Decadal water quality variations at three typical basins of Mekong, Murray and Yukon
NASA Astrophysics Data System (ADS)
Khan, Afed U.; Jiang, Jiping; Wang, Peng
2018-02-01
Decadal distribution of water quality parameters is essential for surface water management. Decadal distribution analysis was conducted to assess decadal variations in water quality parameters at three typical watersheds of Murray, Mekong and Yukon. Right distribution shifts were observed for phosphorous and nitrogen parameters at the Mekong watershed monitoring sites while left shifts were noted at the Murray and Yukon monitoring sites. Nutrients pollution increases with time at the Mekong watershed while decreases at the Murray and Yukon watershed monitoring stations. The results implied that watershed located in densely populated developing area has higher risk of water quality deterioration in comparison to thinly populated developed area. The present study suggests best management practices at watershed scale to modulate water pollution.
On-Line Water Quality Parameters as Indicators of Distribution System Contamination
At a time when the safety and security of services we have typically taken for granted are under question, a real-time or near real-time method of monitoring changes in water quality parameters could provide a critical line of defense in protecting public health. This study was u...
Barriers to adopting satellite remote sensing for water quality management
Satellite technology can provide a robust and synoptic approach for measuring water quality parameters. Water quality measures typically include chlorophyll-a, suspended material, light attenuation, and colored dissolved organic matter. The Hyperspectral Imager for the Coastal ...
Assessment of groundwater quality in a typical rural settlement in southwest Nigeria.
Adekunle, I M; Adetunji, M T; Gbadebo, A M; Banjoko, O P
2007-12-01
In most rural settlements in Nigeria, access to clean and potable water is a great challenge, resulting in water borne diseases. The aim of this study was to assess the levels of some physical, chemical, biochemical and microbial water quality parameters in twelve hand - dug wells in a typical rural area (Igbora) of southwest region of the country. Seasonal variations and proximity to pollution sources (municipal waste dumps and defecation sites) were also examined. Parameters were determined using standard procedures. All parameters were detected up to 200 m from pollution source and most of them increased in concentration during the rainy season over the dry periods, pointing to infiltrations from storm water. Coliform population, Pb, NO3- and Cd in most cases, exceeded the World Health Organization recommended thresholds for potable water. Effect of distance from pollution sources was more pronounced on fecal and total coliform counts, which decreased with increasing distance from waste dumps. The qualities of the well water samples were therefore not suitable for human consumption without adequate treatment. Regular monitoring of groundwater quality, abolishment of unhealthy waste disposal practices and introduction of modern techniques are recommended.
Gu, Qing; Wang, Ke; Li, Jiadan; Ma, Ligang; Deng, Jinsong; Zheng, Kefeng; Zhang, Xiaobin; Sheng, Li
2015-01-01
It is widely accepted that characterizing the spatio-temporal trends of water quality parameters and identifying correlated variables with water quality are indispensable for the management and protection of water resources. In this study, cluster analysis was used to classify 56 typical drinking water reservoirs in Zhejiang Province into three groups representing different water quality levels, using data of four water quality parameters for the period 2006–2010. Then, the spatio-temporal trends in water quality were analyzed, assisted by geographic information systems (GIS) technology and statistical analysis. The results indicated that the water quality showed a trend of degradation from southwest to northeast, and the overall water quality level was exacerbated during the study period. Correlation analysis was used to evaluate the relationships between water quality parameters and ten independent variables grouped into four categories (land use, socio-economic factors, geographical features, and reservoir attributes). According to the correlation coefficients, land use and socio-economic indicators were identified as the most significant factors related to reservoir water quality. The results offer insights into the spatio-temporal variations of water quality parameters and factors impacting the water quality of drinking water reservoirs in Zhejiang Province, and they could assist managers in making effective strategies to better protect water resources. PMID:26492263
Gu, Qing; Wang, Ke; Li, Jiadan; Ma, Ligang; Deng, Jinsong; Zheng, Kefeng; Zhang, Xiaobin; Sheng, Li
2015-10-20
It is widely accepted that characterizing the spatio-temporal trends of water quality parameters and identifying correlated variables with water quality are indispensable for the management and protection of water resources. In this study, cluster analysis was used to classify 56 typical drinking water reservoirs in Zhejiang Province into three groups representing different water quality levels, using data of four water quality parameters for the period 2006-2010. Then, the spatio-temporal trends in water quality were analyzed, assisted by geographic information systems (GIS) technology and statistical analysis. The results indicated that the water quality showed a trend of degradation from southwest to northeast, and the overall water quality level was exacerbated during the study period. Correlation analysis was used to evaluate the relationships between water quality parameters and ten independent variables grouped into four categories (land use, socio-economic factors, geographical features, and reservoir attributes). According to the correlation coefficients, land use and socio-economic indicators were identified as the most significant factors related to reservoir water quality. The results offer insights into the spatio-temporal variations of water quality parameters and factors impacting the water quality of drinking water reservoirs in Zhejiang Province, and they could assist managers in making effective strategies to better protect water resources.
Effects of process parameters on the molding quality of the micro-needle array
NASA Astrophysics Data System (ADS)
Qiu, Z. J.; Ma, Z.; Gao, S.
2016-07-01
Micro-needle array, which is used in medical applications, is a kind of typical injection molded products with microstructures. Due to its tiny micro-features size and high aspect ratios, it is more likely to produce short shots defects, leading to poor molding quality. The injection molding process of the micro-needle array was studied in this paper to find the effects of the process parameters on the molding quality of the micro-needle array and to provide theoretical guidance for practical production of high-quality products. With the shrinkage ratio and warpage of micro needles as the evaluation indices of the molding quality, the orthogonal experiment was conducted and the analysis of variance was carried out. According to the results, the contribution rates were calculated to determine the influence of various process parameters on molding quality. The single parameter method was used to analyse the main process parameter. It was found that the contribution rate of the holding pressure on shrinkage ratio and warpage reached 83.55% and 94.71% respectively, far higher than that of the other parameters. The study revealed that the holding pressure is the main factor which affects the molding quality of micro-needle array so that it should be focused on in order to obtain plastic parts with high quality in the practical production.
Use of the Plasma Spectrum RMS Signal for Arc-Welding Diagnostics.
Mirapeix, Jesus; Cobo, Adolfo; Fuentes, Jose; Davila, Marta; Etayo, Juan Maria; Lopez-Higuera, Jose-Miguel
2009-01-01
A new spectroscopic parameter is used in this paper for on-line arc-welding quality monitoring. Plasma spectroscopy applied to welding diagnostics has typically relied on the estimation of the plasma electronic temperature, as there is a known correlation between this parameter and the quality of the seams. However, the practical use of this parameter gives rise to some uncertainties that could provoke ambiguous results. For an efficient on-line welding monitoring system, it is essential to prevent the appearance of false alarms, as well as to detect all the possible defects. In this regard, we propose the use of the root mean square signal of the welding plasma spectra, as this parameter will be proven to exhibit a good correlation with the quality of the resulting seams. Results corresponding to several arc-welding field tests performed on Inconel and titanium specimens will be discussed and compared to non-destructive evaluation techniques.
Use of the Plasma Spectrum RMS Signal for Arc-Welding Diagnostics
Mirapeix, Jesus; Cobo, Adolfo; Fuentes, Jose; Davila, Marta; Etayo, Juan Maria; Lopez-Higuera, Jose-Miguel
2009-01-01
A new spectroscopic parameter is used in this paper for on-line arc-welding quality monitoring. Plasma spectroscopy applied to welding diagnostics has typically relied on the estimation of the plasma electronic temperature, as there is a known correlation between this parameter and the quality of the seams. However, the practical use of this parameter gives rise to some uncertainties that could provoke ambiguous results. For an efficient on-line welding monitoring system, it is essential to prevent the appearance of false alarms, as well as to detect all the possible defects. In this regard, we propose the use of the root mean square signal of the welding plasma spectra, as this parameter will be proven to exhibit a good correlation with the quality of the resulting seams. Results corresponding to several arc-welding field tests performed on Inconel and titanium specimens will be discussed and compared to non-destructive evaluation techniques. PMID:22346696
Modelling Parameters Characterizing Selected Water Supply Systems in Lower Silesia Province
NASA Astrophysics Data System (ADS)
Nowogoński, Ireneusz; Ogiołda, Ewa
2017-12-01
The work presents issues of modelling water supply systems in the context of basic parameters characterizing their operation. In addition to typical parameters, such as water pressure and flow rate, assessing the age of the water is important, as a parameter of assessing the quality of the distributed medium. The analysis was based on two facilities, including one with a diverse spectrum of consumers, including residential housing and industry. The carried out simulations indicate the possibility of the occurrence of water quality degradation as a result of excessively long periods of storage in the water supply network. Also important is the influence of the irregularity of water use, especially in the case of supplying various kinds of consumers (in the analysed case - mining companies).
Luo, Chuan; Li, Zhaofu; Li, Hengpeng; Chen, Xiaomin
2015-09-02
The application of hydrological and water quality models is an efficient approach to better understand the processes of environmental deterioration. This study evaluated the ability of the Annualized Agricultural Non-Point Source (AnnAGNPS) model to predict runoff, total nitrogen (TN) and total phosphorus (TP) loading in a typical small watershed of a hilly region near Taihu Lake, China. Runoff was calibrated and validated at both an annual and monthly scale, and parameter sensitivity analysis was performed for TN and TP before the two water quality components were calibrated. The results showed that the model satisfactorily simulated runoff at annual and monthly scales, both during calibration and validation processes. Additionally, results of parameter sensitivity analysis showed that the parameters Fertilizer rate, Fertilizer organic, Canopy cover and Fertilizer inorganic were more sensitive to TN output. In terms of TP, the parameters Residue mass ratio, Fertilizer rate, Fertilizer inorganic and Canopy cover were the most sensitive. Based on these sensitive parameters, calibration was performed. TN loading produced satisfactory results for both the calibration and validation processes, whereas the performance of TP loading was slightly poor. The simulation results showed that AnnAGNPS has the potential to be used as a valuable tool for the planning and management of watersheds.
Design of a digital ride quality augmentation system for commuter aircraft
NASA Technical Reports Server (NTRS)
Hammond, T. A.; Amin, S. P.; Paduano, J. D.; Downing, D. R.
1984-01-01
Commuter aircraft typically have low wing loadings, and fly at low altitudes, and so they are susceptible to undesirable accelerations caused by random atmospheric turbulence. Larger commercial aircraft typically have higher wing loadings and fly at altitudes where the turbulence level is lower, and so they provide smoother rides. This project was initiated based on the goal of making the ride of the commuter aircraft as smooth as the ride experienced on the major commercial airliners. The objectives of this project were to design a digital, longitudinal mode ride quality augmentation system (RQAS) for a commuter aircraft, and to investigate the effect of selected parameters on those designs.
Tsai, Wen-Ping; Huang, Shih-Pin; Cheng, Su-Ting; Shao, Kwang-Tsao; Chang, Fi-John
2017-02-01
The steep slopes of rivers can easily lead to large variations in river water quality during typhoon seasons in Taiwan, which may poses significant impacts on riverine eco-hydrological environments. This study aims to investigate the relationship between fish communities and water quality by using artificial neural networks (ANNs) for comprehending the upstream eco-hydrological system in northern Taiwan. We collected a total of 276 heterogeneous datasets with 8 water quality parameters and 25 fish species from 10 sampling sites. The self-organizing feature map (SOM) was used to cluster, analyze and visualize the heterogeneous datasets. Furthermore, the structuring index (SI) was adopted to determine the relative importance of each input variable of the SOM and identify the indicator factors. The clustering results showed that the SOM could suitably reflect the spatial characteristics of fishery sampling sites. Besides, the patterns of water quality parameters and fish species could be distinguishably (visually) classified into three eco-water quality groups: 1) typical upstream freshwater fishes that depended the most on dissolved oxygen (DO); 2) typical middle-lower reach riverine freshwater fishes that depended the most on total phosphorus (TP) and ammonia nitrogen; and 3) low lands or pond (reservoirs) freshwater fishes that depended the most on water temperature, suspended solids and chemical oxygen demand. According to the results of the SI, the representative indicators of water quality parameters and fish species consisted of DO, TP and Onychostoma barbatulum. This grouping result suggested that the methodology can be used as a guiding reference to comprehensively relate ecology to water quality. Our methods offer a cost-effective alternative to more traditional methods for identifying key water quality factors relating to fish species. In addition, visualizing the constructed topological maps of the SOM could produce detailed inter-relation between water quality and the fish species of stream habitat units. Copyright © 2016 Elsevier B.V. All rights reserved.
Spatial interpolation quality assessments for soil sensor transect datasets
USDA-ARS?s Scientific Manuscript database
Near-ground geophysical soil sensors provide extremely valuable information for precision agriculture applications. Indeed, their readings can be used as proxy for many soil parameters. Typically, leave-one-out (loo) cross-validation (CV) of spatial interpolation of sensor data returns overly optimi...
Real-time parameter optimization based on neural network for smart injection molding
NASA Astrophysics Data System (ADS)
Lee, H.; Liau, Y.; Ryu, K.
2018-03-01
The manufacturing industry has been facing several challenges, including sustainability, performance and quality of production. Manufacturers attempt to enhance the competitiveness of companies by implementing CPS (Cyber-Physical Systems) through the convergence of IoT(Internet of Things) and ICT(Information & Communication Technology) in the manufacturing process level. Injection molding process has a short cycle time and high productivity. This features have been making it suitable for mass production. In addition, this process is used to produce precise parts in various industry fields such as automobiles, optics and medical devices. Injection molding process has a mixture of discrete and continuous variables. In order to optimized the quality, variables that is generated in the injection molding process must be considered. Furthermore, Optimal parameter setting is time-consuming work to predict the optimum quality of the product. Since the process parameter cannot be easily corrected during the process execution. In this research, we propose a neural network based real-time process parameter optimization methodology that sets optimal process parameters by using mold data, molding machine data, and response data. This paper is expected to have academic contribution as a novel study of parameter optimization during production compare with pre - production parameter optimization in typical studies.
Luo, Chuan; Li, Zhaofu; Li, Hengpeng; Chen, Xiaomin
2015-01-01
The application of hydrological and water quality models is an efficient approach to better understand the processes of environmental deterioration. This study evaluated the ability of the Annualized Agricultural Non-Point Source (AnnAGNPS) model to predict runoff, total nitrogen (TN) and total phosphorus (TP) loading in a typical small watershed of a hilly region near Taihu Lake, China. Runoff was calibrated and validated at both an annual and monthly scale, and parameter sensitivity analysis was performed for TN and TP before the two water quality components were calibrated. The results showed that the model satisfactorily simulated runoff at annual and monthly scales, both during calibration and validation processes. Additionally, results of parameter sensitivity analysis showed that the parameters Fertilizer rate, Fertilizer organic, Canopy cover and Fertilizer inorganic were more sensitive to TN output. In terms of TP, the parameters Residue mass ratio, Fertilizer rate, Fertilizer inorganic and Canopy cover were the most sensitive. Based on these sensitive parameters, calibration was performed. TN loading produced satisfactory results for both the calibration and validation processes, whereas the performance of TP loading was slightly poor. The simulation results showed that AnnAGNPS has the potential to be used as a valuable tool for the planning and management of watersheds. PMID:26364642
An interval programming model for continuous improvement in micro-manufacturing
NASA Astrophysics Data System (ADS)
Ouyang, Linhan; Ma, Yizhong; Wang, Jianjun; Tu, Yiliu; Byun, Jai-Hyun
2018-03-01
Continuous quality improvement in micro-manufacturing processes relies on optimization strategies that relate an output performance to a set of machining parameters. However, when determining the optimal machining parameters in a micro-manufacturing process, the economics of continuous quality improvement and decision makers' preference information are typically neglected. This article proposes an economic continuous improvement strategy based on an interval programming model. The proposed strategy differs from previous studies in two ways. First, an interval programming model is proposed to measure the quality level, where decision makers' preference information is considered in order to determine the weight of location and dispersion effects. Second, the proposed strategy is a more flexible approach since it considers the trade-off between the quality level and the associated costs, and leaves engineers a larger decision space through adjusting the quality level. The proposed strategy is compared with its conventional counterparts using an Nd:YLF laser beam micro-drilling process.
Error assessment of biogeochemical models by lower bound methods (NOMMA-1.0)
NASA Astrophysics Data System (ADS)
Sauerland, Volkmar; Löptien, Ulrike; Leonhard, Claudine; Oschlies, Andreas; Srivastav, Anand
2018-03-01
Biogeochemical models, capturing the major feedbacks of the pelagic ecosystem of the world ocean, are today often embedded into Earth system models which are increasingly used for decision making regarding climate policies. These models contain poorly constrained parameters (e.g., maximum phytoplankton growth rate), which are typically adjusted until the model shows reasonable behavior. Systematic approaches determine these parameters by minimizing the misfit between the model and observational data. In most common model approaches, however, the underlying functions mimicking the biogeochemical processes are nonlinear and non-convex. Thus, systematic optimization algorithms are likely to get trapped in local minima and might lead to non-optimal results. To judge the quality of an obtained parameter estimate, we propose determining a preferably large lower bound for the global optimum that is relatively easy to obtain and that will help to assess the quality of an optimum, generated by an optimization algorithm. Due to the unavoidable noise component in all observations, such a lower bound is typically larger than zero. We suggest deriving such lower bounds based on typical properties of biogeochemical models (e.g., a limited number of extremes and a bounded time derivative). We illustrate the applicability of the method with two real-world examples. The first example uses real-world observations of the Baltic Sea in a box model setup. The second example considers a three-dimensional coupled ocean circulation model in combination with satellite chlorophyll a.
Environmental applications activity at Marshall Space Flight Center
NASA Technical Reports Server (NTRS)
Paludan, C. T. N.
1972-01-01
MSFC environmental applications demonstration projects have emphasized application of aerospace technology to community needs of southeastern U.S. Some of the typical projects underway are: hydrological parameter determination; land use surveys; agricultural stress detection; new community site surveys; pollution monitoring; urban transportation studies; and urban environmental quality.
Mapping of multiple parameter m-health scenarios to mobile WiMAX QoS variables.
Alinejad, Ali; Philip, N; Istepanian, R S H
2011-01-01
Multiparameter m-health scenarios with bandwidth demanding requirements will be one of key applications in future 4 G mobile communication systems. These applications will potentially require specific spectrum allocations with higher quality of service requirements. Furthermore, one of the key 4 G technologies targeting m-health will be medical applications based on WiMAX systems. Hence, it is timely to evaluate such multiple parametric m-health scenarios over mobile WiMAX networks. In this paper, we address the preliminary performance analysis of mobile WiMAX network for multiparametric telemedical scenarios. In particular, we map the medical QoS to typical WiMAX QoS parameters to optimise the performance of these parameters in typical m-health scenario. Preliminary performance analyses of the proposed multiparametric scenarios are evaluated to provide essential information for future medical QoS requirements and constraints in these telemedical network environments.
Effects of lint cleaning on lint trash particle size distribution
USDA-ARS?s Scientific Manuscript database
Cotton quality trash measurements used today typically yield a single value for trash parameters for a lint sample (i.e. High Volume Instrument – percent area; Advanced Fiber Information System – total count, trash size, dust count, trash count, and visible foreign matter). A Cotton Trash Identifica...
Duka, Sonila; Pepa, Bledar; Keci, Erjola; Paparisto, Anila; Lazo, Pranvera
2017-04-16
Environmental monitoring of river water quality in Albania, using biological and chemical parameters, is a fast and effective way to assess the quality of water bodies.The aim of this study was to investigate Ephemeroptera, Plecoptera and Trichoptera (EPT), Biotic index-Richness using macroinvertebrates to assess the water quality, with special reference to nutrient (phosphorus and nitrogen) levels in the Devolli, Shkumbini and Osumi rivers. Our objective was to investigate the relationships between the measures of benthic macroinvertebrate communities and nutrient concentrations to assess water quality. The rivers' benthic macroinvertebrates were collected during different seasons in 2012. The biological and chemical parameters used in the current study identified them as quick indicators of water quality assessment. The total number of macroinvertebrate individuals (n = 15,006) (Osumi river: n = 5,546 organisms; Devolli river: n = 3,469 organisms; and Shkumbini river: n = 5,991 organisms), together with the EPT group (Ephemeroptera, Plecoptera, and Trichoptera), showed that the water quality at the river stations during the above-mentioned period belonged to Classes II and III (fair water quality and good water quality, respectively). The classification of the water quality was also based on the nitrogen and total phosphorus contents. The pollution tolerance levels of macroinvertebrate taxa varied from the non-tolerating forms encountered in environments with low pollution levels to the tolerating forms that are typical of environments with considerable pollution levels.
NASA Astrophysics Data System (ADS)
Bean, Glenn E.; Witkin, David B.; McLouth, Tait D.; Zaldivar, Rafael J.
2018-02-01
Research on the selective laser melting (SLM) method of laser powder bed fusion additive manufacturing (AM) has shown that surface and internal quality of AM parts is directly related to machine settings such as laser energy density, scanning strategies, and atmosphere. To optimize laser parameters for improved component quality, the energy density is typically controlled via laser power, scanning rate, and scanning strategy, but can also be controlled by changing the spot size via laser focal plane shift. Present work being conducted by The Aerospace Corporation was initiated after observing inconsistent build quality of parts printed using OEM-installed settings. Initial builds of Inconel 718 witness geometries using OEM laser parameters were evaluated for surface roughness, density, and porosity while varying energy density via laser focus shift. Based on these results, hardware and laser parameter adjustments were conducted in order to improve build quality and consistency. Tensile testing was also conducted to investigate the effect of build plate location and laser settings on SLM 718. This work has provided insight into the limitations of OEM parameters compared with optimized parameters towards the goal of manufacturing aerospace-grade parts, and has led to the development of a methodology for laser parameter tuning that can be applied to other alloy systems. Additionally, evidence was found that for 718, which derives its strength from post-manufacturing heat treatment, there is a possibility that tensile testing may not be perceptive to defects which would reduce component performance. Ongoing research is being conducted towards identifying appropriate testing and analysis methods for screening and quality assurance.
Effect of turbulence on the beam quality of apertured partially coherent beams.
Ji, Xiaoling; Ji, Guangming
2008-06-01
The effects of turbulence on the beam quality of apertured partially coherent beams have been studied both analytically and numerically. Taking the Gaussian Schell-model (GSM) beam as a typical example of partially coherent beams, closed-form expressions for the average intensity, mean-squared beam width, power in the bucket, beta parameter, and Strehl ratio of apertured partially coherent beams propagating through atmospheric turbulence are derived. It is shown that the smaller the beam truncation parameter is, the less affected by turbulence the apertured partially coherent beams are. Furthermore, the apertured partially coherent beams are less sensitive to the effects of turbulence than unapertured ones. The main results are interpreted physically.
Streamflow chemistry and nutrient yields from upland-peatland watersheds in Minnesota
Elon S. Verry
1975-01-01
Twenty-two water quality parameters were determined for the streamflow from complex but typical upland-peatland watersheds over a period of 5 yr. Five watersheds with oligotrophic peatlands and one with a minerotrophic peatland were studied. Concentrations of organically derived nutrients are highest in the streamflow from watersheds containing oligotrophic peatlands;...
Janakiraman, Vijay; Kwiatkowski, Chris; Kshirsagar, Rashmi; Ryll, Thomas; Huang, Yao-Ming
2015-01-01
High-throughput systems and processes have typically been targeted for process development and optimization in the bioprocessing industry. For process characterization, bench scale bioreactors have been the system of choice. Due to the need for performing different process conditions for multiple process parameters, the process characterization studies typically span several months and are considered time and resource intensive. In this study, we have shown the application of a high-throughput mini-bioreactor system viz. the Advanced Microscale Bioreactor (ambr15(TM) ), to perform process characterization in less than a month and develop an input control strategy. As a pre-requisite to process characterization, a scale-down model was first developed in the ambr system (15 mL) using statistical multivariate analysis techniques that showed comparability with both manufacturing scale (15,000 L) and bench scale (5 L). Volumetric sparge rates were matched between ambr and manufacturing scale, and the ambr process matched the pCO2 profiles as well as several other process and product quality parameters. The scale-down model was used to perform the process characterization DoE study and product quality results were generated. Upon comparison with DoE data from the bench scale bioreactors, similar effects of process parameters on process yield and product quality were identified between the two systems. We used the ambr data for setting action limits for the critical controlled parameters (CCPs), which were comparable to those from bench scale bioreactor data. In other words, the current work shows that the ambr15(TM) system is capable of replacing the bench scale bioreactor system for routine process development and process characterization. © 2015 American Institute of Chemical Engineers.
Wang, Junqiang; Wang, Yu; Zhu, Gang; Chen, Xiangqian; Zhao, Xiangrui; Qiao, Huiting; Fan, Yubo
2018-06-01
Spatial positioning accuracy is a key issue in a computer-assisted orthopaedic surgery (CAOS) system. Since intraoperative fluoroscopic images are one of the most important input data to the CAOS system, the quality of these images should have a significant influence on the accuracy of the CAOS system. But the regularities and mechanism of the influence of the quality of intraoperative images on the accuracy of a CAOS system have yet to be studied. Two typical spatial positioning methods - a C-arm calibration-based method and a bi-planar positioning method - are used to study the influence of different image quality parameters, such as resolution, distortion, contrast and signal-to-noise ratio, on positioning accuracy. The error propagation rules of image error in different spatial positioning methods are analyzed by the Monte Carlo method. Correlation analysis showed that resolution and distortion had a significant influence on spatial positioning accuracy. In addition the C-arm calibration-based method was more sensitive to image distortion, while the bi-planar positioning method was more susceptible to image resolution. The image contrast and signal-to-noise ratio have no significant influence on the spatial positioning accuracy. The result of Monte Carlo analysis proved that generally the bi-planar positioning method was more sensitive to image quality than the C-arm calibration-based method. The quality of intraoperative fluoroscopic images is a key issue in the spatial positioning accuracy of a CAOS system. Although the 2 typical positioning methods have very similar mathematical principles, they showed different sensitivities to different image quality parameters. The result of this research may help to create a realistic standard for intraoperative fluoroscopic images for CAOS systems. Copyright © 2018 John Wiley & Sons, Ltd.
Minimal residual method provides optimal regularization parameter for diffuse optical tomography
NASA Astrophysics Data System (ADS)
Jagannath, Ravi Prasad K.; Yalavarthy, Phaneendra K.
2012-10-01
The inverse problem in the diffuse optical tomography is known to be nonlinear, ill-posed, and sometimes under-determined, requiring regularization to obtain meaningful results, with Tikhonov-type regularization being the most popular one. The choice of this regularization parameter dictates the reconstructed optical image quality and is typically chosen empirically or based on prior experience. An automated method for optimal selection of regularization parameter that is based on regularized minimal residual method (MRM) is proposed and is compared with the traditional generalized cross-validation method. The results obtained using numerical and gelatin phantom data indicate that the MRM-based method is capable of providing the optimal regularization parameter.
Minimal residual method provides optimal regularization parameter for diffuse optical tomography.
Jagannath, Ravi Prasad K; Yalavarthy, Phaneendra K
2012-10-01
The inverse problem in the diffuse optical tomography is known to be nonlinear, ill-posed, and sometimes under-determined, requiring regularization to obtain meaningful results, with Tikhonov-type regularization being the most popular one. The choice of this regularization parameter dictates the reconstructed optical image quality and is typically chosen empirically or based on prior experience. An automated method for optimal selection of regularization parameter that is based on regularized minimal residual method (MRM) is proposed and is compared with the traditional generalized cross-validation method. The results obtained using numerical and gelatin phantom data indicate that the MRM-based method is capable of providing the optimal regularization parameter.
NASA Astrophysics Data System (ADS)
Kalnacs, J.; Bendere, R.; Murasovs, A.; Arina, D.; Antipovs, A.; Kalnacs, A.; Sprince, L.
2018-02-01
The article analyses the variations in carbon dioxide emission factor depending on parameters characterising biomass and RDF (refuse-derived fuel). The influence of moisture, ash content, heat of combustion, carbon and nitrogen content on the amount of emission factors has been reviewed, by determining their average values. The options for the improvement of the fuel to result in reduced emissions of carbon dioxide and nitrogen oxide have been analysed. Systematic measurements of biomass parameters have been performed, by determining their average values, seasonal limits of variations in these parameters and their mutual relations. Typical average values of RDF parameters and limits of variations have been determined.
The Effect of Yaw Coupling in Turning Maneuvers of Large Transport Aircraft
NASA Technical Reports Server (NTRS)
McNeill, Walter E.; Innis, Robert C.
1965-01-01
A study has been made, using a piloted moving simulator, of the effects of the yaw-coupling parameters N(sub p) and N(sub delta(sub a) on the lateral-directional handling qualities of a large transport airplane at landing-approach airspeed. It is shown that the desirable combinations of these parameters tend to be more proverse when compared with values typical of current aircraft. Results of flight tests in a large variable-stability jet transport showed trends which were similar to those of the simulator data. Areas of minor disagreement, which were traced to differences in airplane geometry, indicate that pilot consciousness of side acceleration forces can be an important factor in handling qualities of future long-nosed transport aircraft.
USDA-ARS?s Scientific Manuscript database
Fish mortality in recirculating aquaculture systems (RAS) has been observed by the authors to increase when RAS are managed at low makeup water exchange rates with relatively high feed loading. The precise etiology of this elevated mortality was unknown, all typical water quality parameters were wit...
Optimizing coagulation-adsorption for haloform and TOC (Total Organic Carbon) reduction
NASA Astrophysics Data System (ADS)
Semmens, M. J.; Hohenstein, G.; Staples, A.; Norgaard, G.; Ayers, K.; Tyson, M. P.
1983-05-01
The removal of organic matter from Mississippi River water by coagulation and softening processes and the influence of operating parameters upon the removal process are examined. Furthermore, since activated carbon is typically employed to reduce organic concentrations, the effectiveness of various pretreatments are evaluated for their impact upon carbon bed life and the product water quality.
Minimization of operational impacts on spectrophotometer color measurements for cotton
USDA-ARS?s Scientific Manuscript database
A key cotton quality and processing property that is gaining increasing importance is the color of the cotton. Cotton fiber in the U.S. is classified for color using the Uster® High Volume Instrument (HVI), using the parameters Rd and +b. Rd and +b are specific to cotton fiber and are not typical ...
NASA Astrophysics Data System (ADS)
Križan, Peter; Matúš, Miloš; Beniak, Juraj; Šooš, Ľubomír
2018-01-01
During the biomass densification can be recognized various technological variables and also material parameters which significantly influences the final solid biofuels (pellets) quality. In this paper, we will present the research findings concerning relationships between technological and material variables during densification of sunflower hulls. Sunflower hulls as an unused source is a typical product of agricultural industry in Slovakia and belongs to the group of herbaceous biomass. The main goal of presented experimental research is to determine the impact of compression pressure, compression temperature and material particle size distribution on final biofuels quality. Experimental research described in this paper was realized by single-axis densification, which was represented by experimental pressing stand. The impact of mentioned investigated variables on the final briquettes density and briquettes dilatation was determined. Mutual interactions of these variables on final briquettes quality are showing the importance of mentioned variables during the densification process. Impact of raw material particle size distribution on final biofuels quality was also proven by experimental research on semi-production pelleting plant.
Li, Hongqing; Liu, Liming; Ji, Xiang
2015-03-01
Understanding the relationship between landscape characteristics and water quality is critically important for estimating pollution potential and reducing pollution risk. Therefore, this study examines the relationship between landscape characteristics and water quality at both spatial and temporal scales. The study took place in the Jinjing River watershed in 2010; seven landscape types and four water quality pollutions were chosen as analysis parameters. Three different buffer areas along the river were drawn to analyze the relationship as a function of spatial scale. The results of a Pearson's correlation coefficient analysis suggest that "source" landscape, namely, tea gardens, residential areas, and paddy lands, have positive effects on water quality parameters, while forests exhibit a negative influence on water quality parameters because they represent a "sink" landscape and the sub-watershed level is identified as a suitable scale. Using the principal component analysis, tea gardens, residential areas, paddy lands, and forests were identified as the main landscape index. A stepwise multiple regression analysis was employed to model the relationship between landscape characteristics and water quality for each season. The results demonstrate that both landscape composition and configuration affect water quality. In summer and winter, the landscape metrics explained approximately 80.7 % of the variance in the water quality variables, which was higher than that for spring and fall (60.3 %). This study can help environmental managers to understand the relationships between landscapes and water quality and provide landscape ecological approaches for water quality control and land use management.
Composite measures of watershed health from a water quality perspective.
Mallya, Ganeshchandra; Hantush, Mohamed; Govindaraju, Rao S
2018-05-15
Water quality data at gaging stations are typically compared with established federal, state, or local water quality standards to determine if violations (concentrations of specific constituents falling outside acceptable limits) have occurred. Based on the frequency and severity of water quality violations, risk metrics such as reliability, resilience, and vulnerability (R-R-V) are computed for assessing water quality-based watershed health. In this study, a modified methodology for computing R-R-V measures is presented, and a new composite watershed health index is proposed. Risk-based assessments for different water quality parameters are carried out using identified national sampling stations within the Upper Mississippi River Basin, the Maumee River Basin, and the Ohio River Basin. The distributional properties of risk measures with respect to water quality parameters are reported. Scaling behaviors of risk measures using stream order, specifically for the watershed health (WH) index, suggest that WH values increased with stream order for suspended sediment concentration, nitrogen, and orthophosphate in the Upper Mississippi River Basin. Spatial distribution of risk measures enable identification of locations exhibiting poor watershed health with respect to the chosen numerical standard, and the role of land use characteristics within the watershed. Copyright © 2018 Elsevier Ltd. All rights reserved.
Predicting Near-Term Water Quality from Satellite Observations of Watershed Conditions
NASA Astrophysics Data System (ADS)
Weiss, W. J.; Wang, L.; Hoffman, K.; West, D.; Mehta, A. V.; Lee, C.
2017-12-01
Despite the strong influence of watershed conditions on source water quality, most water utilities and water resource agencies do not currently have the capability to monitor watershed sources of contamination with great temporal or spatial detail. Typically, knowledge of source water quality is limited to periodic grab sampling; automated monitoring of a limited number of parameters at a few select locations; and/or monitoring relevant constituents at a treatment plant intake. While important, such observations are not sufficient to inform proactive watershed or source water management at a monthly or seasonal scale. Satellite remote sensing data on the other hand can provide a snapshot of an entire watershed at regular, sub-monthly intervals, helping analysts characterize watershed conditions and identify trends that could signal changes in source water quality. Accordingly, the authors are investigating correlations between satellite remote sensing observations of watersheds and source water quality, at a variety of spatial and temporal scales and lags. While correlations between remote sensing observations and direct in situ measurements of water quality have been well described in the literature, there are few studies that link remote sensing observations across a watershed with near-term predictions of water quality. In this presentation, the authors will describe results of statistical analyses and discuss how these results are being used to inform development of a desktop decision support tool to support predictive application of remote sensing data. Predictor variables under evaluation include parameters that describe vegetative conditions; parameters that describe climate/weather conditions; and non-remote sensing, in situ measurements. Water quality parameters under investigation include nitrogen, phosphorus, organic carbon, chlorophyll-a, and turbidity.
2014-01-01
Background The levels of 19 elements (As, Be, Ca, Cd, Co, Cr, Cu, Fe, K, Mg, Mn, Na, Ni, Pb, Se, Tl, U, V, Zn) from sixteen different Argentine production sites of unifloral [eucalyptus (Eucaliptus rostrata), chilca (Baccharis salicifolia), Algarrobo (Prosopis sp.), mistol (Ziziphus mistol) and citric] and multifloral honeys were measured with the aim to test the quality of the selected samples. Typical quality parameters of honeys were also determined (pH, sugar content, moisture). Mineral elements were determined by using inductively coupled plasma mass spectrometer (ICP-MS DRC). We also evaluated the suitability of honey as a possible biomonitor of environmental pollution. Thus, the sites were classified through cluster analysis (CA) and then pattern recognition methods such as Principal Component Analysis (PCA) and discriminant analysis (DA) were applied. Results Mean values for quality parameters were: pH, 4.12 and 3.81; sugar 82.1 and 82.0 °brix; moisture, 16.90 and 17.00% for unifloral and multifloral honeys respectively. The water content showed good maturity. Likewise, the other parameters confirmed the good quality of the honeys analysed. Potassium was quantitatively the most abundant metal, accounting for 92,5% of the total metal contents with an average concentration of 832.0 and 816.2 μg g-1 for unifloral and multifloral honeys respectively. Sodium was the second most abundant major metal in honeys with a mean value of 32.16 and 33.19 μg g-1 for unifloral and multifloral honeys respectively. Mg, Ca, Fe, Mn, Zn and Cu were present at low-intermediate concentrations. For the other 11 trace elements determined in this study (As, Be, Cd, Co, Cr, Ni, Pb, Se, Tl, U and V), the mean concentrations were very low or below of the LODs. The sites were classified through CA by using elements’ and physicochemical parameters data, then DA on the PCA factors was applied. Dendrograms identified three main groups. PCA explained 52.03% of the total variability with the first two factors. Conclusions In general, there are no evidences of pollution for the analysed honeys. The analytical results obtained for the Argentine honeys indicate the products’ high quality. In fact, most of the toxic elements were below LODs. The chemometric analysis combining CA, DA and PCA showed their aptness as useful tools for honey’s classification. Eventually, this study confirms that the use of honey as biomonitor of environmental contamination is not reliable for sites with low levels of contamination. PMID:25057287
USDA-ARS?s Scientific Manuscript database
Broilers in the United States are typically electrically stunned using low voltage-high frequency (12-38V, =400Hz) DC or AC water bath stunners. In the European Union, however, broilers are required to be electrocuted using high voltage-low frequency (50-150V, 50-350Hz) AC. Low voltage stunned broil...
Radiation dosimetry for quality control of food preservation and disinfestation
NASA Astrophysics Data System (ADS)
McLaughlin, W. L.; Miller, A.; Uribe, R. M.
In the use of x and gamma rays and scanned electron beams to extend the shelf life of food by delay of sprouting and ripening, killing of microbes, and control of insect population, quality assurance is provided by standardized radiation dosimetry. By strategic placement of calibrated dosimeters that are sufficiently stable and reproducible, it is possible to monitor minimum and maximum radiation absorbed dose levels and dose uniformity for a given processed foodstuff. The dosimetry procedure is especially important in the commisioning of a process and in making adjustments of process parameters (e.g. conveyor speed) to meet changes that occur in product and source parameters (e.g. bulk density and radiation spectrum). Routine dosimetry methods and certain corrections of dosimetry data may be selected for the radiations used in typical food processes.
Muir, B; Rogers, D; McEwen, M
2012-07-01
When current dosimetry protocols were written, electron beam data were limited and had uncertainties that were unacceptable for reference dosimetry. Protocols for high-energy reference dosimetry are currently being updated leading to considerable interest in accurate electron beam data. To this end, Monte Carlo simulations using the EGSnrc user-code egs_chamber are performed to extract relevant data for reference beam dosimetry. Calculations of the absorbed dose to water and the absorbed dose to the gas in realistic ion chamber models are performed as a function of depth in water for cobalt-60 and high-energy electron beams between 4 and 22 MeV. These calculations are used to extract several of the parameters required for electron beam dosimetry - the beam quality specifier, R 50 , beam quality conversion factors, k Q and k R50 , the electron quality conversion factor, k' R50 , the photon-electron conversion factor, k ecal , and ion chamber perturbation factors, P Q . The method used has the advantage that many important parameters can be extracted as a function of depth instead of determination at only the reference depth as has typically been done. Results obtained here are in good agreement with measured and other calculated results. The photon-electron conversion factors obtained for a Farmer-type NE2571 and plane-parallel PTW Roos, IBA NACP-02 and Exradin A11 chambers are 0.903, 0.896, 0.894 and 0.906, respectively. These typically differ by less than 0.7% from the contentious TG-51 values but have much smaller systematic uncertainties. These results are valuable for reference dosimetry of high-energy electron beams. © 2012 American Association of Physicists in Medicine.
Economic method for helical gear flank surface characterisation
NASA Astrophysics Data System (ADS)
Koulin, G.; Reavie, T.; Frazer, R. C.; Shaw, B. A.
2018-03-01
Typically the quality of a gear pair is assessed based on simplified geometric tolerances which do not always correlate with functional performance. In order to identify and quantify functional performance based parameters, further development of the gear measurement approach is required. Methodology for interpolation of the full active helical gear flank surface, from sparse line measurements, is presented. The method seeks to identify the minimum number of line measurements required to sufficiently characterise an active gear flank. In the form ground gear example presented, a single helix and three profile line measurements was considered to be acceptable. The resulting surfaces can be used to simulate the meshing engagement of a gear pair and therefore provide insight into functional performance based parameters. Therefore the assessment of the quality can be based on the predicted performance in the context of an application.
Li, Zhaofu; Liu, Hongyu; Luo, Chuan; Li, Yan; Li, Hengpeng; Pan, Jianjun; Jiang, Xiaosan; Zhou, Quansuo; Xiong, Zhengqin
2015-05-01
The Hydrological Simulation Program-Fortran (HSPF), which is a hydrological and water-quality computer model that was developed by the United States Environmental Protection Agency, was employed to simulate runoff and nutrient export from a typical small watershed in a hilly eastern monsoon region of China. First, a parameter sensitivity analysis was performed to assess how changes in the model parameters affect runoff and nutrient export. Next, the model was calibrated and validated using measured runoff and nutrient concentration data. The Nash-Sutcliffe efficiency (E NS ) values of the yearly runoff were 0.87 and 0.69 for the calibration and validation periods, respectively. For storms runoff events, the E NS values were 0.93 for the calibration period and 0.47 for the validation period. Antecedent precipitation and soil moisture conditions can affect the simulation accuracy of storm event flow. The E NS values for the total nitrogen (TN) export were 0.58 for the calibration period and 0.51 for the validation period. In addition, the correlation coefficients between the observed and simulated TN concentrations were 0.84 for the calibration period and 0.74 for the validation period. For phosphorus export, the E NS values were 0.89 for the calibration period and 0.88 for the validation period. In addition, the correlation coefficients between the observed and simulated orthophosphate concentrations were 0.96 and 0.94 for the calibration and validation periods, respectively. The nutrient simulation results are generally satisfactory even though the parameter-lumped HSPF model cannot represent the effects of the spatial pattern of land cover on nutrient export. The model parameters obtained in this study could serve as reference values for applying the model to similar regions. In addition, HSPF can properly describe the characteristics of water quantity and quality processes in this area. After adjustment, calibration, and validation of the parameters, the HSPF model is suitable for hydrological and water-quality simulations in watershed planning and management and for designing best management practices.
Toor, Gurpal S; Han, Lu; Stanley, Craig D
2013-05-01
Our objective was to evaluate changes in water quality parameters during 1983-2007 in a subtropical drinking water reservoir (area: 7 km(2)) located in Lake Manatee Watershed (area: 338 km(2)) in Florida, USA. Most water quality parameters (color, turbidity, Secchi depth, pH, EC, dissolved oxygen, total alkalinity, cations, anions, and lead) were below the Florida potable water standards. Concentrations of copper exceeded the potable water standard of <30 μg l(-1) in about half of the samples. About 75 % of total N in lake was organic N (0.93 mg l(-1)) with the remainder (25 %) as inorganic N (NH3-N: 0.19, NO3-N: 0.17 mg l(-1)), while 86 % of total P was orthophosphate. Mean total N/P was <6:1 indicating N limitation in the lake. Mean monthly concentration of chlorophyll-a was much lower than the EPA water quality threshold of 20 μg l(-1). Concentrations of total N showed significant increase from 1983 to 1994 and a decrease from 1997 to 2007. Total P showed significant increase during 1983-2007. Mean concentrations of total N (n = 215; 1.24 mg l(-1)) were lower, and total P (n = 286; 0.26 mg l(-1)) was much higher than the EPA numeric criteria of 1.27 mg total N l(-1) and 0.05 mg total P l(-1) for Florida's colored lakes, respectively. Seasonal trends were observed for many water quality parameters where concentrations were typically elevated during wet months (June-September). Results suggest that reducing transport of organic N may be one potential option to protect water quality in this drinking water reservoir.
Quality Assessment of A356 Ingots from Different Suppliers in Wheel Production
NASA Astrophysics Data System (ADS)
Koca, Emre; Yuksel, Caglar; Erzi, Eray; Dışpınar, Derya
In a typical foundry floor, several precautions are taken prior to the casting in order to achieve pore-free, high quality parts. In low pressure die castings, these operations involve runner design, pressure adjustment, die temperature selection, cooling locations etc. For the melt, it is important to determine the degassing duration and gas flow rate. In addition, the period of modification (Ti, Sr) addition also plays a significant role. Even after optimization of all these parameters, reject parts can still be found. What has always been disregarded is the quality assessment of the ingot suppliers. Therefore, in this work, four different A356 ingot provider's quality has been investigated in the wheel producer company. Reduced pressure test was used to quantify melt quality by means of bifilm index measurement. In addition, fluidity, feedability and tensile tests have been carried out. The rejection rates were compared according to provider's quality level.
Community-Based Decision-Making: Application of Web ...
Living, working, and going to school near roadways has been associated with a number of adverse health effects, including asthma exacerbation, cardiovascular impairment, and respiratory symptoms. In the United States, 30% - 45% of urban populations live or work in the near-road environment, with a greater percentage of minority and low-income residents living in areas with highly- trafficked roadways. Near-road studies typically use surrogates of exposure to evaluate potential causality of health effects, including proximity, traffic counts, or total length of roads within a given radius. In contrast, simplified models provide an opportunity to examine how changes in input parameters, such as vehicle counts or speeds, can affect air quality. Simplified or reduced-form models typically retain the same or similar algorithms most responsible for characterizing uncertainty in more sophisticated models. The Community Line Source modeling system (C-LINE) allows users to explore what-if scenarios such as increases in diesel trucks or total traffic; examine hot spot conditions and areas for further study; determine ideal monitor placement locations; or evaluate air quality changes due to traffic re-routing. This presentation describes the input parameters, analytical procedures, visualization routines, and software considerations for C-LINE, and an example application for Newport News, Virginia. Results include scenarios related to port development and resulting traffic
NASA Astrophysics Data System (ADS)
Liu, Ke; Wang, Chang; Liu, Guo-liang; Ding, Ning; Sun, Qi-song; Tian, Zhi-hong
2017-04-01
To investigate the formation of one kind of typical inter-dendritic crack around triple point region in continuous casting(CC) slab during the operation of soft reduction, fully coupled 3D thermo-mechanical finite element models was developed, also plant trials were carried out in a domestic continuous casting machine. Three possible types of soft reduction amount distribution (SRAD) in the soft reduction region were analyzed. The relationship between the typical inter-dendritic cracks and soft reduction conditions is presented and demonstrated in production practice. Considering the critical strain of internal crack formation, a critical tolerance for the soft reduction amount distribution and related casing parameters have been proposed for better contribution of soft reduction to the internal quality of slabs. The typical inter-dendritic crack around the triple point region had been eliminated effectively through the application of proposed suggestions for continuous casting of X70 pipeline steel in industrial practice.
Conti, Marcelo Enrique; Stripeikis, Jorge; Campanella, Luigi; Cucina, Domenico; Tudino, Mabel Beatriz
2007-01-01
Background The characterization of three types of Marche (Italy) honeys (Acacia, Multifloral, Honeydew) was carried out on the basis of the their quality parameters (pH, sugar content, humidity) and mineral content (Na, K, Ca, Mg, Cu, Fe, and Mn). Pattern recognition methods such as principal components analysis (PCA) and linear discriminant analysis (LDA) were performed in order to classify honey samples whose botanical origins were different, and identify the most discriminant parameters. Lastly, using ANOVA and correlations for all parameters, significant differences between diverse types of honey were examined. Results Most of the samples' water content showed good maturity (98%) whilst pH values were in the range 3.50 – 4.21 confirming the good quality of the honeys analysed. Potassium was quantitatively the most relevant mineral (mean = 643 ppm), accounting for 79% of the total mineral content. The Ca, Na and Mg contents account for 14, 3 and 3% of the total mineral content respectively, while other minerals (Cu, Mn, Fe) were present at very low levels. PCA explained 75% or more of the variance with the first two PC variables. The variables with higher discrimination power according to the multivariate statistical procedure were Mg and pH. On the other hand, all samples of acacia and honeydew, and more than 90% of samples of multifloral type have been correctly classified using the LDA. ANOVA shows significant differences between diverse floral origins for all variables except sugar, moisture and Fe. Conclusion In general, the analytical results obtained for the Marche honeys indicate the products' high quality. The determination of physicochemical parameters and mineral content in combination with modern statistical techniques can be a useful tool for honey classification. PMID:17880749
NASA Technical Reports Server (NTRS)
Vigue, Y.; Lichten, S. M.; Muellerschoen, R. J.; Blewitt, G.; Heflin, M. B.
1993-01-01
Data collected from a worldwide 1992 experiment were processed at JPL to determine precise orbits for the satellites of the Global Positioning System (GPS). A filtering technique was tested to improve modeling of solar-radiation pressure force parameters for GPS satellites. The new approach improves orbit quality for eclipsing satellites by a factor of two, with typical results in the 25- to 50-cm range. The resultant GPS-based estimates for geocentric coordinates of the tracking sites, which include the three DSN sites, are accurate to 2 to 8 cm, roughly equivalent to 3 to 10 nrad of angular measure.
Characteristic aroma components of rennet casein.
Karagül-Yüceer, Yonca; Vlahovich, Katrina N; Drake, MaryAnne; Cadwallader, Keith R
2003-11-05
Rennet casein, produced by enzymatic (rennet) precipitation of casein from pasteurized skim milk, is used in both industrial (technical) and food applications. The flavor of rennet casein powder is an important quality parameter; however, the product often contains an odor described as like that of animal/wet dog. Two commercial rennet casein powders were evaluated to determine the compounds responsible for the typical odor. Aroma extracts were prepared by high-vacuum distillation of direct solvent (ether) extracts and analyzed by gas chromatography-olfactometry (GCO), aroma extract dilution analysis (AEDA), and GC-mass spectrometry (MS). Odorants detected by GCO were typical of those previously reported in skim milk powders and consisted mainly of short-chain volatile acids, phenolic compounds, lactones, and furanones. Results of AEDA indicated o-aminoacetophenone to be a potent odorant; however, sensory descriptive sensory analysis of model aroma systems revealed that the typical odor of rennet casein was principally caused by hexanoic acid, indole, guaiacol, and p-cresol.
Cleary, D F R; Polónia, A R M; Renema, W; Hoeksema, B W; Rachello-Dolmen, P G; Moolenbeek, R G; Budiyanto, A; Yahmantoro; Tuti, Y; Giyanto; Draisma, S G A; Prud'homme van Reine, W F; Hariyanto, R; Gittenberger, A; Rikoh, M S; de Voogd, N J
2016-09-30
Substrate cover, water quality parameters and assemblages of corals, fishes, sponges, echinoderms, ascidians, molluscs, benthic foraminifera and macroalgae were sampled across a pronounced environmental gradient in the Jakarta Bay-Thousand Islands reef complex. Inshore sites mainly consisted of sand, rubble and turf algae with elevated temperature, dissolved oxygen, pH and chlorophyll concentrations and depauperate assemblages of all taxa. Live coral cover was very low inshore and mainly consisted of sparse massive coral heads and a few encrusting species. Faunal assemblages were more speciose and compositionally distinct mid- and offshore compared to inshore. There were, however, small-scale differences among taxa. Certain midshore sites, for example, housed assemblages resembling those typical of the inshore environment but this differed depending on the taxon. Substrate, water quality and spatial variables together explained from 31% (molluscs) to 72% (foraminifera) of the variation in composition. In general, satellite-derived parameters outperformed locally measured parameters. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Haslauer, C. P.; Allmendinger, M.; Gnann, S.; Heisserer, T.; Bárdossy, A.
2017-12-01
The basic problem of geostatistics is to estimate the primary variable (e.g. groundwater quality, nitrate) at an un-sampled location based on point measurements at locations in the vicinity. Typically, models are being used that describe the spatial dependence based on the geometry of the observation network. This presentation demonstrates methods that take the following properties additionally into account: the statistical distribution of the measurements, a different degree of dependence in different quantiles, censored measurements, the composition of categorical additional information in the neighbourhood (exhaustive secondary information), and the spatial dependence of a dependent secondary variable, possibly measured with a different observation network (non-exhaustive secondary data). Two modelling approaches are demonstrated individually and combined: The non-stationarity in the marginal distribution is accounted for by locally mixed distribution functions that depend on the composition of the categorical variable in the neighbourhood of each interpolation location. This methodology is currently being implemented for operational use at the environmental state agency of Baden-Württemberg. An alternative to co-Kriging in copula space with an arbitrary number of secondary parameters is presented: The method performs better than traditional techniques if the primary variable is undersampled and does not produce erroneous negative estimates. Even more, the quality of the uncertainty estimates is much improved. The worth of the secondary information is thoroughly evaluated. The improved geostatistical hydrogeological models are being analyzed using measurements of a large observation network ( 2500 measurement locations) in the state of Baden-Württemberg ( 36.000 km2). Typical groundwater quality parameters such as nitrate, chloride, barium, antrazine, and desethylatrazine are being assessed, cross-validated, and compared with traditional geostatistical methods. The secondary information of land use is available on a 30m x 30m raster. We show that the presented methods are not only better estimators (e.g. in the sense of an average quadratic error), but exhibit a much more realistic structure of the uncertainty and hence are improvements compared to existing methods.
Xi, Qing; Li, Zhao-Fu; Luo, Chuan
2014-05-01
Sensitivity analysis of hydrology and water quality parameters has a great significance for integrated model's construction and application. Based on AnnAGNPS model's mechanism, terrain, hydrology and meteorology, field management, soil and other four major categories of 31 parameters were selected for the sensitivity analysis in Zhongtian river watershed which is a typical small watershed of hilly region in the Taihu Lake, and then used the perturbation method to evaluate the sensitivity of the parameters to the model's simulation results. The results showed that: in the 11 terrain parameters, LS was sensitive to all the model results, RMN, RS and RVC were generally sensitive and less sensitive to the output of sediment but insensitive to the remaining results. For hydrometeorological parameters, CN was more sensitive to runoff and sediment and relatively sensitive for the rest results. In field management, fertilizer and vegetation parameters, CCC, CRM and RR were less sensitive to sediment and particulate pollutants, the six fertilizer parameters (FR, FD, FID, FOD, FIP, FOP) were particularly sensitive for nitrogen and phosphorus nutrients. For soil parameters, K is quite sensitive to all the results except the runoff, the four parameters of the soil's nitrogen and phosphorus ratio (SONR, SINR, SOPR, SIPR) were less sensitive to the corresponding results. The simulation and verification results of runoff in Zhongtian watershed show a good accuracy with the deviation less than 10% during 2005- 2010. Research results have a direct reference value on AnnAGNPS model's parameter selection and calibration adjustment. The runoff simulation results of the study area also proved that the sensitivity analysis was practicable to the parameter's adjustment and showed the adaptability to the hydrology simulation in the Taihu Lake basin's hilly region and provide reference for the model's promotion in China.
Monolayer Colloidal Crystals by Modified Air-Water Interface Self-Assembly Approach
Ye, Xin; Huang, Jin; Zeng, Yong; Sun, Lai-Xi; Geng, Feng; Liu, Hong-Jie; Wang, Feng-Rui; Jiang, Xiao-Dong; Wu, Wei-Dong; Zheng, Wan-Guo
2017-01-01
Hexagonally ordered arrays of polystyrene (PS) microspheres were prepared by a modified air-water self-assembly method. A detailed analysis of the air-water interface self-assembly process was conducted. Several parameters affect the quality of the monolayer colloidal crystals, i.e., the colloidal microsphere concentration on the latex, the surfactant concentration, the polystyrene microsphere diameter, the microsphere polydispersity, and the degree of sphericity of polystyrene microspheres. An abrupt change in surface tension was used to improve the quality of the monolayer colloidal crystal. Three typical microstructures, i.e., a cone, a pillar, and a binary structure were prepared by reactive-ion etching using a high-quality colloidal crystal mask. This study provides insight into the production of microsphere templates with flexible structures for large-area patterned materials. PMID:28946664
Rio, David; Woog, Kelly; Legras, Richard
2016-07-01
We investigated the impact of lens centration, wearer aberrations, pupil size and age on the optics of two bifocal contact lenses using image simulation. Fourteen conditions (i.e. two optical profiles with two and eight concentric zones; two conditions of centration: centred and 0.77 mm decentred; and three conditions of aberrations: 0, 0.15 and 0.35 μm RMS; three pupil sizes: 3, 4.5 and 6 mm) were tested on two populations (i.e. 20-40 and 40-60 years old) using a numerical simulation method. For each condition, images were calculated for proximities ranging from -4D to + 2D with steps of 0.25D. Subjects graded the quality of each simulated image (i.e. a target 'HEV' of 0.4 logMAR) on a continuous scale from 0 to 5. To limit the effect of the observer's own aberrations, subjects viewed the displayed images through a 3-mm pupil and their optimal correction. Both populations reported similar image quality (i.e. average absolute difference of 0.23) except for sharp and low contrast images, which obtained slightly higher grades with younger subjects, probably due to a better contrast sensitivity in this population. Typical decentration had no effect on bifocal contact lenses wearers' vision, as the ratio between areas dedicated to near and distance vision did not change. Aberrations (i.e. mainly 0.24 μm of spherical aberration on a 4.5-mm pupil) reduced the addition of the two radial zones bifocal optics and introduced a hyperopic shift (i.e. 0.50D) of the through-focus image quality for the eight radial zone bifocal lens. The combination of typical aberrations with typical decentration created the same effect as typical aberrations alone, meaning that aberration impact was stronger than decentration impact. The two radial zone bifocal lens was dependent on the pupil whereas the eight radial zone lens was not. When fitting new bifocal optics, the aberrations of the patients, as well as their pupil diameter, are the main subject dependent parameters influencing quality of vision. Typical contact lens decentration and lower cortical treatment efficiency of retinal images of older subjects had relatively little impact. © 2016 The Authors Ophthalmic & Physiological Optics © 2016 The College of Optometrists.
Bound states in the continuum on periodic structures surrounded by strong resonances
NASA Astrophysics Data System (ADS)
Yuan, Lijun; Lu, Ya Yan
2018-04-01
Bound states in the continuum (BICs) are trapped or guided modes with their frequencies in the frequency intervals of the radiation modes. On periodic structures, a BIC is surrounded by a family of resonant modes with their quality factors approaching infinity. Typically the quality factors are proportional to 1 /|β - β*|2 , where β and β* are the Bloch wave vectors of the resonant modes and the BIC, respectively. But for some special BICs, the quality factors are proportional to 1 /|β - β*|4 . In this paper, a general condition is derived for such special BICs on two-dimensional periodic structures. As a numerical example, we use the general condition to calculate special BICs, which are antisymmetric standing waves, on a periodic array of circular cylinders, and show their dependence on parameters. The special BICs are important for practical applications, because they produce resonances with large quality factors for a very large range of β .
Extending solid state laser performance
NASA Astrophysics Data System (ADS)
Miesak, Ed
2017-02-01
Coherent Diode-Pumped Solid-State Orlando (CDO), formerly known as Lee Laser, headquartered in Orlando Florida produces CW and pulsed solid state lasers. Primary wavelengths include 1064 nm, 532 nm, and 355 nm. Other wavelengths produced include 1320 nm, 15xx nm, and 16xx nm. Pulse widths are in the range of singles to hundreds of nanoseconds. Average powers are in the range of a few watts to 1000 watts. Pulse repetition rates are typically in the range of 100 Hz to 100 KHz. Laser performance parameters are often modified according to customer requests. Laser parameters that can be adjusted include average power, pulse repetition rate, pulse length, beam quality, and wavelength. Laser parameters are typically cross-coupled such that adjusting one may change some or all of the others. Customers often request one or more parameters be changed without changing any of the remaining parameters. CDO has learned how to accomplish this successfully with rapid turn-around times and minimal cost impact. The experience gained by accommodating customer requests has produced a textbook of cause and effect combinations of laser components to accomplish almost any parameter change request. Understanding the relationships between component combinations provides valuable insight into lasing effects allowing designers to extend laser performance beyond what is currently available. This has led to several break through products, i.e. >150W average power 355 nm, >60W average power 6 ps 1064 nm, pulse lengths longer than 400 ns at 532 nm with average power >100W, >400W 532 nm with pulse lengths in the 100 ns range.
Evaluation of High-Speed Civil Transport Handling Qualities Criteria with Supersonic Flight Data
NASA Technical Reports Server (NTRS)
Cox, Timothy H.; Jackson, Dante W.
1997-01-01
Most flying qualities criteria have been developed from data in the subsonic flight regime. Unique characteristics of supersonic flight raise questions about whether these criteria successfully extend into the supersonic flight regime. Approximately 25 years ago NASA Dryden Flight Research Center addressed this issue with handling qualities evaluations of the XB-70 and YF-12. Good correlations between some of the classical handling qualities parameters, such as the control anticipation parameter as a function of damping, were discovered. More criteria have been developed since these studies. Some of these more recent criteria are being used in designing the High-Speed Civil Transport (HSCT). A second research study recently addressed this issue through flying qualities evaluations of the SR-71 at Mach 3. The research goal was to extend the high-speed flying qualities experience of large airplanes and to evaluate more recent MIL-STD-1797 criteria against pilot comments and ratings. Emphasis was placed on evaluating the criteria used for designing the HSCT. XB-70 and YF-12 data from the previous research supplemented the SR-71 data. The results indicate that the criteria used in the HSCT design are conservative and should provide good flying qualities for typical high-speed maneuvering. Additional results show correlation between the ratings and comments and criteria for gradual maneuvering with precision control. Correlation is shown between ratings and comments and an extension of the Neal/Smith criterion using normal acceleration instead of pitch rate.
Fast machine-learning online optimization of ultra-cold-atom experiments.
Wigley, P B; Everitt, P J; van den Hengel, A; Bastian, J W; Sooriyabandara, M A; McDonald, G D; Hardman, K S; Quinlivan, C D; Manju, P; Kuhn, C C N; Petersen, I R; Luiten, A N; Hope, J J; Robins, N P; Hush, M R
2016-05-16
We apply an online optimization process based on machine learning to the production of Bose-Einstein condensates (BEC). BEC is typically created with an exponential evaporation ramp that is optimal for ergodic dynamics with two-body s-wave interactions and no other loss rates, but likely sub-optimal for real experiments. Through repeated machine-controlled scientific experimentation and observations our 'learner' discovers an optimal evaporation ramp for BEC production. In contrast to previous work, our learner uses a Gaussian process to develop a statistical model of the relationship between the parameters it controls and the quality of the BEC produced. We demonstrate that the Gaussian process machine learner is able to discover a ramp that produces high quality BECs in 10 times fewer iterations than a previously used online optimization technique. Furthermore, we show the internal model developed can be used to determine which parameters are essential in BEC creation and which are unimportant, providing insight into the optimization process of the system.
Fast machine-learning online optimization of ultra-cold-atom experiments
Wigley, P. B.; Everitt, P. J.; van den Hengel, A.; Bastian, J. W.; Sooriyabandara, M. A.; McDonald, G. D.; Hardman, K. S.; Quinlivan, C. D.; Manju, P.; Kuhn, C. C. N.; Petersen, I. R.; Luiten, A. N.; Hope, J. J.; Robins, N. P.; Hush, M. R.
2016-01-01
We apply an online optimization process based on machine learning to the production of Bose-Einstein condensates (BEC). BEC is typically created with an exponential evaporation ramp that is optimal for ergodic dynamics with two-body s-wave interactions and no other loss rates, but likely sub-optimal for real experiments. Through repeated machine-controlled scientific experimentation and observations our ‘learner’ discovers an optimal evaporation ramp for BEC production. In contrast to previous work, our learner uses a Gaussian process to develop a statistical model of the relationship between the parameters it controls and the quality of the BEC produced. We demonstrate that the Gaussian process machine learner is able to discover a ramp that produces high quality BECs in 10 times fewer iterations than a previously used online optimization technique. Furthermore, we show the internal model developed can be used to determine which parameters are essential in BEC creation and which are unimportant, providing insight into the optimization process of the system. PMID:27180805
Feature selection with harmony search.
Diao, Ren; Shen, Qiang
2012-12-01
Many search strategies have been exploited for the task of feature selection (FS), in an effort to identify more compact and better quality subsets. Such work typically involves the use of greedy hill climbing (HC), or nature-inspired heuristics, in order to discover the optimal solution without going through exhaustive search. In this paper, a novel FS approach based on harmony search (HS) is presented. It is a general approach that can be used in conjunction with many subset evaluation techniques. The simplicity of HS is exploited to reduce the overall complexity of the search process. The proposed approach is able to escape from local solutions and identify multiple solutions owing to the stochastic nature of HS. Additional parameter control schemes are introduced to reduce the effort and impact of parameter configuration. These can be further combined with the iterative refinement strategy, tailored to enforce the discovery of quality subsets. The resulting approach is compared with those that rely on HC, genetic algorithms, and particle swarm optimization, accompanied by in-depth studies of the suggested improvements.
Direct injection analysis of fatty and resin acids in papermaking process waters by HPLC/MS.
Valto, Piia; Knuutinen, Juha; Alén, Raimo
2011-04-01
A novel HPLC-atmospheric pressure chemical ionization/MS (HPLC-APCI/MS) method was developed for the rapid analysis of selected fatty and resin acids typically present in papermaking process waters. A mixture of palmitic, stearic, oleic, linolenic, and dehydroabietic acids was separated by a commercial HPLC column (a modified stationary C(18) phase) using gradient elution with methanol/0.15% formic acid (pH 2.5) as a mobile phase. The internal standard (myristic acid) method was used to calculate the correlation coefficients and in the quantitation of the results. In the thorough quality parameters measurement, a mixture of these model acids in aqueous media as well as in six different paper machine process waters was quantitatively determined. The measured quality parameters, such as selectivity, linearity, precision, and accuracy, clearly indicated that, compared with traditional gas chromatographic techniques, the simple method developed provided a faster chromatographic analysis with almost real-time monitoring of these acids. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Li, Xin; Hong, Yifeng; Wang, Jinfang; Liu, Yang; Sun, Xun; Li, Mi
2018-01-01
Numerous communication techniques and optical devices successfully applied in space optical communication system indicates a good portability of it. With this good portability, typical coherent demodulation technique of Costas loop can be easily adopted in space optical communication system. As one of the components of pointing error, the effect of jitter plays an important role in the communication quality of such system. Here, we obtain the probability density functions (PDF) of different jitter degrees and explain their essential effect on the bit error rate (BER) space optical communication system. Also, under the effect of jitter, we research the bit error rate of space coherent optical communication system using Costas loop with different system parameters of transmission power, divergence angle, receiving diameter, avalanche photodiode (APD) gain, and phase deviation caused by Costas loop. Through a numerical simulation of this kind of communication system, we demonstrate the relationship between the BER and these system parameters, and some corresponding methods of system optimization are presented to enhance the communication quality.
Quality assessment of urban areas based on neural network modeling and GIS
NASA Astrophysics Data System (ADS)
Popova, Olga; Glebova, Julia; Pustovgar, Andrey
2018-03-01
In this article the authors carry out the research of the urban development areas structure and propose the system of its characteristics on the basis of sector affiliation of the municipal economy. The authors have developed an algorithm for quality assessment of urban development areas. The results of the research are presented on the example of several central quarters of Arkhangelsk city. The city's residential development was formed in the periods from 1900-1950, 1950-1980 and from 2002 to date. It is currently presented by low-rise wooden, homestead type residential houses and barracks-type houses; mid-rise and high-rise brick and panel buildings of typical development, buildings of large-panel housing construction. Structural SOM-analysis compiled separate quarters of Arkhangelsk into 5 groups with a high level of characteristic similarity: "Commercial", "Prospective complex development", "Sustainable development", "Perspective renovation of residential development", "Investment-unattractive". Typical development strategies for each group of quarters are determined. Most developed areas characterized by upward height. The development strategies for depressed areas is in a high-rise building, which show the economic, social and environmental benefits of upward growth of the city. Using GIS allows to visually reflect the state and assess the quality of the urban development area by the aggregate of all parameters, and also to assess the quality of the quarters for each sector.
Agarabi, Cyrus D; Schiel, John E; Lute, Scott C; Chavez, Brittany K; Boyne, Michael T; Brorson, Kurt A; Khan, Mansoora; Read, Erik K
2015-06-01
Consistent high-quality antibody yield is a key goal for cell culture bioprocessing. This endpoint is typically achieved in commercial settings through product and process engineering of bioreactor parameters during development. When the process is complex and not optimized, small changes in composition and control may yield a finished product of less desirable quality. Therefore, changes proposed to currently validated processes usually require justification and are reported to the US FDA for approval. Recently, design-of-experiments-based approaches have been explored to rapidly and efficiently achieve this goal of optimized yield with a better understanding of product and process variables that affect a product's critical quality attributes. Here, we present a laboratory-scale model culture where we apply a Plackett-Burman screening design to parallel cultures to study the main effects of 11 process variables. This exercise allowed us to determine the relative importance of these variables and identify the most important factors to be further optimized in order to control both desirable and undesirable glycan profiles. We found engineering changes relating to culture temperature and nonessential amino acid supplementation significantly impacted glycan profiles associated with fucosylation, β-galactosylation, and sialylation. All of these are important for monoclonal antibody product quality. © 2015 Wiley Periodicals, Inc. and the American Pharmacists Association.
NASA Astrophysics Data System (ADS)
Welsh, Byron M.; Reeves, Toby D.; Roggemann, Michael C.
1997-09-01
The ability to measure atmospheric turbulence characteristics such as Fried's coherence diameter, the outer scale of turbulence, and the turbulence power law are critical for the optimized operation of adaptive optical telescopes. One approach for sensing these turbulence parameters is to use a Hartmann wavefront sensor (H-WFS) array to measure the wavefront slope structure function (SSF) . The SSF is defined as the second moment of the wavefront slope difference between any two subapertures separated in time and/or space. Accurate knowledge of the SSF allows turbulence parameters to be estimated. The H-WFS slope measurements, composed of a true slope signal corrupted by noise, are used to estimate the SSF by computing a mean square difference of slope signals from different subapertures. This computation is typically performed over a large number of H-WFS measurement frames. The quality of the SSF estimate is quantified by the signal-to-noise ratio (SNR) of the estimator. The quality of the SSF estimate then can in turn be related to the quality of the atmospheric turbulence parameter estimates. This research develops a theoretical SNR expression for the SSF estimator. This SNR is a function of H-WFS geometry, the number of temporal measurement frames, the outer scale of turbulence, the turbulence spectrum power law, and the temporal properties of the turbulence. Results are presented for various H-WFS configurations and atmospheric turbulence properties.
Quality assessment of MEG-to-MRI coregistrations
NASA Astrophysics Data System (ADS)
Sonntag, Hermann; Haueisen, Jens; Maess, Burkhard
2018-04-01
For high precision in source reconstruction of magnetoencephalography (MEG) or electroencephalography data, high accuracy of the coregistration of sources and sensors is mandatory. Usually, the source space is derived from magnetic resonance imaging (MRI). In most cases, however, no quality assessment is reported for sensor-to-MRI coregistrations. If any, typically root mean squares (RMS) of point residuals are provided. It has been shown, however, that RMS of residuals do not correlate with coregistration errors. We suggest using target registration error (TRE) as criterion for the quality of sensor-to-MRI coregistrations. TRE measures the effect of uncertainty in coregistrations at all points of interest. In total, 5544 data sets with sensor-to-head and 128 head-to-MRI coregistrations, from a single MEG laboratory, were analyzed. An adaptive Metropolis algorithm was used to estimate the optimal coregistration and to sample the coregistration parameters (rotation and translation). We found an average TRE between 1.3 and 2.3 mm at the head surface. Further, we observed a mean absolute difference in coregistration parameters between the Metropolis and iterative closest point algorithm of (1.9 +/- 15){\\hspace{0pt}}\\circ and (1.1 +/- 9) m. A paired sample t-test indicated a significant improvement in goal function minimization by using the Metropolis algorithm. The sampled parameters allowed computation of TRE on the entire grid of the MRI volume. Hence, we recommend the Metropolis algorithm for head-to-MRI coregistrations.
Effect of wastewater quality parameters on coliform inactivation by tin oxide anodes.
Teel, Amy L; Watts, Richard J
2018-04-16
The effect of six water quality constituents on wastewater effluent disinfection by tin oxide anodes (TOAs) was investigated in single cell laboratory reactors. Several concentrations of suspended solids, chemical oxygen demand (COD), alkalinity, ammonia-nitrogen, nitrite-nitrogen, and nitrate-nitrogen were added to media containing 10 6 total coliform bacteria mL -1 . Current was applied through the TOAs, and coliform bacteria viability was analyzed over time. Over 99.9% inactivation of coliform bacteria was found over 15 min in TOA reactors. Concentrations of the six water quality constituents typical of concentrations found in wastewaters had no effect on TOA disinfection efficacy. The results of this research demonstrate that TOAs, which could potentially be powered by solar panels, have potential as a sustainable disinfection process compared to chlorine, ozone, and ultraviolet light.
Detection of fatty product falsifications using a portable near infrared spectrometer
NASA Astrophysics Data System (ADS)
Kalinin, A. V.; Krasheninnikov, V. N.
2017-01-01
Spreading sales of counterfeited fatty-oil foods leads to a development of portable and operational analyzer of typical fatty acids (FA) which may be a near infrared (NIR) spectrometer. In this work the calibration models for prediction of named FA were built with the spectra of FT-NIR spectrometer for different absorption bands of the FA. The best parameters were obtained for the wavelength sub-band 1.0-1.8 μ, which includes the 2nd and 3rd overtones of C-H stretching vibrations (near 1.7 and 1.2 μ) and the combination band (1.42 μ). Applicability of the portable spectrometer based on linear NIR array photosensor for the quality analysis of spread, butter and fish oil by the typical FA has been tested.
Chander, Gyanesh; Angal, Amit; Xiong, Xiaoxiong; Helder, Dennis L.; Mishra, Nischal; Choi, Taeyoung; Wu, Aisheng
2010-01-01
Test sites are central to any future quality assurance and quality control (QA/QC) strategy. The Committee on Earth Observation Satellites (CEOS) Working Group for Calibration and Validation (WGCV) Infrared Visible Optical Sensors (IVOS) worked with collaborators around the world to establish a core set of CEOS-endorsed, globally distributed, reference standard test sites (both instrumented and pseudo-invariant) for the post-launch calibration of space-based optical imaging sensors. The pseudo-invariant calibration sites (PICS) have high reflectance and are usually made up of sand dunes with low aerosol loading and practically no vegetation. The goal of this paper is to provide preliminary assessment of "several parameters" than can be used on an operational basis to compare and measure usefulness of reference sites all over the world. The data from Landsat 7 (L7) Enhanced Thematic Mapper Plus (ETM+) and the Earth Observing-1 (EO-1) Hyperion sensors over the CEOS PICS were used to perform a preliminary assessment of several parameters, such as usable area, data availability, top-of-atmosphere (TOA) reflectance, at-sensor brightness temperature, spatial uniformity, temporal stability, spectral stability, and typical spectrum observed over the sites.
Cernuda, Carlos; Lughofer, Edwin; Klein, Helmut; Forster, Clemens; Pawliczek, Marcin; Brandstetter, Markus
2017-01-01
During the production process of beer, it is of utmost importance to guarantee a high consistency of the beer quality. For instance, the bitterness is an essential quality parameter which has to be controlled within the specifications at the beginning of the production process in the unfermented beer (wort) as well as in final products such as beer and beer mix beverages. Nowadays, analytical techniques for quality control in beer production are mainly based on manual supervision, i.e., samples are taken from the process and analyzed in the laboratory. This typically requires significant lab technicians efforts for only a small fraction of samples to be analyzed, which leads to significant costs for beer breweries and companies. Fourier transform mid-infrared (FT-MIR) spectroscopy was used in combination with nonlinear multivariate calibration techniques to overcome (i) the time consuming off-line analyses in beer production and (ii) already known limitations of standard linear chemometric methods, like partial least squares (PLS), for important quality parameters Speers et al. (J I Brewing. 2003;109(3):229-235), Zhang et al. (J I Brewing. 2012;118(4):361-367) such as bitterness, citric acid, total acids, free amino nitrogen, final attenuation, or foam stability. The calibration models are established with enhanced nonlinear techniques based (i) on a new piece-wise linear version of PLS by employing fuzzy rules for local partitioning the latent variable space and (ii) on extensions of support vector regression variants (-PLSSVR and ν-PLSSVR), for overcoming high computation times in high-dimensional problems and time-intensive and inappropriate settings of the kernel parameters. Furthermore, we introduce a new model selection scheme based on bagged ensembles in order to improve robustness and thus predictive quality of the final models. The approaches are tested on real-world calibration data sets for wort and beer mix beverages, and successfully compared to linear methods, showing a clear out-performance in most cases and being able to meet the model quality requirements defined by the experts at the beer company. Figure Workflow for calibration of non-Linear model ensembles from FT-MIR spectra in beer production .
SU-E-I-25: Determining Tube Current, Tube Voltage and Pitch Suitable for Low- Dose Lung Screening CT
DOE Office of Scientific and Technical Information (OSTI.GOV)
Williams, K; Matthews, K
2014-06-01
Purpose: The quality of a computed tomography (CT) image and the dose delivered during its acquisition depend upon the acquisition parameters used. Tube current, tube voltage, and pitch are acquisition parameters that potentially affect image quality and dose. This study investigated physicians' abilities to characterize small, solid nodules in low-dose CT images for combinations of current, voltage and pitch, for three CT scanner models. Methods: Lung CT images was acquired of a Data Spectrum anthropomorphic torso phantom with various combinations of pitch, tube current, and tube voltage; this phantom was used because acrylic beads of various sizes could be placedmore » within the lung compartments to simulate nodules. The phantom was imaged on two 16-slice scanners and a 64-slice scanner. The acquisition parameters spanned a range of estimated CTDI levels; the CTDI estimates from the acquisition software were verified by measurement. Several experienced radiologists viewed the phantom lung CT images and noted nodule location, size and shape, as well as the acceptability of overall image quality. Results: Image quality for assessment of nodules was deemed unsatisfactory for all scanners at 80 kV (any tube current) and at 35 mA (any tube voltage). Tube current of 50 mA or more at 120 kV resulted in similar assessments from all three scanners. Physician-measured sphere diameters were closer to actual diameters for larger spheres, higher tube current, and higher kV. Pitch influenced size measurements less for larger spheres than for smaller spheres. CTDI was typically overestimated by the scanner software compared to measurement. Conclusion: Based on this survey of acquisition parameters, a low-dose CT protocol of 120 kV, 50 mA, and pitch of 1.4 is recommended to balance patient dose and acceptable image quality. For three models of scanners, this protocol resulted in estimated CTDIs from 2.9–3.6 mGy.« less
Impact on enzyme activity as a new quality index of wastewater.
Balestri, Francesco; Moschini, Roberta; Cappiello, Mario; Del-Corso, Antonella; Mura, Umberto
2013-03-15
The aim of this study was to define a new indicator for the quality of wastewaters that are released into the environment. A quality index is proposed for wastewater samples in terms of the inertness of wastewater samples toward enzyme activity. This involves taking advantage of the sensitivity of enzymes to pollutants that may be present in the waste samples. The effect of wastewater samples on the rate of a number of different enzyme-catalyzed reactions was measured, and the results for all the selected enzymes were analyzed in an integrated fashion (multi-enzymatic sensor). This approach enabled us to define an overall quality index, the "Impact on Enzyme Function" (IEF-index), which is composed of three indicators: i) the Synoptic parameter, related to the average effect of the waste sample on each component of the enzymatic sensor; ii) the Peak parameter, related to the maximum effect observed among all the effects exerted by the sample on the sensor components; and, iii) the Interference parameter, related to the number of sensor components that are affected less than a fixed threshold value. A number of water based samples including public potable tap water, fluids from urban sewage systems, wastewater disposal from leather, paper and dye industries were analyzed and the IEF-index was then determined. Although the IEF-index cannot discriminate between different types of wastewater samples, it could be a useful parameter in monitoring the improvement of the quality of a specific sample. However, by analyzing an adequate number of waste samples of the same type, even from different local contexts, the profile of the impact of each component of the multi-enzymatic sensor could be typical for specific types of waste. The IEF-index is proposed as a supplementary qualification score for wastewaters, in addition to the certification of the waste's conformity to legal requirements. Copyright © 2013 Elsevier Ltd. All rights reserved.
Alves Martins, Maria Virgínia; Zaaboub, Noureddine; Aleya, Lotfi; Frontalini, Fabrizio; Pereira, Egberto; Miranda, Paulo; Mane, Miguel; Rocha, Fernando; Laut, Lazaro; El Bour, Monia
2015-01-01
This study investigated the environmental quality of the Bizerte Lagoon (Tunisia) through an integrated approach that combined environmental, biogeochemical, and living benthic foraminiferal analyses. Specifically, we analyzed the physicochemical parameters of the water and sediment. The textural, mineralogical, and geochemical characteristics of the sediment, including total organic carbon, total nitrogen, simultaneously extracted metals (SEM), acid volatile sulfides (AVS), chlorophyll a, CaCO3, and changes in bacterial populations and carbon isotopes were measured. The SEM/AVS values indicated the presence of relatively high concentrations of toxic metals in only some areas. Foraminiferal assemblages were dominated by species such as A. parkinsoniana (20-91%), Bolivina striatula (<40%), Hopkinsina atlantica (<17%), and Bolivina ordinaria (<15%) that cannot be considered typical of impacted coastal lagoons both in Mediterranean and northeast Atlantic regions. The results of this work suggest that Bizerte Lagoon is a unique setting. This lagoon is populated by typical marine species that invaded this ecosystem, attracted not only by the prevailing favorable environmental conditions but also by the abundance and quality of food. The results indicate that the metal pollution found in some areas have a negative impact on the assemblages of foraminifera. At present, however, this negative impact is not highly alarming.
Alves Martins, Maria Virgínia; Zaaboub, Noureddine; Aleya, Lotfi; Frontalini, Fabrizio; Pereira, Egberto; Miranda, Paulo; Mane, Miguel; Rocha, Fernando; Laut, Lazaro; El Bour, Monia
2015-01-01
This study investigated the environmental quality of the Bizerte Lagoon (Tunisia) through an integrated approach that combined environmental, biogeochemical, and living benthic foraminiferal analyses. Specifically, we analyzed the physicochemical parameters of the water and sediment. The textural, mineralogical, and geochemical characteristics of the sediment, including total organic carbon, total nitrogen, simultaneously extracted metals (SEM), acid volatile sulfides (AVS), chlorophyll a, CaCO3, and changes in bacterial populations and carbon isotopes were measured. The SEM/AVS values indicated the presence of relatively high concentrations of toxic metals in only some areas. Foraminiferal assemblages were dominated by species such as A. parkinsoniana (20–91%), Bolivina striatula (<40%), Hopkinsina atlantica (<17%), and Bolivina ordinaria (<15%) that cannot be considered typical of impacted coastal lagoons both in Mediterranean and northeast Atlantic regions. The results of this work suggest that Bizerte Lagoon is a unique setting. This lagoon is populated by typical marine species that invaded this ecosystem, attracted not only by the prevailing favorable environmental conditions but also by the abundance and quality of food. The results indicate that the metal pollution found in some areas have a negative impact on the assemblages of foraminifera. At present, however, this negative impact is not highly alarming. PMID:26372655
Indoor Air Quality Assessment of the San Francisco Federal Building
DOE Office of Scientific and Technical Information (OSTI.GOV)
Apte, Michael; Bennett, Deborah H.; Faulkner, David
2008-07-01
An assessment of the indoor air quality (IAQ) of the San Francisco Federal Building (SFFB) was conducted on May 12 and 14, 2009 at the request of the General Services Administration (GSA). The purpose of the assessment was for a general screening of IAQ parameters typically indicative of well functioning building systems. One naturally ventilated space and one mechanically ventilated space were studied. In both zones, the levels of indoor air contaminants, including CO2, CO, particulate matter, volatile organic compounds, and aldehydes, were low, relative to reference exposure levels and air quality standards for comparable office buildings. We found slightlymore » elevated levels of volatile organic compounds (VOCs) including two compounds often found in"green" cleaning products. In addition, we found two industrial solvents at levels higher than typically seen in office buildings, but the levels were not sufficient to be of a health concern. The ventilation rates in the two study spaces were high by any standard. Ventilation rates in the building should be further investigated and adjusted to be in line with the building design. Based on our measurements, we conclude that the IAQ is satisfactory in the zone we tested, but IAQ may need to be re-checked after the ventilation rates have been lowered.« less
Grinding, Machining Morphological Studies on C/SiC Composites
NASA Astrophysics Data System (ADS)
Xiao, Chun-fang; Han, Bing
2018-05-01
C/SiC composite is a typical material difficult to machine. It is hard and brittle. In machining, the cutting force is large, the material removal rate is low, the edge is prone to collapse, and the tool wear is serious. In this paper, the grinding of C/Si composites material along the direction of fiber distribution is studied respectively. The surface microstructure and mechanical properties of C/SiC composites processed by ultrasonic machining were evaluated. The change of surface quality with the change of processing parameters has also been studied. By comparing the performances of conventional grinding and ultrasonic grinding, the surface roughness and functional characteristics of the material can be improved by optimizing the processing parameters.
Determination of optimal tool parameters for hot mandrel bending of pipe elbows
NASA Astrophysics Data System (ADS)
Tabakajew, Dmitri; Homberg, Werner
2018-05-01
Seamless pipe elbows are important components in mechanical, plant and apparatus engineering. Typically, they are produced by the so-called `Hamburg process'. In this hot forming process, the initial pipes are subsequently pushed over an ox-horn-shaped bending mandrel. The geometric shape of the mandrel influences the diameter, bending radius and wall thickness distribution of the pipe elbow. This paper presents the numerical simulation model of the hot mandrel bending process created to ensure that the optimum mandrel geometry can be determined at an early stage. A fundamental analysis was conducted to determine the influence of significant parameters on the pipe elbow quality. The chosen methods and approach as well as the corresponding results are described in this paper.
NASA Astrophysics Data System (ADS)
Yang, Qi; Deng, Bin; Wang, Hongqiang; Qin, Yuliang
2017-07-01
Rotation is one of the typical micro-motions of radar targets. In many cases, rotation of the targets is always accompanied with vibrating interference, and it will significantly affect the parameter estimation and imaging, especially in the terahertz band. In this paper, we propose a parameter estimation method and an image reconstruction method based on the inverse Radon transform, the time-frequency analysis, and its inverse. The method can separate and estimate the rotating Doppler and the vibrating Doppler simultaneously and can obtain high-quality reconstructed images after vibration compensation. In addition, a 322-GHz radar system and a 25-GHz commercial radar are introduced and experiments on rotating corner reflectors are carried out in this paper. The results of the simulation and experiments verify the validity of the methods, which lay a foundation for the practical processing of the terahertz radar.
In Situ Roughness Measurements for the Solar Cell Industry Using an Atomic Force Microscope
González-Jorge, Higinio; Alvarez-Valado, Victor; Valencia, Jose Luis; Torres, Soledad
2010-01-01
Areal roughness parameters always need to be under control in the thin film solar cell industry because of their close relationship with the electrical efficiency of the cells. In this work, these parameters are evaluated for measurements carried out in a typical fabrication area for this industry. Measurements are made using a portable atomic force microscope on the CNC diamond cutting machine where an initial sample of transparent conductive oxide is cut into four pieces. The method is validated by making a comparison between the parameters obtained in this process and in the laboratory under optimal conditions. Areal roughness parameters and Fourier Spectral Analysis of the data show good compatibility and open the possibility to use this type of measurement instrument to perform in situ quality control. This procedure gives a sample for evaluation without destroying any of the transparent conductive oxide; in this way 100% of the production can be tested, so improving the measurement time and rate of production. PMID:22319338
In situ roughness measurements for the solar cell industry using an atomic force microscope.
González-Jorge, Higinio; Alvarez-Valado, Victor; Valencia, Jose Luis; Torres, Soledad
2010-01-01
Areal roughness parameters always need to be under control in the thin film solar cell industry because of their close relationship with the electrical efficiency of the cells. In this work, these parameters are evaluated for measurements carried out in a typical fabrication area for this industry. Measurements are made using a portable atomic force microscope on the CNC diamond cutting machine where an initial sample of transparent conductive oxide is cut into four pieces. The method is validated by making a comparison between the parameters obtained in this process and in the laboratory under optimal conditions. Areal roughness parameters and Fourier Spectral Analysis of the data show good compatibility and open the possibility to use this type of measurement instrument to perform in situ quality control. This procedure gives a sample for evaluation without destroying any of the transparent conductive oxide; in this way 100% of the production can be tested, so improving the measurement time and rate of production.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, G.F.; Jones-Lee, A.
1998-12-31
The deficiencies in the typical stormwater runoff water quality monitoring from hazardous chemical sites and an alternative approach (Evaluation Monitoring) for monitoring that shifts the monitoring program from periodic sampling and analysis of stormwater runoff for a suite of chemical parameters to examining the receiving waters to determine what, if any, water quality use impairments are occurring due to the runoff-associated constituents is presented in this paper. Rather than measuring potentially toxic constituents such as heavy metals in runoff, the monitoring program determines whether there is aquatic life toxicity in the receiving waters associated with the stormwater runoff. If toxicitymore » is found, its cause is determined and the source of the constituents causing the toxicity is identified through forensic analysis. Based on this information, site-specific, technically valid stormwater runoff management programs can be developed that will control real water quality impacts caused by stormwater runoff-associated constituents.« less
Health-Related Quality of Life in Children Attending Special and Typical Education Greek Schools
ERIC Educational Resources Information Center
Papadopoulou, D.; Malliou, P.; Kofotolis, N.; Vlachopoulos, S. P.; Kellis, E.
2017-01-01
The purpose of this study was to examine parental perceptions about Health Related Quality of Life (HRQoL) of typical education and special education students in Greece. The Pediatric Quality of Life Inventory (PedsQL) was administered to the parents of 251 children from typical schools, 46 students attending integration classes (IC) within a…
O'Brien, J K; Steinman, K J; Montano, G A; Love, C C; Saiers, R L; Robeck, T R
2013-01-01
The in vitro quality of spermatozoa from one elephant (Elephas maximus) was examined after chilled storage and directional freezing (DF). High-quality, non-contaminated ejaculates (77.6±6.0% progressive motility, 3.9±1.5 µg creatinine mL(-1) raw semen, 2.7±0.6% detached heads) were cryopreserved after 0 (0hStor), 12 (12hStor) and 24 h (24hStor) of chilled storage. At 0 h and 6h post-thawing, total motility, plasma membrane integrity, acrosome integrity, mitochondrial activity and normal morphology were similar (P>0.05) across treatments. In contrast, progressive motility, rapid velocity and several kinematic parameters were lower (P<0.05) for 24Stor compared with 0hStor at 0 h post-thaw. By 6 h post-thaw, amplitude of lateral head displacement and velocity parameters (average pathway, straight-line and curvilinear velocity) were lower (P<0.05) for 24hStor compared with 0hStor and 12hStor. DNA integrity was high and remained unchanged (P>0.05) across all groups and processing stages (1.6±0.6% of cells contained fragmented DNA). Results indicate that DF after up to 12 h of chilled storage results in a post-thaw sperm population of acceptable quality for artificial insemination. These findings have implications for the cryopreservation of sex-sorted spermatozoa, which typically undergo more than 12 h of chilled storage prior to sorting and preservation.
NASA Astrophysics Data System (ADS)
Jermyn, Michael; Ghadyani, Hamid; Mastanduno, Michael A.; Turner, Wes; Davis, Scott C.; Dehghani, Hamid; Pogue, Brian W.
2013-08-01
Multimodal approaches that combine near-infrared (NIR) and conventional imaging modalities have been shown to improve optical parameter estimation dramatically and thus represent a prevailing trend in NIR imaging. These approaches typically involve applying anatomical templates from magnetic resonance imaging/computed tomography/ultrasound images to guide the recovery of optical parameters. However, merging these data sets using current technology requires multiple software packages, substantial expertise, significant time-commitment, and often results in unacceptably poor mesh quality for optical image reconstruction, a reality that represents a significant roadblock for translational research of multimodal NIR imaging. This work addresses these challenges directly by introducing automated digital imaging and communications in medicine image stack segmentation and a new one-click three-dimensional mesh generator optimized for multimodal NIR imaging, and combining these capabilities into a single software package (available for free download) with a streamlined workflow. Image processing time and mesh quality benchmarks were examined for four common multimodal NIR use-cases (breast, brain, pancreas, and small animal) and were compared to a commercial image processing package. Applying these tools resulted in a fivefold decrease in image processing time and 62% improvement in minimum mesh quality, in the absence of extra mesh postprocessing. These capabilities represent a significant step toward enabling translational multimodal NIR research for both expert and nonexpert users in an open-source platform.
The Estimation of Precisions in the Planning of Uas Photogrammetric Surveys
NASA Astrophysics Data System (ADS)
Passoni, D.; Federici, B.; Ferrando, I.; Gagliolo, S.; Sguerso, D.
2018-05-01
The Unmanned Aerial System (UAS) is widely used in the photogrammetric surveys both of structures and of small areas. Geomatics focuses the attention on the metric quality of the final products of the survey, creating several 3D modelling applications from UAS images. As widely known, the quality of results derives from the quality of images acquisition phase, which needs an a priori estimation of the expected precisions. The planning phase is typically managed using dedicated tools, adapted from the traditional aerial-photogrammetric flight plan. But UAS flight has features completely different from the traditional one. Hence, the use of UAS for photogrammetric applications today requires a growth in knowledge in planning. The basic idea of this research is to provide a drone photogrammetric flight planning tools considering the required metric precisions, given a priori the classical parameters of a photogrammetric planning: flight altitude, overlaps and geometric parameters of the camera. The created "office suite" allows a realistic planning of a photogrammetric survey, starting from an approximate knowledge of the Digital Surface Model (DSM), and the effective attitude parameters, changing along the route. The planning products are the overlapping of the images, the Ground Sample Distance (GSD) and the precision on each pixel taking into account the real geometry. The different tested procedures, the obtained results and the solution proposed for the a priori estimates of the precisions in the particular case of UAS surveys are here reported.
General rigid motion correction for computed tomography imaging based on locally linear embedding
NASA Astrophysics Data System (ADS)
Chen, Mianyi; He, Peng; Feng, Peng; Liu, Baodong; Yang, Qingsong; Wei, Biao; Wang, Ge
2018-02-01
The patient motion can damage the quality of computed tomography images, which are typically acquired in cone-beam geometry. The rigid patient motion is characterized by six geometric parameters and are more challenging to correct than in fan-beam geometry. We extend our previous rigid patient motion correction method based on the principle of locally linear embedding (LLE) from fan-beam to cone-beam geometry and accelerate the computational procedure with the graphics processing unit (GPU)-based all scale tomographic reconstruction Antwerp toolbox. The major merit of our method is that we need neither fiducial markers nor motion-tracking devices. The numerical and experimental studies show that the LLE-based patient motion correction is capable of calibrating the six parameters of the patient motion simultaneously, reducing patient motion artifacts significantly.
Sader, John E; Yousefi, Morteza; Friend, James R
2014-02-01
Thermal noise spectra of nanomechanical resonators are used widely to characterize their physical properties. These spectra typically exhibit a Lorentzian response, with additional white noise due to extraneous processes. Least-squares fits of these measurements enable extraction of key parameters of the resonator, including its resonant frequency, quality factor, and stiffness. Here, we present general formulas for the uncertainties in these fit parameters due to sampling noise inherent in all thermal noise spectra. Good agreement with Monte Carlo simulation of synthetic data and measurements of an Atomic Force Microscope (AFM) cantilever is demonstrated. These formulas enable robust interpretation of thermal noise spectra measurements commonly performed in the AFM and adaptive control of fitting procedures with specified tolerances.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sader, John E., E-mail: jsader@unimelb.edu.au; Yousefi, Morteza; Friend, James R.
2014-02-15
Thermal noise spectra of nanomechanical resonators are used widely to characterize their physical properties. These spectra typically exhibit a Lorentzian response, with additional white noise due to extraneous processes. Least-squares fits of these measurements enable extraction of key parameters of the resonator, including its resonant frequency, quality factor, and stiffness. Here, we present general formulas for the uncertainties in these fit parameters due to sampling noise inherent in all thermal noise spectra. Good agreement with Monte Carlo simulation of synthetic data and measurements of an Atomic Force Microscope (AFM) cantilever is demonstrated. These formulas enable robust interpretation of thermal noisemore » spectra measurements commonly performed in the AFM and adaptive control of fitting procedures with specified tolerances.« less
Rice Grain Quality and Consumer Preferences: A Case Study of Two Rural Towns in the Philippines
Velarde, Orlee; Demont, Matty
2016-01-01
Hedonic pricing analysis is conducted to determine the implicit values of various attributes in the market value of a good. In this study, hedonic pricing analysis was applied to measure the contribution of grain quality search and experience attributes to the price of rice in two rural towns in the Philippines. Rice samples from respondents underwent quantitative routine assessments of grain quality. In particular, gelatinization temperature and chalkiness, two parameters that are normally assessed through visual scores, were evaluated by purely quantitative means (differential scanning calorimetry and by digital image analysis). Results indicate that rice consumed by respondents had mainly similar physical and chemical grain quality attributes. The respondents’ revealed preferences were typical of what has been previously reported for Filipino rice consumers. Hedonic regression analyses showed that grain quality characteristics that affected price varied by income class. Some of the traits or socioeconomic factors that affected price were percent broken grains, gel consistency, and household per capita rice consumption. There is an income effect on rice price and the characteristics that affect price vary between income classes. PMID:26982587
Rice Grain Quality and Consumer Preferences: A Case Study of Two Rural Towns in the Philippines.
Cuevas, Rosa Paula; Pede, Valerien O; McKinley, Justin; Velarde, Orlee; Demont, Matty
2016-01-01
Hedonic pricing analysis is conducted to determine the implicit values of various attributes in the market value of a good. In this study, hedonic pricing analysis was applied to measure the contribution of grain quality search and experience attributes to the price of rice in two rural towns in the Philippines. Rice samples from respondents underwent quantitative routine assessments of grain quality. In particular, gelatinization temperature and chalkiness, two parameters that are normally assessed through visual scores, were evaluated by purely quantitative means (differential scanning calorimetry and by digital image analysis). Results indicate that rice consumed by respondents had mainly similar physical and chemical grain quality attributes. The respondents' revealed preferences were typical of what has been previously reported for Filipino rice consumers. Hedonic regression analyses showed that grain quality characteristics that affected price varied by income class. Some of the traits or socioeconomic factors that affected price were percent broken grains, gel consistency, and household per capita rice consumption. There is an income effect on rice price and the characteristics that affect price vary between income classes.
Defining chemical status of a temporary Mediterranean River.
Skoulikidis, Nikolaos Th
2008-07-01
Although the majority of rivers and streams in the Mediterranean area are temporary, no particular attention is being paid for such systems in the Water Framework Directive (WFD). A typical temporal Mediterranean river, draining an intensively cultivated basin, was assessed for its chemical status. Elevated concentrations of nitrates and salts in river water as well as nutrients and heavy metals in river sediments have been attributed to agricultural land uses and practices and point sources of organic pollution. A scheme for the classification of the river's chemical status (within the ecological quality classification procedure) was applied by combining pollution parameters in groups according to related pressures. In light of the temporal hydrological regime and anthropogenic impacts, sediment chemical quality elements were considered, in addition to hydrochemical ones. Despite the extensive agricultural activities in the basin, the majority of the sites examined showed a good quality and only three of them were classified as moderate. For the classification of the chemical quality of temporary water bodies, there is a need to develop ecologically relevant salinity and sediment quality standards.
Short-term scheduling of an open-pit mine with multiple objectives
NASA Astrophysics Data System (ADS)
Blom, Michelle; Pearce, Adrian R.; Stuckey, Peter J.
2017-05-01
This article presents a novel algorithm for the generation of multiple short-term production schedules for an open-pit mine, in which several objectives, of varying priority, characterize the quality of each solution. A short-term schedule selects regions of a mine site, known as 'blocks', to be extracted in each week of a planning horizon (typically spanning 13 weeks). Existing tools for constructing these schedules use greedy heuristics, with little optimization. To construct a single schedule in which infrastructure is sufficiently utilized, with production grades consistently close to a desired target, a planner must often run these heuristics many times, adjusting parameters after each iteration. A planner's intuition and experience can evaluate the relative quality and mineability of different schedules in a way that is difficult to automate. Of interest to a short-term planner is the generation of multiple schedules, extracting available ore and waste in varying sequences, which can then be manually compared. This article presents a tool in which multiple, diverse, short-term schedules are constructed, meeting a range of common objectives without the need for iterative parameter adjustment.
Avila, Manuel; Graterol, Eduardo; Alezones, Jesús; Criollo, Beisy; Castillo, Dámaso; Kuri, Victoria; Oviedo, Norman; Moquete, Cesar; Romero, Marbella; Hanley, Zaida; Taylor, Margie
2012-06-01
The appearance of rice grain is a key aspect in quality determination. Mainly, this analysis is performed by expert analysts through visual observation; however, due to the subjective nature of the analysis, the results may vary among analysts. In order to evaluate the concordance between analysts from Latin-American rice quality laboratories for rice grain appearance through digital images, an inter-laboratory test was performed with ten analysts and images of 90 grains captured with a high resolution scanner. Rice grains were classified in four categories including translucent, chalky, white belly, and damaged grain. Data was categorized using statistic parameters like mode and its frequency, the relative concordance, and the reproducibility parameter kappa. Additionally, a referential image gallery of typical grain for each category was constructed based on mode frequency. Results showed a Kappa value of 0.49, corresponding to a moderate reproducibility, attributable to subjectivity in the visual analysis of grain images. These results reveal the need for standardize the evaluation criteria among analysts to improve the confidence of the determination of rice grain appearance.
Study on Adaptive Parameter Determination of Cluster Analysis in Urban Management Cases
NASA Astrophysics Data System (ADS)
Fu, J. Y.; Jing, C. F.; Du, M. Y.; Fu, Y. L.; Dai, P. P.
2017-09-01
The fine management for cities is the important way to realize the smart city. The data mining which uses spatial clustering analysis for urban management cases can be used in the evaluation of urban public facilities deployment, and support the policy decisions, and also provides technical support for the fine management of the city. Aiming at the problem that DBSCAN algorithm which is based on the density-clustering can not realize parameter adaptive determination, this paper proposed the optimizing method of parameter adaptive determination based on the spatial analysis. Firstly, making analysis of the function Ripley's K for the data set to realize adaptive determination of global parameter MinPts, which means setting the maximum aggregation scale as the range of data clustering. Calculating every point object's highest frequency K value in the range of Eps which uses K-D tree and setting it as the value of clustering density to realize the adaptive determination of global parameter MinPts. Then, the R language was used to optimize the above process to accomplish the precise clustering of typical urban management cases. The experimental results based on the typical case of urban management in XiCheng district of Beijing shows that: The new DBSCAN clustering algorithm this paper presents takes full account of the data's spatial and statistical characteristic which has obvious clustering feature, and has a better applicability and high quality. The results of the study are not only helpful for the formulation of urban management policies and the allocation of urban management supervisors in XiCheng District of Beijing, but also to other cities and related fields.
Measurement accuracy of a stressed contact lens during its relaxation period
NASA Astrophysics Data System (ADS)
Compertore, David C.; Ignatovich, Filipp V.
2018-02-01
We examine the dioptric power and transmitted wavefront of a contact lens as it releases its handling stresses. Handling stresses are introduced as part of the contact lens loading process and are common across all contact lens measurement procedures and systems. The latest advances in vision correction require tighter quality control during the manufacturing of the contact lenses. The optical power of contact lenses is one of the critical characteristics for users. Power measurements are conducted in the hydrated state, where the lens is resting inside a solution-filled glass cuvette. In a typical approach, the contact lens must be subject to long settling times prior to any measurements. Alternatively, multiple measurements must be averaged. Apart from potential operator dependency of such approach, it is extremely time-consuming, and therefore it precludes higher rates of testing. Comprehensive knowledge about the settling process can be obtained by monitoring multiple parameters of the lens simultaneously. We have developed a system that combines co-aligned a Shack-Hartmann transmitted wavefront sensor and a time-domain low coherence interferometer to measure several optical and physical parameters (power, cylinder power, aberrations, center thickness, sagittal depth, and diameter) simultaneously. We monitor these parameters during the stress relaxation period and show correlations that can be used by manufacturers to devise methods for improved quality control procedures.
NASA Astrophysics Data System (ADS)
Haneda, Eri; Luo, Jiajia; Can, Ali; Ramani, Sathish; Fu, Lin; De Man, Bruno
2016-05-01
In this study, we implement and compare model based iterative reconstruction (MBIR) with dictionary learning (DL) over MBIR with pairwise pixel-difference regularization, in the context of transportation security. DL is a technique of sparse signal representation using an over complete dictionary which has provided promising results in image processing applications including denoising,1 as well as medical CT reconstruction.2 It has been previously reported that DL produces promising results in terms of noise reduction and preservation of structural details, especially for low dose and few-view CT acquisitions.2 A distinguishing feature of transportation security CT is that scanned baggage may contain items with a wide range of material densities. While medical CT typically scans soft tissues, blood with and without contrast agents, and bones, luggage typically contains more high density materials (i.e. metals and glass), which can produce severe distortions such as metal streaking artifacts. Important factors of security CT are the emphasis on image quality such as resolution, contrast, noise level, and CT number accuracy for target detection. While MBIR has shown exemplary performance in the trade-off of noise reduction and resolution preservation, we demonstrate that DL may further improve this trade-off. In this study, we used the KSVD-based DL3 combined with the MBIR cost-minimization framework and compared results to Filtered Back Projection (FBP) and MBIR with pairwise pixel-difference regularization. We performed a parameter analysis to show the image quality impact of each parameter. We also investigated few-view CT acquisitions where DL can show an additional advantage relative to pairwise pixel difference regularization.
Can a clinical placement influence stigma? An analysis of measures of social distance.
Moxham, Lorna; Taylor, Ellie; Patterson, Christopher; Perlman, Dana; Brighton, Renee; Sumskis, Susan; Keough, Emily; Heffernan, Tim
2016-09-01
The way people who experience mental illness are perceived by health care professionals, which often includes stigmatising attitudes, can have a significant impact on treatment outcomes and on their quality of life. To determine whether stigma towards people with mental illness varied for undergraduate nursing students who attended a non-traditional clinical placement called Recovery Camp compared to students who attended a 'typical' mental health clinical placement. Quasi-experimental. Seventy-nine third-year nursing students were surveyed; n=40 attended Recovery Camp (intervention), n=39 (comparison group) attended a 'typical' mental health clinical placement. All students completed the Social Distance Scale (SDS) pre- and post-placement and at three-month follow-up. Data analysis consisted of a one-way repeated measures analysis of variance (ANOVA) exploring parameter estimates between group scores across three time points. Two secondary repeated measures ANOVAs were performed to demonstrate the differences in SDS scores for each group across time. Pairwise comparisons demonstrated the differences between time intervals. A statistically significant difference in ratings of stigma between the intervention group and the comparison group existed. Parameter estimates revealed that stigma ratings for the intervention group were significantly reduced post-placement and remained consistently low at three-month follow-up. There was no significant difference in ratings of stigma for the comparison group over time. Students who attended Recovery Camp reported significant decreases in stigma towards people with a mental illness over time, compared to the typical placement group. Findings suggest that a therapeutic recreation based clinical placement was more successful in reducing stigma regarding mental illness in undergraduate nursing students compared to those who attended typical mental health clinical placements. Copyright © 2016 Elsevier Ltd. All rights reserved.
Feasibility of an intracranial EEG-fMRI protocol at 3T: risk assessment and image quality.
Boucousis, Shannon M; Beers, Craig A; Cunningham, Cameron J B; Gaxiola-Valdez, Ismael; Pittman, Daniel J; Goodyear, Bradley G; Federico, Paolo
2012-11-15
Integrating intracranial EEG (iEEG) with functional MRI (iEEG-fMRI) may help elucidate mechanisms underlying the generation of seizures. However, the introduction of iEEG electrodes in the MR environment has inherent risk and data quality implications that require consideration prior to clinical use. Previous studies of subdural and depth electrodes have confirmed low risk under specific circumstances at 1.5T and 3T. However, no studies have assessed risk and image quality related to the feasibility of a full iEEG-fMRI protocol. To this end, commercially available platinum subdural grid/strip electrodes (4×5 grid or 1×8 strip) and 4 or 6-contact depth electrodes were secured to the surface of a custom-made phantom mimicking the conductivity of the human brain. Electrode displacement, temperature increase of electrodes and surrounding phantom material, and voltage fluctuations in electrode contacts were measured in a GE Discovery MR750 3T MR scanner during a variety of imaging sequences, typical of an iEEG-fMRI protocol. An electrode grid was also used to quantify the spatial extent of susceptibility artifact. The spatial extent of susceptibility artifact in the presence of an electrode was also assessed for typical imaging parameters that maximize BOLD sensitivity at 3T (TR=1500 ms; TE=30 ms; slice thickness=4mm; matrix=64×64; field-of-view=24 cm). Under standard conditions, all electrodes exhibited no measurable displacement and no clinically significant temperature increase (<1°C) during scans employed in a typical iEEG-fMRI experiment, including 60 min of continuous fMRI. However, high SAR sequences, such as fast spin-echo (FSE), produced significant heating in almost all scenarios (>2.0°C) that in some cases exceeded 10°C. Induced voltages in the frequency range that could elicit neuronal stimulation (<10 kHz) were well below the threshold of 100 mV. fMRI signal intensity was significantly reduced within 20mm of the electrodes for the imaging parameters used in this study. Thus, for the conditions tested, a full iEEG-fMRI protocol poses a low risk at 3T; however, fMRI sensitivity may be reduced immediately adjacent to the electrodes. In addition, high SAR sequences must be avoided. Copyright © 2012 Elsevier Inc. All rights reserved.
Rating, ranking, and understanding acoustical quality in university classrooms
NASA Astrophysics Data System (ADS)
Hodgson, Murray
2002-08-01
Nonoptimal classroom acoustical conditions directly affect speech perception and, thus, learning by students. Moreover, they may lead to voice problems for the instructor, who is forced to raise his/her voice when lecturing to compensate for poor acoustical conditions. The project applied previously developed simplified methods to predict speech intelligibility in occupied classrooms from measurements in unoccupied and occupied university classrooms. The methods were used to predict the speech intelligibility at various positions in 279 University of British Columbia (UBC) classrooms, when 70% occupied, and for four instructor voice levels. Classrooms were classified and rank ordered by acoustical quality, as determined by the room-average speech intelligibility. This information was used by UBC to prioritize classrooms for renovation. Here, the statistical results are reported to illustrate the range of acoustical qualities found at a typical university. Moreover, the variations of quality with relevant classroom acoustical parameters were studied to better understand the results. In particular, the factors leading to the best and worst conditions were studied. It was found that 81% of the 279 classrooms have "good," "very good," or "excellent" acoustical quality with a "typical" (average-male) instructor. However, 50 (18%) of the classrooms had "fair" or "poor" quality, and two had "bad" quality, due to high ventilation-noise levels. Most rooms were "very good" or "excellent" at the front, and "good" or "very good" at the back. Speech quality varied strongly with the instructor voice level. In the worst case considered, with a quiet female instructor, most of the classrooms were "bad" or "poor." Quality also varies with occupancy, with decreased occupancy resulting in decreased quality. The research showed that a new classroom acoustical design and renovation should focus on limiting background noise. They should promote high instructor speech levels at the back of the classrooms. This involves, in part, limiting the amount of sound absorption that is introduced into classrooms to control reverberation. Speech quality is not very sensitive to changes in reverberation, so controlling it for its own sake should not be a design priority. copyright 2002 Acoustical Society of America.
An Automatic Image Processing Workflow for Daily Magnetic Resonance Imaging Quality Assurance.
Peltonen, Juha I; Mäkelä, Teemu; Sofiev, Alexey; Salli, Eero
2017-04-01
The performance of magnetic resonance imaging (MRI) equipment is typically monitored with a quality assurance (QA) program. The QA program includes various tests performed at regular intervals. Users may execute specific tests, e.g., daily, weekly, or monthly. The exact interval of these measurements varies according to the department policies, machine setup and usage, manufacturer's recommendations, and available resources. In our experience, a single image acquired before the first patient of the day offers a low effort and effective system check. When this daily QA check is repeated with identical imaging parameters and phantom setup, the data can be used to derive various time series of the scanner performance. However, daily QA with manual processing can quickly become laborious in a multi-scanner environment. Fully automated image analysis and results output can positively impact the QA process by decreasing reaction time, improving repeatability, and by offering novel performance evaluation methods. In this study, we have developed a daily MRI QA workflow that can measure multiple scanner performance parameters with minimal manual labor required. The daily QA system is built around a phantom image taken by the radiographers at the beginning of day. The image is acquired with a consistent phantom setup and standardized imaging parameters. Recorded parameters are processed into graphs available to everyone involved in the MRI QA process via a web-based interface. The presented automatic MRI QA system provides an efficient tool for following the short- and long-term stability of MRI scanners.
Radiation dose and image quality for paediatric interventional cardiology
NASA Astrophysics Data System (ADS)
Vano, E.; Ubeda, C.; Leyton, F.; Miranda, P.
2008-08-01
Radiation dose and image quality for paediatric protocols in a biplane x-ray system used for interventional cardiology have been evaluated. Entrance surface air kerma (ESAK) and image quality using a test object and polymethyl methacrylate (PMMA) phantoms have been measured for the typical paediatric patient thicknesses (4-20 cm of PMMA). Images from fluoroscopy (low, medium and high) and cine modes have been archived in digital imaging and communications in medicine (DICOM) format. Signal-to-noise ratio (SNR), figure of merit (FOM), contrast (CO), contrast-to-noise ratio (CNR) and high contrast spatial resolution (HCSR) have been computed from the images. Data on dose transferred to the DICOM header have been used to test the values of the dosimetric display at the interventional reference point. ESAK for fluoroscopy modes ranges from 0.15 to 36.60 µGy/frame when moving from 4 to 20 cm PMMA. For cine, these values range from 2.80 to 161.10 µGy/frame. SNR, FOM, CO, CNR and HCSR are improved for high fluoroscopy and cine modes and maintained roughly constant for the different thicknesses. Cumulative dose at the interventional reference point resulted 25-45% higher than the skin dose for the vertical C-arm (depending of the phantom thickness). ESAK and numerical image quality parameters allow the verification of the proper setting of the x-ray system. Knowing the increases in dose per frame when increasing phantom thicknesses together with the image quality parameters will help cardiologists in the good management of patient dose and allow them to select the best imaging acquisition mode during clinical procedures.
NASA Astrophysics Data System (ADS)
Mia, Mozammel; Bashir, Mahmood Al; Dhar, Nikhil Ranjan
2016-07-01
Hard turning is gradually replacing the time consuming conventional turning process, which is typically followed by grinding, by producing surface quality compatible to grinding. The hard turned surface roughness depends on the cutting parameters, machining environments and tool insert configurations. In this article the variation of the surface roughness of the produced surfaces with the changes in tool insert configuration, use of coolant and different cutting parameters (cutting speed, feed rate) has been investigated. This investigation was performed in machining AISI 1060 steel, hardened to 56 HRC by heat treatment, using coated carbide inserts under two different machining environments. The depth of cut, fluid pressure and material hardness were kept constant. The Design of Experiment (DOE) was performed to determine the number and combination sets of different cutting parameters. A full factorial analysis has been performed to examine the effect of main factors as well as interaction effect of factors on surface roughness. A statistical analysis of variance (ANOVA) was employed to determine the combined effect of cutting parameters, environment and tool configuration. The result of this analysis reveals that environment has the most significant impact on surface roughness followed by feed rate and tool configuration respectively.
Influence of Powder Injection Parameters in High-Pressure Cold Spray
NASA Astrophysics Data System (ADS)
Ozdemir, Ozan C.; Widener, Christian A.
2017-10-01
High-pressure cold spray systems are becoming widely accepted for use in the structural repair of surface defects of expensive machinery parts used in industrial and military equipment. The deposition quality of cold spray repairs is typically validated using coupon testing and through destructive analysis of mock-ups or first articles for a defined set of parameters. In order to provide a reliable repair, it is important to not only maintain the same processing parameters, but also to have optimum fixed parameters, such as the particle injection location. This study is intended to provide insight into the sensitivity of the way that the powder is injected upstream of supersonic nozzles in high-pressure cold spray systems and the effects of variations in injection parameters on the nature of the powder particle kinetics. Experimentally validated three-dimensional computational fluid dynamics (3D CFD) models are implemented to study the particle impact conditions for varying powder feeder tube size, powder feeder tube axial misalignment, and radial powder feeder injection location on the particle velocity and the deposition shape of aluminum alloy 6061. Outputs of the models are statistically analyzed to explore the shape of the spray plume distribution and resulting coating buildup.
Jung, Hee-Kyoung; Chung, EunJung; Lee, Byoung-Hee
2017-08-01
[Purpose] To compare function, activity, participation, and quality of life of Down syndrome children and typically developing children according to age. [Subjects and Methods] A total of 16 Down syndrome children and 20 children with typical development were included as subjects for this study. International Classification of Functioning, Disability, and Health (ICF) Child and Youth version (CY) developed by the World Health Organization (WHO) and a questionnaire were used to measure children's functioning, activity, and participation. To measure quality of life, KIDSCREEN 52-HRQOL questionnaire was used in this study. [Results] ICF-CY function, activity, participation, and quality of life showed statistically significant differences between Down syndrome children and typically developing children. Down syndrome children with higher functions showed higher activities and participation. Higher function, activity and participation features were correlated with better quality of life. Higher function resulted in better quality of life. [Conclusion] Function, activity, participation, quality of life, and several common factors of Down syndrome children depend on the ability of children. Function of Down syndrome children affects their activity, participation, and quality of life. Activities and participations also affect quality of life. Therefore, children's functional aspect is the foundation for quality of life.
Rosenbaum, Matthew D; VandeWoude, Susan; Volckens, John; Johnson, Thomas E
2010-01-01
Animal room environmental parameters typically are monitored with the assumption that the environment within the cage closely mirrors the room environment. This study evaluated that premise by examining macro- (room) and microenvironmental (cage) parameters in individually ventilated cages housing mice with variable amounts of bedding over a period of 17 d without cage changes. Intracage ammonia levels remained within recommended human guidelines but were higher than room levels, confirming that microisolation caging is efficient at preventing ammonia generated from animal waste from escaping into the room. Humidity and temperature within cages were consistently higher than room levels. Particles in the room predominantly consisted of fine particles (diameter less than 2.5 µm), presumably from the ambient atmosphere; some of these particles were found in the cage microenvironment. In addition, mouse activity within cages produced larger particles, and these particles contributed to substantially higher aerosol mass concentrations within the cage. These findings demonstrate that, although cage and room environmental parameters differ, knowledge of room environmental conditions can be used to predict certain conditions within the cage. This association is relevant in that typical animal care standard operating procedures rely on room measurements, not intracage measurements, which arguably are more important for assessing animal welfare. Further, location and ambient climate can influence particle concentrations in the room, and consequently within the animal cage, suggesting local weather patterns and air quality may account for variability among studies conducted at sites that are geographically divergent. PMID:20353692
Sperm quality and environment: A retrospective, cohort study in a Northern province of Italy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Santi, Daniele, E-mail: santi.daniele@gmail.com; Department of Medicine, Endocrinology, Metabolism and Geriatrics; Vezzani, Silvia
Background: Several studies proposed a relationship between environmental factors and semen quality, as well as the negative effect of air pollution on spermatogenesis and gonadal function. No specific studies evaluated the environmental influence on semen quality in a specific geographical area. Aim: to evaluate the environmental influence on male sperm parameters in a Northern Italian population referred for semen analysis in the National Health System. The objective of the study is the assessment of the relationship of both air pollution and environmental parameters with quality-related sperm variables, during the coldest months of the year when air is usually most polluted,more » due to low ventilation and poor rainfall. Study design: A retrospective, observational, cohort study was carried out in the province of Modena, located in the Emilia-Romagna region of Northern Italy. Methods: Semen analyses (n=406), environmental temperature, air humidity and air particulate matter (PM) measurements from the 1st of November 2014 to the 19th of February 2015 were acquired to the first database. Since spermatogenesis lasts over two months, a second, wider database was arranged, evaluating environmental exposure in the 3 months before semen collection (from August 1st 2014). All data included in the database were registered by geo-coding the residential address of the patients and the site of registration of environmental factors. The geo-codification of parameters was performed using Fusion Tables of Google available at (https://www.google.com/fusiontables/data? dsrcid=implicit), considering the exact time of measurement. Results: Average air temperature was inversely related to sperm concentration and to total sperm number (p<0.001). Semen volume was inversely related only to the minimum (p<0.001) and not to maximum recorded temperature (p=0.110). Air humidity was not related to sperm quantity and quality. PM{sub 2.5} was directly related to total sperm number (p<0.001). PM{sub 10} was directly related to both semen volume (0<0.001), and typical forms (p<0.001), inversely related to atypical forms (p<0.001), but related neither to sperm concentration (p=0.430) nor to sperm motility. The extended analyses considering environmental parameters in the 3 months before semen collection, confirmed the relationship between air temperature and sperm quantity, whereas no influence was found between PM and sperm quality. Conclusion: An influence of environmental temperature on semen quantity is suggested, without a clear effect of air pollution, as assessed through PM{sub 10} levels, on sperm parameter variations.« less
Sperm quality and environment: A retrospective, cohort study in a Northern province of Italy.
Santi, Daniele; Vezzani, Silvia; Granata, Antonio Rm; Roli, Laura; De Santis, Maria Cristina; Ongaro, Chiara; Donati, Federica; Baraldi, Enrica; Trenti, Tommaso; Setti, Monica; Simoni, Manuela
2016-10-01
Several studies proposed a relationship between environmental factors and semen quality, as well as the negative effect of air pollution on spermatogenesis and gonadal function. No specific studies evaluated the environmental influence on semen quality in a specific geographical area. to evaluate the environmental influence on male sperm parameters in a Northern Italian population referred for semen analysis in the National Health System. The objective of the study is the assessment of the relationship of both air pollution and environmental parameters with quality-related sperm variables, during the coldest months of the year when air is usually most polluted, due to low ventilation and poor rainfall. A retrospective, observational, cohort study was carried out in the province of Modena, located in the Emilia-Romagna region of Northern Italy. Semen analyses (n=406), environmental temperature, air humidity and air particulate matter (PM) measurements from the 1st of November 2014 to the 19th of February 2015 were acquired to the first database. Since spermatogenesis lasts over two months, a second, wider database was arranged, evaluating environmental exposure in the 3 months before semen collection (from August 1st 2014). All data included in the database were registered by geo-coding the residential address of the patients and the site of registration of environmental factors. The geo-codification of parameters was performed using Fusion Tables of Google available at https://www.google.com/fusiontables/data? dsrcid=implicit, considering the exact time of measurement. Average air temperature was inversely related to sperm concentration and to total sperm number (p<0.001). Semen volume was inversely related only to the minimum (p<0.001) and not to maximum recorded temperature (p=0.110). Air humidity was not related to sperm quantity and quality. PM2.5 was directly related to total sperm number (p<0.001). PM10 was directly related to both semen volume (0<0.001), and typical forms (p<0.001), inversely related to atypical forms (p<0.001), but related neither to sperm concentration (p=0.430) nor to sperm motility. The extended analyses considering environmental parameters in the 3 months before semen collection, confirmed the relationship between air temperature and sperm quantity, whereas no influence was found between PM and sperm quality. An influence of environmental temperature on semen quantity is suggested, without a clear effect of air pollution, as assessed through PM10 levels, on sperm parameter variations. Copyright © 2016 Elsevier Inc. All rights reserved.
Impact assessment of treated wastewater on water quality of the receiver using the Wilcoxon test
NASA Astrophysics Data System (ADS)
Ofman, Piotr; Puchlik, Monika; Simson, Grzegorz; Krasowska, Małgorzata; Struk-Sokołowska, Joanna
2017-11-01
Wastewater treatment is a process which aims to reduce the concentration of pollutants in wastewater to the level allowed by current regulations. This is to protect the receivers which typically are rivers, streams, lakes. Examination of the quality of treated wastewater allows for quick elimination of possible negative effects, and the study of water receiver prevents from excessive contamination. The paper presents the results of selected physical and chemical parameters of treated wastewater from the largest on the region in north-eastern Poland city of Bialystok municipal wastewater treatment and Biała River, the receiver. The samples for research were taken 3-4 a month in 2015 from two points: before and after discharge. The impact of the wastewater treatment plant on the quality of the receiver waters was studied by using non-parametric Wilcoxon test. This test determined whether the analyzed indicators varied significantly depending on different sampling points of the river, above and below place of discharge of treated wastewater. These results prove that the treated wastewater does not affect the water quality in the Biała River.
NASA Astrophysics Data System (ADS)
Zhang, Zhifen; Chen, Huabin; Xu, Yanling; Zhong, Jiyong; Lv, Na; Chen, Shanben
2015-08-01
Multisensory data fusion-based online welding quality monitoring has gained increasing attention in intelligent welding process. This paper mainly focuses on the automatic detection of typical welding defect for Al alloy in gas tungsten arc welding (GTAW) by means of analzing arc spectrum, sound and voltage signal. Based on the developed algorithms in time and frequency domain, 41 feature parameters were successively extracted from these signals to characterize the welding process and seam quality. Then, the proposed feature selection approach, i.e., hybrid fisher-based filter and wrapper was successfully utilized to evaluate the sensitivity of each feature and reduce the feature dimensions. Finally, the optimal feature subset with 19 features was selected to obtain the highest accuracy, i.e., 94.72% using established classification model. This study provides a guideline for feature extraction, selection and dynamic modeling based on heterogeneous multisensory data to achieve a reliable online defect detection system in arc welding.
NASA Astrophysics Data System (ADS)
Zhong, Qiu-Xiang; Wu, Chuan-Sheng; Shu, Qiao-Ling; Liu, Ryan Wen
2018-04-01
Image deblurring under impulse noise is a typical ill-posed problem which requires regularization methods to guarantee high-quality imaging. L1-norm data-fidelity term and total variation (TV) regularizer have been combined to contribute the popular regularization method. However, the TV-regularized variational image deblurring model often suffers from the staircase-like artifacts leading to image quality degradation. To enhance image quality, the detailpreserving total generalized variation (TGV) was introduced to replace TV to eliminate the undesirable artifacts. The resulting nonconvex optimization problem was effectively solved using the alternating direction method of multipliers (ADMM). In addition, an automatic method for selecting spatially adapted regularization parameters was proposed to further improve deblurring performance. Our proposed image deblurring framework is able to remove blurring and impulse noise effects while maintaining the image edge details. Comprehensive experiments have been conducted to demonstrate the superior performance of our proposed method over several state-of-the-art image deblurring methods.
NASA Astrophysics Data System (ADS)
Ji, Zhong-Ye; Zhang, Xiao-Fang
2018-01-01
The mathematical relation between the beam quality β factor of high-energy laser and the wavefront aberration of laser beam is important in beam quality control theory of the high-energy laser weapon system. In order to obtain this mathematical relation, numerical simulation is used in the research. Firstly, the Zernike representations of typically distorted atmospheric wavefront aberrations caused by the Kolmogoroff turbulence are generated. And then, the corresponding beam quality β factors of the different distorted wavefronts are calculated numerically through fast Fourier transform. Thus, the statistical distribution rule between the beam quality β factors of high-energy laser and the wavefront aberrations of the beam can be established by the calculated results. Finally, curve fitting method is chosen to establish the mathematical fitting relationship of these two parameters. And the result of the curve fitting shows that there is a quadratic curve relation between the beam quality β factor of high-energy laser and the wavefront aberration of laser beam. And in this paper, 3 fitting curves, in which the wavefront aberrations are consisted of Zernike Polynomials of 20, 36, 60 orders individually, are established to express the relationship between the beam quality β factor and atmospheric wavefront aberrations with different spatial frequency.
Multiscale visual quality assessment for cluster analysis with self-organizing maps
NASA Astrophysics Data System (ADS)
Bernard, Jürgen; von Landesberger, Tatiana; Bremm, Sebastian; Schreck, Tobias
2011-01-01
Cluster analysis is an important data mining technique for analyzing large amounts of data, reducing many objects to a limited number of clusters. Cluster visualization techniques aim at supporting the user in better understanding the characteristics and relationships among the found clusters. While promising approaches to visual cluster analysis already exist, these usually fall short of incorporating the quality of the obtained clustering results. However, due to the nature of the clustering process, quality plays an important aspect, as for most practical data sets, typically many different clusterings are possible. Being aware of clustering quality is important to judge the expressiveness of a given cluster visualization, or to adjust the clustering process with refined parameters, among others. In this work, we present an encompassing suite of visual tools for quality assessment of an important visual cluster algorithm, namely, the Self-Organizing Map (SOM) technique. We define, measure, and visualize the notion of SOM cluster quality along a hierarchy of cluster abstractions. The quality abstractions range from simple scalar-valued quality scores up to the structural comparison of a given SOM clustering with output of additional supportive clustering methods. The suite of methods allows the user to assess the SOM quality on the appropriate abstraction level, and arrive at improved clustering results. We implement our tools in an integrated system, apply it on experimental data sets, and show its applicability.
Prediction and typicality in multiverse cosmology
NASA Astrophysics Data System (ADS)
Azhar, Feraz
2014-02-01
In the absence of a fundamental theory that precisely predicts values for observable parameters, anthropic reasoning attempts to constrain probability distributions over those parameters in order to facilitate the extraction of testable predictions. The utility of this approach has been vigorously debated of late, particularly in light of theories that claim we live in a multiverse, where parameters may take differing values in regions lying outside our observable horizon. Within this cosmological framework, we investigate the efficacy of top-down anthropic reasoning based on the weak anthropic principle. We argue contrary to recent claims that it is not clear one can either dispense with notions of typicality altogether or presume typicality, in comparing resulting probability distributions with observations. We show in a concrete, top-down setting related to dark matter, that assumptions about typicality can dramatically affect predictions, thereby providing a guide to how errors in reasoning regarding typicality translate to errors in the assessment of predictive power. We conjecture that this dependence on typicality is an integral feature of anthropic reasoning in broader cosmological contexts, and argue in favour of the explicit inclusion of measures of typicality in schemes invoking anthropic reasoning, with a view to extracting predictions from multiverse scenarios.
Walch, Stephan G; Tinzoh, Laura Ngaba; Zimmermann, Benno F; Stühlinger, Wolf; Lachenmeier, Dirk W
2011-01-01
Sage (Salvia officinalis L.) is used as an herbal medicinal product, with the most typical form of application as infusion with boiling water (sage tea). The well-established traditional uses include symptomatic treatment of mild dyspeptic complaints, the treatment of inflammations in the mouth and the throat, and relief of excessive sweating and relief of minor skin inflammations. In this study, sage teas prepared from commercially available products were chemically analyzed for polyphenolic content using liquid chromatography, for antioxidant potential using the oxygen radical absorbance capacity method, and for the Folin-Ciocalteu (FC) index. The sage teas showed a high variation for all parameters studied (up to 20-fold differences for rosmarinic acid). Univariate and multivariate analyses showed that the antioxidant potential, which varied between 0.4 and 1.8 mmol trolox equivalents/100 mL, was highly dependent on rosmarinic acid and its derivatives. The FC index also showed a high correlation to these polyphenols, and could therefore be used as a screening parameter for sage tea quality. The considerable differences in polyphenolic composition and antioxidant capacity between the brands lead to a demand for quality standardization, especially if these sage teas are to be used for therapeutic purposes. Further research also appears to be necessary to characterize the dose-benefit relationship, as sage may also contain a constituent (thujone) with potentially adverse effects.
Microseismic Monitoring Design Optimization Based on Multiple Criteria Decision Analysis
NASA Astrophysics Data System (ADS)
Kovaleva, Y.; Tamimi, N.; Ostadhassan, M.
2017-12-01
Borehole microseismic monitoring of hydraulic fracture treatments of unconventional reservoirs is a widely used method in the oil and gas industry. Sometimes, the quality of the acquired microseismic data is poor. One of the reasons for poor data quality is poor survey design. We attempt to provide a comprehensive and thorough workflow, using multiple criteria decision analysis (MCDA), to optimize planning micriseismic monitoring. So far, microseismic monitoring has been used extensively as a powerful tool for determining fracture parameters that affect the influx of formation fluids into the wellbore. The factors that affect the quality of microseismic data and their final results include average distance between microseismic events and receivers, complexity of the recorded wavefield, signal-to-noise ratio, data aperture, etc. These criteria often conflict with each other. In a typical microseismic monitoring, those factors should be considered to choose the best monitoring well(s), optimum number of required geophones, and their depth. We use MDCA to address these design challenges and develop a method that offers an optimized design out of all possible combinations to produce the best data acquisition results. We believe that this will be the first research to include the above-mentioned factors in a 3D model. Such a tool would assist companies and practicing engineers in choosing the best design parameters for future microseismic projects.
A New Type of ECT Stimuli: Burst Stimulus ECT.
Aksay, S S; Bumb, J M; Janke, C; Kranaster, L; Sartorius, A
2015-11-01
Pulse width in electroconvulsive therapy has significant influence on effectiveness and side effects. While shorter pulses are beneficial for cognitive performance, there is still a debate about a negative impact on ECT efficacy at least for ultra-brief pulse durations. We report a first patient treated with burst stimulus ECT, i. e., with 4 consecutive 250-µs pulses, separated by another 250 µs. Within the same patient we compared 6 classical vs. 6 burst stimulus ECT sessions. In all cases a typical tonic-clonic seizure was observed. Seizure parameters like concordance, coherence and mid-ictal amplitude increased numerically, but not significantly with burst ECT. The time needed to show a reorientation was significantly shortened with burst stimuli (30 min vs. 14 min, p=0.007). In conclusion we present the first case of ECT in a single patient comparing "classical" single stimulus pulses vs. burst stimulus ECT. The new burst stimulus was better tolerated regarding reorientation time after the treatment, while parameters of seizure quality remained basically unchanged. Whether burst stimulus ECT has the potential to improve ECT quality by reducing side effects without losing efficacy has to be investigated in clinical trials. © Georg Thieme Verlag KG Stuttgart · New York.
Blecker, Steve W.; Stillings, Lisa L.; Amacher, Michael C.; Ippolito, James A.; DeCrappeo, Nicole M.
2010-01-01
The myriad definitions of soil/ecosystem quality or health are often driven by ecosystem and management concerns, and they typically focus on the ability of the soil to provide functions relating to biological productivity and/or environmental quality. A variety of attempts have been made to create indices that quantify the complexities of soil quality and provide a means of evaluating the impact of various natural and anthropogenic disturbances. Though not without their limitations, indices can improve our understanding of the controls behind ecosystem processes and allow for the distillation of information to help link scientific and management communities. In terrestrial systems, indices were initially developed and modified for agroecosystems; however, the number of studies implementing such indices in nonagricultural systems is growing. Soil quality indices (SQIs) are typically composed of biological (and sometimes physical and chemical) parameters that attempt to reduce the complexity of a system into a metric of a soil’s ability to carry out one or more functions.The indicators utilized in SQIs can be as varied as the studies themselves, reflecting the complexity of the soil and ecosystems in which they function. Regardless, effective soil quality indicators should correlate well with soil or ecosystem processes, integrate those properties and processes, and be relevant to management practices. Commonly applied biological indicators include measures associated with soil microbial activity or function (for example, carbon and nitrogen mineralization, respiration, microbial biomass, enzyme activity. Cost, accessibility, ease of interpretation, and presence of existing data often dictate indicator selection given the number of available measures. We employed a large number of soil biological, chemical, and physical measures, along with measures of vegetation cover, density, and productivity, in order to test the utility and sensitivity of these measures within various mineralized terranes. We were also interested in examining these relations in the context of determining appropriate reference conditions with which to compare reclamation efforts.The purpose of this report is to present the data used to develop indices of soil and ecosystem quality associated with mineralized terranes (areas enriched in metal-bearing minerals), specifically podiform chromite, quartz alunite, and Mo/Cu porphyry systems. Within each of these mineralized terranes, a nearby unmineralized counterpart was chosen for comparison. The data consist of soil biological, chemical, and physical parameters, along with vegetation measurements for each of the sites described below. Synthesis of these data and index development will be the subject of future publications.
Experiences and recommendations in deploying a real-time, water quality monitoring system
NASA Astrophysics Data System (ADS)
O'Flynn, B.; Regan, F.; Lawlor, A.; Wallace, J.; Torres, J.; O'Mathuna, C.
2010-12-01
Monitoring of water quality at a river basin level to meet the requirements of the Water Framework Directive (WFD) using conventional sampling and laboratory-based techniques poses a significant financial burden. Wireless sensing systems offer the potential to reduce these costs considerably, as well as provide more useful, continuous monitoring capabilities by giving an accurate idea of the changing environmental and water quality in real time. It is unlikely that the traditional spot/grab sampling will provide a reasonable estimate of the true maximum and/or mean concentration for a particular physicochemical variable in a water body with marked temporal variability. When persistent fluctuations occur, it is likely only to be detected through continuous measurements, which have the capability of detecting sporadic peaks of concentration. Thus, in situ sensors capable of continuous sampling of parameters required under the WFD would therefore provide more up-to-date information, cut monitoring costs and provide better coverage representing long-term trends in fluctuations of pollutant concentrations. DEPLOY is a technology demonstration project, which began planning and station selection and design in August 2008 aiming to show how state-of-the-art technology could be implemented for cost-effective, continuous and real-time monitoring of a river catchment. The DEPLOY project is seen as an important building block in the realization of a wide area autonomous network of sensors capable of monitoring the spatial and temporal distribution of important water quality and environmental target parameters. The demonstration sites chosen are based in the River Lee, which flows through Ireland's second largest city, Cork, and were designed to include monitoring stations in five zones considered typical of significant river systems--these monitor water quality parameters such as pH, temperature, depth, conductivity, turbidity and dissolved oxygen. Over one million data points have been collected since the multi-sensor system was deployed in May 2009. Extreme meteorological events have occurred during the period of deployment and the collection of real-time water quality data as well as the knowledge, experience and recommendations for future deployments are discussed.
Palavecino Prpich, Noelia Z; Castro, Marcela P; Cayré, María E; Garro, Oscar A; Vignolo, Graciela M
2015-01-01
Lactic acid bacteria (LAB) and coagulase negative cocci (CNC) were isolated from artisanal dry sausages sampled from the northeastern region of Chaco, Argentina. In order to evaluate their performance in situ and considering technological features of the isolated strains, two mixed selected autochthonous starter cultures (SAS) were designed: (i) SAS-1 (Lactobacillus sakei 487 + Staphylococcus vitulinus C2) and (ii) SAS-2 (L. sakei 442 + S. xylosus C8). Cultures were introduced into dry sausage manufacturing process at a local small-scale facility. Microbiological and physicochemical parameters were monitored throughout fermentation and ripening periods, while sensory attributes of the final products were evaluated by a trained panel. Lactic acid bacteria revealed their ability to colonize and adapt properly to the meat matrix, inhibiting the growth of spontaneous microflora and enhancing safety and hygienic profile of the products. Both SAS showed a beneficial effect on lipid oxidation and texture of the final products. Staphylococcus vitulinus C2, from SAS-1, promoted a better redness of the final product. Sensory profile revealed that SAS addition preserved typical sensory attributes. Introduction of these cultures could provide an additional tool to standardize manufacturing processes aiming to enhance safety and quality while keeping typical sensory attributes of regional dry fermented sausages.
On numerical reconstructions of lithographic masks in DUV scatterometry
NASA Astrophysics Data System (ADS)
Henn, M.-A.; Model, R.; Bär, M.; Wurm, M.; Bodermann, B.; Rathsfeld, A.; Gross, H.
2009-06-01
The solution of the inverse problem in scatterometry employing deep ultraviolet light (DUV) is discussed, i.e. we consider the determination of periodic surface structures from light diffraction patterns. With decreasing dimensions of the structures on photo lithography masks and wafers, increasing demands on the required metrology techniques arise. Scatterometry as a non-imaging indirect optical method is applied to periodic line structures in order to determine the sidewall angles, heights, and critical dimensions (CD), i.e., the top and bottom widths. The latter quantities are typically in the range of tens of nanometers. All these angles, heights, and CDs are the fundamental figures in order to evaluate the quality of the manufacturing process. To measure those quantities a DUV scatterometer is used, which typically operates at a wavelength of 193 nm. The diffraction of light by periodic 2D structures can be simulated using the finite element method for the Helmholtz equation. The corresponding inverse problem seeks to reconstruct the grating geometry from measured diffraction patterns. Fixing the class of gratings and the set of measurements, this inverse problem reduces to a finite dimensional nonlinear operator equation. Reformulating the problem as an optimization problem, a vast number of numerical schemes can be applied. Our tool is a sequential quadratic programing (SQP) variant of the Gauss-Newton iteration. In a first step, in which we use a simulated data set, we investigate how accurate the geometrical parameters of an EUV mask can be reconstructed, using light in the DUV range. We then determine the expected uncertainties of geometric parameters by reconstructing from simulated input data perturbed by noise representing the estimated uncertainties of input data. In the last step, we use the measurement data obtained from the new DUV scatterometer at PTB to determine the geometrical parameters of a typical EUV mask with our reconstruction algorithm. The results are compared to the outcome of investigations with two alternative methods namely EUV scatterometry and SEM measurements.
NASA Astrophysics Data System (ADS)
Kløve Keiding, Jakob; Erichsen, Eyolf; Heldal, Tom; Aslaksen Aasly, Kari
2017-04-01
Good access to construction materials is crucial for future infrastructure development and continued economic growth. In Norway >80 % of construction materials come from crushed aggregates and represent an growing share of the consumption. Although recycling to some extend can cover the need for construction materials, economic growth, increasing population and urbanization necessitates exploitation of new rock resources in Norway as well as many other parts of the world. Aggregates must fulfill a number of technical requirements to ensure high quality and long life expectancy of new roads, buildings and structures. Aggregates also have to be extracted near the consumer market. Particularly for road construction strict criteria are in place for wearing course for roads with high traffic density. Thus knowledge of mechanical rock quality is paramount for both exploitation as well as future resource and land-use planning but is often not assessed or mapped beyond the quarry scale. The Geological survey of Norway runs a database with information about crushed aggregate deposits from >1500 Norwegian quarries and sample sites. Here we use mechanical test analyses from the database to assess the aggregate quality in the Nordland county, Norway. Maps have been produced linking bed rock geology with rock quality parameters. The survey documents that the county is challenged in meeting the requirements for roads with high traffic density and especially in the middle parts of the county many samples have weak mechanical properties. This to some degree reflect that weak Cambro-Silurian rocks like phyllite, schist, carbonate and greenstone are abundant in Nordland. Typically mechanically stronger rock types such as gabbro, monzonite and granite are also exposed in large parts of the county, but are also characterized by relative poor or very variable mechanical test quality. Preliminary results indicate that many intrinsic parameters influence the mechanical rock strength, but variable degrees of deformation in the different tectonostratigraphic units exposed in Nordland affects the rock mechanical properties and is a prominent feature of our mapping. Unsurprisingly rock type, mineralogy, grain size and rock texture are all important factors that have a major control on the mechanical behaviour of the rocks. However, this assessment shows that there is an intricate interaction between these parameters and the resulting mechanical properties at present making it difficult to assess mechanical quality accurately only based on petrographic examination.
Raziel, A; Friedler, S; Gidoni, Y; Ben Ami, I; Strassburger, D; Ron-El, R
2012-01-01
The genital malformations in Mayer-Rokitansky-Küster-Hauser syndrome (MRKH) are frequently accompanied by associated malformations whose forms were recently classified as typical (isolated uterovaginal aplasia/hypoplasia) and atypical (the addition of malformations in the ovary or renal system). The aim of this study was to compare the surrogate IVF performance of women with typical and atypical forms including their chances of achieving pregnancy. The follow-up data on a total of 102 cycles of surrogate IVF in 27 MRKH patients treated in our department between 2000 and 2010 were analysed. Twenty patients with the typical form who underwent 72 IVF cycles were compared with seven patients with the atypical form who underwent 30 IVF cycles. The various examined parameters of these intended mothers were age, hormonal profile during controlled ovarian hyperstimulation and laboratory outcome. The mean number of gonadotrophin ampoules needed for stimulation and treatment duration was significantly higher in the atypical form (3600 ± 1297IU for 13 ± 2.3 days versus 2975 ± 967 IU for 11.6 ± 1.6 days, P≤ 0.01). Serum estradiol and progesterone levels measured on the hCG administration day were similar. A significantly higher mean number of follicles 12.6 ± 6 versus 8.9 ± 5.4, P≤ 0.03, metaphase II (MII) oocytes 8.7 ± 5.1 versus 6.7 ± 4.8, P≤ 0.05, fertilizations 6 ± 3.6 versus 4.4 ± 3.3, P≤ 0.03 and cleaving embryos 5.7 ± 3.8 versus 4.1 ± 3.3, P≤ 0.01 were available in patients with the typical form compared with those with the atypical form, respectively. There was no significant difference in fertilization rate, cleavage rate or the mean number of transferred embryos. Embryo quality of the transferred ones and pregnancy rate per cycle were also similar between the two groups. Women with the typical form of MRKH needed fewer gonadotrophins and for a shorter duration for ovarian hyperstimulation. The mean number of follicles, oocytes, MII oocytes, fertilizations and cleaving embryos was higher among women with the typical form. Pregnancy rates were similar since the available number and quality of transferred embryos to the surrogate mother were not affected.
Assessment of Natural Ventilation System for a Typical Residential House in Poland
NASA Astrophysics Data System (ADS)
Antczak-Jarząbska, Romana; Krzaczek, Marek
2016-09-01
The paper presents the research results of field measurements campaign of natural ventilation performance and effectiveness in a residential building. The building is located in the microclimate whose parameters differ significantly in relation to a representative weather station. The measurement system recorded climate parameters and the physical variables characterizing the air flow in the rooms within 14 days of the winter season. The measurement results showed that in spite of proper design and construction of the ventilation system, unfavorable microclimatic conditions that differed from the predicted ones caused significant reduction in the efficiency of the ventilation system. Also, during some time periods, external climate conditions caused an opposite air flow direction in the vent inlets and outlets, leading to a significant deterioration of air quality and thermal comfort measured by CO2 concentration and PMV index in a residential area.
Water quality modelling of Jadro spring.
Margeta, J; Fistanic, I
2004-01-01
Management of water quality in karst is a specific problem. Water generally moves very fast by infiltration processes but far more by concentrated flows through fissures and openings in karst. This enables the entire surface pollution to be transferred fast and without filtration into groundwater springs. A typical example is the Jadro spring. Changes in water quality at the spring are sudden, but short. Turbidity as a major water quality problem for the karst springs regularly exceeds allowable standards. Former practice in problem solving has been reduced to intensive water disinfection in periods of great turbidity without analyses of disinfection by-products risks for water users. The main prerequisite for water quality control and an optimization of water disinfection is the knowledge of raw water quality and nature of occurrence. The analysis of monitoring data and their functional relationship with hydrological parameters enables establishment of a stochastic model that will help obtain better information on turbidity in different periods of the year. Using the model a great number of average monthly and extreme daily values are generated. By statistical analyses of these data possibility of occurrence of high turbidity in certain months is obtained. This information can be used for designing expert system for water quality management of karst springs. Thus, the time series model becomes a valuable tool in management of drinking water quality of the Jadro spring.
Reconceptualizing the Archetypal Trickster in Audre Lorde's Zami: A New Spelling of My Name.
Saber, Yomna
2015-01-01
Carl Jung categorizes the trickster as a psychological archetype and sets certain parameters for it. This article examines Audre Lorde's trickster Afrekete in Zami: A New Spelling of My Name (1982) and poses the question of how typically archetypal a Black, female, lesbian trickster can be. Lorde occupies an idiosyncratic position in the canon in terms of race, gender, and sexual orientation. She bestows new qualities on her trickster coming from the peripheries she dwells in and challenges the Jungian model. Through Afrekete's linguistic dexterity and sexual identity, Lorde transforms the trickster from being seemingly innocuous into a figure of resistance grounded in lesbian erotica.
Coastal microbial quality of surface sediments in different environments along the Italian coast.
Chiaretti, G; Onorati, F; Borrello, P; Orasi, A; Mugnai, C
2014-09-20
In order to improve sediment handling following dredging operations, this study aims to statistically derive ranges of distribution for certain microbiological parameters, according to four environmental types inspired by Italian legislation on seaports: ports of international/national importance, ports of regional importance, port channels in brackish environments, and marine coastal areas. A national database was developed using microbiological data from technical reports available at the Italian Ministry of Environment and National Institute of Environmental Protection and Research (ISPRA) for the period 1990-2008. The parameters considered were total coliform bacteria, faecal coliform bacteria, Escherichia coli, enterococci, sulfite-reducing clostridia (SRC), total bacterial counts at 22 °C and at 37 °C, and fungi. The data were statistically analyzed: (1) to verify the correspondence with the identified environmental types and rank them according to the concentration gradient and (2) to describe the data distribution in order to obtain reference ranges typical for each parameter/environmental type. The four environmental types considered were clearly different for enterococci, SRC, and fungi, highlighting a correspondence with Italian legislation. For the remaining parameters, at least two environmental types were merged. In general, the less contaminated environments were small ports and relatively unimpacted coastal areas. The ranges defined for relatively clean coastal areas can be considered a target for other areas both from an environmental point of view and for the sediment management implications. These values could be used as a comparison in environmental surveys addressing marine or brackish sediment handling and may represent a future line of evidence for the assessment of overall sediment quality.
Wang, Ranran; Eckelman, Matthew J; Zimmerman, Julie B
2013-10-01
A consequential life cycle assessment (LCA) is conducted to evaluate the trade-offs between water quality improvements and the incremental climate, resource, and economic costs of implementing green (bioretention basin, green roof, and permeable pavement) versus gray (municipal separate stormwater sewer systems, MS4) alternatives of stormwater infrastructure expansions against a baseline combined sewer system with combined sewer overflows in a typical Northeast US watershed for typical, dry, and wet years. Results show that bioretention basins can achieve water quality improvement goals (e.g., mitigating freshwater eutrophication) for the least climate and economic costs of 61 kg CO2 eq. and $98 per kg P eq. reduction, respectively. MS4 demonstrates the minimum life cycle fossil energy use of 42 kg oil eq. per kg P eq. reduction. When integrated with the expansion in stormwater infrastructure, implementation of advanced wastewater treatment processes can further reduce the impact of stormwater runoff on aquatic environment at a minimal environmental cost (77 kg CO2 eq. per kg P eq. reduction), which provides support and valuable insights for the further development of integrated management of stormwater and wastewater. The consideration of critical model parameters (i.e., precipitation intensity, land imperviousness, and infrastructure life expectancy) highlighted the importance and implications of varying local conditions and infrastructure characteristics on the costs and benefits of stormwater management. Of particular note is that the impact of MS4 on the local aquatic environment is highly dependent on local runoff quality indicating that a combined system of green infrastructure prior to MS4 potentially provides a more cost-effective improvement to local water quality.
Kazemi, Pezhman; Khalid, Mohammad Hassan; Pérez Gago, Ana; Kleinebudde, Peter; Jachowicz, Renata; Szlęk, Jakub; Mendyk, Aleksander
2017-01-01
Dry granulation using roll compaction is a typical unit operation for producing solid dosage forms in the pharmaceutical industry. Dry granulation is commonly used if the powder mixture is sensitive to heat and moisture and has poor flow properties. The output of roll compaction is compacted ribbons that exhibit different properties based on the adjusted process parameters. These ribbons are then milled into granules and finally compressed into tablets. The properties of the ribbons directly affect the granule size distribution (GSD) and the quality of final products; thus, it is imperative to study the effect of roll compaction process parameters on GSD. The understanding of how the roll compactor process parameters and material properties interact with each other will allow accurate control of the process, leading to the implementation of quality by design practices. Computational intelligence (CI) methods have a great potential for being used within the scope of quality by design approach. The main objective of this study was to show how the computational intelligence techniques can be useful to predict the GSD by using different process conditions of roll compaction and material properties. Different techniques such as multiple linear regression, artificial neural networks, random forest, Cubist and k-nearest neighbors algorithm assisted by sevenfold cross-validation were used to present generalized models for the prediction of GSD based on roll compaction process setting and material properties. The normalized root-mean-squared error and the coefficient of determination (R2) were used for model assessment. The best fit was obtained by Cubist model (normalized root-mean-squared error =3.22%, R2=0.95). Based on the results, it was confirmed that the material properties (true density) followed by compaction force have the most significant effect on GSD. PMID:28176905
Kazemi, Pezhman; Khalid, Mohammad Hassan; Pérez Gago, Ana; Kleinebudde, Peter; Jachowicz, Renata; Szlęk, Jakub; Mendyk, Aleksander
2017-01-01
Dry granulation using roll compaction is a typical unit operation for producing solid dosage forms in the pharmaceutical industry. Dry granulation is commonly used if the powder mixture is sensitive to heat and moisture and has poor flow properties. The output of roll compaction is compacted ribbons that exhibit different properties based on the adjusted process parameters. These ribbons are then milled into granules and finally compressed into tablets. The properties of the ribbons directly affect the granule size distribution (GSD) and the quality of final products; thus, it is imperative to study the effect of roll compaction process parameters on GSD. The understanding of how the roll compactor process parameters and material properties interact with each other will allow accurate control of the process, leading to the implementation of quality by design practices. Computational intelligence (CI) methods have a great potential for being used within the scope of quality by design approach. The main objective of this study was to show how the computational intelligence techniques can be useful to predict the GSD by using different process conditions of roll compaction and material properties. Different techniques such as multiple linear regression, artificial neural networks, random forest, Cubist and k-nearest neighbors algorithm assisted by sevenfold cross-validation were used to present generalized models for the prediction of GSD based on roll compaction process setting and material properties. The normalized root-mean-squared error and the coefficient of determination ( R 2 ) were used for model assessment. The best fit was obtained by Cubist model (normalized root-mean-squared error =3.22%, R 2 =0.95). Based on the results, it was confirmed that the material properties (true density) followed by compaction force have the most significant effect on GSD.
Paschalis, Eleftherios P; Fratzl, Peter; Gamsjaeger, Sonja; Hassler, Norbert; Brozek, Wolfgang; Eriksen, Erik F; Rauch, Frank; Glorieux, Francis H; Shane, Elizabeth; Dempster, David; Cohen, Adi; Recker, Robert; Klaushofer, Klaus
2016-02-01
Bone strength depends on the amount of bone, typically expressed as bone mineral density (BMD), determined by dual-energy X-ray absorptiometry (DXA), and on bone quality. Bone quality is a multifactorial entity including bone structural and material compositional properties. The purpose of the present study was to examine whether bone material composition properties at actively-forming trabecular bone surfaces in health are dependent on subject age, and to contrast them with postmenopausal osteoporosis patients. To achieve this, we analyzed by Raman microspectroscopy iliac crest biopsy samples from healthy subjects aged 1.5 to 45.7 years, paired biopsy samples from females before and immediately after menopause aged 46.7 to 53.6 years, and biopsy samples from placebo-treated postmenopausal osteoporotic patients aged 66 to 84 years. The monitored parameters were as follows: the mineral/matrix ratio; the mineral maturity/crystallinity (MMC); nanoporosity; the glycosaminoglycan (GAG) content; the lipid content; and the pyridinoline (Pyd) content. The results indicate that these bone quality parameters in healthy, actively-forming trabecular bone surfaces are dependent on subject age at constant tissue age, suggesting that with advancing age the kinetics of maturation (either accumulation, or posttranslational modifications, or both) change. For most parameters, the extrapolation of models fitted to the individual age dependence of bone in healthy individuals was in rough agreement with their values in postmenopausal osteoporotic patients, except for MMC, lipid, and Pyd content. Among these three, Pyd content showed the greatest deviation between healthy aging and disease, highlighting its potential to be used as a discriminating factor. © 2015 American Society for Bone and Mineral Research.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, D; MacDougall, R
2016-06-15
Purpose: Accurate values for Kerma-Area-Product (KAP) are needed for patient dosimetry and quality control for exams utilizing radiographic and/or fluoroscopic imaging. The KAP measured using a typical direct KAP meter built with parallel-plate transmission ionization chamber is not precise and depends on the energy spectrum of diagnostic x-rays. This study compared the accuracy and reproducibility of KAP derived from system parameters with values measured with a direct KAP meter. Methods: IEC tolerance for displayed KAP is specified up to ± 35% above 2.5 Gy-cm{sup 2} and manufacturer’s specifications are typically ± 25%. KAP values from the direct KAP meter driftsmore » with time leading to replacement or re-calibration. More precise and consistent KAP is achievable utilizing a database of known radiation output for various system parameters. The integrated KAP meter was removed from a radiography system. A total of 48 measurements of air kerma were acquired at x-ray tube potential from 40 to 150 kVp with 10 kVp increment using ion chamber type external dosimeter at free-in-air geometry for four different types of filter combinations following the manufacturer’s service procedure. These data were used to create updated correction factors that determine air kerma computationally for given system parameters. Results of calculated KAP were evaluated against results using a calibrated ion chamber based dosimeter and a computed radiography imaging plate to measure x-ray field size. Results: The accuracy of calculated KAP from the system parameters was better within 4% deviation in all diagnostic x-ray tube potentials tested from 50 to 140 kVp. In contrast, deviations of up to 25% were measured from KAP displayed from the direct KAP meter. Conclusion: The “calculated KAP” approach provides the nominal advantage of improved accuracy and precision of displayed KAP as well as reduced cost of calibrating or replacing integrated KAP meters.« less
NASA Astrophysics Data System (ADS)
Lim, Kyoung Jae; Park, Youn Shik; Kim, Jonggun; Shin, Yong-Chul; Kim, Nam Won; Kim, Seong Joon; Jeon, Ji-Hong; Engel, Bernard A.
2010-07-01
Many hydrologic and water quality computer models have been developed and applied to assess hydrologic and water quality impacts of land use changes. These models are typically calibrated and validated prior to their application. The Long-Term Hydrologic Impact Assessment (L-THIA) model was applied to the Little Eagle Creek (LEC) watershed and compared with the filtered direct runoff using BFLOW and the Eckhardt digital filter (with a default BFI max value of 0.80 and filter parameter value of 0.98), both available in the Web GIS-based Hydrograph Analysis Tool, called WHAT. The R2 value and the Nash-Sutcliffe coefficient values were 0.68 and 0.64 with BFLOW, and 0.66 and 0.63 with the Eckhardt digital filter. Although these results indicate that the L-THIA model estimates direct runoff reasonably well, the filtered direct runoff values using BFLOW and Eckhardt digital filter with the default BFI max and filter parameter values do not reflect hydrological and hydrogeological situations in the LEC watershed. Thus, a BFI max GA-Analyzer module (BFI max Genetic Algorithm-Analyzer module) was developed and integrated into the WHAT system for determination of the optimum BFI max parameter and filter parameter of the Eckhardt digital filter. With the automated recession curve analysis method and BFI max GA-Analyzer module of the WHAT system, the optimum BFI max value of 0.491 and filter parameter value of 0.987 were determined for the LEC watershed. The comparison of L-THIA estimates with filtered direct runoff using an optimized BFI max and filter parameter resulted in an R2 value of 0.66 and the Nash-Sutcliffe coefficient value of 0.63. However, L-THIA estimates calibrated with the optimized BFI max and filter parameter increased by 33% and estimated NPS pollutant loadings increased by more than 20%. This indicates L-THIA model direct runoff estimates can be incorrect by 33% and NPS pollutant loading estimation by more than 20%, if the accuracy of the baseflow separation method is not validated for the study watershed prior to model comparison. This study shows the importance of baseflow separation in hydrologic and water quality modeling using the L-THIA model.
NASA Technical Reports Server (NTRS)
Smith, T. M.; Kloesel, M. F.; Sudbrack, C. K.
2017-01-01
Powder-bed additive manufacturing processes use fine powders to build parts layer by layer. For selective laser melted (SLM) Alloy 718, the powders that are available off-the-shelf are in the 10-45 or 15-45 micron size range. A comprehensive investigation of sixteen powders from these typical ranges and two off-nominal-sized powders is underway to gain insight into the impact of feedstock on processing, durability and performance of 718 SLM space-flight hardware. This talk emphasizes an aspect of this work: the impact of powder variability on the microstructure and defects observed in the as-fabricated and full heated material, where lab-scale components were built using vendor recommended parameters. These typical powders exhibit variation in composition, percentage of fines, roughness, morphology and particle size distribution. How these differences relate to the melt-pool size, porosity, grain structure, precipitate distributions, and inclusion content will be presented and discussed in context of build quality and powder acceptance.
Towards a comprehensive knowledge of the open cluster Haffner 9
NASA Astrophysics Data System (ADS)
Piatti, Andrés E.
2017-03-01
We turn our attention to Haffner 9, a Milky Way open cluster whose previous fundamental parameter estimates are far from being in agreement. In order to provide with accurate estimates, we present high-quality Washington CT1 and Johnson BVI photometry of the cluster field. We put particular care in statistically cleaning the colour-magnitude diagrams (CMDs) from field star contamination, which was found a common source in previous works for the discordant fundamental parameter estimates. The resulting cluster CMD fiducial features were confirmed from a proper motion membership analysis. Haffner 9 is a moderately young object (age ∼350 Myr), placed in the Perseus arm - at a heliocentric distance of ∼3.2 kpc - , with a lower limit for its present mass of ∼160 M⊙ and of nearly metal solar content. The combination of the cluster structural and fundamental parameters suggest that it is in an advanced stage of internal dynamical evolution, possibly in the phase typical of those with mass segregation in their core regions. However, the cluster still keeps its mass function close to that of the Salpeter's law.
Bflinks: Reliable Bugfix Links via Bidirectional References and Tuned Heuristics
2014-01-01
Background. Data from software version archives and defect databases can be used for defect insertion circumstance analysis and defect prediction. The first step in such analyses is identifying defect-correcting changes in the version archive (bugfix commits) and enriching them with additional metadata by establishing bugfix links to corresponding entries in the defect database. Candidate bugfix commits are typically identified via heuristic string matching on the commit message. Research Questions. Which filters could be used to obtain a set of bugfix links? How to tune their parameters? What accuracy is achieved? Method. We analyze a modular set of seven independent filters, including new ones that make use of reverse links, and evaluate visual heuristics for setting cutoff parameters. For a commercial repository, a product expert manually verifies over 2500 links to validate the results with unprecedented accuracy. Results. The heuristics pick a very good parameter value for five filters and a reasonably good one for the sixth. The combined filtering, called bflinks, provides 93% precision and only 7% results loss. Conclusion. Bflinks can provide high-quality results and adapts to repositories with different properties. PMID:27433506
ERIC Educational Resources Information Center
Egilson, Snaefrídur T.; Ólafsdóttir, Linda B.; Leósdóttir, Thóra; Saemundsen, Evald
2017-01-01
Studies have shown parents to report lower quality of life for their children with autism spectrum disorder than children's self-report scores and the same applies for data on typically developing children. Our objectives were to: (1) explore how high-functioning children with autism spectrum disorder rate their quality of life compared with…
NASA Astrophysics Data System (ADS)
Nadimpalli, Venkata K.; Nagy, Peter B.
2018-04-01
Ultrasonic Additive Manufacturing (UAM) is a solid-state layer by layer manufacturing process that utilizes vibration induced plastic deformation to form a metallurgical bond between a thin layer and an existing base structure. Due to the vibration based bonding mechanism, the quality of components at each layer depends on the geometry of the structure. In-situ monitoring during and between UAM manufacturing steps offers the potential for closed-loop control to optimize process parameters and to repair existing defects. One interface that is most prone to delamination is the base/build interface and often UAM component height and quality are limited by failure at the base/build interface. Low manufacturing temperatures and favorable orientation of typical interface defects in UAM make ultrasonic NDE an attractive candidate for online monitoring. Two approaches for in-situ NDE are discussed and the design of the monitoring system optimized so that the quality of UAM components is not affected by the addition of the NDE setup. Preliminary results from in-situ ultrasonic NDE indicate the potential to be utilized for online qualification, closed-loop control and offline certification of UAM components.
Shivaraju, H Puttaiah; Egumbo, Henok; Madhusudan, P; Anil Kumar, K M; Midhun, G
2018-02-01
Affordable clay-based ceramic filters with multifunctional properties were prepared using low-cost and active ingredients. The characterization results clearly revealed well crystallinity, structural elucidation, extensive porosity, higher surface area, higher stability, and durability which apparently enhance the treatment efficiency. The filtration rates of ceramic filter were evaluated under gravity and the results obtained were compared with a typical gravity slow sand filter (GSSF). All ceramic filters showed significant filtration rates of about 50-180 m/h, which is comparatively higher than the typical GSSF. Further, purification efficiency of clay-based ceramic filters was evaluated by considering important drinking water parameters and contaminants. A significant removal potential was achieved by the clay-based ceramic filter with 25% and 30% activated carbon along with active agents. Desired drinking water quality parameters were achieved by potential removal of nitrite (98.5%), nitrate (80.5%), total dissolved solids (62%), total hardness (55%), total organic pollutants (89%), and pathogenic microorganisms (100%) using ceramic filters within a short duration. The remarkable purification and disinfection efficiencies were attributed to the extensive porosity (0.202 cm 3 g -1 ), surface area (124.61 m 2 g -1 ), stability, and presence of active nanoparticles such as Cu, TiO 2 , and Ag within the porous matrix of the ceramic filter.
Wang, Qian; Zhang, Qionghua; Dzakpasu, Mawuli; Lian, Bin; Wu, Yaketon; Wang, Xiaochang C
2018-03-01
Stormwater particles washed from road-deposited sediments (RDS) are traditionally characterized as either turbidity or total suspended solids (TSS). Although these parameters are influenced by particle sizes, neither of them characterizes the particle size distribution (PSD), which is of great importance in pollutant entrainment and treatment performance. Therefore, the ratio of turbidity to TSS (Tur/TSS) is proposed and validated as a potential surrogate for the bulk PSD and quality of stormwater runoff. The results show an increasing trend of Tur/TSS with finer sizes of both RDS and stormwater runoff. Taking heavy metals (HMs, including Cu, Pb, Zn, Cr, and Ni) as typical pollutants in stormwater runoff, the concentrations (mg/kg) were found to vary significantly during rainfall events and tended to increase significantly with Tur/TSS. Therefore, Tur/TSS is a valid parameter to characterize the PSD and quality of stormwater. The high negative correlations between Tur/TSS and rainfall intensity demonstrate that stormwater with higher Tur/TSS generates under low intensity and, thus, characterizes small volume, finer sizes, weak settleability, greater mobility, and bioavailability. Conversely, stormwater with lower Tur/TSS generates under high intensity and, thus, characterizes large volume, coarser sizes, good settleability, low mobility, and bioavailability. These results highlight the need to control stormwater with high Tur/TSS. Moreover, Tur/TSS can aid the selection of stormwater control measures with appropriate detention storage, pollution loading, and removal effectiveness of particles.
NASA Astrophysics Data System (ADS)
Cooper, Timothy F.; Ulstrup, Karin E.
2009-06-01
Spatial variation in the photophysiology of symbiotic dinoflagellates (zooxanthellae) of the scleractinian coral Pocillopora damicornis was examined along an environmental gradient in the Whitsunday Islands (Great Barrier Reef) at two depths (3 m and 6 m). Chlorophyll a fluorescence of photosystem II (PSII) and PAR-absorptivity measurements were conducted using an Imaging-PAM (pulse-amplitude-modulation) fluorometer. Most photophysiological parameters correlated with changes in environmental conditions quantified by differences in water quality along the gradient. For example, maximum quantum yield ( Fv/ Fm) increased and PAR-absorptivity decreased as water quality improved along the gradient from nearshore reefs (low irradiance, elevated nutrients and sediments) to outer islands (high irradiance, low nutrients and sediments). For apparent photosynthetic rate (PS max) and minimum saturating irradiance ( Ek), the direction of change differed depending on sampling depth, suggesting that different mechanisms of photo-acclimatisation operated between shallow and deep corals. Deep corals conformed to typical patterns of light/shade acclimatisation whereas shallow corals exhibited reduced PS max and Ek with improving water quality coinciding with greater heat dissipation (NPQ 241). Furthermore, deep corals on nearshore reefs exhibited elevated Q241 in comparison to outer islands possibly due to effects of sedimentation and/or pollutants rather than irradiance. These results highlight the importance of mesoscale sampling to obtain useful estimates of the variability of photophysiological parameters, particularly if such measures are to be used as bioindicators of the condition of coral reefs.
Some Equalities Are More Equal Than Others: Quality Equality Emerges Later Than Numerical Equality.
Sheskin, Mark; Nadal, Amber; Croom, Adam; Mayer, Tanya; Nissel, Jenny; Bloom, Paul
2016-09-01
By age 6, children typically share an equal number of resources between themselves and others. However, fairness involves not merely that each person receive an equal number of resources ("numerical equality") but also that each person receive equal quality resources ("quality equality"). In Study 1, children (N = 87, 3-10 years) typically split four resources "two each" by age 6, but typically monopolized the better two resources until age 10. In Study 2, a new group of 6- to 8-year-olds (N = 32) allocated resources to third parties according to quality equality, indicating that children in this age group understand that fairness requires both types of equality. © 2016 The Authors. Child Development © 2016 Society for Research in Child Development, Inc.
NASA Astrophysics Data System (ADS)
Zhao, C. S.; Shao, N. F.; Yang, S. T.; Xiang, H.; Lou, H. Z.; Sun, Y.; Yang, Z. Y.; Zhang, Y.; Yu, X. Y.; Zhang, C. B.; Yu, Q.
2018-01-01
The world's aquatic ecosystems yield numerous vital services, which are essential to human existence but have deteriorated seriously in recent years. By studying the mechanisms of interaction between ecosystems and habitat processes, the constraining factors can be identified, and this knowledge can be used to improve the success rate of ecological restoration initiatives. At present, there is insufficient data on the link between hydrological, water quality factors and the changes in the structure of aquatic communities to allow any meaningful study of driving factors of aquatic ecosystems. In this study, the typical monitoring stations were selected by fuzzy clustering analysis based on the spatial and temporal distribution characteristics of water ecology in Jinan City, the first pilot city for the construction of civilized aquatic ecosystems in China. The dominant species identification model was used to identify the dominant species of the aquatic community. The driving effect of hydrological and water quality factors on dominant species was analyzed by Canonical Correspondence Analysis. Then, the principal factors of aquatic ecosystem dependence were selected. The results showed that there were 10 typical monitoring stations out of 59 monitoring sites, which were representative of aquatic ecosystems, 9 dominant fish species, and 20 dominant invertebrate species. The selection of factors for aquatic ecosystem dependence in Jinan were highly influenced by its regional conditions. Chemical environmental parameters influence the temporal and spatial variation of invertebrate much more than that of fish in Jinan City. However, the methodologies coupling typical monitoring stations selection, dominant species determination and driving factors identification were certified to be a cost-effective way, which can provide in-deep theoretical and technical directions for the restoration of aquatic ecosystems elsewhere.
Towards a Quality Assessment Method for Learning Preference Profiles in Negotiation
NASA Astrophysics Data System (ADS)
Hindriks, Koen V.; Tykhonov, Dmytro
In automated negotiation, information gained about an opponent's preference profile by means of learning techniques may significantly improve an agent's negotiation performance. It therefore is useful to gain a better understanding of how various negotiation factors influence the quality of learning. The quality of learning techniques in negotiation are typically assessed indirectly by means of comparing the utility levels of agreed outcomes and other more global negotiation parameters. An evaluation of learning based on such general criteria, however, does not provide any insight into the influence of various aspects of negotiation on the quality of the learned model itself. The quality may depend on such aspects as the domain of negotiation, the structure of the preference profiles, the negotiation strategies used by the parties, and others. To gain a better understanding of the performance of proposed learning techniques in the context of negotiation and to be able to assess the potential to improve the performance of such techniques a more systematic assessment method is needed. In this paper we propose such a systematic method to analyse the quality of the information gained about opponent preferences by learning in single-instance negotiations. The method includes measures to assess the quality of a learned preference profile and proposes an experimental setup to analyse the influence of various negotiation aspects on the quality of learning. We apply the method to a Bayesian learning approach for learning an opponent's preference profile and discuss our findings.
da Silva, Larissa F; Barbosa, Andreia D; de Paula, Heber M; Romualdo, Lincoln L; Andrade, Leonardo S
2016-09-15
This paper describes and discusses an investigation into the treatment of paint manufacturing wastewater (water-based acrylic texture) by coagulation (aluminum sulfate) coupled to electrochemical methods (BDD electrode). Two proposals are put forward, based on the results. The first proposal considers the feasibility of reusing wastewater treated by the methods separately and in combination, while the second examines the possibility of its disposal into water bodies. To this end, parameters such as toxicity, turbidity, color, organic load, dissolved aluminum, alkalinity, hardness and odor are evaluated. In addition, the proposal for water reuse is strengthened by the quality of the water-based paints produced using the wastewater treated by the two methods (combined and separate), which was evaluated based on the typical parameters for the quality control of these products. Under optimized conditions, the use of the chemical coagulation (12 mL/L of Al2(SO4)3 dosage) treatment, alone, proved the feasibility of reusing the treated wastewater in the paint manufacturing process. However, the use of the electrochemical method (i = 10 mA/cm(2) and t = 90 min) was required to render the treated wastewater suitable for discharge into water bodies. Copyright © 2016 Elsevier Ltd. All rights reserved.
Enhancement of low power CO2 laser cutting process for injection molded polycarbonate
NASA Astrophysics Data System (ADS)
Moradi, Mahmoud; Mehrabi, Omid; Azdast, Taher; Benyounis, Khaled Y.
2017-11-01
Laser cutting technology is a non-contact process that typically is used for industrial manufacturing applications. Laser cut quality is strongly influenced by the cutting processing parameters. In this research, CO2 laser cutting specifications have been investigated by using design of experiments (DOE) with considering laser cutting speed, laser power and focal plane position as process input parameters and kerf geometry dimensions (i.e. top and bottom kerf width, ratio of the upper kerf to lower kerf, upper heat affected zone (HAZ)) and surface roughness of the kerf wall as process output responses. A 60 Watts CO2 laser cutting machine is used for cutting the injection molded samples of polycarbonate sheet with the thickness of 3.2 mm. Results reveal that by decreasing the laser focal plane position and laser power, the bottom kerf width will be decreased. Also the bottom kerf width decreases by increasing the cutting speed. As a general result, locating the laser spot point in the depth of the workpiece the laser cutting quality increases. Minimum value of the responses (top kerf, heat affected zone, ratio of the upper kerf to lower kerf, and surface roughness) are considered as optimization criteria. Validating the theoretical results using the experimental tests is carried out in order to analyze the results obtained via software.
NASA Astrophysics Data System (ADS)
Stan, Stelian; Chisamera, Mihai; Riposan, Iulian; Neacsu, Loredana; Cojocaru, Ana Maria; Stan, Iuliana
2018-03-01
The main objective of the present work is to introduce a specific experimental instrument and technique for simultaneously evaluating cooling curves and expansion or contraction of cast metals during solidification. Contraction/expansion analysis illustrates the solidification parameters progression, according to the molten cast iron characteristics, which are dependent on the melting procedure and applied metallurgical treatments, mold media rigidity and thermal behavior [heat transfer parameters]. The first part of the paper summarizes the performance of this two-mold device. Its function is illustrated by representative shrinkage tendency results in ductile cast iron as affected by mold rigidity (green sand and furan resin sand molds) and inoculant type (FeSi-based alloys), published in part previously. The second part of the paper illustrates an application of this equipment adapted for commercial foundry use. It conducts thermal analysis and volume change measurements in a single ceramic cup so that mold media as well as solidification conditions are constants, with cast iron quality as the variable. Experiments compared gray and ductile cast iron solidification patterns. Gray iron castings are characterized by higher undercooling at the beginning and at the end of solidification and lower graphitic expansion. Typically, ductile cast iron exhibits higher graphitic, initial expansion, conducive for shrinkage formation in soft molds.
An adaptive DPCM algorithm for predicting contours in NTSC composite video signals
NASA Astrophysics Data System (ADS)
Cox, N. R.
An adaptive DPCM algorithm is proposed for encoding digitized National Television Systems Committee (NTSC) color video signals. This algorithm essentially predicts picture contours in the composite signal without resorting to component separation. The contour parameters (slope thresholds) are optimized using four 'typical' television frames that have been sampled at three times the color subcarrier frequency. Three variations of the basic predictor are simulated and compared quantitatively with three non-adaptive predictors of similar complexity. By incorporating a dual-word-length coder and buffer memory, high quality color pictures can be encoded at 4.0 bits/pel or 42.95 Mbit/s. The effect of channel error propagation is also investigated.
High-Q resonant cavities for terahertz quantum cascade lasers.
Campa, A; Consolino, L; Ravaro, M; Mazzotti, D; Vitiello, M S; Bartalini, S; De Natale, P
2015-02-09
We report on the realization and characterization of two different designs for resonant THz cavities, based on wire-grid polarizers as input/output couplers, and injected by a continuous-wave quantum cascade laser (QCL) emitting at 2.55 THz. A comparison between the measured resonators parameters and the expected theoretical values is reported. With achieved quality factor Q ≈ 2.5 × 10(5), these cavities show resonant peaks as narrow as few MHz, comparable with the typical Doppler linewidth of THz molecular transitions and slightly broader than the free-running QCL emission spectrum. The effects of the optical feedback from one cavity to the QCL are examined by using the other cavity as a frequency reference.
Comparison of different filter methods for data assimilation in the unsaturated zone
NASA Astrophysics Data System (ADS)
Lange, Natascha; Berkhahn, Simon; Erdal, Daniel; Neuweiler, Insa
2016-04-01
The unsaturated zone is an important compartment, which plays a role for the division of terrestrial water fluxes into surface runoff, groundwater recharge and evapotranspiration. For data assimilation in coupled systems it is therefore important to have a good representation of the unsaturated zone in the model. Flow processes in the unsaturated zone have all the typical features of flow in porous media: Processes can have long memory and as observations are scarce, hydraulic model parameters cannot be determined easily. However, they are important for the quality of model predictions. On top of that, the established flow models are highly non-linear. For these reasons, the use of the popular Ensemble Kalman filter as a data assimilation method to estimate state and parameters in unsaturated zone models could be questioned. With respect to the long process memory in the subsurface, it has been suggested that iterative filters and smoothers may be more suitable for parameter estimation in unsaturated media. We test the performance of different iterative filters and smoothers for data assimilation with a focus on parameter updates in the unsaturated zone. In particular we compare the Iterative Ensemble Kalman Filter and Smoother as introduced by Bocquet and Sakov (2013) as well as the Confirming Ensemble Kalman Filter and the modified Restart Ensemble Kalman Filter proposed by Song et al. (2014) to the original Ensemble Kalman Filter (Evensen, 2009). This is done with simple test cases generated numerically. We consider also test examples with layering structure, as a layering structure is often found in natural soils. We assume that observations are water content, obtained from TDR probes or other observation methods sampling relatively small volumes. Particularly in larger data assimilation frameworks, a reasonable balance between computational effort and quality of results has to be found. Therefore, we compare computational costs of the different methods as well as the quality of open loop model predictions and the estimated parameters. Bocquet, M. and P. Sakov, 2013: Joint state and parameter estimation with an iterative ensemble Kalman smoother, Nonlinear Processes in Geophysics 20(5): 803-818. Evensen, G., 2009: Data assimilation: The ensemble Kalman filter. Springer Science & Business Media. Song, X.H., L.S. Shi, M. Ye, J.Z. Yang and I.M. Navon, 2014: Numerical comparison of iterative ensemble Kalman filters for unsaturated flow inverse modeling. Vadose Zone Journal 13(2), 10.2136/vzj2013.05.0083.
Treated mine drainage effluent benefits Maryland and West Virginia fisherman
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ashby, J.C.
1995-12-31
In January of 1994, the Maryland Department of Natural Resources-Freshwater Fisheries Division and Mettiki Coal Corporation of Oakland, Maryland entered into a cooperative agreement to construct a trout rearing facility within Mettiki`s 10 million gallons per day acid mine drainage treatment system to supplement the DNR stockings in the newly revitalized North Branch of the Potomac River. Due to pyrite oxidation and a lack of alkaline buffering capacity in the Freeport coal strata, seven thousand gallons per minute of acidic water containing oxidized sulfide minerals must be pumped through Mettiki`s AMD treatment systems and elevated to Federal standards prior tomore » discharge into the Upper North Branch of the Potomac River. Utilizing hydrated lime, aeration, flocculation, sedimentation, and sludge recirculation, Mettiki`s treatment imparts superior trout propagation qualities to the discharge (pH of 8.1, dissolved oxygen of 8.0 ppm, temperature ranges of from 52 to 60 degrees Fahrenheit) and has allowed for weight gain throughout the typically dormant winter months. Presently, 30,000 brown, rainbow, and cutthroat trout are suspended in floating net pens within the systems` discharge collection pond where pH, flow, temperature, feed assimilation, and growth rates were compared with typical stream diversion hatcheries. Growth rates, lack of significant disease, and quality parameters coupled with ideal temperatures suggests treated acidic mine effluent can offer successful fish propagation opportunities.« less
WFIRST: Retrieval Studies of Directly Imaged Extrasolar Giant Planets
NASA Astrophysics Data System (ADS)
Marley, Mark; Lupu, Roxana; Lewis, Nikole K.; WFIRST Coronagraph SITs
2018-01-01
The typical direct imaging and spectroscopy target for the WFIRST Coronagraph will be a mature Jupiter-mass giant planet at a few AU from an FGK star. The spectra of such planets is expected to be shaped primarily by scattering from H2O clouds and absorption by gaseous NH3 and CH4. We have computed forward model spectra of such typical planets and applied noise models to understand the quality of photometry and spectra we can expect. Using such simulated datasets we have conducted Markov Chain Monte Carlo and MultiNest retrievals to derive atmospheric abundance of CH4, cloud scattering properties, gravity, and other parameters for various planets and observing modes. Our focus has primarily been to understand which combinations of photometry and spectroscopy at what SNR allow retrievals of atmospheric methane mixing ratios to within a factor of ten of the true value. This is a challenging task for directly imaged planets as the planet mass and radius--and thus surface gravity--are not as well constrained as in the case of transiting planets. We find that for plausible planets and datasets of the quality expected to be obtained by WFIRST it should be possible to place such constraints, at least for some planets. We present some examples of our retrieval results and explain how they have been utilized to help set design requirements on the coronagraph camera and integrated field spectrometer.
Assessing New Employee Orientation Programs
ERIC Educational Resources Information Center
Acevedo, Jose M.; Yancey, George B.
2011-01-01
Purpose: This paper aims to examine the importance of new employee orientation (NEO) programs, the quality of typical NEOs, and how to improve NEOs. Design/methodology/approach: The paper provides a viewpoint of the importance of new employee orientation programs, the quality of typical NEOs, and how to improve NEOs. Findings: Although western…
Proposed DoD (Department of Defense) Internet Protocol Standard.
1982-07-06
parameters fall into two categories: service quality parameters and service options. Service quality parameters influence the transmission service provided...Corporation 6 July 1982 -7- TM-7172/481/OO o Service Quality Parameters - Precedence : attempts preferential treatment for high importance datagrams...select the transmission quality. IP passes the type of service (TOS) command set for service quality to the SNP where it is mapped into subnetwork
NASA Astrophysics Data System (ADS)
Jupé, M.; Mende, M.; Kolleck, C.; Ristau, D.; Gallais, L.; Mangote, B.
2011-12-01
The femto-second technology gains of increasing importance in industrial applications. In this context, a new generation of compact and low cost laser sources has to be provided on a commercial basis. Typical pulse durations of these sources are specified in the range from a few hundred femtoup to some pico-seconds, and typical wavelengths are centered around 1030-1080nm. As a consequence, also the demands imposed on high power optical components for these laser sources are rapidly increasing, especially in respect to their power handling capability in the ultra-short pulse range. The present contribution is dedicated to some aspects for improving this quality parameter of optical coatings. The study is based on a set of hafnia and silica mixtures with different compositions and optical band gaps. This material combination displays under ultra-short pulse laser irradiation effects, which are typically for thermal processes. For instance, melting had been observed in the morphology of damaged sides. In this context, models for a prediction of the laser damage thresholds and scaling laws are scrutinized, and have been modified calculating the energy of the electron ensemble. Furthermore, a simple first order approach for the calculation of the temperature was included.
Microbial ecology of sourdough fermentations: diverse or uniform?
De Vuyst, L; Van Kerrebroeck, S; Harth, H; Huys, G; Daniel, H-M; Weckx, S
2014-02-01
Sourdough is a specific and stressful ecosystem inhabited by yeasts and lactic acid bacteria (LAB), mainly heterofermentative lactobacilli. On the basis of their inocula, three types of sourdough fermentation processes can be distinguished, namely backslopped ones, those initiated with starter cultures, and those initiated with a starter culture followed by backslopping. Typical sourdough LAB species are Lactobacillus fermentum, Lactobacillus paralimentarius, Lactobacillus plantarum, and Lactobacillus sanfranciscensis. Typical sourdough yeast species are Candida humilis, Kazachstania exigua, and Saccharomyces cerevisiae. Whereas region specificity is claimed in the case of artisan backslopped sourdoughs, no clear-cut relationship between a typical sourdough and its associated microbiota can be found, as this is dependent on the sampling, isolation, and identification procedures. Both simple and very complex consortia may occur. Moreover, a series of intrinsic and extrinsic factors may influence the composition of the sourdough microbiota. For instance, an influence of the flour (type, quality status, etc.) and the process parameters (temperature, pH, dough yield, backslopping practices, etc.) occurs. In this way, the presence of Lb. sanfranciscensis during sourdough fermentation depends on specific environmental and technological factors. Also, Triticum durum seems to select for obligately heterofermentative LAB species. Finally, there are indications that the sourdough LAB are of intestinal origin. Copyright © 2013 Elsevier Ltd. All rights reserved.
A Bayesian framework for extracting human gait using strong prior knowledge.
Zhou, Ziheng; Prügel-Bennett, Adam; Damper, Robert I
2006-11-01
Extracting full-body motion of walking people from monocular video sequences in complex, real-world environments is an important and difficult problem, going beyond simple tracking, whose satisfactory solution demands an appropriate balance between use of prior knowledge and learning from data. We propose a consistent Bayesian framework for introducing strong prior knowledge into a system for extracting human gait. In this work, the strong prior is built from a simple articulated model having both time-invariant (static) and time-variant (dynamic) parameters. The model is easily modified to cater to situations such as walkers wearing clothing that obscures the limbs. The statistics of the parameters are learned from high-quality (indoor laboratory) data and the Bayesian framework then allows us to "bootstrap" to accurate gait extraction on the noisy images typical of cluttered, outdoor scenes. To achieve automatic fitting, we use a hidden Markov model to detect the phases of images in a walking cycle. We demonstrate our approach on silhouettes extracted from fronto-parallel ("sideways on") sequences of walkers under both high-quality indoor and noisy outdoor conditions. As well as high-quality data with synthetic noise and occlusions added, we also test walkers with rucksacks, skirts, and trench coats. Results are quantified in terms of chamfer distance and average pixel error between automatically extracted body points and corresponding hand-labeled points. No one part of the system is novel in itself, but the overall framework makes it feasible to extract gait from very much poorer quality image sequences than hitherto. This is confirmed by comparing person identification by gait using our method and a well-established baseline recognition algorithm.
The Quality of Life of Siblings of Individuals with Autism Spectrum Disorders
ERIC Educational Resources Information Center
Gray, Kathleen O.
2016-01-01
The purpose of this study was to explore the perceptions of typically developing siblings of individuals with autism spectrum disorders regarding their own quality of life. The researcher also sought to discover if there were specific characteristics that affected the typically developing siblings' descriptions of their lives. In order to achieve…
NASA Astrophysics Data System (ADS)
Roessler, D.; Weber, B.; Ellguth, E.; Spazier, J.
2017-12-01
The geometry of seismic monitoring networks, site conditions and data availability as well as monitoring targets and strategies typically impose trade-offs between data quality, earthquake detection sensitivity, false detections and alert times. Network detection capabilities typically change with alteration of the seismic noise level by human activity or by varying weather and sea conditions. To give helpful information to operators and maintenance coordinators, gempa developed a range of tools to evaluate earthquake detection and network performance including qceval, npeval and sceval. qceval is a module which analyzes waveform quality parameters in real-time and deactivates and reactivates data streams based on waveform quality thresholds for automatic processing. For example, thresholds can be defined for latency, delay, timing quality, spikes and gaps count and rms. As changes in the automatic processing have a direct influence on detection quality and speed, another tool called "npeval" was designed to calculate in real-time the expected time needed to detect and locate earthquakes by evaluating the effective network geometry. The effective network geometry is derived from the configuration of stations participating in the detection. The detection times are shown as an additional layer on the map and updated in real-time as soon as the effective network geometry changes. Yet another new tool, "sceval", is an automatic module which classifies located seismic events (Origins) in real-time. sceval evaluates the spatial distribution of the stations contributing to an Origin. It confirms or rejects the status of Origins, adds comments or leaves the Origin unclassified. The comments are passed to an additional sceval plug-in where the end user can customize event types. This unique identification of real and fake events in earthquake catalogues allows to lower network detection thresholds. In real-time monitoring situations operators can limit the processing to events with unclassified Origins, reducing their workload. Classified Origins can be treated specifically by other procedures. These modules have been calibrated and fully tested by several complex seismic monitoring networks in the region of Indonesia and Northern Chile.
Continuous welding of unidirectional fiber reinforced thermoplastic tape material
NASA Astrophysics Data System (ADS)
Schledjewski, Ralf
2017-10-01
Continuous welding techniques like thermoplastic tape placement with in situ consolidation offer several advantages over traditional manufacturing processes like autoclave consolidation, thermoforming, etc. However, still there is a need to solve several important processing issues before it becomes a viable economic process. Intensive process analysis and optimization has been carried out in the past through experimental investigation, model definition and simulation development. Today process simulation is capable to predict resulting consolidation quality. Effects of material imperfections or process parameter variations are well known. But using this knowledge to control the process based on online process monitoring and according adaption of the process parameters is still challenging. Solving inverse problems and using methods for automated code generation allowing fast implementation of algorithms on targets are required. The paper explains the placement technique in general. Process-material-property-relationships and typical material imperfections are described. Furthermore, online monitoring techniques and how to use them for a model based process control system are presented.
Modeling the atmospheric chemistry of TICs
NASA Astrophysics Data System (ADS)
Henley, Michael V.; Burns, Douglas S.; Chynwat, Veeradej; Moore, William; Plitz, Angela; Rottmann, Shawn; Hearn, John
2009-05-01
An atmospheric chemistry model that describes the behavior and disposition of environmentally hazardous compounds discharged into the atmosphere was coupled with the transport and diffusion model, SCIPUFF. The atmospheric chemistry model was developed by reducing a detailed atmospheric chemistry mechanism to a simple empirical effective degradation rate term (keff) that is a function of important meteorological parameters such as solar flux, temperature, and cloud cover. Empirically derived keff functions that describe the degradation of target toxic industrial chemicals (TICs) were derived by statistically analyzing data generated from the detailed chemistry mechanism run over a wide range of (typical) atmospheric conditions. To assess and identify areas to improve the developed atmospheric chemistry model, sensitivity and uncertainty analyses were performed to (1) quantify the sensitivity of the model output (TIC concentrations) with respect to changes in the input parameters and (2) improve, where necessary, the quality of the input data based on sensitivity results. The model predictions were evaluated against experimental data. Chamber data were used to remove the complexities of dispersion in the atmosphere.
NASA Astrophysics Data System (ADS)
Zhang, Mingkai; Liu, Yanchen; Cheng, Xun; Zhu, David Z.; Shi, Hanchang; Yuan, Zhiguo
2018-03-01
Quantifying rainfall-derived inflow and infiltration (RDII) in a sanitary sewer is difficult when RDII and overflow occur simultaneously. This study proposes a novel conductivity-based method for estimating RDII. The method separately decomposes rainfall-derived inflow (RDI) and rainfall-induced infiltration (RII) on the basis of conductivity data. Fast Fourier transform was adopted to analyze variations in the flow and water quality during dry weather. Nonlinear curve fitting based on the least squares algorithm was used to optimize parameters in the proposed RDII model. The method was successfully applied to real-life case studies, in which inflow and infiltration were successfully estimated for three typical rainfall events with total rainfall volumes of 6.25 mm (light), 28.15 mm (medium), and 178 mm (heavy). Uncertainties of model parameters were estimated using the generalized likelihood uncertainty estimation (GLUE) method and were found to be acceptable. Compared with traditional flow-based methods, the proposed approach exhibits distinct advantages in estimating RDII and overflow, particularly when the two processes happen simultaneously.
TOPICAL REVIEW: Physics and phenomena in pulsed magnetrons: an overview
NASA Astrophysics Data System (ADS)
Bradley, J. W.; Welzel, T.
2009-05-01
This paper reviews the contribution made to the observation and understanding of the basic physical processes occurring in an important type of magnetized low-pressure plasma discharge, the pulsed magnetron. In industry, these plasma sources are operated typically in reactive mode where a cathode is sputtered in the presence of both chemically reactive and noble gases typically with the power modulated in the mid-frequency (5-350 kHz) range. In this review, we concentrate mostly, however, on physics-based studies carried out on magnetron systems operated in argon. This simplifies the physical-chemical processes occurring and makes interpretation of the observations somewhat easier. Since their first recorded use in 1993 there have been more than 300 peer-reviewed paper publications concerned with pulsed magnetrons, dealing wholly or in part with fundamental observations and basic studies. The fundamentals of these plasmas and the relationship between the plasma parameters and thin film quality regularly have whole sessions at international conferences devoted to them; however, since many different types of magnetron geometries have been used worldwide with different operating parameters the important results are often difficult to tease out. For example, we find the detailed observations of the plasma parameter (particle density and temperature) evolution from experiment to experiment are at best difficult to compare and at worst contradictory. We review in turn five major areas of studies which are addressed in the literature and try to draw out the major results. These areas are: fast electron generation, bulk plasma heating, short and long-term plasma parameter rise and decay rates, plasma potential modulation and transient phenomena. The influence of these phenomena on the ion energy and ion energy flux at the substrate is discussed. This review, although not exhaustive, will serve as a useful guide for more in-depth investigations using the referenced literature and also hopefully as an inspiration for future studies.
NASA Astrophysics Data System (ADS)
Oby, Emily R.; Perel, Sagi; Sadtler, Patrick T.; Ruff, Douglas A.; Mischel, Jessica L.; Montez, David F.; Cohen, Marlene R.; Batista, Aaron P.; Chase, Steven M.
2016-06-01
Objective. A traditional goal of neural recording with extracellular electrodes is to isolate action potential waveforms of an individual neuron. Recently, in brain-computer interfaces (BCIs), it has been recognized that threshold crossing events of the voltage waveform also convey rich information. To date, the threshold for detecting threshold crossings has been selected to preserve single-neuron isolation. However, the optimal threshold for single-neuron identification is not necessarily the optimal threshold for information extraction. Here we introduce a procedure to determine the best threshold for extracting information from extracellular recordings. We apply this procedure in two distinct contexts: the encoding of kinematic parameters from neural activity in primary motor cortex (M1), and visual stimulus parameters from neural activity in primary visual cortex (V1). Approach. We record extracellularly from multi-electrode arrays implanted in M1 or V1 in monkeys. Then, we systematically sweep the voltage detection threshold and quantify the information conveyed by the corresponding threshold crossings. Main Results. The optimal threshold depends on the desired information. In M1, velocity is optimally encoded at higher thresholds than speed; in both cases the optimal thresholds are lower than are typically used in BCI applications. In V1, information about the orientation of a visual stimulus is optimally encoded at higher thresholds than is visual contrast. A conceptual model explains these results as a consequence of cortical topography. Significance. How neural signals are processed impacts the information that can be extracted from them. Both the type and quality of information contained in threshold crossings depend on the threshold setting. There is more information available in these signals than is typically extracted. Adjusting the detection threshold to the parameter of interest in a BCI context should improve our ability to decode motor intent, and thus enhance BCI control. Further, by sweeping the detection threshold, one can gain insights into the topographic organization of the nearby neural tissue.
Oby, Emily R; Perel, Sagi; Sadtler, Patrick T; Ruff, Douglas A; Mischel, Jessica L; Montez, David F; Cohen, Marlene R; Batista, Aaron P; Chase, Steven M
2018-01-01
Objective A traditional goal of neural recording with extracellular electrodes is to isolate action potential waveforms of an individual neuron. Recently, in brain–computer interfaces (BCIs), it has been recognized that threshold crossing events of the voltage waveform also convey rich information. To date, the threshold for detecting threshold crossings has been selected to preserve single-neuron isolation. However, the optimal threshold for single-neuron identification is not necessarily the optimal threshold for information extraction. Here we introduce a procedure to determine the best threshold for extracting information from extracellular recordings. We apply this procedure in two distinct contexts: the encoding of kinematic parameters from neural activity in primary motor cortex (M1), and visual stimulus parameters from neural activity in primary visual cortex (V1). Approach We record extracellularly from multi-electrode arrays implanted in M1 or V1 in monkeys. Then, we systematically sweep the voltage detection threshold and quantify the information conveyed by the corresponding threshold crossings. Main Results The optimal threshold depends on the desired information. In M1, velocity is optimally encoded at higher thresholds than speed; in both cases the optimal thresholds are lower than are typically used in BCI applications. In V1, information about the orientation of a visual stimulus is optimally encoded at higher thresholds than is visual contrast. A conceptual model explains these results as a consequence of cortical topography. Significance How neural signals are processed impacts the information that can be extracted from them. Both the type and quality of information contained in threshold crossings depend on the threshold setting. There is more information available in these signals than is typically extracted. Adjusting the detection threshold to the parameter of interest in a BCI context should improve our ability to decode motor intent, and thus enhance BCI control. Further, by sweeping the detection threshold, one can gain insights into the topographic organization of the nearby neural tissue. PMID:27097901
Oby, Emily R; Perel, Sagi; Sadtler, Patrick T; Ruff, Douglas A; Mischel, Jessica L; Montez, David F; Cohen, Marlene R; Batista, Aaron P; Chase, Steven M
2016-06-01
A traditional goal of neural recording with extracellular electrodes is to isolate action potential waveforms of an individual neuron. Recently, in brain-computer interfaces (BCIs), it has been recognized that threshold crossing events of the voltage waveform also convey rich information. To date, the threshold for detecting threshold crossings has been selected to preserve single-neuron isolation. However, the optimal threshold for single-neuron identification is not necessarily the optimal threshold for information extraction. Here we introduce a procedure to determine the best threshold for extracting information from extracellular recordings. We apply this procedure in two distinct contexts: the encoding of kinematic parameters from neural activity in primary motor cortex (M1), and visual stimulus parameters from neural activity in primary visual cortex (V1). We record extracellularly from multi-electrode arrays implanted in M1 or V1 in monkeys. Then, we systematically sweep the voltage detection threshold and quantify the information conveyed by the corresponding threshold crossings. The optimal threshold depends on the desired information. In M1, velocity is optimally encoded at higher thresholds than speed; in both cases the optimal thresholds are lower than are typically used in BCI applications. In V1, information about the orientation of a visual stimulus is optimally encoded at higher thresholds than is visual contrast. A conceptual model explains these results as a consequence of cortical topography. How neural signals are processed impacts the information that can be extracted from them. Both the type and quality of information contained in threshold crossings depend on the threshold setting. There is more information available in these signals than is typically extracted. Adjusting the detection threshold to the parameter of interest in a BCI context should improve our ability to decode motor intent, and thus enhance BCI control. Further, by sweeping the detection threshold, one can gain insights into the topographic organization of the nearby neural tissue.
Application of Vehicle Dynamic Modeling in Uavs for Precise Determination of Exterior Orientation
NASA Astrophysics Data System (ADS)
Khaghani, M.; Skaloud, J.
2016-06-01
Advances in unmanned aerial vehicles (UAV) and especially micro aerial vehicle (MAV) technology together with increasing quality and decreasing price of imaging devices have resulted in growing use of MAVs in photogrammetry. The practicality of MAV mapping is seriously enhanced with the ability to determine parameters of exterior orientation (EO) with sufficient accuracy, in both absolute and relative senses (change of attitude between successive images). While differential carrier phase GNSS satisfies cm-level positioning accuracy, precise attitude determination is essential for both direct sensor orientation (DiSO) and integrated sensor orientation (ISO) in corridor mapping or in block configuration imaging over surfaces with low texture. Limited cost, size, and weight of MAVs represent limitations on quality of onboard navigation sensors and puts emphasis on exploiting full capacity of available resources. Typically short flying times (10-30 minutes) also limit the possibility of estimating and/or correcting factors such as sensor misalignment and poor attitude initialization of inertial navigation system (INS). This research aims at increasing the accuracy of attitude determination in both absolute and relative senses with no extra sensors onboard. In comparison to classical INS/GNSS setup, novel approach is presented here to integrated state estimation, in which vehicle dynamic model (VDM) is used as the main process model. Such system benefits from available information from autopilot and physical properties of the platform in enhancing performance of determination of trajectory and parameters of exterior orientation consequently. The navigation system employs a differential carrier phase GNSS receiver and a micro electro-mechanical system (MEMS) grade inertial measurement unit (IMU), together with MAV control input from autopilot. Monte-Carlo simulation has been performed on trajectories for typical corridor mapping and block imaging. Results reveal considerable reduction in attitude errors with respect to conventional INS/GNSS system, in both absolute and relative senses. This eventually translates into higher redundancy and accuracy for photogrammetry applications.
Yonai, Shunsuke; Matsufuji, Naruhiro; Akahane, Keiichi
2018-04-23
The aim of this work was to estimate typical dose equivalents to out-of-field organs during carbon-ion radiotherapy (CIRT) with a passive beam for prostate cancer treatment. Additionally, sensitivity analyses of organ doses for various beam parameters and phantom sizes were performed. Because the CIRT out-of-field dose depends on the beam parameters, the typical values of those parameters were determined from statistical data on the target properties of patients who received CIRT at the Heavy-Ion Medical Accelerator in Chiba (HIMAC). Using these typical beam-parameter values, out-of-field organ dose equivalents during CIRT for typical prostate treatment were estimated by Monte Carlo simulations using the Particle and Heavy-Ion Transport Code System (PHITS) and the ICRP reference phantom. The results showed that the dose decreased with distance from the target, ranging from 116 mSv in the testes to 7 mSv in the brain. The organ dose equivalents per treatment dose were lower than those either in 6-MV intensity-modulated radiotherapy or in brachytherapy with an Ir-192 source for organs within 40 cm of the target. Sensitivity analyses established that the differences from typical values were within ∼30% for all organs, except the sigmoid colon. The typical out-of-field organ dose equivalents during passive-beam CIRT were shown. The low sensitivity of the dose equivalent in organs farther than 20 cm from the target indicated that individual dose assessments required for retrospective epidemiological studies may be limited to organs around the target in cases of passive-beam CIRT for prostate cancer. Copyright © 2018 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.
A Metric-Based Validation Process to Assess the Realism of Synthetic Power Grids
DOE Office of Scientific and Technical Information (OSTI.GOV)
Birchfield, Adam; Schweitzer, Eran; Athari, Mir
Public power system test cases that are of high quality benefit the power systems research community with expanded resources for testing, demonstrating, and cross-validating new innovations. Building synthetic grid models for this purpose is a relatively new problem, for which a challenge is to show that created cases are sufficiently realistic. This paper puts forth a validation process based on a set of metrics observed from actual power system cases. These metrics follow the structure, proportions, and parameters of key power system elements, which can be used in assessing and validating the quality of synthetic power grids. Though wide diversitymore » exists in the characteristics of power systems, the paper focuses on an initial set of common quantitative metrics to capture the distribution of typical values from real power systems. The process is applied to two new public test cases, which are shown to meet the criteria specified in the metrics of this paper.« less
Orlowska-Kowalska, Teresa; Kaminski, Marcin
2014-01-01
The paper deals with the implementation of optimized neural networks (NNs) for state variable estimation of the drive system with an elastic joint. The signals estimated by NNs are used in the control structure with a state-space controller and additional feedbacks from the shaft torque and the load speed. High estimation quality is very important for the correct operation of a closed-loop system. The precision of state variables estimation depends on the generalization properties of NNs. A short review of optimization methods of the NN is presented. Two techniques typical for regularization and pruning methods are described and tested in detail: the Bayesian regularization and the Optimal Brain Damage methods. Simulation results show good precision of both optimized neural estimators for a wide range of changes of the load speed and the load torque, not only for nominal but also changed parameters of the drive system. The simulation results are verified in a laboratory setup.
UO2 fuel pellets fabrication via Spark Plasma Sintering using non-standard molybdenum die
NASA Astrophysics Data System (ADS)
Papynov, E. K.; Shichalin, O. O.; Mironenko, A. Yu; Tananaev, I. G.; Avramenko, V. A.; Sergienko, V. I.
2018-02-01
The article investigates spark plasma sintering (SPS) of commercial uranium dioxide (UO2) powder of ceramic origin into highly dense fuel pellets using non-standard die instead of usual graphite die. An alternative and formerly unknown method has been suggested to fabricate UO2 fuel pellets by SPS for excluding of typical problems related to undesirable carbon diffusion. Influence of SPS parameters on chemical composition and quality of UO2 pellets has been studied. Also main advantages and drawbacks have been revealed for SPS consolidation of UO2 in non-standard molybdenum die. The method is very promising due to high quality of the final product (density 97.5-98.4% from theoretical, absence of carbon traces, mean grain size below 3 μm) and mild sintering conditions (temperature 1100 ºC, pressure 141.5 MPa, sintering time 25 min). The results are interesting for development and probable application of SPS in large-scale production of nuclear ceramic fuel.
Investigation of iterative image reconstruction in low-dose breast CT
NASA Astrophysics Data System (ADS)
Bian, Junguo; Yang, Kai; Boone, John M.; Han, Xiao; Sidky, Emil Y.; Pan, Xiaochuan
2014-06-01
There is interest in developing computed tomography (CT) dedicated to breast-cancer imaging. Because breast tissues are radiation-sensitive, the total radiation exposure in a breast-CT scan is kept low, often comparable to a typical two-view mammography exam, thus resulting in a challenging low-dose-data-reconstruction problem. In recent years, evidence has been found that suggests that iterative reconstruction may yield images of improved quality from low-dose data. In this work, based upon the constrained image total-variation minimization program and its numerical solver, i.e., the adaptive steepest descent-projection onto the convex set (ASD-POCS), we investigate and evaluate iterative image reconstructions from low-dose breast-CT data of patients, with a focus on identifying and determining key reconstruction parameters, devising surrogate utility metrics for characterizing reconstruction quality, and tailoring the program and ASD-POCS to the specific reconstruction task under consideration. The ASD-POCS reconstructions appear to outperform the corresponding clinical FDK reconstructions, in terms of subjective visualization and surrogate utility metrics.
A Metric-Based Validation Process to Assess the Realism of Synthetic Power Grids
Birchfield, Adam; Schweitzer, Eran; Athari, Mir; ...
2017-08-19
Public power system test cases that are of high quality benefit the power systems research community with expanded resources for testing, demonstrating, and cross-validating new innovations. Building synthetic grid models for this purpose is a relatively new problem, for which a challenge is to show that created cases are sufficiently realistic. This paper puts forth a validation process based on a set of metrics observed from actual power system cases. These metrics follow the structure, proportions, and parameters of key power system elements, which can be used in assessing and validating the quality of synthetic power grids. Though wide diversitymore » exists in the characteristics of power systems, the paper focuses on an initial set of common quantitative metrics to capture the distribution of typical values from real power systems. The process is applied to two new public test cases, which are shown to meet the criteria specified in the metrics of this paper.« less
Performance evaluation of image-intensifier-TV fluoroscopy systems
NASA Astrophysics Data System (ADS)
van der Putten, Wilhelm J.; Bouley, Shawn
1995-05-01
Through use of a computer model and an aluminum low contrast phantom developed in-house, a method has been developed which is able to grade the imaging performance of fluoroscopy systems through use of a variable, K. This parameter was derived from Rose's model of image perception and is here used as a figure of merit to grade fluoroscopy systems. From Rose's model for an ideal system, a typical value of K for the perception of low contrast details should be between 3 and 7, assuming threshold vision by human observers. Thus, various fluoroscopy systems are graded with different values of K, with a lower value of K indicating better imaging performance of the system. A series of fluoroscopy systems have been graded where the best system produces a value in the low teens, while the poorest systems produce a value in the low twenties. Correlation with conventional image quality measurements is good and the method has the potential for automated assessment of image quality.
High quality transmission Kikuchi diffraction analysis of deformed alloys - Case study
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tokarski, Tomasz, E-mail: tokarski@agh.edu.pl
Modern scanning electron microscopes (SEM) equipped with thermally assisted field emission guns (Schottky FEG) are capable of imaging with a resolution in the range of several nanometers or better. Simultaneously, the high electron beam current can be used, which enables fast chemical and crystallographic analysis with a higher resolution than is normally offered by SEM with a tungsten cathode. The current resolution that limits the EDS and EBSD analysis is related to materials' physics, particularly to the electron-specimen interaction volume. The application of thin, electron-transparent specimens, instead of bulk samples, improves the resolution and allows for the detailed analysis ofmore » very fine microstructural features. Beside the typical imaging mode, it is possible to use a standard EBSD camera in such a configuration that only transmitted and scattered electrons are detected. This modern approach was successfully applied to various materials giving rise to significant resolution improvement, especially for the light element magnesium based alloys. This paper presents an insight into the application of the transmission Kikuchi diffraction (TKD) technique applied to the most troublesome, heavily-deformed materials. In particular, the values of the highest possible acquisition rates for high resolution and high quality mapping were estimated within typical imaging conditions of stainless steel and magnesium-yttrium alloy. - Highlights: •Monte Carlo simulations were used to simulate EBSD camera intensity for various measuring conditions. •Transmission Kikuchi diffraction parameters were evaluated for highly deformed, light and heavy elements based alloys. •High quality maps with 20 nm spatial resolution were acquired for Mg and Fe based alloys. •High speed TKD measurements were performed at acquisition rates comparable to the reflection EBSD.« less
Kurilić, Sanja Mrazovac; Ulniković, Vladanka Presburger; Marić, Nenad; Vasiljević, Milenko
2015-11-01
This paper provides insight into the quality of groundwater used for public water supply on the territory of Temerin municipality (Vojvodina, Serbia). The following parameters were measured: color, turbidity, pH, KMnO4 consumption, total dissolved solids (TDS), EC, NH4+, Cl-, NO2-, NO3-, Fe, Mn, As, Ca2+, Mg2+, SO4(2-), HCO3-, K+, and Na+. The correlations and ratios among parameters that define the chemical composition were determined aiming to identify main processes that control the formation of the chemical composition of the analyzed waters. Groundwater from three analyzed sources is Na-HCO3 type. Elevated organic matter content, ammonium ion content, and arsene content are characteristic for these waters. The importance of organic matter decay is assumed by positive correlation between organic matter content and TDS, and HCO3- content. There is no evidence that groundwater chemistry is determined by the depth of captured aquifer interval. The main natural processes that control the chemistry of all analyzed water are cation exchange and feldspar weathering. The dominant cause of As concentration in groundwater is the use of mineral fertilizers and of KMnO4 in urban area. The concentration of As and KMnO4 in the observed sources is inversely proportional to the distance from agricultural land and urban area. 2D model of distribution of As and KMnO4 is done, and it is applicable in detecting sources of pollution. By using this model, we can quantify the impact of certain pollutants on unfavorable content of some parameters in groundwater.
NASA Astrophysics Data System (ADS)
Eric, L.; Vrugt, J. A.
2010-12-01
Spatially distributed hydrologic models potentially contain hundreds of parameters that need to be derived by calibration against a historical record of input-output data. The quality of this calibration strongly determines the predictive capability of the model and thus its usefulness for science-based decision making and forecasting. Unfortunately, high-dimensional optimization problems are typically difficult to solve. Here we present our recent developments to the Differential Evolution Adaptive Metropolis (DREAM) algorithm (Vrugt et al., 2009) to warrant efficient solution of high-dimensional parameter estimation problems. The algorithm samples from an archive of past states (Ter Braak and Vrugt, 2008), and uses multiple-try Metropolis sampling (Liu et al., 2000) to decrease the required burn-in time for each individual chain and increase efficiency of posterior sampling. This approach is hereafter referred to as MT-DREAM. We present results for 2 synthetic mathematical case studies, and 2 real-world examples involving from 10 to 240 parameters. Results for those cases show that our multiple-try sampler, MT-DREAM, can consistently find better solutions than other Bayesian MCMC methods. Moreover, MT-DREAM is admirably suited to be implemented and ran on a parallel machine and is therefore a powerful method for posterior inference.
NASA Astrophysics Data System (ADS)
Ahmadian, Mehdi; Blanchard, Emmanuel
2011-02-01
This article provides a non-dimensionalised closed-form analysis of semi-active vehicle suspensions, using a quarter-car model. The derivation of the closed-form solutions for three indices that can be used for ride comfort, vehicle handling, and stability are presented based on non-dimensionalised suspension parameters. The behaviour of semi-active vehicle suspensions is evaluated using skyhook, groundhook, and hybrid control policies, and compared with passive suspensions. The relationship between vibration isolation, suspension deflection, and road holding is studied, using three performance indices based on the mean square of the sprung mass acceleration, rattle space, and tyre deflection, respectively. The results of the study indicate that the hybrid control policy yields significantly better comfort than a passive suspension, without reducing the road-holding quality or increasing the suspension displacement for typical passenger cars. The results also indicate that for typical passenger cars, the hybrid control policy results in a better compromise between comfort, road holding and suspension travel requirements than both the skyhook and groundhook control methods.
Evaluation methodology for query-based scene understanding systems
NASA Astrophysics Data System (ADS)
Huster, Todd P.; Ross, Timothy D.; Culbertson, Jared L.
2015-05-01
In this paper, we are proposing a method for the principled evaluation of scene understanding systems in a query-based framework. We can think of a query-based scene understanding system as a generalization of typical sensor exploitation systems where instead of performing a narrowly defined task (e.g., detect, track, classify, etc.), the system can perform general user-defined tasks specified in a query language. Examples of this type of system have been developed as part of DARPA's Mathematics of Sensing, Exploitation, and Execution (MSEE) program. There is a body of literature on the evaluation of typical sensor exploitation systems, but the open-ended nature of the query interface introduces new aspects to the evaluation problem that have not been widely considered before. In this paper, we state the evaluation problem and propose an approach to efficiently learn about the quality of the system under test. We consider the objective of the evaluation to be to build a performance model of the system under test, and we rely on the principles of Bayesian experiment design to help construct and select optimal queries for learning about the parameters of that model.
Automatic red eye correction and its quality metric
NASA Astrophysics Data System (ADS)
Safonov, Ilia V.; Rychagov, Michael N.; Kang, KiMin; Kim, Sang Ho
2008-01-01
The red eye artifacts are troublesome defect of amateur photos. Correction of red eyes during printing without user intervention and making photos more pleasant for an observer are important tasks. The novel efficient technique of automatic correction of red eyes aimed for photo printers is proposed. This algorithm is independent from face orientation and capable to detect paired red eyes as well as single red eyes. The approach is based on application of 3D tables with typicalness levels for red eyes and human skin tones and directional edge detection filters for processing of redness image. Machine learning is applied for feature selection. For classification of red eye regions a cascade of classifiers including Gentle AdaBoost committee from Classification and Regression Trees (CART) is applied. Retouching stage includes desaturation, darkening and blending with initial image. Several versions of approach implementation using trade-off between detection and correction quality, processing time, memory volume are possible. The numeric quality criterion of automatic red eye correction is proposed. This quality metric is constructed by applying Analytic Hierarchy Process (AHP) for consumer opinions about correction outcomes. Proposed numeric metric helped to choose algorithm parameters via optimization procedure. Experimental results demonstrate high accuracy and efficiency of the proposed algorithm in comparison with existing solutions.
Likelihood of achieving air quality targets under model uncertainties.
Digar, Antara; Cohan, Daniel S; Cox, Dennis D; Kim, Byeong-Uk; Boylan, James W
2011-01-01
Regulatory attainment demonstrations in the United States typically apply a bright-line test to predict whether a control strategy is sufficient to attain an air quality standard. Photochemical models are the best tools available to project future pollutant levels and are a critical part of regulatory attainment demonstrations. However, because photochemical models are uncertain and future meteorology is unknowable, future pollutant levels cannot be predicted perfectly and attainment cannot be guaranteed. This paper introduces a computationally efficient methodology for estimating the likelihood that an emission control strategy will achieve an air quality objective in light of uncertainties in photochemical model input parameters (e.g., uncertain emission and reaction rates, deposition velocities, and boundary conditions). The method incorporates Monte Carlo simulations of a reduced form model representing pollutant-precursor response under parametric uncertainty to probabilistically predict the improvement in air quality due to emission control. The method is applied to recent 8-h ozone attainment modeling for Atlanta, Georgia, to assess the likelihood that additional controls would achieve fixed (well-defined) or flexible (due to meteorological variability and uncertain emission trends) targets of air pollution reduction. The results show that in certain instances ranking of the predicted effectiveness of control strategies may differ between probabilistic and deterministic analyses.
NASA Astrophysics Data System (ADS)
Bharti, P. K.; Khan, M. I.; Singh, Harbinder
2010-10-01
Off-line quality control is considered to be an effective approach to improve product quality at a relatively low cost. The Taguchi method is one of the conventional approaches for this purpose. Through this approach, engineers can determine a feasible combination of design parameters such that the variability of a product's response can be reduced and the mean is close to the desired target. The traditional Taguchi method was focused on ensuring good performance at the parameter design stage with one quality characteristic, but most products and processes have multiple quality characteristics. The optimal parameter design minimizes the total quality loss for multiple quality characteristics. Several studies have presented approaches addressing multiple quality characteristics. Most of these papers were concerned with maximizing the parameter combination of signal to noise (SN) ratios. The results reveal the advantages of this approach are that the optimal parameter design is the same as the traditional Taguchi method for the single quality characteristic; the optimal design maximizes the amount of reduction of total quality loss for multiple quality characteristics. This paper presents a literature review on solving multi-response problems in the Taguchi method and its successful implementation in various industries.
NASA Astrophysics Data System (ADS)
Glover, Paul W. J.
2016-07-01
When scientists apply Archie's first law they often include an extra parameter a, which was introduced about 10 years after the equation's first publication by Winsauer et al. (1952), and which is sometimes called the "tortuosity" or "lithology" parameter. This parameter is not, however, theoretically justified. Paradoxically, the Winsauer et al. (1952) form of Archie's law often performs better than the original, more theoretically correct version. The difference in the cementation exponent calculated from these two forms of Archie's law is important, and can lead to a misestimation of reserves by at least 20 % for typical reservoir parameter values. We have examined the apparent paradox, and conclude that while the theoretical form of the law is correct, the data that we have been analysing with Archie's law have been in error. There are at least three types of systematic error that are present in most measurements: (i) a porosity error, (ii) a pore fluid salinity error, and (iii) a temperature error. Each of these systematic errors is sufficient to ensure that a non-unity value of the parameter a is required in order to fit the electrical data well. Fortunately, the inclusion of this parameter in the fit has compensated for the presence of the systematic errors in the electrical and porosity data, leading to a value of cementation exponent that is correct. The exceptions are those cementation exponents that have been calculated for individual core plugs. We make a number of recommendations for reducing the systematic errors that contribute to the problem and suggest that the value of the parameter a may now be used as an indication of data quality.
Quality By Design: Concept To Applications.
Swain, Suryakanta; Padhy, Rabinarayan; Jena, Bikash Ranjan; Babu, Sitty Manohar
2018-03-08
Quality by Design is associated to the modern, systematic, scientific and novel approach which is concerned with pre-distinct objectives that not only focus on product, process understanding but also leads to process control. It predominantly signifies the design and product improvement and the manufacturing process in order to fulfill the predefined manufactured goods or final products quality characteristics. It is quite essential to identify desire and required product performance report such as Target Product Profile, typical Quality Target Product Profile (QTPP) and Critical Quality attributes (CQA). This review highlighted about the concepts of QbD design space, for critical material attributes (CMAs) as well as the critical process parameters that can totally affect the CQAs within which the process shall be unaffected and consistently manufacture the required product. Risk assessment tools and design of experiments are its prime components. This paper outlines the basic knowledge of QbD, the key elements; steps as well as various tools for QbD implementation in pharmaceutics field are presented briefly. In addition to this, quite a lot of applications of QbD in numerous pharmaceutical related unit operations are discussed and summarized. This article provides a complete data as well as the road map for universal implementation and application of QbD for pharmaceutical products. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Automated optical testing of LWIR objective lenses using focal plane array sensors
NASA Astrophysics Data System (ADS)
Winters, Daniel; Erichsen, Patrik; Domagalski, Christian; Peter, Frank; Heinisch, Josef; Dumitrescu, Eugen
2012-10-01
The image quality of today's state-of-the-art IR objective lenses is constantly improving while at the same time the market for thermography and vision grows strongly. Because of increasing demands on the quality of IR optics and increasing production volumes, the standards for image quality testing increase and tests need to be performed in shorter time. Most high-precision MTF testing equipment for the IR spectral bands in use today relies on the scanning slit method that scans a 1D detector over a pattern in the image generated by the lens under test, followed by image analysis to extract performance parameters. The disadvantages of this approach are that it is relatively slow, it requires highly trained operators for aligning the sample and the number of parameters that can be extracted is limited. In this paper we present lessons learned from the R and D process on using focal plane array (FPA) sensors for testing of long-wave IR (LWIR, 8-12 m) optics. Factors that need to be taken into account when switching from scanning slit to FPAs are e.g.: the thermal background from the environment, the low scene contrast in the LWIR, the need for advanced image processing algorithms to pre-process camera images for analysis and camera artifacts. Finally, we discuss 2 measurement systems for LWIR lens characterization that we recently developed with different target applications: 1) A fully automated system suitable for production testing and metrology that uses uncooled microbolometer cameras to automatically measure MTF (on-axis and at several o-axis positions) and parameters like EFL, FFL, autofocus curves, image plane tilt, etc. for LWIR objectives with an EFL between 1 and 12mm. The measurement cycle time for one sample is typically between 6 and 8s. 2) A high-precision research-grade system using again an uncooled LWIR camera as detector, that is very simple to align and operate. A wide range of lens parameters (MTF, EFL, astigmatism, distortion, etc.) can be easily and accurately measured with this system.
Zhang, Xia; Hu, Changqin
2017-09-08
Penicillins are typical of complex ionic samples which likely contain large number of degradation-related impurities (DRIs) with different polarities and charge properties. It is often a challenge to develop selective and robust high performance liquid chromatography (HPLC) methods for the efficient separation of all DRIs. In this study, an analytical quality by design (AQbD) approach was proposed for stability-indicating method development of cloxacillin. The structures, retention and UV characteristics rules of penicillins and their impurities were summarized and served as useful prior knowledge. Through quality risk assessment and screen design, 3 critical process parameters (CPPs) were defined, including 2 mixture variables (MVs) and 1 process variable (PV). A combined mixture-process variable (MPV) design was conducted to evaluate the 3 CPPs simultaneously and a response surface methodology (RSM) was used to achieve the optimal experiment parameters. A dual gradient elution was performed to change buffer pH, mobile-phase type and strength simultaneously. The design spaces (DSs) was evaluated using Monte Carlo simulation to give their possibility of meeting the specifications of CQAs. A Plackett-Burman design was performed to test the robustness around the working points and to decide the normal operating ranges (NORs). Finally, validation was performed following International Conference on Harmonisation (ICH) guidelines. To our knowledge, this is the first study of using MPV design and dual gradient elution to develop HPLC methods and improve separations for complex ionic samples. Copyright © 2017 Elsevier B.V. All rights reserved.
Microwave Moisture Sensing of Seedcotton: Part 1: Seedcotton Microwave Material Properties.
Pelletier, Mathew G; Wanjura, John D; Holt, Greg A
2016-11-02
Moisture content at harvest is a key parameter that impacts quality and how well the cotton crop can be stored without degrading before processing. It is also a key parameter of interest for harvest time field trials as it can directly influence the quality of the harvested crop as well as skew the results of in-field yield and quality assessments. Microwave sensing of moisture has several unique advantages over lower frequency sensing approaches. The first is that microwaves are insensitive to variations in conductivity, due to presence of salts or minerals. The second advantage is that microwaves can peer deep inside large bulk packaging to assess the internal moisture content without performing a destructive tear down of the package. To help facilitate the development of a microwave moisture sensor for seedcotton; research was performed to determine the basic microwave properties of seedcotton. The research was performed on 110 kg micro-modules, which are of direct interest to research teams for use in ongoing field-based research projects. It should also prove useful for the enhancement of existing and future yield monitor designs. Experimental data was gathered on the basic relations between microwave material properties and seedcotton over the range from 1.0 GHz to 2.5 GHz and is reported on herein. This research is part one of a two-part series that reports on the fundamental microwave properties of seedcotton as moisture and density vary naturally during the course of typical harvesting operations; part two will utilize this data to formulate a prediction algorithm to form the basis for a prototype microwave moisture sensor.
Akineden, Ömer; Murata, Kristina Johanna; Gross, Madeleine; Usleber, Ewald
2015-12-01
The microbiological quality of 132 dried pasta products available on the German market, originating from 11 different countries, was studied. Sample materials included soft or durum wheat products, some of which produced with other ingredients such as eggs, spices, or vegetables. Parameters included hygiene indicators (aerobic plate count, mold count, the presence of Enterobacteriaceae) and pathogenic/toxinogenic bacterial species (Salmonella spp., Staphylococcus aureus, presumptive Bacillus cereus, and Cronobacter spp.). The overall results of hygiene parameters indicated a satisfactory quality. Salmonella was not found in any sample. Three samples were positive for S. aureus (10(2) to 10(4) colony forming unit (CFU)/g). Presumptive B. cereus at levels of 10(3) to 10(4) CFU/g were detected in 3 samples. Cronobacter spp. were isolated from 14 (10.6%) products. Of these, 9 isolates were identified as C. sakazakii, 2 each as C. turicensis and C. malonaticus, and 1 as C. muytjensii. The isolates were assigned to 9 multilocus sequence typing (MLST) sequence types and to 14 different PFGE profiles. Although pasta products are typically cooked before consumption, some consumers, and children in particular, may also eat raw pasta as nibbles. Raw pasta seems to be a relevant source of exposure to dietary Cronobacter spp., although health risks are probably restricted to vulnerable consumers. High numbers of presumptive B. cereus as found in some samples may be a risk after improper storage of cooked pasta products because toxinogenic strains are frequently found within this species. © 2015 Institute of Food Technologists®
Microwave Moisture Sensing of Seedcotton: Part 1: Seedcotton Microwave Material Properties
Pelletier, Mathew G.; Wanjura, John D.; Holt, Greg A.
2016-01-01
Moisture content at harvest is a key parameter that impacts quality and how well the cotton crop can be stored without degrading before processing. It is also a key parameter of interest for harvest time field trials as it can directly influence the quality of the harvested crop as well as skew the results of in-field yield and quality assessments. Microwave sensing of moisture has several unique advantages over lower frequency sensing approaches. The first is that microwaves are insensitive to variations in conductivity, due to presence of salts or minerals. The second advantage is that microwaves can peer deep inside large bulk packaging to assess the internal moisture content without performing a destructive tear down of the package. To help facilitate the development of a microwave moisture sensor for seedcotton; research was performed to determine the basic microwave properties of seedcotton. The research was performed on 110 kg micro-modules, which are of direct interest to research teams for use in ongoing field-based research projects. It should also prove useful for the enhancement of existing and future yield monitor designs. Experimental data was gathered on the basic relations between microwave material properties and seedcotton over the range from 1.0 GHz to 2.5 GHz and is reported on herein. This research is part one of a two-part series that reports on the fundamental microwave properties of seedcotton as moisture and density vary naturally during the course of typical harvesting operations; part two will utilize this data to formulate a prediction algorithm to form the basis for a prototype microwave moisture sensor. PMID:27827857
Deciphering the Environmental Impacts on Rice Quality for Different Rice Cultivated Areas.
Li, Xiukun; Wu, Lian; Geng, Xin; Xia, Xiuhong; Wang, Xuhong; Xu, Zhengjin; Xu, Quan
2018-01-19
Rice (Oryza sativa L.) is cultivated in a wide range of climatic conditions, and is one of mankind's major staple foods. The interaction of environmental factors with genotype effects major agronomic traits such as yield, quality, and resistance in rice. However, studies on the environmental factors affecting agronomic traits are often difficult to conduct because most environmental factors are dynamic and constantly changing. A series of recombinant inbred lines (RILs) derived from an indica/japonica cross were planted into four typical rice cultivated areas arranging from latitude N22° to N42°. The environmental data from the heading to mature (45 days) stages were recorded for each RIL in the four areas. We determined that light, temperature, and humidity significantly affected the milling quality and cooking quality overall the four areas. Within each area, these environmental factors mainly affected the head rice ratio, grain length, alkali consumption, and amylose and protein content. Moreover, the effect of these environmental factors dynamically changed from heading to mature stage. Compared to light and humidity, temperature was more stable and predictable, and night temperature showed a stronger correlation efficiency to cooking quality than day temperature, and the daily temperature range had contrary effects compared to day and night temperature on grain quality. The present study evaluated the critical phase during the grain filling stage by calculating the dynamic changes of correlation efficiency between the quality traits and climate parameters. Our findings suggest that the sowing date could be adjusted to improve rice quality so as to adjust for environmental changes.
Del Mazo-Barbara, Anna; Mirabel, Clémentine; Nieto, Valentín; Reyes, Blanca; García-López, Joan; Oliver-Vila, Irene; Vives, Joaquim
2016-09-01
Computerized systems (CS) are essential in the development and manufacture of cell-based medicines and must comply with good manufacturing practice, thus pushing academic developers to implement methods that are typically found within pharmaceutical industry environments. Qualitative and quantitative risk analyses were performed by Ishikawa and Failure Mode and Effects Analysis, respectively. A process for qualification of a CS that keeps track of environmental conditions was designed and executed. The simplicity of the Ishikawa analysis permitted to identify critical parameters that were subsequently quantified by Failure Mode Effects Analysis, resulting in a list of test included in the qualification protocols. The approach presented here contributes to simplify and streamline the qualification of CS in compliance with pharmaceutical quality standards.
Hartmann wavefront sensors and their application at FLASH.
Keitel, Barbara; Plönjes, Elke; Kreis, Svea; Kuhlmann, Marion; Tiedtke, Kai; Mey, Tobias; Schäfer, Bernd; Mann, Klaus
2016-01-01
Different types of Hartmann wavefront sensors are presented which are usable for a variety of applications in the soft X-ray spectral region at FLASH, the free-electron laser (FEL) in Hamburg. As a typical application, online measurements of photon beam parameters during mirror alignment are reported on. A compact Hartmann sensor, operating in the wavelength range from 4 to 38 nm, was used to determine the wavefront quality as well as aberrations of individual FEL pulses during the alignment procedure. Beam characterization and alignment of the focusing optics of the FLASH beamline BL3 were performed with λ(13.5 nm)/116 accuracy for wavefront r.m.s. (w(rms)) repeatability, resulting in a reduction of w(rms) by 33% during alignment.
NASA Astrophysics Data System (ADS)
Gao, Yuanci; Charles, Jones R.; Yu, Guofen; Jyotsna, Dutta M.
2012-03-01
A long loop phase locked backward-wave oscillator (BWO) for a high quality factor resonator system operating at D-band frequencies (130-170GHz) was described, the phase noise of the phased locked BWO was analyzed and measured at typical frequencies. When it used with a high quality factor open resonator for measuring the quality factor of simple harmonic resonators based on the magnitude transfer characteristic, this system has proven to be capable of accurate measuring the quality factor as high as 0.8 million with an uncertainty of less than 1.3% (Lorentzian fitting) at typical frequencies in the range of 130GHz-170GHz.
Littin, Gregory R.; Schnoebelen, Douglas J.
2010-01-01
The Cedar River alluvial aquifer is the primary source of municipal water in the Cedar Rapids, Iowa area. Municipal wells are completed in the alluvial aquifer at approximately 40 to 80 feet deep. The City of Cedar Rapids and the U.S. Geological Survey have been conducting a cooperative study of the groundwater-flow system and water quality near the well fields since 1992. Previous cooperative studies between the City of Cedar Rapids and the U.S. Geological Survey have documented hydrologic and water-quality data, geochemistry, and groundwater models. Water-quality samples were collected for studies involving well field monitoring, trends, source-water protection, groundwater geochemistry, evaluation of surface and ground-water interaction, assessment of pesticides in groundwater and surface water, and to evaluate water quality near a wetland area in the Seminole well field. Typical water-quality analyses included major ions (boron, bromide, calcium, chloride, fluoride, iron, magnesium, manganese, potassium, silica, sodium, and sulfate), nutrients (ammonia as nitrogen, nitrite as nitrogen, nitrite plus nitrate as nitrogen, and orthophosphate as phosphorus), dissolved organic carbon, and selected pesticides including two degradates of the herbicide atrazine. In addition, two synoptic samplings included analyses of additional pesticide degradates in water samples. Physical field parameters (alkalinity, dissolved oxygen, pH, specific conductance and water temperature) were recorded with each water sample collected. This report presents the results of water quality data-collection activities from January 1999 through December 2005. Methods of data collection, quality-assurance samples, water-quality analyses, and statistical summaries are presented. Data include the results of water-quality analyses from quarterly and synoptic sampling from monitoring wells, municipal wells, and the Cedar River.
Tilburg, Charles E.; Jordan, Linda M.; Carlson, Amy E.; Zeeman, Stephan I.; Yund, Philip O.
2015-01-01
Faecal pollution in stormwater, wastewater and direct run-off can carry zoonotic pathogens to streams, rivers and the ocean, reduce water quality, and affect both recreational and commercial fishing areas of the coastal ocean. Typically, the closure of beaches and commercial fishing areas is governed by the testing for the presence of faecal bacteria, which requires an 18–24 h period for sample incubation. As water quality can change during this testing period, the need for accurate and timely predictions of coastal water quality has become acute. In this study, we: (i) examine the relationship between water quality, precipitation and river discharge at several locations within the Gulf of Maine, and (ii) use multiple linear regression models based on readily obtainable hydrometeorological measurements to predict water quality events at five coastal locations. Analysis of a 12 year dataset revealed that high river discharge and/or precipitation events can lead to reduced water quality; however, the use of only these two parameters to predict water quality can result in a number of errors. Analysis of a higher frequency, 2 year study using multiple linear regression models revealed that precipitation, salinity, river discharge, winds, seasonality and coastal circulation correlate with variations in water quality. Although there has been extensive development of regression models for freshwater, this is one of the first attempts to create a mechanistic model to predict water quality in coastal marine waters. Model performance is similar to that of efforts in other regions, which have incorporated models into water resource managers' decisions, indicating that the use of a mechanistic model in coastal Maine is feasible. PMID:26587258
[Quality of the diet of a population of young people of Guadalajara].
Fernández Morales, I; Aguilar Vilas, M V; Mateos Vega, C J; Martínez Para, M C
2009-01-01
The population of Guadalajara traditionally has consumed a Mediterranean diet with the typical variations of the central zone of the peninsula, but the acquisition of erroneous habits of life they can be translated, specially in the young people, in a not healthful nourishing conducts. To evaluate the quality of the diet, by means of an index of healthy nourishment (IAS) and percentage of adhesion to the Mediterranean diet (% ADM), of a teen population (n = 467) and their relation with different physiological parameters and sociodemográficos. A nutritional study has been realized on the quality of the diet in a teen population of Guadalajara of 467 young people (12-17 years) by means of questionnaires of frequency of consumption of seven days. Likewise, there has determined the ingestion of nutrients and the index of healthy nourishment (IAS) using the program of nutrition DIAL(c). The results show that the average of the population takes a diet with an acceptable IAS (62.78), though with trend towards low qualities, with high ingestions of saturated fats (38.90 +/- 6.58 g), cholesterol (384.69 +/- 74.24 mg) and sodium (3,395.43 +/-729.57 mg). Respect to % MDA there has been obtained an average value of 42.86 +/- 15.52%. These values differ depending on the age (improves with the age), the sex (better quality of the diet consumed by the girls). Likewise, all the factors sociodemográficos and the way of life considered, they influence the quality indicators used.
Kütük, Cihat; Cayci, Gökhan; Baran, Abdullah; Başkan, Oguz; Hartmann, Roger
2003-10-01
The possible use of beer factory sludge (BFS) for an agricultural purpose was investigated with sugar beet (Beta vulgaris saccharifera L.). BFS was air dried and sieved through a 4 mm mesh before application to a soil (Typic Xerofluvent). Afterwards, the BFS was mixed with soil at a rate 0, 10, 20, 40, 80 and 160 tonnes ha(-1). The mixtures were than put into pots and kept in the greenhouse for an incubation of five months. During the incubation, pH, the electrical conductivity, the organic matter content, NH4+-N and NO3--N content were regularly measured. At the end of the incubation period, sugar beet seeds were sown into the same pots. After a growing period of six-months the sugar beet plants were harvested, and yield and quality parameters were determined. BFS increased leaf and root yield. However, the effect of BFS on leaf growth was more pronounced than on root growth. The highest sugar content, refined sugar content and refined sugar yield were obtained with the application rate of 10 tonnes BFS per hectare. Ten tonnes of BSF per hectare was the most suitable on the basis of root quality parameters and root yield. However BFS should be applied to the soil six or seven months in advance due to the high level of nitrogen released through mineralization.
The direct assimilation of cloud-affected satellite infrared radiance in the NCEP 3D-Hybrid system
NASA Astrophysics Data System (ADS)
Zhang, X.
2016-12-01
A function has been developed in NCEP 3D-Hybrid system to make use of Infrared radiances from Spinning Enhanced Visible and Infrared Imager (SEVIRI) on Meteosat-10(MSG-10) satellite in overcast cloudy conditions where effective cloud fractions were greater than 0.9. These cloudy radiances provide new information that currently assimilated in clear-sky condition from SEVIRI MSG-10. The model state vector is locally extended at observation locations, to include cloud top pressure as cloud parameters. This parameter describing a single-layer cloud are simultaneously estimated together with temperature and humidity inside the main analysis. Assimilation experiments have been run with the new scheme in which overcast radiance from SEVIRI MSG-10 are used in addition to the available clear-sky data. Two water vapor channels ( 6.2 and 7.3μm) and window channels (8.5, 11.2, 12.3 and 13.3μm) from SEVIRI MSG-10 are assimilated in the experiments. The overcast data locations typically represent 10% or less of the total due to the application of stringent quality control. However, The extra data that are used give rise to modified increments (largest for temperature and humidity) at and above the diagnosed cloud top. Also it improves the analysis fit to independent radiosonde observations and results in some small, but statistically significant, improvements in forecast quality.
Hajibandeh, Shahab; Hajibandeh, Shahin; Antoniou, George A; Green, Patrick A; Maden, Michelle; Torella, Francesco
2017-04-01
Purpose We aimed to investigate association between bibliometric parameters, reporting and methodological quality of vascular and endovascular surgery randomised controlled trials. Methods The most recent 75 and oldest 75 randomised controlled trials published in leading journals over a 10-year period were identified. The reporting quality was analysed using the CONSORT statement, and methodological quality with the Intercollegiate Guidelines Network checklist. We used exploratory univariate and multivariable linear regression analysis to investigate associations. Findings Bibliometric parameters such as type of journal, study design reported in title, number of pages; external funding, industry sponsoring and number of citations are associated with reporting quality. Moreover, parameters such as type of journal, subject area and study design reported in title are associated with methodological quality. Conclusions The bibliometric parameters of randomised controlled trials may be independent predictors for their reporting and methodological quality. Moreover, the reporting quality of randomised controlled trials is associated with their methodological quality and vice versa.
Use of ocean color scanner data in water quality mapping
NASA Technical Reports Server (NTRS)
Khorram, S.
1981-01-01
Remotely sensed data, in combination with in situ data, are used in assessing water quality parameters within the San Francisco Bay-Delta. The parameters include suspended solids, chlorophyll, and turbidity. Regression models are developed between each of the water quality parameter measurements and the Ocean Color Scanner (OCS) data. The models are then extended to the entire study area for mapping water quality parameters. The results include a series of color-coded maps, each pertaining to one of the water quality parameters, and the statistical analysis of the OCS data and regression models. It is found that concurrently collected OCS data and surface truth measurements are highly useful in mapping the selected water quality parameters and locating areas having relatively high biological activity. In addition, it is found to be virtually impossible, at least within this test site, to locate such areas on U-2 color and color-infrared photography.
Gardner, Andrew W; Wacker, David P; Boelter, Eric W
2009-01-01
The choice-making behavior of 2 typically developing children who engaged in problem behavior maintained by negative reinforcement was evaluated within a concurrent-operants assessment that varied the quality of attention across free-play and demand conditions. The results demonstrated that it was possible to bias responding towards academic demands for both participants by providing high-quality attention, despite the continuous availability of negative reinforcement. The current study extended brief clinical methods with typically developing children and demonstrated how different qualities of attention provided across concurrent schedules could bias responding. PMID:19949522
NASA Astrophysics Data System (ADS)
Cardenas, Nelson; Kyrish, Matthew; Taylor, Daniel; Fraelich, Margaret; Lechuga, Oscar; Claytor, Richard; Claytor, Nelson
2015-03-01
Electro-Chemical Polishing is routinely used in the anodizing industry to achieve specular surface finishes of various metals products prior to anodizing. Electro-Chemical polishing functions by leveling the microscopic peaks and valleys of the substrate, thereby increasing specularity and reducing light scattering. The rate of attack is dependent of the physical characteristics (height, depth, and width) of the microscopic structures that constitute the surface finish. To prepare the sample, mechanical polishing such as buffing or grinding is typically required before etching. This type of mechanical polishing produces random microscopic structures at varying depths and widths, thus the electropolishing parameters are determined in an ad hoc basis. Alternatively, single point diamond turning offers excellent repeatability and highly specific control of substrate polishing parameters. While polishing, the diamond tool leaves behind an associated tool mark, which is related to the diamond tool geometry and machining parameters. Machine parameters such as tool cutting depth, speed and step over can be changed in situ, thus providing control of the spatial frequency of the microscopic structures characteristic of the surface topography of the substrate. By combining single point diamond turning with subsequent electro-chemical etching, ultra smooth polishing of both rotationally symmetric and free form mirrors and molds is possible. Additionally, machining parameters can be set to optimize post polishing for increased surface quality and reduced processing times. In this work, we present a study of substrate surface finish based on diamond turning tool mark spatial frequency with subsequent electro-chemical polishing.
Level density parameter behaviour at high excitation energy
NASA Astrophysics Data System (ADS)
D'Arrigo, A.; Giardina, G.; Taccone, A.
1991-06-01
We present a formalism to calculate the intrinsic (without collective effects) and effective (with collective effects) level density parameters over a wide range of excitation energy up to 180 MeV. The behaviour of aint and aeff as an energy function is shown for several typical nuclei (115Cd, 129Te, 148Pm, 173Yb, 192Ir and 248Cm). Moreover, local systematics of the parameter aeff as a function of the neutron number N, also for nuclei extremely far from the β-line, is shown for some typical nuclei (Rb, Pd, Sn, Ba and Hg) at excitation energies of 15, 80 and 150 MeV.
Meigal, Alexander Yu.; Miroshnichenko, German G.; Kuzmina, Anna P.; Rissanen, Saara M.; Georgiadis, Stefanos D.; Karjalainen, Pasi A.
2015-01-01
We compared a set of surface EMG (sEMG) parameters in several groups of schizophrenia (SZ, n = 74) patients and healthy controls (n = 11) and coupled them with the clinical data. sEMG records were quantified with spectral, mutual information (MI) based and recurrence quantification analysis (RQA) parameters, and with approximate and sample entropies (ApEn and SampEn). Psychotic deterioration was estimated with Positive and Negative Syndrome Scale (PANSS) and with the positive subscale of PANSS. Neuroleptic-induced parkinsonism (NIP) motor symptoms were estimated with Simpson-Angus Scale (SAS). Dyskinesia was measured with Abnormal Involuntary Movement Scale (AIMS). We found that there was no difference in values of sEMG parameters between healthy controls and drug-naïve SZ patients. The most specific group was formed of SZ patients who were administered both typical and atypical antipsychotics (AP). Their sEMG parameters were significantly different from those of SZ patients taking either typical or atypical AP or taking no AP. This may represent a kind of synergistic effect of these two classes of AP. For the clinical data we found that PANSS, SAS, and AIMS were not correlated to any of the sEMG parameters. Conclusion: with nonlinear parameters of sEMG it is possible to reveal NIP in SZ patients, and it may help to discriminate between different clinical groups of SZ patients. Combined typical and atypical AP therapy has stronger effect on sEMG than a therapy with AP of only one class. PMID:26217236
Meigal, Alexander Yu; Miroshnichenko, German G; Kuzmina, Anna P; Rissanen, Saara M; Georgiadis, Stefanos D; Karjalainen, Pasi A
2015-01-01
We compared a set of surface EMG (sEMG) parameters in several groups of schizophrenia (SZ, n = 74) patients and healthy controls (n = 11) and coupled them with the clinical data. sEMG records were quantified with spectral, mutual information (MI) based and recurrence quantification analysis (RQA) parameters, and with approximate and sample entropies (ApEn and SampEn). Psychotic deterioration was estimated with Positive and Negative Syndrome Scale (PANSS) and with the positive subscale of PANSS. Neuroleptic-induced parkinsonism (NIP) motor symptoms were estimated with Simpson-Angus Scale (SAS). Dyskinesia was measured with Abnormal Involuntary Movement Scale (AIMS). We found that there was no difference in values of sEMG parameters between healthy controls and drug-naïve SZ patients. The most specific group was formed of SZ patients who were administered both typical and atypical antipsychotics (AP). Their sEMG parameters were significantly different from those of SZ patients taking either typical or atypical AP or taking no AP. This may represent a kind of synergistic effect of these two classes of AP. For the clinical data we found that PANSS, SAS, and AIMS were not correlated to any of the sEMG parameters. with nonlinear parameters of sEMG it is possible to reveal NIP in SZ patients, and it may help to discriminate between different clinical groups of SZ patients. Combined typical and atypical AP therapy has stronger effect on sEMG than a therapy with AP of only one class.
Solar oxidation and removal of arsenic--Key parameters for continuous flow applications.
Gill, L W; O'Farrell, C
2015-12-01
Solar oxidation to remove arsenic from water has previously been investigated as a batch process. This research has investigated the kinetic parameters for the design of a continuous flow solar reactor to remove arsenic from contaminated groundwater supplies. Continuous flow recirculated batch experiments were carried out under artificial UV light to investigate the effect of different parameters on arsenic removal efficiency. Inlet water arsenic concentrations of up to 1000 μg/L were reduced to below 10 μg/L requiring 12 mg/L iron after receiving 12 kJUV/L radiation. Citrate however was somewhat surprisingly found to promote a detrimental effect on the removal process in the continuous flow reactor studies which is contrary to results found in batch scale tests. The impact of other typical water groundwater quality parameters (phosphate and silica) on the process due to their competition with arsenic for photooxidation products revealed a much higher sensitivity to phosphate ions compared to silicate. Other results showed no benefit from the addition of TiO2 photocatalyst but enhanced arsenic removal at higher temperatures up to 40 °C. Overall, these results have indicated the kinetic envelope from which a continuous flow SORAS single pass system could be more confidently designed for a full-scale community groundwater application at a village level. Copyright © 2015 Elsevier Ltd. All rights reserved.
Cumulative uncertainty in measured streamflow and water quality data for small watersheds
Harmel, R.D.; Cooper, R.J.; Slade, R.M.; Haney, R.L.; Arnold, J.G.
2006-01-01
The scientific community has not established an adequate understanding of the uncertainty inherent in measured water quality data, which is introduced by four procedural categories: streamflow measurement, sample collection, sample preservation/storage, and laboratory analysis. Although previous research has produced valuable information on relative differences in procedures within these categories, little information is available that compares the procedural categories or presents the cumulative uncertainty in resulting water quality data. As a result, quality control emphasis is often misdirected, and data uncertainty is typically either ignored or accounted for with an arbitrary margin of safety. Faced with the need for scientifically defensible estimates of data uncertainty to support water resource management, the objectives of this research were to: (1) compile selected published information on uncertainty related to measured streamflow and water quality data for small watersheds, (2) use a root mean square error propagation method to compare the uncertainty introduced by each procedural category, and (3) use the error propagation method to determine the cumulative probable uncertainty in measured streamflow, sediment, and nutrient data. Best case, typical, and worst case "data quality" scenarios were examined. Averaged across all constituents, the calculated cumulative probable uncertainty (??%) contributed under typical scenarios ranged from 6% to 19% for streamflow measurement, from 4% to 48% for sample collection, from 2% to 16% for sample preservation/storage, and from 5% to 21% for laboratory analysis. Under typical conditions, errors in storm loads ranged from 8% to 104% for dissolved nutrients, from 8% to 110% for total N and P, and from 7% to 53% for TSS. Results indicated that uncertainty can increase substantially under poor measurement conditions and limited quality control effort. This research provides introductory scientific estimates of uncertainty in measured water quality data. The results and procedures presented should also assist modelers in quantifying the "quality"of calibration and evaluation data sets, determining model accuracy goals, and evaluating model performance.
Williams, Loriann; Jackson, Carl P T; Choe, Noreen; Pelland, Lucie; Scott, Stephen H; Reynolds, James N
2014-01-01
Fetal alcohol spectrum disorder (FASD) is associated with a large number of cognitive and sensory-motor deficits. In particular, the accurate assessment of sensory-motor deficits in children with FASD is not always simple and relies on clinical assessment tools that may be coarse and subjective. Here we present a new approach: using robotic technology to accurately and objectively assess motor deficits of children with FASD in a center-out reaching task. A total of 152 typically developing children and 31 children with FASD, all aged between 5 and 18 were assessed using a robotic exoskeleton device coupled with a virtual reality projection system. Children made reaching movements to 8 peripheral targets in a random order. Reach trajectories were subsequently analyzed to extract 12 parameters that had been previously determined to be good descriptors of a reaching movement, and these parameters were compared for each child with FASD to a normative model derived from the performance of the typically developing population. Compared with typically developing children, the children with FASD were found to be significantly impaired on most of the parameters measured, with the greatest deficits found in initial movement direction error. Also, children with FASD tended to fail more parameters than typically developing children: 95% of typically developing children failed fewer than 3 parameters compared with 69% of children with FASD. These results were particularly pronounced for younger children. The current study has shown that robotic technology is a sensitive and powerful tool that provides increased specificity regarding the type of motor problems exhibited by children with FASD. The high frequency of motor deficits in children with FASD suggests that interventions aimed at stimulating and/or improving motor development should routinely be considered for this population. Copyright © 2013 by the Research Society on Alcoholism.
Review: typically-developing students' views and experiences of inclusive education.
Bates, Helen; McCafferty, Aileen; Quayle, Ethel; McKenzie, Karen
2015-01-01
The present review aimed to summarize and critique existing qualitative studies that have examined typically-developing students' views of inclusive education (i.e. the policy of teaching students with special educational needs in mainstream settings). Guidelines from the Centre for Reviews and Dissemination were followed, outlining the criteria by which journal articles were identified and critically appraised. Narrative Synthesis was used to summarize findings across studies. Fourteen studies met the review's inclusion criteria and were subjected to quality assessment. Analysis revealed that studies were of variable quality: three were of "good" methodological quality, seven of "medium" quality, and four of "poor" quality. With respect to findings, three overarching themes emerged: students expressed mostly negative attitudes towards peers with disabilities; were confused by the principles and practices of inclusive education; and made a number of recommendations for improving its future provision. A vital determinant of the success of inclusive education is the extent to which it is embraced by typically-developing students. Of concern, this review highlights that students tend not to understand inclusive education, and that this can breed hostility towards it. More qualitative research of high methodological quality is needed in this area. Implications for Rehabilitation Typically-developing students are key to the successful implementation of inclusive education. This review shows that most tend not to understand it, and can react by engaging in avoidance and/or targeted bullying of peers who receive additional support. Schools urgently need to provide teaching about inclusive education, and increase opportunities for contact between students who do and do not receive support (e.g. cooperative learning).
Quality Rating and Improvement System State Evaluations and Research
ERIC Educational Resources Information Center
Ferguson, Daniel
2016-01-01
A quality rating and improvement system (QRIS) is a method used by states and local jurisdictions to assess the level of quality of child care and early education programs, improve quality, and convey quality ratings to parents and other consumers. A typical QRIS incorporates the following components: quality standards for participating providers;…
Control of energy sweep and transverse beam motion in induction linacs
NASA Astrophysics Data System (ADS)
Turner, W. C.
1991-05-01
Recent interest in the electron induction accelerator has focussed on its application as a driver for high power radiation sources; free electron laser (FEL), relativistic klystron (RK) and cyclotron autoresonance maser (CARM). In the microwave regime where many successful experiments have been carried out, typical beam parameters are: beam energy 1 to 10 MeV, current 1 to 3 kA and pulse width 50 nsec. Radiation source applications impose conditions on electron beam quality, as characterized by three parameters; energy sweep, transverse beam motion and brightness. These conditions must be maintained for the full pulse duration to assure high efficiency conversion of beam power to radiation. The microwave FEL that has been analyzed in the greatest detail requires energy sweep less than (+ or -) 1 pct., transverse beam motion less than (+ or -) 1 mm and brightness approx. 1 x 10(exp 8)A/sq m sq rad. In the visible region the requirements on these parameters become roughly an order of magnitude more strigent. With the ETAII accelerator at LLNL the requirements were achieved for energy sweep, transverse beam motion and brightness. The recent data and the advances that have made the improved beam quality possible are discussed. The most important advances are: understanding of focussing magnetic field errors and improvements in alignment of the magnetic axis, a redesign of the high voltage pulse distribution system between the magnetic compression modulators and the accelerator cells, and exploitation of a beam tuning algorithm for minimizing transverse beam motion. The prospects are briefly described for increasing the pulse repetition frequency to the range of 5 kHz and a delayed feedback method of regulating beam energy over very long pulse bursts, thus making average power megawatt level microwave sources at 140 GHz and above a possibility.
NASA Technical Reports Server (NTRS)
Starr, David
2000-01-01
The EOS Terra mission will be launched in July 1999. This mission has great relevance to the atmospheric radiation community and global change issues. Terra instruments include Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER), Clouds and Earth's Radiant Energy System (CERES), Multi-Angle Imaging Spectroradiometer (MISR), Moderate Resolution Imaging Spectroradiometer (MODIS) and Measurements of Pollution in the Troposphere (MOPITT). In addition to the fundamental radiance data sets, numerous global science data products will be generated, including various Earth radiation budget, cloud and aerosol parameters, as well as land surface, terrestrial ecology, ocean color, and atmospheric chemistry parameters. Significant investments have been made in on-board calibration to ensure the quality of the radiance observations. A key component of the Terra mission is the validation of the science data products. This is essential for a mission focused on global change issues and the underlying processes. The Terra algorithms have been subject to extensive pre-launch testing with field data whenever possible. Intensive efforts will be made to validate the Terra data products after launch. These include validation of instrument calibration (vicarious calibration) experiments, instrument and cross-platform comparisons, routine collection of high quality correlative data from ground-based networks, such as AERONET, and intensive sites, such as the SGP ARM site, as well as a variety field experiments, cruises, etc. Airborne simulator instruments have been developed for the field experiment and underflight activities including the MODIS Airborne Simulator (MAS) AirMISR, MASTER (MODIS-ASTER), and MOPITT-A. All are integrated on the NASA ER-2 though low altitude platforms are more typically used for MASTER. MATR is an additional sensor used for MOPITT algorithm development and validation. The intensive validation activities planned for the first year of the Terra mission will be described with emphasis on derived geophysical parameters of most relevance to the atmospheric radiation community.
NASA Technical Reports Server (NTRS)
Starr, David
1999-01-01
The EOS Terra mission will be launched in July 1999. This mission has great relevance to the atmospheric radiation community and global change issues. Terra instruments include ASTER, CERES, MISR, MODIS and MOPITT. In addition to the fundamental radiance data sets, numerous global science data products will be generated, including various Earth radiation budget, cloud and aerosol parameters, as well as land surface, terrestrial ecology, ocean color, and atmospheric chemistry parameters. Significant investments have been made in on-board calibration to ensure the quality of the radiance observations. A key component of the Terra mission is the validation of the science data products. This is essential for a mission focused on global change issues and the underlying processes. The Terra algorithms have been subject to extensive pre-launch testing with field data whenever possible. Intensive efforts will be made to validate the Terra data products after launch. These include validation of instrument calibration (vicarious calibration) experiments, instrument and cross-platform comparisons, routine collection of high quality correlative data from ground-based networks, such as AERONET, and intensive sites, such as the SGP ARM site, as well as a variety field experiments, cruises, etc. Airborne simulator instruments have been developed for the field experiment and underflight activities including the MODIS Airborne Simulator (MAS), AirMISR, MASTER (MODIS-ASTER), and MOPITT-A. All are integrated on the NASA ER-2, though low altitude platforms are more typically used for MASTER. MATR is an additional sensor used for MOPITT algorithm development and validation. The intensive validation activities planned for the first year of the Terra mission will be described with emphasis on derived geophysical parameters of most relevance to the atmospheric radiation community. Detailed information about the EOS Terra validation Program can be found on the EOS Validation program homepage i/e.: http://ospso.gsfc.nasa.gov/validation/valpage.html).
Han, Yang; Qin, Wei-chao; Wang, Ye-qiao
2014-06-01
In recent years, the area of saline soil in the west of Jilin Province expands increasingly, and soil quality is becoming more and more worsening, which not only caused great damage to the land resources, but also posed a huge threat to agricultural production and ecological environment. We combined with polarized and hyperspectral information to establish the general model and scientifically validated it. The results show that there is a strong relationship between the saline soil hyperspectral polarized information and its physicochemical property parameters, and with regularity. This paper has important theoretical significance for the mechanism of saline soil surface reflection, recognition and classification of saline soil and background, the utilization of soil polarization sensor and the development of quantitative remote sensing.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Caspi, S.; Schlueter, R.; Tatchyn, R.
Linac-driven X-Ray Free Electron Lasers (e.g., Linac Coherent Light Sources (LCLSs)), operating on the principle of single-pass saturation in the Self-Amplified Spontaneous Emission (SASE) regime typically require multi-GeV beam energies and undulator lengths in excess of tens of meters to attain sufficient gain in the 1{angstrom}--0.1{angstrom} range. In this parameter regime, the undulator structure must provide: (1) field amplitudes B{sub 0} in excess of 1T within periods of 4cm or less, (2) peak on-axis focusing gradients on the order of 30T/m, and (3) field quality in the 0.1%--0.3% range. In this paper the authors report on designs under consideration formore » a 4.5--1.5 {angstrom} LCLS based on superconducting (SC), hybrid/PM, and pulsed-Cu technologies.« less
Petrina, Neysa; Carter, Mark; Stephenson, Jennifer; Sweller, Naomi
2016-04-01
There has been limited research exploring the similarity of perception of friendship quality between children with Autism Spectrum Disorder (ASD) and their friends. In this study, 45 children with ASD participated together with their friends. Two levels of friendship quality congruency were investigated: reciprocity and mutuality. A high proportion of the friendships were reciprocated for both the mixed and non-mixed friendship groups. Nevertheless, students with ASD reported substantial differences in perceptions of their friendship quality as compared to their nominated friends. The findings of the present study mirrored those of previous research with typically developing children. Further study is required to systematically investigate the differences in friendship quality perceptions within friendship dyads for both typically developing children and those with ASD diagnosis.
Alizadeh Ashrafi, Sina; Miller, Peter W; Wandro, Kevin M; Kim, Dave
2016-10-13
Hole quality plays a crucial role in the production of close-tolerance holes utilized in aircraft assembly. Through drilling experiments of carbon fiber-reinforced plastic composites (CFRP), this study investigates the impact of varying drilling feed and speed conditions on fiber pull-out geometries and resulting hole quality parameters. For this study, hole quality parameters include hole size variance, hole roundness, and surface roughness. Fiber pull-out geometries are quantified by using scanning electron microscope (SEM) images of the mechanically-sectioned CFRP-machined holes, to measure pull-out length and depth. Fiber pull-out geometries and the hole quality parameter results are dependent on the drilling feed and spindle speed condition, which determines the forces and undeformed chip thickness during the process. Fiber pull-out geometries influence surface roughness parameters from a surface profilometer, while their effect on other hole quality parameters obtained from a coordinate measuring machine is minimal.
High frequency modal identification on noisy high-speed camera data
NASA Astrophysics Data System (ADS)
Javh, Jaka; Slavič, Janko; Boltežar, Miha
2018-01-01
Vibration measurements using optical full-field systems based on high-speed footage are typically heavily burdened by noise, as the displacement amplitudes of the vibrating structures are often very small (in the range of micrometers, depending on the structure). The modal information is troublesome to measure as the structure's response is close to, or below, the noise level of the camera-based measurement system. This paper demonstrates modal parameter identification for such noisy measurements. It is shown that by using the Least-Squares Complex-Frequency method combined with the Least-Squares Frequency-Domain method, identification at high-frequencies is still possible. By additionally incorporating a more precise sensor to identify the eigenvalues, a hybrid accelerometer/high-speed camera mode shape identification is possible even below the noise floor. An accelerometer measurement is used to identify the eigenvalues, while the camera measurement is used to produce the full-field mode shapes close to 10 kHz. The identified modal parameters improve the quality of the measured modal data and serve as a reduced model of the structure's dynamics.
Groschen, George E.; King, Robin B.
2005-01-01
Eight streams, representing a wide range of environmental and water-quality conditions across Illinois, were monitored from July 2001 to October 2003 for five water-quality parameters as part of a pilot study by the U.S. Geological Survey (USGS) in cooperation with the Illinois Environmental Protection Agency (IEPA). Continuous recording multi-parameter water-quality monitors were installed to collect data on water temperature, dissolved-oxygen concentrations, specific conductivity, pH, and turbidity. The monitors were near USGS streamflow-gaging stations where stage and streamflow are continuously recorded. During the study period, the data collected for these five parameters generally met the data-quality objectives established by the USGS and IEPA at all eight stations. A similar pilot study during this period for measurement of chlorophyll concentrations failed to achieve the data-quality objectives. Of all the sensors used, the temperature sensors provided the most accurate and reliable measurements (generally within ?5 percent of a calibrated thermometer reading). Signal adjustments and calibration of all other sensors are dependent upon an accurate and precise temperature measurement. The dissolved-oxygen sensors were the next most reliable during the study and were responsive to changing conditions and accurate at all eight stations. Specific conductivity was the third most accurate and reliable measurement collected from the multi-parameter monitors. Specific conductivity at the eight stations varied widely-from less than 40 microsiemens (?S) at Rayse Creek near Waltonville to greater than 3,500 ?S at Salt Creek at Western Springs. In individual streams, specific conductivity often changed quickly (greater than 25 percent in less than 3 hours) and the sensors generally provided good to excellent record of these variations at all stations. The widest range of specific-conductivity measurements was in Salt Creek at Western Springs in the Greater Chicago metropolitan area. Unlike temperature, dissolved oxygen, and specific conductivity that have been typically measured over a wide range of historical streamflow conditions in many streams, there are few historical turbidity data and the full range of turbidity values is not well known for many streams. Because proposed regional criteria for turbidity in regional streams are based on upper 25th percentiles of concentration in reference streams, accurate determination of the distribution of turbidity in monitored streams is important. Digital data from all five sensors were recorded within each of the eight sondes deployed in the streams and in automated data recorders in the nearby streamflow-gaging houses at each station. The data recorded on each sonde were retrieved to a field laptop computer at each station visit. The feasibility of transmitting these data in near-real time to a central processing point for dissemination on the World-Wide Web was tested successfully. Data collected at all eight stations indicate that a number of factors affect the dissolved-oxygen concentration in the streams and rivers monitored. These factors include: temperature, biological activity, nutrient runoff, and weather (storm runoff). During brief periods usually in late summer, dissolved-oxygen concentrations in half or more of the eight streams and rivers monitored were below the 5 milligrams per liter minimum established by the Illinois Pollution Control Board to protect aquatic life. Because the streams monitored represent a wide range in water-quality and environmental conditions, including diffuse (non-point) runoff and wastewater-effluent contributions, this result indicates that deleterious low dissolved-oxygen concentrations during late summer may be widespread in Illinois streams.
SYNCHROTRON ORIGIN OF THE TYPICAL GRB BAND FUNCTION—A CASE STUDY OF GRB 130606B
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Bin-Bin; Briggs, Michael S.; Uhm, Z. Lucas
2016-01-10
We perform a time-resolved spectral analysis of GRB 130606B within the framework of a fast-cooling synchrotron radiation model with magnetic field strength in the emission region decaying with time, as proposed by Uhm and Zhang. The data from all time intervals can be successfully fit by the model. The same data can be equally well fit by the empirical Band function with typical parameter values. Our results, which involve only minimal physical assumptions, offer one natural solution to the origin of the observed GRB spectra and imply that, at least some, if not all, Band-like GRB spectra with typical Bandmore » parameter values can indeed be explained by synchrotron radiation.« less
NASA Astrophysics Data System (ADS)
Schulze, Martin H.; Heuer, Henning
2012-04-01
Carbon fiber based materials are used in many lightweight applications in aeronautical, automotive, machine and civil engineering application. By the increasing automation in the production process of CFRP laminates a manual optical inspection of each resin transfer molding (RTM) layer is not practicable. Due to the limitation to surface inspection, the quality parameters of multilayer 3 dimensional materials cannot be observed by optical systems. The Imaging Eddy- Current (EC) NDT is the only suitable inspection method for non-resin materials in the textile state that allows an inspection of surface and hidden layers in parallel. The HF-ECI method has the capability to measure layer displacements (misaligned angle orientations) and gap sizes in a multilayer carbon fiber structure. EC technique uses the variation of the electrical conductivity of carbon based materials to obtain material properties. Beside the determination of textural parameters like layer orientation and gap sizes between rovings, the detection of foreign polymer particles, fuzzy balls or visualization of undulations can be done by the method. For all of these typical parameters an imaging classification process chain based on a high resolving directional ECimaging device named EddyCus® MPECS and a 2D-FFT with adapted preprocessing algorithms are developed.
Model parameter learning using Kullback-Leibler divergence
NASA Astrophysics Data System (ADS)
Lin, Chungwei; Marks, Tim K.; Pajovic, Milutin; Watanabe, Shinji; Tung, Chih-kuan
2018-02-01
In this paper, we address the following problem: For a given set of spin configurations whose probability distribution is of the Boltzmann type, how do we determine the model coupling parameters? We demonstrate that directly minimizing the Kullback-Leibler divergence is an efficient method. We test this method against the Ising and XY models on the one-dimensional (1D) and two-dimensional (2D) lattices, and provide two estimators to quantify the model quality. We apply this method to two types of problems. First, we apply it to the real-space renormalization group (RG). We find that the obtained RG flow is sufficiently good for determining the phase boundary (within 1% of the exact result) and the critical point, but not accurate enough for critical exponents. The proposed method provides a simple way to numerically estimate amplitudes of the interactions typically truncated in the real-space RG procedure. Second, we apply this method to the dynamical system composed of self-propelled particles, where we extract the parameter of a statistical model (a generalized XY model) from a dynamical system described by the Viscek model. We are able to obtain reasonable coupling values corresponding to different noise strengths of the Viscek model. Our method is thus able to provide quantitative analysis of dynamical systems composed of self-propelled particles.
Adaptively Tuned Iterative Low Dose CT Image Denoising
Hashemi, SayedMasoud; Paul, Narinder S.; Beheshti, Soosan; Cobbold, Richard S. C.
2015-01-01
Improving image quality is a critical objective in low dose computed tomography (CT) imaging and is the primary focus of CT image denoising. State-of-the-art CT denoising algorithms are mainly based on iterative minimization of an objective function, in which the performance is controlled by regularization parameters. To achieve the best results, these should be chosen carefully. However, the parameter selection is typically performed in an ad hoc manner, which can cause the algorithms to converge slowly or become trapped in a local minimum. To overcome these issues a noise confidence region evaluation (NCRE) method is used, which evaluates the denoising residuals iteratively and compares their statistics with those produced by additive noise. It then updates the parameters at the end of each iteration to achieve a better match to the noise statistics. By combining NCRE with the fundamentals of block matching and 3D filtering (BM3D) approach, a new iterative CT image denoising method is proposed. It is shown that this new denoising method improves the BM3D performance in terms of both the mean square error and a structural similarity index. Moreover, simulations and patient results show that this method preserves the clinically important details of low dose CT images together with a substantial noise reduction. PMID:26089972
Reason, emotion and decision-making: risk and reward computation with feeling.
Quartz, Steven R
2009-05-01
Many models of judgment and decision-making posit distinct cognitive and emotional contributions to decision-making under uncertainty. Cognitive processes typically involve exact computations according to a cost-benefit calculus, whereas emotional processes typically involve approximate, heuristic processes that deliver rapid evaluations without mental effort. However, it remains largely unknown what specific parameters of uncertain decision the brain encodes, the extent to which these parameters correspond to various decision-making frameworks, and their correspondence to emotional and rational processes. Here, I review research suggesting that emotional processes encode in a precise quantitative manner the basic parameters of financial decision theory, indicating a reorientation of emotional and cognitive contributions to risky choice.
Tolerance assignment in optical design
NASA Astrophysics Data System (ADS)
Youngworth, Richard Neil
2002-09-01
Tolerance assignment is necessary in any engineering endeavor because fabricated systems---due to the stochastic nature of manufacturing and assembly processes---necessarily deviate from the nominal design. This thesis addresses the problem of optical tolerancing. The work can logically be split into three different components that all play an essential role. The first part addresses the modeling of manufacturing errors in contemporary fabrication and assembly methods. The second component is derived from the design aspect---the development of a cost-based tolerancing procedure. The third part addresses the modeling of image quality in an efficient manner that is conducive to the tolerance assignment process. The purpose of the first component, modeling manufacturing errors, is twofold---to determine the most critical tolerancing parameters and to understand better the effects of fabrication errors. Specifically, mid-spatial-frequency errors, typically introduced in sub-aperture grinding and polishing fabrication processes, are modeled. The implication is that improving process control and understanding better the effects of the errors makes the task of tolerance assignment more manageable. Conventional tolerancing methods do not directly incorporate cost. Consequently, tolerancing approaches tend to focus more on image quality. The goal of the second part of the thesis is to develop cost-based tolerancing procedures that facilitate optimum system fabrication by generating the loosest acceptable tolerances. This work has the potential to impact a wide range of optical designs. The third element, efficient modeling of image quality, is directly related to the cost-based optical tolerancing method. Cost-based tolerancing requires efficient and accurate modeling of the effects of errors on the performance of optical systems. Thus it is important to be able to compute the gradient and the Hessian, with respect to the parameters that need to be toleranced, of the figure of merit that measures the image quality of a system. An algebraic method for computing the gradient and the Hessian is developed using perturbation theory.
Dose and diagnostic image quality in digital tomosynthesis imaging of facial bones in pediatrics
NASA Astrophysics Data System (ADS)
King, J. M.; Hickling, S.; Elbakri, I. A.; Reed, M.; Wrogemann, J.
2011-03-01
The purpose of this study was to evaluate the use of digital tomosynthesis (DT) for pediatric facial bone imaging. We compared the eye lens dose and diagnostic image quality of DT facial bone exams relative to digital radiography (DR) and computed tomography (CT), and investigated whether we could modify our current DT imaging protocol to reduce patient dose while maintaining sufficient diagnostic image quality. We measured the dose to the eye lens for all three modalities using high-sensitivity thermoluminescent dosimeters (TLDs) and an anthropomorphic skull phantom. To assess the diagnostic image quality of DT compared to the corresponding DR and CT images, we performed an observer study where the visibility of anatomical structures in the DT phantom images were rated on a four-point scale. We then acquired DT images at lower doses and had radiologists indicate whether the visibility of each structure was adequate for diagnostic purposes. For typical facial bone exams, we measured eye lens doses of 0.1-0.4 mGy for DR, 0.3-3.7 mGy for DT, and 26 mGy for CT. In general, facial bone structures were visualized better with DT then DR, and the majority of structures were visualized well enough to avoid the need for CT. DT imaging provides high quality diagnostic images of the facial bones while delivering significantly lower doses to the lens of the eye compared to CT. In addition, we found that by adjusting the imaging parameters, the DT effective dose can be reduced by up to 50% while maintaining sufficient image quality.
Jónsson, Ásbjörn; Backi, Christoph Josef; Lunestad, Bjørn Tore; Karlsdóttir, Magnea G
2017-01-01
Abstract BACKGROUND The catch of marine whitefish is typically seasonal, whereas the land‐based processing industry has a need for all‐year stable supply of raw materials. This challenge can be met by applying fish frozen at sea. When using frozen fish, the methods employed for thawing may influence the safety and quality of the final product. This study aimed to investigate the applicability of novel thawing strategies in order to provide an all‐year supply of high‐quality and safe cod products. RESULTS Comparative investigations of quality and safety factors after thawing in water, with and without air circulation, and contact thawing were performed. The parameters included water‐holding capacity, thawing loss, drip loss, cooking yield, sensory evaluation and microbiological analyses (including total volatile bases nitrogen). Water thawing with air circulation provided faster thawing than water thawing without air circulation and contact thawing. For all three methods, the quality of the thawed fish was acceptable and the shelf life of the fillets during chilled storage was between 10 and 14 days post‐filleting. CONCLUSION The results show that controlled freezing of cod, followed by appropriate thawing, may provide the processing industry with an all‐year delivery of raw materials, without compromising quality and safety of the final product. © 2017 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry. PMID:28862323
Self-regulation and quality of life in high-functioning young adults with autism.
Dijkhuis, Renee R; Ziermans, Tim B; Van Rijn, Sophie; Staal, Wouter G; Swaab, Hanna
2017-10-01
Autism is generally associated with poor functional outcome but little is known about predictors of quality of life, especially during early adulthood. This study was conducted to assess subjective quality of life during early adulthood in high-functioning autism spectrum disorder and its relation with self-regulating abilities. Individuals with high-functioning autism spectrum disorder who progressed into post-secondary higher education ( N = 75) were compared to a typical peer control group ( N = 28) based on behavioral self-report questionnaires. The results indicated that individuals with high-functioning autism spectrum disorder reported significantly lower subjective quality of life than typical controls ( p < 0.001, effect size ( d) = 1.84). In addition, individuals with high-functioning autism spectrum disorder reported more problems with emotion processing ( p < 0.05, effect size ( d) = 0.79) and daily executive functioning ( p < 0.001, effect size ( d) = 1.29) than controls. A higher level of executive functioning problems was related to lower quality of life in the high-functioning autism spectrum disorder group, but no significant relation between level of emotion processing and subjective quality of life became apparent in the regression analysis. Our findings show that even in high-functioning young adults with autism, executive functioning, emotion processing, and subjective quality of life are low compared to typically developing peers. Furthermore, these results emphasize the importance of targeting executive functioning problems in individuals with autism to improve subjective quality of life.
NASA Astrophysics Data System (ADS)
Rapoport, B. I.; Pavlenko, I.; Weyssow, B.; Carati, D.
2002-11-01
Recent studies of ion and electron transport indicate that the safety factor profile, q(r), affects internal transport barrier (ITB) formation in magnetic confinement devices [1, 2]. These studies are consistent with experimental observations that low shear suppresses magnetic island interaction and associated stochasticity when the ITB is formed [3]. In this sense the position and quality of the ITB depend on the stochasticity of the magnetic field, and can be controlled by q(r). This study explores effects of the q-profile on magnetic field stochasticity using two-dimensional mapping techniques. Q-profiles typical of ITB experiments are incorporated into Hamiltonian maps to investigate the relation between magnetic field stochasticity and ITB parameters predicted by other models. It is shown that the mapping technique generates results consistent with these predictions, and suggested that Hamiltonian mappings can be useful as simple and computationally inexpensive approximation methods for describing the magnetic field in ITB experiments. 1. I. Voitsekhovitch et al. 29th EPS Conference on Plasma Physics and Controlled Fusion (2002). O-4.04. 2. G.M.D. Hogeweij et al. Nucl. Fusion. 38 (1998): 1881. 3. K.A. Razumova et al. Plasma Phys. Contr. Fusion. 42 (2000): 973.
Eldyasti, Ahmed; Nakhla, George; Zhu, Jesse
2014-12-01
Nitrous oxide (N2O) is a significant anthropogenic greenhouse gases (AnGHGs) emitted from biological nutrient removal (BNR) processes. In this study, N2O production from denitrifying fluidized bed bioreactors (DFBBR) was reduced using calcium (Ca2+) dosage. The DFBBRs were operated on a synthetic municipal wastewater at four different calcium concentrations ranging from the typical municipal wastewater Ca2+ concentration (60 mg Ca2+/L) to 240 mg Ca2+/L at two different COD/N ratios. N2O emission rates, extracellular polymeric substances (EPS), water quality parameters, and microscopic images were monitored regularly in both phases. Calcium concentrations played a significant role in biofilm morphology with the detachment rates for R120Ca, R180Ca, and R240Ca 75% lower than for R60Ca, respectively. The N2O conversion rate at the typical municipal wastewater Ca2+ concentration (R60Ca) was about 0.53% of the influent nitrogen loading as compared with 0.34%, 0.42%, and 0.41% for R120Ca, R180Ca, and R240Ca, respectively corresponding to 21-36% reduction. Copyright © 2014 Elsevier Ltd. All rights reserved.
Performance study of highly efficient 520 W average power long pulse ceramic Nd:YAG rod laser
NASA Astrophysics Data System (ADS)
Choubey, Ambar; Vishwakarma, S. C.; Ali, Sabir; Jain, R. K.; Upadhyaya, B. N.; Oak, S. M.
2013-10-01
We report the performance study of a 2% atomic doped ceramic Nd:YAG rod for long pulse laser operation in the millisecond regime with pulse duration in the range of 0.5-20 ms. A maximum average output power of 520 W with 180 J maximum pulse energy has been achieved with a slope efficiency of 5.4% using a dual rod configuration, which is the highest for typical lamp pumped ceramic Nd:YAG lasers. The laser output characteristics of the ceramic Nd:YAG rod were revealed to be nearly equivalent or superior to those of high-quality single crystal Nd:YAG rod. The laser pump chamber and resonator were designed and optimized to achieve a high efficiency and good beam quality with a beam parameter product of 16 mm mrad (M2˜47). The laser output beam was efficiently coupled through a 400 μm core diameter optical fiber with 90% overall transmission efficiency. This ceramic Nd:YAG laser will be useful for various material processing applications in industry.
Mechanism and experimental research on ultra-precision grinding of ferrite
NASA Astrophysics Data System (ADS)
Ban, Xinxing; Zhao, Huiying; Dong, Longchao; Zhu, Xueliang; Zhang, Chupeng; Gu, Yawen
2017-02-01
Ultra-precision grinding of ferrite is conducted to investigate the removal mechanism. Effect of the accuracy of machine tool key components on grinding surface quality is analyzed. The surface generation model of ferrite ultra-precision grinding machining is established. In order to reveal the surface formation mechanism of ferrite in the process of ultraprecision grinding, furthermore, the scientific and accurate of the calculation model are taken into account to verify the grinding surface roughness, which is proposed. Orthogonal experiment is designed using the high precision aerostatic turntable and aerostatic spindle for ferrite which is a typical hard brittle materials. Based on the experimental results, the influence factors and laws of ultra-precision grinding surface of ferrite are discussed through the analysis of the surface roughness. The results show that the quality of ferrite grinding surface is the optimal parameters, when the wheel speed of 20000r/mm, feed rate of 10mm/min, grinding depth of 0.005mm, and turntable rotary speed of 5r/min, the surface roughness Ra can up to 75nm.
Electrostatics of cysteine residues in proteins: Parameterization and validation of a simple model
Salsbury, Freddie R.; Poole, Leslie B.; Fetrow, Jacquelyn S.
2013-01-01
One of the most popular and simple models for the calculation of pKas from a protein structure is the semi-macroscopic electrostatic model MEAD. This model requires empirical parameters for each residue to calculate pKas. Analysis of current, widely used empirical parameters for cysteine residues showed that they did not reproduce expected cysteine pKas; thus, we set out to identify parameters consistent with the CHARMM27 force field that capture both the behavior of typical cysteines in proteins and the behavior of cysteines which have perturbed pKas. The new parameters were validated in three ways: (1) calculation across a large set of typical cysteines in proteins (where the calculations are expected to reproduce expected ensemble behavior); (2) calculation across a set of perturbed cysteines in proteins (where the calculations are expected to reproduce the shifted ensemble behavior); and (3) comparison to experimentally determined pKa values (where the calculation should reproduce the pKa within experimental error). Both the general behavior of cysteines in proteins and the perturbed pKa in some proteins can be predicted reasonably well using the newly determined empirical parameters within the MEAD model for protein electrostatics. This study provides the first general analysis of the electrostatics of cysteines in proteins, with specific attention paid to capturing both the behavior of typical cysteines in a protein and the behavior of cysteines whose pKa should be shifted, and validation of force field parameters for cysteine residues. PMID:22777874
Jing, Nan; Li, Chuang; Chong, Yaqin
2017-01-20
An estimation method for indirectly observable parameters for a typical low dynamic vehicle (LDV) is presented. The estimation method utilizes apparent magnitude, azimuth angle, and elevation angle to estimate the position and velocity of a typical LDV, such as a high altitude balloon (HAB). In order to validate the accuracy of the estimated parameters gained from an unscented Kalman filter, two sets of experiments are carried out to obtain the nonresolved photometric and astrometric data. In the experiments, a HAB launch is planned; models of the HAB dynamics and kinematics and observation models are built to use as time update and measurement update functions, respectively. When the HAB is launched, a ground-based optoelectronic detector is used to capture the object images, which are processed using aperture photometry technology to obtain the time-varying apparent magnitude of the HAB. Two sets of actual and estimated parameters are given to clearly indicate the parameter differences. Two sets of errors between the actual and estimated parameters are also given to show how the estimated position and velocity differ with respect to the observation time. The similar distribution curve results from the two scenarios, which agree within 3σ, verify that nonresolved photometric and astrometric data can be used to estimate the indirectly observable state parameters (position and velocity) for a typical LDV. This technique can be applied to small and dim space objects in the future.
Dewey, Deborah; Volkovinskaia, Anna
2018-07-01
Health-related quality of life (HRQoL) and peer relationships were investigated in adolescents with developmental coordination disorder (DCD) and attention-deficit-hyperactivity disorder (ADHD). Adolescents with DCD (n=9), ADHD (n=9), DCD and ADHD (n=10), and typically developing adolescents (n=16) completed the following questionnaires: KIDSCREEN-52 Health-Related Quality of Life Questionnaire and Peer Relations Questionnaire for Children. Twenty-five participants took part in semi-structured interviews. Adolescents with DCD and ADHD had lower HRQoL on the mood and emotions, school environment, and financial resources scales of the KIDSCREEN-52 than adolescents in the DCD and typically developing groups (all p<0.05). On the Peer Relations Questionnaire for Children, the DCD and ADHD group reported significantly higher victimization compared with those in the typically developing (p=0.030) and DCD (p=0.010) groups. Qualitative interviews among young people with DCD and ADHD revealed feelings of marginalization and victimization. Descriptors such as 'misfits', 'oddballs', 'weird', and 'the rejects' were used to describe themselves. HRQoL and peer relationships are negatively affected in adolescents with DCD and ADHD. WHAT THIS PAPER ADDS?: Children with developmental coordination disorder (DCD) do not display poorer overall health-related quality of life (HRQoL) versus typically developing controls. Having DCD and attention-deficit-hyperactivity disorder (ADHD) was associated with poorer HRQoL. Adolescents with DCD and ADHD experience significantly higher levels of peer victimization than typically developing adolescents. HRQoL and peer relationships are significantly associated in adolescent respondents. © 2018 Mac Keith Press.
Ecophysiological parameters for Pacific Northwest trees.
Amy E. Hessl; Cristina Milesi; Michael A. White; David L. Peterson; Robert E. Keane
2004-01-01
We developed a species- and location-specific database of published ecophysiological variables typically used as input parameters for biogeochemical models of coniferous and deciduous forested ecosystems in the Western United States. Parameters are based on the requirements of Biome-BGC, a widely used biogeochemical model that was originally parameterized for the...
Learning the manifold of quality ultrasound acquisition.
El-Zehiry, Noha; Yan, Michelle; Good, Sara; Fang, Tong; Zhou, S Kevin; Grady, Leo
2013-01-01
Ultrasound acquisition is a challenging task that requires simultaneous adjustment of several acquisition parameters (the depth, the focus, the frequency and its operation mode). If the acquisition parameters are not properly chosen, the resulting image will have a poor quality and will degrade the patient diagnosis and treatment workflow. Several hardware-based systems for autotuning the acquisition parameters have been previously proposed, but these solutions were largely abandoned because they failed to properly account for tissue inhomogeneity and other patient-specific characteristics. Consequently, in routine practice the clinician either uses population-based parameter presets or manually adjusts the acquisition parameters for each patient during the scan. In this paper, we revisit the problem of autotuning the acquisition parameters by taking a completely novel approach and producing a solution based on image analytics. Our solution is inspired by the autofocus capability of conventional digital cameras, but is significantly more challenging because the number of acquisition parameters is large and the determination of "good quality" images is more difficult to assess. Surprisingly, we show that the set of acquisition parameters which produce images that are favored by clinicians comprise a 1D manifold, allowing for a real-time optimization to maximize image quality. We demonstrate our method for acquisition parameter autotuning on several live patients, showing that our system can start with a poor initial set of parameters and automatically optimize the parameters to produce high quality images.
Shen, Zhenyao; Liu, Jin; Aini, Guzhanuer; Gong, Yongwei
2016-02-01
The deposition of pollutants on impervious surfaces is a serious problem associated with rapid urbanization, which results in non-point-source pollution. Characterizing the build-up and wash-off processes of pollutants in urban catchments is essential for urban planners. In this paper, the spatial variation and particle-size distributions of five heavy metals and two nutrients in surface dust were analyzed, and the runoff water first-flush effect (FF30) and event-mean concentrations (EMCs) of 10 common constituents were characterized. The relationships between runoff variables and stormwater characteristics were examined from three typical urban impervious surfaces in Beijing, China. Dust on road surfaces with smaller grain sizes had higher pollutant concentrations, whereas concentrations of Mn, Zn, Fe, and TP in roof surface dust increased with grain size. Particles with grain sizes of 38-74 and 125-300 μm contributed most to the total pollutant load in roads, while particles with the smallest grain sizes (<38 μm) contributed most on roofs (23.46-41.71 %). Event-mean concentrations (EMCs) and FF30 values for most runoff pollutants tended to be higher on roofs than on roads. The maximum intensity (I max) and the antecedent dry days (ADD) were critical parameters for EMCs in roads, while ADD was the only dominant parameter for EMCs on our studied roof. The rainfall intensity (RI) and maximum intensity (I max) were found to be the parameters with the strongest correlation to the first-flush effect on both roads and roofs. Significant correlations of total suspended solids (TSS) concentration in runoff with grain-size fractions of surface dust indicated that coarser particles (74-300 μm) are most likely to contribute to the solid-phase pollutants, and finer particles (<38 μm) are likely the main source of dissolved pollutants.
Quality and sensory characteristics of hard red wheat after residential storage for up to 32 y.
Rose, Devin J; Ogden, Lynn V; Dunn, Michael L; Jamison, Rachel G; Lloyd, Michelle A; Pike, Oscar A
2011-01-01
Samples of hard red wheat packaged for long-term storage, ranging in age from 0 to 32 y, were obtained from donors in residential households. All samples had been stored under nonabusive conditions (7% to 10% moisture, 13 to 27 °C). Selected quality parameters of the wheat (moisture, thiamin, free fatty acids, flour extraction rate, bread loaf volume, and bread firmness) and sensory properties of bread made from the stored wheat (aroma, appearance, texture, flavor, overall liking, acceptance for use as part of the regular diet, and acceptance for use in emergency situations) were evaluated. Free fatty acids increased significantly from 0.897 to 11.8 μmol/g, and flour extraction rate decreased significantly from 76.5% to 69.9% over time. None of the other quality parameters measured (moisture, thiamin, bread loaf volume, and bread firmness) were significantly correlated with wheat storage time. Panelists who frequently or occasionally consume whole wheat bread rated all breads made from the stored wheat with hedonic scores (9-point scale) of at least 6.4 (like slightly to moderately). Consumer ratings of bread texture, flavor, and overall acceptability were negatively correlated with storage time (P < 0.001); however, at least 70% of panelists indicated that they would consume the bread as part of their regular diet even after 32 y of wheat storage, while over 97% would do so in an emergency. These data indicate that wheat maintains nutritional quality and makes acceptable bread when stored up to 32 y at 13 to 27 °C and 7% to 10% moisture. Practical Application: Wheat stored for the purposes of disaster relief has the potential of being stored for extremely long periods of time, which may result in undesirable changes in milling and baking quality. Therefore, we tested wheat that had been stored under residential conditions for up to 32 y to determine its functional quality and consumer acceptability. Our results indicate that wheat of low moisture (7% to 10%) packaged in sealed cans and stored for up to 32 y at or below typical room temperature retains quality and can be made into bread that is well accepted by consumers. Thus, whole wheat has good long-term storage stability and can be recommended for emergency food supplies.
Dynamics of a neuron model in different two-dimensional parameter-spaces
NASA Astrophysics Data System (ADS)
Rech, Paulo C.
2011-03-01
We report some two-dimensional parameter-space diagrams numerically obtained for the multi-parameter Hindmarsh-Rose neuron model. Several different parameter planes are considered, and we show that regardless of the combination of parameters, a typical scenario is preserved: for all choice of two parameters, the parameter-space presents a comb-shaped chaotic region immersed in a large periodic region. We also show that exist regions close these chaotic region, separated by the comb teeth, organized themselves in period-adding bifurcation cascades.
Measuring the returns to NASA life sciences research and development
NASA Astrophysics Data System (ADS)
Hertzfeld, Henry R.
1998-01-01
The National Aeronautics and Space Administration has invested in R&D in the life sciences for forty years. The thrust of this investment has been directed toward the support of human beings in space flight and in space activities. There are many documented examples of beneficial services and products now used in everyday life and medical practice that can be traced to origins in the R&D of the space program. However, a framework for quantitatively documenting, characterizing, and analyzing these public benefits has eluded researchers. This paper will present the results of a pilot project that includes the development of a methodology for assessing the economic benefits from NASA life sciences R&D and for realistically evaluating the financial leverage that private companies which are either involved in NASA R&D or which have ``bootstrapped'' NASA R&D into commercial products have realized. The results will show that the NASA life sciences investments are more engineering oriented, and more typically show results in the fields of instrumentation and medical devices. This is substantially different in nature from the focus of the National Institutes of Health, which is organized around the diagnosis and treatment of diseases. The appropriate measures of benefits for engineering-oriented products are economic parameters that focus on capital equipment. NIH benefits are more typically measured by human labor parameters, including the much more difficult to quantify measures of the quality and delivery of medical services. Although there is tremendous overlap in the goals and outputs of NASA life sciences and NIH investments, and NASA R&D is also very concerned with human beings and the quality of life, NIH is the overwhelming large source of life sciences R&D funds in the US. NASA has a special niche in life sciences R&D that supports the NASA mission as well as overall research issues in the life sciences. This paper evaluates the economic benefits of NASA's life sciences from the perspective of its special role, and presents evidence of the types of returns to the economy that have occurred from a sample of successful research efforts.
Sensory and rapid instrumental methods as a combined tool for quality control of cooked ham.
Barbieri, Sara; Soglia, Francesca; Palagano, Rosa; Tesini, Federica; Bendini, Alessandra; Petracci, Massimiliano; Cavani, Claudio; Gallina Toschi, Tullia
2016-11-01
In this preliminary investigation, different commercial categories of Italian cooked pork hams have been characterized using an integrated approach based on both sensory and fast instrumental measurements. For these purposes, Italian products belonging to different categories (cooked ham, "selected" cooked ham and "high quality" cooked ham) were evaluated by sensory descriptive analysis and by the application of rapid tools such as image analysis by an "electronic eye" and texture analyzer. The panel of trained assessors identified and evaluated 10 sensory descriptors able to define the quality of the products. Statistical analysis highlighted that sensory characteristics related to appearance and texture were the most significant in discriminating samples belonged to the highest (high quality cooked hams) and the lowest (cooked hams) quality of the product whereas the selected cooked hams, showed intermediate characteristics. In particular, high quality samples were characterized, above all, by the highest intensity of pink intensity, typical appearance and cohesiveness, and, at the same time, by the lowest intensity of juiciness; standard cooked ham samples showed the lowest intensity of all visual attributes and the highest value of juiciness, whereas the intermediate category (selected cooked ham) was not discriminated from the other. Also physical-rheological parameters measured by electronic eye and texture analyzer were effective in classifying samples. In particular, the PLS model built with data obtained from the electronic eye showed a satisfactory performance in terms of prediction of the pink intensity and presence of fat attributes evaluated during the sensory visual phase. This study can be considered a first application of this combined approach that could represent a suitable and fast method to verify if the meat product purchased by consumer match its description in terms of compliance with the claimed quality.
Narasimhan, S; Chiel, H J; Bhunia, S
2011-04-01
Implantable microsystems for monitoring or manipulating brain activity typically require on-chip real-time processing of multichannel neural data using ultra low-power, miniaturized electronics. In this paper, we propose an integrated-circuit/architecture-level hardware design framework for neural signal processing that exploits the nature of the signal-processing algorithm. First, we consider different power reduction techniques and compare the energy efficiency between the ultra-low frequency subthreshold and conventional superthreshold design. We show that the superthreshold design operating at a much higher frequency can achieve comparable energy dissipation by taking advantage of extensive power gating. It also provides significantly higher robustness of operation and yield under large process variations. Next, we propose an architecture level preferential design approach for further energy reduction by isolating the critical computation blocks (with respect to the quality of the output signal) and assigning them higher delay margins compared to the noncritical ones. Possible delay failures under parameter variations are confined to the noncritical components, allowing graceful degradation in quality under voltage scaling. Simulation results using prerecorded neural data from the sea-slug (Aplysia californica) show that the application of the proposed design approach can lead to significant improvement in total energy, without compromising the output signal quality under process variations, compared to conventional design approaches.
Biogeochemical and hydrological constraints on concentration-discharge curves
NASA Astrophysics Data System (ADS)
Moatar, Florentina; Abbott, Ben; Minaudo, Camille; Curie, Florence; Pinay, Gilles
2017-04-01
The relationship between concentration and discharge (C-Q) can give insight into the location, abundance, rate of production or consumption, and transport dynamics of elements in coupled terrestrial-aquatic ecosystems. Consequently, the investigation of C-Q relationships for multiple elements at multiple spatial and temporal scales can be a powerful tool to address three of ecohydrology's fundamental questions: where does water comes from, how long does it stay, and what happens to the solutes and particulates it carries along the way. We analyzed long-term water quality data from 300 monitoring stations covering nearly half of France to investigate how elemental properties, catchment characteristics, and hydrological parameters influence C-Q. Based on previous work, we segmented the hydrograph, calculating independent C-Q slopes for flows above and below the median discharge. We found that most elements only expressed two of the nine possible C-Q modalities, indicating strong elemental control of C-Q shape. Catchment characteristics including land use and human population had a strong impact on concentration but typically did not influence the C-Q slopes, also suggesting inherent constraints on elemental production and transport. Biological processes appeared to regulate C-Q slope at low flows for biologically-reactive elements, but at high flows, these processes became unimportant, and most parameters expressed chemostatic behavior. This study provides a robust description of possible C-Q shapes for a wide variety of catchments and elements and demonstrates the value of low-frequency, long-term data collected by water quality agencies.
Toxicity of cadmium to goldfish, Carassius auratus, in hard, and soft water
DOE Office of Scientific and Technical Information (OSTI.GOV)
McCarty, L.S.; Henry, J.A.C.; Houston, A.H.
1978-01-01
Variations in cadmium form and concentration and in selected water quality parameters (pH, dissolved oxygen, total hardness, total alkalinity, conductivity) were monitored during static bioassays conducted with relatively soft (approximately 20 mg/L as CaCO/sub 3/) and hard (approximately 140 mg/L as CaCO/sub 3/) waters. Cadmium concentrations were reasonably stable in soft water, and with the exception of total hardness, water quality was not greatly altered during assay. Cumulative mortality curves were of a simple sigmoidal type and readily analyzed by conventional procedures. LC50 values of 2.76, 2.13, and 1.78 mg Cd/L were estimated on the basis of 48-, 96-, andmore » 240-h periods of observation. During hard-water trials there were transient increases in the amount of particulate cadmium present and sharp decreases in total cadmium levels. Several parameters (pH, total alkalinity, conductivity) exhibited transient and/or sustained variations of a cadmium concentration-dependent type. Mortality curves were typically biphasic. The extent of first-phase mortality was significantly correlated with the magnitude of the initial pH decline and the amount of cadmium present in centrifugable form. Conventional procedures did not result in rectification of 240-h cumulative mortality curves, and the 240-h LC50 value (40.2 mg Cd/L) is considered to be inherently less precise than those obtained on the basis of 48- and 96-h periods of observation (46.9, 46.8 mg Cd/L).« less
ECHO: A reference-free short-read error correction algorithm
Kao, Wei-Chun; Chan, Andrew H.; Song, Yun S.
2011-01-01
Developing accurate, scalable algorithms to improve data quality is an important computational challenge associated with recent advances in high-throughput sequencing technology. In this study, a novel error-correction algorithm, called ECHO, is introduced for correcting base-call errors in short-reads, without the need of a reference genome. Unlike most previous methods, ECHO does not require the user to specify parameters of which optimal values are typically unknown a priori. ECHO automatically sets the parameters in the assumed model and estimates error characteristics specific to each sequencing run, while maintaining a running time that is within the range of practical use. ECHO is based on a probabilistic model and is able to assign a quality score to each corrected base. Furthermore, it explicitly models heterozygosity in diploid genomes and provides a reference-free method for detecting bases that originated from heterozygous sites. On both real and simulated data, ECHO is able to improve the accuracy of previous error-correction methods by several folds to an order of magnitude, depending on the sequence coverage depth and the position in the read. The improvement is most pronounced toward the end of the read, where previous methods become noticeably less effective. Using a whole-genome yeast data set, it is demonstrated here that ECHO is capable of coping with nonuniform coverage. Also, it is shown that using ECHO to perform error correction as a preprocessing step considerably facilitates de novo assembly, particularly in the case of low-to-moderate sequence coverage depth. PMID:21482625
Influence of the fruit's ripeness on virgin olive oil quality.
Franco, Ma Nieves; Sánchez, Jacinto; De Miguel, Concepción; Martínez, Manuel; Martín-Vertedor, Daniel
2015-01-01
Virgin Olive Oil (VOO) is a product much demanded by consumers looking for the highest quality and certain traits considered to be typical of the Mediterranean area. The olive fruit's properties and the industry-regulated physicochemical and sensory parameters of seven cultivars were evaluated during the ripening process. In general, the oil percentage in both the wet and dry material increased for all the cultivars from the green to the spotted stages of maturation, and they stayed constant statistically until the ripe stage with just a few exceptions. The lowest oil content was observed in the Manzanilla Cacereña cultivar in all stages of maturation. The cultivars that presented the lowest oil yields in the Abencor system were Manzanilla Cacereña and Carrasqueña, and the highest Corniche. In general, all the cultivars except one presented good behaviour during the mixing process, the exception being Manzanilla Cacereña which presented the lowest values of the extractability percentage. The moisture content of the olives presented a common pattern, increasing from the green to the spotted stage, with the differences being significant in the Corniche, Picual, and Verdial de Badajoz cultivars. All the oils analysed were classified into the "extra virgin" category according to the results for the regulated parameters. The fruity, bitter, and pungent attributes decreased during ripening in all the cultivars studied. In the green stage of maturation, Arbequina had the least intensity of bitterness and pungency, but there were no significant differences among cultivars in the fruity attribute.
Analytical difficulties facing today's regulatory laboratories: issues in method validation.
MacNeil, James D
2012-08-01
The challenges facing analytical laboratories today are not unlike those faced in the past, although both the degree of complexity and the rate of change have increased. Challenges such as development and maintenance of expertise, maintenance and up-dating of equipment, and the introduction of new test methods have always been familiar themes for analytical laboratories, but international guidelines for laboratories involved in the import and export testing of food require management of such changes in a context which includes quality assurance, accreditation, and method validation considerations. Decisions as to when a change in a method requires re-validation of the method or on the design of a validation scheme for a complex multi-residue method require a well-considered strategy, based on a current knowledge of international guidance documents and regulatory requirements, as well the laboratory's quality system requirements. Validation demonstrates that a method is 'fit for purpose', so the requirement for validation should be assessed in terms of the intended use of a method and, in the case of change or modification of a method, whether that change or modification may affect a previously validated performance characteristic. In general, method validation involves method scope, calibration-related parameters, method precision, and recovery. Any method change which may affect method scope or any performance parameters will require re-validation. Some typical situations involving change in methods are discussed and a decision process proposed for selection of appropriate validation measures. © 2012 John Wiley & Sons, Ltd.
Jensen, Tina Kold; Gottschau, Mads; Madsen, Jens Otto Broby; Andersson, Anne-Maria; Lassen, Tina Harmer; Skakkebæk, Niels E; Swan, Shanna H; Priskorn, Lærke; Juul, Anders; Jørgensen, Niels
2014-10-02
Study associations between three measures of alcohol consumption (recent, typical/habitual, binging), semen quality and serum reproductive hormones. Cross-sectional population based study. 1221 young Danish men, aged 18-28 years were recruited when they attended a compulsory medical examination to determine their fitness for military service from 2008 to 2012. Total alcohol consumption: (1) in the week preceding (habitual/typical) the visit (recent alcohol intake), (2) in a typical week and (3) frequency of 'binge drinking' (consuming more than 5 units/day)) in the past 30 days was estimated. Semen quality (volume, sperm concentration, total sperm count, and percentages of motile and morphologically normal spermatozoa) and serum concentration of reproductive hormones (follicle-stimulating hormone, luteinising hormone, testosterone, sex hormone binding globulin, oestradiol, free testosterone and inhibin B). Sperm concentration, total sperm count and percentage of spermatozoa with normal morphology were negatively associated with increasing habitual alcohol intake. This association was observed in men reporting at least 5 units in a typical week but was most pronounced for men with a typical intake of more than 25 units/week. Men with a typical weekly intake above 40 units had a 33% (95% CI 11% to 59%) reduction in sperm concentration compared to men with an intake of 1-5 units/week. A significant increase in serum free testosterone with increasing alcohol consumption the week preceding the visit was found. Binging was not independently associated with semen quality. Our study suggests that even modest habitual alcohol consumption of more than 5 units per week had adverse effects on semen quality although most pronounced associations were seen in men who consumed more than 25 units per week. Alcohol consumption was also linked to changes in testosterone and SHBG levels. Young men should be advised to avoid habitual alcohol intake. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.
Melo, Roberta Michelon; Mota, Helena Bolli; Berti, Larissa Cristina
2017-06-08
This study used acoustic and articulatory analyses to characterize the contrast between alveolar and velar stops with typical speech data, comparing the parameters (acoustic and articulatory) of adults and children with typical speech development. The sample consisted of 20 adults and 15 children with typical speech development. The analyzed corpus was organized through five repetitions of each target-word (/'kap ə/, /'tapə/, /'galo/ e /'daɾə/). These words were inserted into a carrier phrase and the participant was asked to name them spontaneously. Simultaneous audio and video data were recorded (tongue ultrasound images). The data was submitted to acoustic analyses (voice onset time; spectral peak and burst spectral moments; vowel/consonant transition and relative duration measures) and articulatory analyses (proportion of significant axes of the anterior and posterior tongue regions and description of tongue curves). Acoustic and articulatory parameters were effective to indicate the contrast between alveolar and velar stops, mainly in the adult group. Both speech analyses showed statistically significant differences between the two groups. The acoustic and articulatory parameters provided signals to characterize the phonic contrast of speech. One of the main findings in the comparison between adult and child speech was evidence of articulatory refinement/maturation even after the period of segment acquisition.
Seasonal and spatial variation in broadleaf forest model parameters
NASA Astrophysics Data System (ADS)
Groenendijk, M.; van der Molen, M. K.; Dolman, A. J.
2009-04-01
Process based, coupled ecosystem carbon, energy and water cycle models are used with the ultimate goal to project the effect of future climate change on the terrestrial carbon cycle. A typical dilemma in such exercises is how much detail the model must be given to describe the observations reasonably realistic while also be general. We use a simple vegetation model (5PM) with five model parameters to study the variability of the parameters. These parameters are derived from the observed carbon and water fluxes from the FLUXNET database. For 15 broadleaf forests the model parameters were derived for different time resolutions. It appears that in general for all forests, the correlation coefficient between observed and simulated carbon and water fluxes improves with a higher parameter time resolution. The quality of the simulations is thus always better when a higher time resolution is used. These results show that annual parameters are not capable of properly describing weather effects on ecosystem fluxes, and that two day time resolution yields the best results. A first indication of the climate constraints can be found by the seasonal variation of the covariance between Jm, which describes the maximum electron transport for photosynthesis, and climate variables. A general seasonality we found is that during winter the covariance with all climate variables is zero. Jm increases rapidly after initial spring warming, resulting in a large covariance with air temperature and global radiation. During summer Jm is less variable, but co-varies negatively with air temperature and vapour pressure deficit and positively with soil water content. A temperature response appears during spring and autumn for broadleaf forests. This shows that an annual model parameter cannot be representative for the entire year. And relations with mean annual temperature are not possible. During summer the photosynthesis parameters are constrained by water availability, soil water content and vapour pressure deficit.
ERIC Educational Resources Information Center
Blacher, Jan; Baker, Bruce L.; Eisenhower, Abbey S.
2009-01-01
Student-teacher relationships of 37 children with moderate to borderline intellectual disability and 61 with typical cognitive development were assessed from child ages 6-8 years. Student-teacher relationship quality was moderately stable for the typical development group, but less so for the intellectual disability group. At each assessment these…
Teaching Typically Developing Children to Promote Social Play with Their Siblings with Autism
ERIC Educational Resources Information Center
Oppenheim-Leaf, Misty L.; Leaf, Justin B.; Dozier, Claudia; Sheldon, Jan B.; Sherman, James A.
2012-01-01
Siblings are important "peers" for children. Unfortunately, children with autism often do not play or interact often with their typically developing siblings. The purpose of this study was to teach three typically developing children (ages 4-6) skills that were likely to increase the amount and quality of social play interactions with their…
NASA Astrophysics Data System (ADS)
Mubarok, S.; Lubis, L. E.; Pawiro, S. A.
2016-03-01
Compromise between radiation dose and image quality is essential in the use of CT imaging. CT dose index (CTDI) is currently the primary dosimetric formalisms in CT scan, while the low and high contrast resolutions are aspects indicating the image quality. This study was aimed to estimate CTDIvol and image quality measures through a range of exposure parameters variation. CTDI measurements were performed using PMMA (polymethyl methacrylate) phantom of 16 cm diameter, while the image quality test was conducted by using catphan ® 600. CTDI measurements were carried out according to IAEA TRS 457 protocol using axial scan mode, under varied parameters of tube voltage, collimation or slice thickness, and tube current. Image quality test was conducted accordingly under the same exposure parameters with CTDI measurements. An Android™ based software was also result of this study. The software was designed to estimate the value of CTDIvol with maximum difference compared to actual CTDIvol measurement of 8.97%. Image quality can also be estimated through CNR parameter with maximum difference to actual CNR measurement of 21.65%.
The effect of cryopreservation on goat semen characteristics related to sperm freezability.
Dorado, J; Muñoz-Serrano, A; Hidalgo, M
2010-08-01
Seminal quality parameters were used to evaluate the effect of freeze-thawing procedure on goat sperm characteristics, and to relate possible changes in sperm parameters to cryopreservation success. Semen samples (n=110) were frozen with TRIS and milk-based extenders and thawed. Sperm quality parameters (motility, morphology and acrosome) were compared between fresh and frozen-thawed samples. Sperm freezability was judged by classifying the semen samples as "suitable" or "not suitable" according to the sperm quality parameters assessed before and after thawing. Fertility data was obtained after cervical insemination with frozen semen doses. The ejaculates were grouped into two categories according to their fertility results. In experiment 1, significant differences were found between semen extenders (P<0.001), bucks (P<0.05) and ejaculates within the same male (P<0.05) in terms of sperm quality. There was no seasonal effect (P>0.05) on the majority of the sperm parameters assessed after thawing. Moreover, significant differences (P<0.001) in semen parameters assessed in fresh semen and frozen-thawed samples were found between groups. The effect of the freeze-thawing procedure on sperm quality parameters was also different (P<0.05) between extenders within the same group. The number of sperm quality parameters that had changed after cryopreservation was lower in "suitable" semen samples before and after thawing. In experiment 2, no differences (P>0.05) in semen parameters assessed in fresh semen and frozen-thawed samples were found between groups. The effect of freezing and thawing on sperm quality parameters were different (P<0.05) between extenders within the same group. Only mean beat cross frequency (BCF) values were significantly higher (P<0.05) in TRIS diluted samples that led to successful pregnancies after artificial insemination. In conclusion, CASA-derived motility parameters, together with traditional semen assessment methods, give valuable information on sperm quality before and after freezing. Therefore, the identification of ejaculates as "good" or "bad" based on fresh and post-thaw semen parameters studied in the present experiment were good indicators of goat semen freezability, although the fertilizing capacity of frozen-thawed goat spermatozoa are not revealed by this quality study. Copyright (c) 2010 Elsevier B.V. All rights reserved.
Alizadeh Ashrafi, Sina; Miller, Peter W.; Wandro, Kevin M.; Kim, Dave
2016-01-01
Hole quality plays a crucial role in the production of close-tolerance holes utilized in aircraft assembly. Through drilling experiments of carbon fiber-reinforced plastic composites (CFRP), this study investigates the impact of varying drilling feed and speed conditions on fiber pull-out geometries and resulting hole quality parameters. For this study, hole quality parameters include hole size variance, hole roundness, and surface roughness. Fiber pull-out geometries are quantified by using scanning electron microscope (SEM) images of the mechanically-sectioned CFRP-machined holes, to measure pull-out length and depth. Fiber pull-out geometries and the hole quality parameter results are dependent on the drilling feed and spindle speed condition, which determines the forces and undeformed chip thickness during the process. Fiber pull-out geometries influence surface roughness parameters from a surface profilometer, while their effect on other hole quality parameters obtained from a coordinate measuring machine is minimal. PMID:28773950
Dutta, Rishiraj
2013-08-15
This study tries to quantify the effects of green leaf tea parameters that influence tea quality in Northeast India. The study is to identify the different parameters that have a significant influence on tea quality through the use of remote sensing. It investigates the methods for estimating tea quality based on remotely sensed Normalized Difference Vegetation Index (NDVI) data. Attention focused on high yielding TV clones (TV1, TV18, TV22, TV23, TV25 and TV26). NDVI was obtained from ASTER images. Statistical analysis shows that NDVI has a strong significant effect on the caffeine content followed by epicatechin (EC), epigallocatechin (EGC) and to some extent in other chemical parameters. Relationships therefore exist between quality parameters and remote sensing in particular for the TV clones. This leads to the conclusion that NDVI has a large potential to be used for monitoring tea quality of individual cultivars in the future. Copyright © 2013 Elsevier Ltd. All rights reserved.
The Use of Logistics n the Quality Parameters Control System of Material Flow
ERIC Educational Resources Information Center
Karpova, Natalia P.; Toymentseva, Irina A.; Shvetsova, Elena V.; Chichkina, Vera D.; Chubarkova, Elena V.
2016-01-01
The relevance of the research problem is conditioned on the need to justify the use of the logistics methodologies in the quality parameters control process of material flows. The goal of the article is to develop theoretical principles and practical recommendations for logistical system control in material flows quality parameters. A leading…
Composite measures of watershed health from a water quality perspective
Water quality data at gaging stations are typically compared with established federal, state, or local water quality standards to determine if violations (concentrations of specific constituents falling outside acceptable limits) have occurred. Based on the frequency and severity...
Salari, Marjan; Salami Shahid, Esmaeel; Afzali, Seied Hosein; Ehteshami, Majid; Conti, Gea Oliveri; Derakhshan, Zahra; Sheibani, Solmaz Nikbakht
2018-04-22
Today, due to the increase in the population, the growth of industry and the variety of chemical compounds, the quality of drinking water has decreased. Five important river water quality properties such as: dissolved oxygen (DO), total dissolved solids (TDS), total hardness (TH), alkalinity (ALK) and turbidity (TU) were estimated by parameters such as: electric conductivity (EC), temperature (T), and pH that could be measured easily with almost no costs. Simulate water quality parameters were examined with two methods of modeling include mathematical and Artificial Neural Networks (ANN). Mathematical methods are based on polynomial fitting with least square method and ANN modeling algorithms are feed-forward networks. All conditions/circumstances covered by neural network modeling were tested for all parameters in this study, except for Alkalinity. All optimum ANN models developed to simulate water quality parameters had precision value as R-value close to 0.99. The ANN model extended to simulate alkalinity with R-value equals to 0.82. Moreover, Surface fitting techniques were used to refine data sets. Presented models and equations are reliable/useable tools for studying water quality parameters at similar rivers, as a proper replacement for traditional water quality measuring equipment's. Copyright © 2018 Elsevier Ltd. All rights reserved.
Montgomery, William; Kadziola, Zbigniew; Ye, Wenye; Xue, Hai Bo; Liu, Li; Treuer, Tamás
2015-01-01
The aim of this study was to investigate the correlation between changes in symptoms and changes in self-reported quality of life among Chinese patients with schizophrenia who were switched from a typical antipsychotic to olanzapine during usual outpatient care. This post hoc analysis was conducted using data from the Chinese subgroup (n=475) of a multicountry, 12-month, prospective, noninterventional, observational study. The primary publication previously reported the efficacy, safety, and quality of life among patients who switched from a typical antipsychotic to olanzapine. Patients with schizophrenia were included if their symptoms were inadequately controlled with a typical antipsychotic and they were switched to olanzapine. Symptom severity was measured using the Brief Psychiatric Rating Scale (BPRS) and the Clinical Global Impressions-Severity scale (CGI-S). Health-Related Quality of Life (HRQOL) was assessed using the World Health Organization Quality of Life-Abbreviated (WHOQOL-BREF). Paired t-tests were performed to assess changes from baseline to endpoint. Pearson's correlation coefficients (r) were used to assess the correlations between change in symptoms (BPRS and CGI-S scores) and change in HRQOL (WHOQOL-BREF scores). Symptoms and HRQOL both improved significantly over the 12 months of treatment (P<0.001). Significant correlations were observed between changes from baseline to end of study on the BPRS and the CGI-S and each of the WHOQOL-BREF four domain scores and two overall quality-of-life questions. The correlation coefficients ranged from r=-0.45 to r=-0.53 for the BPRS and WHOQOL-BREF. The correlation coefficients were slightly smaller between the CGI-S and WHOQOL-BREF, ranging from r=-0.33 to r=-0.40. For patients with schizophrenia, assessing quality of life has the potential to add valuable information to the clinical assessment that takes into account the patient's own perspective of well-being.
Bayesian model evidence as a model evaluation metric
NASA Astrophysics Data System (ADS)
Guthke, Anneli; Höge, Marvin; Nowak, Wolfgang
2017-04-01
When building environmental systems models, we are typically confronted with the questions of how to choose an appropriate model (i.e., which processes to include or neglect) and how to measure its quality. Various metrics have been proposed that shall guide the modeller towards a most robust and realistic representation of the system under study. Criteria for evaluation often address aspects of accuracy (absence of bias) or of precision (absence of unnecessary variance) and need to be combined in a meaningful way in order to address the inherent bias-variance dilemma. We suggest using Bayesian model evidence (BME) as a model evaluation metric that implicitly performs a tradeoff between bias and variance. BME is typically associated with model weights in the context of Bayesian model averaging (BMA). However, it can also be seen as a model evaluation metric in a single-model context or in model comparison. It combines a measure for goodness of fit with a penalty for unjustifiable complexity. Unjustifiable refers to the fact that the appropriate level of model complexity is limited by the amount of information available for calibration. Derived in a Bayesian context, BME naturally accounts for measurement errors in the calibration data as well as for input and parameter uncertainty. BME is therefore perfectly suitable to assess model quality under uncertainty. We will explain in detail and with schematic illustrations what BME measures, i.e. how complexity is defined in the Bayesian setting and how this complexity is balanced with goodness of fit. We will further discuss how BME compares to other model evaluation metrics that address accuracy and precision such as the predictive logscore or other model selection criteria such as the AIC, BIC or KIC. Although computationally more expensive than other metrics or criteria, BME represents an appealing alternative because it provides a global measure of model quality. Even if not applicable to each and every case, we aim at stimulating discussion about how to judge the quality of hydrological models in the presence of uncertainty in general by dissecting the mechanism behind BME.
Emsens, W-J; Aggenbach, C J S; Grootjans, A P; Nfor, E E; Schoelynck, J; Struyf, E; van Diggelen, R
2016-10-01
Eutrophication is a major threat for the persistence of nutrient-poor fens, as multilevel feedbacks on decomposition rates could trigger carbon loss and increase nutrient cycling. Here, we experimentally investigate the effects of macronutrient (NPK) enrichment on litter quality of six species of sedge (Carex sp.), which we relate to litter decomposition rates in a nutrient-poor and nutrient-rich environment. Our research focused on four levels: we examined how eutrophication alters (1) fresh litter production ("productivity shift"), (2) litter stoichiometry within the same species ("intraspecific shift"), (3) overall litter stoichiometry of the vegetation under the prediction that low-competitive species are outcompeted by fast-growing competitors ("interspecific shift"), and (4) litter decomposition rates due to an altered external environment (e.g., shifts in microbial activity; "exogenous shift"). Eutrophication triggered a strong increase in fresh litter production. Moreover, individuals of the same species produced litter with lower C:N and C:P ratios, higher K contents, and lower lignin, Ca and Mg contents (intraspecific shift), which increased litter decomposability. In addition, species typical for eutrophic conditions produced more easily degradable litter than did species typical for nutrient-poor conditions (interspecific shift). However, the effects of nutrient loading of the external environment (exogenous shift) were contradictory. Here, interactions between litter type and ambient nutrient level indicate that the (exogenous) effects of eutrophication on litter decomposition rates are strongly dependent of litter quality. Moreover, parameters of litter quality only correlated with decomposition rates for litter incubated in nutrient-poor environments, but not in eutrophic environments. This suggests that rates of litter decomposition can be uncoupled from litter stoichiometry under eutrophic conditions. In conclusion, our results show that eutrophication affects litter accumulation and -decomposition at multiple levels, in which stimulatory and inhibitory effects interact. The cumulative effect of these interactions ultimately determine whether peatlands remain sinks or become sources of carbon under eutrophic conditions. © 2016 by the Ecological Society of America.
Self-regulation and quality of life in high-functioning young adults with autism
Dijkhuis, Renee R; Ziermans, Tim B; Van Rijn, Sophie; Staal, Wouter G; Swaab, Hanna
2016-01-01
Background: Autism is generally associated with poor functional outcome but little is known about predictors of quality of life, especially during early adulthood. This study was conducted to assess subjective quality of life during early adulthood in high-functioning autism spectrum disorder and its relation with self-regulating abilities. Individuals with high-functioning autism spectrum disorder who progressed into post-secondary higher education (N = 75) were compared to a typical peer control group (N = 28) based on behavioral self-report questionnaires. The results indicated that individuals with high-functioning autism spectrum disorder reported significantly lower subjective quality of life than typical controls (p < 0.001, effect size (d) = 1.84). In addition, individuals with high-functioning autism spectrum disorder reported more problems with emotion processing (p < 0.05, effect size (d) = 0.79) and daily executive functioning (p < 0.001, effect size (d) = 1.29) than controls. A higher level of executive functioning problems was related to lower quality of life in the high-functioning autism spectrum disorder group, but no significant relation between level of emotion processing and subjective quality of life became apparent in the regression analysis. Our findings show that even in high-functioning young adults with autism, executive functioning, emotion processing, and subjective quality of life are low compared to typically developing peers. Furthermore, these results emphasize the importance of targeting executive functioning problems in individuals with autism to improve subjective quality of life. PMID:27407040
2013-01-01
Background Using treated wastewater in agriculture irrigation could be a realistic solution for the shortage of fresh water in Iran, however, it is associated with environmental and health threats; therefore, effluent quality assessment is quite necessary before use. The present study aimed to evaluate the physicochemical and microbial quality of Shiraz wastewater treatment plant effluent for being used in agricultural irrigation. In this study, 20 physicochemical and 3 microbial parameters were measured during warm (April to September) and cold months (October to march). Using the measured parameters and the Canadian Water Quality Index, the quality of the effluent was determined in both warm and cold seasons and in all the seasons together. Results The calculated index for the physicochemical parameters in the effluent was equal (87) in warm and cold months and it was obtained as 85 for the seasons all together. When the microbial parameters were used in order to calculate the index, it declined to 67 in warm and cold seasons and 64 in all the seasons together. Also, it was found that three physicochemical parameters (TDS, EC, and NO3) and three microbial parameters (Fecal coliform, Helminthes egg, and Total coliform) had the most contribution to the reduction of the index value. Conclusions The results showed that the physicochemical quality of Shiraz Wastewater Treatment Plant Effluent was good for irrigation in the warm, cold, and total of the two kinds of seasons. However, by applying the microbial parameter, the index value declined dramatically and the quality of the effluent was marginal. PMID:23566673
Correlations among Stress Parameters, Meat and Carcass Quality Parameters in Pigs
Dokmanovic, Marija; Baltic, Milan Z.; Duric, Jelena; Ivanovic, Jelena; Popovic, Ljuba; Todorovic, Milica; Markovic, Radmila; Pantic, Srdan
2015-01-01
Relationships among different stress parameters (lairage time and blood level of lactate and cortisol), meat quality parameters (initial and ultimate pH value, temperature, drip loss, sensory and instrumental colour, marbling) and carcass quality parameters (degree of rigor mortis and skin damages, hot carcass weight, carcass fat thickness, meatiness) were determined in pigs (n = 100) using Pearson correlations. After longer lairage, blood lactate (p<0.05) and degree of injuries (p<0.001) increased, meat became darker (p<0.001), while drip loss decreased (p<0.05). Higher lactate was associated with lower initial pH value (p<0.01), higher temperature (p<0.001) and skin blemishes score (p<0.05) and more developed rigor mortis (p<0.05), suggesting that lactate could be a predictor of both meat quality and the level of preslaughter stress. Cortisol affected carcass quality, so higher levels of cortisol were associated with increased hot carcass weight, carcass fat thickness on the back and at the sacrum and marbling, but also with decreased meatiness. The most important meat quality parameters (pH and temperature after 60 minutes) deteriorated when blood lactate concentration was above 12 mmol/L. PMID:25656214
Teubner, Diana; Paulus, Martin; Veith, Michael; Klein, Roland
2015-02-01
Piscifaunal health depends upon the state and quality of the aquatic environment. Variations in physical condition of fish may therefore be attributed to changes in environmental quality. Based on time series of up to 20 years of biometric data of bream from multiple sampling sites of the German environmental specimen bank (ESB), this study assessed whether changes in biometric parameters are able to indicate long-term alterations in fish health and environmental quality. Evaluated biometric parameters of fish health comprised length and weight of individuals of a defined age class, the condition factor, lipid content and hepatosomatic index (HSI). Although there are negative trends of the HSI, the overall development of health parameters can be interpreted as positive. This seems to suggest that health parameters conclusively mirror the long-term improvement of water quality in the selected rivers. However, the applicability of the condition factor as well as lipid content as indicators for fish health remained subject to restrictions. Altogether, the results from the ESB confirmed the high value of biometric parameters for monitoring of long-term changes in state and quality of aquatic ecosystems.
NASA Astrophysics Data System (ADS)
Ligmann-Zielinska, A.; Kramer, D. B.; Spence Cheruvelil, K.; Soranno, P.
2012-12-01
Socio-ecological systems are dynamic and nonlinear. To account for this complexity, we employ agent-based models (ABMs) to study macro-scale phenomena resulting from micro-scale interactions among system components. Because ABMs typically have many parameters, it is challenging to identify which parameters contribute to the emerging macro-scale patterns. In this paper, we address the following question: What is the extent of participation in agricultural land conservation programs given heterogeneous landscape, economic, social, and individual decision making criteria in complex lakesheds? To answer this question, we: [1] built an ABM for our model system; [2] simulated land use change resulting from agent decision making, [3] estimated the uncertainty of the model output, decomposed it and apportioned it to each of the parameters in the model. Our model system is a freshwater socio-ecological system - that of farmland and lake water quality within a region containing a large number of lakes and high proportions of agricultural lands. Our study focuses on examining how agricultural land conversion from active to fallow reduces freshwater nutrient loading and improves water quality. Consequently, our ABM is composed of farmer agents who make decisions related to participation in a government-sponsored Conservation Reserve Program (CRP) managed by the Farm Service Agency (FSA). We also include an FSA agent, who selects enrollment offers made by farmers and announces the signup results leading to land use change. The model is executed in a Monte Carlo simulation framework to generate a distribution of maps of fallow lands that are used for calculating nutrient loading to lakes. What follows is a variance-based sensitivity analysis of the results. We compute sensitivity indices for individual parameters and their combinations, allowing for identification of the most influential as well as the insignificant inputs. In the case study, we observe that farmland conservation is first and foremost driven by the FSA signup choices. Environmental criteria used in FSA offer selection play a secondary role in farmland-to-fallow-land conversion. Farmer decision making is mainly influenced by the willingness to reduce the potential annual rental payments. As the case study demonstrates, our approach leads to ABM simplification without the loss of outcome variability. It also shows how to represent the magnitude of ABM complexity and isolate the effects of the interconnected explanatory variables on the simulated emergent phenomena. More importantly, the results of our research indicate that some of the parameters exert influence on model outcomes only if analyzed in combination with other parameters. Without evaluating the interaction effects among inputs, we risk losing important functional relationships among ABM components and, consequently, we potentially reduce its explanatory power.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jin, X; Yi, J; Xie, C
Purpose: To evaluate the impact of complexity indices on the plan quality and deliverability of volumetric modulated arc therapy (VMAT), and to determine the most significant parameters in the generation of an ideal VMAT plan. Methods: A multi-dimensional exploratory statistical method, canonical correlation analysis (CCA) was adopted to study the correlations between VMAT parameters of complexity, quality and deliverability, as well as their contribution weights with 32 two-arc VMAT nasopharyngeal cancer (NPC) patients and 31 one-arc VMAT prostate cancer patients. Results: The MU per arc (MU/Arc) and MU per control point (MU/CP) of NPC were 337.8±25.2 and 3.7±0.3, respectively, whichmore » were significantly lower than those of prostate cancer patients (MU/Arc : 506.9±95.4, MU/CP : 5.6±1.1). The plan complexity indices indicated that two-arc VMAT plans were more complex than one-arc VMAT plans. Plan quality comparison confirmed that one-arc VMAT plans had a high quality than two-arc VMAT plans. CCA results implied that plan complexity parameters were highly correlated with plan quality with the first two canonical correlations of 0.96, 0.88 (both p<0.001) and significantly correlated with deliverability with the first canonical correlation of 0.79 (p<0.001), plan quality and deliverability was also correlated with the first canonical correlation of 0.71 (p=0.02). Complexity parameters of MU/CP, segment area (SA) per CP, percent of MU/CP less 3 and planning target volume (PTV) were weighted heavily in correlation with plan quality and deliveability . Similar results obtained from individual NPC and prostate CCA analysis. Conclusion: Relationship between complexity, quality, and deliverability parameters were investigated with CCA. MU, SA related parameters and PTV volume were found to have strong effect on the plan quality and deliverability. The presented correlation among different quantified parameters could be used to improve the plan quality and the efficiency of the radiotherapy process when creating a complex VMAT plan.« less
Investigation of water quality parameters at selected points on the Tennessee River
NASA Technical Reports Server (NTRS)
1972-01-01
The thermal and water quality parameters in the vicinity of widows Creek Steam Generation Plant were investigated. The water quality analysis and temperature profiles are presented for 24 sampling sites.
Singh, Tarini; Laub, Ruth; Burgard, Jan Pablo; Frings, Christian
2018-05-01
Selective attention refers to the ability to selectively act upon relevant information at the expense of irrelevant information. Yet, in many experimental tasks, what happens to the representation of the irrelevant information is still debated. Typically, 2 approaches to distractor processing have been suggested, namely distractor inhibition and distractor-based retrieval. However, it is also typical that both processes are hard to disentangle. For instance, in the negative priming literature (for a review Frings, Schneider, & Fox, 2015) this has been a continuous debate since the early 1980s. In the present study, we attempted to prove that both processes exist, but that they reflect distractor processing at different levels of representation. Distractor inhibition impacts stimulus representation, whereas distractor-based retrieval impacts mainly motor processes. We investigated both processes in a distractor-priming task, which enables an independent measurement of both processes. For our argument that both processes impact different levels of distractor representation, we estimated the exponential parameter (τ) and Gaussian components (μ, σ) of the exponential Gaussian reaction-time (RT) distribution, which have previously been used to independently test the effects of cognitive and motor processes (e.g., Moutsopoulou & Waszak, 2012). The distractor-based retrieval effect was evident for the Gaussian component, which is typically discussed as reflecting motor processes, but not for the exponential parameter, whereas the inhibition component was evident for the exponential parameter, which is typically discussed as reflecting cognitive processes, but not for the Gaussian parameter. (PsycINFO Database Record (c) 2018 APA, all rights reserved).
A Preliminary Investigation of the Empirical Validity of Study Quality Appraisal
ERIC Educational Resources Information Center
Cook, Bryan G.; Dupuis, Danielle N.; Jitendra, Asha K.
2017-01-01
When classifying the evidence base of practices, special education scholars typically appraise study quality to identify and exclude from consideration in their reviews unacceptable-quality studies that are likely biased and might bias review findings if included. However, study quality appraisals used in the process of identifying evidence-based…
NASA Astrophysics Data System (ADS)
Namysłowska-Wilczyńska, Barbara
2016-04-01
This paper presents selected results of research connected with the development of a (3D) geostatistical hydrogeochemical model of the Klodzko Drainage Basin, dedicated to the spatial and time variation in the selected quality parameters of underground water in the Klodzko water intake area (SW part of Poland). The research covers the period 2011÷2012. Spatial analyses of the variation in various quality parameters, i.e, contents of: ammonium ion [gNH4+/m3], NO3- (nitrate ion) [gNO3/m3], PO4-3 (phosphate ion) [gPO4-3/m3], total organic carbon C (TOC) [gC/m3], pH redox potential and temperature C [degrees], were carried out on the basis of the chemical determinations of the quality parameters of underground water samples taken from the wells in the water intake area. Spatial and time variation in the quality parameters was analyzed on the basis of archival data (period 1977÷1999) for 22 (pump and siphon) wells with a depth ranging from 9.5 to 38.0 m b.g.l., later data obtained (November 2011) from tests of water taken from 14 existing wells. The wells were built in the years 1954÷1998. The water abstraction depth (difference between the terrain elevation and the dynamic water table level) is ranged from 276÷286 m a.s.l., with an average of 282.05 m a.s.l. Dynamic water table level is contained between 6.22 m÷16.44 m b.g.l., with a mean value of 9.64 m b.g.l. The latest data (January 2012) acquired from 3 new piezometers, with a depth of 9÷10m, which were made in other locations in the relevant area. Thematic databases, containing original data on coordinates X, Y (latitude, longitude) and Z (terrain elevation and time - years) and on regionalized variables, i.e. the underground water quality parameters in the Klodzko water intake area determined for different analytical configurations (22 wells, 14 wells, 14 wells + 3 piezometers), were created. Both archival data (acquired in the years 1977÷1999) and the latest data (collected in 2011÷2012) were analyzed. These data were subjected to spatial analyses using statistical and geostatistical methods. The evaluation of basic statistics of the investigated quality parameters, including their histograms of distributions, scatter diagrams between these parameters and also correlation coefficients r were presented in this article. The directional semivariogram function and the ordinary (block) kriging procedure were used to build the 3D geostatistical model. The geostatistical parameters of the theoretical models of directional semivariograms of the studied water quality parameters, calculated along the time interval and along the wells depth (taking into account the terrain elevation), were used in the ordinary (block) kriging estimation. The obtained results of estimation, i.e. block diagrams allowed to determine the levels of increased values Z* of studied underground water quality parameters. Analysis of the variability in the selected quality parameters of underground water for an analyzed area in Klodzko water intake was enriched by referring to the results of geostatistical studies carried out for underground water quality parameters and also for a treated water and in Klodzko water supply system (iron Fe, manganese Mn, ammonium ion NH4+ contents), discussed in earlier works. Spatial and time variation in the latter-mentioned parameters was analysed on the basis of the data (2007÷2011, 2008÷2011). Generally, the behaviour of the underground water quality parameters has been found to vary in space and time. Thanks to the spatial analyses of the variation in the quality parameters in the Kłodzko underground water intake area some regularities (trends) in the variation in water quality have been identified.
Applications of DART-MS for food quality and safety assurance in food supply chain.
Guo, Tianyang; Yong, Wei; Jin, Yong; Zhang, Liya; Liu, Jiahui; Wang, Sai; Chen, Qilong; Dong, Yiyang; Su, Haijia; Tan, Tianwei
2017-03-01
Direct analysis in real time (DART) represents a new generation of ion source which is used for rapid ionization of small molecules under ambient conditions. The combination of DART and various mass spectrometers allows analyzing multiple food samples with simple or no sample treatment, or in conjunction with prevailing protocolized sample preparation methods. Abundant applications by DART-MS have been reviewed in this paper. The DART-MS strategy applied to food supply chain (FSC), including production, processing, and storage and transportation, provides a comprehensive solution to various food components, contaminants, authenticity, and traceability. Additionally, typical applications available in food analysis by other ambient ionization mass spectrometers were summarized, and fundamentals mainly including mechanisms, devices, and parameters were discussed as well. © 2015 Wiley Periodicals, Inc. Mass Spec Rev. 36:161-187, 2017. © 2015 Wiley Periodicals, Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Spataru, Sergiu; Hacke, Peter; Sera, Dezso
A method for detecting micro-cracks in solar cells using two dimensional matched filters was developed, derived from the electroluminescence intensity profile of typical micro-cracks. We describe the image processing steps to obtain a binary map with the location of the micro-cracks. Finally, we show how to automatically estimate the total length of each micro-crack from these maps, and propose a method to identify severe types of micro-cracks, such as parallel, dendritic, and cracks with multiple orientations. With an optimized threshold parameter, the technique detects over 90 % of cracks larger than 3 cm in length. The method shows great potentialmore » for quantifying micro-crack damage after manufacturing or module transportation for the determination of a module quality criterion for cell cracking in photovoltaic modules.« less
Ghose, Sanchayita; Rajshekaran, Rupshika; Labanca, Marisa; Conley, Lynn
2017-01-06
Trisulfides can be a common post-translational modification in many recombinant monoclonal antibodies. These are a source of product heterogeneity that add to the complexity of product characterization and hence, need to be reduced for consistent product quality. Trisulfide bonds can be converted to the regular disulfide bonds by incorporating a novel cysteine wash step during Protein A affinity chromatography. An empirical model is developed for this on-column reduction reaction to compare the reaction rates as a function of typical operating parameters such as temperature, cysteine concentration, reaction time and starting level of trisulfides. The model presented here is anticipated to assist in the development of optimal wash conditions for the Protein A step to effectively reduce trisulfides to desired levels. Copyright © 2016 Elsevier B.V. All rights reserved.
Electrostatics of cysteine residues in proteins: parameterization and validation of a simple model.
Salsbury, Freddie R; Poole, Leslie B; Fetrow, Jacquelyn S
2012-11-01
One of the most popular and simple models for the calculation of pK(a) s from a protein structure is the semi-macroscopic electrostatic model MEAD. This model requires empirical parameters for each residue to calculate pK(a) s. Analysis of current, widely used empirical parameters for cysteine residues showed that they did not reproduce expected cysteine pK(a) s; thus, we set out to identify parameters consistent with the CHARMM27 force field that capture both the behavior of typical cysteines in proteins and the behavior of cysteines which have perturbed pK(a) s. The new parameters were validated in three ways: (1) calculation across a large set of typical cysteines in proteins (where the calculations are expected to reproduce expected ensemble behavior); (2) calculation across a set of perturbed cysteines in proteins (where the calculations are expected to reproduce the shifted ensemble behavior); and (3) comparison to experimentally determined pK(a) values (where the calculation should reproduce the pK(a) within experimental error). Both the general behavior of cysteines in proteins and the perturbed pK(a) in some proteins can be predicted reasonably well using the newly determined empirical parameters within the MEAD model for protein electrostatics. This study provides the first general analysis of the electrostatics of cysteines in proteins, with specific attention paid to capturing both the behavior of typical cysteines in a protein and the behavior of cysteines whose pK(a) should be shifted, and validation of force field parameters for cysteine residues. Copyright © 2012 Wiley Periodicals, Inc.
Predicting fire effects on water quality: a perspective and future needs
NASA Astrophysics Data System (ADS)
Smith, Hugh; Sheridan, Gary; Nyman, Petter; Langhans, Christoph; Noske, Philip; Lane, Patrick
2017-04-01
Forest environments are a globally significant source of drinking water. Fire presents a credible threat to the supply of high quality water in many forested regions. The post-fire risk to water supplies depends on storm event characteristics, vegetation cover and fire-related changes in soil infiltration and erodibility modulated by landscape position. The resulting magnitude of runoff generation, erosion and constituent flux to streams and reservoirs determines the severity of water quality impacts in combination with the physical and chemical composition of the entrained material. Research to date suggests that most post-fire water quality impacts are due to large increases in the supply of particulates (fine-grained sediment and ash) and particle-associated chemical constituents. The largest water quality impacts result from high magnitude erosion events, including debris flow processes, which typically occur in response to short duration, high intensity storm events during the recovery period. Most research to date focuses on impacts on water quality after fire. However, information on potential water quality impacts is required prior to fire events for risk planning. Moreover, changes in climate and forest management (e.g. prescribed burning) that affect fire regimes may alter water quality risks. Therefore, prediction requires spatial-temporal representation of fire and rainfall regimes coupled with information on fire-related changes to soil hydrologic parameters. Recent work has applied such an approach by combining a fire spread model with historic fire weather data in a Monte Carlo simulation to quantify probabilities associated with fire and storm events generating debris flows and fine sediment influx to a reservoir located in Victoria, Australia. Prediction of fire effects on water quality would benefit from further research in several areas. First, more work on regional-scale stochastic modelling of intersecting fire and storm events with landscape zones of erosion vulnerability is required to support quantitative evaluation of water quality risk and the effect of future changes in climate and land management. Second, we underscore previous calls for characterisation of landscape-scale domains to support regionalisation of parameter sets derived from empirical studies. Recent examples include work identifying aridity as a control of hydro-geomorphic response to fire and the use of spectral-based indices to predict spatial heterogeneity in ash loadings. Third, information on post-fire erosion from colluvial or alluvial stores is needed to determine their significance as both sediment-contaminant sinks and sources. Such sediment stores may require explicit spatial representation in risk models for some environments and sediment tracing can be used to determine their relative importance as secondary sources. Fourth, increased dating of sediment archives could provide regional datasets of fire-related erosion event frequency. Presently, the lack of such data hinders evaluation of risk models linking fire and storm events to erosion and water quality impacts.
NASA Astrophysics Data System (ADS)
Petoussi-Henss, Nina; Becker, Janine; Greiter, Matthias; Schlattl, Helmut; Zankl, Maria; Hoeschen, Christoph
2014-03-01
In radiography there is generally a conflict between the best image quality and the lowest possible patient dose. A proven method of dosimetry is the simulation of radiation transport in virtual human models (i.e. phantoms). However, while the resolution of these voxel models is adequate for most dosimetric purposes, they cannot provide the required organ fine structures necessary for the assessment of the imaging quality. The aim of this work is to develop hybrid/dual-lattice voxel models (called also phantoms) as well as simulation methods by which patient dose and image quality for typical radiographic procedures can be determined. The results will provide a basis to investigate by means of simulations the relationships between patient dose and image quality for various imaging parameters and develop methods for their optimization. A hybrid model, based on NURBS (Non Linear Uniform Rational B-Spline) and PM (Polygon Mesh) surfaces, was constructed from an existing voxel model of a female patient. The organs of the hybrid model can be then scaled and deformed in a non-uniform way i.e. organ by organ; they can be, thus, adapted to patient characteristics without losing their anatomical realism. Furthermore, the left lobe of the lung was substituted by a high resolution lung voxel model, resulting in a dual-lattice geometry model. "Dual lattice" means in this context the combination of voxel models with different resolution. Monte Carlo simulations of radiographic imaging were performed with the code EGS4nrc, modified such as to perform dual lattice transport. Results are presented for a thorax examination.
Effects of aging and text-stimulus quality on the word-frequency effect during Chinese reading.
Wang, Jingxin; Li, Lin; Li, Sha; Xie, Fang; Liversedge, Simon P; Paterson, Kevin B
2018-06-01
Age-related reading difficulty is well established for alphabetic languages. Compared to young adults (18-30 years), older adults (65+ years) read more slowly, make more and longer fixations, make more regressions, and produce larger word-frequency effects. However, whether similar effects are observed for nonalphabetic languages like Chinese remains to be determined. In particular, recent research has suggested Chinese readers experience age-related reading difficulty but do not produce age differences in the word-frequency effect. This might represent an important qualitative difference in aging effects, so we investigated this further by presenting young and older adult Chinese readers with sentences that included high- or low-frequency target words. Additionally, to test theories that suggest reductions in text-stimulus quality differentially affect lexical processing by adult age groups, we presented either the target words (Experiment 1) or all characters in sentences (Experiment 2) normally or with stimulus quality reduced. Analyses based on mean eye-movement parameters and distributional analyses of fixation times for target words showed typical age-related reading difficulty. We also observed age differences in the word-frequency effect, predominantly in the tails of fixation-time distributions, consistent with an aging effect on the processing of high- and low-frequency words. Reducing stimulus quality disrupted eye movements more for the older readers, but the influence of stimulus quality on the word-frequency effect did not differ across age groups. This suggests Chinese older readers' lexical processing is resilient to reductions in stimulus quality, perhaps due to greater experience recognizing words from impoverished visual input. (PsycINFO Database Record (c) 2018 APA, all rights reserved).
Designing image segmentation studies: Statistical power, sample size and reference standard quality.
Gibson, Eli; Hu, Yipeng; Huisman, Henkjan J; Barratt, Dean C
2017-12-01
Segmentation algorithms are typically evaluated by comparison to an accepted reference standard. The cost of generating accurate reference standards for medical image segmentation can be substantial. Since the study cost and the likelihood of detecting a clinically meaningful difference in accuracy both depend on the size and on the quality of the study reference standard, balancing these trade-offs supports the efficient use of research resources. In this work, we derive a statistical power calculation that enables researchers to estimate the appropriate sample size to detect clinically meaningful differences in segmentation accuracy (i.e. the proportion of voxels matching the reference standard) between two algorithms. Furthermore, we derive a formula to relate reference standard errors to their effect on the sample sizes of studies using lower-quality (but potentially more affordable and practically available) reference standards. The accuracy of the derived sample size formula was estimated through Monte Carlo simulation, demonstrating, with 95% confidence, a predicted statistical power within 4% of simulated values across a range of model parameters. This corresponds to sample size errors of less than 4 subjects and errors in the detectable accuracy difference less than 0.6%. The applicability of the formula to real-world data was assessed using bootstrap resampling simulations for pairs of algorithms from the PROMISE12 prostate MR segmentation challenge data set. The model predicted the simulated power for the majority of algorithm pairs within 4% for simulated experiments using a high-quality reference standard and within 6% for simulated experiments using a low-quality reference standard. A case study, also based on the PROMISE12 data, illustrates using the formulae to evaluate whether to use a lower-quality reference standard in a prostate segmentation study. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.
An Indoor Monitoring System for Ambient Assisted Living Based on Internet of Things Architecture
Marques, Gonçalo; Pitarma, Rui
2016-01-01
The study of systems and architectures for ambient assisted living (AAL) is undoubtedly a topic of great relevance given the aging of the world population. The AAL technologies are designed to meet the needs of the aging population in order to maintain their independence as long as possible. As people typically spend more than 90% of their time in indoor environments, indoor air quality (iAQ) is perceived as an imperative variable to be controlled for the inhabitants’ wellbeing and comfort. Advances in networking, sensors, and embedded devices have made it possible to monitor and provide assistance to people in their homes. The continuous technological advancements make it possible to build smart objects with great capabilities for sensing and connecting several possible advancements in ambient assisted living systems architectures. Indoor environments are characterized by several pollutant sources. Most of the monitoring frameworks instantly accessible are exceptionally costly and only permit the gathering of arbitrary examples. iAQ is an indoor air quality system based on an Internet of Things paradigm that incorporates in its construction Arduino, ESP8266, and XBee technologies for processing and data transmission and micro sensors for data acquisition. It also allows access to data collected through web access and through a mobile application in real time, and this data can be accessed by doctors in order to support medical diagnostics. Five smaller scale sensors of natural parameters (air temperature, moistness, carbon monoxide, carbon dioxide, and glow) were utilized. Different sensors can be included to check for particular contamination. The results reveal that the system can give a viable indoor air quality appraisal in order to anticipate technical interventions for improving indoor air quality. Indeed indoor air quality might be distinctively contrasted with what is normal for a quality living environment. PMID:27869682
An Indoor Monitoring System for Ambient Assisted Living Based on Internet of Things Architecture.
Marques, Gonçalo; Pitarma, Rui
2016-11-17
The study of systems and architectures for ambient assisted living (AAL) is undoubtedly a topic of great relevance given the aging of the world population. The AAL technologies are designed to meet the needs of the aging population in order to maintain their independence as long as possible. As people typically spend more than 90% of their time in indoor environments, indoor air quality (iAQ) is perceived as an imperative variable to be controlled for the inhabitants' wellbeing and comfort. Advances in networking, sensors, and embedded devices have made it possible to monitor and provide assistance to people in their homes. The continuous technological advancements make it possible to build smart objects with great capabilities for sensing and connecting several possible advancements in ambient assisted living systems architectures. Indoor environments are characterized by several pollutant sources. Most of the monitoring frameworks instantly accessible are exceptionally costly and only permit the gathering of arbitrary examples. iAQ is an indoor air quality system based on an Internet of Things paradigm that incorporates in its construction Arduino, ESP8266, and XBee technologies for processing and data transmission and micro sensors for data acquisition. It also allows access to data collected through web access and through a mobile application in real time, and this data can be accessed by doctors in order to support medical diagnostics. Five smaller scale sensors of natural parameters (air temperature, moistness, carbon monoxide, carbon dioxide, and glow) were utilized. Different sensors can be included to check for particular contamination. The results reveal that the system can give a viable indoor air quality appraisal in order to anticipate technical interventions for improving indoor air quality. Indeed indoor air quality might be distinctively contrasted with what is normal for a quality living environment.
Chen, Sheng-Po; Wang, Chieh-Heng; Lin, Wen-Dian; Tong, Yu-Huei; Chen, Yu-Chun; Chiu, Ching-Jui; Chiang, Hung-Chi; Fan, Chen-Lun; Wang, Jia-Lin; Chang, Julius S
2018-05-01
The present study combines high-resolution measurements at various distances from a world-class gigantic petrochemical complex with model simulations to test a method to assess industrial emissions and their effect on local air quality. Due to the complexity in wind conditions which were highly seasonal, the dominant wind flow patterns in the coastal region of interest were classified into three types, namely northeast monsoonal (NEM) flows, southwest monsoonal (SEM) flows and local circulation (LC) based on six years of monitoring data. Sulfur dioxide (SO 2 ) was chosen as an indicative pollutant for prominent industrial emissions. A high-density monitoring network of 12 air-quality stations distributed within a 20-km radius surrounding the petrochemical complex provided hourly measurements of SO 2 and wind parameters. The SO 2 emissions from major industrial sources registered by the monitoring network were then used to validate model simulations and to illustrate the transport of the SO 2 plumes under the three typical wind patterns. It was found that the coupling of observations and modeling was able to successfully explain the transport of the industrial plumes. Although the petrochemical complex was seemingly the only major source to affect local air quality, multiple prominent sources from afar also played a significant role in local air quality. As a result, we found that a more complete and balanced assessment of the local air quality can be achieved only after taking into account the wind characteristics and emission factors of a much larger spatial scale than the initial (20 km by 20 km) study domain. Copyright © 2018 Elsevier Ltd. All rights reserved.
Trame, MN; Lesko, LJ
2015-01-01
A systems pharmacology model typically integrates pharmacokinetic, biochemical network, and systems biology concepts into a unifying approach. It typically consists of a large number of parameters and reaction species that are interlinked based upon the underlying (patho)physiology and the mechanism of drug action. The more complex these models are, the greater the challenge of reliably identifying and estimating respective model parameters. Global sensitivity analysis provides an innovative tool that can meet this challenge. CPT Pharmacometrics Syst. Pharmacol. (2015) 4, 69–79; doi:10.1002/psp4.6; published online 25 February 2015 PMID:27548289
NASA Astrophysics Data System (ADS)
Roostaee, M.; Deng, Z.
2017-12-01
The states' environmental agencies are required by The Clean Water Act to assess all waterbodies and evaluate potential sources of impairments. Spatial and temporal distributions of water quality parameters are critical in identifying Critical Source Areas (CSAs). However, due to limitations in monetary resources and a large number of waterbodies, available monitoring stations are typically sparse with intermittent periods of data collection. Hence, scarcity of water quality data is a major obstacle in addressing sources of pollution through management strategies. In this study spatiotemporal Bayesian Maximum Entropy method (BME) is employed to model the inherent temporal and spatial variability of measured water quality indicators such as Dissolved Oxygen (DO) concentration for Turkey Creek Watershed. Turkey Creek is located in northern Louisiana and has been listed in 303(d) list for DO impairment since 2014 in Louisiana Water Quality Inventory Reports due to agricultural practices. BME method is proved to provide more accurate estimates than the methods of purely spatial analysis by incorporating space/time distribution and uncertainty in available measured soft and hard data. This model would be used to estimate DO concentration at unmonitored locations and times and subsequently identifying CSAs. The USDA's crop-specific land cover data layers of the watershed were then used to determine those practices/changes that led to low DO concentration in identified CSAs. Primary results revealed that cultivation of corn and soybean as well as urban runoff are main contributing sources in low dissolved oxygen in Turkey Creek Watershed.
Huang, Yu; Guo, Feng; Li, Yongling; Liu, Yufeng
2015-01-01
Parameter estimation for fractional-order chaotic systems is an important issue in fractional-order chaotic control and synchronization and could be essentially formulated as a multidimensional optimization problem. A novel algorithm called quantum parallel particle swarm optimization (QPPSO) is proposed to solve the parameter estimation for fractional-order chaotic systems. The parallel characteristic of quantum computing is used in QPPSO. This characteristic increases the calculation of each generation exponentially. The behavior of particles in quantum space is restrained by the quantum evolution equation, which consists of the current rotation angle, individual optimal quantum rotation angle, and global optimal quantum rotation angle. Numerical simulation based on several typical fractional-order systems and comparisons with some typical existing algorithms show the effectiveness and efficiency of the proposed algorithm. PMID:25603158
von Lochow, Heike; Lyberg-Åhlander, Viveka; Sahlén, Birgitta; Kastberg, Tobias; Brännström, K Jonas
2018-04-01
This study explores the effect of voice quality and competing speaker/-s on children's performance in a passage comprehension task. Furthermore, it explores the interaction between passage comprehension and cognitive functioning. Forty-nine children (27 girls and 22 boys) with normal hearing (aged 7-12 years) participated. Passage comprehension was tested in six different listening conditions; a typical voice (non-dysphonic voice) in quiet, a typical voice with one competing speaker, a typical voice with four competing speakers, a dysphonic voice in quiet, a dysphonic voice with one competing speaker, and a dysphonic voice with four competing speakers. The children's working memory capacity and executive functioning were also assessed. The findings indicate no direct effect of voice quality on the children's performance, but a significant effect of background listening condition. Interaction effects were seen between voice quality, background listening condition, and executive functioning. The children's susceptibility to the effect of the dysphonic voice and the background listening conditions are related to the individual's executive functions. The findings have several implications for design of interventions in language learning environments such as classrooms.
Laboratory R-value vs. in-situ NDT methods.
DOT National Transportation Integrated Search
2006-05-01
The New Mexico Department of Transportation (NMDOT) uses the Resistance R-Value as a quantifying parameter in subgrade and base course design. The parameter represents soil strength and stiffness and ranges from 1 to 80, 80 being typical of the highe...
NASA Astrophysics Data System (ADS)
Kraus, Michal; Juhásová Šenitková, Ingrid
2017-10-01
Building environmental audit and the assessment of indoor air quality (IAQ) in typical residential buildings is necessary process to ensure users’ health and well-being. The paper deals with the concentrations on indoor dust particles (PM10) in the context of hygrothermal microclimate in indoor environment. The indoor temperature, relative humidity and air movement are basic significant factors determining the PM10 concentration [μg/m3]. The experimental measurements in this contribution represent the impact of indoor physical parameters on the concentration of particulate matter mass concentration. The occurrence of dust particles is typical for the almost two-thirds of interiors of the buildings. Other parameters indoor environment, such as air change rate, volume of the room, roughness and porosity of the building material surfaces, static electricity, light ions and others, were set constant and they are not taken into account in this study. The mass concentration of PM10 is measured during summer season in apartment of residential prefabricated building. The values of global temperature [°C] and relative humidity of indoor air [%] are also monitored. The quantity of particulate mass matter is determined gravimetrically by weighing according to CSN EN 12 341 (2014). The obtained results show that the temperature difference of the internal environment does not have a significant effect on the concentration PM10. Vice versa, the difference of relative humidity exhibits a difference of the concentration of dust particles. Higher levels of indoor particulates are observed for low values of relative humidity. The decreasing of relative air humidity about 10% caused 10µg/m3 of PM10 concentration increasing. The hygienic limit value of PM10 concentration is not exceeded at any point of experimental measurement.
Gait Deviations in Children With Osteogenesis Imperfecta Type I.
Garman, Christina R; Graf, Adam; Krzak, Joseph; Caudill, Angela; Smith, Peter; Harris, Gerald
2017-08-02
Osteogenesis imperfecta (OI) is a congenital connective tissue disorder often characterized by orthopaedic complications that impact normal gait. As such, mobility is of particular interest in the OI population as it is associated with multiple aspects of participation and quality of life. The purpose of the current study was to identify and describe common gait deviations in a large sample of individuals with type I OI and speculate the etiology with a goal of improving function. Gait analysis was performed on 44 subjects with type I (11.7±3.08 y old) and 30 typically developing controls (9.54±3.1 y old ). Spatial temporal, kinematic, and kinetic gait data were calculated from the Vicon Plug-in-Gait Model. Musculoskeletal modeling of the muscle tendon lengths (MTL) was done in OpenSim 3.3 to evaluate the MTL of the gastrocnemius and gluteus maximus. The gait deviation index, a dimensionless parameter that evaluates the deviation of 9 kinematic gait parameters from a control database, was also calculated. Walking speed, single support time, stride, and step length were lower and double support time was higher in the OI group. The gait deviation index score was lower and external hip rotation angle was higher in the OI group. Peak hip flexor, knee extensor and ankle plantarflexor moments, and power generation at the ankle were lower in the OI group. MTL analysis revealed no significant length discrepancies between the OI group and the typically developing group. Together, these findings provide a comprehensive description of gait characteristics among a group of individuals with type I OI. Such data inform clinicians about specific gait deviations in this population allowing clinicians to recommend more focused interventions. Level III-case-control study.
ERIC Educational Resources Information Center
Sarrico, Cláudia S.; Alves, André A.
2016-01-01
Higher education accreditation frameworks typically consider academic staff quality a key element. This article embarks on an empirical study of what academic staff quality means, how it is measured, and how different aspects of staff quality relate to each other. It draws on the relatively nascent Portuguese experience with study programme…
Kim, Sun Jung; Park, Eun-Cheol; Kim, Sulgi; Nakagawa, Shunichi; Lung, John; Choi, Jong Bum; Ryu, Woo Sang; Min, Too Jae; Shin, Hyun Phil; Kim, Kyudam; Yoo, Ji Won
2014-03-01
To assess the overall quality of life of long-stay nursing home residents with preserved cognition, to examine whether the Centers for Medicare and Medicaid Service's Nursing Home Compare 5-star quality rating system reflects the overall quality of life of such residents, and to examine whether residents' demographics and clinical characteristics affect their quality of life. Quality of life was measured using the Participant Outcomes and Status Measures-Nursing Facility survey, which has 10 sections and 63 items. Total scores range from 20 (lowest possible quality of life) to 100 (highest). Long-stay nursing home residents with preserved cognition (n = 316) were interviewed. The average quality- of-life score was 71.4 (SD: 7.6; range: 45.1-93.0). Multilevel regression models revealed that quality of life was associated with physical impairment (parameter estimate = -0.728; P = .04) and depression (parameter estimate = -3.015; P = .01) but not Nursing Home Compare's overall star rating (parameter estimate = 0.683; P = .12) and not pain (parameter estimate = -0.705; P = .47). The 5-star quality rating system did not reflect the quality of life of long-stay nursing home residents with preserved cognition. Notably, pain was not associated with quality of life, but physical impairment and depression were. Copyright © 2014 American Medical Directors Association, Inc. Published by Elsevier Inc. All rights reserved.
An automated approach for tone mapping operator parameter adjustment in security applications
NASA Astrophysics Data System (ADS)
Krasula, LukáÅ.¡; Narwaria, Manish; Le Callet, Patrick
2014-05-01
High Dynamic Range (HDR) imaging has been gaining popularity in recent years. Different from the traditional low dynamic range (LDR), HDR content tends to be visually more appealing and realistic as it can represent the dynamic range of the visual stimuli present in the real world. As a result, more scene details can be faithfully reproduced. As a direct consequence, the visual quality tends to improve. HDR can be also directly exploited for new applications such as video surveillance and other security tasks. Since more scene details are available in HDR, it can help in identifying/tracking visual information which otherwise might be difficult with typical LDR content due to factors such as lack/excess of illumination, extreme contrast in the scene, etc. On the other hand, with HDR, there might be issues related to increased privacy intrusion. To display the HDR content on the regular screen, tone-mapping operators (TMO) are used. In this paper, we present the universal method for TMO parameters tuning, in order to maintain as many details as possible, which is desirable in security applications. The method's performance is verified on several TMOs by comparing the outcomes from tone-mapping with default and optimized parameters. The results suggest that the proposed approach preserves more information which could be of advantage for security surveillance but, on the other hand, makes us consider possible increase in privacy intrusion.
The Chemical Abundances of Stars in the Halo (CASH) Project. II. New Extremely Metal-poor Stars
NASA Astrophysics Data System (ADS)
Krugler, Julie A.; Frebel, A.; Roederer, I. U.; Sneden, C.; Shetrone, M.; Beers, T.; Christlieb, N.
2011-01-01
We present new abundance results from the Chemical Abundances of Stars in the Halo (CASH) project. The 500 CASH spectra were observed using the Hobby-Eberly Telescope in "snapshot" mode and are analyzed using an automated stellar parameter and abundance pipeline called CASHCODE. For the 20 most metal-poor stars of the CASH sample we have obtained high resolution spectra using the Magellan Telescope in order to test the uncertainties and systematic errors associated with the snapshot quality (i.e., R 15,000 and S/N 65) HET spectra and to calibrate the newly developed CASHCODE by making a detailed comparison between the stellar parameters and abundances determined from the high resolution and snapshot spectra. We find that the CASHCODE stellar parameters (effective temperature, surface gravity, metallicity, and microturbulence) agree well with the results of the manual analysis of the high resolution spectra. We present the abundances of three newly discovered stars with [Fe/H] < -3.5. For the entire pilot sample, we find typical halo abundance ratios with alpha-enhancement and Fe-peak depletion and a range of n-capture elements. The full CASH sample will be used to derive statistically robust abundance trends and frequencies (e.g. carbon and n-capture), as well as placing constraints on nucleosynthetic processes that occurred in the early universe.
A comprehensive photometric study of dynamically evolved small van den Bergh-Hagen open clusters
NASA Astrophysics Data System (ADS)
Piatti, Andrés E.
2016-12-01
We present results from Johnson UBV, Kron-Cousins RI and Washington CT1T2 photometries for seven van den Bergh-Hagen (vdBH) open clusters, namely, vdBH 1, 10, 31, 72, 87, 92, and 118. The high-quality, multiband photometric data sets were used to trace the cluster stellar density radial profiles and to build colour-magnitude diagrams and colour-colour diagrams from which we estimated their structural parameters and fundamental astrophysical properties. The clusters in our sample cover a wide age range, from ˜60 Myr up to 2.8 Gyr, are of relatively small size (˜1-6 pc) and are placed at distances from the Sun which vary between 1.8 and 6.3 kpc, respectively. We also estimated lower limits for the cluster present-day masses as well as half-mass relaxation times (tr). The resulting values in combination with the structural parameter values suggest that the studied clusters are in advanced stages of their internal dynamical evolution (age/tr ˜ 20-320), possibly in the typical phase of those tidally filled with mass segregation in their core regions. Compared to open clusters in the solar neighbourhood, the seven vdBH clusters are within more massive (˜80-380 M⊙), with higher concentration parameter values (c ˜ 0.75-1.15) and dynamically evolved ones.
Image quality assessment for CT used on small animals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cisneros, Isabela Paredes, E-mail: iparedesc@unal.edu.co; Agulles-Pedrós, Luis, E-mail: lagullesp@unal.edu.co
Image acquisition on a CT scanner is nowadays necessary in almost any kind of medical study. Its purpose, to produce anatomical images with the best achievable quality, implies the highest diagnostic radiation exposure to patients. Image quality can be measured quantitatively based on parameters such as noise, uniformity and resolution. This measure allows the determination of optimal parameters of operation for the scanner in order to get the best diagnostic image. A human Phillips CT scanner is the first one minded for veterinary-use exclusively in Colombia. The aim of this study was to measure the CT image quality parameters usingmore » an acrylic phantom and then, using the computational tool MATLAB, determine these parameters as a function of current value and window of visualization, in order to reduce dose delivery by keeping the appropriate image quality.« less
Image quality assessment for CT used on small animals
NASA Astrophysics Data System (ADS)
Cisneros, Isabela Paredes; Agulles-Pedrós, Luis
2016-07-01
Image acquisition on a CT scanner is nowadays necessary in almost any kind of medical study. Its purpose, to produce anatomical images with the best achievable quality, implies the highest diagnostic radiation exposure to patients. Image quality can be measured quantitatively based on parameters such as noise, uniformity and resolution. This measure allows the determination of optimal parameters of operation for the scanner in order to get the best diagnostic image. A human Phillips CT scanner is the first one minded for veterinary-use exclusively in Colombia. The aim of this study was to measure the CT image quality parameters using an acrylic phantom and then, using the computational tool MatLab, determine these parameters as a function of current value and window of visualization, in order to reduce dose delivery by keeping the appropriate image quality.
NASA Astrophysics Data System (ADS)
Roy, P. K.; Pal, S.; Banerjee, G.; Biswas Roy, M.; Ray, D.; Majumder, A.
2014-12-01
River is considered as one of the main sources of freshwater all over the world. Hence analysis and maintenance of this water resource is globally considered a matter of major concern. This paper deals with the assessment of surface water quality of the Ichamati river using multivariate statistical techniques. Eight distinct surface water quality observation stations were located and samples were collected. For the samples collected statistical techniques were applied to the physico-chemical parameters and depth of siltation. In this paper cluster analysis is done to determine the relations between surface water quality and siltation depth of river Ichamati. Multiple regressions and mathematical equation modeling have been done to characterize surface water quality of Ichamati river on the basis of physico-chemical parameters. It was found that surface water quality of the downstream river was different from the water quality of the upstream. The analysis of the water quality parameters of the Ichamati river clearly indicate high pollution load on the river water which can be accounted to agricultural discharge, tidal effect and soil erosion. The results further reveal that with the increase in depth of siltation, water quality degraded.
Commercialization of New Beam Applications
NASA Astrophysics Data System (ADS)
McKeown, Joseph
1996-05-01
The commercialization of electron processing applications is driven by demonstrated technical advantages over current practice. Mature and reliable accelerator technology has permitted more consistent product quality and the development of new processes. However, the barriers to commercial adoption are often not amenable to solution within the laboratory alone. Aspects of the base accelerator technology, plant engineering, production, project management, financing, regulatory control, product throughput and plant operational efficiency all contribute to the business risk. Experiences in building three 10 MeV, 50 kW, IMPELA electron accelerators at approximately 8 M each and achieving cumulative operational availability greater than 98% in commercial environments have identified key parameters defining those aspects. The allowed ranges of these parameters to generate the 1.5 M annual revenue that is typically necessary to support outlays of this scale are presented. Such data have been used in proposals to displace expensive chemicals in the viscose industry, sterilize sewage sludge, detoxify chemically contaminated soils and build radiation service centers for a diversity of applications. The proposals face stiff competition from traditional chemical methods. Quantitative technical and business details of these activities are provided and an attempt is made to establish realistic expectations for the exploitation of electron beam technologies in emerging applications.
Wunner, Felix M; Bas, Onur; Saidy, Navid T; Dalton, Paul D; Pardo, Elena M De-Juan; Hutmacher, Dietmar W
2017-12-23
This tutorial reflects on the fundamental principles and guidelines for electrospinning writing with polymer melts, an additive manufacturing technology with great potential for biomedical applications. The technique facilitates the direct deposition of biocompatible polymer fibers to fabricate well-ordered scaffolds in the sub-micron to micro scale range. The establishment of a stable, viscoelastic, polymer jet between a spinneret and a collector is achieved using an applied voltage and can be direct-written. A significant benefit of a typical porous scaffold is a high surface-to-volume ratio which provides increased effective adhesion sites for cell attachment and growth. Controlling the printing process by fine-tuning the system parameters enables high reproducibility in the quality of the printed scaffolds. It also provides a flexible manufacturing platform for users to tailor the morphological structures of the scaffolds to their specific requirements. For this purpose, we present a protocol to obtain different fiber diameters using melt electrospinning writing (MEW) with a guided amendment of the parameters, including flow rate, voltage and collection speed. Furthermore, we demonstrate how to optimize the jet, discuss often experienced technical challenges, explain troubleshooting techniques and showcase a wide range of printable scaffold architectures.
Herbert, Ulrike; Rossaint, Sonja; Khanna, Meik-Ankush; Kreyenschmidt, Judith
2013-05-01
Poultry fillets were packaged under 6 different gas atmospheres (A: 15% Ar, 60% O2, 25% CO2; B: 15% N2, 60% O2, 25% CO2; C: 25% Ar, 45% O2, 30% CO2; D: 25% N2, 45% O2, 30% CO2; E: 82% Ar; 18% CO2; F: 82% N2, 18% CO2) and stored at 4°C. During storage, the growth of typical spoilage organisms (Brochothrix thermosphacta, Pseudomonas spp., Enterobacteriaceae, and Lactobacilli spp.) and total viable count were analyzed and modeled using the Gompertz function. Sensory analyses of the poultry samples were carried out by trained sensory panelists for color, odor, texture, drip loss, and general appearance. No significant difference in microbiological growth parameters was observed for fresh poultry stored under an argon-enriched atmosphere in comparison with nitrogen, except the B. thermosphacta stored under 82% argon. The sensory evaluation showed a significant effect of an argon-enriched atmosphere, particularly on color of meat stored under 15% argon (P < 0.05). In contrast, 25 and 82% argon concentrations in place of nitrogen showed no beneficial effect on sensory parameters.
Modeling Enclosure Design in Above-Grade Walls
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lstiburek, J.; Ueno, K.; Musunuru, S.
2016-03-01
This report describes the modeling of typical wall assemblies that have performed well historically in various climate zones. The WUFI (Warme und Feuchte instationar) software (Version 5.3) model was used. A library of input data and results are provided. The provided information can be generalized for application to a broad population of houses, within the limits of existing experience. The WUFI software model was calibrated or tuned using wall assemblies with historically successful performance. The primary performance criteria or failure criteria establishing historic performance was moisture content of the exterior sheathing. The primary tuning parameters (simulation inputs) were airflow andmore » specifying appropriate material properties. Rational hygric loads were established based on experience - specifically rain wetting and interior moisture (RH levels). The tuning parameters were limited or bounded by published data or experience. The WUFI templates provided with this report supply useful information resources to new or less-experienced users. The files present various custom settings that will help avoid results that will require overly conservative enclosure assemblies. Overall, better material data, consistent initial assumptions, and consistent inputs among practitioners will improve the quality of WUFI modeling, and improve the level of sophistication in the field.« less
Real-time monitoring of human blood clotting using a lateral excited film bulk acoustic resonator
NASA Astrophysics Data System (ADS)
Chen, Da; Wang, Jingjng; Wang, Peng; Guo, Qiuquan; Zhang, Zhen; Ma, Jilong
2017-04-01
Frequent assay of hemostatic status is an essential issue for the millions of patients using anticoagulant drugs. In this paper, we presented a micro-fabricated film bulk acoustic sensor for the real-time monitoring of blood clotting and the measurement of hemostatic parameters. The device was made of an Au/ZnO/Si3N4 film stack and excited by a lateral electric field. It operated under a shear mode resonance with the frequency of 1.42 GHz and had a quality factor of 342 in human blood. During the clotting process of blood, the resonant frequency decreased along with the change of blood viscosity and showed an apparent step-ladder curve, revealing the sequential clotting stages. An important hemostatic parameter, prothrombin time, was quantitatively determined from the frequency response for different dilutions of the blood samples. The effect of a typical anticoagulant drug (heparin) on the prothrombin time was exemplarily shown. The proposed sensor displayed a good consistency and clinical comparability with the standard coagulometric methods. Thanks to the availability of direct digital signals, excellent potentials of miniaturization and integration, the proposed sensor has promising application for point-of-care coagulation technologies.
Higher versus lower amino acid intake in parenteral nutrition for newborn infants.
Osborn, David A; Schindler, Tim; Jones, Lisa J; Sinn, John Kh; Bolisetty, Srinivas
2018-03-05
Sick newborn and preterm infants frequently are not able to be fed enterally, necessitating parenteral fluid and nutrition. Potential benefits of higher parenteral amino acid (AA) intake for improved nitrogen balance, growth, and infant health may be outweighed by the infant's ability to utilise high intake of parenteral AA, especially in the days after birth. The primary objective is to determine whether higher versus lower intake of parenteral AA is associated with improved growth and disability-free survival in newborn infants receiving parenteral nutrition.Secondary objectives include determining whether:• higher versus lower starting or initial intake of amino acids is associated with improved growth and disability-free survival without side effects;• higher versus lower intake of amino acids at maximal intake is associated with improved growth and disability-free survival without side effects; and• increased amino acid intake should replace non-protein energy intake (glucose and lipid), should be added to non-protein energy intake, or should be provided simultaneously with non-protein energy intake.We conducted subgroup analyses to look for any differences in the effects of higher versus lower intake of amino acids according to gestational age, birth weight, age at commencement, and condition of the infant, or concomitant increases in fluid intake. We used the standard search strategy of the Cochrane Neonatal Review Group to search the Cochrane Central Register of Controlled Trials (2 June 2017), MEDLINE (1966 to 2 June 2017), Embase (1980 to 2 June 2017), and the Cumulative Index to Nursing and Allied Health Literature (CINAHL) (1982 to 2 June 2017). We also searched clinical trials databases, conference proceedings, and citations of articles. Randomised controlled trials of higher versus lower intake of AAs as parenteral nutrition in newborn infants. Comparisons of higher intake at commencement, at maximal intake, and at both commencement and maximal intake were performed. Two review authors independently selected trials, assessed trial quality, and extracted data from included studies. We performed fixed-effect analyses and expressed treatment effects as mean difference (MD), risk ratio (RR), and risk difference (RD) with 95% confidence intervals (CIs) and assessed the quality of evidence using the GRADE approach. Thirty-two studies were eligible for inclusion. Six were short-term biochemical tolerance studies, one was in infants at > 35 weeks' gestation, one in term surgical newborns, and three yielding no usable data. The 21 remaining studies reported clinical outcomes in very preterm or low birth weight infants for inclusion in meta-analysis for this review.Higher AA intake had no effect on mortality before hospital discharge (typical RR 0.90, 95% CI 0.69 to 1.17; participants = 1407; studies = 14; I 2 = 0%; quality of evidence: low). Evidence was insufficient to show an effect on neurodevelopment and suggest no reported benefit (quality of evidence: very low). Higher AA intake was associated with a reduction in postnatal growth failure (< 10th centile) at discharge (typical RR 0.74, 95% CI 0.56 to 0.97; participants = 203; studies = 3; I 2 = 22%; typical RD -0.15, 95% CI -0.27 to -0.02; number needed to treat for an additional beneficial outcome (NNTB) 7, 95% CI 4 to 50; quality of evidence: very low). Subgroup analyses found reduced postnatal growth failure in infants that commenced on high amino acid intake (> 2 to ≤ 3 g/kg/day); that occurred with increased amino acid and non-protein caloric intake; that commenced on intake at < 24 hours' age; and that occurred with early lipid infusion.Higher AA intake was associated with a reduction in days needed to regain birth weight (MD -1.14, 95% CI -1.73 to -0.56; participants = 950; studies = 13; I 2 = 77%). Data show varying effects on growth parameters and no consistent effects on anthropometric z-scores at any time point, as well as increased growth in head circumference at discharge (MD 0.09 cm/week, 95% CI 0.06 to 0.13; participants = 315; studies = 4; I 2 = 90%; quality of evidence: very low).Higher AA intake was not associated with effects on days to full enteral feeds, late-onset sepsis, necrotising enterocolitis, chronic lung disease, any or severe intraventricular haemorrhage, or periventricular leukomalacia. Data show a reduction in retinopathy of prematurity (typical RR 0.44, 95% CI 0.21 to 0.93; participants = 269; studies = 4; I 2 = 31%; quality of evidence: very low) but no difference in severe retinopathy of prematurity.Higher AA intake was associated with an increase in positive protein balance and nitrogen balance. Potential biochemical intolerances were reported, including risk of abnormal blood urea nitrogen (typical RR 2.77, 95% CI 2.13 to 3.61; participants = 688; studies = 7; I 2 = 6%; typical RD 0.26, 95% CI 0.20 to 0.32; number needed to treat for an additional harmful outcome (NNTH) 4; 95% CI 3 to 5; quality of evidence: high). Higher amino acid intake in parenteral nutrition was associated with a reduction in hyperglycaemia (> 8.3 mmol/L) (typical RR 0.69, 95% CI 0.49 to 0.96; participants = 505; studies = 5; I 2 = 68%), although the incidence of hyperglycaemia treated with insulin was not different. Low-quality evidence suggests that higher AA intake in parenteral nutrition does not affect mortality. Very low-quality evidence suggests that higher AA intake reduces the incidence of postnatal growth failure. Evidence was insufficient to show an effect on neurodevelopment. Very low-quality evidence suggests that higher AA intake reduces retinopathy of prematurity but not severe retinopathy of prematurity. Higher AA intake was associated with potentially adverse biochemical effects resulting from excess amino acid load, including azotaemia. Adequately powered trials in very preterm infants are required to determine the optimal intake of AA and effects of caloric balance in parenteral nutrition on the brain and on neurodevelopment.
Radiographic Film Processing Quality Assurance: A Self-Teaching Workbook. Quality Assurance Series.
ERIC Educational Resources Information Center
Goldman, Lee W.
This workbook has been designed for use in conjunction with the manual, "Photographic Quality Assurance in Diagnostic Radiology, Nuclear Medicine and Radiation Therapy." Presented are several typical problems arising from the existence of variability and fluctuations in the automatic processing of radiographs, which unless corrected, can…
Stand development and silviculture in bottomland hardwoods
J. Steven Meadows
1993-01-01
Silviculture for the production of high-quality timber in southern bottomland hardwood forests involves the application of environmentally sound practices in order to enhance the growth and quality of both individual trees and stands. To accomplish this purpose, silvicultural practices are typically used to regulate stand density, species composition, and stem quality...
Bergwerff, Catharina E; Luman, Marjolein; Oosterlaan, Jaap
2016-10-01
The main goal of this study was to gain more insight into sleep disturbances in children with attention-deficit/hyperactivity disorder, using objective measures of sleep quality and quantity. The evidence for sleep problems in children with attention-deficit/hyperactivity disorder thus far is inconsistent, which might be explained by confounding influences of comorbid internalizing and externalizing problems and low socio-economic status. We therefore investigated the mediating and moderating role of these factors in the association between attention-deficit/hyperactivity disorder and sleep problems. To control for the effects of stimulant medication use, all participants were tested free of medication. Sixty-three children with attention-deficit/hyperactivity disorder and 61 typically developing children, aged 6-13 years, participated. Sleep was monitored for one to three school nights using actigraphy. Parent and teacher questionnaires assessed symptoms of attention-deficit/hyperactivity disorder, internalizing behaviour, oppositional defiant disorder and conduct disorder. Results showed no differences between the attention-deficit/hyperactivity disorder and typically developing group in any sleep parameter. Within the attention-deficit/hyperactivity disorder group, severity of attention-deficit/hyperactivity disorder symptoms was not related to sleep quality or quantity. Moderation analyses in the attention-deficit/hyperactivity disorder group showed an interaction effect between attention-deficit/hyperactivity disorder symptoms and internalizing and externalizing behaviour on total sleep time, time in bed and average sleep bout duration. The results of our study suggest that having attention-deficit/hyperactivity disorder is not a risk factor for sleep problems. Internalizing and externalizing behaviour moderate the association between attention-deficit/hyperactivity disorder and sleep, indicating a complex interplay between psychiatric symptoms and sleep. © 2016 European Sleep Research Society.
A simple strategy for varying the restart parameter in GMRES(m)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baker, A H; Jessup, E R; Kolev, T V
2007-10-02
When solving a system of linear equations with the restarted GMRES method, a fixed restart parameter is typically chosen. We present numerical experiments that demonstrate the beneficial effects of changing the value of the restart parameter in each restart cycle on the total time to solution. We propose a simple strategy for varying the restart parameter and provide some heuristic explanations for its effectiveness based on analysis of the symmetric case.
Collection and analysis of specific ELINT Signal Parameters
NASA Astrophysics Data System (ADS)
Wilson, Lonnie A.
1985-12-01
This report was a followup to, Collection and Analysis of Specific ELINT Signal Parameters, DTIC A166507, 23 June 1985. The programs and hardware assembled for the above mentioned report were used to analyze two types of radar, the PPS-6 and the HOOD radars. The typical ELINT parameters of frequency, pulse width, and pulse repetition rate were collected and analyzed.
Collection and analysis of specific ELINT Signal Parameters
NASA Technical Reports Server (NTRS)
Wilson, Lonnie A.
1985-01-01
This report was a followup to, Collection and Analysis of Specific ELINT Signal Parameters, DTIC A166507, 23 June 1985. The programs and hardware assembled for the above mentioned report were used to analyze two types of radar, the PPS-6 and the HOOD radars. The typical ELINT parameters of frequency, pulse width, and pulse repetition rate were collected and analyzed.
Adam Wolf; Kanat Akshalov; Nicanor Saliendra; Douglas A. Johnson; Emilio A. Laca
2006-01-01
Canopy fluxes of CO2 and energy can be modeled with high fidelity using a small number of environmental variables and ecosystem parameters. Although these ecosystem parameters are critically important for modeling canopy fluxes, they typically are not measured with the same intensity as ecosystem fluxes. We developed an algorithm to estimate leaf...
NASA Astrophysics Data System (ADS)
Avbelj, Janja; Iwaszczuk, Dorota; Müller, Rupert; Reinartz, Peter; Stilla, Uwe
2015-02-01
For image fusion in remote sensing applications the georeferencing accuracy using position, attitude, and camera calibration measurements can be insufficient. Thus, image processing techniques should be employed for precise coregistration of images. In this article a method for multimodal object-based image coregistration refinement between hyperspectral images (HSI) and digital surface models (DSM) is presented. The method is divided in three parts: object outline detection in HSI and DSM, matching, and determination of transformation parameters. The novelty of our proposed coregistration refinement method is the use of material properties and height information of urban objects from HSI and DSM, respectively. We refer to urban objects as objects which are typical in urban environments and focus on buildings by describing them with 2D outlines. Furthermore, the geometric accuracy of these detected building outlines is taken into account in the matching step and for the determination of transformation parameters. Hence, a stochastic model is introduced to compute optimal transformation parameters. The feasibility of the method is shown by testing it on two aerial HSI of different spatial and spectral resolution, and two DSM of different spatial resolution. The evaluation is carried out by comparing the accuracies of the transformations parameters to the reference parameters, determined by considering object outlines at much higher resolution, and also by computing the correctness and the quality rate of the extracted outlines before and after coregistration refinement. Results indicate that using outlines of objects instead of only line segments is advantageous for coregistration of HSI and DSM. The extraction of building outlines in comparison to the line cue extraction provides a larger amount of assigned lines between the images and is more robust to outliers, i.e. false matches.
ERIC Educational Resources Information Center
Jaspers, Ellen; Desloovere, Kaat; Bruyninckx, Herman; Klingels, Katrijn; Molenaers, Guy; Aertbelien, Erwin; Van Gestel, Leen; Feys, Hilde
2011-01-01
The aim of this study was to measure which three-dimensional spatiotemporal and kinematic parameters differentiate upper limb movement characteristics in children with hemiplegic cerebral palsy (HCP) from those in typically developing children (TDC), during various clinically relevant tasks. We used a standardized protocol containing three reach…
ERIC Educational Resources Information Center
Morse, Anthony F.; Cangelosi, Angelo
2017-01-01
Most theories of learning would predict a gradual acquisition and refinement of skills as learning progresses, and while some highlight exponential growth, this fails to explain why natural cognitive development typically progresses in stages. Models that do span multiple developmental stages typically have parameters to "switch" between…
Jha, S N; Narsaiah, K; Sharma, A D; Singh, M; Bansal, S; Kumar, R
2010-01-01
The king of fruits "Mango" (Mangifera indica L.) is very nutritious and rich in carotenes. India produces about 50% of the total world's mango. Many researchers have reported the maturity indices and quality parameters for determination of harvesting time and eating quality. The methods currently used for determination of quality of mango are mostly based on the biochemical analysis, which leads to destruction of the fruits. Numerous works are being carried out to explore some non-destructive methods such as Near Infrared (NIR), Nuclear Magnetic Resonance (NMR), X-ray and Computed Tomography (CT), electronic nose, machine vision and ultrasound for quality determination of fruits. This paper deals with some recent work reported on quality parameters, harvesting and post-harvest treatments in relation to quality of mango fruits and reviews on some of the potential non-destructive techniques that can be explored for quality determination of mango cultivars.
Dynamics in the Parameter Space of a Neuron Model
NASA Astrophysics Data System (ADS)
Paulo, C. Rech
2012-06-01
Some two-dimensional parameter-space diagrams are numerically obtained by considering the largest Lyapunov exponent for a four-dimensional thirteen-parameter Hindmarsh—Rose neuron model. Several different parameter planes are considered, and it is shown that depending on the combination of parameters, a typical scenario can be preserved: for some choice of two parameters, the parameter plane presents a comb-shaped chaotic region embedded in a large periodic region. It is also shown that there exist regions close to these comb-shaped chaotic regions, separated by the comb teeth, organizing themselves in period-adding bifurcation cascades.
VLT deformable secondary mirror: integration and electromechanical tests results
NASA Astrophysics Data System (ADS)
Biasi, R.; Andrighettoni, M.; Angerer, G.; Mair, C.; Pescoller, D.; Lazzarini, P.; Anaclerio, E.; Mantegazza, M.; Gallieni, D.; Vernet, E.; Arsenault, R.; Madec, P.-Y.; Duhoux, P.; Riccardi, A.; Xompero, M.; Briguglio, R.; Manetti, M.; Morandini, M.
2012-07-01
The VLT Deformable secondary is planned to be installed on the VLT UT#4 as part of the telescope conversion into the Adaptive Optics test Facility (AOF). The adaptive unit is based on the well proven contactless, voice coil motor technology that has been already successfully implemented in the MMT, LBT and Magellan adaptive secondaries, and is considered a promising technical choice for the forthcoming ELT-generation adaptive correctors, like the E-ELT M4 and the GMT ASM. The VLT adaptive unit has been recently assembled after the completion of the manufacturing and modular test phases. In this paper, we present the most relevant aspects of the system integration and report the preliminary results of the electromechanical tests performed on the unit. This test campaign is a typical major step foreseen in all similar systems built so far: thanks to the metrology embedded in the system, that allows generating time-dependent stimuli and recording in real time the position of the controlled mirror on all actuators, typical dynamic response quality parameters like modal settling time, overshoot and following error can be acquired without employing optical measurements. In this way the system dynamic and some aspect of its thermal and long term stability can be fully characterized before starting the optical tests and calibrations.
ExpertEyes: open-source, high-definition eyetracking.
Parada, Francisco J; Wyatte, Dean; Yu, Chen; Akavipat, Ruj; Emerick, Brandi; Busey, Thomas
2015-03-01
ExpertEyes is a low-cost, open-source package of hardware and software that is designed to provide portable high-definition eyetracking. The project involves several technological innovations, including portability, high-definition video recording, and multiplatform software support. It was designed for challenging recording environments, and all processing is done offline to allow for optimization of parameter estimation. The pupil and corneal reflection are estimated using a novel forward eye model that simultaneously fits both the pupil and the corneal reflection with full ellipses, addressing a common situation in which the corneal reflection sits at the edge of the pupil and therefore breaks the contour of the ellipse. The accuracy and precision of the system are comparable to or better than what is available in commercial eyetracking systems, with a typical accuracy of less than 0.4° and best accuracy below 0.3°, and with a typical precision (SD method) around 0.3° and best precision below 0.2°. Part of the success of the system comes from a high-resolution eye image. The high image quality results from uncasing common digital camcorders and recording directly to SD cards, which avoids the limitations of the analog NTSC format. The software is freely downloadable, and complete hardware plans are available, along with sources for custom parts.
NASA Astrophysics Data System (ADS)
Zhang, Haoyang; Fang, Fengzhou; Gilchrist, Michael D.; Zhang, Nan
2018-07-01
Micro injection moulding has been demonstrated as one of the most efficient mass production technologies for manufacturing polymeric microfluidic devices, which have been widely used in life sciences, environmental and analytical fields and agro-food industries. However, the filling of micro features for typical microfluidic devices is complicated and not yet fully understood, which consequently restricts the chip development. In the present work, a microfluidic flow cytometer chip with essential high aspect ratio micro features was used as a typical model to study their filling process. Short-shot experiments and single factor experiments were performed to examine the filling progress of such features during the injection and packing stages of the micro injection moulding process. The influence of process parameters such as shot size, packing pressure, packing time and mould temperature were systematically monitored, characterised and correlated with 3D measurements and real response of the machine such as screw velocity and screw position. A combined melt flow and creep deformation model was proposed to explain the complex influence of process on replication. An approach of over-shot micro injection moulding was proposed and was shown to be effective at improving the replication quality of high aspect ratio micro features.
Long-term efficacy of microbiology-driven periodontal laser-assisted therapy.
Martelli, F S; Fanti, E; Rosati, C; Martelli, M; Bacci, G; Martelli, M L; Medico, E
2016-03-01
Periodontitis represents a highly prevalent health problem, causing severe functional impairment, reduced quality of life and increased risk of systemic disorders, including respiratory, cardiovascular and osteoarticular diseases, diabetes and fertility problems. It is a typical example of a multifactorial disease, where a polymicrobial infection inducing chronic inflammation of periodontal tissues is favoured by environmental factors, life style and genetic background. Since periodontal pathogens can colonise poorly vascularised niches, antiseptics and antibiotics are typically associated with local treatments to manage the defects, with unstable outcomes especially in early-onset cases. Here, the results of a retrospective study are reported, evaluating the efficacy of a protocol (Periodontal Biological Laser-Assisted Therapy, Perioblast™) by which microbial profiling of periodontal pockets is used to determine the extent and duration of local neodymium-doped yttrium aluminium garnet (Nd:YAG) laser irradiation plus conventional treatment. The protocol was applied multicentrically on 2683 patients, and found to produce a significant and enduring improvement of all clinical and bacteriological parameters, even in aggressive cases. Microbiome sequencing of selected pockets revealed major population shifts after treatment, as well as strains potentially associated with periodontitis in the absence of known pathogens. This study, conducted for the first time on such a large series, clearly demonstrates long-term efficacy of microbiology-driven non-invasive treatment of periodontal disease.
Spatial variability of theaflavins and thearubigins fractions and their impact on black tea quality.
Bhuyan, Lakshi Prasad; Borah, Paban; Sabhapondit, Santanu; Gogoi, Ramen; Bhattacharyya, Pradip
2015-12-01
The spatial distribution of theaflavin and thearubigin fractions and their impact on black tea quality were investigated using multivariate and geostatistics techniques. Black tea samples were collected from tea gardens of six geographical regions of Assam and West Bengal, India. Total theaflavin (TF) and its four fractions of upper Assam, south bank and North Bank teas were higher than the other regions. Simple theaflavin showed highest significant correlation with tasters' quality. Low molecular weight thearubigins of south bank and North Bank were significantly higher than other regions. Total thearubigin (TR) and its fractions revealed significant positive correlation with tasters' organoleptic valuations. Tea tasters' parameters were significantly and positively correlated with each other. The semivariogram for quality parameters were best represented by gaussian models. The nugget/sill ratio indicated a strong/moderate spatial dependence of the studied parameters. Spatial variation of tea quality parameters may be used for quality assessment in the tea growing areas of India.
Yan, Bin-Jun; Guo, Zheng-Tai; Qu, Hai-Bin; Zhao, Bu-Chang; Zhao, Tao
2013-06-01
In this work, a feedforward control strategy basing on the concept of quality by design was established for the manufacturing process of traditional Chinese medicine to reduce the impact of the quality variation of raw materials on drug. In the research, the ethanol precipitation process of Danhong injection was taken as an application case of the method established. Box-Behnken design of experiments was conducted. Mathematical models relating the attributes of the concentrate, the process parameters and the quality of the supernatants produced were established. Then an optimization model for calculating the best process parameters basing on the attributes of the concentrate was built. The quality of the supernatants produced by ethanol precipitation with optimized and non-optimized process parameters were compared. The results showed that using the feedforward control strategy for process parameters optimization can control the quality of the supernatants effectively. The feedforward control strategy proposed can enhance the batch-to-batch consistency of the supernatants produced by ethanol precipitation.
Consonni, R; Cagliani, L R
2010-01-01
In this globalization era, the opening of the markets has put at almost everybody's disposal a wide variety of foods, allowing everybody to taste food flavors and aromas from different nations. Notwithstanding this opportunity, countries try to preserve their markets by developing protection policies. A few countries have adopted different denominations to label their "typical food" products in order to give them additional value. Besides, the term "typical food" is widely thought of as something anchored to the local traditions, with geographical meaning and made with typical raw materials. Then a "typical food" starts to be considered "traditional" when it is made following specific and old recipes. As a matter of fact, these products acquire particular organoleptic characteristics that are not reproducible when produced in different places. In this review, NMR studies coupled to multivariate statistical analysis are presented with the aim of determining geographical origin and key quality characteristics. Copyright © 2010 Elsevier Inc. All rights reserved.
Linking lipid architecture to bilayer structure and mechanics using self-consistent field modelling.
Pera, H; Kleijn, J M; Leermakers, F A M
2014-02-14
To understand how lipid architecture determines the lipid bilayer structure and its mechanics, we implement a molecularly detailed model that uses the self-consistent field theory. This numerical model accurately predicts parameters such as Helfrichs mean and Gaussian bending modulus kc and k̄ and the preferred monolayer curvature J(0)(m), and also delivers structural membrane properties like the core thickness, and head group position and orientation. We studied how these mechanical parameters vary with system variations, such as lipid tail length, membrane composition, and those parameters that control the lipid tail and head group solvent quality. For the membrane composition, negatively charged phosphatidylglycerol (PG) or zwitterionic, phosphatidylcholine (PC), and -ethanolamine (PE) lipids were used. In line with experimental findings, we find that the values of kc and the area compression modulus kA are always positive. They respond similarly to parameters that affect the core thickness, but differently to parameters that affect the head group properties. We found that the trends for k̄ and J(0)(m) can be rationalised by the concept of Israelachivili's surfactant packing parameter, and that both k̄ and J(0)(m) change sign with relevant parameter changes. Although typically k̄ < 0, membranes can form stable cubic phases when the Gaussian bending modulus becomes positive, which occurs with membranes composed of PC lipids with long tails. Similarly, negative monolayer curvatures appear when a small head group such as PE is combined with long lipid tails, which hints towards the stability of inverse hexagonal phases at the cost of the bilayer topology. To prevent the destabilisation of bilayers, PG lipids can be mixed into these PC or PE lipid membranes. Progressive loading of bilayers with PG lipids lead to highly charged membranes, resulting in J(0)(m) > 0, especially at low ionic strengths. We anticipate that these changes lead to unstable membranes as these become vulnerable to pore formation or disintegration into lipid disks.
Multi-Objective Lake Superior Regulation
NASA Astrophysics Data System (ADS)
Asadzadeh, M.; Razavi, S.; Tolson, B.
2011-12-01
At the direction of the International Joint Commission (IJC) the International Upper Great Lakes Study (IUGLS) Board is investigating possible changes to the present method of regulating the outflows of Lake Superior (SUP) to better meet the contemporary needs of the stakeholders. In this study, a new plan in the form of a rule curve that is directly interpretable for regulation of SUP is proposed. The proposed rule curve has 18 parameters that should be optimized. The IUGLS Board is also interested in a regulation strategy that considers potential effects of climate uncertainty. Therefore, the quality of the rule curve is assessed simultaneously for multiple supply sequences that represent various future climate scenarios. The rule curve parameters are obtained by solving a computationally intensive bi-objective simulation-optimization problem that maximizes the total increase in navigation and hydropower benefits of the new regulation plan and minimizes the sum of all normalized constraint violations. The objective and constraint values are obtained from a Microsoft Excel based Shared Vision Model (SVM) that compares any new SUP regulation plan with the current regulation policy. The underlying optimization problem is solved by a recently developed, highly efficient multi-objective optimization algorithm called Pareto Archived Dynamically Dimensioned Search (PA-DDS). To further improve the computational efficiency of the simulation-optimization problem, the model pre-emption strategy is used in a novel way to avoid the complete evaluation of regulation plans with low quality in both objectives. Results show that the generated rule curve is robust and typically more reliable when facing unpredictable climate conditions compared to other SUP regulation plans.
Clark, Toshimasa J; Wilson, Gregory J; Maki, Jeffrey H
2017-07-01
Contrast-enhanced (CE)-MRA optimization involves interactions of sequence duration, bolus timing, contrast recirculation, and both R 1 relaxivity and R2*-related reduction of signal. Prior data suggest superior image quality with slower gadolinium injection rates than typically used. A computer-based model of CE-MRA was developed, with contrast injection, physiologic, and image acquisition parameters varied over a wide gamut. Gadolinium concentration was derived using Verhoeven's model with recirculation, R 1 and R2* calculated at each time point, and modulation transfer curves used to determine injection rates, resulting in optimal resolution and image contrast for renal and carotid artery CE-MRA. Validation was via a vessel stenosis phantom and example patients who underwent carotid CE-MRA with low effective injection rates. Optimal resolution for renal and carotid CE-MRA is achieved with injection rates between 0.5 to 0.9 mL/s and 0.2 to 0.3 mL/s, respectively, dependent on contrast volume. Optimal image contrast requires slightly faster injection rates. Expected signal-to-noise ratio varies with both contrast volume and cardiac output. Simulated vessel phantom and clinical carotid CE-MRA exams at an effective contrast injection rate of 0.4 to 0.5 mL/s demonstrate increased resolution. Optimal image resolution is achieved at intuitively low, effective injection rates (0.2-0.9 mL/s, dependent on imaging parameters and contrast injection volume). Magn Reson Med 78:357-369, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.
An, Yan; Zou, Zhihong; Li, Ranran
2014-01-01
A large number of parameters are acquired during practical water quality monitoring. If all the parameters are used in water quality assessment, the computational complexity will definitely increase. In order to reduce the input space dimensions, a fuzzy rough set was introduced to perform attribute reduction. Then, an attribute recognition theoretical model and entropy method were combined to assess water quality in the Harbin reach of the Songhuajiang River in China. A dataset consisting of ten parameters was collected from January to October in 2012. Fuzzy rough set was applied to reduce the ten parameters to four parameters: BOD5, NH3-N, TP, and F. coli (Reduct A). Considering that DO is a usual parameter in water quality assessment, another reduct, including DO, BOD5, NH3-N, TP, TN, F, and F. coli (Reduct B), was obtained. The assessment results of Reduct B show a good consistency with those of Reduct A, and this means that DO is not always necessary to assess water quality. The results with attribute reduction are not exactly the same as those without attribute reduction, which can be attributed to the α value decided by subjective experience. The assessment results gained by the fuzzy rough set obviously reduce computational complexity, and are acceptable and reliable. The model proposed in this paper enhances the water quality assessment system. PMID:24675643
Ismail, Ahmad Muhaimin; Mohamad, Mohd Saberi; Abdul Majid, Hairudin; Abas, Khairul Hamimah; Deris, Safaai; Zaki, Nazar; Mohd Hashim, Siti Zaiton; Ibrahim, Zuwairie; Remli, Muhammad Akmal
2017-12-01
Mathematical modelling is fundamental to understand the dynamic behavior and regulation of the biochemical metabolisms and pathways that are found in biological systems. Pathways are used to describe complex processes that involve many parameters. It is important to have an accurate and complete set of parameters that describe the characteristics of a given model. However, measuring these parameters is typically difficult and even impossible in some cases. Furthermore, the experimental data are often incomplete and also suffer from experimental noise. These shortcomings make it challenging to identify the best-fit parameters that can represent the actual biological processes involved in biological systems. Computational approaches are required to estimate these parameters. The estimation is converted into multimodal optimization problems that require a global optimization algorithm that can avoid local solutions. These local solutions can lead to a bad fit when calibrating with a model. Although the model itself can potentially match a set of experimental data, a high-performance estimation algorithm is required to improve the quality of the solutions. This paper describes an improved hybrid of particle swarm optimization and the gravitational search algorithm (IPSOGSA) to improve the efficiency of a global optimum (the best set of kinetic parameter values) search. The findings suggest that the proposed algorithm is capable of narrowing down the search space by exploiting the feasible solution areas. Hence, the proposed algorithm is able to achieve a near-optimal set of parameters at a fast convergence speed. The proposed algorithm was tested and evaluated based on two aspartate pathways that were obtained from the BioModels Database. The results show that the proposed algorithm outperformed other standard optimization algorithms in terms of accuracy and near-optimal kinetic parameter estimation. Nevertheless, the proposed algorithm is only expected to work well in small scale systems. In addition, the results of this study can be used to estimate kinetic parameter values in the stage of model selection for different experimental conditions. Copyright © 2017 Elsevier B.V. All rights reserved.
Parameter optimization of flux-aided backing-submerged arc welding by using Taguchi method
NASA Astrophysics Data System (ADS)
Pu, Juan; Yu, Shengfu; Li, Yuanyuan
2017-07-01
Flux-aided backing-submerged arc welding has been conducted on D36 steel with thickness of 20 mm. The effects of processing parameters such as welding current, voltage, welding speed and groove angle on welding quality were investigated by Taguchi method. The optimal welding parameters were predicted and the individual importance of each parameter on welding quality was evaluated by examining the signal-to-noise ratio and analysis of variance (ANOVA) results. The importance order of the welding parameters for the welding quality of weld bead was: welding current > welding speed > groove angle > welding voltage. The welding quality of weld bead increased gradually with increasing welding current and welding speed and decreasing groove angle. The optimum values of the welding current, welding speed, groove angle and welding voltage were found to be 1050 A, 27 cm/min, 40∘ and 34 V, respectively.
Health-Related Quality of Life in Children with High-Functioning Autism
ERIC Educational Resources Information Center
Potvin, Marie-Christine; Snider, Laurie; Prelock, Patricia A.; Wood-Dauphinee, Sharon; Kehayia, Eva
2015-01-01
The health-related quality of life of school-aged children with high-functioning autism is poorly understood. The objectives of this study were to compare the health-related quality of life of children with high-functioning autism to that of typically developing peers and to compare child-self and parent-proxy reports of health-related quality of…
Laird, Barry J A; Fallon, Marie; Hjermstad, Marianne J; Tuck, Sharon; Kaasa, Stein; Klepstad, Pål; McMillan, Donald C
2016-08-10
Quality of life is a key component of cancer care; however, the factors that determine quality of life are not well understood. The aim of this study was to examine the relationship between quality of life parameters, performance status (PS), and the systemic inflammatory response in patients with advanced cancer. An international biobank of patients with advanced cancer was analyzed. Quality of life was assessed at a single time point by using the European Organisation for Research and Treatment of Cancer Quality of Life Questionnaire C-30 (EORTC QLQ-C30). PS was assessed by using the Eastern Cooperative Oncology Group (ECOG) classification. Systemic inflammation was assessed by using the modified Glasgow Prognostic Score (mGPS), which combines C-reactive protein and albumin. The relationship between quality of life parameters, ECOG PS, and the mGPS was examined. Data were available for 2,520 patients, and the most common cancers were GI (585 patients [22.2%]) and pulmonary (443 patients [17.6%]). The median survival was 4.25 months (interquartile range, 1.36 to 12.9 months). Increasing mGPS (systemic inflammation) and deteriorating PS were associated with deterioration in quality-of-life parameters (P < .001). Increasing systemic inflammation was associated with deterioration in quality-of-life parameters independent of PS. Systemic inflammation was associated with quality-of-life parameters independent of PS in patients with advanced cancer. Further investigation of these relationships in longitudinal studies and investigations of possible effects of attenuating systemic inflammation are now warranted. © 2016 by American Society of Clinical Oncology.
Fast and accurate fitting and filtering of noisy exponentials in Legendre space.
Bao, Guobin; Schild, Detlev
2014-01-01
The parameters of experimentally obtained exponentials are usually found by least-squares fitting methods. Essentially, this is done by minimizing the mean squares sum of the differences between the data, most often a function of time, and a parameter-defined model function. Here we delineate a novel method where the noisy data are represented and analyzed in the space of Legendre polynomials. This is advantageous in several respects. First, parameter retrieval in the Legendre domain is typically two orders of magnitude faster than direct fitting in the time domain. Second, data fitting in a low-dimensional Legendre space yields estimates for amplitudes and time constants which are, on the average, more precise compared to least-squares-fitting with equal weights in the time domain. Third, the Legendre analysis of two exponentials gives satisfactory estimates in parameter ranges where least-squares-fitting in the time domain typically fails. Finally, filtering exponentials in the domain of Legendre polynomials leads to marked noise removal without the phase shift characteristic for conventional lowpass filters.
NASA Astrophysics Data System (ADS)
Maier, A.; Schledjewski, R.
2016-07-01
For continuous manufacturing processes mechanical preloading of the fibers occurs during the delivery of the fibers from the spool creel to the actual manufacturing process step. Moreover preloading of the dry roving bundles might be mandatory, e.g. during winding, to be able to produce high quality components. On the one hand too high tensile loads within dry roving bundles might result in a catastrophic failure and on the other hand the part produced under too low pre-tension might have low quality and mechanical properties. In this work, load conditions influencing mechanical properties of dry glass fiber bundles during continuous composite manufacturing processes were analyzed. Load conditions, i.e. fiber delivery speed, necessary pre-tension and other effects of the delivery system during continuous fiber winding, were chosen in process typical ranges. First, the strain rate dependency under static tensile load conditions was investigated. Furthermore different free gauge lengths up to 1.2 m, interactions between fiber points of contact regarding influence of sizing as well as impregnation were tested and the effect of twisting on the mechanical behavior of dry glass fiber bundles during the fiber delivery was studied.
NASA Astrophysics Data System (ADS)
Alizadeh, Mohammad Reza; Nikoo, Mohammad Reza; Rakhshandehroo, Gholam Reza
2017-08-01
Sustainable management of water resources necessitates close attention to social, economic and environmental aspects such as water quality and quantity concerns and potential conflicts. This study presents a new fuzzy-based multi-objective compromise methodology to determine the socio-optimal and sustainable policies for hydro-environmental management of groundwater resources, which simultaneously considers the conflicts and negotiation of involved stakeholders, uncertainties in decision makers' preferences, existing uncertainties in the groundwater parameters and groundwater quality and quantity issues. The fuzzy multi-objective simulation-optimization model is developed based on qualitative and quantitative groundwater simulation model (MODFLOW and MT3D), multi-objective optimization model (NSGA-II), Monte Carlo analysis and Fuzzy Transformation Method (FTM). Best compromise solutions (best management policies) on trade-off curves are determined using four different Fuzzy Social Choice (FSC) methods. Finally, a unanimity fallback bargaining method is utilized to suggest the most preferred FSC method. Kavar-Maharloo aquifer system in Fars, Iran, as a typical multi-stakeholder multi-objective real-world problem is considered to verify the proposed methodology. Results showed an effective performance of the framework for determining the most sustainable allocation policy in groundwater resource management.
Signal verification can promote reliable signalling.
Broom, Mark; Ruxton, Graeme D; Schaefer, H Martin
2013-11-22
The central question in communication theory is whether communication is reliable, and if so, which mechanisms select for reliability. The primary approach in the past has been to attribute reliability to strategic costs associated with signalling as predicted by the handicap principle. Yet, reliability can arise through other mechanisms, such as signal verification; but the theoretical understanding of such mechanisms has received relatively little attention. Here, we model whether verification can lead to reliability in repeated interactions that typically characterize mutualisms. Specifically, we model whether fruit consumers that discriminate among poor- and good-quality fruits within a population can select for reliable fruit signals. In our model, plants either signal or they do not; costs associated with signalling are fixed and independent of plant quality. We find parameter combinations where discriminating fruit consumers can select for signal reliability by abandoning unprofitable plants more quickly. This self-serving behaviour imposes costs upon plants as a by-product, rendering it unprofitable for unrewarding plants to signal. Thus, strategic costs to signalling are not a prerequisite for reliable communication. We expect verification to more generally explain signal reliability in repeated consumer-resource interactions that typify mutualisms but also in antagonistic interactions such as mimicry and aposematism.
Improved Speech Coding Based on Open-Loop Parameter Estimation
NASA Technical Reports Server (NTRS)
Juang, Jer-Nan; Chen, Ya-Chin; Longman, Richard W.
2000-01-01
A nonlinear optimization algorithm for linear predictive speech coding was developed early that not only optimizes the linear model coefficients for the open loop predictor, but does the optimization including the effects of quantization of the transmitted residual. It also simultaneously optimizes the quantization levels used for each speech segment. In this paper, we present an improved method for initialization of this nonlinear algorithm, and demonstrate substantial improvements in performance. In addition, the new procedure produces monotonically improving speech quality with increasing numbers of bits used in the transmitted error residual. Examples of speech encoding and decoding are given for 8 speech segments and signal to noise levels as high as 47 dB are produced. As in typical linear predictive coding, the optimization is done on the open loop speech analysis model. Here we demonstrate that minimizing the error of the closed loop speech reconstruction, instead of the simpler open loop optimization, is likely to produce negligible improvement in speech quality. The examples suggest that the algorithm here is close to giving the best performance obtainable from a linear model, for the chosen order with the chosen number of bits for the codebook.
Rampersaud, Gail C; Valim, M Filomena
2017-01-02
Citrus juices such as 100% orange (OJ) and grapefruit juice (GJ) are commonly consumed throughout the world. This review examines the contributions of OJ and GJ to nutrient intake, diet quality, and fruit intake, and supports citrus juices as nutrient-dense beverages. This review also explores the research examining associations between OJ and GJ intake and anthropometric measures. Citrus juices are excellent sources of vitamin C and contribute other key nutrients such as potassium, folate, magnesium, and vitamin A. OJ intake has been associated with better diet quality in children and adults. OJ intake has not been associated with adverse effects on weight or other body measures in observational studies in children and adults. In adults, some observational studies report more favorable body mass index or body measure parameters in OJ consumers compared to nonconsumers. Intervention studies in adults report no negative impacts of OJ or GJ consumption on anthropometric measures, although these measures were typically not the primary outcomes examined in the studies. Moderate consumption of citrus juices may provide meaningful nutritional and dietary benefits and do not appear to negatively impact body weight, body composition, or other anthropometric measures in children and adults.
Infrastructure optimisation via MBR retrofit: a design guide.
Bagg, W K
2009-01-01
Wastewater management is continually evolving with the development and implementation of new, more efficient technologies. One of these is the Membrane Bioreactor (MBR). Although a relatively new technology in Australia, MBR wastewater treatment has been widely used elsewhere for over 20 years, with thousands of MBRs now in operation worldwide. Over the past 5 years, MBR technology has been enthusiastically embraced in Australia as a potential treatment upgrade option, and via retrofit typically offers two major benefits: (1) more capacity using mostly existing facilities, and (2) very high quality treated effluent. However, infrastructure optimisation via MBR retrofit is not a simple or low-cost solution and there are many factors which should be carefully evaluated before deciding on this method of plant upgrade. The paper reviews a range of design parameters which should be carefully evaluated when considering an MBR retrofit solution. Several actual and conceptual case studies are considered to demonstrate both advantages and disadvantages. Whilst optimising existing facilities and production of high quality water for reuse are powerful drivers, it is suggested that MBRs are perhaps not always the most sustainable Whole-of-Life solution for a wastewater treatment plant upgrade, especially by way of a retrofit.
Unified Software Solution for Efficient SPR Data Analysis in Drug Research
Dahl, Göran; Steigele, Stephan; Hillertz, Per; Tigerström, Anna; Egnéus, Anders; Mehrle, Alexander; Ginkel, Martin; Edfeldt, Fredrik; Holdgate, Geoff; O’Connell, Nichole; Kappler, Bernd; Brodte, Annette; Rawlins, Philip B.; Davies, Gareth; Westberg, Eva-Lotta; Folmer, Rutger H. A.; Heyse, Stephan
2016-01-01
Surface plasmon resonance (SPR) is a powerful method for obtaining detailed molecular interaction parameters. Modern instrumentation with its increased throughput has enabled routine screening by SPR in hit-to-lead and lead optimization programs, and SPR has become a mainstream drug discovery technology. However, the processing and reporting of SPR data in drug discovery are typically performed manually, which is both time-consuming and tedious. Here, we present the workflow concept, design and experiences with a software module relying on a single, browser-based software platform for the processing, analysis, and reporting of SPR data. The efficiency of this concept lies in the immediate availability of end results: data are processed and analyzed upon loading the raw data file, allowing the user to immediately quality control the results. Once completed, the user can automatically report those results to data repositories for corporate access and quickly generate printed reports or documents. The software module has resulted in a very efficient and effective workflow through saved time and improved quality control. We discuss these benefits and show how this process defines a new benchmark in the drug discovery industry for the handling, interpretation, visualization, and sharing of SPR data. PMID:27789754
Skylab study of water quality. [Kansas reservoirs
NASA Technical Reports Server (NTRS)
Yarger, H. L. (Principal Investigator); Mccauley, J. R.
1974-01-01
The author has identified the following significant results. Analysis of S-190A imagery from 1 EREP pass over 3 reservoirs in Kansas establishes a strong linear correlation between the red/green radiance ratio and suspended solids. This result compares quite favorably to ERTS MSS CCT results. The linear fits RMS for Skylab is 6 ppm as compared to 12 ppm for ERTS. All of the ERTS satellite passes yielded fairly linear results with typical RMS values of 12 ppm. However, a few of the individual passes did yield RMS values of 5 or 6 ppm which is comparable to the one Skylab pass analyzed. In view of the cloudy conditions in the Skylab photos, yet good results, the indications are that S-190A may do somewhat better than the ERTS MSS in determining suspended load. More S-190A data is needed to confirm this. As was the case with the ERTS MSS, the Skylab S-190A showed no strong correlation with other water quality parameters. S-190B photos because of their high resolution can provide much first look information regarding relative degrees of turbidity within various parts of large lakes and among smaller bodies of water.
Inferring speaker attributes in adductor spasmodic dysphonia: ratings from unfamiliar listeners.
Isetti, Derek; Xuereb, Linnea; Eadie, Tanya L
2014-05-01
To determine whether unfamiliar listeners' perceptions of speakers with adductor spasmodic dysphonia (ADSD) differ from control speakers on the parameters of relative age, confidence, tearfulness, and vocal effort and are related to speaker-rated vocal effort or voice-specific quality of life. Twenty speakers with ADSD (including 6 speakers with ADSD plus tremor) and 20 age- and sex-matched controls provided speech recordings, completed a voice-specific quality-of-life instrument (Voice Handicap Index; Jacobson et al., 1997), and rated their own vocal effort. Twenty listeners evaluated speech samples for relative age, confidence, tearfulness, and vocal effort using rating scales. Listeners judged speakers with ADSD as sounding significantly older, less confident, more tearful, and more effortful than control speakers (p < .01). Increased vocal effort was strongly associated with decreased speaker confidence (rs = .88-.89) and sounding more tearful (rs = .83-.85). Self-rated speaker effort was moderately related (rs = .45-.52) to listener impressions. Listeners' perceptions of confidence and tearfulness were also moderately associated with higher Voice Handicap Index scores (rs = .65-.70). Unfamiliar listeners judge speakers with ADSD more negatively than control speakers, with judgments extending beyond typical clinical measures. The results have implications for counseling and understanding the psychosocial effects of ADSD.
Real-time fusion of endoscopic views with dynamic 3-D cardiac images: a phantom study.
Szpala, Stanislaw; Wierzbicki, Marcin; Guiraudon, Gerard; Peters, Terry M
2005-09-01
Minimally invasive robotically assisted cardiac surgical systems currently do not routinely employ 3-D image guidance. However, preoperative magnetic resonance and computed tomography (CT) images have the potential to be used in this role, if appropriately registered with the patient anatomy and animated synchronously with the motion of the actual heart. This paper discusses the fusion of optical images of a beating heart phantom obtained from an optically tracked endoscope, with volumetric images of the phantom created from a dynamic CT dataset. High quality preoperative dynamic CT images are created by first extracting the motion parameters of the heart from the series of temporal frames, and then applying this information to animate a high-quality heart image acquired at end systole. Temporal synchronization of the endoscopic and CT model is achieved by selecting the appropriate CT image from the dynamic set, based on an electrocardiographic trigger signal. The spatial error between the optical and virtual images is 1.4 +/- 1.1 mm, while the time discrepancy is typically 50-100 ms. Index Terms-Image guidance, image warping, minimally invasive cardiac surgery, virtual endoscopy, virtual reality.
Skjerdal, Taran; Gefferth, Andras; Spajic, Miroslav; Estanga, Edurne Gaston; de Cecare, Alessandra; Vitali, Silvia; Pasquali, Frederique; Bovo, Federica; Manfreda, Gerardo; Mancusi, Rocco; Trevisiani, Marcello; Tessema, Girum Tadesse; Fagereng, Tone; Moen, Lena Haugland; Lyshaug, Lars; Koidis, Anastasios; Delgado-Pando, Gonzalo; Stratakos, Alexandros Ch; Boeri, Marco; From, Cecilie; Syed, Hyat; Muccioli, Mirko; Mulazzani, Roberto; Halbert, Catherine
2017-01-01
A prototype decision support IT-tool for the food industry was developed in the STARTEC project. Typical processes and decision steps were mapped using real life production scenarios of participating food companies manufacturing complex ready-to-eat foods. Companies looked for a more integrated approach when making food safety decisions that would align with existing HACCP systems. The tool was designed with shelf life assessments and data on safety, quality, and costs, using a pasta salad meal as a case product. The process flow chart was used as starting point, with simulation options at each process step. Key parameters like pH, water activity, costs of ingredients and salaries, and default models for calculations of Listeria monocytogenes , quality scores, and vitamin C, were placed in an interactive database. Customization of the models and settings was possible on the user-interface. The simulation module outputs were provided as detailed curves or categorized as "good"; "sufficient"; or "corrective action needed" based on threshold limit values set by the user. Possible corrective actions were suggested by the system. The tool was tested and approved by end-users based on selected ready-to-eat food products. Compared to other decision support tools, the STARTEC-tool is product-specific and multidisciplinary and includes interpretation and targeted recommendations for end-users.
Gefferth, Andras; Spajic, Miroslav; Estanga, Edurne Gaston; Vitali, Silvia; Pasquali, Frederique; Bovo, Federica; Manfreda, Gerardo; Mancusi, Rocco; Tessema, Girum Tadesse; Fagereng, Tone; Moen, Lena Haugland; Lyshaug, Lars; Koidis, Anastasios; Delgado-Pando, Gonzalo; Stratakos, Alexandros Ch.; Boeri, Marco; From, Cecilie; Syed, Hyat; Muccioli, Mirko; Mulazzani, Roberto; Halbert, Catherine
2017-01-01
A prototype decision support IT-tool for the food industry was developed in the STARTEC project. Typical processes and decision steps were mapped using real life production scenarios of participating food companies manufacturing complex ready-to-eat foods. Companies looked for a more integrated approach when making food safety decisions that would align with existing HACCP systems. The tool was designed with shelf life assessments and data on safety, quality, and costs, using a pasta salad meal as a case product. The process flow chart was used as starting point, with simulation options at each process step. Key parameters like pH, water activity, costs of ingredients and salaries, and default models for calculations of Listeria monocytogenes, quality scores, and vitamin C, were placed in an interactive database. Customization of the models and settings was possible on the user-interface. The simulation module outputs were provided as detailed curves or categorized as “good”; “sufficient”; or “corrective action needed” based on threshold limit values set by the user. Possible corrective actions were suggested by the system. The tool was tested and approved by end-users based on selected ready-to-eat food products. Compared to other decision support tools, the STARTEC-tool is product-specific and multidisciplinary and includes interpretation and targeted recommendations for end-users. PMID:29457031
Quality control for quantitative PCR based on amplification compatibility test.
Tichopad, Ales; Bar, Tzachi; Pecen, Ladislav; Kitchen, Robert R; Kubista, Mikael; Pfaffl, Michael W
2010-04-01
Quantitative qPCR is a routinely used method for the accurate quantification of nucleic acids. Yet it may generate erroneous results if the amplification process is obscured by inhibition or generation of aberrant side-products such as primer dimers. Several methods have been established to control for pre-processing performance that rely on the introduction of a co-amplified reference sequence, however there is currently no method to allow for reliable control of the amplification process without directly modifying the sample mix. Herein we present a statistical approach based on multivariate analysis of the amplification response data generated in real-time. The amplification trajectory in its most resolved and dynamic phase is fitted with a suitable model. Two parameters of this model, related to amplification efficiency, are then used for calculation of the Z-score statistics. Each studied sample is compared to a predefined reference set of reactions, typically calibration reactions. A probabilistic decision for each individual Z-score is then used to identify the majority of inhibited reactions in our experiments. We compare this approach to univariate methods using only the sample specific amplification efficiency as reporter of the compatibility. We demonstrate improved identification performance using the multivariate approach compared to the univariate approach. Finally we stress that the performance of the amplification compatibility test as a quality control procedure depends on the quality of the reference set. Copyright 2010 Elsevier Inc. All rights reserved.
Parametric decadal climate forecast recalibration (DeFoReSt 1.0)
NASA Astrophysics Data System (ADS)
Pasternack, Alexander; Bhend, Jonas; Liniger, Mark A.; Rust, Henning W.; Müller, Wolfgang A.; Ulbrich, Uwe
2018-01-01
Near-term climate predictions such as decadal climate forecasts are increasingly being used to guide adaptation measures. For near-term probabilistic predictions to be useful, systematic errors of the forecasting systems have to be corrected. While methods for the calibration of probabilistic forecasts are readily available, these have to be adapted to the specifics of decadal climate forecasts including the long time horizon of decadal climate forecasts, lead-time-dependent systematic errors (drift) and the errors in the representation of long-term changes and variability. These features are compounded by small ensemble sizes to describe forecast uncertainty and a relatively short period for which typically pairs of reforecasts and observations are available to estimate calibration parameters. We introduce the Decadal Climate Forecast Recalibration Strategy (DeFoReSt), a parametric approach to recalibrate decadal ensemble forecasts that takes the above specifics into account. DeFoReSt optimizes forecast quality as measured by the continuous ranked probability score (CRPS). Using a toy model to generate synthetic forecast observation pairs, we demonstrate the positive effect on forecast quality in situations with pronounced and limited predictability. Finally, we apply DeFoReSt to decadal surface temperature forecasts from the MiKlip prototype system and find consistent, and sometimes considerable, improvements in forecast quality compared with a simple calibration of the lead-time-dependent systematic errors.
Remote Sensing Image Quality Assessment Experiment with Post-Processing
NASA Astrophysics Data System (ADS)
Jiang, W.; Chen, S.; Wang, X.; Huang, Q.; Shi, H.; Man, Y.
2018-04-01
This paper briefly describes the post-processing influence assessment experiment, the experiment includes three steps: the physical simulation, image processing, and image quality assessment. The physical simulation models sampled imaging system in laboratory, the imaging system parameters are tested, the digital image serving as image processing input are produced by this imaging system with the same imaging system parameters. The gathered optical sampled images with the tested imaging parameters are processed by 3 digital image processes, including calibration pre-processing, lossy compression with different compression ratio and image post-processing with different core. Image quality assessment method used is just noticeable difference (JND) subject assessment based on ISO20462, through subject assessment of the gathered and processing images, the influence of different imaging parameters and post-processing to image quality can be found. The six JND subject assessment experimental data can be validated each other. Main conclusions include: image post-processing can improve image quality; image post-processing can improve image quality even with lossy compression, image quality with higher compression ratio improves less than lower ratio; with our image post-processing method, image quality is better, when camera MTF being within a small range.
De Filippis, Francesca; Genovese, Alessandro; Ferranti, Pasquale; Gilbert, Jack A.; Ercolini, Danilo
2016-01-01
Traditional cheeses harbour complex microbial consortia that play an important role in shaping typical sensorial properties. However, the microbial metabolism is considered difficult to control. Microbial community succession and the related gene expression were analysed during ripening of a traditional Italian cheese, identifying parameters that could be modified to accelerate ripening. Afterwards, we modulated ripening conditions and observed consistent changes in microbial community structure and function. We provide concrete evidence of the essential contribution of non-starter lactic acid bacteria in ripening-related activities. An increase in the ripening temperature promoted the expression of genes related to proteolysis, lipolysis and amino acid/lipid catabolism and significantly increases the cheese maturation rate. Moreover, temperature-promoted microbial metabolisms were consistent with the metabolomic profiles of proteins and volatile organic compounds in the cheese. The results clearly indicate how processing-driven microbiome responses can be modulated in order to optimize production efficiency and product quality. PMID:26911915
Development of Detonation Flame Sprayed Cu-Base Coatings Containing Large Ceramic Particles
NASA Astrophysics Data System (ADS)
Tillmann, Wolfgang; Vogli, Evelina; Nebel, Jan
2007-12-01
Metal-matrix composites (MMCs) containing large ceramic particles as superabrasives are typically used for grinding stone, minerals, and concrete. Sintering and brazing are the key manufacturing technologies for grinding tool production. However, restricted geometry flexibility and the absence of repair possibilities for damaged tool surfaces, as well as difficulties of controlling material interfaces, are the main weaknesses of these production processes. Thermal spraying offers the possibility to avoid these restrictions. The research for this paper investigated a fabrication method based on the use of detonation flame spraying technology to bond large superabrasive particles (150-600 μm, needed for grinding minerals and stones) in a metallic matrix. Layer morphology and bonding quality are evaluated with respect to superabrasive material, geometry, spraying, and powder-injection parameters. The influence of process temperature and the possibilities of thermal treatment of MMC layers are analyzed.
NASA Astrophysics Data System (ADS)
Antoszewski, B.; Tofil, S.; Scendo, M.; Tarelnik, W.
2017-08-01
Elastomeric plastics belong to a wide range of polymeric materials with special properties. They are used as construction material for seals and other components in many branches of industry and, in particular, in the biomedical industry, mechatronics, electronics and chemical equipment. The micromachining of surfaces of these materials can be used to build micro-flow, insulating, dispensing systems and chemical and biological reactors. The paper presents results of research on the effects of micro-machining of selected elastomeric plastics using a UV laser emitting picosecond pulses. The authors see the prospective application of the developed technology in the sealing technique in particular to shaping the sealing pieces co-operating with the surface of the element. The result of the study is meant to show parameters of the UV laser’s performance when producing typical components such as grooves, recesses for optimum ablation in terms of quality and productivity.
Islam, Ahmad E; Rogers, John A; Alam, Muhammad A
2015-12-22
High purity semiconducting single-walled carbon nanotubes (s-SWCNTs) with a narrow diameter distribution are required for high-performance transistors. Achieving this goal is extremely challenging because the as-grown material contains mixtures of s-SWCNTs and metallic- (m-) SWCNTs with wide diameter distributions, typically inadequate for integrated circuits. Since 2000, numerous ex situ methods have been proposed to improve the purity of the s-SWCNTs. The majority of these techniques fail to maintain the quality and integrity of the s-SWCNTs with a few notable exceptions. Here, the progress in realizing high purity s-SWCNTs in as-grown and post-processed materials is highlighted. A comparison of transistor parameters (such as on/off ratio and field-effect mobility) obtained from test structures establishes the effectiveness of various methods and suggests opportunities for future improvements. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Baldan, Damiano; Porporato, Erika Maria Diletta; Pastres, Roberto
2018-01-01
A new R software package, RAC, is presented. RAC allows to simulate the rearing cycle of 4 species, finfish and shellfish, highly important in terms of production in the Mediterranean Sea. The package works both at the scale of the individual and of the farmed population. Mathematical models included in RAC were all validated in previous works, and account for growth and metabolism, based on input data characterizing the forcing functions—water temperature, and food quality/quantity. The package provides a demo dataset of forcings for each species, as well as a typical set of husbandry parameters for Mediterranean conditions. The present work illustrates RAC main features, and its current capabilities/limitations. Three test cases are presented as a proof of concept of RAC applicability, and to demonstrate its potential for integrating different open products nowadays provided by remote sensing and operational oceanography. PMID:29723208
Stimulant Paste Preparation and Bark Streak Tapping Technique for Pine Oleoresin Extraction.
Füller, Thanise Nogueira; de Lima, Júlio César; de Costa, Fernanda; Rodrigues-Corrêa, Kelly C S; Fett-Neto, Arthur G
2016-01-01
Tapping technique comprises the extraction of pine oleoresin, a non-wood forest product consisting of a complex mixture of mono, sesqui, and diterpenes biosynthesized and exuded as a defense response to wounding. Oleoresin is used to produce gum rosin, turpentine, and their multiple derivatives. Oleoresin yield and quality are objects of interest in pine tree biotechnology, both in terms of environmental and genetic control. Monitoring these parameters in individual trees grown in the field provides a means to examine the control of terpene production in resin canals, as well as the identification of genetic-based differences in resinosis. A typical method of tapping involves the removal of bark and application of a chemical stimulant on the wounded area. Here we describe the methods for preparing the resin-stimulant paste with different adjuvants, as well as the bark streaking process in adult pine trees.
Ultralow-Noise SiN Trampoline Resonators for Sensing and Optomechanics
NASA Astrophysics Data System (ADS)
Reinhardt, Christoph; Müller, Tina; Bourassa, Alexandre; Sankey, Jack C.
2016-04-01
In force sensing, optomechanics, and quantum motion experiments, it is typically advantageous to create lightweight, compliant mechanical elements with the lowest possible force noise. Here, we report the fabrication and characterization of high-aspect-ratio, nanogram-scale Si3 N4 "trampolines" having quality factors above 4 ×107 and ringdown times exceeding 5 min (mHz linewidth). These devices exhibit thermally limited force noise sensitivities below 20 aN /Hz1 /2 at room temperature, which is the lowest among solid-state mechanical sensors. We also characterize the suitability of these devices for high-finesse cavity readout and optomechanics applications, finding no evidence of surface or bulk optical losses from the processed nitride in a cavity achieving finesse 40,000. These parameters provide access to a single-photon cooperativity C0˜8 in the resolved-sideband limit, wherein a variety of outstanding optomechanics goals become feasible.
Birnhack, Liat; Nir, Oded; Telzhenski, Marina; Lahav, Ori
2015-01-01
Deliberate struvite (MgNH4PO4) precipitation from wastewater streams has been the topic of extensive research in the last two decades and is expected to gather worldwide momentum in the near future as a P-reuse technique. A wide range of operational alternatives has been reported for struvite precipitation, including the application of various Mg(II) sources, two pH elevation techniques and several Mg:P ratios and pH values. The choice of each operational parameter within the struvite precipitation process affects process efficiency, the overall cost and also the choice of other operational parameters. Thus, a comprehensive simulation program that takes all these parameters into account is essential for process design. This paper introduces a systematic decision-supporting tool which accepts a wide range of possible operational parameters, including unconventional Mg(II) sources (i.e. seawater and seawater nanofiltration brines). The study is supplied with a free-of-charge computerized tool (http://tx.technion.ac.il/~agrengn/agr/Struvite_Program.zip) which links two computer platforms (Python and PHREEQC) for executing thermodynamic calculations according to predefined kinetic considerations. The model can be (inter alia) used for optimizing the struvite-fluidized bed reactor process operation with respect to P removal efficiency, struvite purity and economic feasibility of the chosen alternative. The paper describes the algorithm and its underlying assumptions, and shows results (i.e. effluent water quality, cost breakdown and P removal efficiency) of several case studies consisting of typical wastewaters treated at various operational conditions.
Alcalde, M J; Suárez, M D; Rodero, E; Álvarez, R; Sáez, M I; Martínez, T F
2017-09-01
Studies aimed to assess up to what extent farming and transport previous to slaughtering might affect physiology and meat quality in young goat kids are needed, with the ultimate purpose of promoting practices that minimize stress in these animals. In this regard the effects of on-farm management and transport duration on some physiological responses and meat quality parameters in goat kids were assessed. Two farms representing 'high' and 'low' welfare-friendly management practices were selected. In total, 32 suckling kids were withdrawn from each farm, transported by road for 2 or 6 h, and then slaughtered. Blood samples were collected both on-farm and in the slaughterhouse, and biochemistry, cell counts and haematocrit were determined. After slaughtering, carcass quality parameters were measured. Longissimus dorsi muscle was dissected and pH, colour parameters, water holding capacity and shear force were measured throughout 8-day ageing period. Results indicate that, regardless its duration, transport caused significant effects on some blood parameters suggesting stress in live animals, like glucose, cortisol or creatine kinase. Despite the marked stress status in animals, this condition was not decisively reflected on L. dorsi quality parameters, but some effects were observed regarding fat cover in carcasses and colour parameters. The results suggest that postmortem changes throughout ageing were more decisive in terms of meat quality than stressful management either on-farm or during transport.
NASA Astrophysics Data System (ADS)
Choudhury, Anustup; Farrell, Suzanne; Atkins, Robin; Daly, Scott
2017-09-01
We present an approach to predict overall HDR display quality as a function of key HDR display parameters. We first performed subjective experiments on a high quality HDR display that explored five key HDR display parameters: maximum luminance, minimum luminance, color gamut, bit-depth and local contrast. Subjects rated overall quality for different combinations of these display parameters. We explored two models | a physical model solely based on physically measured display characteristics and a perceptual model that transforms physical parameters using human vision system models. For the perceptual model, we use a family of metrics based on a recently published color volume model (ICT-CP), which consists of the PQ luminance non-linearity (ST2084) and LMS-based opponent color, as well as an estimate of the display point spread function. To predict overall visual quality, we apply linear regression and machine learning techniques such as Multilayer Perceptron, RBF and SVM networks. We use RMSE and Pearson/Spearman correlation coefficients to quantify performance. We found that the perceptual model is better at predicting subjective quality than the physical model and that SVM is better at prediction than linear regression. The significance and contribution of each display parameter was investigated. In addition, we found that combined parameters such as contrast do not improve prediction. Traditional perceptual models were also evaluated and we found that models based on the PQ non-linearity performed better.
The monitoring method of water quality in Ciliwung River for post restoration
NASA Astrophysics Data System (ADS)
Diyanti; Saleh Pallu, Muh.; Tahir Lopa, Rita; Arsyad Thaha, M.
2018-04-01
Ciliwung River is the biggest river which flows across DKI Jakarta, where the river flows through the city, the settlements, and slums in Jakarta. Problems that occur in the Ciliwung River in Jakarta one of which is the quality of water. This research using some datas, there are secondary and primary data like river dimension and visualization of water quality of Ciliwung River. This research using a descriptive method which describes the comparison between a physical and chemical parameter for the durationn of three (3) years post-restoration. The physical parameters used in this reasearch are temperature and TDS, the chemical parameters are pH dan DO. Based on the result of data analyzing, we get the temperature average parameter pre-restoration is 28.30°C and TDS level is 151.96 mg/L, so the logical of standard quality criteria match with class 3. Post-restoration got the temperature 22.06°C and TDS level 224.20mg/L, so that water quality criteria match with class 2. For the chemical parameters the average pH and DO values pre-restoration are 6.84 and 4mg/L, respectively which match with class 2 category. Post-restoration, the chemical parameter about pH level is 7.41 and DO 8.4 mg/L, so the standard quality criteria match with class 1.
A COMPARATIVE STUDY ON PARAMETERS USED FOR CHARACTERIZING COTTON SHORT FIBERS
USDA-ARS?s Scientific Manuscript database
The quantity of short cotton fibers in a cotton sample is an important cotton quality parameter which impacts yarn production performance and yarn quality. Researchers have proposed different parameters for characterizing the amount of short fibers in a cotton sample. A comprehensive study was car...
Thornton, Laura A; Cave, Nicholas; Bridges, Janis P; Stell, Anneliese J
2018-04-01
Objectives The objectives of this study were to assess owner perceptions of their cat's quality of life during treatment for lymphoma with a doxorubicin-containing multi-agent chemotherapy protocol, whether various health-related parameters correlated with quality of life scores, and to assess owner satisfaction with the protocol. Methods A postal questionnaire was sent to the owners of 33 treated cats. Owners retrospectively assessed their cat's quality of life using a Likert scale (1-10) before lymphoma was diagnosed, at diagnosis and during chemotherapy. Owners assigned scores to various health-related parameters previously reported to affect quality of life at the three time points, and correlations with quality of life scores were sought. Owners were asked to rate the importance of these health-related parameters. Satisfaction with the protocol was investigated. Results Twenty questionnaires were completed (61% response rate). The median quality of life score before diagnosis (10, range 5-10) was higher than at diagnosis (3, range 1-9) ( P <0.05). The median quality of life score during chemotherapy (7, range 3-9) was lower than before diagnosis ( P <0.05) and higher than at diagnosis, but this was not statistically significant. Quality of life scores did not correlate with individual health-related parameter scores consistently; however, quality of life scores did correlate with appetite scores during chemotherapy. Appetite, vomiting and diarrhoea were parameters perceived as important in affecting quality of life. Most owners (75%) were happy they had treated their cat. Conclusions and relevance The quality of life scores observed were comparable to a previous study using cyclophosphamide, vincristine and prednisolone, employing the same scoring system. Although quality of life scores during chemotherapy were not significantly improved at diagnosis, owner satisfaction with the protocol was high. The factors perceived by owners to determine quality of life in their pets may be different to those previously conjectured, but appetite during chemotherapy remains important.
Utilization of Expert Knowledge in a Multi-Objective Hydrologic Model Automatic Calibration Process
NASA Astrophysics Data System (ADS)
Quebbeman, J.; Park, G. H.; Carney, S.; Day, G. N.; Micheletty, P. D.
2016-12-01
Spatially distributed continuous simulation hydrologic models have a large number of parameters for potential adjustment during the calibration process. Traditional manual calibration approaches of such a modeling system is extremely laborious, which has historically motivated the use of automatic calibration procedures. With a large selection of model parameters, achieving high degrees of objective space fitness - measured with typical metrics such as Nash-Sutcliffe, Kling-Gupta, RMSE, etc. - can easily be achieved using a range of evolutionary algorithms. A concern with this approach is the high degree of compensatory calibration, with many similarly performing solutions, and yet grossly varying parameter set solutions. To help alleviate this concern, and mimic manual calibration processes, expert knowledge is proposed for inclusion within the multi-objective functions, which evaluates the parameter decision space. As a result, Pareto solutions are identified with high degrees of fitness, but also create parameter sets that maintain and utilize available expert knowledge resulting in more realistic and consistent solutions. This process was tested using the joint SNOW-17 and Sacramento Soil Moisture Accounting method (SAC-SMA) within the Animas River basin in Colorado. Three different elevation zones, each with a range of parameters, resulted in over 35 model parameters simultaneously calibrated. As a result, high degrees of fitness were achieved, in addition to the development of more realistic and consistent parameter sets such as those typically achieved during manual calibration procedures.
Distribution of water quality parameters in Dhemaji district, Assam (India).
Buragohain, Mridul; Bhuyan, Bhabajit; Sarma, H P
2010-07-01
The primary objective of this study is to present a statistically significant water quality database of Dhemaji district, Assam (India) with special reference to pH, fluoride, nitrate, arsenic, iron, sodium and potassium. 25 water samples collected from different locations of five development blocks in Dhemaji district have been studied separately. The implications presented are based on statistical analyses of the raw data. Normal distribution statistics and reliability analysis (correlation and covariance matrix) have been employed to find out the distribution pattern, localisation of data, and other related information. Statistical observations show that all the parameters under investigation exhibit non uniform distribution with a long asymmetric tail either on the right or left side of the median. The width of the third quartile was consistently found to be more than the second quartile for each parameter. Differences among mean, mode and median, significant skewness and kurtosis value indicate that the distribution of various water quality parameters in the study area is widely off normal. Thus, the intrinsic water quality is not encouraging due to unsymmetrical distribution of various water quality parameters in the study area.
Júnez-Ferreira, H E; Herrera, G S; González-Hita, L; Cardona, A; Mora-Rodríguez, J
2016-01-01
A new method for the optimal design of groundwater quality monitoring networks is introduced in this paper. Various indicator parameters were considered simultaneously and tested for the Irapuato-Valle aquifer in Mexico. The steps followed in the design were (1) establishment of the monitoring network objectives, (2) definition of a groundwater quality conceptual model for the study area, (3) selection of the parameters to be sampled, and (4) selection of a monitoring network by choosing the well positions that minimize the estimate error variance of the selected indicator parameters. Equal weight for each parameter was given to most of the aquifer positions and a higher weight to priority zones. The objective for the monitoring network in the specific application was to obtain a general reconnaissance of the water quality, including water types, water origin, and first indications of contamination. Water quality indicator parameters were chosen in accordance with this objective, and for the selection of the optimal monitoring sites, it was sought to obtain a low-uncertainty estimate of these parameters for the entire aquifer and with more certainty in priority zones. The optimal monitoring network was selected using a combination of geostatistical methods, a Kalman filter and a heuristic optimization method. Results show that when monitoring the 69 locations with higher priority order (the optimal monitoring network), the joint average standard error in the study area for all the groundwater quality parameters was approximately 90 % of the obtained with the 140 available sampling locations (the set of pilot wells). This demonstrates that an optimal design can help to reduce monitoring costs, by avoiding redundancy in data acquisition.
Quality of water for livestock in man-made impoundments in the northern High Plains
Mark A. Rumble
1985-01-01
Twenty-seven water quality parameters were measured in coal surface mine impoundments, bentonite surface mine impoundments, and livestock ponds in the Northern High Plains. Most impoundments were safe for use as a source for livestock drinking water. Eight water quality parameters were different (a
Relationships of cotton fiber properties to ring-spun yarn quality on selected High Plains cottons
USDA-ARS?s Scientific Manuscript database
The objective of this research was to evaluate the adequacy of High Volume Instruement (HVI) and Advanced Fiber Information System (AFIS) fiber quality parameters for predicting quality parameters of ring-spun yarns considering differences in harvest method. Fiber properties measured using the HVI (...
Examining the Role of Linguistic Flexibility in the Text Production Process
ERIC Educational Resources Information Center
Allen, Laura
2017-01-01
A commonly held belief among educators, researchers, and students is that high-quality texts are easier to read than low-quality texts, as they contain more engaging narrative and story-like elements. Interestingly, these assumptions have typically failed to be supported by the writing literature. Research suggests that higher quality writing is…
ERIC Educational Resources Information Center
Lee, Yi-Hsuan; Zhang, Jinming
2008-01-01
The method of maximum-likelihood is typically applied to item response theory (IRT) models when the ability parameter is estimated while conditioning on the true item parameters. In practice, the item parameters are unknown and need to be estimated first from a calibration sample. Lewis (1985) and Zhang and Lu (2007) proposed the expected response…
Assessing the spatial and temporal variations of water quality in lowland areas, Northern Germany
NASA Astrophysics Data System (ADS)
Lam, Q. D.; Schmalz, B.; Fohrer, N.
2012-05-01
SummaryThe pollution of rivers and streams with agro-chemical contaminants has become one of the most crucial environmental problems in the world. The assessment of spatial and temporal variations of water quality influenced by point and diffuse source pollution is necessary to manage the environment sustainably in various watershed scales. The overall objectives of this study were to assess the transferability of parameter sets between lowland catchments on different scales using the ecohydrological model SWAT (Soil and Water Assessment Tool) and to evaluate the temporal and spatial patterns of water quality in the whole catchments before and after implementation of best management practices (BMPs). The study area Kielstau catchment is located in Northern Germany as typical example of lowland - flood plain landscape. Sandy, loamy and peat soils are characteristic for this area. Land use is dominated by arable land and pasture. In this study we examined two catchment areas including Kielstau catchment 50 km2 and its subcatchment, namely Moorau, with the area of 7.6 km2. The water quality of these catchments is not only influenced by diffuse sources from agricultural areas but also by point sources from municipal wastewater treatment plants (WWTPs). Diffuse sources as well as punctual entries from the WWTPs are considered in the model set-up. For this study, the calibration and validation of the model were carried out in a daily time step for flow and nutrients. The results indicate that the parameter sets could be transferred in lowland catchments with similar environmental conditions. Shallow groundwater is the major contributor to total nitrate load in the stream accounting for about 93% of the total nitrate load, while only about 7% originates in surface runoff and lateral flow. The study also indicates that applying a spatially distributed modeling approach was an appropriate method to generate source maps showing the spatial distribution of TN load from hydrologic response units (HRUs) as well as from subbasins and to identify the crucial pollution areas within a watershed whose management practices can be improved to control more effectively nitrogen loading to water bodies.
Dodgen, L K; Kelly, W R; Panno, S V; Taylor, S J; Armstrong, D L; Wiles, K N; Zhang, Y; Zheng, W
2017-02-01
Karst aquifers are drinking water sources for 25% of the global population. However, the unique geology of karst areas facilitates rapid transfer of surficial chemicals to groundwater, potentially contaminating drinking water. Contamination of karst aquifers by nitrate, chloride, and bacteria have been previously observed, but little knowledge is available on the presence of contaminants of emerging concern (CECs), such as pharmaceuticals. Over a 17-month period, 58 water samples were collected from 13 sites in the Salem Plateau, a karst region in southwestern Illinois, United States. Water was analyzed for 12 pharmaceutical and personal care products (PPCPs), 7 natural and synthetic hormones, and 49 typical water quality parameters (e.g., nutrients and bacteria). Hormones were detected in only 23% of samples, with concentrations of 2.2-9.1ng/L. In contrast, PPCPs were quantified in 89% of groundwater samples. The two most commonly detected PPCPs were the antimicrobial triclocarban, in 81% of samples, and the cardiovascular drug gemfibrozil, in 57%. Analytical results were combined with data of local stream flow, weather, and land use to 1) characterize the extent of aquifer contamination by CECs, 2) cluster sites with similar PPCP contamination profiles, and 3) develop models to describe PPCP contamination. Median detection in karst groundwater was 3 PPCPs at a summed concentration of 4.6ng/L. Sites clustered into 3 subsets with unique contamination models. PPCP contamination in Cluster I sites was related to stream height, manganese, boron, and heterotrophic bacteria. Cluster II sites were characterized by groundwater temperature, specific conductivity, sodium, and calcium. Cluster III sites were characterized by dissolved oxygen and barium. Across all sites, no single or small set of water quality factors was significantly predictive of PPCP contamination, although gemfibrozil concentrations were strongly related to the sum of PPCPs in karst groundwater. Copyright © 2016 Elsevier B.V. All rights reserved.
Henriques, David; Alonso-Del-Real, Javier; Querol, Amparo; Balsa-Canto, Eva
2018-01-01
Wineries face unprecedented challenges due to new market demands and climate change effects on wine quality. New yeast starters including non-conventional Saccharomyces species, such as S. kudriavzevii , may contribute to deal with some of these challenges. The design of new fermentations using non-conventional yeasts requires an improved understanding of the physiology and metabolism of these cells. Dynamic modeling brings the potential of exploring the most relevant mechanisms and designing optimal processes more systematically. In this work we explore mechanisms by means of a model selection, reduction and cross-validation pipeline which enables to dissect the most relevant fermentation features for the species under consideration, Saccharomyces cerevisiae T73 and Saccharomyces kudriavzevii CR85. The pipeline involved the comparison of a collection of models which incorporate several alternative mechanisms with emphasis on the inhibitory effects due to temperature and ethanol. We focused on defining a minimal model with the minimum number of parameters, to maximize the identifiability and the quality of cross-validation. The selected model was then used to highlight differences in behavior between species. The analysis of model parameters would indicate that the specific growth rate and the transport of hexoses at initial times are higher for S. cervisiae T73 while S. kudriavzevii CR85 diverts more flux for glycerol production and cellular maintenance. As a result, the fermentations with S. kudriavzevii CR85 are typically slower; produce less ethanol but higher glycerol. Finally, we also explored optimal initial inoculation and process temperature to find the best compromise between final product characteristics and fermentation duration. Results reveal that the production of glycerol is distinctive in S. kudriavzevii CR85, it was not possible to achieve the same production of glycerol with S. cervisiae T73 in any of the conditions tested. This result brings the idea that the optimal design of mixed cultures may have an enormous potential for the improvement of final wine quality.
Henriques, David; Alonso-del-Real, Javier; Querol, Amparo; Balsa-Canto, Eva
2018-01-01
Wineries face unprecedented challenges due to new market demands and climate change effects on wine quality. New yeast starters including non-conventional Saccharomyces species, such as S. kudriavzevii, may contribute to deal with some of these challenges. The design of new fermentations using non-conventional yeasts requires an improved understanding of the physiology and metabolism of these cells. Dynamic modeling brings the potential of exploring the most relevant mechanisms and designing optimal processes more systematically. In this work we explore mechanisms by means of a model selection, reduction and cross-validation pipeline which enables to dissect the most relevant fermentation features for the species under consideration, Saccharomyces cerevisiae T73 and Saccharomyces kudriavzevii CR85. The pipeline involved the comparison of a collection of models which incorporate several alternative mechanisms with emphasis on the inhibitory effects due to temperature and ethanol. We focused on defining a minimal model with the minimum number of parameters, to maximize the identifiability and the quality of cross-validation. The selected model was then used to highlight differences in behavior between species. The analysis of model parameters would indicate that the specific growth rate and the transport of hexoses at initial times are higher for S. cervisiae T73 while S. kudriavzevii CR85 diverts more flux for glycerol production and cellular maintenance. As a result, the fermentations with S. kudriavzevii CR85 are typically slower; produce less ethanol but higher glycerol. Finally, we also explored optimal initial inoculation and process temperature to find the best compromise between final product characteristics and fermentation duration. Results reveal that the production of glycerol is distinctive in S. kudriavzevii CR85, it was not possible to achieve the same production of glycerol with S. cervisiae T73 in any of the conditions tested. This result brings the idea that the optimal design of mixed cultures may have an enormous potential for the improvement of final wine quality. PMID:29456524
Near real time water quality monitoring of Chivero and Manyame lakes of Zimbabwe
NASA Astrophysics Data System (ADS)
Muchini, Ronald; Gumindoga, Webster; Togarepi, Sydney; Pinias Masarira, Tarirai; Dube, Timothy
2018-05-01
Zimbabwe's water resources are under pressure from both point and non-point sources of pollution hence the need for regular and synoptic assessment. In-situ and laboratory based methods of water quality monitoring are point based and do not provide a synoptic coverage of the lakes. This paper presents novel methods for retrieving water quality parameters in Chivero and Manyame lakes, Zimbabwe, from remotely sensed imagery. Remotely sensed derived water quality parameters are further validated using in-situ data. It also presents an application for automated retrieval of those parameters developed in VB6, as well as a web portal for disseminating the water quality information to relevant stakeholders. The web portal is developed, using Geoserver, open layers and HTML. Results show the spatial variation of water quality and an automated remote sensing and GIS system with a web front end to disseminate water quality information.
Assuring quality health care outcomes: lessons learned from car dealers?
Dimsdale, Joel E
2017-01-01
Health care systems want quality but struggle to find the right tools because, typically, they track quality in only one or two ways. Because of the complexity of health care, high quality will emerge only when health care systems employ multiple approaches, including, importantly, patient-reported outcome perspectives. Sustained changes are unlikely to emerge in the absence of such multipronged interventions. PMID:28123314
ERIC Educational Resources Information Center
Maxwell, Scott E.; Cole, David A.; Mitchell, Melissa A.
2011-01-01
Maxwell and Cole (2007) showed that cross-sectional approaches to mediation typically generate substantially biased estimates of longitudinal parameters in the special case of complete mediation. However, their results did not apply to the more typical case of partial mediation. We extend their previous work by showing that substantial bias can…
Methods to Estimate the Between-Study Variance and Its Uncertainty in Meta-Analysis
ERIC Educational Resources Information Center
Veroniki, Areti Angeliki; Jackson, Dan; Viechtbauer, Wolfgang; Bender, Ralf; Bowden, Jack; Knapp, Guido; Kuss, Oliver; Higgins, Julian P. T.; Langan, Dean; Salanti, Georgia
2016-01-01
Meta-analyses are typically used to estimate the overall/mean of an outcome of interest. However, inference about between-study variability, which is typically modelled using a between-study variance parameter, is usually an additional aim. The DerSimonian and Laird method, currently widely used by default to estimate the between-study variance,…
Real-Time Evaluation: Exploring Effects on Instructional Quality and Learning Enhancement
ERIC Educational Resources Information Center
DeSimone, Charles P.
2016-01-01
Evaluation of instruction has typically occurred during development, before implementation, and after course completion. The problem is that evaluation is typically post delivery; courses are not traditionally updated in real time with feedback from students in the classroom. However the potential to evaluate and modify instruction during delivery…
Sleep Patterns in Preschool-Age Children with Autism, Developmental Delay, and Typical Development
ERIC Educational Resources Information Center
Goodlin-Jones, Beth L.; Tang, Karen; Liu, Jingyi; Anders, Thomas F.
2008-01-01
The study investigates sleep disorders by assessing the quantity and quality of sleep in preschool children with autism and comparing them with developmental delay without autism, and typical development. The results prove that sleep patterns are different in preschool children across all three categories.
Properties of Martian Hematite at Meridiani Planum by Simultaneous Fitting of Mars Mossbauer Spectra
NASA Technical Reports Server (NTRS)
Agresti, D. G.; Fleischer, I.; Klingelhoefer, G.; Morris, R. V.
2010-01-01
Mossbauer spectrometers [1] on the two Mars Exploration Rovers (MERs) have been making measurements of surface rocks and soils since January 2004, recording spectra in 10-K-wide temperature bins ranging from 180 K to 290 K. Initial analyses focused on modeling individual spectra directly as acquired or, to increase statistical quality, as sums of single-rock or soil spectra over temperature or as sums over similar rock or soil type [2, 3]. Recently, we have begun to apply simultaneous fitting procedures [4] to Mars Mossbauer data [5-7]. During simultaneous fitting (simfitting), many spectra are modeled similarly and fit together to a single convergence criterion. A satisfactory simfit with parameter values consistent among all spectra is more likely than many single-spectrum fits of the same data because fitting parameters are shared among multiple spectra in the simfit. Consequently, the number of variable parameters, as well as the correlations among them, is greatly reduced. Here we focus on applications of simfitting to interpret the hematite signature in Moessbauer spectra acquired at Meridiani Planum, results of which were reported in [7]. The Spectra. We simfit two sets of spectra with large hematite content [7]: 1) 60 rock outcrop spectra from Eagle Crater; and 2) 46 spectra of spherule-rich lag deposits (Table 1). Spectra of 10 different targets acquired at several distinct temperatures are included in each simfit set. In the table, each Sol (martian day) represents a different target, NS is the number of spectra for a given sol, and NT is the number of spectra for a given temperature. The spectra are indexed to facilitate definition of parameter relations and constraints. An example spectrum is shown in Figure 1, together with a typical fitting model. Results. We have shown that simultaneous fitting is effective in analyzing a large set of related MER Mossbauer spectra. By using appropriate constraints, we derive target-specific quantities and the temperature dependence of certain parameters. By examining different fitting models, we demonstrate an improved fit for martian hematite modeled with two sextets rather than as a single sextet, and show that outcrop and spherule hematite are distinct. For outcrop, the weaker sextet indicates a Morin transition typical of well-crystallized and chemically pure hematite, while most of the outcrop hematite remains in a weakly ferromagnetic state at all temperatures. For spherule spectra, both sextets are consistent with weakly ferromagnetic hematite with no Morin transition. For both hematites, there is evidence for a range of particle sizes.
Zalvidea; Colautti; Sicre
2000-05-01
An analysis of the Strehl ratio and the optical transfer function as imaging quality parameters of optical elements with enhanced focal length is carried out by employing the Wigner distribution function. To this end, we use four different pupil functions: a full circular aperture, a hyper-Gaussian aperture, a quartic phase plate, and a logarithmic phase mask. A comparison is performed between the quality parameters and test images formed by these pupil functions at different defocus distances.
A comprehensive method for GNSS data quality determination to improve ionospheric data analysis.
Kim, Minchan; Seo, Jiwon; Lee, Jiyun
2014-08-14
Global Navigation Satellite Systems (GNSS) are now recognized as cost-effective tools for ionospheric studies by providing the global coverage through worldwide networks of GNSS stations. While GNSS networks continue to expand to improve the observability of the ionosphere, the amount of poor quality GNSS observation data is also increasing and the use of poor-quality GNSS data degrades the accuracy of ionospheric measurements. This paper develops a comprehensive method to determine the quality of GNSS observations for the purpose of ionospheric studies. The algorithms are designed especially to compute key GNSS data quality parameters which affect the quality of ionospheric product. The quality of data collected from the Continuously Operating Reference Stations (CORS) network in the conterminous United States (CONUS) is analyzed. The resulting quality varies widely, depending on each station and the data quality of individual stations persists for an extended time period. When compared to conventional methods, the quality parameters obtained from the proposed method have a stronger correlation with the quality of ionospheric data. The results suggest that a set of data quality parameters when used in combination can effectively select stations with high-quality GNSS data and improve the performance of ionospheric data analysis.
A Comprehensive Method for GNSS Data Quality Determination to Improve Ionospheric Data Analysis
Kim, Minchan; Seo, Jiwon; Lee, Jiyun
2014-01-01
Global Navigation Satellite Systems (GNSS) are now recognized as cost-effective tools for ionospheric studies by providing the global coverage through worldwide networks of GNSS stations. While GNSS networks continue to expand to improve the observability of the ionosphere, the amount of poor quality GNSS observation data is also increasing and the use of poor-quality GNSS data degrades the accuracy of ionospheric measurements. This paper develops a comprehensive method to determine the quality of GNSS observations for the purpose of ionospheric studies. The algorithms are designed especially to compute key GNSS data quality parameters which affect the quality of ionospheric product. The quality of data collected from the Continuously Operating Reference Stations (CORS) network in the conterminous United States (CONUS) is analyzed. The resulting quality varies widely, depending on each station and the data quality of individual stations persists for an extended time period. When compared to conventional methods, the quality parameters obtained from the proposed method have a stronger correlation with the quality of ionospheric data. The results suggest that a set of data quality parameters when used in combination can effectively select stations with high-quality GNSS data and improve the performance of ionospheric data analysis. PMID:25196005
Optimal Tuner Selection for Kalman-Filter-Based Aircraft Engine Performance Estimation
NASA Technical Reports Server (NTRS)
Simon, Donald L.; Garg, Sanjay
2011-01-01
An emerging approach in the field of aircraft engine controls and system health management is the inclusion of real-time, onboard models for the inflight estimation of engine performance variations. This technology, typically based on Kalman-filter concepts, enables the estimation of unmeasured engine performance parameters that can be directly utilized by controls, prognostics, and health-management applications. A challenge that complicates this practice is the fact that an aircraft engine s performance is affected by its level of degradation, generally described in terms of unmeasurable health parameters such as efficiencies and flow capacities related to each major engine module. Through Kalman-filter-based estimation techniques, the level of engine performance degradation can be estimated, given that there are at least as many sensors as health parameters to be estimated. However, in an aircraft engine, the number of sensors available is typically less than the number of health parameters, presenting an under-determined estimation problem. A common approach to address this shortcoming is to estimate a subset of the health parameters, referred to as model tuning parameters. The problem/objective is to optimally select the model tuning parameters to minimize Kalman-filterbased estimation error. A tuner selection technique has been developed that specifically addresses the under-determined estimation problem, where there are more unknown parameters than available sensor measurements. A systematic approach is applied to produce a model tuning parameter vector of appropriate dimension to enable estimation by a Kalman filter, while minimizing the estimation error in the parameters of interest. Tuning parameter selection is performed using a multi-variable iterative search routine that seeks to minimize the theoretical mean-squared estimation error of the Kalman filter. This approach can significantly reduce the error in onboard aircraft engine parameter estimation applications such as model-based diagnostic, controls, and life usage calculations. The advantage of the innovation is the significant reduction in estimation errors that it can provide relative to the conventional approach of selecting a subset of health parameters to serve as the model tuning parameter vector. Because this technique needs only to be performed during the system design process, it places no additional computation burden on the onboard Kalman filter implementation. The technique has been developed for aircraft engine onboard estimation applications, as this application typically presents an under-determined estimation problem. However, this generic technique could be applied to other industries using gas turbine engine technology.
NASA Astrophysics Data System (ADS)
Susiluoto, Jouni; Raivonen, Maarit; Backman, Leif; Laine, Marko; Makela, Jarmo; Peltola, Olli; Vesala, Timo; Aalto, Tuula
2018-03-01
Estimating methane (CH4) emissions from natural wetlands is complex, and the estimates contain large uncertainties. The models used for the task are typically heavily parameterized and the parameter values are not well known. In this study, we perform a Bayesian model calibration for a new wetland CH4 emission model to improve the quality of the predictions and to understand the limitations of such models.The detailed process model that we analyze contains descriptions for CH4 production from anaerobic respiration, CH4 oxidation, and gas transportation by diffusion, ebullition, and the aerenchyma cells of vascular plants. The processes are controlled by several tunable parameters. We use a hierarchical statistical model to describe the parameters and obtain the posterior distributions of the parameters and uncertainties in the processes with adaptive Markov chain Monte Carlo (MCMC), importance resampling, and time series analysis techniques. For the estimation, the analysis utilizes measurement data from the Siikaneva flux measurement site in southern Finland. The uncertainties related to the parameters and the modeled processes are described quantitatively. At the process level, the flux measurement data are able to constrain the CH4 production processes, methane oxidation, and the different gas transport processes. The posterior covariance structures explain how the parameters and the processes are related. Additionally, the flux and flux component uncertainties are analyzed both at the annual and daily levels. The parameter posterior densities obtained provide information regarding importance of the different processes, which is also useful for development of wetland methane emission models other than the square root HelsinkI Model of MEthane buiLd-up and emIssion for peatlands (sqHIMMELI). The hierarchical modeling allows us to assess the effects of some of the parameters on an annual basis. The results of the calibration and the cross validation suggest that the early spring net primary production could be used to predict parameters affecting the annual methane production. Even though the calibration is specific to the Siikaneva site, the hierarchical modeling approach is well suited for larger-scale studies and the results of the estimation pave way for a regional or global-scale Bayesian calibration of wetland emission models.
Alam, Maksudul; Deng, Xinwei; Philipson, Casandra; Bassaganya-Riera, Josep; Bisset, Keith; Carbo, Adria; Eubank, Stephen; Hontecillas, Raquel; Hoops, Stefan; Mei, Yongguo; Abedi, Vida; Marathe, Madhav
2015-01-01
Agent-based models (ABM) are widely used to study immune systems, providing a procedural and interactive view of the underlying system. The interaction of components and the behavior of individual objects is described procedurally as a function of the internal states and the local interactions, which are often stochastic in nature. Such models typically have complex structures and consist of a large number of modeling parameters. Determining the key modeling parameters which govern the outcomes of the system is very challenging. Sensitivity analysis plays a vital role in quantifying the impact of modeling parameters in massively interacting systems, including large complex ABM. The high computational cost of executing simulations impedes running experiments with exhaustive parameter settings. Existing techniques of analyzing such a complex system typically focus on local sensitivity analysis, i.e. one parameter at a time, or a close “neighborhood” of particular parameter settings. However, such methods are not adequate to measure the uncertainty and sensitivity of parameters accurately because they overlook the global impacts of parameters on the system. In this article, we develop novel experimental design and analysis techniques to perform both global and local sensitivity analysis of large-scale ABMs. The proposed method can efficiently identify the most significant parameters and quantify their contributions to outcomes of the system. We demonstrate the proposed methodology for ENteric Immune SImulator (ENISI), a large-scale ABM environment, using a computational model of immune responses to Helicobacter pylori colonization of the gastric mucosa. PMID:26327290
Alam, Maksudul; Deng, Xinwei; Philipson, Casandra; Bassaganya-Riera, Josep; Bisset, Keith; Carbo, Adria; Eubank, Stephen; Hontecillas, Raquel; Hoops, Stefan; Mei, Yongguo; Abedi, Vida; Marathe, Madhav
2015-01-01
Agent-based models (ABM) are widely used to study immune systems, providing a procedural and interactive view of the underlying system. The interaction of components and the behavior of individual objects is described procedurally as a function of the internal states and the local interactions, which are often stochastic in nature. Such models typically have complex structures and consist of a large number of modeling parameters. Determining the key modeling parameters which govern the outcomes of the system is very challenging. Sensitivity analysis plays a vital role in quantifying the impact of modeling parameters in massively interacting systems, including large complex ABM. The high computational cost of executing simulations impedes running experiments with exhaustive parameter settings. Existing techniques of analyzing such a complex system typically focus on local sensitivity analysis, i.e. one parameter at a time, or a close "neighborhood" of particular parameter settings. However, such methods are not adequate to measure the uncertainty and sensitivity of parameters accurately because they overlook the global impacts of parameters on the system. In this article, we develop novel experimental design and analysis techniques to perform both global and local sensitivity analysis of large-scale ABMs. The proposed method can efficiently identify the most significant parameters and quantify their contributions to outcomes of the system. We demonstrate the proposed methodology for ENteric Immune SImulator (ENISI), a large-scale ABM environment, using a computational model of immune responses to Helicobacter pylori colonization of the gastric mucosa.
This dataset supports the modeling study of Seltzer et al. (2016) published in Atmospheric Environment. In this study, techniques typically used for future air quality projections are applied to a historical 11-year period to assess the performance of the modeling system when the driving meteorological conditions are obtained using dynamical downscaling of coarse-scale fields without correcting toward higher resolution observations. The Weather Research and Forecasting model and the Community Multiscale Air Quality model are used to simulate regional climate and air quality over the contiguous United States for 2000-2010. The air quality simulations for that historical period are then compared to observations from four national networks. Comparisons are drawn between defined performance metrics and other published modeling results for predicted ozone, fine particulate matter, and speciated fine particulate matter. The results indicate that the historical air quality simulations driven by dynamically downscaled meteorology are typically within defined modeling performance benchmarks and are consistent with results from other published modeling studies using finer-resolution meteorology. This indicates that the regional climate and air quality modeling framework utilized here does not introduce substantial bias, which provides confidence in the method??s use for future air quality projections.This dataset is associated with the following publication:Seltzer, K., C
Toward a Micro-Scale Acoustic Direction-Finding Sensor with Integrated Electronic Readout
2013-06-01
measurements with curve fits . . . . . . . . . . . . . . . 20 Figure 2.10 Failure testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22...2.1 Sensor parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 Table 2.2 Curve fit parameters...elastic, the quantity of interest is the elastic stiffness. In a typical nanoindentation test, the loading curve is nonlinear due to combined plastic
Multiplicity Control in Structural Equation Modeling: Incorporating Parameter Dependencies
ERIC Educational Resources Information Center
Smith, Carrie E.; Cribbie, Robert A.
2013-01-01
When structural equation modeling (SEM) analyses are conducted, significance tests for all important model relationships (parameters including factor loadings, covariances, etc.) are typically conducted at a specified nominal Type I error rate ([alpha]). Despite the fact that many significance tests are often conducted in SEM, rarely is…
Said, Khaled S A; Shuhaimi-Othman, M; Ahmad, A K
2012-05-01
A study of water quality parameters (temperature, conductivity, total dissolved solid, dissolved oxygen, pH and water hardness) in Ampang Hilir Lake was conducted in January, April, July and October 2010. The water quality parameters were tested and recorded at different sampling stations chosen randomly using Hydrolab Data Sonde 4 and Surveyor 4 a water quality multi probe (USA). Six metals which were cadmium, chromium, lead, nickel, zinc and copper were determined in five different compartments of the lake namely water, total suspended solids, plankton, sediment and fish. The metals concentration were determined by Inductively Coupled Plasma Mass Spectrometer (ICP-MS), Perkin Elmer Elan, model 9000.The water quality parameters were compared with National Water Quality Standard (NWQS Malaysia) while metal concentrations were compared with Malaysian and international standards. The study shows that water quality parameters are of class 2. This condition is suitable for recreational activities where body contact is allowed and suitable for sensitive fishing activities. Furthermore, metal concentrations were found to be lower than the international standards, therefore toxic effects for these metals would be rarely observed and the adverse effects to aquatic organisms would not frequently occur.
Texas Water Quality Board Teachers Workshop Program.
ERIC Educational Resources Information Center
Texas Water Quality Board, Austin.
These materials are designed for teachers participating in an inservice workshop on water quality. Included in the materials are a workshop agenda, a water awareness pretest, and the various parameters and tests that are used to determine and measure water quality. The parameters are discussed from the standpoint of their potential impact to…
A comparison of different functions for predicted protein model quality assessment.
Li, Juan; Fang, Huisheng
2016-07-01
In protein structure prediction, a considerable number of models are usually produced by either the Template-Based Method (TBM) or the ab initio prediction. The purpose of this study is to find the critical parameter in assessing the quality of the predicted models. A non-redundant template library was developed and 138 target sequences were modeled. The target sequences were all distant from the proteins in the template library and were aligned with template library proteins on the basis of the transformation matrix. The quality of each model was first assessed with QMEAN and its six parameters, which are C_β interaction energy (C_beta), all-atom pairwise energy (PE), solvation energy (SE), torsion angle energy (TAE), secondary structure agreement (SSA), and solvent accessibility agreement (SAE). Finally, the alignment score (score) was also used to assess the quality of model. Hence, a total of eight parameters (i.e., QMEAN, C_beta, PE, SE, TAE, SSA, SAE, score) were independently used to assess the quality of each model. The results indicate that SSA is the best parameter to estimate the quality of the model.
Shan, Yan; Zeng, Meng-su; Liu, Kai; Miao, Xi-Yin; Lin, Jiang; Fu, Cai xia; Xu, Peng-ju
2015-01-01
To evaluate the effect on image quality and intravoxel incoherent motion (IVIM) parameters of small hepatocellular carcinoma (HCC) from choice of either free-breathing (FB) or navigator-triggered (NT) diffusion-weighted (DW) imaging. Thirty patients with 37 small HCCs underwent IVIM DW imaging using 12 b values (0-800 s/mm) with 2 sequences: NT, FB. A biexponential analysis with the Bayesian method yielded true diffusion coefficient (D), pseudodiffusion coefficient (D*), and perfusion fraction (f) in small HCCs and liver parenchyma. Apparent diffusion coefficient (ADC) was also calculated. The acquisition time and image quality scores were assessed for 2 sequences. Independent sample t test was used to compare image quality, signal intensity ratio, IVIM parameters, and ADC values between the 2 sequences; reproducibility of IVIM parameters, and ADC values between 2 sequences was assessed with the Bland-Altman method (BA-LA). Image quality with NT sequence was superior to that with FB acquisition (P = 0.02). The mean acquisition time for FB scheme was shorter than that of NT sequence (6 minutes 14 seconds vs 10 minutes 21 seconds ± 10 seconds P < 0.01). The signal intensity ratio of small HCCs did not vary significantly between the 2 sequences. The ADC and IVIM parameters from the 2 sequences show no significant difference. Reproducibility of D*and f parameters in small HCC was poor (BA-LA: 95% confidence interval, -180.8% to 189.2% for D* and -133.8% to 174.9% for f). A moderate reproducibility of D and ADC parameters was observed (BA-LA: 95% confidence interval, -83.5% to 76.8% for D and -74.4% to 88.2% for ADC) between the 2 sequences. The NT DW imaging technique offers no advantage in IVIM parameters measurements of small HCC except better image quality, whereas FB technique offers greater confidence in fitted diffusion parameters for matched acquisition periods.
Flight Operations Analysis Tool
NASA Technical Reports Server (NTRS)
Easter, Robert; Herrell, Linda; Pomphrey, Richard; Chase, James; Wertz Chen, Julie; Smith, Jeffrey; Carter, Rebecca
2006-01-01
Flight Operations Analysis Tool (FLOAT) is a computer program that partly automates the process of assessing the benefits of planning spacecraft missions to incorporate various combinations of launch vehicles and payloads. Designed primarily for use by an experienced systems engineer, FLOAT makes it possible to perform a preliminary analysis of trade-offs and costs of a proposed mission in days, whereas previously, such an analysis typically lasted months. FLOAT surveys a variety of prior missions by querying data from authoritative NASA sources pertaining to 20 to 30 mission and interface parameters that define space missions. FLOAT provides automated, flexible means for comparing the parameters to determine compatibility or the lack thereof among payloads, spacecraft, and launch vehicles, and for displaying the results of such comparisons. Sparseness, typical of the data available for analysis, does not confound this software. FLOAT effects an iterative process that identifies modifications of parameters that could render compatible an otherwise incompatible mission set.
Skrobialowski, Stanley C.; Green, W. Reed; Galloway, Joel M.
2007-01-01
Water-quality samples collected from drainage canals, from Lake Pontchartrain, La., and from flood waters contained contaminants typically found in waters influenced by urban runoff. Pesticides and wastewater compounds were detected in all water samples, but none exceeded U.S. Environmental Protection Agency (EPA) drinking water or aquatic life criteria. Although metals were detected in all samples, copper, nickel, and silver occurred in concentrations greater than water-quality criteria for salt water. Salinity levels in the freshwater marshes south of New Orleans were typical of Gulf of Mexico waters for an extended period of time, and levels did not return to prehurricane levels until February 2006.
Development of wavelet-ANN models to predict water quality parameters in Hilo Bay, Pacific Ocean.
Alizadeh, Mohamad Javad; Kavianpour, Mohamad Reza
2015-09-15
The main objective of this study is to apply artificial neural network (ANN) and wavelet-neural network (WNN) models for predicting a variety of ocean water quality parameters. In this regard, several water quality parameters in Hilo Bay, Pacific Ocean, are taken under consideration. Different combinations of water quality parameters are applied as input variables to predict daily values of salinity, temperature and DO as well as hourly values of DO. The results demonstrate that the WNN models are superior to the ANN models. Also, the hourly models developed for DO prediction outperform the daily models of DO. For the daily models, the most accurate model has R equal to 0.96, while for the hourly model it reaches up to 0.98. Overall, the results show the ability of the model to monitor the ocean parameters, in condition with missing data, or when regular measurement and monitoring are impossible. Copyright © 2015 Elsevier Ltd. All rights reserved.
Wilderness experience quality: Effects of use density depend on how experience is conceived
David N. Cole; Troy E. Hall
2012-01-01
Different conceptions of experience and experience quality can explain ambiguous relationships among use density, crowding, experience and experience quality. We employed multiple methods to quantify experiential dimensions at a popular lake in the Alpine Lakes Wilderness, WA. Comparing weekdays to weekends, when use density is typically four times as high, we assessed...
NASA Astrophysics Data System (ADS)
Godsey, S. E.; Kirchner, J. W.
2008-12-01
The mean residence time - the average time that it takes rainfall to reach the stream - is a basic parameter used to characterize catchment processes. Heterogeneities in these processes lead to a distribution of travel times around the mean residence time. By examining this travel time distribution, we can better predict catchment response to contamination events. A catchment system with shorter residence times or narrower distributions will respond quickly to contamination events, whereas systems with longer residence times or longer-tailed distributions will respond more slowly to those same contamination events. The travel time distribution of a catchment is typically inferred from time series of passive tracers (e.g., water isotopes or chloride) in precipitation and streamflow. Variations in the tracer concentration in streamflow are usually damped compared to those in precipitation, because precipitation inputs from different storms (with different tracer signatures) are mixed within the catchment. Mathematically, this mixing process is represented by the convolution of the travel time distribution and the precipitation tracer inputs to generate the stream tracer outputs. Because convolution in the time domain is equivalent to multiplication in the frequency domain, it is relatively straightforward to estimate the parameters of the travel time distribution in either domain. In the time domain, the parameters describing the travel time distribution are typically estimated by maximizing the goodness of fit between the modeled and measured tracer outputs. In the frequency domain, the travel time distribution parameters can be estimated by fitting a power-law curve to the ratio of precipitation spectral power to stream spectral power. Differences between the methods of parameter estimation in the time and frequency domain mean that these two methods may respond differently to variations in data quality, record length and sampling frequency. Here we evaluate how well these two methods of travel time parameter estimation respond to different sources of uncertainty and compare the methods to one another. We do this by generating synthetic tracer input time series of different lengths, and convolve these with specified travel-time distributions to generate synthetic output time series. We then sample both the input and output time series at various sampling intervals and corrupt the time series with realistic error structures. Using these 'corrupted' time series, we infer the apparent travel time distribution, and compare it to the known distribution that was used to generate the synthetic data in the first place. This analysis allows us to quantify how different record lengths, sampling intervals, and error structures in the tracer measurements affect the apparent mean residence time and the apparent shape of the travel time distribution.
Optimization of Selective Laser Melting by Evaluation Method of Multiple Quality Characteristics
NASA Astrophysics Data System (ADS)
Khaimovich, A. I.; Stepanenko, I. S.; Smelov, V. G.
2018-01-01
Article describes the adoption of the Taguchi method in selective laser melting process of sector of combustion chamber by numerical and natural experiments for achieving minimum temperature deformation. The aim was to produce a quality part with minimum amount of numeric experiments. For the study, the following optimization parameters (independent factors) were chosen: the laser beam power and velocity; two factors for compensating the effect of the residual thermal stresses: the scale factor of the preliminary correction of the part geometry and the number of additional reinforcing elements. We used an orthogonal plan of 9 experiments with a factor variation at three levels (L9). As quality criterias, the values of distortions for 9 zones of the combustion chamber and the maximum strength of the material of the chamber were chosen. Since the quality parameters are multidirectional, a grey relational analysis was used to solve the optimization problem for multiple quality parameters. As a result, according to the parameters obtained, the combustion chamber segments of the gas turbine engine were manufactured.
O'Loughlin, Declan; Oliveira, Bárbara L; Elahi, Muhammad Adnan; Glavin, Martin; Jones, Edward; Popović, Milica; O'Halloran, Martin
2017-12-06
Inaccurate estimation of average dielectric properties can have a tangible impact on microwave radar-based breast images. Despite this, recent patient imaging studies have used a fixed estimate although this is known to vary from patient to patient. Parameter search algorithms are a promising technique for estimating the average dielectric properties from the reconstructed microwave images themselves without additional hardware. In this work, qualities of accurately reconstructed images are identified from point spread functions. As the qualities of accurately reconstructed microwave images are similar to the qualities of focused microscopic and photographic images, this work proposes the use of focal quality metrics for average dielectric property estimation. The robustness of the parameter search is evaluated using experimental dielectrically heterogeneous phantoms on the three-dimensional volumetric image. Based on a very broad initial estimate of the average dielectric properties, this paper shows how these metrics can be used as suitable fitness functions in parameter search algorithms to reconstruct clear and focused microwave radar images.
A multiple objective optimization approach to quality control
NASA Technical Reports Server (NTRS)
Seaman, Christopher Michael
1991-01-01
The use of product quality as the performance criteria for manufacturing system control is explored. The goal in manufacturing, for economic reasons, is to optimize product quality. The problem is that since quality is a rather nebulous product characteristic, there is seldom an analytic function that can be used as a measure. Therefore standard control approaches, such as optimal control, cannot readily be applied. A second problem with optimizing product quality is that it is typically measured along many dimensions: there are many apsects of quality which must be optimized simultaneously. Very often these different aspects are incommensurate and competing. The concept of optimality must now include accepting tradeoffs among the different quality characteristics. These problems are addressed using multiple objective optimization. It is shown that the quality control problem can be defined as a multiple objective optimization problem. A controller structure is defined using this as the basis. Then, an algorithm is presented which can be used by an operator to interactively find the best operating point. Essentially, the algorithm uses process data to provide the operator with two pieces of information: (1) if it is possible to simultaneously improve all quality criteria, then determine what changes to the process input or controller parameters should be made to do this; and (2) if it is not possible to improve all criteria, and the current operating point is not a desirable one, select a criteria in which a tradeoff should be made, and make input changes to improve all other criteria. The process is not operating at an optimal point in any sense if no tradeoff has to be made to move to a new operating point. This algorithm ensures that operating points are optimal in some sense and provides the operator with information about tradeoffs when seeking the best operating point. The multiobjective algorithm was implemented in two different injection molding scenarios: tuning of process controllers to meet specified performance objectives and tuning of process inputs to meet specified quality objectives. Five case studies are presented.
Impacts of WRF lightning assimilation on offline CMAQ simulations
Deep convective clouds vertically redistribute trace gases and aerosols and also provide a source for scavenging, aqueous phase chemistry, and wet deposition, making them important to air quality.? Regional air quality simulations are typically driven by meteorological models tha...
The impact of non-Gaussianity upon cosmological forecasts
NASA Astrophysics Data System (ADS)
Repp, A.; Szapudi, I.; Carron, J.; Wolk, M.
2015-12-01
The primary science driver for 3D galaxy surveys is their potential to constrain cosmological parameters. Forecasts of these surveys' effectiveness typically assume Gaussian statistics for the underlying matter density, despite the fact that the actual distribution is decidedly non-Gaussian. To quantify the effect of this assumption, we employ an analytic expression for the power spectrum covariance matrix to calculate the Fisher information for Baryon Acoustic Oscillation (BAO)-type model surveys. We find that for typical number densities, at kmax = 0.5h Mpc-1, Gaussian assumptions significantly overestimate the information on all parameters considered, in some cases by up to an order of magnitude. However, after marginalizing over a six-parameter set, the form of the covariance matrix (dictated by N-body simulations) causes the majority of the effect to shift to the `amplitude-like' parameters, leaving the others virtually unaffected. We find that Gaussian assumptions at such wavenumbers can underestimate the dark energy parameter errors by well over 50 per cent, producing dark energy figures of merit almost three times too large. Thus, for 3D galaxy surveys probing the non-linear regime, proper consideration of non-Gaussian effects is essential.
Physical characteristics and resistance parameters of typical urban cyclists.
Tengattini, Simone; Bigazzi, Alexander York
2018-03-30
This study investigates the rolling and drag resistance parameters and bicycle and cargo masses of typical urban cyclists. These factors are important for modelling of cyclist speed, power and energy expenditure, with applications including exercise performance, health and safety assessments and transportation network analysis. However, representative values for diverse urban travellers have not been established. Resistance parameters were measured utilizing a field coast-down test for 557 intercepted cyclists in Vancouver, Canada. Masses were also measured, along with other bicycle attributes such as tire pressure and size. The average (standard deviation) of coefficient of rolling resistance, effective frontal area, bicycle plus cargo mass, and bicycle-only mass were 0.0077 (0.0036), 0.559 (0.170) m 2 , 18.3 (4.1) kg, and 13.7 (3.3) kg, respectively. The range of measured values is wider and higher than suggested in existing literature, which focusses on sport cyclists. Significant correlations are identified between resistance parameters and rider and bicycle attributes, indicating higher resistance parameters for less sport-oriented cyclists. The findings of this study are important for appropriately characterising the full range of urban cyclists, including commuters and casual riders.
Barnett, Anna L; Wilmut, Kate; Plumb, Mandy S
2016-01-01
Introduction There is substantial evidence to support the relationship between transcription skills (handwriting and spelling) and compositional quality. For children with developmental coordination disorder, handwriting can be particularly challenging. While recent research has aimed to investigate their handwriting difficulties in more detail, the impact of transcription on their compositional quality has not previously been examined. The aim of this exploratory study was to examine compositional quality in children with developmental coordination disorder and to ascertain whether their transcription skills influence writing quality. Method Twenty-eight children with developmental coordination disorder participated in the study, with 28 typically developing age and gender matched controls. The children completed the ‘free-writing’ task from the detailed assessment of speed of handwriting tool, which was evaluated for compositional quality using the Wechsler objective language dimensions. Results The children with developmental coordination disorder performed significantly below their typically developing peers on five of the six Wechsler objective language dimensions items. They also had a higher percentage of misspelled words. Regression analyses indicated that the number of words produced per minute and the percentage of misspelled words explained 55% of the variance for compositional quality. Conclusion The handwriting difficulties so commonly reported in children with developmental coordination disorder have wider repercussions for the quality of written composition. PMID:27807392
Evaluation of near surface ozone and particulate matter in air ...
In this study, techniques typically used for future air quality projections are applied to a historical 11-year period to assess the performance of the modeling system when the driving meteorological conditions are obtained using dynamical downscaling of coarse-scale fields without correcting toward higher-resolution observations. The Weather Research and Forecasting model and the Community Multiscale Air Quality model are used to simulate regional climate and air quality over the contiguous United States for 2000–2010. The air quality simulations for that historical period are then compared to observations from four national networks. Comparisons are drawn between defined performance metrics and other published modeling results for predicted ozone, fine particulate matter, and speciated fine particulate matter. The results indicate that the historical air quality simulations driven by dynamically downscaled meteorology are typically within defined modeling performance benchmarks and are consistent with results from other published modeling studies using finer-resolution meteorology. This indicates that the regional climate and air quality modeling framework utilized here does not introduce substantial bias, which provides confidence in the method’s use for future air quality projections. This paper shows that if emissions inputs and coarse-scale meteorological inputs are reasonably accurate, then air quality can be simulated with acceptable accuracy even wi
Arnold, Matthias
2017-12-02
The economic evaluation of stratified breast cancer screening gains momentum, but produces also very diverse results. Systematic reviews so far focused on modeling techniques and epidemiologic assumptions. However, cost and utility parameters received only little attention. This systematic review assesses simulation models for stratified breast cancer screening based on their cost and utility parameters in each phase of breast cancer screening and care. A literature review was conducted to compare economic evaluations with simulation models of personalized breast cancer screening. Study quality was assessed using reporting guidelines. Cost and utility inputs were extracted, standardized and structured using a care delivery framework. Studies were then clustered according to their study aim and parameters were compared within the clusters. Eighteen studies were identified within three study clusters. Reporting quality was very diverse in all three clusters. Only two studies in cluster 1, four studies in cluster 2 and one study in cluster 3 scored high in the quality appraisal. In addition to the quality appraisal, this review assessed if the simulation models were consistent in integrating all relevant phases of care, if utility parameters were consistent and methodological sound and if cost were compatible and consistent in the actual parameters used for screening, diagnostic work up and treatment. Of 18 studies, only three studies did not show signs of potential bias. This systematic review shows that a closer look into the cost and utility parameter can help to identify potential bias. Future simulation models should focus on integrating all relevant phases of care, using methodologically sound utility parameters and avoiding inconsistent cost parameters.
Wang, Ling; Xian, Jiechen; Hong, Yanlong; Lin, Xiao; Feng, Yi
2012-05-01
To quantify the physical characteristics of sticks of traditional Chinese medicine (TCM) honeyed pills prepared by the plastic molded method and the correlation of adhesiveness and plasticity-related parameters of sticks and quality of pills, in order to find major parameters and the appropriate range impacting pill quality. Sticks were detected by texture analyzer for their physical characteristic parameters such as hardness and compression action, and pills were observed by visual evaluation for their quality. The correlation of both data was determined by the stepwise discriminant analysis. Stick physical characteristic parameter l(CD) can exactly depict the adhesiveness, with the discriminant equation of Y0 - Y1 = 6.415 - 41.594l(CD). When Y0 < Y1, pills were scattered well; when Y0 > Y1, pills were adhesive with each other. Pills' physical characteristic parameters l(CD) and l(AC), Ar, Tr can exactly depict smoothness of pills, with the discriminant equation of Z0 - Z1 = -195.318 + 78.79l(AC) - 3 258. 982Ar + 3437.935Tr. When Z0 < Z1, pills were smooth on surface. When Z0 > Z1, pills were rough on surface. The stepwise discriminant analysis is made to show the obvious correlation between key physical characteristic parameters l(CD) and l(AC), Ar, Tr of sticks and appearance quality of pills, defining the molding process for preparing pills by the plastic molded and qualifying ranges of key physical characteristic parameters characterizing intermediate sticks, in order to provide theoretical basis for prescription screening and technical parameter adjustment for pills.
WATGIS: A GIS-Based Lumped Parameter Water Quality Model
Glenn P. Fernandez; George M. Chescheir; R. Wayne Skaggs; Devendra M. Amatya
2002-01-01
A Geographic Information System (GIS)Âbased, lumped parameter water quality model was developed to estimate the spatial and temporal nitrogenÂloading patterns for lower coastal plain watersheds in eastern North Carolina. The model uses a spatially distributed delivery ratio (DR) parameter to account for nitrogen retention or loss along a drainage network. Delivery...
Poza-Lujan, Jose-Luis; Posadas-Yagüe, Juan-Luis; Simó-Ten, José-Enrique; Simarro, Raúl; Benet, Ginés
2015-02-25
This paper is part of a study of intelligent architectures for distributed control and communications systems. The study focuses on optimizing control systems by evaluating the performance of middleware through quality of service (QoS) parameters and the optimization of control using Quality of Control (QoC) parameters. The main aim of this work is to study, design, develop, and evaluate a distributed control architecture based on the Data-Distribution Service for Real-Time Systems (DDS) communication standard as proposed by the Object Management Group (OMG). As a result of the study, an architecture called Frame-Sensor-Adapter to Control (FSACtrl) has been developed. FSACtrl provides a model to implement an intelligent distributed Event-Based Control (EBC) system with support to measure QoS and QoC parameters. The novelty consists of using, simultaneously, the measured QoS and QoC parameters to make decisions about the control action with a new method called Event Based Quality Integral Cycle. To validate the architecture, the first five Braitenberg vehicles have been implemented using the FSACtrl architecture. The experimental outcomes, demonstrate the convenience of using jointly QoS and QoC parameters in distributed control systems.
Poza-Lujan, Jose-Luis; Posadas-Yagüe, Juan-Luis; Simó-Ten, José-Enrique; Simarro, Raúl; Benet, Ginés
2015-01-01
This paper is part of a study of intelligent architectures for distributed control and communications systems. The study focuses on optimizing control systems by evaluating the performance of middleware through quality of service (QoS) parameters and the optimization of control using Quality of Control (QoC) parameters. The main aim of this work is to study, design, develop, and evaluate a distributed control architecture based on the Data-Distribution Service for Real-Time Systems (DDS) communication standard as proposed by the Object Management Group (OMG). As a result of the study, an architecture called Frame-Sensor-Adapter to Control (FSACtrl) has been developed. FSACtrl provides a model to implement an intelligent distributed Event-Based Control (EBC) system with support to measure QoS and QoC parameters. The novelty consists of using, simultaneously, the measured QoS and QoC parameters to make decisions about the control action with a new method called Event Based Quality Integral Cycle. To validate the architecture, the first five Braitenberg vehicles have been implemented using the FSACtrl architecture. The experimental outcomes, demonstrate the convenience of using jointly QoS and QoC parameters in distributed control systems. PMID:25723145
Qiu, Jianfeng; Wang, Guozhu; Min, Jiao; Wang, Xiaoyan; Wang, Pengcheng
2013-12-21
Our aim was to measure the performance of desktop magnetic resonance imaging (MRI) systems using specially designed phantoms, by testing imaging parameters and analysing the imaging quality. We designed multifunction phantoms with diameters of 18 and 60 mm for desktop MRI scanners in accordance with the American Association of Physicists in Medicine (AAPM) report no. 28. We scanned the phantoms with three permanent magnet 0.5 T desktop MRI systems, measured the MRI image parameters, and analysed imaging quality by comparing the data with the AAPM criteria and Chinese national standards. Image parameters included: resonance frequency, high contrast spatial resolution, low contrast object detectability, slice thickness, geometrical distortion, signal-to-noise ratio (SNR), and image uniformity. The image parameters of three desktop MRI machines could be measured using our specially designed phantoms, and most parameters were in line with MRI quality control criterion, including: resonance frequency, high contrast spatial resolution, low contrast object detectability, slice thickness, geometrical distortion, image uniformity and slice position accuracy. However, SNR was significantly lower than in some references. The imaging test and quality control are necessary for desktop MRI systems, and should be performed with the applicable phantom and corresponding standards.
Behera, Manasa Ranjan; Chun, Cui; Palani, Sundarambal; Tkalich, Pavel
2013-12-15
The study presents a baseline variability and climatology study of measured hydrodynamic, water properties and some water quality parameters of West Johor Strait, Singapore at hourly-to-seasonal scales to uncover their dependency and correlation to one or more drivers. The considered parameters include, but not limited by sea surface elevation, current magnitude and direction, solar radiation and air temperature, water temperature, salinity, chlorophyll-a and turbidity. FFT (Fast Fourier Transform) analysis is carried out for the parameters to delineate relative effect of tidal and weather drivers. The group and individual correlations between the parameters are obtained by principal component analysis (PCA) and cross-correlation (CC) technique, respectively. The CC technique also identifies the dependency and time lag between driving natural forces and dependent water property and water quality parameters. The temporal variability and climatology of the driving forces and the dependent parameters are established at the hourly, daily, fortnightly and seasonal scales. Copyright © 2013 Elsevier Ltd. All rights reserved.
Water Recycling in Schools & Universities
ERIC Educational Resources Information Center
Meeten, Nick
2013-01-01
Consider the waste streams generated in schools and universities. So what is in the typical used water generated in schools and universities? It is typically about 99 percent water, with the remaining 1 percent mainly made up of organic compounds. Used water contains nutrients such as nitrogen and phosphorous. When one judges it on its quality, it…
ERIC Educational Resources Information Center
Bossaert, Goele; Colpin, Hilde; Pijl, Sip Jan; Petry, Katja
2015-01-01
This study focuses on companionship, intimacy, and support of reciprocated friendships of students with autism spectrum disorders (ASD), students with motor and/or sensory disabilities, and typically developing students with their classmates at the start of mainstream secondary school. The study included 1379 typically developing students, 65…
USDA-ARS?s Scientific Manuscript database
Oyster gardening is a practice designed to restore habitat for marine life and to improve water quality. This study determined physical and chemical water quality parameters at two oyster gardening sites in the Delaware Inland Bays and compared them with total aerobic bacteria and Vibrionaceae conc...
Impacts of climate change on surface water quality in relation to drinking water production.
Delpla, I; Jung, A-V; Baures, E; Clement, M; Thomas, O
2009-11-01
Besides climate change impacts on water availability and hydrological risks, the consequences on water quality is just beginning to be studied. This review aims at proposing a synthesis of the most recent existing interdisciplinary literature on the topic. After a short presentation about the role of the main factors (warming and consequences of extreme events) explaining climate change effects on water quality, the focus will be on two main points. First, the impacts on water quality of resources (rivers and lakes) modifying parameters values (physico-chemical parameters, micropollutants and biological parameters) are considered. Then, the expected impacts on drinking water production and quality of supplied water are discussed. The main conclusion which can be drawn is that a degradation trend of drinking water quality in the context of climate change leads to an increase of at risk situations related to potential health impact.
Uncertainty analyses of the calibrated parameter values of a water quality model
NASA Astrophysics Data System (ADS)
Rode, M.; Suhr, U.; Lindenschmidt, K.-E.
2003-04-01
For river basin management water quality models are increasingly used for the analysis and evaluation of different management measures. However substantial uncertainties exist in parameter values depending on the available calibration data. In this paper an uncertainty analysis for a water quality model is presented, which considers the impact of available model calibration data and the variance of input variables. The investigation was conducted based on four extensive flowtime related longitudinal surveys in the River Elbe in the years 1996 to 1999 with varying discharges and seasonal conditions. For the model calculations the deterministic model QSIM of the BfG (Germany) was used. QSIM is a one dimensional water quality model and uses standard algorithms for hydrodynamics and phytoplankton dynamics in running waters, e.g. Michaelis Menten/Monod kinetics, which are used in a wide range of models. The multi-objective calibration of the model was carried out with the nonlinear parameter estimator PEST. The results show that for individual flow time related measuring surveys very good agreements between model calculation and measured values can be obtained. If these parameters are applied to deviating boundary conditions, substantial errors in model calculation can occur. These uncertainties can be decreased with an increased calibration database. More reliable model parameters can be identified, which supply reasonable results for broader boundary conditions. The extension of the application of the parameter set on a wider range of water quality conditions leads to a slight reduction of the model precision for the specific water quality situation. Moreover the investigations show that highly variable water quality variables like the algal biomass always allow a smaller forecast accuracy than variables with lower coefficients of variation like e.g. nitrate.
Wind loading analysis and strategy for deflection reduction on HET wide field upgrade
NASA Astrophysics Data System (ADS)
South, Brian J.; Soukup, Ian M.; Worthington, Michael S.; Zierer, Joseph J.; Booth, John A.; Good, John M.
2010-07-01
Wind loading can be a detrimental source of vibration and deflection for any large terrestrial optical telescope. The Hobby-Eberly Telescope* (HET) in the Davis Mountains of West Texas is undergoing a Wide Field Upgrade (WFU) in support of the Dark Energy Experiment (HETDEX) that will greatly increase the size of the instrumentation subjected to operating wind speeds of up to 20.1 m/s (45 mph). A non-trivial consideration for this telescope (or others) is to quantify the wind loads and resulting deflections of telescope structures induced under normal operating conditions so that appropriate design changes can be made. A quasi-static computational fluid dynamics (CFD) model was generated using wind speeds collected on-site as inputs to characterize dynamic wind forces on telescope structures under various conditions. The CFD model was refined until predicted wind speed and direction inside the dome agreed with experimental data. The dynamic wind forces were then used in static loading analysis to determine maximum deflections under typical operating conditions. This approach also allows for exploration of operating parameters without impact to the observation schedule of the telescope. With optimum combinations of parameters (i.e. dome orientation, tracker position, and louver deployment), deflections due to current wind conditions can be significantly reduced. Furthermore, the upper limit for operating wind speed could be increased, provided these parameters are monitored closely. This translates into increased image quality and observing time.
NASA Astrophysics Data System (ADS)
Schweitzer, Susanne; Nemitz, Wolfgang; Sommer, Christian; Hartmann, Paul; Fulmek, Paul; Nicolics, Johann; Pachler, Peter; Hoschopf, Hans; Schrank, Franz; Langer, Gregor; Wenzl, Franz P.
2014-09-01
For a systematic approach to improve the white light quality of phosphor converted light-emitting diodes (LEDs) for general lighting applications it is imperative to get the individual sources of error for color temperature reproducibility under control. In this regard, it is imperative to understand how compositional, optical and materials properties of the color conversion element (CCE), which typically consists of phosphor particles embedded in a transparent matrix material, affect the constancy of a desired color temperature of a white LED source. In this contribution we use an LED assembly consisting of an LED die mounted on a printed circuit board (PCB) by chip-on-board technology and a CCE with a glob-top configuration as a model system and discuss the impact of potential sources for color temperature deviation among individual devices. Parameters that are investigated include imprecisions in the amount of materials deposition, deviations from the target value for the phosphor concentration in the matrix material, deviations from the target value for the particle sizes of the phosphor material, deviations from the target values for the refractive indexes of phosphor and matrix material as well as deviations from the reflectivity of the substrate surface. From these studies, some general conclusions can be drawn which of these parameters have the largest impact on color deviation and have to be controlled most precisely in a fabrication process in regard of color temperature reproducibility among individual white LED sources.
Evaluation of stream water quality in Atlanta, Georgia, and the surrounding region (USA)
Peters, N.E.; Kandell, S.J.
1999-01-01
A water-quality index (WQI) was developed from historical data (1986-1995) for streams in the Atlanta Region and augmented with 'new' and generally more comprehensive biweekly data on four small urban streams, representing an industrial area, a developed medium-density residential area and developing and developed low-density residential areas. Parameter WQIs were derived from percentile ranks of individual water-quality parameter values for each site by normalizing the constituent ranks for values from all sites in the area for a base period, i.e. 1990-1995. WQIs were developed primarily for nutrient-related parameters due to data availability. Site WQIs, which were computed by averaging the parameter WQIs, range from 0.2 (good quality) to 0.8 (poor quality), and increased downstream of known nutrient sources. Also, annual site WQI decreases from 1986 to 1995 at most long-term monitoring sites. Annual site WQI for individual parameters correlated with annual hydrological characteristics, particularly runoff, precipitation quantity, and water yield, reflecting the effect of dilution on parameter values. The WQIs of the four small urban streams were evaluated for the core-nutrient-related parameters, parameters for specific dissolved trace metal concentrations and sediment characteristics, and a species diversity index for the macro-invertebrate taxa. The site WQI for the core-nutrient-related parameters used in the retrospective analysis was, as expected, the worst for the industrial area and the best for the low-density residential areas. However, macro-invertebrate data indicate that although the species at the medium-density residential site were diverse, the taxa at the site were for species tolerant of degraded water quality. Furthermore, although a species-diversity index indicates no substantial difference between the two low-density residential areas, the number for macro-invertebrates for the developing area was much less than that for the developed area, consistent with observations of recent sediment problems probably associated with construction in the basin. However, sediment parameters were similar for the two sites suggesting that the routine biweekly measurements may not capture the short-term increases in sediment transport associated with rainstorms. The WQI technique is limited by the number and types of parameters included in it, the general conditions of those parameters for the range of conditions in area streams, and by the effects of external factors, such as hydrology, and therefore, should be used with caution.
Soil quality impacts of perennial bioenergy crops on marginally-productive lands
USDA-ARS?s Scientific Manuscript database
Dedicated perennial energy crops grown on marginally-productive croplands can provide a sustainable supply of bioenergy feedstock while improving soil quality and enhancing ecosystem services. Because marginally-productive croplands typically are at higher risk of degradation, growing highly produc...
Stability evaluation of quality parameters for palm oil products at low temperature storage.
Ramli, Nur Aainaa Syahirah; Mohd Noor, Mohd Azmil; Musa, Hajar; Ghazali, Razmah
2018-07-01
Palm oil is one of the major oils and fats produced and traded worldwide. The value of palm oil products is mainly influenced by their quality. According to ISO 17025:2005, accredited laboratories require a quality control procedure with respect to monitoring the validity of tests for determination of quality parameters. This includes the regular use of internal quality control using secondary reference materials. Unfortunately, palm oil reference materials are not currently available. To establish internal quality control samples, the stability of quality parameters needs to be evaluated. In the present study, the stability of quality parameters for palm oil products was examined over 10 months at low temperature storage (6 ± 2 °C). The palm oil products tested included crude palm oil (CPO); refined, bleached and deodorized (RBD) palm oil (RBDPO); RBD palm olein (RBDPOo); and RBD palm stearin (RBDPS). The quality parameters of the oils [i.e. moisture content, free fatty acid content (FFA), iodine value (IV), fatty acids composition (FAC) and slip melting point (SMP)] were determined prior to and throughout the storage period. The moisture, FFA, IV, FAC and SMP for palm oil products changed significantly (P < 0.05), whereas the moisture content for CPO, IV for RBDPO and RBDPOo, stearic acid composition for CPO and linolenic acid composition for CPO, RBDPO, RBDPOo and RBDPS did not (P > 0.05). The stability study indicated that the quality of the palm oil products was stable within the specified limits throughout the storage period at low temperature. The storage conditions preserved the quality of palm oil products throughout the storage period. These findings qualify the use of the palm oil products CPO, RBDPO, RBDPOo and RBDPS as control samples in the validation of test results. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.
Mitigation of stress: new treatment alternatives.
Subhani, Ahmad Rauf; Kamel, Nidal; Mohamad Saad, Mohamad Naufal; Nandagopal, Nanda; Kang, Kenneth; Malik, Aamir Saeed
2018-02-01
Complaints of stress are common in modern life. Psychological stress is a major cause of lifestyle-related issues, contributing to poor quality of life. Chronic stress impedes brain function, causing impairment of many executive functions, including working memory, decision making and attentional control. The current study sought to describe newly developed stress mitigation techniques, and their influence on autonomic and endocrine functions. The literature search revealed that the most frequently studied technique for stress mitigation was biofeedback (BFB). However, evidence suggests that neurofeedback (NFB) and noninvasive brain stimulation (NIBS) could potentially provide appropriate approaches. We found that recent studies of BFB methods have typically used measures of heart rate variability, respiration and skin conductance. In contrast, studies of NFB methods have typically utilized neurocomputation techniques employing electroencephalography, functional magnetic resonance imaging and near infrared spectroscopy. NIBS studies have typically utilized transcranial direct current stimulation methods. Mitigation of stress is a challenging but important research target for improving quality of life.
Supernovae as probes of cosmic parameters: estimating the bias from under-dense lines of sight
DOE Office of Scientific and Technical Information (OSTI.GOV)
Busti, V.C.; Clarkson, C.; Holanda, R.F.L., E-mail: vinicius.busti@uct.ac.za, E-mail: holanda@uepb.edu.br, E-mail: chris.clarkson@uct.ac.za
2013-11-01
Correctly interpreting observations of sources such as type Ia supernovae (SNe Ia) require knowledge of the power spectrum of matter on AU scales — which is very hard to model accurately. Because under-dense regions account for much of the volume of the universe, light from a typical source probes a mean density significantly below the cosmic mean. The relative sparsity of sources implies that there could be a significant bias when inferring distances of SNe Ia, and consequently a bias in cosmological parameter estimation. While the weak lensing approximation should in principle give the correct prediction for this, linear perturbationmore » theory predicts an effectively infinite variance in the convergence for ultra-narrow beams. We attempt to quantify the effect typically under-dense lines of sight might have in parameter estimation by considering three alternative methods for estimating distances, in addition to the usual weak lensing approximation. We find in each case this not only increases the errors in the inferred density parameters, but also introduces a bias in the posterior value.« less
Fast and Accurate Fitting and Filtering of Noisy Exponentials in Legendre Space
Bao, Guobin; Schild, Detlev
2014-01-01
The parameters of experimentally obtained exponentials are usually found by least-squares fitting methods. Essentially, this is done by minimizing the mean squares sum of the differences between the data, most often a function of time, and a parameter-defined model function. Here we delineate a novel method where the noisy data are represented and analyzed in the space of Legendre polynomials. This is advantageous in several respects. First, parameter retrieval in the Legendre domain is typically two orders of magnitude faster than direct fitting in the time domain. Second, data fitting in a low-dimensional Legendre space yields estimates for amplitudes and time constants which are, on the average, more precise compared to least-squares-fitting with equal weights in the time domain. Third, the Legendre analysis of two exponentials gives satisfactory estimates in parameter ranges where least-squares-fitting in the time domain typically fails. Finally, filtering exponentials in the domain of Legendre polynomials leads to marked noise removal without the phase shift characteristic for conventional lowpass filters. PMID:24603904
Retail Lamps Study 3.1: Dimming, Flicker, and Power Quality Characteristics of LED A Lamps
DOE Office of Scientific and Technical Information (OSTI.GOV)
Royer, Michael P.; Poplawski, Michael E.; Brown, Charles C.
2014-12-01
To date, all three reports in the retail lamps series have focused on basic performance parameters, such as lumen output, efficacy, and color quality. This report goes a step further, examining the photoelectric characteristics (i.e., dimming and flicker) of a subset of lamps from CALiPER Retails Lamps Study 3. Specifically, this report focuses on the dimming, power quality, and flicker characteristics of 14 LED A lamps, as controlled by four different retail-available dimmers. The results demonstrate notable variation across the various lamps, but little variation between the four dimmers. Overall, the LED lamps: ~tended to have higher relative light outputmore » compared to the incandescent and halogen benchmark at the same dimmer output signal (RMS voltage). The lamps’ dimming curves (i.e., the relationship between control signal and relative light output) ranged from linear to very similar to the square-law curve typical of an incandescent lamp. ~generally exhibited symmetrical behavior—the same dimming curve—when measured proceeding from maximum to minimum or minimum to maximum control signal. ~mostly dimmed below 10% of full light output, with some exceptions for specific lamp and dimmer combinations ~exhibited a range of flicker characteristics, with many comparing favorably to the level typical of a magnetically-ballasted fluorescent lamp through at least a majority of the dimming range. ~ always exceeded the relative (normalized) efficacy over the dimming range of the benchmark lamps, which rapidly decline in efficacy when they are dimmed. This report generally does not attempt to rank the performance of one product compared to another, but instead focuses on the collective performance of the group versus conventional incandescent or halogen lamps, the performance of which is likely to be the baseline for a majority of consumers. Undoubtedly, some LED lamps perform better—or more similar to conventional lamps—than others. Some perform desirably for one characteristic, but not others. Consumers (and specifiers) may have a hard time distinguishing better-performing lamps from one another; at this time, physical experimentation is likely the best evaluation tool.« less
Water Quality Assessment of Danjiangkou Reservoir and its Tributaries in China
NASA Astrophysics Data System (ADS)
Liu, Linghua; Peng, Wenqi; Wu, Leixiang; Liu, Laisheng
2018-01-01
Danjiangkou Reservoir is an important water source for the middle route of the South to North Water Diversion Project in China, and water quality of Danjiangkou Reservoir and its tributaries is crucial for the project. The purpose of this study is to evaluate the water quality of Daniiangkou Reservoir and its tributaries based on Canadian Council of Ministers of the Environment Water Quality Index (CCMEWQI). 22 water quality parameters from 25 sampling sites were analyzed to calculate WQI. The results indicate that water quality in Danjiangkou Reservoir area, Hanjiang River and Danjiang River is excellent. And the seriously polluted tributary rivers were Shending River, Jianghe River, Sihe River, Tianhe River, Jianhe River and Jiangjun River. Water quality parameters that cannot meet the standard limit for drinking water source were fecal coliform bacteria, CODcr, CODMn, BOD5, NH3-N, TP, DO, anionic surfactant and petroleum. Fecal coliform bacteria, TP, ammonia nitrogen, CODMn were the most common parameters to fail.
NASA Astrophysics Data System (ADS)
Mignani, A. G.; Ciaccheri, L.; Mencaglia, A. A.; Diaz-Herrera, N.; Garcia-Allende, P. B.; Ottevaere, H.; Thienpont, H.; Attilio, C.; Cimato, A.; Francalanci, S.; Paccagnini, A.; Pavone, F. S.
2009-01-01
Absorption spectroscopy in the wide 200-1700 nm spectral range is carried out by means of optical fiber instrumentation to achieve a digital mapping of liquids for the prediction of important quality parameters. Extra virgin olive oils from Italy and lubricant oils from turbines with different degrees of degradation were considered as "case studies". The spectral data were processed by means of multivariate analysis so as to obtain a correlation to quality parameters. In practice, the wide range absorption spectra were considered as an optical signature of the liquids from which to extract product quality information. The optical signatures of extra virgin olive oils were used to predict the content of the most important fatty acids. The optical signatures of lubricant oils were used to predict the concentration of the most important parameters for indicating the oil's degree of degradation, such as TAN, JOAP anti-wear index, and water content.
Parameter Trade Studies For Coherent Lidar Wind Measurements of Wind from Space
NASA Technical Reports Server (NTRS)
Kavaya, Michael J.; Frehlich, Rod G.
2007-01-01
The design of an orbiting wind profiling lidar requires selection of dozens of lidar, measurement scenario, and mission geometry parameters; in addition to prediction of atmospheric parameters. Typical mission designs do not include a thorough trade optimization of all of these parameters. We report here the integration of a recently published parameterization of coherent lidar wind velocity measurement performance with an orbiting coherent wind lidar computer simulation; and the use of these combined tools to perform some preliminary parameter trades. We use the 2006 NASA Global Wind Observing Sounder mission design as the starting point for the trades.
Bishop-Fitzpatrick, Lauren; Mazefsky, Carla A; Eack, Shaun M
2017-06-01
Identifying modifiable correlates of good quality of life in adults with autism spectrum disorder is of paramount importance for intervention development as the population of adults with autism spectrum disorder increases. This study sought to examine social support and perceived stress as potential modifiable correlates of quality of life in adults with autism spectrum disorder. We hypothesized that adults with autism spectrum disorder without co-occurring intellectual disabilities ( N = 40; aged 18-44 years) would report lower levels of social support and quality of life than typical community volunteers who were matched for age, sex, and race ( N = 25). We additionally hypothesized that social support would buffer the effect of perceived stress on quality of life in adults with autism spectrum disorder. Results indicated that adults with autism spectrum disorder reported significantly lower levels of social support and quality of life than matched typical community volunteers. In addition, findings showed significant direct effects of social support and perceived stress on quality of life in adults with autism spectrum disorder. Social support did not buffer the effect of perceived stress on quality of life. Interventions that teach adults with autism spectrum disorder skills to help them better manage stress and cultivate supportive social relationships have the potential to improve quality of life.
DRAINMOD-GIS: a lumped parameter watershed scale drainage and water quality model
G.P. Fernandez; G.M. Chescheir; R.W. Skaggs; D.M. Amatya
2006-01-01
A watershed scale lumped parameter hydrology and water quality model that includes an uncertainty analysis component was developed and tested on a lower coastal plain watershed in North Carolina. Uncertainty analysis was used to determine the impacts of uncertainty in field and network parameters of the model on the predicted outflows and nitrate-nitrogen loads at the...
ERIC Educational Resources Information Center
Wollack, James A.; Bolt, Daniel M.; Cohen, Allan S.; Lee, Young-Sun
2002-01-01
Compared the quality of item parameter estimates for marginal maximum likelihood (MML) and Markov Chain Monte Carlo (MCMC) with the nominal response model using simulation. The quality of item parameter recovery was nearly identical for MML and MCMC, and both methods tended to produce good estimates. (SLD)
Zheng, Xiaoming
2017-12-01
The purpose of this work was to examine the effects of relationship functions between diagnostic image quality and radiation dose on the governing equations for image acquisition parameter variations in X-ray imaging. Various equations were derived for the optimal selection of peak kilovoltage (kVp) and exposure parameter (milliAmpere second, mAs) in computed tomography (CT), computed radiography (CR), and direct digital radiography. Logistic, logarithmic, and linear functions were employed to establish the relationship between radiation dose and diagnostic image quality. The radiation dose to the patient, as a function of image acquisition parameters (kVp, mAs) and patient size (d), was used in radiation dose and image quality optimization. Both logistic and logarithmic functions resulted in the same governing equation for optimal selection of image acquisition parameters using a dose efficiency index. For image quality as a linear function of radiation dose, the same governing equation was derived from the linear relationship. The general equations should be used in guiding clinical X-ray imaging through optimal selection of image acquisition parameters. The radiation dose to the patient could be reduced from current levels in medical X-ray imaging.
NASA Astrophysics Data System (ADS)
Liu, Yang; Zhang, Jian; Pang, Zhicong; Wu, Weihui
2018-04-01
Selective laser melting (SLM) provides a feasible way for manufacturing of complex thin-walled parts directly, however, the energy input during SLM process, namely derived from the laser power, scanning speed, layer thickness and scanning space, etc. has great influence on the thin wall's qualities. The aim of this work is to relate the thin wall's parameters (responses), namely track width, surface roughness and hardness to the process parameters considered in this research (laser power, scanning speed and layer thickness) and to find out the optimal manufacturing conditions. Design of experiment (DoE) was used by implementing composite central design to achieve better manufacturing qualities. Mathematical models derived from the statistical analysis were used to establish the relationships between the process parameters and the responses. Also, the effects of process parameters on each response were determined. Then, a numerical optimization was performed to find out the optimal process set at which the quality features are at their desired values. Based on this study, the relationship between process parameters and SLMed thin-walled structure was revealed and thus, the corresponding optimal process parameters can be used to manufactured thin-walled parts with high quality.
Workflow for Criticality Assessment Applied in Biopharmaceutical Process Validation Stage 1.
Zahel, Thomas; Marschall, Lukas; Abad, Sandra; Vasilieva, Elena; Maurer, Daniel; Mueller, Eric M; Murphy, Patrick; Natschläger, Thomas; Brocard, Cécile; Reinisch, Daniela; Sagmeister, Patrick; Herwig, Christoph
2017-10-12
Identification of critical process parameters that impact product quality is a central task during regulatory requested process validation. Commonly, this is done via design of experiments and identification of parameters significantly impacting product quality (rejection of the null hypothesis that the effect equals 0). However, parameters which show a large uncertainty and might result in an undesirable product quality limit critical to the product, may be missed. This might occur during the evaluation of experiments since residual/un-modelled variance in the experiments is larger than expected a priori. Estimation of such a risk is the task of the presented novel retrospective power analysis permutation test. This is evaluated using a data set for two unit operations established during characterization of a biopharmaceutical process in industry. The results show that, for one unit operation, the observed variance in the experiments is much larger than expected a priori, resulting in low power levels for all non-significant parameters. Moreover, we present a workflow of how to mitigate the risk associated with overlooked parameter effects. This enables a statistically sound identification of critical process parameters. The developed workflow will substantially support industry in delivering constant product quality, reduce process variance and increase patient safety.
Sarah Jovan; Bruce McCune
2005-01-01
Air-quality monitoring in the United States is typically focused on urban areas even though the detrimental effects of pollution often extend into surrounding ecosystems. The purpose of this study was to construct a model, based upon epiphytic macrolichen community data, to indicate air-quality and climate in forested areas throughout the greater Central Valley of...
ERIC Educational Resources Information Center
Pritchard, Jim; Espy, John
This seventh in a series of eight modules for a course titled Quality Assurance Practices describes the key features of an audit system and offers practice in carrying out tasks of the technicians. The module follows a typical format that includes the following sections: (1) introduction, (2) module prerequisites, (3) objectives, (4) notes to…
Online adaptation and verification of VMAT
DOE Office of Scientific and Technical Information (OSTI.GOV)
Crijns, Wouter, E-mail: wouter.crijns@uzleuven.be; Defraene, Gilles; Depuydt, Tom
2015-07-15
Purpose: This work presents a method for fast volumetric modulated arc therapy (VMAT) adaptation in response to interfraction anatomical variations. Additionally, plan parameters extracted from the adapted plans are used to verify the quality of these plans. The methods were tested as a prostate class solution and compared to replanning and to their current clinical practice. Methods: The proposed VMAT adaptation is an extension of their previous intensity modulated radiotherapy (IMRT) adaptation. It follows a direct (forward) planning approach: the multileaf collimator (MLC) apertures are corrected in the beam’s eye view (BEV) and the monitor units (MUs) are corrected usingmore » point dose calculations. All MLC and MU corrections are driven by the positions of four fiducial points only, without need for a full contour set. Quality assurance (QA) of the adapted plans is performed using plan parameters that can be calculated online and that have a relation to the delivered dose or the plan quality. Five potential parameters are studied for this purpose: the number of MU, the equivalent field size (EqFS), the modulation complexity score (MCS), and the components of the MCS: the aperture area variability (AAV) and the leaf sequence variability (LSV). The full adaptation and its separate steps were evaluated in simulation experiments involving a prostate phantom subjected to various interfraction transformations. The efficacy of the current VMAT adaptation was scored by target mean dose (CTV{sub mean}), conformity (CI{sub 95%}), tumor control probability (TCP), and normal tissue complication probability (NTCP). The impact of the adaptation on the plan parameters (QA) was assessed by comparison with prediction intervals (PI) derived from a statistical model of the typical variation of these parameters in a population of VMAT prostate plans (n = 63). These prediction intervals are the adaptation equivalent of the tolerance tables for couch shifts in the current clinical practice. Results: The proposed adaptation of a two-arc VMAT plan resulted in the intended CTV{sub mean} (Δ ≤ 3%) and TCP (ΔTCP ≤ 0.001). Moreover, the method assures the intended CI{sub 95%} (Δ ≤ 11%) resulting in lowered rectal NTCP for all cases. Compared to replanning, their adaptation is faster (13 s vs 10 min) and more intuitive. Compared to the current clinical practice, it has a better protection of the healthy tissue. Compared to IMRT, VMAT is more robust to anatomical variations, but it is also less sensitive to the different correction steps. The observed variations of the plan parameters in their database included a linear dependence on the date of treatment planning and on the target radius. The MCS is not retained as QA metric due to a contrasting behavior of its components (LSV and AAV). If three out of four plan parameters (MU, EqFS, AAV, and LSV) need to lie inside a 50% prediction interval (3/4—50%PI), all adapted plans will be accepted. In contrast, all replanned plans do not meet this loose criterion, mainly because they have no connection to the initially optimized and verified plan. Conclusions: A direct (forward) VMAT adaptation performs equally well as (inverse) replanning but is faster and can be extended to real-time adaptation. The prediction intervals for the machine parameters are equivalent to the tolerance tables for couch shifts in the current clinical practice. A 3/4—50%PI QA criterion accepts all the adapted plans but rejects all the replanned plans.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lacaze, Guilhem; Oefelein, Joseph
Large-eddy-simulation (LES) is quickly becoming a method of choice for studying complex thermo-physics in a wide range of propulsion and power systems. It provides a means to study coupled turbulent combustion and flow processes in parameter spaces that are unattainable using direct-numerical-simulation (DNS), with a degree of fidelity that can be far more accurate than conventional engineering methods such as the Reynolds-averaged Navier-Stokes (RANS) approx- imation. However, development of predictive LES is complicated by the complex interdependence of different type of errors coming from numerical methods, algorithms, models and boundary con- ditions. On the other hand, control of accuracy hasmore » become a critical aspect in the development of predictive LES for design. The objective of this project is to create a framework of metrics aimed at quantifying the quality and accuracy of state-of-the-art LES in a manner that addresses the myriad of competing interdependencies. In a typical simulation cycle, only 20% of the computational time is actually usable. The rest is spent in case preparation, assessment, and validation, because of the lack of guidelines. This work increases confidence in the accuracy of a given solution while min- imizing the time obtaining the solution. The approach facilitates control of the tradeoffs between cost, accuracy, and uncertainties as a function of fidelity and methods employed. The analysis is coupled with advanced Uncertainty Quantification techniques employed to estimate confidence in model predictions and calibrate model's parameters. This work has provided positive conse- quences on the accuracy of the results delivered by LES and will soon have a broad impact on research supported both by the DOE and elsewhere.« less
The excel file contains time series data of flow rates, concentrations of alachlor , atrazine, ammonia, total phosphorus, and total suspended solids observed in two watersheds in Indiana from 2002 to 2007. The aggregate time series data corresponding or representative to all these parameters was obtained using a specialized, data-driven technique. The aggregate data is hypothesized in the published paper to represent the overall health of both watersheds with respect to various potential water quality impairments. The time series data for each of the individual water quality parameters were used to compute corresponding risk measures (Rel, Res, and Vul) that are reported in Table 4 and 5. The aggregation of the risk measures, which is computed from the aggregate time series and water quality standards in Table 1, is also reported in Table 4 and 5 of the published paper. Values under column heading uncertainty reports uncertainties associated with reconstruction of missing records of the water quality parameters. Long-term records of the water quality parameters were reconstructed in order to estimate the (R-R-V) and corresponding aggregate risk measures. This dataset is associated with the following publication:Hoque, Y., S. Tripathi, M. Hantush , and R. Govindaraju. Aggregate Measures of Watershed Health from Reconstructed Water Quality Data with Uncertainty. Ed Gregorich JOURNAL OF ENVIRONMENTAL QUALITY. American Society of Agronomy, MADISON, WI,
NASA Astrophysics Data System (ADS)
Berger, Lukas; Kleinheinz, Konstantin; Attili, Antonio; Bisetti, Fabrizio; Pitsch, Heinz; Mueller, Michael E.
2018-05-01
Modelling unclosed terms in partial differential equations typically involves two steps: First, a set of known quantities needs to be specified as input parameters for a model, and second, a specific functional form needs to be defined to model the unclosed terms by the input parameters. Both steps involve a certain modelling error, with the former known as the irreducible error and the latter referred to as the functional error. Typically, only the total modelling error, which is the sum of functional and irreducible error, is assessed, but the concept of the optimal estimator enables the separate analysis of the total and the irreducible errors, yielding a systematic modelling error decomposition. In this work, attention is paid to the techniques themselves required for the practical computation of irreducible errors. Typically, histograms are used for optimal estimator analyses, but this technique is found to add a non-negligible spurious contribution to the irreducible error if models with multiple input parameters are assessed. Thus, the error decomposition of an optimal estimator analysis becomes inaccurate, and misleading conclusions concerning modelling errors may be drawn. In this work, numerically accurate techniques for optimal estimator analyses are identified and a suitable evaluation of irreducible errors is presented. Four different computational techniques are considered: a histogram technique, artificial neural networks, multivariate adaptive regression splines, and an additive model based on a kernel method. For multiple input parameter models, only artificial neural networks and multivariate adaptive regression splines are found to yield satisfactorily accurate results. Beyond a certain number of input parameters, the assessment of models in an optimal estimator analysis even becomes practically infeasible if histograms are used. The optimal estimator analysis in this paper is applied to modelling the filtered soot intermittency in large eddy simulations using a dataset of a direct numerical simulation of a non-premixed sooting turbulent flame.
NASA Astrophysics Data System (ADS)
Zhang, X.; Zhao, W.; Liu, Y.; Fang, X.
2017-12-01
Soil water overconsumption is threatening the sustainability of regional vegetation rehabilitation in the Loess Plateau of China. The use of fractal geometry theory in describing soil quality improves the accuracy of the relevant research. Typical grasslands, shrublands, forests, cropland and orchards under different precipitation regimes were selected, and in this study, the spatial distribution of the relationship between soil moisture and soil particle size in typical slopes on Loess Plateau were investigated to provide support for the predict of soil moisture by using soil physical characteristics in the Loess Plateau. During the sampling year, the mean annual precipitation gradients were divided at an interval of 70 mm from 370mm to 650mm. Grasslands with Medicago sativa L. or Stipa bungeana Trin., shrublands with Caragana Korshinskii Kom. or Hippophae rhamnoides L., forests with Robinia pseudoacacia Linn., orchards with apple trees and croplands with corn or potatoes were chosen to represent the natural grassland. A soil auger with a diameter of 5 cm was used to obtain soil samples at depths of 0-5 m at intervals of 20 cm.The Van Genuchten model, fractal theory and redundancy analysis (RDA) were used to estimate and analyze the soil water characteristic curve, soil particle size distribution, and fractal dimension and the correlations between the relevant parameters. The results showed that (1) the change of the singular fractal dimension is positively correlated with soil water content, while D0 (capacity dimension) is negatively correlated with soil water content as the depth increases; (2) the relationship between soil moisture and soil particle size shows differences under different plants and precipitation gradient.
Predicting Friendship Quality in Autism Spectrum Disorders and Typical Development
Solomon, Marjorie; Rogers, Sally J.
2009-01-01
The role played by social relationship variables (attachment security; mother–child relationship qualities) and social-cognitive capacities (theory of mind) was examined in both observed friendship behaviors and in children’s descriptions of friendships (age 8–12) with high functioning children with autism spectrum disorders (HFASD) (n = 44) and with typical development (TYP) (n = 38). Overall, half of the HFASD sample (54.45%) reported maternal attachment security, corroborating data from younger children with ASD. The hypothesized predictors and their interrelations had both direct and indirect effects on friendship for both groups of children, highlighting the importance of these factors in children’s friendship development and suggesting both compensatory and amplification mechanisms for friendship qualities. Practical and clinical implications are discussed for friendship support in both ASD and TYP. PMID:20039110
The impact of a new bypass route on the local economy and quality of life
DOT National Transportation Integrated Search
2001-06-01
Highway improvements such as bypass construction typically are motivated by a desire to improve the flow and safety of travel. But, given the importance of travel, transportation improvement projects often can affect the local economy and quality of ...
Temporal Contingency as an Independent Component of Parenting Behavior.
ERIC Educational Resources Information Center
Keller, Heidi; Lohaus, Arnold; Volker, Susanne; Cappenberg, Martina; Chasiotis, Athanasios
1999-01-01
Examined relationship between temporal contingency of maternal behavior and interactional quality. Found that although prompt responding was typical, the existence of individual differences indicated that this tendency was expressed in different communicative channels. The relationship between contingency and ratings of interactional quality was…
21 CFR 107.50 - Terms and conditions.
Code of Federal Regulations, 2012 CFR
2012-04-01
... Center for Food Safety and Applied Nutrition concludes that additional or modified quality control... also typically represented and labeled for use to provide dietary management for diseases or conditions... regulations promulgated under section 412(a)(2) of the act, the quality control procedure requirements of part...
Human health is affected by simultaneous exposure to stressors and amenities, but research typically considers single exposures. In order to account for multiple ambient environmental conditions, we constructed an Environmental Quality Index (EQI) using principle components analy...
QUANTIFYING SUBGRID POLLUTANT VARIABILITY IN EULERIAN AIR QUALITY MODELS
In order to properly assess human risk due to exposure to hazardous air pollutants or air toxics, detailed information is needed on the location and magnitude of ambient air toxic concentrations. Regional scale Eulerian air quality models are typically limited to relatively coar...
Swinnen, Eva; Goten, Laura Vander; De Koster, Berdien; Degelaen, Marc
2016-01-01
Dysfunctional postural control and pathological thorax and pelvis motions are often observed in children with cerebral palsy (CP) and can be considered as an indicator of diminished dynamic stability. The aim of this study was to identify the differences between children with CP and typically developing children in three-dimensional thorax and pelvis kinematics during walking. Three electronic databases were searched by using different combinations of keywords. The methodological quality of the studies was assessed by two researchers with the Strobe quality checklist. Ten studies (methodological quality: 32% to 74%) with in total 259 children with CP and 220 typically developing children (mean age: 7.6 to 13.6 year) were included. Compared to typically developing children, children with bilateral CP showed an increased range of motion of the thorax, pelvis and spine during walking. The results of the children with unilateral CP were less clear. In general, children with bilateral CP showed larger movement amplitudes of the trunk compared to children without CP. This increase in movement amplitudes could influence the dynamic stability of the body during walking. In children with unilateral CP, the results were less obvious and further research on this topic is required.
Water quality program elements for Space Station Freedom
NASA Technical Reports Server (NTRS)
Sauer, Richard L.; Ramanathan, Raghupathy; Straub, John E.; Schultz, John R.
1991-01-01
A strategy is outlined for the development of water-quality criteria and standards relevant to recycling and monitoring the in-flight water for the Space Station Freedom (SSF). The water-reclamation subsystem of the SSF's ECLSS is described, and the objectives of the water-quality are set forth with attention to contaminants. Quality parameters are listed for potable and hygiene-related water including physical and organic parameters, inorganic constituents, bactericides, and microbial content. Comparisons are made to the quality parameters established for the Shuttle's potable water and to the EPA's current standards. Specific research is required to develop in-flight monitoring techniques for unique SSF contaminants, ECLSS microbial control, and on- and off-line monitoring. After discussing some of the in-flight water-monitoring hardware it is concluded that water reclamation and recycling are necessary and feasible for the SSF.
A Procedure for High Resolution Satellite Imagery Quality Assessment
Crespi, Mattia; De Vendictis, Laura
2009-01-01
Data products generated from High Resolution Satellite Imagery (HRSI) are routinely evaluated during the so-called in-orbit test period, in order to verify if their quality fits the desired features and, if necessary, to obtain the image correction parameters to be used at the ground processing center. Nevertheless, it is often useful to have tools to evaluate image quality also at the final user level. Image quality is defined by some parameters, such as the radiometric resolution and its accuracy, represented by the noise level, and the geometric resolution and sharpness, described by the Modulation Transfer Function (MTF). This paper proposes a procedure to evaluate these image quality parameters; the procedure was implemented in a suitable software and tested on high resolution imagery acquired by the QuickBird, WorldView-1 and Cartosat-1 satellites. PMID:22412312
Ensuring the consistancy of Flow Direction Curve reconstructions: the 'quantile solidarity' approach
NASA Astrophysics Data System (ADS)
Poncelet, Carine; Andreassian, Vazken; Oudin, Ludovic
2015-04-01
Flow Duration Curves (FDCs) are a hydrologic tool describing the distribution of streamflows at a catchment outlet. FDCs are usually used for calibration of hydrological models, managing water quality and classifying catchments, among others. For gauged catchments, empirical FDCs can be computed from streamflow records. For ungauged catchments, on the other hand, FDCs cannot be obtained from streamflow records and must therefore be obtained in another manner, for example through reconstructions. Regression-based reconstructions are methods relying on the evaluation of quantiles separately from catchments' attributes (climatic or physical features).The advantage of this category of methods is that it is informative about the processes and it is non-parametric. However, the large number of parameters required can cause unwanted artifacts, typically reconstructions that do not always produce increasing quantiles. In this paper we propose a new approach named Quantile Solidarity (QS), which is applied under strict proxy-basin test conditions (Klemes, 1986) to a set of 600 French catchments. Half of the catchments are considered as gauged and used to calibrate the regression and compute residuals of the regression. The QS approach consists in a three-step regionalization scheme, which first links quantile values to physical descriptors, then reduces the number of regression parameters and finally exploits the spatial correlation of the residuals. The innovation is the utilisation of the parameters continuity across the quantiles to dramatically reduce the number of parameters. The second half of catchment is used as an independent validation set over which we show that the QS approach ensures strictly growing FDC reconstructions in ungauged conditions. Reference: V. KLEMEŠ (1986) Operational testing of hydrological simulation models, Hydrological Sciences Journal, 31:1, 13-24
Kaltenthaler, Eva; Tappenden, Paul; Paisley, Suzy
2013-01-01
Health technology assessments (HTAs) typically require the development of a cost-effectiveness model, which necessitates the identification, selection, and use of other types of information beyond clinical effectiveness evidence to populate the model parameters. The reviewing activity associated with model development should be transparent and reproducible but can result in a tension between being both timely and systematic. Little procedural guidance exists in this area. The purpose of this article was to provide guidance, informed by focus groups, on what might constitute a systematic and transparent approach to reviewing information to populate model parameters. A focus group series was held with HTA experts in the United Kingdom including systematic reviewers, information specialists, and health economic modelers to explore these issues. Framework analysis was used to analyze the qualitative data elicited during focus groups. Suggestions included the use of rapid reviewing methods and the need to consider the trade-off between relevance and quality. The need for transparency in the reporting of review methods was emphasized. It was suggested that additional attention should be given to the reporting of parameters deemed to be more important to the model or where the preferred decision regarding the choice of evidence is equivocal. These recommendations form part of a Technical Support Document produced for the National Institute for Health and Clinical Excellence Decision Support Unit in the United Kingdom. It is intended that these recommendations will help to ensure a more systematic, transparent, and reproducible process for the review of model parameters within HTA. Copyright © 2013 International Society for Pharmacoeconomics and Outcomes Research (ISPOR). Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Chandra, Shubham; Rao, Balkrishna C.
2017-06-01
The process of laser engineered net shaping (LENSTM) is an additive manufacturing technique that employs the coaxial flow of metallic powders with a high-power laser to form a melt pool and the subsequent deposition of the specimen on a substrate. Although research done over the past decade on the LENSTM processing of alloys of steel, titanium, nickel and other metallic materials typically reports superior mechanical properties in as-deposited specimens, when compared to the bulk material, there is anisotropy in the mechanical properties of the melt deposit. The current study involves the development of a numerical model of the LENSTM process, using the principles of computational fluid dynamics (CFD), and the subsequent prediction of the volume fraction of equiaxed grains to predict process parameters required for the deposition of workpieces with isotropy in their properties. The numerical simulation is carried out on ANSYS-Fluent, whose data on thermal gradient are used to determine the volume fraction of the equiaxed grains present in the deposited specimen. This study has been validated against earlier efforts on the experimental studies of LENSTM for alloys of nickel. Besides being applicable to the wider family of metals and alloys, the results of this study will also facilitate effective process design to improve both product quality and productivity.
NASA Astrophysics Data System (ADS)
Reddy, Pramod; Washiyama, Shun; Kaess, Felix; Kirste, Ronny; Mita, Seiji; Collazo, Ramon; Sitar, Zlatko
2017-12-01
A theoretical framework that provides a quantitative relationship between point defect formation energies and growth process parameters is presented. It enables systematic point defect reduction by chemical potential control in metalorganic chemical vapor deposition (MOCVD) of III-nitrides. Experimental corroboration is provided by a case study of C incorporation in GaN. The theoretical model is shown to be successful in providing quantitative predictions of CN defect incorporation in GaN as a function of growth parameters and provides valuable insights into boundary phases and other impurity chemical reactions. The metal supersaturation is found to be the primary factor in determining the chemical potential of III/N and consequently incorporation or formation of point defects which involves exchange of III or N atoms with the reservoir. The framework is general and may be extended to other defect systems in (Al)GaN. The utility of equilibrium formalism typically employed in density functional theory in predicting defect incorporation in non-equilibrium and high temperature MOCVD growth is confirmed. Furthermore, the proposed theoretical framework may be used to determine optimal growth conditions to achieve minimum compensation within any given constraints such as growth rate, crystal quality, and other practical system limitations.
Examining the effect of initialization strategies on the performance of Gaussian mixture modeling.
Shireman, Emilie; Steinley, Douglas; Brusco, Michael J
2017-02-01
Mixture modeling is a popular technique for identifying unobserved subpopulations (e.g., components) within a data set, with Gaussian (normal) mixture modeling being the form most widely used. Generally, the parameters of these Gaussian mixtures cannot be estimated in closed form, so estimates are typically obtained via an iterative process. The most common estimation procedure is maximum likelihood via the expectation-maximization (EM) algorithm. Like many approaches for identifying subpopulations, finite mixture modeling can suffer from locally optimal solutions, and the final parameter estimates are dependent on the initial starting values of the EM algorithm. Initial values have been shown to significantly impact the quality of the solution, and researchers have proposed several approaches for selecting the set of starting values. Five techniques for obtaining starting values that are implemented in popular software packages are compared. Their performances are assessed in terms of the following four measures: (1) the ability to find the best observed solution, (2) settling on a solution that classifies observations correctly, (3) the number of local solutions found by each technique, and (4) the speed at which the start values are obtained. On the basis of these results, a set of recommendations is provided to the user.
Spectroscopic investigations of Nd3+ doped flouro- and chloro-borate glasses.
Mohan, Shaweta; Thind, Kulwant Singh; Sharma, Gopi; Gerward, Leif
2008-10-01
Spectroscopic and physical properties of Nd3+ doped sodium lead flouro- and chloro-borate glasses of the type 20NaX-30PbO-49.5B2O3-0.5Nd2O3 (X=F and Cl) have been investigated. Optical absorption spectra have been used to determine the Slater Condon (F2, F4, and F6), spin orbit xi4f and Racah parameters (E1, E2, and E3). The oscillator strengths and the intensity parameters Omega2, Omega4 and Omega6 have been determined by the Judd-Ofelt theory, which in turn provide the radiative transition probability (A), total transition probability (A(T)), radiative lifetime (tauR) and branching ratio (beta) for the fluorescent level 4F3/2. The lasing efficiency of the prepared glasses has been characterized by the spectroscopic quality factor (Omega4/Omega6), the value of which is in the range of 0.2-1.5, typical for Nd3+ in different laser hosts. Nephelauxetic effect results in a red shift in the energy levels of Nd3+ for chloroborate glass. The radiative transition probability of the potential lasing transition 4F3/2-->4I11/2 of Nd3+ ions is found to be higher for flouroborate as compared to chloroborate glass.
Effect of Floodplain Inundation on River Pollution in Taiwan's Strong Monsoonal Climate
NASA Astrophysics Data System (ADS)
Hester, E. T.; Lin, A. Y. C.
2017-12-01
River-floodplain interaction provides important benefits such as flood mitigation, provision of ecological habitat, and improved water quality. Human actions have historically reduced such interaction and associated benefits by diking, floodplain fill, and river regulation. In response, floodplain restoration has become popular in North America and Europe, but is less practiced in Asia. In Taiwan, unusually strong monsoons and steep terrain alter floodplain dynamics relative to elsewhere around the world, and provide a unique environment for floodplain management. We used numerical models of flow, transport, and reaction in river channels and floodplains to quantify the effect of river-floodplain interaction on water quality in Taiwan's strong monsoon and high topographic relief. We conducted sensitivity analyses of parameters such as river slope, monsoon severity, reservoir operation mode, degree of floodplain reconnection, contaminant reaction rate, and contaminant reaction type on floodplain connectivity and contaminant mitigation. We found significant differences in floodplain hydraulics and residence times in Taiwan's steep monsoonal environment relative to the shallower non-monsoonal environment typical of the eastern USA, with significant implications for water quality. For example, greater flashiness of floodplain inundation in Taiwan provides greater challenges for reconnecting sufficient floodplain volume to handle monsoonal runoff. Yet longer periods when floodplains are reliably dry means that such lands may have greater value for seasonal use such as parks or agriculture. The potential for floodplain restoration in Taiwan is thus significant, but qualitatively different than in the eastern USA.
Imaging through atmospheric turbulence for laser based C-RAM systems: an analytical approach
NASA Astrophysics Data System (ADS)
Buske, Ivo; Riede, Wolfgang; Zoz, Jürgen
2013-10-01
High Energy Laser weapons (HEL) have unique attributes which distinguish them from limitations of kinetic energy weapons. HEL weapons engagement process typical starts with identifying the target and selecting the aim point on the target through a high magnification telescope. One scenario for such a HEL system is the countermeasure against rockets, artillery or mortar (RAM) objects to protect ships, camps or other infrastructure from terrorist attacks. For target identification and especially to resolve the aim point it is significant to ensure high resolution imaging of RAM objects. During the whole ballistic flight phase the knowledge about the expectable imaging quality is important to estimate and evaluate the countermeasure system performance. Hereby image quality is mainly influenced by unavoidable atmospheric turbulence. Analytical calculations have been taken to analyze and evaluate image quality parameters during an approaching RAM object. In general, Kolmogorov turbulence theory was implemented to determine atmospheric coherence length and isoplanatic angle. The image acquisition is distinguishing between long and short exposure times to characterize tip/tilt image shift and the impact of high order turbulence fluctuations. Two different observer positions are considered to show the influence of the selected sensor site. Furthermore two different turbulence strengths are investigated to point out the effect of climate or weather condition. It is well known that atmospheric turbulence degenerates image sharpness and creates blurred images. Investigations are done to estimate the effectiveness of simple tip/tilt systems or low order adaptive optics for laser based C-RAM systems.
Dynamically Coupled Food-web and Hydrodynamic Modeling with ADH-CASM
NASA Astrophysics Data System (ADS)
Piercy, C.; Swannack, T. M.
2012-12-01
Oysters and freshwater mussels are "ecological engineers," modifying the local water quality by filtering zooplankton and other suspended particulate matter from the water column and flow hydraulics by impinging on the near-bed flow environment. The success of sessile, benthic invertebrates such as oysters depends on environmental factors including but not limited to temperature, salinity, and flow regime. Typically food-web and other types of ecological models use flow and water quality data as direct input without regard to the feedback between the ecosystem and the physical environment. The USACE-ERDC has developed a coupled hydrodynamic-ecological modeling approach that dynamically couples a 2-D hydrodynamic and constituent transport model, Adaptive Hydraulics (ADH), with a bioenergetics food-web model, the Comprehensive Aquatics Systems Model (CASM), which captures the dynamic feedback between aquatic ecological systems and the environment. We present modeling results from restored oyster reefs in the Great Wicomico River on the western shore of the Chesapeake Bay, which quantify ecosystem services such as the influence of the benthic ecosystem on water quality. Preliminary results indicate that while the influence of oyster reefs on bulk flow dynamics is limited due to the localized influence of oyster reefs, large reefs and the associated benthic ecosystem can create measurable changes in the concentrations of nitrogen, phosphorus, and carbon in the areas around reefs. We also present a sensitivity analysis to quantify the relative sensitivity of the coupled ADH-CASM model to both hydrodynamic and ecological parameter choice.
Wei, Qunshan; Wang, Dongsheng; Wei, Qia; Qiao, Chunguang; Shi, Baoyou; Tang, Hongxiao
2008-06-01
Dissolved organic matter (DOM) and its potential to form disinfection by-products (DBPs) during drinking water treatment raise challenges to water quality control. Understanding both chemical and physical characteristics of DOM in source waters is key to better water treatment. In this study, the DOM from four typical source waters in China was fractionated by XAD resin adsorption (RA) and ultrafiltration (UF) techniques. The trihalomethane formation potential (THMFP) of all fractions in the DOM were investigated to reveal the major THM precursors. The fraction distributions of DOM could be related to their geographical origins in a certain extent. The dominant chemical fraction as THM precursors in the DOM from south waters (East-Lake reservoir in Shenzhen and Peal rivers in Guangzhou) was hydrophobic acid (HoA). The size fraction with molecular weight (MW) <1 kDa in both south waters had the highest THMFP. The results of cluster analysis showed that the parameters of fractions including DOC percentage (DOC%), UV254%, SUVA254 (specific UV254 absorbance) and THMFP were better for representing the differences of DOM from the studied waters than specific THMFP (STHMFP). The weak correlation between SUVA254 and STHMFP for either size or XAD fractions suggests that whether SUVA254 can be used as an indicator for the reactivity of THM formation is highly dependent on the nature of organic matter.
Alchemical prediction of hydration free energies for SAMPL
Mobley, David L.; Liu, Shaui; Cerutti, David S.; Swope, William C.; Rice, Julia E.
2013-01-01
Hydration free energy calculations have become important tests of force fields. Alchemical free energy calculations based on molecular dynamics simulations provide a rigorous way to calculate these free energies for a particular force field, given sufficient sampling. Here, we report results of alchemical hydration free energy calculations for the set of small molecules comprising the 2011 Statistical Assessment of Modeling of Proteins and Ligands (SAMPL) challenge. Our calculations are largely based on the Generalized Amber Force Field (GAFF) with several different charge models, and we achieved RMS errors in the 1.4-2.2 kcal/mol range depending on charge model, marginally higher than what we typically observed in previous studies1-5. The test set consists of ethane, biphenyl, and a dibenzyl dioxin, as well as a series of chlorinated derivatives of each. We found that, for this set, using high-quality partial charges from MP2/cc-PVTZ SCRF RESP fits provided marginally improved agreement with experiment over using AM1-BCC partial charges as we have more typically done, in keeping with our recent findings5. Switching to OPLS Lennard-Jones parameters with AM1-BCC charges also improves agreement with experiment. We also find a number of chemical trends within each molecular series which we can explain, but there are also some surprises, including some that are captured by the calculations and some that are not. PMID:22198475
NASA Technical Reports Server (NTRS)
Boccio, Dona
2003-01-01
Terrorist suitcase nuclear devices typically using converted Soviet tactical nuclear warheads contain several kilograms of plutonium. This quantity of plutonium emits a significant number of gamma rays and neutrons as it undergoes radioactive decay. These gamma rays and neutrons normally penetrate ordinary matter to a significant distance. Unfortunately this penetrating quality of the radiation makes imaging with classical optics impractical. However, this radiation signature emitted by the nuclear source may be sufficient to be imaged from low-flying aerial platforms carrying Fourier imaging systems. The Fourier imaging system uses a pair of co-aligned absorption grids to measure a selected range of spatial frequencies from an object. These grids typically measure the spatial frequency in only one direction at a time. A grid pair that looks in all directions simultaneously would be an improvement over existing technology. A number of grid pairs governed by various parameters were investigated to solve this problem. By examining numerous configurations, it became apparent that an appropriate spiral pattern could be made to work. A set of equations was found to describe a grid pattern that produces straight fringes. Straight fringes represent a Fourier transform of a point source at infinity. An inverse Fourier transform of this fringe pattern would provide an accurate image (location and intensity) of a point source.
Hur, Jin; Cho, Jinwoo
2012-01-01
The development of a real-time monitoring tool for the estimation of water quality is essential for efficient management of river pollution in urban areas. The Gap River in Korea is a typical urban river, which is affected by the effluent of a wastewater treatment plant (WWTP) and various anthropogenic activities. In this study, fluorescence excitation-emission matrices (EEM) with parallel factor analysis (PARAFAC) and UV absorption values at 220 nm and 254 nm were applied to evaluate the estimation capabilities for biochemical oxygen demand (BOD), chemical oxygen demand (COD), and total nitrogen (TN) concentrations of the river samples. Three components were successfully identified by the PARAFAC modeling from the fluorescence EEM data, in which each fluorophore group represents microbial humic-like (C1), terrestrial humic-like organic substances (C2), and protein-like organic substances (C3), and UV absorption indices (UV(220) and UV(254)), and the score values of the three PARAFAC components were selected as the estimation parameters for the nitrogen and the organic pollution of the river samples. Among the selected indices, UV(220), C3 and C1 exhibited the highest correlation coefficients with BOD, COD, and TN concentrations, respectively. Multiple regression analysis using UV(220) and C3 demonstrated the enhancement of the prediction capability for TN.
Stability of Gradient Field Corrections for Quantitative Diffusion MRI.
Rogers, Baxter P; Blaber, Justin; Welch, E Brian; Ding, Zhaohua; Anderson, Adam W; Landman, Bennett A
2017-02-11
In magnetic resonance diffusion imaging, gradient nonlinearity causes significant bias in the estimation of quantitative diffusion parameters such as diffusivity, anisotropy, and diffusion direction in areas away from the magnet isocenter. This bias can be substantially reduced if the scanner- and coil-specific gradient field nonlinearities are known. Using a set of field map calibration scans on a large (29 cm diameter) phantom combined with a solid harmonic approximation of the gradient fields, we predicted the obtained b-values and applied gradient directions throughout a typical field of view for brain imaging for a typical 32-direction diffusion imaging sequence. We measured the stability of these predictions over time. At 80 mm from scanner isocenter, predicted b-value was 1-6% different than intended due to gradient nonlinearity, and predicted gradient directions were in error by up to 1 degree. Over the course of one month the change in these quantities due to calibration-related factors such as scanner drift and variation in phantom placement was <0.5% for b-values, and <0.5 degrees for angular deviation. The proposed calibration procedure allows the estimation of gradient nonlinearity to correct b-values and gradient directions ahead of advanced diffusion image processing for high angular resolution data, and requires only a five-minute phantom scan that can be included in a weekly or monthly quality assurance protocol.
Johnson, Helen E.; Broadhurst, David; Kell, Douglas B.; Theodorou, Michael K.; Merry, Roger J.; Griffith, Gareth W.
2004-01-01
Silage quality is typically assessed by the measurement of several individual parameters, including pH, lactic acid, acetic acid, bacterial numbers, and protein content. The objective of this study was to use a holistic metabolic fingerprinting approach, combining a high-throughput microtiter plate-based fermentation system with Fourier transform infrared (FT-IR) spectroscopy, to obtain a snapshot of the sample metabolome (typically low-molecular-weight compounds) at a given time. The aim was to study the dynamics of red clover or grass silage fermentations in response to various inoculants incorporating lactic acid bacteria (LAB). The hyperspectral multivariate datasets generated by FT-IR spectroscopy are difficult to interpret visually, so chemometrics methods were used to deconvolute the data. Two-phase principal component-discriminant function analysis allowed discrimination between herbage types and different LAB inoculants and modeling of fermentation dynamics over time. Further analysis of FT-IR spectra by the use of genetic algorithms to identify the underlying biochemical differences between treatments revealed that the amide I and amide II regions (wavenumbers of 1,550 to 1,750 cm−1) of the spectra were most frequently selected (reflecting changes in proteins and free amino acids) in comparisons between control and inoculant-treated fermentations. This corresponds to the known importance of rapid fermentation for the efficient conservation of forage proteins. PMID:15006782
NASA Astrophysics Data System (ADS)
Chui, T. F. M.; Yang, Y.
2017-12-01
Green infrastructures (GI) have been widely used to mitigate flood risk, improve surface water quality, and to restore predevelopment hydrologic regimes. Commonly-used GI include, bioretention system, porous pavement and green roof, etc. They are normally sized to fulfil different design criteria (e.g. providing certain storage depths, limiting peak surface flow rates) that are formulated for current climate conditions. While GI commonly have long lifespan, the sensitivity of their performance to climate change is however unclear. This study first proposes a method to formulate suitable design criteria to meet different management interests (e.g. different levels of first flush reduction and peak flow reduction). Then typical designs of GI are proposed. In addition, a high resolution stochastic design storm generator using copulas and random cascade model is developed, which is calibrated using recorded rainfall time series. Then, few climate change scenarios are generated by varying the duration and depth of design storms, and changing the parameters of the calibrated storm generator. Finally, the performance of GI with typical designs under the random synthesized design storms are then assessed using numerical modeling. The robustness of the designs is obtained by the comparing their performance in the future scenarios to the current one. This study overall examines the robustness of the current GI design criteria under uncertain future climate conditions, demonstrating whether current GI design criteria should be modified to account for climate change.
Content dependent selection of image enhancement parameters for mobile displays
NASA Astrophysics Data System (ADS)
Lee, Yoon-Gyoo; Kang, Yoo-Jin; Kim, Han-Eol; Kim, Ka-Hee; Kim, Choon-Woo
2011-01-01
Mobile devices such as cellular phones and portable multimedia player with capability of playing terrestrial digital multimedia broadcasting (T-DMB) contents have been introduced into consumer market. In this paper, content dependent image quality enhancement method for sharpness and colorfulness and noise reduction is presented to improve perceived image quality on mobile displays. Human visual experiments are performed to analyze viewers' preference. Relationship between the objective measures and the optimal values of image control parameters are modeled by simple lookup tables based on the results of human visual experiments. Content dependent values of image control parameters are determined based on the calculated measures and predetermined lookup tables. Experimental results indicate that dynamic selection of image control parameters yields better image quality.
Physical activity is not related to semen quality in young healthy men
Mínguez-Alarcón, Lidia; Chavarro, Jorge E; Mendiola, Jaime; Gaskins, Audrey J; Torres-Cantero, Alberto M
2015-01-01
Objective To study the relation of physical activity with semen quality among healthy young men from Spain. Design Cross-sectional study. Setting University and college campuses of Murcia Region, Spain. Patients Healthy young men with untested fertility (n=215). Intervention A physical examination, blood and semen samples, and completion of a questionnaire. Main outcomes measure Semen quality parameters. Results Physical activity was not related to semen quality parameters. The adjusted percentage differences (95% confidence interval) in semen parameters comparing men in the top quartile of moderate to vigorous physical activity (≥9.5h/wk) to men in the bottom quartile (≤3h/wk) were 4.3% (−30.2, 38.9) for total sperm count, 7.2% (−30.6, 45.1) for sperm concentration, −2.42% (−6.53, 1.69) for sperm motility, and 12.6% (−12.0, 37.2) for sperm morphology. Conclusion In contrast to previous research among athletes, these data suggest that physical activity is not deleterious to testicular function, as captured by semen quality parameters in this population of healthy young men in Spain. PMID:25064411
Rouiller, Yolande; Solacroup, Thomas; Deparis, Véronique; Barbafieri, Marco; Gleixner, Ralf; Broly, Hervé; Eon-Duval, Alex
2012-06-01
The production bioreactor step of an Fc-Fusion protein manufacturing cell culture process was characterized following Quality by Design principles. Using scientific knowledge derived from the literature and process knowledge gathered during development studies and manufacturing to support clinical trials, potential critical and key process parameters with a possible impact on product quality and process performance, respectively, were determined during a risk assessment exercise. The identified process parameters were evaluated using a design of experiment approach. The regression models generated from the data allowed characterizing the impact of the identified process parameters on quality attributes. The main parameters having an impact on product titer were pH and dissolved oxygen, while those having the highest impact on process- and product-related impurities and variants were pH and culture duration. The models derived from characterization studies were used to define the cell culture process design space. The design space limits were set in such a way as to ensure that the drug substance material would consistently have the desired quality. Copyright © 2012 Elsevier B.V. All rights reserved.
Physical activity is not related to semen quality in young healthy men.
Mínguez-Alarcón, Lidia; Chavarro, Jorge E; Mendiola, Jaime; Gaskins, Audrey J; Torres-Cantero, Alberto M
2014-10-01
To study the relationship of physical activity with semen quality among healthy young men from Spain. Cross-sectional study. University and college campuses of Murcia Region, Spain. Healthy young men with untested fertility (n = 215). A physical examination, blood and semen samples, and completion of a questionnaire. Semen quality parameters. Physical activity was not related to semen quality parameters. The adjusted percentage differences (95% confidence interval) in semen parameters comparing men in the top quartile of moderate-to-vigorous physical activity (≥9.5 h/wk) with men in the bottom quartile (≤3 h/wk) were 4.3% (-30.2%, 38.9%) for total sperm count, 7.2% (-30.6%, 45.1%) for sperm concentration, -2.42% (-6.53%, 1.69%) for sperm motility, and 12.6% (-12.0%, 37.2%) for sperm morphology. In contrast to previous research among athletes, these data suggest that physical activity is not deleterious to testicular function, as captured by semen quality parameters in this population of healthy young men in Spain. Copyright © 2014 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Li, Yan-Long; Ma, Jun; Zhang, Wei; Liu, Yan-Jun
2009-10-01
This paper numerically investigates the order parameter and synchronisation in the small world connected FitzHugh-Nagumo excitable systems. The simulations show that the order parameter continuously decreases with increasing D, the quality of the synchronisation worsens for large noise intensity. As the coupling intensity goes up, the quality of the synchronisation worsens, and it finds that the larger rewiring probability becomes the larger order parameter. It obtains the complete phase diagram for a wide range of values of noise intensity D and control parameter g.
On the use of tower-flux measurements to assess the performance of global ecosystem models
NASA Astrophysics Data System (ADS)
El Maayar, M.; Kucharik, C.
2003-04-01
Global ecosystem models are important tools for the study of biospheric processes and their responses to environmental changes. Such models typically translate knowledge, gained from local observations, into estimates of regional or even global outcomes of ecosystem processes. A typical test of ecosystem models consists of comparing their output against tower-flux measurements of land surface-atmosphere exchange of heat and mass. To perform such tests, models are typically run using detailed information on soil properties (texture, carbon content,...) and vegetation structure observed at the experimental site (e.g., vegetation height, vegetation phenology, leaf photosynthetic characteristics,...). In global simulations, however, earth's vegetation is typically represented by a limited number of plant functional types (PFT; group of plant species that have similar physiological and ecological characteristics). For each PFT (e.g., temperate broadleaf trees, boreal conifer evergreen trees,...), which can cover a very large area, a set of typical physiological and physical parameters are assigned. Thus, a legitimate question arises: How does the performance of a global ecosystem model run using detailed site-specific parameters compare with the performance of a less detailed global version where generic parameters are attributed to a group of vegetation species forming a PFT? To answer this question, we used a multiyear dataset, measured at two forest sites with contrasting environments, to compare seasonal and interannual variability of surface-atmosphere exchange of water and carbon predicted by the Integrated BIosphere Simulator-Dynamic Global Vegetation Model. Two types of simulations were, thus, performed: a) Detailed runs: observed vegetation characteristics (leaf area index, vegetation height,...) and soil carbon content, in addition to climate and soil type, are specified for model run; and b) Generic runs: when only observed climates and soil types at the measurement sites are used to run the model. The generic runs were performed for the number of years equal to the current age of the forests, initialized with no vegetation and a soil carbon density equal to zero.
Investigation of water quality parameters at selected points on the Tennessee River
NASA Technical Reports Server (NTRS)
Manger, M. C.
1973-01-01
Physical, chemical, and biological water quality parameters have been investigated at the Widow's Creek steam plant. The water quality parameters and field site locations have been selected so as to be compatible with the interests and needs of the Environmental Application Office at Marshall Space Flight Center. All sampling and testing was conducted as directed in the 13th Edition of Standard Methods of Analysis for Water and Waste Water or as suggested by NASA'S Technical Officer. Data is presented in a form compatible with that presently being collected by other agencies.
Remote measurements of water pollution with a lidar polarimeter
NASA Technical Reports Server (NTRS)
Sheives, T. C.; Rouse, J. W., Jr.; Mayo, W. T., Jr.
1974-01-01
This paper examines a dual polarization laser backscatter system as a method for remote measurements of certain water quality parameters. Analytical models for describing the backscatter from turbid water and oil on turbid water are presented and compared with experimental data. Laser backscatter field measurements from natural waterways are presented and compared with simultaneous ground observations of the water quality parameters: turbidity, suspended solids, and transmittance. The results of this study show that the analytical models appear valid and that the sensor investigated is applicable to remote measurements of these water quality parameters and oil spills on water.-
Ebrahimi, Milad; Gerber, Erin L; Rockaway, Thomas D
2017-05-15
For most water treatment plants, a significant number of performance data variables are attained on a time series basis. Due to the interconnectedness of the variables, it is often difficult to assess over-arching trends and quantify operational performance. The objective of this study was to establish simple and reliable predictive models to correlate target variables with specific measured parameters. This study presents a multivariate analysis of the physicochemical parameters of municipal wastewater. Fifteen quality and quantity parameters were analyzed using data recorded from 2010 to 2016. To determine the overall quality condition of raw and treated wastewater, a Wastewater Quality Index (WWQI) was developed. The index summarizes a large amount of measured quality parameters into a single water quality term by considering pre-established quality limitation standards. To identify treatment process performance, the interdependencies between the variables were determined by using Principal Component Analysis (PCA). The five extracted components from the 15 variables accounted for 75.25% of total dataset information and adequately represented the organic, nutrient, oxygen demanding, and ion activity loadings of influent and effluent streams. The study also utilized the model to predict quality parameters such as Biological Oxygen Demand (BOD), Total Phosphorus (TP), and WWQI. High accuracies ranging from 71% to 97% were achieved for fitting the models with the training dataset and relative prediction percentage errors less than 9% were achieved for the testing dataset. The presented techniques and procedures in this paper provide an assessment framework for the wastewater treatment monitoring programs. Copyright © 2017 Elsevier Ltd. All rights reserved.
R2 Water Quality Portal Monitoring Stations
The Water Quality Data Portal (WQP) provides an easy way to access data stored in various large water quality databases. The WQP provides various input parameters on the form including location, site, sampling, and date parameters to filter and customize the returned results. The The Water Quality Portal (WQP) is a cooperative service sponsored by the United States Geological Survey (USGS), the Environmental Protection Agency (EPA) and the National Water Quality Monitoring Council (NWQMC) that integrates publicly available water quality data from the USGS National Water Information System (NWIS) the EPA STOrage and RETrieval (STORET) Data Warehouse, and the USDA ARS Sustaining The Earth??s Watersheds - Agricultural Research Database System (STEWARDS).
Assuring Graduate Competency: A Technology Acceptance Model for Course Guide Tools
ERIC Educational Resources Information Center
Atif, Amara; Richards, Deborah; Busch, Peter; Bilgin, Ayse
2015-01-01
Higher education institutions typically express the quality of their degree programs by describing the qualities, skills, and understanding their students possess upon graduation. One promising instructional design approach to facilitate institutions' efforts to deliver graduates with the appropriate knowledge and competencies is curriculum…
Bacteriological water quality in the Great Lakes is typically measured by the concentration of fecal indicator bacteria (FIB), and is reported via most probable number (MPN) or colony forming unit (CFU) values derived from algorithms relating \\raw data" in a FIB analysis procedu...
Indoor Air Quality in Schools (IAQ): The Importance of Monitoring Carbon Dioxide Levels.
ERIC Educational Resources Information Center
Sundersingh, David; Bearg, David W.
This article highlights indoor air quality and exposure to pollutants at school. Typical air pollutants within schools include environmental tobacco smoke, formaldehyde, volatile organic compounds, nitrogen oxides, carbon monoxide, carbon dioxide, allergens, pathogens, radon, pesticides, lead, and dust. Inadequate ventilation, inefficient…
Hydrogen from coal cost estimation guidebook
NASA Technical Reports Server (NTRS)
Billings, R. E.
1981-01-01
In an effort to establish baseline information whereby specific projects can be evaluated, a current set of parameters which are typical of coal gasification applications was developed. Using these parameters a computer model allows researchers to interrelate cost components in a sensitivity analysis. The results make possible an approximate estimation of hydrogen energy economics from coal, under a variety of circumstances.
USDA-ARS?s Scientific Manuscript database
Analysis of growth parameters have been researched in a number of aquaculture species with rainbow trout having received a significant amount of attention. Typically most growth studies have evaluated changes in plasma hormone levels or expression in growth genes in fish at a certain life stage. It ...
Estimation of coefficients and boundary parameters in hyperbolic systems
NASA Technical Reports Server (NTRS)
Banks, H. T.; Murphy, K. A.
1984-01-01
Semi-discrete Galerkin approximation schemes are considered in connection with inverse problems for the estimation of spatially varying coefficients and boundary condition parameters in second order hyperbolic systems typical of those arising in 1-D surface seismic problems. Spline based algorithms are proposed for which theoretical convergence results along with a representative sample of numerical findings are given.
Weld analysis and control system
NASA Technical Reports Server (NTRS)
Kennedy, Larry Z. (Inventor); Rodgers, Michael H. (Inventor); Powell, Bradley W. (Inventor); Burroughs, Ivan A. (Inventor); Goode, K. Wayne (Inventor)
1994-01-01
The invention is a Weld Analysis and Control System developed for active weld system control through real time weld data acquisition. Closed-loop control is based on analysis of weld system parameters and weld geometry. The system is adapted for use with automated welding apparatus having a weld controller which is capable of active electronic control of all aspects of a welding operation. Enhanced graphics and data displays are provided for post-weld analysis. The system provides parameter acquisition, including seam location which is acquired for active torch cross-seam positioning. Torch stand-off is also monitored for control. Weld bead and parent surface geometrical parameters are acquired as an indication of weld quality. These parameters include mismatch, peaking, undercut, underfill, crown height, weld width, puddle diameter, and other measurable information about the weld puddle regions, such as puddle symmetry, etc. These parameters provide a basis for active control as well as post-weld quality analysis and verification. Weld system parameters, such as voltage, current and wire feed rate, are also monitored and archived for correlation with quality parameters.
Field spectrometer (S191H) preprocessor tape quality test program design document
NASA Technical Reports Server (NTRS)
Campbell, H. M.
1976-01-01
Program QA191H performs quality assurance tests on field spectrometer data recorded on 9-track magnetic tape. The quality testing involves the comparison of key housekeeping and data parameters with historic and predetermined tolerance limits. Samples of key parameters are processed during the calibration period and wavelength cal period, and the results are printed out and recorded on an historical file tape.
Method and apparatus for assessing weld quality
Smartt, Herschel B.; Kenney, Kevin L.; Johnson, John A.; Carlson, Nancy M.; Clark, Denis E.; Taylor, Paul L.; Reutzel, Edward W.
2001-01-01
Apparatus for determining a quality of a weld produced by a welding device according to the present invention includes a sensor operatively associated with the welding device. The sensor is responsive to at least one welding process parameter during a welding process and produces a welding process parameter signal that relates to the at least one welding process parameter. A computer connected to the sensor is responsive to the welding process parameter signal produced by the sensor. A user interface operatively associated with the computer allows a user to select a desired welding process. The computer processes the welding process parameter signal produced by the sensor in accordance with one of a constant voltage algorithm, a short duration weld algorithm or a pulsed current analysis module depending on the desired welding process selected by the user. The computer produces output data indicative of the quality of the weld.
Gammacurta, Marine; Marchand, Stéphanie; Moine, Virginie; de Revel, Gilles
2017-09-01
The typical fruity aroma of red Bordeaux wines depends on the grape variety but also on microbiological processes, such as alcoholic and malolactic fermentations. These transformations involve respectively the yeast Saccharomyces cerevisiae and the lactic acid bacterium Oenococcus oeni. Both species play a central role in red winemaking but their quantitative and qualitative contribution to the revelation of the organoleptic qualities of wine has not yet been fully described. The aim of this study was to elucidate the influence of sequential inoculation of different yeast and bacteria strains on the aromatic profile of red Bordeaux wine. All microorganisms completed fermentations and no significant difference was observed between tanks regarding the main oenological parameters until 3 months' aging. Regardless of the yeast strain, B28 bacteria required the shortest period to completely degrade the malic acid, compared to the other strain. Quantification of 73 major components highlighted a specific volatile profile corresponding to each microorganism combination. However, the yeast strain appeared to have a predominant effect on aromatic compound levels, as well as on fruity aroma perception. Yeasts had a greater impact on wine quality and have more influence on the aromatic style of red wine than bacteria. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.
New in-situ neutron diffraction cell for electrode materials
NASA Astrophysics Data System (ADS)
Biendicho, Jordi Jacas; Roberts, Matthew; Offer, Colin; Noréus, Dag; Widenkvist, Erika; Smith, Ronald I.; Svensson, Gunnar; Edström, Kristina; Norberg, Stefan T.; Eriksson, Sten G.; Hull, Stephen
2014-02-01
A novel neutron diffraction cell has been constructed to allow in-situ studies of the structural changes in materials of relevance to battery applications during charge/discharge cycling. The new design is based on the coin cell geometry, but has larger dimensions compared to typical commercial batteries in order to maximize the amount of electrode material and thus, collect diffraction data of good statistical quality within the shortest possible time. An important aspect of the design is its modular nature, allowing flexibility in both the materials studied and the battery configuration. This paper reports electrochemical tests using a Nickel-metal-hydride battery (Ni-MH), which show that the cell is able to deliver 90% of its theoretical capacity when using deuterated components. Neutron diffraction studies performed on the Polaris diffractometer using nickel metal and a hydrogen-absorbing alloy (MH) clearly show observable changes in the neutron diffraction patterns as a function of the discharge state. Due to the high quality of the diffraction patterns collected in-situ (i.e. good peak-to-background ratio), phase analysis and peak indexing can be performed successfully using data collected in around 30 min. In addition to this, structural parameters for the β-phase (charged) MH electrode obtained by Rietveld refinement are presented.
Hybrid modeling as a QbD/PAT tool in process development: an industrial E. coli case study.
von Stosch, Moritz; Hamelink, Jan-Martijn; Oliveira, Rui
2016-05-01
Process understanding is emphasized in the process analytical technology initiative and the quality by design paradigm to be essential for manufacturing of biopharmaceutical products with consistent high quality. A typical approach to developing a process understanding is applying a combination of design of experiments with statistical data analysis. Hybrid semi-parametric modeling is investigated as an alternative method to pure statistical data analysis. The hybrid model framework provides flexibility to select model complexity based on available data and knowledge. Here, a parametric dynamic bioreactor model is integrated with a nonparametric artificial neural network that describes biomass and product formation rates as function of varied fed-batch fermentation conditions for high cell density heterologous protein production with E. coli. Our model can accurately describe biomass growth and product formation across variations in induction temperature, pH and feed rates. The model indicates that while product expression rate is a function of early induction phase conditions, it is negatively impacted as productivity increases. This could correspond with physiological changes due to cytoplasmic product accumulation. Due to the dynamic nature of the model, rational process timing decisions can be made and the impact of temporal variations in process parameters on product formation and process performance can be assessed, which is central for process understanding.
NASA Astrophysics Data System (ADS)
Craciunescu, Teddy; Peluso, Emmanuele; Murari, Andrea; Gelfusa, Michela; JET Contributors
2018-05-01
The total emission of radiation is a crucial quantity to calculate the power balances and to understand the physics of any Tokamak. Bolometric systems are the main tool to measure this important physical quantity through quite sophisticated tomographic inversion methods. On the Joint European Torus, the coverage of the bolometric diagnostic, due to the availability of basically only two projection angles, is quite limited, rendering the inversion a very ill-posed mathematical problem. A new approach, based on the maximum likelihood, has therefore been developed and implemented to alleviate one of the major weaknesses of traditional tomographic techniques: the difficulty to determine routinely the confidence intervals in the results. The method has been validated by numerical simulations with phantoms to assess the quality of the results and to optimise the configuration of the parameters for the main types of emissivity encountered experimentally. The typical levels of statistical errors, which may significantly influence the quality of the reconstructions, have been identified. The systematic tests with phantoms indicate that the errors in the reconstructions are quite limited and their effect on the total radiated power remains well below 10%. A comparison with other approaches to the inversion and to the regularization has also been performed.
Quality assessment of compost prepared with municipal solid waste
NASA Astrophysics Data System (ADS)
Jodar, J. R.; Ramos, N.; Carreira, J. A.; Pacheco, R.; Fernández-Hernández, A.
2017-11-01
One way that helps maintain the sustainability of agro-ecosystems land is the application of compost from municipal solid waste as fertilizer, because it can recover the nutrients contained in them, minimizing the negative impact on the environment. Composting as a method for preparing organic fertilizers and amendments is economically and ecologically sound and may well represent an acceptable solution for disposing of municipal solid waste. In the present work, the quality of compost is studied made from municipal solid waste; the content of mineral nutrients: potassium, calcium, magnesium, sodium, zinc, manganese, cupper, iron, nickel, chromium and lead has been investigated. The objective was to evaluate the changes in mineral nutrient concentration during the composting process. The compost was prepared in a pilot-plant using the turning-pile system. Temperature was used as a monitoring parameter to follow the composting progress, which underwent the typical trend of municipal solid waste composting mixtures. The results showed a similar evolution on the content of mineral nutrients of the mixture of municipal solid waste. This evolution originated in a mature compost (end sample) with an adequate content of mineral elements and physical-chemical characteristics for its use in agriculture. So, the use of compost of municipal solid waste represents an important tool for fertilization requirements for its use in agriculture.
NASA Astrophysics Data System (ADS)
Lee, Haenghwa; Choi, Sunghoon; Jo, Byungdu; Kim, Hyemi; Lee, Donghoon; Kim, Dohyeon; Choi, Seungyeon; Lee, Youngjin; Kim, Hee-Joung
2017-03-01
Chest digital tomosynthesis (CDT) is a new 3D imaging technique that can be expected to improve the detection of subtle lung disease over conventional chest radiography. Algorithm development for CDT system is challenging in that a limited number of low-dose projections are acquired over a limited angular range. To confirm the feasibility of algebraic reconstruction technique (ART) method under variations in key imaging parameters, quality metrics were conducted using LUNGMAN phantom included grand-glass opacity (GGO) tumor. Reconstructed images were acquired from the total 41 projection images over a total angular range of +/-20°. We evaluated contrast-to-noise ratio (CNR) and artifacts spread function (ASF) to investigate the effect of reconstruction parameters such as number of iterations, relaxation parameter and initial guess on image quality. We found that proper value of ART relaxation parameter could improve image quality from the same projection. In this study, proper value of relaxation parameters for zero-image (ZI) and back-projection (BP) initial guesses were 0.4 and 0.6, respectively. Also, the maximum CNR values and the minimum full width at half maximum (FWHM) of ASF were acquired in the reconstructed images after 20 iterations and 3 iterations, respectively. According to the results, BP initial guess for ART method could provide better image quality than ZI initial guess. In conclusion, ART method with proper reconstruction parameters could improve image quality due to the limited angular range in CDT system.
A Fault Alarm and Diagnosis Method Based on Sensitive Parameters and Support Vector Machine
NASA Astrophysics Data System (ADS)
Zhang, Jinjie; Yao, Ziyun; Lv, Zhiquan; Zhu, Qunxiong; Xu, Fengtian; Jiang, Zhinong
2015-08-01
Study on the extraction of fault feature and the diagnostic technique of reciprocating compressor is one of the hot research topics in the field of reciprocating machinery fault diagnosis at present. A large number of feature extraction and classification methods have been widely applied in the related research, but the practical fault alarm and the accuracy of diagnosis have not been effectively improved. Developing feature extraction and classification methods to meet the requirements of typical fault alarm and automatic diagnosis in practical engineering is urgent task. The typical mechanical faults of reciprocating compressor are presented in the paper, and the existing data of online monitoring system is used to extract fault feature parameters within 15 types in total; the inner sensitive connection between faults and the feature parameters has been made clear by using the distance evaluation technique, also sensitive characteristic parameters of different faults have been obtained. On this basis, a method based on fault feature parameters and support vector machine (SVM) is developed, which will be applied to practical fault diagnosis. A better ability of early fault warning has been proved by the experiment and the practical fault cases. Automatic classification by using the SVM to the data of fault alarm has obtained better diagnostic accuracy.
Ivoĭlov, V M; Semenikhin, V A; Odintseva, O V; Shternis, T A
2014-01-01
For assessing influence of social factors on life quality of workers in coal extraction enterpirses of Kemerovo region, the authors used questionnaire SF-36. Life quality parameters of workers engaged into coal extraction in Kemerovo region appeared to lower with age from 20 to 64 years. Life quality parameters on scales of pain, physical functioning and general health are invertedly correlated with age and length of service in hazardous work conditions for coal extraction workers. Life quality of the miners is influenced by the following factors: marital status, educational level and income level of the workers.
Kundu, Manju; Khatkar, Bhupendar Singh; Gulia, Neelam
2017-07-01
Fifty wheat varieties were assessed for chapatti quality using grain characteristics, dough rheological properties and pasting characteristics. Results revealed that 88% of wheat varieties studied were medium-hard to hard based on kernel texture. Water absorption and damaged starch were found to be important parameters for chapatti quality as both parameters had significant positive effect on the pliability and puffing height of chapatti. Protein content and gluten strength parameters like SDS sedimentation volume, dough stability and gluten index were found to have a negative impact on chapatti quality. Based on chapatti quality assessment the wheat varieties were classified into four distinct clusters viz. good, acceptable, fair and poor for chapatti making. It was elucidated that 46% of the varieties studied were good to acceptable for chapatti making, while 54% resulted in fair or poor chapatti quality thereby clearly indicating the need to establish and substantiate the development of product-specific varieties. Copyright © 2016. Published by Elsevier Ltd.
Water quality in the Schuylkill River, Pennsylvania: the potential for long-lead forecasts
NASA Astrophysics Data System (ADS)
Block, P. J.; Peralez, J.
2012-12-01
Prior analysis of pathogen levels in the Schuylkill River has led to a categorical daily forecast of water quality (denoted as red, yellow, or green flag days.) The forecast, available to the public online through the Philadelphia Water Department, is predominantly based on the local precipitation forecast. In this study, we explore the feasibility of extending the forecast to the seasonal scale by associating large-scale climate drivers with local precipitation and water quality parameter levels. This advance information is relevant for recreational activities, ecosystem health, and water treatment (energy, chemicals), as the Schuylkill provides 40% of Philadelphia's water supply. Preliminary results indicate skillful prediction of average summertime water quality parameters and characteristics, including chloride, coliform, turbidity, alkalinity, and others, using season-ahead oceanic and atmospheric variables, predominantly from the North Atlantic. Water quality parameter trends, including historic land use changes along the river, association with climatic variables, and prediction models will be presented.
Impact of initial surface parameters on the final quality of laser micro-polished surfaces
NASA Astrophysics Data System (ADS)
Chow, Michael; Bordatchev, Evgueni V.; Knopf, George K.
2012-03-01
Laser micro-polishing (LμP) is a new laser-based microfabrication technology for improving surface quality during a finishing operation and for producing parts and surfaces with near-optical surface quality. The LμP process uses low power laser energy to melt a thin layer of material on the previously machined surface. The polishing effect is achieved as the molten material in the laser-material interaction zone flows from the elevated regions to the local minimum due to surface tension. This flow of molten material then forms a thin ultra-smooth layer on the top surface. The LμP is a complex thermo-dynamic process where the melting, flow and redistribution of molten material is significantly influenced by a variety of process parameters related to the laser, the travel motions and the material. The goal of this study is to analyze the impact of initial surface parameters on the final surface quality. Ball-end micromilling was used for preparing initial surface of samples from H13 tool steel that were polished using a Q-switched Nd:YAG laser. The height and width of micromilled scallops (waviness) were identified as dominant parameter affecting the quality of the LμPed surface. By adjusting process parameters, the Ra value of a surface, having a waviness period of 33 μm and a peak-to-valley value of 5.9 μm, was reduced from 499 nm to 301 nm, improving the final surface quality by 39.7%.
Assessment and modeling of groundwater quality using WQI and GIS in Upper Egypt area.
Rabeiy, Ragab ElSayed
2017-04-04
The continuous growth and development of population need more fresh water for drinking, irrigation, and domestic in arid countries like Egypt. Evaluation the quality of groundwater is an essential study to ensure its suitability for different purposes. In this study, 812 groundwater samples were taken within the middle area of Upper Egypt (Sohag Governorate) to assess the quality of groundwater for drinking and irrigation purposes. Eleven water parameters were analyzed at each groundwater sample (Na + , K + , Ca 2+ , Mg 2+ , HCO 3 - SO 4 2- , Fe 2+ , Mn 2+ , Cl - , electrical conductivity, and pH) to exploit them in water quality evaluation. A classical statistics were applied for the raw data to examine the distribution of physicochemical parameters in the investigated area. The relationship between groundwater parameters was tested using the correlation coefficient where a strong relationship was found between several water parameters such as Ca 2+ and Cl - . Water quality index (WQI) is a mathematical model used to transform many water parameters into a single indicator value which represents the water quality level. Results of WQI showed that 20% of groundwater samples are excellent, 75% are good for drinking, and 7% are very poor water while only 1% of samples are unsuitable for drinking. To test the suitability of groundwater for irrigation, three indices are used; they are sodium adsorption ration (SAR), sodium percentage (Na%), and permeability index (PI). For irrigation suitability, the study proved that most sampling sites are suitable while less than 3% are unsuitable for irrigation. The spatial distribution of the estimated values of WQI, SAR, Na%, PI, and each groundwater parameter was spatially modeled using GIS.