass and cost per Watt is discussed.

  8. Simulated Space Environmental Effects on Thin Film Solar Array Components

    NASA Technical Reports Server (NTRS)

    Finckenor, Miria; Carr, John; SanSoucie, Michael; Boyd, Darren; Phillips, Brandon

    2017-01-01

    The Lightweight Integrated Solar Array and Transceiver (LISA-T) experiment consists of thin-film, low mass, low volume solar panels. Given the variety of thin solar cells and cover materials and the lack of environmental protection afforded by typical thick coverglasses, a series of tests were conducted in Marshall Space Flight Center's Space Environmental Effects Facility to evaluate the performance of these materials. Candidate thin polymeric films and nitinol wires used for deployment were also exposed. Simulated space environment exposures were selected based on SSP 30425 rev. B, "Space Station Program Natural Environment Definition for Design" or AIAA Standard S-111A-2014, "Qualification and Quality Requirements for Space Solar Cells." One set of candidate materials were exposed to 5 eV atomic oxygen and concurrent vacuum ultraviolet (VUV) radiation for low Earth orbit simulation. A second set of materials were exposed to 1 MeV electrons. A third set of samples were exposed to 50, 500, and 750 keV energy protons, and a fourth set were exposed to >2,000 hours of ultraviolet radiation. A final set was rapidly thermal cycled between -50 and +120 C. This test series provides data on enhanced power generation, particularly for small satellites with reduced mass and volume resources. Performance versus mass and cost per Watt is discussed.

  9. Microstructure Based Material-Sand Particulate Interactions and Assessment of Coatings for High Temperature Turbine Blades

    NASA Technical Reports Server (NTRS)

    Murugan, Muthuvel; Ghoshal, Anindya; Walock, Michael; Nieto, Andy; Bravo, Luis; Barnett, Blake; Pepi, Marc; Swab, Jeffrey; Pegg, Robert Tyler; Rowe, Chris; hide

    2017-01-01

    Gas turbine engines for military/commercial fixed-wing and rotary wing aircraft use thermal barrier coatings in the high-temperature sections of the engine for improved efficiency and power. The desire to further make improvements in gas turbine engine efficiency and high power-density is driving the research and development of thermal barrier coatings and the effort of improving their tolerance to fine foreign particulates that may be contained in the intake air. Both commercial and military aircraft engines often are required to operate over sandy regions such as in the Middle-East nations, as well as over volcanic zones. For rotorcraft gas turbine engines, the sand ingestion is adverse during take-off, hovering near ground, and landing conditions. Although, most of the rotorcraft gas turbine engines are fitted with inlet particle separators, they are not 100 percent efficient in filtering fine sand particles of size 75 microns or below. The presence of these fine solid particles in the working fluid medium has an adverse effect on the durability of turbine blade thermal barrier coatings and overall performance of the engine. Typical turbine blade damages include blade coating wear, sand glazing, Calcia-Magnesia-Alumina-Silicate (CMAS) attack, oxidation, plugged cooling holes, all of which can cause rapid performance deterioration including loss of aircraft. The objective of this research is to understand the fine particle interactions with typical ceramic coatings of turbine blades at the microstructure level. A finite-element based microstructure modeling and analysis has been performed to investigate particle-surface interactions, and restitution characteristics. Experimentally, a set of tailored thermal barrier coatings and surface treatments were down-selected through hot burner rig tests and then applied to first stage nozzle vanes of the Gas Generator Turbine of a typical rotorcraft gas turbine engine. Laser Doppler velocity measurements were performed during hot burner rig testing to determine sand particle incoming velocities and their rebound characteristics upon impact on coated material targets. Further, engine sand ingestion tests were carried out to test the CMAS tolerance of the coated nozzle vanes. The findings from this on-going collaborative research to develop the next-gen sand tolerant coatings for turbine blades are presented in this paper.

  10. Functionalization of carbon fiber tows with ZnO nanorods for stress sensor integration in smart composite materials.

    PubMed

    Calestani, D; Culiolo, M; Villani, M; Delmonte, D; Solzi, M; Kim, Tae-Yun; Kim, Sang-Woo; Marchini, L; Zappettini, A

    2018-08-17

    The physical and operating principle of a stress sensor, based on two crossing carbon fibers functionalized with ZnO nanorod-shaped nanostructures, was recently demonstrated. The functionalization process has been here extended to tows made of one thousand fibers, like those commonly used in industrial processing, to prove the idea that the same working principle can be exploited in the creation of smart sensing carbon fiber composites. A stress-sensing device made of two functionalized tows, fixed with epoxy resin and crossing like in a typical carbon fiber texture, was successfully tested. Piezoelectric properties of single nanorods, as well as those of the test device, were measured and discussed.

  11. Cyclic fatigue analysis of rocket thrust chambers. Volume 1: OFHC copper chamber low cycle fatigue

    NASA Technical Reports Server (NTRS)

    Miller, R. W.

    1974-01-01

    A three-dimensional finite element elasto-plastic strain analysis was performed for the throat section of a regeneratively cooled rocket combustion chamber. The analysis employed the RETSCP finite element computer program. The analysis included thermal and pressure loads, and the effects of temperature dependent material properties, to determine the strain range corresponding to the chamber operating cycle. The analysis was performed for chamber configuration and operating conditions corresponding to a hydrogen-oxygen combustion chamber which was fatigue tested to failure. The computed strain range at typical chamber operating conditions was used in conjunction with oxygen-free, high-conductivity (OHFC) copper isothermal fatigue test data to predict chamber low-cycle fatigue life.

  12. Resource Conservation and Recovery Act, Part B permit application [of the Waste Isolation Pilot Plant (WIPP)]. Volume 11, Chapter D, Appendix D4--Chapter D, Appendix D17: Revision 3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1993-03-01

    This volume contains appendices D4 through D17 which cover the following: Waste Isolation Pilot Plant site environmental report; ecological monitoring program at the Waste Isolation Pilot Plant; site characterization; regional and site geology and hydrology; general geology; dissolution features; ground water hydrology; typical carbon sorption bed efficiency; VOC monitoring plan for bin-room tests; chemical compatibility analysis of waste forms and container materials; probable maximum precipitation; WHIP supplementary roof support system room 1, panel 1; and corrosion risk assessment of the Waste Isolation Pilot Plant ``humid`` test bins.

  13. Progress in terahertz nondestructive testing: A review

    NASA Astrophysics Data System (ADS)

    Zhong, Shuncong

    2018-05-01

    Terahertz (THz) waves, whose frequencies range between microwave and infrared, are part of the electromagnetic spectrum. A gap exists in THz literature because investigating THz waves is difficult due to the weak characteristics of the waves and the lack of suitable THz sources and detectors. Recently, THz nondestructive testing (NDT) technology has become an interesting topic. This review outlines several typical THz devices and systems and engineering applications of THz NDT techniques in composite materials, thermal barrier coatings, car paint films, marine protective coatings, and pharmaceutical tablet coatings. THz imaging has higher resolution but lower penetration than ultrasound imaging. This review presents the significance and advantages provided by the emerging THz NDT technique.

  14. Laser and Pressure Resistance Weld of Thin-Wall Cladding for LWR Accident-Tolerant Fuels

    NASA Astrophysics Data System (ADS)

    Gan, J.; Jerred, N.; Perez, E.; Haggard, D. C.

    2017-12-01

    FeCrAl alloy with typical composition of approximately Fe-15Cr-5Al is considered a primary candidate cladding material for light water reactor accident-tolerant fuel because of its superior resistance to oxidation in high-temperature steam compared with Zircaloy cladding. Thin-walled FeCrAl cladding at 350 μm wall thickness is required, and techniques for joining endplug to cladding need to be developed. Fusion-based laser weld and solid-state joining with pressure resistance weld were investigated in this study. The results of microstructural characterization, mechanical property evaluation by tensile testing, and hydraulic pressure burst testing of the welds for the cladding-endplug specimen are discussed.

  15. Laser and Pressure Resistance Weld of Thin-Wall Cladding for LWR Accident-Tolerant Fuels

    NASA Astrophysics Data System (ADS)

    Gan, J.; Jerred, N.; Perez, E.; Haggard, D. C.

    2018-02-01

    FeCrAl alloy with typical composition of approximately Fe-15Cr-5Al is considered a primary candidate cladding material for light water reactor accident-tolerant fuel because of its superior resistance to oxidation in high-temperature steam compared with Zircaloy cladding. Thin-walled FeCrAl cladding at 350 μm wall thickness is required, and techniques for joining endplug to cladding need to be developed. Fusion-based laser weld and solid-state joining with pressure resistance weld were investigated in this study. The results of microstructural characterization, mechanical property evaluation by tensile testing, and hydraulic pressure burst testing of the welds for the cladding-endplug specimen are discussed.

  16. Space vehicle integrated thermal protection/structural/meteoroid protection system, volume 1

    NASA Technical Reports Server (NTRS)

    Bartlett, D. H.; Zimmerman, D. K.

    1973-01-01

    A program was conducted to determine the merit of a combined structure/thermal meteoroid protection system for a cryogenic vehicle propulsion module. Structural concepts were evaluated to identify least weight designs. Thermal analyses determined optimum tank arrangements and insulation materials. Meteoroid penetration experiments provided data for design of protection systems. Preliminary designs were made and compared on the basis of payload capability. Thermal performance tests demonstrated heat transfer rates typical for the selected design. Meteoroid impact tests verified the protection characteristics. A mockup was made to demonstrate protection system installation. The best design found combined multilayer insulation with a truss structure vehicle body. The multilayer served as the thermal/meteoroid protection system.

  17. The 737 graphite composite flight spoiler flight service evaluation

    NASA Technical Reports Server (NTRS)

    Coggeshall, R. L.

    1982-01-01

    A flight service report was prepared which covers the flight service experience of 111 graphite epoxy spoilers on 737 transport aircraft and related ground based environmental exposure of graphite epoxy material specimens. Spoilers were installed on 28 aircraft representing seven major airlines operating throughout the world. Tests of removed spoilers after the seventh year of service continue to indicate modest changes in composite strength properties. Two spoilers were tested, one with 6 and one with 7 years of service, and both had residual strengths that fall within the original static strength scatter band. Both these units had typical service included discrepancies when tested. Based on visual, ultrasonic, and destructive inspection there continues to be no evidence of moisture migration into the honeycomb core and no core corrosion in the deployed units.

  18. Vadose zone flow convergence test suite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Butcher, B. T.

    Performance Assessment (PA) simulations for engineered disposal systems at the Savannah River Site involve highly contrasting materials and moisture conditions at and near saturation. These conditions cause severe convergence difficulties that typically result in unacceptable convergence or long simulation times or excessive analyst effort. Adequate convergence is usually achieved in a trial-anderror manner by applying under-relaxation to the Saturation or Pressure variable, in a series of everdecreasing RELAxation values. SRNL would like a more efficient scheme implemented inside PORFLOW to achieve flow convergence in a more reliable and efficient manner. To this end, a suite of test problems that illustratemore » these convergence problems is provided to facilitate diagnosis and development of an improved convergence strategy. The attached files are being transmitted to you describing the test problem and proposed resolution.« less

  19. ADAPTATION OF CRACK GROWTH DETECTION TECHNIQUES TO US MATERIAL TEST REACTORS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    A. Joseph Palmer; Sebastien P. Teysseyre; Kurt L. Davis

    2015-04-01

    A key component in evaluating the ability of Light Water Reactors to operate beyond 60 years is characterizing the degradation of materials exposed to radiation and various water chemistries. Of particular concern is the response of reactor materials to Irradiation Assisted Stress Corrosion Cracking (IASCC). Some test reactors outside the United States, such as the Halden Boiling Water Reactor (HBWR), have developed techniques to measure crack growth propagation during irradiation. The basic approach is to use a custom-designed compact loading mechanism to stress the specimen during irradiation, while the crack in the specimen is monitored in-situ using the Direct Currentmore » Potential Drop (DCPD) method. In 2012 the US Department of Energy commissioned the Idaho National Laboratory and the MIT Nuclear Reactor Laboratory (MIT NRL) to take the basic concepts developed at the HBWR and adapt them to a test rig capable of conducting in-pile IASCC tests in US Material Test Reactors. The first two and half years of the project consisted of designing and testing the loader mechanism, testing individual components of the in-pile rig and electronic support equipment, and autoclave testing of the rig design prior to insertion in the MIT Reactor. The load was applied to the specimen by means of a scissor like mechanism, actuated by a miniature metal bellows driven by pneumatic pressure and sized to fit within the small in-core irradiation volume. In addition to the loader design, technical challenges included developing robust connections to the specimen for the applied current and voltage measurements, appropriate ceramic insulating materials that can endure the LWR environment, dealing with the high electromagnetic noise environment of a reactor core at full power, and accommodating material property changes in the specimen, due primarily to fast neutron damage, which change the specimen resistance without additional crack growth. The project culminated with an in-pile demonstration at the MIT Reactor. The test rig and associated support equipment were used to apply loads to a representative Compact Tensile specimen during one MITR operating cycle, while measuring crack growth using the DCPD method. Although the test period was short (approximately 70 days), and the accumulated neutron dose relatively small, successful operation of the test rig was demonstrated. The specimen was cycled more than 8000 times (more than would be typical for a long term IASCC test), which was sufficient to propagate a crack of over 2 mm.« less

  20. THE CONCEPTUAL DESIGN ASSESSMENT FOR THE CO-FIRING OF BIO-REFINERY SUPPLIED LIGNIN PROJECT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ted Berglund; Jeffrey T. Ranney; Carol L. Babb

    2001-07-01

    The major aspects of this project are proceeding toward completion. Prior to this quarter, design criteria, tentative site selection, facility layout, and preliminary facility cost estimates were completed and issued. Processing of bio-solids was completed, providing material for the pilot operations. Pilot facility design, equipment selection, and modification were completed during the fourth quarter of 2000. Initial pilot facility shakedown was completed during the fourth quarter. After some unavoidable delays, a suitable representative supply of MSW feed material was procured. During this first quarter of 2001, shredding of the feed material and final feed conditioning were completed. Pilot facility hydrolysismore » production was completed to produce lignin for co-fire testing. During this quarter, TVA completed the washing and dewatering of the lignin material produced from the MSW hydrolysis. Seven drums of lignin material were washed to recover the acid and sugar from the lignin and provide an improved fuel for steam generation. Samples of both the lignin and bio-solids fuel materials for co-fire testing were sent to the co-fire facility (EERC) for evaluation. After sample evaluation, EERC approved sending the material and all of the necessary fuel for testing was shipped to EERC. EERC has requested and will receive coal typical of the fuel to the TVA-Colbert boilers. This material will be used at EERC as baseline material and for mixing with the bio-fuel for combustion testing. EERC combustion testing of the bio based fuels is scheduled to begin in August of 2001. The TVA-Colbert facility has neared completion of the task to evaluate the co-location of the Masada facility on the operation of the power generation facility. The TVA-Colbert fossil plant is fully capable of providing a reliable steam supply. The preferred steam supply connection points and steam pipeline routing have been identified. The environmental review of the pipeline routing has been completed and no major impacts have been identified. Detailed assessment of steam export impacts on the Colbert boiler system have been completed and a cost estimate for steam supply system was completed. The cost estimate and the output and heat rate impacts will be used to determine a preliminary price for the exported steam. The preliminary steam price will be determined in the next quarter.« less

  1. Experimental Characterization of Stress- and Strain-Dependent Stiffness in Grouted Rock Masses.

    PubMed

    Kim, Ji-Won; Chong, Song-Hun; Cho, Gye-Chun

    2018-03-29

    Grouting of fractured rock mass prior to excavation results in grout-filled discontinuities that govern the deformation characteristics of a site. The influence of joint characteristics on the properties of grouted rocks is important in assessing the effects of grouting on jointed rock mass. However, grouting remains a predominantly empirical practice and the effects of grouting on rock joint behavior and material properties have yet to be accurately assessed. Granular materials, including jointed rocks, typically display nonlinear strain-dependent responses that can be characterized by the shear modulus degradation curve. In this study, the effects of grouting on the strain-dependent shear stiffness of jointed rock mass were investigated at the small-strain (below 10 -5 ) and mid-strain (10 -5 to 10 -3 ) ranges using the quasi-static resonant column test and rock mass dynamic test devices. The effects of curing time, axial stress, initial joint roughness, and grouted joint thickness were examined. The results show that (1) grouting of rock joints leads to decreased stress sensitivity and increased small-strain shear stiffness for all tested samples; (2) the grouted rock samples display similar modulus degradation characteristics as the applied grout material; (3) the initial joint roughness determines the stress-dependent behaviors and general stiffness range of the jointed and grouted rocks, but the strain-dependent behaviors are dependent on the properties of the grout material; (4) increased grouted joint thickness results in larger contribution of the grout properties in the overall grouted rock mass.

  2. Experimental Characterization of Stress- and Strain-Dependent Stiffness in Grouted Rock Masses

    PubMed Central

    Cho, Gye-Chun

    2018-01-01

    Grouting of fractured rock mass prior to excavation results in grout-filled discontinuities that govern the deformation characteristics of a site. The influence of joint characteristics on the properties of grouted rocks is important in assessing the effects of grouting on jointed rock mass. However, grouting remains a predominantly empirical practice and the effects of grouting on rock joint behavior and material properties have yet to be accurately assessed. Granular materials, including jointed rocks, typically display nonlinear strain-dependent responses that can be characterized by the shear modulus degradation curve. In this study, the effects of grouting on the strain-dependent shear stiffness of jointed rock mass were investigated at the small-strain (below 10−5) and mid-strain (10−5 to 10−3) ranges using the quasi-static resonant column test and rock mass dynamic test devices. The effects of curing time, axial stress, initial joint roughness, and grouted joint thickness were examined. The results show that (1) grouting of rock joints leads to decreased stress sensitivity and increased small-strain shear stiffness for all tested samples; (2) the grouted rock samples display similar modulus degradation characteristics as the applied grout material; (3) the initial joint roughness determines the stress-dependent behaviors and general stiffness range of the jointed and grouted rocks, but the strain-dependent behaviors are dependent on the properties of the grout material; (4) increased grouted joint thickness results in larger contribution of the grout properties in the overall grouted rock mass. PMID:29596371

  3. Physical properties of the surface materials at the Viking landing sites on Mars

    USGS Publications Warehouse

    Moore, H.J.; Hutton, R.E.; Clow, G.D.; Spitzer, C.R.

    1987-01-01

    This report summarizes the results of the Physical Properties Investigation of the Viking '75 Project, activities of the surface samplers, and relevant results from other investigations. The two Viking Landers operated for nearly four martian years after landing on July 20 (Lander 1) and Sept. 3 (Lander 2), 1976; Lander 1 acquired its last pictures on or about Nov. 5, 1982. Lander 1 rests on a smooth, cratered plain at the west edge of Chryse Planitia (22.5 ? N, 48.0? W), and Lander 2 rests 200 km west of the crater Mie in Utopia Planitia (48.0? N, 225.7? W). Lander 1 views showed that dune-like deposits of drift material were superposed on rock-strewn surfaces. Soil-like material from the rock-strewn areas was called blocky material. Lander 2 views also showed a rock-strewn surface. Polygonal to irregular features, etched by the wind, revealed crusty to cloddy material among rocks. Both landers descended to the surface along nearly vertical trajectories. Velocities at touchdown were about 2 m/s for both landers. Footpad 2 of Lander 1 penetrated drift material 0.165 m, and footpad 3 penetrated blocky material 0.036 m. The two visible footpads of Lander 2 struck rocks. Erosion by exhausts from the forward engines produced craters with rims of mixed fine-grained material and platy to equidimensional clods, crusts, and fragments. Comparison of engine-exhaust erosion on Mars with terrestrial data suggested that drift material behaved like a weakly cohesive material with a grain size less than 3-9 /-lm. Although not sand, blocky and crusty to cloddy materials eroded like sand-with grain sizes of 0.01 or 0.2 cm. The surface samplers accomplished an impressive number of tasks. All experiments that required samples received samples. Deep holes, as much as 0.22 m deep, were excavated by both landers. Lander 2 successfully pushed rocks and collected samples from areas originally beneath the rocks. Tasks specifically accomplished for the Physical Properties Investigation include: (1) acquiring motor-current data while excavating trenches, (2) performing surface-bearing tests, (3) performing backhoe touchdowns, (4) attempting to chip or scratch rocks, (5) comminuting samples, (6) measuring subsurface diurnal temperatures, and (7) constructing conical piles of materials on and among rocks. Sample trenches in the three major types of soil-like materials were different from one another. Trenches in drift material, which were typically 0.06 m deep, had steep walls along much of their lengths, lumpy tailings and floors, and smooth domed surfaces with sparse fine fractures around their tips. Trenches in blocky material, which were typically 0.03-0.04 m deep, had steep walls near their tips, and surfaces around their tips were displaced upward and some appeared blocky. Trenches in crusty to cloddy material, which were typically 0.04-0.05 m deep, had steep and often irregular slopes near their tips, clods and slabs of crust in their tailings, and disrupted areas around their tips composed of mixed fine-grained material and slabs of crust or thick polygonal clods that had been displaced upwards. Data acquired during landing, trenching, surface-bearing tests, backhoe touchdowns, and from other science experiments were used to determine the mechanical properties of drift, blocky, and crusty to cloddy materials. Drift material appeared to be very fine grained, with local planes of weakness; in general, the drift material was consistent with a material having an angle of internal friction about 18?, a cohesion ranging from 0.7 to 3.0 kPa, and a bulk density of 1,200 kg/m 3 . Blocky material was consistent with a material having an angle of internal friction about 30?, cohesions from 1.5 to 16 kPa, and a bulk density of 1,600 kg/m 3 . Crusty to cloddy material had variable properties. For chiefly crusty to cloddy material, angles of internal friction were about 35 ? , and cohesions were from 0.5 to 5.2 kPa. For mixed fines and crusts, a

  4. Effects of Dopant Metal Variation and Material Synthesis Method on the Material Properties of Mixed Metal Ferrites in Yttria Stabilized Zirconia for Solar Thermochemical Fuel Production

    DOE PAGES

    Leonard, Jeffrey; Reyes, Nichole; Allen, Kyle M.; ...

    2015-01-01

    Mixed metal ferrites have shown much promise in two-step solar-thermochemical fuel production. Previous work has typically focused on evaluating a particular metal ferrite produced by a particular synthesis process, which makes comparisons between studies performed by independent researchers difficult. A comparative study was undertaken to explore the effects different synthesis methods have on the performance of a particular material during redox cycling using thermogravimetry. This study revealed that materials made via wet chemistry methods and extended periods of high temperature calcination yield better redox performance. Differences in redox performance between materials made via wet chemistry methods were minimal and thesemore » demonstrated much better performance than those synthesized via the solid state method. Subsequently, various metal ferrite samples (NiFe 2 O 4 , MgFe 2 O 4 , CoFe 2 O 4 , and MnFe 2 O 4 ) in yttria stabilized zirconia (8YSZ) were synthesized via coprecipitation and tested to determine the most promising metal ferrite combination. It was determined that 10 wt.% CoFe 2 O 4 in 8YSZ produced the highest and most consistent yields of O 2 and CO. By testing the effects of synthesis methods and dopants in a consistent fashion, those aspects of ferrite preparation which are most significant can be revealed. More importantly, these insights can guide future efforts in developing the next generation of thermochemical fuel production materials.« less

  5. Lightning protection technology for small general aviation composite material aircraft

    NASA Technical Reports Server (NTRS)

    Plumer, J. A.; Setzer, T. E.; Siddiqi, S.

    1993-01-01

    An on going NASA (Small Business Innovative Research) SBIR Phase II design and development program will produce the first lightning protected, fiberglass, General Aviation aircraft that is available as a kit. The results obtained so far in development testing of typical components of the aircraft kit, such as the wing and fuselage panels indicate that the lightning protection design methodology and materials chosen are capable of protecting such small composite airframes from lightning puncture and structural damage associated with severe threat lightning strikes. The primary objective of the program has been to develop a lightening protection design for full scale test airframe and verify its adequacy with full scale laboratory testing, thus enabling production and sale of owner-built, lightning-protected, Stoddard-Hamilton Aircraft, Inc. Glasair II airplanes. A second objective has been to provide lightning protection design guidelines for the General Aviation industry, and to enable these airplanes to meet lightening protection requirements for certification of small airplanes. This paper describes the protection design approaches and development testing results obtained thus far in the program, together with design methodology which can achieve the design goals listed above. The presentation of this paper will also include results of some of the full scale verification tests, which will have been completed by the time of this conference.

  6. CONCEPTUAL DESIGN ASSESSMENT FOR THE CO-FIRING OF BIO-REFINERY SUPPLIED LIGNIN PROJECT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ted Berglund; Jeffrey T. Ranney; Carol L. Babb

    2001-10-01

    The major aspects of this project are proceeding toward completion. Prior to this quarter, design criteria, tentative site selection, facility layout, and preliminary facility cost estimates were completed and issued. Processing of bio-solids was completed, providing material for the pilot operations. Pilot facility design, equipment selection, and modification were completed during the fourth quarter of 2000. Initial pilot facility shakedown was completed. After some unavoidable delays, a suitable representative supply of MSW feed material was procured. During this first quarter of 2001, shredding of the feed material and final feed conditioning were completed. Pilot facility hydrolysis production was completed tomore » produce lignin for co-fire testing and the lignin fuel was washed and dewatered. Both the lignin and bio-solids fuel materials for co-fire testing were sent to the co-fire facility (EERC) for evaluation and co-firing. EERC has received coal typical of the fuel to the TVA-Colbert boilers. This material will be used at EERC as baseline material and for mixing with the bio-fuel for combustion testing. EERC combustion testing of the bio-based fuels is scheduled to begin in October of 2001. The TVA-Colbert facility has neared completion of the task to evaluate co-location of the Masada facility on the operation of the power generation facility. The TVA-Colbert fossil plant is fully capable of providing a reliable steam supply. The preferred steam supply connection points and steam pipeline routing have been identified. The environmental review of the pipeline routing has been completed and no major impacts have been identified. Detailed assessment of steam export impacts on the Colbert boiler system have been completed and a cost estimate for steam supply system was completed. The cost estimate and the output and heat rate impacts will be used to determine a preliminary price for the exported steam.« less

  7. Synthesis of SiC/Ag/Cellulose Nanocomposite and Its Antibacterial Activity by Reactive Oxygen Species Generation

    PubMed Central

    Borkowski, Andrzej; Cłapa, Tomasz; Szala, Mateusz; Gąsiński, Arkadiusz; Selwet, Marek

    2016-01-01

    We describe the synthesis of nanocomposites, based on nanofibers of silicon carbide, silver nanoparticles, and cellulose. Silver nanoparticle synthesis was achieved with chemical reduction using hydrazine by adding two different surfactants to obtain a nanocomposite with silver nanoparticles of different diameters. Determination of antibacterial activity was based on respiration tests. Enzymatic analysis indicates oxidative stress, and viability testing was conducted using an epifluorescence microscope. Strong bactericidal activity of nanocomposites was found against bacteria Escherichia coli and Bacillus cereus, which were used in the study as typical Gram-negative and Gram-positive bacteria, respectively. It is assumed that reactive oxygen species generation was responsible for the observed antibacterial effect of the investigated materials. Due to the properties of silicon carbide nanofiber, the obtained nanocomposite may have potential use in technology related to water and air purification. Cellulose addition prevented silver nanoparticle release and probably enhanced bacterial adsorption onto aggregates of the nanocomposite material. PMID:28335299

  8. Testing and modeling the influence of reclamation and control methods for reducing nonpoint mercury emissions associated with industrial open pit gold mines.

    PubMed

    Miller, Matthieu B; Gustin, Mae S

    2013-06-01

    Industrial gold mining is a significant source of mercury (Hg) emission to the atmosphere. To investigate ways to reduce these emissions, reclamation and dust and mercury control methods used at open pit gold mining operations in Nevada were studied in a laboratory setting. Using this information along with field data, and building off previous work, total annual Hg emissions were estimated for two active gold mines in northern Nevada. Results showed that capping mining waste materials with a low-Hg substrate can reduce Hg emissions from 50 to nearly 100%. The spraying of typical dust control solutions often results in higher Hg emissions, especially as materials dry after application. The concentrated application of a dithiocarbamate Hg control reagent appears to reduce Hg emissions, but further testing mimicking the actual distribution of this chemical within an active leach solution is needed to make a more definitive assessment.

  9. An Investigation of Stress Dependent Atomic Oxygen Erosion of Black Kapton Observed on MISSE 6

    NASA Astrophysics Data System (ADS)

    Miller, Sharon K. R.; Banks, Bruce A.; Sechkar, Edward

    Black Kapton XC polyimide was flown as part of the Polymer Film Tensile Experiment (PFTE) on Materials International Space Station Experiment 6 (MISSE 6). The purpose of the experiment was to expose a variety of polymer films, typical of those used for thermal control blankets or supporting membranes on Earth orbiting spacecraft, to the low Earth orbital (LEO) environment under both relaxed and tension conditions. Black Kapton XC under tensile stress experienced a higher erosion rate during exposure in LEO than the same material that was flown in a relaxed condition. Testing conducted to determine the magnitude of the stress and erosion dependence using a ground-based thermal energy atomic oxygen plasma showed a slight dependence of erosion yield on stress for Kapton HN and Black Kapton XC, but not to the extent observed on MISSE 6. More testing is needed to isolate the factors present in LEO that cause stress dependent erosion.

  10. Ce3+ doping into 0.6Li2MnO3·0.4LiNi0.5Co0.2Mn0.3O2 as cathode material for Li-ion batteries applied in new energy vehicle

    NASA Astrophysics Data System (ADS)

    Peng, Han; Yao, Linxiao; Zhang, Ming

    2018-06-01

    The pristine Li1.20[Mn0.52Ni0.20Co0.08]O2 and Ce3+-doped Li1.20[Mn0.50Ni0.20Co0.08Ce0.02]O2 cathode materials have been synthesized by using the typical sol-gel method. The XRD, SEM, ICP-OES and galvanostatic charge-discharge tests were carried out to study the influence of Ce3+ doping on the crystal structural, morphology and electrochemical properties of Li1.20Mn0.54Ni0.13Co0.13O2. The XRD result revealed the Ce3+ doping modification could decrease the cation mixing degree. The galvanostatic charge-discharge tests results showed that the sample after Ce3+ doping demonstrated the smaller irreversible capacity loss, more stable cyclic performance and better rate capacity than those of the pristine one.

  11. Thermochemical characterization of some thermoplastic materials. [flammability and toxicity properties for aircraft interiors

    NASA Technical Reports Server (NTRS)

    Kourtides, D. A.; Parker, J. A.; Hilado, C. J.

    1977-01-01

    The thermochemical and flammability characteristics of some typical thermoplastic materials currently in use or being considered for use in aircraft interiors are described. The properties studied included thermomechanical properties such as glass-transition and melt temperature, changes in polymer enthalpy, thermogravimetric analysis in anerobic and oxidative environments, oxygen index, smoke evolution, relative toxicity of the volatile products of pyrolysis, and selected physical properties. The generic polymers evaluated included acrylonitrile butadiene styrene, bisphenol A polycarbonate, 9,9 bis (4-hydroxyphenyl) fluorene polycarbonate-poly (dimethylsiloxane) block polymer, phenolphthalein-bisphenol A polycarbonate, phenolphthalein polycarbonate, polyether sulfone, polyphenylene oxide, polyphenylene sulfide, polyaryl sulfone, chlorinated polyvinyl chloride homopolymer, polyvinyl fluoride, and polyvinylidene fluoride. Processing parameters, including molding characteristics of some of the advanced polymers, are described. Test results and relative rankings of some of the flammability, smoke, and toxicity properties are presented. Under these test conditions, some of the advanced polymers evaluated were significantly less flammable and toxic than or equivalent to polymers in current use.

  12. An Investigation of Stress Dependent Atomic Oxygen Erosion of Black Kapton Observed on MISSE 6

    NASA Technical Reports Server (NTRS)

    Miller, Sharon K. R.; Banks, Bruce A.; Sechkar, Edward

    2012-01-01

    Black Kapton XC polyimide was flown as part of the Polymer Film Tensile Experiment (PFTE) on Materials International Space Station Experiment 6 (MISSE 6). The purpose of the experiment was to expose a variety of polymer films, typical of those used for thermal control blankets or supporting membranes on Earth orbiting spacecraft, to the low Earth orbital (LEO) environment under both relaxed and tension conditions. Black Kapton XC under tensile stress experienced a higher erosion rate during exposure in LEO than the same material that was flown in a relaxed condition. Testing conducted to determine the magnitude of the stress and erosion dependence using a ground-based thermal energy atomic oxygen plasma showed a slight dependence of erosion yield on stress for Kapton HN and Black Kapton XC, but not to the extent observed on MISSE 6. More testing is needed to isolate the factors present in LEO that cause stress dependent erosion.

  13. Trace Contaminant Testing with the Orion Atmosphere Revitalization Technology

    NASA Technical Reports Server (NTRS)

    Button, Amy B.; Sweterlitsch, Jeffrey J.; Broerman, Craig D.; Campbell, Melissa L.

    2010-01-01

    Every spacecraft atmosphere contains trace contaminants resulting from offgassing by cabin materials and human passengers. An amine-based carbon dioxide (CO2) and water vapor sorbent in pressure-swing regenerable beds has been developed by Hamilton Sundstrand and baselined for the Orion Atmosphere Revitalization System (ARS). Part of the risk mitigation effort for this new technology is the study of how atmospheric trace contaminants will affect and be affected by the technology. One particular area of concern is ammonia, which, in addition to the normal spacecraft sources, can also be offgassed by the amine-based sorbent. In the spring of 2009, tests were performed at Johnson Space Center (JSC) with typical cabin atmosphere levels of five of the most common trace gases, most of which had not yet been tested with this technology. A subscale sample of the sorbent was exposed to each of the chemicals mixed into a stream of moist, CO2-laden air, and the CO2 adsorption capacity of the sorbent was compared before and after the exposure. After these typical-concentration chemicals were proven to have negligible effect on the subscale sample, tests proceeded on a full-scale test article in a sealed chamber with a suite of eleven contaminants. To isolate the effects of various test rig components, several extended-duration tests were run: without injection or scrubbing, with injection and without scrubbing, with injection of both contaminants and metabolic CO2 and water vapor loads and scrubbing by both the test article and dedicated trace contaminant filters, and with the same injections and scrubbing by only the test article. The high-level results of both the subscale and full-scale tests are examined in this paper.

  14. Optimization of the coplanar interdigital capacitive sensor

    NASA Astrophysics Data System (ADS)

    Huang, Yunzhi; Zhan, Zheng; Bowler, Nicola

    2017-02-01

    Interdigital capacitive sensors are applied in nondestructive testing and material property characterization of low-conductivity materials. The sensor performance is typically described based on the penetration depth of the electric field into the sample material, the sensor signal strength and its sensitivity. These factors all depend on the geometry and material properties of the sensor and sample. In this paper, a detailed analysis is provided, through finite element simulations, of the ways in which the sensor's geometrical parameters affect its performance. The geometrical parameters include the number of digits forming the interdigital electrodes and the ratio of digit width to their separation. In addition, the influence of the presence or absence of a metal backplane on the sample is analyzed. Further, the effects of sensor substrate thickness and material on signal strength are studied. The results of the analysis show that it is necessary to take into account a trade-off between the desired sensitivity and penetration depth when designing the sensor. Parametric equations are presented to assist the sensor designer or nondestructive evaluation specialist in optimizing the design of a capacitive sensor.

  15. Space Environmental Effects on the Optical Properties of Selected Transparent Polymers

    NASA Technical Reports Server (NTRS)

    Edwards, David L.; Willowby, Douglas J.; Hubbs, Whitney C.; Piszczor, Michael F., Jr.; Bowden, Mary L.

    1997-01-01

    Transparent polymer films are currently considered for use as solar concentrating lenses for spacecraft power and propulsion systems. These polymer films concentrate solar energy onto energy conversion devices such as solar cells and thermal energy systems. Conversion efficiency is directly related to the polymer transmission. Space environmental effects will decrease the transmission and thus reduce the conversion efficiency. This investigation focuses on the effects of ultraviolet and charged particle radiation on the transmission of selected transparent polymers. Multiple candidate polymer samples were exposed to near ultraviolet (NUV) radiation to screen the materials and select optimum materials for further study. All materials experienced transmission degradation of varying degree. A method was developed to normalize the transmission loss and thus rank the materials according to their tolerance of NUV. Teflon(Tm) FEP and Teflon(Tm) PFA were selected for further study. These materials were subjected to a combined charged particle dose equivalent to 5 years in a typical geosynchronous Earth orbit (GEO). Results from these NUV screening tests and the 5 year GEO equivalent dose are presented.

  16. Dynamic testing of horseshoe designs at impact on synthetic and dirt Thoroughbred racetrack materials.

    PubMed

    Mahaffey, C A; Peterson, M L; Thomason, J J; McIlwraith, C W

    2016-01-01

    Different horseshoe designs have been developed in an attempt to optimise footing for equine athletes. Horseshoe performance is assumed to be dependent on the surface and gait, but there are limited data on horseshoe performance on different surfaces, independent of gait variation. To quantify the dynamic loading for 3 aluminium racing shoe designs on Thoroughbred racetrack surface materials, using a biomechanical surface tester. A flat racing plate, a serrated V-Grip and a shoe with a 6 mm toe grab and 10 mm heel calks were tested on synthetic and dirt surfaces under typical operating conditions of temperature and moisture content for the respective material samples. Samples were tested under laboratory conditions, replicating a track surface by compacting material into a latex-lined mould surrounded by silica sand for representative boundary conditions. Peak loading and loading rates were measured vertically and horizontally (craniocaudal), simulating aspects of primary and secondary impacts of the hoof in a galloping horse. Maximum vertical and shear loads and loading rates were not significantly different between shoe types, with the exception of a reduced craniocaudal loading rate for the V-Grip shoe on the synthetic surface. All other statistical significance was related to the surface material. These 3 different Thoroughbred racing shoes do not have a significant impact on loading and loading rate, with the exception of the V-Grip shoe on a synthetic surface. Although the V-Grip may reduce craniocaudal peak load rates in a synthetic material with relatively high wax and/or low oil content, the reduction in load rate is less than the difference found between materials. This study indicates that shoeing has little effect, and that a track's surface material and its preparation have a significant effect on the dynamic loading during the impact phase of the stance. © 2015 EVJ Ltd.

  17. 49 CFR 178.356-5 - Typical assembly detail.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 3 2013-10-01 2013-10-01 false Typical assembly detail. 178.356-5 Section 178.356-5 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS... Specifications for Packagings for Class 7 (Radioactive) Materials § 178.356-5 Typical assembly detail. (a...

  18. 49 CFR 178.358-6 - Typical assembly detail.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 3 2012-10-01 2012-10-01 false Typical assembly detail. 178.358-6 Section 178.358-6 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS... Specifications for Packagings for Class 7 (Radioactive) Materials § 178.358-6 Typical assembly detail. (a...

  19. 49 CFR 178.356-5 - Typical assembly detail.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 3 2012-10-01 2012-10-01 false Typical assembly detail. 178.356-5 Section 178.356-5 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS... Specifications for Packagings for Class 7 (Radioactive) Materials § 178.356-5 Typical assembly detail. (a...

  20. 49 CFR 178.356-5 - Typical assembly detail.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 3 2011-10-01 2011-10-01 false Typical assembly detail. 178.356-5 Section 178.356-5 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS... Specifications for Packagings for Class 7 (Radioactive) Materials § 178.356-5 Typical assembly detail. (a...

  1. 49 CFR 178.358-6 - Typical assembly detail.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 3 2013-10-01 2013-10-01 false Typical assembly detail. 178.358-6 Section 178.358-6 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS... Specifications for Packagings for Class 7 (Radioactive) Materials § 178.358-6 Typical assembly detail. (a...

  2. 49 CFR 178.358-6 - Typical assembly detail.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 3 2011-10-01 2011-10-01 false Typical assembly detail. 178.358-6 Section 178.358-6 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS... Specifications for Packagings for Class 7 (Radioactive) Materials § 178.358-6 Typical assembly detail. (a...

  3. The Uranium from Seawater Program at the Pacific Northwest National Laboratory: Overview of Marine Testing, Adsorbent Characterization, Adsorbent Durability, Adsorbent Toxicity, and Deployment Studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gill, Gary A.; Kuo, Li-Jung; Janke, Chris J.

    The Pacific Northwest National Laboratory’s (PNNL) Marine Science Laboratory (MSL) located along the coast of Washington State is evaluating the performance of uranium adsorption materials being developed for seawater extraction under realistic marine conditions with natural seawater. Two types of exposure systems were employed in this program: flow-through columns for testing of fixed beds of individual fibers and pellets and a recirculating water flume for testing of braided adsorbent material. Testing consists of measurements of the adsorption of uranium and other elements from seawater as a function of time, typically 42 to 56 day exposures, to determine the adsorbent capacitymore » and adsorption rate (kinetics). Analysis of uranium and other trace elements collected by the adsorbents was conducted following strong acid digestion of the adsorbent with 50% aqua regia using either Inductively Coupled Plasma Optical Emission Spectrometry (ICP-OES) or Inductively Coupled Plasma Mass Spectrometer (ICP-MS). The ORNL 38H adsorbent had a 56 day adsorption capacity of 3.30 ± 0.68 g U/ kg adsorbent (normalized to a salinity of 35 psu), a saturation adsorption capacity of 4.89 ± 0.83 g U/kg of adsorbent material (normalized to a salinity of 35 psu) and a half-saturation time of 28 ± 10 days. The AF1 adsorbent material had a 56 day adsorption capacity of 3.9 ± 0.2 g U/kg adsorbent material (normalized to a salinity of 35 psu), a saturation capacity of 5.4 ± 0.2 g U/kg adsorbent material (normalized to a salinity of 35 psu) and a half saturation time of 23 ± 2 days. The ORNL amidoxime-based adsorbent materials are not specific for uranium, but also adsorb other elements from seawater. The major doubly charged cations in seawater (Ca and Mg) account for a majority of the cations adsorbed (61% by mass and 74% by molar percent). For the ORNL AF1 adsorbent material, U is the 4th most abundant element adsorbed by mass and 7th most abundant by molar percentage« less

  4. Debonding in Composite Skin/Stringer Configurations Under Multi-Axial Loading

    NASA Technical Reports Server (NTRS)

    Cvitkovich, Michael K.; Krueger, Ronald; OBrien, T.; Minguet, Pierre J.

    2004-01-01

    The objective of this work was to investigate the damage mechanisms in composite bonded skin/stringer constructions under uniaxial and biaxial (in-plane/out-of-plane) loading conditions as typically experienced by aircraft crown fuselage panels. The specimens for all tests were identical and consisted of a tapered composite flange, representing a stringer or frame, bonded onto a composite skin. Tests were performed under monotonic loading conditions in tension, three-point bending, and combined tension/bending to evaluate the debonding mechanisms between the skin and the bonded stringer. For combined tension/bending testing, a unique servohydraulic load frame was used that was capable of applying both loads simultaneously. Microscopic investigations of the specimen edges were used to document the damage occurrence and to identify typical damage patterns. The observations showed that, for all three load cases, failure initiated in the flange near the flange tip causing the flange to almost fully debond from the skin. A two-dimensional plain-strain finite element model was developed to analyze the different test cases using a geometrically nonlinear solution. For all three loading conditions, principal stresses exceeded the transverse strength of the material in the flange area. Additionally, delaminations of various lengths were simulated in the locations where delaminations were experimentally observed. The analyses showed that unstable delamination propagation is likely to occur at the loads corresponding to matrix ply crack initiation for all three loadings.

  5. Detection of Subsurface Defects in Levees in Correlation to Weather Conditions Utilizing Ground Penetrating Radar

    NASA Astrophysics Data System (ADS)

    Martinez, I. A.; Eisenmann, D.

    2012-12-01

    Ground Penetrating Radar (GPR) has been used for many years in successful subsurface detection of conductive and non-conductive objects in all types of material including different soils and concrete. Typical defect detection is based on subjective examination of processed scans using data collection and analysis software to acquire and analyze the data, often requiring a developed expertise or an awareness of how a GPR works while collecting data. Processing programs, such as GSSI's RADAN analysis software are then used to validate the collected information. Iowa State University's Center for Nondestructive Evaluation (CNDE) has built a test site, resembling a typical levee used near rivers, which contains known sub-surface targets of varying size, depth, and conductivity. Scientist at CNDE have developed software with the enhanced capabilities, to decipher a hyperbola's magnitude and amplitude for GPR signal processing. With this enhanced capability, the signal processing and defect detection capabilities for GPR have the potential to be greatly enhanced. This study will examine the effects of test parameters, antenna frequency (400MHz), data manipulation methods (which include data filters and restricting the range of depth in which the chosen antenna's signal can reach), and real-world conditions using this test site (such as varying weather conditions) , with the goal of improving GPR tests sensitivity for differing soil conditions.

  6. ASTM F739 method for testing the permeation resistance of protective clothing materials: critical analysis with proposed changes in procedure and test-cell design.

    PubMed

    Anna, D H; Zellers, E T; Sulewski, R

    1998-08-01

    ASTM (American Society for Testing and Materials) Method F739-96 specifies a test-cell design and procedures for measuring the permeation resistance of chemical protective clothing. Among the specifications are open-loop collection stream flow rates of 0.050 to 0.150 L/min for a gaseous medium. At elevated temperatures the test must be maintained within 1 degree C of the set point. This article presents a critical analysis of the effect of the collection stream flow rate on the measured permeation rate and on the temperature uniformity within the test cell. Permeation tests were conducted on four polymeric glove materials with 44 solvents at 25 degrees C. Flow rates > 0.5 L/min were necessary to obtain accurate steady-state permeation rate (SSPR) values in 25 percent of the tests. At the lower flow rates the true SSPR typically was underestimated by a factor of two or less, but errors of up to 33-fold were observed. No clear relationship could be established between the need for a higher collection stream flow rate and either the vapor pressure or the permeation rate of the solvent, but test results suggest that poor mixing within the collection chamber was a contributing factor. Temperature gradients between the challenge and collection chambers and between the bottom and the top of the collection chamber increased with the water-bath temperature and the collection stream flow rate. Use of a test cell modified to permit deeper submersion reduced the gradients to < or = 0.5 degrees C. It is recommended that all SSPR measurements include verification of the adequacy of the collection stream flow rate. For testing at nonambient temperatures, the modified test cell described here could be used to ensure temperature uniformity throughout the cell.

  7. The materials irradiation experiment for testing plasma facing materials at fusion relevant conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garrison, L. M., E-mail: garrisonlm@ornl.gov; Egle, B. J.; Fusion Technology Institute, University of Wisconsin-Madison, 1500 Engineering Drive, Madison, Wisconsin 53706

    2016-08-15

    The Materials Irradiation Experiment (MITE-E) was constructed at the University of Wisconsin-Madison Inertial Electrostatic Confinement Laboratory to test materials for potential use as plasma-facing materials (PFMs) in fusion reactors. PFMs in fusion reactors will be bombarded with x-rays, neutrons, and ions of hydrogen and helium. More needs to be understood about the interactions between the plasma and the materials to validate their use for fusion reactors. The MITE-E simulates some of the fusion reactor conditions by holding samples at temperatures up to 1000 °C while irradiating them with helium or deuterium ions with energies from 10 to 150 keV. The ionmore » gun can irradiate the samples with ion currents of 20 μA–500 μA; the typical current used is 72 μA, which is an average flux of 9 × 10{sup 14} ions/(cm{sup 2} s). The ion gun uses electrostatic lenses to extract and shape the ion beam. A variable power (1-20 W), steady-state, Nd:YAG laser provides additional heating to maintain a constant sample temperature during irradiations. The ion beam current reaching the sample is directly measured and monitored in real-time during irradiations. The ion beam profile has been investigated using a copper sample sputtering experiment. The MITE-E has successfully been used to irradiate polycrystalline and single crystal tungsten samples with helium ions and will continue to be a source of important data for plasma interactions with materials.« less

  8. Statistical validation of reagent lot change in the clinical chemistry laboratory can confer insights on good clinical laboratory practice.

    PubMed

    Cho, Min-Chul; Kim, So Young; Jeong, Tae-Dong; Lee, Woochang; Chun, Sail; Min, Won-Ki

    2014-11-01

    Verification of new lot reagent's suitability is necessary to ensure that results for patients' samples are consistent before and after reagent lot changes. A typical procedure is to measure results of some patients' samples along with quality control (QC) materials. In this study, the results of patients' samples and QC materials in reagent lot changes were analysed. In addition, the opinion regarding QC target range adjustment along with reagent lot changes was proposed. Patients' sample and QC material results of 360 reagent lot change events involving 61 analytes and eight instrument platforms were analysed. The between-lot differences for the patients' samples (ΔP) and the QC materials (ΔQC) were tested by Mann-Whitney U tests. The size of the between-lot differences in the QC data was calculated as multiples of standard deviation (SD). The ΔP and ΔQC values only differed significantly in 7.8% of the reagent lot change events. This frequency was not affected by the assay principle or the QC material source. One SD was proposed for the cutoff for maintaining pre-existing target range after reagent lot change. While non-commutable QC material results were infrequent in the present study, our data confirmed that QC materials have limited usefulness when assessing new reagent lots. Also a 1 SD standard for establishing a new QC target range after reagent lot change event was proposed. © The Author(s) 2014 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.

  9. A Statistics-Based Material Property Analysis to Support TPS Characterization

    NASA Technical Reports Server (NTRS)

    Copeland, Sean R.; Cozmuta, Ioana; Alonso, Juan J.

    2012-01-01

    Accurate characterization of entry capsule heat shield material properties is a critical component in modeling and simulating Thermal Protection System (TPS) response in a prescribed aerothermal environment. The thermal decomposition of the TPS material during the pyrolysis and charring processes is poorly characterized and typically results in large uncertainties in material properties as inputs for ablation models. These material property uncertainties contribute to large design margins on flight systems and cloud re- construction efforts for data collected during flight and ground testing, making revision to existing models for entry systems more challenging. The analysis presented in this work quantifies how material property uncertainties propagate through an ablation model and guides an experimental test regimen aimed at reducing these uncertainties and characterizing the dependencies between properties in the virgin and charred states for a Phenolic Impregnated Carbon Ablator (PICA) based TPS. A sensitivity analysis identifies how the high-fidelity model behaves in the expected flight environment, while a Monte Carlo based uncertainty propagation strategy is used to quantify the expected spread in the in-depth temperature response of the TPS. An examination of how perturbations to the input probability density functions affect output temperature statistics is accomplished using a Kriging response surface of the high-fidelity model. Simulations are based on capsule configuration and aerothermal environments expected during the Mars Science Laboratory (MSL) entry sequence. We identify and rank primary sources of uncertainty from material properties in a flight-relevant environment, show the dependence on spatial orientation and in-depth location on those uncertainty contributors, and quantify how sensitive the expected results are.

  10. Methods of biological dosimetry employing chromosome-specific staining

    DOEpatents

    Gray, Joe W.; Pinkel, Daniel

    2000-01-01

    Methods and compositions for staining based upon nucleic acid sequence that employ nucleic acid probes are provided. Said methods produce staining patterns that can be tailored for specific cytogenetic analyses. Said probes are appropriate for in situ hybridization and stain both interphase and metaphase chromosomal material with reliable signals. The nucleic acid probes are typically of a complexity greater than 50 kb, the complexity depending upon the cytogenetic application. Methods are provided to disable the hybridization capacity of shared, high copy repetitive sequences and/or remove such sequences to provide for useful contrast. Still further methods are provided to produce chromosome-specific staining reagents which are made specific to the targeted chromosomal material, which can be one or more whole chromosomes, one or more regions on one or more chromosomes, subsets of chromosomes and/or the entire genome. Probes and test kits are provided for use in tumor cytogenetics, in the detection of disease related loci, in analysis of structural abnormalities, such as translocations, and for biological dosimetry. Further, methods and prenatal test kits are provided to stain targeted chromosomal material of fetal cells, including fetal cells obtained from maternal blood. Still further, the invention provides for automated means to detect and analyse chromosomal abnormalities.

  11. Methods And Compositions For Chromosome-Specific Staining

    DOEpatents

    Gray, Joe W.; Pinkel, Daniel

    2003-08-19

    Methods and compositions for staining based upon nucleic acid sequence that employ nucleic acid probes are provided. Said methods produce staining patterns that can be tailored for specific cytogenetic analyses. Said probes are appropriate for in situ hybridization and stain both interphase and metaphase chromosomal material with reliable signals. The nucleic acid probes are typically of a complexity greater than 50 kb, the complexity depending upon the cytogenetic application. Methods are provided to disable the hybridization capacity of shared, high copy repetitive sequences and/or remove such sequences to provide for useful contrast. Still further methods are provided to produce chromosome-specific staining reagents which are made specific to the targeted chromosomal material, which can be one or more whole chromosomes, one or more regions on one or more chromosomes, subsets of chromosomes and/or the entire genome. Probes and test kits are provided for use in tumor cytogenetics, in the detection of disease related loci, in analysis of structural abnormalities, such as translocations, and for biological dosimetry. Further, methods and prenatal test kits are provided to stain targeted chromosomal material of fetal cells, including fetal cells obtained from maternal blood. Still further, the invention provides for automated means to detect and analyse chromosomal abnormalities.

  12. Compositions for chromosome-specific staining

    DOEpatents

    Gray, Joe W.; Pinkel, Daniel

    1998-01-01

    Methods and compositions for staining based upon nucleic acid sequence that employ nucleic acid probes are provided. Said methods produce staining patterns that can be tailored for specific cytogenetic analyses. Said probes are appropriate for in situ hybridization and stain both interphase and metaphase chromosomal material with reliable signals. The nucleic acid probes are typically of a complexity greater than 50 kb, the complexity depending upon the cytogenetic application. Methods are provided to disable the hybridization capacity of shared, high copy repetitive sequences and/or remove such sequences to provide for useful contrast. Still further methods are provided to produce chromosome-specific staining reagents which are made specific to the targeted chromosomal material, which can be one or more whole chromosomes, one or more regions on one or more chromosomes, subsets of chromosomes and/or the entire genome. Probes and test kits are provided for use in tumor cytogenetics, in the detection of disease related loci, in analysis of structural abnormalities, such as translocations, and for biological dosimetry. Further, methods and prenatal test kits are provided to stain targeted chromosomal material of fetal cells, including fetal cells obtained from maternal blood. Still further, the invention provides for automated means to detect and analyse chromosomal abnormalities.

  13. Mechanical properties of niobium radio-frequency cavities

    DOE PAGES

    Ciovati, Gianluigi; Dhakal, Pashupati; Matalevich, Joseph R.; ...

    2015-07-02

    Radio-frequency cavities made of bulk niobium are one of the components used in modern particle accelerators. The mechanical stability is an important aspect of cavity design, which typically relies on finite-element analysis simulations using material properties from tensile tests on sample. This contribution presents the results of strain and resonant frequency measurements as a function of a uniform pressure up to 722 kPa, applied to single-cell niobium cavities with different crystallographic structure, purity and treatments. In addition, burst tests of high-purity multi-cell cavities with different crystallographic structure have been conducted up to the tensile strength of the material. Finite-element analysismore » of the single-cell cavity geometry is in good agreement with the observed behavior in the elastic regime assuming a Young's modulus value of 88.5 GPa and a Poisson's ratio of 0.4, regardless of crystallographic structure, purity or treatment. However, the measured yield strength and tensile strength depend on crystallographic structure, material purity and treatment. In particular, the results from this study show that the mechanical properties of niobium cavities with large crystals are comparable to those of cavities made of fine-grain niobium.« less

  14. SiC and Si3N4 Recession Due to SiO2 Scale Volatility Under Combustor Conditions

    NASA Technical Reports Server (NTRS)

    Smialek, James L.; Robinson, R. Craig; Opila, Elizabeth J.; Fox, Dennis S.; Jacobson, Nathan S.

    1999-01-01

    SiC and Si3N4 materials were tested under various turbine engine combustion environments, chosen to represent either conventional fuel-lean or fuel-rich mixtures proposed for high speed aircraft. Representative CVD, sintered, and composite materials were evaluated in both furnace and high pressure burner rig exposure. While protective SiO2 scales form in all cases, evidence is presented to support paralinear growth kinetics, i.e. parabolic growth moderated simultaneously by linear volatilization. The volatility rate is dependent on temperature, moisture content, system pressure, and gas velocity. The burner tests were used to map SiO2 volatility (and SiC recession) over a range of temperature, pressure, and velocity. The functional dependency of material recession (volatility) that emerged followed the form: exp(-QIRT) * P(exp x) * v(exp y). These empirical relations were compared to rates predicted from the thermodynamics of volatile SiO and SiO(sub x)H(sub Y) reaction products and a kinetic model of diffusion through a moving, boundary layer. For typical combustion conditions, recession of 0.2 to 2 micron/h is predicted at 1200- 1400C, far in excess of acceptable long term limits.

  15. Brittle failure of rock: A review and general linear criterion

    NASA Astrophysics Data System (ADS)

    Labuz, Joseph F.; Zeng, Feitao; Makhnenko, Roman; Li, Yuan

    2018-07-01

    A failure criterion typically is phenomenological since few models exist to theoretically derive the mathematical function. Indeed, a successful failure criterion is a generalization of experimental data obtained from strength tests on specimens subjected to known stress states. For isotropic rock that exhibits a pressure dependence on strength, a popular failure criterion is a linear equation in major and minor principal stresses, independent of the intermediate principal stress. A general linear failure criterion called Paul-Mohr-Coulomb (PMC) contains all three principal stresses with three material constants: friction angles for axisymmetric compression ϕc and extension ϕe and isotropic tensile strength V0. PMC provides a framework to describe a nonlinear failure surface by a set of planes "hugging" the curved surface. Brittle failure of rock is reviewed and multiaxial test methods are summarized. Equations are presented to implement PMC for fitting strength data and determining the three material parameters. A piecewise linear approximation to a nonlinear failure surface is illustrated by fitting two planes with six material parameters to form either a 6- to 12-sided pyramid or a 6- to 12- to 6-sided pyramid. The particular nature of the failure surface is dictated by the experimental data.

  16. Low-Cost, High-Performance Combustion Chamber

    NASA Technical Reports Server (NTRS)

    Fortini, Arthur J.

    2015-01-01

    Ultramet designed and fabricated a lightweight, high-temperature combustion chamber for use with cryogenic LOX/CH4 propellants that can deliver a specific impulse of approx.355 seconds. This increase over the current 320-second baseline of nitrogen tetroxide/monomethylhydrazine (NTO/MMH) will result in a propellant mass decrease of 55 lb for a typical lunar mission. The material system was based on Ultramet's proven oxide-iridium/rhenium architecture, which has been hot-fire tested with stoichiometric oxygen/hydrogen for hours. Instead of rhenium, however, the structural material was a niobium or tantalum alloy that has excellent yield strength at both ambient and elevated temperatures. Phase I demonstrated alloys with yield strength-to-weight ratios more than three times that of rhenium, which will significantly reduce chamber weight. The starting materials were also two orders of magnitude less expensive than rhenium and were less expensive than the C103 niobium alloy commonly used in low-performance engines. Phase II focused on the design, fabrication, and hot-fire testing of a 12-lbf thrust class chamber with LOX/CH4, and a 100-lbf chamber for LOX/CH4. A 5-lbf chamber for NTO/MMH also was designed and fabricated.

  17. Characterization of Time-Dependent Behavior of Ramming Paste Used in an Aluminum Electrolysis Cell

    NASA Astrophysics Data System (ADS)

    Orangi, Sakineh; Picard, Donald; Alamdari, Houshang; Ziegler, Donald; Fafard, Mario

    2015-12-01

    A new methodology was proposed for the characterization of time-dependent behavior of materials in order to develop a constitutive model. The material used for the characterization was ramming paste, a porous material used in an aluminum electrolysis cell, which is baked in place under varying loads induced by the thermal expansion of other components of the cell. In order to develop a constitutive model representing the paste mechanical behavior, it was necessary to get some insight into its behavior using samples which had been baked at different temperatures ranging from 200 to 1000 °C. Creep stages, effect of testing temperature on the creep, creep-recovery, as well as nonlinear creep were observed for designing a constitutive law. Uniaxial creep-recovery tests were carried out at two temperatures on the baked paste: ambient and higher. Results showed that the shape of creep curves was similar to a typical creep; recovery happened and the creep was shown to be nonlinear. Those experimental observations and the identification of nonlinear parameters of developed constitutive model demonstrated that the baked paste experiences nonlinear viscoelastic-viscoplastic behavior at different temperatures.

  18. Compositions for chromosome-specific staining

    DOEpatents

    Gray, J.W.; Pinkel, D.

    1998-05-26

    Methods and compositions for staining based upon nucleic acid sequence that employ nucleic acid probes are provided. The methods produce staining patterns that can be tailored for specific cytogenetic analyses. The probes are appropriate for in situ hybridization and stain both interphase and metaphase chromosomal material with reliable signals. The nucleic acid probes are typically of a complexity greater than 50 kb, the complexity depending upon the cytogenetic application. Methods are provided to disable the hybridization capacity of shared, high copy repetitive sequences and/or remove such sequences to provide for useful contrast. Still further methods are provided to produce chromosome-specific staining reagents which are made specific to the targeted chromosomal material, which can be one or more whole chromosomes, one or more regions on one or more chromosomes, subsets of chromosomes and/or the entire genome. Probes and test kits are provided for use in tumor cytogenetics, in the detection of disease related loci, in analysis of structural abnormalities, such as translocations, and for biological dosimetry. Methods and prenatal test kits are provided to stain targeted chromosomal material of fetal cells, including fetal cells obtained from maternal blood. The invention provides for automated means to detect and analyze chromosomal abnormalities. 17 figs.

  19. High-impact resistance optical sensor windows

    NASA Astrophysics Data System (ADS)

    Askinazi, Joel; Ceccorulli, Mark L.; Goldman, Lee

    2011-06-01

    Recent field experience with optical sensor windows on both ground and airborne platforms has shown a significant increase in window fracturing from foreign object debris (FOD) impacts and as a by-product of asymmetrical warfare. Common optical sensor window materials such as borosilicate glass do not typically have high impact resistance. Emerging advanced optical window materials such as aluminum oxynitride offer the potential for a significant improvement in FOD impact resistance due to their superior surface hardness, fracture toughness and strength properties. To confirm the potential impact resistance improvement achievable with these emerging materials, Goodrich ISR Systems in collaboration with Surmet Corporation undertook a set of comparative FOD impact tests of optical sensor windows made from borosilicate glass and from aluminum oxynitride. It was demonstrated that the aluminum oxynitride windows could withstand up to three times the FOD impact velocity (as compared with borosilicate glass) before fracture would occur. These highly encouraging test results confirm the utility of this new highly viable window solution for use on new ground and airborne window multispectral applications as well as a retrofit to current production windows. We believe that this solution can go a long way to significantly reducing the frequency and life cycle cost of window replacement.

  20. Investigating electrical resonance in eddy-current array probes

    NASA Astrophysics Data System (ADS)

    Hughes, R.; Fan, Y.; Dixon, S.

    2016-02-01

    The sensitivity enhancing effects of eddy-current testing at frequencies close to electrical resonance are explored. Var-ied techniques exploiting the phenomenon, dubbed near electrical resonance signal enhancement (NERSE), were experimentally investigated to evaluate its potential exploitation for other interesting applications in aerospace materials, in particular its potential for boosting the sensitivity of standard ECT measurements. Methods for setting and controlling the typically unstable resonant frequencies of such systems are discussed. This research is funded by the EPSRC, via the Research Centre for Non-Destructive Evaluation RCNDE, and Rolls-Royce plc.

  1. Electromagnetic Launch Vehicle Fairing and Acoustic Blanket Model of Received Power Using FEKO

    NASA Technical Reports Server (NTRS)

    Trout, Dawn H.; Stanley, James E.; Wahid, Parveen F.

    2011-01-01

    Evaluating the impact of radio frequency transmission in vehicle fairings is important to sensitive spacecraft. This paper employees the Multilevel Fast Multipole Method (MLFMM) feature of a commercial electromagnetic tool to model the fairing electromagnetic environment in the presence of an internal transmitter. This work is an extension of the perfect electric conductor model that was used to represent the bare aluminum internal fairing cavity. This fairing model includes typical acoustic blanketing commonly used in vehicle fairings. Representative material models within FEKO were successfully used to simulate the test case.

  2. NEET In-Pile Ultrasonic Sensor Enablement-FY 2012 Status Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    JE Daw; JL Rempe; BR Tittmann

    2012-09-01

    Several Department Of Energy-Nuclear Energy (DOE-NE) programs, such as the Fuel Cycle Research and Development, Advanced Reactor Concepts, Light Water Reactor Sustainability, and Next Generation Nuclear Plant programs, are investigating new fuels and materials for advanced and existing reactors. A key objective of such programs is to understand the performance of these fuels and materials when irradiated. The Nuclear Energy Enabling Technology (NEET) Advanced Sensors and Instrumentation (ASI) in-pile instrumentation development activities are focused upon addressing cross-cutting needs for DOE-NE irradiation testing by providing higher fidelity, real-time data, with increased accuracy and resolution from smaller, compact sensors that are lessmore » intrusive. Ultrasonic technologies offer the potential to measure a range of parameters, including geometry changes, temperature, crack initiation and growth, gas pressure and composition, and microstructural changes, under harsh irradiation test conditions. There are two primary issues associated with in-pile deployment of ultrasonic sensors. The first is transducer survivability. The ability of ultrasonic transducer materials to maintain their useful properties during an irradiation must be demonstrated. The second issue is signal processing. Ultrasonic testing is typically performed in a lab or field environment, where the sensor and sample are accessible. Due to the harsh nature of in-pile testing, and the range of measurements that are desired, an enhanced signal processing capability is needed to make in-pile ultrasonic sensors viable. This project addresses these technology deployment issues.« less

  3. Testing and development of electric vehicle batteries for EPRI Electric Transportation Program

    NASA Astrophysics Data System (ADS)

    1985-11-01

    Argonne National Laboratory conducted an electric-vehicle battery testing and development program for the Electric Power Research Institute. As part of this program, eighteen battery modules previously developed by Johnson Controls, Inc. were tested. This type of battery (EV-2300 - an improved state-of-the-art lead-acid battery) was designed specifically for improved performance, range, and life in electric vehicles. In order to obtain necessary performance data, the batteries were tested under various duty cycles typical of normal service. This program, supported by the Electric Power Research Institute, consisted of three tasks: determination of the effect of cycle life vs peak power and rest period, determination of the impact of charge method on cycle life, and evaluation of the EV-2300 battery system. Two supporting studies were also carried out: one on thermal management of electric-vehicle batteries and one on enhanced utilization of active material in lead-acid batteries.

  4. Environmental Qualification of a Single-Crystal Silicon Mirror for Spaceflight Use

    NASA Technical Reports Server (NTRS)

    Hagopian, John; Chambers, John; Rohrback. Scott; Bly, Vincent; Morell, Armando; Budinoff, Jason

    2013-01-01

    This innovation is the environmental qualification of a single-crystal silicon mirror for spaceflight use. The single-crystal silicon mirror technology is a previous innovation, but until now, a mirror of this type has not been qualified for spaceflight use. The qualification steps included mounting, gravity change measurements, vibration testing, vibration- induced change measurements, thermal cycling, and testing at the cold operational temperature of 225 K. Typical mirrors used for cold applications for spaceflight instruments include aluminum, beryllium, glasses, and glass-like ceramics. These materials show less than ideal behavior after cooldown. Single-crystal silicon has been demonstrated to have the smallest change due to temperature change, but has not been spaceflight-qualified for use. The advantage of using a silicon substrate is with temperature stability, since it is formed from a stress-free single crystal. This has been shown in previous testing. Mounting and environmental qualification have not been shown until this testing.

  5. An efficient approach to improve the usability of e-learning resources: the role of heuristic evaluation.

    PubMed

    Davids, Mogamat Razeen; Chikte, Usuf M E; Halperin, Mitchell L

    2013-09-01

    Optimizing the usability of e-learning materials is necessary to maximize their potential educational impact, but this is often neglected when time and other resources are limited, leading to the release of materials that cannot deliver the desired learning outcomes. As clinician-teachers in a resource-constrained environment, we investigated whether heuristic evaluation of our multimedia e-learning resource by a panel of experts would be an effective and efficient alternative to testing with end users. We engaged six inspectors, whose expertise included usability, e-learning, instructional design, medical informatics, and the content area of nephrology. They applied a set of commonly used heuristics to identify usability problems, assigning severity scores to each problem. The identification of serious problems was compared with problems previously found by user testing. The panel completed their evaluations within 1 wk and identified a total of 22 distinct usability problems, 11 of which were considered serious. The problems violated the heuristics of visibility of system status, user control and freedom, match with the real world, intuitive visual layout, consistency and conformity to standards, aesthetic and minimalist design, error prevention and tolerance, and help and documentation. Compared with user testing, heuristic evaluation found most, but not all, of the serious problems. Combining heuristic evaluation and user testing, with each involving a small number of participants, may be an effective and efficient way of improving the usability of e-learning materials. Heuristic evaluation should ideally be used first to identify the most obvious problems and, once these are fixed, should be followed by testing with typical end users.

  6. RF Performance of Membrane Aperture Shells

    NASA Technical Reports Server (NTRS)

    Flint, Eirc M.; Lindler, Jason E.; Thomas, David L.; Romanofsky, Robert

    2007-01-01

    This paper provides an overview of recent results establishing the suitability of Membrane Aperture Shell Technology (MAST) for Radio Frequency (RF) applications. These single surface shells are capable of maintaining their figure with no preload or pressurization and minimal boundary support, yet can be compactly roll stowed and passively self deploy. As such, they are a promising technology for enabling a future generation of RF apertures. In this paper, we review recent experimental and numerical results quantifying suitable RF performance. It is shown that candidate materials possess metallic coatings with sufficiently low surface roughness and that these materials can be efficiently fabricated into RF relevant doubly curved shapes. A numerical justification for using a reflectivity metric, as opposed to the more standard RF designer metric of skin depth, is presented and the resulting ability to use relatively thin coating thickness is experimentally validated with material sample tests. The validity of these independent film sample measurements are then confirmed through experimental results measuring RF performance for reasonable sized doubly curved apertures. Currently available best results are 22 dBi gain at 3 GHz (S-Band) for a 0.5m aperture tested in prime focus mode, 28dBi gain for the same antenna in the C-Band (4 to 6 GHz), and 36.8dBi for a smaller 0.25m antenna tested at 32 GHz in the Ka-Band. RF range test results for a segmented aperture (one possible scaling approach) are shown as well. Measured antenna system actual efficiencies (relative to the unachievable) ideal for these on axis tests are generally quite good, typically ranging from 50 to 90%.

  7. Testing of Full Scale Flight Qualified Kevlar Composite Overwrapped Pressure Vessels

    NASA Technical Reports Server (NTRS)

    Greene, Nathanael; Saulsberry, Regor; Yoder, Tommy; Forsyth, Brad; Thesken, John; Phoenix, Leigh

    2007-01-01

    Many decades ago NASA identified a need for low-mass pressure vessels for carrying various fluids aboard rockets, spacecraft, and satellites. A pressure vessel design known as the composite overwrapped pressure vessel (COPV) was identified to provide a weight savings over traditional single-material pressure vessels typically made of metal and this technology has been in use for space flight applications since the 1970's. A typical vessel design consisted of a thin liner material, typically a metal, overwrapped with a continuous fiber yarn impregnated with epoxy. Most designs were such that the overwrapped fiber would carry a majority of load at normal operating pressures. The weight advantage for a COPV versus a traditional singlematerial pressure vessel contributed to widespread use of COPVs by NASA, the military, and industry. This technology is currently used for personal breathing supply storage, fuel storage for auto and mass transport vehicles and for various space flight and aircraft applications. The NASA Engineering and Safety Center (NESC) was recently asked to review the operation of Kevlar 2 and carbon COPVs to ensure they are safely operated on NASA space flight vehicles. A request was made to evaluate the life remaining on the Kevlar COPVs used on the Space Shuttle for helium and nitrogen storage. This paper provides a review of Kevlar COPV testing relevant to the NESC assessment. Also discussed are some key findings, observations, and recommendations that may be applicable to the COPV user community. Questions raised during the investigations have revealed the need for testing to better understand the stress rupture life and age life of COPVs. The focus of this paper is to describe burst testing of Kevlar COPVs that has been completed as a part of an the effort to evaluate the effects of ageing and shelf life on full scale COPVs. The test articles evaluated in this discussion had a diameter of 22 inches for S/N 014 and 40 inches for S/N 011. The time between manufacture and burst was 28 and 22 years. Visual inspection, shearography, heat soak thermography and borescope inspection were performed on vessel S/N 011 and all but shearography was performed on S/N 014 before they were tested and details of this work can be found in a companion paper titled, "Nondestructive Methods and Special Test Instrumentation Supporting NASA Composite Overwrapped Pressure Vessel Assessments." The vessels were instrumented so that measurements could be made to aid in the understanding of vessel response. Measurements made on the test articles included girth, boss displacement, internal volume, multiple point strain, full field strain, eddy current, acoustic emission (AE) pressure and temperature. The test article before and during burst is shown with the pattern used for digital image correlation full field strain measurement blurring as the vessel fails.

  8. Tensile Strength and Microstructure of Al2O3-ZrO2 Hypo-Eutectic Fibers Studied

    NASA Technical Reports Server (NTRS)

    Farmer, Serene C.; Sayir, Ali

    2001-01-01

    Oxide eutectics offer high-temperature strength retention and creep resistance in oxidizing environments. Al2O3-ZrO2 eutectic strengths have been studied since the 1970's. Directionally solidified oxide eutectics exhibit improved resistance to slow crack growth and excellent strength retention at high temperatures up to 1400 C. Materials studied typically contain Y2O3 to metastably retain the high-temperature cubic and tetragonal polymorphs at room temperature. Al2O3-ZrO2 is of fundamental interest for creep studies because it combines a creep-resistant material, Al2O3, with a very low creep resistance material, ZrO2. Results on mechanical properties and microstructures of these materials will be used to define compositions for creep testing in future work. Substantial variations from the eutectic alumina to zirconia ratio can be tolerated without a loss in room-temperature strength. The effect of increasing Y2O3 addition on the room-temperature tensile strength of an Al2O3-ZrO2 material containing excess Al2O3 was examined at the NASA Glenn Research Center, where the materials were grown using Glenn's world-class laser growth facilities.

  9. In-flight investigation of shuttle tile pressure orifice installations

    NASA Technical Reports Server (NTRS)

    Moes, Timothy R.; Meyer, Robert R., Jr.

    1990-01-01

    To determine shuttle orbiter wing loads during ascent, wing load instrumentation was added to Columbia (OV-102). This instrumentation included strain gages and pressure orifices on the wing. The loads derived from wing pressure measurements taken during STS 61-C did not agree with those derived from strain gage measurements or with the loads predicted from the aerodynamic database. Anomalies in the surface immediately surrounding the pressure orifices in the thermal protection system (TPS) tiles were one possible cause of errors in the loads derived from wing pressure measurements. These surface anomalies were caused by a ceramic filler material which was installed around the pressure tubing. The filler material allowed slight movement of the TPS tile and pressure tube as the airframe flexed and bent under aerodynamic loads during ascent and descent. Postflight inspection revealed that this filler material had protruded from or receeded beneath the surface, causing the orifice to lose its flushness. Flight tests were conducted at NASA Ames Research Center Dryden Flight Research Facility to determine the effects of any anomaly in surface flushness of the orifice installation on the measured pressures at Mach numbers between 0.6 and 1.4. An F-104 aircraft with a flight test fixture mounted beneath the fuselage was used for these flights. Surface flushness anomalies typical of those on the orbiter after flight (STA 61-C) were tested. Also, cases with excessive protrusion and recession of the filler material were tested. This report shows that the anomalies in STS 61-C orifice installations adversely affected the pressure measurements. But the magnitude of the affect was not great enough to account for the discrepancies with the strain gage measurements and the aerodynamic predictions.

  10. Wear resistance of ductile irons

    NASA Astrophysics Data System (ADS)

    Lerner, Y. S.

    1994-06-01

    This study was undertaken to evaluate the wear resistance of different grades of ductile iron as alterna-tives to high- tensile- strength alloyed and inoculated gray irons and bronzes for machine- tool and high-pressure hydraulic components. Special test methods were employed to simulate typical conditions of reciprocating sliding wear with and without abrasive- contaminated lubricant for machine and press guideways. Quantitative relationships were established among wear rate, microstructure and micro-hardness of structural constituents, and nodule size of ductile iron. The frictional wear resistance of duc-tile iron as a bearing material was tested with hardened steel shafts using standard test techniques under continuous rotating movement with lubricant. Lubricated sliding wear tests on specimens and compo-nents for hydraulic equipment and apparatus were carried out on a special rig with reciprocating motion, simulating the working conditions in a piston/cylinder unit in a pressure range from 5 to 32 MPa. Rig and field tests on machine- tool components and units and on hydraulic parts have confirmed the test data.

  11. Burning Plastics Investigated in Space for Unique US/Russian Cooperative Project

    NASA Technical Reports Server (NTRS)

    Friedman, Robert

    2000-01-01

    It is well known that fires in the low-gravity environment of Earth-orbiting spacecraft are different from fires on Earth. The flames lack the familiar upward plume, which is the result of gravitational buoyancy. These flames, however, are strongly influenced by minor airflow currents. A recent study conducted in low gravity (microgravity) on the Russian orbital station Mir used burning plastic rods mounted in a small chamber with a controllable fan to expose the flame to airflows of different velocities. In this unique project, a Russian scientific agency, the Keldysh Research Center, furnished the apparatus and directed the Mir tests, while the NASA Glenn Research Center at Lewis Field provided the test materials and the project management. Reference testing and calibrations in ground laboratories were conducted jointly by researchers at Keldysh and at the NASA Johnson Space Center's White Sands Test Facility. Multiple samples of three different plastics were burned in the tests: Delrin, a common material for valve bodies; PMMA, a plastic "glass"; and polyethylene, a familiar material for containers and films. Each burned with a unique spherical or egg-shaped flame that spread over the rod. The effect of varying the airflow was dramatic. At the highest airflow attainable in the combustion chamber, nearly 10 cm/sec (a typical ventilation breeze), the flames were bright and strong. As airflow velocity decreased, the flames became shorter but wider. In addition, the flames became less bright, and for PMMA and polyethylene, they showed two colors, a bright part decreasing in volume and a nearly invisible remainder (see the photographs). Finally, at a very low velocity, the flames extinguished. For the plastics tested, this minimum velocity was very low, around 0.3 to 0.5 cm/sec. This finding confirms that at least a slight airflow is required to maintain a flame in microgravity for these types of materials.

  12. The effect of reinforcement on the tear properties of flexible circuits

    NASA Astrophysics Data System (ADS)

    Acton, A. E.

    The tear properties of Kapton flexible circuitry are very poor. To better understand the properties of flex circuits and how to reinforce them, four different reinforcing materials were applied to a typical flex circuit and the tear properties were measured. Teflon film, nylon fabric, glass fabric and Kevlar fabric were all laminated to a flex circuit with Pyralux (a Dupont tradename) adhesive. The fabrics were laminated in both a 0/90 and a + or - 45 configuration. Five tests wereperformed, Graves, crescent, trousers, tensile and single edge notch (SEN). Of the four materials used for reinforcement, Kevlar clearly showed the greatest overall improvement in tear properties. However, Kevlar also provided the greatest processing difficulties. All of the reinforced circuits had an increase in thickness which resulted in an unacceptable loss of flexibility.

  13. Rolling-element fatigue life of silicon nitride balls. [as compared to that of steel, ceramic, and cermet materials

    NASA Technical Reports Server (NTRS)

    Parker, R. J.; Zaretsky, E. V.

    1974-01-01

    The five-ball fatigue tester was used to evaluate silicon nitride as a rolling-element bearing material. Results indicate that hot-pressed silicon nitride running against steel may be expected to yield fatigue lives comparable to or greater than those of bearing quality steel running against steel at stress levels typical rolling-element bearing application. The fatigue life of hot-pressed silicon nitride is considerably greater than that of any ceramic or cermet tested. Computer analysis indicates that there is no improvement in the lives of 120-mm-bore angular--contact ball bearings of the same geometry operating at DN values from 2 to 4 million where hot-pressed silicon nitride balls are used in place of steel balls.

  14. Method of producing catalytic material for fabricating nanostructures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seals, Roland D.; Menchhofer, Paul A.; Howe, Jane Y.

    Methods of fabricating nano-catalysts are described. In some embodiments the nano-catalyst is formed from a powder-based substrate material and is some embodiments the nano-catalyst is formed from a solid-based substrate material. In some embodiments the substrate material may include metal, ceramic, or silicon or another metalloid. The nano-catalysts typically have metal nanoparticles disposed adjacent the surface of the substrate material. The methods typically include functionalizing the surface of the substrate material with a chelating agent, such as a chemical having dissociated carboxyl functional groups (--COO), that provides an enhanced affinity for metal ions. The functionalized substrate surface may then bemore » exposed to a chemical solution that contains metal ions. The metal ions are then bound to the substrate material and may then be reduced, such as by a stream of gas that includes hydrogen, to form metal nanoparticles adjacent the surface of the substrate.« less

  15. Method of producing catalytic materials for fabricating nanostructures

    DOEpatents

    Seals, Roland D; Menchhofer, Paul A; Howe, Jane Y; Wang, Wei

    2013-02-19

    Methods of fabricating nano-catalysts are described. In some embodiments the nano-catalyst is formed from a powder-based substrate material and is some embodiments the nano-catalyst is formed from a solid-based substrate material. In some embodiments the substrate material may include metal, ceramic, or silicon or another metalloid. The nano-catalysts typically have metal nanoparticles disposed adjacent the surface of the substrate material. The methods typically include functionalizing the surface of the substrate material with a chelating agent, such as a chemical having dissociated carboxyl functional groups (--COO), that provides an enhanced affinity for metal ions. The functionalized substrate surface may then be exposed to a chemical solution that contains metal ions. The metal ions are then bound to the substrate material and may then be reduced, such as by a stream of gas that includes hydrogen, to form metal nanoparticles adjacent the surface of the substrate.

  16. LSP Composite Susbtrate Manufacturing Processing Guide

    NASA Technical Reports Server (NTRS)

    Kovach, Daniel J.; Griess, Kenneth H.

    2013-01-01

    This document is intended to define Carbon Fiber Reinforced Plastic (CFRP) test panel configurations that can be employed for the purposes of evaluating the protection capabilities of Lightning Strike Protection (LSP) materials developed by the Aerospace Industry. The configurations are intended to provide consistent behavior in their response to simulated lightning strikes at pre-defined levels when tested by a capable vendor according to a test procedure written to enable consistent results (ref section 2.1.2). In response to an attachment of a simulated lightning strike on a CFRP panel, one can expect to see various levels of ablation and delamination, both through the thickness of the panel and with respect to the amount of panel surface area that exhibits damage. Panel configurations defined in this document include: An "unprotected" configuration 128694-1 (ref section 4.1), consisting of a cured CFRP laminate stackup of tape and fabric prepregs, coated with a typical aerospace primer and paint finishing scheme, attached to aluminum grounding bars intended to draw electrical current from the lightning attachment point to the panel edges and thus to ground. A "protected" configuration 128694-2 (ref section 4.1), wherein a layer of an LSP material form often used in the Aerospace Industry is included in the laminate stackup prior to cure. The CFRP materials, finishes and grounding arrangement for ths configuration are the same as for the "unprotected" configuration.

  17. Development and characterization of self-healing carbon fabric/ionomer composite through stitched polymeric artificial muscle

    NASA Astrophysics Data System (ADS)

    Gabriel, Mark Joseph

    Typical cracks in composite materials are hard to detect, because they may be very small or occur inside the material. This study investigates the development and characterization of carbon fiber and an ionomer, self-healing, laminate composite, enhanced with stitched artificial muscle elements. Although the carbon fiber is used as a structural reinforcement, the carbon fiber can also act as a resistive heating element in order to activate the healing elements in a Close-Then-Heal (CTH) approach. However in this study, hot air in an oven was used to activate the, SurlynRTM 8940, self-healing matrix. Artificial muscle was prepared from commercial fishing line to stitch reinforce the carbon laminate composite in the Z plane. Holes were drilled into the final composite and the muscle was stitched into the composite for active reinforcement. Differential scanning calorimetry was used to characterize the matrix and fishing line properties. The resulting smart composite was subjected to low velocity impact tests and consequential damage before healing in an oven, followed by three point bending flexure tests. Cracks in the carbon fiber reinforcement formed more easily than expected after impact because the holes were drilled to facilitate the muscle stitching. The matrix material could heal, but the reinforcement carbon could not. Several equipment issues and failures limited the amount of samples that could be created to continue testing with new parameters.

  18. Materials Chemistry Issues in the Development of a Single-Crystal Solar/Thermal Refractive Secondary Concentrator

    NASA Technical Reports Server (NTRS)

    Jacobson, Nathan S.; Biering, Robert C.

    2005-01-01

    A translucent crystal concentrates and transmits energy to a heat exchanger, which in turn heats a propellant gas, working gas of a dynamic power system, or a thermopile. Materials are the limiting issue in such a system. Central is the durability of the crystal, which must maintain the required chemical, physical/optical, and mechanical properties as it is heated and cooled. This report summarizes available data to date on the materials issues with this system. We focus on the current leading candidate materials, which are sapphire (Al2O3) for higher temperatures and silica (SiO2) for lower temperatures. We use data from thermochemical calculations; laboratory coupon tests with silica and sapphire; and system tests with sapphire. The required chemical properties include low-vapor pressure and interfacial stability with supporting structural materials. Optical properties such as transmittance and index of refraction must be maintained. Thermomechanical stability is a major challenge for a large, single-crystal ceramic and has been discussed in another report. In addition to the crystal, other materials in the proposed system include refractory metals (Nb, Ta, Mo, W, and Re), carbon (C), and high-temperature ceramic insulation. The major issue here is low levels of oxygen, which lead to volatile refractory metal oxides and rapid consumption of the refractory metal. Interfacial reactions between the ceramic crystal and refractory metal are also discussed. Finally, high-temperature ceramic insulating materials are also likely to be used in this system. Outgassing is a major issue for these materials. The products of outgassing are typically reactive with the refractory metals and must be minimized.

  19. Effects of Heat Treatment on the Ballistic Impact Properties of Inconel 718 for Jet Engine Fan Containment Applications

    NASA Technical Reports Server (NTRS)

    Pereira, J. Michael; Lerch, Bradley A.

    2001-01-01

    The effects of heat treating Inconel 718 on the ballistic impact response and failure mechanisms were studied. Two different annealing conditions and an aged condition were considered. Large differences in the static properties were found between the annealed and the aged material, with the annealed condition having lower strength and hardness and greater elongation than the aged. High strain rate tests show similar results. Correspondingly large differences were found in the velocity required to penetrate material in the two conditions in impact tests involving 12.5 mm diameter, 25.4 mm long cylindrical Ti-6-4 projectiles impacting flat plates at velocities in the range of 150 to 300 m/sec. The annealed material was able to absorb over 25 percent more energy than the aged. This is contrary to results observed for ballistic impact response for higher velocity impacts typically encountered in military applications where it has been shown that there exists a correlation between target hardness and ballistic impact strength. Metallographic examination of impacted plates showed strong indication of failure due to adiabatic shear. In both materials localized bands of large shear deformation were apparent, and microhardness measurements indicated an increase in hardness in these bands compared to the surrounding material. These bands were more localized in the aged material than in the annealed material. In addition the annealed material underwent significantly greater overall deformation before failure. The results indicate that lower elongation and reduced strain hardening behavior lead to a transition from shear to adiabatic shear failure, while high elongation and better strain hardening capabilities reduce the tendency for shear to localize and result in an unstable adiabatic shear failure. This supports empirical containment design methods that relate containment thickness to the static toughness.

  20. Effects of Heat Treatment on the Ballistic Impact Properties of Inconel 718 for Jet Engine Fan Containment Applications

    NASA Technical Reports Server (NTRS)

    Pereira, J. Michael; Lerch, Bradley A.

    1999-01-01

    The effects of heat treating Inconel 718 on the ballistic impact response and failure mechanisms were studied. Two different annealing conditions and an aged condition were considered. Large differences in the static properties were found between the annealed and the aged material, with the annealed condition having lower strength and hardness and greater elongation than the aged. High strain rate tests show similar results. Correspondingly large differences were found in the velocity required to penetrate material in the two conditions in impact tests involving 12.5 mm diameter, 25.4 mm long cylindrical Ti-6-4 projectiles impacting flat plates at velocities in the range of 150 to 300 m/sec. The annealed material was able to absorb over 25 percent more energy than the aged. This is contrary to results observed for ballistic impact response for higher velocity impacts typically encountered in military applications where it has been shown that there exists a correlation between target hardness and ballistic impact strength. Metallographic examination of impacted plates showed strong indication of failure due to adiabatic shear. In both materials localized bands of large shear deformation were apparent, and microhardness measurements indicated an increase in hardness in these bands compared to the surrounding material. These bands were more localized in the aged material than in the annealed material. In addition the annealed material underwent significantly greater overall deformation before failure. The results indicate that lower elongation and reduced strain hardening behavior lead to a transition from shear to adiabatic shear failure, while high elongation and better strain hardening capabilities reduce the tendency for shear to localize and result in an unstable adiabatic shear failure. This supports empirical containment design methods that relate containment thickness to the static toughness.

  1. Chemical modifications of renewable cellulosic materials

    USDA-ARS?s Scientific Manuscript database

    In agriculture, there is a fair amount of byproducts and waste materials. These materials typically contain significant portions of cellulose and hemicellulose. A good opportunity is to take advantage of these relatively cheap renewable materials, carry out chemical reactions, and increase their v...

  2. Optimization of the dynamic behavior of strongly nonlinear heterogeneous materials

    NASA Astrophysics Data System (ADS)

    Herbold, Eric B.

    New aspects of strongly nonlinear wave and structural phenomena in granular media are developed numerically, theoretically and experimentally. One-dimensional chains of particles and compressed powder composites are the two main types of materials considered here. Typical granular assemblies consist of linearly elastic spheres or layers of masses and effective nonlinear springs in one-dimensional columns for dynamic testing. These materials are highly sensitive to initial and boundary conditions, making them useful for acoustic and shock-mitigating applications. One-dimensional assemblies of spherical particles are examples of strongly nonlinear systems with unique properties. For example, if initially uncompressed, these materials have a sound speed equal to zero (sonic vacuum), supporting strongly nonlinear compression solitary waves with a finite width. Different types of assembled metamaterials will be presented with a discussion of the material's response to static compression. The acoustic diode effect will be presented, which may be useful in shock mitigation applications. Systems with controlled dissipation will also be discussed from an experimental and theoretical standpoint emphasizing the critical viscosity that defines the transition from an oscillatory to monotonous shock profile. The dynamic compression of compressed powder composites may lead to self-organizing mesoscale structures in two and three dimensions. A reactive granular material composed of a compressed mixture of polytetrafluoroethylene (PTFE), tungsten (W) and aluminum (Al) fine-grain powders exhibit this behavior. Quasistatic, Hopkinson bar, and drop-weight experiments show that composite materials with a high porosity and fine metallic particles exhibit a higher strength than less porous mixtures with larger particles, given the same mass fraction of constituents. A two-dimensional Eulerian hydrocode is implemented to investigate the mechanical deformation and failure of the compressed powder samples in simulated drop-weight tests. The calculations indicate that the dynamic formation of mesoscale force chains increase the strength of the sample. This is also apparent in three-dimensional finite element calculations of drop-weight test simulations using LS-Dyna despite a higher granular bulk coordination number, and an increased mobility of individual grains.

  3. The effectiveness of respiratory protection worn by communities to protect from volcanic ash inhalation. Part I: Filtration efficiency tests.

    PubMed

    Mueller, William; Horwell, Claire J; Apsley, Andrew; Steinle, Susanne; McPherson, Stephanie; Cherrie, John W; Galea, Karen S

    2018-04-22

    During volcanic eruptions and their aftermath, communities may be concerned about the impacts of inhaling volcanic ash. Access to effective respiratory protection (RP) is therefore important for many people in volcanic areas all over the world. However, evidence to support the use of effective RP during such crises is currently lacking. The aim of this study was to build the first evidence base on the effectiveness of common materials used to protect communities from ash inhalation in volcanic crises. We obtained 17 forms of RP, covering various types of cloth through to disposable masks (typically used in occupational settings), which communities are known to wear during volcanic crises. The RP materials were characterised and subjected to filtration efficiency (FE) tests, which were performed with three challenge dusts: ashes from Sakurajima (Japan) and Soufrière Hills (Montserrat) volcanoes and aluminium oxide (Aloxite), chosen as a low-toxicity surrogate dust of similar particle size distribution. FE tests were conducted at two concentrations (1.5 mg/m 3 and 2.5 mg/m 3 ) and two flow rates (equivalent to 40 and 80 l/min through 15.9 cm 2 sections of each RP type). Each material was held in a sample holder and PM 2.5 dust concentrations were measured both outside the mask material and inside the sample holder to determine FE. A limited number of tests were undertaken to assess the effect on FE of wetting a bandana and a surgical mask, as well as folding a bandana to provide multiple filter layers. Overall, four RP materials performed very well against volcanic ash, with median FEs in excess of 98% (N95-equiv., N99-equiv., PM 2.5 surgical (Japan), and Basic flat-fold (Indonesia)). The two standard surgical masks tested had median FEs of 89-91%. All other materials had median FEs ranging from 23 to 76% with no cloth materials achieving >44%. Folding a bandana resulted in better FE (40%; 3× folded) than single-layered material (29%). Wetting the bandana and surgical mask material did not improve FE overall. This first evidence base on the FE of common materials used to protect communities in volcanic crises from ash inhalation has been extended in a companion study (Steinle et al., 2018) on the total inward leakage of the best-performing masks when worn by human volunteers. This will provide a complete assessment of the effectiveness of these RP types. Copyright © 2018 The Authors. Published by Elsevier GmbH.. All rights reserved.

  4. Pancam Mast Assembly on Mars Rover

    NASA Technical Reports Server (NTRS)

    Warden, Robert M.; Cross, Mike; Harvison, Doug

    2004-01-01

    The Pancam Mast Assembly (PMA) for the 2003 Mars Rover is a deployable structure that provides an elevated platform for several cameras. The PMA consists of several mechanisms that enable it to raise the cameras as well as point the cameras in all directions. This paper describes the function of the various mechanisms as well as a description of the mechanisms and some test parameters. Designing these mechanisms to operate on the surface of Mars presented several challenges. Typical spacecraft mechanisms must operate in zero-gravity and high vacuum. These mechanisms needed to be designed to operate in Martian gravity and atmosphere. Testing conditions were a little easier because the mechanisms are not required to operate in a vacuum. All of the materials are vacuum compatible, but the mechanisms were tested in a dry nitrogen atmosphere at various cold temperatures.

  5. A field study of solid rocket exhaust impacts on the near-field environment

    NASA Technical Reports Server (NTRS)

    Anderson, B. J.; Keller, Vernon W.

    1990-01-01

    Large solid rocket motors release large quantities of hydrogen chloride and aluminum oxide exhaust during launch and testing. Measurements and analysis of the interaction of this material with the deluge water spray and other environmental factors in the near field (within 1 km of the launch or test site) are summarized. Measurements of mixed solid and liquid deposition (typically 2 normal HCl) following space shuttle launches and 6.4 percent scale model tests are described. Hydrogen chloride gas concentrations measured in the hours after the launch of STS 41D and STS 51A are reported. Concentrations of 9 ppm, which are above the 5 ppm exposure limits for workers, were detected an hour after STS 51A. A simplified model which explains the primary features of the gas concentration profiles is included.

  6. In-pile Hydrothermal Corrosion Evaluation of Coated SiC Ceramics and Composites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carpenter, David; Ang, Caen; Katoh, Yutai

    2017-09-01

    Hydrothermal corrosion accelerated by water radiolysis during normal operation is among the most critical technical feasibility issues remaining for silicon carbide (SiC) composite-based cladding that could provide enhanced accident-tolerance fuel technology for light water reactors. An integrated in-pile test was developed and performed to determine the synergistic effects of neutron irradiation, radiolysis, and pressurized water flow, all of which are relevant to a typical pressurized water reactor (PWR). The test specimens were chosen to cover a range of SiC materials and a variety of potential options for environmental barrier coatings. This document provides a summary of the irradiation vehicle design,more » operations of the experiment, and the specimen loading into the irradiation vehicle.« less

  7. Social marketing techniques for public health communication: a review of syphilis awareness campaigns in 8 US cities.

    PubMed

    Vega, Miriam Y; Roland, Eric L

    2005-10-01

    To describe the social marketing approaches used to increase syphilis awareness in 8 US cities. We reviewed the typical academic approach for developing social marketing campaigns and interviewed health department staff responsible for social marketing campaigns in each city. Using social marketing techniques such as target segmentation, concept testing of materials, and formative evaluation, campaign planners throughout the 8 cities developed a variety of approaches to reach their target audiences. Preliminary results suggest 71% to 80% of men who have sex with men interviewed were aware of the campaigns, and 45% to 53% of them reported they were tested due to the campaigns. Campaigns should address the local epidemic and target audience with culturally appropriate messages.

  8. Numerical test of the Edwards conjecture shows that all packings are equally probable at jamming

    NASA Astrophysics Data System (ADS)

    Martiniani, Stefano; Schrenk, K. Julian; Ramola, Kabir; Chakraborty, Bulbul; Frenkel, Daan

    2017-09-01

    In the late 1980s, Sam Edwards proposed a possible statistical-mechanical framework to describe the properties of disordered granular materials. A key assumption underlying the theory was that all jammed packings are equally likely. In the intervening years it has never been possible to test this bold hypothesis directly. Here we present simulations that provide direct evidence that at the unjamming point, all packings of soft repulsive particles are equally likely, even though generically, jammed packings are not. Typically, jammed granular systems are observed precisely at the unjamming point since grains are not very compressible. Our results therefore support Edwards’ original conjecture. We also present evidence that at unjamming the configurational entropy of the system is maximal.

  9. Advances In High Temperature (Viscoelastoplastic) Material Modeling for Thermal Structural Analysis

    NASA Technical Reports Server (NTRS)

    Arnold, Steven M.; Saleeb, Atef F.

    2005-01-01

    Typical High Temperature Applications High Temperature Applications Demand High Performance Materials: 1) Complex Thermomechanical Loading; 2) Complex Material response requires Time-Dependent/Hereditary Models: Viscoelastic/Viscoplastic; and 3) Comprehensive Characterization (Tensile, Creep, Relaxation) for a variety of material systems.

  10. Biofoam

    DOEpatents

    Morrison, Robert L.

    1995-01-01

    Biofoam is a rigid, opaque microcellular organic foam made from organic materials derived from natural products and biological organisms. Typical organic materials are agar, agarose, gelatin, algin, alginates, gellan gum, and microcrystalline cellulose. The organic material is dissolved in a polar solvent, typically water, and the solution can be gelled immediately. The gel is frozen and freeze-dried to form the biofoam. Alternatively, a nonpolar solvent is added to the solution and emulsified. The resulting emulsion is then gelled, frozen, and freeze-dried. A variety of crystalline, fibrous, or metallic additives may be added to produce lightweight composite materials with enhanced strength and insulating properties. The amount of dilution of the organic material in the solvent(s) determines the density of the resulting biofoams, which ranges from about 1.0 mg/cm.sup.3 to about 500 mg/cm.sup.3.

  11. A new tracer‐density criterion for heterogeneous porous media

    USGS Publications Warehouse

    Barth, Gilbert R.; Illangasekare, Tissa H.; Hill, Mary C.; Rajaram, Harihar

    2001-01-01

    Tracer experiments provide information about aquifer material properties vital for accurate site characterization. Unfortunately, density‐induced sinking can distort tracer movement, leading to an inaccurate assessment of material properties. Yet existing criteria for selecting appropriate tracer concentrations are based on analysis of homogeneous media instead of media with heterogeneities typical of field sites. This work introduces a hydraulic‐gradient correction for heterogeneous media and applies it to a criterion previously used to indicate density‐induced instabilities in homogeneous media. The modified criterion was tested using a series of two‐dimensional heterogeneous intermediate‐scale tracer experiments and data from several detailed field tracer tests. The intermediate‐scale experimental facility (10.0×1.2×0.06 m) included both homogeneous and heterogeneous (σln k2 = 1.22) zones. The field tracer tests were less heterogeneous (0.24 < σln k2 < 0.37), but measurements were sufficient to detect density‐induced sinking. Evaluation of the modified criterion using the experiments and field tests demonstrates that the new criterion appears to account for the change in density‐induced sinking due to heterogeneity. The criterion demonstrates the importance of accounting for heterogeneity to predict density‐induced sinking and differences in the onset of density‐induced sinking in two‐ and three‐dimensional systems.

  12. Sixth Status Report: Testing of Aged Softwood Fiberboard Material for the 9975 Shipping Package

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Daugherty, W.

    Samples have been prepared from several 9975 lower fiberboard subassemblies fabricated from softwood fiberboard. Physical, mechanical and thermal properties have been measured following varying periods of conditioning in each of several environments. These tests have been conducted in the same manner as previous testing on cane fiberboard samples. Overall, similar aging trends are observed for softwood and cane fiberboard samples, with a few differences. Some softwood fiberboard properties tend to degrade faster in some environments, while some cane fiberboard properties degrade faster in the two most aggressive environments. As a result, it is premature to assume both materials will agemore » at the same rates, and the preliminary aging models developed for cane fiberboard might not apply to softwood fiberboard. However, it is expected that both cane and softwood fiberboard assemblies will perform satisfactorily in conforming packages stored in a typical KAC storage environment for up to 15 years. Samples from an additional 3 softwood fiberboard assemblies have begun aging during the past year to provide information on the variability of softwood fiberboard behavior. Aging and testing of softwood fiberboard will continue and additional data will be collected to support development of an aging model specific to softwood fiberboard.« less

  13. Interaction of high voltage surfaces with the space plasma. [solar arrays

    NASA Technical Reports Server (NTRS)

    Kaufman, H. R.; Robinson, R. S.

    1979-01-01

    Tests were conducted using plasma densities of approximately 10 to the 5th power - 10 to the 6th power/cu cm. Insulating materials tested were polyimide (Dapton), mica and glass. Surface-area effects were found to be substantially reduced from those previously reported at lower plasma densities. The difference in typical plasma density was felt to be the major cause of this change, although a saturation effect may also be involved. At the 10 to the 5th power/cu cm plasma density range, surface effects on collection current appear limited to roughly 1 cm from the hole. A factor of several reduction of collected current was obtained with both surface scribing and a 2 x 2 cm conducting mesh. It appears possible that the effects of surface treatment might be more significant at lower plasma densities. Effects of repeated tests were also noted, with current collection decreasing with successive tests. Depending on the materials involved, the effect appeared due to either the smoothing of the inside of the insulator hole or the sputtering of insulator on the exposed conductor. A general conclusion was made from a variety of observations, that the generation of vapor is a major factor in the enhancement of collected current.

  14. Control of microstructure in soldered, brazed, welded, plated, cast or vapor deposited manufactured components

    DOEpatents

    Ripley, Edward B.; Hallman, Russell L.

    2015-11-10

    Disclosed are methods and systems for controlling of the microstructures of a soldered, brazed, welded, plated, cast, or vapor deposited manufactured component. The systems typically use relatively weak magnetic fields of either constant or varying flux to affect material properties within a manufactured component, typically without modifying the alloy, or changing the chemical composition of materials or altering the time, temperature, or transformation parameters of a manufacturing process. Such systems and processes may be used with components consisting of only materials that are conventionally characterized as be uninfluenced by magnetic forces.

  15. Pyrethroid sorption to Sacramento River suspended solids and bed sediments

    PubMed Central

    Fojut, Tessa L.; Young, Thomas M.

    2011-01-01

    Sorption of pyrethroid insecticides to solid materials will typically dominate the fate and transport of these hydrophobic compounds in aquatic environments. Batch reactor isotherm experiments were performed with bifenthrin and λ-cyhalothrin with suspended material and bed sediment collected from the Sacramento River, CA. These batch reactor experiments were performed with low spiking concentrations and a long equilibration time (28 d) to be more relevant to environmental conditions. Sorption to suspended material and bed sediment was compared to examine the role of differential sorption between these phases in the environmental transport of pyrethroids. The equilibrium sorption data were fit to the Freundlich isotherm model and fit with r2 > 0.87 for all experiments. Freundlich exponents ranged from 0.72 ± 0.19 to 1.07 ± 0.050, indicating sorption nonlinearity for some of the experimental conditions and linearity for others over the concentration range tested. The Freundlich capacity factors were larger for the suspended solids than for the bed sediments and the suspended material had a higher specific surface area and higher organic carbon content compared to the bed sediment. Calculated organic carbon-normalized distribution coefficients were larger than those previously reported in the literature by approximately an order of magnitude and ranged from 106.16 to 106.68 at an equilibrium aqueous concentration of 0.1 µg/L. Higher than expected sorption of pyrethroids to the tested materials may be explained by sorption to black carbon and/or mineral surfaces. PMID:21191877

  16. Arsenic removal using steel manufacturing byproducts as permeable reactive materials in mine tailing containment systems.

    PubMed

    Ahn, Joo Sung; Chon, Chul-Min; Moon, Hi-Soo; Kim, Kyoung-Woong

    2003-05-01

    Steel manufacturing byproducts were tested as a means of treating mine tailing leachate with a high As concentration. Byproduct materials can be placed in situ as permeable reactive barriers to control the subsurface release of leachate from tailing containment systems. The tested materials had various compositions of elemental Fe, Fe oxides, Ca-Fe oxides and Ca hydroxides typical of different steel manufacturing processes. Among these materials, evaporation cooler dust (ECD), oxygen gas sludge (OGS), basic oxygen furnace slag (BOFS) and to a lesser degree, electrostatic precipitator dust (EPD) effectively removed both As(V) and As(III) during batch experiments. ECD, OGS and BOFS reduced As concentrations to <0.5mg/l from 25mg/l As(V) or As(III) solution in 72 h, exhibiting higher removal capacities than zero-valent iron. High Ca concentrations and alkaline conditions (pH ca. 12) provided by the dissolution of Ca hydroxides may promote the formation of stable, sparingly soluble Ca-As compounds. When initial pH conditions were adjusted to 4, As reduction was enhanced, probably by adsorption onto iron oxides. The elution rate of retained As from OGS and ECD decreased with treatment time, and increasing the residence time in a permeable barrier strategy would be beneficial for the immobilization of As. When applied to real tailing leachate, ECD was found to be the most efficient barrier material to increase pH and to remove As and dissolved metals.

  17. Part-to-itself model inversion in process compensated resonance testing

    NASA Astrophysics Data System (ADS)

    Mayes, Alexander; Jauriqui, Leanne; Biedermann, Eric; Heffernan, Julieanne; Livings, Richard; Aldrin, John C.; Goodlet, Brent; Mazdiyasni, Siamack

    2018-04-01

    Process Compensated Resonance Testing (PCRT) is a non-destructive evaluation (NDE) method involving the collection and analysis of a part's resonance spectrum to characterize its material or damage state. Prior work used the finite element method (FEM) to develop forward modeling and model inversion techniques. In many cases, the inversion problem can become confounded by multiple parameters having similar effects on a part's resonance frequencies. To reduce the influence of confounding parameters and isolate the change in a part (e.g., creep), a part-to-itself (PTI) approach can be taken. A PTI approach involves inverting only the change in resonance frequencies from the before and after states of a part. This approach reduces the possible inversion parameters to only those that change in response to in-service loads and damage mechanisms. To evaluate the effectiveness of using a PTI inversion approach, creep strain and material properties were estimated in virtual and real samples using FEM inversion. Virtual and real dog bone samples composed of nickel-based superalloy Mar-M-247 were examined. Virtual samples were modeled with typically observed variations in material properties and dimensions. Creep modeling was verified with the collected resonance spectra from an incrementally crept physical sample. All samples were inverted against a model space that allowed for change in the creep damage state and the material properties but was blind to initial part dimensions. Results quantified the capabilities of PTI inversion in evaluating creep strain and material properties, as well as its sensitivity to confounding initial dimensions.

  18. Viscoelastic behaviour of cold recycled asphalt mixes

    NASA Astrophysics Data System (ADS)

    Cizkova, Zuzana; Suda, Jan

    2017-09-01

    Behaviour of cold recycled mixes depends strongly on both the bituminous binder content (bituminous emulsion or foamed bitumen) and the hydraulic binder content (usually cement). In the case of cold recycled mixes rich in bitumen and with low hydraulic binder content, behaviour is close to the viscoelastic behaviour of traditional hot mix asphalt. With decreasing bituminous binder content together with increasing hydraulic binder content, mixes are characteristic with brittle behaviour, typical for concrete pavements or hydraulically bound layers. The behaviour of cold recycled mixes with low content of both types of binders is similar to behaviour of unbound materials. This paper is dedicated to analysing of the viscoelastic behaviour of the cold recycled mixes. Therefore, the tested mixes contained higher amount of the bituminous binder (both foamed bitumen and bituminous emulsion). The best way to characterize any viscoelastic material in a wide range of temperatures and frequencies is through the master curves. This paper includes interesting findings concerning the dependency of both parts of the complex modulus (elastic and viscous) on the testing frequency (which simulates the speed of heavy traffic passing) and on the testing temperature (which simulates the changing climate conditions a real pavement is subjected to).

  19. Structural properties of impact ices accreted on aircraft structures

    NASA Technical Reports Server (NTRS)

    Scavuzzo, R. J.; Chu, M. L.

    1987-01-01

    The structural properties of ice accretions formed on aircraft surfaces are studied. The overall objectives are to measure basic structural properties of impact ices and to develop finite element analytical procedures for use in the design of all deicing systems. The Icing Research Tunnel (IRT) was used to produce simulated natural ice accretion over a wide range of icing conditions. Two different test apparatus were used to measure each of the three basic mechanical properties: tensile, shear, and peeling. Data was obtained on both adhesive shear strength of impact ices and peeling forces for various icing conditions. The influences of various icing parameters such as tunnel air temperature and velocity, icing cloud drop size, material substrate, surface temperature at ice/material interface, and ice thickness were studied. A finite element analysis of the shear test apparatus was developed in order to gain more insight in the evaluation of the test data. A comparison with other investigators was made. The result shows that the adhesive shear strength of impact ice typically varies between 40 and 50 psi, with peak strength reaching 120 psi and is not dependent on the kind of substrate used, the thickness of accreted ice, and tunnel temperature below 4 C.

  20. Status of Wrought FeCrAl-UO 2 Capsules Irradiated in the Advanced Test Reactor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Field, Kevin G.; Harp, J.; Core, G.

    2017-07-01

    Candidate cladding materials for accident tolerant fuel applications require extensive testing and validation prior to commercial deployment within the nuclear power industry. One class of cladding materials, FeCrAl alloys, is currently undergoing such effort. Within these activities is a series of irradiation programs within the Advanced Test Reactor. These programs are developed to aid in commercial maturation and understand the fundamental mechanisms controlling the cladding performance during normal operation of a typical light water reactor. Three different irradiation programs are on-going; one designed as a simple proof-of-principle concept, the other to evaluate the susceptibility of FeCrAl to fuel-cladding chemical interaction,more » and the last to fully simulate the conditions of a pressurized water reactor experimentally. To date, nondestructive post-irradiation examination has been completed on the rodlet deemed FCA-L3 from the simple proof-of-concept irradiation program. Initial results show possible breach of the rodlet under irradiation but further studies are needed to conclusively determine whether breach has occurred and the underlying reasons for such a possible failure. Further work includes characterizing additional rodlets following irradiation.« less

  1. Comparison of structural response and fatigue endurance of aircraft flap-like box structures subjected to acoustic loading

    NASA Astrophysics Data System (ADS)

    Xiao, Y.; White, R. G.; Aglietti, G. S.

    2005-05-01

    The results of an extensive test program to characterize the behavior of typical aircraft structures under acoustic loading and to establish their fatigue endurance are presented. The structures tested were the three flap-like box-type of structures. Each structure consisted of one flat (bottom) and one curved (top) stiffener stiffened skin panel, front, and rear spars, and ribs that divided the structures into three bays. The three structures, constructed from three different materials (aircraft standard aluminum alloy, Carbon Fibre Reinforced Plastic, and a Glass Fibre Metal Laminate, i.e., GLARE) had the same size and configuration, with only minor differences due to the use of different materials. A first set of acoustic tests with excitations of intensity ranging from 140 to 160 dB were carried out to obtain detailed data on the dynamic response of the three structures. The FE analysis of the structures is also briefly described and the results compared with the experimental data. The fatigue endurance of the structures was then determined using random acoustic excitation with an overall sound pressure level of 161 dB, and details of crack propagation are reported. .

  2. NEET In-Pile Ultrasonic Sensor Enablement-Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    J. Daw; J. Rempe; J. Palmer

    2014-09-01

    Ultrasonic technologies offer the potential to measure a range of parameters during irradiation of fuels and materials, including geometry changes, temperature, crack initiation and growth, gas pressure and composition, and microstructural changes under harsh irradiation test conditions. There are two primary issues that currently limit in-pile deployment of ultrasonic sensors. The first is transducer survivability. The ability of ultrasonic transducer materials to maintain their useful properties during an irradiation must be demonstrated. The second issue is signal processing. Ultrasonic testing is typically performed in a lab or field environment, where the sensor and sample are accessible. The harsh nature ofmore » in-pile testing and the variety of desired measurements demand that an enhanced signal processing capability be developed to make in-pile ultrasonic sensors viable. To address these issues, the NEET ASI program funded a three year Ultrasonic Transducer Irradiation and Signal Processing Enhancements project, which is a collaborative effort between the Idaho National Laboratory, the Pacific Northwest National Laboratory, the Argonne National Laboratory, and the Pennsylvania State University. The objective of this report is to document the objectives and accomplishments from this three year project. As summarized within this document, significant work has been accomplished during this three year project.« less

  3. Uncertainty quantification of resonant ultrasound spectroscopy for material property and single crystal orientation estimation on a complex part

    NASA Astrophysics Data System (ADS)

    Aldrin, John C.; Mayes, Alexander; Jauriqui, Leanne; Biedermann, Eric; Heffernan, Julieanne; Livings, Richard; Goodlet, Brent; Mazdiyasni, Siamack

    2018-04-01

    A case study is presented evaluating uncertainty in Resonance Ultrasound Spectroscopy (RUS) inversion for a single crystal (SX) Ni-based superalloy Mar-M247 cylindrical dog-bone specimens. A number of surrogate models were developed with FEM model solutions, using different sampling schemes (regular grid, Monte Carlo sampling, Latin Hyper-cube sampling) and model approaches, N-dimensional cubic spline interpolation and Kriging. Repeated studies were used to quantify the well-posedness of the inversion problem, and the uncertainty was assessed in material property and crystallographic orientation estimates given typical geometric dimension variability in aerospace components. Surrogate model quality was found to be an important factor in inversion results when the model more closely represents the test data. One important discovery was when the model matches well with test data, a Kriging surrogate model using un-sorted Latin Hypercube sampled data performed as well as the best results from an N-dimensional interpolation model using sorted data. However, both surrogate model quality and mode sorting were found to be less critical when inverting properties from either experimental data or simulated test cases with uncontrolled geometric variation.

  4. Fatigue Behavior and Deformation Mechanisms in Inconel 718 Superalloy Investigated

    NASA Technical Reports Server (NTRS)

    2005-01-01

    The nickel-base superalloy Inconel 718 (IN 718) is used as a structural material for a variety of components in the space shuttle main engine (SSME) and accounts for more than half of the total weight of this engine. IN 718 is the bill-of-material for the pressure vessels of nickel-hydrogen batteries for the space station. In the case of the space shuttle main engine, structural components are typically subjected to startup and shutdown load transients and occasional overloads in addition to high-frequency vibratory loads from routine operation. The nickel-hydrogen battery cells are prooftested before service and are subjected to fluctuating pressure loads during operation. In both of these applications, the structural material is subjected to a monotonic load initially, which is subsequently followed by fatigue. To assess the life of these structural components, it is necessary to determine the influence of a prior monotonic load on the subsequent fatigue life of the superalloy. An insight into the underlying deformation and damage mechanisms is also required to properly account for the interaction between the prior monotonic load and the subsequent fatigue loading. An experimental investigation was conducted to establish the effect of prior monotonic straining on the subsequent fatigue behavior of wrought, double-aged, IN 718 at room temperature. First, monotonic strain tests and fully-reversed, strain-controlled fatigue tests were conducted on uniform-gage-section IN 718 specimens. Next, fully reversed fatigue tests were conducted under strain control on specimens that were monotonically strained in tension. Results from this investigation indicated that prior monotonic straining reduced the fatigue resistance of the superalloy particularly at the lowest strain range. Some of the tested specimens were sectioned and examined by transmission electron microscopy to reveal typical microstructures as well as the active deformation and damage mechanisms under each of the loading conditions. In monotonically strained specimens, deformation during the subsequent fatigue loading was mainly confined to the deformation bands initiated during the prior monotonic straining. This can cause dislocations to move more readily along the previously activated deformation bands and to pile up near grain boundaries, eventually making the grain boundaries susceptible to fatigue crack initiation. The mechanisms inferred from the microstructural investigation were extremely valuable in interpreting the influence of prior monotonic straining on the subsequent fatigue life of Inconel 718 superalloy.

  5. Deformation history and load sequence effects on cumulative fatigue damage and life predictions

    NASA Astrophysics Data System (ADS)

    Colin, Julie

    Fatigue loading seldom involves constant amplitude loading. This is especially true in the cooling systems of nuclear power plants, typically made of stainless steel, where thermal fluctuations and water turbulent flow create variable amplitude loads, with presence of mean stresses and overloads. These complex loading sequences lead to the formation of networks of microcracks (crazing) that can propagate. As stainless steel is a material with strong deformation history effects and phase transformation resulting from plastic straining, such load sequence and variable amplitude loading effects are significant to its fatigue behavior and life predictions. The goal of this study was to investigate the effects of cyclic deformation on fatigue behavior of stainless steel 304L as a deformation history sensitive material and determine how to quantify and accumulate fatigue damage to enable life predictions under variable amplitude loading conditions for such materials. A comprehensive experimental program including testing under fully-reversed, as well as mean stress and/or mean strain conditions, with initial or periodic overloads, along with step testing and random loading histories was conducted on two grades of stainless steel 304L, under both strain-controlled and load-controlled conditions. To facilitate comparisons with a material without deformation history effects, similar tests were also carried out on aluminum 7075-T6. Experimental results are discussed, including peculiarities observed with stainless steel behavior, such as a phenomenon, referred to as secondary hardening characterized by a continuous increase in the stress response in a strain-controlled test and often leading to runout fatigue life. Possible mechanisms for secondary hardening observed in some tests are also discussed. The behavior of aluminum is shown not to be affected by preloading, whereas the behavior of stainless steel is greatly influenced by prior loading. Mean stress relaxation in strain control and ratcheting in load control and their influence on fatigue life are discussed. Some unusual mean strain test results are presented for stainless steel 304L, where in spite of mean stress relaxation fatigue lives were significantly longer than fully-reversed tests. Prestraining indicated no effect on either deformation or fatigue behavior of aluminum, while it induced considerable hardening in stainless steel 304L and led to different results on fatigue life, depending on the test control mode. In step tests for stainless steel 304L, strong hardening induced by the first step of a high-low sequence significantly affects the fatigue behavior, depending on the test control mode used. For periodic overload tests of stainless steel 340L, hardening due to the overloads was progressive throughout life and more significant than in high-low step tests. For aluminum, no effect on deformation behavior was observed due to periodic overloads. However, the direction of the overloads was found to affect fatigue life, as tensile overloads led to longer lives, while compressive overloads led to shorter lives. Deformation and fatigue behaviors under random loading conditions are also presented and discussed for the two materials. The applicability of a common cumulative damage rule, the linear damage rule, is assessed for the two types of material, and for various loading conditions. While the linear damage rule associated with a strain-life or stress-life curve is shown to be fairly accurate for life predictions for aluminum, it is shown to poorly represent the behavior of stainless steel, especially in prestrained and high-low step tests, in load control. In order to account for prior deformation effects and achieve accurate fatigue life predictions for stainless steel, parameters including both stress and strain terms are required. The Smith-Watson-Topper and Fatemi-Socie approaches, as such parameters, are shown to correlate most test data fairly accurately. For damage accumulation under variable amplitude loading, the linear damage rule associated with strain-life or stress-life curves can lead to inaccurate fatigue life predictions, especially for materials presenting strong deformation memory effect, such as stainless steel 304L. The inadequacy of this method is typically attributed to the linear damage rule itself. On the contrary, this study demonstrates that damage accumulation using the linear damage rule can be accurate, provided that the linear damage rule is used in conjunction with parameters including both stress and strain terms. By including both loading history and response of the material in damage quantification, shortcomings of the commonly used linear damage rule approach can be circumvented in an effective manner. In addition, cracking behavior was also analyzed under various loading conditions. Results on microcrack initiation and propagation are presented in relation to deformation and fatigue behaviors of the materials. Microcracks were observed to form during the first few percent of life, indicating that most of the fatigue life of smooth specimens is spent in microcrack formation and growth. Analyses of fractured specimens showed that microcrack formation and growth is dependent on the loading history, and less important in aluminum than stainless steel 304L, due to the higher toughness of this latter material.

  6. Neural correlates of retrieval-based memory enhancement: An fMRI study of the testing effect

    PubMed Central

    Wing, Erik A.; Marsh, Elizabeth J.; Cabeza, Roberto

    2013-01-01

    Restudying material is a common method for learning new information, but not necessarily an effective one. Research on the testing effect shows that practice involving retrieval from memory can facilitate later memory in contrast to passive restudy. Despite extensive behavioral work, the brain processes that make retrieval an effective learning strategy remain unclear. In the present experiment, we explored how initially retrieving items affected memory a day later as compared to a condition involving traditional restudy. In contrast to restudy, initial testing that contributed to future memory success was associated with engagement of several regions including the anterior hippocampus, lateral temporal cortices, and medial prefrontal cortex (PFC). Additionally, testing enhanced hippocampal connectivity with ventrolateral PFC and midline regions. These findings indicate that the testing effect may be contingent on processes that are typically thought to support memory success at encoding (e.g. relational binding, selection and elaboration of semantically-related information) in addition to those more often associated with retrieval (e.g. memory search). PMID:23607935

  7. High-Throughput Nanoindentation for Statistical and Spatial Property Determination

    NASA Astrophysics Data System (ADS)

    Hintsala, Eric D.; Hangen, Ude; Stauffer, Douglas D.

    2018-04-01

    Standard nanoindentation tests are "high throughput" compared to nearly all other mechanical tests, such as tension or compression. However, the typical rates of tens of tests per hour can be significantly improved. These higher testing rates enable otherwise impractical studies requiring several thousands of indents, such as high-resolution property mapping and detailed statistical studies. However, care must be taken to avoid systematic errors in the measurement, including choosing of the indentation depth/spacing to avoid overlap of plastic zones, pileup, and influence of neighboring microstructural features in the material being tested. Furthermore, since fast loading rates are required, the strain rate sensitivity must also be considered. A review of these effects is given, with the emphasis placed on making complimentary standard nanoindentation measurements to address these issues. Experimental applications of the technique, including mapping of welds, microstructures, and composites with varying length scales, along with studying the effect of surface roughness on nominally homogeneous specimens, will be presented.

  8. Flows of Selected Hazardous Materials by Rail

    DOT National Transportation Integrated Search

    1990-03-01

    This report reviews the hazardous materials rail traffic of 33 selected hazardous materials commoditites or commodity groups in 1986, a relatively typical recent year. The flow of the selected commodities by rail are characterized and their geographi...

  9. Engineering properties of resin modified pavement (RMP) for mechanistic design

    NASA Astrophysics Data System (ADS)

    Anderton, Gary Lee

    1997-11-01

    The research study described in this report focuses on determining the engineering properties of the resin modified pavement (RMP) material relating to pavement performance, and then developing a rational mechanistic design procedure to replace the current empirical design procedure. A detailed description of RMP is provided, including a review of the available literature on this relatively new pavement technology. Field evaluations of four existing and two new RMP project sites were made to assess critical failure modes and to obtain pavement samples for subsequent laboratory testing. Various engineering properties of laboratory-produced and field-recovered samples of RMP were measured and analyzed. The engineering properties evaluated included those relating to the material's stiffness, strength, thermal properties, and traffic-related properties. Comparisons of these data to typical values for asphalt concrete and portland cement concrete were made to relate the physical nature of RMP to more common pavement surfacing materials. A mechanistic design procedure was developed to determine appropriate thickness profiles of RMP, using stiffness and fatigue properties determined by this study. The design procedure is based on the U.S. Army Corps of Engineers layered elastic method for airfield flexible pavements. The WESPAVE computer program was used to demonstrate the new design procedure for a hypothetical airfield apron design. The results of the study indicated that RMP is a relatively stiff, viscoelastic pavement surfacing material with many of its strength and stiffness properties falling between those of typical asphalt concrete and portland cement concrete. The RMP's thermal and traffic-related properties indicated favorable field performance. The layered elastic design approach appeared to be a reasonable and practical method for RMP mechanistic pavement design, and this design procedure was recommended for future use and development.

  10. Low pressure radon diffusion - A laboratory study and its implications for lunar venting

    NASA Technical Reports Server (NTRS)

    Friesen, L. J.; Adams, J. A. S.

    1976-01-01

    Results of a study of radon migration through columns of fine particulate materials, at total pressures of 0.02-0.2 torr, are reported. Materials studied were: NBS Glass Spheres (SRM 1003), Emerson & Cuming Eccospheres (IG-101), activated coconut charcoal, Lipaci obsidian, and W-1 Standard Diabase. Rates of diffusion were used to derive heats of adsorption for radon on the materials tested. The most reliable values found clustered around 8-9 kcal/mole. These high heats of adsorption, if typical for most materials, combined with low percentages of radon emanation by lunar soils found by other researchers, imply that random walk diffusion will not be an important mechanism for redistributing the radon and the radon daughters produced in the lunar regolith. In particular, since random walk migration is not a sufficient mechanism to account for localized high concentrations of radon-222 and its daughter polonium-210 observed by the Apollo 15 and 16 command modules, an alternative mechanism is proposed, in which radon would be swept to the surface by other gases during intermittent venting events.

  11. Analysis of the detection materials as resonant pads for attaching the measuring arm of the interferometer when sensing mechanical vibrations

    NASA Astrophysics Data System (ADS)

    Nedoma, Jan; Fajkus, Marcel; Martinek, Radek; Zboril, Ondrej; Bednarek, Lukas; Novak, Martin; Witas, Karel; Vasinek, Vladimir

    2017-05-01

    Fiber-optic sensors (FOS), today among the most widespread measuring sensors and during various types of measuring, are irreplaceable. Among the distinctive features include immunity to electromagnetic interference, passivity regarding power supply and high sensitivity. One of the representatives FOS is the interferometric sensors working on the principle of interference of light. Authors of this article focused on the analysis of the detection material as resonant pads for attaching the measuring arm of the interferometer when sensing mechanical vibrations (low frequencies). A typical example is the use of interferometer sensors in automobile traffic while sensing a vibration response from the roadway while passing the cars. For analysis was used sensor with Mach-Zehnder interferometer. Defined were different detection materials about different size and thickness. We analyzed the influence on the sensitivity (amplitude response) of the interferometer. Based on the results we have defined the best material for sensing mechanical vibrations. The signal was processed by applications created in LabView development environment. The results were verified by repeated testing in laboratory conditions.

  12. Overview of the DAEDALOS project

    NASA Astrophysics Data System (ADS)

    Bisagni, Chiara

    2015-10-01

    The "Dynamics in Aircraft Engineering Design and Analysis for Light Optimized Structures" (DAEDALOS) project aimed to develop methods and procedures to determine dynamic loads by considering the effects of dynamic buckling, material damping and mechanical hysteresis during aircraft service. Advanced analysis and design principles were assessed with the scope of partly removing the uncertainty and the conservatism of today's design and certification procedures. To reach these objectives a DAEDALOS aircraft model representing a mid-size business jet was developed. Analysis and in-depth investigation of the dynamic response were carried out on full finite element models and on hybrid models. Material damping was experimentally evaluated, and different methods for damping evaluation were developed, implemented in finite element codes and experimentally validated. They include a strain energy method, a quasi-linear viscoelastic material model, and a generalized Maxwell viscous material damping. Panels and shells representative of typical components of the DAEDALOS aircraft model were experimentally tested subjected to static as well as dynamic loads. Composite and metallic components of the aircraft model were investigated to evaluate the benefit in terms of weight saving.

  13. Low activation steels welding with PWHT and coating for ITER test blanket modules and DEMO

    NASA Astrophysics Data System (ADS)

    Aubert, P.; Tavassoli, F.; Rieth, M.; Diegele, E.; Poitevin, Y.

    2011-02-01

    EUROFER weldability is investigated in support of the European material properties database and TBM manufacturing. Electron Beam, Hybrid, laser and narrow gap TIG processes have been carried out on the EUROFER-97 steel (thickness up to 40 mm), a reduced activation ferritic-martensitic steel developed in Europe. These welding processes produce similar welding results with high joint coefficients and are well adapted for minimizing residual distortions. The fusion zones are typically composed of martensite laths, with small grain sizes. In the heat-affected zones, martensite grains contain carbide precipitates. High hardness values are measured in all these zones that if not tempered would degrade toughness and creep resistance. PWHT developments have driven to a one-step PWHT (750 °C/3 h), successfully applied to joints restoring good material performances. It will produce less distortion levels than a full austenitization PWHT process, not really applicable to a complex welded structure such as the TBM. Different tungsten coatings have been successfully processed on EUROFER material. It has shown no really effect on the EUROFER base material microstructure.

  14. Nile River, Lake Nasser, North Sudan and Lower Egypt

    NASA Image and Video Library

    1992-11-01

    STS052-152-026 (22Oct-1 Nov 1992) --- Backdropped over eastern Egypt, the Canadian-built remote manipulator system (RMS) attached to NASA's Earth-orbiting Space Shuttle Columbia displays a Canadian Space Agency (CSA) experiment. Materials Exposure in Low Earth Orbit (MELEO) is one of a number of Canadian experiments which flew aboard Columbia for the ten-day STS-52 mission. Principal investigator for the experiment is Dr. David G. Zimick of the CSA. Plastic and composite materials used on the external surfaces of spacecraft have been found to degrade in the harsh environment of space. Evidence suggests that this degradation is caused by interaction with atomic oxygen which induces damaging chemical and physical reactions. The result is a loss in mass, strength, stiffness and stability of size and shape. During the mission, MELEO exposed over 350 material specimens mounted on "witness plates" on the RMS arm. The specimen collection will be analyzed in the weeks following the mission. Typical spacecraft materials and new developments in protective measures against atomic oxygen were tested as part of the MELEO experiment.

  15. A Prototype Bucket Wheel Excavator for the Moon, Mars and Phobos

    NASA Astrophysics Data System (ADS)

    Muff, T.; Johnson, L.; King, R.; Duke, M. B.

    2004-02-01

    Excavation of surface regolith material is the first step in processes to extract volatile materials from planetary surface regolith for the production of propellant and life support consumables. Typically, concentrations of volatiles are low, so relatively large amounts of material must be excavated. A bucket wheel excavator is proposed, which has the capability of continuous excavation, which is readily adapted to granular regolith materials as found on the Moon, in drift deposits on Mars, and probably on the surface of asteroids and satellites, such as Phobos. The bucket wheel excavator is relatively simple, compared to machines such as front end loaders. It also has the advantage that excavation forces are principally horizontal rather than vertical, which minimizes the need for excavator mass and suits it to operations in reduced gravity fields. A prototype small bucket wheel excavator has been built at approximately the scale of the rovers that are carried to Mars on the Mars Exploration Rover Mission. The prototype allows the collection of data on forces exerted and power requirements for excavation and will provide data on which more efficient designs can be based. At excavation rates in the vicinity of one rover mass of material excavated per hour, tests of the prototype demonstrate that the power required is largely that needed to operate the excavator hardware and not related strongly to the amount of material excavated. This suggests that the excavation rate can be much larger for the same excavation system mass. Work on this prototype is continuing on the details of transfer of material from the bucket wheel to an internal conveyor mechanism, which testing demonstrated to be problematic in the current design.

  16. Method And System For Examining Biological Materials Using Low Power Cw Excitation Raman Spectroscopy.

    DOEpatents

    Alfano, Robert R.; Wang, Wubao

    2003-05-06

    A method and system for examining biological materials using low-power cw excitation Raman spectroscopy. A low-power continuous wave (cw) pump laser beam and a low-power cw Stokes (or anti-Stokes) probe laser beam simultaneously illuminate a biological material and traverse the biological material in collinearity. The pump beam, whose frequency is varied, is used to induce Raman emission from the biological material. The intensity of the probe beam, whose frequency is kept constant, is monitored as it leaves the biological material. When the difference between the pump and probe excitation frequencies is equal to a Raman vibrational mode frequency of the biological material, the weak probe signal becomes amplified by one or more orders of magnitude (typically up to about 10.sup.4 -10.sup.6) due to the Raman emission from the pump beam. In this manner, by monitoring the intensity of the probe beam emitted from the biological material as the pump beam is varied in frequency, one can obtain an excitation Raman spectrum for the biological material tested. The present invention may be applied to in the in vivo and/or in vitro diagnosis of diabetes, heart disease, hepatitis, cancers and other diseases by measuring the characteristic excitation Raman lines of blood glucose, cholesterol, serum glutamic oxalacetic transaminase (SGOT)/serum glutamic pyruvic transaminase (SGPT), tissues and other corresponding Raman-active body constituents, respectively.

  17. Delimitation of cryptic species inside Claviceps purpurea.

    PubMed

    Pažoutová, Sylvie; Pešicová, Kamila; Chudíčková, Milada; Šrůtka, Petr; Kolařík, Miroslav

    2015-01-01

    Claviceps purpurea is an ovarian parasite infecting grasses (Poaceae) including cereals and forage plants. This fungus produces toxic alkaloids and consumption of contaminated grains can cause ergotism in humans and other mammals. Recent molecular genetics studies have indicated that it included three cryptic species (G1, G2, G3). In this study, reproductive isolation amongst these groups and among material from Phragmites and Molinia was tested using gene flow statistics for five polymorphic loci, and to support these data, phylogenetic affiliations based on gene trees and a multigene phylogeny were used. The four recognized species are characterized based on morphology and host spectrum and formal taxonomic names are proposed. Claviceps purpurea sensu stricto (G1 group) represents a typical rye ergot, but infects various other grasses. Typical hosts of Claviceps humidiphila (new name for G2 species), like Phalaris arundinacea, belong to grasses preferring humid locations. Claviceps spartinae (G3) is specific to chloridoid grasses from salt barches. The material from Phragmites and Molinia can be authenticated with the species Claviceps microcephala for which the new name Claviceps arundinis is proposed here. The divergence time between species was estimated and the tools for species identification are discussed. Copyright © 2014 The British Mycological Society. Published by Elsevier Ltd. All rights reserved.

  18. Remote sensing and field test capabilities at U.S. Army Dugway Proving Ground

    NASA Astrophysics Data System (ADS)

    Pearson, James T.; Herron, Joshua P.; Marshall, Martin S.

    2011-11-01

    U.S. Army Dugway Proving Ground (DPG) is a Major Range and Test Facility Base (MRTFB) with the mission of testing chemical and biological defense systems and materials. DPG facilities include state-of-the-art laboratories, extensive test grids, controlled environment calibration facilities, and a variety of referee instruments for required test measurements. Among these referee instruments, DPG has built up a significant remote sensing capability for both chemical and biological detection. Technologies employed for remote sensing include FTIR spectroscopy, UV spectroscopy, Raman-shifted eye-safe lidar, and other elastic backscatter lidar systems. These systems provide referee data for bio-simulants, chemical simulants, toxic industrial chemicals (TICs), and toxic industrial materials (TIMs). In order to realize a successful large scale open-air test, each type of system requires calibration and characterization. DPG has developed specific calibration facilities to meet this need. These facilities are the Joint Ambient Breeze Tunnel (JABT), and the Active Standoff Chamber (ASC). The JABT and ASC are open ended controlled environment tunnels. Each includes validation instrumentation to characterize simulants that are disseminated. Standoff systems are positioned at typical field test distances to measure characterized simulants within the tunnel. Data from different types of systems can be easily correlated using this method, making later open air test results more meaningful. DPG has a variety of large scale test grids available for field tests. After and during testing, data from the various referee instruments is provided in a visual format to more easily draw conclusions on the results. This presentation provides an overview of DPG's standoff testing facilities and capabilities, as well as example data from different test scenarios.

  19. Remote sensing and field test capabilities at U.S. Army Dugway Proving Ground

    NASA Astrophysics Data System (ADS)

    Pearson, James T.; Herron, Joshua P.; Marshall, Martin S.

    2012-05-01

    U.S. Army Dugway Proving Ground (DPG) is a Major Range and Test Facility Base (MRTFB) with the mission of testing chemical and biological defense systems and materials. DPG facilities include state-of-the-art laboratories, extensive test grids, controlled environment calibration facilities, and a variety of referee instruments for required test measurements. Among these referee instruments, DPG has built up a significant remote sensing capability for both chemical and biological detection. Technologies employed for remote sensing include FTIR spectroscopy, UV spectroscopy, Raman-shifted eye-safe lidar, and other elastic backscatter lidar systems. These systems provide referee data for bio-simulants, chemical simulants, toxic industrial chemicals (TICs), and toxic industrial materials (TIMs). In order to realize a successful large scale open-air test, each type of system requires calibration and characterization. DPG has developed specific calibration facilities to meet this need. These facilities are the Joint Ambient Breeze Tunnel (JABT), and the Active Standoff Chamber (ASC). The JABT and ASC are open ended controlled environment tunnels. Each includes validation instrumentation to characterize simulants that are disseminated. Standoff systems are positioned at typical field test distances to measure characterized simulants within the tunnel. Data from different types of systems can be easily correlated using this method, making later open air test results more meaningful. DPG has a variety of large scale test grids available for field tests. After and during testing, data from the various referee instruments is provided in a visual format to more easily draw conclusions on the results. This presentation provides an overview of DPG's standoff testing facilities and capabilities, as well as example data from different test scenarios.

  20. A radial transmission line material measurement apparatus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Warne, L.K.; Moyer, R.D.; Koontz, T.E.

    1993-05-01

    A radial transmission line material measurement sample apparatus (sample holder, offset short standards, measurement software, and instrumentation) is described which has been proposed, analyzed, designed, constructed, and tested. The purpose of the apparatus is to obtain accurate surface impedance measurements of lossy, possibly anisotropic, samples at low and intermediate frequencies (vhf and low uhf). The samples typically take the form of sections of the material coatings on conducting objects. Such measurements thus provide the key input data for predictive numerical scattering codes. Prediction of the sample surface impedance from the coaxial input impedance measurement is carried out by two techniques.more » The first is an analytical model for the coaxial-to-radial transmission line junction. The second is an empirical determination of the bilinear transformation model of the junction by the measurement of three full standards. The standards take the form of three offset shorts (and an additional lossy Salisbury load), which have also been constructed. The accuracy achievable with the device appears to be near one percent.« less

Top