DOE Office of Scientific and Technical Information (OSTI.GOV)
Kan, Jimmy J.; Gottwald, Matthias; Fullerton, Eric E.
We describe low-temperature characterization of magnetic tunnel junctions (MTJs) patterned by reactive ion etching for spin-transfer-torque magnetic random access memory. Magnetotransport measurements of typical MTJs show increasing tunneling magnetoresistance (TMR) and larger coercive fields as temperature is decreased down to 10 K. However, MTJs selected from the high-resistance population of an MTJ array exhibit stable intermediate magnetic states when measured at low temperature and show TMR roll-off below 100 K. These non-ideal low-temperature behaviors arise from edge damage during the etch process and can have negative impacts on thermal stability of the MTJs.
Meteorological Drivers of Cold Temperatures in the Western Pacific TTL
NASA Technical Reports Server (NTRS)
Pfister, Leonhard; Ueyama, Rei; Jensen, Eric J.
2017-01-01
During the recent October 2016 aircraft sampling mission of the Tropical Tropopause Layer (POSIDON -- Pacific Oxidants, Sulfur, Ice, Dehydration, and cONvection), Western Pacific October TTL temperatures were anomalously cold due to a combination of La Nina conditions and a very stationary convective pattern. POSIDON also had more October Tropical Cyclones than typical, and tropical cyclones have substantial negative TTL temperatures associated with them. This paper investigates how meteorology in the troposphere drives TTL temperatures, and how these temperatures, coupled with the circulation, produce TTL clouds. We will also compare October TTL cloud distributions in different years, examining the relationship of clouds to October temperature anomalies.
PHYSICAL STUDIES OF PHOSPHOLIPIDS
Chapman, D.; Fluck, D. J.
1966-01-01
On heating pure, fully saturated 2,3-diacyl-DL-phosphatidyl-ethanolamines and 2,3-diacylphosphatidyl-cholines (lecithins) in water to the transition temperature at which large endothermic heat changes occur, they are observed, by light microscopy, to form myelin figures. This result is discussed in terms of the large difference in the transition temperature for "melting" of the hydrocarbon chains of unsaturated and saturated phospholipids and is illustrated by means of differential thermal analysis (D.T.A.) curves. These structures have been examined by electron microscopy after negative staining and after reaction with osmium tetroxide. Typical phospholipid lamella structures are seen in the phosphatidylcholines after negative staining, and in the phosphatidyl-ethanolamines after both negative staining and osmium fixation. The distances across these lamellae have been measured. Some preliminary investigations of the nature of the osmium tetroxide reaction with the phosphatidyl-ethanolamines have been made. PMID:4165077
Detecting primary precursors of January surface air temperature anomalies in China
NASA Astrophysics Data System (ADS)
Tan, Guirong; Ren, Hong-Li; Chen, Haishan; You, Qinglong
2017-12-01
This study aims to detect the primary precursors and impact mechanisms for January surface temperature anomaly (JSTA) events in China against the background of global warming, by comparing the causes of two extreme JSTA events occurring in 2008 and 2011 with the common mechanisms inferred from all typical episodes during 1979-2008. The results show that these two extreme events exhibit atmospheric circulation patterns in the mid-high latitudes of Eurasia, with a positive anomaly center over the Ural Mountains and a negative one to the south of Lake Baikal (UMLB), which is a pattern quite similar to that for all the typical events. However, the Eurasian teleconnection patterns in the 2011 event, which are accompanied by a negative phase of the North Atlantic Oscillation, are different to those of the typical events and the 2008 event. We further find that a common anomalous signal appearing in early summer over the tropical Indian Ocean may be responsible for the following late-winter Eurasian teleconnections and the associated JSTA events in China. We show that sea surface temperature anomalies (SSTAs) in the preceding summer over the western Indian Ocean (WIO) are intimately related to the UMLB-like circulation pattern in the following January. Positive WIOSSTAs in early summer tend to induce strong UMLB-like circulation anomalies in January, which may result in anomalously or extremely cold events in China, which can also be successfully reproduced in model experiments. Our results suggest that the WIOSSTAs may be a useful precursor for predicting JSTA events in China.
NASA Astrophysics Data System (ADS)
Oudini, N.; Sirse, N.; Taccogna, F.; Ellingboe, A. R.; Bendib, A.
2018-05-01
We propose a new technique for diagnosing negative ion properties using Langmuir probe assisted pulsed laser photo-detachment. While the classical technique uses a laser pulse to convert negative ions into electron-atom pairs and a positively biased Langmuir probe tracking the change of electron saturation current, the proposed method uses a negatively biased Langmuir probe to track the temporal evolution of positive ion current. The negative bias aims to avoid the parasitic electron current inherent to probe tip surface ablation. In this work, we show through analytical and numerical approaches that, by knowing electron temperature and performing photo-detachment at two different laser wavelengths, it is possible to deduce plasma electronegativity (ratio of negative ion to electron densities) α, and anisothermicity (ratio of electron to negative ion temperatures) γ-. We present an analytical model that links the change in the collected positive ion current to plasma electronegativity and anisothermicity. Particle-In-Cell simulation is used as a numerical experiment covering a wide range of α and γ- to test the new analysis technique. The new technique is sensitive to α in the range 0.5 < α < 10 and yields γ- for large α, where negative ion flux affects the probe sheath behavior, typically α > 1.
Temperature feedback of TRIGA MARK-II fuel
NASA Astrophysics Data System (ADS)
Usang, M. D.; Minhat, M. S.; Rabir, M. H.; M. Rawi M., Z.
2016-01-01
We study the amount of temperature feedback on reactivity for the three types of TRIGA fuel i.. ST8, ST12 and LEU fuel, are used in the TRIGA MARK II reactor in Malaysia Nuclear Agency. We employ WIMSD-5B for the calculation of kin f for a single TRIGA fuel surrounded by water. Typical calculations of TRIGA fuel reactivity are usually limited to ST8 fuel, but in this paper our investigation extends to ST12 and LEU fuel. We look at the kin f of our model at various fuel temperatures and calculate the amount reactivity removed. In one instance, the water temperature is kept at room temperature of 300K to simulate sudden reactivity increase from startup. In another instance, we simulate the sudden temperature increase during normal operation where the water temperature is approximately 320K while observing the kin f at various fuel temperatures. For accidents, two cases are simulated. The first case is for water temperature at 370K and the other is without any water. We observe that the higher Uranium content fuel such as the ST12 and LEU have much smaller contribution to the reactivity in comparison to the often studied ST8 fuel. In fact the negative reactivity coefficient for LEU fuel at high temperature in water is only slightly larger to the negative reactivity coefficient for ST8 fuel in void. The performance of ST8 fuel in terms of negative reactivity coefficient is cut almost by half when it is in void. These results are essential in the safety evaluation of the reactor and should be carefully considered when choices of fuel for core reconfiguration are made.
Stability of the magnetosonic wave in a cometary multi-ion plasma
NASA Astrophysics Data System (ADS)
Sreekala, G.; Varghese, Anu; Jayakumar, Neethu; Michael, Manesh; Sebastian, Sijo; Venugopal, Chandu
2017-05-01
A generalized dispersion relation of the magnetosonic wave in a four component plasma consisting of electrons and hydrogen ions of solar origin and positively and negatively charged oxygen ions of cometary origin has been derived by using the Vlasov-Maxwell kinetic model. Parallel to the magnetic field, the hydrogen and electron components are modeled by a drifting Maxwellian distribution; perpendicular to the magnetic field, we use a loss cone type distribution obtained by the subtraction of two Maxwellian distributions having different temperatures. The effect of change in the drift velocity of streaming components and number densities and temperatures of each species in driving the instability has been analyzed both analytically and numerically. For typical parameters at comet Halley, we find that both positively and negatively charged oxygen ions can drive the wave unstable.
Temperature feedback of TRIGA MARK-II fuel
DOE Office of Scientific and Technical Information (OSTI.GOV)
Usang, M. D., E-mail: mark-dennis@nuclearmalaysia.gov.my; Minhat, M. S.; Rabir, M. H.
2016-01-22
We study the amount of temperature feedback on reactivity for the three types of TRIGA fuel i.. ST8, ST12 and LEU fuel, are used in the TRIGA MARK II reactor in Malaysia Nuclear Agency. We employ WIMSD-5B for the calculation of kin f for a single TRIGA fuel surrounded by water. Typical calculations of TRIGA fuel reactivity are usually limited to ST8 fuel, but in this paper our investigation extends to ST12 and LEU fuel. We look at the kin f of our model at various fuel temperatures and calculate the amount reactivity removed. In one instance, the water temperaturemore » is kept at room temperature of 300K to simulate sudden reactivity increase from startup. In another instance, we simulate the sudden temperature increase during normal operation where the water temperature is approximately 320K while observing the kin f at various fuel temperatures. For accidents, two cases are simulated. The first case is for water temperature at 370K and the other is without any water. We observe that the higher Uranium content fuel such as the ST12 and LEU have much smaller contribution to the reactivity in comparison to the often studied ST8 fuel. In fact the negative reactivity coefficient for LEU fuel at high temperature in water is only slightly larger to the negative reactivity coefficient for ST8 fuel in void. The performance of ST8 fuel in terms of negative reactivity coefficient is cut almost by half when it is in void. These results are essential in the safety evaluation of the reactor and should be carefully considered when choices of fuel for core reconfiguration are made.« less
The effect of simulated cold weather transport on core body temperature and behavior of broilers.
Strawford, M L; Watts, J M; Crowe, T G; Classen, H L; Shand, P J
2011-11-01
During the winter in Western Canada, broilers are routinely transported in ambient temperatures ranging from 0°C to -40°C, yet there is little research in this area. This study examined the physiology and behavior of broilers undergoing simulated transport at typical Western Canadian winter temperatures. Groups of 15 broilers aged 32 to 33 d were exposed to an air stream regulated to -5, -10, or -15°C. Birds were placed into a typical transport drawer. Following baseline observations, the drawer was placed into a test chamber where cold air was drawn past the birds for 3 h. Three replications were conducted at each temperature. The birds adjusted their position within the drawer based upon the temperature distribution within the drawer. In comparison to the baseline period, exposing the birds to a cold air stream caused them to avoid the front plane (P = 0.003) which was the coldest area within the drawer. The birds did not adjust their usage of the middle (P = 0.308) and rear (P = 0.640) planes, because these were the warmer areas within the drawer. The total amount of space the birds occupied within the drawer did not decrease when exposed to the test chamber (P = 0.669). The core body temperature (CBT) did not vary and was within the known normal range during the normal (P = 0.528), pre-chamber (P = 0.060), and post-chamber (P = 0.285) periods. The CBT of the birds significantly decreased during the in-chamber period (P < 0.001) and then increased during the lairage period (P < 0.001). The shrink loss (P = 0.981) and amount of time to resume feed consumption (P = 0.357) were not affected by exposing the birds to temperatures of -5°C and colder. Exposing birds to temperatures of -5°C and colder had a negative effect on the CBT of the birds. However, the birds demonstrated behaviors which mitigated the negative effect that cold exposure could have on their CBT.
Corrosion resistant positive electrode for high-temperature, secondary electrochemical cell
Otto, Neil C.; Warner, Barry T.; Smaga, John A.; Battles, James E.
1983-01-01
The corrosion rate of low carbon steel within a positive electrode of a high-temperature, secondary electrochemical cell that includes FeS as active material is substantially reduced by incorporating therein finely divided iron powder in stoichiometric excess to the amount required to form FeS in the fully charged electrode. The cell typically includes an alkali metal or alkaline earth metal as negative electrode active material and a molten metal halide salt as electrolyte. The excess iron permits use of inexpensive carbon steel alloys that are substantially free of the costly corrosion resistant elements chromium, nickel and molybdenum while avoiding shorten cell life resulting from high corrosion rates.
Corrosion resistant positive electrode for high-temperature, secondary electrochemical cell
Otto, N.C.; Warner, B.T.; Smaga, J.A.; Battles, J.E.
1982-07-07
The corrosion rate of low carbon steel within a positive electrode of a high-temperature, secondary electrochemical cell that includes FeS as active material is substantially reduced by incorporating therein finely divided iron powder in stoichiometric excess to the amount required to form FeS in the fully charged electrode. The cell typically includes an alkali metal or alkaline earth metal as negative electrode active material and a molten metal halide salt as electrolyte. The excess iron permits use of inexpensive carbon steel alloys that are substantially free of the costly corrosion resistant elements chromium, nickel and molybdenum while avoiding shorten cell life resulting from high corrosion rates.
Digital control of diode laser for atmospheric spectroscopy
NASA Technical Reports Server (NTRS)
Menzies, R. T.; Rutledge, C. W. (Inventor)
1985-01-01
A system is described for remote absorption spectroscopy of trace species using a diode laser tunable over a useful spectral region of 50 to 200 cm(-1) by control of diode laser temperature over range from 15 K to 100 K, and tunable over a smaller region of typically 0.1 to 10 cm(-1) by control of the diode laser current over a range from 0 to 2 amps. Diode laser temperature and current set points are transmitted to the instrument in digital form and stored in memory for retrieval under control of a microprocessor during measurements. The laser diode current is determined by a digital to analog converter through a field effect transistor for a high degree of ambient temperature stability, while the laser diode temperature is determined by set points entered into a digital to analog converter under control of the microprocessor. Temperature of the laser diode is sensed by a sensor diode to provide negative feedback to the temperature control circuit that responds to the temperature control digital to analog converter.
Rumsey, Christine; Miller, Matthew P.; Susong, David D.; Tillman, Fred D.; Anning, David W.
2015-01-01
Results suggest that approximately half of the streamflow in the UCRB is baseflow derived from groundwater discharge to streams. Higher baseflow yields typically occur in upper elevation areas of the UCRB. PCA identified precipitation, snow, sand content of soils, elevation, land surface slope, percent grasslands, and percent natural barren lands as being positively correlated with baseflow yield; whereas temperature, potential evapotranspiration, silt and clay content of soils, percent agriculture, and percent shrublands were negatively correlated with baseflow yield.
NASA Technical Reports Server (NTRS)
Poppe, A. R.; Halekas, J. S.; Delory, G. T.; Farrell, W. M.; Angelopoulos, V.; McFadden, J. P.; Bonnell, J. W.; Ergun, R. E.
2012-01-01
As an airless body in space with no global magnetic field, the Moon is exposed to both solar ultraviolet radiation and ambient plasmas. Photoemission from solar UV radiation and collection of ambient plasma are typically opposing charging currents and simple charging current balance predicts that the lunar dayside surface should charge positively; however, the two ARTEMIS probes have observed energydependent loss cones and high-energy, surface-originating electron beams above the dayside lunar surface for extended periods in the magnetosphere, which are indicative of negative surface potentials. In this paper, we compare observations by the ARTEMIS P1 spacecraft with a one dimensional particle-in-cell simulation and show that the energy-dependent loss cones and electron beams are due to the presence of stable, non-monotonic, negative potentials above the lunar surface. The simulations also show that while the magnitude of the non-monotonic potential is mainly driven by the incoming electron temperature, the incoming ion temperature can alter this magnitude, especially for periods in the plasma sheet when the ion temperature is more than twenty times the electron temperature. Finally, we note several other plasma phenomena associated with these non-monotonic potentials, such as broadband electrostatic noise and electron cyclotron harmonic emissions, and offer possible generation mechanisms for these phenomena.
Temperature issues with white laser diodes, calculation and approach for new packages
NASA Astrophysics Data System (ADS)
Lachmayer, Roland; Kloppenburg, Gerolf; Stephan, Serge
2015-01-01
Bright white light sources are of significant importance for automotive front lighting systems. Today's upper class systems mainly use HID or LED light sources. As a further step laser diode based systems offer a high luminance, efficiency and allow the realization of new dynamic and adaptive light functions and styling concepts. The use of white laser diode systems in automotive applications is still limited to laboratories and prototypes even though announcements of laser based front lighting systems have been made. But the environment conditions for vehicles and other industry sectors differ from laboratory conditions. Therefor a model of the system's thermal behavior is set up. The power loss of a laser diode is transported as thermal flux from the junction layer to the diode's case and on to the environment. Therefor its optical power is limited by the maximum junction temperature (for blue diodes typically 125 - 150 °C), the environment temperature and the diode's packaging with its thermal resistances. In a car's headlamp the environment temperature can reach up to 80 °C. While the difference between allowed case temperature and environment temperature is getting small or negative the relevant heat flux also becomes small or negative. In early stages of LED development similar challenges had to be solved. Adapting LED packages to the conditions in a vehicle environment lead to today's efficient and bright headlights. In this paper the need to transfer these results to laser diodes is shown by calculating the diodes lifetimes based on the presented model.
NASA Astrophysics Data System (ADS)
Abbas, Qamar; Béguin, François
2016-06-01
We demonstrate that an activated carbon (AC)-based electrochemical capacitor implementing aqueous lithium sulfate electrolyte in 7:3 vol:vol water/methanol mixture can operate down to -40 °C with good electrochemical performance. Three-electrode cell investigations show that the faradaic contributions related with hydrogen chemisorption in the negative AC electrode are thermodynamically unfavored at -40 °C, enabling the system to work as a typical electrical double-layer (EDL) capacitor. After prolonged floating of the AC/AC capacitor at 1.6 V and -40°C, the capacitance, equivalent series resistance and efficiency remain constant, demonstrating the absence of ageing related with side redox reactions at this temperature. Interestingly, when temperature is increased back to 24 °C, the redox behavior due to hydrogen storage reappears and the system behaves as a freshly prepared one.
Hydration of an apolar solute in a two-dimensional waterlike lattice fluid
NASA Astrophysics Data System (ADS)
Buzano, C.; de Stefanis, E.; Pretti, M.
2005-05-01
In a previous work, we investigated a two-dimensional lattice-fluid model, displaying some waterlike thermodynamic anomalies. The model, defined on a triangular lattice, is now extended to aqueous solutions with apolar species. Water molecules are of the “Mercedes Benz” type, i.e., they possess a D3 (equilateral triangle) symmetry, with three equivalent bonding arms. Bond formation depends both on orientation and local density. The insertion of inert molecules displays typical signatures of hydrophobic hydration: large positive transfer free energy, large negative transfer entropy (at low temperature), strong temperature dependence of the transfer enthalpy and entropy, i.e., large (positive) transfer heat capacity. Model properties are derived by a generalized first order approximation on a triangle cluster.
Hydration of an apolar solute in a two-dimensional waterlike lattice fluid.
Buzano, C; De Stefanis, E; Pretti, M
2005-05-01
In a previous work, we investigated a two-dimensional lattice-fluid model, displaying some waterlike thermodynamic anomalies. The model, defined on a triangular lattice, is now extended to aqueous solutions with apolar species. Water molecules are of the "Mercedes Benz" type, i.e., they possess a D3 (equilateral triangle) symmetry, with three equivalent bonding arms. Bond formation depends both on orientation and local density. The insertion of inert molecules displays typical signatures of hydrophobic hydration: large positive transfer free energy, large negative transfer entropy (at low temperature), strong temperature dependence of the transfer enthalpy and entropy, i.e., large (positive) transfer heat capacity. Model properties are derived by a generalized first order approximation on a triangle cluster.
Effect of molecular structure on the hydration of structurally related antidepressant drugs
NASA Astrophysics Data System (ADS)
Cheema, M. A.; Taboada, P.; Barbosa, S.; Siddiq, M.; Mosquera, V.
Apparent molal volumes and adiabatic compressibilities of aqueous solutions of the amphiphilic cationic antidepressant drugs butriptyline and doxepin hydrochlorides have been determined from density and ultrasound velocity measurements in the temperature range 20-50°C. Critical concentrations for aggregation of these drugs were obtained from ultrasound velocity measurements. Negative deviations from the Debye-Hückel limiting law of the apparent molal volume were obtained from both drugs in all temperature ranges, except for doxepin at 50°C, which provides evidence of no pre-association at concentrations below the critical concentration. Apparent molal adiabatic compressibilities of the aggregates formed by these drugs were typical of those corresponding for an aggregate formed by a stacking process.
NASA Astrophysics Data System (ADS)
Walden, Von P.; Hudson, Stephen R.; Cohen, Lana; Murphy, Sarah Y.; Granskog, Mats A.
2017-08-01
The Norwegian young sea ice campaign obtained the first measurements of the surface energy budget over young, thin Arctic sea ice through the seasonal transition from winter to summer. This campaign was the first of its kind in the North Atlantic sector of the Arctic. This study describes the atmospheric and surface conditions and the radiative and turbulent heat fluxes over young, thin sea ice. The shortwave albedo of the snow surface ranged from about 0.85 in winter to 0.72-0.80 in early summer. The near-surface atmosphere was typically stable in winter, unstable in spring, and near neutral in summer once the surface skin temperature reached 0°C. The daily average radiative and turbulent heat fluxes typically sum to negative values (-40 to 0 W m-2) in winter but then transition toward positive values of up to nearly +60 W m-2 as solar radiation contributes significantly to the surface energy budget. The sensible heat flux typically ranges from +20-30 W m-2 in winter (into the surface) to negative values between 0 and -20 W m-2 in spring and summer. A winter case study highlights the significant effect of synoptic storms and demonstrates the complex interplay of wind, clouds, and heat and moisture advection on the surface energy components over sea ice in winter. A spring case study contrasts a rare period of 24 h of clear-sky conditions with typical overcast conditions and highlights the impact of clouds on the surface radiation and energy budgets over young, thin sea ice.
Investigation of Dusts Effect and Negative Ion in DC Plasmas by Electric Probes
NASA Astrophysics Data System (ADS)
Oh, Hye Taek; Kang, Inje; Bae, Min-Keun; Park, Insun; Lee, Seunghwa; Jeong, Seojin; Chung, Kyu-Sun
2017-10-01
Dust is typically negatively charged by electron attachment whose thermal velocities are fast compared to that of the heavier ions. The negatively charged particles can play a role of negative ions which affect the quasi-neutrality of background plasma. To investigate effect of metal dusts and negative ion on plasma and materials, metal dusts are injected into background Ar plasma which is generated by tungsten filament using dust dispenser on Cubical Plasma Device (CPD). The CPD has following conditions: size =24x24x24cm3, plasma source =DC filament plasma (ne 1x10x1010, Te 2eV), background gas =Ar, dusts =tungsten powder (diameter 1.89micron). The dust dispenser is developed to quantitate of metal dust by ultrasonic transducer. Electronegative plasmas are generated by adding O2 + Ar plasma to compare negative ion and dust effect. A few grams of micron-sized dusts are placed in the dust dispenser which is located at the upper side of the Cubical Plasma Device. The falling particles by dust dispenser are mainly charged up by the collection of the background plasma. The change in parameters due to negative ion production are characterized by measuring the floating and plasma potential, electron temperature and negative ion density using electric probes.
de Solla, Shane Raymond; Martin, Pamela Anne; Mikoda, Paul
2011-09-15
Many reptiles oviposit in soils associated with agricultural landscapes. We evaluated the toxicity of a pesticide and fertilizer regime similar to those used in corn production in Ontario on the survivorship of exposed snapping turtle (Chelydra serpentina) eggs. The herbicides atrazine, dimethenamid, and glyphosate, the pyrethroid insecticide tefluthrin, and the fertilizer ammonia, were applied to clean soil, both as partial mixtures within chemical classes, as well as complete mixtures. Eggs were incubated in the soil in a garden plot in which these mixtures were applied at a typical field application rate, and higher rates. Otherwise, the eggs were unmanipulated and were subject to ambient temperature and weather conditions. Eggs were also exposed at male producing temperatures in the laboratory in covered bins in the same soil, where there was less opportunity for loss through volatilization or leaching. Egg mortality was 100% at 10× the typical field application rate of the complete mixture, both with and without tefluthrin. At typical field application rates, hatching success ranged between 91.7 and 95.8%. Eggs exposed only to herbicides were not negatively affected at any application rates. Although fertilizer treatments at typical field application rates did not affect eggs, mortality was remarkably higher at three times this rate, and 100% at higher rates. The frequency of deformities of hatchlings was elevated at the highest application rate of the insecticide tefluthrin. The majority of the toxicity of the mixture was not due to the herbicides or insecticide, but was due to the ammonia fertilizer. At typical field application rates, the chemical regime associated with corn production does not appear to have any detrimental impacts upon turtle egg development; however toxicity dramatically increases if this threshold is passed. Copyright © 2011. Published by Elsevier B.V.
NASA Astrophysics Data System (ADS)
Höffle, H.; Thomsen, M. S.; Holmer, M.
2011-03-01
The present study tested for density-dependent effects of the invasive drift macroalgae Gracilaria vermiculophylla (Ohmi) Papenfuss on growth and survival of the native eelgrass, Zostera marina L., under different temperature levels. Three weeks laboratory experiments were conducted in Odense, Denmark, combining three algae densities (control, low 1.9 kg WW m -2, high 4.5 kg WW m -2) with typical Danish summer temperatures (18 °C) and elevated temperatures (21 °C and 27 °C). There was a significant effect of temperature on shoot survival with on average 68% mortality in the high temperature treatment but almost no mortality at the two lower temperatures. The higher mortality was probably caused by high sulphide levels in the sediment pore water (0.6 mmol l -1 at 18 °C compared to 3.7 mmol l -1 at 27 °C). Above-ground growth of the surviving shoots was also significantly affected by temperature, with leaf elongation rates being negatively affected, while the leaf plastochrone interval increased. Relative growth rate was significantly higher at 21 °C than at 18 °C or 27 °C, whereas rhizome elongation was significantly lowest at 27 °C. Elemental sulphur content in the plant tissues increased significantly with temperature and was up to 34 times higher (S 0 in rhizomes) at 27 °C compared to the lower temperatures. In contrast to the temperature effects, cover by G. vermiculophylla did not cause significant effects on any seagrass responses. However, there was a (non-significant) negative effect of algal cover at the highest temperature, where the seagrass is already stressed. The latter results suggest that more studies should test for interaction effects between temperature and other anthropogenic stressors given that temperature is predicted to increase in the near future.
Maxwell-Chern-Simons hydrodynamics for the chiral magnetic effect
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oezoender, Sener
2010-06-15
The rate of vacuum-changing topological solutions of the gluon field, sphalerons, is estimated to be large at the typical temperatures of heavy-ion collisions, particularly at the Relativistic Heavy Ion Collider. Such windings in the gluon field are expected to produce parity-odd bubbles, which cause separation of positively and negatively charged quarks along the axis of the external magnetic field. This chiral magnetic effect can be mimicked by Chern-Simons modified electromagnetism. Here we present a model of relativistic hydrodynamics including the effects of axial anomalies via the Chern-Simons term.
Requirements for a reliable millennium temperature reconstruction
NASA Astrophysics Data System (ADS)
Christiansen, Bo; Ljungqvist, Fredrik
2014-05-01
Quantitative temperature reconstructions are hampered by several problems. Proxy records are sparse which is witnessed by the fact that roughly half of all available high-resolution millennia-long proxy data have been published in the last five years. Moreover, proxies are inhomogeneously distributed around the globe and they often have coarse temporal resolution. The period of overlap between proxies and instrumental observations - the calibration period - is brief and dominated by a strong warming trend. Furthermore, proxies are often only weakly correlated to temperature and it is common that some form of screening procedure is applied to select only informative proxies. We study the influence of these limitations on the reliability of temperature reconstructions for the previous millennium. This influence depends on the spatial and temporal correlation structure of the surface temperature field. It also depends on the reconstruction methodology. We use gridded surface temperature data from GISTEMP and HadCRUT4 to investigate the geographical distribution of the spatial decorrelation length and of the temporal decorrelation time. The spatial decorrelation length varies with more than a factor of 5 with the largest values in the region dominated by the El Nino-Southern Oscillation. The temporal decorrelation time varies less with typical values of 1-2 years over land and 2-5 years over ocean. We also investigate the correlations between proxies and local temperatures (using the 91 proxies from Christiansen and Ljungqvist 2012) and between local temperatures and the NH mean temperature. These correlations have typical values around 0.3 but cover a wide range from weakly negative to larger than 0.8. The results outlined above allow us to identify regions where the effect of the lack of proxies is most important. They also inform us on the consequences of the short calibration period and on the influence of the recent trend. Finally, we demonstrate the effect of a weak proxy/temperature relationship on three different simple reconstruction methodologies. We show that the size and strength of this effect depends strongly on the chosen methodology.
NASA Astrophysics Data System (ADS)
McClenaghan, J.; Garofalo, A. M.; Meneghini, O.; Smith, S. P.
2016-10-01
Transport modeling of a proposed ITER steady-state scenario based on DIII-D high βP discharges finds that the core confinement may be improved with either sufficient rotation or a negative central shear q-profile. The high poloidal beta scenario is characterized by a large bootstrap current fraction( 80%) which reduces the demands on the external current drive, and a large radius internal transport barrier which is associated with improved normalized confinement. Typical temperature and density profiles from the non-inductive high poloidal beta scenario on DIII-D are scaled according to 0D modeling predictions of the requirements for achieving Q=5 steady state performance in ITER with ``day one'' H&CD capabilities. Then, TGLF turbulence modeling is carried out under systematic variations of the toroidal rotation and the core q-profile. Either strong negative central magnetic shear or rotation are found to successfully provide the turbulence suppression required to maintain the temperature and density profiles. This work supported by the US Department of Energy under DE-FC02-04ER54698.
Negative to positive crossover of the magnetoresistance in layered WS{sub 2}
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Yangwei; Ning, Honglie; Li, Yanan
2016-04-11
The discovery of graphene ignited intensive investigation of two-dimensional materials. A typical two-dimensional material, transition metal dichalcogenide (TMDC), attracts much attention because of its excellent performance in field effect transistor measurements and applications. Particularly, when TMDC reaches the dimension of a few layers, a wide range of electronic and optical properties can be detected that are in striking contrast to bulk samples. In this letter, we synthesized WS{sub 2} single-crystal nanoflakes using physical vapor deposition and carried out a series of measurements of the contact resistance and magnetoresistance. Focused ion beam (FIB) technology was applied to deposit Pt electrodes onmore » the WS{sub 2} flakes, and the FIB-deposited contacts exhibited linear electrical characteristics. Resistance versus temperature measurements showed similar Mott variable range hopping behavior in different magnetic fields. Additionally, a temperature-modulated negative-to-positive magnetoresistance transition was observed. Our work reveals the magnetotransport characteristics of WS{sub 2} flakes, which may stimulate further studies of the properties of TMDC and its corresponding electronic and optoelectronic applications.« less
Transport properties of Co2CrAl Heusler alloy films
NASA Astrophysics Data System (ADS)
Kudryavtsev, Y. V.; Lee, Y. P.; Yoo, Y. J.; Seo, M. S.; Kim, J. M.; Hwang, J. S.; Dubowik, J.; Kim, K. W.; Choi, E. H.; Prokhnenko, O.
2012-01-01
The effect of atomic disorder on the electron transport and the magnetoresistance (MR) of Co2CrAl Heusler alloy (HA) films has been investigated. We show that Co2CrAl films with L21 order exhibit a negative value for the temperature coefficient of resistivity (TCR) in a temperature range of 10 < T < 290 K, and the temperature dependence of electric conductivity varies as T 3/2 similarly to that of the zero-gap semiconductors. The atomic or the site disorder on the way of L21 → B2 → A2 → amorphous state in Co2CrAl HA films causes the deviation from this dependence: reduction in the absolute value of TCR as well as decrease in the resistivity down to ϱ( T = 293 K) ˜ 200 μΩ cm in comparison to ϱ( T = 293 K) ˜ 230 μΩ cm typical for the Co2CrAl films with L21 order. The magnetic-field dependence of MR of the Co2CrAl films with L21 order is determined by two competing contributions: a positive Lorentz scattering and a negative s-d scattering. The atomic disorder in Co2CrAl films drastically changes MR behavior due to its strong influence on the magnetic properties.
Characterizing ISS Charging Environments with On-Board Ionospheric Plasma Measurements
NASA Technical Reports Server (NTRS)
Minow, Jospeh I.; Craven, Paul D.; Coffey, Victoria N.; Schneider, Todd A.; Vaughn, Jason A.; Wright Jr, Kenneth; Parker, Paul D.; Mikatarian, Ronald R.; Kramer, Leonard; Hartman, William A.;
2008-01-01
Charging of the International Space Station (ISS) is dominated by interactions of the biased United States (US) 160 volt solar arrays with the relatively high density, low temperature plasma environment in low Earth orbit. Conducting surfaces on the vehicle structure charge negative relative to the ambient plasma environment because ISS structure is grounded to the negative end of the US solar arrays. Transient charging peaks reaching potentials of some tens of volts negative controlled by photovoltaic array current collection typically occur at orbital sunrise and sunset as well as near orbital noon. In addition, surface potentials across the vehicle structure vary due to an induced v x B (dot) L voltage generated by the high speed motion of the conducting structure across the Earth's magnetic field. Induced voltages in low Earth orbit are typically only approx.0.4 volts/meter but the approx.100 meter scale dimensions of the ISS yield maximum induced potential variations ofapprox.40 volts across the vehicle. Induced voltages are variable due to the orientation of the vehicle structure and orbital velocity vector with respect to the orientation of the Earth's magnetic field along the ISS orbit. In order to address the need to better understand the ISS spacecraft potential and plasma environments, NASA funded development and construction of the Floating Potential Measurement Unit (FPMU) which was deployed on an ISS starboard truss arm in August 2006. The suite of FPMU instruments includes two Langmuir probes, a plasma impedance probe, and a potential probe for use in in-situ monitoring of electron temperatures and densities and the vehicle potential relative to the plasma environment. This presentation will describe the use of the FPMU to better characterize interactions of the ISS with the space environment, changes in ISS charging as the vehicle configuration is modified during ISS construction, and contributions of FPMU vehicle potential and plasma environment measurements to investigations of on-orbit anomalies in ISS systems.
NASA Astrophysics Data System (ADS)
Geissman, J. W.; Holm, D.; Harlan, S. S.
2006-12-01
In the Teton River Valley, east of Rexburg, Idaho, the ca. 2.06 Ma Huckleberry Ridge Tuff is about 130 m thick, exceedingly well-exposed, and displays large-scale (100-150 m+ amplitude) rheomorphic folds, with eutaxitic fabrics that are parallel to inferred primary internal zonation (e.g. boundary between basal vitrophyre and overlying devitrified part of the pyroclastic deposit) as well as the basal contact with older deposits defining the fold geometries. One 150 m amplitude fold , is well-exposed on the north side of the valley about 2.5 km east of Teton Dam, has a NW trending fold axis and has a southwest limb that is overturned by about 45o. Samples were collected from 16 sites in this fold, on both limbs and the hinge area, to test the hypothesis that folding took place above maximum TRM blocking temperatures (about 580C). Progressive AF and thermal demagnetization both yield characteristic magnetizations of southwest to south-southwest declination and shallow inclination removed over a range of peak fields (typically between 20 and 80 mT) and laboratory unblocking temperatures (typically between 350 and 580C). The preliminary determination of an in situ mean based on the 16 sites is about D = 215°, I = -5°, a95= 5°, N = 16 site means). The direction of this ChRM is statistically indistinguishable from that reported by previous studies of the tuff (e.g. Reynolds, 1977, JGR; Byrd et al., 1994, JGR). The trend of the fold axis is orthogonal to this declination; the paleomagnetic fold test applied to these data is negative, with k values continuously decreasing upon unfolding, thus indicating that the entire structure in the tuff formed after the well-developed compaction fabric was acquired, at a temperature above maximum blocking temperatures of the ChRM. Post-compaction, high temperature deformation is consistent with field evidence indicating plastic secondary deformation of much of the tuff prior to devitrification. Rapid strain rates probably contributed to the formation of brittle features in the uppermost parts of the tuff (joints and fissures). AMS fabrics, at the site level, are typically very well-defined, with AMS foliations roughly parallel to compaction fabric, with K1 (maximum principal susceptibility) axes typically directed in a southwest-northeast orientation.
Fabrication and thermoelectric properties of Ca-Co-O ceramics with negative Seebeck coefficient
NASA Astrophysics Data System (ADS)
Gong, Chunlin; Shi, Zongmo; Zhang, Yi; Chen, Yongsheng; Hu, Jiaxin; Gou, Jianjun; Qin, Mengjie; Gao, Feng
2018-06-01
Ca-Co-O ceramics is typically p-type thermoelectric materials and possesses positive Seebeck coefficient. In this work, n-type Ca-Co-O ceramics with negative Seebeck coefficients were fabricated by sintering and annealing in a reducing atmosphere. The microstructures and thermoelectric properties of the ceramics were investigated. The results show that the carrier concentration and the carrier mobility dramatically increase after the samples were annealed in the reducing atmosphere. The electrical resistivity increases from 0.0663 mΩ·cm to 0.2974 mΩ·cm, while the negative Seebeck coefficients varies from -24.9 μV/K to -56.3 μV/K as the temperature increases from 323 K to 823 K, and the maximum power factor (PF, 1.536 mW/m·K2) is obtained at 623 K. The samples have n-type thermoelectric properties with large PF values and ZT value (ZT = 0.39, 823 K). The unusual results will pave a new way for studying Ca-Co-O thermoelectric ceramics.
NMR study of heavy fermion compound EuNi2P2
NASA Astrophysics Data System (ADS)
Magishi, K.; Watanabe, R.; Hisada, A.; Saito, T.; Koyama, K.; Fujiwara, T.
2015-03-01
We report the results of 31P-nuclear magnetic resonance (NMR) measurements on heavy fermion compound EuNi2P2 in order to investigate the magnetic properties at low temperatures from a microscopic view point. The Knight shift has a negative value in an entire temperature range, and the absolute value increases with decreasing temperature but exhibits a broad maximum around 40 K, which is similar to the behavior of the magnetic susceptibility. Also, the nuclear spin-lattice relaxation rate 1/T1 is almost constant at high temperatures above 200 K, which is reminiscent of the relaxation mechanism dominated by the interaction of the 31P nucleus with fluctuating Eu-4f moments. Below 200 K, 1/T1 gradually decreases on cooling due to the change of the valence in the Eu ion. At low temperatures, 1/T1 does not obey the Korringa relation, in contrast to typical heavy fermion compounds. The nuclear spin-spin relaxation rate 1/T2 shows the similar behavior as 1/T1 at high temperatures. But, below 50 K, 1/T2 increases upon cooling due to the development of the magnetic excitation.
Schiavon, S; Yang, B; Donner, Y; Chang, V W-C; Nazaroff, W W
2017-05-01
In a warm and humid climate, increasing the temperature set point offers considerable energy benefits with low first costs. Elevated air movement generated by a personally controlled fan can compensate for the negative effects caused by an increased temperature set point. Fifty-six tropically acclimatized persons in common Singaporean office attire (0.7 clo) were exposed for 90 minutes to each of five conditions: 23, 26, and 29°C and in the latter two cases with and without occupant-controlled air movement. Relative humidity was maintained at 60%. We tested thermal comfort, perceived air quality, sick building syndrome symptoms, and cognitive performance. We found that thermal comfort, perceived air quality, and sick building syndrome symptoms are equal or better at 26°C and 29°C than at the common set point of 23°C if a personally controlled fan is available for use. The best cognitive performance (as indicated by task speed) was obtained at 26°C; at 29°C, the availability of an occupant-controlled fan partially mitigated the negative effect of the elevated temperature. The typical Singaporean indoor air temperature set point of 23°C yielded the lowest cognitive performance. An elevated set point in air-conditioned buildings augmented with personally controlled fans might yield benefits for reduced energy use and improved indoor environmental quality in tropical climates. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Heene, V.; Buchholz, S.; Kossmann, M.
2016-12-01
Numerical studies of thermal conditions in cities based on model simulations of idealized urban domains are carried out to investigate how changes in the characteristics of urban areas influence street level air temperatures. The simulated modifications of the urban characteristics represent possible adaptation measures for heat reduction in cities, which are commonly used in urban planning. Model simulations are performed with the thermodynamic version of the 3-dimensional micro-scale urban climate model MUKLIMO_3. The simulated idealized urban areas are designed in a simplistic way, i. e. defining homogeneous squared cities of one settlement type, without orography and centered in the model domain. To assess the impact of different adaptation measures the characteristics of the urban areas have been systematically modified regarding building height, albedo of building roof and impervious surfaces, fraction of impervious surfaces between buildings, and percentage of green roofs. To assess the impact of green and blue infrastructure in cities, different configurations for parks and lakes have been investigated - e. g. varying size and distribution within the city. The experiments are performed for different combinations of typical German settlement types and surrounding rural types under conditions of a typical summer day in July. The adaptation measures implemented in the experiments show different impacts for different settlement types mainly due to the differences in building density, building height or impervious surface fraction. Parks and lakes implemented as adaptation measure show strong potential to reduce daytime air temperature, with cooling effects on their built-up surroundings. At night lakes generate negative and positive effects on air temperature, depending on water temperature. In general, all adaptation measures implemented in experiments reveal different impacts on day and night air temperature.
NASA Astrophysics Data System (ADS)
Ullah, Amir; Rahman, Muneeb-ur; Iqbal, Muhammad Javid; Ahn, Chang Won; Kim, Ill Won; Ullah, Aman
2016-06-01
The electrical properties of the 0.925(Bi0.5(Na0.40K0.10)TiO3-0.075(Ba0.70Sr0.30)TiO3 (0.925BNKT-0.075BST) ceramic were investigated by using AC impedance spectroscopy over a wide range of frequencies (10 -2 ~ 105 Hz). The X-ray diffraction patterns confirmed the formation of a single-phase compound. A single semicircular arc in the impedance spectrum indicates that the main contribution of the bulk resistance ( R b ) were due to grain effects, with Rb decreasing with increasing temperature. The conductivity of the ceramics increased with increasing temperature, and the activation energy resulting from the DC conductivity was 0.86 eV. The ceramic displayed a typical negative temperature coefficient of resistance (NTCR) behavior, like that of a semiconductor.
Drivers of surface moisture flux variations in northern terrestrial regions
NASA Astrophysics Data System (ADS)
Fischer, R.; Walsh, J. E.
2017-12-01
The wetness of the high-latitude land surface is strongly dependent on the difference between precipitation (P) and evapotranspiration (ET). Variations of ET over daily, seasonal and interannual timescales are poorly documented, as are their relationships to key drivers. A combination of regional climate model output and eddy covariance measurements from five flux tower sites in Alaska are used to test the hypothesis that temperature is the key driver of ET in tundra regions underlain by permafrost, while precipitation plays a greater role in boreal forest areas. At the tundra sites, both the flux tower data and the model simulations show that daily and warm-season totals of ET are largely temperature driven, although daily ET also shows a negative correlation with P. At the boreal forest sites, P is the main driver of year-to-year variations of the seasonally integrated net moisture flux, although ET does not correlate strongly with either P or T. A short period of negative P-ET typically occurs during the warm season in the flux tower data. The model depicts a stronger hydrologic cycle (larger P, larger ET) relative to the measurements at all the sites.
Gualdi, Luciana; Tagliabue, Letizia; Bertagnoli, Stefano; Ieranò, Teresa; De Castro, Cristina; Landini, Paolo
2008-07-01
In enterobacteria, the CsgD protein activates production of two extracellular structures: thin aggregative fimbriae (curli) and cellulose. While curli fibres promote biofilm formation and cell aggregation, the evidence for a direct role of cellulose as an additional determinant for biofilm formation is not as straightforward. The MG1655 laboratory strain of Escherichia coli only produces limited amounts of curli and cellulose; however, ectopic csgD expression results in strong stimulation of curli and cellulose production. We show that, in a csgD-overexpressing derivative of MG1655, cellulose production negatively affects curli-mediated surface adhesion and cell aggregation, thus acting as a negative determinant for biofilm formation. Consistent with this observation, deletion of the bcsA gene, necessary for cellulose production, resulted in a significant increase in curli-dependent adhesion. We found that cellulose production increased tolerance to desiccation, suggesting that the function of cellulose might be related to resistance to environmental stresses rather than to biofilm formation. Production of the curli/cellulose network in enterobacteria typically takes place at low growth temperature (<32 degrees C), but not at 37 degrees C. We show that CsgD overexpression can overcome temperature-dependent control of the curli-encoding csgBA operon, but not of the cellulose-related adrA gene, suggesting very tight temperature control of cellulose production in E. coli MG1655.
NASA Astrophysics Data System (ADS)
Li, Xiao Ju; Yao, Kun; Dai, Jun Yu; Song, Yun Long
2018-05-01
The underground space, also known as the “fourth dimension” of the city, reflects the efficient use of urban development intensive. Urban traffic link tunnel is a typical underground limited-length space. Due to the geographical location, the special structure of space and the curvature of the tunnel, high-temperature smoke can easily form the phenomenon of “smoke turning” and the fire risk is extremely high. This paper takes an urban traffic link tunnel as an example to focus on the relationship between curvature and the temperature near the fire source, and use the pyrosim built different curvature fire model to analyze the influence of curvature on the temperature of the fire, then using SPSS Multivariate regression analysis simulate curvature of the tunnel and fire temperature data. Finally, a prediction model of urban traffic link tunnel curvature on fire temperature was proposed. The regression model analysis and test show that the curvature is negatively correlated with the tunnel temperature. This model is feasible and can provide a theoretical reference for the urban traffic link tunnel fire protection design and the preparation of the evacuation plan. And also, it provides some reference for other related curved tunnel curvature design and smoke control measures.
A rare case of autoimmune hypophysitis presenting as temperature dysregulation.
Jain, Ankur; Dhanwal, Dinesh K
2015-02-01
Autoimmune hypophysitis is a rare cause of pan-hypopituitarism. Hypothalamic involvement in autoimmune hypophysitis is rare and usually manifests as central diabetes insipidus due to antibodies against arginine vasopressin. Temperature dysregulation is occasionally seen with suprasellar tumours but has never been reported with hypophysitis. We report a case of a middle aged man who presented to us with the complaints of documented body temperature fluctuations since two months followed gradually by hoarseness of voice, sexual dysfunction and syncope. Examination was remarkable for postural hypotension, dry coarse skin and delayed ankle reflexes. Patient's hormone profile revealed pan-hypopituitarism and elevated titre of anti-TPO antibodies. Patient's work up for secondary causes of hypopituitarism was negative. MRI brain revealed typical findings of hypophysitis. Patient was suspected as a case of autoimmune hypophysitis and was immediately treated with prednisolone along with hormone replacement. Rapid response within 30 days was observed in the form of subsidence of temperature fluctuations, improvement in general well being, sexual function and repeat MRI done after one month which revealed a partial empty sella. Autoimmune hypophysitis as a potentially treatable cause of temperature dysregulation has been highlighted in this case.
A Rare Case of Autoimmune Hypophysitis Presenting as Temperature Dysregulation
Dhanwal, Dinesh K.
2015-01-01
Autoimmune hypophysitis is a rare cause of pan-hypopituitarism. Hypothalamic involvement in autoimmune hypophysitis is rare and usually manifests as central diabetes insipidus due to antibodies against arginine vasopressin. Temperature dysregulation is occasionally seen with suprasellar tumours but has never been reported with hypophysitis. We report a case of a middle aged man who presented to us with the complaints of documented body temperature fluctuations since two months followed gradually by hoarseness of voice, sexual dysfunction and syncope. Examination was remarkable for postural hypotension, dry coarse skin and delayed ankle reflexes. Patient’s hormone profile revealed pan-hypopituitarism and elevated titre of anti-TPO antibodies. Patient’s work up for secondary causes of hypopituitarism was negative. MRI brain revealed typical findings of hypophysitis. Patient was suspected as a case of autoimmune hypophysitis and was immediately treated with prednisolone along with hormone replacement. Rapid response within 30 days was observed in the form of subsidence of temperature fluctuations, improvement in general well being, sexual function and repeat MRI done after one month which revealed a partial empty sella. Autoimmune hypophysitis as a potentially treatable cause of temperature dysregulation has been highlighted in this case. PMID:25859485
NASA Astrophysics Data System (ADS)
Burkhard, Dorothee J. M.
1991-05-01
Estimations of the oxidation state and development of ƒO 2 during magmatic evolution are usually not possible because ƒO 2 is a function of temperature (and pressure). If two independent equations for ƒO 2 = ƒO 2(T) can be obtained, ƒO 2 and the corresponding temperature can be estimated. For biotite-bearing rocks an estimation of ƒO 2 (bio) can be combined with an estimation of ƒO 2 (rock). This latter estimation requires an extrapolation of high-temperature data because low-temperature data are not available. The combination of the two equations provides a quadratic equation in T with the common (negative) solution: Tint= 1/4 c 2{- k1-2 c 1-√(k 1+2 c 1) 2+8 c 2k 2} which permits back calculation of ƒO 2. The usefulness of the method is demonstrated for typical S-type, ilmenite, and I-type, magnetite granites from Australia. Two distinct oxidation states are obtained. It is suggested that the availability of H 2O during granite emplacement largely determines ƒO 2 conditions.
Pricing the urban cooling benefits of solar panel deployment in Sydney, Australia
Ma, S.; Goldstein, M.; Pitman, A. J.; Haghdadi, N.; MacGill, I.
2017-01-01
Cities import energy, which in combination with their typically high solar absorption and low moisture availability generates the urban heat island effect (UHI). The UHI, combined with human-induced warming, makes our densely populated cities particularly vulnerable to climate change. We examine the utility of solar photovoltaic (PV) system deployment on urban rooftops to reduce the UHI, and we price one potential value of this impact. The installation of PV systems over Sydney, Australia reduces summer maximum temperatures by up to 1 °C because the need to import energy is offset by local generation. This offset has a direct environmental benefit, cooling local maximum temperatures, but also a direct economic value in the energy generated. The indirect benefit associated with the temperature changes is between net AUD$230,000 and $3,380,000 depending on the intensity of PV systems deployment. Therefore, even very large PV installations will not offset global warming, but could generate enough energy to negate the need to import energy, and thereby reduce air temperatures. The energy produced, and the benefits of cooling beyond local PV installation sites, would reduce the vulnerability of urban populations and infrastructure to temperature extremes. PMID:28262843
Pricing the urban cooling benefits of solar panel deployment in Sydney, Australia.
Ma, S; Goldstein, M; Pitman, A J; Haghdadi, N; MacGill, I
2017-03-06
Cities import energy, which in combination with their typically high solar absorption and low moisture availability generates the urban heat island effect (UHI). The UHI, combined with human-induced warming, makes our densely populated cities particularly vulnerable to climate change. We examine the utility of solar photovoltaic (PV) system deployment on urban rooftops to reduce the UHI, and we price one potential value of this impact. The installation of PV systems over Sydney, Australia reduces summer maximum temperatures by up to 1 °C because the need to import energy is offset by local generation. This offset has a direct environmental benefit, cooling local maximum temperatures, but also a direct economic value in the energy generated. The indirect benefit associated with the temperature changes is between net AUD$230,000 and $3,380,000 depending on the intensity of PV systems deployment. Therefore, even very large PV installations will not offset global warming, but could generate enough energy to negate the need to import energy, and thereby reduce air temperatures. The energy produced, and the benefits of cooling beyond local PV installation sites, would reduce the vulnerability of urban populations and infrastructure to temperature extremes.
High temperature superconductor dc SQUID micro-susceptometer for room temperature objects
NASA Astrophysics Data System (ADS)
Faley, M. I.; Pratt, K.; Reineman, R.; Schurig, D.; Gott, S.; Atwood, C. G.; Sarwinski, R. E.; Paulson, D. N.; Starr, T. N.; Fagaly, R. L.
2004-05-01
We have developed a scanning magnetic microscope (SMM) with 25 µm resolution in spatial position for the magnetic features of room temperature objects. The microscope consists of a high-temperature superconductor (HTS) dc SQUID sensor, suspended in vacuum with a self-adjusting standoff, close spaced liquid nitrogen Dewar, X-Y scanning stage and a computer control system. The HTS SQUIDs were optimized for better spatial and field resolutions for operation at liquid nitrogen temperature. Measured inside a magnetic shield, the 10 pT Hz-1/2 typical noise of the SQUIDs is white down to frequencies of about 10 Hz, increasing up to about 20 pT Hz-1/2 at 1 Hz. The microscope is mounted on actively damped platforms, which negate vibrations from the environment as well as damping internal stepper motor noises. A high-resolution video telescope and a 1 µm precision z-axis positioning system allow a close positioning of the sample under the sensor. The ability of the sensors to operate in unshielded environmental conditions with magnetic fields up to about 15 G allowed us to perform 2D mapping of the local ac and dc susceptibility of the objects.
Thermoeconomical Productivity Analysis in Manufacturing Sector in Indonesia
NASA Astrophysics Data System (ADS)
Liana Aji, Widya; Purqon, Acep
2017-07-01
Negative temperature is a phenomenon interesting to study. In negative temperature regime, Boltzmann distribution is inverted where many particles occupy the higher energy states than the lower one. Iyetomi proposed a negative temperature case in Japan and applied it to the labor productivity distribution where the particle and energy state are replaced by worker and labor productivity, respectively. In this paper, we investigate the negative temperature concept to the labor productivity distribution in manufacturing sector in Indonesia which is divided by three industry groups according to BPS (Center of Statistical Agency of Indonesia), i. e. large and medium industries, small industry, and micro industry. For all industry groups, food industry possesses maximum productivity. The results represent that the negative temperature of large and medium industries is around ten times lower than negative temperature of micro industry indicating large and medium industries is lack demand of worker, while the negative temperature of small industry is among the temperature negative of large and medium industries and micro industry.
NASA Astrophysics Data System (ADS)
Shu, G. J.; Tian, J. C.; Lin, C. K.; Hayashi, M.; Liou, S. C.; Chen, W. T.; Wong, Deniz P.; Liou, H. L.; Chou, F. C.
2018-05-01
In this reply to the comment on ‘Oxygen vacancy-induced magnetic moment in edge-sharing CuO2 chains of {{{Li}}}2{{{CuO}}}2-δ ’ (2017 New Journal of Physics 19 023206), we have clarified several key questions and conflicting results regarding the size of the intra-chain nearest neighbor coupling J 1 and the sign of the Weiss temperature Θ defined in the Curie–Weiss law of χ(T) = χ ◦ + C/(T ‑ Θ). Additional data analysis is conducted to verify the validity of the Curie–Weiss law fitting protocol, including the negative sign and size of Θ based on the high-temperature linear temperature dependence of 1/χ(T) for T > J 1 and \\tfrac{g{μ }B{SH}}{{k}BT}\\ll 1. The consistency between the magnetic antiferromagnetic (AF) ground state below T N and the negative sign of Θ in the high-temperature paramagnetic (PM) state is explained via the reduction of thermal fluctuation for a temperature-independent local field due to magnetic interaction of quantum nature. A magnetic dipole–dipole (MDD)-type interaction among FM chains is identified and proposed to be necessary for the 3D AF magnetic ground state formation, i.e., the Heisenberg model of an exchange-type interaction alone is not sufficient to fully describe the quasi-1D spin chain system of {{{Li}}}2{{{CuO}}}2. Several typical quasi-1D spin chain compounds, including {{{Li}}}2{{{CuO}}}2,{{{CuAs}}}2{{{O}}}4,{{{Sr}}}3{{{Fe}}}2{{{O}}}5, and CuGeO3, are compared to show why different magnetic ground states are achieved from the chemical bond perspective.
LETTER: Biased limiter experiments on the Advanced Toroidal Facility (ATF) torsatron
NASA Astrophysics Data System (ADS)
Uckan, T.; Isler, R. C.; Jernigan, T. C.; Lyon, J. F.; Mioduszewski, P. K.; Murakami, M.; Rasmussen, D. A.; Wilgen, J. B.; Aceto, S. C.; Zielinski, J. J.
1994-02-01
The Advanced Toroidal Facility (ATF) torsatron incorporates two rail limiters that can be positioned by external controls. The influence on the plasma parameters of biasing these limiters both positively and negatively with respect to the walls has been investigated. Experiments have been carried out in the electron cyclotron heated plasmas at 200 kW with a typical density of 5 × 1012 cm-3 and a central electron temperature of ~900 eV. Negative biasing produces only small changes in the plasma parameters, but positive biasing increases the particle confinement by about a factor of 5, although the plasma stored energy does fall at the higher voltages. In addition, positive biasing produces the following effects compared with floating limiter discharges: the core density profiles become peaked rather than hollow, the electric field at the edge becomes more negative (pointing radially inward), the magnitudes of the edge fluctuations and the fluctuation induced transport are reduced, the fluctuation wavelengths become longer and their propagation direction reverses from the electron to the ion diamagnetic direction. Neither polarity of biasing appears to affect the impurity content or transport
Dry seasons identified in oak tree-ring chronology in the Czech Lands over the last millennium
NASA Astrophysics Data System (ADS)
Dobrovolny, Petr; Brazdil, Rudolf; Büntgen, Ulf; Rybnicek, Michal; Kolar, Tomas; Reznickova, Ladislava; Valasek, Hubert; Kotyza, Oldrich
2015-04-01
There is growing evidence on amplification of hydrological regimes as a consequence of rising temperatures, increase in evaporation and changes in circulation patterns. These processes may be responsible for higher probability of hydroclimatic extremes occurrence in regional scale. Extreme events such as floods or droughts are rare from their definition and for better understanding of possible changes in the frequency and intensity of their occurrence, long-term proxy archives may be analysed. Recently several tree ring width chronologies were compiled from hardwood species occurring in lowland positions and their analysis proved that they are moisture-sensitive and suitable for hydroclimate reconstructions. Here, we introduce a new oak (Quercus sp) ring width (RW) dataset for the Czech Republic and the last 1250 years. We explain the process of oak chronology standardization that was based on several only slightly different de-trending techniques and subsequent chronology development steps. We hypothesize that the most severe RW increment reductions (negative extremes) reflect extremely dry spring-summer conditions. Negative extremes were assigned for years in which transformed oak RWs were lower than the minus 1.5 standard deviation. To verify our hypothesis, we compare typical climatic conditions in negative extreme years with climatology of the reference period 1961-1990. Comparison was done for various instrumental measurements (1805-2012), existing proxy reconstructions (1500-1804) and also for documentary evidence from historical archives (before 1500). We found that years of negative extremes are characterized with distinctly above average spring (MAM) and summer (JJA) air temperatures and below average precipitation amounts. Typical sea level pressure spatial distribution in those years shows positive pressure anomaly over British Isles and Northern Sea, the pattern that synoptically corresponds to blocking anticyclone bringing to Central Europe warm air from SW and low precipitation totals with higher probability of drought occurrence. Our results provide consistent physical explanation of extremely dry seasons occurring in Central Europe. However, direct comparisons of individual RW extreme seasons with existing documentary evidence show the complexity the problem as some extremes identified in oak RW chronology were not confirmed in documentary archives and vice versa. We discuss possible causes of such differences related to the fact that various proxies may have problems to record real intensity or duration of extreme events e.g. due to non-linear response of proxy data to climate drivers or due to shift in seasonality.
ERIC Educational Resources Information Center
Ahrens, Courtney E.; Cabral, Giannina; Abeling, Samantha
2009-01-01
Sexual assault survivors often receive both positive and negative reactions to the disclosure of their assault. Although positive reactions are typically more common from informal support providers and negative reactions are typically more common from formal support providers, not all formal and informal support providers react the same way. To…
Non-linear gyrokinetic simulations of microturbulence in TCV electron internal transport barriers
NASA Astrophysics Data System (ADS)
Lapillonne, X.; Brunner, S.; Sauter, O.; Villard, L.; Fable, E.; Görler, T.; Jenko, F.; Merz, F.
2011-05-01
Using the local (flux-tube) version of the Eulerian code GENE (Jenko et al 2000 Phys. Plasmas 7 1904), gyrokinetic simulations of microturbulence were carried out considering parameters relevant to electron-internal transport barriers (e-ITBs) in the TCV tokamak (Sauter et al 2005 Phys. Rev. Lett. 94 105002), generated under conditions of low or negative shear. For typical density and temperature gradients measured in such barriers, the corresponding simulated fluctuation spectra appears to simultaneously contain longer wavelength trapped electron modes (TEMs, for typically k⊥ρi < 0.5, k⊥ being the characteristic perpendicular wavenumber and ρi the ion Larmor radius) and shorter wavelength ion temperature gradient modes (ITG, k⊥ρi > 0.5). The contributions to the electron particle flux from these two types of modes are, respectively, outward/inward and may cancel each other for experimentally realistic gradients. This mechanism may partly explain the feasibility of e-ITBs. The non-linear simulation results confirm the predictions of a previously developed quasi-linear model (Fable et al 2010 Plasma Phys. Control. Fusion 52 015007), namely that the stationary condition of zero particle flux is obtained through the competitive contributions of ITG and TEM. A quantitative comparison of the electron heat flux with experimental estimates is presented as well.
Climate change impacts on crop yield: evidence from China.
Wei, Taoyuan; Cherry, Todd L; Glomrød, Solveig; Zhang, Tianyi
2014-11-15
When estimating climate change impact on crop yield, a typical assumption is constant elasticity of yield with respect to a climate variable even though the elasticity may be inconstant. After estimating both constant and inconstant elasticities with respect to temperature and precipitation based on provincial panel data in China 1980-2008, our results show that during that period, the temperature change contributes positively to total yield growth by 1.3% and 0.4% for wheat and rice, respectively, but negatively by 12% for maize. The impacts of precipitation change are marginal. We also compare our estimates with other studies and highlight the implications of the inconstant elasticities for crop yield, harvest and food security. We conclude that climate change impact on crop yield would not be an issue in China if positive impacts of other socio-economic factors continue in the future. Copyright © 2014 Elsevier B.V. All rights reserved.
Diagnosing pure-electron plasmas with internal particle flux probes.
Kremer, J P; Pedersen, T Sunn; Marksteiner, Q; Lefrancois, R G; Hahn, M
2007-01-01
Techniques for measuring local plasma potential, density, and temperature of pure-electron plasmas using emissive and Langmuir probes are described. The plasma potential is measured as the least negative potential at which a hot tungsten filament emits electrons. Temperature is measured, as is commonly done in quasineutral plasmas, through the interpretation of a Langmuir probe current-voltage characteristic. Due to the lack of ion-saturation current, the density must also be measured through the interpretation of this characteristic thereby greatly complicating the measurement. Measurements are further complicated by low densities, low cross field transport rates, and large flows typical of pure-electron plasmas. This article describes the use of these techniques on pure-electron plasmas in the Columbia Non-neutral Torus (CNT) stellarator. Measured values for present baseline experimental parameters in CNT are phi(p)=-200+/-2 V, T(e)=4+/-1 eV, and n(e) on the order of 10(12) m(-3) in the interior.
Symmetry breaking by heating in a continuous opinion model
NASA Astrophysics Data System (ADS)
Anteneodo, Celia; Crokidakis, Nuno
2017-04-01
We study the critical behavior of a continuous opinion model, driven by kinetic exchanges in a fully connected population. Opinions range in the real interval [-1 ,1 ] , representing the different shades of opinions against and for an issue under debate. Individuals' opinions evolve through pairwise interactions, with couplings that are typically positive, but a fraction p of negative ones is allowed. Moreover, a social temperature parameter T controls the tendency of the individual responses toward neutrality. Depending on p and T , different collective states emerge: symmetry broken (one side wins), symmetric (tie of opposite sides), and absorbing neutral (indecision wins). We find the critical points and exponents that characterize the phase transitions between them. The symmetry breaking transition belongs to the usual Ising mean-field universality class, but the absorbing-phase transitions, with β =0.5 , are out of the paradigmatic directed percolation class. Moreover, ordered phases can emerge by increasing social temperature.
Wang, Xiao-Lei; Li, Chuan-Rong; Xu, Jing-Wei; Hu, Ding-Meng; Zhao, Zhen-Lei; Zhang, Liu-dong
2013-02-01
Taking five typical courtyard forests and a non-forest courtyard in southern mountains areas of Jinan as test objects, a synchronous observation was conducted on the air negative ion concentration and related meteorological factors in March-December, 2010. The air negative ion concentration in the test courtyards showed an obvious seasonal variation, being in the order of summer > autumn > spring > winter. The diurnal variation of the air negative ion concentration presented a double peak curve, with the maximum in 10:00 - 11:00 and 16:00 - 17:00 and the minimum around 12:00. The daily air quality was the best at 10:00 and 16:00, and better in afternoon than in the morning. Summer time and garden sketch mode had the best air quality in a year. The mean annual air negative ion and the coefficient of air ion (CI) of the test courtyards were in the order of garden sketch > economic fruit forest > natural afforested forest > flowers and bonsai > farm tourist > non-forest, with the air negative ion concentration being 813, 745, 695, 688, 649, and 570 ions.cm-3, and the CI being 1.22, 1.11, 0.85, 0.84, 0.83, and 0.69, respectively. It could be concluded that garden sketch was the ideal courtyard forest mode. The air negative ion concentration was significantly positively correlated with air temperature and relative humidity, but irrelevant to light intensity.
NASA Astrophysics Data System (ADS)
Vico, G.; Weih, M.
2014-12-01
Autumn-sown crops act as winter cover crop, reducing soil erosion and nutrient leaching, while potentially providing higher yields than spring varieties in many environments. Nevertheless, overwintering crops are exposed for longer periods to the vagaries of weather conditions. Adverse winter conditions, in particular, may negatively affect the final yield, by reducing crop survival or its vigor. The net effect of the projected shifts in climate is unclear. On the one hand, warmer temperatures may reduce the frequency of low temperatures, thereby reducing damage risk. On the other hand, warmer temperatures, by reducing plant acclimation level and the amount and duration of snow cover, may increase the likelihood of damage. Thus, warmer climates may paradoxically result in more extensive low temperature damage and reduced viability for overwintering plants. The net effect of a shift in climate is explored by means of a parsimonious probabilistic model, based on a coupled description of air temperature, snow cover, and crop tolerable temperature. Exploiting an extensive dataset of winter wheat responses to low temperature exposure, the risk of winter damage occurrence is quantified under conditions typical of northern temperate latitudes. The full spectrum of variations expected with climate change is explored, quantifying the joint effects of alterations in temperature averages and their variability as well as shifts in precipitation. The key features affecting winter wheat vulnerability to low temperature damage under future climates are singled out.
Griffith, Simon C.; Mainwaring, Mark C.; Sorato, Enrico; Beckmann, Christa
2016-01-01
Tropical and subtropical species typically experience relatively high atmospheric temperatures during reproduction, and are subject to climate-related challenges that are largely unexplored, relative to more extensive work conducted in temperate regions. We studied the effects of high atmospheric and nest temperatures during reproduction in the zebra finch. We characterized the temperature within nests in a subtropical population of this species in relation to atmospheric temperature. Temperatures within nests frequently exceeded the level at which embryo’s develop optimally, even in the absence of parental incubation. We experimentally manipulated internal nest temperature to demonstrate that an average difference of 6°C in the nest temperature during the laying period reduced hatching time by an average of 3% of the total incubation time, owing to ‘ambient incubation’. Given the avian constraint of laying a single egg per day, the first eggs of a clutch are subject to prolonged effects of nest temperature relative to later laid eggs, potentially increasing hatching asynchrony. While birds may ameliorate the negative effects of ambient incubation on embryonic development by varying the location and design of their nests, high atmospheric temperatures are likely to constitute an important selective force on avian reproductive behaviour and physiology in subtropical and tropical regions, particularly in the light of predicted climate change that in many areas is leading to a higher frequency of hot days during the periods when birds breed. PMID:26998315
Removal of Perfluorinated Grease Components from NTO Oxidizer
NASA Technical Reports Server (NTRS)
McClure, Mark B.; Greene, Ben; Johnson, Harry T.
2004-01-01
Perfluorinated greases are typically used as a thread lubricant in the assembly of non-welded nitrogen tetroxide (NTO) oxidizer systems. These greases, typically a perfluoroalkylether, with suspended polytetrafluoroethylene (PTFE) micro-powder, have attractive lubricating properties toward threaded components and are relatively chemically inert toward NTO oxidizers. A major drawback, however, is that perfluoroalkylether greases are soluble or dispersible in NTO oxidizers and can contaminate the propellant. The result is propellant that fails the non-volatile residue (NVR) specification analyses and that may have negative effects on test hardware performance and lifetime. Consequently, removal of the grease contaminants from NTO may be highly desirable. Methods for the removal of perfluorinated grease components from NTO oxidizers including distillation, adsorption, filtration, and adjustment of temperature are investigated and reported in this work. Solubility or dispersibility data for the perfluoroalkylether oil (Krytox(tm)143 AC) component of a perfluorinated grease (Krytox 240 AC) and for Krytox 240 AC in NTO were determined and are reported.
Concept typicality responses in the semantic memory network.
Santi, Andrea; Raposo, Ana; Frade, Sofia; Marques, J Frederico
2016-12-01
For decades concept typicality has been recognized as critical to structuring conceptual knowledge, but only recently has typicality been applied in better understanding the processes engaged by the neurological network underlying semantic memory. This previous work has focused on one region within the network - the Anterior Temporal Lobe (ATL). The ATL responds negatively to concept typicality (i.e., the more atypical the item, the greater the activation in the ATL). To better understand the role of typicality in the entire network, we ran an fMRI study using a category verification task in which concept typicality was manipulated parametrically. We argue that typicality is relevant to both amodal feature integration centers as well as category-specific regions. Both the Inferior Frontal Gyrus (IFG) and ATL demonstrated a negative correlation with typicality, whereas inferior parietal regions showed positive effects. We interpret this in light of functional theories of these regions. Interactions between category and typicality were not observed in regions classically recognized as category-specific, thus, providing an argument against category specific regions, at least with fMRI. Copyright © 2016 Elsevier Ltd. All rights reserved.
Running of the scalar spectral index in bouncing cosmologies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lehners, Jean-Luc; Wilson-Ewing, Edward, E-mail: jean-luc.lehners@aei.mpg.de, E-mail: wilson-ewing@aei.mpg.de
We calculate the running of the scalar index in the ekpyrotic and matter bounce cosmological scenarios, and find that it is typically negative for ekpyrotic models, while it is typically positive for realizations of the matter bounce where multiple fields are present. This can be compared to inflation, where the observationally preferred models typically predict a negative running. The magnitude of the running is expected to be between 10{sup −4} and up to 10{sup −2}, leading in some cases to interesting expectations for near-future observations.
Marshall, David J; McQuaid, Christopher D
2011-01-22
The universal temperature-dependence model (UTD) of the metabolic theory of ecology (MTE) proposes that temperature controls mass-scaled, whole-animal resting metabolic rate according to the first principles of physics (Boltzmann kinetics). Controversy surrounds the model's implication of a mechanistic basis for metabolism that excludes the effects of adaptive regulation, and it is unclear how this would apply to organisms that live in fringe environments and typically show considerable metabolic adaptation. We explored thermal scaling of metabolism in a rocky-shore eulittoral-fringe snail (Echinolittorina malaccana) that experiences constrained energy gain and fluctuating high temperatures (between 25°C and approximately 50°C) during prolonged emersion (weeks). In contrast to the prediction of the UTD model, metabolic rate was often negatively related to temperature over a benign range (30-40°C), the relationship depending on (i) the temperature range, (ii) the degree of metabolic depression (related to the quiescent period), and (iii) whether snails were isolated within their shells. Apparent activation energies (E) varied between 0.05 and -0.43 eV, deviating excessively from the UTD's predicted range of between 0.6 and 0.7 eV. The lowering of metabolism when heated should improve energy conservation in a high-temperature environment and challenges both the theory's generality and its mechanistic basis.
NASA Astrophysics Data System (ADS)
Xiong, Qing; Xu, Le; Wang, Xia; Xiong, Lin; Huang, Qinghua; Chen, Qiang; Wang, Jingang; Peng, Wenxiong; Li, Jiarui
2018-03-01
Gas temperature is an important basic parameter for both fundamental research and applications of plasmas. In this work, efforts were made to visualize the full spatial field of gas temperature (T g) in a microdischarge with sharp T g gradients by a method of calibrated Schlieren (CS) photography. Compared to other two typical diagnostic approaches, optical emission spectroscopy (OES) and Rayleigh scattering, the proposed CS method exhibits the ability to capture the whole field of gas temperature using a single Schlieren image, even the discharge is of non-luminous zones like Faraday dark space (FDS). The image shows that the T g field in the studied micro-glow air discharge expands quickly with the increase of discharge currents, especially in the cathode region. The two-dimensional maps of gas temperature display a ‘W-shape’ with sharp gradients in both areas of negative and positive glows, slightly arched distributions in the positive column, and cooling zones in the FDS. The obtained T g fields show similar patterns to that of the discharge luminance. With an increase in discharge currents, more electric energy is dissipated by heating air gas and inducing constriction of the low-temperature FDS. Except in the vicinities of electrode boundaries, due to the interference from optical diffraction, the estimated gas temperature distributions are of acceptable accuracy, confirmed by the approaches of OES and UV Rayleigh scattering.
Numerical renormalization group method for entanglement negativity at finite temperature
NASA Astrophysics Data System (ADS)
Shim, Jeongmin; Sim, H.-S.; Lee, Seung-Sup B.
2018-04-01
We develop a numerical method to compute the negativity, an entanglement measure for mixed states, between the impurity and the bath in quantum impurity systems at finite temperature. We construct a thermal density matrix by using the numerical renormalization group (NRG), and evaluate the negativity by implementing the NRG approximation that reduces computational cost exponentially. We apply the method to the single-impurity Kondo model and the single-impurity Anderson model. In the Kondo model, the negativity exhibits a power-law scaling at temperature much lower than the Kondo temperature and a sudden death at high temperature. In the Anderson model, the charge fluctuation of the impurity contributes to the negativity even at zero temperature when the on-site Coulomb repulsion of the impurity is finite, while at low temperature the negativity between the impurity spin and the bath exhibits the same power-law scaling behavior as in the Kondo model.
On the dispute between Boltzmann and Gibbs entropy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Buonsante, Pierfrancesco; Franzosi, Roberto, E-mail: roberto.franzosi@ino.it; Smerzi, Augusto
2016-12-15
The validity of the concept of negative temperature has been recently challenged by arguing that the Boltzmann entropy (that allows negative temperatures) is inconsistent from a mathematical and statistical point of view, whereas the Gibbs entropy (that does not admit negative temperatures) provides the correct definition for the microcanonical entropy. Here we prove that the Boltzmann entropy is thermodynamically and mathematically consistent. Analytical results on two systems supporting negative temperatures illustrate the scenario we propose. In addition we numerically study a lattice system to show that negative temperature equilibrium states are accessible and obey standard statistical mechanics prediction.
Daraktchieva, Z
2017-06-01
Indoor radon concentrations generally vary with season. Radon gas enters buildings from beneath due to a small air pressure difference between the inside of a house and outdoors. This underpressure which draws soil gas including radon into the house depends on the difference between the indoor and outdoor temperatures. The variation in a typical house in UK showed that the mean indoor radon concentration reaches a maximum in January and a minimum in July. Sine functions were used to model the indoor radon data and monthly average outdoor temperatures, covering the period between 2005 and 2014. The analysis showed a strong negative correlation between the modelled indoor radon data and outdoor temperature. This correlation was used to calculate new correction factors that could be used for estimation of annual radon concentration in UK homes. The comparison between the results obtained with the new correction factors and the previously published correction factors showed that the new correction factors perform consistently better on the selected data sets. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
NASA Astrophysics Data System (ADS)
Akulichev, Anton G.; Alcock, Ben; Tiwari, Avinash; Echtermeyer, Andreas T.
2016-12-01
Rubber compounds for pressure sealing application typically have inferior dimensional stability with temperature fluctuations compared with their steel counterparts. This effect may result in seal leakage failures when subjected to decreases in temperature. Composites of hydrogenated nitrile butadiene rubber (HNBR) and zirconium tungstate as a negative thermal expansion filler were prepared in order to control the thermal expansivity of the material. The amount of zirconium tungstate (ZrW2O8) was varied in the range of 0 to about 40 vol%. The coefficient of thermal expansion (CTE), bulk modulus, uniaxial extension and compression set properties were measured. The CTE of the ZrW2O8-filled HNBR decreases with the filler content and it is reduced by a factor of 2 at the highest filler concentration used. The filler effect on CTE is found to be stronger when HNBR is below the glass transition temperature. The experimental thermal expansion data of the composites are compared with the theoretical estimates and predictions given by FEA. The effect of ZrW2O8 on the mechanical characteristics and compression set of these materials is also discussed.
McClenaghan, Joseph; Garofalo, Andrea M.; Meneghini, Orso; ...
2017-08-03
In this study, transport modeling of a proposed ITER steady-state scenario based on DIII-D high poloidal-beta (more » $${{\\beta}_{p}}$$ ) discharges finds that ITB formation can occur with either sufficient rotation or a negative central shear q-profile. The high $${{\\beta}_{p}}$$ scenario is characterized by a large bootstrap current fraction (80%) which reduces the demands on the external current drive, and a large radius internal transport barrier which is associated with excellent normalized confinement. Modeling predictions of the electron transport in the high $${{\\beta}_{p}}$$ scenario improve as $${{q}_{95}}$$ approaches levels similar to typical existing models of ITER steady-state and the ion transport is turbulence dominated. Typical temperature and density profiles from the non-inductive high $${{\\beta}_{p}}$$ scenario on DIII-D are scaled according to 0D modeling predictions of the requirements for achieving a $Q=5$ steady-state fusion gain in ITER with 'day one' heating and current drive capabilities. Then, TGLF turbulence modeling is carried out under systematic variations of the toroidal rotation and the core q-profile. A high bootstrap fraction, high $${{\\beta}_{p}}$$ scenario is found to be near an ITB formation threshold, and either strong negative central magnetic shear or rotation in a high bootstrap fraction are found to successfully provide the turbulence suppression required to achieve $Q=5$.« less
Newberry, Gretchen N; Swanson, David L
2018-01-01
Grasslands and riparian forests in southeastern South Dakota have been greatly reduced since historical times, primarily due to conversion to row-crop agriculture. Common Nighthawk ( Chordeiles minor ) nesting habitat includes grasslands, open woodlands and urban rooftops, but nesting sites in southeastern South Dakota are confined to rooftops, as natural nesting habitat is limited. Nighthawks nesting on exposed rooftop habitats may encounter thermal conditions that increase operative temperatures relative to vegetated land cover types. Mean humidity has increased and mean wind speed and cloud cover have decreased during the nighthawk breeding season from 1948 to 2016 in southeastern South Dakota. These changes might contribute to increasing operative temperatures at exposed rooftop nest sites and this could influence chick condition. We studied nest micro-climate and the plasma stress response for 24 rooftop-nesting nighthawk chicks from 17 nests during 2015 and 2016. High humidity prior to blood collection reduced both baseline and stress-induced plasma corticosterone (CORT). In contrast, high maximum temperatures during the day before sampling increased stress-induced CORT. The magnitude of the chick stress response was significantly negatively related to maximum wind speed for the week prior to CORT measurement. Other weather and micro-climate variables were not significant effectors of CORT metrics. Most chicks had low baseline CORT and were able to mount a stress response, but a subset of chicks ( n = 4) showed elevated baseline CORT and a negative association between the magnitude of stress response and ambient temperature. For this subset, mean ambient temperature for the day before sampling was significantly higher (2.3°C) than for chicks with typical baseline CORT levels. These data suggest that regional climate change trends could affect the ability of nighthawk chicks to mount a stress response, which, in turn, might influence the susceptibility of nighthawk chicks to climate change in the Northern Prairie region.
Nagaya, Kazuki; Okamatsu-Ogura, Yuko; Nio-Kobayashi, Junko; Nakagiri, Shohei; Tsubota, Ayumi; Kimura, Kazuhiro
2018-04-02
In Syrian hamsters, brown adipose tissue (BAT) develops postnatally through the proliferation and differentiation of brown adipocyte progenitors. In the study reported here, we investigated how ambient temperature influenced BAT formation in neonatal hamsters. In both hamsters raised at 23 or 30 °C, the interscapular fat changed from white to brown coloration in an age-dependent manner and acquired the typical morphological features of BAT by day 16. However, the expression of uncoupling protein 1, a brown adipocyte marker, and of vascular endothelial growth factor α were lower in the group raised at 30 °C than in that raised at 23 °C. Immunofluorescent staining revealed that the proportion of Ki67-expressing progenitors and endothelial cells was lower in the 30 °C group than in the 23 °C group. These results indicate that warm ambient temperature suppresses the proliferation of brown adipocyte progenitors and endothelial cells and negatively affects the postnatal development of BAT in Syrian hamsters.
NASA Astrophysics Data System (ADS)
Rabi, R.; Oufni, L.
2017-10-01
Inhalation of radon (222Rn) and its decay products are a major source of natural radiation exposure. It is known from recent surveys in many countries that radon and its progeny contribute significantly to total inhalation dose and it is fairly established that radon when inhaled in large quantity causes lung disorder. Indoor air conditions and ventilation systems strongly influence the indoor radon concentration. This study focuses on investigating both numerically and experimentally the influence of environmental conditions on the indoor radon concentration and spatial distribution. The numerical results showed that ventilation rate, temperature and humidity have significant impacts on both radon content and distribution. The variations of radon concentration with the ventilation, temperature and relative humidity are discussed. The measurement results show the diurnal variations of the indoor radon concentration are found to exhibit a positive correlation with relative humidity and negatively correlate with the air temperature. The analytic solution is used to validate the numeric results. The comparison amongst analytical, numerical and measurement results shows close agreement.
Temperature-dependent regulation of rDNA condensation in Saccharomyces cerevisiae.
Shen, Donglai; Skibbens, Robert V
2017-06-03
Chromatin condensation during mitosis produces detangled and discrete DNA entities required for high fidelity sister chromatid segregation during mitosis and positions DNA away from the cleavage furrow during cytokinesis. Regional condensation during G1 also establishes a nuclear architecture through which gene transcription is regulated but remains plastic so that cells can respond to changes in nutrient levels, temperature and signaling molecules. To date, however, the potential impact of this plasticity on mitotic chromosome condensation remains unknown. Here, we report results obtained from a new condensation assay that wildtype budding yeast cells exhibit dramatic changes in rDNA conformation in response to temperature. rDNA hypercondenses in wildtype cells maintained at 37°C, compared with cells maintained at 23°C. This hypercondensation machinery can be activated during preanaphase but readily inactivated upon exposure to lower temperatures. Extended mitotic arrest at 23°C does not result in hypercondensation, negating a kinetic-based argument in which condensation that typically proceeds slowly is accelerated when cells are placed at 37°C. Neither elevated recombination nor reduced transcription appear to promote this hypercondensation. This heretofore undetected temperature-dependent hypercondensation pathway impacts current views of chromatin structure based on conditional mutant gene analyses and significantly extends our understanding of physiologic changes in chromatin architecture in response to hypothermia.
Temperature-dependent regulation of rDNA condensation in Saccharomyces cerevisiae
Shen, Donglai; Skibbens, Robert V.
2017-01-01
ABSTRACT Chromatin condensation during mitosis produces detangled and discrete DNA entities required for high fidelity sister chromatid segregation during mitosis and positions DNA away from the cleavage furrow during cytokinesis. Regional condensation during G1 also establishes a nuclear architecture through which gene transcription is regulated but remains plastic so that cells can respond to changes in nutrient levels, temperature and signaling molecules. To date, however, the potential impact of this plasticity on mitotic chromosome condensation remains unknown. Here, we report results obtained from a new condensation assay that wildtype budding yeast cells exhibit dramatic changes in rDNA conformation in response to temperature. rDNA hypercondenses in wildtype cells maintained at 37°C, compared with cells maintained at 23°C. This hypercondensation machinery can be activated during preanaphase but readily inactivated upon exposure to lower temperatures. Extended mitotic arrest at 23°C does not result in hypercondensation, negating a kinetic-based argument in which condensation that typically proceeds slowly is accelerated when cells are placed at 37°C. Neither elevated recombination nor reduced transcription appear to promote this hypercondensation. This heretofore undetected temperature-dependent hypercondensation pathway impacts current views of chromatin structure based on conditional mutant gene analyses and significantly extends our understanding of physiologic changes in chromatin architecture in response to hypothermia. PMID:28426272
Occurrence of human respiratory syncytial virus in summer in Japan.
Shobugawa, Y; Takeuchi, T; Hibino, A; Hassan, M R; Yagami, R; Kondo, H; Odagiri, T; Saito, R
2017-01-01
In temperate zones, human respiratory syncytial virus (HRSV) outbreaks typically occur in cold weather, i.e. in late autumn and winter. However, recent outbreaks in Japan have tended to start during summer and autumn. This study examined associations of meteorological conditions with the numbers of HRSV cases reported in summer in Japan. Using data from the HRSV national surveillance system and national meteorological data for summer during the period 2007-2014, we utilized negative binomial logistic regression analysis to identify associations between meteorological conditions and reported cases of HRSV. HRSV cases increased when summer temperatures rose and when relative humidity increased. Consideration of the interaction term temperature × relative humidity enabled us to show synergistic effects of high temperature with HRSV occurrence. In particular, HRSV cases synergistically increased when relative humidity increased while the temperature was ⩾28·2 °C. Seasonal-trend decomposition analysis using the HRSV national surveillance data divided by 11 climate divisions showed that summer HRSV cases occurred in South Japan (Okinawa Island), Kyushu, and Nankai climate divisions, which are located in southwest Japan. Higher temperature and higher relative humidity were necessary conditions for HRSV occurrence in summer in Japan. Paediatricians in temperate zones should be mindful of possible HRSV cases in summer, when suitable conditions are present.
Physics of negative absolute temperatures.
Abraham, Eitan; Penrose, Oliver
2017-01-01
Negative absolute temperatures were introduced into experimental physics by Purcell and Pound, who successfully applied this concept to nuclear spins; nevertheless, the concept has proved controversial: a recent article aroused considerable interest by its claim, based on a classical entropy formula (the "volume entropy") due to Gibbs, that negative temperatures violated basic principles of statistical thermodynamics. Here we give a thermodynamic analysis that confirms the negative-temperature interpretation of the Purcell-Pound experiments. We also examine the principal arguments that have been advanced against the negative temperature concept; we find that these arguments are not logically compelling, and moreover that the underlying "volume" entropy formula leads to predictions inconsistent with existing experimental results on nuclear spins. We conclude that, despite the counterarguments, negative absolute temperatures make good theoretical sense and did occur in the experiments designed to produce them.
Thermal transport properties of polycrystalline Pb2FeMoO6
NASA Astrophysics Data System (ADS)
Yuan, Xueping; Xu, Mingxiang
2018-06-01
Thermoelectric properties and specific heat of polycrystalline Pb2FeMoO6 have been systematically studied. The thermal conductivity increases monotonically with increasing of temperature, and reaches the maximum value 1.50 W m‑1 K‑1 at 350 K. The relatively low thermal conductivity is mainly attributed to the strong scattering effect of phonons at Fe/Mo sites. The negative Seebeck coefficient indicates the n-type conduction of the sample. The absolute value of S increases up to 20 μV K‑1 at 350 K. Due to the inhomogeneity resulting from Fe/Mo ions disorder, no distinct λ-type specific heat peak or anomaly typical for second-order transitions are observed.
On Thermodynamic Constraints upon Turbulence Modeling
NASA Astrophysics Data System (ADS)
Huang, Yu-Ning; Durst, Franz
2000-11-01
Turbulence is a continuum phenomenon which can be described within the framework of continuum mechanics. Such foundation has the potential for improving turbulence modeling, making it less heuristic and more rational. In the present research, we consider the compatibility of turbulence modeling with the second law of thermodynamics. We show that the Clausius-Planck inequality, as an expression of the principle of entropy growth, places a thermodynamic restriction upon the turbulence modeling of an incompressible Navier-Stokes fluid in an isothermal temperature field. This thermodynamic restriction is given in the form of an inequality, which ensures non-negativeness of the mean internal dissipation. As an illustration, we show the thermodynamic constraints on the modeling of a few typical homogeneous turbulent flows.
Lunar Surface Charging during Solar Energetic Particle Events
NASA Astrophysics Data System (ADS)
Halekas, Jasper S.; Delory, G. T.; Mewaldt, R. A.; Lin, R. P.; Fillingim, M. O.; Brain, D. A.; Lee, C. O.; Stubbs, T. J.; Farrell, W. M.; Hudson, M. K.
2006-09-01
The surface of the Moon, not protected by any substantial atmosphere, is directly exposed to the impact of both solar UV and solar wind plasma and energetic particles. This creates a complex lunar electrostatic environment, with the surface typically charging slightly positive in sunlight, and negative in shadow. Observations from the Apollo era and theoretical considerations strongly suggest that surface charging leads to dust electrification and transport, posing a potentially significant hazard for exploration. The most significant charging effects should occur when the Moon is exposed to high-temperature plasmas like those encountered in the terrestrial plasmasheet or in solar storms. We now present evidence for kilovolt-scale negative charging of the shadowed lunar surface during solar energetic particle (SEP) events, utilizing data from the Lunar Prospector Electron Reflectometer (LP ER). We find that SEP events are associated with the most extreme lunar surface charging observed during the LP mission - rivaled only by previously reported charging during traversals of the terrestrial plasmasheet. The largest charging event observed by LP is a 4 kV negative surface potential (as compared to typical values of V) during a SEP event in May 1998. We characterize lunar surface charging during several SEP events, and compare to energetic particle measurements from ACE, Wind, and SOHO in order to determine the relationship between SEP events and extreme lunar surface charging. Space weather events are already considered by NASA to be a significant hazard to lunar exploration, due to high-energy ionizing radiation. Our observations demonstrate that plasma interactions with the lunar surface during SEP events, causing extreme surface charging and potentially significant dust electrification and transport, represent an additional hazard associated with space weather.
Barium and neodymium isotopic anomalies in the Allende meteorite
NASA Technical Reports Server (NTRS)
Mcculloch, M. T.; Wasserburg, G. J.
1978-01-01
The discovery of Ba and Nd isotopic anomalies in two inclusions from the Allende meteorite is reported. The inclusions are Ca-Al-rich objects typical of the type considered as high-temperature condensation products in the solar nebula and contain distinctive Mg and O isotopic anomalies of the FUN (mass Fractionation, Unknown Nuclear processes) type. Mass-spectrometry results are discussed which show that inclusion C1 has anomalies in Ba at masses 134 and 136, while inclusion EK1-4-1 exhibits large marked negative anomalies at 130, 132, 134, and 136, as well as a positive anomaly at 137. It is also found that inclusion EK1-4-1 shows marked negative anomalies in Nd at masses 142, 146, 148, and 150, in addition to a positive anomaly at 145. These isotopic shifts are attributed to addition of r-process nuclei rather than mass fractionation. It is suggested that an onion-shell supernova explosion followed by injection into the solar nebula is the most likely generic model that may explain the observations.
Li, Pei-qing; Fang, Xiang-min; Chen, Fu-sheng; Wang, Fang-chao; Yu, Jin-rong; Wan, Song-ze; Li, Zu-yao
2015-11-01
Topsoil of green space including typical forest, shrub and grassland were collected to measure their water soluble organic carbon ( WSOC) before and after incubation of 30 days at 5, 15, 25, 35 and, 45 °C. The results showed the average values of WSOC were higher in urban than in rural green spaces, but the percentage of WSOC to total organic carbon (TOC) showed an opposite trend. No significant changes were found among the three green space types in WSOC and WSOC/TOC. Response of WSOC in green space to incubation temperature was generally highest in urban sites, followed by suburban sites, and lowest in rural sites at the incubation temperature of 5 °C, but showed an opposite trend at the temperature of 45 °C. Response coefficient of WSOC to temperature change was lower in forest and shrub than in grassland, but increased along the urban-rural gradient. Further analysis showed that WSOC positively correlated with TOC, total nitrogen and available phosphorus, and the response coefficient of WSOC to temperature change negatively correlated with available phosphorus. In summary, exogenous substances input might lead to the accumulation of WSOC in urban green space, however, urban environment was helpful to maintain the stability of WSOC, which might be due to the enrichment of available phosphorus in urban sites.
Electrothermal feedback in kinetic inductance detectors
NASA Astrophysics Data System (ADS)
Guruswamy, T.; Thomas, C. N.; Withington, S.; Goldie, D. J.
2017-06-01
In kinetic inductance detectors (KIDs) and other similar applications of superconducting microresonators, both the large and small-signal behaviour of the device may be affected by electrothermal feedback. Microwave power applied to read out the device is absorbed by and heats the superconductor quasiparticles, changing the superconductor conductivity and hence the readout power absorbed in a positive or negative feedback loop. In this work, we explore numerically the implications of an extensible theoretical model of a generic superconducting microresonator device for a typical KID, incorporating recent work on the power flow between superconductor quasiparticles and phonons. This model calculates the large-signal (changes in operating point) and small-signal behaviour of a device, allowing us to determine the effect of electrothermal feedback on device responsivity and noise characteristics under various operating conditions. We also investigate how thermally isolating the device from the bath, for example by designing the device on a membrane only connected to the bulk substrate by thin legs, affects device performance. We find that at a typical device operating point, positive electrothermal feedback reduces the effective thermal conductance from the superconductor quasiparticles to the bath, and so increases responsivity to signal (pair-breaking) power, increases noise from temperature fluctuations, and decreases the noise equivalent power (NEP). Similarly, increasing the thermal isolation of the device while keeping the quasiparticle temperature constant decreases the NEP, but also decreases the device response bandwidth.
Some tests of flat plate photovoltaic module cell temperatures in simulated field conditions
NASA Technical Reports Server (NTRS)
Griffith, J. S.; Rathod, M. S.; Paslaski, J.
1981-01-01
The nominal operating cell temperature (NOCT) of solar photovoltaic (PV) modules is an important characteristic. Typically, the power output of a PV module decreases 0.5% per deg C rise in cell temperature. Several tests were run with artificial sun and wind to study the parametric dependencies of cell temperature on wind speed and direction and ambient temperature. It was found that the cell temperature is extremely sensitive to wind speed, moderately so to wind direction and rather insensitive to ambient temperature. Several suggestions are made to obtain data more typical of field conditions.
NASA Astrophysics Data System (ADS)
Abel, R.; Boning, C. W.
2016-02-01
Current practice in ocean-only model simulations is to force the ocean with a prescribed atmospheric state using bulk formulations. This practice provides a strong thermal restoring to the surface ocean with a typical time-scale of one month. In the real ocean a positive feedback (salinity advection) and a negative feedback (temperature advection) are associated with the Atlantic Meridional Overturning Circulation (AMOC). The surface branch of the AMOC transports warm and salty (relative to the mean conditions) to the subpolar North Atlantic and mix with the near-surface waters. A strong AMOC would therefore warm the subpolar North Atlantic, decrease deep water formation and also reduce AMOC strength (negative feedback). This negative feedback is diminished due to the surface forcing formulation and makes the system excessively sensitive to details in the freshwater fluxes . Instead, additional and unrealistic Sea Surface Salinity (SSS) restoring is applied. There have been several suggestions during the last 20 years for at least partially alleviating the problem. This includes some simplified model of the atmospheric mixed layer (AML) (CheapAML; Deremble et al., 2013) with prescribed winds which allows some feedback of SST anomalies on the near-surface air temperature and humidity needed to calculate the turbulent surface fluxes. We show that if the turbulent heat fluxes are modelled by the simple AML model net-fluxes get more realistic. Commonly ocean models experience an AMOC slowdown if SSS restoring is turned off. In the new system (ORCA05 with turbulent fluxes from CheapAML) this slowdown can be eliminated.
NASA Astrophysics Data System (ADS)
Gay, S. M., III
2016-02-01
Using spatial principal component (PC) analysis, the variation in freshwater contents and temperatures in the upper 100m are quantified for small fjords and primary basins within Prince William Sound, Alaska. Two EOF modes explain over 90% of the variance in the freshwater content anomalies (FWCA) giving the total magnitude and vertical structure of the FWCAs respectively. Large, positive PC amplitudes (PCAs) of modes 1 and 2 indicate stratification from surface freshening, shown also by negative surface salinity anomalies, whereas positive FWCA PCAs in conjunction with negative mode 2 amplitudes infer higher subsurface freshening due to either vertical mixing or advection. In contrast, basins with negative mode 1 amplitudes are typically salty to slightly brackish, but the mode 2 PCAs determine if the FWC is concentrated near the surface or mixed deeper in the water column. The vertical structure of the temperature anomalies (TA) is more complicated, and at least three EOF modes are required to explain over 90% of the variance. The reasons for this include differences in solar heating (i.e. local climates) modulated by cold alpine runoff and advection of cold, brackish surface and subsurface glacial water. Fjords and major basins influenced by the latter exhibit large, positive mode 1 amplitudes of FWCA and negative mode 1 and 2 PCAs of TA and FWCA respectively. In certain fjords, however, advection of glacial water into the outer basins enhances the total FWC, whereas other fjords exhibit atypically low FWC due to unusual topographic features of the watersheds and inner basins. This combination of factors leads to generally poor correlations between average FWC and watershed to fjord surface area ratios or hydrology. With exception of a few sites, gradients in FWC between the small fjords and major basins are relatively weak. Thus the main driver of baroclinic flow in northern and western PWS is cold, brackish surface and subsurface water propagating from large tidewater glacial fjords. The glacial water has a marked affect on the dynamic topography, which shows southerly baroclinic-geostrophic flows within the western sound. At Montague Strait and Hinchinbrook Entrance inflows may occur from either fresh or salty conditions; low water density of the latter being shown by negative (positive) FWCA (TA) PCAs respectively.
NASA Astrophysics Data System (ADS)
Charalampidis, C.; van As, D.; Box, J. E.; van den Broeke, M. R.; Colgan, W. T.; Doyle, S. H.; Hubbard, A. L.; MacFerrin, M.; Machguth, H.; Smeets, C. J. P. P.
2015-11-01
We present 5 years (2009-2013) of automatic weather station measurements from the lower accumulation area (1840 m a.s.l. - above sea level) of the Greenland ice sheet in the Kangerlussuaq region. Here, the summers of 2010 and 2012 were both exceptionally warm, but only 2012 resulted in a strongly negative surface mass budget (SMB) and surface meltwater run-off. The observed run-off was due to a large ice fraction in the upper 10 m of firn that prevented meltwater from percolating to available pore volume below. Analysis reveals an anomalously low 2012 summer-averaged albedo of 0.71 (typically ~ 0.78), as meltwater was present at the ice sheet surface. Consequently, during the 2012 melt season, the ice sheet surface absorbed 28 % (213 MJ m-2) more solar radiation than the average of all other years. A surface energy balance model is used to evaluate the seasonal and interannual variability of all surface energy fluxes. The model reproduces the observed melt rates as well as the SMB for each season. A sensitivity analysis reveals that 71 % of the additional solar radiation in 2012 was used for melt, corresponding to 36 % (0.64 m) of the 2012 surface lowering. The remaining 64 % (1.14 m) of surface lowering resulted from high atmospheric temperatures, up to a +2.6 °C daily average, indicating that 2012 would have been a negative SMB year at this site even without the melt-albedo feedback. Longer time series of SMB, regional temperature, and remotely sensed albedo (MODIS) show that 2012 was the first strongly negative SMB year, with the lowest albedo, at this elevation on record. The warm conditions of recent years have resulted in enhanced melt and reduction of the refreezing capacity in the lower accumulation area. If high temperatures continue, the current lower accumulation area will turn into a region with superimposed ice in coming years.
[Effects of land use type on diurnal dynamics of environment microclimate in Karst zone].
Li, Sheng; Ren, Hua-Dong; Yao, Xiao-Hua; Zhang, Shou-Gong
2009-02-01
In June 2007, the diurnal dynamics of light intensity, air temperature, air relative humidity, soil temperature, and surface soil (0-5 cm) water content of five land use types in the typical Karst zone of Lingyun City in Guangxi Zhuang Autonomous Region were observed. The results showed that different land use types altered the composition, coverage, and height of aboveground vegetation, which in turn changed the environment microclimate to different degree. The microclimate quality was in the order of forestland > shrub land > grassland > farmland > rock land. On rock land, the light intensity, air temperature, air relative humidity, soil temperature, and soil water content were higher, and the diurnal variation of the five climatic factors was notable, with the microclimatic conditions changed towards drier and hotter. Compared with those on rock land, the light intensity on forestland, shrub land, grassland, and farmland decreased by 96.4%, 52.0%, 17.0% and 44.2%, air temperature decreased by 30.1%, 20.2%, 12.7% and 17.8%, air relative humidity increased by 129.2%, 57.2%, 18.0% and 41.2%, soil temperature decreased by 11.5%, 8%, 2.5% and 5.5%, and soil water content increased by 42.6%, 33.2%, 15.7% and 14.0%, respectively. The five climatic factors on forestland and shrub land had lesser fluctuation, with the microclimate tended to cool and wet. Light intensity, air temperature, and soil temperature correlated positively with each other, and had negative correlations with air relative humidity and soil water content. A positive correlation was observed between air temperature and soil water content.
LaPeyre, Megan K.; Rybovich, Molly; Hall, Steven G.; La Peyre, Jerome F.
2016-01-01
Changes in the timing and interaction of seasonal high temperatures and low salinities as predicted by climate change models could dramatically alter oyster population dynamics. Little is known explicitly about how low salinity and high temperature combinations affect spat (<25mm), seed (25–75mm), andmarket (>75mm) oyster growth and mortality. Using field and laboratory studies, this project quantified the combined effects of extremely low salinities (<5) and high temperatures (>30°C) on growth and survival of spat, seed, andmarket-sized oysters. In 2012 and 2013, hatchery-produced oysters were placed in open and closed cages at three sites in Breton Sound, LA, along a salinity gradient that typically ranged from 5 to 20. Growth and mortality were recorded monthly. Regardless of size class, oysters at the lowest salinity site (annualmean = 4.8) experienced significantly highermortality and lower growth than oysters located in higher salinity sites (annual means = 11.1 and 13.0, respectively); furthermore, all oysters in open cages at the two higher salinity sites experienced higher mortality than in closed cages, likely due to predation. To explicitly examine oyster responses to extreme low salinity and high temperature combinations, a series of laboratory studies were conducted. Oysters were placed in 18 tanks in a fully crossed temperature (25°C, 32°C) by salinity (1, 5, and 15) study with three replicates, and repeated at least twice for each oyster size class. Regardless of temperature, seed and market oysters held in low salinity tanks (salinity 1) experienced 100% mortality within 7 days. In contrast, at salinity 5, temperature significantly affected mortality; oysters in all size classes experienced greater than 50%mortality at 32°C and less than 40%mortality at 25°C. At the highest salinity tested (15), only market-sized oysters held at 32°C experienced significant mortality (>60%). These studies demonstrate that high water temperatures (>30°C) and low salinities (<5) negatively impact oyster growth and survival differentially and that high temperatures alone may negatively impact market-sized oysters. It is critical to understand the potential impacts of climate and anthropogenic changes on oyster resources to better adapt and manage for long-term sustainability.
Ortega, Cristina; Solo-Gabriele, Helena M.; Abdelzaher, Amir; Wright, Mary; Deng, Yang; Stark, Lillian M.
2009-01-01
The objective of this study was to evaluate whether indicator microbes and physical-chemical parameters were correlated with pathogens within a tidally influenced estuary. Measurements included the analysis of physical-chemical parameters (pH, salinity, temperature, and turbidity), measurements of bacterial indicators (enterococci, fecal coliform, E. coli, and total coliform), viral indicators (somatic and MS2 coliphage), viral pathogens (enterovirus by culture), and protozoan pathogens (Cryptosporidium and Giardia). All pathogen results were negative with the exception of one sample which tested positive for culturable reovirus (8.5 MPN/100 L).. Notable physical-chemical parameters for this sample included low salinity (<1 ppt) and high water temperature (31 °C). Indicator bacteria and indicator virus levels for this sample were within average values typically measured within the study site and were low in comparison with levels observed in other freshwater environments. Overall results suggest that high levels of bacterial and viral indicators were associated with low salinity sites. PMID:19464704
NASA Astrophysics Data System (ADS)
Jacobs, K. J. P.; Stevens, B. J.; Baba, R.; Wada, O.; Mukai, T.; Hogg, R. A.
2017-10-01
We report valley current characterisation of high current density InGaAs/AlAs/InP resonant tunnelling diodes (RTDs) grown by metal-organic vapour phase epitaxy (MOVPE) for THz emission, with a view to investigate the origin of the valley current and optimize device performance. By applying a dual-pass fabrication technique, we are able to measure the RTD I-V characteristic for different perimeter/area ratios, which uniquely allows us to investigate the contribution of leakage current to the valley current and its effect on the PVCR from a single device. Temperature dependent (20 - 300 K) characteristics for a device are critically analysed and the effect of temperature on the maximum extractable power (PMAX) and the negative differential conductance (NDC) of the device is investigated. By performing theoretical modelling, we are able to explore the effect of typical variations in structural composition during the growth process on the tunnelling properties of the device, and hence the device performance.
Ramakrishna, Wusirika; Deng, Zhiping; Ding, Chang-Kui; Handa, Avtar K.; Ozminkowski, Richard H.
2003-01-01
We have characterized a novel small heat shock protein gene, viscosity 1 (vis1) from tomato (Lycopersicon esculentum) and provide evidence that it plays a role in pectin depolymerization and juice viscosity in ripening fruits. Expression of vis1 is negatively associated with juice viscosity in diverse tomato genotypes. vis1 exhibits DNA polymorphism among tomato genotypes, and the alleles vis1-hta (high-transcript accumulator; accession no. AY128101) and vis1-lta (low transcript accumulator; accession no. AY128102) are associated with thinner and thicker juice, respectively. Segregation of tomato lines heterogeneous for vis1 alleles indicates that vis1 influences pectin depolymerization and juice viscosity in ripening fruits. vis1 is regulated by fruit ripening and high temperature and exhibits a typical heat shock protein chaperone function when expressed in bacterial cells. We propose that VIS1 contributes to physiochemical properties of juice, including pectin depolymerization, by reducing thermal denaturation of depolymerizing enzymes during daytime elevated temperatures. PMID:12586896
Ideals and Category Typicality
ERIC Educational Resources Information Center
Kim, ShinWoo; Murphy, Gregory L.
2011-01-01
Barsalou (1985) argued that exemplars that serve category goals become more typical category members. Although this claim has received support, we investigated (a) whether categories have a single ideal, as negatively valenced categories (e.g., cigarette) often have conflicting goals, and (b) whether ideal items are in fact typical, as they often…
Niedlich, Claudia; Steffens, Melanie C; Krause, Jacqueline; Settke, Elisabeth; Ebert, Irena D
2015-07-01
The traditional stereotype of the typical woman has been described as "nice, but incompetent." However, such general gender stereotypes are applied to individual targets only under certain conditions: They are used to "fill in the blanks" (Heilman, 2012) if little personal information is provided about a target. "Typical lesbians" are regarded to have more typically masculine (agentic) characteristics such as task competence than the typical woman does. We thus hypothesized that if a woman displays behavior coinciding with the stereotype of the typical woman, it is more readily interpreted as stereotypically female if performed by a heterosexual woman than by a lesbian. Participants (N = 296) read a hypothetical job interview in which we manipulated the target's sexual orientation (between subjects). Findings demonstrated that a lesbian was judged as more competent than a heterosexual woman in the presence of behavior that may be interpreted as gender-stereotypical (Experiments 1 and 2). This difference in competence judgments was not found in the absence of gender-stereotypical behavior (Experiment 1). Judging the heterosexual woman as low in masculinity was related to a judgment of lower competence (Experiment 2). Our findings demonstrate that there are conditions under which lesbians, a group often stereotyped negatively, are less susceptible to invoking negative female stereotypes than heterosexual women are.
Shift in soil microbial communities with shrub encroachment in Inner Mongolia grasslands, China
NASA Astrophysics Data System (ADS)
Shen, H.; Li, H.; Zhang, J.; Hu, H.; Chen, L.; Zhu, Y.; Fang, J.
2017-12-01
The ongoing expansion of shrub encroachment into grasslands represents a unique form of land cover change. How this process affects soil microbial communities is poorly understood. In this study, we aim to assess the effects of shrub encroachment on soil microbial biomass, abundance and composition by comparing data between shrub patches and neighboring herb patches in shrub-encroached grasslands (SEGs) in Inner Mongolia, China. Fourteen SEG sites from two ecosystem types (typical and desert grasslands) were investigated. The phospholipid fatty acid (PLFA) method was used to analyze the composition and biomass of the soil microbial community. Our results showed that the top-soil microbial biomass and abundances of gram-negative bacteria, arbuscular mycorrhizal fungi, and actinomycetes were significantly higher in shrub patches than in herb patches in both typical and desert grasslands (P < 0.05). The fungi to bacteria ratio was significantly higher in shrub patches than in herb patches in desert grassland (P < 0.05). The microbial biomass was positively associated with mean annual precipitation, total nitrogen and available phosphorus, and negatively associated with mean annual temperature. Our results also indicated that the variation in microbial composition was largely explained by edaphic factors, followed by climate factors. In conclusion, shrub encroachment in Inner Mongolia grasslands has significantly influenced the structure and abundance of soil microbial communities, which makes the microbial communities toward a fresh organic carbon-based structure. This study highlights the importance of edaphic and climate factors in microbial community shifts in SEGs.
Attribution of negative intention in Williams syndrome.
Godbee, Kali; Porter, Melanie A
2013-05-01
People with Williams syndrome (WS) are said to have sociable and extremely trusting personalities, approaching strangers without hesitation. This study investigated whether people with WS are less likely than controls to attribute negative intent to others when interpreting a series of ambiguous pictures. This may, at least partially, explain their hypersociability toward strangers. Twenty-seven individuals with WS and 54 typically developing controls (27 matched to WS participants on sex and chronological age and 27 matched on sex and mental age) viewed 10 ambiguous pictures, where one person in the picture may be seen as having a negative objective. Participants were asked to describe what was happening in the picture. Responses were scored for negative intention attribution (NIA). NIA was reduced in WS individuals relative to typically developing controls of the same chronological age, but was similar to typically developing controls of the same mental age. Findings are discussed in relation to possible underlying neurological and cognitive mechanisms and practical implications for understanding and teaching stranger danger to people with WS. Crown Copyright © 2013. Published by Elsevier Ltd. All rights reserved.
Effects of temperature and mass conservation on the typical chemical sequences of hydrogen oxidation
NASA Astrophysics Data System (ADS)
Nicholson, Schuyler B.; Alaghemandi, Mohammad; Green, Jason R.
2018-01-01
Macroscopic properties of reacting mixtures are necessary to design synthetic strategies, determine yield, and improve the energy and atom efficiency of many chemical processes. The set of time-ordered sequences of chemical species are one representation of the evolution from reactants to products. However, only a fraction of the possible sequences is typical, having the majority of the joint probability and characterizing the succession of chemical nonequilibrium states. Here, we extend a variational measure of typicality and apply it to atomistic simulations of a model for hydrogen oxidation over a range of temperatures. We demonstrate an information-theoretic methodology to identify typical sequences under the constraints of mass conservation. Including these constraints leads to an improved ability to learn the chemical sequence mechanism from experimentally accessible data. From these typical sequences, we show that two quantities defining the variational typical set of sequences—the joint entropy rate and the topological entropy rate—increase linearly with temperature. These results suggest that, away from explosion limits, data over a narrow range of thermodynamic parameters could be sufficient to extrapolate these typical features of combustion chemistry to other conditions.
Shear modulus of neutron star crust
NASA Astrophysics Data System (ADS)
Baiko, D. A.
2011-09-01
The shear modulus of solid neutron star crust is calculated by the thermodynamic perturbation theory, taking into account ion motion. At a given density, the crust is modelled as a body-centred cubic Coulomb crystal of fully ionized atomic nuclei of one type with a uniform charge-compensating electron background. Classic and quantum regimes of ion motion are considered. The calculations in the classic temperature range agree well with previous Monte Carlo simulations. At these temperatures, the shear modulus is given by the sum of a positive contribution due to the static lattice and a negative ∝ T contribution due to the ion motion. The quantum calculations are performed for the first time. The main result is that at low temperatures the contribution to the shear modulus due to the ion motion saturates at a constant value, associated with zero-point ion vibrations. Such behaviour is qualitatively similar to the zero-point ion motion contribution to the crystal energy. The quantum effects may be important for lighter elements at higher densities, where the ion plasma temperature is not entirely negligible compared to the typical Coulomb ion interaction energy. The results of numerical calculations are approximated by convenient fitting formulae. They should be used for precise neutron star oscillation modelling, a rapidly developing branch of stellar seismology.
NASA Astrophysics Data System (ADS)
Sharapov, V. I.; Kudryavtseva, E. V.
2017-11-01
The technology of low-temperature deaeration of water in thermal power plants was developed. It is proposed to use natural gas supplied to the furnace as desorbing agent in the deaerator instead steam or superheated water. Natural gas has low, often - negative temperature after reducing installs. At the same time, it contains virtually no corrosive gases, oxygen and carbon dioxide, thereby successfully may be used as a stripping agent in water deaeration. The calculation of the energy efficiency of the technology for a typical unit of CHP has shown that achieved a significant annual saving of fuel equivalent in the transition from the traditional method of deaeration of water in the low temperature deaeration. Hydrodynamic and mass transfer indicators were determined for the deaerator thermal power plants using as stripping medium natural gas supplied to the boiler burners. Theoretically required amount and the real specific consumption of natural gas were estimated for deaeration of water standard quality. The calculation of the hydrodynamic characteristics was presented for jet-bubbling atmospheric deaerator with undescended perforated plate when operating on natural gas. The calculation shows the possibility of using commercially available atmospheric deaerators for the application of the new low-temperature water deaeration technology.
Advanced Concepts in Josephson Junction Reflection Amplifiers
NASA Astrophysics Data System (ADS)
Lähteenmäki, Pasi; Vesterinen, Visa; Hassel, Juha; Paraoanu, G. S.; Seppä, Heikki; Hakonen, Pertti
2014-06-01
Low-noise amplification at microwave frequencies has become increasingly important for the research related to superconducting qubits and nanoelectromechanical systems. The fundamental limit of added noise by a phase-preserving amplifier is the standard quantum limit, often expressed as noise temperature . Towards the goal of the quantum limit, we have developed an amplifier based on intrinsic negative resistance of a selectively damped Josephson junction. Here we present measurement results on previously proposed wide-band microwave amplification and discuss the challenges for improvements on the existing designs. We have also studied flux-pumped metamaterial-based parametric amplifiers, whose operating frequency can be widely tuned by external DC-flux, and demonstrate operation at pumping, in contrast to the typical metamaterial amplifiers pumped via signal lines at.
Impact of Various Charge States of Hydrogen on Passivation of Dislocation in Silicon
NASA Astrophysics Data System (ADS)
Song, Lihui; Lou, Jingjing; Fu, Jiayi; Ji, Zhenguo
2018-03-01
Dislocation, one of typical crystallographic defects in silicon, is detrimental to the minority carrier lifetime of silicon wafer. Hydrogen passivation is able to reduce the recombination activity of dislocation, however, the passivation efficacy is strongly dependent on the experimental conditions. In this paper, a model based on the theory of hydrogen charge state control is proposed to explain the passivation efficacy of dislocation correlated to the peak temperature of thermal annealing and illumination intensity. Experimental results support the prediction of the model that a mix of positively charged hydrogen and negatively charged hydrogen at certain ratio can maximise the passivation efficacy of dislocation, leading to a better power conversion efficiency of silicon solar cell with dislocation in it.
DOT National Transportation Integrated Search
2017-01-01
The objectives of this research were to 1) investigate the effects of lower concrete albedo on the thermal behavior of concrete pavement by directly comparing temperatures and moisture contents of typical and darkened concrete pavements and 2) invest...
Highly stable and finely tuned magnetic fields generated by permanent magnet assemblies.
Danieli, E; Perlo, J; Blümich, B; Casanova, F
2013-05-03
Permanent magnetic materials are the only magnetic source that can be used to generate magnetic fields without power consumption or maintenance. Such stand-alone magnets are very attractive for many scientific and engineering areas, but they suffer from poor temporal field stability, which arises from the strong sensitivity of the magnetic materials and mechanical support to temperature variation. In this work, we describe a highly efficient method useful to cancel the temperature coefficient of permanent magnet assemblies in a passive and accurate way. It is based on the combination of at least two units made of magnetic materials with different temperature coefficients arranged in such a way that the ratio of the fields generated by each unit matches the ratio of their effective temperature coefficients defined by both the magnetic and mechanical contributions. Although typically available magnetic materials have negative temperature coefficients, the cancellation is achieved by aligning the fields generated by each unit in the opposite direction. We demonstrate the performance of this approach by stabilizing the field generated by a dipolar Halbach magnet, recently proposed to achieve high field homogeneity. Both the field drift and the homogeneity are monitored via nuclear magnetic resonance spectroscopy experiments. The results demonstrate the compatibility of the thermal compensation approach with existing strategies useful to fine-tune the spatial dependence of the field generated by permanent magnet arrays.
Cioffi, I; Farella, M; Chiodini, P; Ammendola, L; Capuozzo, R; Klain, C; Vollaro, S; Michelotti, A
2017-05-01
Patients with masticatory muscle pain and migraine typically report that the intensity of pain fluctuates over time and is affected by weather changes. Weather variables, such as ambient temperature and humidity, may vary significantly depending on whether the individual is outdoor or indoor. It is, therefore, important to assess these variables at the individual level using portable monitors, during everyday life. This study aimed to determine and compare the temporal patterns of pain in individuals affected with facial and head pain and to investigate its relation with weather changes. Eleven patients (27·3 ± 7·4 years) with chronic masticatory muscle pain (MP) and twenty (33·1 ± 8·7 years) with migraine headache (MH) were asked to report their current pain level on a visual analogue scale (VAS) every hour over fourteen consecutive days. The VAS scores were collected using portable data-loggers, which were also used to record temperature, atmospheric pressure and relative humidity. VAS scores varied markedly over time in both groups. Pain VAS scores fluctuate less in the MP group than in the MH group, but their mean, minimum and maximum values were higher than those of migraine patients (all P < 0·05). Pain scores <2 cm were more common in the MH than in the MP group (P < 0·001). Perceived intensity of pain was negatively associated with atmospheric pressure in the MP group and positively associated with temperature and atmospheric in the MH group. Our results reveal that patients with masticatory muscle pain and patients with migraine present typical temporal pain patterns that are influenced in a different way by weather changes. © 2017 John Wiley & Sons Ltd.
Gardner, Andrew W; Wacker, David P; Boelter, Eric W
2009-01-01
The choice-making behavior of 2 typically developing children who engaged in problem behavior maintained by negative reinforcement was evaluated within a concurrent-operants assessment that varied the quality of attention across free-play and demand conditions. The results demonstrated that it was possible to bias responding towards academic demands for both participants by providing high-quality attention, despite the continuous availability of negative reinforcement. The current study extended brief clinical methods with typically developing children and demonstrated how different qualities of attention provided across concurrent schedules could bias responding. PMID:19949522
Evidence that Tropical Forest Photosynthesis is Not Directly Limited by High Temperatures
NASA Astrophysics Data System (ADS)
Smith, M.; Taylor, T.; Van Haren, J. L. M.; Rosolem, R.; Restrepo-Coupe, N.; Wu, J.; Oliveira Junior, R. C.; Silva, R. D.; De Araujo, A. C.; Camargo, P. B. D.; Huxman, T. E.; Saleska, S. R.
2016-12-01
Loss of tropical forest biomass under rising temperatures could result in significant feedbacks to global climate. The vulnerability of tropical trees to climate warming depends on the specific physiological mechanisms controlling photosynthetic decline at temperatures above the thermal optimum. High temperatures may negatively impact photosynthetic metabolism (direct effects) (Doughty and Goulden 2008), or leaves may respond to the concomitant increase in vapor pressure deficit (VPD) by closing stomata (indirect effects) (Lloyd and Farquhar 2008). The difference is important because the former reveals a vulnerability of photosynthetic infrastructure to higher temperatures, while the latter is an expected physiological response of healthy leaves. We investigated these contrasting hypotheses in a climate controlled, 0.2 ha artificial tropical forest (the Biosphere 2 tropical forest biome, B2-TF). Typically coupled in nature, VPD and temperature can be varied independently in the controlled environment of the B2-TF, and their effects on photosynthesis distinguished. We found that in the B2-TF, gross ecosystem productivity (GEP) was strongly reduced by increasing VPD, but responded little to temperature. Whereas eddy flux-derived GEP of three natural tropical forest sites in the Amazon of Brazil declined at temperatures above 27°C, GEP in the B2-TF remained stable up to 33°C under both low and high VPD regimes. While either mechanism results in reduced photosynthesis, the impact of VPD is short-lived and may be mitigated by enhanced water use efficiency under elevated atmospheric CO2 concentrations, allowing tropical forests to be more resilient to climate warming.
Unprompted generation of obesity stereotypes.
Horsburgh-McLeod, G; Latner, J D; O'Brien, K S
2009-01-01
Prejudice towards obese people is widespread and has negative consequences for individuals with obesity. The present study covertly examined whether participants spontaneously generate different written transcript content (i.e., more negative stereotypes) when presented with a picture of an obese person or a normal-weight person. Two pictures of young women were computer generated to appear identical in all features except for body shape, which was either obese or normal-weight. Forty-nine women blind to the nature of the study were randomized to receive either the obese or normal-weight picture and asked to write a free-response description of a typical "day in the life" of the woman depicted. Independent coding of the transcripts revealed more frequent negative stereotypes and more negative valence generated by participants asked to describe a typical day of the obese target. These differences are consistent with the prevalent negative stereotypes of obese individuals.
Chemical Composition of RR Lyn - an Eclipsing Binary System with Am and λ Boo Type Components
NASA Astrophysics Data System (ADS)
Jeong, Yeuncheol; Yushchenko, Alexander V.; Doikov, Dmytry N.; Gopka, Vira F.; Yushchenko, Volodymyr O.
2017-06-01
High-resolution spectroscopic observations of the eclipsing binary system RR Lyn were made using the 1.8 m telescope at the Bohuynsan Optical Astronomical Observatory in Korea. The spectral resolving power was R = 82,000, with a signal to noise ratio of S/N > 150. We found the effective temperatures and surface gravities of the primary and secondary components to be equal to Teff = 7,920 & 7,210 K and log(g) = 3.80 & 4.16, respectively. The abundances of 34 and 17 different chemical elements were found in the atmospheric components. Correlations between the derived abundances with condensation temperatures and the second ionization potentials of these elements are discussed. The primary component is a typical metallic line star with the abundances of light and iron group elements close to solar values, while elements with atomic numbers Z > 30 are overabundant by 0.5-1.5 dex with respect to solar values. The secondary component is a λ Boo type star. In this type of stars, CNO abundances are close to solar values, while the abundance pattern shows a negative correlation with condensation temperatures.
Ansart, A; Vernon, P; Daguzan, J
2001-06-01
Helix aspersa hibernates in Brittany (western France), where it may experience subzero temperatures. Studies on cold hardiness, although scarce in land snails, have shown a seasonal variation in supercooling ability, associated with high temperatures of crystallization (Tc). In the present work, two key environmental factors, temperature and photoperiod, were studied to elucidate, how they may affect the enhancement of supercooling ability in the snails from the end of summer to winter. Nine groups of adult snails were acclimated to different combinations of photoperiod (LD-16:8, LD-12:12, and LD-8:16 h) and temperature (15, 10, and 5 degrees C). Temperature of crystallization, hemolymph osmolality, and water content were measured. The results demonstrate a significant effect of the photoperiod on Tc, i.e., shorter photoperiods induce lower Tc (LD-16:8 h, mean Tc = -3.0 degrees C, SD = 2.0; LD-12:12 h, mean Tc = -4.3 degrees C, SD = 1.9; LD-8:16 h, mean Tc = -5.2 degrees C, SD = 1.9; n = 90), whereas the acclimation temperature had no effect. Measurements of hemolymph osmolality and water content showed that osmolality is negatively correlated with water content. Mechanisms such as dehydration are involved in the decrease of Tc. A declining photoperiod triggers a lower Tc, long before the onset of winter conditions. This response may have an adaptive component, allowing individuals to cope with the mild winters typically observed in oceanic regions. Copyright 2001 Elsevier Science.
Magnetotransport in magnetic nanostructures
NASA Astrophysics Data System (ADS)
Panchula, Alex F.
The unifying theme of this dissertation is the exploration of novel magnetic thin film materials to improve our understanding of spin-dependent transport in such materials, especially with regard to their use in the nascent field of spin based devices. Such devices, which rely on controlling the electron's spin rather than its charge as in conventional micro-electronics, may be important for applications in sensing, memory and computation. This dissertation covers research performed at the IBM Almaden Research Center between 2000 and 2003. One class of spin-based devices are magnetic tunnel junctions (MTJs), which display large changes in resistance in small magnetic fields. This tunneling magnetoresistance (TMR) is derived from changes in the relative alignment of the magnetic moments of thin ferromagnetic layers which are separated by thin insulating layers. The tunneling current spin polarization (TSP) determines the magnitude of the TMR. For typical transition-metal ferromagnets and their alloys the TSP is ˜50% although it is anticipated that half-metals should display nearly 100%. Confirming theoretical predictions, MTJs with electrodes of magnetite and a conventional ferromagnet such as a CoFe alloy, display an inverted TMR, consistent with negatively spin polarized magnetite electrodes. However, the magnitude of TSP of -48% at low temperatures, is not much larger than that exhibited by conventional 3d transition metal ferromagnets. At high temperatures, transport through the MTJ is dominated by tunneling across the alumina tunnel barrier, while at low temperatures the bulk properties of the magnetite dominates at low bias voltage. Another class of half-metals, the semi-heuslers exhibit low TSP, most likely due to surface disorder and, as revealed in this work, the possible formation of MnSb. The MnSb alloys studied in MTJs are found to behave as typical ferromagnets with a small positive TMR. Also considered are MTJs whose barriers are comprised of the wide band-gap semiconductors, ZnSe and Cr2O3. These low barrier height materials show typical tunneling behavior, although the TMR is lower than found for wide-gap insulators. Finally, the development of a high precision SQUID based voltmeter for application to low resistance devices with the current perpendicular to the plane of the materials is outlined.
133. INTERIOR, SIXTH FLOOR, WING 6300 WEST, TYPICAL SIDE CORRIDOR ...
133. INTERIOR, SIXTH FLOOR, WING 6300 WEST, TYPICAL SIDE CORRIDOR (4' x 5' negative; 8' x 10' print) - U.S. Department of the Interior, Eighteenth & C Streets Northwest, Washington, District of Columbia, DC
NASA Astrophysics Data System (ADS)
Shen, X. H.; Zhang, X.; Liu, J.; Zhao, S. F.; Yuan, G. P.
2015-04-01
Ionospheric perturbations in plasma parameters have been observed before large earthquakes, but the correlation between different parameters has been less studied in previous research. The present study is focused on the relationship between electron density (Ne) and temperature (Te) observed by the DEMETER (Detection of Electro-Magnetic Emissions Transmitted from Earthquake Regions) satellite during local nighttime, in which a positive correlation has been revealed near the equator and a weak correlation at mid- and low latitudes over both hemispheres. Based on this normal background analysis, the negative correlation with the lowest percent in all Ne and Te points is studied before and after large earthquakes at mid- and low latitudes. The multiparameter observations exhibited typical synchronous disturbances before the Chile M8.8 earthquake in 2010 and the Pu'er M6.4 in 2007, and Te varied inversely with Ne over the epicentral areas. Moreover, statistical analysis has been done by selecting the orbits at a distance of 1000 km and ±7 days before and after the global earthquakes. Enhanced negative correlation coefficients lower than -0.5 between Ne and Te are found in 42% of points to be connected with earthquakes. The correlation median values at different seismic levels show a clear decrease with earthquakes larger than 7. Finally, the electric-field-coupling model is discussed; furthermore, a digital simulation has been carried out by SAMI2 (Sami2 is Another Model of the Ionosphere), which illustrates that the external electric field in the ionosphere can strengthen the negative correlation in Ne and Te at a lower latitude relative to the disturbed source due to the effects of the geomagnetic field. Although seismic activity is not the only source to cause the inverse Ne-Te variations, the present results demonstrate one possibly useful tool in seismo-electromagnetic anomaly differentiation, and a comprehensive analysis with multiple parameters helps to further understand the seismo-ionospheric coupling mechanism.
Warm Anomaly Effects on California Current Phytoplankton
NASA Astrophysics Data System (ADS)
Gomez Ocampo, E.; Gaxiola-Castro, G.; Beier, E.; Durazo, R.
2016-02-01
Positive temperature anomalies were reported in the NE Pacific Ocean since the boreal winter of 2013-2014. Previous studies showed that these anomalies were caused by lower than normal rates of heat loss from the ocean to the atmosphere and by relatively weak cold water advection to the upper ocean. Anomalous Sea Surface Temperature (SST), Absolute Dynamic Topography (ADT), and Chlorophyll (CHL) obtained from monthly remote sensing data were registered in the California Current region during August 2014. Anomalies appeared around the coastal and oceanic zones, particularly in the onshore zone between Monterey Bay, California and Magdalena Bay, Baja California. High positive SST anomalous values up to 4ºC above the long-term mean, 20 cm in ADT, and less of 4.5 mg m-3 of CHL were registered. Changes of 20 cm in ADT above the average are equivalent to 50 m thermocline deepening considering typical values of stratification for the area, which in turn influenced the availability of nutrients and light for phytoplankton growth in the euphotic zone. To examine the influence of the warm anomaly on phytoplankton production, we fitted with Generalized Additive Models the relationship between monthly primary production satellite data and ADT. Primary production inferred from the model, showed during August 2014 high negative anomalies (up to 0.5 gC m-2 d1) in the coastal zone. The first empirical orthogonal function of ADT and PP revealed that the highest ADT anomalies and the lowest primary production occurred off the Baja California Peninsula, between Punta Eugenia and Cabo San Lucas. Preliminary conclusions showed that warm anomaly affected negatively to phytoplankton organisms during August 2014, being this evident by low biomass and negative primary production anomalies as result of pycnocline deepens.
Gu, Chengyu; Zhang, Ying; Wei, Fuquan; Cheng, Yougen; Cao, Yulin; Hou, Hongtao
2016-09-01
Magnetic resonance imaging (MRI) with diffusion-tensor imaging (DTI) together with a white matter fiber tracking (FT) technique was used to assess different brain white matter structures and functionalities in schizophrenic patients with typical first negative symptoms. In total, 30 schizophrenic patients with typical first negative symptoms, comprising an observation group were paired 1:1 according to gender, age, right-handedness, and education, with 30 healthy individuals in a control group. Individuals in each group underwent routine MRI and DTI examination of the brain, and diffusion-tensor tractography (DTT) data were obtained through whole brain analysis based on voxel and tractography. The results were expressed by fractional anisotropy (FA) values. The schizophrenic patients were evaluated using a positive and negative symptom scale (PANSS) as well as a Global Assessment Scale (GAS). The results of the study showed that routine MRIs identified no differences between the two groups. However, compared with the control group, the FA values obtained by DTT from the deep left prefrontal cortex, the right deep temporal lobe, the white matter of the inferior frontal gyrus and part of the corpus callosum were significantly lower in the observation group (P<0.05). The PANSS positive scale value in the observation group averaged 7.7±1.5, and the negative scale averaged 46.6±5.9, while the general psychopathology scale averaged 65.4±10.3, and GAS averaged 53.8±19.2. The Pearson statistical analysis, the left deep prefrontal cortex, the right deep temporal lobe, the white matter of the inferior frontal gyrus and the FA value of part of the corpus callosum in the observation group was negatively correlated with the negative scale (P<0.05), and positively correlated with GAS (P<0.05). In conclusion, a decrease in the FA values of the left deep prefrontal cortex, the right deep temporal lobe, the white matter of the inferior frontal gyrus and part of the corpus callosum may be associated with schizophrenia with typical first negative symptoms and the application of MRI DTI-FT can improve diagnostic accuracy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shaykhutdinov, K. A.; Petrov, M. I.; Terent'ev, K. I.
2015-04-28
We investigate magnetoresistance, ρ{sub c}, of single-crystal bilayer lanthanum manganites (La{sub 1−z}Nd{sub z}){sub 1.4}Sr{sub 1.6}Mn{sub 2}O{sub 7} (z = 0 and 0.1) at a transport current flowing along the crystal c axis and in external magnetic fields applied parallel to the crystal c axis or ab plane. It is demonstrated that the La{sub 1.4}Sr{sub 1.6}Mn{sub 2}O{sub 7} manganite exhibits the positive magnetoresistance effect in the magnetic field applied in the ab sample plane at the temperatures T < 60 K, along with the negative magnetoresistance typical of all the substituted lanthanum manganites. In the (La{sub 0.9}Nd{sub 0.1}){sub 1.4}Sr{sub 1.6}Mn{sub 2}O{sub 7} sample, the positive magnetoresistancemore » effect is observed at temperatures of 60–80 K in an applied field parallel to the c axis. The mechanism of this effect is shown to be fundamentally different from the colossal magnetoresistance effect typical of lanthanum manganites. The positive magnetoresistance originates from spin-dependent tunneling of carriers between the manganese-oxygen bilayers and can be explained by features of the magnetic structure of the investigated compounds.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kojima, A.; Hanada, M.; Yoshida, M.
2015-04-08
The temperature control system of the large-size plasma grid has been developed to realize the long pulse production of high-current negative ions for JT-60SA. By using this prototype system for the JT-60SA ion source, 15 A negative ions has been sustained for 100 s for the first time, which is three times longer than that obtained in JT-60U. In this system, a high-temperature fluorinated fluid with a high boiling point of 270 degree Celsius is circulated in the cooling channels of the plasma grids (PG) where a cesium (Cs) coverage is formed to enhance the negative ion production. Because themore » PG temperature control had been applied to only 10% of the extraction area previously, the prototype PG with the full extraction area (110 cm × 45 cm) was developed to increase the negative ion current in this time. In the preliminary results of long pulse productions of high-current negative ions at a Cs conditioning phase, the negative ion production was gradually degraded in the last half of 100 s pulse where the temperature of an arc chamber wall was not saturated. From the spectroscopic measurements, it was found that the Cs flux released from the wall might affect to the negative ion production, which implied the wall temperature should be kept low to control the Cs flux to the PG for the long-pulse high-current production. The obtained results of long-pulse production and the PG temperature control method contributes the design of the ITER ion source.« less
Analysis of Static Spacecraft Floating Potential at Low Earth Orbit (LEO)
NASA Technical Reports Server (NTRS)
Herr, Joel L.; Hwang, K. S.; Wu, S. T.
1995-01-01
Spacecraft floating potential is the charge on the external surfaces of orbiting spacecraft relative to the space. Charging is caused by unequal negative and positive currents to spacecraft surfaces. The charging process continues until the accelerated particles can be collected rapidly enough to balance the currents at which point the spacecraft has reached its equilibrium or floating potential. In low inclination. Low Earth Orbit (LEO), the collection of positive ion and negative electrons. in a particular direction. are typically not equal. The level of charging required for equilibrium to be established is influenced by the characteristics of the ambient plasma environment. by the spacecraft motion, and by the geometry of the spacecraft. Using the kinetic theory, a statistical approach for studying the interaction is developed. The approach used to study the spacecraft floating potential depends on which phenomena are being applied. and on the properties of the plasma. especially the density and temperature. The results from kinetic theory derivation are applied to determine the charging level and the electric potential distribution at an infinite flat plate perpendicular to a streaming plasma using finite-difference scheme.
Part, C E; Kiddie, J L; Hayes, W A; Mills, D S; Neville, R F; Morton, D B; Collins, L M
2014-06-22
Domestic dogs (Canis familiaris) housed in kennelling establishments are considered at risk of suffering poor welfare. Previous research supporting this hypothesis has typically used cortisol:creatinine ratios (C/Cr) to measure acute and chronic stress in kennelled dogs. However, the value of C/Cr as a welfare indicator has been questioned. This study aimed to test the validity of a range of physiological, physical and behavioural welfare indicators and to establish baseline values reflecting good dog welfare. Measurements were taken from 29 privately-owned dogs (14 males, 15 females), ranging in age and breed, in their own home and in a boarding kennel environment, following a within-subjects, counterbalanced design. Pairwise comparisons revealed that C/Cr and vanillylmandelic acid:creatinine ratios (VMA/Cr) were higher in the kennel than home environment (P=0.003; P=0.01, respectively) and were not associated with differences in movement/exercise between environments. Dogs' surface temperature was lower in kennels (P=0.001) and was not associated with ambient temperature. No association with age, or effects of kennel establishment, kennelling experience, sex or source were found. Dogs were generally more active in kennels, but showed considerable individual variability. C/Cr and 5-HIAA:creatinine ratios (5-HIAA/Cr) were negatively correlated with lip licking in kennels. Baseline values for each parameter are presented. The emotional valence of responses was ambiguous and no definitive evidence was found to suggest that dogs were negatively stressed by kennelling. It was concluded that C/Cr and, particularly, VMA/Cr and surface temperature provide robust indicators of psychological arousal in dogs, while spontaneous behaviour might be better used to facilitate interpretation of physiological and physical data on an individual level. Copyright © 2014 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mondal, Rabindra Nath, E-mail: rnmondal71@yahoo.com; Shaha, Poly Rani; Roy, Titob
Unsteady laminar flow with convective heat transfer through a curved square duct rotating at a constant angular velocity about the center of curvature is investigated numerically by using a spectral method, and covering a wide range of the Taylor number −300≤Tr≤1000 for the Dean number Dn = 1000. A temperature difference is applied across the vertical sidewalls for the Grashof number Gr = 100, where the outer wall is heated and the inner wall cooled, the top and bottom walls being adiabatic. Flow characteristics are investigated with the effects of rotational parameter, Tr, and the pressure-driven parameter, Dn, for themore » constant curvature 0.001. Time evolution calculations as well as their phase spaces show that the unsteady flow undergoes through various flow instabilities in the scenario ‘multi-periodic → chaotic → steady-state → periodic → multi-periodic → chaotic’, if Tr is increased in the positive direction. For negative rotation, however, time evolution calculations show that the flow undergoes in the scenario ‘multi-periodic → periodic → steady-state’, if Tr is increased in the negative direction. Typical contours of secondary flow patterns and temperature profiles are obtained at several values of Tr, and it is found that the unsteady flow consists of two- to six-vortex solutions if the duct rotation is involved. External heating is shown to generate a significant temperature gradient at the outer wall of the duct. This study also shows that there is a strong interaction between the heating-induced buoyancy force and the centrifugal-Coriolis instability in the curved channel that stimulates fluid mixing and consequently enhances heat transfer in the fluid.« less
NASA Astrophysics Data System (ADS)
Irby, Isaac D.; Friedrichs, Marjorie A. M.; Da, Fei; Hinson, Kyle E.
2018-05-01
The Chesapeake Bay region is projected to experience changes in temperature, sea level, and precipitation as a result of climate change. This research uses an estuarine-watershed hydrodynamic-biogeochemical modeling system along with projected mid-21st-century changes in temperature, freshwater flow, and sea level rise to explore the impact climate change may have on future Chesapeake Bay dissolved-oxygen (DO) concentrations and the potential success of nutrient reductions in attaining mandated estuarine water quality improvements. Results indicate that warming bay waters will decrease oxygen solubility year-round, while also increasing oxygen utilization via respiration and remineralization, primarily impacting bottom oxygen in the spring. Rising sea level will increase estuarine circulation, reducing residence time in bottom waters and increasing stratification. As a result, oxygen concentrations in bottom waters are projected to increase, while oxygen concentrations at mid-depths (3 < DO < 5 mg L-1) will typically decrease. Changes in precipitation are projected to deliver higher winter and spring freshwater flow and nutrient loads, fueling increased primary production. Together, these multiple climate impacts will lower DO throughout the Chesapeake Bay and negatively impact progress towards meeting water quality standards associated with the Chesapeake Bay Total Maximum Daily Load. However, this research also shows that the potential impacts of climate change will be significantly smaller than improvements in DO expected in response to the required nutrient reductions, especially at the anoxic and hypoxic levels. Overall, increased temperature exhibits the strongest control on the change in future DO concentrations, primarily due to decreased solubility, while sea level rise is expected to exert a small positive impact and increased winter river flow is anticipated to exert a small negative impact.
NASA Technical Reports Server (NTRS)
Cho, Hyung J.; Sukhatme, Kalyani G.; Mahoney, John C.; Penanen, Konstantin Penanen; Vargas, Rudolph, Jr.
2010-01-01
A method allows combining the functions of a heater and a thermometer in a single device, a thermistor, with minimal temperature read errors. Because thermistors typically have a much smaller thermal mass than the objects they monitor, the thermal time to equilibrate the thermometer to the temperature of the object is typically much shorter than the thermal time of the object to change its temperature in response to an external perturbation.
Surface properties of magnetite in high temperature aqueous electrolyte solutions: A review.
Vidojkovic, Sonja M; Rakin, Marko P
2017-07-01
Deposits and scales formed on heat transfer surfaces in power plant water/steam circuits have a significant negative impact on plant reliability, availability and performance, causing tremendous economic consequences and subsequent increases in electricity cost. Consequently, the improvement of the understanding of deposition mechanisms on power generating surfaces is defined as a high priority in the power industry. The deposits consist principally of iron oxides, which are steel corrosion products and usually present in colloidal form. Magnetite (Fe 3 O 4 ) is the predominant and most abundant compound found in water/steam cycles of all types of power plants. The crucial factor that governs the deposition process and influences the deposition rate of magnetite is the electrostatic interaction between the metal wall surfaces and the suspended colloidal particles. However, there is scarcity of data on magnetite surface properties at elevated temperatures due to difficulties in their experimental measurement. In this paper a generalized overview of existing experimental data on surface characteristics of magnetite at high temperatures is presented with particular emphasis on possible application in the power industry. A thorough analysis of experimental techniques, mathematical models and results has been performed and directions for future investigations have been considered. The state-of-the-art assessment showed that for the characterization of magnetite/aqueous electrolyte solution interface at high temperatures acid-base potentiometric titrations and electrophoresis were the most beneficial and dependable techniques which yielded results up to 290 and 200°C, respectively. Mass titrations provided data on magnetite surface charge up to 320°C, however, this technique is highly sensitive to the minor concentrations of impurities present on the surface of particle. Generally, fairly good correlation between the isoelectric point (pH iep ) and point of zero charge (pH pzc ) values has been obtained. All obtained results showed that the surface of magnetite particles is negatively charged in typical high temperature thermal power plant water, which indicates the low probability of aggregation and deposition on plant metal surfaces. The results also gave strong evidence on decline of pH iep and pH pzc with temperature in the same manner as neutral pH of water. The thermodynamic parameters of magnetite surface protonation reactions were in good agreement with each other and obtained using one site/two pK and mainly one site/one pK model. All collected data provided evidences for interaction between particles, probability of deposition and eventual attachment to the steel surface at various pH and temperatures and can serve as a foundation for future surface studies aimed at optimizing plant performances and reducing of magnetite deposition. In future works it would be indispensable to provide the surface experimental data for extended temperature ranges, typical solution chemistries and metal surfaces of power plant structural components and thus obtain entire set of results useful in modeling the surface behavior and control of deposition process in power reactors and thermal plant circuits. Moreover, the acquired results will be applicable and greatly valuable to all other types of power plants, industrial facilities and technological processes using the high temperature water medium. Copyright © 2016 Elsevier B.V. All rights reserved.
Ice nucleation triggered by negative pressure.
Marcolli, Claudia
2017-11-30
Homogeneous ice nucleation needs supercooling of more than 35 K to become effective. When pressure is applied to water, the melting and the freezing points both decrease. Conversely, melting and freezing temperatures increase under negative pressure, i.e. when water is stretched. This study presents an extrapolation of homogeneous ice nucleation temperatures from positive to negative pressures as a basis for further exploration of ice nucleation under negative pressure. It predicts that increasing negative pressure at temperatures below about 262 K eventually results in homogeneous ice nucleation while at warmer temperature homogeneous cavitation, i. e. bubble nucleation, dominates. Negative pressure occurs locally and briefly when water is stretched due to mechanical shock, sonic waves, or fragmentation. The occurrence of such transient negative pressure should suffice to trigger homogeneous ice nucleation at large supercooling in the absence of ice-nucleating surfaces. In addition, negative pressure can act together with ice-inducing surfaces to enhance their intrinsic ice nucleation efficiency. Dynamic ice nucleation can be used to improve properties and uniformity of frozen products by applying ultrasonic fields and might also be relevant for the freezing of large drops in rainclouds.
du Plessis, Katherine L; Martin, Rowan O; Hockey, Philip A R; Cunningham, Susan J; Ridley, Amanda R
2012-10-01
Recent mass mortalities of bats, birds and even humans highlight the substantial threats that rising global temperatures pose for endotherms. Although less dramatic, sublethal fitness costs of high temperatures may be considerable and result in changing population demographics. Endothermic animals exposed to high environmental temperatures can adjust their behaviour (e.g. reducing activity) or physiology (e.g. elevating rates of evaporative water loss) to maintain body temperatures within tolerable limits. The fitness consequences of these adjustments, in terms of the ability to balance water and energy budgets and therefore maintain body condition, are poorly known. We investigated the effects of daily maximum temperature on foraging and thermoregulatory behaviour as well as maintenance of body condition in a wild, habituated population of Southern Pied Babblers Turdoides bicolor. These birds inhabit a hot, arid area of southern Africa where they commonly experience environmental temperatures exceeding optimal body temperatures. Repeated measurements of individual behaviour and body mass were taken across days varying in maximum air temperature. Contrary to expectations, foraging effort was unaffected by daily maximum temperature. Foraging efficiency, however, was lower on hotter days and this was reflected in a drop in body mass on hotter days. When maximum air temperatures exceeded 35.5 °C, individuals no longer gained sufficient weight to counter typical overnight weight loss. This reduction in foraging efficiency is likely driven, in part, by a trade-off with the need to engage in heat-dissipation behaviours. When we controlled for temperature, individuals that actively dissipated heat while continuing to forage experienced a dramatic decrease in their foraging efficiency. This study demonstrates the value of investigations of temperature-dependent behaviour in the context of impacts on body condition, and suggests that increasingly high temperatures will have negative implications for the fitness of these arid-zone birds. © 2012 Blackwell Publishing Ltd.
Menopause in the workplace: What employers should be doing.
Jack, Gavin; Riach, Kathleen; Bariola, Emily; Pitts, Marian; Schapper, Jan; Sarrel, Philip
2016-03-01
Large numbers of women transition through menopause whilst in paid employment. Symptoms associated with menopause may cause difficulties for working women, especially if untreated, yet employers are practically silent on this potentially costly issue. This review summarises existing research on the underexplored topic of menopause in the workplace, and synthesises recommendations for employers. Longstanding scholarly interest in the relationship between employment status and symptom reporting typically (but not consistently) shows that women in paid employment (and in specific occupations) report fewer and less severe symptoms than those who are unemployed. Recent studies more systematically focused on the effects of menopausal symptoms on work are typically cross-sectional self-report surveys, with a small number of qualitative studies. Though several papers established that vasomotor (and associated) symptoms have a negative impact on women's productivity, capacity to work and work experience, this is not a uniform finding. Psychological and other somatic symptoms associated with menopause can have a relatively greater negative influence. Physical (e.g., workplace temperature and design) and psychosocial (e.g., work stress, perceptions of control/autonomy) workplace factors have been found to influence the relationship between symptoms and work. Principal recommendations for employers to best support menopausal women as part of a holistic approach to employee health and well-being include risk assessments to make suitable adjustments to the physical and psychosocial work environment, provision of information and support, and training for line managers. Limitations of prior studies, and directions for future research are presented. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Passive in-situ chemical sensor
Morrell, Jonathan S [Farragut, TN; Ripley, Edward B [Knoxville, TN
2012-02-14
A chemical sensor for assessing a chemical of interest. In typical embodiments the chemical sensor includes a first thermocouple and second thermocouple. A reactive component is typically disposed proximal to the second thermal couple, and is selected to react with the chemical of interest and generate a temperature variation that may be detected by a comparison of a temperature sensed by the second thermocouple compared with a concurrent temperature detected by the first thermocouple. Further disclosed is a method for assessing a chemical of interest and a method for identifying a reaction temperature for a chemical of interest in a system.
Gullick, Margaret M; Wolford, George
2013-01-01
We examined the brain activity underlying the development of our understanding of negative numbers, which are amounts lacking direct physical counterparts. Children performed a paired comparison task with positive and negative numbers during an fMRI session. As previously shown in adults, both pre-instruction fifth-graders and post-instruction seventh-graders demonstrated typical behavioral and neural distance effects to negative numbers, where response times and parietal and frontal activity increased as comparison distance decreased. We then determined the factors impacting the distance effect in each age group. Behaviorally, the fifth-grader distance effect for negatives was significantly predicted only by positive comparison accuracy, indicating that children who were generally better at working with numbers were better at comparing negatives. In seventh-graders, negative number comparison accuracy significantly predicted their negative number distance effect, indicating that children who were better at working with negative numbers demonstrated a more typical distance effect. Across children, as age increased, the negative number distance effect increased in the bilateral IPS and decreased frontally, indicating a frontoparietal shift consistent with previous numerical development literature. In contrast, as negative comparison task accuracy increased, the parietal distance effect increased in the left IPS and decreased in the right, possibly indicating a change from an approximate understanding of negatives' values to a more exact, precise representation (particularly supported by the left IPS) with increasing expertise. These shifts separately indicate the effects of increasing maturity generally in numeric processing and specifically in negative number understanding.
IET. Typical detail during Snaptran reactor experiments. Shielding bricks protect ...
IET. Typical detail during Snaptran reactor experiments. Shielding bricks protect ion chamber beneath reactor on dolly. Photographer: Page Comiskey. Date: August 11, 1965. INEEL negative no. 65-4039 - Idaho National Engineering Laboratory, Test Area North, Scoville, Butte County, ID
NASA Astrophysics Data System (ADS)
Espinho, S.; Hofmann, S.; Palomares, J. M.; Nijdam, S.
2017-10-01
The aim of this work is to study the properties of Ar-O2 microwave driven surfatron plasmas as a function of the Ar/O2 ratio in the gas mixture. The key parameters are the plasma electron density and electron temperature, which are estimated with Thomson scattering (TS) for O2 contents up to 50% of the total gas flow. A sharp drop in the electron density from {10}20 {{{m}}}-3 to approximately {10}18 {{{m}}}-3 is estimated as the O2 content in the gas mixture is increased up to 15%. For percentages of O2 lower than 10%, the electron temperature is estimated to be about 2-3 times higher than in the case of a pure argon discharge in the same conditions ({T}{{e}}≈ 1 eV) and gradually decreases as the O2 percentage is raised to 50%. However, for O2 percentages above 30%, the scattering spectra become Raman dominated, resulting in large uncertainties in the estimated electron densities and temperatures. The influence of photo-detached electrons from negative ions caused by the typical TS laser fluences is also likely to contribute to the uncertainty in the measured electron densities for high O2 percentages. Moreover, the detection limit of the system is reached for percentages of O2 higher than 25%. Additionally, both the electron density and temperature of microwave discharges with large Ar/O2 ratios are more sensitive to gas pressure variations.
[The origin of homoiothermy--unsolved problem].
Dol'nik, V P
2003-01-01
The analysis of allometric dependence of energy expenditure on body mass among reptiles, birds and mammals has shown that standard metabolic rate of reptiles when they are warmed up to the temperature of homoiothermic animals is an order of magnitude lower than that of birds and mammals. Basal metabolism is originated as special feature historically related to the metabolism during active behavior, rather than thermal regulation. Facultative endothermy was not advantageous for large animals because of long time needed to warm up the body. The ancestors of birds and animals escaped negative consequences of van't-Hoff equation by choosing constant body temperature. Heat conductivity of reptile's covers is so great, that it cannot keep endogenous warm of resting animal at any temperature of the body. Reptile "dressed" in covers of bird or mammal would be able to keep warm under conditions of maximal aerobic muscular activity and body temperature similar to that of homoiothermic animals. The base of chemical thermoregulation in birds and mammals is a thermoregulatory muscle tonus which remains unknown. One can suppose that during evolution of birds and mammals the saltation-liked origin of endothermy "fixed" the level of metabolism typical for running reptile and transformed in into the basal metabolism. This event took place at the cell and tissue level. The absence of palaeontological evidences and intermediate forms among recent species does not allow easy understanding of homoiothermy origin.
Kondo temperature and Heavy Fermion behavior in Yb1-xYxCuAl series of alloys
NASA Astrophysics Data System (ADS)
Rojas, D. P.; Gandra, F. G.; Medina, A. N.; Fernández Barquín, L.; Gómez Sal, J. C.
2018-05-01
Results on x-ray diffraction, electrical resistivity, specific heat and magnetization on the Yb1-xYxCuAl series of compounds are reported. The analysis of the x-ray data shows the increase of the unit cell volume with the Y dilution. The electrical resistivity shows an evolution from Kondo lattice regime for x ≤ 0.6 to single impurity behavior for x = 0.8 and 0.94. The electronic coefficient γ shows values of Heavy Fermion systems along the series for 0 ≤ x < 1 . On the other hand, dc magnetic susceptibility measurements show typical curves of intermediate valence systems with a maximum around 25 K. Below this maximum, the values of low temperature susceptibility (χ (0)) decrease with the increase of Y content. From the dependence of χ (0) and γ upon Y substitution, an increase of 12% of the Kondo temperature (TK) for x = 0.8 alloy respect to the reference YbCuAl (x = 0) is estimated. This is further supported by the evolution of the temperature of the maximum in the magnetic contribution of the specific heat. The overall results can be explained by the increase of the hybridization as consequence of negative pressure effects obtained by the chemical substitution of Yb by Y, thus leading to the increase of TK, in agreement with the Doniach's diagram.
Martín Lorenzo, Teresa; Rocon, Eduardo; Martínez Caballero, Ignacio; Lerma Lara, Sergio
2018-05-01
To compare medial gastrocnemius muscle-tendon structure, gait propulsive forces, and ankle joint gait kinetics between typically developing children and those with spastic cerebral palsy, and to describe significant associations between structure and function in children with spastic cerebral palsy.A sample of typically developing children (n = 9 /16 limbs) and a sample of children with spastic cerebral palsy (n = 29 /43 limbs) were recruited. Ultrasound and 3-dimensional motion capture were used to assess muscle-tendon structure, and propulsive forces and ankle joint kinetics during gait, respectively.Children with spastic cerebral palsy had shorter fascicles and muscles, and longer Achilles tendons than typically developing children. Furthermore, total negative power and peak negative power at the ankle were greater, while total positive power, peak positive power, net power, total vertical ground reaction force, and peak vertical and anterior ground reaction forces were smaller compared to typically developing children. Correlation analyses revealed that smaller resting ankle joint angles and greater maximum dorsiflexion in children with spastic cerebral palsy accounted for a significant decrease in peak negative power. Furthermore, short fascicles, small fascicle to belly ratios, and large tendon to fascicle ratios accounted for a decrease in propulsive force generation.Alterations observed in the medial gastrocnemius muscle-tendon structure of children with spastic cerebral palsy may impair propulsive mechanisms during gait. Therefore, conventional treatments should be revised on the basis of muscle-tendon adaptations.
Complex-network description of thermal quantum states in the Ising spin chain
NASA Astrophysics Data System (ADS)
Sundar, Bhuvanesh; Valdez, Marc Andrew; Carr, Lincoln D.; Hazzard, Kaden R. A.
2018-05-01
We use network analysis to describe and characterize an archetypal quantum system—an Ising spin chain in a transverse magnetic field. We analyze weighted networks for this quantum system, with link weights given by various measures of spin-spin correlations such as the von Neumann and Rényi mutual information, concurrence, and negativity. We analytically calculate the spin-spin correlations in the system at an arbitrary temperature by mapping the Ising spin chain to fermions, as well as numerically calculate the correlations in the ground state using matrix product state methods, and then analyze the resulting networks using a variety of network measures. We demonstrate that the network measures show some traits of complex networks already in this spin chain, arguably the simplest quantum many-body system. The network measures give insight into the phase diagram not easily captured by more typical quantities, such as the order parameter or correlation length. For example, the network structure varies with transverse field and temperature, and the structure in the quantum critical fan is different from the ordered and disordered phases.
Deglacial Meltwater Pulse Recorded in Last Interglacial Mollusk Shells from Bermuda
NASA Astrophysics Data System (ADS)
Winkelstern, I. Z.; Rowe, M. P.; Lohmann, K. C.; Defliese, W.; Petersen, S. V.; Brewer, A. W.
2016-12-01
Iceberg scours as far south as the Florida Strait and the presence of ice rafted debris in sediments from the Bermuda Rise indicate that during the last glacial phase icebergs traveled quite far south during episodes of excessive iceberg discharge from the Laurentide Ice Sheet (Heinrich Events). We present evidence that the effects of these events extended southward into the subtropics during the previous deglaciation (Termination-II), potentially aligned with Heinrich Event 11, and that meltwater reached Bermuda. Temperatures 10° C colder and seawater δ18O values 2 ‰ more negative than modern are derived from Last Interglacial Cittarium pica shells from Grape Bay, Bermuda using the clumped isotope paleothermometer. In contrast, Last Interglacial shells from Rocky Bay record temperatures only slightly colder and seawater δ18O values similar to modern, potentially representing more typical Last Interglacial conditions in Bermuda outside of a meltwater event. The cold ocean conditions observed illustrate extreme sensitivity of Bermudian climate to rapid climate and ocean circulation changes. They also provide further evidence for routine meltwater transport in the North Atlantic to near-equatorial latitudes during deglaciation.
Withers, Philip C; Cooper, Christine E; Nespolo, Roberto F
2012-08-15
We examine here evaporative water loss, economy and partitioning at ambient temperatures from 14 to 33°C for the monito del monte (Dromiciops gliroides), a microbiotheriid marsupial found only in temperate rainforests of Chile. The monito's standard evaporative water loss (2.58 mg g(-1) h(-1) at 30°C) was typical for a marsupial of its body mass and phylogenetic position. Evaporative water loss was independent of air temperature below thermoneutrality, but enhanced evaporative water loss and hyperthermia were the primary thermal responses above the thermoneutral zone. Non-invasive partitioning of total evaporative water loss indicated that respiratory loss accounted for 59-77% of the total, with no change in respiratory loss with ambient temperature, but a small change in cutaneous loss below thermoneutrality and an increase in cutaneous loss in and above thermoneutrality. Relative water economy (metabolic water production/evaporative water loss) increased at low ambient temperatures, with a point of relative water economy of 15.4°C. Thermolability had little effect on relative water economy, but conferred substantial energy savings at low ambient temperatures. Torpor reduced total evaporative water loss to as little as 21% of normothermic values, but relative water economy during torpor was poor even at low ambient temperatures because of the relatively greater reduction in metabolic water production than in evaporative water loss. The poor water economy of the monito during torpor suggests that negative water balance may explain why hibernators periodically arouse to normothermia, to obtain water by drinking or via an improved water economy.
Age, Stress, and Emotional Complexity: Results from Two Studies of Daily Experiences
Scott, Stacey B.; Sliwinski, Martin J.; Mogle, Jacqueline A.; Almeida, David M.
2014-01-01
Experiencing positive and negative emotions together (i.e., co-occurrence) has been described as a marker of positive adaptation during stress and a strength of socio-emotional aging. Using data from daily diary (N=2,022; ages 33-84) and ecological momentary assessment (N=190; ages 20-80) studies, we evaluate the utility of a common operationalization of co-occurrence, the within-person correlation between positive affect (PA) and negative affect (NA). Then we test competing predictions regarding when co-occurrence will be observed and whether age differences will be present. Results indicate that the correlation is not an informative indicator of co-occurrence. Although correlations were stronger and more negative when stressors occurred (typically interpreted as lower co-occurrence), objective counts of emotion reports indicated that positive and negative emotions were more 3 to 4 times likely to co-occur when stressors were reported. This suggests that co-occurrence reflects the extent to which negative emotions intrude on typically positive emotional states, rather than the extent to which people maintain positive emotions during stress. The variances of both PA and NA increased at stressor reports, indicating that individuals reported a broader not narrower range of emotion during stress. Finally, older age was associated with less variability in NA and a lower likelihood of co-occurring positive and negative emotions. In sum, these findings cast doubt on the utility of the PA-NA correlation as an index of emotional co-occurrence, and question notion that greater emotional cooccurrence represents either a typical or adaptive emotional state in adults. PMID:25244477
Miniature High-Force, Long-Stroke SMA Linear Actuators
NASA Technical Reports Server (NTRS)
Cummin, Mark A.; Donakowski, William; Cohen, Howard
2008-01-01
Improved long-stroke shape-memory-alloy (SMA) linear actuators are being developed to exert significantly higher forces and operate at higher activation temperatures than do prior SMA actuators. In these actuators, long linear strokes are achieved through the principle of displacement multiplication, according to which there are multiple stages, each intermediate stage being connected by straight SMA wire segments to the next stage so that relative motions of stages are additive toward the final stage, which is the output stage. Prior SMA actuators typically include polymer housings or shells, steel or aluminum stages, and polymer pads between successive stages of displacement-multiplication assemblies. Typical output forces of prior SMA actuators range from 10 to 20 N, and typical strokes range from 0.5 to 1.5 cm. An important disadvantage of prior SMA wire actuators is relatively low cycle speed, which is related to actuation temperature as follows: The SMA wires in prior SMA actuators are typically made of a durable nickel/titanium alloy that has a shape-memory activation temperature of 80 C. An SMA wire can be heated quickly from below to above its activation temperature to obtain a stroke in one direction, but must then be allowed to cool to somewhat below its activation temperature (typically, less than or equal to 60 C in the case of an activation temperature of 80 C) to obtain a stroke in the opposite direction (return stroke). At typical ambient temperatures, cooling times are of the order of several seconds. Cooling times thus limit cycle speeds. Wires made of SMA alloys having significantly higher activation temperatures [denoted ultra-high-temperature (UHT) SMA alloys] cool to the required lower return-stroke temperatures more rapidly, making it possible to increase cycle speeds. The present development is motivated by a need, in some applications (especially aeronautical and space-flight applications) for SMA actuators that exert higher forces, operate at greater cycle speeds, and have stronger housings that can withstand greater externally applied forces and impacts. The main novel features of the improved SMA actuators are the following: 1) The ends of the wires are anchored in compact crimps made from short steel tubes. Each wire end is inserted in a tube, the tube is flattened between planar jaws to make the tube grip the wire, the tube is compressed to a slight U-cross-section deformation to strengthen the grip, then the crimp is welded onto one of the actuator stages. The pull strength of a typical crimp is about 125 N -- comparable to the strength of the SMA wire and greater than the typical pull strengths of wire-end anchors in prior SMA actuators. Greater pull strength is one of the keys to achievement of higher actuation force; 2) For greater strength and resistance to impacts, housings are milled from aluminum instead of being made from polymers. Each housing is made from two pieces in a clamshell configuration. The pieces are anodized to reduce sliding friction; 3) Stages are made stronger (to bear greater compression loads without excessive flexing) by making them from steel sheets thicker than those used in prior SMA actuators. The stages contain recessed pockets to accommodate the crimps. Recessing the pockets helps to keep overall dimensions as small as possible; and, 4) UHT SMA wires are used to satisfy the higher-speed/higher-temperature requirement.
NASA Astrophysics Data System (ADS)
Thérien-Aubin, Héloïse; Lukach, Ariella; Pitch, Natalie; Kumacheva, Eugenia
2015-04-01
We report the structural and optical properties of composite films formed from mixed suspensions of cellulose nanocrystals (CNCs) and fluorescent latex nanoparticles (NPs). We explored the effect of NP concentration, size, surface charge, glass transition temperature and film processing conditions on film structure and properties. The chiral nematic order, typical of CNC films, was preserved in films with up to 50 wt% of negatively-charged latex NPs. Composite films were characterized by macroscopically close-to-uniform fluorescence, birefringence, and circular dichroism properties. In contrast, addition of positively charged latex NPs led to gelation of CNC-latex suspensions and disruption of the chiral nematic order in the composite films. Large latex NPs disrupted the chiral nematic order to a larger extend than small NPs. Furthermore, the glass transition of latex NPs had a dramatic effect on the structure of CNC-latex films. Latex particles in the rubbery state were easily incorporated in the ordered CNC matrix and improved the structural integrity of its chiral nematic phase.We report the structural and optical properties of composite films formed from mixed suspensions of cellulose nanocrystals (CNCs) and fluorescent latex nanoparticles (NPs). We explored the effect of NP concentration, size, surface charge, glass transition temperature and film processing conditions on film structure and properties. The chiral nematic order, typical of CNC films, was preserved in films with up to 50 wt% of negatively-charged latex NPs. Composite films were characterized by macroscopically close-to-uniform fluorescence, birefringence, and circular dichroism properties. In contrast, addition of positively charged latex NPs led to gelation of CNC-latex suspensions and disruption of the chiral nematic order in the composite films. Large latex NPs disrupted the chiral nematic order to a larger extend than small NPs. Furthermore, the glass transition of latex NPs had a dramatic effect on the structure of CNC-latex films. Latex particles in the rubbery state were easily incorporated in the ordered CNC matrix and improved the structural integrity of its chiral nematic phase. Electronic supplementary information (ESI) available: Detailed latex synthesis. Additional characterization of the nanoparticles and films. See DOI: 10.1039/c5nr00660k
DNA hybridization kinetics: zippering, internal displacement and sequence dependence.
Ouldridge, Thomas E; Sulc, Petr; Romano, Flavio; Doye, Jonathan P K; Louis, Ard A
2013-10-01
Although the thermodynamics of DNA hybridization is generally well established, the kinetics of this classic transition is less well understood. Providing such understanding has new urgency because DNA nanotechnology often depends critically on binding rates. Here, we explore DNA oligomer hybridization kinetics using a coarse-grained model. Strand association proceeds through a complex set of intermediate states, with successful binding events initiated by a few metastable base-pairing interactions, followed by zippering of the remaining bonds. But despite reasonably strong interstrand interactions, initial contacts frequently dissociate because typical configurations in which they form differ from typical states of similar enthalpy in the double-stranded equilibrium ensemble. Initial contacts must be stabilized by two or three base pairs before full zippering is likely, resulting in negative effective activation enthalpies. Non-Arrhenius behavior arises because the number of base pairs required for nucleation increases with temperature. In addition, we observe two alternative pathways-pseudoknot and inchworm internal displacement-through which misaligned duplexes can rearrange to form duplexes. These pathways accelerate hybridization. Our results explain why experimentally observed association rates of GC-rich oligomers are higher than rates of AT- rich equivalents, and more generally demonstrate how association rates can be modulated by sequence choice.
ERIC Educational Resources Information Center
Schrauf, Robert W.; Sanchez, Julia
2004-01-01
The "working emotion vocabulary" typically shows a preponderance of words for negative emotions (50%) over positive (30%) and neutral (20%) emotions. The theory of affect-as-information suggests that negative emotions signal problems or threat in the environment and are accompanied by detailed and systematic cognitive processing, while…
Fenning, Rachel M; Baker, Jason K; Baker, Bruce L; Crnic, Keith A
2014-06-01
A previous study suggested that mothers of 5-year-old children with borderline intellectual functioning displayed lower positive engagement with their children as compared with both mothers of typically developing children and mothers of children with significant developmental delays (Fenning, Baker, Baker, & Crnic, 2007). The current study integrated father data and followed these families over the subsequent 1-year period. Parent and child behavior were coded from naturalistic home observations at both waves. Results revealed that mothers of children with borderline intellectual functioning displayed a greater increase in negative-controlling parenting from child age 5 to 6 than did other mothers; fathers displayed more negative-controlling behavior in comparison to fathers of typically developing children. In addition, children with borderline intellectual functioning themselves exhibited a more significant escalation in difficult behavior than did typically developing children. Cross-lagged analyses for the sample as a whole indicated that maternal negative-controlling behavior predicted subsequent child difficulties, whereas negative paternal behavior was predicted by earlier child behavior. In conjunction with evidence from Fenning et al. (2007), these findings suggest a complex, dynamic, and systemic developmental pattern in the emotional behavior of families of children with borderline intellectual functioning. Implications and areas in need of additional research are discussed. PsycINFO Database Record (c) 2014 APA, all rights reserved.
100 s extraction of negative ion beams by using actively temperature-controlled plasma grid
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kojima, A., E-mail: kojima.atsushi@jaea.go.jp; Hanada, M.; Yoshida, M.
2014-02-15
Long pulse beam extraction with a current density of 120 A/m{sup 2} for 100 s has been achieved with a newly developed plasma grid (PG) for the JT-60SA negative ion source which is designed to produce high power and long pulse beams with a negative ion current of 130 A/m{sup 2} (22 A) and a pulse length of 100 s. The PG temperature is regulated by fluorinated fluids in order to keep the high PG temperature for the cesium-seeded negative ion production. The time constant for temperature controllability of the PG was measured to be below 10 s, which wasmore » mainly determined by the heat transfer coefficient of the fluorinated fluid. The measured decay time of the negative ion current extracted from the actively temperature-controlled PG was 430 s which was sufficient for the JT-60SA requirement, and much longer than that by inertial-cooling PG of 60 s. Obtained results of the long pulse capability are utilized to design the full size PG for the JT-60SA negative ion source.« less
High temperature causes negative whole-plant carbon balance under mild drought.
Zhao, Junbin; Hartmann, Henrik; Trumbore, Susan; Ziegler, Waldemar; Zhang, Yiping
2013-10-01
Theoretically, progressive drought can force trees into negative carbon (C) balance by reducing stomatal conductance to prevent water loss, which also decreases C assimilation. At higher temperatures, negative C balance should be initiated at higher soil moisture because of increased respiratory demand and earlier stomatal closure. Few data are available on how these theoretical relationships integrate over the whole plant. We exposed Thuja occidentalis to progressive drought under three temperature conditions (15, 25, and 35°C), and measured C and water fluxes using a whole-tree chamber design. High transpiration rates at higher temperatures led to a rapid decline in soil moisture. During the progressive drought, soil moisture-driven changes in photosynthesis had a greater impact on the whole-plant C balance than respiration. The soil moisture content at which whole-plant C balance became negative increased with temperature, mainly as a result of higher respiration rates and an earlier onset of stomatal closure under a warmer condition. Our results suggest that the effect of drought on whole-plant C balance is highly temperature-dependent. High temperature causes a negative C balance even under mild drought and may increase the risk of C starvation. © 2013 The Authors. New Phytologist © 2013 New Phytologist Trust.
Impedance spectral analysis and scaling behavior of Mn2+-Si4+ substituted Mn-Zn ferrites
NASA Astrophysics Data System (ADS)
Vasoya, N. H.; Saija, K. G.; Dolia, S. N.; Jha, Prafulla K.; Modi, K. B.
2017-11-01
This communication reports complex impedance (Z * = Z‧ - iZ″) spectral analysis of polycrystalline spinel ferrite system, Mn0.7+x Zn0.3Si x Fe2-2x O4 (x = 0.0-0.3), synthesized by a solid-state reaction route over the broad frequency (f = 20 Hz-1 MHz) and temperature (T = 300-673 K) ranges. Variation of Z‧(f, T) showing a typical negative temperature coefficient of resistant type behavior. Cole-Cole plots (Z″ versus Z‧) have been used to determine grain and grain boundary resistances, capacitances, relaxation frequencies and relaxation times. Relaxation time is found to decrease with temperature and it obeys the Arrhenius relationship. The corresponding activation energy values are found to be about ~0.6 eV suggesting conduction due to the polaron hopping based on the electron carriers. Evidence of the components from both localized and delocalized relaxations is observed. The scaling of Z″/Z max by using f max as a scaling parameter is more successful as compared to that carried out using σ dc as a scaling quantity. The results revealed that the complex dielectric parameters and structure of the ferrite ceramics are strongly coupled properties.
Soil Respiration in Different Agricultural and Natural Ecosystems in an Arid Region
Lai, Liming; Zhao, Xuechun; Jiang, Lianhe; Wang, Yongji; Luo, Liangguo; Zheng, Yuanrun; Chen, Xi; Rimmington, Glyn M.
2012-01-01
The variation of different ecosystems on the terrestrial carbon balance is predicted to be large. We investigated a typical arid region with widespread saline/alkaline soils, and evaluated soil respiration of different agricultural and natural ecosystems. Soil respiration for five ecosystems together with soil temperature, soil moisture, soil pH, soil electric conductivity and soil organic carbon content were investigated in the field. Comparing with the natural ecosystems, the mean seasonal soil respiration rates of the agricultural ecosystems were 96%–386% higher and agricultural ecosystems exhibited lower CO2 absorption by the saline/alkaline soil. Soil temperature and moisture together explained 48%, 86%, 84%, 54% and 54% of the seasonal variations of soil respiration in the five ecosystems, respectively. There was a significant negative relationship between soil respiration and soil electrical conductivity, but a weak correlation between soil respiration and soil pH or soil organic carbon content. Our results showed that soil CO2 emissions were significantly different among different agricultural and natural ecosystems, although we caution that this was an observational, not manipulative, study. Temperature at the soil surface and electric conductivity were the main driving factors of soil respiration across the five ecosystems. Care should be taken when converting native vegetation into cropland from the point of view of greenhouse gas emissions. PMID:23082234
Soil respiration in different agricultural and natural ecosystems in an arid region.
Lai, Liming; Zhao, Xuechun; Jiang, Lianhe; Wang, Yongji; Luo, Liangguo; Zheng, Yuanrun; Chen, Xi; Rimmington, Glyn M
2012-01-01
The variation of different ecosystems on the terrestrial carbon balance is predicted to be large. We investigated a typical arid region with widespread saline/alkaline soils, and evaluated soil respiration of different agricultural and natural ecosystems. Soil respiration for five ecosystems together with soil temperature, soil moisture, soil pH, soil electric conductivity and soil organic carbon content were investigated in the field. Comparing with the natural ecosystems, the mean seasonal soil respiration rates of the agricultural ecosystems were 96%-386% higher and agricultural ecosystems exhibited lower CO(2) absorption by the saline/alkaline soil. Soil temperature and moisture together explained 48%, 86%, 84%, 54% and 54% of the seasonal variations of soil respiration in the five ecosystems, respectively. There was a significant negative relationship between soil respiration and soil electrical conductivity, but a weak correlation between soil respiration and soil pH or soil organic carbon content. Our results showed that soil CO(2) emissions were significantly different among different agricultural and natural ecosystems, although we caution that this was an observational, not manipulative, study. Temperature at the soil surface and electric conductivity were the main driving factors of soil respiration across the five ecosystems. Care should be taken when converting native vegetation into cropland from the point of view of greenhouse gas emissions.
Informational temperature concept and the nature of self-organization
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lin, Shu-Kun
1996-12-31
Self-organization phenomena are spontaneous processes. Their behavior should be governed by the second law of thermodynamics. The dissipative structure theory of the Prigogine school of thermodynamics claims that {open_quotes}order out of chaos{close_quotes} through {open_quotes}self-organization{close_quotes} and challenges the validity of the second law of thermodynamics. Unfortunately this theory is questionable. Therefore we have to reconsider the related fundamental theoretical problems. Informational entropy (S) and information (I) are related by S = S{sub max} - I, where S{sub max} is the maximum informational entropy. This conforms with the broadly accepted definition that entropy is the information loss. As informational entropy concept hasmore » been proved to be useful, it will be convenient to define an informational temperature, T{sub I}. This can be related to energy E and the informational entropy S. Information registration is a process of {Delta}I > 0, or {Delta}S < 0, and involves the energetically excited states ({Delta}E > 0). Therefore, T{sub I} is negative, and has the opposite sign of the conventional thermodynamic temperature, T. This concept is useful for clarifying the concepts of {open_quotes}order{close_quotes} and {open_quotes}disorder{close_quotes} of static structures and characterizing many typical information loss processes of self-organization.« less
Relationship among land surface temperature and LUCC, NDVI in typical karst area.
Deng, Yuanhong; Wang, Shijie; Bai, Xiaoyong; Tian, Yichao; Wu, Luhua; Xiao, Jianyong; Chen, Fei; Qian, Qinghuan
2018-01-12
Land surface temperature (LST) can reflect the land surface water-heat exchange process comprehensively, which is considerably significant to the study of environmental change. However, research about LST in karst mountain areas with complex topography is scarce. Therefore, we retrieved the LST in a karst mountain area from Landsat 8 data and explored its relationships with LUCC and NDVI. The results showed that LST of the study area was noticeably affected by altitude and underlying surface type. In summer, abnormal high-temperature zones were observed in the study area, perhaps due to karst rocky desertification. LSTs among different land use types significantly differed with the highest in construction land and the lowest in woodland. The spatial distributions of NDVI and LST exhibited opposite patterns. Under the spatial combination of different land use types, the LST-NDVI feature space showed an obtuse-angled triangle shape and showed a negative linear correlation after removing water body data. In summary, the LST can be retrieved well by the atmospheric correction model from Landsat 8 data. Moreover, the LST of the karst mountain area is controlled by altitude, underlying surface type and aspect. This study provides a reference for land use planning, ecological environment restoration in karst areas.
High temperature alters the growth reaction of Pottia protonemata
NASA Astrophysics Data System (ADS)
Chaban, Ch. I.; Ripetskyj, R. T.; Kordyum, E. L.; Kit, N. A.
1999-01-01
Under gravistimulation, dark-grown protonemata of Pottia intermedia revealed negative gravitropism with a growth rate of approximately 28 μm.h-1 at room temperature (20 °C). In 7 days, the protonema formed a bundle of vertically oriented filaments. At an elevated temperature (30 °C), bundles of vertically growing filaments were also formed. However, both filament growth rate and amplitude of the gravicurvature were reduced. Red light (RL) irradiation induced a positive phototropism of most apical protonemal cells at 20 °C. In a following period of darkness, approximately two-thirds of such cells began to grow upward again, recovering their negative gravitropism. RL irradiation at the elevated temperature caused a partial increase in the number of protonemal cells with negative phototropism, but the protonemata did not exhibit negative gravitropism after transfer to darkness. The negative gravitropic reaction was renewed only when protonemata were placed at 20 °C. A dramatic decrease in starch amount in protonemal apical cells, which are sensitive to both gravity and light, occurred at the higher temperature. Such a decrease may be one of the reasons for the inhibition of the protonemal gravireaction at the higher temperature. The observation has a bearing on the starch-statolith theory.
NASA Astrophysics Data System (ADS)
Wang, Wei; Zeng, Weidong; Liu, Yantao; Xie, Guoxin; Liang, Xiaobo
2018-01-01
Microstructural evolution, tensile and creep behavior of Ti-22Al-25Nb (at.%) orthorhombic alloy with three typical microstructures were investigated. The three typical microstructures were obtained by different solution and age treatment temperatures and analyzed by the BSE technique. The tensile strengths of the alloy at room temperature and 650 °C were investigated. The creep behaviors of the three typical microstructures were also studied at 650 °C/150 MPa for 100 h in air. The phase transformation mechanisms in creep deformation were also found. The experimental results showed that the formations of the three typical microstructures were decided by the isothermal forging and heat treatment. It was supposed that the high-temperature solution treatment might be dominant for the volume fraction and diameter of the equiaxed particles. While the double age treatment would lead to lamellar O phases. Due to grain refinement strengthening, the equiaxed microstructure presented the best tensile strength and ductility. The fully lamellar microstructure had the best creep resistance than that of other microstructures. In this paper, the phenomenon of creep-induced α 2 phase decomposition was occurred during creep deformation of the equiaxed microstructure.
Wu, Tzi-Yi; Chen, Bor-Kuan; Hao, Lin; Peng, Yu-Chun; Sun, I-Wen
2011-01-01
A systematic study of the effect of composition on the thermo-physical properties of the binary mixtures of 1-methyl-3-pentyl imidazolium hexafluorophosphate [MPI][PF6] with poly(ethylene glycol) (PEG) [Mw = 400] is presented. The excess molar volume, refractive index deviation, viscosity deviation, and surface tension deviation values were calculated from these experimental density, ρ, refractive index, n, viscosity, η, and surface tension, γ, over the whole concentration range, respectively. The excess molar volumes are negative and continue to become increasingly negative with increasing temperature; whereas the viscosity and surface tension deviation are negative and become less negative with increasing temperature. The surface thermodynamic functions, such as surface entropy, enthalpy, as well as standard molar entropy, Parachor, and molar enthalpy of vaporization for pure ionic liquid, have been derived from the temperature dependence of the surface tension values. PMID:21731460
Elmasry, Mohamed; Liu, Fan; Jiang, Yao; Mao, Ze Ning; Liu, Ying; Wang, Jing Tao
2017-01-01
The catalyzing effect on nucleation of recrystallization from existing grains resulting from previous lower temperature deformation is analyzed, analogous to the size effect of foreign nucleus in heterogeneous nucleation. Analytical formulation of the effective nucleation site for recrystallization leads to a negative temperature dependence of recrystallized grain size of metals. Non-isochronal annealing—where annealing time is set just enough for the completion of recrystallization at different temperatures—is conducted on pure copper after severe plastic deformation. More homogeneous and smaller grains are obtained at higher annealing temperature. The good fit between analytical and experimental results unveils the intrinsic feature of this negative temperature dependence of recrystallized grain size. PMID:28772676
Unipolar memristive Switching in Bulk Negative Temperature Coefficient Thermosensitive Ceramics
Wu, Hongya; Cai, Kunpeng; Zhou, Ji; Li, Bo; Li, Longtu
2013-01-01
A memristive phenomenon was observed in macroscopic bulk negative temperature coefficient nickel monoxide (NiO) ceramic material. Current-voltage characteristics of memristors, pinched hysteretic loops were systematically observed in the Ag/NiO/Ag cell. A thermistor-based model for materials with negative temperature coefficient was proposed to explain the mechanism of the experimental phenomena. Most importantly, the results demonstrate the potential for a realization of memristive systems based on macroscopic bulk materials. PMID:24255717
Kallmeyer, R J; Chang, E C
1998-02-01
The present study examined the general emotional content of dreams reported by individuals who typically experience "positive" versus "negative" dreams. Self-reports of the 153 participants indicated that positive versus negative dreamers (ns = 42 and 24, respectively) generally experienced more positive emotions, e.g., joviality, self-assurance, and fewer negative emotions, e.g., fear, sadness. No differences were found in the self-reports of the participants in the experience of surprise, guilt, fatigue, and shyness between the groups, hence, positive and negative dreams do not appear to reflect simply more positive and fewer negative emotions, respectively.
Lee, Chul; Wu, Kuang-Hsien; Habil, Hussain; Dyachkova, Yulia; Lee, Phil
2006-05-01
To examine clinical outcomes in Asian patients with schizophrenia receiving monotherapy with olanzapine, risperidone or typical antipsychotics in naturalistic settings. In this report, data from the first 12 months of the prospective, observational, 3-year Intercontinental Schizophrenia Outpatient Health Outcomes study are presented for patients from participating Asian countries (Korea, Taiwan and Malaysia) who were started on, or switched to, monotherapy with olanzapine (n = 484), risperidone (n = 287) or a typical antipsychotic drug (n = 127) at baseline. At 12 months, overall reduction in the score of Clinical Global Impressions-Severity of Illness rating scale was greatest with olanzapine (p < 0.001 vs typical agents), followed by risperidone (p = 0.007 vs typical agents) treatment. Olanzapine treatment was found to have significantly better effects than typical agents on negative and depressive symptom scores, and significantly greater improvements than risperidone on negative and cognitive symptoms. The occurrence of extrapyramidal symptoms was least likely with olanzapine (p < 0.001 vs typical agents, and p = 0.012 vs risperidone), while the estimated odds of tardive dyskinesia were greatest in the typical treatment group (p = 0.046 vs olanzapine, and p = 0.082 vs risperidone). Mean weight increase was greater for olanzapine-treated patients compared with the other agents (p = 0.030 vs typical agents and p < 0.001 vs risperidone). The risk of menstrual disturbance was relatively high with risperidone when compared with olanzapine treatment (p < 0.001). The results of this observational study indicate that, in Asian patients with schizophrenia, olanzapine may offer benefits when compared with typical agents or risperidone. However, the significantly greater odds of weight gain should be considered in the clinical management of olanzapine-treated patients.
Choosing a Transformation in Analyses of Insect Counts from Contagious Distributions with Low Means
W.D. Pepper; S.J. Zarnoch; G.L. DeBarr; P. de Groot; C.D. Tangren
1997-01-01
Guidelines based on computer simulation are suggested for choosing a transformation of insect counts from negative binomial distributions with low mean counts and high levels of contagion. Typical values and ranges of negative binomial model parameters were determined by fitting the model to data from 19 entomological field studies. Random sampling of negative binomial...
ERIC Educational Resources Information Center
Simpson, Amber; Maltese, Adam
2017-01-01
The term failure typically evokes negative connotations in educational settings and is likely to be accompanied by negative emotional states, low sense of confidence, and lack of persistence. These negative emotional and behavioral states may factor into an individual not pursuing a degree or career in science, technology, engineering, or…
NASA Astrophysics Data System (ADS)
Krishna, Rahul; Titus, Elby
2017-12-01
Here, we demonstrate for the first time the structural evolution of 1D graphene nanotubes (GNTs) by the cutting of two dimensional (2D) graphene oxide (GO) sheet in reducing environment at ambient conditions in presence of Ni metal in acidic environment. We observed that in-situ generated radical hydrogen (Hrad) responsible for cutting of graphene sheets and re-structuring of 2D sheet structure to one 1D nanotubes. Structural evolution of GNTs was confirmed by using of transmission electron microscopy (TEM) technique. The current vs. voltage (I-V) characteristics of GNTs displayed room temperature (RT) negative differential resistance (NDR) effect which is typical in nanowires, suggested the applicability of nanomaterial for various kind of electronics applications such as memory devices and transistors fabrication.
The Conductance of Porphyrin-Based Molecular Nanowires Increases with Length.
Algethami, Norah; Sadeghi, Hatef; Sangtarash, Sara; Lambert, Colin J
2018-06-13
High electrical conductance molecular nanowires are highly desirable components for future molecular-scale circuitry, but typically molecular wires act as tunnel barriers and their conductance decays exponentially with length. Here, we demonstrate that the conductance of fused-oligo-porphyrin nanowires can be either length independent or increase with length at room temperature. We show that this negative attenuation is an intrinsic property of fused-oligo-porphyrin nanowires, but its manifestation depends on the electrode material or anchor groups. This highly desirable, nonclassical behavior signals the quantum nature of transport through such wires. It arises because with increasing length the tendency for electrical conductance to decay is compensated by a decrease in their highest occupied molecular orbital-lowest unoccupied molecular orbital gap. Our study reveals the potential of these molecular wires as interconnects in future molecular-scale circuitry.
Sleep, circadian rhythms, and athletic performance.
Thun, Eirunn; Bjorvatn, Bjørn; Flo, Elisabeth; Harris, Anette; Pallesen, Ståle
2015-10-01
Sleep deprivation and time of day are both known to influence performance. A growing body of research has focused on how sleep and circadian rhythms impact athletic performance. This review provides a systematic overview of this research. We searched three different databases for articles on these issues and inspected relevant reference lists. In all, 113 articles met our inclusion criteria. The most robust result is that athletic performance seems to be best in the evening around the time when the core body temperature typically is at its peak. Sleep deprivation was negatively associated with performance whereas sleep extension seems to improve performance. The effects of desynchronization of circadian rhythms depend on the local time at which performance occurs. The review includes a discussion of differences regarding types of skills involved as well as methodological issues. Copyright © 2014 Elsevier Ltd. All rights reserved.
Youn, Woong-Kyu; Kim, Chan-Soo; Hwang, Nong-Moon
2013-10-01
The generation of charged nanoparticles in the gas phase has been continually reported in many chemical vapor deposition processes. Charged silicon nanoparticles in the gas phase were measured using a differential mobility analyzer connected to an atmospheric-pressure chemical vapor deposition reactor at various nitrogen carrier gas flow rates (300-1000 standard cubic centimeter per minute) under typical conditions for silicon deposition at the reactor temperature of 900 degrees C. The carrier gas flow rate affected not only the growth behavior of nanostructures but also the number concentration and size distribution of both negatively and positively charged nanoparticles. As the carrier gas flow rate decreased, the growth behavior changed from films to nanowires, which grew without catalytic metal nanoparticles on a quartz substrate.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gallington, Leighanne C.; Hester, Brett R.; Kaplan, Benjamin S.
Low or negative thermal expansion (NTE) has been previously observed in members of the ZrP{sub 2}O{sub 7} family at temperatures higher than their order-disorder phase transitions. The thermoelastic properties and phase behavior of the low temperature superstructure and high temperature negative thermal expansion phases of ZrV{sub 2}O{sub 7} and HfV{sub 2}O{sub 7} were explored via in situ variable temperature/pressure powder x-ray diffraction measurements. The phase transition temperatures of ZrV{sub 2}O{sub 7} and HfV{sub 2}O{sub 7} exhibited a very strong dependence on pressure (∼700 K GPa), with moderate compression suppressing the formation of their NTE phases below 513 K. Compression alsomore » reduced the magnitude of the coefficients of thermal expansion in both the positive and negative thermal expansion phases. Additionally, the high temperature NTE phase of ZrV{sub 2}O{sub 7} was found to be twice as stiff as the low temperature positive thermal expansion superstructure (24 and 12 GPa respectively). - Graphical abstract: The temperature at which ZrV{sub 2}O{sub 7} transforms to a phase displaying negative thermal expansion is strongly pressure dependent. The high temperature form of ZrV{sub 2}O{sub 7} is elastically stiffer than the low temperature form. - Highlights: • The order-disorder phase transition temperatures in ZrV{sub 2}O{sub 7} and HfV{sub 2}O{sub 7} are strongly pressure dependent (∼700 K.GPa). • The high temperature (disordered) phase of ZrV{sub 2}O{sub 7} is much stiffer than the ambient temperature (ordered) phase. • Compression reduces the magnitude of the negative thermal expansion in the high temperature phase of ZrV{sub 2}O{sub 7}.« less
[Effect of air temperature and rainfall on wetland ecosystem CO2 exchange in China].
Chu, Xiao-jing; Han, Guang-xuan
2015-10-01
Wetland can be a potential efficient sink to reduce global warming due to its higher primary productivity and lower carbon decomposition rate. While there has been a series progress on the influence mechanism of ecosystem CO2 exchange over China' s wetlands, a systematic metaanalysis of data still needs to be improved. We compiled data of ecosystem CO2 exchange of 21 typical wetland vegetation types in China from 29 papers and carried out an integrated analysis of air temperature and precipitation effects on net ecosystem CO2 exchange (NEE), ecosystem respiration (Reco), gross primary productivity (GPP), the response of NEE to PAR, and the response of Reco to temperature. The results showed that there were significant responses (P<0.05) of NEE (R2 = 50%, R2=57%), GPP (R2 = 60%, R2 = 50%) Reco (R2 = 44%, R2=50%) with increasing air temperature and enhanced precipitation on the annual scale. On the growing season scale, air temperature accounted for 50% of the spatial variation of NEE, 36% of GPP and 19% of Reco, respectively. Both NEE (R2 = 33%) and GPP (R2 =25%) were correlated positively with precipitation (P<0.05). However, the relationship between Reco and precipitation was not significant (P>0.05). Across different Chinese wetlands, both precipitation and temperature had no significant effect on apparent quantum yield (α) or ecosystem respiration in the daytime (Reco,day, P>0.05). The maximum photosynthesis rate (Amax) was remarkably correlated with precipitation (P <0.01), but not with air temperature. Besides, there was no significant correlation between basal respiration (Rref) and precipitation (P>0.05). Precipitation was negatively correlated with temperature sensitivity of Reco (Q10, P<0.05). Furthermore, temperature accounted for 35% and 46% of the variations in temperature sensitivity of Reco (Q10) and basal respiration (Rref P<0.05), respectively.
Age, stress, and emotional complexity: results from two studies of daily experiences.
Scott, Stacey B; Sliwinski, Martin J; Mogle, Jacqueline A; Almeida, David M
2014-09-01
Experiencing positive and negative emotions together (i.e., co-occurrence) has been described as a marker of positive adaptation during stress and a strength of socioemotional aging. Using data from daily diary (N = 2,022; ages 33-84) and ecological momentary assessment (N = 190; ages 20-80) studies, we evaluate the utility of a common operationalization of co-occurrence, the within-person correlation between positive affect (PA) and negative affect (NA). Then we test competing predictions regarding when co-occurrence will be observed and whether age differences will be present. Results indicate that the correlation is not an informative indicator of co-occurrence. Although correlations were stronger and more negative when stressors occurred (typically interpreted as lower co-occurrence), objective counts of emotion reports indicated that positive and negative emotions were 3 to 4 times more likely to co-occur when stressors were reported. This suggests that co-occurrence reflects the extent to which negative emotions intrude on typically positive emotional states, rather than the extent to which people maintain positive emotions during stress. The variances of both PA and NA increased at stressor reports, indicating that individuals reported a broader not narrower range of emotion during stress. Finally, older age was associated with less variability in NA and a lower likelihood of co-occurring positive and negative emotions. In sum, these findings cast doubt on the utility of the PA-NA correlation as an index of emotional co-occurrence, and question notion that greater emotional co-occurrence represents either a typical or adaptive emotional state in adults. PsycINFO Database Record (c) 2014 APA, all rights reserved.
Theory of Mind and Children's Trait Attributions about Average and Typically Stigmatized Peers
ERIC Educational Resources Information Center
Lapan, Candace; Boseovski, Janet J.
2016-01-01
Previous research indicates that children hold negative beliefs about peers with foreign accents, physical disabilities, and people who are obese. The current study examined skills associated with individual differences in children's social judgements about these typically stereotyped groups. Theory of mind, memory, and cognitive inhibition were…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chung, Kyoung-Jae; Jung, Bong-Ki; An, YoungHwa
2014-02-15
In a volume-produced negative hydrogen ion source, control of electron temperature is essential due to its close correlation with the generation of highly vibrationally excited hydrogen molecules in the heating region as well as the generation of negative hydrogen ions by dissociative attachment in the extraction region. In this study, geometric effects of the cylindrical discharge chamber on negative ion generation via electron temperature changes are investigated in two discharge chambers with different lengths of 7.5 cm and 11 cm. Measurements with a radio-frequency-compensated Langmuir probe show that the electron temperature in the heating region is significantly increased by reducingmore » the length of the discharge chamber due to the reduced effective plasma size. A particle balance model which is modified to consider the effects of discharge chamber configuration on the plasma parameters explains the variation of the electron temperature with the chamber geometry and gas pressure quite well. Accordingly, H{sup −} ion density measurement with laser photo-detachment in the short chamber shows a few times increase compared to the longer one at the same heating power depending on gas pressure. However, the increase drops significantly as operating gas pressure decreases, indicating increased electron temperatures in the extraction region degrade dissociative attachment significantly especially in the low pressure regime. It is concluded that the increase of electron temperature by adjusting the discharge chamber geometry is efficient to increase H{sup −} ion production as long as low electron temperatures are maintained in the extraction region in volume-produced negative hydrogen ion sources.« less
Thermoelectric Power Measurements of xSb-(60- x)V2O5-40TeO2 Glasses
NASA Astrophysics Data System (ADS)
Souri, Dariush; Siahkali, Zahra; Moradi, Mohammad
2016-01-01
Bulk xSb-(60- x)V2O5-40TeO2 glass systems (with 0 ≤ x ≤ 15 in mol.%) were prepared by using the standard melt quenching procedure, and their Seebeck coefficients, S, were measured within the temperature range of 250-470 K. For the understudied samples, the thermoelectric powers at typical temperatures of 296 K, 370 K and 407 K were measured, and were in the ranges (-405) to (-698) μVK-1, (-394) to (-685) μVK-1 and (-392) to (-691) μVK-1, respectively. The selection of typical temperatures aims at the evaluation of the trend of figure of merit in these glasses. Based on the negative sign of S, the present glasses were found to be n-type semiconductors; also, the experimental relationship between S and C V ( C V = [V4+]/ V tot is the ratio of the content of reduced vanadium ions) satisfied the theoretical Heikes formula, relating S to ln( C V/1 - C V), and also the Mackenzie formula, relating S to ln([V5+]/[V4+]). The parameter α^' in Heikes formula was determined to be ≪1 and so the small polaron hopping conduction mechanism was certified to occur in these glasses; this result confirms the previously reported results of direct current (DC) electrical conduction experiments on the same samples. Results of thermoelectric measurements show the compositional dependence of S on Sb content and C V, indicating that S increases with the increase in Sb content; these results show that the dominant factor determining S is C V. Also, figure of merit was determined for these glasses, which show the highest value for 60V2O5-40TeO2 glass system, as a good candidate in thermoelectric applications.
2011-07-01
fluid resistivity , temperature logging, and flow metering at other sites that typically indicated only two or three active fractures in each hole...was consistent with results of conventional borehole fluid resistivity , temperature logging, and flow metering at other sites that typically indicated...following tests were performed in each boundary monitoring well: ■ Gamma Ray; ■ Spontaneous Potential (SP); ■ Single Point Resistance (SPR
Genesis of post-collisional calc-alkaline and alkaline granitoids in Qiman Tagh, East Kunlun, China
NASA Astrophysics Data System (ADS)
Yu, Miao; Feng, Chengyou; Zhao, Yiming; Li, Daxin
2015-12-01
The post-collisional magmatism of Qiman Tagh is characterized by the intrusion of voluminous intermediate to felsic granitoids, including syenogranite, monzogranite, granodiorite, tonalite and diorite. The granitoids can be divided into two magmatic suites: Calc-alkaline (CA) and alkaline (Alk), which were emplaced from ~ 236 Ma to ~ 204 Ma. The CA suite contains metaluminous granodiorites and monzogranites. Typical Qiman Tagh CA granodiorites show moderately fractionated REE patterns ((La/Yb)N = 4.35-25.11) with significant negative Eu anomalies (Eu/Eu* = 0.54-1.34), and the primitive mantle-normalized spidergrams show strong depletion of Nb and Sr. The Qiman Tagh CA monzogranites show similar fractionated REE patterns ((La/Yb)N = 2.70-13.5) with less prominent negative Eu anomalies, and the chondrite-normalized spidergrams show strongly depleted Ba, Nb and Sr. The Alk suite, including syenogranite, is highly potassic (K2O/Na2O = 1.09-3.56) and peraluminous (A/CNK = 0.91-1.06). Compared to typical Qiman Tagh CA granodiorites, the Qiman Tagh Alk granitoids can be distinguished by their higher Rb, Nb, Ga/Al, FeO*/MgO, Y/Sr and Rb/Sr, as well as their lower Mg#, MgO, CaO, Al2O3, Sr, Co, V, Eu/Eu*, Ba/Nb, La/Nb, Ba/La and Ce/Nb. The Qiman Tagh CA rocks were most likely to be derived from the partial melting of garnet-amphibolite-facies rocks in the lower crust, leaving behind anhydrous granulite-facies rocks with plagioclase and garnet in the residue. The Alk rocks may have formed by the continued partial melting of granulite-facies rocks at elevated temperatures (> 830 °C).
Surface Ozone Variability and Trends over the South African Highveld from 1990 to 2007
NASA Technical Reports Server (NTRS)
Balashov, Nikolay V.; Thompson, Anne M.; Piketh, Stuart J.; Langerman, Kristy E.
2014-01-01
Surface ozone is a secondary air pollutant formed from reactions between nitrogen oxides (NOx = NO + NO2) and volatile organic compounds in the presence of sunlight. In this work we examine effects of the climate pattern known as the El Niño-Southern Oscillation (ENSO) and NOx variability on surface ozone from 1990 to 2007 over the South African Highveld, a heavily populated region in South Africa with numerous industrial facilities. Over summer and autumn (December-May) on the Highveld, El Niño, as signified by positive sea surface temperature (SST) anomalies over the central Pacific Ocean, is typically associated with drier and warmer than normal conditions favoring ozone formation. Conversely, La Niña, or negative SST anomalies over the central Pacific Ocean, is typically associated with cloudier and above normal rainfall conditions, hindering ozone production. We use a generalized regression model to identify any linear dependence that the Highveld ozone, measured at five air quality monitoring stations, may have on ENSO and NOx. Our results indicate that four out of the five stations exhibit a statistically significant sensitivity to ENSO at some point over the December-May period where El Niño amplifies ozone formation and La Niña reduces ozone formation. Three out of the five stations reveal statistically significant sensitivity to NOx variability, primarily in winter and spring. Accounting for ENSO and NOx effects throughout the study period of 18 years, two stations exhibit statistically significant negative ozone trends in spring, one station displays a statistically significant positive trend in August, and two stations show no statistically significant change in surface ozone.
Bertrand, B; Boulanger, R; Dussert, S; Ribeyre, F; Berthiot, L; Descroix, F; Joët, T
2012-12-15
Coffee grown at high elevations fetches a better price than that grown in lowland regions. This study was aimed at determining whether climatic conditions during bean development affected sensory perception of the coffee beverage and combinations of volatile compounds in green coffee. Green coffee samples from 16 plots representative of the broad range of climatic variations in Réunion Island were compared by sensory analysis. Volatiles were extracted by solid phase micro-extraction and the volatile compounds were analysed by GC-MS. The results revealed that, among the climatic factors, the mean air temperature during seed development greatly influenced the sensory profile. Positive quality attributes such as acidity, fruity character and flavour quality were correlated and typical of coffees produced at cool climates. Two volatile compounds (ethanal and acetone) were identified as indicators of these cool temperatures. Among detected volatiles, most of the alcohols, aldehydes, hydrocarbons and ketones appeared to be positively linked to elevated temperatures and high solar radiation, while the sensory profiles displayed major defects (i.e. green, earthy flavour). Two alcohols (butan-1,3-diol and butan-2,3-diol) were closely correlated with a reduction in aromatic quality, acidity and an increase in earthy and green flavours. We assumed that high temperatures induce accumulation of these compounds in green coffee, and would be detected as off-flavours, even after roasting. Climate change, which generally involves a substantial increase in average temperatures in mountainous tropical regions, could be expected to have a negative impact on coffee quality. Copyright © 2012 Elsevier Ltd. All rights reserved.
The effect of temperature mixing on the observable (T, β)-relation of interstellar dust clouds
NASA Astrophysics Data System (ADS)
Juvela, M.; Ysard, N.
2012-03-01
Context. Detailed studies of the shape of dust emission spectra are possible thanks to the current instruments capable of simultaneous observations in several sub-millimetre bands (e.g., Herschel and Planck). The relationship between the observed spectra and the intrinsic dust grain properties is known to be affected by the noise and the line-of-sight temperature variations. However, some controversy remains even on the basic effects resulting from the mixing of temperatures along the line-of-sight or within the instrument beam. Aims: Regarding the effect of temperature variations, previous studies have suggested either a positive or a negative correlation between the colour temperature TC and the observed spectral index βObs. Our aim is to show that both cases are possible and to determine the principal factors leading to either behaviour. Methods: We start by studying the behaviour of the sum of two or three modified black bodies at different temperatures. Then, with radiative transfer models of spherical clouds, we examine the probability distributions of the dust mass as a function of the physical dust temperature. With these results as a guideline, we examine the (TC, βobs) relations for different sets of clouds. Results: Even in the simple case of models consisting of two blackbodies at temperatures T0 and T0 + ΔT0, the correlation between TC and βobs can be either positive or negative. If one compares models where the temperature difference ΔT0 between the two blackbodies is varied, the correlation is negative. If the models differ in their mean temperature T0 rather than in ΔT0, the correlation remains positive. Radiative transfer models show that externally heated clouds have different mean temperatures but the widths of their temperature distributions are rather similar. Thus, in observations of samples of such clouds the correlation between TC and βObs is expected to be positive. The same result applies to clouds illuminated by external radiation fields of different intensity. For internally heated clouds a negative correlation is the more likely alternative. Conclusions: Previous studies of the (TC,β) relation have been correct in that, depending on the cloud sample, both positive and negative correlations are possible. For externally heated clouds the effect is opposite to the negative correlation seen in the observations. If the signal-to-noise ratio is high, the observed negative correlation could be explained by the temperature dependence of the dust optical properties but that intrinsic dependence could be even steeper than the observed one.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Yaqin; Sun, Zhigang, E-mail: zsun@dicp.ac.cn, E-mail: dawesr@mst.edu, E-mail: hguo@unm.edu; Center for Advanced Chemical Physics, University of Science and Technology of China, 96 Jinzhai Road, Hefei 230026
2014-08-28
The kinetics and dynamics of several O + O{sub 2} isotope exchange reactions have been investigated on a recently determined accurate global O{sub 3} potential energy surface using a time-dependent wave packet method. The agreement between calculated and measured rate coefficients is significantly improved over previous work. More importantly, the experimentally observed negative temperature dependence of the rate coefficients is for the first time rigorously reproduced theoretically. This negative temperature dependence can be attributed to the absence in the new potential energy surface of a submerged “reef” structure, which was present in all previous potential energy surfaces. In addition, contributionsmore » of rotational excited states of the diatomic reactant further accentuate the negative temperature dependence.« less
The start of lightning: Evidence of bidirectional lightning initiation.
Montanyà, Joan; van der Velde, Oscar; Williams, Earle R
2015-10-16
Lightning flashes are known to initiate in regions of strong electric fields inside thunderstorms, between layers of positively and negatively charged precipitation particles. For that reason, lightning inception is typically hidden from sight of camera systems used in research. Other technology such as lightning mapping systems based on radio waves can typically detect only some aspects of the lightning initiation process and subsequent development of positive and negative leaders. We report here a serendipitous recording of bidirectional lightning initiation in virgin air under the cloud base at ~11,000 images per second, and the differences in characteristics of opposite polarity leader sections during the earliest stages of the discharge. This case reveals natural lightning initiation, propagation and a return stroke as in negative cloud-to-ground flashes, upon connection to another lightning channel - without any masking by cloud.
NASA Technical Reports Server (NTRS)
Poff, K. L.
1991-01-01
Thermotropism in primary roots of Zea mays L. was studied with respect to gradient strength (degrees C cm-1), temperature of exposure within a gradient, pre-treatment temperature, and gravitropic stimulation. The magnitude of the response decreased with gradient strength. Maximum thermotropism was independent of gradient strength and pre-treatment temperature. The range of temperature for positive and negative thermotropism did not change with pre-treatment temperature. However, the exact range of temperatures for positive and negative thermotropism varied with gradient strengths. In general, temperatures of exposure lower than 25 degrees C resulted in positive tropic responses while temperatures of exposure of 39 degrees C or more resulted in negative tropic responses. Thermotropism was shown to modify and reverse the normal gravitropic curvature of a horizontal root when thermal gradients were applied opposite the 1 g vector. It is concluded that root thermotropism is a consequence of thermal sensing and that the curvature of the primary root results from the interaction of the thermal and gravitational sensing systems.
Jiao, Yu; Yu, Hang; Wang, Tian; An, Yusong; Yu, Yifan
2017-12-01
The relationship between thermal environmental parameters and clothing insulation is an important element in improving thermal comfort for the elderly. A field study was conducted on the indoor, transition space, and outdoor thermal environments of 17 elderly facilities in Shanghai, China. A random questionnaire survey was used to gather data from 672 valid samples. A statistical analysis of the data was conducted, and multiple linear regression models were established to quantify the relationships between clothing insulation, respondent age, indoor air temperature, and indoor relative humidity. Results indicated that the average thermal insulation of winter and summer clothing is 1.38 clo and 0.44 clo, respectively, for elderly men and 1.39 clo and 0.45 clo, respectively, for elderly women. It was also found that the thermal insulation of winter clothing is linearly correlated with age, and that there were seasonal differences in the relationship between clothing insulation and the environment. During winter, the clothing insulation is negatively correlated only with indoor temperature parameters (air temperature and operative temperature) for elderly males, while it is negatively correlated with indoor temperature parameters as well as transition space and outdoor air temperature for elderly females. In summer, clothing insulation for both elderly males and females is negatively correlated with outdoor temperature, as well as indoor temperature parameters (air temperature and operative temperature). The thermal insulation of summer clothing is also negatively correlated with transitional space temperature for males. Copyright © 2017 Elsevier Ltd. All rights reserved.
Thermal Image Measurements of Infrared Signatures
1986-12-01
110A (mItm D#Ie. gnea.od Block 19 contd. "ý-been shown to var,% bc.th positively and negatively comparedwith the thermometric tem"h perature...This effective temperature difference has been shown to vary both positively and negatively compared with the thermometric temperature difference... thermometric temperature difference is no longer a good representation of the radiance contrast. An "effective temperature difference" can however be defined
GRCop-84 Rolling Parameter Study
NASA Technical Reports Server (NTRS)
Loewenthal, William S.; Ellis, David L.
2008-01-01
This report is a section of the final report on the GRCop-84 task of the Constellation Program and incorporates the results obtained between October 2000 and September 2005, when the program ended. NASA Glenn Research Center (GRC) has developed a new copper alloy, GRCop-84 (Cu-8 at.% Cr-4 at.% Nb), for rocket engine main combustion chamber components that will improve rocket engine life and performance. This work examines the sensitivity of GRCop-84 mechanical properties to rolling parameters as a means to better define rolling parameters for commercial warm rolling. Experiment variables studied were total reduction, rolling temperature, rolling speed, and post rolling annealing heat treatment. The responses were tensile properties measured at 23 and 500 C, hardness, and creep at three stress-temperature combinations. Understanding these relationships will better define boundaries for a robust commercial warm rolling process. The four processing parameters were varied within limits consistent with typical commercial production processes. Testing revealed that the rolling-related variables selected have a minimal influence on tensile, hardness, and creep properties over the range of values tested. Annealing had the expected result of lowering room temperature hardness and strength while increasing room temperature elongations with 600 C (1112 F) having the most effect. These results indicate that the process conditions to warm roll plate and sheet for these variables can range over wide levels without negatively impacting mechanical properties. Incorporating broader process ranges in future rolling campaigns should lower commercial rolling costs through increased productivity.
Aldous, Leigh; Black, Jeffrey J; Elias, Maximo C; Gélinas, Bruno; Rochefort, Dominic
2017-09-13
Entropic changes inherent within a redox process typically result in significant temperature sensitivity. This can be utilised positively or can be a detrimental process. This study has investigated the thermoelectrochemical properties (temperature-dependant electrochemistry) of the ferrocenium|ferrocene redox couple in an ionic liquid, and in particular the effect of covalently tethering this redox couple to fixed positive or negative charges. As such, the ionic liquid 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide was employed to dissolve ferrocene, as well as cationic-tethered ferrocene (the 1-ethyl-3-(methylferrocenyl)imidazolium cation) and anionic-tethered ferrocene (the ferrocenylsulfonyl(trifluoromethylsulfonyl)imide anion). These systems were characterised in terms of their voltammetry (apparent formal potentials, diffusion coefficients and electron transfer rate constants) and thermoelectrochemistry (temperature coefficients of the cell potential or 'Seebeck coefficients', short circuit current densities and power density outputs). The oxidised cationic species behaved like a dicationic species and was thus 6-fold more effective at converting waste thermal energy to electrical power within a thermoelectrochemical cell than unmodified ferrocene. This was almost exclusively due to a significant boost in the Seebeck coefficient of this redox couple. Conversely, the oxidised anionic species was formally a zwitterion, but this zwitterionic species behaved thermodynamically like a neutral species. The inverted entropic change upon going from ferrocene to anion-tethered ferrocene allowed development of a largely temperature-insensitive reference potential based upon a mixture of acetylferrocene and ferricenyl(iii)sulfonyl(trifluoromethylsulfonyl)imide.
NASA Astrophysics Data System (ADS)
Matichuk, Rebecca; Tonnesen, Gail; Luecken, Deborah; Gilliam, Rob; Napelenok, Sergey L.; Baker, Kirk R.; Schwede, Donna; Murphy, Ben; Helmig, Detlev; Lyman, Seth N.; Roselle, Shawn
2017-12-01
The Weather Research and Forecasting (WRF) and Community Multiscale Air Quality (CMAQ) models were used to simulate a 10 day high-ozone episode observed during the 2013 Uinta Basin Winter Ozone Study (UBWOS). The baseline model had a large negative bias when compared to ozone (O3) and volatile organic compound (VOC) measurements across the basin. Contrary to other wintertime Uinta Basin studies, predicted nitrogen oxides (NOx) were typically low compared to measurements. Increases to oil and gas VOC emissions resulted in O3 predictions closer to observations, and nighttime O3 improved when reducing the deposition velocity for all chemical species. Vertical structures of these pollutants were similar to observations on multiple days. However, the predicted surface layer VOC mixing ratios were generally found to be underestimated during the day and overestimated at night. While temperature profiles compared well to observations, WRF was found to have a warm temperature bias and too low nighttime mixing heights. Analyses of more realistic snow heat capacity in WRF to account for the warm bias and vertical mixing resulted in improved temperature profiles, although the improved temperature profiles seldom resulted in improved O3 profiles. While additional work is needed to investigate meteorological impacts, results suggest that the uncertainty in the oil and gas emissions contributes more to the underestimation of O3. Further, model adjustments based on a single site may not be suitable across all sites within the basin.
Olivine friction at the base of oceanic seismogenic zones
Boettcher, M.S.; Hirth, G.; Evans, B. M.
2007-01-01
We investigate the strength and frictional behavior of olivine aggregates at temperatures and effective confining pressures similar to those at the base of the seismogenic zone on a typical ridge transform fault. Triaxial compression tests were conducted on dry olivine powder (grain size ???60 ??m) at effective confining pressures between 50 and 300 MPa (using Argon as a pore fluid), temperatures between 600??C and 1000??C, and axial displacement rates from 0.06 to 60 ??m/s (axial strain rates from 3 ?? 10-6 to 3 ?? 10-3 s-1). Yielding shows a negative pressure dependence, consistent with predictions for shear enhanced compaction and with the observation that samples exhibit compaction during the initial stages of the experiments. A combination of mechanical data and microstructural observations demonstrate that deformation was accommodated by frictional processes. Sample strengths were pressure-dependent and nearly independent of temperature. Localized shear zones formed in initially homogeneous aggregates early in the experiments. The frictional response to changes in loading rate is well described by rate and state constitutive laws, with a transition from velocity-weakening to velocity-strengthening at 1000??C. Microstructural observations and physical models indicate that plastic yielding of asperities at high temperatures and low axial strain rates stabilizes frictional sliding. Extrapolation of our experimental data to geologic strain rates indicates that a transition from velocity weakening to velocity strengthening occurs at approximately 600??C, consistent with the focal depths of earthquakes in the oceanic lithosphere. Copyright 2007 by the American Geophysical Union.
Tu, Xin; Yan, Jian-hua; Ma, Zeng-yi; Li, Xiao-dong; Pan, Xin-chao; Cen, Ke-fa; Cheron, Bruno
2006-12-01
The molecular emission spectra lines of the first negative system N2+ (B(2) sigma--> X(2) sigma ) are frequently observed in the plasma source containing nitrogen. (0-0) and (1--1) N2+ first negative system molecular bands around 391. 4 nm can be used to the measure the rotational and vibrational temperatures in a DC argon-nitrogen plasma at atmospheric pressure. The proposed method based on the comparison between this experimental emission spectrum and the computer simulated one is presented. The effect of the apparatus function, vibrational temperature and rotational temperatures on the line structure of numerical simulated spectrum is discussed. The results show that the electron temperature, rotational temperature, vibrational temperature and kinetic temperature of plasma arc are almost the same, which can be interpreted as that DC argon-nitrogen arc plasma at atmospheric pressure is in LTE under their experimental conditions.
Capp, Elliot; Liebl, Andrea L; Cones, Alexandra G; Russell, Andrew F
2018-01-01
Projecting population responses to climate change requires an understanding of climatic impacts on key components of reproduction. Here, we investigate the associations among breeding phenology, climate and incubation schedules in the chestnut-crowned babbler ( Pomatostomus ruficeps ), a 50 g passerine with female-only, intermittent incubation that typically breeds from late winter (July) to early summer (November). During daylight hours, breeding females spent an average of 33 min on the nest incubating (hereafter on-bouts) followed by 24-min foraging (hereafter off-bouts), leading to an average daytime nest attentiveness of 60%. Nest attentiveness was 25% shorter than expected from allometric calculations, largely because off-bout durations were double the expected value for a species with 16 g clutches (4 eggs × 4 g/egg). On-bout durations and daily attentiveness were both negatively related to ambient temperature, presumably because increasing temperatures allowed more time to be allocated to foraging with reduced detriment to egg cooling. By contrast, on-bout durations were positively associated with wind speed, in this case because increasing wind speed exacerbated egg cooling during off-bouts. Despite an average temperature change of 12°C across the breeding season, breeding phenology had no effect on incubation schedules. This surprising result arose because of a positive relationship between temperature and wind speed across the breeding season: Any benefit of increasing temperatures was canceled by apparently detrimental consequences of increasing wind speed on egg cooling. Our results indicate that a greater appreciation for the associations among climatic variables and their independent effects on reproductive investment are necessary to understand the effects of changing climates on breeding phenology.
Temperature of the plasmasphere from Van Allen Probes HOPE
NASA Astrophysics Data System (ADS)
Genestreti, K. J.; Goldstein, J.; Corley, G. D.; Farner, W.; Kistler, L. M.; Larsen, B. A.; Mouikis, C. G.; Ramnarace, C.; Skoug, R. M.; Turner, N. E.
2017-01-01
We introduce two novel techniques for estimating temperatures of very low energy space plasmas using, primarily, in situ data from an electrostatic analyzer mounted on a charged and moving spacecraft. The techniques are used to estimate proton temperatures during intervals where the bulk of the ion plasma is well below the energy bandpass of the analyzer. Both techniques assume that the plasma may be described by a one-dimensional E→×B→ drifting Maxwellian and that the potential field and motion of the spacecraft may be accounted for in the simplest possible manner, i.e., by a linear shift of coordinates. The first technique involves the application of a constrained theoretical fit to a measured distribution function. The second technique involves the comparison of total and partial-energy number densities. Both techniques are applied to Van Allen Probes Helium, Oxygen, Proton, and Electron (HOPE) observations of the proton component of the plasmasphere during two orbits on 15 January 2013. We find that the temperatures calculated from these two order-of-magnitude-type techniques are in good agreement with typical ranges of the plasmaspheric temperature calculated using retarding potential analyzer-based measurements—generally between 0.2 and 2 eV (2000-20,000 K). We also find that the temperature is correlated with L shell and hot plasma density and is negatively correlated with the cold plasma density. We posit that the latter of these three relationships may be indicative of collisional or wave-driven heating of the plasmasphere in the ring current overlap region. We note that these techniques may be easily applied to similar data sets or used for a variety of purposes.
Rodríguez-Castañeda, G; MacVean, C; Cardona, C; Hof, A R
2017-07-01
Factors limiting distribution range for most species are generally unknown regardless of whether they are native or invasive. We studied factors that could enable or restrict the distribution of two cosmopolitan invasive leafminer fly species, Liriomyza huidobrensis (Blanchard) and Liriomyza sativae (Blanchard) in their native niche. In order to test which ecological and environmental factors affect leafminer distribution we conducted thermal tolerance assays, sampled along elevation gradients and modeled species distribution. Findings from the field and rearing chambers showed a physiological restriction due to high temperatures for L. huidobrensis at 28-29 °C, above which adult emergence is compromised. We also found that maximum temperatures below 22 °C, typical of tropical highlands, favored L. huidobrensis. L. sativae was found across a wider temperature range (i.e., from 21 to 36 °C) in Guatemala. Our finding of a physiological threshold in temperature for L. huidobrensis may enable us to predict its invasive risk when combined with the environmental conditions at horticultural ports of entry and the global agricultural landscape. Further, it strengthens our predictions on shifts in distribution of the leafminer fly under future climate. We also found a temperature mediated competitive exclusion interaction between the two herbivore species, where L. sativae occurred at temperatures < 22 °C only in the absence of L. huidobrensis. We show that parasitoids had a negative effect on the leafminer flies, which varied with host plant. Finally, we show the importance of taking a multiaspect approach when investigating what limits distribution and invasiveness of a species. © The Authors 2017. Published by Oxford University Press on behalf of Entomological Society of America.
Correlates of the Rosenberg Self-Esteem Scale Method Effects
ERIC Educational Resources Information Center
Quilty, Lena C.; Oakman, Jonathan M.; Risko, Evan
2006-01-01
Investigators of personality assessment are becoming aware that using positively and negatively worded items in questionnaires to prevent acquiescence may negatively impact construct validity. The Rosenberg Self-Esteem Scale (RSES) has demonstrated a bifactorial structure typically proposed to result from these method effects. Recent work suggests…
Human impacts on regional avian diversity and abundance
Christopher A. Lepczyk; Curtis H. Flather; Volker C. Radeloff; Anna M. Pidgeon; Roger B. Hammer; Jianguo Liu
2008-01-01
Patterns of association between humans and biodiversity typically show positive, negative, or negative quadratic relationships and can be described by 3 hypotheses: biologically rich areas that support high human population densities co-occur with areas of high biodiversity (productivity); biodiversity decreases monotonically with increasing human activities (ecosystem...
Negative emotion does not enhance recall skills in adults with autistic spectrum disorders.
Deruelle, C; Hubert, B; Santos, A; Wicker, B
2008-04-01
Recent empirical findings suggest a significant influence of emotion on memory processes. Surprisingly, although emotion-processing difficulties appear to be a hallmark feature in autism spectrum disorders (ASD), their impact on higher-level cognitive functions, such as memory, has not been directly studied in this population. The aim of this study was to address this issue by assessing whether the emotional valence of visual scenes affects recall skills in high-functioning individuals with ASD. To this purpose, their recall performance of neutral and emotional pictures was compared with that of typically developing adults (control group). Results revealed that while typically developing individuals showed enhanced recall skills for negative relative to positive and neutral pictures, individuals with ASD recalled the neutral pictures as well as the emotional ones. Findings of this study thus point to reduced influence of emotion on memory processes in ASD than in typically developing individuals, possibly owing to amygdala dysfunctions.
NASA Astrophysics Data System (ADS)
Raymond, M.
1982-06-01
The Karasek Home is a single family Massachusetts residence whose active-solar-energy system is equipped with 640 square feet of trickle-down liquid flat-plate collectors, storage in a 300-gallon tank and a 2000-gallon tank embedded in a rock bin in the basement, and an oil-fired glass-lined 40-gallon domestic hot water tank for auxiliary water and space heating. Monthly performance data are tabulated for the overall system and for the collector, storage, space heating, and domestic hot water subsystems. For each month a graph is presented of collector array efficiency versus the difference between the inlet water temperature and ambient temperature divided by insolation. Typical system operation is illustrated by graphs of insolation and temperatures at different parts of the system versus time for a typical day. The typical system operating sequence for a day is also graphed as well as solar energy utilization and heat losses.
A Twin Factor Mixture Modeling Approach to Childhood Temperament: Differential Heritability
Scott, Brandon G.; Lemery-Chalfant, Kathryn; Clifford, Sierra; Tein, Jenn-Yun; Stoll, Ryan; Goldsmith, H. Hill
2016-01-01
Twin factor mixture modeling was used to identify temperament profiles, while simultaneously estimating a latent factor model for each profile with a sample of 787 twin pairs (Mage =7.4 years; SD = .84; 49% female; 88.3% Caucasian), using mother- and father-reported temperament. A 4-profile, 1-factor model fit the data well. Profiles included ‘Regulated, Typical Reactive’, ‘Well-regulated, Positive Reactive’, ‘Regulated, Surgent’, and ‘Dysregulated, Negative Reactive.’ All profiles were heritable, with heritability lower and shared environment also contributing to membership in the ‘Regulated, Typical Reactive’ and ‘Dysregulated, Negative Reactive’ profiles. PMID:27291568
Effect of Temperature on Synthetic Positive and Negative Feedback Gene Networks
NASA Astrophysics Data System (ADS)
Charlebois, Daniel A.; Marshall, Sylvia; Balazsi, Gabor
Synthetic biological systems are built and tested under well controlled laboratory conditions. How altering the environment, such as the ambient temperature affects their function is not well understood. To address this question for synthetic gene networks with positive and negative feedback, we used mathematical modeling coupled with experiments in the budding yeast Saccharomyces cerevisiae. We found that cellular growth rates and gene expression dose responses change significantly at temperatures above and below the physiological optimum for yeast. Gene expression distributions for the negative feedback-based circuit changed from unimodal to bimodal at high temperature, while the bifurcation point of the positive feedback circuit shifted up with temperature. These results demonstrate that synthetic gene network function is context-dependent. Temperature effects should thus be tested and incorporated into their design and validation for real-world applications. NSERC Postdoctoral Fellowship (Grant No. PDF-453977-2014).
Negative and Positive Testing Effects in Terms of Item-Specific and Relational Information
ERIC Educational Resources Information Center
Mulligan, Neil W.; Peterson, Daniel J.
2015-01-01
Though retrieving information typically results in improved memory on a subsequent test (the testing effect), Peterson and Mulligan (2013) outlined the conditions under which retrieval practice results in poorer recall relative to restudy, a phenomenon dubbed the "negative testing effect." The item-specific-relational account proposes…
Parental Warmth Amplifies the Negative Effect of Parental Hostility on Dating Violence
ERIC Educational Resources Information Center
Simons, Leslie Gordon; Simons, Ronald L.; Lei, Man-Kit; Hancock, Donna L.; Fincham, Frank D.
2012-01-01
Past research has documented the positive association between parental hostility and offspring involvement in intimate partner violence. Researchers, practitioners, and parents typically adopt the standpoint that parental warmth may counter these negative lessons. However, Straus and colleagues argue that parents foster IPV to the extent that they…
Mismatch Negativity in Children with Autism and Typical Development
ERIC Educational Resources Information Center
Dunn, Michelle A.; Gomes, Hilary; Gravel, Judith
2008-01-01
Children with autism are often characterized as having abnormalities in auditory processing. This study examined automatic and active processing of simple auditory stimuli in children using a component of event related potentials, the mismatch negativity (MMN). Amplitude of MMN in children with autism was significantly smaller than in children…
ERIC Educational Resources Information Center
Hülür, Gizem; Hoppmann, Christiane A.; Ram, Nilam; Gerstorf, Denis
2015-01-01
Conceptual notions and empirical evidence suggest that the intraindividual correlation (iCorr) of positive affect (PA) and negative affect (NA) is a meaningful characteristic of affective functioning. PA and NA are typically negatively correlated within-person. Previous research has found that the iCorr of PA and NA is relatively stable over time…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gallington, Leighanne C.; Hester, Brett R.; Kaplan, Benjamin S.
Low or negative thermal expansion (NTE) has been previously observed in members of the ZrP 2O 7 family at temperatures higher than their order-disorder phase transitions. The thermoelastic properties and phase behavior of the low temperature superstructure and high temperature negative thermal expansion phases of ZrV 2O 7 and HfV 2O 7 were explored via in situ variable temperature/pressure powder x-ray diffraction measurements. The phase transition temperatures of ZrV 2O 7 and HfV 2O 7 exhibited a very strong dependence on pressure (~700 K GPa), with moderate compression suppressing the formation of their NTE phases below 513 K. Compression alsomore » reduced the magnitude of the coefficients of thermal expansion in both the positive and negative thermal expansion phases. Additionally, the high temperature NTE phase of ZrV 2O 7 was found to be twice as stiff as the low temperature positive thermal expansion superstructure (24 and 12 GPa respectively).« less
A High-Resolution Measurement of Ball IR Black Paint's Low-Temperature Emissivity
NASA Technical Reports Server (NTRS)
Tuttle, Jim; Canavan, Ed; DiPirro, Mike; Li, Xiaoyi; Franck, Randy; Green, Dan
2011-01-01
High-emissivity paints are commonly used on thermal control system components. The total hemispheric emissivity values of such paints are typically high (nearly 1) at temperatures above about 100 Kelvin, but they drop off steeply at lower temperatures. A precise knowledge of this temperature-dependence is critical to designing passively-cooled components with low operating temperatures. Notable examples are the coatings on thermal radiators used to cool space-flight instruments to temperatures below 40 Kelvin. Past measurements of low-temperature paint emissivity have been challenging, often requiring large thermal chambers and typically producing data with high uncertainties below about 100 Kelvin. We describe a relatively inexpensive method of performing high-resolution emissivity measurements in a small cryostat. We present the results of such a measurement on Ball InfraRed BlackTM(BIRBTM), a proprietary surface coating produced by Ball Aerospace and Technologies Corp (BATC), which is used in spaceflight applications. We also describe a thermal model used in the error analysis.
From cold to hot: Climatic effects and productivity in Wisconsin dairy farms.
Qi, L; Bravo-Ureta, B E; Cabrera, V E
2015-12-01
This study examined the effects of climatic conditions on dairy farm productivity using panel data for the state of Wisconsin along with alternative stochastic frontier models. A noteworthy feature of this analysis is that Wisconsin is a major dairy-producing area where winters are typically very cold and snowy and summers are hot and humid. Thus, it is an ideal geographical region for examining the effects of a range of climatic factors on dairy production. We identified the effects of temperature and precipitation, both jointly and separately, on milk output. The analysis showed that increasing temperature in summer or in autumn is harmful for dairy production, whereas warmer winters and warmer springs are beneficial. In contrast, more precipitation had a consistent adverse effect on dairy productivity. Overall, the analysis showed that over the past 17 yr, changes in climatic conditions have had a negative effect on Wisconsin dairy farms. Alternative scenarios predict that climate change would lead to a 5 to 11% reduction in dairy production per year between 2020 and 2039 after controlling for other factors. Copyright © 2015 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Li, Ying-Han; Wang, Jun-Jian; Chen, Xue; Sun, Jian-Lin; Zeng, Hui
2011-02-01
Based on field survey and landscape pattern analysis, this paper studied the effects of green space vegetation canopy on the microclimate in three typical residential quarters in Shenzhen City. In each of the residential quarters, 22-26 points were chosen for meteorological observation; and around each of the observation points, a 20 m x 20 m quadrat was installed, with each quadrat divided into two different patches, one covered by vegetation canopy and the another no-covered. The patch density index (D(p)) and contagion index (CONTAG) in each quadrat were calculated to analyze the relationships between vegetation canopy pattern index and microclimate in each point. The results showed that the green space vegetation canopy pattern in Shenzhen had significant regulation effect on temperature and humidity. The cooling effect was mainly from the shading effect of vegetation, and also, correlated with vegetation quantity. The increase in the CONTAG of bare surface had obvious negative effects on the regulation effect of vegetation on microclimate. The regulation capability of green space vegetation on the temperature and humidity in residential quarters mainly came from tall arbor species.
The Mutation Breeding and Mutagenic Effect of Air Plasma on Penicillium Chrysogenum
NASA Astrophysics Data System (ADS)
Gui, Fang; Wang, Hui; Wang, Peng; Liu, Hui; Cai, Xiaochun; Hu, Yihua; Yuan, Chengling; Zheng, Zhiming
2012-04-01
Low temperature air plasma was used as the mutation tool for penicillin-producing strain Penicillium chrysogenum. The discharge conditions were RF power of 360 W, temperature of 40°C in a sealed chamber, and pressure of 10 Pa to 30 Pa. The result showed that the kinetics of the survival rate followed a typical saddle-shaped curve. Based on a statistic analysis, at the treating duration of 10 min, the positive mutation rate was as high as 37.5% while the negative mutation rate was low. The colonial morphology changed obviously when the plasma treating duration reached or exceeded 45 min. After both primary and secondary screening, a mutant designated as aPc051310 with high productivity of penicillin was obtained, and a strong mutagenic effect on P. chrysogenum was observed in the process. It was proved that after five generations, the mutant aPc051310 still exhibits a high productivity. All the results prove that the plasma mutation method could be developed as a convenient and effective tool to breed high-yield strains in the fermentation industry, while expanding the plasm application at the same time.
ERIC Educational Resources Information Center
Sperling, L. H.
1982-01-01
The temperature at which the onset of coordinated segmental motion begins is called the glass-rubber transition temperature (Tg). Natural rubber at room temperature is a good example of a material above its Tg. Describes an experiment examining the response of a typical polymer to temperature variations above and below Tg. (Author/JN)
NASA Technical Reports Server (NTRS)
Clanton, Stephen E.; Holt, James M.; Turner, Larry D. (Technical Monitor)
2001-01-01
A challenging part of International Space Station (ISS) thermal control design is the ability to incorporate design changes into an integrated system without negatively impacting performance. The challenge presents itself in that the typical ISS Internal Active Thermal Control System (IATCS) consists of an integrated hardware/software system that provides active coolant resources to a variety of users. Software algorithms control the IATCS to specific temperatures, flow rates, and pressure differentials in order to meet the user-defined requirements. What may seem to be small design changes imposed on the system may in fact result in system instability or the temporary inability to meet user requirements. The purpose of this paper is to provide a brief description of the solution process and analyses used to implement one such design change that required the incorporation of an automatic coolant bypass in the ISS Node 2 element.
Final Technical Report for Grant DE-FG02-04ER54795
DOE Office of Scientific and Technical Information (OSTI.GOV)
Merlino, Robert L
This is the final technical report for DOE Grant #DE-FG02-04ER54795-Experimental Investigations of Fundamental Processes in Dusty Plasmas. A plasma is an ionized gas, and a dusty plasmas is a plasma that contains, in addition to electrons and ions, micron-sized dust particles. The dust particles acquire and electric charge in the plasma by collecting electrons and ions. The electrons move more rapidly than the ions, so the dust charge is negative. A 1 micron dust particle in a typical low temperature plasma has a charge corresponding to approximately 2000 electrons. Dusty plasmas are naturally found in astrophysical plasmas, planetary rings, technologicalmore » plasmas, and magnetic fusion plasmas. The goal of this project was to study in the laboratory, the basic physical processes that occur in dusty plasmas. This report provides a summary of the major scientific products and activities of this award.« less
Therapeutic surfactant-stripped frozen micelles
NASA Astrophysics Data System (ADS)
Zhang, Yumiao; Song, Wentao; Geng, Jumin; Chitgupi, Upendra; Unsal, Hande; Federizon, Jasmin; Rzayev, Javid; Sukumaran, Dinesh K.; Alexandridis, Paschalis; Lovell, Jonathan F.
2016-05-01
Injectable hydrophobic drugs are typically dissolved in surfactants and non-aqueous solvents which can induce negative side-effects. Alternatives like `top-down' fine milling of excipient-free injectable drug suspensions are not yet clinically viable and `bottom-up' self-assembled delivery systems usually substitute one solubilizing excipient for another, bringing new issues to consider. Here, we show that Pluronic (Poloxamer) block copolymers are amenable to low-temperature processing to strip away all free and loosely bound surfactant, leaving behind concentrated, kinetically frozen drug micelles containing minimal solubilizing excipient. This approach was validated for phylloquinone, cyclosporine, testosterone undecanoate, cabazitaxel and seven other bioactive molecules, achieving sizes between 45 and 160 nm and drug to solubilizer molar ratios 2-3 orders of magnitude higher than current formulations. Hypertonic saline or co-loaded cargo was found to prevent aggregation in some cases. Use of surfactant-stripped micelles avoided potential risks associated with other injectable formulations. Mechanistic insights are elucidated and therapeutic dose responses are demonstrated.
NASA Astrophysics Data System (ADS)
Yoshida, M.; McKee, G. R.; Murakami, M.; Grierson, B. A.; Nakata, M.; Davis, E. M.; Marinoni, A.; Ono, M.; Rhodes, T. L.; Sung, C.; Schmitz, L.; Petty, C. C.; Ferron, J. R.; Turco, F.; Garofalo, A. M.; Holcomb, C. T.; Collins, C. M.; Solomon, W. M.
2017-05-01
Negative magnetic shear has been demonstrated in DIII-D and JT-60U to mitigate the confinement degradation typically observed with increasing the electron to ion temperature ratio (T e/T i). In recent experiments in DIII-D negative central magnetic shear (NCS) discharges, the thermal transport in the internal transport barrier formed around the radius of the minimum safety factor (q min) remained almost constant and modestly increased in the region outside of q min compared to the positive shear (PS) case, when T e/T i increased from about 0.8 to 1.1 through electron cyclotron heating (ECH). The benefit of NCS extending into the region outside of q min can be explained by the lower magnetic shear in the NCS plasma over the plasma radius relative to the PS plasma. Reduced confinement degradation at high T e/T i with NCS plasmas was commonly observed in DIII-D and JT-60U. The mechanism of the different transport responses between the NCS and PS plasmas has been assessed in terms of fluctuation measurements and gyrokinetic simulations in DIII-D; NCS gave a smaller rise in the low-wavenumber broadband turbulent fluctuations with the increase in T e/T i compared with the PS case. This is consistent with gyrokinetic simulations, which show a smaller rise in the growth rates of the ion temperature gradient mode in the NCS plasmas, with increasing T e/T i. Gyrokinetic simulations also showed a change in the stability of the electron modes with ECH applied, consistent with higher-wavenumber fluctuation measurements, although more detailed simulations are needed to give a quantitative explanation for the experimental observations. Control of q-profile and magnetic shear will allow confinement improvement in future machines with dominant electron heating.
Yoshida, Maiko; McKee, George R.; Murakami, Masanori; ...
2017-03-30
We demonstrated negative magnetic shear in DIII-D and JT-60U in order to mitigate the confinement degradation typically observed with increasing the electron to ion temperature ratio (T-e/T-i). In recent experiments in DIII-D negative central magnetic shear (NCS) discharges, the thermal transport in the internal transport barrier formed around the radius of the minimum safety factor (q(min)) remained almost constant and modestly increased in the region outside of q(min) compared to the positive shear (PS) case, when T-e/T-i increased from about 0.8 to 1.1 through electron cyclotron heating (ECH). The benefit of NCS extending into the region outside of qmin canmore » be explained by the lower magnetic shear in the NCS plasma over the plasma radius relative to the PS plasma. Reduced confinement degradation at high T-e/T-i with NCS plasmas was commonly observed in DIII-D and JT-60U. Furthermore, the mechanism of the different transport responses between the NCS and PS plasmas has been assessed in terms of fluctuation measurements and gyrokinetic simulations in DIII-D; NCS gave a smaller rise in the low-wavenumber broadband turbulent fluctuations with the increase in T-e/T-i compared with the PS case. This is consistent with gyrokinetic simulations, and this shows a smaller rise in the growth rates of the ion temperature gradient mode in the NCS plasmas, with increasing T-e/T-i. Gyrokinetic simulations also showed a change in the stability of the electron modes with ECH applied, consistent with higher-wavenumber fluctuation measurements, although more detailed simulations are needed to give a quantitative explanation for the experimental observations. Control of q-profile and magnetic shear will allow confinement improvement in future machines with dominant electron heating.« less
Mercury Cadmium Selenide for Infrared Detection
2013-06-01
were grown using elemental mercury (Hg), cadmium (Cd), and selenium (Se) sources. The beam equiva- lent pressure ( BEP ) emanating from all sources was...flux), the BEP measured for the cracker source was found to vary with the cracking zone temperature, tracking with the data found in Ref. 7. This sug...The Se BEP measured for the typical cracking zone temperature of 800 C was found to be close to a factor of two lower than at the typical effusion cell
Chang, Edward C; Asakawa, Kiyoshi
2003-03-01
A culturally relevant framework was used to examine variations on optimistic and pessimistic bias in Westerners and Easterners. Study 1 showed that 136 European Americans compared with 159 Japanese were more likely to predict typical positive events to occur to self than to a sibling. The opposite pattern emerged in the prediction of typical negative events. Study 2 replicated these findings on the basis of predictions for atypical events in 175 European Americans and 130 Japanese. Across both studies, within-groups analyses indicated that European Americans held an optimistic bias in the prediction of positive and negative events, whereas Japanese held a pessimistic bias for negative events. These findings are taken to offer support for presumed cultural differences in self-enhancement and self-criticism between Westerners and Easterners, respectively.
Grinias, James P; Wong, Jenny-Marie T; Kennedy, Robert T
2016-08-26
The impact of viscous friction on eluent temperature and column efficiency in liquid chromatography is of renewed interest as the need for pressures exceeding 1000bar to use with columns packed with sub-2μm particles has grown. One way the development of axial and radial temperature gradients that arise due to viscous friction can be affected is by the thermal environment the column is placed in. In this study, a new column oven integrated into an ultrahigh pressure liquid chromatograph that enables both still-air and forced-air operating modes is investigated to find the magnitude of the effect of the axial thermal gradient that forms in 2.1×100mm columns packed with sub-2μm particles in these modes. Temperature increases of nearly 30K were observed when the generated power of the column exceeded 25W/m. The impact of the heating due to viscous friction on the repeatability of peak capacity, elution time, and peak area ratio to an internal standard for a gradient UHPLC-MS/MS method to analyze neurotransmitters was found to be limited. This result indicates that high speed UHPLC-MS/MS gradient methods under conditions of high viscous friction may be possible without the negative effects typically observed with isocratic separations under similar conditions. Copyright © 2016 Elsevier B.V. All rights reserved.
Zhuo, Fangping; Li, Qiang; Gao, Jinghan; Ji, Yongjie; Yan, Qingfeng; Zhang, Yiling; Wu, Hong-Hui; Xi, Xiao-Qing; Chu, Xiangcheng; Cao, Wenwu
2018-04-11
(Pb 0.97 La 0.02 )(Zr x Sn 0.94- x Ti 0.06 )O 3 (PLZST) antiferroelectric ceramics with x = 0.75-0.90 have been fabricated and found to be a novel electrocaloric material system with a giant negative electrocaloric effect (Δ T = -11.5 K) and a large electrocaloric strength (|Δ T/Δ E| = 0.105 K cm kV -1 ) near room temperature. Additionally, the PLZST antiferroelectric ceramic also exhibits a large positive electrocaloric effect around the Curie temperature. The giant negative effect and the coexistence of both positive and negative electrocaloric effects in one material indicate a promising possibility to develop mid- to large-scale solid-state cooling devices with high efficiency.
Suppression of electron temperature gradient turbulence via negative magnetic shear in NSTX.
Yuh, H Y; Kaye, S M; Levinton, F M; Mazzucato, E; Mikkelsen, D R; Smith, D R; Bell, R E; Hosea, J C; LeBlanc, B P; Peterson, J L; Park, H K; Lee, W
2011-02-04
Negative magnetic shear is found to suppress electron turbulence and improve electron thermal transport for plasmas in the National Spherical Torus Experiment (NSTX). Sufficiently negative magnetic shear results in a transition out of a stiff profile regime. Density fluctuation measurements from high-k microwave scattering are verified to be the electron temperature gradient (ETG) mode by matching measured rest frequency and linear growth rate to gyrokinetic calculations. Fluctuation suppression under negligible E×B shear conditions confirm that negative magnetic shear alone is sufficient for ETG suppression. Measured electron temperature gradients can significantly exceed ETG critical gradients with ETG mode activity reduced to intermittent bursts, while electron thermal diffusivity improves to below 0.1 electron gyro-Bohms.
Cna'ani, Alon; Mühlemann, Joelle K; Ravid, Jasmin; Masci, Tania; Klempien, Antje; Nguyen, Thuong T H; Dudareva, Natalia; Pichersky, Eran; Vainstein, Alexander
2015-07-01
Increasing temperatures due to changing global climate are interfering with plant-pollinator mutualism, an interaction facilitated mainly by floral colour and scent. Gas chromatography-mass spectroscopy analyses revealed that increasing ambient temperature leads to a decrease in phenylpropanoid-based floral scent production in two Petunia × hybrida varieties, P720 and Blue Spark, acclimated at 22/16 or 28/22 °C (day/night). This decrease could be attributed to down-regulation of scent-related structural gene expression from both phenylpropanoid and shikimate pathways, and up-regulation of a negative regulator of scent production, emission of benzenoids V (EOBV). To test whether the negative effect of increased temperature on scent production can be reduced in flowers with enhanced metabolic flow in the phenylpropanoid pathway, we analysed floral volatile production by transgenic 'Blue Spark' plants overexpressing CaMV 35S-driven Arabidopsis thaliana production of anthocyanin pigments 1 (PAP1) under elevated versus standard temperature conditions. Flowers of 35S:PAP1 transgenic plants produced the same or even higher levels of volatiles when exposed to a long-term high-temperature regime. This phenotype was also evident when analysing relevant gene expression as inferred from sequencing the transcriptome of 35S:PAP1 transgenic flowers under the two temperature regimes. Thus, up-regulation of transcription might negate the adverse effects of temperature on scent production. © 2014 John Wiley & Sons Ltd.
Lubricant rheology applied to elastohydrodynamic lubrication
NASA Technical Reports Server (NTRS)
Winer, W. O.; Sanborn, D. M.
1977-01-01
Viscosity measurements in a high pressure rheometer, elastohydrodynamic simulator studies (including the development of a temperature measuring technique), and analytical fluid modeling for elastohydrodynamic contacts are described. The more recent research which is described concerns infrared temperature measurements in elastohydrodynamic contacts and the exploration of the glassy state of lubricants. A correlation, of engineering significance, was made between transient surface temperature measurements and surface roughness profiles. Measurements of glass transitions of lubricants and the study of the effect of rate processes on materials lead to the conclusion that typical lubricants go into the glassy state as they pass through the contact region of typical elastohydrodynamic contacts.
A Slag Management Toolset for Determining Optimal Coal Gasification Temperatures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kwong, Kyei-Sing; Bennett, James P.
Abstract Gasifier operation is an intricate process because of the complex relationship between slag chemistry and temperature, limitations of feedstock materials, and operational preference. High gasification temperatures increase refractory degradation, while low gasification temperatures can lead to slag buildup on the gasifier sidewall or exit, either of which are problematic during operation. Maximizing refractory service life and gasifier performance require finding an optimized operating temperature range which is a function of the coal slag chemistry and viscosity. Gasifier operators typically use a slag’s viscosity-temperature relationship and/or ash-fusion fluid temperature to determine the gasification temperature range. NETL has built a slagmore » management toolset to determine the optimal temperature range for gasification of a carbon feedstock. This toolset is based on a viscosity database containing experimental data, and a number of models used to predict slag viscosity as a function of composition and temperature. Gasifier users typically have no scientific basis for selecting an operational temperature range for gasification, instead using experience to select operational conditions. The use of the toolset presented in this paper provides a basis for estimating or modifying carbon feedstock slags generated from ash impurities in carbon feedstock.« less
Outdoor surface temperature measurement: ground truth or lie?
NASA Astrophysics Data System (ADS)
Skauli, Torbjorn
2004-08-01
Contact surface temperature measurement in the field is essential in trials of thermal imaging systems and camouflage, as well as for scene modeling studies. The accuracy of such measurements is challenged by environmental factors such as sun and wind, which induce temperature gradients around a surface sensor and lead to incorrect temperature readings. In this work, a simple method is used to test temperature sensors under conditions representative of a surface whose temperature is determined by heat exchange with the environment. The tested sensors are different types of thermocouples and platinum thermistors typically used in field trials, as well as digital temperature sensors. The results illustrate that the actual measurement errors can be much larger than the specified accuracy of the sensors. The measurement error typically scales with the difference between surface temperature and ambient air temperature. Unless proper care is taken, systematic errors can easily reach 10% of this temperature difference, which is often unacceptable. Reasonably accurate readings are obtained using a miniature platinum thermistor. Thermocouples can perform well on bare metal surfaces if the connection to the surface is highly conductive. It is pointed out that digital temperature sensors have many advantages for field trials use.
A Slag Management Toolset for Determining Optimal Coal Gasification Temperatures
Kwong, Kyei-Sing; Bennett, James P.
2016-11-25
Abstract Gasifier operation is an intricate process because of the complex relationship between slag chemistry and temperature, limitations of feedstock materials, and operational preference. High gasification temperatures increase refractory degradation, while low gasification temperatures can lead to slag buildup on the gasifier sidewall or exit, either of which are problematic during operation. Maximizing refractory service life and gasifier performance require finding an optimized operating temperature range which is a function of the coal slag chemistry and viscosity. Gasifier operators typically use a slag’s viscosity-temperature relationship and/or ash-fusion fluid temperature to determine the gasification temperature range. NETL has built a slagmore » management toolset to determine the optimal temperature range for gasification of a carbon feedstock. This toolset is based on a viscosity database containing experimental data, and a number of models used to predict slag viscosity as a function of composition and temperature. Gasifier users typically have no scientific basis for selecting an operational temperature range for gasification, instead using experience to select operational conditions. The use of the toolset presented in this paper provides a basis for estimating or modifying carbon feedstock slags generated from ash impurities in carbon feedstock.« less
ERIC Educational Resources Information Center
Tomeny, Theodore S.; Barry, Tammy D.; Bader, Stephanie H.
2012-01-01
Existing literature regarding the adjustment of siblings of children with an autism spectrum disorder (ASD) remains inconclusive, with some studies showing positive adjustment, others showing negative adjustment, and others showing no difference when compared to siblings of typically-developing children. For the current study, 42 parents of a…
Coping and Well-Being in Parents of Children with Autism Spectrum Disorders (ASD)
ERIC Educational Resources Information Center
Lai, Wei Wei; Goh, Tze Jui; Oei, Tian P.; Sung, Min
2015-01-01
This study examined psychological well-being and coping in parents of children with ASD and parents of typically developing children. 73 parents of children with ASD and 63 parents of typically developing children completed a survey. Parents of children with ASD reported significantly more parenting stress symptoms (i.e., negative parental…
Sun, Chao; Panagakou, Ioanna; Sboros, Vassilis; Butler, Mairead B; Kenwright, David; Thomson, Adrian J W; Moran, Carmel M
2016-08-01
This paper investigated the influence of needle gauge (19G and 27G), injection rate (0.85ml·min(-1), 3ml·min(-1)) and temperature (room temperature (RT) and body temperature (BT)) on the mean diameter, concentration, acoustic attenuation, contrast to tissue ratio (CTR) and normalised subharmonic intensity (NSI) of three ultrasound contrast agents (UCAs): Definity, SonoVue and MicroMarker (untargeted). A broadband substitution technique was used to acquire the acoustic properties over the frequency range 17-31MHz with a preclinical ultrasound scanner Vevo770 (Visualsonics, Canada). Significant differences (P<0.001-P<0.05) between typical in vitro setting (19G needle, 3ml·min(-1) at RT) and typical in vivo setting (27G needle, 0.85ml·min(-1) at BT) were found for SonoVue and MicroMarker. Moreover we found that the mean volume-based diameter and concentration of both SonoVue and Definity reduced significantly when changing from typical in vitro to in vivo experimental set-ups, while those for MicroMarker did not significantly change. From our limited measurements of Definity, we found no significant change in attenuation, CTR and NSI with needle gauge. For SonoVue, all the measured acoustic properties (attenuation, CTR and NSI) reduced significantly when changing from typical in vitro to in vivo experimental conditions, while for MicroMarker, only the NSI reduced, with attenuation and CTR increasing significantly. These differences suggest that changes in physical compression and temperature are likely to alter the shell structure of the UCAs resulting in measureable and significant changes in the physical and high frequency acoustical properties of the contrast agents under typical in vitro and preclinical in vivo experimental conditions. Copyright © 2016 Elsevier B.V. All rights reserved.
Supercharging of the Lunar Surface by Solar Wind Halo Electrons
NASA Astrophysics Data System (ADS)
Stubbs, T. J.; Farrell, W. M.; Collier, M. R.; Halekas, J. S.; Delory, G. T.; Holland, M. P.; Vondrak, R. R.
2007-12-01
Lunar surface potentials can reach several kilovolts negative during Solar Energetic Particle (SEPs) events, as indicated by recent analysis of data from the Lunar Prospector Electron Reflectometer (LP/ER). The lunar surface- plasma interactions that result in such extreme surface potentials are poorly characterized and understood. Extreme lunar surface charging, and the associated electrostatic discharges and transport of charged dust, will likely present significant hazards to future human explorers. This is of particular concern near the terminator and polar regions, such as the South Pole/Aiken Basin site planned for NASA's manned outpost. It is the flux of electrons from the ambient plasma that charges the surface of the Moon to negative potentials. In the solar wind, the electron temperature is typically ~10 eV which tends to charge the lunar surface to ~100 V negative in shadow. However, during space weather events the solar wind electrons are often better described by the sum of two Maxwellian distributions, referred to as the "core" and "halo" components. The core electrons are relatively cool and dense (e.g., ~10 eV and ~10/cc), whereas the halo electrons are hot and tenuous (e.g., ~100 eV and ~0.1/cc). Despite, the tenuous nature of the halo electrons, our surface charging model - using core and halo electron data derived from the Solar Wind Experiment (SWE) aboard the Wind spacrcraft - predicts that they are capable of "supercharging" the lunar surface to kilovolt potentials during space weather events, which could explain the LP/ER observations.
van der Lee, Arie; Roche, Gilles H; Wantz, Guillaume; Moreau, Joël J E; Dautel, Olivier J; Filhol, Jean-Sébastien
2018-04-28
Thermal expansion coefficients of most materials are usually small, typically up to 50 parts per million per kelvin, and positive, i.e. materials expand when heated. Some materials show an atypical shrinking behavior in one or more crystallographic directions when heated. Here we show that a high mobility thiophene-based organic semiconductor, BHH-BTBT , has an exceptionally large negative expansion between 95 and 295 K (-216 < α 2 = α b < -333 MK -1 ), being compensated by an even larger positive expansion in the perpendicular direction (287 < α 1 < 634 MK -1 ). It is shown that these anomalous expansivities are completely absent in C8-BTBT , a much studied organic semiconductor with a closely related molecular formula and 3D crystallographic structure. Complete theoretical characterization of BHH-BTBT using ab initio molecular dynamics shows that below ∼200 K two different α and β domains exist of which one is dominant but which dynamically exchange around and above 210 K. A supercritical-like transition from an α dominated phase to a β dominated phase is observed using DSC measurements, UV-VIS spectroscopy, and X-ray diffraction. The origin of the extreme negative and positive thermal expansion is related to steric hindrance between adjacent tilted thiophene units and strongly enhanced by attractive S···S and S···C interactions within the highly anharmonic mixed-domain phase. This material could trigger the tailoring of optoelectronic devices highly sensitive to strain and temperature.
Wetting characteristics of asphalt binders at mixing temperatures.
DOT National Transportation Integrated Search
2013-10-01
Conventional hot mix asphalt (HMA) is produced by heating the aggregate and the asphalt binder to elevated : temperatures that are typically in the range of 150C to 160C. These temperatures ensure that the viscosity of the : asphalt binder is low eno...
Advances In High Temperature (Viscoelastoplastic) Material Modeling for Thermal Structural Analysis
NASA Technical Reports Server (NTRS)
Arnold, Steven M.; Saleeb, Atef F.
2005-01-01
Typical High Temperature Applications High Temperature Applications Demand High Performance Materials: 1) Complex Thermomechanical Loading; 2) Complex Material response requires Time-Dependent/Hereditary Models: Viscoelastic/Viscoplastic; and 3) Comprehensive Characterization (Tensile, Creep, Relaxation) for a variety of material systems.
ERIC Educational Resources Information Center
Widmer, Pascale S.; Semmer, Norbert K.; Kalin, Wolfgang; Jacobshagen, Nicola; Meier, Laurenz L.
2012-01-01
According to the challenge-hindrance model, challenge stressors contain both stressful and challenging aspects, hindrance stressors only stressful aspects. Typically, negative outcomes of challenge stressors refer to well-being (strain), positive outcomes to so-called work outcomes (e.g., productivity, intention to quit). As both effects occur…
ERIC Educational Resources Information Center
Fischer, Peter; Postmes, Tom; Koeppl, Julia; Conway, Lianne; Fredriksson, Tom
2011-01-01
This article hypothesized that the possibility to construct intellectual meaning of a terrorist attack (i.e., whether participants can cognitively understand why the perpetrators did their crime) reduces the negative psychological consequences typically associated with increased terrorist threat. Concretely, the authors investigated the effect of…
ERIC Educational Resources Information Center
Green, S.; Baker, B.
2011-01-01
Background: Parents' expression of positive emotion towards children who are typically developing (TD) is generally associated with better social development. However, the association between parents' negative emotion expression and social development can be positive or negative depending upon a number of factors, including the child's emotion…
Associations among Negative Parenting, Attention Bias to Anger, and Social Anxiety among Youth
ERIC Educational Resources Information Center
Gulley, Lauren D.; Oppenheimer, Caroline W.; Hankin, Benjamin L.
2014-01-01
Theories of affective learning suggest that early experiences contribute to emotional disorders by influencing the development of processing biases for negative emotional stimuli. Although studies have shown that physically abused children preferentially attend to angry faces, it is unclear whether youth exposed to more typical aspects of negative…
Removal of Negative Feedback Enhances WCST Performance for Individuals with ASD
ERIC Educational Resources Information Center
Broadbent, Jaclyn; Stokes, Mark A.
2013-01-01
Negative feedback was explored as a potential mechanism that may exacerbate perseverative behaviours in individuals with Asperger's syndrome (AS). The current study compared 50 individuals with AS and 50 typically developing (TD) individuals for their abilities to successfully complete the Wisconsin Card Sorting Task (WCST) in the presence or…
Feedback and reward processing in high-functioning autism.
Larson, Michael J; South, Mikle; Krauskopf, Erin; Clawson, Ann; Crowley, Michael J
2011-05-15
Individuals with high-functioning autism often display deficits in social interactions and high-level cognitive functions. Such deficits may be influenced by poor ability to process feedback and rewards. The feedback-related negativity (FRN) is an event-related potential (ERP) that is more negative following losses than gains. We examined FRN amplitude in 25 individuals with Autism Spectrum Disorder (ASD) and 25 age- and IQ-matched typically developing control participants who completed a guessing task with monetary loss/gain feedback. Both groups demonstrated a robust FRN that was more negative to loss trials than gain trials; however, groups did not differ in FRN amplitude as a function of gain or loss trials. N1 and P300 amplitudes did not differentiate groups. FRN amplitude was positively correlated with age in individuals with ASD, but not measures of intelligence, anxiety, behavioral inhibition, or autism severity. Given previous findings of reduced-amplitude error-related negativity (ERN) in ASD, we propose that individuals with ASD may process external, concrete, feedback similar to typically developing individuals, but have difficulty with internal, more abstract, regulation of performance. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Lototzis, M.; Papadopoulos, G. K.; Droulia, F.; Tseliou, A.; Tsiros, I. X.
2018-04-01
There are several cases where a circular variable is associated with a linear one. A typical example is wind direction that is often associated with linear quantities such as air temperature and air humidity. The analysis of a statistical relationship of this kind can be tested by the use of parametric and non-parametric methods, each of which has its own advantages and drawbacks. This work deals with correlation analysis using both the parametric and the non-parametric procedure on a small set of meteorological data of air temperature and wind direction during a summer period in a Mediterranean climate. Correlations were examined between hourly, daily and maximum-prevailing values, under typical and non-typical meteorological conditions. Both tests indicated a strong correlation between mean hourly wind directions and mean hourly air temperature, whereas mean daily wind direction and mean daily air temperature do not seem to be correlated. In some cases, however, the two procedures were found to give quite dissimilar levels of significance on the rejection or not of the null hypothesis of no correlation. The simple statistical analysis presented in this study, appropriately extended in large sets of meteorological data, may be a useful tool for estimating effects of wind on local climate studies.
Cell design and manufacturing changes during the past decade
NASA Technical Reports Server (NTRS)
Baer, D. A.
1978-01-01
Eight of the most important changes that occurred in the GE 12 AH cell over the past ten years, which are currently being used are evaluated, and a systematic approach to compare their relative merits is presented. Typical positive thickness, typical negative thickness, positive loading, negative loading, final KOH quantity, and precharge as adjustment are shown for the control cell, and the following variables: Teflon treatment; silver treatment; light loading; no PQ treatment; polypropylene separator; the A.K. 1968 plate design no PQ, old elec process, no decarb process and the A.K. 1968 plate design, no PQ, present aerospace processes. The acceptance test cell voltage and cell pressure performance and capacity test results are included.
Negative differential resistance in GaN tunneling hot electron transistors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Zhichao; Nath, Digbijoy; Rajan, Siddharth
Room temperature negative differential resistance is demonstrated in a unipolar GaN-based tunneling hot electron transistor. Such a device employs tunnel-injected electrons to vary the electron energy and change the fraction of reflected electrons, and shows repeatable negative differential resistance with a peak to valley current ratio of 7.2. The device was stable when biased in the negative resistance regime and tunable by changing collector bias. Good repeatability and double-sweep characteristics at room temperature show the potential of such device for high frequency oscillators based on quasi-ballistic transport.
Ecotoxicological characterization of biochars: role of feedstock and pyrolysis temperature.
Domene, X; Enders, A; Hanley, K; Lehmann, J
2015-04-15
Seven contrasting feedstocks were subjected to slow pyrolysis at low (300 or 350°C) and high temperature (550 or 600°C), and both biochars and the corresponding feedstocks tested for short-term ecotoxicity using basal soil respiration and collembolan reproduction tests. After a 28-d incubation, soil basal respiration was not inhibited but stimulated by additions of feedstocks and biochars. However, variation in soil respiration was dependent on both feedstock and pyrolysis temperature. In the last case, respiration decreased with pyrolysis temperature (r=-0.78; p<0.0001, n=21) and increased with a higher volatile matter content (r=0.51; p<0.017), these two variables being correlated (r=-0.86, p<0.0001). Collembolan reproduction was generally unaffected by any of the additions, but when inhibited, it was mostly influenced by feedstock, and generally without any influence of charring itself and pyrolysis temperature. Strong inhibition was only observed in uncharred food waste and resulting biochars. Inhibition effects were probably linked to high soluble Na and NH4 concentrations when both feedstocks and biochars were considered, but mostly to soluble Na when only biochars were taken into account. The general lack of toxicity of the set of slow pyrolysis biochars in this study at typical field application rates (≤20 Mg ha(-1)) suggests a low short-term toxicity risk. At higher application rates (20-540 Mg ha(-1)), some biochars affected collembolan reproduction to some extent, but only strongly in the food waste biochars. Such negative impacts were not anticipated by the criteria set in currently available biochar quality standards, pointing out the need to consider ecotoxicological criteria either explicitly or implicitly in biochar characterization schemes or in management recommendations. Copyright © 2014 Elsevier B.V. All rights reserved.
NASA Technical Reports Server (NTRS)
Tiao, G. C.
1992-01-01
Work performed during the project period July 1, 1990 to June 30, 1992 on the statistical analysis of stratospheric temperature data, rawinsonde temperature data, and ozone profile data for the detection of trends is described. Our principal topics of research are trend analysis of NOAA stratospheric temperature data over the period 1978-1989; trend analysis of rawinsonde temperature data for the period 1964-1988; trend analysis of Umkehr ozone profile data for the period 1977-1991; and comparison of observed ozone and temperature trends in the lower stratosphere. Analysis of NOAA stratospheric temperature data indicates the existence of large negative trends at 0.4 mb level, with magnitudes increasing with latitudes away from the equator. Trend analysis of rawinsonde temperature data over 184 stations shows significant positive trends about 0.2 C per decade at surface to 500 mb range, decreasing to negative trends about -0.3 C at 100 to 50 mb range, and increasing slightly at 30 mb level. There is little evidence of seasonal variation in trends. Analysis of Umkehr ozone data for 12 northern hemispheric stations shows significant negative trends about -.5 percent per year in Umkehr layers 7-9 and layer 3, but somewhat less negative trends in layers 4-6. There is no pronounced seasonal variation in trends, especially in layers 4-9. A comparison was made of empirical temperature trends from rawinsonde data in the lower stratosphere with temperature changes determined from a one-dimensional radiative transfer calculation that prescribed a given ozone change over the altitude region, surface to 50 km, obtained from trend analysis of ozonsonde and Umkehr profile data. The empirical and calculated temperature trends are found in substantive agreement in profile shape and magnitude.
Superior room-temperature ductility of typically brittle quasicrystals at small sizes
Zou, Yu; Kuczera, Pawel; Sologubenko, Alla; Sumigawa, Takashi; Kitamura, Takayuki; Steurer, Walter; Spolenak, Ralph
2016-01-01
The discovery of quasicrystals three decades ago unveiled a class of matter that exhibits long-range order but lacks translational periodicity. Owing to their unique structures, quasicrystals possess many unusual properties. However, a well-known bottleneck that impedes their widespread application is their intrinsic brittleness: plastic deformation has been found to only be possible at high temperatures or under hydrostatic pressures, and their deformation mechanism at low temperatures is still unclear. Here, we report that typically brittle quasicrystals can exhibit remarkable ductility of over 50% strains and high strengths of ∼4.5 GPa at room temperature and sub-micrometer scales. In contrast to the generally accepted dominant deformation mechanism in quasicrystals—dislocation climb, our observation suggests that dislocation glide may govern plasticity under high-stress and low-temperature conditions. The ability to plastically deform quasicrystals at room temperature should lead to an improved understanding of their deformation mechanism and application in small-scale devices. PMID:27515779
Physical origins of current and temperature controlled negative differential resistances in NbO 2
Kumar, Suhas; Wang, Ziwen; Davila, Noraica; ...
2017-09-22
Negative differential resistance behavior in oxide memristors, especially those using NbO 2, is gaining renewed interest because of its potential utility in neuromorphic computing. However, there has been a decade-long controversy over whether the negative differential resistance is caused by a relatively low-temperature non-linear transport mechanism or a high-temperature Mott transition. Resolving this issue will enable consistent and robust predictive modeling of this phenomenon for different applications. Here in this paper, we examine NbO 2 memristors that exhibit both a current-controlled and a temperature-controlled negative differential resistance. Through thermal and chemical spectromicroscopy and numerical simulations, we confirm that the formermore » is caused by a ~400 K non-linear-transport-driven instability and the latter is caused by the ~1000 K Mott metal-insulator transition, for which the thermal conductance counter-intuitively decreases in the metallic state relative to the insulating state.« less
NASA Astrophysics Data System (ADS)
Zhuo, Fangping; Li, Qiang; Yan, Qingfeng; Zhang, Yiling; Wu, Hong-Hui; Xi, Xiaoqing; Chu, Xiangcheng; Cao, Wenwu
2017-10-01
Temperature induced phase transitions and electrocaloric effect (ECE) of (Pb,La)(Zr,Sn,Ti)O3 (PLZST) single crystals have been comprehensively studied. Based on the in situ evolution of domain structures and dielectric properties of the PLZST crystals, the phase transitions during heating are in the sequence of orthorhombic antiferroelectric → rhombohedral ferroelectric → cubic paraelectric. Coexistence of the negative and positive ECEs has been achieved in the PLZST single crystals. A negative ECE value of -1.26 °C and enhanced electrocaloric strength of -0.21 K mm/kV near the Curie temperature have been obtained. A modified Landau model gives a satisfactory description of the experimentally observed unusual ECE. Moreover, a temperature-electric field phase diagram is also established based on theoretical analysis. Our results will help people understand better the electrocaloric family, particularly on the negative and/or positive effect in antiferroelectrics and ferroelectrics.
Physical origins of current and temperature controlled negative differential resistances in NbO 2
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kumar, Suhas; Wang, Ziwen; Davila, Noraica
Negative differential resistance behavior in oxide memristors, especially those using NbO 2, is gaining renewed interest because of its potential utility in neuromorphic computing. However, there has been a decade-long controversy over whether the negative differential resistance is caused by a relatively low-temperature non-linear transport mechanism or a high-temperature Mott transition. Resolving this issue will enable consistent and robust predictive modeling of this phenomenon for different applications. Here in this paper, we examine NbO 2 memristors that exhibit both a current-controlled and a temperature-controlled negative differential resistance. Through thermal and chemical spectromicroscopy and numerical simulations, we confirm that the formermore » is caused by a ~400 K non-linear-transport-driven instability and the latter is caused by the ~1000 K Mott metal-insulator transition, for which the thermal conductance counter-intuitively decreases in the metallic state relative to the insulating state.« less
Langevin equation in systems with also negative temperatures
NASA Astrophysics Data System (ADS)
Baldovin, Marco; Puglisi, Andrea; Vulpiani, Angelo
2018-04-01
We discuss how to derive a Langevin equation (LE) in non standard systems, i.e. when the kinetic part of the Hamiltonian is not the usual quadratic function. This generalization allows to consider also cases with negative absolute temperature. We first give some phenomenological arguments suggesting the shape of the viscous drift, replacing the usual linear viscous damping, and its relation with the diffusion coefficient modulating the white noise term. As a second step, we implement a procedure to reconstruct the drift and the diffusion term of the LE from the time-series of the momentum of a heavy particle embedded in a large Hamiltonian system. The results of our reconstruction are in good agreement with the phenomenological arguments. Applying the method to systems with negative temperature, we can observe that also in this case there is a suitable LE, obtained with a precise protocol, able to reproduce in a proper way the statistical features of the slow variables. In other words, even in this context, systems with negative temperature do not show any pathology.
Meng, Jia; Zhang, Yewen; Holé, Stéphane; Zheng, Feihu; An, Zhenlian
2018-04-12
Space charge migration characteristics play an important role in the evaluation of polymer insulation performance. However, an accurate description of charge carrier mobility in several typical insulating polymers such as polyethylene, polypropylene is currently not available. Recently, with the observation of a series of negative charge packet movements associated with the negative differential resistance characteristic of charge mobility in LDPE films, the extraction of charge mobility from the apparent charge packet movement has been attempted using appropriate methods. Based on the previous report of the successful derivation of charge mobility from experimental results using numerical methods, the present research improves the derivation accuracy and describes the details of the charge mobility derivation procedure. Back simulation results under several typical polarizing fields using the derived charge mobility are exhibited. The results indicate that both the NDR theory and the simulation models for the polyethylene materials are reasonable. A significant migration velocity difference between the charge carrier and the charge packet is observed. Back simulations of the charge packet under several typical polarizing fields using the obtained E-v curve show good agreement with the experimental results. The charge packet shapes during the migrations were also found to vary with the polarizing field.
ERIC Educational Resources Information Center
Shivers, Carolyn M.; Kozimor, Laura Michelle
2017-01-01
Introduction: The presence of comorbid mental illness in individuals with intellectual and developmental disabilities (IDD) has been shown to have additional negative impact on parents and caregivers. However, the impact of such dual diagnoses on typically developing siblings has yet to be examined. Methods: Parents and typically developing…
Zhang, Juan; Meng, Yaxuan; Tong, Xiuhong; Yuan, Zhen; Wu, Chenggang; Ieong, Sao Leng
2018-02-14
Previous studies found that individuals with autism spectrum disorder (ASD) were less sensitive to the variations of lexical stress in their native language than typically developing controls. However, no study has been conducted to explore the perception of lexical stress in the second language among individuals with ASD. Using ERPs (event-related potentials) measurement with an oddball paradigm, the current study examined and compared the neural responses by Chinese-English bilingual children with ASD and typically developing controls in the processing of English lexical stress. The results showed that when compared with typically developing controls, children with ASD manifested reduced MMN (mismatch negativity) amplitude at the left temporal-parietal and parietal sites, indicating that they were less sensitive to lexical stress. However, a more negative MMN response was found for ASD group than for typically developing group at the right central-parietal, temporal-parietal, and temporal sites. In addition, the right hemisphere was more activated than the left hemisphere for ASD group, which might be derived from the reversed asymmetry of brain activation for individuals with ASD when processing language-related stimuli. Copyright © 2017 Elsevier B.V. All rights reserved.
Negative differential resistance in GaN nanocrystals above room temperature.
Chitara, Basant; Ivan Jebakumar, D S; Rao, C N R; Krupanidhi, S B
2009-10-07
Negative differential resistance (NDR) has been observed for the first time above room temperature in gallium nitride nanocrystals synthesized by a simple chemical route. Current-voltage characteristics have been used to investigate this effect through a metal-semiconductor-metal (M-S-M) configuration on SiO2. The NDR effect is reversible and reproducible through many cycles. The threshold voltage is approximately 7 V above room temperature.
Credit WCT. Original 4"x5" black and white negative is housed ...
Credit WCT. Original 4"x5" black and white negative is housed in the JPL Archives, Pasadena, California. This view shows Building E-39 under construction. E-39 is an example of the typical reinforced concrete block construction of the E-30s and E-40s structures (JPL negative no. 381-2586, 13 December 1962) - Jet Propulsion Laboratory Edwards Facility, Propellant Curing Building, Edwards Air Force Base, Boron, Kern County, CA
Is applicable thermodynamics of negative temperature for living organisms?
NASA Astrophysics Data System (ADS)
Atanasov, Atanas Todorov
2017-11-01
During organismal development the moment of sexual maturity can be characterizes by nearly maximum basal metabolic rate and body mass. Once the living organism reaches extreme values of the mass and the basal metabolic rate, it reaches near equilibrium thermodynamic steady state physiological level with maximum organismal complexity. Such thermodynamic systems that reach equilibrium steady state level at maximum mass-energy characteristics can be regarded from the prospective of thermodynamics of negative temperature. In these systems the increase of the internal and free energy is accompanied with decrease of the entropy. In our study we show the possibility the living organisms to regard as thermodynamic system with negative temperature
Temperature and rainfall strongly drive temporal growth variation in Asian tropical forest trees.
Vlam, Mart; Baker, Patrick J; Bunyavejchewin, Sarayudh; Zuidema, Pieter A
2014-04-01
Climate change effects on growth rates of tropical trees may lead to alterations in carbon cycling of carbon-rich tropical forests. However, climate sensitivity of broad-leaved lowland tropical trees is poorly understood. Dendrochronology (tree-ring analysis) provides a powerful tool to study the relationship between tropical tree growth and annual climate variability. We aimed to establish climate-growth relationships for five annual-ring forming tree species, using ring-width data from 459 canopy and understory trees from a seasonal tropical forest in western Thailand. Based on 183/459 trees, chronologies with total lengths between 29 and 62 years were produced for four out of five species. Bootstrapped correlation analysis revealed that climate-growth responses were similar among these four species. Growth was significantly negatively correlated with current-year maximum and minimum temperatures, and positively correlated with dry-season precipitation levels. Negative correlations between growth and temperature may be attributed to a positive relationship between temperature and autotrophic respiration rates. The positive relationship between growth and dry-season precipitation levels likely reflects the strong water demand during leaf flush. Mixed-effect models yielded results that were consistent across species: a negative effect of current wet-season maximum temperatures on growth, but also additive positive effects of, for example, prior dry-season maximum temperatures. Our analyses showed that annual growth variability in tropical trees is determined by a combination of both temperature and precipitation variability. With rising temperature, the predominantly negative relationship between temperature and growth may imply decreasing growth rates of tropical trees as a result of global warming.
Schwab, Frank; Gastmeier, Petra; Meyer, Elisabeth
2014-01-01
We investigated the relationship between average monthly temperature and the most common clinical pathogens causing infections in intensive care patients. A prospective unit-based study in 73 German intensive care units located in 41 different hospitals and 31 different cities with total 188,949 pathogen isolates (102,377 Gram-positives and 86,572 Gram-negatives) from 2001 to 2012. We estimated the relationship between the number of clinical pathogens per month and the average temperature in the month of isolation and in the month prior to isolation while adjusting for confounders and long-term trends using time series analysis. Adjusted incidence rate ratios for temperature parameters were estimated based on generalized estimating equation models which account for clustering effects. The incidence density of Gram-negative pathogens was 15% (IRR 1.15, 95%CI 1.10-1.21) higher at temperatures ≥ 20°C than at temperatures below 5°C. E. cloacae occurred 43% (IRR=1.43; 95%CI 1.31-1.56) more frequently at high temperatures, A. baumannii 37% (IRR=1.37; 95%CI 1.11-1.69), S. maltophilia 32% (IRR=1.32; 95%CI 1.12-1.57), K. pneumoniae 26% (IRR=1.26; 95%CI 1.13-1.39), Citrobacter spp. 19% (IRR=1.19; 95%CI 0.99-1.44) and coagulase-negative staphylococci 13% (IRR=1.13; 95%CI 1.04-1.22). By contrast, S. pneumoniae 35% (IRR=0.65; 95%CI 0.50-0.84) less frequently isolated at high temperatures. For each 5°C increase, we observed a 3% (IRR=1.03; 95%CI 1.02-1.04) increase of Gram-negative pathogens. This increase was highest for A. baumannii with 8% (IRR=1.08; 95%CI 1.05-1.12) followed by K. pneumoniae, Citrobacter spp. and E. cloacae with 7%. Clinical pathogens vary by incidence density with temperature. Significant higher incidence densities of Gram-negative pathogens were observed during summer whereas S. pneumoniae peaked in winter. There is increasing evidence that different seasonality due to physiologic changes underlies host susceptibility to different bacterial pathogens. Even if the underlying mechanisms are not yet clear, the temperature-dependent seasonality of pathogens has implications for infection control and study design.
NASA Astrophysics Data System (ADS)
Huang, Fuxiang; Ren, suling; Han, Shuangshuang; Zheng, xiangdong; Deng, xuejiao
2017-04-01
Daily total ozone and atmospheric temperature profile data in 2015 from the AIRS are used to investigate the spatial and temporal variation of the correlation between the Arctic atmospheric ozone and temperature. In the study, 11 lays atmospheric temperature profiles from the troposphere to the stratosphere are investigated. These layer heights are 20, 50, 70, 100, 200, 250, 300, 400, 500, 600 and 700 hPa respectively. The results show that a significant seasonal split exists in the correlation between the Arctic ozone and atmospheric temperature. Figure 1 shows the spatial and temporal variation of the coefficient between the atmospheric ozone and temperature at 50hPa. It can be seen from the figure that an obvious spatiotemporal difference exists in the correlation between the Arctic total ozone and atmospheric temperature in the lower stratosphere. First, the seasonal difference is very remarkable, which is shown as a significant positive correlation in most regions during winter and summer, while no correlation in the majority of regions occurs during spring and autumn, with a weak positive or negative correlation in a small number regions. Second, the spatial differences are also very obvious. The summer maximum correlation coefficient occurs in the Barents Sea and other locations at 0.8 and above, while the winter maximum occurs in the Baffin Bay area at 0.6 to 0.8. However, in a small number of regions, such as the land to the west of the Bering Strait in winter and the Arctic Ocean core area in summer, the correlation coefficients were unable to pass the significance test to show no correlation. At the same time, in spring and autumn, a positive correlation only occurs over a few low-latitude land areas, while over other Arctic areas, weak negative correlation exists. The differences in horizontal position are clearly related to the land-sea distribution, underlying surface characteristics, glacial melting, and other factors. In the troposphere, the ozone and temperature have a strong negative correlation in spring and autumn, while presenting a weak negative correlation or no correlation in winter and summer. Figure 2 shows the spatial and temporal variation of the correlation coefficient between the atmospheric ozone and temperature at 500hPa. From figure 2, it can be seen that in the Arctic troposphere, the atmospheric ozone and tropospheric temperature mainly have a negative correlation. In winter and summer, a weak negative correlation is shown overall, but more than a third of the regions show no correlation. In spring, the negative correlation is the strongest between the ozone and temperature. Especially in Greenland - Queen Elizabeth Islands and southern New Siberian Islands, the correlation is the highest, with a correlation coefficient of -0.9 and above, followed by a negative correlation in autumn. Except for a small number of low-latitude scattered regions with weak correlation, the correlation coefficients of most regions are ranged between -0.5 and -0.7. At 300 hPa near the tropopause, the horizontal distribution and seasonal change of the correlation between the Arctic total ozone and atmospheric temperature are as shown in Fig. 3.At the height near the Arctic tropopause, the atmospheric ozone mainly has no correlation to temperature, especially in winter and summer, when no correlation exists in the majority of regions, while weak positive or negative correlation occurs in a small number of areas. In the majority of regions during spring, a weak negative correlation is shown, while no correlation appears in Western Greenland - Queen Elizabeth Islands. In autumn, most regions show no correlation, while weak negative correlation is presented in Eastern Greenland, Norwegian Sea - Barents Sea, and other locations. From figure 1-3, we can see a significant difference exists from the common law of positive correlation in the lower stratosphere and negative correlation in the troposphere at mid-low latitudes. The Arctic atmospheric ozone has a relation with temperature, showing significant spatial and temporal variation characteristics. In the stratosphere, winter and summer atmospheric temperatures mainly have a positive correlation to ozone. The summer maximum occurs in the Barents Sea to achieve 0.8 and above, while the winter maximum is 0.6 to 0.8 in the Baffin Bay area. In the troposphere, the autumn and spring atmospheric temperatures mainly have a negative correlation to the ozone. The spring correlation coefficient in Greenland to the Queen Elizabeth Islands reaches up to -0.9 and above, while the autumn value is -0.5 to -0.7. At about 300 hPa, the tropopause value is reduced to 0, and further decreased in the troposphere, to show a strong negative correlation. Based on the comprehensive analysis of various influence factors, the possible action mechanism of the spatiotemporal variation pattern of the correlation between the Arctic atmospheric ozone and temperature is discussed based on the seasonal differences of various influence factors. The spatial and temporal variation characteristics of the correlation between the Arctic atmospheric ozone and temperature are determined by the seasonal variation of various influencing factors of the Arctic atmospheric ozone and temperature. These factors include the atmospheric heating effect from the ozone matching with the Arctic sunshine conditions, the influence of dynamic delivery on the ozone and heat, the impact of underlying-surface glacial melting on atmospheric radiation and heat budget, and so on. At different heights in each season, the different effects from all kinds of factors on the ozone and temperature determine the spatiotemporal variation of the correlation between the ozone and temperature.
On the estimation of thermal strains developed during oxide growth
NASA Astrophysics Data System (ADS)
Sabau, Adrian S.; Wright, Ian G.
2009-07-01
This paper presents results for the strains and stresses in oxide scales under the conditions of temperature and pressure expected in typical steam boiler operation. These conditions are radically different from those typically encountered in laboratory testing and include features such as a thermal gradient across the tube wall, significant internal (steam) pressure, and cycling of both steam temperature and pressure. Critical examination of the assumptions of flat-plate geometry, which is usually made in calculating stresses and strains in oxide scales, indicated that only the component of the hoop strain that generates stress must be reported for the cylindrical case, and that the use of simple plane-strain is adequate for the system studied. Calculations were made for alloy T22 with a hypothetical, single-layered oxide with appropriate properties. Typical conditions associated with transition of the boiler from full to partial load involve a decrease in both steam temperature and pressure, and these two sources of stress generation were found to exert opposite effects. The relative magnitudes of the resulting strains were used to explain the trends in strain levels calculated when the effects of thermal expansion, temperature loading, and pressure loading were superimposed.
NASA Astrophysics Data System (ADS)
Tidrow, Steven Clay
Two primary concerns, in the sputter deposition of high T_{c} material films, are the prevention of oxygen deficiency in the films and the elimination of the negative ion effect. "Oxygen deficiency" occurs when the amount of oxygen incorporated into the film is less than the amount of oxygen required to form the superconducting material lattice. Oxygen deficiency is due to the volatile nature of oxygen. The negative ion effect occurs when an atom or molecule (typically oxygen) gains an extra electron, is accelerated away from the target and impinges upon a film being grown directly in front of the sputtering target. The impinging particle has enough energy to cause resputtering of the deposited film. The presence of Sr and to a greater extent Ba, may enhance the negative ion effect in these materials. However, it is oxygen which readily forms negative ions that is primarily responsible for the negative ion effect. Thus, oxygen must be given special attention in the sputter deposition of high T_{c} material films. A specially designed sputtering system is used to demonstrate that the negative ion effect can be reduced such that large uniform high T_{c} material films possessing predicted and repeated composition can be grown in an on-axis arrangement. Utilizing this same sputtering system and the volatile nature of oxygen, it is demonstrated that oxygen processes occurring in the chamber during growth of high T_ {c} material films can be investigated using the tracer ^{18}O. In particular, it is shown that ^{18}O can be utilized as a tool for (1) investigating the negative ion effect, (2) investigating oxygen incorporation into high T_{c} material films, (3) investigating oxygen incorporation into the target, (4) tailoring films for oxygen migration and interface investigations and (5) tailoring films for the other specific oxygen investigations. Such sputtering systems that utilize the tracer ^{18}O are necessary for systematic growth of high T_ {c} material films for systematic investigations into the nature of these materials.
Switching Characteristics of a 4H-SiC Based Bipolar Junction Transistor to 200 C
NASA Technical Reports Server (NTRS)
Niedra, Janis M.
2006-01-01
Static curves and resistive load switching characteristics of a 600 V, 4 A rated, SiC-based NPN bipolar power transistor (BJT) were observed at selected temperatures from room to 200 C. All testing was done in a pulse mode at low duty cycle (approx.0.1 percent). Turn-on was driven by an adjustable base current pulse and turn-off was accelerated by a negative base voltage pulse of 7 V. These base drive signals were implemented by 850 V, gated power pulsers, having rise-times of roughly 10 ns, or less. Base charge sweep-out with a 7 V negative pulse did not produce the large reverse base current pulse seen in a comparably rated Si-based BJT. This may be due to a very low charge storage time. The decay of the collector current was more linear than its exponential-like rise. Switching observations were done at base drive currents (I(sub B)) up to 400 mA and collector currents (I(sub C)) up to 4 A, using a 100 Omega non-inductive load. At I(sub B) = 400 mA and I(sub C) = 4 A, turn-on times typically varied from 80 to 94 ns, over temperatures from 23 to 200 C. As expected, lowering the base drive greatly extended the turn-on time. Similarly, decreasing the load current to I(sub C) = 1 A with I(sub B) = 400 mA produced turn-on times as short as 34 ns. Over the 23 to 200 C range, with I(sub B) = 400 mA and I(sub C) = 4 A, turn-off times were in the range of 72 to 84 ns with the 7 V sweep-out.
Release from Proactive Interference with Positive and Negative Words
ERIC Educational Resources Information Center
Ferraro, F. Richaro; King, Brent
2004-01-01
Using the release from proactive interference (RPI) task, college students (n = 40) received 4 trials comprised of 3-word triads of either positive (P) or negative (N) words. Word-triad recall served as the dependent measure, and results revealed typical buildup of PI (i.e., no significant group X trial interaction across Trials 1-3). Significant…
From Sunshine to Double Arrows: An Evaluation Window Account of Negative Compatibility Effects
ERIC Educational Resources Information Center
Klauer, Karl Christoph; Dittrich, Kerstin
2010-01-01
In category priming, target stimuli are to be sorted into 2 categories. Prime stimuli preceding targets typically facilitate processing of targets when primes and targets are members of the same category, relative to the case in which both stem from different categories, a positive compatibility effect (PCE). But negative compatibility effects…
Individual Differences in Typical Reappraisal Use Predict Amygdala and Prefrontal Responses
Drabant, Emily M.; McRae, Kateri; Manuck, Stephen B.; Hariri, Ahmad R.; Gross, James J.
2010-01-01
Background Participants who are instructed to use reappraisal to downregulate negative emotion show decreased amygdala responses and increased prefrontal responses. However, it is not known whether individual differences in the tendency to use reappraisal manifests in similar neural responses when individuals are spontaneously confronted with negative situations. Such spontaneous emotion regulation might play an important role in normal and pathological responses to the emotional challenges of everyday life. Methods Fifty-six healthy women completed a blood oxygenation-level dependent functional magnetic resonance imaging challenge paradigm involving the perceptual processing of emotionally negative facial expressions. Participants also completed measures of typical emotion regulation use, trait anxiety, and neuroticism. Results Greater use of reappraisal in everyday life was related to decreased amygdala activity and increased prefrontal and parietal activity during the processing of negative emotional facial expressions. These associations were not attributable to variation in trait anxiety, neuroticism, or the use of another common form of emotion regulation, namely suppression. Conclusions These findings suggest that, like instructed reappraisal, individual differences in reappraisal use are associated with decreased activation in ventral emotion generative regions and increased activation in prefrontal control regions in response to negative stimuli. Such individual differences in emotion regulation might predict successful coping with emotional challenges as well as the onset of affective disorders. PMID:18930182
Ba(1-x)Sr(x)Zn2Si2O7--A new family of materials with negative and very high thermal expansion.
Thieme, Christian; Görls, Helmar; Rüssel, Christian
2015-12-15
The compound BaZn2Si2O7 shows a high coefficient of thermal expansion up to a temperature of 280 °C, then a transition to a high temperature phase is observed. This high temperature phase exhibits negative thermal expansion. If Ba(2+) is successively replaced by Sr(2+), a new phase with a structure, similar to that of the high temperature phase of BaZn2Si2O7, forms. At the composition Ba0.8Sr0.2Zn2Si2O7, this new phase is completely stabilized. The crystal structure was determined with single crystal X-ray diffraction using the composition Ba0.6Sr0.4Zn2Si2O7, which crystallizes in the orthorhombic space group Cmcm. The negative thermal expansion is a result of motions and distortions inside the crystal lattice, especially inside the chains of ZnO4 tetrahedra. Dilatometry and high temperature X-ray powder diffraction were used to verify the negative thermal expansion. Coefficients of thermal expansion partially smaller than -10·10(-6) K(-1) were measured.
Ubeda, X.; Pereira, P.; Outeiro, L.; Martin, D.A.
2009-01-01
Cork oak, (Quercus suber) is widely distributed in the Mediterranean region, an area subject to frequent fires. The ash produced by burning can have impacts on the soil status and water resources that can differ according to the temperature reached during fire and the characteristics of the litter, defined as the dead organic matter accumulated on the soil surface prior to the fire. The aim of this work is to determine the physical and chemical characteristics of ash produced in laboratory experiments to approximate conditions typical of fires in this region. The litter of Quercus suber collected from two different plots on the Iberian Peninsula, Mas Bassets (Catalonia) and Albufeira (Portugal), was combusted at different temperatures for 2h. We measured Mass Loss (ML per cent), ash colour and CaCO3 content, pH, Electrical Conductivity (EC) and the major cations (Ca2+, Mg2+, K+ and Na+) released from ash slurries created by mixing ash with deionized water. The results showed that ML per cent is higher at all temperatures in Albufeira samples compared to Mas Bassets samples, except at 550??C, and the rate of loss increases faster with temperature than the Mas Bassets samples. At 150??C the ash colour is yellowish, becoming reddish at 200- 250??C and black at 300??C. Above 400??C the ash is grey/white. This thermal degradation is mostly observed in Albufeira litter. The formation of CaCO3 was identified at a lower temperature in Albufeira litter. At temperatures <300??C, pH and EC values are lower, rising at higher temperatures, especially in Albufeira slurries. The concentration of cations at lower temperatures does not differ substantially from the unburned sample except for Mg2+. The cation concentration increases at medium temperatures and decrease at higher temperatures, especially the concentration of divalent cations. The monovalent cations showed a larger concentration at moderate temperatures, mainly in Albufeira ash slurries. The analysis of the Ca:Mg ratio also showed that for the same temperature, a higher severity results for Albufeira litter. Potential negative effects on soil properties are observed at medium and higher temperatures. These negative effects include a higher percentage of mass loss, meaning more soil may be exposed to erosion, higher pH values and greater cation release from ash, especially monovalalent cations (K+,Na+) in higher proportions than the divalent ions (Ca2+, Mg2+), that can lead to impacts on soil physical properties like aggregate stability. Furthermore, the ions in ash may alter soil chemistry which may be detrimental to some plants thus altering the recovery of these ecosystems after fire. Low intensity prescribed fire can be a useful tool to land management in these sites, due to the reduced effects of fire temperatures on the physical and chemical properties of surface litter, and can reduce the risk of high temperature wildland fires by reducing fuel loadings. From the perspective of water resources, lower fire temperatures produce fewer impacts on the chemistry of overland flow and there is less probability that the soil surface will be eroded. Copyright ?? 2009 John Wiley & Sons, Ltd.
On the possibility of negative activation energies in bimolecular reactions
NASA Technical Reports Server (NTRS)
Jaffe, R. L.
1978-01-01
The temperature dependence of the rate constants for model reacting systems was studied to understand some recent experimental measurements which imply the existence of negative activation energies. A collision theory model and classical trajectory calculations are used to demonstrate that the reaction probability can vary inversely with collision energy for bimolecular reactions occurring on attractive potential energy surfaces. However, this is not a sufficient condition to ensure that the rate constant has a negative temperature dependence. On the basis of these calculations, it seems unlikely that a true bimolecular reaction between neutral molecules will have a negative activation energy.
USDA-ARS?s Scientific Manuscript database
Temperature is a critical factor affecting anaerobic digestion because it influences both system heating requirements and methane production. Temperatures of 35-37°C are typically suggested for manure digestion, yet in temperate climate digesters, require a considerable amount of additional heat en...
Healing Voids In Interconnections In Integrated Circuits
NASA Technical Reports Server (NTRS)
Cuddihy, Edward F.; Lawton, Russell A.; Gavin, Thomas
1989-01-01
Unusual heat treatment heals voids in aluminum interconnections on integrated circuits (IC's). Treatment consists of heating IC to temperature between 200 degrees C and 400 degrees C, holding it at that temperature, and then plunging IC immediately into liquid nitrogen. Typical holding time at evaluated temperature is 30 minutes.
Moe, Randi Oppermann; Stubsjøen, Solveig Marie; Bohlin, Jon; Flø, Andreas; Bakken, Morten
2012-06-25
The present study describes effects of anticipation and consumption of a palatable reward on comb surface temperature. The purpose was to investigate temperature responses as a potential physiological indicator of positive emotional states in laying hens. A rise in body temperature in response to stimuli predictive of or during exposure to unpleasant events has been interpreted as evidence of emotions in mammals and avians. However, this phenomenon has so far only been studied during anticipation of or exposure to negative events; i.e., emotions of a negative valence. Infrared thermography was used to record potential alterations in comb surface temperature to a conditioned cue signaling a reward (mealworms) and during reward delivery. On average, comb temperature dropped 1.5 °C (95% CI: +/-1.2 °C) after exposure to CS and consumption of reward (p~0.0014) when initial comb temperature was above 30 °C. Such temperature drop indicates a peripheral vasoconstriction and has clear resemblances to emotional fever as seen during negative emotional states. Thus, we propose that a drop in peripheral temperature reflects emotional arousal more than emotional valence. Substantial temperature responses due to diet-induced thermogenesis were found, further emphasizing a cautious interpretation of altered comb temperature in studies of animal welfare. Copyright © 2012 Elsevier Inc. All rights reserved.
Estimating extreme stream temperatures by the standard deviate method
NASA Astrophysics Data System (ADS)
Bogan, Travis; Othmer, Jonathan; Mohseni, Omid; Stefan, Heinz
2006-02-01
It is now widely accepted that global climate warming is taking place on the earth. Among many other effects, a rise in air temperatures is expected to increase stream temperatures indefinitely. However, due to evaporative cooling, stream temperatures do not increase linearly with increasing air temperatures indefinitely. Within the anticipated bounds of climate warming, extreme stream temperatures may therefore not rise substantially. With this concept in mind, past extreme temperatures measured at 720 USGS stream gauging stations were analyzed by the standard deviate method. In this method the highest stream temperatures are expressed as the mean temperature of a measured partial maximum stream temperature series plus its standard deviation multiplied by a factor KE (standard deviate). Various KE-values were explored; values of KE larger than 8 were found physically unreasonable. It is concluded that the value of KE should be in the range from 7 to 8. A unit error in estimating KE translates into a typical stream temperature error of about 0.5 °C. Using a logistic model for the stream temperature/air temperature relationship, a one degree error in air temperature gives a typical error of 0.16 °C in stream temperature. With a projected error in the enveloping standard deviate dKE=1.0 (range 0.5-1.5) and an error in projected high air temperature d Ta=2 °C (range 0-4 °C), the total projected stream temperature error is estimated as d Ts=0.8 °C.
Three Types of Flower Structures in a Divergent-Wrench Fault Zone
NASA Astrophysics Data System (ADS)
Huang, Lei; Liu, Chi-yang
2017-12-01
Flower structures are typical features of wrench fault zones. In conventional studies, two distinct kinds of flower structures have been identified based on differences in their internal structural architecture: (1) negative flower structures characterized by synforms and normal separations and (2) positive flower structures characterized by antiforms and reverse separations. In addition to negative and positive flower structures, in this study, a third kind of flower structure was identified in a divergent-wrench fault zone, a hybrid characterized by both antiforms and normal separations. Negative flower structures widely occur in divergent-wrench fault zones, and their presence indicates the combined effects of extensional and strike-slip motion. In contrast, positive and hybrid flower structures occur only in fault restraining bends and step overs. A hybrid flower structure can be considered as product of a kind of structural deformation typical of divergent-wrench zones; it is the result of the combined effects of extensional, compressional, and strike-slip strains under a locally appropriate compressional environment. The strain situation in it represents the transition stage that in between positive and negative flower structures. Kinematic and dynamic characteristics of the hybrid flower structures indicate the salient features of structural deformation in restraining bends and step overs along divergent-wrench faults, including the coexistence of three kinds of strains (i.e., compression, extension, and strike-slip) and synchronous presence of compressional (i.e., typical fault-bend fold) and extensional (normal faults) deformation in the same place. Hybrid flower structures are also favorable for the accumulation of hydrocarbons because of their special structural configuration in divergent-wrench fault zones.
Maternal regulation of child affect in externalizing and typically-developing children.
Lougheed, Jessica P; Hollenstein, Tom; Lichtwarck-Aschoff, Anna; Granic, Isabela
2015-02-01
Temporal contingencies between children's affect and maternal behavior play a role in the development of children's externalizing problems. The goal of the current study was to use a microsocial approach to compare dyads with externalizing dysregulation (N =191) to healthy controls (N = 54) on maternal supportive regulation of children's negative and positive affect. Children were between the ages of 8 and 12 years. Mother-child dyads participated in conflict and positive discussions, and child affect and maternal supportive affect regulation were coded in real time. First, no group differences on overall levels of mother supportive regulation or child affect were found. Second, three event history analyses in a 2-level Cox hazard regression framework were used to predict the hazard rate of (a) maternal supportiveness, and of children's transitions (b) out of negative affect and (c) into positive affect. The hazard rate of maternal supportiveness, regardless of child affect, was not different between groups. However, as expected, the likelihood of mothers' supportive responses to children's negative affect was lower in externalizing than comparison dyads. In addition, children with externalizing problems were significantly less likely than typically developing children to transition out of negative affect in response to maternal supportiveness. The likelihood of both typically developing children and children with externalizing problems transitioning into positive affect were not related to specific occurrences of maternal supportiveness. Results of the current study show the importance of temporal dynamics in mother-child interactions in the emergence of children's externalizing problems. PsycINFO Database Record (c) 2015 APA, all rights reserved.
Stratis, Elizabeth A; Lecavalier, Luc
2017-08-01
This study evaluated the magnitude of informant agreement and predictors of agreement on behavior and emotional problems and autism symptoms in 403 children with autism and their typically developing siblings. Parent-teacher agreement was investigated on the Child Behavior Checklist (CBCL) and Social Responsiveness Scale (SRS). Agreement between parents and teachers fell in the low to moderate range. Multiple demographic and clinical variables were considered as predictors, and only some measures of parent broad autism traits were associated with informant agreement. Parent report on the SRS was a positive predictor of agreement, while teacher report was a negative predictor. Parent report on the CBCL emerged as a positive predictor of agreement, while teacher report emerged as a negative predictor.
Perceptions of temperature, moisture and comfort in clothing during environmental transients.
Li, Y
2005-02-22
A study has been carried out to investigate the psychophysical mechanisms of the perception of temperature and moisture sensations in clothing during environmental transients. A series of wear trials was conducted to measure the psychological perception of thermal and moisture sensations and the simultaneous temperature and humidity at the skin surface, fabric surface and in the clothing under simulated moderate rain conditions. Jumpers made from wool and acrylic fibres were used in the trial. Analysis has been carried out to study the relationship between psychological perceptions of temperature and moisture and the objectively measured skin and fabric temperatures and relative humidity in clothing microclimate. The perception of warmth seems to follow Fechner's law and Stevens' power law, having positive relationships with the skin temperature and fabric temperatures. The perception of dampness appears to follow Fechner's law more closely than Stevens' power law with a negative relationship with skin temperature, and is nonlinearly and positively correlated with relative humidity in clothing microclimate. The perception of comfort is positively related to the perception of warmth and negatively to the perception of dampness. This perception of comfort is positively related to the skin temperature, which appears to follow both Fechner's law and Stevens' law, also non-linearly and negatively related to relative humidity in clothing microclimate.
Negative thermal expansion and anomalies of heat capacity of LuB 50 at low temperatures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Novikov, V. V.; Zhemoedov, N. A.; Matovnikov, A. V.
2015-07-20
Heat capacity and thermal expansion of LuB 50 boride were experimentally studied in the 2–300 K temperature range. The data reveal an anomalous contribution to the heat capacity at low temperatures. The value of this contribution is proportional to the first degree of temperature. It was identified that this anomaly in heat capacity is caused by the effect of disorder in the LuB 50 crystalline structure and it can be described in the soft atomic potential model (SAP). The parameters of the approximation were determined. The temperature dependence of LuB 50 heat capacity in the whole temperature range was approximatedmore » by the sum of SAP contribution, Debye and two Einstein components. The parameters of SAP contribution for LuB 50 were compared to the corresponding values for LuB 66, which was studied earlier. Negative thermal expansion at low temperatures was experimentally observed for LuB 50. The analysis of the experimental temperature dependence for the Gruneisen parameter of LuB 50 suggested that the low-frequency oscillations, described in SAP mode, are responsible for the negative thermal expansion. As a result, the glasslike character of the behavior of LuB 50 thermal characteristics at low temperatures was confirmed.« less
NASA Astrophysics Data System (ADS)
Berendt, Artur; Domaszka, Magdalena; Mizeraczyk, Jerzy
2017-04-01
The electrical characteristics of a steady-state negative DC corona discharge in a two-phase fluid (air with suspended cigarette smoke particles) flowing along a chamber with a needle-to-plate electrode arrangement were experimentally investigated. The two-phase flow was transverse in respect to the needle-to-plate axis. The velocity of the transverse two-phase flow was limited to 0.8 m/s, typical of the electrostatic precipitators. We found that three discharge current modes of the negative corona exist in the two-phase (air + smoke particles) fluid: the Trichel pulses mode, the "Trichel pulses superimposed on DC component" mode and the DC component mode, similarly as in the corona discharge in air (a single-phase fluid). The shape of Trichel pulses in the air + suspended particles fluid is similar to that in air. However, the Trichel pulse amplitudes are higher than those in "pure" air while their repetition frequency is lower. As a net consequence of that the averaged corona discharge current in the two-phase fluid is lower than in "pure" air. It was also found that the average discharge current decreases with increasing suspended particle concentration. The calculations showed that the dependence of the average negative corona current (which is a macroscopic corona discharge parameter) on the particle concentration can be explained by the particle-concentration dependencies of the electric charge of Trichel pulse and the repetition frequency of Trichel pulses, both giving a microscopic insight into the electrical phenomena in the negative corona discharge. Our investigations showed also that the average corona discharge current in the two-phase fluid is almost unaffected by the transverse fluid flow up to a velocity of 0.8 m/s. Contribution to the topical issue "The 15th International Symposium on High Pressure Low Temperature Plasma Chemistry (HAKONE XV)", edited by Nicolas Gherardi and Tomáš Hoder
Development of high temperature gallium phosphide rectifiers
NASA Technical Reports Server (NTRS)
Craford, M. G.; Keune, D. L.
1972-01-01
Large area high performance, GaP rectifiers were fabricated by means of Zn diffusion into vapor phase epitaxial GaP. Devices with an active area of 0.01 sq cm typically exhibit forward voltages of 3 volts for a bias current of 1 ampere and have reverse breakdown voltages of 300 volts for temperatures from 27 C to 400 C. Typical device reverse saturation current at a reverse bias of 150 volts is less than 10 to the minus 9th power amp at 27 C and less than 0.000050 amp at 400 C.
Baek, Yoon Jeong; Jung, Dahee; Son, Su-Young; Lee, Joo-Young
2018-03-01
The purpose of this study was to evaluate physiological and subjective responses while wearing the Shikoro-type helmet for firefighters when compared to typical helmets. Eight firefighters conducted a 30-min exercise at a 5 km h -1 in three helmet conditions at an air temperature of 32 °C with 70%RH. The results showed that no significant differences in rectal, mean skin temperature and physiological strain index among the three conditions were found during exercise and recovery. Skin temperatures on the cheek, ear and neck during exercise were significantly lower for the Shikoro-type condition (p < 0.05), but forehead temperature was greater for the Shikoro-type helmet when compared to the other conditions (p < 0.05). Statistical differences in thermal sensation and thermal comfort for overall and local body regions were not found among the three conditions. These results imply that the Shikoro-type helmet had local advantages in reducing skin temperatures on the face and neck. Practitioner Summary: Firefighters wear their helmet with its hood to protect the head and neck but a Shikoro type helmet has no fire protective hood. This study aimed to evaluate the comfort function of Shikoro helmet along with typical helmets. The results demonstrated thermal benefits of the Shikoro helmet on the head.
Medium Deep High Temperature Heat Storage
NASA Astrophysics Data System (ADS)
Bär, Kristian; Rühaak, Wolfram; Schulte, Daniel; Welsch, Bastian; Chauhan, Swarup; Homuth, Sebastian; Sass, Ingo
2015-04-01
Heating of buildings requires more than 25 % of the total end energy consumption in Germany. Shallow geothermal systems for indirect use as well as shallow geothermal heat storage systems like aquifer thermal energy storage (ATES) or borehole thermal energy storage (BTES) typically provide low exergy heat. The temperature levels and ranges typically require a coupling with heat pumps. By storing hot water from solar panels or thermal power stations with temperatures of up to 110 °C a medium deep high temperature heat storage (MDHTS) can be operated on relatively high temperature levels of more than 45 °C. Storage depths of 500 m to 1,500 m below surface avoid conflicts with groundwater use for drinking water or other purposes. Permeability is typically also decreasing with greater depth; especially in the crystalline basement therefore conduction becomes the dominant heat transport process. Solar-thermal charging of a MDHTS is a very beneficial option for supplying heat in urban and rural systems. Feasibility and design criteria of different system configurations (depth, distance and number of BHE) are discussed. One system is designed to store and supply heat (300 kW) for an office building. The required boreholes are located in granodioritic bedrock. Resulting from this setup several challenges have to be addressed. The drilling and completion has to be planned carefully under consideration of the geological and tectonical situation at the specific site.
Numerical study of effects of atmosphere temperature profile on wildfire behavior
Chunmei Xia; M. Yousuff Hussaini; Philip Cunningham; Rodman R. Linn; Scott L. Goodrick
2003-01-01
The vertical temperature profile and hence the stability in the atmosphere near the ground vanes significantly between day and night. Typically, the potential temperature at the surface is higher than that above the ground during the day and lower than that above the ground during the night. Such differences in the vertical temperature profile might act to accelerate...
Heat Coma Temperature and Supercooling Point in Oceanic Sea Skaters (Heteroptera, Gerridae)
Harada, Tetsuo
2018-01-01
Heat coma temperatures (HCTs) and super cooling points (SCPs) were examined for nearly 1000 oceanic sea skaters collected from in the Pacific and Indian Oceans representing four Halobates species; H. germanus, H. micans, H. sericeus, and H. sp. Analysis was conducted using the entire dataset because a negative correlation was seen between the HCTs and SCPs in all four species. A weak negative correlation was seen between HCTs and SCPs with a cross tolerance between warmer HCTs and colder SCPs. The weakness of the correlation may be due to the large size of the dataset and to the variability in ocean surface temperature. The negative correlation does however suggest that oceanic sea skaters may have some form of cross tolerance with a common physiological mechanism for their high and low temperature tolerances. PMID:29401693
NASA Astrophysics Data System (ADS)
Paul, Barnita; Chatterjee, Swastika; Roy, Anushree; Midya, A.; Mandal, P.; Grover, Vinita; Tyagi, A. K.
2017-02-01
In this article, we report negative thermal expansion and spin frustration in hexagonal GdInO3. Rietveld refinements of the x-ray diffraction patterns reveal that the negative thermal expansion in the temperature range of 50-100 K stems from the triangular lattice of Gd3 + ions. The downward deviation of the low-temperature inverse susceptibility (χ-1) versus T plot from the Curie-Weiss law and the large value of the ratio, | θCW|/ TN>28 , where θCW and TN are respectively Curie-Weiss and Neel temperature, indicate a strong spin frustration, which inhibits long-range magnetic ordering down to 1.8 K. Magnetostriction measurements clearly demonstrate a spin-lattice coupling in the system. Low-temperature anomalous phonon softening, as obtained from temperature-dependent Raman measurements, also reveals the same. Our experimental observations are supported by first-principles density functional theory calculations of the electronic and phonon dispersion in GdInO3. The calculations suggest that the GdInO3 lattice is highly frustrated at low temperature. Further, the calculated normal mode frequencies of the Gd-related Γ point phonon modes reveal significant magnetoelastic coupling in this system. The competitive role of magnetic interaction energy and thermal stabilization energy in determining the change in interatomic distances is the possible origin for the negative thermal expansion in GdInO3 over a limited range of temperature.
NASA Astrophysics Data System (ADS)
Zhang, Yue; Zhuo, Qing-Qing; Liu, Hong-Xia; Ma, Xiao-Hua; Hao, Yue
2014-05-01
The effect of the static negative bias temperature (NBT) stress on a p-channel power metal—oxide—semiconductor field-effect transistor (MOSFET) is investigated by experiment and simulation. The time evolution of the negative bias temperature instability (NBTI) degradation has the trend predicted by the reaction—diffusion (R—D) model but with an exaggerated time scale. The phenomena of the flat-roof section are observed under various stress conditions, which can be considered as the dynamic equilibrium phase in the R—D process. Based on the simulated results, the variation of the flat-roof section with the stress condition can be explained.
DOT National Transportation Integrated Search
1994-09-01
This report presents a theoretical analysis predicting the temperature distribution, thermal deflections, and thermal stresses that may occur in typical steel Maglev guideways under the proposed Orlando FL thermal environment. Transient, finite eleme...
NASA Astrophysics Data System (ADS)
Huang, Shenyan; An, Ke; Gao, Yan; Suzuki, Akane
2018-03-01
Constrained γ/ γ' lattice misfit as a function of temperature (room temperature, 871 °C, 982 °C, 1093 °C, and 1204 °C) is measured by neutron diffraction on the first-generation Ni-based single-crystal superalloy René N4 and second-generation superalloys René N5, CMSX4, and PWA1484. All the alloys studied show negative misfit at temperatures above 871 °C. For René N4, René N5, and PWA1484, the misfit becomes less negative at temperatures above 1093 °C, possibly due to either the chemistry effect or internal stress relaxation. The magnitude of the misfit shows a qualitative agreement with Caron's misfit model based on Vegard's coefficients. The Re-free alloy René N4 was found to have a larger γ lattice parameter and γ/ γ' misfit due to higher fractions of Cr, Ti, and Mo. After 100 hours of annealing at high temperatures, René N5 shows a more negative misfit than the misfit after the standard heat treatment.
NASA Astrophysics Data System (ADS)
Li, Q.; Kelly, R. E. J.; Lemmetyinen, J.; Kontu, A.
2017-12-01
Spaceborne passive microwave (PM) systems are an important tool for estimating snow water equivalent (SWE) or snow depth (SD) in winter landscapes. However, because spaceborne radiometer footprints have a coarse spatial resolution, the measured upwelling brightness temperature (Tb) typically is a mixed signal propagated from multiple sources. Tree canopies can effectively attenuate microwave emission from the sub-canopy terrain beneath and can also have a strong emission signal. Therefore, these two combined observed processes decrease the sensitivity of the observed signal to SWE or SD. To evaluate the detailed behavior of the microwave emission from a forest landscape, the experiment focused on snow and vegetation radiative transfer processes was conducted at an established field site operated by the Finnish Meteorological Institute's Arctic Research Station in Sodankylä, Finland. In this experiment, downwelling Tbs from a target tree (Scots pine) was measured by an multi-frequency, dual polarization radiometer from Septermber 2016 to March 2017. A dendrometer and thermistor installed on the tree trunk at the height of 2 meters and 4 meters measured the sap flow and skin temperature of the tree. An adjacent weather station measured the air temperature. Snow cover conditions of the canopy was determined by an assessment web camera image time series. The three main findings are that first, the emissivity was positively correlated with tree skin temperatures below 0°C, but not when temperatures were at or greater than than 0°C. Furthermore, lower frequency channel observations were more sensitive to these physical temperatures than higher frequencies. Second, the Tb difference between horizontal and vertical polarizations were also negatively correlated with physical temperatures less than 0°C, but not when the physical temperatures were greater than 0°C. In addition, the Tb polarization differences of the lower frequency channels are more sensitive to temperature than for the higher frequency channels. Third, although the snow on the canopy can influence the microwave Tb response, this influence was found to be relatively small compared with other factors, suggesting that the difference of the canopy Tbs during the snow-covered and no-snow-covered periods were not statistically significant.
The demographics of unfunded pensions.
Keyfitz, N
1985-01-01
The performance of pay-as-you-go old-age insurance under different demographic conditions can be estimated from a metric consisting of the implicit rate of return to successive cohorts. The author shows a positive return for the prospective population over the next few years, but for cohorts born after the end of the century returns will become sharply negative. A decline in returns is typical of pay-as-you-go schemes as they mature, and a change to negative returns is typical in particular as the birth rate falls under fixed economic conditions. The return can be kept positive by greatly increased fertility or immigration. Taking labor-force participation rates into account, and supposing entitlement independent of contribution, gives much larger negative rates of return, however. The main calculations considered here are for schemes with a constant pension. If the contribution rather than the pension is kept constant then the disparities between cohorts with respect to their returns are smaller, and although the negative returns for future generations then set in earlier they are smaller. The conclusions of the paper are broadly applicable to any population that showed a baby boom after World War II and replacement-level or lower fertility subsequently.
NASA Astrophysics Data System (ADS)
Junling, Wang; Rui, Wu; Tiancheng, Yi; Yong, Zheng; Rong, Wang
2018-01-01
Temperature-dependent photoluminescence (PL) measurements were carried out to investigate the irradiation effects of 1.0 MeV electrons on the n+- p GaInP top cell of GaInP/GaAs/Ge triple-junction solar cells in the 10-300 K temperature range. The PL intensities plotted against inverse temperature in an Arrhenius plot shows a thermal quenching behavior from 10 K to 140 K and an unusual negative thermal quenching (NTQ) behavior from 150 K to 300 K. The appearance of the PL thermal quenching with increasing temperature confirms that there is a nonradiative recombination center, i.e., the H2 hole trap located at Ev + 0.55 eV, in the cell after electron irradiation. The PL negative thermal quenching behavior may tentatively be attributed to the intermediate states at an energy level of 0.05 eV within the band gap in GaInP top cell.
Negative ion source with low temperature transverse divergence optical system
Whealton, John H.; Stirling, William L.
1986-01-01
A negative ion source is provided which has extremely low transverse divergence as a result of a unique ion focusing system in which the focal line of an ion beam emanating from an elongated, concave converter surface is outside of the ion exit slit of the source and the path of the exiting ions. The beam source operates with a minimum ion temperature which makes possible a sharply focused (extremely low transverse divergence) ribbon like negative ion beam.
Negative ion source with low temperature transverse divergence optical system
Whealton, J.H.; Stirling, W.L.
1985-03-04
A negative ion source is provided which has extremely low transverse divergence as a result of a unique ion focusing system in which the focal line of an ion beam emanating from an elongated, concave converter surface is outside of the ion exit slit of the source and the path of the exiting ions. The beam source operates with a minimum ion temperature which makes possible a sharply focused (extremely low transverse divergence) ribbon like negative ion beam.
Temperature Effects in Varactors and Multipliers
NASA Technical Reports Server (NTRS)
East, J.; Mehdi, Imran
2001-01-01
Varactor diode multipliers are a critical part of many THz measurement systems. The power and efficiencies of these devices limit the available power for THz sources. Varactor operation is determined by the physics of the varactor device and a careful doping profile design is needed to optimize the performance. Higher doped devices are limited by junction breakdown and lower doped structures are limited by current saturation. Higher doped structures typically have higher efficiencies and lower doped structures typically have higher powers at the same operating frequency and impedance level. However, the device material properties are also a function of the operating temperature. Recent experimental evidence has shown that the power output of a multiplier can be improved by cooling the device. We have used a particle Monte Carlo simulation to investigate the temperature dependent velocity vs. electric field in GaAs. This information was then included in a nonlinear device circuit simulator to predict multiplier performance for various temperatures and device designs. This paper will describe the results of this analysis of temperature dependent multiplier operation.
Thermal equilibrium concentrations and effects of negatively charged Ga vacancies in n-type GaAs
NASA Astrophysics Data System (ADS)
Tan, T. Y.; You, H.-M.; Gösele, U. M.
1993-03-01
We have calculated the thermal equilibrium concentrations of the various negatively charged Ga vacancy species in GaAs. The triply-negatively-charged Ga vacancy, V {Ga/3-}, has been emphasized, since it dominates Ga self-diffusion and Ga-Al interdiffusion under intrinsic and n-doping conditions, as well as the diffusion of Si donor atoms occupying Ga sites. Under strong n-doping conditions, the thermal equilibrium V {Ga/3-}concentration, C_{V_{_{Ga} }^{3 - } }^{eq} (n), has been found to exhibit a temperature independence or a negative temperature dependence, i.e., the C_{V_{_{Ga} }^{3 - } }^{eq} (n) value is either unchanged or increases as the temperature is lowered. This is quite contrary to the normal point defect behavior for which the point defect thermal equilibrium concentration decreases as the temperature is lowered. This C_{V_{_{Ga} }^{3 - } }^{eq} (n) property provides explanations to a number of outstanding experimental results, either requiring the interpretation that V {Ga/3-}has attained its thermal equilibrium concentration at the onset of each experiment, or requiring mechanisms involving point defect non-equilibrium phenomena.
NASA Astrophysics Data System (ADS)
Tang, Cuihua; Zhu, Jianxi; Li, Zhaohui; Zhu, Runliang; Zhou, Qing; Wei, Jingming; He, Hongping; Tao, Qi
2015-11-01
Silica minerals are widely used in environmental remediation for their prevalence in soil and sediment. Two common SiO2 polymorphs, α-quartz and α-cristobalite, were investigated for the removal of a typical cationic dye, methylene blue (MB), from aqueous solutions. Their adsorption behaviors were studied in batch experiments as a function of specific surface area (SSA), pH, and temperature. The surface site density of α-quartz (10.6 sites/nm2) was higher than that of α-cristobalite (6.2 sites/nm2) with the Gran plot method, and the adsorption maxima of MB on the two were 0.84 mg/m2 and 0.49 mg/m2, respectively, at 303 K and pH 8. The potentiometric titration showed the capacity of proton-donating by α-quartz was stronger than that by α-cristobalite. A drastic increase of adsorption amount on α-quartz at pH < 3 was caused by its greater quantity of isolated silanols. The negative ΔG and positive ΔH values suggested adsorption of MB on both minerals was spontaneous and endothermic. At three different temperatures (288 K, 298 K, and 303 K), the adsorption capacities of two polymorphs increased with increasing temperature. The surface heterogeneity of α-quartz and α-cristobalite corresponds to their different adsorption behavior, and our work also provides some referential significance in evaluating the overall quality of soils and sediments.
NASA Astrophysics Data System (ADS)
Li, Huazhen; Zhang, Qiang; Singh, Vijay P.; Shi, Peijun; Sun, Peng
2017-06-01
The Yellow River basin is a typical semi-arid river basin in northern China. Serious water shortages have negative impacts on regional socioeconomic development. Recent years have witnessed changes in streamflow processes due to increasing human activities, such as agricultural activities and construction of dams and water reservoirs, and climatic changes, e.g. precipitation and temperature. This study attempts to investigate factors potentially driving changes in different streamflow components defined by different quantiles. The data used were daily streamflow data for the 1959-2005 period from 5 hydrological stations, daily precipitation and temperature data from 77 meteorological stations and data pertaining to cropland and large reservoirs. Results indicate a general decrease in streamflow across the Yellow River basin. Moreover significant decreasing streamflow has been observed in the middle and lower Yellow River basin with change points during the mid-1980s till the mid-1990s. The changes of cropland affect the streamflow components and also the cumulative effects on streamflow variations. Recent years have witnessed moderate cropland variations which result in moderate streamflow changes. Further, precipitation also plays a critical role in changes of streamflow components and human activities, i.e. cropland changes, temperature changes and building of water reservoirs, tend to have increasing impacts on hydrological processes across the Yellow River basin. This study provides a theoretical framework for the study of the hydrological effects of human activities and climatic changes on basins over the globe.
DenHerder, Johnathan M; Reed, Ralph L; Sargent, Jennifer L; Bobe, Gerd; Stevens, Jan F; Diggs, Helen E
2017-01-01
Buprenorphine is a partial μ-opioid agonist used for analgesia. Due to the small size of laboratory rodents, buprenorphine HCl is typically diluted 10- or 20-fold with a sterile diluent, such as saline, for accurate dosing. Protocols for preparing and storing diluted buprenorphine vary by institution, and little published information is available regarding stability and beyond-use dating of specific buprenorphine preparations. The purpose of this study was to determine the chemical and microbiologic stability of diluted buprenorphine stored for a maximum of 180 d. Buprenorphine HCl was diluted 1:10 into sterile bacteriostatic saline by using aseptic technique. Diluted samples were stored in glass vials or plastic syringes, protected from light, and maintained at refrigerated or room temperature for as long as 180 d. Aerobic and anaerobic cultures on all stored samples were negative for bacterial and fungal growth. According to HPLC analysis, diluted buprenorphine stored in glass vials experienced less than 10% loss when stored for 180 d at either refrigerated or room temperature. However, the concentration of buprenorphine stored in syringes declined rapidly to more than 80% loss at room temperature and 28% loss in the refrigerator after 180 d. According to the results of this study, diluted buprenorphine stored in glass vials retains more than 90% of the initial concentration and is microbiologically stable for 180 d. However, our data suggest that, regardless of the duration, storing diluted buprenorphine in plastic syringes is inadvisable. PMID:28724496
HMX based enhanced energy LOVA gun propellant.
Sanghavi, R R; Kamale, P J; Shaikh, M A R; Shelar, S D; Kumar, K Sunil; Singh, Amarjit
2007-05-08
Efforts to develop gun propellants with low vulnerability have recently been focused on enhancing the energy with a further improvement in its sensitivity characteristics. These propellants not only prevent catastrophic disasters due to unplanned initiation of currently used gun propellants (based on nitrate esters) but also realize enhanced energy levels to increase the muzzle velocity of the projectiles. Now, in order to replace nitroglycerine, which is highly sensitive to friction and impact, nitramines meet the requirements as they offer superior energy due to positive heat of formation, typical stoichiometry with higher decomposition temperatures and also owing to negative oxygen balance are less sensitive than stoichiometrically balanced NG. RDX has been widely reported for use in LOVA propellant. In this paper we have made an effort to present the work on scantily reported nitramine HMX based LOVA gun propellant while incorporating energetic plasticizer glycidyl azide polymer to enhance the energy level. HMX is known to be thermally stable at higher temperature than RDX and also proved to be less vulnerable to small scale shaped charge jet attack as its decomposition temperature is 270 degrees C. HMX also offers improved impulse due to its superior heat of formation (+17 kcal/mol) as compared to RDX (+14 kcal/mol). It has also been reported that a break point will not appear until 35,000 psi for propellant comprising of 5 microm HMX. Since no work has been reported in open literature regarding replacement of RDX by HMX, the present studies were carried out.
NASA Astrophysics Data System (ADS)
Hood, L. L.; Huang, Z.; Bougher, S. W.
1991-07-01
In order to improve the constraints on models of the mesospheric response to solar UV variations, an analysis is conducted of the Solar Mesosphere Explorer (SME) IR ozone data and Nimbus 7 stratosphere and mesosphere sounder (SAMS) temperature data. Maximum low-altitude ozone and temperature-response amplitudes occur at about the same altitude, where a strong coupling between photochemical and thermal components of the mesospheric response is suggested by the simultaneous positive temperature and negative ozone response maxima. Increased Lyman-alpha dissociation of water vapor and temperature feedback are theorized to account for the negative ozone response. HO(x) chemical heating can increase as ozone destruction increases, and can therefore account for the positive temperature response.
NASA Technical Reports Server (NTRS)
Hood, L. L.; Huang, Z.; Bougher, S. W.
1991-01-01
In order to improve the constraints on models of the mesospheric response to solar UV variations, an analysis is conducted of the Solar Mesosphere Explorer (SME) IR ozone data and Nimbus 7 stratosphere and mesosphere sounder (SAMS) temperature data. Maximum low-altitude ozone and temperature-response amplitudes occur at about the same altitude, where a strong coupling between photochemical and thermal components of the mesospheric response is suggested by the simultaneous positive temperature and negative ozone response maxima. Increased Lyman-alpha dissociation of water vapor and temperature feedback are theorized to account for the negative ozone response. HO(x) chemical heating can increase as ozone destruction increases, and can therefore account for the positive temperature response.
Ho, Hung Chak; Knudby, Anders; Xu, Yongming; Hodul, Matus; Aminipouri, Mehdi
2016-02-15
Apparent temperature is more closely related to mortality during extreme heat events than other temperature variables, yet spatial epidemiology studies typically use skin temperature (also known as land surface temperature) to quantify heat exposure because it is relatively easy to map from satellite data. An empirical approach to map apparent temperature at the neighborhood scale, which relies on publicly available weather station observations and spatial data layers combined in a random forest regression model, was demonstrated for greater Vancouver, Canada. Model errors were acceptable (cross-validated RMSE=2.04 °C) and the resulting map of apparent temperature, calibrated for a typical hot summer day, corresponded well with past temperature research in the area. A comparison with field measurements as well as similar maps of skin temperature and air temperature revealed that skin temperature was poorly correlated with both air temperature (R(2)=0.38) and apparent temperature (R(2)=0.39). While the latter two were more similar (R(2)=0.87), apparent temperature was predicted to exceed air temperature by more than 5 °C in several urban areas as well as around the confluence of the Pitt and Fraser rivers. We conclude that skin temperature is not a suitable proxy for human heat exposure, and that spatial epidemiology studies could benefit from mapping apparent temperature, using an approach similar to the one reported here, to better quantify differences in heat exposure that exist across an urban landscape. Copyright © 2015 Elsevier B.V. All rights reserved.
Entanglement negativity and sudden death in the toric code at finite temperature
NASA Astrophysics Data System (ADS)
Hart, O.; Castelnovo, C.
2018-04-01
We study the fate of quantum correlations at finite temperature in the two-dimensional toric code using the logarithmic entanglement negativity. We are able to obtain exact results that give us insight into how thermal excitations affect quantum entanglement. The toric code has two types of elementary excitations (defects) costing different energies. We show that an O (1 ) density of the lower energy defect is required to degrade the zero-temperature entanglement between two subsystems in contact with one another. However, one type of excitation alone is not sufficient to kill all quantum correlations, and an O (1 ) density of the higher energy defect is required to cause the so-called sudden death of the negativity. Interestingly, if the energy cost of one of the excitations is taken to infinity, quantum correlations survive up to arbitrarily high temperatures, a feature that is likely shared with other quantum spin liquids and frustrated systems in general, when projected down to their low-energy states. We demonstrate this behavior both for small subsystems, where we can prove that the negativity is a necessary and sufficient condition for separability, as well as for extended subsystems, where it is only a necessary condition. We further observe that the negativity per boundary degree of freedom at a given temperature increases (parametrically) with the size of the boundary, and that quantum correlations between subsystems with extended boundaries are more robust to thermal fluctuations.
Erdmann, Rafael; Kabasci, Stephan; Kurek, Joanna; Zepnik, Stefan
2014-01-01
Two types of externally plasticized cellulose acetate (CA) were chemically modified using 4,4'-methylene diphenyl diisocyanate (MDI) as crosslinking agent. Crosslinking was performed in the molten state by means of melt mixing in an internal mixer. The viscoelastic properties of the non-crosslinked, externally plasticized CA show typical temperature dependence, similar to conventional thermoplastics. A strong increase in storage modulus is observed with increasing crosslink density indicating that the crosslinked compounds exhibit predominately elastic response. The complex viscosity also increases considerably with increasing crosslink density and does not reach the typical Newtonian plateau at low radial frequencies any more. The viscoelastic properties correlate well with the data recorded online during reactive melt processing in the internal mixer. In comparison to the non-crosslinked CA, the crosslinked compounds show higher glass transition temperature, higher VICAT softening temperatures, improved thermal stability and lower plasticizer evaporation at evaluated temperatures. PMID:28788273
Multi-Wavelength Optical Pyrometry Investigation for Turbine Engine Applications.
NASA Astrophysics Data System (ADS)
Estevadeordal, Jordi; Nirmalan, Nirm; Wang, Guanghua; Thermal Systems Team
2011-11-01
An investigation of optical Pyrometry using multiple wavelengths and its application to turbine engine is presented. Current turbine engine Pyrometers are typically broadband Si-detector line-of-sight (LOS) systems. They identify hot spots and spall areas in blades and bucket passages by detection of bursts of higher voltage signals. However, the single color signal can be misleading for estimating temperature and emissivity variations in these bursts. Results of the radiant temperature, multi-color temperature and apparent emissivity are presented for turbine engine applications. For example, the results indicate that spall regions can be characterized using multi-wavelength techniques by showing that the temperature typically drops and the emissivity increases and that differentiates from the emissivity of the normal regions. Burst signals are analyzed with multicolor algorithms and changes in the LOS hot-gas-path properties and in the suction side, trailing edge, pressure side, fillet and platform surfaces characterized.
Erdmann, Rafael; Kabasci, Stephan; Kurek, Joanna; Zepnik, Stefan
2014-12-04
Two types of externally plasticized cellulose acetate (CA) were chemically modified using 4,4'-methylene diphenyl diisocyanate (MDI) as crosslinking agent. Crosslinking was performed in the molten state by means of melt mixing in an internal mixer. The viscoelastic properties of the non-crosslinked, externally plasticized CA show typical temperature dependence, similar to conventional thermoplastics. A strong increase in storage modulus is observed with increasing crosslink density indicating that the crosslinked compounds exhibit predominately elastic response. The complex viscosity also increases considerably with increasing crosslink density and does not reach the typical Newtonian plateau at low radial frequencies any more. The viscoelastic properties correlate well with the data recorded online during reactive melt processing in the internal mixer. In comparison to the non-crosslinked CA, the crosslinked compounds show higher glass transition temperature, higher VICAT softening temperatures, improved thermal stability and lower plasticizer evaporation at evaluated temperatures.
EXTERNAL BARREL TEMPERATURE OF A SMALL BORE OLYMPIC RIFLE AND SHOOTING PRECISION
Gladyszewska, B.; Baranowski, P.; Mazurek, W.; Wozniak, J.
2013-01-01
Investigations on changes in a rifle's barrel temperature during shooting in a rhythm typical for practitioners of Olympic shooting sports are presented. Walther KK300 (cal. 5.6 mm), a typical rifle often used in Olympic competitions, R50 RWS ammunition and a high speed thermographic camera were used in the study. Altair version 5 software was used to process thermal images and a stationary wavelet transform was applied to denoise signals for all the studied points. It was found that the temperature of the rifle barrel does not exceed 0.3°C after one shot whereas the total temperature increase does not exceed 5°C after taking 40 shots and does not affect the position of the hitting point on a target. In fact, contrary to popular belief, the so-called “warming shots” are not done for barrel heating but for cleaning of remnants in the barrel. PMID:24744465
IMPORTANCE OF TEMPERATURE IN MODELLING PCB BIOACCUMULATION IN THE LAKE MICHIGAN FOOD WEB
In most food web models, the exposure temperature of a food web is typically defined using a single spatial compartment. This essentially assumes that the predator and prey are exposed to the same temperature. However, in a large water body such as Lake Michigan, due to the spati...
Low-Temperature Effects on the Design and Performance of Composting of Explosives-Contaminated Soils
1991-03-01
7 7. Aerated bins used in field composting tests on dairy manure ............................. 10 8. Typical temperature developed...during bin compostiag of dairy manure under conditions of constant airflow and optimum moisture ................. 10 9. Effect of agitation on the...temperature profile during bin composting of dairy manure
BURNER RIG TESTING OF A500 C/SiC
2018-03-17
test program characterized the durability behavior of A500® C/SiC ceramic matrix composite material at room and elevated temperature . Specimens were...7 Figure 6. Typical Room- Temperature Tensile Stress-Versus-Strain Trace for As-Manufactured A500...Operation ......................................... 18 Figure 17. Example of the Burner Rig Temperature Profiles Used
Estimation of river and stream temperature trends under haphazard sampling
Gray, Brian R.; Lyubchich, Vyacheslav; Gel, Yulia R.; Rogala, James T.; Robertson, Dale M.; Wei, Xiaoqiao
2015-01-01
Long-term temporal trends in water temperature in rivers and streams are typically estimated under the assumption of evenly-spaced space-time measurements. However, sampling times and dates associated with historical water temperature datasets and some sampling designs may be haphazard. As a result, trends in temperature may be confounded with trends in time or space of sampling which, in turn, may yield biased trend estimators and thus unreliable conclusions. We address this concern using multilevel (hierarchical) linear models, where time effects are allowed to vary randomly by day and date effects by year. We evaluate the proposed approach by Monte Carlo simulations with imbalance, sparse data and confounding by trend in time and date of sampling. Simulation results indicate unbiased trend estimators while results from a case study of temperature data from the Illinois River, USA conform to river thermal assumptions. We also propose a new nonparametric bootstrap inference on multilevel models that allows for a relatively flexible and distribution-free quantification of uncertainties. The proposed multilevel modeling approach may be elaborated to accommodate nonlinearities within days and years when sampling times or dates typically span temperature extremes.
Grossi, Laurino; Ciccaglione, Antonio Francesco; Marzio, Leonardo
2015-11-06
To analyze whether the presence of Helicobacter pylori (H. pylori) infection could affect the quality of symptoms in gastro-esophageal reflux disease (GERD) patients. one hundred and forty-four consecutive patients referred to our Unit for suspected GERD were recruited for the study. All patients underwent esophageal pH-metric recording. For those with a positive test, C13 urea breath test was then performed to assess the H. pylori status. GERD patients were stratified according to the quality of their symptoms and classified as typical, if affected by heartburn and regurgitation, and atypical if complaining of chest pain, respiratory and ears, nose, and throat features. H. pylori-negative patients were also asked whether they had a previous diagnosis of H. pylori infection. If a positive response was given, on the basis of the time period after successful eradication, patients were considered as "eradicated" (E) if H. pylori eradication occurred more than six months earlier or "recently eradicated" if the therapy had been administered within the last six months. Patients without history of infection were identified as "negative" (N). χ (2) test was performed by combining the clinical aspects with the H. pylori status. one hundred and twenty-nine of the 144 patients, including 44 H. pylori-positive and 85 H. pylori-negative (41 negative, 21 recently eradicated, 23 eradicated more than 6 mo before), were eligible for the analysis. No difference has been found between H. pylori status and either the number of reflux episodes (138 ± 23 vs 146 ± 36, respectively, P = 0.2, not significant) or the percentage of time with pH values < 4 (6.8 ± 1.2 vs 7.4 ± 2.1, respectively, P = 0.3, not significant). The distribution of symptoms was as follows: 13 typical (30%) and 31 atypical (70%) among the 44 H. pylori-positive cases; 44 typical (52%) and 41 atypical (48%) among the 85 H. pylori-negative cases, (P = 0.017 vs H. pylori+; OR = 2.55, 95%CI: 1.17-5.55). Furthermore, clinical signs in patients with recent H. pylori eradication were similar to those of H. pylori-positive (P = 0.49; OR = 1.46, 95%CI: 0.49-4.37); on the other hand, patients with ancient H. pylori eradication showed a clinical behavior similar to that of H. pylori-negative subjects (P = 0.13; OR = 0.89, 95%CI: 0.77-6.51) but different as compared to the H. pylori-positive group (P < 0.05; OR = 3.71, 95%CI: 0.83-16.47). Atypical symptoms of GERD occur more frequently in H. pylori-positive patients than in H. pylori-negative subjects. In addition, atypical symptoms tend to decrease after H. pylori eradication.
The Peculiar Negative Greenhouse Effect Over Antarctica
NASA Astrophysics Data System (ADS)
Sejas, S.; Taylor, P. C.; Cai, M.
2017-12-01
Greenhouse gases warm the climate system by reducing the energy loss to space through the greenhouse effect. Thus, a common way to measure the strength of the greenhouse effect is by taking the difference between the surface longwave (LW) emission and the outgoing LW radiation. Based on this definition, a paradoxical negative greenhouse effect is found over the Antarctic Plateau, which suprisingly indicates that greenhouse gases enhance energy loss to space. Using 13 years of NASA satellite observations, we verify the existence of the negative greenhouse effect and find that the magnitude and sign of the greenhouse effect varies seasonally and spectrally. A previous explanation attributes the negative greenhouse effect solely to stratospheric CO2 and warmer than surface stratospheric temperatures. However, we surprisingly find that the negative greenhouse effect is predominantly caused by tropospheric water vapor. A novel principle-based explanation provides the first complete account of the Antarctic Plateau's negative greenhouse effect indicating that it is controlled by the vertical variation of temperature and greenhouse gas absorption strength. Our findings indicate that the strong surface-based temperature inversion and scarcity of free tropospheric water vapor over the Antarctic Plateau cause the negative greenhouse effect. These are climatological features uniquely found in the Antarctic Plateau region, explaining why the greenhouse effect is positive everywhere else.
Ball Aerospace Long Life, Low Temperature Space Cryocoolers
NASA Astrophysics Data System (ADS)
Glaister, D. S.; Gully, W.; Marquardt, E.; Stack, R.
2004-06-01
This paper describes the development, qualification, characterization testing and performance at Ball Aerospace of long life, low temperature (from 4 to 35 K) space cryocoolers. For over a decade, Ball has built long life (>10 year), multi-stage Stirling and Joule-Thomson (J-T) cryocoolers for space applications, with specific performance and design features for low temperature operation. As infrared space missions have continually pushed for operation at longer wavelengths, the applications for these low temperature cryocoolers have increased. The Ball cryocooler technologies have culminated in the flight qualified SB235 Cryocooler and the in-development 6 K NASA/JPL ACTDP (Advanced Cryocooler Technology Development Program) Cryocooler. The SB235 and its model derivative SB235E are 2-stage coolers designed to provide simultaneous cooling at 35 K (typically, for Mercury Cadmium Telluride or MCT detectors) and 100 K (typically, for the optics) and were baselined for the Raytheon SBIRS Low Track Sensor. The Ball ACTDP cooler is a hybrid Stirling/J-T cooler that has completed its preliminary design with an Engineering Model to be tested in 2005. The ACTDP cooler provides simultaneous cooling at 6 K (typically, for either doped Si detectors or as a sub-Kelvin precooler) and 18 K (typically, for optics or shielding). The ACTDP cooler is under development for the NASA JWST (James Webb Space Telescope), TPF (Terrestrial Planet Finder), and Con-X (Constellation X-Ray) missions. Both the SB235 and ACTDP Coolers are highly leveraged off previous Ball space coolers including multiple life test and flight units.
NASA Astrophysics Data System (ADS)
Paulsen, T. S.; Demosthenous, C.; Wilson, T. J.; Millan, C.
2009-12-01
The ANDRILL MIS (McMurdo Ice Shelf) Drilling Project obtained over 1200 meters of Neogene sedimentary and volcanic rocks in 2006/2007. Systematic fracture logging of the AND-1B core identified 1,475 natural fractures, i.e. pre-existing fractures in the rock intersected by coring. The most abundant natural fractures are normal faults and calcite veins; reverse faults, brecciated zones, and sedimentary intrusions are also present. In order to better understand Neogene deformation patterns within the southern Terror Rift, we have been conducting strain analyses on mechanically twinned calcite within healed fractures in the drill core. Twinning strains using all of the data from each sample studied to date range from 2% to 10%. The cleaned data (20% of the largest magnitude deviations removed) typically show ≤30% negative expected values, consistent with a single deformation episode or multiple ~coaxial deformation episodes. The majority of the samples record horizontal extension, similar to strain patterns expected in a normal fault regime and/or vertical sedimentary compaction in a continental rift system. The morphology, width, and intensity of twins in the samples suggest that twinning typically occurred at temperatures <170° C. Twinning intensities suggest differential stress magnitudes that caused the twinning ranged from 216 to 295 MPa.
Mnisi, Robert Londi; Ndibewu, Peter Papoh
2017-11-04
The bark of Moringa oleifera, a cheap and readily available natural biopolymeric resource material, found to significantly reduce coliform load and turbidity in contaminated water is investigated in this paper. Its surface and adsorptive properties are investigated to explore its adsorptive potential in removing V(V) from aqueous solutions. Surface properties were investigated using FTIR, HRSEM/EDS, IC, and BET-N 2 adsorption techniques. Adsorptive properties were investigated by optimizing adsorption parameters such as pH, temperature, initial metal concentration, and adsorbent dosage, using V(V) as an adsorbate. The adsorption-desorption isotherms are typical of type II with a H3 hysteresis loop and is characteristic of a largely macroporous material. Bottle ink pores are observed, which can provide good accessibility of the active sites, even though the internal BET surface area is typically low (1.79 g/m 2 ). Solution pH significantly influences the adsorptive potential of the material. The low surface area negatively impacts on the adsorption capacity, but is compensated for by the exchangeable anions (Cl - , F - , PO 4 3- , NO 3 - , and SO 4 2- ) and cations (Ca 2+ , K + , Mg 2+ , and Al 3+ ) at the surface and the accessibility of the active sites. Adsorption isotherm modeling show that the surface is largely heterogeneous with complex multiple sites and adsorption is not limited to monolayer.
Dohlen, S; Braun, C; Brodkorb, F; Fischer, B; Ilg, Y; Kalbfleisch, K; Lorenz, R; Kreyenschmidt, M; Kreyenschmidt, J
2017-09-18
The objective of this study was to investigate the effect of novel antimicrobial packaging materials containing poly-[2-(tertbutylamino) methylstyrene] (poly(TBAMS)) on the growth of typical spoilage and pathogenic bacteria present on meat. The antimicrobial activity of materials containing different poly(TBAMS) concentrations was determined by comparing the bacterial counts on reference and sample materials at different temperatures and times and in the presence of meat components. Storage tests with poultry fillets and veal cutlets were conducted with samples vacuum packaged in the reference foil and foil containing 10% poly(TBAMS). After specific time intervals, typical spoilage microorganisms, total viable count (TVC), sensory changes and pH value were analysed. The results of the different poly(TBAMS) containing packaging materials showed an increase of the antimicrobial activity with an increasing amount of poly(TBAMS) in the base polymer. A high antimicrobial activity against inoculum of spoilage and pathogenic organisms typical for meat products was detected of a multilayer foil containing 10% poly(TBAMS) in the inner layer after 24h at 7°C. Gram positive-bacteria were more sensitive to poly(TBAMS) foil than gram-negative bacteria. In storage tests however, over the entire storage, a significant effect of this poly(TBAMS) foil on microbial growth on chicken breast fillets and veal cutlets could not be identified. Poly(TBAMS) packaging materials showed very good antimicrobial properties against a wide range of bacteria. However, for a significant inhibition of microbial growth on fresh meat, a higher amount of poly(TBAMS) was necessary to prolong the shelf life of meat. Copyright © 2017 Elsevier B.V. All rights reserved.
Greenwood, Sarah; Chen, Jan-Chang; Chen, Chaur-Tzuhn; Jump, Alistair S
2014-12-01
Altitudinal treelines are typically temperature limited such that increasing temperatures linked to global climate change are causing upslope shifts of treelines worldwide. While such elevational increases are readily predicted based on shifting isotherms, at the regional level the realized response is often much more complex, with topography and local environmental conditions playing an important modifying role. Here, we used repeated aerial photographs in combination with forest inventory data to investigate changes in treeline position in the Central Mountain Range of Taiwan over the last 60 years. A highly spatially variable upslope advance of treeline was identified in which topography is a major driver of both treeline form and advance. The changes in treeline position that we observed occurred alongside substantial increases in forest density, and lead to a large increase in overall forest area. These changes will have a significant impact on carbon stocking in the high altitude zone, while the concomitant decrease in alpine grassland area is likely to have negative implications for alpine species. The complex and spatially variable changes that we report highlight the necessity for considering local factors such as topography when attempting to predict species distributional responses to warming climate. © 2014 John Wiley & Sons Ltd.
Control of spin defects in wide-bandgap semiconductors for quantum technologies
Heremans, F. Joseph; Yale, Christopher G.; Awschalom, David D.
2016-05-24
Deep-level defects are usually considered undesirable in semiconductors as they typically interfere with the performance of present-day electronic and optoelectronic devices. However, the electronic spin states of certain atomic-scale defects have recently been shown to be promising quantum bits for quantum information processing as well as exquisite nanoscale sensors due to their local environmental sensitivity. In this review, we will discuss recent advances in quantum control protocols of several of these spin defects, the negatively charged nitrogen-vacancy (NV -) center in diamond and a variety of forms of the neutral divacancy (VV 0) complex in silicon carbide (SiC). These defectsmore » exhibit a spin-triplet ground state that can be controlled through a variety of techniques, several of which allow for room temperature operation. Microwave control has enabled sophisticated decoupling schemes to extend coherence times as well as nanoscale sensing of temperature along with magnetic and electric fields. On the other hand, photonic control of these spin states has provided initial steps toward integration into quantum networks, including entanglement, quantum state teleportation, and all-optical control. Electrical and mechanical control also suggest pathways to develop quantum transducers and quantum hybrid systems. In conclusion, the versatility of the control mechanisms demonstrated should facilitate the development of quantum technologies based on these spin defects.« less
The induction and decay of heat acclimatisation in trained athletes.
Armstrong, L E; Maresh, C M
1991-11-01
Heat acclimatisation/acclimation involves a complex of adaptations which includes decreased heart rate, rectal temperature, perceived exertion as well as increased plasma volume and sweat rate. These adaptations serve to reduce physiological strain, improve an athlete's ability to exercise in a hot environment, and reduce the incidence of some forms of heat illness. Few differences exist in the ability of men and women to acclimatise to heat. Typically, older runners do not perform in the heat as well as younger runners, but physical training can negate differences between these groups. Hormonal adaptations (e.g. aldosterone, vasopressin) during heat acclimatisation encourage fluid-electrolyte retention and cardiovascular stability. Athletes with high maximal aerobic power (VO2max) acclimatise to heat faster (and lose adaptations slower when they are inactive in a cool environment) than athletes with low VO2max values. Physical training in a cool environment improves physiological responses to exercise at high ambient temperatures. In attempting to optimise heat acclimatisation, athletes should maintain fluid-electrolyte balance, exercise at intensities greater than 50% VO2max for 10 to 14 days, and avoid factors (e.g. sleep loss, infectious disease) which are known to reduce heat tolerance. Once acclimatisation has been achieved, inactivity results in a decay of favourable adaptations, after only a few days or weeks.
Schwab, Frank; Gastmeier, Petra; Meyer, Elisabeth
2014-01-01
Background We investigated the relationship between average monthly temperature and the most common clinical pathogens causing infections in intensive care patients. Methods A prospective unit-based study in 73 German intensive care units located in 41 different hospitals and 31 different cities with total 188,949 pathogen isolates (102,377 Gram-positives and 86,572 Gram-negatives) from 2001 to 2012. We estimated the relationship between the number of clinical pathogens per month and the average temperature in the month of isolation and in the month prior to isolation while adjusting for confounders and long-term trends using time series analysis. Adjusted incidence rate ratios for temperature parameters were estimated based on generalized estimating equation models which account for clustering effects. Results The incidence density of Gram-negative pathogens was 15% (IRR 1.15, 95%CI 1.10–1.21) higher at temperatures ≥20°C than at temperatures below 5°C. E. cloacae occurred 43% (IRR = 1.43; 95%CI 1.31–1.56) more frequently at high temperatures, A. baumannii 37% (IRR = 1.37; 95%CI 1.11–1.69), S. maltophilia 32% (IRR = 1.32; 95%CI 1.12–1.57), K. pneumoniae 26% (IRR = 1.26; 95%CI 1.13–1.39), Citrobacter spp. 19% (IRR = 1.19; 95%CI 0.99–1.44) and coagulase-negative staphylococci 13% (IRR = 1.13; 95%CI 1.04–1.22). By contrast, S. pneumoniae 35% (IRR = 0.65; 95%CI 0.50–0.84) less frequently isolated at high temperatures. For each 5°C increase, we observed a 3% (IRR = 1.03; 95%CI 1.02–1.04) increase of Gram-negative pathogens. This increase was highest for A. baumannii with 8% (IRR = 1.08; 95%CI 1.05–1.12) followed by K. pneumoniae, Citrobacter spp. and E. cloacae with 7%. Conclusion Clinical pathogens vary by incidence density with temperature. Significant higher incidence densities of Gram-negative pathogens were observed during summer whereas S. pneumoniae peaked in winter. There is increasing evidence that different seasonality due to physiologic changes underlies host susceptibility to different bacterial pathogens. Even if the underlying mechanisms are not yet clear, the temperature-dependent seasonality of pathogens has implications for infection control and study design. PMID:24599500
NASA Astrophysics Data System (ADS)
Izquierdo, Rebeca; Alarcón, Marta; Aguillaume, Laura; Àvila, Anna
2014-06-01
The North Atlantic Oscillation (NAO) has been identified as one of the atmospheric patterns which mostly influence the temporal evolution of precipitation and temperature in the Mediterranean area. Recently, the Western Mediterranean Oscillation (WeMO) has also been proposed to describe the precipitation variability in the eastern Iberian Peninsula. This paper examines whether the chemical signature and/or the chemical deposition amounts recorded over NE Iberian Peninsula are influenced by these climatic variability patterns. Results show a more relevant role of the WeMO compared to NAO in the deposition of either marine (Cl-, Na+, Mg2+) or anthropogenic pollutants (H+, NH4+, NO3- and SO42-). A cluster classification of provenances indicated that in winter (December to March) fast Atlantic air flows correspond to positive WeMO indices, while negative WeMOi are associated to Northeastern and Southwestern circulations. The negative phase of WeMO causes the entry of air masses from the Mediterranean into the Iberian Peninsula, that are enriched with marine ions and ions of anthropogenic origin (NH4+, NO3- and SO42-). For these later, this suggests the advection over the Mediterranean of polluted air masses from southern Europe and the scavenging and deposition of this pollution by precipitation during the WeMO negative phases. This will carry transboundary pollutants to the NE Iberian Peninsula. However, local pollutants may also contribute, as precipitation events from the Mediterranean and the Atlantic (associated to both WeMO phases) may incorporate emissions that accumulate locally during the winter anticyclonic episodes typical of the region.
Variation in rhinarium temperature indicates sensory specializations in placental mammals.
Gläser, Nele; Kröger, Ronald H H
2017-07-01
The rhinarium, a specialized nose-tip characterized by an area of naked and wet skin around the nostrils, is a typical mammalian structure. The type and amount of innervation suggests a sensory role and morphological diversity implies so far unidentified species-specific functional specializations. Rhinaria also vary in temperature and this may be related to the functions of these sensory organs. We performed a comparative study on rhinarium temperature in order to learn more about possible correlations with phylogeny and ecology. We have concentrated on terrestrial carnivorans and large herbivores, but also investigated a number of other species, some of them lacking typical rhinaria. We used infrared (IR) thermography to determine nose skin temperatures from safe distances and without interfering with the animals' behavior. In all groups studied, the temperature of the rhinarium/nose-tip decreased with decreasing ambient temperature. At all ambient temperatures, rhinarium temperature was lower, by 9-17°C, in carnivorans compared to herbivores. Glires (rodents and lagomorphs), haplorrhine primates, and omnivorous Perisso- and Artiodactyla were intermediate. In strepsirrhine primates, rhinarium temperature was similar to ambient temperature. Our findings in Strepsirrhini are consistent with the hypothesis that their rhinaria have an indirect role in chemical communication. Warm rhinaria in herbivores suggest a tactile function, while the low skin temperatures on carnivoran rhinaria may make the skin particularly sensitive to warming. Copyright © 2017 Elsevier Ltd. All rights reserved.
Active matrix OLED for rugged HMD and viewfinder applications
NASA Astrophysics Data System (ADS)
Low, Kia; Jones, Susan K.; Prache, Olivier; Fellowes, David A.
2004-09-01
We present characterization of a full-color 852x3x600-pixel, active matrix organic light emitting diode (AMOLED) color microdisplay (eMagin Corporation's SVGA+ display) for environmentally demanding applications. The results show that the AMOLED microdisplay can provide cold-start turn-on and operate at extreme temperature conditions, far in excess of non-emissive displays. Correction factors for gamma response of the AMOLED microdisplay as a function of temperature have been determined to permit consistent luminance and contrast from -40°C to over +80°C. Gamma adjustments are made by a simple temperature compensation adjustment of the reference voltages of the AMOLED. The typical room temperature full-on luminance half-life of the SVGA+ full color display organic light emitting diode (OLED) display at over 3,000 hr at a starting luminance at approx. 100 cd/m2, translates to more than 15,000 hr of continuous full-motion video usage, based on a 25% duty cycle at a typical 50-60 cd/m2 commercial luminance level, or over 60,000 hr half-life in monochrome white usage, or over 100,000 hr luminance half-life in monochrome yellow usage at similar operating conditions. Half life at typical night vision luminance levels would be much longer.
Temperature responsive transmitter
NASA Technical Reports Server (NTRS)
Kleinberg, Leonard L. (Inventor)
1987-01-01
A temperature responsive transmitter is provided in which frequency varies linearly with temperature. The transmitter includes two identically biased transistors connected in parallel. A capacitor, which reflects into the common bases to generate negative resistance effectively in parallel with the capacitor, is connected to the common emitters. A crystal is effectively in parallel with the capacitor and the negative resistance. Oscillations occur if the magnitude of the absolute value of the negative resistance is less than the positive resistive impedance of the capacitor and the inductance of the crystal. The crystal has a large linear temperature coefficient and a resonant frequency which is substantially less than the gain-bandwidth product of the transistors to ensure that the crystal primarily determines the frequency of oscillation. A high-Q tank circuit having an inductor and a capacitor is connected to the common collectors to increase the collector current flow which in turn enhances the radiation of the oscillator frequency by the inductor.
Beverly, Matthew; Anbil, Sriram; Sengupta, Piali
2011-01-01
Animals must ensure that they can execute behaviors important for physiological homeostasis under constantly changing environmental conditions. The neural mechanisms that regulate this behavioral robustness are not well understood. The nematode C. elegans thermoregulates primarily via modulation of navigation behavior. Upon encountering temperatures higher than its cultivation temperature (Tc), C. elegans exhibits negative thermotaxis towards colder temperatures using a biased random walk strategy. We find that C. elegans exhibits robust negative thermotaxis bias under conditions of varying Tc and temperature ranges. By cell ablation and cell-specific rescue experiments, we show that the ASI chemosensory neurons are newly identified components of the thermosensory circuit, and that different combinations of ASI and the previously identified AFD and AWC thermosensory neurons are necessary and sufficient under different conditions to execute a negative thermotaxis strategy. ASI responds to temperature stimuli within a defined operating range defined by Tc, and signaling from AFD regulates the bounds of this operating range, suggesting that neuromodulation among thermosensory neurons maintains coherence of behavioral output. Our observations demonstrate that a negative thermotaxis navigational strategy can be generated via different combinations of thermosensory neurons acting degenerately, and emphasize the importance of defining context when analyzing neuronal contributions to a behavior. PMID:21832201
The ignition delay times of hydrogen/silan/air mixtures at low temperatures
NASA Astrophysics Data System (ADS)
Tropin, D. A.; Bochenkov, E. S.; Fedorov, A. V.
2018-03-01
In the paper the ignition delay times of hydrogen-silane-air mixtures at low pressures from 0.4 atm to 1 atm and mixture temperatures from 300 K to 900 K using the detailed kinetic mechanisms were calculated. It was shown that dependencies of ignition delay time on temperature are non-monotonic. In these dependences a region of "negative temperature coefficient" is presented. The effect of the mixture pressure and the silane concentration in the mixture on the length of this region was revealed. It was shown that the increasing of the silane concentration in the mixture, as well as the increasing the mixture pressure, leads to increasing of the "negative temperature coefficient" region length.
Hyperheat: a thermal signature model for super- and hypersonic missiles
NASA Astrophysics Data System (ADS)
van Binsbergen, S. A.; van Zelderen, B.; Veraar, R. G.; Bouquet, F.; Halswijk, W. H. C.; Schleijpen, H. M. A.
2017-10-01
In performance prediction of IR sensor systems for missile detection, apart from the sensor specifications, target signatures are essential variables. Very often, for velocities up to Mach 2-2.5, a simple model based on the aerodynamic heating of a perfect gas was used to calculate the temperatures of missile targets. This typically results in an overestimate of the target temperature with correspondingly large infrared signatures and detection ranges. Especially for even higher velocities, this approach is no longer accurate. Alternatives like CFD calculations typically require more complex sets of inputs and significantly more computing power. The MATLAB code Hyperheat was developed to calculate the time-resolved skin temperature of axisymmetric high speed missiles during flight, taking into account the behaviour of non-perfect gas and proper heat transfer to the missile surface. Allowing for variations in parameters like missile shape, altitude, atmospheric profile, angle of attack, flight duration and super- and hypersonic velocities up to Mach 30 enables more accurate calculations of the actual target temperature. The model calculates a map of the skin temperature of the missile, which is updated over the flight time of the missile. The sets of skin temperature maps are calculated within minutes, even for >100 km trajectories, and can be easily converted in thermal infrared signatures for further processing. This paper discusses the approach taken in Hyperheat. Then, the thermal signature of a set of typical missile threats is calculated using both the simple aerodynamic heating model and the Hyperheat code. The respective infrared signatures are compared, as well as the difference in the corresponding calculated detection ranges.
Temperature dependence of alkali-antimonide photocathodes: Evaluation at cryogenic temperatures
Mamun, M. A.; Hernandez-Flores, M. R.; Morales, E.; ...
2017-10-24
Cs xK ySb photocathodes were manufactured on a niobium substrate and evaluated over a range of temperatures from 300 to 77 K. Vacuum conditions were identified that minimize surface contamination due to gas adsorption when samples were cooled below room temperature. Here, measurements of photocathode spectral response provided a means to evaluate the photocathode bandgap dependence on temperature and to predict photocathode quantum efficiency at 4 K, a typical temperature at which superconducting radio frequency photoguns operate.
Plasma Interactions With a Negative Biased Electrodynamic Tether
NASA Technical Reports Server (NTRS)
Vaughn, Jason A.; Curtis, Leslie; Welzyn, Ken J.
2004-01-01
The ProSEDS conductive tether design incorporates two distinct types of tethers from a plasma interaction viewpoint. The 200 m closest to the Delta II spacecraft is insulated from the plasma, and the remaining 4800 m is semi-bare. This latter portion is considered semi-bare because a conductive coating, which is designed to collect electrons from the plasma, was applied to the wires to regulate the overall tether temperature. Because the tether has both insulating and conductive tether sections, a transition point exists between the two that forms a triple point with the space plasma. Also, insulated tethers can arc to the space plasma if the insulation is weakened or breached by pinholes caused by either improper handling or small meteoroid and orbital debris strikes. Because electrodynamic tethers are typically long, they have a high probability of these impacts. The particles, which strike the tether, may not have sufficient size to severe the tether, but they can easily penetrate the tether insulation producing a plasma discharge to the ambient plasma. Samples of both the ProSEDS tether transition region and the insulated tether section with various size of pinholes were placed into the MSFC plasma chamber and biased to typical ProSEDS open circuit tether potentials (-500 V to -1600 V). The results of the testing showed that the transition region of the tether (i.e. the triple point) arced to the ambient plasma at -900 V, and the tethers damaged by a pinhole or simulated debris strike arced to the plasma between -700 V and -900 V. Specific design steps were taken to eliminate the triple point issue in the ProSEDS tether design and make it ready for flight. To reduce the pinhole arcing risk, ProSEDS mission operations were changed to eliminate the high negative potential on the insulated tether. The results of the testing campaign and the design changes implemented to ensure a successful flight are described.
Seychelles Dome variability in a high resolution ocean model
NASA Astrophysics Data System (ADS)
Nyadjro, E. S.; Jensen, T.; Richman, J. G.; Shriver, J. F.
2016-02-01
The Seychelles-Chagos Thermocline Ridge (SCTR; 5ºS-10ºS, 50ºE-80ºE) in the tropical Southwest Indian Ocean (SWIO) has been recognized as a region of prominence with regards to climate variability in the Indian Ocean. Convective activities in this region have regional consequences as it affect socio-economic livelihood of the people especially in the countries along the Indian Ocean rim. The SCTR is characterized by a quasi-permanent upwelling that is often associated with thermocline shoaling. This upwelling affects sea surface temperature (SST) variability. We present results on the variability and dynamics of the SCTR as simulated by the 1/12º high resolution HYbrid Coordinate Ocean Model (HYCOM). It is observed that locally, wind stress affects SST via Ekman pumping of cooler subsurface waters, mixing and anomalous zonal advection. Remotely, wind stress curl in the eastern equatorial Indian Ocean generates westward-propagating Rossby waves that impacts the depth of the thermocline which in turn impacts SST variability in the SCTR region. The variability of the contributions of these processes, especially with regard to the Indian Ocean Dipole (IOD) are further examined. In a typical positive IOD (PIOD) year, the net vertical velocity in the SCTR is negative year-round as easterlies along the region are intensified leading to a strong positive curl. This vertical velocity is caused mainly by anomalous local Ekman downwelling (with peak during September-November), a direct opposite to the climatology scenario when local Ekman pumping is positive (upwelling favorable) year-round. The anomalous remote contribution to the vertical velocity changes is minimal especially during the developing and peak stages of PIOD events. In a typical negative IOD (NIOD) year, anomalous vertical velocity is positive almost year-round with peaks in May and October. The remote contribution is positive, in contrast to the climatology and most of the PIOD years.
Climate, soil and plant functional types as drivers of global fine-root trait variation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Freschet, Grégoire T.; Valverde-Barrantes, Oscar J.; Tucker, Caroline M.
Ecosystem functioning relies heavily on below-ground processes, which are largely regulated by plant fine-roots and their functional traits. However, our knowledge of fine-root trait distribution relies to date on local- and regional-scale studies with limited numbers of species, growth forms and environmental variation. We compiled a world-wide fine-root trait dataset, featuring 1115 species from contrasting climatic areas, phylogeny and growth forms to test a series of hypotheses pertaining to the influence of plant functional types, soil and climate variables, and the degree of manipulation of plant growing conditions on species fine-root trait variation. Most particularly, we tested the competing hypothesesmore » that fine-root traits typical of faster return on investment would be most strongly associated with conditions of limiting versus favourable soil resource availability. We accounted for both data source and species phylogenetic relatedness. We demonstrate that: (i) Climate conditions promoting soil fertility relate negatively to fine-root traits favouring fast soil resource acquisition, with a particularly strong positive effect of temperature on fine-root diameter and negative effect on specific root length (SRL), and a negative effect of rainfall on root nitrogen concentration; (ii) Soil bulk density strongly influences species fine-root morphology, by favouring thicker, denser fine-roots; (iii) Fine-roots from herbaceous species are on average finer and have higher SRL than those of woody species, and N 2-fixing capacity positively relates to root nitrogen; and (iv) Plants growing in pots have higher SRL than those grown in the field. Synthesis. This study reveals both the large variation in fine-root traits encountered globally and the relevance of several key plant functional types and soil and climate variables for explaining a substantial part of this variation. Climate, particularly temperature, and plant functional types were the two strongest predictors of fine-root trait variation. High trait variation occurred at local scales, suggesting that wide-ranging below-ground resource economics strategies are viable within most climatic areas and soil conditions.« less
Climate, soil and plant functional types as drivers of global fine-root trait variation
Freschet, Grégoire T.; Valverde-Barrantes, Oscar J.; Tucker, Caroline M.; ...
2017-03-08
Ecosystem functioning relies heavily on below-ground processes, which are largely regulated by plant fine-roots and their functional traits. However, our knowledge of fine-root trait distribution relies to date on local- and regional-scale studies with limited numbers of species, growth forms and environmental variation. We compiled a world-wide fine-root trait dataset, featuring 1115 species from contrasting climatic areas, phylogeny and growth forms to test a series of hypotheses pertaining to the influence of plant functional types, soil and climate variables, and the degree of manipulation of plant growing conditions on species fine-root trait variation. Most particularly, we tested the competing hypothesesmore » that fine-root traits typical of faster return on investment would be most strongly associated with conditions of limiting versus favourable soil resource availability. We accounted for both data source and species phylogenetic relatedness. We demonstrate that: (i) Climate conditions promoting soil fertility relate negatively to fine-root traits favouring fast soil resource acquisition, with a particularly strong positive effect of temperature on fine-root diameter and negative effect on specific root length (SRL), and a negative effect of rainfall on root nitrogen concentration; (ii) Soil bulk density strongly influences species fine-root morphology, by favouring thicker, denser fine-roots; (iii) Fine-roots from herbaceous species are on average finer and have higher SRL than those of woody species, and N 2-fixing capacity positively relates to root nitrogen; and (iv) Plants growing in pots have higher SRL than those grown in the field. Synthesis. This study reveals both the large variation in fine-root traits encountered globally and the relevance of several key plant functional types and soil and climate variables for explaining a substantial part of this variation. Climate, particularly temperature, and plant functional types were the two strongest predictors of fine-root trait variation. High trait variation occurred at local scales, suggesting that wide-ranging below-ground resource economics strategies are viable within most climatic areas and soil conditions.« less
Simulations of Solar Wind Plasma Flow Around a Simple Solar Sail
NASA Technical Reports Server (NTRS)
Garrett, Henry B.; Wang, Joseph
2004-01-01
In recent years, a number of solar sail missions of various designs and sizes have been proposed (e.g., Geostorm). Of importance to these missions is the interaction between the ambient solar wind plasma environment and the sail. Assuming a typical 1 AU solar wind environment of 400 km/s velocity, 3.5 cu cm density, ion temperature of approx.10 eV, electron temperature of 40 eV, and an ambient magnetic field strength of 10(exp -4) G, a first order estimate of the plasma interaction with square solar sails on the order of the sizes being considered for a Geostorm mission (50 m x 50 m and 75 m x 75 m corresponding to approx.2 and approx.3 times the Debye length in the plasma) is carried out. First, a crude current balance for the sail surface immersed in the plasma environment and in sunlight was used to estimate the surface potential of the model sails. This gave surface potentials of approx.10 V positive relative to the solar wind plasma. A 3-D, Electrostatic Particle-in-Cell (PIC) code was then used to simulate the solar wind flowing around the solar sail. It is assumed in the code that the solar wind protons can be treated as particles while the electrons follow a Boltzmann distribution. Next, the electric field and particle trajectories are solved self-consistently to give the proton flow field, the electrostatic field around the sail, and the plasma density in 3-D. The model sail was found to be surrounded by a plasma sheath within which the potential is positive compared to the ambient plasma and followed by a separate plasma wake which is negative relative to the plasma. This structure departs dramatically from a negatively charged plate such as might be found in the Earth s ionosphere on the night side where both the plate and its negative wake are contiguous. The implications of these findings are discussed as they apply to the proposed Geostorm solar sail mission.
Müller, Eve; Schuler, Adriana
2006-11-01
Verbal marking of affect by older children with Asperger Syndrome (AS) and high functioning autism (HFA) during spontaneous interactions is described. Discourse analysis of AS and HFA and typically developing children included frequency of affective utterances, affective initiations, affective labels and affective explanations, attribution of affective responses to self and others, and positive and negative markers of affect. Findings indicate that children with AS and HFA engaged in a higher proportion of affect marking and provided a higher proportion of affective explanations than typically developing children, yet were less likely to initiate affect marking sequences or talk about the affective responses of others. No significant differences were found between groups in terms of the marking of positive and negative affect.
Current-voltage characteristics of C70 solid near Meyer-Neldel temperature
NASA Astrophysics Data System (ADS)
Onishi, Koichi; Sezaimaru, Kouki; Nakashima, Fumihiro; Sun, Yong; Kirimoto, Kenta; Sakaino, Masamichi; Kanemitsu, Shigeru
2017-06-01
The current-voltage characteristics of the C70 solid with hexagonal closed-packed structures were measured in the temperature range of 250-450 K. The current-voltage characteristics can be described as a temporary expedient by a cubic polynomial of the voltage, i = a v 3 + b v 2 + c v + d . Moreover, the Meyer-Neldel temperature of the C70 solid was confirmed to be 310 K, at which a linear relationship between the current and voltage was observed. Also, at temperatures below the Meyer-Neldel temperature, the current increases with increasing voltage. On the other hand, at temperatures above the Meyer-Neldel temperature a negative differential conductivity effect was observed at high voltage side. The negative differential conductivity was related to the electric field and temperature effects on the mobility of charge carrier, which involve two variations in the carrier concentration and the activation energy for carrier hopping transport.
NASA Astrophysics Data System (ADS)
McCabe-Glynn, S. E.; Johnson, K. R.; Zou, Y.; Welker, J. M.; Strong, C.; Rutz, J. J.; Yu, J. Y.; Yoshimura, K.; Sellars, S. L.; Payne, A. E.
2014-12-01
Extreme precipitation events along the U.S. West Coast can result in major damage and are projected by most climate models to increase in frequency and severity. One of the most prevalent extreme precipitation events that occurs along the west coast of North America are known as 'Atmospheric Rivers' (ARs), whereby extensive fluxes of water vapor are transported from the tropics and/or subtropics, delivering substantial precipitation and contributing to flooding when they encounter mountains. This region is particularly vulnerable to ARs, with 30-50% of annual precipitation in this region occurring from just a few AR events. Because of the tropical and/or subtropical origin of ARs, they can carry unique isotopic properties. Here we present the results of analysis of weekly precipitation data and accompanying isotopic values from Giant Forest, in Sequoia National Park, in the southwestern Sierra Nevada Mountains (36.57° N; 118.78° W; 1921m) from 2001 to 2011. To better characterize these events, we focused on the 10 weeks with the highest precipitation totals (all greater than 150 mm) during the study period. We show that nine of the top ten weeks contain documented 'AR' events and that 90% occurred during the negative phase of the Arctic Oscillation. A comparison of extreme precipitation events across the Western U.S. with several key climate indices demonstrate these events occur most frequently when the negative phase of the Arctic Oscillation is in sync with the negative phase of the El Niño Southern Oscillation (ENSO) and the negative or neutral Pacific North American (PNA) pattern. We also demonstrate that central or eastern Pacific location of ENSO sea surface temperature anomalies can further enhance predictive capabilities of the landfall location of extreme precipitation. Stable isotope results show that extreme precipitation events are characterized by highly variable δ18O (-7.20‰ to -19.27‰), however, we find that more negative δ18O values typically occur during the negative PNA pattern. Finally, we will present the results of data comparison with NCAR-NCEP reanalysis, Hysplit back trajectories, and isotope enabled climate model (IsoGSM) results.
Ebb and Flow in Parent-Child Interactions: Shifts from Early through Middle Childhood
Bradley, Robert H.; Pennar, Amy; Iida, Masumi
2015-01-01
Objective This study documents the strength of relations between key parent and child behaviors as they occur during typical encounters for both mothers and fathers and determines whether there were shifts in the strength of relations between parent and child behaviors during early and middle childhood. Design Multivariate multi-level modeling was used to examine associations between three parent behaviors (respect for autonomy, stimulation of development, hostility) and two child behaviors (agency, negativity) as they occurred in typical parent-child activities at four time points from 54 months through 5th grade for 817 families. Results For mothers and fathers, respect for autonomy and stimulation were associated with child agency. Paternal hostility was negatively associated with child agency, but for mothers the relation became more positive with age. Parental respect for autonomy and hostility were associated with child negativity for both mothers and fathers; however, for mothers, relations between autonomy support and child negativity became more positive, and relations between hostility and child negativity became less positive. Conclusions There are clear shifts in the strength of relations between some parenting behaviors and child behaviors from early to middle childhood, indicative of a changing dialectic as children become more independent and different dialectics for mothers and fathers. Parenting behavior links to child competence and adaptive behavior, and the findings may help resolve some uncertainties about relations between parental behavior and children's developmental trajectories. PMID:26877717
Emotionally enhanced memory for negatively arousing words: storage or retrieval advantage?
Nadarevic, Lena
2017-12-01
People typically remember emotionally negative words better than neutral words. Two experiments are reported that investigate whether emotionally enhanced memory (EEM) for negatively arousing words is based on a storage or retrieval advantage. Participants studied non-word-word pairs that either involved negatively arousing or neutral target words. Memory for these target words was tested by means of a recognition test and a cued-recall test. Data were analysed with a multinomial model that allows the disentanglement of storage and retrieval processes in the present recognition-then-cued-recall paradigm. In both experiments the multinomial analyses revealed no storage differences between negatively arousing and neutral words but a clear retrieval advantage for negatively arousing words in the cued-recall test. These findings suggest that EEM for negatively arousing words is driven by associative processes.
The Emergence of Parent-Child Coercive Processes in Toddlerhood
Chang, Hyein; Shaw, Daniel S.
2015-01-01
Parent-child coercion typically emerges in toddlerhood with the child’s first acts of willful defiance and the parent’s first disciplinary attempts. We explored how parents and children may contribute to this process by examining bidirectional and interactive effects between child and maternal negative behavior in 310 low-income, ethnically diverse boys. Using multiple informants and methods, child negative emotionality and maternal negative control were assessed at 18 months and child disruptive behavior and maternal negative control were measured at 24 months. Indicative of parent effects, maternal negative control at 18 months amplified the relation between children’s negative emotionality at 18 months and disruptive behavior at 24 months. Child effects were found in an unexpected direction such that children’s negative emotionality at 18 months predicted decreases in mothers’ negative control at 24 months. Findings are discussed within a transactional framework that emphasizes mutual influence of children and parents over the course of development. PMID:26068801
ERIC Educational Resources Information Center
Frings, Christian; Spence, Charles
2011-01-01
Negative priming (NP) refers to the finding that people's responses to probe targets previously presented as prime distractors are usually slower and more error prone than to unrepeated stimuli. In a typical NP experiment, each probe target is accompanied by a distractor. It is an accepted, albeit puzzling, finding that the NP effect depends on…
ERIC Educational Resources Information Center
Chien, Yi-Ling; Hsieh, Ming Hsien; Gau, Susan Shur-Fen
2018-01-01
In a sample of 37 adolescents and young adults with autism spectrum disorder (ASD) and 35 typically-developing controls (TDC), we investigated sensory symptoms by clinical measures, and Mismatch Negativity and P3a component at Fz with the frequency and duration oddball paradigms of event-related potentials. Results showed that compared to TDC, ASD…
ERIC Educational Resources Information Center
Shamblen, Stephen R.; Springer, J. Fred
2007-01-01
There is an absence of systematic, comparative research examining the negative consequences that are experienced as a result of using specific substances. Further, techniques typically used for needs assessment (i.e., prevalence proportions) do not take into account the probability of experiencing a negative consequence as a result of using…
Dang, Ruihong; Li, Jinxi; Jiang, Jinzhu; Zhang, Ning; Jia, Meiru; Wei, Lingzhi; Li, Ziqiang; Li, Bingbing; Jia, Wensuo
2015-01-01
Whereas the regulatory mechanisms that direct fruit ripening have been studied extensively, little is known about the signaling mechanisms underlying this process, especially for nonclimacteric fruits. In this study, we demonstrated that a SUCROSE NONFERMENTING1-RELATED PROTEIN KINASE2, designated as FaSnRK2.6, is a negative regulator of fruit development and ripening in the nonclimacteric fruit strawberry (Fragaria × ananassa) and can also mediate temperature-modulated strawberry fruit ripening. FaSnRK2.6 was identified as an ortholog of OPEN STOMATA1. Levels of FaSnRK2.6 transcript rapidly decreased during strawberry fruit development and ripening. FaSnRK2.6 was found to be capable of physically interacting with strawberry ABSCISIC ACID INSENSITIVE1, a negative regulator in strawberry fruit ripening. RNA interference-induced silencing of FaSnRK2.6 significantly promoted fruit ripening. By contrast, overexpression of FaSnRK2.6 arrested fruit ripening. Strawberry fruit ripening is highly sensitive to temperature, with high temperatures promoting ripening and low temperatures delaying it. As the temperature increased, the level of FaSnRK2.6 expression declined. Furthermore, manipulating the level of FaSnRK2.6 expression altered the expression of a variety of temperature-responsive genes. Taken together, this study demonstrates that FaSnRK2.6 is a negative regulator of strawberry fruit development and ripening and, furthermore, that FaSnRK2.6 mediates temperature-modulated strawberry fruit ripening. PMID:25609556
Jung, Wan S; Villegas, Jorge
2011-01-01
Anti-smoking Public Service Announcements (PSAs) typically emphasize the negative consequences of failing to quit smoking (negative frame), as opposed to emphasizing the benefits of quitting (positive frame). However, stressing the benefits of quitting sometimes produces better communication outcomes. Previous research on message framing has tried to identify factors affecting the impact of positive framing and negative framing. Data were collected on 188 undergraduates attending a southeastern university in the United States who were assigned randomly to view either positive or negative messages. Our study found that involvement and nicotine dependence moderated the impact of framed smoking-cessation messages on attitude toward the ad.
Evaluation of Data-Logging Transducer to Passively Collect Pressure Vessel p/T History
NASA Technical Reports Server (NTRS)
Wnuk, Stephen P.; Le, Son; Loew, Raymond A.
2013-01-01
Pressure vessels owned and operated by NASA are required to be regularly certified per agency policy. Certification requires an assessment of damage mechanisms and an estimation of vessel remaining life. Since detail service histories are not typically available for most pressure vessels, a conservative estimate of vessel pressure/temperature excursions is typically used in assessing fatigue life. This paper details trial use of a data-logging transducer to passively obtain actual pressure and temperature service histories of pressure vessels. The approach was found to have some potential for cost savings and other benefits in certain cases.
An Analysis of Two Thunderstorms Producing Five Negative Sprites on 12 September 2014
NASA Astrophysics Data System (ADS)
Boggs, L.; Liu, N.; Splitt, M. E.; Lazarus, S. M.; Cummer, S. A.; Rassoul, H.
2015-12-01
We present a detailed analysis of the thunderstorms and the parent lightning discharge morphologies of five confirmed negative sprites taking place in two different thunderstorms. These two thunderstorms took place in east-central and south Florida on 12 September 2014. We utilized several lightning location networks, remote magnetic field measurements, dual polarization radar, and balloon borne soundings in our analysis. Each parent discharge was immediately preceded by intra-cloud (IC) discharges between the mid-level negative and upper positive charge regions. This either allowed a second upward negative leader to escape the upper positive charge region, or encouraged a downward negative leader to be initiated and connect with ground. The discharges found in this study support the findings of Lu et al., 2012 [JGR,117, D04212, 2012] that negative sprite-parent lightning consists primarily of hybrid intra-cloud negative cloud-to-ground (IC-NCG) and bolt-from-the-blue (BFB) lightning. Our work finds these unique discharges form in thunderstorms that have an excess of mid-level negative charge and weakened upper positive charge. Due to this charge structure, these unusual discharges transfer more charge to the ground than typical negative cloud-to-ground discharges. Our study suggests that the key difference separating bolt-from-the-blue and gigantic jet discharges is an asymmetric charge structure. This acts to bring the negative leader exiting the thundercloud closer to the lateral positive screening layer, encouraging the negative leader to turn towards ground. This investigation reveals IC discharges that involve multiple convective cells and come to ground as a negative CG discharge, a breed of hybrid IC-NCG discharges, also transfer more negative charge to ground than typical negative CG discharges and are able to initiate negative sprites. From this work, the charge structures mentioned above resulted from tall, intense convective cells with low CG flash rates with high wind shear in the mid to upper regions of the cloud. This acted to create a large reservoir of mid-level negative charge and create a general asymmetry to the charge structure. The wind shear in the upper regions also acted to weaken the upper positive charge by turbulent mixing with the upper negative screening charge layer.
Origins of the stuttering stereotype: stereotype formation through anchoring-adjustment.
MacKinnon, Sean P; Hall, Shera; Macintyre, Peter D
2007-01-01
The stereotype of people who stutter is predominantly negative, holding that stutterers are excessively nervous, anxious, and reserved. The anchoring-adjustment hypothesis suggests that the stereotype of stuttering arises from a process of first anchoring the stereotype in personal feelings during times of normal speech disfluency, and then adjusting based on a rapid heuristic judgment. The current research sought to test this hypothesis, elaborating on previous research by [White, P. A., & Collins, S. R. (1984). Stereotype formation by inference: A possible explanation for the "stutterer" stereotype. Journal of Speech and Hearing Research, 27, 567-570]. Participants provided ratings of a hypothetical typical person who stutters, a person suffering from normal speech disfluency and a typical male on a 25-item semantic differential scale. Results showed a stereotype of people who stutter similar to that found in previous research. The pattern of results is consistent with the anchoring-adjustment hypothesis. Ratings of a male stutterer are very similar to a male experiencing temporary disfluency, both of which differ from ratings of a typical male. As expected, ratings of a stutterer show a small but statistically significant adjustment on several traits that makes the stereotype of stutterers less negative and less emotionally extreme than the temporarily disfluent male. Based on the results of this research, it appears that stereotype formation is a result of generalization and adjustment from personal experience during normal speech disfluency. The reader will be able to: (1) explain how the negative stereotype of people who stutter arises; (2) discuss the negative implications of stereotypes in the lives of people who stutter; and (3) summarize why the stereotype of people who stutter is so consistent and resistant to change.
ADHD and Depression Symptoms in Parent Couples Predict Response to Child ADHD and ODD Behavior.
Wymbs, Brian T; Dawson, Anne E; Egan, Theresa E; Sacchetti, Gina M; Tams, Sean T; Wymbs, Frances A
2017-04-01
Parents of children with attention-deficit hyperactivity disorder (ADHD) and oppositional defiant disorder (ODD) often have elevated ADHD and depressive symptoms, both of which increase the risk of ineffective parenting and interparental discord. However, little is known about whether child ADHD/ODD behavior and parent ADHD or depressive symptoms uniquely or synergistically predict the quality of parenting and interparental communication during triadic (mother-father-child) interactions. Ninety parent couples, including 51 who have children diagnosed with ADHD, were randomly assigned to interact with a 9-12 year-old confederate child (84 % male) exhibiting either ADHD/ODD-like behavior or typical behavior. Parents reported their own ADHD and depressive symptoms, and parents and observers rated the quality of parenting and interparental communication during the interaction. Actor-partner interdependence modeling indicated that child ADHD/ODD behavior predicted less positive and more negative parenting and communication, independent of adult ADHD and depressive symptoms. Parent couples including two parents with elevated ADHD communicated more positively while managing children exhibiting ADHD/ODD behavior than couples managing children behaving typically or couples with only one parent with elevated ADHD symptoms. Couples including one parent with, and one parent without, elevated ADHD or depressive symptoms parented less positively and more negatively, and communicated more negatively, when managing children exhibiting ADHD/ODD behavior than when managing children behaving typically. Taken together, depending on the similarity of ADHD and depressive symptom levels in parent couples, adults managing children exhibiting ADHD/ODD behavior may parent or communicate positively or negatively. Findings highlight the need to consider the psychopathology of both parents when treating children with ADHD in two-parent homes.
Measurement of incident molecular temperature in the formation of organic thin films
NASA Astrophysics Data System (ADS)
Abe, Takahiro; Matsubara, Ryosuke; Hayakawa, Munetaka; Shimoyama, Akifumi; Tanaka, Takaaki; Tsuji, Akira; Takahashi, Yoshikazu; Kubono, Atsushi
2018-03-01
To investigate the effects of incident molecular temperature on organic-thin-film growth by vacuum evaporation, quantitative analysis of molecular temperature is required. In this study, we propose a method of determining molecular temperature based on the heat exchange between a platinum filament and molecular vapor. Molecular temperature is estimated from filament temperature, which remains unchanged even under molecular vapor supply. The results indicate that our method has sufficient sensitivity to evaluate the molecular temperature under the typical growth rate used for fabrication of functional organic thin films.
Mellery, Julie; Geay, Florian; Tocher, Douglas R.; Kestemont, Patrick; Debier, Cathy; Rollin, Xavier; Larondelle, Yvan
2016-01-01
Aquaculture is meant to provide fish rich in omega-3 long chain polyunsaturated fatty acids (n-3 LC-PUFA). This objective must be reached despite (1) the necessity to replace the finite and limited fish oil in feed production and (2) the increased temperature of the supply water induced by the global warming. The objective of the present paper was to determine to what extent increased water temperature influences the fatty acid bioconversion capacity of rainbow trout (Oncorhynchus mykiss) fed a plant-derived diet. Fish were fed two diets formulated with fish oil (FO) or linseed oil (LO) as only added lipid source at the optimal water temperature of 15°C or at the increased water temperature of 19°C for 60 days. We observed that a temperature increase close to the upper limit of the species temperature tolerance range negatively affected the feed efficiency of rainbow trout fed LO despite a higher feed intake. The negative impact of increased water temperature on fatty acid bioconversion capacity appeared also to be quite clear considering the reduced expression of fatty acid desaturase 2 in liver and intestine and the reduced Δ6 desaturase enzymatic activity in intestinal microsomes. The present results also highlighted a negative impact of increased temperature on the apparent in vivo enzymatic activity of Δ5 and Δ6 desaturases of fish fed LO. Interestingly, this last parameter appeared less affected than those mentioned above. This study highlights that the increased temperature that rainbow trout may face due to global warming could reduce their fatty acid bioconversion capacity. The unavoidable replacement of finite fish oil by more sustainable, readily available and economically viable alternative lipid sources in aquaculture feeds should take this undeniable environmental issue on aquaculture productivity into account. PMID:27736913
Mellery, Julie; Geay, Florian; Tocher, Douglas R; Kestemont, Patrick; Debier, Cathy; Rollin, Xavier; Larondelle, Yvan
2016-01-01
Aquaculture is meant to provide fish rich in omega-3 long chain polyunsaturated fatty acids (n-3 LC-PUFA). This objective must be reached despite (1) the necessity to replace the finite and limited fish oil in feed production and (2) the increased temperature of the supply water induced by the global warming. The objective of the present paper was to determine to what extent increased water temperature influences the fatty acid bioconversion capacity of rainbow trout (Oncorhynchus mykiss) fed a plant-derived diet. Fish were fed two diets formulated with fish oil (FO) or linseed oil (LO) as only added lipid source at the optimal water temperature of 15°C or at the increased water temperature of 19°C for 60 days. We observed that a temperature increase close to the upper limit of the species temperature tolerance range negatively affected the feed efficiency of rainbow trout fed LO despite a higher feed intake. The negative impact of increased water temperature on fatty acid bioconversion capacity appeared also to be quite clear considering the reduced expression of fatty acid desaturase 2 in liver and intestine and the reduced Δ6 desaturase enzymatic activity in intestinal microsomes. The present results also highlighted a negative impact of increased temperature on the apparent in vivo enzymatic activity of Δ5 and Δ6 desaturases of fish fed LO. Interestingly, this last parameter appeared less affected than those mentioned above. This study highlights that the increased temperature that rainbow trout may face due to global warming could reduce their fatty acid bioconversion capacity. The unavoidable replacement of finite fish oil by more sustainable, readily available and economically viable alternative lipid sources in aquaculture feeds should take this undeniable environmental issue on aquaculture productivity into account.
NASA Astrophysics Data System (ADS)
Taran, Y. A.; Bernard, A.; Gavilanes, J.-C.; Lunezheva, E.; Cortés, A.; Armienta, M. A.
2001-08-01
Gases, condensates and silica tube precipitates were collected from 400°C (Z2) and 800°C (Z3) fumaroles at Colima volcano, Mexico, in 1996-1998. Volcanic gases at Colima were very oxidized and contain up to 98% air due to mixing with air inside the dome interior, close to the hot magmatic body. An alkaline trap method was used to collect gas samples, therefore only acidic species were analysed. Colima volcanic gases are water-rich (95-98 mol%) and have typical S/C/Cl/F ratios for a subduction type volcano. δD-values for the high-temperature Z3 fumarolic vapour vary from -26 to -57‰. A negative δD-Cl correlation for the Z3 high-temperature fumarole may result from magma degassing: enrichment in D and decrease in the Cl concentration in condensates are likely a consequence of input of ;fresh; batches of magma and an increasing of volcanic activity, respectively. The trace element composition of Colima condensates generally does not differ from that of other volcanoes (e.g. Merapi, Kudryavy) except for some enrichment in V, Cu and Zn. Variations in chemical composition of precipitates along the silica tube from the high-temperature fumarole (Colima 1, fumarole Z3), in contrast to other volcanoes, are characterized by high concentrations of Ca and V, low concentration of Mo and a lack of Cd. Mineralogy of precipitates differs significantly from that described for silica tube experiments at other volcanoes with reduced volcanic gas. Thermochemical modelling was used to explain why very oxidized gas at Colima does not precipitate halite, sylvite, and Mo- and Cd-minerals, but does precipitate V-minerals and native gold, which have not been observed before in mineral precipitates from reduced volcanic gases.
Air density dependence of the soft X-ray PTW 34013 ionization chamber.
Torres Del Río, Julia; Forastero, Cristina; Tornero-López, Ana M; López, Jesús J; Guirado, Damián; Perez-Calatayud, José; Lallena, Antonio M
2018-02-01
We studied the dependence on air density of the response of the PTW 34013 ionization chamber, recently upgraded for dosimetry control of low energy X-ray beams. Measurements were performed by changing the pressure conditions inside a pressure chamber. The behavior of the measurements against the air density inside this chamber was analyzed. X-ray beams generated with 50, 70, 100, 150 and 200 kVp and the two electrometer polarities were considered. For all beams studied, measurements corrected with the conventional temperature and pressure factor showed a residual dependence on the air density that was described with a linear function of the air density. For the 50 and 70 kVp beams, corrected measurements remained ∼1% smaller than the value found at standard pressure/temperature conditions, for both electrometer polarities and for the air density range typical in clinical conditions. For air densities smaller than the standard one, measurements found for 100, 150 and 200 kVp beams were below or above the value found at standard pressure and temperature when the negative or positive electrometer polarities were used, respectively. The differences with the measurements at standard conditions were less than 1% for the 100 kVp beam and below 4% for the other two beams. The PTW 34013 ionization chamber showed a dependence on the air density that is not properly described with the usual temperature and pressure correction factor. This residual dependence is negligible for low energy beams, for which this chamber is recommended, but is more substantial for beams with energy above 80 kVp. Copyright © 2018 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.
Nephrolithiasis, stone composition, meteorology, and seasons in Malta: Is there any connection?
Buttigieg, Jesmar; Attard, Stephanie; Carachi, Alexander; Galea, Ruth; Fava, Stephen
2016-01-01
The effect of seasons and meteorology on the incidence of nephrolithiasis has been studied in various regions around the globe, but seldom in the Mediterranean. This retrospective analysis aims at investigating these putative effects in the Maltese Islands, whose climate is typically Mediterranean, followed by a systematic review of the literature. Submission rate and chemical composition of all kidney stones after spontaneous passage or surgical removal between January 2009 and December 2011 were analyzed according to seasons and corresponding meteorology. A total of 389 stones were analyzed. A higher stone submission rate was observed in summer compared to winter (31.6% vs. 20.8%, P = 0.0008) and in the warm period compared to the cold period (57.1% vs. 42.9%, P = 0.0001). Significant correlation was established between the monthly number of stones and mean monthly maximum temperature (r = 0.50, P = 0.002), mean monthly temperature (r = 0.49, P = 0.003) and mean monthly Humidex (r = 0.49, P = 0.007). Humidex was found to be an independent predictor for stone submission (β = 0.49, P = 0.007). The majority of stones contained calcium (83.3%), combined with oxalate (77.6%), phosphate (14.7%), and carbonate (2.8%). Some stones (11.8%) contained a mixture of >1 negatively charged molecules. Urate (11.6%), cysteine (4.6%), and ammonium-magnesium-phosphate (0.5%) constituted the rest. There was no association between chemical composition and seasons. Literature review included 25 articles. Higher ambient temperature and warm seasons were the most commonly encountered risk factors for both presentation and etiology of nephrolithiasis. A significant positive correlation was noted between ambient temperature and stone submission rate, which was significantly higher during the warm months in Malta.
Simulated building energy demand biases resulting from the use of representative weather stations
Burleyson, Casey D.; Voisin, Nathalie; Taylor, Z. Todd; ...
2017-11-06
Numerical building models are typically forced with weather data from a limited number of “representative cities” or weather stations representing different climate regions. The use of representative weather stations reduces computational costs, but often fails to capture spatial heterogeneity in weather that may be important for simulations aimed at understanding how building stocks respond to a changing climate. Here, we quantify the potential reduction in temperature and load biases from using an increasing number of weather stations over the western U.S. Our novel approach is based on deriving temperature and load time series using incrementally more weather stations, ranging frommore » 8 to roughly 150, to evaluate the ability to capture weather patterns across different seasons. Using 8 stations across the western U.S., one from each IECC climate zone, results in an average absolute summertime temperature bias of ~4.0 °C with respect to a high-resolution gridded dataset. The mean absolute bias drops to ~1.5 °C using all available weather stations. Temperature biases of this magnitude could translate to absolute summertime mean simulated load biases as high as 13.5%. Increasing the size of the domain over which biases are calculated reduces their magnitude as positive and negative biases may cancel out. Using 8 representative weather stations can lead to a 20–40% bias of peak building loads during both summer and winter, a significant error for capacity expansion planners who may use these types of simulations. Using weather stations close to population centers reduces both mean and peak load biases. Our approach could be used by others designing aggregate building simulations to understand the sensitivity to their choice of weather stations used to drive the models.« less
Yu, Kaihao; Chen, Xiaomin; Pan, Genxing; Zhang, Xuhui; Chen, Can
2016-02-01
Global climate change affects the availability of soil nutrients, thereby influencing crop productivity. This research was conducted to investigate the effects of elevated CO2, elevated temperature, and the interaction of the elevated CO2 and temperature on the soil available phosphorus (P) of a paddy-wheat rotation in the Taihu Lake region, China. Winter wheat (Triticum aestivum L.) was cultivated during the study period from 2011 to 2014 at two CO2 levels (350 μL•L(-1) ambient and 500 μL•L(-1) elevated by 150 μL•L(-1)) and two temperatures (ambient and 2 °C above the ambient). Soil available P content increased at the first season and decreased at the last season during the three wheat growing seasons. Soil available P content showed seasonal variation, whereas dynamic changes were not significant within each growing season. Soil available P content had no obvious trends under different treatments. But for the elevated temperature, CO2, and their combination treatments, soil available P content decreased in a long time period. During the period of wheat ripening stage, significant positive correlations were found between soil available P content and saturated hydraulic conductivity (Ks) and organic matter, but significant negative correlations with soil clay content and pH value; the correlation coefficients were 0.9400 (p < 0.01), 0.9942 (p < 0.01), -0.9383 (p < 0.01), and -0.6403 (p < 0.05), respectively. Therefore, Ks, organic matter, soil clay, and pH were the major impact factors on soil available P content. These results can provide a basis for predicting the trend of soil available P variation, as well as guidance for managing the soil nutrients and best fertilization practices in the future climate change scenario.
Simulated building energy demand biases resulting from the use of representative weather stations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Burleyson, Casey D.; Voisin, Nathalie; Taylor, Z. Todd
Numerical building models are typically forced with weather data from a limited number of “representative cities” or weather stations representing different climate regions. The use of representative weather stations reduces computational costs, but often fails to capture spatial heterogeneity in weather that may be important for simulations aimed at understanding how building stocks respond to a changing climate. Here, we quantify the potential reduction in temperature and load biases from using an increasing number of weather stations over the western U.S. Our novel approach is based on deriving temperature and load time series using incrementally more weather stations, ranging frommore » 8 to roughly 150, to evaluate the ability to capture weather patterns across different seasons. Using 8 stations across the western U.S., one from each IECC climate zone, results in an average absolute summertime temperature bias of ~4.0 °C with respect to a high-resolution gridded dataset. The mean absolute bias drops to ~1.5 °C using all available weather stations. Temperature biases of this magnitude could translate to absolute summertime mean simulated load biases as high as 13.5%. Increasing the size of the domain over which biases are calculated reduces their magnitude as positive and negative biases may cancel out. Using 8 representative weather stations can lead to a 20–40% bias of peak building loads during both summer and winter, a significant error for capacity expansion planners who may use these types of simulations. Using weather stations close to population centers reduces both mean and peak load biases. Our approach could be used by others designing aggregate building simulations to understand the sensitivity to their choice of weather stations used to drive the models.« less
NASA Astrophysics Data System (ADS)
Gilet, Ph.; Pougeoise, E.; Grenouillet, L.; Grosse, Ph.; Olivier, N.; Poncet, S.; Chelnokov, A.; Gérard, J. M.; Stevens, R.; Hamelin, R.; Hammar, M.; Berggren, J.; Sundgren, P.
2007-02-01
In this article, we report our results on 1.3μm VCSELs for optical interconnection applications. Room temperature continuous-wave lasing operation is demonstrated for top emitting oxide-confined devices with three different active materials, highly strained InGaAs/GaAs(A) and GaInNAs/GaAs (B) multiple quantum wells (MQW) or InAs/GaAs (C) quantum dots (QD). Conventional epitaxial structures grown respectively by Metal Organic Vapour Phase Epitaxy (MOVPE), Molecular Beam Epitaxy (MBE) and MBE, contain fully doped GaAs/AlGaAs DBRs. All three epilayers are processed in the same way. Current and optical confinement are realized by selective wet oxidation. Circular apertures from 2 (micron)m to 16 (micron)m diameters are defined. At room temperature and in continuous wave operation, all three systems exhibit lasing operation at wavelengths above 1 275nm and reached 1 300nm for material (A). Typical threshold currents are in the range [1- 10]mA and are strongly dependent firstly on oxide diameter and secondly on temperature. Room temperature cw maximum output power corresponds respectively to 1.77mW, 0.5mW and 0.6mW. By increasing driving current, multimode operation occurs at different level depending on the oxide diameter. In case (A), non conventional modal behaviors will be presented and explained by the presence of specific oxide modes. Thermal behaviors of the different devices have been compared. In case (A) and (C) we obtain a negative T0. We will conclude on the different active materials in terms of performances with respect to 1300nm VCSEL applications.
Zidon, Royi; Tsueda, Hirotsugu; Morin, Efrat; Morin, Shai
2016-06-01
The typical short generation length of insects makes their population dynamics highly sensitive not only to mean annual temperatures but also to their intra-annual variations. To consider the combined effect of both thermal factors under global warming, we propose a modeling framework that links general circulation models (GCMs) with a stochastic weather generator and population dynamics models to predict species population responses to inter- and intra-annual temperature changes. This framework was utilized to explore future changes in populations of Bemisia tabaci, an invasive insect pest-species that affects multiple agricultural systems in the Mediterranean region. We considered three locations representing different pest status and climatic conditions: Montpellier (France), Seville (Spain), and Beit-Jamal (Israel). We produced ensembles of local daily temperature realizations representing current and future (mid-21st century) climatic conditions under two emission scenarios for the three locations. Our simulations predicted a significant increase in the average number of annual generations and in population size, and a significant lengthening of the growing season in all three locations. A negative effect was found only in Seville for the summer season, where future temperatures lead to a reduction in population size. High variability in population size was observed between years with similar annual mean temperatures, suggesting a strong effect of intra-annual temperature variation. Critical periods were from late spring to late summer in Montpellier and from late winter to early summer in Seville and Beit-Jamal. Although our analysis suggested that earlier seasonal activity does not necessarily lead to increased populations load unless an additional generation is produced, it is highly likely that the insect will become a significant pest of open-fields at Mediterranean latitudes above 40° during the next 50 years. Our simulations also implied that current predictions based on mean temperature anomalies are relatively conservative and it is better to apply stochastic tools to resolve complex responses to climate change while taking natural variability into account. In summary, we propose a modeling framework capable of determining distinct intra-annual temperature patterns leading to large or small population sizes, for pest risk assessment and management planning of both natural and agricultural ecosystems.
Mesospheric temperature estimation from meteor decay times of weak and strong meteor trails
NASA Astrophysics Data System (ADS)
Kim, Jeong-Han; Kim, Yong Ha; Jee, Geonhwa; Lee, Changsup
2012-11-01
Neutral temperatures near the mesopause region were estimated from the decay times of the meteor echoes observed by a VHF meteor radar during a period covering 2007 to 2009 at King Sejong Station (62.22°S, 58.78°W), Antarctica. While some previous studies have used all meteor echoes to determine the slope from a height profile of log inverse decay times for temperature estimation, we have divided meteor echoes into weak and strong groups of underdense meteor trails, depending on the strength of estimated relative electron line densities within meteor trails. We found that the slopes from the strong group are inappropriate for temperature estimation because the decay times of strong meteors are considerably scattered, whereas the slopes from the weak group clearly define the variation of decay times with height. We thus utilize the slopes only from the weak group in the altitude region between 86 km and 96 km to estimate mesospheric temperatures. The meteor estimated temperatures show a typical seasonal variation near the mesopause region and the monthly mean temperatures are in good agreement with SABER temperatures within a mean difference of 4.8 K throughout the year. The meteor temperatures, representing typically the region around the altitude of 91 km, are lower on average by 2.1 K than simultaneously measured SATI OH(6-2) rotational temperatures during winter (March-October).
DEFINING THE 'BLIND SPOT' OF HINODE EIS AND XRT TEMPERATURE MEASUREMENTS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Winebarger, Amy R.; Cirtain, Jonathan; Mulu-Moore, Fana
2012-02-20
Observing high-temperature, low emission measure plasma is key to unlocking the coronal heating problem. With current instrumentation, a combination of EUV spectral data from Hinode Extreme-ultraviolet Imaging Spectrometer (EIS; sensitive to temperatures up to 4 MK) and broadband filter data from Hinode X-ray Telescope (XRT; sensitive to higher temperatures) is typically used to diagnose the temperature structure of the observed plasma. In this Letter, we demonstrate that a 'blind spot' exists in temperature-emission measure space for combined Hinode EIS and XRT observations. For a typical active region core with significant emission at 3-4 MK, Hinode EIS and XRT are insensitivemore » to plasma with temperatures greater than {approx}6 MK and emission measures less than {approx}10{sup 27} cm{sup -5}. We then demonstrate that the temperature and emission measure limits of this blind spot depend upon the temperature distribution of the plasma along the line of sight by considering a hypothetical emission measure distribution sharply peaked at 1 MK. For this emission measure distribution, we find that EIS and XRT are insensitive to plasma with emission measures less than {approx}10{sup 26} cm{sup -5}. We suggest that a spatially and spectrally resolved 6-24 Angstrom-Sign spectrum would improve the sensitivity to these high-temperature, low emission measure plasma.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhou, X., E-mail: zhouxuan12@mails.thu.edu.cn; Zeng, R.; Zhuang, C.
2015-06-15
Leader discharge is one of the main phases in long air gap breakdown, which is characterized by high temperature and high conductivity. It is of great importance to determine thermal characteristics of leader discharges. In this paper, a long-optical-path Mach-Zehnder interferometer was set up to measure the thermal parameters (thermal diameter, gas density, and gas temperature) of positive leader discharges in atmospheric air. IEC standard positive switching impulse voltages were applied to a near-one-meter point-plane air gap. Filamentary channels with high gas temperature and low density corresponding to leader discharges were observed as significant distortions in the interference fringe images.more » Typical diameters of the entire heated channel range from 1.5 mm to 3.5 mm with an average expansion velocity of 6.7 m/s. In contrast, typical diameters of the intensely heated region with a sharp gas density reduction range from 0.4 mm to 1.1 mm, about one third of the entire heated channel. The radial distribution of the gas density is calculated from the fringe displacements by performing an Abel inverse transform. The typical calculated gas density reduction in the center of a propagating leader channel is 80% to 90%, corresponding to a gas temperature of 1500 K to 3000 K based on the ideal gas law. Leaders tend to terminate if the central temperature is below 1500 K.« less
Jerrold E. Winandy; H. Michael Barnes; Robert H. Falk
2004-01-01
For over 10 years, the Forest Products Laboratory has been monitoring the temperature histories of roof sheathing, roof rafters, and unventilated attics in outdoor attic structures that simulate typical light-framed construction. This report briefly summarizes findings from the roof temperature assessment project on black and white fiberglass shingles conducted from...
J. Alan Yeakley; Ron A. Moen; David D. Breshears; Martha K. Nungesser
1994-01-01
Ecosystem models typically use input temperature and precipitation data generated stochastically from weather station means and variances. Although the weather station data are based on measurements taken over a few decades, model simulations are usually on the order of centuries. Consequently, observed periodicities in temperature and precipitation at the continental...
Negative ion beam injection apparatus with magnetic shield and electron removal means
Anderson, Oscar A.; Chan, Chun F.; Leung, Ka-Ngo
1994-01-01
A negative ion source is constructed to produce H.sup.- ions without using Cesium. A high percentage of secondary electrons that typically accompany the extracted H.sup.- are trapped and eliminated from the beam by permanent magnets in the initial stage of acceleration. Penetration of the magnetic field from the permanent magnets into the ion source is minimized. This reduces the destructive effect the magnetic field could have on negative ion production and extraction from the source. A beam expansion section in the extractor results in a strongly converged final beam.
NASA Astrophysics Data System (ADS)
Özden, Pınar; Nesrullajev, Arif; Oktik, Şener
2010-12-01
Phase states in sodium lauryl sulphate-water-1-decanol lyotropic liquid-crystalline system have been investigated for different temperature ranges. The dependence of triangle phase diagram types, phase boundaries, and sequence of lyotropic mesophases vs temperature has been found. The thermomorphologic, thermotropic, and magnetomorphologic properties of hexagonal E, lamellar D, nematic-calamitic NC , nematic-discotic ND , and biaxial nematic Nbx mesophases have been studied in detail. Dynamics of transformations of magnetically induced textures has been investigated. Peculiarities of typical and magnetically induced textures have been investigated in detail. Triangle phase diagrams of sodium lauryl sulphate-water-1-decanol lyotropic liquid-crystalline system for different temperatures and typical and magnetically induced textures of E, D, NC , ND , and Nbx mesophases are presented.
NASA Technical Reports Server (NTRS)
Esposito, J. J.; Zabora, R. F.
1975-01-01
Pertinent mechanical and physical properties of six high conductivity metals were determined. The metals included Amzirc, NARloy Z, oxygen free pure copper, electroformed copper, fine silver, and electroformed nickel. Selection of these materials was based on their possible use in high performance reusable rocket nozzles. The typical room temperature properties determined for each material included tensile ultimate strength, tensile yield strength, elongation, reduction of area, modulus of elasticity, Poisson's ratio, density, specific heat, thermal conductivity, and coefficient of thermal expansion. Typical static tensile stress-strain curves, cyclic stress-strain curves, and low-cycle fatigue life curves are shown. Properties versus temperature are presented in graphical form for temperatures from 27.6K (-410 F) to 810.9K (1000 F).
Nonlinear dielectric effect in supercritical diethyl ether.
Drozd-Rzoska, Aleksandra; Rzoska, Sylwester J; Martinez-Garcia, Julio Cesar
2014-09-07
Nonlinear dielectric effect (NDE) describes changes of dielectric permittivity induced by a strong electric field in a liquid dielectric. The most classical finding related to this magnitude is the negative sign of NDE in liquid diethyl ether (DEE), recalled by Peter Debye in his Nobel Prize lecture. This article shows that the positive sign of NDE in DEE is also possible, in the supercritical domain. Moreover, NDE on approaching the gas-liquid critical point exhibits a unique critical effect described by the critical exponent ψ ≈ 0.4 close to critical temperature (T(C)) and ψ ≈ 0.6 remote from T(C). This can be linked to the emergence of the mean-field behavior in the immediate vicinity of T(C), contrary to the typical pattern observed for critical phenomena. The multi-frequency mode of NDE measurements made it possible to estimate the evolution of lifetime of critical fluctuations. The new way of data analysis made it possible to describe the critical effect without a knowledge of the non-critical background contribution in prior.
Nonlinear dielectric effect in supercritical diethyl ether
NASA Astrophysics Data System (ADS)
Drozd-Rzoska, Aleksandra; Rzoska, Sylwester J.; Martinez-Garcia, Julio Cesar
2014-09-01
Nonlinear dielectric effect (NDE) describes changes of dielectric permittivity induced by a strong electric field in a liquid dielectric. The most classical finding related to this magnitude is the negative sign of NDE in liquid diethyl ether (DEE), recalled by Peter Debye in his Nobel Prize lecture. This article shows that the positive sign of NDE in DEE is also possible, in the supercritical domain. Moreover, NDE on approaching the gas-liquid critical point exhibits a unique critical effect described by the critical exponent ψ ≈ 0.4 close to critical temperature (TC) and ψ ≈ 0.6 remote from TC. This can be linked to the emergence of the mean-field behavior in the immediate vicinity of TC, contrary to the typical pattern observed for critical phenomena. The multi-frequency mode of NDE measurements made it possible to estimate the evolution of lifetime of critical fluctuations. The new way of data analysis made it possible to describe the critical effect without a knowledge of the non-critical background contribution in prior.
Extreme cyclone events in the Arctic: Wintertime variability and trends
NASA Astrophysics Data System (ADS)
Rinke, A.; Maturilli, M.; Graham, R. M.; Matthes, H.; Handorf, D.; Cohen, L.; Hudson, S. R.; Moore, J. C.
2017-09-01
Typically 20-40 extreme cyclone events (sometimes called ‘weather bombs’) occur in the Arctic North Atlantic per winter season, with an increasing trend of 6 events/decade over 1979-2015, according to 6 hourly station data from Ny-Ålesund. This increased frequency of extreme cyclones is consistent with observed significant winter warming, indicating that the meridional heat and moisture transport they bring is a factor in rising temperatures in the region. The winter trend in extreme cyclones is dominated by a positive monthly trend of about 3-4 events/decade in November-December, due mainly to an increasing persistence of extreme cyclone events. A negative trend in January opposes this, while there is no significant trend in February. We relate the regional patterns of the trend in extreme cyclones to anomalously low sea-ice conditions in recent years, together with associated large-scale atmospheric circulation changes such as ‘blockinglike’ circulation patterns (e.g. Scandinavian blocking in December and Ural blocking during January-February).
NASA Technical Reports Server (NTRS)
deGoncalves, Luis Gustavo G.; Shuttleworth, William J.; Vila, Daniel; Larroza, Elaine; Bottino, Marcus J.; Herdies, Dirceu L.; Aravequia, Jose A.; De Mattos, Joao G. Z.; Toll, David L.; Rodell, Matthew;
2008-01-01
The definition and derivation of a 5-year, 0.125deg, 3-hourly atmospheric forcing dataset for the South America continent is described which is appropriate for use in a Land Data Assimilation System and which, because of the limited surface observational networks available in this region, uses remotely sensed data merged with surface observations as the basis for the precipitation and downward shortwave radiation fields. The quality of this data set is evaluated against available surface observations. There are regional difference in the biases for all variables in the dataset, with biases in precipitation of the order 0-1 mm/day and RMSE of 5-15 mm/day, biases in surface solar radiation of the order 10 W/sq m and RMSE of 20 W/sq m, positive biases in temperature typically between 0 and 4 K, depending on region, and positive biases in specific humidity around 2-3 g/Kg in tropical regions and negative biases around 1-2 g/Kg further south.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oudini, N.; Taccogna, F.; Bendib, A.
2014-06-15
Laser photo-detachment is used as a method to measure or determine the negative ion density and temperature in electronegative plasmas. In essence, the method consists of producing an electropositive channel (negative ion free region) via pulsed laser photo-detachment within an electronegative plasma bulk. Electrostatic probes placed in this channel measure the change in the electron density. A second pulse might be used to track the negative ion recovery. From this, the negative ion density and temperature can be determined. We study the formation and relaxation of the electropositive channel via a two-dimensional Particle-In-Cell/Mote Carlo collision model. The simulation is mainlymore » carried out in a Hydrogen plasma with an electronegativity of α = 1, with a parametric study for α up to 20. The temporal and spatial evolution of the plasma potential and the electron densities shows the formation of a double layer (DL) confining the photo-detached electrons within the electropositive channel. This DL evolves into two fronts that move in the opposite directions inside and outside of the laser spot region. As a consequence, within the laser spot region, the background and photo-detached electron energy distribution function relaxes/thermalizes via collisionless effects such as Fermi acceleration and Landau damping. Moreover, the simulations show that collisional effects and the DL electric field strength might play a non-negligible role in the negative ion recovery within the laser spot region, leading to a two-temperature negative ion distribution. The latter result might have important effects in the determination of the negative ion density and temperature from laser photo detachment diagnostic.« less
NASA Astrophysics Data System (ADS)
Oudini, N.; Taccogna, F.; Bendib, A.; Aanesland, A.
2014-06-01
Laser photo-detachment is used as a method to measure or determine the negative ion density and temperature in electronegative plasmas. In essence, the method consists of producing an electropositive channel (negative ion free region) via pulsed laser photo-detachment within an electronegative plasma bulk. Electrostatic probes placed in this channel measure the change in the electron density. A second pulse might be used to track the negative ion recovery. From this, the negative ion density and temperature can be determined. We study the formation and relaxation of the electropositive channel via a two-dimensional Particle-In-Cell/Mote Carlo collision model. The simulation is mainly carried out in a Hydrogen plasma with an electronegativity of α = 1, with a parametric study for α up to 20. The temporal and spatial evolution of the plasma potential and the electron densities shows the formation of a double layer (DL) confining the photo-detached electrons within the electropositive channel. This DL evolves into two fronts that move in the opposite directions inside and outside of the laser spot region. As a consequence, within the laser spot region, the background and photo-detached electron energy distribution function relaxes/thermalizes via collisionless effects such as Fermi acceleration and Landau damping. Moreover, the simulations show that collisional effects and the DL electric field strength might play a non-negligible role in the negative ion recovery within the laser spot region, leading to a two-temperature negative ion distribution. The latter result might have important effects in the determination of the negative ion density and temperature from laser photo detachment diagnostic.
Zhang, Gang; Wang, Ning; Ai, Jian-Chao; Zhang, Lei; Yang, Jing; Liu, Zi-Qi
2013-02-01
Jiapigou gold mine, located in the upper Songhua River, was once the largest mine in China due to gold output, where gold extraction with algamation was widely applied to extract gold resulting in severe mercury pollution to ambient environmental medium. In order to study the characteristics of mercury exchange flux between soil (snow) and atmosphere under the snow retention and snow melting control, sampling sites were selected in equal distances along the slope which is situated in the typical hill-valley terrain unit. Mercury exchange flux between soil (snow) and atmosphere was determined with the method of dynamic flux chamber and in all sampling sites the atmosphere concentration from 0 to 150 cm near to the earth in the vertical direction was measured. Furthermore, the impact factors including synchronous meteorology, the surface characteristics under the snow retention and snow melting control and the mercury concentration in vertical direction were also investigated. The results are as follows: During the period of snow retention and melting the air mercury tends to gather towards valley bottom along the slope and an obvious deposit tendency process was found from air to the earth's surface under the control of thermal inversion due to the underlying surface of cold source (snow surface). However, during the period of snow melting, mercury exchange flux between the soil and atmosphere on the surface of the earth with the snow being melted demonstrates alternative deposit and release processes. As for the earth with snow covered, the deposit level of mercury exchange flux between soil and atmosphere is lower than that during the period of snow retention. The relationship between mercury exchange flux and impact factors shows that in snow retention there is a remarkable negative linear correlation between mercury exchange flux and air mercury concentration as well as between the former and the air temperature. In addition, in snow melting mercury exchange flux is remarkably negatively linearly correlated to air mercury concentration and positively linearly correlated to air temperature. Furthermore, there is a general positive linear correlation between mercury exchange flux and soil temperature on the surface of earth after snow melting.
Re-emerging ocean temperature anomalies in late-2010 associated with a repeat negative NAO
NASA Astrophysics Data System (ADS)
Taws, Sarah L.; Marsh, Robert; Wells, Neil C.; Hirschi, Joël
2011-10-01
Northern Europe was influenced by consecutive episodes of extreme winter weather at the start and end of the 2010 calendar year. A tripole pattern in North Atlantic sea surface temperature anomalies (SSTAs), associated with an exceptionally negative phase of the North Atlantic Oscillation (NAO), characterized both winter periods. This pattern was largely absent at the surface during the 2010 summer season; however equivalent sub-surface temperature anomalies were preserved within the seasonal thermocline throughout the year. Here, we present evidence for the re-emergence of late-winter 2009/10 SSTAs during the following early winter season of 2010/11. The observed re-emergence contributes toward the winter-to-winter persistence of the anomalous tripole pattern. Considering the active influence of the oceans upon leading modes of atmospheric circulation over seasonal timescales, associated with the memory of large-scale sea surface temperature anomaly patterns, the re-emergence of remnant temperature anomalies may have also contributed toward the persistence of a negative winter NAO, and the recurrence of extreme wintry conditions over the initial 2010/11 winter season.
Effects of Negative-Bias-Temperature-Instability on Low-Frequency Noise in SiGe $${p}$$ MOSFETs
Duan, Guo Xing; Hachtel, Jordan A.; Zhang, En Xia; ...
2016-09-20
In this paper, we have measured the low-frequency 1/f noise of Si 0.55Ge 0.45 pMOSFETs with a Si capping layer and SiO 2/HfO 2/TiN gate stack as a function of frequency, gate voltage, and temperature (100-440 K). The magnitude of the excess drain voltage noise power spectral density (Svd) is unaffected by negative-bias-temperature stress (NBTS) for temperatures below ~250 K, but increases significantly at higher temperatures. The noise is described well by the Dutta-Horn model before and after NBTS. The noise at higher measuring temperatures is attributed primarily to oxygen-vacancy and hydrogen-related defects in the SiO 2 and HfO 2more » layers. Finally, at lower measuring temperatures, the noise also appears to be affected strongly by hydrogen-dopant interactions in the SiGe layer of the device.« less
Anisotropic membranes for gas separation
Gollan, A.Z.
1987-07-21
A gas separation membrane has a dense separating layer about 10,000 Angstroms or less thick and a porous support layer 10 to 400 microns thick that is an integral unit with gradually and continuously decreasing pore size from the base of the support layer to the surface of the thin separating layer and is made from a casting solution comprising ethyl cellulose and ethyl cellulose-based blends, typically greater than 47.5 ethoxyl content ethyl cellulose blended with compatible second polymers, such as nitrocellulose. The polymer content of the casting solution is from about 10% to about 35% by weight of the total solution with up to about 50% of this polymer weight a compatible second polymer to the ethyl cellulose in a volatile solvent such as isopropanol, methylacetate, methanol, ethanol, and acetone. Typical nonsolvents for the casting solutions include water and formamide. The casting solution is cast in air from about zero to 10 seconds to allow the volatile solvent to evaporate and then quenched in a coagulation bath, typically water, at a temperature of 7--25 C and then air dried at ambient temperature, typically 10--30 C. 2 figs.
NASA Astrophysics Data System (ADS)
Said, Diego; Belinato, Gabriela; Sarmiento, Gustavo S.; Otero, Rosa L. Simencio; Totten, George E.; Gastón, Analía; Canale, Lauralice C. F.
2013-07-01
The potential use of vegetable oil-derived industrial oils continues to be of great interest because vegetable oils are relatively non-toxic, biodegradable, and they are a renewable basestock alternative to petroleum oil. However, the fatty ester components containing conjugated double bonds of the triglyceride structure of vegetable oils typically produce considerably poorer thermal-oxidative stability than that achievable with petroleum basestocks under typical use conditions. Typically, these conditions involve furnace loads of hot steel (850 °C), which are rapidly immersed and cooled to bath temperatures of approximately 50-60 °C. This is especially true when a vegetable oil is held in an open tank with agitation and exposed to air at elevated temperatures for extended periods of time (months or years). This paper will describe the thermal-oxidative stability and quenching performance of soybean oil and palm oil and the resulting impact on the heat transfer coefficient. These results are compared to typical fully formulated, commercially available accelerated (fast) and an unaccelerated (slow) petroleum oil-based quenchants.
The Social Psychology of Creativity.
ERIC Educational Resources Information Center
Hennessey, Beth A.
2003-01-01
Outlines investigations revealing that the typical classroom is filled with teaching practices that kill intrinsic motivation and creativity. Reviews research designed to immunize students against the negative effects of these damaging classroom elements. (SLD)
Seasonality of climate change and oscillations in the Northeast Asia and Northwest Pacific
NASA Astrophysics Data System (ADS)
Ponomarev, V.; Salomatin, A.; Kaplunenko, D.; Krokhin, V.
2003-04-01
The main goals of this study are to estimate and compare the seasonality of centennial/semi-centennial climatic tendencies and dominated oscillations in surface air temperature and precipitation over continental and marginal areas of the Northeast Asia, as well as in the Northwest Pacific SST. We use monthly mean data for the 20th century from the NOAA Global History Climatic Network, JMA data base and WMU/COADS World Atlas of Surface Marine Data. Details of climate change/oscillations associated with cooling or warming in different areas and periods of a year are revealed. Wavelet analyses and two methods of the linear trend estimation are applied. First one is least-squares (LS) method with Fisher’s test for statistical significance level. Second one is nonparametric robust (NR) method, based on Theil's rank regression and Kendall's test for statistical significance level. The NR method should be applied to time series with abnormal distribution function typical for precipitation time series. Application of the NR method result in increase the statistical significance of both positive and negative linear trends in all cases of abnormal distribution with negative/positive skewness and low/high kurtosis. Using this method, we have determined spatial patterns of statistically significant climatic trends in surface air temperature, precipitation in the Northeast Asia, and in the Northwest Pacific SST. The most substantial centennial warming in the vast continental area of the mid-latitude band is found mainly for December March. The semi-centennial/ centennial cooling occurs in South Siberia and the subarctic mid-continental area in June September. Opposite tendencies were also revealed in precipitation and SST. Positive semi-centennial tendency in the SST in the second half of the 20th century predominates in the Kuroshio region and in the northwestern area of the subarctic gyre in winter. Negative tendency in the SST dominates in the southwestern subarctic gyre and the offshore area of the subtropic gyre in summer. Comparison of air temperature, precipitation, SST trends and oscillations in different seasons over land marginal and continental areas, as well as in the subarctic and subtropic zones indicates general features of the Northeast Asian Monsoon change/oscillation in 20th century and its second half. Similar features of seasonality in centennial, semi-centennial trends and dominated oscillations are manifested. Climate change and oscillation in the Northwest Pacific marginal seas revealed for the 20th century are explained.
Seasonality of climate change and oscillations in the Northeast Asia and Northwest Pacific
NASA Astrophysics Data System (ADS)
Ponomarev, V.; Salomatin, A.; Kaplunenko, D.; Krokhin, V.
2003-04-01
The main goals of this study are to estimate and compare the centennial/semi-centennial climatic tendencies and oscillations in surface air temperature and precipitation over continental and marginal areas of the Northeast Asian, as well as in the Northwest Pacific SST for all months of a year. We use monthly mean data for the 20th century from the NOAA Global History Climatic Network, JMA data base and WMU/COADS World Atlas of Surface Marine Data. Details of climate change/oscillations associated with cooling or warming in different areas and periods of a year are revealed. Wavelet analyses and two methods of the linear trend estimation are applied. First one is least-squares (LS) method with Fisher’s test for statistical significance level. Second one is nonparametric robust (NR) method, based on Theil's rank regression and Kendall's test for statistical significance level. The NR method should be applied to time series with abnormal distribution function typical for precipitation time series. Application of the NR method result in increase the statistical significance of both positive and negative linear trends in all cases of abnormal distribution with negative/positive skewness and low/high kurtosis. Using this method, we have determined spatial patterns of statistically significant climatic trends in surface air temperature, precipitation in the Northeast Asia, and in the Northwest Pacific SST. The most substantial centennial warming in the vast continental area of the mid-latitude band is found mainly for December March. The semi-centennial/ centennial cooling occurs in South Siberia and the subarctic mid-continental area in June September. Opposite tendencies were also revealed in precipitation and SST. Positive semi-centennial tendency in the SST in the second half of the 20th century predominates in the Kuroshio region and in the northwestern area of the subarctic gyre in winter. Negative tendency in the SST dominates in the southwestern subarctic gyre and the offshore area of the subtropic gyre in summer. Comparison of air temperature, precipitation, SST trends and oscillations in different seasons over land marginal and continental areas, as well as in the subarctic and subtropic zones indicates general features of the Northeast Asian Monsoon change/oscillation in 20th century and its second half. Similar features of seasonality in centennial, semi-centennial trends and dominated oscillations are manifested. Climate change and oscillation in the Northwest Pacific marginal seas revealed for the 20th century are explained.
NASA Astrophysics Data System (ADS)
Taori, A.; Jayaraman, A.; Raghunath, K.; Kamalakar, V.
2012-01-01
The vertical temperature profiles in a typical Rayleigh lidar system depends on the backscatter photon counts and the CIRA-86 model inputs. For the first time, we show that, by making simultaneous measurements of Rayleigh lidar and upper mesospheric O2 temperatures, the lidar capability can be enhanced to obtain mesospheric temperature profile up to about 95 km altitudes. The obtained results are compared with instantaneous space-borne SABER measurements for a validation.
Optical Measurement of the Speed of Sound in Air Over the Temperature Range 300-650 K
NASA Technical Reports Server (NTRS)
Hart, Roger C.; Balla, R. Jeffrey; Herring, G. C.
2000-01-01
Using laser-induced thermal acoustics (LITA), the speed of sound in room air (1 atm) is measured over the temperature range 300-650 K. Since the LITA apparatus maintains a fixed sound wavelength as temperature is varied, this temperature range simultaneously corresponds to a sound frequency range of 10-15 MHz. The data are compared to a published model and typically agree within 0.1%-0.4% at each of 21 temperatures.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Olimov, Kh. K., E-mail: olimov@comsats.edu.pk; Haseeb, Mahnaz Q., E-mail: mahnazhaseeb@comsats.edu.pk
2013-05-15
The experimental transverse momentum distributions of negative pions produced in d{sup 12}C, {sup 4}He{sup 12}C, and {sup 12}C{sup 12}C collisions at 4.2 A GeV/c were analyzed in the framework of Hagedorn Thermodynamic Model. The spectral temperatures of {pi}{sup -} mesons as well as their relative contributions to the total multiplicity of {pi}{sup -} mesons were extracted from fitting the p{sub t} spectra by two-temperature Hagedorn function. The results were compared systematically with the earlier results obtained from analysis of non-invariant center-of-mass energy spectra of negative pions produced in the analyzed collisions.
NASA Astrophysics Data System (ADS)
Hu, Gangyi; Wijesinghe, Udumbara; Naquin, Clint; Maggio, Ken; Edwards, H. L.; Lee, Mark
2017-10-01
Intrinsic gain (AV) measurements on Si quantum well (QW) n-channel metal-oxide-semiconductor (NMOS) transistors show that these devices can have |AV| > 1 in quantum transport negative transconductance (NTC) operation at room temperature. QW NMOS devices were fabricated using an industrial 45 nm technology node process incorporating ion implanted potential barriers to define a lateral QW in the conduction channel under the gate. While NTC at room temperature arising from transport through gate-controlled QW bound states has been previously established, it was unknown whether the quantum NTC mechanism could support gain magnitude exceeding unity. Bias conditions were found giving both positive and negative AV with |AV| > 1 at room temperature. This result means that QW NMOS devices could be useful in amplifier and oscillator applications.
Negative hydrogen ions in a linear helicon plasma device
NASA Astrophysics Data System (ADS)
Corr, Cormac; Santoso, Jesse; Samuell, Cameron; Willett, Hannah; Manoharan, Rounak; O'Byrne, Sean
2015-09-01
Low-pressure negative ion sources are of crucial importance to the development of high-energy (>1 MeV) neutral beam injection systems for the ITER experimental tokamak device. Due to their high power coupling efficiency and high plasma densities, helicon devices may be able to reduce power requirements and potentially remove the need for caesium. In helicon sources, the RF power can be coupled efficiently into the plasma and it has been previously observed that the application of a small magnetic field can lead to a significant increase in the plasma density. In this work, we investigate negative ion dynamics in a high-power (20 kW) helicon plasma source. The negative ion fraction is measured by probe-based laser photodetachment, electron density and temperature are determined by a Langmuir probe and tuneable diode laser absorption spectroscopy is used to determine the density of the H(n = 2) excited atomic state and the gas temperature. The negative ion density and excited atomic hydrogen density display a maximum at a low applied magnetic field of 3 mT, while the electron temperature displays a minimum. The negative ion density can be increased by a factor of 8 with the application of the magnetic field. Spatial and temporal measurements will also be presented. The Australian Research Grants Council is acknowledged for funding.
Negative spin Hall magnetoresistance in antiferromagnetic Cr2O3/Ta bilayer at low temperature region
NASA Astrophysics Data System (ADS)
Ji, Yang; Miao, J.; Zhu, Y. M.; Meng, K. K.; Xu, X. G.; Chen, J. K.; Wu, Y.; Jiang, Y.
2018-06-01
We demonstrate the negative spin Hall magnetoresistance (SMR) observed in antiferromagnetic Cr2O3/Ta bilayers at low temperature. The SMR signals are changed from the positive to negative magnitude when monotonously reducing the temperature from 300 K to 50 K. The positive and negative SMR signals are expected to be associated with the two different ways for injection of the spin current, into the boundary ferromagnetic region and the bulk antiferromagnetic region of α-Cr2O3 (0001), respectively. The slopes of the abnormal Hall curves exhibit the same sign with the SMR signal. From the SMR ratio under 3 T, the spin mixing conductance at the Cr2O3/Ta interface is estimated to be 1.12 × 1014 Ω-1.m-2, which is comparable to the one observed in the Y3Fe5O12(YIG)/Pt structure and our early results of the Cr2O3/W structure.
Temperature variations in a parked vehicle.
Dadour, I R; Almanjahie, I; Fowkes, N D; Keady, G; Vijayan, K
2011-04-15
There were two reasons why this work was conducted. The first was to help determine the time of death of suicide and homicide victims inside vehicles. The second was to investigate the serious threat to life of children or pets left in stationary vehicles on a hot summers day. This paper demonstrates that when a vehicle is parked in the sun, temperature levels in the cabin of the vehicle can be more than 20°C above the ambient temperature. A simple 'greenhouse' model for predicting the daily internal vehicle temperatures, using readily available local meteorological data, was developed. This statistical model was calibrated using meteorological data and temperature data collected on parked vehicles over several summer seasons. The model uses environmental temperature and radiation data as input, and is shown to predict cabin temperatures to within about 1°C. Both the data collected and the model developed show that the temperature inside the cabin of a black vehicle is typically 5°C higher than that inside a white vehicle on a hot summer day. Also lowering the driver's window of the vehicle by 2.5 cm typically reduces cabin temperatures by about 3°C, which is not sufficient to reduce significantly the safety concerns for children or pets left in parked vehicles. Crown Copyright © 2010. Published by Elsevier Ireland Ltd. All rights reserved.
Visual search and emotion: how children with autism spectrum disorders scan emotional scenes.
Maccari, Lisa; Pasini, Augusto; Caroli, Emanuela; Rosa, Caterina; Marotta, Andrea; Martella, Diana; Fuentes, Luis J; Casagrande, Maria
2014-11-01
This study assessed visual search abilities, tested through the flicker task, in children diagnosed with autism spectrum disorders (ASDs). Twenty-two children diagnosed with ASD and 22 matched typically developing (TD) children were told to detect changes in objects of central interest or objects of marginal interest (MI) embedded in either emotion-laden (positive or negative) or neutral real-world pictures. The results showed that emotion-laden pictures equally interfered with performance of both ASD and TD children, slowing down reaction times compared with neutral pictures. Children with ASD were faster than TD children, particularly in detecting changes in MI objects, the most difficult condition. However, their performance was less accurate than performance of TD children just when the pictures were negative. These findings suggest that children with ASD have better visual search abilities than TD children only when the search is particularly difficult and requires strong serial search strategies. The emotional-social impairment that is usually considered as a typical feature of ASD seems to be limited to processing of negative emotional information.
ERIC Educational Resources Information Center
Pritchard, Verena E.; Neumann, Ewald
2009-01-01
Despite being ignored, visual distractors often produce traceable negative priming (NP) effects that can be used to investigate inhibitory processes. Robust NP effects are typically found with young adults, but not with children. Using 2 different NP tasks, the authors compared NP in 5 different age groups spanning 5 to 25 years of age. The 1st…
Van Cauwenberge, Valerie; Sonuga-Barke, Edmund J S; Hoppenbrouwers, Karel; Van Leeuwen, Karla; Wiersema, Jan R
2017-03-01
Studies have demonstrated inefficient use of antecedent-focused emotion regulation strategies in children with ADHD attention-deficit/hyperactivity disorder (ADHD). In the current study we tested for the first time if ADHD is also associated with difficulties in response-focused strategies by measuring the ability to override action tendencies induced by emotional information. Performance data on a computer-based approach-avoidance paradigm of 28 children with ADHD and 38 typically developing children between 8 and 15 years of age were analyzed, by comparing a congruent condition in which they were instructed to approach positive and avoid negative pictures and an incongruent condition where they had to override these automatic reactions and approach negative and avoid positive pictures. Children also rated the valence and salience of the pictures. Children with ADHD and typically developing children rated the emotional valence of the pictures appropriately and similarly, while positive pictures were rated as more arousing by children with ADHD. Solid congruency effects were found indicating that the task measured response-focused emotion regulation; however groups did not differ in this respect. Our findings do not support a deficit in emotion regulation in ADHD in terms of the ability to override natural tendencies to approach positive and avoid negative pictures.
Lindquist, Kristen A.; Adebayo, Morenikeji; Barrett, Lisa Feldman
2016-01-01
Negative stimuli do not only evoke fear or disgust, but can also evoke a state of ‘morbid fascination’ which is an urge to approach and explore a negative stimulus. In the present neuroimaging study, we applied an innovative method to investigate the neural systems involved in typical and atypical conceptualizations of negative images. Participants received false feedback labeling their mental experience as fear, disgust or morbid fascination. This manipulation was successful; participants judged the false feedback correct for 70% of the trials on average. The neuroimaging results demonstrated differential activity within regions in the ‘neural reference space for discrete emotion’ depending on the type of feedback. We found robust differences in the ventrolateral prefrontal cortex, the dorsomedial prefrontal cortex and the lateral orbitofrontal cortex comparing morbid fascination to control feedback. More subtle differences in the dorsomedial prefrontal cortex and the lateral orbitofrontal cortex were also found between morbid fascination feedback and the other emotion feedback conditions. This study is the first to forward evidence about the neural representation of the experimentally unexplored state of morbid fascination. In line with a constructionist framework, our findings suggest that neural resources associated with the process of conceptualization contribute to the neural representation of this state. PMID:26180088
Investigating a memory-based account of negative priming: support for selection-feature mismatch.
MacDonald, P A; Joordens, S
2000-08-01
Using typical and modified negative priming tasks, the selection-feature mismatch account of negative priming was tested. In the modified task, participants performed selections on the basis of a semantic feature (e.g., referent size). This procedure has been shown to enhance negative priming (P. A. MacDonald, S. Joordens, & K. N. Seergobin, 1999). Across 3 experiments, negative priming occurred only when the repeated item mismatched in terms of the feature used as the basis for selections. When the repeated item was congruent on the selection feature across the prime and probe displays, positive priming arose. This pattern of results appeared in both the ignored- and the attended-repetition conditions. Negative priming does not result from previously ignoring an item. These findings strongly support the selection-feature mismatch account of negative priming and refute both the distractor inhibition and the episodic-retrieval explanations.
Marcusson-Clavertz, David; Cardeña, Etzel; Terhune, Devin Blair
2016-03-01
Mind wandering-mentation unrelated to one's current activity and surroundings-is a ubiquitous phenomenon, but seemingly competing ideas have been proposed regarding its relation to executive cognitive processes. The control-failure hypothesis postulates that executive processes prevent mind wandering, whereas the global availability hypothesis proposes that mind wandering requires executive resources, and thus an excess of such resources enables mind wandering. Here, we examined whether these hypotheses could be reconciled by considering the moderating influence of daydreaming style. We expected that executive resources would be positively related to mind wandering in those who typically experience positive mind wandering mentation, but negatively related in those who typically experience negative mentation. One hundred eleven participants reported mind wandering over 4 days using experience sampling and completed the sustained attention to response task (SART), the symmetry span task, and the Stroop task. There was a significant interaction between working memory and negative, but not positive, daydreaming style on mind wandering: Working memory related positively to mind wandering in those with a low negative style, but negatively in those with a high negative style. In contrast, poor Stroop performance significantly predicted increased mind wandering, but only in those with a low positive style. SART responses did not predict mind wandering although the relation was suggestively enhanced as the difficulty of daily life activities increased, indicating that the SART is more generalizable to high-demanding than low-demanding activities. These results suggest that the content and context of mind wandering episodes play important roles in the relation between executive processes and mind wandering. (c) 2016 APA, all rights reserved).
da Silva Marques, Rogério; Prado, Adilson Ribeiro; da Costa Antunes, Paulo Fernando; de Brito André, Paulo Sérgio; Ribeiro, Moisés R. N.; Frizera-Neto, Anselmo; Pontes, Maria José
2015-01-01
This article presents a corrosion resistant, maneuverable, and intrinsically safe fiber Bragg grating (FBG)-based temperature optical sensor. Temperature monitoring is a critical activity for the oil and gas industry. It typically involves acquiring the desired parameters in a hazardous and corrosive environment. The use of polytetrafluoroethylene (PTFE) was proposed as a means of simultaneously isolating the optical fiber from the corrosive environment and avoiding undesirable mechanical tensions on the FBGs. The presented sensor head is based on multiple FBGs inscribed in a lengthy single mode fiber. The sensor presents an average thermal sensitivity of 8.82 ± 0.09 pm/°C, resulting in a typical temperature resolution of ~0.1 °C and an average time constant value of 6.25 ± 0.08 s. Corrosion and degradation resistance were verified by infrared spectroscopy and scanning electron microscopy during 90 days exposure to high salinity crude oil samples. The developed sensor was tested in a field pilot test, mimicking the operation of an inland crude tank, demonstrating its abilities to dynamically monitor temperature profile. PMID:26690166
Marques, Rogério da Silva; Prado, Adilson Ribeiro; Antunes, Paulo Fernando da Costa; André, Paulo Sérgio de Brito; Ribeiro, Moisés R N; Frizera-Neto, Anselmo; Pontes, Maria José
2015-12-05
This article presents a corrosion resistant, maneuverable, and intrinsically safe fiber Bragg grating (FBG)-based temperature optical sensor. Temperature monitoring is a critical activity for the oil and gas industry. It typically involves acquiring the desired parameters in a hazardous and corrosive environment. The use of polytetrafluoroethylene (PTFE) was proposed as a means of simultaneously isolating the optical fiber from the corrosive environment and avoiding undesirable mechanical tensions on the FBGs. The presented sensor head is based on multiple FBGs inscribed in a lengthy single mode fiber. The sensor presents an average thermal sensitivity of 8.82 ± 0.09 pm/°C, resulting in a typical temperature resolution of ~0.1 °C and an average time constant value of 6.25 ± 0.08 s. Corrosion and degradation resistance were verified by infrared spectroscopy and scanning electron microscopy during 90 days exposure to high salinity crude oil samples. The developed sensor was tested in a field pilot test, mimicking the operation of an inland crude tank, demonstrating its abilities to dynamically monitor temperature profile.
Hadron-quark crossover and hot neutron stars at birth
NASA Astrophysics Data System (ADS)
Masuda, Kota; Hatsuda, Tetsuo; Takatsuka, Tatsuyuki
2016-02-01
We construct a new isentropic equation of state (EOS) at finite temperature, "CRover," on the basis of the hadron-quark crossover at high density. By using the new EOS, we study the structure of hot neutron stars at birth with typical lepton fraction (Y_l=0.3-0.4) and typical entropy per baryon (hat {S}=1{-}2). Due to the gradual appearance of quark degrees of freedom at high density, the temperature T and the baryon density ρ at the center of hot neutron stars with hadron-quark crossover are found to be smaller than those without the crossover by a factor of two or more. Typical energy release due to the contraction of a hot neutron star to a cold neutron star with mass M=1.4 M_{⊙} is shown to be about 0.04 M_{⊙}, with a spin-up rate of about 14%.
NASA Astrophysics Data System (ADS)
Asada, M.; Suzuki, S.; Fukuma, T.
2017-11-01
The temperature dependences of output power, oscillation frequency, and current-voltage curve are measured for resonant-tunneling-diode terahertz (THz) oscillators. The output power largely changes with temperature owing to the change in Ohmic loss. In contrast to the output power, the oscillation frequency and current-voltage curve are almost insensitive to temperature. The measured temperature dependence of output power is compared with the theoretical calculation including the negative differential conductance (NDC) as a fitting parameter assumed to be independent of temperature. Very good agreement was obtained between the measurement and calculation, and the NDC in the THz frequency region is estimated. The results show that the absolute values of NDC in the THz region significantly decrease relative to that at DC, and increases with increasing frequency in the measured frequency range.
K.R. Matthews; N.H. Berg
1997-01-01
Habitat use by rainbow trout Oncorhynchus mykiss is described for a southern California stream where the summer water temperatures typically exceed the lethal limits for trout (>25) C). During August 1994, water temperature, dissolved oxygen (DO), and trout distribution were monitored in two adjacent pools in Sespe Creek, Ventura County, where summer water...
Damiano, Cara R; Cockrell, Dillon C; Dunlap, Kaitlyn; Hanna, Eleanor K; Miller, Stephanie; Bizzell, Joshua; Kovac, Megan; Turner-Brown, Lauren; Sideris, John; Kinard, Jessica; Dichter, Gabriel S
2015-01-01
Previous research has found accumulating evidence for atypical reward processing in autism spectrum disorders (ASD), particularly in the context of social rewards. Yet, this line of research has focused largely on positive social reinforcement, while little is known about the processing of negative reinforcement in individuals with ASD. The present study examined neural responses to social negative reinforcement (a face displaying negative affect) and non-social negative reinforcement (monetary loss) in children with ASD relative to typically developing children, using functional magnetic resonance imaging (fMRI). We found that children with ASD demonstrated hypoactivation of the right caudate nucleus while anticipating non-social negative reinforcement and hypoactivation of a network of frontostriatal regions (including the nucleus accumbens, caudate nucleus, and putamen) while anticipating social negative reinforcement. In addition, activation of the right caudate nucleus during non-social negative reinforcement was associated with individual differences in social motivation. These results suggest that atypical responding to negative reinforcement in children with ASD may contribute to social motivational deficits in this population.
Chen, Jun; Fan, Longlong; Ren, Yang; Pan, Zhao; Deng, Jinxia; Yu, Ranbo; Xing, Xianran
2013-03-15
Tetragonal PbTiO(3)-BiFeO(3) exhibits a strong negative thermal expansion in the PbTiO(3)-based ferroelectrics that consist of one branch in the family of negative thermal expansion materials. Its strong negative thermal expansion is much weakened, and then unusually transforms into positive thermal expansion as the particle size is slightly reduced. This transformation is a new phenomenon in the negative termal expansion materials. The detailed structure, temperature dependence of unit cell volume, and lattice dynamics of PbTiO(3)-BiFeO(3) samples were studied by means of high-energy synchrotron powder diffraction and Raman spectroscopy. Such unusual transformation from strong negative to positive thermal expansion is highly associated with ferroelectricity weakening. An interesting zero thermal expansion is achieved in a wide temperature range (30-500 °C) by adjusting particle size due to the negative-to-positive transformation character. The present study provides a useful method to control the negative thermal expansion not only for ferroelectrics but also for those functional materials such as magnetics and superconductors.
NASA Technical Reports Server (NTRS)
1983-01-01
The possibility of standard low temperature detector(s) for use in upcoming cryogenically cooled satellite and Space Shuttle payloads were investigated. These payloads operate from .3 kelvin to 300 kelvin. Standard detectors were selected and matching signal conditioning equipment compatible with the selected detector, typical spacecraft voltages, typical spacecraft telemetry systems, and the radiation encountered by a typical Earth orbiting spacecraft. Work statements to better define and advance detector performance were presented.
Duncan, John M A; Dash, Jadunandan; Atkinson, Peter M
2015-04-01
Remote sensing-derived wheat crop yield-climate models were developed to highlight the impact of temperature variation during thermo-sensitive periods (anthesis and grain-filling; TSP) of wheat crop development. Specific questions addressed are: can the impact of temperature variation occurring during the TSP on wheat crop yield be detected using remote sensing data and what is the impact? Do crop critical temperature thresholds during TSP exist in real world cropping landscapes? These questions are tested in one of the world's major wheat breadbaskets of Punjab and Haryana, north-west India. Warming average minimum temperatures during the TSP had a greater negative impact on wheat crop yield than warming maximum temperatures. Warming minimum and maximum temperatures during the TSP explain a greater amount of variation in wheat crop yield than average growing season temperature. In complex real world cereal croplands there was a variable yield response to critical temperature threshold exceedance, specifically a more pronounced negative impact on wheat yield with increased warming events above 35 °C. The negative impact of warming increases with a later start-of-season suggesting earlier sowing can reduce wheat crop exposure harmful temperatures. However, even earlier sown wheat experienced temperature-induced yield losses, which, when viewed in the context of projected warming up to 2100 indicates adaptive responses should focus on increasing wheat tolerance to heat. This study shows it is possible to capture the impacts of temperature variation during the TSP on wheat crop yield in real world cropping landscapes using remote sensing data; this has important implications for monitoring the impact of climate change, variation and heat extremes on wheat croplands. © 2014 John Wiley & Sons Ltd.
Drappier, Julie; Thibon, Cécile; Rabot, Amélie; Geny-Denis, Laurence
2017-10-24
Weather conditions throughout the year have a greater influence than other factors (such as soil and cultivars) on grapevine development and berry composition. Temperature affects gene expression and enzymatic activity of primary and secondary metabolism which determine grape ripening and wine characteristics. In the context of the climate change, temperatures will probably rise between 0.3°C and 1.7°C over the next 20 years. They are already rising and the physiology of grapevines is already changing. These modifications exert a profound shift in primary (sugar and organic acid balance) and secondary (phenolic and aromatic compounds) berry metabolisms and the resulting composition of wine. For example, some Bordeaux wines have a tendency toward reduced freshness and a modification of their ruby color. In this context it is necessary to understand the impact of higher temperatures on grape development, harvest procedures, and wine composition in order to preserve the typicity of the wines and to adapt winemaking processes.
Constraints on global temperature target overshoot
NASA Astrophysics Data System (ADS)
MacMartin, D. G.; Ricke, K.; Millar, R.
2016-12-01
The climate science and policy communities are beginning to assess the feasibility and potential benefits of limiting global warming to 1.5°C or 2°C. Understanding the dependence of the magnitude and duration of possible temporary exceedance (i.e., "overshoot") of these targets on sustainable energy decarbonization futures and carbon dioxide (CO2) removal rates will be an important contribution of the scientific community to this policy discussion. Drawing upon results from the mitigation literature and the IPCC Working Group 3 (WG3) scenario database, we examine the global mean temperature implications of differing independent pathways for the decarbonization of global energy supply and the implementation of negative emissions technologies. We find that within the range of decarbonization and negative emissions futures considered by WG3, the most ambitious rates of both decarbonization and deployment of negative emissions technologies are required to avoid overshoot of 1.5°C. The magnitude of temperature overshoot is more sensitive to the rate of decarbonization, but limiting the duration of overshoot to less than two centuries will require ambitious deployment of both decarbonization and negative emissions technology. The dependencies of temperature overshoots properties upon currently untested negative emissions technologies suggests that it will be important to assess how climate impacts depend on the magnitude and duration of overshoot, not just long term residual warming. As a new round of research proceeds with a 1.5°C threshold in mind, it will be important to understand the drivers behind various global temperature linked impacts and how these are influenced by both the duration and magnitude of a temporary overshoot of the target. This understanding will allow policy makers to better link climate policy goals to specific technological needs. Figure: Magnitude and duration of 1.5°C temperature target overshoot for "likely" range of climate response. Contours show the maximum magnitude (in °C) and duration (in years) of the period of overshoot beyond 1.5°C as a function of decarbonization and negative emissions implementation. White areas show scenario spaces with no overshoot, and stippled areas scenario spaces where the quantity is still undefined in 2300.
Gary, S. Peter
2015-04-06
Plasma turbulence consists of an ensemble of enhanced, broadband electromagnetic fluctuations, typically driven by multi-wave interactions which transfer energy in wavevector space via non- linear cascade processes. In addition, temperature anisotropy instabilities in collisionless plasmas are driven by quasi-linear wave–particle interactions which transfer particle kinetic energy to field fluctuation energy; the resulting enhanced fluctuations are typically narrowband in wavevector magnitude and direction. Whatever their sources, short-wavelength fluctuations are those at which charged particle kinetic, that is, velocity-space, properties are important; these are generally wavelengths of the order of or shorter than the ion inertial length or the thermal ion gyroradius.more » The purpose of this review is to summarize and interpret recent computational results concerning short-wavelength plasma turbulence, short-wavelength temperature anisotropy instabilities and relationships between the two phenomena.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dong Sun Lee; Yu Ryang Pyun
A food drying process in a tunnel dryer was modeled from Keey's drying model and experimental drying curve, and optimized in operating conditions consisting of inlet air temperature, air recycle ratio and air flow rate. Radish was chosen as a typical food material to be dried, because it has the typical drying characteristics of food and quality indexes of ascorbic acid destruction and browning during drying. Optimization results of cocurrent and counter current tunnel drying showed higher inlet air temperature, lower recycle ratio and higher air flow rate with shorter total drying time. Compared with cocurrent operation counter current dryingmore » used lower air temperature, lower recycle ratio and lower air flow rate, and appeared to be more efficient in energy usage. Most of consumed energy was shown to be used for sir heating and then escaped from the dryer in the form of exhaust air.« less
Intermetallic layers in temperature controlled Friction Stir Welding of dissimilar Al-Cu-joints
NASA Astrophysics Data System (ADS)
Marstatt, R.; Krutzlinger, M.; Luderschmid, J.; Constanzi, G.; Mueller, J. F. J.; Haider, F.; Zaeh, M. F.
2018-06-01
Friction Stir Welding (FSW) can be performed to join dissimilar metal combinations like aluminium and copper, which is of high interest in modern production of electrical applications. The amount of intermetallic phases in the weld seam is significantly reduced compared to traditional fusion welding technologies. Because the solidus temperature is typically not reached during FSW, the growth of intermetallic phases is impeded and the intermetallic layer thicknesses typically remains on the scale of a few hundred nanometres. These layers provide a substance-to-substance bond, which is the main joining mechanism. Latest research confirms that the layer formation is most likely driven by the heat input during processing. Hence, the welding temperature is the key to achieve high quality joints. In this study, aluminium and copper sheets were welded in lap joint configuration using temperature-controlled FSW. An advanced in-tool measurement set-up was used to determine precise temperature data. Scanning electron microscopy (SEM) was used to analyse metallurgical aspects (e.g. structure and composition of the intermetallic phases) of the joints. The results show a correlation between the welding temperature and the thickness of the intermetallic layer and its structure. The temperature control significantly improved the correlation compared to previous studies. This leads to an enhanced understanding of the dominating joining mechanisms.
Wu, Chen-Fa; Lai, Chun-Hsien; Chu, Hone-Jay; Lin, Wen-Huang
2011-01-01
Negative air ions (NAI) produce biochemical reactions that increase the levels of the mood chemical serotonin in the environment. Moreover, they benefit both the psychological well being and the human body’s physiological condition. The aim of this research was to estimate and measure the spatial distributions of negative and positive air ions in a residential garden in central Taiwan. Negative and positive air ions were measured at thirty monitoring locations in the study garden from July 2009 to June 2010. Moreover, Kriging was applied to estimate the spatial distribution of negative and positive air ions, as well as the air ion index in the study area. The measurement results showed that the numbers of NAI and PAI differed greatly during the four seasons, the highest and the lowest negative and positive air ion concentrations were found in the summer and winter, respectively. Moreover, temperature was positively affected negative air ions concentration. No matter what temperature is, the ranges of variogram in NAI/PAI were similar during four seasons. It indicated that spatial patterns of NAI/PAI were independent of the seasons and depended on garden elements and configuration, thus the NAP/PAI was a good estimate of the air quality regarding air ions. Kriging maps depicted that the highest negative and positive air ion concentration was next to the waterfall, whereas the lowest air ions areas were next to the exits of the garden. The results reveal that waterscapes are a source of negative and positive air ions, and that plants and green space are a minor source of negative air ions in the study garden. Moreover, temperature and humidity are positively and negatively affected negative air ions concentration, respectively. The proposed monitoring and mapping approach provides a way to effectively assess the patterns of negative and positive air ions in future landscape design projects. PMID:21776231
Wu, Chen-Fa; Lai, Chun-Hsien; Chu, Hone-Jay; Lin, Wen-Huang
2011-06-01
Negative air ions (NAI) produce biochemical reactions that increase the levels of the mood chemical serotonin in the environment. Moreover, they benefit both the psychological well being and the human body's physiological condition. The aim of this research was to estimate and measure the spatial distributions of negative and positive air ions in a residential garden in central Taiwan. Negative and positive air ions were measured at thirty monitoring locations in the study garden from July 2009 to June 2010. Moreover, Kriging was applied to estimate the spatial distribution of negative and positive air ions, as well as the air ion index in the study area. The measurement results showed that the numbers of NAI and PAI differed greatly during the four seasons, the highest and the lowest negative and positive air ion concentrations were found in the summer and winter, respectively. Moreover, temperature was positively affected negative air ions concentration. No matter what temperature is, the ranges of variogram in NAI/PAI were similar during four seasons. It indicated that spatial patterns of NAI/PAI were independent of the seasons and depended on garden elements and configuration, thus the NAP/PAI was a good estimate of the air quality regarding air ions. Kriging maps depicted that the highest negative and positive air ion concentration was next to the waterfall, whereas the lowest air ions areas were next to the exits of the garden. The results reveal that waterscapes are a source of negative and positive air ions, and that plants and green space are a minor source of negative air ions in the study garden. Moreover, temperature and humidity are positively and negatively affected negative air ions concentration, respectively. The proposed monitoring and mapping approach provides a way to effectively assess the patterns of negative and positive air ions in future landscape design projects.
Thermal Remote Sensing with Uav-Based Workflows
NASA Astrophysics Data System (ADS)
Boesch, R.
2017-08-01
Climate change will have a significant influence on vegetation health and growth. Predictions of higher mean summer temperatures and prolonged summer draughts may pose a threat to agriculture areas and forest canopies. Rising canopy temperatures can be an indicator of plant stress because of the closure of stomata and a decrease in the transpiration rate. Thermal cameras are available for decades, but still often used for single image analysis, only in oblique view manner or with visual evaluations of video sequences. Therefore remote sensing using a thermal camera can be an important data source to understand transpiration processes. Photogrammetric workflows allow to process thermal images similar to RGB data. But low spatial resolution of thermal cameras, significant optical distortion and typically low contrast require an adapted workflow. Temperature distribution in forest canopies is typically completely unknown and less distinct than for urban or industrial areas, where metal constructions and surfaces yield high contrast and sharp edge information. The aim of this paper is to investigate the influence of interior camera orientation, tie point matching and ground control points on the resulting accuracy of bundle adjustment and dense cloud generation with a typically used photogrammetric workflow for UAVbased thermal imagery in natural environments.
The Fifth ISM Phase as Revealed by Faraday Rotation
NASA Astrophysics Data System (ADS)
Heiles, Carl E.
2011-01-01
In the diffuse ISM, phases are classically categorized as largely ionized or neutral. The neutral phases come in two flavors, the Cold and Warm Neutral Media (the CNM and WNM), which have typical temperatures 50 and 5000 K. The ionized phases also come in two flavors, again classified by temperature: the Warm and Hot Ionized Media (the WIM and the HIM), which have typical temperatures 8000 and 106 K. There lurks a fifth phase, the Warm Partially Ionized Medium (WPIM). This is not widely recognized, mainly because it's presence is hard to establish observationally. It is well represented by the Local Interstellar Cloud (LIC), whose properties are very well specified in a series of papers by Redfield and Linsky. This fifth phase has a relatively high electron column but low emission measure, so it is not easily seen in H alpha. However, if the region is permeated by a typical magnetic field ( 6 microGauss), then it can produce a recognizable signature in Faraday rotation. We show a few examples and discuss the potential for large-scale mapping of this fifth ISM phase. Support for this work was provided in part by NSF grant AST-0908572.
NASA Astrophysics Data System (ADS)
Jeong, Yerim; Ham, Yoo-Geun
2016-04-01
The convection activity and variability are active in Tropic-subtropic area because of equatorial warm pool. The variability's impacts on not only subtropic also mid-latitude. The impact effects on through teleconnection between equatorial and mid-latitude like Pacific-Japan(PJ) pattern. In this paper, two groups are divided based on PJ pattern and JJA Korean precipitation for the analysis that Korean precipitation is affected by PJ pattern. 'PJ+NegKorpr' is indicated when PJ pattern occur that JJA(Jun-July_August) Korean precipitation has negative value. In this case, positive precipitation in subtropic is expanded to central Pacific. And the positive precipitation's pattern is increasing toward north. Because, the subtropical south-eastly wind is forming subtropical precipitation's pattern through cold Kelvin wave is expanding eastward. Cold Kelvin wave is because of Indian negative SST. Also, Korea has negative moisture advection and north-eastly is the role that is moving high-latitude's cold and dry air to Korea. So strong high pressure is formed in Korea. The strong high pressure involves that short wave energy is increasing on surface. As a result, The surface temperature is increased on Korea. But the other case, that 'PJ_Only' case, is indicated when PJ pattern occur and JJA Korean precipitation doesn't have negative value over significant level. The subtropic precipitation's pattern in 'PJ_Only' shows precipitation is confined in western Pacific and expended northward to 25°N near 130°E. And tail of precipitation is toward equatorial(south-eastward). Also, Korean a little positive moisture advection and south-westly is the role that is moving low-latitude's warm and wet air to Korea. So weak high pressure is formed in Korea. The weak high pressure influence amount of short wave energy, so Korean surface temperature is lower. In addition, the case of 'PJ_Only' and Pacific Decal Oscillation(PDO) are occur at the same time has negative impact in Korea temperature through subtropical cyclone and positive PDO. The positive PDO is the role that negative temperature in Korea. So, Korean temperature confined lower by subtropical cyclone and positive PDO. In summary, the relation between PJ pattern and JJA Korean temperature and precipitation depends on subtropical precipitation's pattern. And The subtropical precipitation is effected by Indian SST and PDO's teleconnection.
NASA Technical Reports Server (NTRS)
Petty, G. W.
1994-01-01
Microwave rain rate retrieval algorithms have most often been formulated in terms of the raw brightness temperatures observed by one or more channels of a satellite radiometer. Taken individually, single-channel brightness temperatures generally represent a near-arbitrary combination of positive contributions due to liquid water emission and negative contributions due to scattering by ice and/or visibility of the radiometrically cold ocean surface. Unfortunately, for a given rain rate, emission by liquid water below the freezing level and scattering by ice particles above the freezing level are rather loosely coupled in both a physical and statistical sense. Furthermore, microwave brightness temperatures may vary significantly (approx. 30-70 K) in response to geophysical parameters other than liquid water and precipitation. Because of these complications, physical algorithms which attempt to directly invert observed brightness temperatures have typically relied on the iterative adjustment of detailed micro-physical profiles or cloud models, guided by explicit forward microwave radiative transfer calculations. In support of an effort to develop a significantly simpler and more efficient inversion-type rain rate algorithm, the physical information content of two linear transformations of single-frequency, dual-polarization brightness temperatures is studied: the normalized polarization difference P of Petty and Katsaros (1990, 1992), which is intended as a measure of footprint-averaged rain cloud transmittance for a given frequency; and a scattering index S (similar to the polarization corrected temperature of Spencer et al.,1989) which is sensitive almost exclusively to ice. A reverse Monte Carlo radiative transfer model is used to elucidate the qualitative response of these physically distinct single-frequency indices to idealized 3-dimensional rain clouds and to demonstrate their advantages over raw brightness temperatures both as stand-alone indices of precipitation activity and as primary variables in physical, multichannel rain rate retrieval schemes. As a byproduct of the present analysis, it is shown that conventional plane-parallel analyses of the well-known foot-print-filling problem for emission-based algorithms may in some cases give seriously misleading results.
Cooling of Gas Turbines. 2; Effectiveness of Rim Cooling of Blades
NASA Technical Reports Server (NTRS)
Wolfenstein, Lincoln; Meyer, Gene L.; McCarthy, John S.
1947-01-01
An analysis is presented of rim cooling of gas-turbine blades; that is, reducing the temperature at the base of the blade (wheel rim), which cools the blade by conduction alone. Formulas for temperature and stress distributions along the blade are derived and, by the use of experimental stress-rupture data for a typical blade alloy, a relation is established between blade life (time for rupture), operating speed, and amount of rim cooling for several gas temperatures. The effect of blade parameter combining the effects of blade dimensions, blade thermal conductivity, and heat-transfer coefficient is determined. The effect of radiation on the results is approximated. The gas temperatures ranged from 1300F to 1900F and the rim temperature, from 0F to 1000F below the gas temperature. This report is concerned only with blades of uniform cross section, but the conclusions drawn are generally applicable to most modern turbine blades. For a typical rim-cooled blade, gas temperature increases are limited to about 200F for 500F of cooling of the blade base below gas temperature, and additional cooling brings progressively smaller increases. In order to obtain large increases in thermal conductivity or very large decreases in heat-transfer coefficient or blade length or necessary. The increases in gas temperature allowable with rim cooling are particularly small for turbines of large dimensions and high specific mass flows. For a given effective gas temperature, substantial increases in blade life, however, are possible with relatively small amounts of rim cooling.
Mechanisms Underlying the Influence of Disruptive Child Behavior on Interparental Communication
Wymbs, Brian T.
2012-01-01
Prospective and experimental manipulations of child behavior have demonstrated that disruptive child behavior causes interparental discord. However, research has yet to test for mechanisms underlying this causal pathway. There is reason to suspect parent affect and parenting behavior explain child effects on interparental relations. To investigate this hypothesis, parent couples of 9- to 12-year-old boys and girls with attention-deficit/hyperactivity disorder (ADHD; n=51) and without ADHD (n=39) were randomly assigned to interact with a confederate child exhibiting “disruptive” or “typical” behavior. Parents rated their own affect as well as the quality of their partner's parenting and communication immediately following the interaction. Observers also coded the quality of parenting and communication behaviors parents exhibited during the interaction. Parents who interacted with disruptive confederates reported lower positive affect and higher negative affect than those who interacted with typical confederates. Parents were also noted by their partners and observers to parent disruptive confederates more negatively than typical confederates. Multilevel mediation models with observational coding and partner ratings both found that negative parenting explained the causal pathway between disruptive child behavior and negative communication. Exploratory analyses revealed that the strength of this pathway did not differ between parents of children with and without ADHD. Parent affect was not found to explain child effects on interparental communication. Though methodological issues limit the generalizability of these findings, results indicate that negative parenting may be one mechanism through which disruptive children cause interparental discord. PMID:21875193
ERIC Educational Resources Information Center
Mawire, A.
2012-01-01
A simple low-cost experiment for undergraduate students to determine the characteristics of a negative temperature coefficient of resistance thermistor is presented. The experiment measures the resistance-temperature and voltage-temperature characteristics of the thermistor. Results of the resistance-temperature experiment are used to determine…
Self-ignition of S.I. engine model fuels: A shock tube investigation at high pressure
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fieweger, K.; Blumenthal, R.; Adomeit, G.
1997-06-01
The self-ignition of several spark-ignition (SI) engine fuels (iso-octane, methanol, methyl tert-butyl ether and three different mixtures of iso-octane and n-heptane), mixed with air, was investigated experimentally under relevant engine conditions by the shock tube technique. Typical modes of the self-ignition process were registered cinematographically. For temperatures relevant to piston engine combustion, the self-ignition process always starts as an inhomogeneous, deflagrative mild ignition. This instant is defined by the ignition delay time, {tau}{sub defl}. The deflagration process in most cases is followed by a secondary explosion (DDT). This transition defines a second ignition delay time, {tau}{sub DDT}, which is amore » suitable approximation for the chemical ignition delay time, if the change of the thermodynamic conditions of the unburned test gas due to deflagration is taken into account. For iso-octane at p = 40 bar, a NTC (negative temperature coefficient), behavior connected with a two step (cool flame) self-ignition at low temperatures was observed. This process was very pronounced for rich and less pronounced for stoichiometric mixtures. The results of the {tau}{sub DDT} delays of the stoichiometric mixtures were shortened by the primary deflagration process in the temperature range between 800 and 1,000 K. Various mixtures of iso-octane and n-heptane were investigated. The results show a strong influence of the n-heptane fraction in the mixture, both on the ignition delay time and on the mode of self-ignition. The self-ignition of methanol and MTBE (methyl tert-butyl ether) is characterized by a very pronounced initial deflagration. For temperatures below 900 K (methanol: 800 K), no secondary explosion occurs. Taking into account the pressure increase due to deflagration, the measured delays {tau}{sub DDT} of the secondary explosion are shortened by up to one order of magnitude.« less
Brownscombe, Jacob W; Marchand, Kelsey; Tisshaw, Kathryn; Fewster, Victoria; Groff, Olivia; Pichette, Melissa; Seed, Marian; Gutowsky, Lee F G; Wilson, Alexander D M; Cooke, Steven J
2014-01-01
Release of fish captured by recreational anglers is a common practice due to angler conservation ethics or compliance with fisheries regulations. As such, there is a need to understand the factors that influence mortality and sub-lethal impairments to ensure that catch-and-release angling is a sustainable practice. Longer angling times generally contribute to increased stress and mortality in fish such that reducing these times putatively reduces stress and improves survival. However, the relative importance of fight intensity (rather than simply duration) on fish condition is poorly understood. The objective of this research was to examine the effects of fight intensity on physiological stress and reflex impairment of largemouth bass (Micropterus salmoides). The largemouth bass were angled using conventional recreational fishing gear in May (water temperature ∼12°C) and June (∼22°C) of 2014 in Lake Opinicon, Ontario, Canada. Fight intensity was quantified using tri-axial accelerometer loggers mounted on the tips of fishing rods. Upon capture, reflex impairment measures were assessed, and fish were held for 1 h prior to blood sampling for measurement of physiological stress (blood glucose and lactate concentrations and pH). Physiological stress values showed a negative trend with fight duration and total fight intensity, but a positive trend with average fight intensity. Water temperature emerged as the most important predictor of the stress response in largemouth bass, while fight duration and intensity were not strong predictors. Reflex impairment was minimal, but higher reflex impairment scores were associated with elevated blood glucose. Overall, the findings of this study suggest that angling for largemouth bass at colder temperatures (<15°C) causes greater physiological stress than at warmer temperatures (>20°C). Based on our findings, we conclude that fight intensity is likely not to be a major driver of physiological stress in this species using typical largemouth bass angling gear, owing to the relatively short fight times (i.e. <2 min).
Kinetic bottlenecks to chemical exchange rates for deep-sea animals - Part 1: Oxygen
NASA Astrophysics Data System (ADS)
Hofmann, A. F.; Peltzer, E. T.; Brewer, P. G.
2012-10-01
Ocean warming will reduce dissolved oxygen concentrations which can pose challenges to marine life. Oxygen limits are traditionally reported simply as a static concentration thresholds with no temperature, pressure or flow rate dependency. Here we treat the oceanic oxygen supply potential for heterotrophic consumption as a dynamic molecular exchange problem analogous to familiar gas exchange processes at the sea surface. A combination of the purely physico-chemical oceanic properties temperature, hydrostatic pressure, and oxygen concentration defines the ability of the ocean to supply oxygen to any given animal. This general oceanic oxygen supply potential is modulated by animal specific properties such as the diffusive boundary layer thickness to define and limit maximal oxygen supply rates. Here we combine all these properties into formal, mechanistic equations defining novel oceanic properties that subsume various relevant classical oceanographic parameters to better visualize, map, comprehend, and predict the impact of ocean deoxygenation on aerobic life. By explicitly including temperature and hydrostatic pressure into our quantities, various ocean regions ranging from the cold deep-sea to warm, coastal seas can be compared. We define purely physico-chemical quantities to describe the oceanic oxygen supply potential, but also quantities that contain organism-specific properties which in a most generalized way describe general concepts and dependencies. We apply these novel quantities to example oceanic profiles around the world and find that temperature and pressure dependencies of diffusion and partial pressure create zones of greatest physical constriction on oxygen supply typically at around 1000 m depth, which coincides with oxygen concentration minimum zones. In these zones, which comprise the bulk of the world ocean, ocean warming and deoxygenation have a clear negative effect for aerobic life. In some shallow and warm waters the enhanced diffusion and higher partial pressure due to higher temperatures might slightly overcompensate for oxygen concentration decreases due to decreases in solubility.
Final cook temperature monitoring
NASA Astrophysics Data System (ADS)
Stewart, John; Matthews, Michael; Glasco, Marc
2006-04-01
Fully cooked, ready-to-eat products represent one of the fastest growing markets in the meat and poultry industries. Modern meat cooking facilities typically cook chicken strips and nuggets at rates of 6000 lbs per hour, and it is a critical food safety issue to ensure the products on these lines are indeed fully cooked. Common practice now employs oven technicians to constantly measure final cook temperature with insertion-type thermocouple probes. Prior research has demonstrated that thermal imagery of chicken breasts and other products can be used to predict core temperature of products leaving an oven. In practice, implementation of a system to monitor core temperature can be difficult for several reasons. First, a wide variety of products are typically produced on the same production line and the system must adapt to all products. Second, the products can be often hard to find because they often leave the process in random order and may be touching or even overlapping. Another issue is finite measurement time which is typically only a few seconds. Finally, the system is subjected to a rigorous sanitation cycle and must hold up under wash down conditions. To address these problems, a calibrated 320x240 micro-bolometer camera was used to monitor the temperature of formed, breaded poultry products on a fully cooked production line for a period of one year. The study addressed the installation and operation of the system as well as the development of algorithms used to identify the product on a cluttered conveyor belt. It also compared the oven tech insertion probe measurements to the non-contact monitoring system performance.
NASA Astrophysics Data System (ADS)
Kamikawa, Yukiko; Nishinaga, Jiro; Ishizuka, Shogo; Tayagaki, Takeshi; Guthrey, Harvey; Shibata, Hajime; Matsubara, Koji; Niki, Shigeru
2018-03-01
The precise control of alkali-metal concentrations in Cu(In,Ga)Se2 (CIGS) solar cells via post deposition treatment (PDT) has recently attracted attention. When PDT is performed at an elevated temperature, an accompanying annealing effect is expected. Here, we investigate how thermal annealing affects the redistribution of alkali metals in CIGS solar cells on glass substrates and the properties of the solar cells. In addition, we investigate the origin of non-homogeneous alkali-metal depth profiles that are typical of CIGS grown using a three-stage process. In particular, we use secondary-ion mass spectrometry measurements of the ion concentration as a function of distance from the CIGS surface to investigate the impact of thermal annealing on the distribution of alkali metals (Na, Ka, and Rb) and constituent elements (Ga and In) in the CIGS absorbers. We find that the depth profiles of the alkali metals strongly reflect the density of sites that tend to accommodate alkali metals, i.e., vacancies. Annealing at elevated temperature caused a redistribution of the alkali metals. The thermal-diffusion kinetics of alkali metals depends strongly on the species involved. We introduced low flux potassium fluoride (KF) to study a side effect of KF-PDT, i.e., Na removal from CIGS, separately from its predominant effects such as surface modification. When sufficient amounts of Na are supplied from the soda lime glass via annealing at an elevated temperature, the negative effect was not apparent. Conversely, when the Na supply was not sufficient, it caused a deterioration of the photovoltaic properties.
NASA Astrophysics Data System (ADS)
Ding, W.; Chen, Y.
2016-12-01
Eighteen calcium carbonate veins within the igneous basement recovered close to the fossil spreading ridge of the South China Sea during the Integrated Ocean Drilling Program (IODP) Expedition 349 were investigated. These carbonates are of primarily either calcite or aragonite, or some mixed aragonite and calcite, with rarely ankerite. The chemical (Ca, Mg, Sr, Mn, Fe) contents and isotopic (87Sr/86Sr, δ18O, δ18C) compositions of the veins were determined to study the evolving chemistry of hydrothermal fluids and to constrain the timing of vein formation. The carbonate δ18O values range from -5.0 to -0.2 ‰ PDB, indicating these are typical low temperature basement carbonates. Chemical analyses show distinct Mg/Ca and Sr/Ca ratios for aragonite and calcite. 87Sr/86Sr ratios show negative correlations with both the depth and δ18O-calculated formation temperature, and are independent of mineralogy with both aragonite and calcite, indicating more geochemically evolved carbonated have precipitated from warmer fluids. The hightest 87Sr/86Sr ratios of vein samples at each drill site are believed to reflect the contemporaneous seawater compositions when carbonates precipitated. No unambiguous precipitation ages can be constrained by correlating 87Sr/86Sr ratios with the global seawater Sr isotope evolution. However, based on correlations of vein chemical composition with depth and formation temperature, as well as the Neogene post-spreading magmatism, we hypothesize 10 Ma is a particular time favoring the formation of carbonate veins in our study area.
Defect-driven flexochemical coupling in thin ferroelectric films
NASA Astrophysics Data System (ADS)
Eliseev, Eugene A.; Vorotiahin, Ivan S.; Fomichov, Yevhen M.; Glinchuk, Maya D.; Kalinin, Sergei V.; Genenko, Yuri A.; Morozovska, Anna N.
2018-01-01
Using the Landau-Ginzburg-Devonshire theory, we considered the impact of the flexoelectrochemical coupling on the size effects in polar properties and phase transitions of thin ferroelectric films with a layer of elastic defects. We investigated a typical case, when defects fill a thin layer below the top film surface with a constant concentration creating an additional gradient of elastic fields. The defective surface of the film is not covered with an electrode, but instead with an ultrathin layer of ambient screening charges, characterized by a surface screening length. Obtained results revealed an unexpectedly strong effect of the joint action of Vegard stresses and flexoelectric effect (shortly flexochemical coupling) on the ferroelectric transition temperature, distribution of the spontaneous polarization and elastic fields, domain wall structure and period in thin PbTi O3 films containing a layer of elastic defects. A nontrivial result is the persistence of ferroelectricity at film thicknesses below 4 nm, temperatures lower than 350 K, and relatively high surface screening length (˜0.1 nm ) . The origin of this phenomenon is the flexoelectric coupling leading to the rebuilding of the domain structure in the film (namely the cross-over from c-domain stripes to a-type closure domains) when its thickness decreases below 4 nm. The ferroelectricity persistence is facilitated by negative Vegard effect. For positive Vegard effect, thicker films exhibit the appearance of pronounced maxima on the thickness dependence of the transition temperature, whose position and height can be controlled by the defect type and concentration. The revealed features may have important implications for miniaturization of ferroelectric-based devices.
Ross, Claire L; Schoepf, Verena; DeCarlo, Thomas M; McCulloch, Malcolm T
2018-05-30
High-latitude coral reefs provide natural laboratories for investigating the mechanisms and limits of coral calcification. While the calcification processes of tropical corals have been studied intensively, little is known about how their temperate counterparts grow under much lower temperature and light conditions. Here, we report the results of a long-term (2-year) study of seasonal changes in calcification rates, photo-physiology and calcifying fluid (cf) chemistry (using boron isotope systematics and Raman spectroscopy) for the coral Turbinaria reniformis growing near its latitudinal limits (34.5° S) along the southern coast of Western Australia. In contrast with tropical corals, calcification rates were found to be threefold higher during winter (16 to 17° C) compared with summer (approx. 21° C), and negatively correlated with light, but lacking any correlation with temperature. These unexpected findings are attributed to a combination of higher chlorophyll a, and hence increased heterotrophy during winter compared with summer, together with the corals' ability to seasonally modulate pH cf , with carbonate ion concentration [Formula: see text] being the main controller of calcification rates. Conversely, calcium ion concentration [Ca 2+ ] cf declined with increasing calcification rates, resulting in aragonite saturation states Ω cf that were stable yet elevated fourfold above seawater values. Our results show that corals growing near their latitudinal limits exert strong physiological control over their cf in order to maintain year-round calcification rates that are insensitive to the unfavourable temperature regimes typical of high-latitude reefs. © 2018 The Author(s).
Du, Baoming; Liu, Chunjiang; Kang, Hongzhang; Zhu, Penghua; Yin, Shan; Shen, Guangrong; Hou, Jingli; Ilvesniemi, Hannu
2014-01-01
Decreasing temperature and increasing precipitation along altitude gradients are typical mountain climate in subtropical China. In such a climate regime, identifying the patterns of the C stable isotope composition (δ13C) in plants and soils and their relations to the context of climate change is essential. In this study, the patterns of δ13C variation were investigated for tree leaves, litters, and soils in the natural secondary forests at four altitudes (219, 405, 780, and 1268 m a.s.l.) in Lushan Mountain, central subtropical China. For the dominant trees, both leaf and leaf-litter δ13C decreased as altitude increased from low to high altitude, whereas surface soil δ13C increased. The lower leaf δ13C at high altitudes was associated with the high moisture-related discrimination, while the high soil δ13C is attributed to the low temperature-induced decay. At each altitude, soil δ13C became enriched with soil depth. Soil δ13C increased with soil C concentrations and altitude, but decreased with soil depth. A negative relationship was also found between O-alkyl C and δ13C in litter and soil, whereas a positive relationship was observed between aromatic C and δ13C. Lower temperature and higher moisture at high altitudes are the predominant control factors of δ13C variation in plants and soils. These results help understand C dynamics in the context of global warming. PMID:24466099
Cool-Flame Burning and Oscillations of Envelope Diffusion Flames in Microgravity
NASA Astrophysics Data System (ADS)
Takahashi, Fumiaki; Katta, Viswanath R.; Hicks, Michael C.
2018-05-01
The two-stage combustion, local extinction, and flame-edge oscillations have been observed in single-droplet combustion tests conducted on the International Space Station. To understand such dynamic behavior of initially enveloped diffusion flames in microgravity, two-dimensional (axisymmetric) computation is performed for a gaseous n-heptane flame using a time-dependent code with a detailed reaction mechanism (127 species and 1130 reactions), diffusive transport, and a simple radiation model (for CO2, H2O, CO, CH4, and soot). The calculated combustion characteristics vary profoundly with a slight movement of air surrounding a fuel source. In a near-quiescent environment (≤ 2 mm/s), with a sufficiently large fuel injection velocity (1 cm/s), extinction of a growing spherical diffusion flame due to radiative heat losses is predicted at the flame temperature at ≈ 1200 K. The radiative extinction is typically followed by a transition to the "cool flame" burning regime (due to the negative temperature coefficient in the low-temperature chemistry) with a reaction zone (at ≈ 700 K) in close proximity to the fuel source. By contrast, if there is a slight relative velocity (≈ 3 mm/s) between the fuel source and the air, a local extinction of the envelope diffusion flame is predicted downstream at ≈ 1200 K, followed by periodic flame-edge oscillations. At higher relative velocities (4 to 10 mm/s), the locally extinguished flame becomes steady state. The present 2D computational approach can help in understanding further the non-premixed "cool flame" structure and flame-flow interactions in microgravity environments.
Sukhin, I A; Khudets'kyĭ, I Iu; Kachan, S H; Bilylovets', O M
2013-01-01
There are adduced the results of experimental operations on mongrel rabbits with dissection and coagulation of the liver and the spleen, using highly temperature coagulation apparatuses of various kinds. There was established, that while application of various highly temperature technologies a typical process occurs, consisting of the heat spreading inside the organ. The temperature raising grade depends on the method and duration of the impact.
Feasibility of integrating natural and constructed wetlands in roadway drainage system design.
DOT National Transportation Integrated Search
2012-04-30
"Stormwater from roadways could have negative effects on the environment and aquatic ecosystems. Typical highway : runoff pollutants include solids; heavy metals, particularly cadmium, copper, and zinc; petroleum hydrocarbons; gasoline : constituents...
DETERMINATION OF 16 LARGEST PEAKS IN COMMERCIAL TECHNICAL TOXAPHENE BY GC/MS
Under typical temperature and high vacuum associated with GC/MS technique, Toxaphene decomposes and produces countless fragments which are impractical to quantify. A GC/MS method has been developed using the lowest possible temperature to resolve more peaks and lower the interfer...
Seasonal and elevational contrasts in temperature trends in Central Chile between 1979 and 2015
NASA Astrophysics Data System (ADS)
Burger, F.; Brock, B.; Montecinos, A.
2018-03-01
We analyze trends in temperature from 18 temperature stations and one upper air sounding site at 30°-35° S in central Chile between 1979-2015, to explore geographical and season temperature trends and their controls, using regional ocean-atmosphere indices. Significant warming trends are widespread at inland stations, while trends are non-significant or negative at coastal sites, as found in previous studies. However, ubiquitous warming across the region in the past 8 years, suggests the recent period of coastal cooling has ended. Significant warming trends are largely restricted to austral spring, summer and autumn seasons, with very few significant positive or negative trends in winter identified. Autumn warming is notably strong in the Andes, which, together with significant warming in spring, could help to explain the negative mass balance of snow and glaciers in the region. A strong Pacific maritime influence on regional temperature trends is inferred through correlation with the Interdecadal Pacific Oscillation (IPO) index and coastal sea surface temperature, but the strength of this influence rapidly diminishes inland, and the majority of valley, and all Andes, sites are independent of the IPO index. Instead, valley and Andes sites, and mid-troposphere temperature in the coastal radiosonde profile, show correlation with the autumn Antarctic Oscillation which, in its current positive phase, promotes subsidence and warming at the latitude of central Chile.
Macrophyte Community Response to Nitrogen Loading and ...
Empirical determination of nutrient loading thresholds that negatively impact seagrass communities have been elusive due to the multitude of factors involved. Using a mesocosm system that simulated Pacific Northwest estuaries, we evaluated macrophyte metrics across gradients of NO3 loading (0, 1.5, 3 and 6x ambient) and temperature (10 and 20 °C). Macroalgal growth, biomass, and C:N responded positively to increased NO3 load and floating algal mats developed at 20 ºC. Zostera japonica metrics, including C:N, responded more to temperature than to NO3 loading. Z. marina biomass exhibited a negative temperature effect and in some cases a negative NO3 effect, while growth rate increased with temperature. Shoot survival decreased at 20 ºC but was not influenced by NO3 loading. Wasting disease index exhibited a significant temperature by NO3 interaction consistent with increased disease susceptibility. Community shifts observed were consistent with the nutrient loading hypothesis at 20 ºC, but there was no evidence of other eutrophication symptoms due to the short residence time. The Nutrient Pollution Index tracked the NO3 gradient at 10 ºC but exhibited no response at 20 ºC. We suggest that systems characterized by cool temperatures, high NO3 loads, and short residence time may be resilient to many symptoms of eutrophication. Estuarine systems characterized by cool temperatures, high nutrient loads and rapid flushing may be resilient to some symptoms
ERIC Educational Resources Information Center
Reihman, Thomas C.
This learning module is concerned with the temperature field, the heat transfer rates, and the coolant pressure drop in typical high temperature gas-cooled reactor (HTGR) fuel assemblies. As in all of the modules of this series, emphasis is placed on developing the theory and demonstrating its use with a simplified model. The heart of the module…
Zachary A. Holden; Alan Swanson; Anna E. Klene; John T. Abatzoglou; Solomon Z. Dobrowski; Samuel A. Cushman; John Squires; Gretchen G. Moisen; Jared W. Oyler
2016-01-01
Gridded temperature data sets are typically produced at spatial resolutions that cannot fully resolve fine-scale variation in surface air temperature in regions of complex topography. These data limitations have become increasingly important as scientists and managers attempt to understand and plan for potential climate change impacts. Here, we describe the...
NASA Astrophysics Data System (ADS)
Suzuki, J.; Nishi, N.; Fujiwara, M.; Yoneyama, K.
2016-12-01
We investigated the influence of the background wind regime on interannual variability in equatorial Kelvin waves in the upper troposphere and lower stratosphere using the European Centre for Medium-Range Weather Forecasts 40-year reanalysis data. We focused on variability in the number of Kelvin wave events as a function of the background westerly wind, given by the zonal wind index (ZWI) in the equatorial western hemisphere. The ZWI measures the strength of the upper branch of the Walker circulation in the western hemisphere. Although the ZWI is well correlated with the sea surface temperature in the Niño-3.4 region, nearly half of the peaks of positive (negative) ZWI cases occurred outside of the typical La Niña (El Niño) season (December to February), respectively. In the positive ZWI (stronger westerly) cases, both convective activity over the western Pacific and extratropical Rossby waves were enhanced. Kelvin waves over the western hemisphere appeared frequently at 200 hPa but barely reached 100 hPa due to the strong westerly wind under this level. In the negative ZWI period, on the other hand, the number of Kelvin waves at 200 hPa decreased due to the weaker convection; Kelvin waves reached 100 hPa and propagated even farther upward. We also investigated the relationship between the ZWI and the phase speed of Kelvin waves. Kelvin waves with relatively slow phase speeds are found in negative ZWI cases, but are not found in positive ZWI cases due to the westerly background wind below the altitudes where Kelvin waves commonly propagate.
NASA Astrophysics Data System (ADS)
Nam, S.; Yoon, S.; Park, J. H.; Kim, Y. H.; Chang, K. I.
2016-02-01
The intermediate water known as `East Sea Intermediate Water' and its coastal mode `North Korea Cold Water' found south of the Subpolar Front (SF) is formed in the northern East (Japan) Sea, and its physical properties are known to be determined by wintertime air-sea interaction north of the SF. Hydrographic data collected off the coast bi-monthly from 1994 to 2011 show significant decadal oscillations in spiciness following isopycnals of intermediate water (27.1-27.2 sigma-theta typically corresponding to 150 m depth), which are explained by the Arctic Oscillation (AO) and consequent cold-air outbreaks. During positive AO phases over the decades, the cold-air outbreak and water formation are more active and the intermediate water having the same spiciness reaches higher density (higher spiciness following the same isopycnals). At interannual timescale, however, the spiciness variability is well beyond the relationship with the AO. Especially, significantly lower spiciness (or both less saline and lower temperature) intermediate water was observed in spring of 2010 than 2001 under the similar AO condition (negative peaks). Strong cooling with common negative peaks in surface net-heat flux (with different patterns) and common negative peaks in the AO index are prominent in winter of the two years over past two decades. Such contrasting characteristics of intermediate water between 2001 and 2010 are consistent with the HYCOM reanalysis results which, along with the satellite altimetry-derived sea surface height maps, indicates widespread extension of low (high) spiciness intermediate water in the southwestern East Sea in 2010 (2001). A clear contrast in circulation pattern, along with net-heat flux pattern, is suggested to derive the observational results in the distinctly different characteristics of the intermediate water.
The Environment and the Microbial Ecology of Human Skin
McBride, Mollie E.; Duncan, W. Christopher; Knox, J. M.
1977-01-01
Microbial flora of the skin of three human population groups representing different natural environments was examined quantitatively and qualitatively to determine whether environmental differences in temperature and humidity can influence the microbial flora of normal skin. Five anatomical skin sites - hands, back, axillae, groin, and feet - were sampled from 10 subjects working in a high-humidity, high-temperature environment, 10 subjects from a low-temperature, high-humidity environment, and 10 subjects working in a moderate-temperature and low-humidity environment. Bacterial populations were significantly larger from the back, axillae, and feet in individuals from the high-temperature and high-humidity environment as compared to the moderate-temperature, low-humidity environment. High humidity and low temperature had no significant effect on total populations, but this group showed a higher frequency of isolation of fungi, and gram-negative bacteria from the back and feet. Although there was an indication that increase in the environmental humidity could result in an increased frequency of isolation of gram-negative bacteria, there was no evidence that an increase in either temperature or humidity altered the relative proportions of gram-negative bacteria in the predominantly gram-positive microbial flora found on normal skin. It was concluded that, although climatic changes may cause fluctation in microbial populations from certain sites, they are not a major influence on the ecology of the microbial flora of normal skin in the natural environment. The variables introduced by studying individuals in their natural environment and the influence of these on the results are discussed. PMID:16345214
NASA Astrophysics Data System (ADS)
Shim, Jaewoo; Oh, Seyong; Kang, Dong-Ho; Jo, Seo-Hyeon; Ali, Muhammad Hasnain; Choi, Woo-Young; Heo, Keun; Jeon, Jaeho; Lee, Sungjoo; Kim, Minwoo; Song, Young Jae; Park, Jin-Hong
2016-11-01
Recently, negative differential resistance devices have attracted considerable attention due to their folded current-voltage characteristic, which presents multiple threshold voltage values. Because of this remarkable property, studies associated with the negative differential resistance devices have been explored for realizing multi-valued logic applications. Here we demonstrate a negative differential resistance device based on a phosphorene/rhenium disulfide (BP/ReS2) heterojunction that is formed by type-III broken-gap band alignment, showing high peak-to-valley current ratio values of 4.2 and 6.9 at room temperature and 180 K, respectively. Also, the carrier transport mechanism of the BP/ReS2 negative differential resistance device is investigated in detail by analysing the tunnelling and diffusion currents at various temperatures with the proposed analytic negative differential resistance device model. Finally, we demonstrate a ternary inverter as a multi-valued logic application. This study of a two-dimensional material heterojunction is a step forward toward future multi-valued logic device research.
Shim, Jaewoo; Oh, Seyong; Kang, Dong-Ho; Jo, Seo-Hyeon; Ali, Muhammad Hasnain; Choi, Woo-Young; Heo, Keun; Jeon, Jaeho; Lee, Sungjoo; Kim, Minwoo; Song, Young Jae; Park, Jin-Hong
2016-01-01
Recently, negative differential resistance devices have attracted considerable attention due to their folded current–voltage characteristic, which presents multiple threshold voltage values. Because of this remarkable property, studies associated with the negative differential resistance devices have been explored for realizing multi-valued logic applications. Here we demonstrate a negative differential resistance device based on a phosphorene/rhenium disulfide (BP/ReS2) heterojunction that is formed by type-III broken-gap band alignment, showing high peak-to-valley current ratio values of 4.2 and 6.9 at room temperature and 180 K, respectively. Also, the carrier transport mechanism of the BP/ReS2 negative differential resistance device is investigated in detail by analysing the tunnelling and diffusion currents at various temperatures with the proposed analytic negative differential resistance device model. Finally, we demonstrate a ternary inverter as a multi-valued logic application. This study of a two-dimensional material heterojunction is a step forward toward future multi-valued logic device research. PMID:27819264
Effects of Temperature on the Histotripsy Intrinsic Threshold for Cavitation.
Vlaisavljevich, Eli; Xu, Zhen; Maxwell, Adam; Mancia, Lauren; Zhang, Xi; Lin, Kuang-Wei; Duryea, Alexander; Sukovich, Jonathan; Hall, Tim; Johnsen, Eric; Cain, Charles
2016-05-10
Histotripsy is an ultrasound ablation method that depends on the initiation of a dense cavitation bubble cloud to fractionate soft tissue. Previous work has demonstrated that a cavitation cloud can be formed by a single acoustic pulse with one high amplitude negative cycle, when the negative pressure amplitude exceeds a threshold intrinsic to the medium. The intrinsic thresholds in soft tissues and tissue phantoms that are water-based are similar to the intrinsic threshold of water over an experimentally verified frequency range of 0.3-3 MHz. Previous work studying the histotripsy intrinsic threshold has been limited to experiments performed at room temperature (~20°C). In this study, we investigate the effects of temperature on the histotripsy intrinsic threshold in water, which is essential to accurately predict the intrinsic thresholds expected over the full range of in vivo therapeutic temperatures. Based on previous work studying the histotripsy intrinsic threshold and classical nucleation theory, we hypothesize that the intrinsic threshold will decrease with increasing temperature. To test this hypothesis, the intrinsic threshold in water was investigated both experimentally and theoretically. The probability of generating cavitation bubbles was measured by applying a single pulse with one high amplitude negative cycle at 1 MHz to distilled, degassed water at temperatures ranging from 10°C-90°C. Cavitation was detected and characterized by passive cavitation detection and high-speed photography, from which the probability of cavitation was measured vs. pressure amplitude. The results indicate that the intrinsic threshold (the negative pressure at which the cavitation probability=0.5) significantly decreases with increasing temperature, showing a nearly linear decreasing trend from 29.8±0.4 MPa at 10˚C to 14.9±1.4 MPa at 90˚C. Overall, the results of this study support our hypothesis that the intrinsic threshold is highly dependent upon the temperature of the medium, which may allow for better predictions of cavitation generation at body temperature in vivo and at the elevated temperatures commonly seen in high intensity focused ultrasound (HIFU) regimes.
Effects of Temperature on the Histotripsy Intrinsic Threshold for Cavitation
Vlaisavljevich, Eli; Xu, Zhen; Maxwell, Adam; Mancia, Lauren; Zhang, Xi; Lin, Kuang-Wei; Duryea, Alexander; Sukovich, Jonathan; Hall, Tim; Johnsen, Eric; Cain, Charles
2018-01-01
Histotripsy is an ultrasound ablation method that depends on the initiation of a dense cavitation bubble cloud to fractionate soft tissue. Previous work has demonstrated that a cavitation cloud can be formed by a single acoustic pulse with one high amplitude negative cycle, when the negative pressure amplitude exceeds a threshold intrinsic to the medium. The intrinsic thresholds in soft tissues and tissue phantoms that are water-based are similar to the intrinsic threshold of water over an experimentally verified frequency range of 0.3–3 MHz. Previous work studying the histotripsy intrinsic threshold has been limited to experiments performed at room temperature (~ 20°C). In this study, we investigate the effects of temperature on the histotripsy intrinsic threshold in water, which is essential to accurately predict the intrinsic thresholds expected over the full range of in vivo therapeutic temperatures. Based on previous work studying the histotripsy intrinsic threshold and classical nucleation theory, we hypothesize that the intrinsic threshold will decrease with increasing temperature. To test this hypothesis, the intrinsic threshold in water was investigated both experimentally and theoretically. The probability of generating cavitation bubbles was measured by applying a single pulse with one high amplitude negative cycle at 1 MHz to distilled, degassed water at temperatures ranging from 10°C–90°C. Cavitation was detected and characterized by passive cavitation detection and high-speed photography, from which the probability of cavitation was measured vs. pressure amplitude. The results indicate that the intrinsic threshold (the negative pressure at which the cavitation probability = 0.5) significantly decreases with increasing temperature, showing a nearly linear decreasing trend from 29.8±0.4 MPa at 10°C to 14.9±1.4 MPa at 90°C. Overall, the results of this study support our hypothesis that the intrinsic threshold is highly dependent upon the temperature of the medium, which may allow for better predictions of cavitation generation at body temperature in vivo and at the elevated temperatures commonly seen in high intensity focused ultrasound (HIFU) regimes. PMID:28113706
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chang, Yu-Hong; Yu, Ming-Jiue; Lin, Ruei-Ping
2016-01-18
Low-temperature atomic layer deposition (ALD) was employed to deposit Al{sub 2}O{sub 3} as a gate dielectric in amorphous In–Ga–Zn–O thin-film transistors fabricated at temperatures below 120 °C. The devices exhibited a negligible threshold voltage shift (ΔV{sub T}) during negative bias stress, but a more pronounced ΔV{sub T} under positive bias stress with a characteristic turnaround behavior from a positive ΔV{sub T} to a negative ΔV{sub T}. This abnormal positive bias instability is explained using a two-process model, including both electron trapping and hydrogen release and migration. Electron trapping induces the initial positive ΔV{sub T}, which can be fitted using the stretchedmore » exponential function. The breakage of residual AlO-H bonds in low-temperature ALD Al{sub 2}O{sub 3} is triggered by the energetic channel electrons. The hydrogen atoms then diffuse toward the In–Ga–Zn–O channel and induce the negative ΔV{sub T} through electron doping with power-law time dependence. A rapid partial recovery of the negative ΔV{sub T} after stress is also observed during relaxation.« less
A negative feedback mechanism for the long-term stabilization of the earth's surface temperature
NASA Technical Reports Server (NTRS)
Walker, J. C. G.; Hays, P. B.; Kasting, J. F.
1981-01-01
It is suggested that the partial pressure of carbon dioxide in the atmosphere is buffered, over geological time scales, by a negative feedback mechanism, in which the rate of weathering of silicate minerals (followed by deposition of carbonate minerals) depends on surface temperature, which in turn depends on the carbon dioxide partial pressure through the greenhouse effect. Although the quantitative details of this mechanism are speculative, it appears able to partially stabilize the earth's surface temperature against the steady increase of solar luminosity, believed to have occurred since the origin of the solar system.
Hole dephasing caused by hole-hole interaction in a multilayered black phosphorus.
Li, Lijun; Khan, Muhammad Atif; Lee, Yoontae; Lee, Inyeal; Yun, Sun Jin; Youn, Doo-Hyeb; Kim, Gil-Ho
2017-11-01
We study the magnetotransport of holes in a multilayered black phosphorus in a temperature range of 1.9 to 21.5 K. We observed a negative magnetoresistance at magnetic fields up to 1.5 T. This negative magetoresistance was analyzed by weak localization theory in diffusive regime. At the lowest temperature and the highest carrier density we found a phase coherence length of 48 nm. The linear temperature dependence of the dephasing rate shows that the hole-hole scattering processes with small energy transfer are the dominant contribution in breaking the carrier phase coherence.
Venturi, Manuel; Guerrini, Simona; Vincenzini, Massimo
2012-08-01
The microbiota occurring in all the manufacturing phases of two Italian sourdough sweet-leavened baked goods (a typical Genoese dry biscuit, Lagaccio, and a soft stuffed North Italian typical cake, Panettone) were investigated over a period of three years. The two sourdough mother sponges were characterized by the stable presence of three dominant microbial species in potential competition for carbohydrates: Lactobacillus sanfranciscensis, Candida milleri, and Saccharomyces cerevisiae. Genotypic and phenotypic characterizations of microbial isolates pointed out that each mother sponge harbored its own strains, well distinguishable by molecular methods of analysis but not differing in their main metabolic properties from those known for the corresponding species. The microbial and biochemical evolution during the whole production protocol of both manufactures demonstrated that the three microbial species grew at almost the same growth rates, without exhausting any of the main carbon substrates (maltose, glucose and fructose). The quite similar growth dynamics under practical conditions and the constant presence of all fermentable carbohydrates were recognized as responsible for the stable non competitive association of maltose-positive and maltose-negative species in both sourdoughs. However, the two sourdoughs were characterized by quite different LAB to yeast ratio, with values significantly higher in Panettone than in Lagaccio. The cause of this difference could mainly be ascribed to the temperature of the mother sponge regeneration phase, that, in the case of Panettone manufacture, occurred under conditions of moderate refrigeration. Copyright © 2012 Elsevier Ltd. All rights reserved.
Child Eating Behaviors and Caregiver Feeding Practices in Children with Autism Spectrum Disorders.
Kral, Tanja V E; Souders, Margaret C; Tompkins, Victoria H; Remiker, Adriane M; Eriksen, Whitney T; Pinto-Martin, Jennifer A
2015-01-01
This pilot study compared children with autism spectrum disorders (ASD) and typically developing children (TDC) on weight-related outcomes and caregiver-reported child eating behaviors and feeding practices. Cross-sectional study. Caregivers of 25 children with ASD and 30 TDC, ages 4-6. Caregivers completed validated questionnaires that assessed child eating behaviors and feeding practices. Children's height, weight, and waist circumference were measured. Children with ASD, when compared to TDC, showed significantly greater abdominal waist circumferences (p = .01) and waist-to-height ratios (p < .001). Children with ASD with atypical oral sensory sensitivity exhibited greater food avoidance behaviors, including reluctance to eat novel foods (p = .004), being selective about the range of foods they accept (p = .03), and undereating due to negative emotions (p = .02), than children with ASD with typical oral sensory sensitivity. Caregivers of children with ASD with atypical oral sensory sensitivity reported using food to regulate negative child emotions to a greater extent than caregivers of children with typical oral sensory sensitivity (p = .02). Children with ASD, especially those with atypical oral sensory sensitivity, are at increased risk for food avoidance behaviors and may require additional support in several feeding domains. © 2014 Wiley Periodicals, Inc.
Constraints on global temperature target overshoot.
Ricke, K L; Millar, R J; MacMartin, D G
2017-11-07
In the aftermath of the Paris Agreement, the climate science and policy communities are beginning to assess the feasibility and potential benefits of limiting global warming to 1.5 °C or 2 °C above preindustrial. Understanding the dependence of the magnitude and duration of possible temporary exceedance (i.e., "overshoot") of temperature targets on sustainable energy decarbonization futures and carbon dioxide (CO 2 ) removal rates will be an important contribution to this policy discussion. Drawing upon results from the mitigation literature and the IPCC Working Group 3 (WG3) scenario database, we examine the global mean temperature implications of differing, independent pathways for the decarbonization of global energy supply and the implementation of negative emissions technologies. We find that within the scope of scenarios broadly-consistent with the WG3 database, the magnitude of temperature overshoot is more sensitive to the rate of decarbonization. However, limiting the duration of overshoot to less than two centuries requires ambitious deployment of both decarbonization and negative emissions technology. The dependencies of temperature target overshoot's properties upon currently untested negative emissions technologies suggests that it will be important to consider how climate impacts depend on both the magnitude and duration of overshoot, not just long term residual warming.
[The negative temperature effect of UV absorbance on C60 in different solvents].
Yang, Tao; Zeng, Fan-qin; Ge, Qi; Xiong, Qian; Guo, Feng; Zhang, Xun-gao
2004-02-01
Ultraviolet Absorption Spectrum of Difference in Temperature (UVSDT) of C60 was studied in different solvents by UV-240 ultraviolet-visible spectrophotometer. Two samples were tested, one of which acted as reference sample and the other as ready test sample. During the period of the experiment, the temperature of the reference sample remained constant, while that of the ready test sample was changed to obtain difference in temperature. The two samples were scanned in succession by UV-240 ultraviolet-visible spectrophotometer using a certain range of wavelength. By changing the temperature of the ready test sample, we can get the ultraviolet absorption spectrum changing curve with temperature differential. In addition, the curve was studied by putting C60 in different solvents (alcohol, cyclohexane, n-hexane and 2-propanol). The curve indicates that the intensity of the absorption peak wavelength of C60 decreased with increasing the temperature of the sample, and a negative peak was observed in UVSDT. And the greater the difference in temperature, the higher the intensity of the negative peak. The result reflects that the structure of C60 depends strongly on its temperature, and the dependent relationship is closely related to the type of pi-pi electron transition. So it's valuable to test the absorption rate of C60 and obtain the changing curve in real time. It'll help us to separate, purify, analyze, and characterize C60. And it'll also help to do research on the mechanism of the chemical reactions, which take place in solvents, as well as to improve veracity.
Welch, Jarrod R.; Vincent, Jeffrey R.; Auffhammer, Maximilian; Moya, Piedad F.; Dobermann, Achim; Dawe, David
2010-01-01
Data from farmer-managed fields have not been used previously to disentangle the impacts of daily minimum and maximum temperatures and solar radiation on rice yields in tropical/subtropical Asia. We used a multiple regression model to analyze data from 227 intensively managed irrigated rice farms in six important rice-producing countries. The farm-level detail, observed over multiple growing seasons, enabled us to construct farm-specific weather variables, control for unobserved factors that either were unique to each farm but did not vary over time or were common to all farms at a given site but varied by season and year, and obtain more precise estimates by including farm- and site-specific economic variables. Temperature and radiation had statistically significant impacts during both the vegetative and ripening phases of the rice plant. Higher minimum temperature reduced yield, whereas higher maximum temperature raised it; radiation impact varied by growth phase. Combined, these effects imply that yield at most sites would have grown more rapidly during the high-yielding season but less rapidly during the low-yielding season if observed temperature and radiation trends at the end of the 20th century had not occurred, with temperature trends being more influential. Looking ahead, they imply a net negative impact on yield from moderate warming in coming decades. Beyond that, the impact would likely become more negative, because prior research indicates that the impact of maximum temperature becomes negative at higher levels. Diurnal temperature variation must be considered when investigating the impacts of climate change on irrigated rice in Asia. PMID:20696908
Temperature-dependent spectral mismatch corrections
Osterwald, Carl R.; Campanelli, Mark; Moriarty, Tom; ...
2015-11-01
This study develops the mathematical foundation for a translation of solar cell short-circuit current from one thermal and spectral irradiance operating condition to another without the use of ill-defined and error-prone temperature coefficients typically employed in solar cell metrology. Using the partial derivative of quantum efficiency with respect to temperature, the conventional isothermal expression for spectral mismatch corrections is modified to account for changes of current due to temperature; this modification completely eliminates the need for short-circuit-current temperature coefficients. An example calculation is provided to demonstrate use of the new translation.
DMAC and NMP as Electrolyte Additives for Li-Ion Cells
NASA Technical Reports Server (NTRS)
Smart, Marshall; Bugga, Ratnakumar; Lucht, Brett
2008-01-01
Dimethyl acetamide (DMAC) and N-methyl pyrrolidinone (NMP) have been found to be useful as high-temperature-resilience-enhancing additives to a baseline electrolyte used in rechargeable lithium-ion electrochemical cells. The baseline electrolyte, which was previously formulated to improve low-temperature performance, comprises LiPF6 dissolved at a concentration of 1.0 M in a mixture comprising equal volume proportions of ethylene carbonate, diethyl carbonate, and dimethyl carbonate. This and other electrolytes comprising lithium salts dissolved in mixtures of esters (including alkyl carbonates) have been studied in continuing research directed toward extending the lower limits of operating temperatures and, more recently, enhancing the high-temperature resilience of such cells. This research at earlier stages, and the underlying physical and chemical principles, were reported in numerous previous NASA Tech Briefs articles. Although these electrolytes provide excellent performance at low temperatures (typically as low as -40 C), when the affected Li-ion cells are subjected to high temperatures during storage and cycling, there occur irreversible losses of capacity accompanied by power fade and deterioration of low-temperature performance. The term "high-temperature resilience" signifies, loosely, the ability of a cell to resist such deterioration, retaining as much as possible of its initial charge/discharge capacity during operation or during storage in the fully charged condition at high temperature. For the purposes of the present development, a temperature is considered to be high if it equals or exceeds the upper limit (typically, 30 C) of the operating-temperature range for which the cells in question are generally designed.
NASA Astrophysics Data System (ADS)
Popp, Steffi; Beyer, Christof; Dahmke, Andreas; Bauer, Sebastian
2015-04-01
The energy market in Germany currently faces a rapid transition from nuclear power and fossil fuels towards an increased production of energy from renewable resources like wind or solar power. In this context, seasonal heat storage in the shallow subsurface is becoming more and more important, particularly in urban regions with high population densities and thus high energy and heat demand. Besides the effects of increased or decreased groundwater and sediment temperatures on local and large-scale groundwater flow, transport, geochemistry and microbiology, an influence on subsurface contaminations, which may be present in the urban surbsurface, can be expected. Currently, concerns about negative impacts of temperature changes on groundwater quality are the main barrier for the approval of heat storage at or close to contaminated sites. The possible impacts of heat storage on subsurface contamination, however, have not been investigated in detail yet. Therefore, this work investigates the effects of a shallow seasonal heat storage on subsurface groundwater flow, transport and reaction processes in the presence of an organic contamination using numerical scenario simulations. A shallow groundwater aquifer is assumed, which consists of Pleistoscene sandy sediments typical for Northern Germany. The seasonal heat storage in these scenarios is performed through arrays of borehole heat exchangers (BHE), where different setups with 6 and 72 BHE, and temperatures during storage between 2°C and 70°C are analyzed. The developing heat plume in the aquifer interacts with a residual phase of a trichloroethene (TCE) contamination. The plume of dissolved TCE emitted from this source zone is degraded by reductive dechlorination through microbes present in the aquifer, which degrade TCE under anaerobic redox conditions to the degradation products dichloroethene, vinyl chloride and ethene. The temperature dependence of the microbial degradation activity of each degradation step is taken into account for the numerical simulations. Hence, the simulations are performed with the code OpenGeoSys, which is especially suited for simulating coupled thermal, hydraulic and geochemical processes. The scenario simulations show an increase in the source zone emission of TCE at higher temperatures, which is primarily due to the focusing of the groundwater flow in the area of higher temperatures within the source zone and to a lesser part to an increase in TCE solubility. On the other hand, a widening of the contaminant plume and enlargement of the area for TCE biodegradation is induced, which leads to an increase in biodegradation of the chlorinated hydrocarbons. In combination almost no change in the overall ratio of degraded to emitted TCE is found, which shows that the seasonal heat storage is not negatively influencing the present TCE contamination under these assumptions. The results of this work serve to support the risk assessment for the interaction between heat storage and contaminations in the shallow subsurface and show positive interactions as well as possible conflicts.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mbarki, R.; Baccam, N.; Dayal, Kaushik
Most technologically relevant ferroelectrics typically lose piezoelectricity above the Curie temperature. This limits their use to relatively low temperatures. In this Letter, exploiting a combination of flexoelectricity and simple functional grading, we propose a strategy for high-temperature electromechanical coupling in a standard thin film configuration. We use continuum modeling to quantitatively demonstrate the possibility of achieving apparent piezoelectric materials with large and temperature-stable electromechanical coupling across a wide temperature range that extends significantly above the Curie temperature. With Barium and Strontium Titanate, as example materials, a significant electromechanical coupling that is potentially temperature-stable up to 900 °C is possible.
ERIC Educational Resources Information Center
Kelter, Paul B.; Carr, James D.
1983-01-01
Describes an experiment designed to teach temperature programed gas chromatography (TPGC) techniques and importance of derivatizing many classes of substrated to be separated. Includes equipment needed, procedures for making trimethylsilyl derivatives, applications, sample calculations, and typical results. Procedure required one, three-hour…
Polymerization of Building Blocks of Life on Europa and Other Icy Moons.
Kimura, Jun; Kitadai, Norio
2015-06-01
The outer Solar System may provide a potential habitat for extraterrestrial life. Remote sensing data from the Galileo spacecraft suggest that the jovian icy moons--Europa, Ganymede, and possibly Callisto--may harbor liquid water oceans underneath their icy crusts. Although compositional information required for the discussion of habitability is limited because of significantly restricted observation data, organic molecules are ubiquitous in the Universe. Recently, in situ spacecraft measurements and experiments suggest that amino acids can be formed abiotically on interstellar ices and comets. These amino acids could be continuously delivered by meteorite or comet impacts to icy moons. Here, we show that polymerization of organic monomers, in particular amino acids and nucleotides, could proceed spontaneously in the cold environment of icy moons, in particular the jovian icy moon Europa as a typical example, based on thermodynamic calculations, though kinetics of formation are not addressed. Observed surface temperature on Europa is 120 and 80 K in the equatorial region and polar region, respectively. At such low temperatures, Gibbs energies of polymerization become negative, and the estimated thermal structure of the icy crust should contain a shallow region (i.e., at a depth of only a few kilometers) favorable for polymerization. Investigation of the possibility of organic monomer polymerization on icy moons could provide good constraints on the origin and early evolution of extraterrestrial life.
Detecting instabilities in tree-ring proxy calibration
NASA Astrophysics Data System (ADS)
Visser, H.; Büntgen, U.; D'Arrigo, R.; Petersen, A. C.
2010-06-01
Evidence has been found for reduced sensitivity of tree growth to temperature in a number of forests at high northern latitudes and alpine locations. Furthermore, at some of these sites, emergent subpopulations of trees show negative growth trends with rising temperature. These findings are typically referred to as the "Divergence Problem" (DP). Given the high relevance of paleoclimatic reconstructions for policy-related studies, it is important for dendrochronologists to address this issue of potential model uncertainties associated with the DP. Here we address this issue by proposing a calibration technique, termed "stochastic response function" (SRF), which allows the presence or absence of any instabilities in growth response of trees (or any other climate proxy) to their calibration target to be visualized and detected. Since this framework estimates confidence limits and subsequently provides statistical significance tests, the approach is also very well suited for proxy screening prior to the generation of a climate-reconstruction network. Two examples of tree growth/climate relationships are provided, one from the North American Arctic treeline and the other from the upper treeline in the European Alps. Instabilities were found to be present where stabilities were reported in the literature, and vice versa, stabilities were found where instabilities were reported. We advise to apply SRFs in future proxy-screening schemes, next to the use of correlations and RE/CE statistics. It will improve the strength of reconstruction hindcasts.
Detecting instabilities in tree-ring proxy calibration
NASA Astrophysics Data System (ADS)
Visser, H.; Büntgen, U.; D'Arrigo, R.; Petersen, A. C.
2010-02-01
Evidence has been found for reduced sensitivity of tree growth to temperature in a number of forests at high northern latitudes and alpine locations. Furthermore, at some of these sites, emergent subpopulations of trees show negative growth trends with rising temperature. These findings are typically referred to as the "Divergence Problem" (DP). Given the high relevance of paleoclimatic reconstructions for policy-related studies, it is important for dendrochronologists to address this issue of potential model uncertainties associated with the DP. Here we address this issue by proposing a calibration technique, termed "stochastic response function" (SRF), which allows the presence or absence of any instabilities in growth response of trees (or any other climate proxy) to their calibration target to be visualized and detected. Since this framework estimates confidence limits and subsequently provides statistical significance tests, the approach is also very well suited for proxy screening prior to the generation of a climate-reconstruction network. Two examples of tree growth/climate relationships are provided, one from the North American Arctic treeline and the other from the upper treeline in the European Alps. Instabilities were found to be present where stabilities were reported in the literature, and vice versa, stabilities were found where instabilities were reported. We advise to apply SRFs in future proxy-screening schemes, next to the use of correlations and RE/CE statistics. It will improve the strength of reconstruction hindcasts.
Malek, F.; Rani, K. A.; Rahim, H. A.; Omar, M. H.
2015-01-01
Individuals who report their sensitivity to electromagnetic fields often undergo cognitive impairments that they believe are due to the exposure of mobile phone technology. The aim of this study is to clarify whether short-term exposure at 1 V/m to the typical Global System for Mobile Communication and Universal Mobile Telecommunications System (UMTS) affects cognitive performance and physiological parameters (body temperature, blood pressure and heart rate). This study applies counterbalanced randomizing single blind tests to determine if sensitive individuals experience more negative health effects when they are exposed to base station signals compared with sham (control) individuals. The sample size is 200 subjects with 50.0% Idiopathic Environmental Intolerance attributed to electromagnetic fields (IEI-EMF) also known as sensitive and 50.0% (non-IEI-EMF). The computer-administered Cambridge Neuropsychological Test Automated Battery (CANTAB eclipseTM) is used to examine cognitive performance. Four tests are chosen to evaluate Cognitive performance in CANTAB: Reaction Time (RTI), Rapid Visual Processing (RVP), Paired Associates Learning (PAL) and Spatial Span (SSP). Paired sample t-test on the other hand, is used to examine the physiological parameters. Generally, in both groups, there is no statistical significant difference between the exposure and sham exposure towards cognitive performance and physiological effects (P’s > 0.05). PMID:26286015
Malek, F; Rani, K A; Rahim, H A; Omar, M H
2015-08-19
Individuals who report their sensitivity to electromagnetic fields often undergo cognitive impairments that they believe are due to the exposure of mobile phone technology. The aim of this study is to clarify whether short-term exposure at 1 V/m to the typical Global System for Mobile Communication and Universal Mobile Telecommunications System (UMTS) affects cognitive performance and physiological parameters (body temperature, blood pressure and heart rate). This study applies counterbalanced randomizing single blind tests to determine if sensitive individuals experience more negative health effects when they are exposed to base station signals compared with sham (control) individuals. The sample size is 200 subjects with 50.0% Idiopathic Environmental Intolerance attributed to electromagnetic fields (IEI-EMF) also known as sensitive and 50.0% (non-IEI-EMF). The computer-administered Cambridge Neuropsychological Test Automated Battery (CANTAB eclipse(TM)) is used to examine cognitive performance. Four tests are chosen to evaluate Cognitive performance in CANTAB: Reaction Time (RTI), Rapid Visual Processing (RVP), Paired Associates Learning (PAL) and Spatial Span (SSP). Paired sample t-test on the other hand, is used to examine the physiological parameters. Generally, in both groups, there is no statistical significant difference between the exposure and sham exposure towards cognitive performance and physiological effects (P's > 0.05).
Protocol Improvements for Low Concentration DNA-Based Bioaerosol Sampling and Analysis
Ng, Chun Kiat; Miller, Dana; Cao, Bin
2015-01-01
Introduction As bioaerosol research attracts increasing attention, there is a need for additional efforts that focus on method development to deal with different environmental samples. Bioaerosol environmental samples typically have very low biomass concentrations in the air, which often leaves researchers with limited options in choosing the downstream analysis steps, especially when culture-independent methods are intended. Objectives This study investigates the impacts of three important factors that can influence the performance of culture-independent DNA-based analysis in dealing with bioaerosol environmental samples engaged in this study. The factors are: 1) enhanced high temperature sonication during DNA extraction; 2) effect of sampling duration on DNA recoverability; and 3) an alternative method for concentrating composite samples. In this study, DNA extracted from samples was analysed using the Qubit fluorometer (for direct total DNA measurement) and quantitative polymerase chain reaction (qPCR). Results and Findings The findings suggest that additional lysis from high temperature sonication is crucial: DNA yields from both high and low biomass samples increased up to 600% when the protocol included 30-min sonication at 65°C. Long air sampling duration on a filter media was shown to have a negative impact on DNA recoverability with up to 98% of DNA lost over a 20-h sampling period. Pooling DNA from separate samples during extraction was proven to be feasible with margins of error below 30%. PMID:26619279
LINKING STORMFLOW HYDROLOGY AND BIOTA IN SUBURBAN STREAMS
Suburban land development has been found to alter the hydrology of landscapes, changing streamflow transient behavior, which may contribute to the typical negative impacts of development on aquatic ecosystems. The linkages between residential development, hydrologic response, and...
Chemaly, Roy F; Yen-Lieberman, Belinda; Castilla, Elias A; Reilly, Amy; Arrigain, Susana; Farver, Carol; Avery, Robin K; Gordon, Steven M; Procop, Gary W
2004-05-01
Cytomegalovirus (CMV) is an important pathogen in lung transplant recipients. Early detection of CMV end-organ disease should help with treatment management. We determined the CMV viral load by hybrid capture in bronchoalveolar lavage (BAL) fluid samples from patients who had undergone lung transplantation. For 39 of these samples (from 25 patients), corresponding transbronchial biopsy samples were available for CMV immunohistochemistry (IHC). The CMV IHC results were interpreted and categorized as positive or negative, and the positive results were subcategorized as typical if cells with both significant nuclear enlargement or Cowdry A-type inclusions and positive staining were present or as atypical if definitive nuclear staining was seen but significant nuclear enlargement was not. Diagnostic CMV viral inclusions were reported in the anatomic diagnosis, based on hematoxylin-eosin staining alone, for three (8%) of the biopsy samples. CMV was detected by IHC in 13 (33%) samples (5 typical, 8 atypical). The median CMV viral load in BAL samples was 0 copies/ml for BAL samples from patients with IHC-negative biopsy samples; 47,678 copies/ml for BAL samples from patients with biopsy samples with positive, atypical staining; and 1,548,827 copies/ml for BAL samples from patients with biopsy samples with positive, typical staining (P < 0.001). Compared to routine pathology of biopsy samples, the use of IHC increased the diagnostic yield of CMV. Also, the CMV viral load in BAL fluid samples increased along with immunoreactivity from negative to positive, atypical staining to positive, typical staining. The CMV viral load determined with the end-organ sample, the BAL fluid sample, was higher than the corresponding viral load determined with blood. Both IHC and determination of the CMV viral load in BAL samples may be useful for the detection of individuals at risk for the development of fulminant invasive CMV disease.
NASA Astrophysics Data System (ADS)
Vårhammar, Angelica; Wallin, Göran; McLean, Christopher M.; Dusenge, Mirindi Eric; Medlyn, Belinda E.; Hasper, Thomas B.; Nsabimana, Donat; Uddling, Johan
2015-04-01
The sensitivity of photosynthetic metabolism to temperature has been identified as a key uncertainty for projecting the magnitude of the terrestrial feedback on future climate change. While temperature responses of photosynthetic capacities have been comparatively well investigated in temperate species, the responses of tropical tree species remain unexplored. We compared the responses of seedlings of native cold-adapted tropical montane rainforest tree species to exotic warm-adapted plantation species, all growing in an intermediate temperature common garden in Rwanda. Leaf gas exchange responses to CO2 at different temperatures (20 - 40 C) were used to assess the temperature responses of biochemical photosynthetic capacities. Analyses revealed a lower optimum temperature for photosynthetic electron transport rates than for Rubisco carboxylation rates, along with lower electron transport optima in the native cold-adapted than in the exotic warm-adapted species. The photosynthetic optimum temperatures were generally exceeded by daytime peak leaf temperatures, in particular in the native montane rainforest climax species. This study thus provides evidence of pronounced negative effects of high temperature in tropical trees and indicates high susceptibility of montane rainforest climax species to future global warming. (Reference: New Phytologist, in press)
Simulated Single Tooth Bending of High Temperature Alloys
NASA Technical Reports Server (NTRS)
Handschuh, Robert, F.; Burke, Christopher
2012-01-01
Future unmanned space missions will require mechanisms to operate at extreme conditions in order to be successful. In some of these mechanisms, very high gear reductions will be needed to permit very small motors to drive other components at low rotational speed with high output torque. Therefore gearing components are required that can meet the mission requirements. In mechanisms such as this, bending fatigue strength capacity of the gears is very important. The bending fatigue capacity of a high temperature, nickel-based alloy, typically used for turbine disks in gas turbine engines and two tool steel materials with high vanadium content, were compared to that of a typical aerospace alloy-AISI 9310. Test specimens were fabricated by electro-discharge machining without post machining processing. Tests were run at 24 and at 490 C. As test temperature increased from 24 to 490 C the bending fatigue strength was reduced by a factor of five.
Simple Heat Treatment for Production of Hot-Dip Galvanized Dual Phase Steel Using Si-Al Steels
NASA Astrophysics Data System (ADS)
Equihua-Guillén, F.; García-Lara, A. M.; Muñíz-Valdes, C. R.; Ortíz-Cuellar, J. C.; Camporredondo-Saucedo, J. E.
2014-01-01
This work presents relevant metallurgical considerations to produce galvanized dual phase steels from low cost aluminum-silicon steels which are produced by continuous strip processing. Two steels with different contents of Si and Al were austenized in the two-phase field ferrite + austenite (α + γ) in a fast manner to obtain dual phase steels, suitable for hot-dip galvanizing process, under typical parameters of continuous annealing processing line. Tensile dual phase properties were obtained from specimens cooled from temperature below Ar3, held during 3 min, intermediate cooling at temperature above Ar1 and quenching in Zn bath at 465 °C. The results have shown typical microstructure and tensile properties of galvanized dual phase steels. Finally, the synergistic effect of aluminum, silicon, and residual chromium on martensite start temperature ( M s), critical cooling rate ( C R), volume fraction of martensite, and tensile properties has been studied.
NASA Technical Reports Server (NTRS)
Troy, B. E., Jr.; Maier, E. J.
1973-01-01
The analysis of ion data from retarding potential analyzers (RPA's) is generally done under the planar approximation, which assumes that the grid transparency is constant with angle of incidence and that all ions reaching the plane of the collectors are collected. These approximations are not valid for situations in which the ion thermal velocity is comparable to the vehicle velocity, causing ions to enter the RPA with high average transverse velocity. To investigate these effects, the current-voltage curves for H+ at 4000 K were calculated, taking into account the finite collector size and the variation of grid transparency with angle. These curves are then analyzed under the planar approximation. The results show that only small errors in temperature and density are introduced for an RPA with typical dimensions; and that even when the density error is substantial for non-typical dimensions, the temperature error remains minimal.
NASA Astrophysics Data System (ADS)
Na, Liu; Youjie, Jin; Jiaqi, Dai
2018-03-01
The variation trend of temperature and precipitation during flood season in the middle and lower reaches of the Yangtze River basin in recent 50 years and change characteristics of rainfall in five typical flood prone cities are analysed. Aiming at waterlogging problems in the urban agglomeration of middle and lower reaches of the Yangtze River, the comprehensive prevention and control suggestions are put forward. The results showed that: the temperature trend in the basin decreased and then increased, and the precipitation showed a downward-rising-downward trend, no mutation occurred; The incidence of heavy rainfall events in the five typical cities with daily rainfall more than 50mm showed an upward trend, and increased significantly after 2002. The intensity of precipitation increased gradually. Climate change makes urban agglomeration waterlogging disasters become increasingly prominent in the middle and lower reaches of the Yangtze River.
Scalable Super-Resolution Synthesis of Core-Vest Composites Assisted by Surface Plasmons.
Montazeri, A O; Kim, Y; Fang, Y S; Soheilinia, N; Zaghi, G; Clark, J K; Maboudian, R; Kherani, N P; Carraro, C
2018-02-15
The behavior of composite nanostructures depends on both size and elemental composition. Accordingly, concurrent control of size, shape, and composition of nanoparticles is key to tuning their functionality. In typical core-shell nanoparticles, the high degree of symmetry during shell formation results in fully encapsulated cores with severed access to the surroundings. We commingle light parameters (wavelength, intensity, and pulse duration) with the physical properties of nanoparticles (size, shape, and composition) to form hitherto unrealized core-vest composite nanostructures (CVNs). Unlike typical core-shells, the plasmonic core of the resulting CVNs selectively maintains physical access to its surrounding. Tunable variations in local temperature profiles ≳50 °C are plasmonically induced over starburst-shaped nanoparticles as small as 50-100 nm. These temperature variations result in CVNs where the shell coverage mirrors the temperature variations. The precision thus offered individually tailors access pathways of the core and the shell.
High temperature corrosion of a nickel base alloy by helium impurities
NASA Astrophysics Data System (ADS)
Rouillard, F.; Cabet, C.; Wolski, K.; Terlain, A.; Tabarant, M.; Pijolat, M.; Valdivieso, F.
2007-05-01
High temperature corrosion properties of Haynes 230 were investigated in a purposely-designed facility under a typical very high temperature reactor (VHTR) impure helium medium. The study was focused on the surface oxide scale formation and its stability at about 1223 K. The alloy developed a Mn/Cr rich oxide layer on its surface under impure helium at 1173 K. Nevertheless, a deleterious reaction destructing the chromium oxide was evidenced above a critical temperature, TA. Reagents and products of this last reaction were investigated.
Apparatus for precise regulation and chilling of water temperatures in laboratory studies
Burger, C.; ,
1991-01-01
Laboratory simulation of water temperature regimes that occur in subarctic rivers through winter necessitates the ability to maintain near-freezing conditions. A heat-exchangeing apparatus is described that provided a convenient means of simulating the range of temperatures (0.5-12 degrees C) that incubating eggs of salmon (Oncorhynchus spp.) typically experience in south-central Alaska watersheds. The system was reliable, easily maintained precise temperatures at our coldest test levels, and was used over several years with few mechanical complications.
Climate Response to Negative Greenhouse Gas Radiative Forcing in Polar Winter
NASA Astrophysics Data System (ADS)
Flanner, M. G.; Huang, X.; Chen, X.; Krinner, G.
2018-02-01
Greenhouse gas (GHG) additions to Earth's atmosphere initially reduce global outgoing longwave radiation, thereby warming the planet. In select environments with temperature inversions, however, increased GHG concentrations can actually increase local outgoing longwave radiation. Negative top of atmosphere and effective radiative forcing (ERF) from this situation give the impression that local surface temperatures could cool in response to GHG increases. Here we consider an extreme scenario in which GHG concentrations are increased only within the warmest layers of winter near-surface inversions of the Arctic and Antarctic. We find, using a fully coupled Earth system model, that the underlying surface warms despite the GHG addition exerting negative ERF and cooling the troposphere in the vicinity of the GHG increase. This unique radiative forcing and thermal response is facilitated by the high stability of the polar winter atmosphere, which inhibit thermal mixing and amplify the impact of surface radiative forcing on surface temperature. These findings also suggest that strategies to exploit negative ERF via injections of short-lived GHGs into inversion layers would likely be unsuccessful in cooling the planetary surface.
Characteristics of Electronegative Plasma Sheath with q-Nonextensive Electron Distribution
NASA Astrophysics Data System (ADS)
Borgohain, D. R.; Saharia, K.
2018-01-01
The characteristics of sheath in a plasma system containing q-nonextensive electrons, cold fluid ions, and Boltzmann-distributed negative ions are investigated. A modified Bohm sheath criterion is derived by using the Sagdeev pseudopotential technique. It is found that the proposed Bohm velocity depends on the degree of nonextensivity ( q), negative ion temperature to nonextensive electron temperature ratio (σ), and negative ion density ( B). Using the modified Bohm sheath criterion, the sheath characteristics, such as the spatial distribution of the potential, positive ion velocity, and density profile, have been numerically investigated, which clearly shows the effect of negative ions, as well as the nonextensive distribution of electrons. It is found that, as the nonextensivity parameter and the electronegativity increases, the electrostatic sheath potential increases sharply and the sheath width decreases.
Anisotropic membranes for gas separation
Gollan, Arye Z.
1987-01-01
A gas separation membrane has a dense separating layer about 10,000 Angstroms or less thick and a porous support layer 10 to 400 microns thick that is an integral unit with gradually and continuously decreasing pore size from the base of the support layer to the surface of the thin separating layer and is made from a casting solution comprising ethyl cellulose and ethyl cellulose-based blends, typically greater than 47.5 ethoxyl content ethyl cellulose blended with compatible second polymers, such as nitrocellulose. The polymer content of the casting solution is from about 10% to about 35% by weight of the total solution with up to about 50% of this polymer weight a compatible second polymer to the ethyl cellulose in a volatile solvent such as isopropanol, methylacetate, methanol, ethanol, and acetone. Typical nonsolvents for the casting solutions include water and formamide. The casting solution is cast in air from about zero to 10 seconds to allow the volatile solvent to evaporate and then quenched in a coagulation bath, typically water, at a temperature of 7.degree.-25.degree. C. and then air dried at ambient temperature, typically 10.degree.-30.degree. C.
Impact of irradiation on the safety and quality of poultry and meat products: a review.
O'Bryan, Corliss A; Crandall, Philip G; Ricke, Steven C; Olson, Dennis G
2008-05-01
For more than 100 years research on food irradiation has demonstrated that radiation will make food safer and improve the shelf life of irradiated foods. Using the current food safety technology, we may have reached the point of diminishing returns even though recent figures from the CDC show a significant drop in the number of foodborne illnesses. However, too many people continue to get sick and die from eating contaminated food. New and under utilized technologies such as food irradiation need to be re-examined to achieve new levels of safety for the food supply. Effects of irradiation on the safety and quality of meat and poultry are discussed. Irradiation control of the principle microbial pathogens including viruses, the differences among at-risk sub-populations, factors affecting the diminished rate of improvement in food safety and published D values for irradiating raw meat and poultry are presented. Currently permitted levels of irradiation are probably not sufficient to control pathogenic viruses. Typical gram-negative spoilage organisms are very sensitive to irradiation. Their destruction leads to a significant increase in the acceptable shelf life. In addition, the destruction of these normal spoilage organisms did not provide a competitive growth advantage for irradiation injured food pathogens. Another of the main focuses of this review is a detailed compilation of the effects of most of the food additives that have been proposed to minimize the negative quality effect of irradiation. Most of the antimicrobials and antioxidants used singly or in combination produced an increased lethality of irradiation and a decrease in oxidation by-products. Combinations of dosage, temperature, dietary and direct additives, storage temperature and packaging atmosphere can produce meats that the average consumer will find indistinguishable from non-irradiated meats. A discussion of the production of unique radiological by-products is also included.
NASA Astrophysics Data System (ADS)
Hart, Stanley R.; Gaetani, Glenn A.
2016-07-01
We have measured the partition coefficient of Pb (KdPb) between FeS melt and basalt melt at temperatures of 1250-1523 °C, pressures of 1.0-3.5 GPa and oxygen fugacities at iron-wustite and wustite-magnetite. The total observed range of KdPb is 4.0-66.6, with a strong negative dependence on pressure and a strong negative dependence on FeO of the silicate melt (Fe+2 only). The FeO control was constrained over a wide range of FeO (4.2-39.5%). We found that the effect of oxygen fugacity can be subsumed under the FeO control parameter. Prior work has established the lack of a significant effect of temperature (Kiseeva and Wood, 2015; Li and Audétat, 2015). Our data are parameterized as: KdPb = 4.8 + (512 - 119*P in GPa)*(1/FeO - 0.021). We also measured a single value of KdPb between clinopyroxene and basalt melt at 2.0 GPa of 0.020 ± 0.001. This experimental data supports the ;natural; partitioning of Pb measured on sulfide globules in MORB (Patten et al., 2013), but not the low KdPb of ∼3 inferred from sulfides in abyssal peridotites by Warren and Shirey (2012). It also quantitatively affirms the modeling of Hart and Gaetani (2006) with respect to using sulfide to buffer the canonical Nd/Pb ratio for MORB and OIB (Hofmann, 2003). For the low FeO and pressure of segregation typical of MORB, KdPb ∼ 45, and the Nd/Pb ratio of erupted basalts will be the same as the Nd/Pb ratio of the mantle source. The remaining puzzle is why MORB and OIB have the same Nd/Pb when they clearly have different FeO and pressure of melt segregation.
NASA Astrophysics Data System (ADS)
Morrison, Christopher
Nuclear fuels with similar aggregate material composition, but with different millimeter and micrometer spatial configurations of the component materials can have very different safety and performance characteristics. This research focuses on modeling and attempting to engineer heterogeneous combinations of nuclear fuels to improve negative prompt temperature feedback in response to reactivity insertion accidents. Improvements in negative prompt temperature feedback are proposed by developing a tailored thermal resistance in the nuclear fuel. In the event of a large reactivity insertion, the thermal resistance allows for a faster negative Doppler feedback by temporarily trapping heat in material zones with strong absorption resonances. A multi-physics simulation framework was created that could model large reactivity insertions. The framework was then used to model a comparison of a heterogeneous fuel with a tailored thermal resistance and a homogeneous fuel without the tailored thermal resistance. The results from the analysis confirmed the fundamental premise of prompt temperature feedback and provide insights into the neutron spectrum dynamics throughout the transient process. A trade study was conducted on infinite lattice fuels to help map a design space to study and improve prompt temperature feedback with many results. A multi-scale fuel pin analysis was also completed to study more realistic geometries. The results of this research could someday allow for novel nuclear fuels that would behave differently than current fuels. The idea of having a thermal barrier coating in the fuel is contrary to most current thinking. Inherent resistance to reactivity insertion accidents could enable certain reactor types once considered vulnerable to reactivity insertion accidents to be reevaluated in light of improved negative prompt temperature feedback.
NASA Technical Reports Server (NTRS)
Chao, H. C.; Baxter, M.; Cheng, H. S.
1983-01-01
A computer method for determining the dynamic load between spiral bevel pinion and gear teeth contact along the path of contact is described. The dynamic load analysis governs both the surface temperature and film thickness. Computer methods for determining the surface temperature, and film thickness are presented along with results obtained for a pair of typical spiral bevel gears.
Extreme temperature packaging: challenges and opportunities
NASA Astrophysics Data System (ADS)
Johnson, R. Wayne
2016-05-01
Consumer electronics account for the majority of electronics manufactured today. Given the temperature limits of humans, consumer electronics are typically rated for operation from -40°C to +85°C. Military applications extend the range to -65°C to +125°C while underhood automotive electronics may see +150°C. With the proliferation of the Internet of Things (IoT), the goal of instrumenting (sensing, computation, transmission) to improve safety and performance in high temperature environments such as geothermal wells, nuclear reactors, combustion chambers, industrial processes, etc. requires sensors, electronics and packaging compatible with these environments. Advances in wide bandgap semiconductors (SiC and GaN) allow the fabrication of high temperature compatible sensors and electronics. Integration and packaging of these devices is required for implementation into actual applications. The basic elements of packaging are die attach, electrical interconnection and the package or housing. Consumer electronics typically use conductive adhesives or low melting point solders for die attach, wire bonds or low melting solder for electrical interconnection and epoxy for the package. These materials melt or decompose in high temperature environments. This paper examines materials and processes for high temperature packaging including liquid transient phase and sintered nanoparticle die attach, high melting point wires for wire bonding and metal and ceramic packages. The limitations of currently available solutions will also be discussed.
NASA Technical Reports Server (NTRS)
Fesmire, James; Smith, Trent; Breakfield, Robert; Baughner, Kevin; Heckle, Kenneth; Meneghelli, Barry
2010-01-01
The Cryogenic Moisture Apparatus (CMA) is designed for quantifying the amount of moisture from the surrounding air that is taken up by cryogenic-tank-insulating material specimens while under typical conditions of use. More specifically, the CMA holds one face of the specimen at a desired low temperature (e.g., the typical liquid-nitrogen temperature of 77 K) while the opposite face remains exposed to humid air at ambient or near-ambient temperature. The specimen is weighed before and after exposure in the CMA. The difference between the "after" and "before" weights is determined to be the weight of moisture absorbed by the specimen. Notwithstanding the term "cryogenic," the CMA is not limited to cryogenic applications: the low test temperature can be any temperature below ambient, and the specimen can be made of any material affected by moisture in air. The CMA is especially well suited for testing a variety of foam insulating materials, including those on the space-shuttle external cryogenic tanks, on other cryogenic vessels, and in refrigerators used for transporting foods, medicines, and other perishables. Testing is important because absorbed moisture not only adds weight but also, in combination with thermal cycling, can contribute to damage that degrades insulating performance. Materials are changed internally when subjected to large sub-ambient temperature gradients.
Martín-Luengo, Beatriz; Luna, Karlos; Migueles, Malen
2014-01-01
We examined the effects of the thematic congruence between ads and the programme in which they are embedded. We also studied the typicality of the to-be-remembered information (high- and low-typicality elements), and the effect of divided attention in the memory for radio ad contents. Participants listened to four radio programmes with thematically congruent and incongruent ads embedded, and completed a true/false recognition test indicating the level of confidence in their answer. Half of the sample performed an additional task (divided attention group) while listening to the radio excerpts. In general, recognition memory was better for incongruent ads and low-typicality statements. Confidence in hits was higher in the undivided attention group, although there were no differences in performance. Our results suggest that the widespread idea of embedding ads into thematic-congruent programmes negatively affects memory for ads. In addition, low-typicality features that are usually highlighted by advertisers were better remembered than typical contents. Finally, metamemory evaluations were influenced by the inference that memory should be worse if we do several things at the same time.
Cosmology with negative absolute temperatures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vieira, J.P.P.; Byrnes, Christian T.; Lewis, Antony, E-mail: J.Pinto-Vieira@sussex.ac.uk, E-mail: ctb22@sussex.ac.uk, E-mail: antony@cosmologist.info
Negative absolute temperatures (NAT) are an exotic thermodynamical consequence of quantum physics which has been known since the 1950's (having been achieved in the lab on a number of occasions). Recently, the work of Braun et al. [1] has rekindled interest in negative temperatures and hinted at a possibility of using NAT systems in the lab as dark energy analogues. This paper goes one step further, looking into the cosmological consequences of the existence of a NAT component in the Universe. NAT-dominated expanding Universes experience a borderline phantom expansion ( w < -1) with no Big Rip, and their contractingmore » counterparts are forced to bounce after the energy density becomes sufficiently large. Both scenarios might be used to solve horizon and flatness problems analogously to standard inflation and bouncing cosmologies. We discuss the difficulties in obtaining and ending a NAT-dominated epoch, and possible ways of obtaining density perturbations with an acceptable spectrum.« less
Negative Magnetoresistance in Viscous Flow of Two-Dimensional Electrons.
Alekseev, P S
2016-10-14
At low temperatures, in very clean two-dimensional (2D) samples, the electron mean free path for collisions with static defects and phonons becomes greater than the sample width. Under this condition, the electron transport occurs by formation of a viscous flow of an electron fluid. We study the viscous flow of 2D electrons in a magnetic field perpendicular to the 2D layer. We calculate the viscosity coefficients as the functions of magnetic field and temperature. The off-diagonal viscosity coefficient determines the dispersion of the 2D hydrodynamic waves. The decrease of the diagonal viscosity in magnetic field leads to negative magnetoresistance which is temperature and size dependent. Our analysis demonstrates that this viscous mechanism is responsible for the giant negative magnetoresistance recently observed in the ultrahigh-mobility GaAs quantum wells. We conclude that 2D electrons in those structures in moderate magnetic fields should be treated as a viscous fluid.
Negative Magnetoresistance in Viscous Flow of Two-Dimensional Electrons
NASA Astrophysics Data System (ADS)
Alekseev, P. S.
2016-10-01
At low temperatures, in very clean two-dimensional (2D) samples, the electron mean free path for collisions with static defects and phonons becomes greater than the sample width. Under this condition, the electron transport occurs by formation of a viscous flow of an electron fluid. We study the viscous flow of 2D electrons in a magnetic field perpendicular to the 2D layer. We calculate the viscosity coefficients as the functions of magnetic field and temperature. The off-diagonal viscosity coefficient determines the dispersion of the 2D hydrodynamic waves. The decrease of the diagonal viscosity in magnetic field leads to negative magnetoresistance which is temperature and size dependent. Our analysis demonstrates that this viscous mechanism is responsible for the giant negative magnetoresistance recently observed in the ultrahigh-mobility GaAs quantum wells. We conclude that 2D electrons in those structures in moderate magnetic fields should be treated as a viscous fluid.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Walters, M.A.; Sternfeld, J.N.; Haizlip, J.R.
A high-temperature, vapor-dominated reservoir underlies a portion of the northwest Geysers area, Sonoma County, California. The high-temperature reservoir (HTR) is defined by flowing fluid temperatures exceeding 500/sup 0/F, rock temperatures apparently exceeding 600/sup 0/F, and steam enthalpies of about 1320 Btu/lb. The HTR in the northwest Geysers is probably a deep, evolving system in contrast to the shallower, leaky, and mature steam reservoir(s) in the central and southeastern portions of the field. Before natural venting and nearby production caused pressures to decline, the HTR was a liquid-dominated system with some connate water - the connate water being the source ofmore » the high gas contents, chloride, and unique isotopic composition relative to steam from a typical Geysers reservoir. Therefore, the present boundary between the typical reservoir and HTR is a transient, thermodynamic condition due to the recent evolution of a vapor-dominated zone from a liquid-dominated zone that has yet to cool down. It also demarks a previous liquid-to-vapor interface. Pressure in the two reservoirs is essentially the same because they are in communication with each other. In other words, the temperature change in the HTR is lagging (behind) the pressure change.« less
NASA Astrophysics Data System (ADS)
Zhang, Jingchuan; Zhang, Wen; Lv, Jianfeng; Liang, Shuo; Wang, Lei; Li, Xiyuan
2018-01-01
To satisfy the application of fiber grating sensor technology in high vacuum thermal environment, FBG on sleeve compactly single model fiber with two typical different kind of connection such as fiber splicing and optical fiber connector are researched. Influence of the different connection to the characteristic of FBG reflectance spectrum in high vacuum thermal environment is analyzed and verified. First, experimental program of influence on FBG reflection spectrum characteristics is designed. Then, a hardware-in-the-loop detection platform is set up. Finally, the influence of temperature and vacuum on the reflection peak power of FBG with two typical different connections under high vacuum thermal environment is studied and verified. Experimental results indicate that: when vacuum varied from normal pressure to 10-4Pa level and then return to normal pressure, temperature of two different single-mode optical fiber connection dropped to -196 °C from room temperature and then returned to room temperature, after 224 hours, the peak power of the FBG reflectance spectrum did not change. It provided the experimental basis for the application of optical fiber sensing technology in high vacuum (pressure about 10-4Pa level) and thermal environment (-196 °C temperature cycle).
Sakatsuji, Waki; Konishi, Takashi; Miyamoto, Yoshihisa
2016-12-01
The origin of two maxima in specific heat observed at the higher and the lower temperatures in the glass-transition region in the heating process has been studied for polymethyl methacrylate and polyvinyl chloride using differential scanning calorimetry, and the calculation was done using the phenomenological model equation under a thermal history of the typical annealing experiment composed of cooling, annealing, and heating. The higher maximum is observed above the glass-transition temperature, and it remains almost unchanged independent of annealing time t_{a}, while the lower one is observed above an annealing temperature T_{a} and shifts toward the higher one, increasing its magnitude with t_{a}. The analysis by the phenomenological model equation proposed in order to interpret the memory effect in the glassy state clarifies that under a typical annealing history, two maxima in specific heat essentially appear. The shift of the lower maximum toward higher temperatures from above T_{a} is caused by an increase in the amount of relaxation during annealing with t_{a}. The annealing temperature and the amount of relaxation during annealing play a major role in the determination of the number of maxima in the specific heat.
Study on the failure temperature of Ti/Pt/Au and Pt5Si2-Ti/Pt/Au metallization systems
NASA Astrophysics Data System (ADS)
Zhang, Jie; Han, Jianqiang; Yin, Yijun; Dong, Lizhen; Niu, Wenju
2017-09-01
The Ti/Pt/Au metallization system has an advantage of resisting KOH or TMAH solution etching. To form a good ohmic contact, the Ti/Pt/Au metallization system must be alloyed at 400 °C. However, the process temperatures of typical MEMS packaging technologies, such as anodic bonding, glass solder bonding and eutectic bonding, generally exceed 400 °C. It is puzzling if the Ti/Pt/Au system is destroyed during the subsequent packaging process. In the present work, the resistance of doped polysilicon resistors contacted by the Ti/Pt/Au metallization system that have undergone different temperatures and time are measured. The experimental results show that the ohmic contacts will be destroyed if heated to 500 °C. But if a 20 nm Pt film is sputtered on heavily doped polysilicon and alloyed at 700 °C before sputtering Ti/Pt/Au films, the Pt5Si2-Ti/Pt/Au metallization system has a higher service temperature of 500 °C, which exceeds process temperatures of most typical MEMS packaging technologies. Project supported by the National Natural Science Foundation of China (No. 61376114).
Long working hours and sickness absence-a fixed effects design.
Bernstrøm, Vilde Hoff
2018-05-02
While long working hours seem to lead to impaired health, several studies have also shown that long working hours are related to lower levels of sickness absence. Previous studies on the relationship between long working hours and sickness absence have compared those who work long hours to those who do not, looking only at between-individual correlations. Those results might therefore reflect relatively stable differences between employees who typically work long hours and employees who typically do not. The aim of the present study is to examine within-individual correlations between long working hours and sickness absence. Records from the Human Resources department in a large Norwegian hospital from 2012 to 2015 provided objective data on both working hours and sickness absence. Two analyses were performed: a prospective cohort analysis to replicate the results from previous between-individual analyses and a second analysis of within-individual correlations using a fixed effect design. In line with existing research, both between-individual and within-individual analyses showed a negative relationship between long working hours (> 48 h/week) and short-term sickness absence (1-8 days) and no significant difference in incidence of long-term sickness absence (> 8 days). The results indicate that the negative relationship between long working hours and sickness absence is not due only to relatively stable individual differences between those who typically work long hours and those who do not. The results from both analyses therefore still contrast with previous research showing a negative relationship between long working hours and other health indicators.
Pasini, Federica; Verardo, Vito; Cerretani, Lorenzo; Caboni, Maria Fiorenza; D'Antuono, Luigi Filippo
2011-12-01
Salad crops of the Brassicaceae family, such as Diplotaxis tenuifolia and Eruca vesicaria, commonly referred to as 'rocket salads', have attracted considerable interest as culinary vegetables because of their strong flavour and their content of putative health-promoting compounds. Among such compounds, glucosinolates and phenolics are well-known phytochemicals with an important role also in determining the characteristic flavour of these species. In this study, to identify potentially high-value rocket salads, 37 cultivated types were examined for sensory characters and their relations with glucosinolate and phenolic contents, which ranged from 0.76 to 3.03 g kg(-1) dry weight (DW) and from 4.68 to 31.39 g kg(-1) DW, respectively. The perception of bitter taste was significantly affected by specific glucosinolates, namely progoitrin/epiprogoitrin and dimeric glucosativin. Aroma intensity was negatively related to glucoalyssin content, whereas pungency was significantly related to total glucosinolate content. Kaempferol-3-(2-sinapoyl-glucoside)-4'-glucoside was positively and significantly related to all flavour trait perceptions. Aroma intensity, pungency, crunchiness and juiciness were positively related to typical rocket salad flavour perception through a prominent direct effect. Aroma intensity, pungency, crunchiness and juiciness were strong determinants of overall rocket salad flavour perception. Visual traits also characterised sensory components. Bitterness, usually considered a negative flavour trait, was moderately perceived in the examined material, without negatively affecting typical flavour perception. In the range of the examined material, glucosinolate content did not contrast with typical flavour, demonstrating that good taste and putative health-promoting properties may coexist. Copyright © 2011 Society of Chemical Industry.
Poláčková Šolcová, Iva; Lačev, Alek
2017-07-01
Research based on self-reported data often indicates that women are the more emotional sex. The present study examined differences in emotion between the sexes across two components of the emotional process: subjective experience and physiological reactions to emotional stimuli. During the experimental study, participants (N=124; 22.5±2.88; 51 males) subjectively rated their emotional experience (valence and intensity) towards presented positive and negative affective stimuli, while physiological reactions (facial electromyography, heart rate, skin conductance, and finger skin temperature) were measured during expositions. Results from self-reports suggest that women declared more intensive emotional experiences for positive and negative stimuli and rated negative stimuli as more negative in comparison to men. Physiological measurements showed differences between the sexes in the physiological baseline measurements (facial electromyography, skin conductance and finger skin temperature). However, physiological responses towards positive or negative emotional stimuli did not prove to be different between men and women, except for finger skin temperature. Relations between self-reported subjective experiences and physiological changes were weak and insignificant. Collectively, our findings suggest certain emotional differences experienced between men and women. These differences can be found specifically in self-reported subjective experiences, while significant differences were not predominantly present in recorded physiological reactions. Copyright © 2017. Published by Elsevier B.V.
An analytic expression for the sheath criterion in magnetized plasmas with multi-charged ion species
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hatami, M. M., E-mail: m-hatami@kntu.ac.ir
2015-04-15
The generalized Bohm criterion in magnetized multi-component plasmas consisting of multi-charged positive and negative ion species and electrons is analytically investigated by using the hydrodynamic model. It is assumed that the electrons and negative ion density distributions are the Boltzmann distribution with different temperatures and the positive ions enter into the sheath region obliquely. Our results show that the positive and negative ion temperatures, the orientation of the applied magnetic field and the charge number of positive and negative ions strongly affect the Bohm criterion in these multi-component plasmas. To determine the validity of our derived generalized Bohm criterion, itmore » reduced to some familiar physical condition and it is shown that monotonically reduction of the positive ion density distribution leading to the sheath formation occurs only when entrance velocity of ion into the sheath satisfies the obtained Bohm criterion. Also, as a practical application of the obtained Bohm criterion, effects of the ionic temperature and concentration as well as magnetic field on the behavior of the charged particle density distributions and so the sheath thickness of a magnetized plasma consisting of electrons and singly charged positive and negative ion species are studied numerically.« less
Advanced Catalysts for the Ambient Temperature Oxidation of Carbon Monoxide and Formaldehyde
NASA Technical Reports Server (NTRS)
Nalette, Tim; Eldridge, Christopher; Yu, Ping; Alpetkin, Gokhan; Graf, John
2010-01-01
The primary applications for ambient temperature carbon monoxide (CO) oxidation catalysts include emergency breathing masks and confined volume life support systems, such as those employed on the Shuttle. While Hopcalite is typically used in emergency breathing masks for terrestrial applications, in the 1970s, NASA selected a 2% platinum (Pt) on carbon for use on the Shuttle since it is more active and also more tolerant to water vapor. In the last 10-15 years there have been significant advances in ambient temperature CO oxidation catalysts. Langley Research Center developed a monolithic catalyst for ambient temperature CO oxidation operating under stoichiometric conditions for closed loop carbon dioxide (CO2) laser applications which is also advertised as having the potential to oxidize formaldehyde (HCHO) at ambient temperatures. In the last decade it has been discovered that appropriate sized nano-particles of gold are highly active for CO oxidation, even at sub-ambient temperatures, and as a result there has been a wealth of data reported in the literature relating to ambient/low temperature CO oxidation. In the shorter term missions where CO concentrations are typically controlled via ambient temperature oxidation catalysts, formaldehyde is also a contaminant of concern, and requires specially treated carbons such as Calgon Formasorb as untreated activated carbon has effectively no HCHO capacity. This paper examines the activity of some of the newer ambient temperature CO and formaldehyde (HCHO) oxidation catalysts, and measures the performance of the catalysts relative to the NASA baseline Ambient Temperature Catalytic Oxidizer (ATCO) catalyst at conditions of interest for closed loop trace contaminant control systems.
Nelson, Jackie A.; Leerkes, Esther M.; O’Brien, Marion; Calkins, Susan D.; Marcovitch, Stuart
2012-01-01
SYNOPSIS Objective Mothers’ beliefs about their children’s negative emotions and their emotion socialization practices were examined. Design Sixty-five African American and 137 European American mothers of 5-year-old children reported their beliefs and typical responses to children’s negative emotions, and mothers’ emotion teaching practices were observed. Results African American mothers reported that the display of negative emotions was less acceptable than European American mothers, and African American mothers of boys perceived the most negative social consequences for the display of negative emotions. African American mothers reported fewer supportive responses to children’s negative emotions than European Americans and more nonsupportive responses to children’s anger. African American mothers of boys also reported more nonsupportive responses to submissive negative emotions than African American mothers of girls. However, no differences were found by ethnicity or child gender in observed teaching about emotions. Group differences in mothers’ responses to negative emotions were explained, in part, by mothers’ beliefs about emotions. Conclusions Differences in beliefs and practices may reflect African American mothers’ efforts to protect their children from discrimination. PMID:22639552
The fall of the black hole firewall: natural nonmaximal entanglement for the Page curve
NASA Astrophysics Data System (ADS)
Hotta, Masahiro; Sugita, Ayumu
2015-12-01
The black hole firewall conjecture is based on the Page curve hypothesis, which claims that entanglement between a black hole and its Hawking radiation is almost maximum. Adopting canonical typicality for nondegenerate systems with nonvanishing Hamiltonians, we show the entanglement becomes nonmaximal, and energetic singularities (firewalls) do not emerge for general systems. An evaporating old black hole must evolve in Gibbs states with exponentially small error probability after the Page time as long as the states are typical. This means that the ordinarily used microcanonical states are far from typical. The heat capacity computed from the Gibbs states should be nonnegative in general. However, the black hole heat capacity is actually negative due to the gravitational instability. Consequently the states are not typical until the last burst. This requires inevitable modification of the Page curve, which is based on the typicality argument. For static thermal pure states of a large AdS black hole and its Hawking radiation, the entanglement entropy equals the thermal entropy of the smaller system.
Design and experimental investigation of a cryogenic system for environmental test applications
NASA Astrophysics Data System (ADS)
Yan, Lutao; Li, Hong; Liu, Yue; Han, Che; Lu, Tian; Su, Yulei
2015-04-01
This paper is concerned with the design, development and performance testing of a cryogenic system for use in high cooling power instruments for ground-based environmental testing. The system provides a powerful tool for a combined environmental test that consists of high pressure and cryogenic temperatures. Typical cryogenic conditions are liquid hydrogen (LH2) and liquid oxygen (LO2), which are used in many fields. The cooling energy of liquid nitrogen (LN2) and liquid helium (LHe) is transferred to the specimen by a closed loop of helium cycle. In order to minimize the consumption of the LHe, the optimal design of heat recovery exchangers has been used in the system. The behavior of the system is discussed based on experimental data of temperature and pressure. The results show that the temperature range from room temperature to LN2 temperature can be achieved by using LN2, the pressurization process is stable and the high test pressure is maintained. Lower temperatures, below 77 K, can also be obtained with LHe cooling, the typical cooling time is 40 min from 90 K to 22 K. Stable temperatures of 22 K at the inlet of the specimen have been observed, and the system in this work can deliver to the load a cooling power of several hundred watts at a pressure of 0.58 MPa.
An ignored variable: solution preparation temperature in protein crystallization.
Chen, Rui-Qing; Lu, Qin-Qin; Cheng, Qing-Di; Ao, Liang-Bo; Zhang, Chen-Yan; Hou, Hai; Liu, Yong-Ming; Li, Da-Wei; Yin, Da-Chuan
2015-01-19
Protein crystallization is affected by many parameters, among which certain parameters have not been well controlled. The temperature at which the protein and precipitant solutions are mixed (i.e., the ambient temperature during mixing) is such a parameter that is typically not well controlled and is often ignored. In this paper, we show that this temperature can influence protein crystallization. The experimental results showed that both higher and lower mixing temperatures can enhance the success of crystallization, which follows a parabolic curve with an increasing ambient temperature. This work illustrates that the crystallization solution preparation temperature is also an important parameter for protein crystallization. Uncontrolled or poorly controlled room temperature may yield poor reproducibility in protein crystallization.
NASA Astrophysics Data System (ADS)
Chou, Kuan-Yu; Hsu, Nai-Wen; Su, Yi-Hsin; Chou, Chung-Tao; Chiu, Po-Yuan; Chuang, Yen; Li, Jiun-Yun
2018-02-01
We investigate DC characteristics of a two-dimensional electron gas (2DEG) in an undoped Si/SiGe heterostructure and its temperature dependence. An insulated-gate field-effect transistor was fabricated, and transfer characteristics were measured at 4 K-300 K. At low temperatures (T < 45 K), source electrons are injected into the buried 2DEG channel first and drain current increases with the gate voltage. By increasing the gate voltage further, the current saturates followed by a negative transconductance observed, which can be attributed to electron tunneling from the buried channel to the surface channel. Finally, the drain current is saturated again at large gate biases due to parallel conduction of buried and surface channels. By increasing the temperature, an abrupt increase in threshold voltage is observed at T ˜ 45 K and it is speculated that negatively charged impurities at the Al2O3/Si interface are responsible for the threshold voltage shift. At T > 45 K, the current saturation and negative transconductance disappear and the device acts as a normal transistor.
Lewis, Kimberly L; Taubitz, Lauren E; Duke, Michael W; Steuer, Elizabeth L; Larson, Christine L
2015-12-01
Rumination has been shown to increase negative affect and is highly associated with increased duration of depressive episodes. Previous research has shown that enhanced elaborative processing of negative stimuli is often associated with depression and trait rumination. We hypothesized that engaging in rumination would result in sustained elaborative processing of negative information, as measured by late positive potential (LPP) asymmetry, regardless of depression. Participants were experimentally induced to engage in ruminative- or distraction-oriented thoughts and subsequently viewed negative, positive, and neutral images. Our results showed a very specific right-dominant frontal and parietal LPP to negative, but not neutral or positive, pictures in the rumination condition only that was not correlated with any measures of trait rumination or depression symptoms. This suggests that state rumination alone may lead to an enhanced, sustained processing of negative material that is typically associated with depression. (PsycINFO Database Record (c) 2015 APA, all rights reserved).
Negative gravitactic behavior of Caenorhabditis japonica dauer larvae.
Okumura, Etsuko; Tanaka, Ryusei; Yoshiga, Toyoshi
2013-04-15
Gravity on Earth is a constant stimulus and many organisms are able to perceive and respond to it. However, there is no clear evidence that nematodes respond to gravity. In this study, we demonstrated negative gravitaxis in a nematode using dauer larvae (DL) of Caenorhabditis japonica, which form an association with their carrier insect Parastrachia japonensis. Caenorhabditis japonica DL demonstrating nictation, a typical host-finding behavior, had a negative gravitactic behavior, whereas non-nictating C. japonica and C. elegans DL did not. The negative gravitactic index of nictating DL collected from younger nematode cultures was higher than that from older cultures. After a 24 h incubation in M9 buffer, nictating DL did not alter their negative gravitactic behavior, but a longer incubation resulted in less pronounced negative gravitaxis. These results are indicative of negative gravitaxis in nictating C. japonica DL, which is maintained once initiated, seems to be affected by the age of DL and does not appear to be a simple passive mechanism.
Schomberg, Jessica; Schöne, Benjamin; Gruber, Thomas; Quirin, Markus
2016-06-01
Previous research has demonstrated that negative affect influences attentional processes. Here, we investigate whether pre-experimental negative affect predicts a hypervigilant neural response as indicated by increased event-related potential amplitudes in response to neutral and positive visual stimuli. In our study, seventeen male participants filled out the German version of the positive and negative affect schedule (Watson et al. in J Pers Soc Psychol 54:1063-1070, 1988; Krohne et al. in Diagnostica 42:139-156, 1996) and subsequently watched positive (erotica, extreme sports, beautiful women) and neutral (daily activities) photographs while electroencephalogram was recorded. In line with our hypothesis, low state negative affect but not (reduced) positive affect predicted an increase in the first positive event-related potential amplitude P1 as a typical marker of increased selective attention. As this effect occurred in response to non-threatening picture conditions, negative affect may foster an individual's general hypervigilance, a state that has formerly been associated with psychopathology only.
Associations among Negative Parenting, Attention Bias to Anger, and Social Anxiety among Youth
Gulley, Lauren; Oppenheimer, Caroline; Hankin, Benjamin
2014-01-01
Theories of affective learning suggest that early experiences contribute to emotional disorders by influencing the development of processing biases for negative emotional stimuli. Although studies show that physically abused children preferentially attend to angry faces, it is unclear whether youth exposed to more typical aspects of negative parenting would exhibit the same type of bias. The current studies extend previous research by linking observed negative parenting styles (e.g. authoritarian) and behaviors (e.g. criticism and negative affect) to attention bias for angry faces in both a psychiatrically enriched (ages 11–17 years; N = 60) and a general community (ages 9–15 years; N = 75) sample of youth. In addition, the association between observed negative parenting (e.g. authoritarian style and negative affect) and youth social anxiety was mediated by attention bias for angry faces in the general community sample. Overall, findings provide preliminary support for theories of affective learning and risk for psychopathology among youth. PMID:23815705
Associations among negative parenting, attention bias to anger, and social anxiety among youth.
Gulley, Lauren D; Oppenheimer, Caroline W; Hankin, Benjamin L
2014-02-01
Theories of affective learning suggest that early experiences contribute to emotional disorders by influencing the development of processing biases for negative emotional stimuli. Although studies have shown that physically abused children preferentially attend to angry faces, it is unclear whether youth exposed to more typical aspects of negative parenting exhibit the same type of bias. The current studies extend previous research by linking observed negative parenting styles (e.g., authoritarian) and behaviors (e.g., criticism and negative affect) to attention bias for angry faces in both a psychiatrically enriched (ages 11-17 years; N = 60) and a general community (ages 9-15 years; N = 75) sample of youth. In addition, the association between observed negative parenting (e.g., authoritarian style and negative affect) and youth social anxiety was mediated by attention bias for angry faces in the general community sample. Overall, findings provide preliminary support for theories of affective learning and risk for psychopathology among youth.
NASA Technical Reports Server (NTRS)
Barrett, Charles A.
1999-01-01
Power systems with operating temperatures in the range of 815 to 982 C (1500 to 1800 F) frequently require alloys that can operate for long times at these temperatures. A critical requirement is that these alloys have adequate oxidation resistance. The alloys used in these power systems require thousands of hours of operating life with intermittent shutdown to room temperature. Intermittent power plant shutdowns, however, offer the possibility that the protective scale will tend to spall (i.e., crack and flake off) upon cooling, increasing the rate of oxidative attack in subsequent heating cycles. Thus, it is critical that candidate alloys be evaluated for cyclic oxidation behavior. It was determined that exposing test alloys to ten 1000-hr cycles in static air at 982 10 000-hr Cyclic Oxidation Behavior of 68 High-Temperature Co-, Fe-, and Ni-Base Alloys Evaluated at 982 C (1800 F) could give a reasonable simulation of long-time power plant operation. Iron- (Fe-), nickel- (Ni-), and cobalt- (Co-) based high-temperature alloys with sufficient chromium (Cr) and/or aluminum (Al) content can exhibit excellent oxidation resistance. The protective oxides formed by these classes of alloys are typically Cr2O3 and/or Al2O3, and are usually influenced by their Cr, or Cr and Al, content. Sixty-eight Co-, Fe-, and Ni-base high-temperature alloys, typical of those used at this temperature or higher, were used in this study. At the NASA Lewis Research Center, the alloys were tested and compared on the basis of their weight change as a function of time, x-ray diffraction of the protective scale composition, and the physical appearance of the exposed samples. Although final appearance and x-ray diffraction of the final scale products were two factors used to evaluate the oxidation resistance of each alloy, the main criterion was the oxidation kinetics inferred from the specific weight change versus time data. These data indicated a range of oxidation behavior including parabolic (typical of isothermal oxidation), paralinear, linear, and mixed-linear kinetics.
Lewis, Melissa A.; Neighbors, Clayton; Geisner, Irene Markman; Lee, Christine M.; Kilmer, Jason R.; Atkins, David C.
2009-01-01
The present study examined a range of injunctive norms for alcohol use and related consequences from less severe behaviors (e.g., drinking with friends) to more severe behaviors (e.g., drinking enough alcohol to pass out), and their relationship with alcohol consumption and alcohol-related negative consequences among college students. In addition, this research aimed to determine if these relationships between injunctive norms and consequences were moderated by alcohol consumption and level of identification with the typical same-sex college student. A random sample (N = 1,002) of undergraduates (56.9% female) completed a Web–based survey that was comprised of measures of drinking behavior, perceived approval of drinking behaviors that ranged in severity (i.e., injunctive norms), and level of identification with the typical same-sex college student. Results suggest that the association between negative consequences and injunctive drinking norms depend on one's own drinking behavior, identification with other students, and the severity of the alcohol use and related consequences for which injunctive norms are assessed. Findings are discussed in terms of false consensus and false uniqueness effects, and deviance regulation perspectives. Implications for preventative interventions are discussed. PMID:20565144
Radiative PQ breaking and the Higgs boson mass
NASA Astrophysics Data System (ADS)
D'Eramo, Francesco; Hall, Lawrence J.; Pappadopulo, Duccio
2015-06-01
The small and negative value of the Standard Model Higgs quartic coupling at high scales can be understood in terms of anthropic selection on a landscape where large and negative values are favored: most universes have a very short-lived electroweak vacuum and typical observers are in universes close to the corresponding metastability boundary. We provide a simple example of such a landscape with a Peccei-Quinn symmetry breaking scale generated through dimensional transmutation and supersymmetry softly broken at an intermediate scale. Large and negative contributions to the Higgs quartic are typically generated on integrating out the saxion field. Cancellations among these contributions are forced by the anthropic requirement of a sufficiently long-lived electroweak vacuum, determining the multiverse distribution for the Higgs quartic in a similar way to that of the cosmological constant. This leads to a statistical prediction of the Higgs boson mass that, for a wide range of parameters, yields the observed value within the 1σ statistical uncertainty of ˜ 5 GeV originating from the multiverse distribution. The strong CP problem is solved and single-component axion dark matter is predicted, with an abundance that can be understood from environmental selection. A more general setting for the Higgs mass prediction is discussed.
An anti-herbivore defense mutualism under elevated CO2 levels
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marks, S.; Lincoln, D.E.
Previous studies have shown that insects typically consume more when fed leaf tissue grown under CO2 enrichment, but with few negative effects on growth. On the other hand, Lepidopteran larvae fed tissue infected with Balansiae fungal endophytes (which produce toxic alkaloids) typically eat less but suffer negative effects on growth and survival. This study was carried out to see how these two factors would interact to affect consumption and growth of Fall Armyworm larvae (Spodoptera frugiperda). Infected and uninfected ramets of a single genotype of tall fescue (Festuca arundinacea) were grown under CO2 concentrations of 400 and 700 ul/L. Larvaemore » had increased relative growth in the high CO2 treatment, but decreased growth when fed infected tissue. Relative consumption of leaf tissue was greater in the high CO2 treatment, but was not effected by infection. CO2 level, infection, and their interaction all significantly reduced the efficiency of conversion of food ingested (ECI). It appears that tall fescue may not be as well defended against herbivores under CO2 enrichment, although insects may still avoid and be negatively effected by endophyte infected plants.« less
Coherent variability between seasonal temperatures and rainfalls in the Iberian Peninsula, 1951-2016
NASA Astrophysics Data System (ADS)
Rodrigo, F. S.
2018-02-01
In this work trends of seasonal mean of daily minimum (TN), maximum (TX), mean (TM) temperatures, daily range of temperature (DTR), and total seasonal rainfall (R) in 35 Iberian stations since mid-twentieth century are studied. The interest is focused on the relationships between temperature variables and rainfall, taking into account the correlation coefficients between R and the temperature variables. The negative link between rainfall and temperatures is detected in the four seasons of the year, except in western stations in winter for TN and TM, and in autumn for TN (for this variable a certain annual cycle is detected, with predominance of positive correlation in winter, negative in spring and summer, and the autumn as transition season). The role of cloud cover is confirmed in those stations with total cloud cover data. Using an average peninsular series, the relationship between nighttime temperature and rainfall related to long wave radiation is confirmed for the four seasons of the year, although in spring and summer has minor importance than in the cold half year. The relationships between R, TN, and TX are in general terms stable after a moving correlation analysis, although the negative correlation between TX and R seems be weakened in spring and autumn and reinforced in summer. The role of convective precipitation in autumn is discussed. The analysis of combined extreme indices in four representative stations shows an increase of warm and dry days, and a decrease of cold and wet days.
On the Temperature Dependence of Enzyme-Catalyzed Rates.
Arcus, Vickery L; Prentice, Erica J; Hobbs, Joanne K; Mulholland, Adrian J; Van der Kamp, Marc W; Pudney, Christopher R; Parker, Emily J; Schipper, Louis A
2016-03-29
One of the critical variables that determine the rate of any reaction is temperature. For biological systems, the effects of temperature are convoluted with myriad (and often opposing) contributions from enzyme catalysis, protein stability, and temperature-dependent regulation, for example. We have coined the phrase "macromolecular rate theory (MMRT)" to describe the temperature dependence of enzyme-catalyzed rates independent of stability or regulatory processes. Central to MMRT is the observation that enzyme-catalyzed reactions occur with significant values of ΔCp(‡) that are in general negative. That is, the heat capacity (Cp) for the enzyme-substrate complex is generally larger than the Cp for the enzyme-transition state complex. Consistent with a classical description of enzyme catalysis, a negative value for ΔCp(‡) is the result of the enzyme binding relatively weakly to the substrate and very tightly to the transition state. This observation of negative ΔCp(‡) has important implications for the temperature dependence of enzyme-catalyzed rates. Here, we lay out the fundamentals of MMRT. We present a number of hypotheses that arise directly from MMRT including a theoretical justification for the large size of enzymes and the basis for their optimum temperatures. We rationalize the behavior of psychrophilic enzymes and describe a "psychrophilic trap" which places limits on the evolution of enzymes in low temperature environments. One of the defining characteristics of biology is catalysis of chemical reactions by enzymes, and enzymes drive much of metabolism. Therefore, we also expect to see characteristics of MMRT at the level of cells, whole organisms, and even ecosystems.
NASA Astrophysics Data System (ADS)
Akamatsu, G.; Ikari, Y.; Ohnishi, A.; Nishida, H.; Aita, K.; Sasaki, M.; Yamamoto, Y.; Sasaki, M.; Senda, M.
2016-08-01
Amyloid PET is useful for early and/or differential diagnosis of Alzheimer’s disease (AD). Quantification of amyloid deposition using PET has been employed to improve diagnosis and to monitor AD therapy, particularly in research. Although MRI is often used for segmentation of gray matter and for spatial normalization into standard Montreal Neurological Institute (MNI) space where region-of-interest (ROI) template is defined, 3D MRI is not always available in clinical practice. The purpose of this study was to examine the feasibility of PET-only amyloid quantification with an adaptive template and a pre-defined standard ROI template that has been empirically generated from typical cases. A total of 68 subjects who underwent brain 11C-PiB PET were examined. The 11C-PiB images were non-linearly spatially normalized to the standard MNI T1 atlas using the same transformation parameters of MRI-based normalization. The automatic-anatomical-labeling-ROI (AAL-ROI) template was applied to the PET images. All voxel values were normalized by the mean value of cerebellar cortex to generate the SUVR-scaled images. Eleven typical positive images and eight typical negative images were normalized and averaged, respectively, and were used as the positive and negative template. Positive and negative masks which consist of voxels with SUVR ⩾1.7 were extracted from both templates. Empirical PiB-prone ROI (EPP-ROI) was generated by subtracting the negative mask from the positive mask. The 11C-PiB image of each subject was non-rigidly normalized to the positive and negative template, respectively, and the one with higher cross-correlation was adopted. The EPP-ROI was then inversely transformed to individual PET images. We evaluated differences of SUVR between standard MRI-based method and PET-only method. We additionally evaluated whether the PET-only method would correctly categorize 11C-PiB scans as positive or negative. Significant correlation was observed between the SUVRs obtained with AAL-ROI and those with EPP-ROI when MRI-based normalization was used, the latter providing higher SUVR. When EPP-ROI was used, MRI-based method and PET-only method provided almost identical SUVR. All 11C-PiB scans were correctly categorized into positive and negative using a cutoff value of 1.7 as compared to visual interpretation. The 11C-PiB SUVR were 2.30 ± 0.24 and 1.25 ± 0.11 for the positive and negative images. PET-only amyloid quantification method with adaptive templates and EPP-ROI can provide accurate, robust and simple amyloid quantification without MRI.
Multisystem Temperature Equilibration and the Second Law
ERIC Educational Resources Information Center
Leff, Harvey S.
1977-01-01
Shows that the entropy change during the temperature equilibration of an isolated collection of systems which may exchange heat (but not work) energy is positive when the constant-volume heat capacity of each system is a non-negative function of the temperature. (MLH)
DEVELOPMENT OF A HIGH-TEMPERATURE/HIGH-PRESSURE ELECTROSTATIC PRECIPITATOR
The report gives results of a laboratory test demonstrating the feasibility of electrostatic precipitation at high temperatures (to 1366 K) and pressures (to 3550 kPa): corona currents were stable at all temperatures. Detailed current/voltage characteristics under negative and po...
Wilberg, D.E.; Stolp, B.J.
1985-01-01
Hydrologic, geologic, and partial water quality data were collected at 90 selected springs in west-central Utah, and chemical analyses performed on water samples from 62 of the springs. Descriptions of the physiographic and geologic conditions, climate, and vegetation patterns for the study area are included. Allowable limits of certain chemical constituents in water for human and livestock consumption are included with the water quality data. Three classifications of springs were established based on physical characteristics of the springs, and chemical composition of the springflow: (1) mountain springs; (2) non-thermal valley springs, and (3) thermal valley springs. Mountain springs are in and near recharge areas, have seasonal variations of discharge and temperature, typically discharge from extrusive and metamorphic geohydrologic units, and generally discharge freshwater. Non-thermal valley springs are peripheral to recharge areas, have seasonal variations of discharge and temperature, typically discharge from a variety of geohydrologic units, and have variable water composition. Thermal valley springs are near topographic low areas of valleys , and have little seasonal variation of discharge or temperature. They typically discharge from unconsolidated deposits (but the discharge probably has flowed through buried carbonate geohydrologic units). They also have a considerable range of water composition that reflects the relative complexity of the groundwater system. (Author 's abstract)
Feasibility study of negative lift circumferential type seal for helicopter transmissions
NASA Technical Reports Server (NTRS)
Goldring, E. N.
1977-01-01
A new seal concept, the negative lift circumferential type seal, was evaluated under simulated helicopter transmission conditions. The bore of the circumferential seal contains step type geometry which produces a negative lift that urges the sealing segments towards the shaft surface. The seal size was a 2.5 inch bore and the test speeds were 7000 and 14,250 rpm. During the 300 hour test at typical transmission seal pressure (to 2 psig) the leakage was within acceptable limits and generally less than 0.1 cc/hour during the last 150 hours of testing. The wear to the carbon segments during the 300 hours was negligible.
Torres, Mariela; Pierantozzi, Pierluigi; Searles, Peter; Rousseaux, M Cecilia; García-Inza, Georgina; Miserere, Andrea; Bodoira, Romina; Contreras, Cibeles; Maestri, Damián
2017-01-01
Olive ( Olea europaea L.) is a crop well adapted to the environmental conditions prevailing in the Mediterranean Basin. Nevertheless, the increasing international demand for olive oil and table olives in the last two decades has led to expansion of olive cultivation in some countries of the southern hemisphere, notably in Argentina, Chile, Perú and Australia. While the percentage of world production represented by these countries is still low, many of the new production regions do not have typical Mediterranean climates, and some are located at subtropical latitudes where there is relatively little information about crop function. Thus, the primary objective of this review was to assess recently published scientific literature on olive cultivation in these new crop environments. The review focuses on three main aspects: (a) chilling requirements for flowering, (b) water requirements and irrigation management, and (c) environmental effects on fruit oil concentration and quality. In many arid and semiarid regions of South America, temperatures are high and rainfall is low in the winter and early spring months compared to conditions in much of the Mediterranean Basin. High temperatures have often been found to have detrimental effects on olive flowering in many olive cultivars that have been introduced to South America, and a better understanding of chilling requirements is needed. Lack of rainfall in the winter and spring also has resulted in an urgent need to evaluate water requirements from the flower differentiation period in the winter to early fruit bearing. Additionally, in some olive growing areas of South America and Australia, high early season temperatures affect the timing of phenological events such that the onset of oil synthesis occurs sooner than in the Mediterranean Basin with most oil accumulation taking place in the summer when temperatures are very high. Increasing mean daily temperatures have been demonstrated to decrease fruit oil concentration (%) and negatively affect some aspects of oil quality based on both correlative field studies and manipulative experiments. From a practical standpoint, current findings could be used as approximate tools to determine whether the temperature conditions in a proposed new growing region are appropriate for achieving sustainable oil productivity and quality.
Torres, Mariela; Pierantozzi, Pierluigi; Searles, Peter; Rousseaux, M. Cecilia; García-Inza, Georgina; Miserere, Andrea; Bodoira, Romina; Contreras, Cibeles; Maestri, Damián
2017-01-01
Olive (Olea europaea L.) is a crop well adapted to the environmental conditions prevailing in the Mediterranean Basin. Nevertheless, the increasing international demand for olive oil and table olives in the last two decades has led to expansion of olive cultivation in some countries of the southern hemisphere, notably in Argentina, Chile, Perú and Australia. While the percentage of world production represented by these countries is still low, many of the new production regions do not have typical Mediterranean climates, and some are located at subtropical latitudes where there is relatively little information about crop function. Thus, the primary objective of this review was to assess recently published scientific literature on olive cultivation in these new crop environments. The review focuses on three main aspects: (a) chilling requirements for flowering, (b) water requirements and irrigation management, and (c) environmental effects on fruit oil concentration and quality. In many arid and semiarid regions of South America, temperatures are high and rainfall is low in the winter and early spring months compared to conditions in much of the Mediterranean Basin. High temperatures have often been found to have detrimental effects on olive flowering in many olive cultivars that have been introduced to South America, and a better understanding of chilling requirements is needed. Lack of rainfall in the winter and spring also has resulted in an urgent need to evaluate water requirements from the flower differentiation period in the winter to early fruit bearing. Additionally, in some olive growing areas of South America and Australia, high early season temperatures affect the timing of phenological events such that the onset of oil synthesis occurs sooner than in the Mediterranean Basin with most oil accumulation taking place in the summer when temperatures are very high. Increasing mean daily temperatures have been demonstrated to decrease fruit oil concentration (%) and negatively affect some aspects of oil quality based on both correlative field studies and manipulative experiments. From a practical standpoint, current findings could be used as approximate tools to determine whether the temperature conditions in a proposed new growing region are appropriate for achieving sustainable oil productivity and quality. PMID:29163569