Sample records for typical system operation

  1. Evaluation of the Tropical Pacific Observing System from the Data Assimilation Perspective

    DTIC Science & Technology

    2014-01-01

    hereafter, SIDA systems) have the capacity to assimilate salinity profiles imposing a multivariate (mainly T-S) balance relationship (summarized in...Fujii et al., 2011). Current SIDA systems in operational centers generally use Ocean General Circulation Models (OGCM) with resolution typically 1...long-term (typically 20-30 years) ocean DA runs are often performed with SIDA systems in operational centers for validation and calibration of SI

  2. Evaluation of Vehicle Detection Systems for Traffic Signal Operations

    DOT National Transportation Integrated Search

    2016-10-16

    Typical vehicle detection systems used in traffic signal operations are comprised of inductive loop detectors. Because of costs, installation challenges, and operation and maintenance issues, many alternative non-intrusive systems have been dev...

  3. An Analysis of the Air Force Government Operated Civil Engineering Supply Store Logistic System: How Can It Be Improved?

    DTIC Science & Technology

    1990-09-01

    6 Logistics Systems ............ 7 GOCESS Operation . . . . . . . ..... 9 Work Order Processing . . . . ... 12 Job Order Processing . . . . . . . . . . 14...orders and job orders to the Material Control Section will be discussed separately. Work Order Processing . Figure 2 illustrates typical WO processing...logistics function. The JO processing is similar. Job Order Processing . Figure 3 illustrates typical JO processing in a GOCESS operation. As with WOs, this

  4. Space Transportation systems overview

    NASA Technical Reports Server (NTRS)

    Lee, C. M.

    1979-01-01

    Planning for the operations phase of the Space Transportation system is reviewed. Attention is given to mission profile (typical), applications, manifesting rationale, the Operational Flight Test manifest, the operations manifest, pricing policy, and potential applications of the STS.

  5. Collaborating with Autonomous Agents

    NASA Technical Reports Server (NTRS)

    Trujillo, Anna C.; Cross, Charles D.; Fan, Henry; Hempley, Lucas E.; Motter, Mark A.; Neilan, James H.; Qualls, Garry D.; Rothhaar, Paul M.; Tran, Loc D.; Allen, B. Danette

    2015-01-01

    With the anticipated increase of small unmanned aircraft systems (sUAS) entering into the National Airspace System, it is highly likely that vehicle operators will be teaming with fleets of small autonomous vehicles. The small vehicles may consist of sUAS, which are 55 pounds or less that typically will y at altitudes 400 feet and below, and small ground vehicles typically operating in buildings or defined small campuses. Typically, the vehicle operators are not concerned with manual control of the vehicle; instead they are concerned with the overall mission. In order for this vision of high-level mission operators working with fleets of vehicles to come to fruition, many human factors related challenges must be investigated and solved. First, the interface between the human operator and the autonomous agent must be at a level that the operator needs and the agents can understand. This paper details the natural language human factors e orts that NASA Langley's Autonomy Incubator is focusing on. In particular these e orts focus on allowing the operator to interact with the system using speech and gestures rather than a mouse and keyboard. With this ability of the system to understand both speech and gestures, operators not familiar with the vehicle dynamics will be able to easily plan, initiate, and change missions using a language familiar to them rather than having to learn and converse in the vehicle's language. This will foster better teaming between the operator and the autonomous agent which will help lower workload, increase situation awareness, and improve performance of the system as a whole.

  6. Karasek Home, Blackstone, Massachusetts solar-energy-system performance evaluation, Nov. 1981 - Mar. 1982

    NASA Astrophysics Data System (ADS)

    Raymond, M.

    1982-06-01

    The Karasek Home is a single family Massachusetts residence whose active-solar-energy system is equipped with 640 square feet of trickle-down liquid flat-plate collectors, storage in a 300-gallon tank and a 2000-gallon tank embedded in a rock bin in the basement, and an oil-fired glass-lined 40-gallon domestic hot water tank for auxiliary water and space heating. Monthly performance data are tabulated for the overall system and for the collector, storage, space heating, and domestic hot water subsystems. For each month a graph is presented of collector array efficiency versus the difference between the inlet water temperature and ambient temperature divided by insolation. Typical system operation is illustrated by graphs of insolation and temperatures at different parts of the system versus time for a typical day. The typical system operating sequence for a day is also graphed as well as solar energy utilization and heat losses.

  7. Operating experiences with rotary air-to-air heat exchangers: hospitals, schools, nursing homes, swimming pools

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pearson, R.J.

    1976-01-01

    Systems utilizing rotary air-to-air heat exchangers are discussed. Basic considerations of use (fresh air requirements, system configurations, cost considerations), typical system layout/design considerations, and operating observations by engineers, staff and maintenance personnel are described.

  8. Spatial operator algebra for flexible multibody dynamics

    NASA Technical Reports Server (NTRS)

    Jain, A.; Rodriguez, G.

    1993-01-01

    This paper presents an approach to modeling the dynamics of flexible multibody systems such as flexible spacecraft and limber space robotic systems. A large number of degrees of freedom and complex dynamic interactions are typical in these systems. This paper uses spatial operators to develop efficient recursive algorithms for the dynamics of these systems. This approach very efficiently manages complexity by means of a hierarchy of mathematical operations.

  9. Meeting global health challenges through operational research and management science

    PubMed Central

    2011-01-01

    Abstract This paper considers how operational research and management science can improve the design of health systems and the delivery of health care, particularly in low-resource settings. It identifies some gaps in the way operational research is typically used in global health and proposes steps to bridge them. It then outlines some analytical tools of operational research and management science and illustrates how their use can inform some typical design and delivery challenges in global health. The paper concludes by considering factors that will increase and improve the contribution of operational research and management science to global health. PMID:21897489

  10. Meeting global health challenges through operational research and management science.

    PubMed

    Royston, Geoff

    2011-09-01

    This paper considers how operational research and management science can improve the design of health systems and the delivery of health care, particularly in low-resource settings. It identifies some gaps in the way operational research is typically used in global health and proposes steps to bridge them. It then outlines some analytical tools of operational research and management science and illustrates how their use can inform some typical design and delivery challenges in global health. The paper concludes by considering factors that will increase and improve the contribution of operational research and management science to global health.

  11. Cogeneration Systems.

    DTIC Science & Technology

    1980-06-01

    43 3000 TYPICAL MID-1978 COSTS, all overhead included 2000- Type of System: Double alkali flue gas desulfurization plus baghouse particulate removal...Figures 5, 6, and 8 also provide cost estimating data for oil- and natural gas -fired steam turbine systems. Figure 5 shows the steam- generating station of...to the ownership and operation of the system. For systems burning oil or natural gas , fuel will typically constitute 65-90% of the total life cycle

  12. Terminal-area STOL operating systems experiments program

    NASA Technical Reports Server (NTRS)

    Smith, D. W.; Watson, D.; Christensen, J. V.

    1973-01-01

    Information which will aid in the choice by the U.S. Government and industry of system concepts, design criteria, operating procedures for STOL aircraft and STOL ports, STOL landing guidance systems, air traffic control systems, and airborne avionics and flight control systems. Ames has developed a terminal-area STOL operating systems experiments program which is a part of the joint DOT/NASA effort is discussed. The Ames operating systems experiments program, its objectives, the program approach, the program schedule, typical experiments, the research facilities to be used, and the program status are described.

  13. Zombie algorithms: a timesaving remote sensing systems engineering tool

    NASA Astrophysics Data System (ADS)

    Ardanuy, Philip E.; Powell, Dylan C.; Marley, Stephen

    2008-08-01

    In modern horror fiction, zombies are generally undead corpses brought back from the dead by supernatural or scientific means, and are rarely under anyone's direct control. They typically have very limited intelligence, and hunger for the flesh of the living [1]. Typical spectroradiometric or hyperspectral instruments providess calibrated radiances for a number of remote sensing algorithms. The algorithms typically must meet specified latency and availability requirements while yielding products at the required quality. These systems, whether research, operational, or a hybrid, are typically cost constrained. Complexity of the algorithms can be high, and may evolve and mature over time as sensor characterization changes, product validation occurs, and areas of scientific basis improvement are identified and completed. This suggests the need for a systems engineering process for algorithm maintenance that is agile, cost efficient, repeatable, and predictable. Experience on remote sensing science data systems suggests the benefits of "plug-n-play" concepts of operation. The concept, while intuitively simple, can be challenging to implement in practice. The use of zombie algorithms-empty shells that outwardly resemble the form, fit, and function of a "complete" algorithm without the implemented theoretical basis-provides the ground systems advantages equivalent to those obtained by integrating sensor engineering models onto the spacecraft bus. Combined with a mature, repeatable process for incorporating the theoretical basis, or scientific core, into the "head" of the zombie algorithm, along with associated scripting and registration, provides an easy "on ramp" for the rapid and low-risk integration of scientific applications into operational systems.

  14. Terminal-area STOL operating systems experiments program

    NASA Technical Reports Server (NTRS)

    Smith, D. W.; Watson, D.; Christensen, J. V.

    1972-01-01

    A system study to determine the application of short takeoff aircraft for a high speed, short haul air transportation service was conducted. The study focused on developing information which will aid in choosing system concepts, design criteria, operating procedures, landing guidance systems, air traffic control systems, and airborne avionics and flight control systems. A terminal area STOL operating system experiments program was developed. The objectives, program approach, program schedule, typical experiments, research facilities to be used, and program status are discussed.

  15. Operational Characteristics of an Accelerator Driven Fissile Solution System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kimpland, Robert Herbert

    Operational characteristics represent the set of responses that a nuclear system exhibits during normal operation. Operators rely on this behavior to assess the status of the system and to predict the consequences of off-normal events. These characteristics largely refer to the relationship between power and system operating conditions. The static and dynamic behavior of a chain-reacting system, operating at sufficient power, is primarily governed by reactivity effects. The science of reactor physics has identified and evaluated a number of such effects, including Doppler broadening and shifts in the thermal neutron spectrum. Often these reactivity effects are quantified in the formmore » of feedback coefficients that serve as coupling coefficients relating the neutron population and the physical mechanisms that drive reactivity effects, such as fissile material temperature and density changes. The operational characteristics of such nuclear systems usually manifest themselves when perturbations between system power (neutron population) and system operating conditions arise. Successful operation of such systems requires the establishment of steady equilibrium conditions. However, prior to obtaining the desired equilibrium (steady-state) conditions, an approach from zero-power (startup) must occur. This operational regime may possess certain limiting system conditions that must be maintained to achieve effective startup. Once steady-state is achieved, a key characteristic of this operational regime is the level of stability that the system possesses. Finally, a third operational regime, shutdown, may also possess limiting conditions of operation that must be maintained. This report documents the operational characteristics of a “generic” Accelerator Driven Fissile Solution (ADFS) system during the various operational regimes of startup, steady-state operation, and shutdown. Typical time-dependent behavior for each operational regime will be illustrated, and key system parameters, such as response times, will be quantified. A generalized linear systems analysis of steady-state operations will be performed to evaluate the level of stability of ADFS systems. This information should provide a basic understanding of typical ADFS system operational behavior, and facilitate the development of monitoring procedures and operator aids.« less

  16. Stream protection with small cable yarding systems

    Treesearch

    Penn A. Peters; Chris B. LeDoux

    1984-01-01

    Small cable yarder systems that can be purchased and operated by independent logging contractors have less potential negative impact on water quality than ground-based systems operating on steep terrain because they do not require such an intense road system. Stream protection costs were estimated at $3.78 per lineal foot of stream when a typical small yarder (Koller K...

  17. Steady-state simulation program for attitude control propulsion systems

    NASA Technical Reports Server (NTRS)

    Heinmiller, P. J.

    1973-01-01

    The formulation and the engineering equations employed in the steady state attitude control propulsion system simulation program are presented. The objective of this program is to aid in the preliminary design and development of propulsion systems used for spacecraft attitude control. The program simulates the integrated operation of the many interdependent components typically comprising an attitude control propulsion system. Flexibility, generality, ease of operation, and speed consistent with adequate accuracy were overriding considerations during the development of this program. Simulation modules were developed representing the various types of fluid components typically encountered in an attitude control propulsion system. These modules are basically self-contained and may be arranged by the program user into desired configuration through the program input data.

  18. Survey report on the state-of-the-art of cryogenic thermometry and signal conditioners and their potential for standardized space hardware

    NASA Technical Reports Server (NTRS)

    1978-01-01

    The possibility of standard low temperature detector(s) for use in upcoming cryogenically cooled satellite and Space Shuttle Payloads was investigated. These payloads operate from .3 Kelvin to 300 Kelvin. Standard detectors were selected and matching signal conditioning equipment were specified. This equipment will operate in a spacecraft environment and be compatible with the selected detector, typical spacecraft voltages, typical spacecraft telemetry systems, and the radiation encountered by a typical earth orbiting spacecraft. Work statements to better define and advance detector performance are presented.

  19. Test Operations Procedure (TOP) 03-2-827 Test Procedures for Video Target Scoring Using Calibration Lights

    DTIC Science & Technology

    2016-04-04

    Final 3. DATES COVERED (From - To) 4. TITLE AND SUBTITLE Test Operations Procedure (TOP) 03-2-827 Test Procedures for Video Target Scoring Using...ABSTRACT This Test Operations Procedure (TOP) describes typical equipment and procedures to setup and operate a Video Target Scoring System (VTSS) to...lights. 15. SUBJECT TERMS Video Target Scoring System, VTSS, witness screens, camera, target screen, light pole 16. SECURITY

  20. Stirling machine operating experience

    NASA Technical Reports Server (NTRS)

    Ross, Brad; Dudenhoefer, James E.

    1991-01-01

    Numerous Stirling machines have been built and operated, but the operating experience of these machines is not well known. It is important to examine this operating experience in detail, because it largely substantiates the claim that Stirling machines are capable of reliable and lengthy lives. The amount of data that exists is impressive, considering that many of the machines that have been built are developmental machines intended to show proof of concept, and were not expected to operate for any lengthy period of time. Some Stirling machines (typically free-piston machines) achieve long life through non-contact bearings, while other Stirling machines (typically kinematic) have achieved long operating lives through regular seal and bearing replacements. In addition to engine and system testing, life testing of critical components is also considered.

  1. Designing efficient logging systems for northern hardwoods using equipment production capabilities and costs.

    Treesearch

    R.B. Gardner

    1966-01-01

    Describes a typical logging system used in the Lake and Northeastern States, discusses each step in the operation, and presents a simple method for designing and efficient logging system for such an operation. Points out that a system should always be built around the key piece of equipment, which is usually the skidder. Specific equipment types and their production...

  2. Solar energy system performance evaluation - Seasonal Report for Seeco Lincoln, Lincoln, Nebraska

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    1980-06-01

    The SEECO Lincoln Solar Energy System was designed to provide 60 percent of the space heating for the 50 seat Hyde Memorial Observatory in Lincoln, Nebraska. The system consists of nine SEECO Mod 1 flat plate air collectors (481 square feet), a 347 cubic foot rock storage bin, blowers, controls and air ducting. An auxiliary natural gas furnace provides additional energy when the solar energy is not adequate to meet the space heating demand. The system has five modes of operation. System description, typical system operation, system operating sequence, performance assessment, system performance, subsystem performance (collector array, storage, space heating),more » operating energy, energy savings and maintenance are discussed.« less

  3. An approach to the parametric design of ion thrusters

    NASA Technical Reports Server (NTRS)

    Wilbur, Paul J.; Beattie, John R.; Hyman, Jay, Jr.

    1988-01-01

    A methodology that can be used to determine which of several physical constraints can limit ion thruster power and thrust, under various design and operating conditions, is presented. The methodology is exercised to demonstrate typical limitations imposed by grid system span-to-gap ratio, intragrid electric field, discharge chamber power per unit beam area, screen grid lifetime, and accelerator grid lifetime constraints. Limitations on power and thrust for a thruster defined by typical discharge chamber and grid system parameters when it is operated at maximum thrust-to-power are discussed. It is pointed out that other operational objectives such as optimization of payload fraction or mission duration can be substituted for the thrust-to-power objective and that the methodology can be used as a tool for mission analysis.

  4. A Preliminary Study: USMC Tactical Communications Technical Control Needs for the Landing Force Integrated Communications System.

    DTIC Science & Technology

    1985-09-01

    BSTRACT This study uses a systems analysis approach to determine the communications technical control needs of the Fleet Marine Force as the transition...subsequent analysis and decision. In the acquisi- tion of military systems, it is typical to find these assumptions used to construct various measures of...relatively free from the typical underlying estimates used in cost and operational effective- ness analysis (COEA) type studies which are designed to compare

  5. SimSup's Loop: A Control Theory Approach to Spacecraft Operator Training

    NASA Technical Reports Server (NTRS)

    Owens, Brandon Dewain; Crocker, Alan R.

    2015-01-01

    Immersive simulation is a staple of training for many complex system operators, including astronauts and ground operators of spacecraft. However, while much has been written about simulators, simulation facilities, and operator certification programs, the topic of how one develops simulation scenarios to train a spacecraft operator is relatively understated in the literature. In this paper, an approach is presented for using control theory as the basis for developing the immersive simulation scenarios for a spacecraft operator training program. The operator is effectively modeled as a high level controller of lower level hardware and software control loops that affect a select set of system state variables. Simulation scenarios are derived from a STAMP-based hazard analysis of the operator's high and low level control loops. The immersive simulation aspect of the overall training program is characterized by selecting a set of scenarios that expose the operator to the various inadequate control actions that stem from control flaws and inadequate control executions in the different sections of the typical control loop. Results from the application of this approach to the Lunar Atmosphere and Dust Environment Explorer (LADEE) mission are provided through an analysis of the simulation scenarios used for operator training and the actual anomalies that occurred during the mission. The simulation scenarios and inflight anomalies are mapped to specific control flaws and inadequate control executions in the different sections of the typical control loop to illustrate the characteristics of anomalies arising from the different sections of the typical control loop (and why it is important for operators to have exposure to these characteristics). Additionally, similarities between the simulation scenarios and inflight anomalies are highlighted to make the case that the simulation scenarios prepared the operators for the mission.

  6. Solar powered absorption cycle heat pump using phase change materials for energy storage

    NASA Technical Reports Server (NTRS)

    Middleton, R. L.

    1972-01-01

    Solar powered heating and cooling system with possible application to residential homes is described. Operating principles of system are defined and illustration of typical energy storage and exchange system is provided.

  7. Recirculating Aquaculture (4th edition)

    USDA-ARS?s Scientific Manuscript database

    Typically recirculating (closed) aquatic production systems have higher capital and operating costs than many of the extensive systems such as cage culture in natural waters and raceway and/or pond culture systems. However, when the control provided by recirculating systems and the benefits this env...

  8. Efficient On-Demand Operations in Large-Scale Infrastructures

    ERIC Educational Resources Information Center

    Ko, Steven Y.

    2009-01-01

    In large-scale distributed infrastructures such as clouds, Grids, peer-to-peer systems, and wide-area testbeds, users and administrators typically desire to perform "on-demand operations" that deal with the most up-to-date state of the infrastructure. However, the scale and dynamism present in the operating environment make it challenging to…

  9. The Typical General Aviation Aircraft

    NASA Technical Reports Server (NTRS)

    Turnbull, Andrew

    1999-01-01

    The reliability of General Aviation aircraft is unknown. In order to "assist the development of future GA reliability and safety requirements", a reliability study needs to be performed. Before any studies on General Aviation aircraft reliability begins, a definition of a typical aircraft that encompasses most of the general aviation characteristics needs to be defined. In this report, not only is the typical general aviation aircraft defined for the purpose of the follow-on reliability study, but it is also separated, or "sifted" into several different categories where individual analysis can be performed on the reasonably independent systems. In this study, the typical General Aviation aircraft is a four-place, single engine piston, all aluminum fixed-wing certified aircraft with a fixed tricycle landing gear and a cable operated flight control system. The system breakdown of a GA aircraft "sifts" the aircraft systems and components into five categories: Powerplant, Airframe, Aircraft Control Systems, Cockpit Instrumentation Systems, and the Electrical Systems. This breakdown was performed along the lines of a failure of the system. Any component that caused a system to fail was considered a part of that system.

  10. Management Information in Tertiary Institutions.

    ERIC Educational Resources Information Center

    Findlay, A. W.

    1981-01-01

    A college or university's management information system corresponds roughly to the institution's structure, with these elements in descending order in the hierarchy: policy and planning, a planning system, control and coordination, and typical operating systems (payroll, exams, scheduling, library, facilities assignments, and accounting…

  11. Harvesting small stems -- A Southern USA perspective

    Treesearch

    William F. Watson; Bryce J. Stokes

    1989-01-01

    Operations that harvest small stems using conventional equipment are discussed. A typical operation consists of rubber-tired feller-bunchers with shear heads, rubber-tired grapple skidders, and in-woods chippers. These systems harvest the small stems either in a pre-harvest, postharvest, or integrated-harvest method.

  12. Auditory display as feedback for a novel eye-tracking system for sterile operating room interaction.

    PubMed

    Black, David; Unger, Michael; Fischer, Nele; Kikinis, Ron; Hahn, Horst; Neumuth, Thomas; Glaser, Bernhard

    2018-01-01

    The growing number of technical systems in the operating room has increased attention on developing touchless interaction methods for sterile conditions. However, touchless interaction paradigms lack the tactile feedback found in common input devices such as mice and keyboards. We propose a novel touchless eye-tracking interaction system with auditory display as a feedback method for completing typical operating room tasks. Auditory display provides feedback concerning the selected input into the eye-tracking system as well as a confirmation of the system response. An eye-tracking system with a novel auditory display using both earcons and parameter-mapping sonification was developed to allow touchless interaction for six typical scrub nurse tasks. An evaluation with novice participants compared auditory display with visual display with respect to reaction time and a series of subjective measures. When using auditory display to substitute for the lost tactile feedback during eye-tracking interaction, participants exhibit reduced reaction time compared to using visual-only display. In addition, the auditory feedback led to lower subjective workload and higher usefulness and system acceptance ratings. Due to the absence of tactile feedback for eye-tracking and other touchless interaction methods, auditory display is shown to be a useful and necessary addition to new interaction concepts for the sterile operating room, reducing reaction times while improving subjective measures, including usefulness, user satisfaction, and cognitive workload.

  13. Hydraulically actuated fuel injector including a pilot operated spool valve assembly and hydraulic system using same

    DOEpatents

    Shafer, Scott F.

    2002-01-01

    The present invention relates to hydraulic systems including hydraulically actuated fuel injectors that have a pilot operated spool valve assembly. One class of hydraulically actuated fuel injectors includes a solenoid driven pilot valve that controls the initiation of the injection event. However, during cold start conditions, hydraulic fluid, typically engine lubricating oil, is particularly viscous and is often difficult to displace through the relatively small drain path that is defined past the pilot valve member. Because the spool valve typically responds slower than expected during cold start due to the difficulty in displacing the relatively viscous oil, accurate start of injection timing can be difficult to achieve. There also exists a greater difficulty in reaching the higher end of the cold operating speed range. Therefore, the present invention utilizes a fluid evacuation valve to aid in displacement of the relatively viscous oil during cold start conditions.

  14. Economics in ground operations of the Space Shuttle

    NASA Technical Reports Server (NTRS)

    Gray, R. H.

    1973-01-01

    The physical configuration, task versatility, and typical mission profile of the Space Shuttle are illustrated and described, and a comparison of shuttle and expendable rocket costs is discussed, with special emphasis upon savings to be achieved in ground operations. A review of economies achieved by engineering design improvements covers the automated checkout by onboard shuttle systems, the automated launch processing system, the new maintenance concept, and the analogy of Space Shuttle and airline repetitive operations. The Space Shuttle is shown to represent a new level in space flight technology, particularly, the sophistication of the systems and procedures devised for its support and ground operations.

  15. Operationally Efficient Propulsion System Study (OEPSS): OEPSS Video Script

    NASA Technical Reports Server (NTRS)

    Wong, George S.; Waldrop, Glen S.; Trent, Donnie (Editor)

    1992-01-01

    The OEPSS video film, along with the OEPSS Databooks, provides a data base of current launch experience that will be useful for design of future expendable and reusable launch systems. The focus is on the launch processing of propulsion systems. A brief 15-minute overview of the OEPSS study results is found at the beginning of the film. The remainder of the film discusses in more detail: current ground operations at the Kennedy Space Center; typical operations issues and problems; critical operations technologies; and efficiency of booster and space propulsion systems. The impact of system architecture on the launch site and its facility infrastucture is emphasized. Finally, a particularly valuable analytical tool, developed during the OEPSS study, that will provide for the "first time" a quantitative measure of operations efficiency for a propulsion system is described.

  16. Game Theory and Uncertainty Quantification for Cyber Defense Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chatterjee, Samrat; Halappanavar, Mahantesh; Tipireddy, Ramakrishna

    Cyber-system defenders face the challenging task of protecting critical assets and information continually against multiple types of malicious attackers. Defenders typically operate within resource constraints while attackers operate at relatively low costs. As a result, design and development of resilient cyber-systems that can support mission goals under attack while accounting for the dynamics between attackers and defenders is an important research problem.

  17. High Efficiency - Reduced Emissions Boiler Systems for Steam, Heat, and Processing

    DTIC Science & Technology

    2012-07-01

    enable energy saving necessary for obtaining Energy Star certification for the whole boiler system. Widespread boiler control updates could be possible...adaptability to different boiler and oil/gas burner configurations, and extensibility to operation with nonconventional fuels (e.g., biogas and syngas...typically operating below or slightly above 80%. Higher efficiency improvements can certainly be obtained via boiler replacement and adoption of

  18. Scanning Seismic Intrusion Detector

    NASA Technical Reports Server (NTRS)

    Lee, R. D.

    1982-01-01

    Scanning seismic intrusion detector employs array of automatically or manually scanned sensors to determine approximate location of intruder. Automatic-scanning feature enables one operator to tend system of many sensors. Typical sensors used with new system are moving-coil seismic pickups. Detector finds uses in industrial security systems.

  19. Avionics System Architecture for the NASA Orion Vehicle

    NASA Technical Reports Server (NTRS)

    Baggerman, Clint; McCabe, Mary; Verma, Dinesh

    2009-01-01

    It has been 30 years since the National Aeronautics and Space Administration (NASA) last developed a crewed spacecraft capable of launch, on-orbit operations, and landing. During that time, aerospace avionics technologies have greatly advanced in capability, and these technologies have enabled integrated avionics architectures for aerospace applications. The inception of NASA s Orion Crew Exploration Vehicle (CEV) spacecraft offers the opportunity to leverage the latest integrated avionics technologies into crewed space vehicle architecture. The outstanding question is to what extent to implement these advances in avionics while still meeting the unique crewed spaceflight requirements for safety, reliability and maintainability. Historically, aircraft and spacecraft have very similar avionics requirements. Both aircraft and spacecraft must have high reliability. They also must have as much computing power as possible and provide low latency between user control and effecter response while minimizing weight, volume, and power. However, there are several key differences between aircraft and spacecraft avionics. Typically, the overall spacecraft operational time is much shorter than aircraft operation time, but the typical mission time (and hence, the time between preventive maintenance) is longer for a spacecraft than an aircraft. Also, the radiation environment is typically more severe for spacecraft than aircraft. A "loss of mission" scenario (i.e. - the mission is not a success, but there are no casualties) arguably has a greater impact on a multi-million dollar spaceflight mission than a typical commercial flight. Such differences need to be weighted when determining if an aircraft-like integrated modular avionics (IMA) system is suitable for a crewed spacecraft. This paper will explore the preliminary design process of the Orion vehicle avionics system by first identifying the Orion driving requirements and the difference between Orion requirements and those of other previous crewed spacecraft avionics systems. Common systems engineering methods will be used to evaluate the value propositions, or the factors that weight most heavily in design consideration, of Orion and other aerospace systems. Then, the current Orion avionics architecture will be presented and evaluated.

  20. Intelligent Decisions? Intelligent Support? Agenda and Participants for the Internal Workshop on Intelligent Decision Support Systems : Retrospects and Prospects, August 29 - September 2, 2005, Certosa di Pontignano (Siena), Italy

    DTIC Science & Technology

    2005-09-01

    ENGINEERING APPROACH TO INTELLIGENT OPERATOR ASSISTANCE AND AUTONOMOUS VEHICLE GUIDANCE ..................100 27. SHARPLE, SARAH (WITH COX, GEMMA & STEDMON...104 30. TANGO, FABIO: CONCEPT OF AUTONOMIC COMPUTING APPLIED TO TRANSPORTATION ISSUES: THE SENSITIVE CAR .....105 31. TAYLOR, ROBERT: POSITION...SYSTEMS ENGINEERING APPROACH TO INTELLIGENT OPERATOR ASSISTANCE AND AUTONOMOUS VEHICLE GUIDANCE Today’s automation systems are typically introduced

  1. Design and evaluation of a sensor fail-operational control system for a digitally controlled turbofan engine

    NASA Technical Reports Server (NTRS)

    Hrach, F. J.; Arpasi, D. J.; Bruton, W. M.

    1975-01-01

    A self-learning, sensor fail-operational, control system for the TF30-P-3 afterburning turbofan engine was designed and evaluated. The sensor fail-operational control system includes a digital computer program designed to operate in conjunction with the standard TF30-P-3 bill-of-materials control. Four engine measurements and two compressor face measurements are tested. If any engine measurements are found to have failed, they are replaced by values synthesized from computer-stored information. The control system was evaluated by using a realtime, nonlinear, hybrid computer engine simulation at sea level static condition, at a typical cruise condition, and at several extreme flight conditions. Results indicate that the addition of such a system can improve the reliability of an engine digital control system.

  2. Methodology for the systems engineering process. Volume 3: Operational availability

    NASA Technical Reports Server (NTRS)

    Nelson, J. H.

    1972-01-01

    A detailed description and explanation of the operational availability parameter is presented. The fundamental mathematical basis for operational availability is developed, and its relationship to a system's overall performance effectiveness is illustrated within the context of identifying specific availability requirements. Thus, in attempting to provide a general methodology for treating both hypothetical and existing availability requirements, the concept of an availability state, in conjunction with the more conventional probability-time capability, is investigated. In this respect, emphasis is focused upon a balanced analytical and pragmatic treatment of operational availability within the system design process. For example, several applications of operational availability to typical aerospace systems are presented, encompassing the techniques of Monte Carlo simulation, system performance availability trade-off studies, analytical modeling of specific scenarios, as well as the determination of launch-on-time probabilities. Finally, an extensive bibliography is provided to indicate further levels of depth and detail of the operational availability parameter.

  3. The state-of-the-art of cryogenic thermometry and signal conditioners and their potential for standardized space hardware

    NASA Technical Reports Server (NTRS)

    1983-01-01

    The possibility of standard low temperature detector(s) for use in upcoming cryogenically cooled satellite and Space Shuttle payloads were investigated. These payloads operate from .3 kelvin to 300 kelvin. Standard detectors were selected and matching signal conditioning equipment compatible with the selected detector, typical spacecraft voltages, typical spacecraft telemetry systems, and the radiation encountered by a typical Earth orbiting spacecraft. Work statements to better define and advance detector performance were presented.

  4. Multivariable manual control with simultaneous visual and auditory presentation of information. [for improved compensatory tracking performance of human operator

    NASA Technical Reports Server (NTRS)

    Uhlemann, H.; Geiser, G.

    1975-01-01

    Multivariable manual compensatory tracking experiments were carried out in order to determine typical strategies of the human operator and conditions for improvement of his performance if one of the visual displays of the tracking errors is supplemented by an auditory feedback. Because the tracking error of the system which is only visually displayed is found to decrease, but not in general that of the auditorally supported system, it was concluded that the auditory feedback unloads the visual system of the operator who can then concentrate on the remaining exclusively visual displays.

  5. Uncorrelated Encounter Model of the National Airspace System, Version 2.0

    DTIC Science & Technology

    2013-08-19

    can exist to certify avoidance systems for operational use. Evaluations typically include flight tests, operational impact studies, and simulation of...appropriate for large-scale air traffic impact studies— for example, examination of sector loading or conflict rates. The focus here includes two types of...between two IFR aircraft in oceanic airspace. The reason for this is that one cannot observe encounters of sufficient fidelity in the available data

  6. SAR System for UAV Operation with Motion Error Compensation beyond the Resolution Cell

    PubMed Central

    González-Partida, José-Tomás; Almorox-González, Pablo; Burgos-García, Mateo; Dorta-Naranjo, Blas-Pablo

    2008-01-01

    This paper presents an experimental Synthetic Aperture Radar (SAR) system that is under development in the Universidad Politécnica de Madrid. The system uses Linear Frequency Modulated Continuous Wave (LFM-CW) radar with a two antenna configuration for transmission and reception. The radar operates in the millimeter-wave band with a maximum transmitted bandwidth of 2 GHz. The proposed system is being developed for Unmanned Aerial Vehicle (UAV) operation. Motion errors in UAV operation can be critical. Therefore, this paper proposes a method for focusing SAR images with movement errors larger than the resolution cell. Typically, this problem is solved using two processing steps: first, coarse motion compensation based on the information provided by an Inertial Measuring Unit (IMU); and second, fine motion compensation for the residual errors within the resolution cell based on the received raw data. The proposed technique tries to focus the image without using data of an IMU. The method is based on a combination of the well known Phase Gradient Autofocus (PGA) for SAR imagery and typical algorithms for translational motion compensation on Inverse SAR (ISAR). This paper shows the first real experiments for obtaining high resolution SAR images using a car as a mobile platform for our radar. PMID:27879884

  7. SAR System for UAV Operation with Motion Error Compensation beyond the Resolution Cell.

    PubMed

    González-Partida, José-Tomás; Almorox-González, Pablo; Burgos-Garcia, Mateo; Dorta-Naranjo, Blas-Pablo

    2008-05-23

    This paper presents an experimental Synthetic Aperture Radar (SAR) system that is under development in the Universidad Politécnica de Madrid. The system uses Linear Frequency Modulated Continuous Wave (LFM-CW) radar with a two antenna configuration for transmission and reception. The radar operates in the millimeter-wave band with a maximum transmitted bandwidth of 2 GHz. The proposed system is being developed for Unmanned Aerial Vehicle (UAV) operation. Motion errors in UAV operation can be critical. Therefore, this paper proposes a method for focusing SAR images with movement errors larger than the resolution cell. Typically, this problem is solved using two processing steps: first, coarse motion compensation based on the information provided by an Inertial Measuring Unit (IMU); and second, fine motion compensation for the residual errors within the resolution cell based on the received raw data. The proposed technique tries to focus the image without using data of an IMU. The method is based on a combination of the well known Phase Gradient Autofocus (PGA) for SAR imagery and typical algorithms for translational motion compensation on Inverse SAR (ISAR). This paper shows the first real experiments for obtaining high resolution SAR images using a car as a mobile platform for our radar.

  8. Electric turbocompound control system

    DOEpatents

    Algrain, Marcelo C [Dunlap, IL

    2007-02-13

    Turbocompound systems can be used to affect engine operation using the energy in exhaust gas that is driving the available turbocharger. A first electrical device acts as a generator in response to turbocharger rotation. A second electrical device acts as a motor to put mechanical power into the engine, typically at the crankshaft. Apparatus, systems, steps, and methods are described to control the generator and motor operations to control the amount of power being recovered. This can control engine operation closer to desirable parameters for given engine-related operating conditions compared to actual. The electrical devices can also operate in "reverse," going between motor and generator functions. This permits the electrical device associated with the crankshaft to drive the electrical device associated with the turbocharger as a motor, overcoming deficient engine operating conditions such as associated with turbocharger lag.

  9. Operation and biasing for single device equivalent to CMOS

    DOEpatents

    Welch, James D.

    2001-01-01

    Disclosed are semiconductor devices including at least one junction which is rectifying whether the semiconductor is caused to be N or P-type, by the presence of field induced carriers. In particular, inverting and non-inverting gate voltage channel induced semiconductor single devices with operating characteristics similar to conventional multiple device CMOS systems, which can be operated as modulators, are disclosed as are a non-latching SCR and an approach to blocking parasitic currents. Operation of the gate voltage channel induced semiconductor single devices with operating characteristics similar to multiple device CMOS systems under typical bias schemes is described, and simple demonstrative five mask fabrication procedures for the inverting and non-inverting gate voltage channel induced semiconductor single devices with operating characteristics similar to multiple device CMOS systems are also presented.

  10. Interface cloning and sharing: Interaction designs for conserving labor and maintaining state across 24X7 sensor operations teams

    NASA Astrophysics Data System (ADS)

    Ganter, John H.; Reeves, Paul C.

    2017-05-01

    Processing remote sensing data is the epitome of computation, yet real-time collection systems remain human-labor intensive. Operator labor is consumed by both overhead tasks (cost) and value-added production (benefit). In effect, labor is taxed and then lost. When an operator comes on-shift, they typically duplicate setup work that their teammates have already performed many times. "Pass down" of state information can be difficult if security restrictions require total logouts and blank screens - hours or even days of valuable history and context are lost. As work proceeds, duplicative effort is common because it is typically easier for operators to "do it over" rather than share what others have already done. As we begin a major new system version, we are refactoring the user interface to reduce time and motion losses. Working with users, we are developing "click budgets" to streamline interface use. One basic function is shared clipboards to reduce the use of sticky notes and verbal communication of data strings. We illustrate two additional designs to share work: window copying and window sharing. Copying (technically, shallow or deep object cloning) allows any system user to duplicate a window and configuration for themselves or another to use. Sharing allows a window to have multiple users: shareholders with read-write functionality and viewers with read-only. These solutions would allow windows to persist across multiple shifts, with a rotating cast of shareholders and viewers. Windows thus become durable objects of shared effort and persistent state. While these are low-tech functions, the cumulative labor savings in a 24X7 crew position (525,000 minutes/year spread over multiple individuals) would be significant. New design and implementation is never free and these investments typically do not appeal to government acquisition officers with short-term acquisition-cost concerns rather than a long-term O and M (operations and maintenance) perspective. We share some successes in educating some officers, in collaboration with system users, about the human capital involved in operating the systems they are acquiring.

  11. Time warp operating system version 2.7 internals manual

    NASA Technical Reports Server (NTRS)

    1992-01-01

    The Time Warp Operating System (TWOS) is an implementation of the Time Warp synchronization method proposed by David Jefferson. In addition, it serves as an actual platform for running discrete event simulations. The code comprising TWOS can be divided into several different sections. TWOS typically relies on an existing operating system to furnish some very basic services. This existing operating system is referred to as the Base OS. The existing operating system varies depending on the hardware TWOS is running on. It is Unix on the Sun workstations, Chrysalis or Mach on the Butterfly, and Mercury on the Mark 3 Hypercube. The base OS could be an entirely new operating system, written to meet the special needs of TWOS, but, to this point, existing systems have been used instead. The base OS's used for TWOS on various platforms are not discussed in detail in this manual, as they are well covered in their own manuals. Appendix G discusses the interface between one such OS, Mach, and TWOS.

  12. Survey of U.S. Ancillary Services Markets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Zhi; Levin, Todd; Conzelmann, Guenter

    In addition to providing energy to end-consumers, power system operators are also responsible for ensuring system reliability. To this end, power markets maintain an array of ancillary services to ensure that it is always possible to balance the supply and demand for energy in real-time. A subset of these ancillary services are commonly procured through market-based mechanisms: namely, Regulation, Spinning, and Non-spinning Reserves. Regulation Reserves are maintained to respond to supply/demand imbalances over short time frames, typically on the order of several seconds to one minute. Resources that provide Regulation Reserves adjust their generation or load levels in response tomore » automatic generation control (AGC) signals provided by the system operator. Contingency reserves are maintained to provide additional generation capacity in the event that load increases substantially or supply side resources reduce their output or are taken offline. The reserves are typically segmented into two categories, 1) Spinning or Synchronized Reserves that are provided by generation units that are actively generating and have the ability to increase or decrease their output, 2) Non-spinning or Non-synchronized Reserves that are provided by generation resources that are not actively generating, but are able to start up and provide generation within a specified timeframe. Contingency reserves typically have response times on the order of ten to 30 minutes and can also be provided by demand-side resources that are capable of reducing their load. There are seven distinct power markets in the United States, each operated by a Regional Transmission Operator (RTO) or Independent System Operator (ISO) that operates the transmission system in its territory, operates markets for energy and ancillary services, and maintains system reliability. Each power market offers its own set of ancillary services, and precise definitions, requirements, and market mechanisms differ between markets. Despite the differences between markets, both in terms of services offered and system requirements, some broad trends generally apply. Regulation Reserves typically have the highest market prices, followed by Spinning Reserves and Non-spinning Reserves. Prices for Regulation Reserves have been the highest in the PJM market, since it opened in October 2012. This is partially because PJM experienced large price spikes during the period of extreme weather conditions in early 2014. ERCOT has traditionally had the highest prices for Spinning Reserves (called Responsive Reserves in ERCOT), including several periods of sustained high prices between 2010 and 2012. This can be explained in part by the relatively high penetration of variable wind resources and a similarly high requirement relative to peak load. ERCOT has also traditionally had the highest price for Non-spinning Reserves, followed by the NYISO East region. Both have experienced several periods of prolonged high prices since their inception, an occurrence that has not been regularly seen in other markets. In ISO-NE and PJM for example, the market clearing price for Non-spinning Reserves is typically $0/MWh more than 95% of the time. Market volume (in terms of the average amount of capacity of each service that is provided to a system) typically follows the reverse order of prices, as systems maintain the most Non-spinning Reserves capacity followed by Spinning Reserves and Regulation Reserves. PJM generally has the largest market for Regulation Reserves both in terms of capacity. The size of most Regulation Reserves markets in terms of capacity stay relatively constant year-to-year, as this is dictated largely by system requirements. PJM also generally has the largest Spinning Reserves market in terms of capacity. SPP, MISO, ISO-NE and SPP (beginning in 2014) all have Spinning Reserve markets with similar average capacity levels. When combined, the markets for Non-spinning and Operating reserves in ISO-NE have a comparable capacity to the market for Primary Reserves 1 in PJM. SPP, MISO, and CAISO all have smaller markets for their respective Non-spinning Reserves products that are roughly the same size as each other in terms of capacity.« less

  13. A parsimonious land data assimilation system for the SMAP/GPM satellite era

    USDA-ARS?s Scientific Manuscript database

    Land data assimilation systems typically require complex parameterizations in order to: define required observation operators, quantify observing/forecasting errors and calibrate a land surface assimilation model. These parameters are commonly defined in an arbitrary manner and, if poorly specified,...

  14. Core Community Specifications for Electron Microprobe Operating Systems: Software, Quality Control, and Data Management Issues

    NASA Technical Reports Server (NTRS)

    Fournelle, John; Carpenter, Paul

    2006-01-01

    Modem electron microprobe systems have become increasingly sophisticated. These systems utilize either UNIX or PC computer systems for measurement, automation, and data reduction. These systems have undergone major improvements in processing, storage, display, and communications, due to increased capabilities of hardware and software. Instrument specifications are typically utilized at the time of purchase and concentrate on hardware performance. The microanalysis community includes analysts, researchers, software developers, and manufacturers, who could benefit from exchange of ideas and the ultimate development of core community specifications (CCS) for hardware and software components of microprobe instrumentation and operating systems.

  15. Information need in local government and online network system ; LOGON

    NASA Astrophysics Data System (ADS)

    Ohta, Masanori

    Local Authorities Systems DEvelopment Center started the trial operation of LOcal Government information service On-line Network system (LOGON) in April of 1988. Considering the background of LOGON construction this paper introduces the present status of informationalization in municipalities and needs to network systems as well as information centers based on results of various types of research. It also compares database systems with communication by personal computers, both of which are typical communication forms, and investigates necessary functions of LOGON. The actual system functions, services and operation of LOGON and some problems occurred in the trial are discussed.

  16. Combination of process and vibration data for improved condition monitoring of industrial systems working under variable operating conditions

    NASA Astrophysics Data System (ADS)

    Ruiz-Cárcel, C.; Jaramillo, V. H.; Mba, D.; Ottewill, J. R.; Cao, Y.

    2016-01-01

    The detection and diagnosis of faults in industrial processes is a very active field of research due to the reduction in maintenance costs achieved by the implementation of process monitoring algorithms such as Principal Component Analysis, Partial Least Squares or more recently Canonical Variate Analysis (CVA). Typically the condition of rotating machinery is monitored separately using vibration analysis or other specific techniques. Conventional vibration-based condition monitoring techniques are based on the tracking of key features observed in the measured signal. Typically steady-state loading conditions are required to ensure consistency between measurements. In this paper, a technique based on merging process and vibration data is proposed with the objective of improving the detection of mechanical faults in industrial systems working under variable operating conditions. The capabilities of CVA for detection and diagnosis of faults were tested using experimental data acquired from a compressor test rig where different process faults were introduced. Results suggest that the combination of process and vibration data can effectively improve the detectability of mechanical faults in systems working under variable operating conditions.

  17. Modeling and optimization of a typical fuel cell-heat engine hybrid system and its parametric design criteria

    NASA Astrophysics Data System (ADS)

    Zhao, Yingru; Chen, Jincan

    A theoretical modeling approach is presented, which describes the behavior of a typical fuel cell-heat engine hybrid system in steady-state operating condition based on an existing solid oxide fuel cell model, to provide useful fundamental design characteristics as well as potential critical problems. The different sources of irreversible losses, such as the electrochemical reaction, electric resistances, finite-rate heat transfer between the fuel cell and the heat engine, and heat-leak from the fuel cell to the environment are specified and investigated. Energy and entropy analyses are used to indicate the multi-irreversible losses and to assess the work potentials of the hybrid system. Expressions for the power output and efficiency of the hybrid system are derived and the performance characteristics of the system are presented and discussed in detail. The effects of the design parameters and operating conditions on the system performance are studied numerically. It is found that there exist certain optimum criteria for some important parameters. The results obtained here may provide a theoretical basis for both the optimal design and operation of real fuel cell-heat engine hybrid systems. This new approach can be easily extended to other fuel cell hybrid systems to develop irreversible models suitable for the investigation and optimization of similar energy conversion settings and electrochemistry systems.

  18. Impact of interference on the receiving systems of the Deep-Space Network (DSN) Earth stations operated by NASA due to adjacent band emissions from Earth exploration satellites operating in the 8025-

    NASA Technical Reports Server (NTRS)

    Wang, Charles C.; Sue, Miles K.; Manshadi, Farzin; Kinman, Peter

    2005-01-01

    This paper will first describe the characteristics of interference from a typical EESS satellite, including the intensity, frequency and duration of such interference. The paper will then discuss the DSN interference susceptibility, including the various components in the receiving systems that are susceptible to interference and the recovery time after a strong interference. Finally, the paper will discuss the impact of interference on science data and missions operations.

  19. Performance of a Brayton power system with a space type radiator

    NASA Technical Reports Server (NTRS)

    Nussle, R. C.; Prok, G. M.; Fenn, D. B.

    1974-01-01

    Test results of an experimental investigation to measure Brayton engine performance while operating at the sink temperatures of a typical low earth orbit are presented. The results indicate that the radiator area was slightly oversized. The steady state and transient responses of the power system to the sink temperatures in orbit were measured. During the orbital operation, the engine did not reach the steady state operation of either sun or shade conditions. The alternator power variation during orbit was + or - 4 percent from its mean value of 9.3 kilowatts.

  20. An approach to the design of operations systems

    NASA Technical Reports Server (NTRS)

    Chafin, Roy L.; Curran, Patrick S.

    1993-01-01

    The MultiMission Control Team (MMCT) consists of mission controllers which provides Real-Time operations support for the Mars Observer project. The Real-Time Operations task is to insure the integrity of the ground data system, to insure that the configuration is correct to support the mission, and to monitor the spacecraft for the Spacecraft Team. Operations systems are typically developed by adapting operations systems from previous projects. Problems tend to be solved empirically when they are either anticipated or observed in testing. This development method has worked in the past when time was available for extensive Ops testing. In the present NASA budget environment, a more cost conscious design approach has become necessary. Cost is a concern because operations is an ongoing, continuous activity. Reducing costs entails reducing staff. Reducing staffing levels potentially increases the risk of mission failure. Therefore, keeping track of the risk level is necessary.

  1. Urban Districts Compare Notes on Operation

    ERIC Educational Resources Information Center

    Aarons, Dakarai I.

    2009-01-01

    Urban school systems are large businesses, charged with running a wide range of noninstructional functions that typically do not garner them much national notice. Now, thanks to the work of a coalition of big-city districts, their leaders are gathering data on how those operations are run, in the hope of improving their business practices. The…

  2. A Reserve-based Method for Mitigating the Impact of Renewable Energy

    NASA Astrophysics Data System (ADS)

    Krad, Ibrahim

    The fundamental operating paradigm of today's power systems is undergoing a significant shift. This is partially motivated by the increased desire for incorporating variable renewable energy resources into generation portfolios. While these generating technologies offer clean energy at zero marginal cost, i.e. no fuel costs, they also offer unique operating challenges for system operators. Perhaps the biggest operating challenge these resources introduce is accommodating their intermittent fuel source availability. For this reason, these generators increase the system-wide variability and uncertainty. As a result, system operators are revisiting traditional operating strategies to more efficiently incorporate these generation resources to maximize the benefit they provide while minimizing the challenges they introduce. One way system operators have accounted for system variability and uncertainty is through the use of operating reserves. Operating reserves can be simplified as excess capacity kept online during real time operations to help accommodate unforeseen fluctuations in demand. With new generation resources, a new class of operating reserves has emerged that is generally known as flexibility, or ramping, reserves. This new reserve class is meant to better position systems to mitigate severe ramping in the net load profile. The best way to define this new requirement is still under investigation. Typical requirement definitions focus on the additional uncertainty introduced by variable generation and there is room for improvement regarding explicit consideration for the variability they introduce. An exogenous reserve modification method is introduced in this report that can improve system reliability with minimal impacts on total system wide production costs. Another potential solution to this problem is to formulate the problem as a stochastic programming problem. The unit commitment and economic dispatch problems are typically formulated as deterministic problems due to fast solution times and the solutions being sufficient for operations. Improvements in technical computing hardware have reignited interest in stochastic modeling. The variability of wind and solar naturally lends itself to stochastic modeling. The use of explicit reserve requirements in stochastic models is an area of interest for power system researchers. This report introduces a new reserve modification implementation based on previous results to be used in a stochastic modeling framework. With technological improvements in distributed generation technologies, microgrids are currently being researched and implemented. Microgrids are small power systems that have the ability to serve their demand with their own generation resources and may have a connection to a larger power system. As battery technologies improve, they are becoming a more viable option in these distributed power systems and research is necessary to determine the most efficient way to utilize them. This report will investigate several unique operating strategies for batteries in small power systems and analyze their benefits. These new operating strategies will help reduce operating costs and improve system reliability.

  3. Pump efficiency in solar-energy systems

    NASA Technical Reports Server (NTRS)

    1978-01-01

    Study investigates characteristics of typical off-the-shelf pumping systems that might be used in solar systems. Report includes discussion of difficulties in predicting pump efficiency from manufacturers' data. Sample calculations are given. Peak efficiencies, flow-rate control, and noise levels are investigated. Review or theory of pumps types and operating characteristics is presented.

  4. Power consumption analysis of operating systems for wireless sensor networks.

    PubMed

    Lajara, Rafael; Pelegrí-Sebastiá, José; Perez Solano, Juan J

    2010-01-01

    In this paper four wireless sensor network operating systems are compared in terms of power consumption. The analysis takes into account the most common operating systems--TinyOS v1.0, TinyOS v2.0, Mantis and Contiki--running on Tmote Sky and MICAz devices. With the objective of ensuring a fair evaluation, a benchmark composed of four applications has been developed, covering the most typical tasks that a Wireless Sensor Network performs. The results show the instant and average current consumption of the devices during the execution of these applications. The experimental measurements provide a good insight into the power mode in which the device components are running at every moment, and they can be used to compare the performance of different operating systems executing the same tasks.

  5. On-farm irrigatrion system design and operation

    USDA-ARS?s Scientific Manuscript database

    Most commercial blueberry fields are irrigated by overhead sprinklers or drip. Water is typically applied one to two times per week as needed with sprinklers, and every one to three days with drip. Sprinkler systems are relatively simple to install and maintain, and when designed properly, obtain re...

  6. A Framework for Enterprise Operating Systems Based on Zachman Framework

    NASA Astrophysics Data System (ADS)

    Ostadzadeh, S. Shervin; Rahmani, Amir Masoud

    Nowadays, the Operating System (OS) isn't only the software that runs your computer. In the typical information-driven organization, the operating system is part of a much larger platform for applications and data that extends across the LAN, WAN and Internet. An OS cannot be an island unto itself; it must work with the rest of the enterprise. Enterprise wide applications require an Enterprise Operating System (EOS). Enterprise operating systems used in an enterprise have brought about an inevitable tendency to lunge towards organizing their information activities in a comprehensive way. In this respect, Enterprise Architecture (EA) has proven to be the leading option for development and maintenance of enterprise operating systems. EA clearly provides a thorough outline of the whole information system comprising an enterprise. To establish such an outline, a logical framework needs to be laid upon the entire information system. Zachman Framework (ZF) has been widely accepted as a standard scheme for identifying and organizing descriptive representations that have prominent roles in enterprise-wide system development. In this paper, we propose a framework based on ZF for enterprise operating systems. The presented framework helps developers to design and justify completely integrated business, IT systems, and operating systems which results in improved project success rate.

  7. V/STOL propulsion control analysis: Phase 2, task 5-9

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Typical V/STOL propulsion control requirements were derived for transition between vertical and horizontal flight using the General Electric RALS (Remote Augmented Lift System) concept. Steady-state operating requirements were defined for a typical Vertical-to-Horizontal transition and for a typical Horizontal-to-Vertical transition. Control mode requirements were established and multi-variable regulators developed for individual operating conditions. Proportional/Integral gain schedules were developed and were incorporated into a transition controller with capabilities for mode switching and manipulated variable reassignment. A non-linear component-level transient model of the engine was developed and utilized to provide a preliminary check-out of the controller logic. An inlet and nozzle effects model was developed for subsequent incorporation into the engine model and an aircraft model was developed for preliminary flight transition simulations. A condition monitoring development plan was developed and preliminary design requirements established. The Phase 1 long-range technology plan was refined and restructured toward the development of a real-time high fidelity transient model of a supersonic V/STOL propulsion system and controller for use in a piloted simulation program at NASA-Ames.

  8. a Statistical Dynamic Approach to Structural Evolution of Complex Capital Market Systems

    NASA Astrophysics Data System (ADS)

    Shao, Xiao; Chai, Li H.

    As an important part of modern financial systems, capital market has played a crucial role on diverse social resource allocations and economical exchanges. Beyond traditional models and/or theories based on neoclassical economics, considering capital markets as typical complex open systems, this paper attempts to develop a new approach to overcome some shortcomings of the available researches. By defining the generalized entropy of capital market systems, a theoretical model and nonlinear dynamic equation on the operations of capital market are proposed from statistical dynamic perspectives. The US security market from 1995 to 2001 is then simulated and analyzed as a typical case. Some instructive results are discussed and summarized.

  9. Speed control system for an access gate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bzorgi, Fariborz M

    2012-03-20

    An access control apparatus for an access gate. The access gate typically has a rotator that is configured to rotate around a rotator axis at a first variable speed in a forward direction. The access control apparatus may include a transmission that typically has an input element that is operatively connected to the rotator. The input element is generally configured to rotate at an input speed that is proportional to the first variable speed. The transmission typically also has an output element that has an output speed that is higher than the input speed. The input element and the outputmore » element may rotate around a common transmission axis. A retardation mechanism may be employed. The retardation mechanism is typically configured to rotate around a retardation mechanism axis. Generally the retardation mechanism is operatively connected to the output element of the transmission and is configured to retard motion of the access gate in the forward direction when the first variable speed is above a control-limit speed. In many embodiments the transmission axis and the retardation mechanism axis are substantially co-axial. Some embodiments include a freewheel/catch mechanism that has an input connection that is operatively connected to the rotator. The input connection may be configured to engage an output connection when the rotator is rotated at the first variable speed in a forward direction and configured for substantially unrestricted rotation when the rotator is rotated in a reverse direction opposite the forward direction. The input element of the transmission is typically operatively connected to the output connection of the freewheel/catch mechanism.« less

  10. A Prototype Lisp-Based Soft Real-Time Object-Oriented Graphical User Interface for Control System Development

    NASA Technical Reports Server (NTRS)

    Litt, Jonathan; Wong, Edmond; Simon, Donald L.

    1994-01-01

    A prototype Lisp-based soft real-time object-oriented Graphical User Interface for control system development is presented. The Graphical User Interface executes alongside a test system in laboratory conditions to permit observation of the closed loop operation through animation, graphics, and text. Since it must perform interactive graphics while updating the screen in real time, techniques are discussed which allow quick, efficient data processing and animation. Examples from an implementation are included to demonstrate some typical functionalities which allow the user to follow the control system's operation.

  11. Lear jet telescope system

    NASA Technical Reports Server (NTRS)

    Erickson, E. F.; Goorvitch, D.; Dix, M. G.; Hitchman, M. J.

    1974-01-01

    The telescope system was designed as a multi-user facility for observations of celestial objects at infrared wavelengths, where ground-based observations are difficult or impossible due to the effects of telluric atmospheric absorption. The telescope is mounted in a Lear jet model 24B which typically permits 70 min. of observing per flight at altitudes in excess of 45,000 ft (13 km). Telescope system installation is discussed, along with appropriate setup and adjustment procedures. Operation of the guidance system is also explained, and checklists are provided which pertain to the recommended safe operating and in-flight trouble-shooting procedures for the equipment.

  12. 78 FR 45521 - Centralized Capacity Markets in Regional Transmission Organizations and Independent System...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-29

    .... This conference is free of charge and open to the public. Commission members may participate in the..., supplement or substitute for typical centralized capacity market design elements in order to meet current and... Capacity Markets in Regional Transmission Organizations and Independent System Operators:Supplemental...

  13. MODELING MERCURY DYNAMICS IN STREAM SYSTEMS WITH WASP7: CHARACTERIZING PROCESSES CONTROLLING SHORT AND LONG TERM RESPONSE

    EPA Science Inventory

    Mercury transport through stream ecosystems is driven by a complicated set of transport and transformation reactions operating on a variety of scales in the atmosphere, landscape, surface water, and biota. Riverine systems typically have short residence times and can experience l...

  14. Autoheated thermophilic aerobic digestion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deeny, K.; Hahn, H.; Leonhard, D.

    1991-10-01

    Autothermal thermophilic aerobic digestion (ATAD) is first and foremost a digestion process, the primary purpose of which is to decompose a portion of the waste organic solids generated from wastewater treatment. As a result of the high operating temperature, digestion is expected to occur within a short time period (6 days) and accomplish a high degree of pathogen reduction. ATAD systems are two-stage aerobic digestion processes that operate under thermophilic temperature conditions (40 to 80C) without supplemental heat. Like composting, the systems rely on the conservation of heat released during digestion itself to attain and sustain the desired operating temperature.more » Typical ATAD systems operate at 55C and may reach temperatures of 60 to 65C in the second-stage reactor. Perhaps because of the high operating temperature, this process has been referred to as Liquid Composting.' Major advantages associated with thermophilic operation include high biological reaction rates and a substantial degree of pathogen reduction.« less

  15. The Value of SysML Modeling During System Operations: A Case Study

    NASA Technical Reports Server (NTRS)

    Dutenhoffer, Chelsea; Tirona, Joseph

    2013-01-01

    System models are often touted as engineering tools that promote better understanding of systems, but these models are typically created during system design. The Ground Data System (GDS) team for the Dawn spacecraft took on a case study to see if benefits could be achieved by starting a model of a system already in operations. This paper focuses on the four steps the team undertook in modeling the Dawn GDS: defining a model structure, populating model elements, verifying that the model represented reality, and using the model to answer system-level questions and simplify day-to-day tasks. Throughout this paper the team outlines our thought processes and the system insights the model provided.

  16. The value of SysML modeling during system operations: A case study

    NASA Astrophysics Data System (ADS)

    Dutenhoffer, C.; Tirona, J.

    System models are often touted as engineering tools that promote better understanding of systems, but these models are typically created during system design. The Ground Data System (GDS) team for the Dawn spacecraft took on a case study to see if benefits could be achieved by starting a model of a system already in operations. This paper focuses on the four steps the team undertook in modeling the Dawn GDS: defining a model structure, populating model elements, verifying that the model represented reality, and using the model to answer system-level questions and simplify day-to-day tasks. Throughout this paper the team outlines our thought processes and the system insights the model provided.

  17. Modeling Imperfect Generator Behavior in Power System Operation Models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krad, Ibrahim

    A key component in power system operations is the use of computer models to quickly study and analyze different operating conditions and futures in an efficient manner. The output of these models are sensitive to the data used in them as well as the assumptions made during their execution. One typical assumption is that generators and load assets perfectly follow operator control signals. While this is a valid simulation assumption, generators may not always accurately follow control signals. This imperfect response of generators could impact cost and reliability metrics. This paper proposes a generator model that capture this imperfect behaviormore » and examines its impact on production costs and reliability metrics using a steady-state power system operations model. Preliminary analysis shows that while costs remain relatively unchanged, there could be significant impacts on reliability metrics.« less

  18. Cyber-physical system for a water reclamation plant: Balancing aeration, energy, and water quality to maintain process resilience

    NASA Astrophysics Data System (ADS)

    Zhu, Junjie

    Aeration accounts for a large fraction of energy consumption in conventional water reclamation plants (WRPs). Although process operations at older WRPs can satisfy effluent permit requirements, they typically operate with excess aeration. More effective process controls at older WRPs can be challenging as operators work to balance higher energy costs and more stringent effluent limitations while managing fluctuating loads. Therefore, understandings of process resilience or ability to quickly return to original operation conditions at a WRP are important. A state-of-art WRP should maintain process resilience to deal with different kinds of perturbations even after optimization of energy demands. This work was to evaluate the applicability and feasibility of cyber-physical system (CPS) for improving operation at Metropolitan Water Reclamation District of Greater Chicago (MWRDGC) Calumet WRP. In this work, a process model was developed and used to better understand the conditions of current Calumet WRP, with additional valuable information from two dissolved oxygen field measurements. Meanwhile, a classification system was developed to reveal the pattern of historical influent scenario based on cluster analysis and cross-tabulation analysis. Based on the results from the classification, typical process control options were investigated. To ensure the feasibility of information acquisition, the reliability and flexibility of soft sensors were assessed to typical influent conditions. Finally, the process resilience was investigated to better balance influent perturbations, energy demands, and effluent quality for long-term operations. These investigations and evaluations show that although the energy demands change as the influent conditions and process controls. In general, aeration savings could be up to 50% from the level of current consumption; with a more complex process controls, the saving could be up to 70% in relatively steady-state conditions and at least 40% in relatively challenging transient conditions. The soft sensors can provide reliable and flexible performance on target predictions. The plant can still maintain at a similar level of process resilience after 50% aeration saving, even during long-term perturbations. Overall, this work shows that it is well feasible to provide more cost-effective operations at the Calumet WRP, and meanwhile influent perturbations, effluent quality, and process resilience are well in balance.

  19. Public bikesharing In North America : early operator and user understanding.

    DOT National Transportation Integrated Search

    2012-06-01

    Public bikesharingthe shared use of a bicycle fleetis an innovative transportation strategy that has recently emerged in major North American cities. Information technology (IT)-based bikesharing systems typically position bicycles throughout a...

  20. Inductive monitoring system constructed from nominal system data and its use in real-time system monitoring

    NASA Technical Reports Server (NTRS)

    Iverson, David L. (Inventor)

    2008-01-01

    The present invention relates to an Inductive Monitoring System (IMS), its software implementations, hardware embodiments and applications. Training data is received, typically nominal system data acquired from sensors in normally operating systems or from detailed system simulations. The training data is formed into vectors that are used to generate a knowledge database having clusters of nominal operating regions therein. IMS monitors a system's performance or health by comparing cluster parameters in the knowledge database with incoming sensor data from a monitored-system formed into vectors. Nominal performance is concluded when a monitored-system vector is determined to lie within a nominal operating region cluster or lies sufficiently close to a such a cluster as determined by a threshold value and a distance metric. Some embodiments of IMS include cluster indexing and retrieval methods that increase the execution speed of IMS.

  1. Investigating the Quality of Service of Current and Future Tactical Information Exchanges - Net Warrior

    DTIC Science & Technology

    2010-05-01

    as Link-11, Link-16 and VMF. It also includes future systems such as Link-22 (using the typical HF & UHF frequency bands) and technologies that...triangulate and find the precise geolocation of the enemy target. If the target happens to relocate, TTNT is able to update the target with high accuracy...22 operates in either the HF or UHF frequency bands. In each of these frequency bands the system can operate on a single frequency or a pseudo-random

  2. Performance limitations of bilateral force reflection imposed by operator dynamic characteristics

    NASA Technical Reports Server (NTRS)

    Chapel, Jim D.

    1989-01-01

    A linearized, single-axis model is presented for bilateral force reflection which facilitates investigation into the effects of manipulator, operator, and task dynamics, as well as time delay and gain scaling. Structural similarities are noted between this model and impedance control. Stability results based upon this model impose requirements upon operator dynamic characteristics as functions of system time delay and environmental stiffness. An experimental characterization reveals the limited capabilities of the human operator to meet these requirements. A procedure is presented for determining the force reflection gain scaling required to provide stability and acceptable operator workload. This procedure is applied to a system with dynamics typical of a space manipulator, and the required gain scaling is presented as a function of environmental stiffness.

  3. Evaluation of fuel preparation systems for lean premixing-prevaporizing combustors

    NASA Technical Reports Server (NTRS)

    Dodds, W. J.; Ekstedt, E. E.

    1985-01-01

    A series of experiments was carried out in order to produce design data for a premixing prevaporizing fuel-air mixture preparation system for aircraft gas turbine engine combustors. The fuel-air mixture uniformity of four different system design concepts was evaluated over a range of conditions representing the cruise operation of a modern commercial turbofan engine. Operating conditions including pressure, temperature, fuel-to-air ratio, and velocity, exhibited no clear effect on mixture uniformity of systems using pressure-atomizing fuel nozzles and large-scale mixing devices. However, the performance of systems using atomizing fuel nozzles and large-scale mixing devices was found to be sensitive to operating conditions. Variations in system design variables were also evaluated and correlated. Mixing uniformity was found to improve with system length, pressure drop, and the number of fuel injection points per unit area. A premixing system capable of providing mixing uniformity to within 15 percent over a typical range of cruise operating conditions is demonstrated.

  4. Resource Efficient Metal and Material Recycling

    NASA Astrophysics Data System (ADS)

    Reuter, Markus A.; van Schaik, Antoinette

    Metals enable sustainability through their use and their recyclability. However, various factors can affect the Resource Efficiency of Metal Processing and Recycling. Some typical factors that enable Resource Efficiency include and arranged under the drivers of sustainability: Environment (Maximize Resource Efficiency — Energy, Recyclates, Materials, Water, Sludges, Emissions, Land); Economic Feasibility (BAT & Recycling Systems Simulation / Digitalization, Product vis-à-vis Material Centric Recycling); and Social — Licence to Operate (Legislation, consumer, policy, theft, manual labour.). In order to realize this primary production has to be linked systemically with typical actors in the recycling chain such as Original Equipment Manufacturers (OEMs), Recyclers & Collection, Physical separation specialists as well as process metallurgical operations that produce high value metals, compounds and products that recycle back to products. This is best done with deep knowledge of multi-physics, technology, product & system design, process control, market, life cycle management, policy, to name a few. The combination of these will be discussed as Design for Sustainability (DfS) and Design for Recycling (DfR) applications.

  5. Cournot games with network effects for electric power markets

    NASA Astrophysics Data System (ADS)

    Spezia, Carl John

    The electric utility industry is moving from regulated monopolies with protected service areas to an open market with many wholesale suppliers competing for consumer load. This market is typically modeled by a Cournot game oligopoly where suppliers compete by selecting profit maximizing quantities. The classical Cournot model can produce multiple solutions when the problem includes typical power system constraints. This work presents a mathematical programming formulation of oligopoly that produces unique solutions when constraints limit the supplier outputs. The formulation casts the game as a supply maximization problem with power system physical limits and supplier incremental profit functions as constraints. The formulation gives Cournot solutions identical to other commonly used algorithms when suppliers operate within the constraints. Numerical examples demonstrate the feasibility of the theory. The results show that the maximization formulation will give system operators more transmission capacity when compared to the actions of suppliers in a classical constrained Cournot game. The results also show that the profitability of suppliers in constrained networks depends on their location relative to the consumers' load concentration.

  6. CV 990 interface test and procedure analysis of the monkey restraint, support equipment, and telemetry electronics proposed for Spacelab

    NASA Technical Reports Server (NTRS)

    Newsom, B. D.

    1978-01-01

    A biological system proposed to restrain a monkey in the Spacelab was tested under operational conditions using typical metabolic and telemetered cardiovascular instrumentation. Instrumentation, interfaced with other electronics, and data gathering during a very active operational mission were analyzed for adequacy of procedure and success of data handling by the onboard computer.

  7. Estimates of Potential Increases in Airport Capacity through ATC (Air Traffic Control) System Improvements in the Airport and Terminal Areas

    DTIC Science & Technology

    1987-10-01

    departures); and (3) departures-only. A fleet mix typical of most majur airports was selected consisting of 15 percent small aircraft (e.g., Swearingen SW-4...schedules predicated on VFR operations can result in substantial delays when weather conditions force the use of IFR operations. 5.1 Difference Between

  8. Power Consumption Analysis of Operating Systems for Wireless Sensor Networks

    PubMed Central

    Lajara, Rafael; Pelegrí-Sebastiá, José; Perez Solano, Juan J.

    2010-01-01

    In this paper four wireless sensor network operating systems are compared in terms of power consumption. The analysis takes into account the most common operating systems—TinyOS v1.0, TinyOS v2.0, Mantis and Contiki—running on Tmote Sky and MICAz devices. With the objective of ensuring a fair evaluation, a benchmark composed of four applications has been developed, covering the most typical tasks that a Wireless Sensor Network performs. The results show the instant and average current consumption of the devices during the execution of these applications. The experimental measurements provide a good insight into the power mode in which the device components are running at every moment, and they can be used to compare the performance of different operating systems executing the same tasks. PMID:22219688

  9. Solar power satellite system definition study. Volume 1, phase 1: Executive summary

    NASA Technical Reports Server (NTRS)

    1979-01-01

    A systems definition study of the solar satellite system (SPS) is presented. The technical feasibility of solar power satellites based on forecasts of technical capability in the various applicable technologies is assessed. The performance, cost, operational characteristics, reliability, and the suitability of SPS's as power generators for typical commercial electricity grids are discussed. The uncertainties inherent in the system characteristics forecasts are assessed.

  10. Watershed and Economic Data InterOperability (WEDO) System

    EPA Science Inventory

    Hydrologic modeling is essential for environmental, economic, and human health decision-making. However, sharing of modeling studies is limited within the watershed modeling community. Distribution of hydrologic modeling research typically involves publishing summarized data in p...

  11. Practical operational implementation of Teton Pass avalanche monitoring infrasound system.

    DOT National Transportation Integrated Search

    2008-12-01

    Highway snow avalanche forecasting programs typically rely on weather and field observations to make road closure and hazard : evaluations. Recently, infrasonic avalanche monitoring technology has been developed for practical use near Teton Pass, WY ...

  12. Watershed and Economic Data InterOperability (WEDO) System (presentation)

    EPA Science Inventory

    Hydrologic modeling is essential for environmental, economic, and human health decision- making. However, sharing of modeling studies is limited within the watershed modeling community. Distribution of hydrologic modeling research typically involves publishing summarized data in ...

  13. UAS flight test for safety and for efficiency

    DOT National Transportation Integrated Search

    2017-04-01

    Manned aircraft that operate in the National Airspace System (NAS) typically undergo certification flight test to ensure they meet a prescribed level of safetydependent on their categorybefore they are able to enter service [for example, Federa...

  14. Automatic rendezvous and docking systems functional and performance requirements

    NASA Technical Reports Server (NTRS)

    1985-01-01

    A generalized mission design scheme which utilizes a standard mission profile for all OMV rendezvous operations, recognizes typical operational constraints, and minimizes propellant penalties due to nodal regression effects was developed. This scheme has been used to demonstrate a unified guidance and navigation maneuver processor (the UMP), which supports all mission phases through station-keeping. The initial demonstration version of the Orbital Rendezvous Mission Planner (ORMP) was provided for evaluation purposes, and program operation was discussed.

  15. Tests of the Amtrak SDP-40F Train Consist Conducted on Chessie System Track

    DOT National Transportation Integrated Search

    1979-05-01

    This report describes tests of an SDP-40F train consist conducted on Chessie System track during June 1977. The tests consisted of the operation of two typical AMTRAK passenger consists, one powered by two SDP-40F's and the other by two E-8's, over a...

  16. Transient and Steady-state Tests of the Space Power Research Engine with Resistive and Motor Loads

    NASA Technical Reports Server (NTRS)

    Rauch, Jeffrey S.; Kankam, M. David

    1995-01-01

    The NASA Lewis Research Center (LeRC) has been testing free-piston Stirling engine/linear alternators (FPSE/LA) to develop advanced power convertors for space-based electrical power generation. Tests reported herein were performed to evaluate the interaction and transient behavior of FPSE/LA-based power systems with typical user loads. Both resistive and small induction motor loads were tested with the space power research engine (SPRE) power system. Tests showed that the control system could maintain constant long term voltage and stable periodic operation over a large range of engine operating parameters and loads. Modest resistive load changes were shown to cause relatively large voltage and, therefore, piston and displacer amplitude excursions. Starting a typical small induction motor was shown to cause large and, in some cases, deleterious voltage transients. The tests identified the need for more effective controls, if FPSE/LAs are to be used for stand-alone power systems. The tests also generated a large body of transient dynamic data useful for analysis code validation.

  17. Transient and steady-state tests of the space power research engine with resistive and motor loads

    NASA Astrophysics Data System (ADS)

    Rauch, Jeffrey S.; Kankam, M. David

    1995-01-01

    The NASA Lewis Research Center (LeRC) has been testing free-piston Stirling engine/linear alternators (FPSE/LA) to develop advanced power convertors for space-based electrical power generation. Tests reported herein were performed to evaluate the interaction and transient behavior of FPSE/LA-based power systems with typical user loads. Both resistive and small induction motor loads were tested with the space power research engine (SPRE) power system. Tests showed that the control system could maintain constant long term voltage and stable periodic operation over a large range of engine operating parameters and loads. Modest resistive load changes were shown to cause relatively large voltage and, therefore, piston and displacer amplitude excursions. Starting a typical small induction motor was shown to cause large and, in some cases, deleterious voltage transients. The tests identified the need for more effective controls, if FPSE/LAs are to be used for stand-alone power systems. The tests also generated a large body of transient dynamic data useful for analysis code validation.

  18. FULL SCALE TESTING TECHNOLOGY MATURATION OF A THIN FILM EVAPORATOR FOR HIGH-LEVEL LIQUID WASTE MANAGEMENT AT HANFORD - 12125

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    TEDESCHI AR; CORBETT JE; WILSON RA

    2012-01-26

    Simulant testing of a full-scale thin-film evaporator system was conducted in 2011 for technology development at the Hanford tank farms. Test results met objectives of water removal rate, effluent quality, and operational evaluation. Dilute tank waste simulant, representing a typical double-shell tank supernatant liquid layer, was concentrated from a 1.1 specific gravity to approximately 1.5 using a 4.6 m{sup 2} (50 ft{sup 2}) heated transfer area Rototherm{reg_sign} evaporator from Artisan Industries. The condensed evaporator vapor stream was collected and sampled validating efficient separation of the water. An overall decontamination factor of 1.2E+06 was achieved demonstrating excellent retention of key radioactivemore » species within the concentrated liquid stream. The evaporator system was supported by a modular steam supply, chiller, and control computer systems which would be typically implemented at the tank farms. Operation of these support systems demonstrated successful integration while identifying areas for efficiency improvement. Overall testing effort increased the maturation of this technology to support final deployment design and continued project implementation.« less

  19. Operability driven space system concept with high leverage technologies

    NASA Astrophysics Data System (ADS)

    Woo, Henry H.

    1997-01-01

    One of the common objectives of future launch and space transfer systems is to achieve low-cost and effective operational capability by automating processes from pre-launch to the end of mission. Hierarchical and integrated mission management, system management, autonomous GN&C, and integrated micro-nano avionics technologies are critical to extend or revitalize the exploitation of space. Essential to space transfer, orbital systems, Earth-To-Orbit (ETO), commercial and military aviation, and planetary systems are these high leverage hardware and software technologies. This paper covers the driving issues, goals, and requirements definition supported with typical concepts and utilization of multi-use technologies. The approach and method results in a practical system architecture and lower level design concepts.

  20. The Magellan Telescopes

    NASA Astrophysics Data System (ADS)

    Shectman, Stephen A.; Johns, Matthew

    2003-02-01

    Commissioning of the two 6.5-meter Magellan telescopes is nearing completion at the Las Campanas Observatory in Chile. The Magellan 1 primary mirror was successfully aluminized at Las Campanas in August 2000. Science operations at Magellan 1 began in February 2001. The second Nasmyth focus on Magellan 1 went into operation in September 2001. Science operations on Magellan 2 are scheduled to begin shortly. The ability to deliver high-quality images is maintained at all times by the simultaneous operation of the primary mirror support system, the primary mirror thermal control system, and a real-time active optics system, based on a Shack-Hartmann image analyzer. Residual aberrations in the delivered image (including focus) are typically 0.10-0.15" fwhm, and real images as good as 0.25" fwhm have been obtained at optical wavelengths. The mount points reliably to 2" rms over the entire sky, using a pointing model which is stable from year to year. The tracking error under typical wind conditions is better than 0.03" rms, although some degradation is observed under high wind conditions when the dome is pointed in an unfavorable direction. Instruments used at Magellan 1 during the first year of operation include two spectrographs previously used at other telescopes (B&C, LDSS-2), a mid-infrared imager (MIRAC) and an optical imager (MAGIC, the first Magellan-specific facility instrument). Two facility spectrographs are scheduled to be installed shortly: IMACS, a wide-field spectrograph, and MIKE, a double echelle spectrograph.

  1. Smashing the Stovepipe: Leveraging the GMSEC Open Architecture and Advanced IT Automation to Rapidly Prototype, Develop and Deploy Next-Generation Multi-Mission Ground Systems

    NASA Technical Reports Server (NTRS)

    Swenson, Paul

    2017-01-01

    Satellite/Payload Ground Systems - Typically highly-customized to a specific mission's use cases - Utilize hundreds (or thousands!) of specialized point-to-point interfaces for data flows / file transfers Documentation and tracking of these complex interfaces requires extensive time to develop and extremely high staffing costs Implementation and testing of these interfaces are even more cost-prohibitive, and documentation often lags behind implementation resulting in inconsistencies down the road With expanding threat vectors, IT Security, Information Assurance and Operational Security have become key Ground System architecture drivers New Federal security-related directives are generated on a daily basis, imposing new requirements on current / existing ground systems - These mandated activities and data calls typically carry little or no additional funding for implementation As a result, Ground System Sustaining Engineering groups and Information Technology staff continually struggle to keep up with the rolling tide of security Advancing security concerns and shrinking budgets are pushing these large stove-piped ground systems to begin sharing resources - I.e. Operational / SysAdmin staff, IT security baselines, architecture decisions or even networks / hosting infrastructure Refactoring these existing ground systems into multi-mission assets proves extremely challenging due to what is typically very tight coupling between legacy components As a result, many "Multi-Mission" ops. environments end up simply sharing compute resources and networks due to the difficulty of refactoring into true multi-mission systems Utilizing continuous integration / rapid system deployment technologies in conjunction with an open architecture messaging approach allows System Engineers and Architects to worry less about the low-level details of interfaces between components and configuration of systems GMSEC messaging is inherently designed to support multi-mission requirements, and allows components to aggregate data across multiple homogeneous or heterogeneous satellites or payloads - The highly-successful Goddard Science and Planetary Operations Control Center (SPOCC) utilizes GMSEC as the hub for it's automation and situational awareness capability Shifts focus towards getting GS to a final configuration-managed baseline, as well as multi-mission / big-picture capabilities that help increase situational awareness, promote cross-mission sharing and establish enhanced fleet management capabilities across all levels of the enterprise.

  2. Design and Measurement of a Digital Phase Locked BWO for Accurately Extracting the Quality Factors in a Biconcave Resonator System

    NASA Astrophysics Data System (ADS)

    Gao, Yuanci; Charles, Jones R.; Yu, Guofen; Jyotsna, Dutta M.

    2012-03-01

    A long loop phase locked backward-wave oscillator (BWO) for a high quality factor resonator system operating at D-band frequencies (130-170GHz) was described, the phase noise of the phased locked BWO was analyzed and measured at typical frequencies. When it used with a high quality factor open resonator for measuring the quality factor of simple harmonic resonators based on the magnitude transfer characteristic, this system has proven to be capable of accurate measuring the quality factor as high as 0.8 million with an uncertainty of less than 1.3% (Lorentzian fitting) at typical frequencies in the range of 130GHz-170GHz.

  3. 29 CFR 780.210 - The typical hatchery operations constitute “agriculture.”

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... EXEMPTIONS APPLICABLE TO AGRICULTURE, PROCESSING OF AGRICULTURAL COMMODITIES, AND RELATED SUBJECTS UNDER THE FAIR LABOR STANDARDS ACT Agriculture as It Relates to Specific Situations Hatchery Operations § 780.210 The typical hatchery operations constitute “agriculture.” As stated in § 780.127, the typical hatchery...

  4. 29 CFR 780.210 - The typical hatchery operations constitute “agriculture.”

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... EXEMPTIONS APPLICABLE TO AGRICULTURE, PROCESSING OF AGRICULTURAL COMMODITIES, AND RELATED SUBJECTS UNDER THE FAIR LABOR STANDARDS ACT Agriculture as It Relates to Specific Situations Hatchery Operations § 780.210 The typical hatchery operations constitute “agriculture.” As stated in § 780.127, the typical hatchery...

  5. 29 CFR 780.210 - The typical hatchery operations constitute “agriculture.”

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... EXEMPTIONS APPLICABLE TO AGRICULTURE, PROCESSING OF AGRICULTURAL COMMODITIES, AND RELATED SUBJECTS UNDER THE FAIR LABOR STANDARDS ACT Agriculture as It Relates to Specific Situations Hatchery Operations § 780.210 The typical hatchery operations constitute “agriculture.” As stated in § 780.127, the typical hatchery...

  6. 29 CFR 780.210 - The typical hatchery operations constitute “agriculture.”

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... EXEMPTIONS APPLICABLE TO AGRICULTURE, PROCESSING OF AGRICULTURAL COMMODITIES, AND RELATED SUBJECTS UNDER THE FAIR LABOR STANDARDS ACT Agriculture as It Relates to Specific Situations Hatchery Operations § 780.210 The typical hatchery operations constitute “agriculture.” As stated in § 780.127, the typical hatchery...

  7. 29 CFR 780.210 - The typical hatchery operations constitute “agriculture.”

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... EXEMPTIONS APPLICABLE TO AGRICULTURE, PROCESSING OF AGRICULTURAL COMMODITIES, AND RELATED SUBJECTS UNDER THE FAIR LABOR STANDARDS ACT Agriculture as It Relates to Specific Situations Hatchery Operations § 780.210 The typical hatchery operations constitute “agriculture.” As stated in § 780.127, the typical hatchery...

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barstow, Del R; Patlolla, Dilip Reddy; Mann, Christopher J

    Abstract The data captured by existing standoff biometric systems typically has lower biometric recognition performance than their close range counterparts due to imaging challenges, pose challenges, and other factors. To assist in overcoming these limitations systems typically perform in a multi-modal capacity such as Honeywell s Combined Face and Iris (CFAIRS) [21] system. While this improves the systems performance, standoff systems have yet to be proven as accurate as their close range equivalents. We will present a standoff system capable of operating up to 7 meters in range. Unlike many systems such as the CFAIRS our system captures high qualitymore » 12 MP video allowing for a multi-sample as well as multi-modal comparison. We found that for standoff systems multi-sample improved performance more than multi-modal. For a small test group of 50 subjects we were able to achieve 100% rank one recognition performance with our system.« less

  9. The Pauli Objection

    NASA Astrophysics Data System (ADS)

    Leon, Juan; Maccone, Lorenzo

    2017-12-01

    Schrödinger's equation says that the Hamiltonian is the generator of time translations. This seems to imply that any reasonable definition of time operator must be conjugate to the Hamiltonian. Then both time and energy must have the same spectrum since conjugate operators are unitarily equivalent. Clearly this is not always true: normal Hamiltonians have lower bounded spectrum and often only have discrete eigenvalues, whereas we typically desire that time can take any real value. Pauli concluded that constructing a general a time operator is impossible (although clearly it can be done in specific cases). Here we show how the Pauli argument fails when one uses an external system (a "clock") to track time, so that time arises as correlations between the system and the clock (conditional probability amplitudes framework). In this case, the time operator is conjugate to the clock Hamiltonian and not to the system Hamiltonian, but its eigenvalues still satisfy the Schrödinger equation for arbitrary system Hamiltonians.

  10. Machine vision for real time orbital operations

    NASA Technical Reports Server (NTRS)

    Vinz, Frank L.

    1988-01-01

    Machine vision for automation and robotic operation of Space Station era systems has the potential for increasing the efficiency of orbital servicing, repair, assembly and docking tasks. A machine vision research project is described in which a TV camera is used for inputing visual data to a computer so that image processing may be achieved for real time control of these orbital operations. A technique has resulted from this research which reduces computer memory requirements and greatly increases typical computational speed such that it has the potential for development into a real time orbital machine vision system. This technique is called AI BOSS (Analysis of Images by Box Scan and Syntax).

  11. System design requirements for advanced rotary-wing agricultural aircraft

    NASA Technical Reports Server (NTRS)

    Lemont, H. E.

    1979-01-01

    Helicopter aerial dispersal systems were studied to ascertain constraints to the system, the effects of removal of limitations (technical and FAA regulations), and subsystem improvements. Productivity indices for the aircraft and swath effects were examined. Typical missions were formulated through conversations with operators, and differing gross weight aircraft were synthesized to perform these missions. Economic analysis of missions and aircraft indicated a general correlation of small aircraft (3000 lb gross weight) suitability for small fields (25 acres), and low dispersion rates (less than 32 lb/acre), with larger aircraft (12,000 lb gross weight) being more favorable for bigger fields (200 acres) and heavier dispersal rates (100 lb/acre). Operator problems, possible aircraft and system improvements, and selected removal of operating limitations were reviewed into recommendations for future NASA research items.

  12. Public bikesharing In North America : early operator and user understanding [research brief].

    DOT National Transportation Integrated Search

    2012-06-01

    Public bikesharingthe shared use of a bicycle fleetis an innovative transportation strategy that has recently emerged in North America. Bikesharing systems typically position bicycles at docking stations for immediate access. Trips can be one-w...

  13. Interlocked molecules: Moving into another dimension

    NASA Astrophysics Data System (ADS)

    Fournel-Marotte, Karine; Coutrot, Frédéric

    2017-02-01

    Molecular daisy-chain structures are typically made up of two interlocked components and can exhibit muscle-like contraction and extension in one dimension. Zinc-based multicomponent systems that can operate in two and three dimensions have now been designed and synthesized.

  14. Short-term Hydropower Reservoir Operations in Chile's Central Interconnected System: Tradeoffs between Hydrologic Alteration and Economic Performance

    NASA Astrophysics Data System (ADS)

    Olivares, M. A.

    2011-12-01

    Hydropower accounts for about 50% of the installed capacity in Chile's Central Interconnected System (CIS) and new developments are envisioned in the near future. Large projects involving reservoirs are perceived negatively by the general public. In terms of operations, hydropower scheduling takes place at monthly, weekly, daily and hourly intervals, and operations at each level affect different environmental processes. Due to its ability to quickly and inexpensively respond to short-term changes in demand, hydropower reservoirs often are operated to provide power during periods of peak demand. This operational scheme, known as hydropeaking, changes the hydrologic regime by altering the rate and frequency of changes in flow magnitude on short time scales. To mitigate impacts on downstream ecosystems, operational constraints -typically minimum instream flows and maximum ramping rates- are imposed on hydropower plants. These operational restrictions limit reduce operational flexibility and can reduce the economic value of energy generation by imposing additional costs on the operation of interconnected power systems. Methods to predict the degree of hydrologic alteration rely on statistical analyses of instream flow time series. Typically, studies on hydrologic alteration use historical operational records for comparison between pre- and post-dam conditions. Efforts to assess hydrologic alteration based on future operational schemes of reservoirs are scarce. This study couples two existing models: a mid-term operations planning and a short-term economic dispatch to simulate short-term hydropower reservoir operations under different future scenarios. Scenarios of possible future configurations of the Chilean CIS are defined with emphasis on the introduction of non-conventional renewables (particularly wind energy) and large hydropower projects in Patagonia. Both models try to reproduce the actual decision making process in the Chilean Central Interconnected System (CIS). Chile's CIS is structured as a mandatory pool with audited costs and therefore the economic dispatch can be formulated as a cost minimization problem. Consequently, hydropower reservoir operations are controlled by the ISO. Reservoirs with the most potential to cause short-term hydrologic alteration were identified from existing operational records. These records have also been used to validate our simulated operations. Results in terms of daily and subdaily hydrologic alteration as well as the economic performance of the CIS are presented for alternative energy matrix scenarios. Tradeoff curves representing the compromise between indicators of hydrologic alteration and economic indicators of the CIS operation are developed.

  15. Hardening Unmanned Aerial Systems Against High Power Microwave Threats in Support of Forward Operations

    DTIC Science & Technology

    2017-04-01

    spectrum ( EMS ) to disrupt, degrade, damage, or destroy targets. They can theoretically be used against all Groups of UAS. C-UAS weapons utilizing HPM...18 This pulse creates an electromagnetic ( EM ) field surrounding the target, typically measured in volts per meter, kilovolts per meter, or watts...through a normally utilized input device, such as an antenna. This type of coupling typically only occurs within the narrow band of the EMS that

  16. Planning actions in robot automated operations

    NASA Technical Reports Server (NTRS)

    Das, A.

    1988-01-01

    Action planning in robot automated operations requires intelligent task level programming. Invoking intelligence necessiates a typical blackboard based architecture, where, a plan is a vector between the start frame and the goal frame. This vector is composed of partially ordered bases. A partial ordering of bases presents good and bad sides in action planning. Partial ordering demands the use of a temporal data base management system.

  17. Impossible Certainty: Cost Risk Analysis for Air Force Systems

    DTIC Science & Technology

    2006-01-01

    the estimated cost of weapon systems , which typically take many years to acquire and remain in operation for a long time . To make those esti- mates... times , uncertain, undefined, or unknown when estimates are prepared. New system development may involve further uncer- tainty due to unproven or...risk (a system requiring more money to complete than was forecasted ) and opera- tional risk (a vital capability becoming unaffordable as the program

  18. The 200-kilowatt wind turbine project

    NASA Technical Reports Server (NTRS)

    1978-01-01

    The three 200 kilowatt wind turbines described, compose the first of three separate systems. Proposed wind turbines of the two other systems, although similar in design, are larger in both physical size and rated power generation. The overall objective of the project is to obtain early operation and performance data while gaining initial experience in the operation of large, horizontal-axis wind turbines in typical utility environments. Several of the key issues addressed include the following: (1) impact of the variable power output (due to varying wind speeds) on the utility grid (2) compatibility with utility requirements (voltage and frequency control of generated power) (3) demonstration of unattended, fail-safe operation (4) reliability of the wind turbine system (5) required maintenance and (6) initial public reaction and acceptance.

  19. Cost-effective implementation of intelligent systems

    NASA Technical Reports Server (NTRS)

    Lum, Henry, Jr.; Heer, Ewald

    1990-01-01

    Significant advances have occurred during the last decade in knowledge-based engineering research and knowledge-based system (KBS) demonstrations and evaluations using integrated intelligent system technologies. Performance and simulation data obtained to date in real-time operational environments suggest that cost-effective utilization of intelligent system technologies can be realized. In this paper the rationale and potential benefits for typical examples of application projects that demonstrate an increase in productivity through the use of intelligent system technologies are discussed. These demonstration projects have provided an insight into additional technology needs and cultural barriers which are currently impeding the transition of the technology into operational environments. Proposed methods which addresses technology evolution and implementation are also discussed.

  20. Supplementary steam - A viable hydrogen power generation concept

    NASA Technical Reports Server (NTRS)

    Wright, D. E.; Lee, J. C.

    1979-01-01

    Technical and economic aspects of a supplementary steam generation for peaking power applications are discussed. Preliminary designs of the hydrogen/oxygen combustors to be used for such applications are described. The integration of the hydrogen/oxygen steam-generating equipment into a typical coal-fired steam station is studied. The basic steam generation system was designed as a 20 MW supplementary system to be added to the existing 160 MW system. An analysis of the operating and design requirements of the supplementary system is conducted. Estimates were made for additional steam and fuel supply lines and for additional control required to operate the combustors and to integrate the combustor system into the facility.

  1. From pilot's associate to satellite controller's associate

    NASA Technical Reports Server (NTRS)

    Neyland, David L.; Lizza, Carl; Merkel, Philip A.

    1992-01-01

    Associate technology is an emerging engineering discipline wherein intelligent automation can significantly augment the performance of man-machine systems. An associate system is one that monitors operator activity and adapts its operational behavior accordingly. Associate technology is most effectively applied when mapped into management of the human-machine interface and display-control loop in typical manned systems. This paper addresses the potential for application of associate technology into the arena of intelligent command and control of satellite systems, from diagnosis of onboard and onground of satellite systems fault conditions, to execution of nominal satellite control functions. Rather than specifying a specific solution, this paper draws parallels between the Pilot's Associate concept and the domain of satellite control.

  2. Propulsion system needs

    NASA Technical Reports Server (NTRS)

    Gunn, Stanley

    1991-01-01

    The needs of the designer of a solid core nuclear rocket engine are discussed. Some of the topics covered include: (1) a flight thrust module/feed system module assembly; (2) a nuclear thermal rocket (NTR), expander cycle, dual T/P; (3) turbopump operating conditions; (4) typical system parameters; (5) growth capability composite fuel elements; (6) a NTR radiation cooled nozzle extension; (7) a NFS-3B Feed System; and (8) a NTR Integrated Pneumatic-Fluidics Control System.

  3. Maintaining a Distributed File System by Collection and Analysis of Metrics

    NASA Technical Reports Server (NTRS)

    Bromberg, Daniel

    1997-01-01

    AFS(originally, Andrew File System) is a widely-deployed distributed file system product used by companies, universities, and laboratories world-wide. However, it is not trivial to operate: runing an AFS cell is a formidable task. It requires a team of dedicated and experienced system administratores who must manage a user base numbring in the thousands, rather than the smaller range of 10 to 500 faced by the typical system administrator.

  4. Temperature Effects in Varactors and Multipliers

    NASA Technical Reports Server (NTRS)

    East, J.; Mehdi, Imran

    2001-01-01

    Varactor diode multipliers are a critical part of many THz measurement systems. The power and efficiencies of these devices limit the available power for THz sources. Varactor operation is determined by the physics of the varactor device and a careful doping profile design is needed to optimize the performance. Higher doped devices are limited by junction breakdown and lower doped structures are limited by current saturation. Higher doped structures typically have higher efficiencies and lower doped structures typically have higher powers at the same operating frequency and impedance level. However, the device material properties are also a function of the operating temperature. Recent experimental evidence has shown that the power output of a multiplier can be improved by cooling the device. We have used a particle Monte Carlo simulation to investigate the temperature dependent velocity vs. electric field in GaAs. This information was then included in a nonlinear device circuit simulator to predict multiplier performance for various temperatures and device designs. This paper will describe the results of this analysis of temperature dependent multiplier operation.

  5. Analyzing Effect of System Inertia on Grid Frequency Forecasting Usnig Two Stage Neuro-Fuzzy System

    NASA Astrophysics Data System (ADS)

    Chourey, Divyansh R.; Gupta, Himanshu; Kumar, Amit; Kumar, Jitesh; Kumar, Anand; Mishra, Anup

    2018-04-01

    Frequency forecasting is an important aspect of power system operation. The system frequency varies with load-generation imbalance. Frequency variation depends upon various parameters including system inertia. System inertia determines the rate of fall of frequency after the disturbance in the grid. Though, inertia of the system is not considered while forecasting the frequency of power system during planning and operation. This leads to significant errors in forecasting. In this paper, the effect of inertia on frequency forecasting is analysed for a particular grid system. In this paper, a parameter equivalent to system inertia is introduced. This parameter is used to forecast the frequency of a typical power grid for any instant of time. The system gives appreciable result with reduced error.

  6. Test techniques for determining laser ranging system performance

    NASA Technical Reports Server (NTRS)

    Zagwodzki, T. W.

    1981-01-01

    Procedures and results of an on going test program intended to evaluate laser ranging system performance levels in the field as well as in the laboratory are summarized. Tests show that laser ranging system design requires consideration of time biases and RMS jitters of individual system components. All simple Q switched lasers tested were found to be inadequate for 10 centimeter ranging systems. Timing discriminators operating over a typical 100:1 dynamic signal range may introduce as much as 7 to 9 centimeters of range bias. Time interval units commercially available today are capable of half centimeter performance and are adequate for all field systems currently deployed. Photomultipliers tested show typical tube time biases of one centimeter with single photoelectron transit time jitter of approximately 10 centimeters. Test results demonstrate that NASA's Mobile Laser Ranging System (MOBLAS) receiver configuration is limiting system performance below the 100 photoelectron level.

  7. GENET note no. 1

    NASA Technical Reports Server (NTRS)

    Yeh, J. W.

    1971-01-01

    The general features of the GENET system for simulating networks are described. A set of features is presented which are desirable for network simulations and which are expected to be achieved by this system. Among these features are: (1) two level network modeling; and (2) problem oriented operations. Several typical network systems are modeled in GENET framework to illustrate various of the features and to show its applicability.

  8. Test of Detonation Locator System AN/GSS-4. Operation PLUMBBOB, Desert Rock VII and VIII, Project 50.3

    DTIC Science & Technology

    1979-10-01

    GSS-k was assigned in May 1957 to the system of equipments as used in Operation Plumbbob. Quantitative measurements of the em pulse have been made... quantitative data from the recordings of the SWR vavefoims, It vas necessary to record other infoimation on the photographs. Figure 35, a typical...Capilla vuvefonnG. The Heef’s I’dne and other Gleeson triplet observations confirmed the In/if ground wave positiv « half cycle and indicated a sharply

  9. USEPA Guidance for Designing a Source Water Monitoring System

    EPA Science Inventory

    Treatment plants are commonly designed and operated to handle typical variability in source water quality, treat contaminants known to occur in source water, comply with drinking water standards, and meet customer expectations. However, unanticipated changes in source water qual...

  10. EVA Development and Verification Testing at NASA's Neutral Buoyancy Laboratory

    NASA Technical Reports Server (NTRS)

    Jairala, Juniper; Durkin, Robert

    2012-01-01

    As an early step in preparing for future EVAs, astronauts perform neutral buoyancy testing to develop and verify EVA hardware and operations. To date, neutral buoyancy demonstrations at NASA JSC’s Sonny Carter Training Facility have primarily evaluated assembly and maintenance tasks associated with several elements of the ISS. With the retirement of the Space Shuttle, completion of ISS assembly, and introduction of commercial participants for human transportation into space, evaluations at the NBL will take on a new focus. In this session, Juniper Jairala briefly discussed the design of the NBL and, in more detail, described the requirements and process for performing a neutral buoyancy test, including typical hardware and support equipment requirements, personnel and administrative resource requirements, examples of ISS systems and operations that are evaluated, and typical operational objectives that are evaluated. Robert Durkin discussed the new and potential types of uses for the NBL, including those by non-NASA external customers.

  11. EVA Development and Verification Testing at NASA's Neutral Buoyancy Laboratory

    NASA Technical Reports Server (NTRS)

    Jairala, Juniper; Durkin, Robert

    2012-01-01

    As an early step in preparing for future EVAs, astronauts perform neutral buoyancy testing to develop and verify EVA hardware and operations. To date, neutral buoyancy demonstrations at NASA JSC's Sonny Carter Training Facility have primarily evaluated assembly and maintenance tasks associated with several elements of the ISS. With the retirement of the Space Shuttle, completion of ISS assembly, and introduction of commercial participants for human transportation into space, evaluations at the NBL will take on a new focus. In this session, Juniper Jairala briefly discussed the design of the NBL and, in more detail, described the requirements and process for performing a neutral buoyancy test, including typical hardware and support equipment requirements, personnel and administrative resource requirements, examples of ISS systems and operations that are evaluated, and typical operational objectives that are evaluated. Robert Durkin discussed the new and potential types of uses for the NBL, including those by non-NASA external customers.

  12. A series on optimizing satellite systems. I - Restoring interruptions of communications sattelite service: Logistical and cost comparisons of mature and newly operational systems

    NASA Astrophysics Data System (ADS)

    Snow, Marcellus S.

    1989-09-01

    A mathematical model is presented of costs and operational factors involved in provision for service interruptions of both a mature and typically large incumbent satellite system and of a smaller, more recently operational system. The equation expresses the required launch frequency for the new system as a function of the launch spacing of the mature system; the time disparity between the inauguration of the two systems; and the rate of capacity depreciation. In addition, a technique is presented to compare the relative extent to which the discounted costs of the new system exceed those of the mature system in furnishing the same effective capacity in orbit, and thus the same service liability, at a given point in time. It is determined that a mature incumbent communications satellite system, having more capacity in orbit, will on balance have a lower probability of service interruption than a newer, smaller system.

  13. Optimizing Water Use and Hydropower Production in Operational Reservoir System Scheduling with RiverWare

    NASA Astrophysics Data System (ADS)

    Magee, T. M.; Zagona, E. A.

    2017-12-01

    Practical operational optimization of multipurpose reservoir systems is challenging for several reasons. Each purpose has its own constraints which may conflict with those of other purposes. While hydropower generation typically provides the bulk of the revenue, it is also among the lowest priority purposes. Each river system has important details that are specific to the location such as hydrology, reservoir storage capacity, physical limitations, bottlenecks, and the continuing evolution of operational policy. In addition, reservoir operations models include discrete, nonlinear, and nonconvex physical processes and if-then operating policies. Typically, the forecast horizon for scheduling needs to be extended far into the future to avoid near term (e.g., a few hours or a day) scheduling decisions that result in undesirable future states; this makes the computational effort much larger than may be expected. Put together, these challenges lead to large and customized mathematical optimization problems which must be solved efficiently to be of practical use. In addition, the solution process must be robust in an operational setting. We discuss a unique modeling approach in RiverWare that meets these challenges in an operational setting. The approach combines a Preemptive Linear Goal Programming optimization model to handle prioritized policies complimented by preprocessing and postprocessing with Rulebased Simulation to improve the solution with regard to nonlinearities, discrete issues, and if-then logic. An interactive policy language with a graphical user interface allows modelers to customize both the optimization and simulation based on the unique aspects of the policy for their system while the routine physical aspect of operations are modeled automatically. The modeler is aided by a set of compiled predefined functions and functions shared by other modelers. We illustrate the success of the approach with examples from daily use at the Tennessee Valley Authority, the Bonneville Power Administration, and public utility districts on the Mid-Columbia River. We discuss recent innovations to improve solution quality, robustness, and performance for these systems. We conclude with new modeling challenges to extend the modeling approach to other uses.

  14. Solar Photovoltaic DC Systems: Basics and Safety: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McNutt, Peter F; Sekulic, William R; Dreifuerst, Gary

    Solar Photovoltaic (PV) systems are common and growing with 42.4 GW installed capacity in U.S. (almost 15 GW added in 2016). This paper will help electrical workers, and emergency responders understand the basic operating principles and hazards of PV DC arrays. We briefly discuss the following aspects of solar photovoltaic (PV) DC systems: the effects of solar radiation and temperature on output power; PV module testing standards; common system configurations; a simple PV array sizing example; NEC guidelines and other safety features; DC array commissioning, periodic maintenance and testing; arc-flash hazard potential; how electrical workers and emergency responders can andmore » do work safely around PV arrays; do moonlight and artificial lighting pose a real danger; typical safe operating procedures; and other potential DC-system hazards to be aware of. We also present some statistics on PV DC array electrical incidents and injuries. Safe PV array operation is possible with a good understanding of PV DC arrays basics and having good safe operating procedures in place.« less

  15. Potential Operating Orbits for Fission Electric Propulsion Systems Driven by the SAFE-400

    NASA Technical Reports Server (NTRS)

    Houts, Mike; Kos, Larry; Poston, David; Rodgers, Stephen L. (Technical Monitor)

    2002-01-01

    Safety must be ensured during all phases of space fission system design, development, fabrication, launch, operation, and shutdown. One potential space fission system application is fission electric propulsion (FEP), in which fission energy is converted into electricity and used to power high efficiency (Isp greater than 3000s) electric thrusters. For these types of systems it is important to determine which operational scenarios ensure safety while allowing maximum mission performance and flexibility. Space fission systems are essentially nonradioactive at launch, prior to extended operation at high power. Once high power operation begins, system radiological inventory steadily increases as fission products build up. For a given fission product isotope, the maximum radiological inventory is typically achieved once the system has operated for a length of time equivalent to several half-lives. After that time, the isotope decays at the same rate it is produced, and no further inventory builds in. For an FEP mission beginning in Earth orbit, altitude and orbital lifetime increase as the propulsion system operates. Two simultaneous effects of fission propulsion system operation are thus (1) increasing fission product inventory and (2) increasing orbital lifetime. Phrased differently, as fission products build up, more time is required for the fission products to naturally convert back into non-radioactive isotopes. Simultaneously, as fission products build up, orbital lifetime increases, providing more time for the fission products to naturally convert back into non-radioactive isotopes. Operational constraints required to ensure safety can thus be quantified.

  16. Potential operating orbits for fission electric propulsion systems driven by the SAFE-400

    NASA Astrophysics Data System (ADS)

    Houts, Mike; Kos, Larry; Poston, David

    2002-01-01

    Safety must be ensured during all phases of space fission system design, development, fabrication, launch, operation, and shutdown. One potential space fission system application is fission electric propulsion (FEP), in which fission energy is converted into electricity and used to power high efficiency (Isp>3000s) electric thrusters. For these types of systems it is important to determine which operational scenarios ensure safety while allowing maximum mission performance and flexibility. Space fission systems are essentially non-radioactive at launch, prior to extended operation at high power. Once high power operation begins, system radiological inventory steadily increases as fission products build up. For a given fission product isotope, the maximum radiological inventory is typically achieved once the system has operated for a length of time equivalent to several half-lives. After that time, the isotope decays at the same rate it is produced, and no further inventory builds in. For an FEP mission beginning in Earth orbit, altitude and orbital lifetime increase as the propulsion system operates. Two simultaneous effects of fission propulsion system operation are thus (1) increasing fission product inventory and (2) increasing orbital lifetime. Phrased differently, as fission products build up, more time is required for the fission products to naturally convert back into non-radioactive isotopes. Simultaneously, as fission products build up, orbital lifetime increases, providing more time for the fission products to naturally convert back into non-radioactive isotopes. Operational constraints required to ensure safety can thus be quantified. .

  17. [The design and implementation of the web typical surface object spectral information system in arid areas based on .NET and SuperMap].

    PubMed

    Xia, Jun; Tashpolat, Tiyip; Zhang, Fei; Ji, Hong-jiang

    2011-07-01

    The characteristic of object spectrum is not only the base of the quantification analysis of remote sensing, but also the main content of the basic research of remote sensing. The typical surface object spectral database in arid areas oasis is of great significance for applied research on remote sensing in soil salinization. In the present paper, the authors took the Ugan-Kuqa River Delta Oasis as an example, unified .NET and the SuperMap platform with SQL Server database stored data, used the B/S pattern and the C# language to design and develop the typical surface object spectral information system, and established the typical surface object spectral database according to the characteristics of arid areas oasis. The system implemented the classified storage and the management of typical surface object spectral information and the related attribute data of the study areas; this system also implemented visualized two-way query between the maps and attribute data, the drawings of the surface object spectral response curves and the processing of the derivative spectral data and its drawings. In addition, the system initially possessed a simple spectral data mining and analysis capabilities, and this advantage provided an efficient, reliable and convenient data management and application platform for the Ugan-Kuqa River Delta Oasis's follow-up study in soil salinization. Finally, It's easy to maintain, convinient for secondary development and practically operating in good condition.

  18. Satellite power system: Engineering and economic analysis summary

    NASA Technical Reports Server (NTRS)

    1976-01-01

    A system engineering and economic analysis was conducted to establish typical reference baselines for the photovoltaic, solar thermal, and nuclear satellite power systems. Tentative conclusions indicate that feasibility and economic viability are characteristic of the Satellite Power System. Anticipated technology related to manufacturing, construction, and maintenance operations is described. Fuel consumption, environmental effects, and orbital transfer are investigated. Space shuttles, local space transportation, and the heavy lift launch vehicle required are also discussed.

  19. Performance Comparison of EPICS IOC and MARTe in a Hard Real-Time Control Application

    NASA Astrophysics Data System (ADS)

    Barbalace, Antonio; Manduchi, Gabriele; Neto, A.; De Tommasi, G.; Sartori, F.; Valcarcel, D. F.

    2011-12-01

    EPICS is used worldwide mostly for controlling accelerators and large experimental physics facilities. Although EPICS is well fit for the design and development of automation systems, which are typically VME or PLC-based systems, and for soft real-time systems, it may present several drawbacks when used to develop hard real-time systems/applications especially when general purpose operating systems as plain Linux are chosen. This is in particular true in fusion research devices typically employing several hard real-time systems, such as the magnetic control systems, that may require strict determinism, and high performance in terms of jitter and latency. Serious deterioration of important plasma parameters may happen otherwise, possibly leading to an abrupt termination of the plasma discharge. The MARTe framework has been recently developed to fulfill the demanding requirements for such real-time systems that are alike to run on general purpose operating systems, possibly integrated with the low-latency real-time preemption patches. MARTe has been adopted to develop a number of real-time systems in different Tokamaks. In this paper, we first summarize differences and similarities between EPICS IOC and MARTe. Then we report on a set of performance measurements executed on an x86 64 bit multicore machine running Linux with an IO control algorithm implemented in an EPICS IOC and in MARTe.

  20. xLuna - D emonstrator on ESA Mars Rover

    NASA Astrophysics Data System (ADS)

    Braga, P.; Henriques, L.; Carvalho, B.; Chevalley, P.; Zulianello, M.

    2008-08-01

    There is a significant gap between the services offered by existing space qualified Real-Time Operating Systems (RTOS) and those required by the most demanding future space applications. New requirements for autonomy, terrain mapping and navigation, Simultaneous Location and Mapping (SLAM), improvement of the throughput of science tasks, all demand high level services such as file systems or POSIX compliant interfaces. xLuna is an operating system that aims fulfilling these new requirements. Besides providing the typical services that of an RTOS (tasks and interrupts management, timers, message queues, etc), it also includes most of the features available in modern general-purpose operating systems, such as Linux. This paper describes a case study that proposes to demonstrate the usage of xLuna on board a rover currently in use for the development of algorithms in preparation of a mission to Mars.

  1. Proximity operations considerations affecting spacecraft design

    NASA Technical Reports Server (NTRS)

    Staas, Steven K.

    1991-01-01

    Experience from several recent spacecraft development programs, such as Space Station Freedom (SSF) and the Orbital Maneuvering Vehicle (OMV) has shown the need for factoring proximity operations considerations into the vehicle design process. Proximity operations, those orbital maneuvers and procedures which involve operation of two or more spacecraft at ranges of less than one nautical mile, are essential to the construction, servicing, and operation of complex spacecraft. Typical proximity operations considerations which drive spacecraft design may be broken into two broad categories; flight profile characteristics and concerns, and use of various spacecraft systems during proximity operations. Proximity operations flight profile concerns include the following: (1) relative approach/separation line; (2) relative orientation of the vehicles; (3) relative translational and rotational rates; (4) vehicle interaction, in the form of thruster plume impingement, mating or demating operations, or uncontrolled contact/collision; and (5) active vehicle piloting. Spacecraft systems used during proximity operations include the following: (1) sensors, such as radar, laser ranging devices, or optical ranging systems; (2) effector hardware, such as thrusters; (3) flight control software; and (4) mating hardware, needed for docking or berthing operations. A discussion of how these factors affect vehicle design follows, addressing both active and passive/cooperative vehicles.

  2. Computer package for the design and optimization of absorption air conditioning system operated by solar energy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sofrata, H.; Khoshaim, B.; Megahed, M.

    1980-12-01

    In this paper a computer package for the design and optimization of the simple Li-Br absorption air conditioning system, operated by solar energy, is developed in order to study its performance. This was necessary, as a first step, before carrying out any computations regarding the dual system (1-3). The computer package has the facilities of examining any parameter which may control the system; namely generator, evaporator, condenser, absorber temperatures and pumping factor. The output may be tabulated and also fed to the graph plotter. The flow chart of the programme is explained in an easy way and a typical examplemore » is included.« less

  3. Research on rapid agile metrology for manufacturing based on real-time multitask operating system

    NASA Astrophysics Data System (ADS)

    Chen, Jihong; Song, Zhen; Yang, Daoshan; Zhou, Ji; Buckley, Shawn

    1996-10-01

    Rapid agile metrology for manufacturing (RAMM) using multiple non-contact sensors is likely to remain a growing trend in manufacturing. High speed inspecting systems for manufacturing is characterized by multitasks implemented in parallel and real-time events which occur simultaneously. In this paper, we introduce a real-time operating system into RAMM research. A general task model of a class-based object- oriented technology is proposed. A general multitask frame of a typical RAMM system using OPNet is discussed. Finally, an application example of a machine which inspects parts held on a carrier strip is described. With RTOS and OPNet, this machine can measure two dimensions of the contacts at 300 parts/second.

  4. Target discrimination strategies in optics detection

    NASA Astrophysics Data System (ADS)

    Sjöqvist, Lars; Allard, Lars; Henriksson, Markus; Jonsson, Per; Pettersson, Magnus

    2013-10-01

    Detection and localisation of optical assemblies used for weapon guidance or sniper rifle scopes has attracted interest for security and military applications. Typically a laser system is used to interrogate a scene of interest and the retro-reflected radiation is detected. Different system approaches for area coverage can be realised ranging from flood illumination to step-and-stare or continuous scanning schemes. Independently of the chosen approach target discrimination is a crucial issue, particularly if a complex scene such as in an urban environment and autonomous operation is considered. In this work target discrimination strategies in optics detection are discussed. Typical parameters affecting the reflected laser radiation from the target are the wavelength, polarisation properties, temporal effects and the range resolution. Knowledge about the target characteristics is important to predict the target discrimination capability. Two different systems were used to investigate polarisation properties and range resolution information from targets including e.g. road signs, optical reflexes, rifle sights and optical references. The experimental results and implications on target discrimination will be discussed. If autonomous operation is required target discrimination becomes critical in order to reduce the number of false alarms.

  5. Automated Ground Umbilical Systems (AGUS) Project

    NASA Technical Reports Server (NTRS)

    Gosselin, Armand M.

    2007-01-01

    All space vehicles require ground umbilical systems for servicing. Servicing requirements can include, but are not limited to, electrical power and control, propellant loading and venting, pneumatic system supply, hazard gas detection and purging as well as systems checkout capabilities. Of the various types of umbilicals, all require several common subsystems. These typically include an alignment system, mating and locking system, fluid connectors, electrical connectors and control !checkout systems. These systems have been designed to various levels of detail based on the needs for manual and/or automation requirements. The Automated Ground Umbilical Systems (AGUS) project is a multi-phase initiative to develop design performance requirements and concepts for launch system umbilicals. The automation aspect minimizes operational time and labor in ground umbilical processing while maintaining reliability. This current phase of the project reviews the design, development, testing and operations of ground umbilicals built for the Saturn, Shuttle, X-33 and Atlas V programs. Based on the design and operations lessons learned from these systems, umbilicals can be optimized for specific applications. The product of this study is a document containing details of existing systems and requirements for future automated umbilical systems with emphasis on design-for-operations (DFO).

  6. Supplying of Assembly Lines Using Train of Trucks

    NASA Astrophysics Data System (ADS)

    Čujan, Zdeněk; Fedorko, Gabriel

    2016-11-01

    The typical supply system conceptions, i.e. the concepts "Just-in-time" (JIT) and "Just-in-sequence" (JIS) are very important factors with regard to a fluent operation of the assembly lines. Therefore the contemporary intra plant transport systems are being replaced by a new kind of the transportation technology, namely by means of the trains of trucks. The trains of trucks are used in two possible operational modes: either with a driver or without driver (fully automated). The trucks of the logistic trains are also cheaper and they are able to carry a larger volume and mass of the material at once. There are reduced in this way not only the investment costs, but also the operational expenses.

  7. Rectenna System Design. [energy conversion solar power satellites

    NASA Technical Reports Server (NTRS)

    Woodcock, G. R.; Andryczyk, R. W.

    1980-01-01

    The fundamental processes involved in the operation of the rectenna system designed for the solar power satellite system are described. The basic design choices are presented based on the desired microwave rf field concentration prior to rectification and based on the ground clearance requirements for the rectenna structure. A nonconcentrating inclined planar panel with a 2 meter minimum clearance configuration is selected as a representative of the typical rectenna.

  8. Conduct and Results of YF-16 RPRV Stall/Spin Drop Model Tests

    DTIC Science & Technology

    1977-04-01

    Bomb Recovery System Tests Iron Bird Recovery System Tests Captive Flights Typical Flight Operations Flight Planning and Pilot Training...helicopter tow qualification test, one model tow qualification test, three Iron Bird parachute recovery system verification tests, three captive tests...Corresponding Full-Scale YF-16 Altitude -Reference 1: Woodcock , Robert J., Some Notes on Free-Flight Model Seal- ing, AFFDL-TM-73-123-FCC, Air Force Flight

  9. Cargo/Logistics Airlift System Study (CLASS), Volume 1

    NASA Technical Reports Server (NTRS)

    Norman, J. M.; Henderson, R. D.; Macey, F. C.; Tuttle, R. P.

    1978-01-01

    Current and advanced air cargo systems are evaluated using industrial and consumer statistics. Market and commodity characteristics that influence the use of the air mode are discussed along with a comparison of air and surface mode on typical routes. Results of on-site surveys of cargo processing facilities at airports are presented, and institutional controls and influences on air cargo operations are considered.

  10. Secure ADS-B: Towards Airborne Communications Security in the Federal Aviation Administration’s Next Generation Air Transportation System

    DTIC Science & Technology

    2014-03-01

    76 5.2 Impact . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 5.3 Recommendations for Future Work...Global Positioning System ICAO International Civil Aviation Organization IFF Identification Friend or Foe IFR Instrument Flight Rules IMO...Instrument Flight Rules ( IFR ). Under VFR, typically used by General Aviation (GA) aircraft operating under 18,000 feet, the pilot is primarily responsible

  11. Loyola University, New Orleans, Louisiana solar energy system performance evaluation, February 1981 - June 1981

    NASA Astrophysics Data System (ADS)

    Welch, K. M.

    1981-09-01

    The Loyola University site is a student dormitory in New Orleans, Louisiana whose active solar energy system is designed to supply 52% of the hot water demand. The system is equipped with 4590 square feet of flat-plate collectors, a 5000-gallon water tank, auxiliary water supplied at high temperature and pressure from a central heating plant with a gas-fired boiler, and a differential controller that selects from 5 operating modes. System performance data are given, including the solar fraction, solar savings ratio, conventional fuel savings, system performance factor, and system coefficient of performance. The solar fraction is well below the design goal; this is attributed to great fluctuations in demand. Insolation, temperature, operation and solar energy utilization data are also presented. The performance of the collector, storage, and domestic hot water subsystems, the system operating energy, energy savings, and weather conditions are also evaluated. Appended are a system description, performance evaluation techniques and equations, site history, sensor technology, and typical monthly data.

  12. Advanced active health monitoring system of liquid rocket engines

    NASA Astrophysics Data System (ADS)

    Qing, Xinlin P.; Wu, Zhanjun; Beard, Shawn; Chang, Fu-Kuo

    2008-11-01

    An advanced SMART TAPE system has been developed for real-time in-situ monitoring and long term tracking of structural integrity of pressure vessels in liquid rocket engines. The practical implementation of the structural health monitoring (SHM) system including distributed sensor network, portable diagnostic hardware and dedicated data analysis software is addressed based on the harsh operating environment. Extensive tests were conducted on a simulated large booster LOX-H2 engine propellant duct to evaluate the survivability and functionality of the system under the operating conditions of typical liquid rocket engines such as cryogenic temperature, vibration loads. The test results demonstrated that the developed SHM system could survive the combined cryogenic temperature and vibration environments and effectively detect cracks as small as 2 mm.

  13. [Bone drilling simulation by three-dimensional imaging].

    PubMed

    Suto, Y; Furuhata, K; Kojima, T; Kurokawa, T; Kobayashi, M

    1989-06-01

    The three-dimensional display technique has a wide range of medical applications. Pre-operative planning is one typical application: in orthopedic surgery, three-dimensional image processing has been used very successfully. We have employed this technique in pre-operative planning for orthopedic surgery, and have developed a simulation system for bone-drilling. Positive results were obtained by pre-operative rehearsal; when a region of interest is indicated by means of a mouse on the three-dimensional image displayed on the CRT, the corresponding region appears on the slice image which is displayed simultaneously. Consequently, the status of the bone-drilling is constantly monitored. In developing this system, we have placed emphasis on the quality of the reconstructed three-dimensional images, on fast processing, and on the easy operation of the surgical planning simulation.

  14. 14 CFR 1216.305 - Actions requiring environmental assessments.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... prepare an EA. (b) Typical NASA actions normally requiring an EA include: (1) Specific spacecraft... altering the ongoing operations at a NASA Center which could lead directly, indirectly, or cumulatively to... solar system bodies (such as asteroids, comets, planets, dwarf planets, and planetary moons), which...

  15. A Conceptual Design of a Departure Planner Decision Aid

    NASA Technical Reports Server (NTRS)

    Anagnostakis, Ioannis; Idris, Husni R.; Clark, John-Paul; Feron, Eric; Hansman, R. John; Odoni, Amedeo R.; Hall, William D.

    2000-01-01

    Terminal area Air Traffic Management handles both arriving and departing traffic. To date, research work on terminal area operations has focused primarily on the arrival flow and typically departures are taken into account only in an approximate manner. However, arrivals and departures are highly coupled processes especially in the terminal airspace, with complex interactions and sharing of the same airport resources between arrivals and departures taking place in practically every important terminal area. Therefore, the addition of automation aids for departures, possibly in co-operation with existing arrival flow automation systems, could have a profound contribution in enhancing the overall efficiency of airport operations. This paper presents the conceptual system architecture for such an automation aid, the Departure Planner (DP). This architecture can be used as a core in the development of decision-aiding systems to assist air traffic controllers in improving the performance of departure operations and optimize runway time allocation among different operations at major congested airports. The design of such systems is expected to increase the overall efficiency of terminal area operations and yield benefits for all stakeholders involved in Air Traffic Management (ATM) operations, users as well as service providers.

  16. Probabilistic Harmonic Analysis on Distributed Photovoltaic Integration Considering Typical Weather Scenarios

    NASA Astrophysics Data System (ADS)

    Bin, Che; Ruoying, Yu; Dongsheng, Dang; Xiangyan, Wang

    2017-05-01

    Distributed Generation (DG) integrating to the network would cause the harmonic pollution which would cause damages on electrical devices and affect the normal operation of power system. On the other hand, due to the randomness of the wind and solar irradiation, the output of DG is random, too, which leads to an uncertainty of the harmonic generated by the DG. Thus, probabilistic methods are needed to analyse the impacts of the DG integration. In this work we studied the harmonic voltage probabilistic distribution and the harmonic distortion in distributed network after the distributed photovoltaic (DPV) system integrating in different weather conditions, mainly the sunny day, cloudy day, rainy day and the snowy day. The probabilistic distribution function of the DPV output power in different typical weather conditions could be acquired via the parameter identification method of maximum likelihood estimation. The Monte-Carlo simulation method was adopted to calculate the probabilistic distribution of harmonic voltage content at different frequency orders as well as the harmonic distortion (THD) in typical weather conditions. The case study was based on the IEEE33 system and the results of harmonic voltage content probabilistic distribution as well as THD in typical weather conditions were compared.

  17. 29 CFR 784.149 - Typical operations that may qualify for exemption.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... THE FAIR LABOR STANDARDS ACT APPLICABLE TO FISHING AND OPERATIONS ON AQUATIC PRODUCTS Exemptions Provisions Relating to Fishing and Aquatic Products Processing, Freezing, and Curing § 784.149 Typical operations that may qualify for exemption. Such operations as transporting the specified aquatic products to...

  18. 29 CFR 784.149 - Typical operations that may qualify for exemption.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... THE FAIR LABOR STANDARDS ACT APPLICABLE TO FISHING AND OPERATIONS ON AQUATIC PRODUCTS Exemptions Provisions Relating to Fishing and Aquatic Products Processing, Freezing, and Curing § 784.149 Typical operations that may qualify for exemption. Such operations as transporting the specified aquatic products to...

  19. Feasibility and systems definition study for Microwave Multi-Application Payload (MMAP)

    NASA Technical Reports Server (NTRS)

    Horton, J. B.; Allen, C. C.; Massaro, M. J.; Zemany, J. L.; Murrell, J. W.; Stanhouse, R. W.; Condon, G. P.; Stone, R. F.; Swana, J.; Afifi, M.

    1977-01-01

    Work completed on three Shuttle/Spacelab experiments is examined: the Adaptive Multibeam Phased Array Antenna (AMPA) Experiment, Electromagnetic Environment Experiment (EEE) and Millimeter Wave Communications Experiment (MWCE). Results included the definition of operating modes, sequence of operation, radii of operation about several ground stations, signal format, foot prints of typical orbits and preliminary definition of ground and user terminals. Conceptual hardware designs, Spacelab interfaces, data handling methods, experiment testing and verification studies were included. The MWCE-MOD I was defined conceptually for a steerable high gain antenna.

  20. Solar Total Energy Project (STEP) Performance Analysis of High Temperature Energy Storage Subsystem

    NASA Technical Reports Server (NTRS)

    Moore, D. M.

    1984-01-01

    The 1982 milestones and lessons learned; performance in 1983; a typical day's operation; collector field performance and thermal losses; and formal testing are highlighted. An initial test that involves characterizing the high temperature storage (hts) subsystem is emphasized. The primary element is on 11,000 gallon storage tank that provides energy to the steam generator during transient solar conditions or extends operating time. Overnight, thermal losses were analyzed. The length of time the system is operated at various levels of cogeneration using stored energy is reviewed.

  1. QEDMOD: Fortran program for calculating the model Lamb-shift operator

    NASA Astrophysics Data System (ADS)

    Shabaev, V. M.; Tupitsyn, I. I.; Yerokhin, V. A.

    2018-02-01

    We present Fortran package QEDMOD for computing the model QED operator hQED that can be used to account for the Lamb shift in accurate atomic-structure calculations. The package routines calculate the matrix elements of hQED with the user-specified one-electron wave functions. The operator can be used to calculate Lamb shift in many-electron atomic systems with a typical accuracy of few percent, either by evaluating the matrix element of hQED with the many-electron wave function, or by adding hQED to the Dirac-Coulomb-Breit Hamiltonian.

  2. Multiplexed chemostat system for quantification of biodiversity and ecosystem functioning in anaerobic digestion

    PubMed Central

    Plouchart, Diane; Guizard, Guillaume; Latrille, Eric

    2018-01-01

    Continuous cultures in chemostats have proven their value in microbiology, microbial ecology, systems biology and bioprocess engineering, among others. In these systems, microbial growth and ecosystem performance can be quantified under stable and defined environmental conditions. This is essential when linking microbial diversity to ecosystem function. Here, a new system to test this link in anaerobic, methanogenic microbial communities is introduced. Rigorously replicated experiments or a suitable experimental design typically require operating several chemostats in parallel. However, this is labor intensive, especially when measuring biogas production. Commercial solutions for multiplying reactors performing continuous anaerobic digestion exist but are expensive and use comparably large reactor volumes, requiring the preparation of substantial amounts of media. Here, a flexible system of Lab-scale Automated and Multiplexed Anaerobic Chemostat system (LAMACs) with a working volume of 200 mL is introduced. Sterile feeding, biomass wasting and pressure monitoring are automated. One module containing six reactors fits the typical dimensions of a lab bench. Thanks to automation, time required for reactor operation and maintenance are reduced compared to traditional lab-scale systems. Several modules can be used together, and so far the parallel operation of 30 reactors was demonstrated. The chemostats are autoclavable. Parameters like reactor volume, flow rates and operating temperature can be freely set. The robustness of the system was tested in a two-month long experiment in which three inocula in four replicates, i.e., twelve continuous digesters were monitored. Statistically significant differences in the biogas production between inocula were observed. In anaerobic digestion, biogas production and consequently pressure development in a closed environment is a proxy for ecosystem performance. The precision of the pressure measurement is thus crucial. The measured maximum and minimum rates of gas production could be determined at the same precision. The LAMACs is a tool that enables us to put in practice the often-demanded need for replication and rigorous testing in microbial ecology as well as bioprocess engineering. PMID:29518106

  3. Technology survey of electrical power generation and distribution for MIUS application

    NASA Technical Reports Server (NTRS)

    Gill, W. L.; Redding, T. E.

    1975-01-01

    Candidate electrical generation power systems for the modular integrated utility systems (MIUS) program are described. Literature surveys were conducted to cover both conventional and exotic generators. Heat-recovery equipment associated with conventional power systems and supporting equipment are also discussed. Typical ranges of operating conditions and generating efficiencies are described. Power distribution is discussed briefly. Those systems that appear to be applicable to MIUS have been indicated, and the criteria for equipment selection are discussed.

  4. Surgical guidance system using hand-held probe with accompanying positron coincidence detector

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Majewski, Stanislaw; Weisenberger, Andrew G.

    A surgical guidance system offering different levels of imaging capability while maintaining the same hand-held convenient small size of light-weight intra-operative probes. The surgical guidance system includes a second detector, typically an imager, located behind the area of surgical interest to form a coincidence guidance system with the hand-held probe. This approach is focused on the detection of positron emitting biomarkers with gamma rays accompanying positron emissions from the radiolabeled nuclei.

  5. Comparison of particle swarm optimization and differential evolution for aggregators' profit maximization in the demand response system

    NASA Astrophysics Data System (ADS)

    Wisittipanit, Nuttachat; Wisittipanich, Warisa

    2018-07-01

    Demand response (DR) refers to changes in the electricity use patterns of end-users in response to incentive payment designed to prompt lower electricity use during peak periods. Typically, there are three players in the DR system: an electric utility operator, a set of aggregators and a set of end-users. The DR model used in this study aims to minimize the operator's operational cost and offer rewards to aggregators, while profit-maximizing aggregators compete to sell DR services to the operator and provide compensation to end-users for altering their consumption profiles. This article presents the first application of two metaheuristics in the DR system: particle swarm optimization (PSO) and differential evolution (DE). The objective is to optimize the incentive payments during various periods to satisfy all stakeholders. The results show that DE significantly outperforms PSO, since it can attain better compensation rates, lower operational costs and higher aggregator profits.

  6. Energy and water quality management systems for water utility's operations: a review.

    PubMed

    Cherchi, Carla; Badruzzaman, Mohammad; Oppenheimer, Joan; Bros, Christopher M; Jacangelo, Joseph G

    2015-04-15

    Holistic management of water and energy resources is critical for water utilities facing increasing energy prices, water supply shortage and stringent regulatory requirements. In the early 1990s, the concept of an integrated Energy and Water Quality Management System (EWQMS) was developed as an operational optimization framework for solving water quality, water supply and energy management problems simultaneously. Approximately twenty water utilities have implemented an EWQMS by interfacing commercial or in-house software optimization programs with existing control systems. For utilities with an installed EWQMS, operating cost savings of 8-15% have been reported due to higher use of cheaper tariff periods and better operating efficiencies, resulting in the reduction in energy consumption of ∼6-9%. This review provides the current state-of-knowledge on EWQMS typical structural features and operational strategies and benefits and drawbacks are analyzed. The review also highlights the challenges encountered during installation and implementation of EWQMS and identifies the knowledge gaps that should motivate new research efforts. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Design of penicillin fermentation process simulation system

    NASA Astrophysics Data System (ADS)

    Qi, Xiaoyu; Yuan, Zhonghu; Qi, Xiaoxuan; Zhang, Wenqi

    2011-10-01

    Real-time monitoring for batch process attracts increasing attention. It can ensure safety and provide products with consistent quality. The design of simulation system of batch process fault diagnosis is of great significance. In this paper, penicillin fermentation, a typical non-linear, dynamic, multi-stage batch production process, is taken as the research object. A visual human-machine interactive simulation software system based on Windows operation system is developed. The simulation system can provide an effective platform for the research of batch process fault diagnosis.

  8. Using machine learning and real-time workload assessment in a high-fidelity UAV simulation environment

    NASA Astrophysics Data System (ADS)

    Monfort, Samuel S.; Sibley, Ciara M.; Coyne, Joseph T.

    2016-05-01

    Future unmanned vehicle operations will see more responsibilities distributed among fewer pilots. Current systems typically involve a small team of operators maintaining control over a single aerial platform, but this arrangement results in a suboptimal configuration of operator resources to system demands. Rather than devoting the full-time attention of several operators to a single UAV, the goal should be to distribute the attention of several operators across several UAVs as needed. Under a distributed-responsibility system, operator task load would be continuously monitored, with new tasks assigned based on system needs and operator capabilities. The current paper sought to identify a set of metrics that could be used to assess workload unobtrusively and in near real-time to inform a dynamic tasking algorithm. To this end, we put 20 participants through a variable-difficulty multiple UAV management simulation. We identified a subset of candidate metrics from a larger pool of pupillary and behavioral measures. We then used these metrics as features in a machine learning algorithm to predict workload condition every 60 seconds. This procedure produced an overall classification accuracy of 78%. An automated tasker sensitive to fluctuations in operator workload could be used to efficiently delegate tasks for teams of UAV operators.

  9. 800 Hours of Operational Experience from a 2 kW(sub e) Solar Dynamic System

    NASA Technical Reports Server (NTRS)

    Shaltens, Richard K.; Mason, Lee S.

    1999-01-01

    From December 1994 to September 1998, testing with a 2 kW(sub e) Solar Dynamic power system resulted in 33 individual tests, 886 hours of solar heating, and 783 hours of power generation. Power generation ranged from 400 watts to over 2 kW(sub e), and SD system efficiencies have been measured up to 17 per cent, during simulated low-Earth orbit operation. Further, the turbo-alternator-compressors successfully completed 100 start/stops on foil bearings. Operation was conducted in a large thermal/vacuum facility with a simulated Sun at the NASA Lewis Research Center. The Solar Dynamic system featured a closed Brayton conversion unit integrated with a solar heat receiver, which included thermal energy storage for continuous power output through a typical low-Earth orbit. Two power conversion units and three alternator configurations were used during testing. This paper will review the test program, provide operational and performance data, and review a number of technology issues.

  10. PC Software graphics tool for conceptual design of space/planetary electrical power systems

    NASA Technical Reports Server (NTRS)

    Truong, Long V.

    1995-01-01

    This paper describes the Decision Support System (DSS), a personal computer software graphics tool for designing conceptual space and/or planetary electrical power systems. By using the DSS, users can obtain desirable system design and operating parameters, such as system weight, electrical distribution efficiency, and bus power. With this tool, a large-scale specific power system was designed in a matter of days. It is an excellent tool to help designers make tradeoffs between system components, hardware architectures, and operation parameters in the early stages of the design cycle. The DSS is a user-friendly, menu-driven tool with online help and a custom graphical user interface. An example design and results are illustrated for a typical space power system with multiple types of power sources, frequencies, energy storage systems, and loads.

  11. Low-power SXGA active matrix OLED

    NASA Astrophysics Data System (ADS)

    Wacyk, Ihor; Prache, Olivier; Ghosh, Amal

    2009-05-01

    This paper presents the design and first evaluation of a full-color 1280×3×1024 pixel, active matrix organic light emitting diode (AMOLED) microdisplay that operates at a low power of 200mW under typical operating conditions of 35fL, and offers a precision 30-bit RGB digital interface in a compact size (0.78-inch diagonal active area). The new system architecture developed by eMagin for the SXGA microdisplay, based on a separate FPGA driver and AMOLED display chip, offers several benefits, including better power efficiency, cost-effectiveness, more features for improved performance, and increased system flexibility.

  12. Engineering support for magnetohydrodynamic power plant analysis and design studies

    NASA Technical Reports Server (NTRS)

    Carlson, A. W.; Chait, I. L.; Marchmont, G.; Rogali, R.; Shikar, D.

    1980-01-01

    The major factors which influence the economic engineering selection of stack inlet temperatures in combined cycle MHD powerplants are identified and the range of suitable stack inlet temperatures under typical operating conditions is indicated. Engineering data and cost estimates are provided for four separately fired high temperature air heater (HTAH) system designs for HTAH system thermal capacity levels of 100, 250, 500 and 1000 MWt. An engineering survey of coal drying and pulverizing equipment for MHD powerplant application is presented as well as capital and operating cost estimates for varying degrees of coal pulverization.

  13. Development and Testing of a Methane/Oxygen Catalytic Microtube Ignition System for Rocket Propulsion

    NASA Technical Reports Server (NTRS)

    Deans, Matthew

    2012-01-01

    This study sought to develop a catalytic ignition advanced torch system with a unique catalyst microtube design that could serve as a low energy alternative or redundant system for the ignition of methane and oxygen rockets. Development and testing of iterations of hardware was carried out to create a system that could operate at altitude and produce a torch. A unique design was created that initiated ignition via the catalyst and then propagated into external staged ignition. This system was able to meet the goals of operating across a range of atmospheric and altitude conditions with power inputs on the order of 20 to 30 watts with chamber pressures and mass flow rates typical of comparable ignition systems for a 100 lbf engine.

  14. Development and Testing of a Methane/Oxygen Catalytic Microtube Ignition System for Rocket Propulsion

    NASA Technical Reports Server (NTRS)

    Deans, Matthew C.; Schneider, Steven J.

    2012-01-01

    This study sought to develop a catalytic ignition advanced torch system with a unique catalyst microtube design that could serve as a low energy alternative or redundant system for the ignition of methane and oxygen rockets. Development and testing of iterations of hardware was carried out to create a system that could operate at altitude and produce a torch. A unique design was created that initiated ignition via the catalyst and then propagated into external staged ignition. This system was able to meet the goals of operating across a range of atmospheric and altitude conditions with power inputs on the order of 20 to 30 watts with chamber pressures and mass flow rates typical of comparable ignition systems for a 100 Ibf engine.

  15. System characterization of a magnetically suspended flywheel

    NASA Technical Reports Server (NTRS)

    Kirk, James A.; Anand, Dave K.; Plant, David P.

    1988-01-01

    The purpose of flywheel energy storage is to provide a means to save energy during times when the satellite is in sunlight, and then return the energy during the time when the satellite is in darkness. Typically, an energy storage device operates cyclically, where for satellites in Low Earth Orbit (LEO) the typical period is 60 minutes of sunlight followed by 30 minutes of darkness. If a lifetime of 17 years is required the energy storage system must be capable of sustaining approximately 100,000 cycles. The recent developments at the University of Maryland and how these progressions apply to a 500 Watt-hour magnetically suspended flywheel stack energy storage system are covered. The work includes hardware testing results from a stack flywheel energy storage system, improvements in the area of non-contacting displacement transducers, and performance enhancements of magnetic bearings. The experimental results show that a stack flywheel energy storage system is a feasible technology.

  16. Timeliner: Automating Procedures on the ISS

    NASA Technical Reports Server (NTRS)

    Brown, Robert; Braunstein, E.; Brunet, Rick; Grace, R.; Vu, T.; Zimpfer, Doug; Dwyer, William K.; Robinson, Emily

    2002-01-01

    Timeliner has been developed as a tool to automate procedural tasks. These tasks may be sequential tasks that would typically be performed by a human operator, or precisely ordered sequencing tasks that allow autonomous execution of a control process. The Timeliner system includes elements for compiling and executing sequences that are defined in the Timeliner language. The Timeliner language was specifically designed to allow easy definition of scripts that provide sequencing and control of complex systems. The execution environment provides real-time monitoring and control based on the commands and conditions defined in the Timeliner language. The Timeliner sequence control may be preprogrammed, compiled from Timeliner "scripts," or it may consist of real-time, interactive inputs from system operators. In general, the Timeliner system lowers the workload for mission or process control operations. In a mission environment, scripts can be used to automate spacecraft operations including autonomous or interactive vehicle control, performance of preflight and post-flight subsystem checkouts, or handling of failure detection and recovery. Timeliner may also be used for mission payload operations, such as stepping through pre-defined procedures of a scientific experiment.

  17. Harmonic voltage excess problem test and analysis in UHV and EHV grid particular operation mode

    NASA Astrophysics Data System (ADS)

    Lv, Zhenhua; Shi, Mingming; Fei, Juntao

    2018-02-01

    The test and analysis of the power quality of some 1000kV UHV transmission lines and 500kV EHV transmission lines is carried out. It is found that there is harmonic voltage excess problems when the power supply of the UHV and EHV voltage line is single-ended or single-loop, the problem basically disappeared after the operation mode change, different operating conditions, the harmonic current has not been greatly affected, indicating that the harmonic voltage changes mainly caused by the system harmonic impedance. With the analysis of MATLAB Simulink system model, it can be seen that there are specific harmonic voltage excess in the system under the specific operating mode, which results in serious distortion of the specific harmonic voltage. Since such phenomena are found in 500kV and 1000kV systems, it is suggested that the test evaluation work should be done under the typical mode of operation in 500kV, 1000kV Planning and construction process to prevent the occurrence of serious distortion and the regional harmonic current monitoring and suppression work should be done.

  18. UTIS as one example of standardization of subsea intervention systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haugen, F.G.

    1995-12-31

    The number of diverless subsea interventions has increased dramatically during the last few years. A number of types of tools and equipment have been designed and used. A typical procedure has been to develop new intervention tools under each new contract based on experience from the previous project. This is not at all optimal with regard to project cost and risk, and is no longer acceptable as the oil industry now calls for cost savings within all areas of field development. One answer to the problem will be to develop universal intervention systems with the capability to perform a rangemore » of related tasks, with only minor, planned modifications of the system. This philosophy will dramatically reduce planning, engineering, construction and interface work related to the intervention operation as the main work will be only to locate a standardized landing facility on the subsea structure. The operating procedures can be taken ``off the shelf``. To adapt to this philosophy within the tie-in area, KOS decided to standardize on a Universal Tie-In System (UTIS), which will be included in a Tool Pool for rental world-wide. This paper describes UTIS as a typical example of standardization of subsea intervention systems. 16 figs., 1 tab.« less

  19. Comparative of signal processing techniques for micro-Doppler signature extraction with automotive radar systems

    NASA Astrophysics Data System (ADS)

    Rodriguez-Hervas, Berta; Maile, Michael; Flores, Benjamin C.

    2014-05-01

    In recent years, the automotive industry has experienced an evolution toward more powerful driver assistance systems that provide enhanced vehicle safety. These systems typically operate in the optical and microwave regions of the electromagnetic spectrum and have demonstrated high efficiency in collision and risk avoidance. Microwave radar systems are particularly relevant due to their operational robustness under adverse weather or illumination conditions. Our objective is to study different signal processing techniques suitable for extraction of accurate micro-Doppler signatures of slow moving objects in dense urban environments. Selection of the appropriate signal processing technique is crucial for the extraction of accurate micro-Doppler signatures that will lead to better results in a radar classifier system. For this purpose, we perform simulations of typical radar detection responses in common driving situations and conduct the analysis with several signal processing algorithms, including short time Fourier Transform, continuous wavelet or Kernel based analysis methods. We take into account factors such as the relative movement between the host vehicle and the target, and the non-stationary nature of the target's movement. A comparison of results reveals that short time Fourier Transform would be the best approach for detection and tracking purposes, while the continuous wavelet would be the best suited for classification purposes.

  20. The performance of a piezoelectric-sensor-based SHM system under a combined cryogenic temperature and vibration environment

    NASA Astrophysics Data System (ADS)

    Qing, Xinlin P.; Beard, Shawn J.; Kumar, Amrita; Sullivan, Kevin; Aguilar, Robert; Merchant, Munir; Taniguchi, Mike

    2008-10-01

    A series of tests have been conducted to determine the survivability and functionality of a piezoelectric-sensor-based active structural health monitoring (SHM) SMART Tape system under the operating conditions of typical liquid rocket engines such as cryogenic temperature and vibration loads. The performance of different piezoelectric sensors and a low temperature adhesive under cryogenic temperature was first investigated. The active SHM system for liquid rocket engines was exposed to flight vibration and shock environments on a simulated large booster LOX-H2 engine propellant duct conditioned to cryogenic temperatures to evaluate the physical robustness of the built-in sensor network as well as operational survivability and functionality. Test results demonstrated that the developed SMART Tape system can withstand operational levels of vibration and shock energy on a representative rocket engine duct assembly, and is functional under the combined cryogenic temperature and vibration environment.

  1. NASA Aviation Safety Reporting System

    NASA Technical Reports Server (NTRS)

    1980-01-01

    A comprehensive study of near midair collisions in terminal airspace, derived from the ASRS database is presented. A selection of controller and pilot reports on airport perimeter security, unauthorized takeoffs and landings, and on winter operations is presented. A sampling of typical Alert Bulletins and their responses is presented.

  2. 30 CFR 250.292 - What must the DWOP contain?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Information Deepwater Operations Plans (dwop) § 250.292 What must the DWOP contain? You must include the following information in your DWOP: (a) A description and schematic of the typical wellbore, casing, and completion; (b) Structural design, fabrication, and installation information for each surface system...

  3. Impacts of Land-applied Wastes from Concentrated Animal Feeding Operations on Aquatic Organisms

    EPA Science Inventory

    Midwest agricultural fields typically have subsurface tile-drain networks that facilitate transport of excess water from fields to a ditch network system, which can contain sediments, nutrients and pesticides as well as hormones from fields fertilized with manure and associated l...

  4. 14 CFR § 1216.305 - Actions requiring environmental assessments.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... prepare an EA. (b) Typical NASA actions normally requiring an EA include: (1) Specific spacecraft... altering the ongoing operations at a NASA Center which could lead directly, indirectly, or cumulatively to... solar system bodies (such as asteroids, comets, planets, dwarf planets, and planetary moons), which...

  5. Culture: The Missing Concept in Organization Studies.

    ERIC Educational Resources Information Center

    Schein, Edgar H.

    1996-01-01

    Inattention to social systems in organizations has led researchers to underestimate the importance of culture--shared norms, values, and assumptions--in how organizations function. The failure of organizational learning can be understood by examining typical responses to change by members of several broad occupational cultures (operators,…

  6. The pollution removal and stormwater reduction performance of street-side bioretention basins after ten years in operation.

    PubMed

    Lucke, Terry; Nichols, Peter W B

    2015-12-01

    This study evaluated the pollution removal and hydrologic performance of five, 10-year old street-side bioretention systems. The bioretention basins were subjected to a series of simulated rainfall events using synthetic stormwater. Four different pollution concentrations were tested on three of the bioretention basins. The four concentrations tested were: A) no pollution; B) typical Australian urban pollutant loads; C) double the typical pollution loads, and; D) five times the typical pollution loads. Tests were also undertaken to determine the levels of contaminant and heavy metals build-up that occurred in the filter media over the 10 year operational life of the bioretention systems. Although highly variable, the overall hydrological performance of the basins was found to be positive, with all basins attenuating flows, reducing both peak flow rates and total outflow volumes. Total suspended solids removal performance was variable for all tests and no correlation was found between performance and dosage. Total nitrogen (TN) removal was positive for Tests B, C and D. However, the TN removal results for Test A were found to be negative. Total phosphorus (TP) was the only pollutant to be effectively removed from all basins for all four synthetic stormwater tests. The study bioretention basins were found to export pollutants during tests where no pollutants were added to the simulated inflow water (Test A). Heavy metal and hydrocarbon testing undertaken on the bioretention systems found that the pollution levels of the filter media were still within acceptable limits after 10 years in operation. This field study has shown bioretention basin pollution removal performance to be highly variable and dependant on a range of factors including inflow pollution concentrations, filter media, construction methods and environmental factors. Further research is required in order to fully understand the potential stormwater management benefits of these systems. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Design of a steganographic virtual operating system

    NASA Astrophysics Data System (ADS)

    Ashendorf, Elan; Craver, Scott

    2015-03-01

    A steganographic file system is a secure file system whose very existence on a disk is concealed. Customarily, these systems hide an encrypted volume within unused disk blocks, slack space, or atop conventional encrypted volumes. These file systems are far from undetectable, however: aside from their ciphertext footprint, they require a software or driver installation whose presence can attract attention and then targeted surveillance. We describe a new steganographic operating environment that requires no visible software installation, launching instead from a concealed bootstrap program that can be extracted and invoked with a chain of common Unix commands. Our system conceals its payload within innocuous files that typically contain high-entropy data, producing a footprint that is far less conspicuous than existing methods. The system uses a local web server to provide a file system, user interface and applications through a web architecture.

  8. Flexible and adaptive water systems operations through more informed and dynamic decisions

    NASA Astrophysics Data System (ADS)

    Castelletti, A.; Giuliani, M.

    2016-12-01

    Timely adapting the operations of water systems to be resilient against rapid changes in both hydroclimatic and socioeconomic forcing is generally recommended as a part of planning and managing water resources under uncertain futures. A great opportunity to make the operations more flexible and adaptive is offered by the unprecedented amount of information that is becoming available to water system operators, providing a wide range of data at increasingly higher temporal and spatial resolution. Yet, many water systems are still operated using very simple information systems, typically based on basic statistical analysis and the operator's experience. In this work, we discuss the potential offered by incorporating improved information to enhance water systems operation and increase their ability of adapting to different external conditions and resolving potential conflicts across sectors. In particular, we focus on the use of different variables associated to different dynamics of the system (slow and fast) diversely impacting the operating objectives on the short-, medium- and long-term. The multi-purpose operations of the Hoa Binh reservoir in the Red River Basin (Vietnam) is used to demonstrate our approach. Numerical results show that our procedure is able to automatically select the most valuable information for improving the Hoa Binh operations and mitigating the conflict between short-term objectives, i.e. hydropower production and flood control. Moreover, we also successfully identify low-frequency climate information associated to El-Nino Southern Oscillation for improving the performance in terms of long-term objectives, i.e. water supply. Finally, we assess the value of better informing operational decisions for adapting the system operations to changing conditions by considering different climate change projections.

  9. The BELLE DAQ system

    NASA Astrophysics Data System (ADS)

    Suzuki, Soh Yamagata; Yamauchi, Masanori; Nakao, Mikihiko; Itoh, Ryosuke; Fujii, Hirofumi

    2000-10-01

    We built a data acquisition system for the BELLE experiment. The system was designed to cope with the average trigger rate up to 500 Hz at the typical event size of 30 kB. This system has five components: (1) the readout sequence controller, (2) the FASTBUS-TDC readout systems using charge-to-time conversion, (3) the barrel shifter event builder, (4) the parallel online computing farm, and (5) the data transfer system to the mass storage. This system has been in operation for physics data taking since June 1999 without serious problems.

  10. Pump/Control System Minimum Operating Cost Testing

    NASA Technical Reports Server (NTRS)

    1977-01-01

    A preliminary evaluation of pump performance was initiated to determine the efficiencies of an arbitrary group of small pumps. Trends in factors affecting energy usage in typical prime movers which might be used in liquid transport solar systems were assessed. Comparisons of centrifugal pump efficiencies were made from one manufacturer to another. Tests were also made on two positive-displacement pumps and comparisons with centrifugal pumps were observed.

  11. The Open Source Hardening Project

    DTIC Science & Technology

    2009-07-01

    invariants have been violated. Further, despite the severity of storage system bugs, deployed testing meth- ods remain primitive , typically a combination of...an exponen- tially increasing number all-at-once. As a result, EX- PLODE unsurprisingly looks like a primitive operating system: it has a queue of...via semaphores . However, doing so requires intrusive changes and, in our experience [30], backfires with unexpected deadlock since semaphores prevent a

  12. The Mechanical Recognition of Speech: Prospects for Use in the Teaching of Languages.

    ERIC Educational Resources Information Center

    Pulliam, Robert

    1970-01-01

    This paper begins with a brief account of the development of automatic speech recogniton (ASR) and then proceeds to an examination of ASR systems typical of the kind now in operation. It is stressed that such systems, although highly developed, do not recognize speech in the same sense as the human being does, and that they can not deal with a…

  13. National Migrant Education Program: Reading Skills--English (Programa Nacional de Educacion Migrante: Destrezas de Lectura--Espanol).

    ERIC Educational Resources Information Center

    1979

    Used as an integral part of the migrant student skills system operated by the Migrant Student Record Transfer System (MSRTS), the reading skills list contains a catalog of reading skills typical of the K-12 grade range. This catalog includes a sample of the MSRTS transmittal record which permits teachers to report the reading skills being worked…

  14. New generation lidar systems for eye safe full time observations

    NASA Technical Reports Server (NTRS)

    Spinhirne, James D.

    1995-01-01

    The traditional lidar over the last thirty years has typically been a big pulse low repetition rate system. Pulse energies are in the 0.1 to 1.0 J range and repetition rates from 0.1 to 10 Hz. While such systems have proven to be good research tools, they have a number of limitations that prevent them from moving beyond lidar research to operational, application oriented instruments. These problems include a lack of eye safety, very low efficiency, poor reliability, lack of ruggedness and high development and operating costs. Recent advances in solid state laser, detectors and data systems have enabled the development of a new generation of lidar technology that meets the need for routine, application oriented instruments. In this paper the new approaches to operational lidar systems will be discussed. Micro pulse lidar (MPL) systems are currently in use, and their technology is highlighted. The basis and current development of continuous wave (CW) lidar and potential of other technical approaches is presented.

  15. EVA Development and Verification Testing at NASA's Neutral Buoyancy Laboratory

    NASA Technical Reports Server (NTRS)

    Jairala, Juniper C.; Durkin, Robert; Marak, Ralph J.; Sipila, Stepahnie A.; Ney, Zane A.; Parazynski, Scott E.; Thomason, Arthur H.

    2012-01-01

    As an early step in the preparation for future Extravehicular Activities (EVAs), astronauts perform neutral buoyancy testing to develop and verify EVA hardware and operations. Neutral buoyancy demonstrations at NASA Johnson Space Center's Sonny Carter Training Facility to date have primarily evaluated assembly and maintenance tasks associated with several elements of the International Space Station (ISS). With the retirement of the Shuttle, completion of ISS assembly, and introduction of commercial players for human transportation to space, evaluations at the Neutral Buoyancy Laboratory (NBL) will take on a new focus. Test objectives are selected for their criticality, lack of previous testing, or design changes that justify retesting. Assembly tasks investigated are performed using procedures developed by the flight hardware providers and the Mission Operations Directorate (MOD). Orbital Replacement Unit (ORU) maintenance tasks are performed using a more systematic set of procedures, EVA Concept of Operations for the International Space Station (JSC-33408), also developed by the MOD. This paper describes the requirements and process for performing a neutral buoyancy test, including typical hardware and support equipment requirements, personnel and administrative resource requirements, examples of ISS systems and operations that are evaluated, and typical operational objectives that are evaluated.

  16. Assessment for Operator Confidence in Automated Space Situational Awareness and Satellite Control Systems

    NASA Astrophysics Data System (ADS)

    Gorman, J.; Voshell, M.; Sliva, A.

    2016-09-01

    The United States is highly dependent on space resources to support military, government, commercial, and research activities. Satellites operate at great distances, observation capacity is limited, and operator actions and observations can be significantly delayed. Safe operations require support systems that provide situational understanding, enhance decision making, and facilitate collaboration between human operators and system automation both in-the-loop, and on-the-loop. Joint cognitive systems engineering (JCSE) provides a rich set of methods for analyzing and informing the design of complex systems that include both human decision-makers and autonomous elements as coordinating teammates. While, JCSE-based systems can enhance a system analysts' understanding of both existing and new system processes, JCSE activities typically occur outside of traditional systems engineering (SE) methods, providing sparse guidance about how systems should be implemented. In contrast, the Joint Director's Laboratory (JDL) information fusion model and extensions, such as the Dual Node Network (DNN) technical architecture, provide the means to divide and conquer such engineering and implementation complexity, but are loosely coupled to specialized organizational contexts and needs. We previously describe how Dual Node Decision Wheels (DNDW) extend the DNN to integrate JCSE analysis and design with the practicalities of system engineering and implementation using the DNN. Insights from Rasmussen's JCSE Decision Ladders align system implementation with organizational structures and processes. In the current work, we present a novel approach to assessing system performance based on patterns occurring in operational decisions that are documented by JCSE processes as traces in a decision ladder. In this way, system assessment is closely tied not just to system design, but the design of the joint cognitive system that includes human operators, decision-makers, information systems, and automated processes. Such operationally relevant and integrated testing provides a sound foundation for operator trust in system automation that is required to safely operate satellite systems.

  17. [Modern foreign car safety systems and their forensic-medical significance].

    PubMed

    Iakunin, S A

    2007-01-01

    The author gives a characteristic of active and passive security systems installed in cars of foreign production. These security systems significantly modify the classic car trauma character decreasing frequency of occurrence and dimensions of specific and typical injuries. A new approach based on the theory of probability to estimate these injuries is required. The most common active and passive security systems are described in the article; their principles of operation and influence on the trauma character are estimated.

  18. Function Package for Computing Quantum Resource Measures

    NASA Astrophysics Data System (ADS)

    Huang, Zhiming

    2018-05-01

    In this paper, we present a function package for to calculate quantum resource measures and dynamics of open systems. Our package includes common operators and operator lists, frequently-used functions for computing quantum entanglement, quantum correlation, quantum coherence, quantum Fisher information and dynamics in noisy environments. We briefly explain the functions of the package and illustrate how to use the package with several typical examples. We expect that this package is a useful tool for future research and education.

  19. DOEDEF Software System, Version 2. 2: Operational instructions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meirans, L.

    The DOEDEF (Department of Energy Data Exchange Format) Software System is a collection of software routines written to facilitate the manipulation of IGES (Initial Graphics Exchange Specification) data. Typically, the IGES data has been produced by the IGES processors for a Computer-Aided Design (CAD) system, and the data manipulations are user-defined ''flavoring'' operations. The DOEDEF Software System is used in conjunction with the RIM (Relational Information Management) DBMS from Boeing Computer Services (Version 7, UD18 or higher). The three major pieces of the software system are: Parser, reads an ASCII IGES file and converts it to the RIM database equivalent;more » Kernel, provides the user with IGES-oriented interface routines to the database; and Filewriter, writes the RIM database to an IGES file.« less

  20. A microcomputer controlled snow ski binding system--I. Instrumentation and field evaluation.

    PubMed

    MacGregor, D; Hull, M L; Dorius, L K

    1985-01-01

    This paper presents the design and field evaluation of the first microcomputer controlled ski binding system. This system incorporates an Intel 8086 microcomputer controller and an integral binding/dynamometer. This instrumentation system not only undertakes real time control, but also it records dynamometer data via a miniature digital cassette tape recorder. The integral binding/dynamometer offers the same operational and mounting convenience of commercially available mechanical bindings. The binding may be released either manually or electrically via the controller. Comprised of four octagonal half strain rings, the strain gage dynamometer measures the three moment load components at the boot. To enable the user to conveniently operate the computer, extensive operating software was developed. The operating software is discussed in relation to both the acquisition and storage of data from the dynamometer and the control of the electro-mechanical snow ski binding. The binding system has been used successfully to both record boot moment components and control ski binding release during actual skiing maneuvers. Moment histories typical of three common recreational skiing maneuvers are presented.

  1. Teaching Raster GIS Operations with Spreadsheets.

    ERIC Educational Resources Information Center

    Raubal, Martin; Gaupmann, Bernhard; Kuhn, Werner

    1997-01-01

    Defines raster technology in its relationship to geographic information systems and notes that it is typically used with the application of remote sensing techniques and scanning devices. Discusses the role of spreadsheets in a raster model, and describes a general approach based on spreadsheets. Includes six computer-generated illustrations. (MJP)

  2. 77 FR 48097 - Operation of Radar Systems in the 76-77 GHz Band

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-13

    ... general public. 3. The 76-77 GHz band, which is allocated to the Radio Astronomy service (RAS) and the... astronomy observatories typically have control over access to a distance of one kilometer from the... radio astronomy community and several vehicular radar manufacturers. The measurements performed using...

  3. Are Computer Science Students Ready for the Real World.

    ERIC Educational Resources Information Center

    Elliot, Noreen

    The typical undergraduate program in computer science includes an introduction to hardware and operating systems, file processing and database organization, data communication and networking, and programming. However, many graduates may lack the ability to integrate the concepts "learned" into a skill set and pattern of approaching problems that…

  4. Advanced technology applications for second and third generation coal gasification systems. Appendix

    NASA Technical Reports Server (NTRS)

    Bradford, R.; Hyde, J. D.; Mead, C. W.

    1980-01-01

    Sixteen coal conversion processes are described and their projected goals listed. Tables show the reactants used, products derived, typical operating data, and properties of the feed coal. A history of the development of each process is included along with a drawing of the chemical reactor used.

  5. Freshwater Recirculating Aquaculture System Operations Drive Biofilter Bacterial Community Shifts around a Stable Nitrifying Consortium of Ammonia-Oxidizing Archaea and Comammox Nitrospira

    PubMed Central

    Bartelme, Ryan P.; McLellan, Sandra L.; Newton, Ryan J.

    2017-01-01

    Recirculating aquaculture systems (RAS) are unique engineered ecosystems that minimize environmental perturbation by reducing nutrient pollution discharge. RAS typically employ a biofilter to control ammonia levels produced as a byproduct of fish protein catabolism. Nitrosomonas (ammonia-oxidizing), Nitrospira, and Nitrobacter (nitrite-oxidizing) species are thought to be the primary nitrifiers present in RAS biofilters. We explored this assertion by characterizing the biofilter bacterial and archaeal community of a commercial scale freshwater RAS that has been in operation for >15 years. We found the biofilter community harbored a diverse array of bacterial taxa (>1000 genus-level taxon assignments) dominated by Chitinophagaceae (~12%) and Acidobacteria (~9%). The bacterial community exhibited significant composition shifts with changes in biofilter depth and in conjunction with operational changes across a fish rearing cycle. Archaea also were abundant, and were comprised solely of a low diversity assemblage of Thaumarchaeota (>95%), thought to be ammonia-oxidizing archaea (AOA) from the presence of AOA ammonia monooxygenase genes. Nitrosomonas were present at all depths and time points. However, their abundance was >3 orders of magnitude less than AOA and exhibited significant depth-time variability not observed for AOA. Phylogenetic analysis of the nitrite oxidoreductase beta subunit (nxrB) gene indicated two distinct Nitrospira populations were present, while Nitrobacter were not detected. Subsequent identification of Nitrospira ammonia monooxygenase alpha subunit genes in conjunction with the phylogenetic placement and quantification of the nxrB genotypes suggests complete ammonia-oxidizing (comammox) and nitrite-oxidizing Nitrospira populations co-exist with relatively equivalent and stable abundances in this system. It appears RAS biofilters harbor complex microbial communities whose composition can be affected directly by typical system operations while supporting multiple ammonia oxidation lifestyles within the nitrifying consortium. PMID:28194147

  6. Integrated design course of applied optics focusing on operating and maintaining abilities

    NASA Astrophysics Data System (ADS)

    Xu, Zhongjie; Ning, Yu; Jiang, Tian; Cheng, Xiangai

    2017-08-01

    The abilities of operating and maintaining optical instruments are crucial in modern society. Besides the basic knowledge in optics, the optics courses in the National University of Defense Technology also focus on the training on handling typical optical equipment. As the link between classroom courses on applied optics and the field trips, the integrated design course of applied optics aims to give the students a better understanding on several instantly used optical equipment, such as hand-held telescope and periscope, etc. The basic concepts of optical system design are also emphasized as well. The course is arranged rightly after the classroom course of applied optics and composed of experimental and design tasks. The experimental tasks include the measurements of aberrations and major parameters of a primitive telescope, while in the design parts, the students are asked to design a Keplerian telescope. The whole course gives a deepened understandings on the concepts, assembling, and operating of telescopes. The students are also encouraged to extend their interests on other typical optical instruments.

  7. Earth Observatory Satellite system definition study. Report no. 3: Design/cost tradeoff studies. Appendix A: EOS program WBS dictionary. Appendix B: EOS mission functional analysis

    NASA Technical Reports Server (NTRS)

    1974-01-01

    The work breakdown structure (WBS) dictionary for the Earth Observatory Satellite (EOS) is defined. The various elements of the EOS program are examined to include the aggregate of hardware, computer software, services, and data required to develop, produce, test, support, and operate the space vehicle and the companion ground data management system. A functional analysis of the EOS mission is developed. The operations for three typical EOS missions, Delta, Titan, and Shuttle launched are considered. The functions were determined for the top program elements, and the mission operations, function 2.0, was expanded to level one functions. Selection of ten level one functions for further analysis to level two and three functions were based on concern for the EOS operations and associated interfaces.

  8. Transonic applications of the Wake Imaging System

    NASA Astrophysics Data System (ADS)

    Crowder, J. P.

    1982-09-01

    The extension of a rapid flow field survey method (wake imaging system) originally developed for low speed wind tunnel operation, to transonic wind tunnel applications is discussed. The advantage of the system, beside the simplicity and low cost of the data acquisition system, is that the probe position data are recorded as an optical image of the actual sensor and thus are unaffected by the inevitable deflections of the probe support. This permits traversing systems which are deliberately flexible and have unusual motions. Two transverse drive systems are described and several typical data images are given.

  9. Operating system for a real-time multiprocessor propulsion system simulator

    NASA Technical Reports Server (NTRS)

    Cole, G. L.

    1984-01-01

    The success of the Real Time Multiprocessor Operating System (RTMPOS) in the development and evaluation of experimental hardware and software systems for real time interactive simulation of air breathing propulsion systems was evaluated. The Real Time Multiprocessor Operating System (RTMPOS) provides the user with a versatile, interactive means for loading, running, debugging and obtaining results from a multiprocessor based simulator. A front end processor (FEP) serves as the simulator controller and interface between the user and the simulator. These functions are facilitated by the RTMPOS which resides on the FEP. The RTMPOS acts in conjunction with the FEP's manufacturer supplied disk operating system that provides typical utilities like an assembler, linkage editor, text editor, file handling services, etc. Once a simulation is formulated, the RTMPOS provides for engineering level, run time operations such as loading, modifying and specifying computation flow of programs, simulator mode control, data handling and run time monitoring. Run time monitoring is a powerful feature of RTMPOS that allows the user to record all actions taken during a simulation session and to receive advisories from the simulator via the FEP. The RTMPOS is programmed mainly in PASCAL along with some assembly language routines. The RTMPOS software is easily modified to be applicable to hardware from different manufacturers.

  10. Non-Nuclear Testing of Compact Reactor Technologies at NASA MSFC

    NASA Technical Reports Server (NTRS)

    Houts, Michael G.; Pearson, J. Boise; Godfroy, Thomas J.

    2011-01-01

    Safe, reliable, compact, autonomous, long-life fission systems have numerous potential applications, both terrestrially and in space. Technologies and facilities developed in support of these systems could be useful to a variety of concepts. At moderate power levels, fission systems can be designed to operate for decades without the need for refueling. In addition, fast neutron damage to cladding and structural materials can be maintained at an acceptable level. Nuclear design codes have advanced to the stage where high confidence in the behavior and performance of a system can be achieved prior to initial testing. To help ensure reactor affordability, an optimal strategy must be devised for development and qualification. That strategy typically involves a combination of non-nuclear and nuclear testing. Non-nuclear testing is particularly useful for concepts in which nuclear operating characteristics are well understood and nuclear effects such as burnup and radiation damage are not likely to be significant. To be mass efficient, a SFPS must operate at higher coolant temperatures and use different types of power conversion than typical terrestrial reactors. The primary reason is the difficulty in rejecting excess heat to space. Although many options exist, NASA s current reference SFPS uses a fast spectrum, pumped-NaK cooled reactor coupled to a Stirling power conversion subsystem. The reference system uses technology with significant terrestrial heritage while still providing excellent performance. In addition, technologies from the SFPS system could be applicable to compact terrestrial systems. Recent non-nuclear testing at NASA s Early Flight Fission Test Facility (EFF-TF) has helped assess the viability of the reference SFPS and evaluate methods for system integration. In July, 2011 an Annular Linear Induction Pump (ALIP) provided by Idaho National Laboratory was tested at the EFF-TF to assess performance and verify suitability for use in a10 kWe technology demonstration unit (TDU). In November, 2011 testing of a 37-pin core simulator (designed in conjunction with Los Alamos National Laboratory) for use with the TDU will occur. Previous testing at the EFFTF has included the thermal and mechanical coupling of a pumped NaK loop to Stirling engines (provided by GRC). Testing related to heat pipe cooled systems, gas cooled systems, heat exchangers, and other technologies has also been performed. Integrated TDU testing will begin at GRC in 2013. Thermal simulators developed at the EFF-TF are capable of operating over the temperature and power range typically of interest to compact reactors. Small and large diameter simulators have been developed, and simulators (coupled with the facility) are able to closely match the axial and radial power profile of all potential systems of interest. A photograph of the TDU core simulator during assembly is provided in Figure 2.

  11. Energy Performance and Optimal Control of Air-conditioned Buildings Integrated with Phase Change Materials

    NASA Astrophysics Data System (ADS)

    Zhu, Na

    This thesis presents an overview of the previous research work on dynamic characteristics and energy performance of buildings due to the integration of PCMs. The research work on dynamic characteristics and energy performance of buildings using PCMs both with and without air-conditioning is reviewed. Since the particular interest in using PCMs for free cooling and peak load shifting, specific research efforts on both subjects are reviewed separately. A simplified physical dynamic model of building structures integrated with SSPCM (shaped-stabilized phase change material) is developed and validated in this study. The simplified physical model represents the wall by 3 resistances and 2 capacitances and the PCM layer by 4 resistances and 2 capacitances respectively while the key issue is the parameter identification of the model. This thesis also presents the studies on the thermodynamic characteristics of buildings enhanced by PCM and on the investigation of the impacts of PCM on the building cooling load and peak cooling demand at different climates and seasons as well as the optimal operation and control strategies to reduce the energy consumption and energy cost by reducing the air-conditioning energy consumption and peak load. An office building floor with typical variable air volume (VAV) air-conditioning system is used and simulated as the reference building in the comparison study. The envelopes of the studied building are further enhanced by integrating the PCM layers. The building system is tested in two selected cities of typical climates in China including Hong Kong and Beijing. The cold charge and discharge processes, the operation and control strategies of night ventilation and the air temperature set-point reset strategy for minimizing the energy consumption and electricity cost are studied. This thesis presents the simulation test platform, the test results on the cold storage and discharge processes, the air-conditioning energy consumption and demand reduction potentials in typical air-conditioning seasons in typical China cites as well as the impacts of operation and control strategies.

  12. Investigating the Impact of the Year 2000 Problem: Summary of the Committee’s Work in the 105th Congress,

    DTIC Science & Technology

    1999-02-24

    technology. Y2K related failures in business systems will generally cause an en - terprise to lose partial or complete control of critical...generation systems may include steam turbines, diesel en - gines, or hydraulic turbines connected to alternators that gener- ERCOT ;*_... Inter...control centers used to manage sub- transmission and distribution sys- tems. These systems are typically operated using a subset of an en - ergy

  13. An inventory of aeronautical ground research facilities. Volume 4: Engineering flight simulation facilities

    NASA Technical Reports Server (NTRS)

    Pirrello, C. J.; Hardin, R. D.; Capelluro, L. P.; Harrison, W. D.

    1971-01-01

    The general purpose capabilities of government and industry in the area of real time engineering flight simulation are discussed. The information covers computer equipment, visual systems, crew stations, and motion systems, along with brief statements of facility capabilities. Facility construction and typical operational costs are included where available. The facilities provide for economical and safe solutions to vehicle design, performance, control, and flying qualities problems of manned and unmanned flight systems.

  14. Application of automatic vehicle location in law enforcement: An introductory planning guide

    NASA Technical Reports Server (NTRS)

    Hansen, G. R.; Leflang, W. G.

    1976-01-01

    A set of planning guidelines for the application of automatic vehicle location (AVL) to law enforcement is presented. Some essential characteristics and applications of AVL are outlined; systems in the operational or planning phases are discussed. Requirements analysis, system concept design, implementation planning, and performance and cost modeling are described and demonstrated with numerous examples. A detailed description of a typical law enforcement AVL system, and a list of vendor sources are given in appendixes.

  15. Utilization of extracellular information before ligand-receptor binding reaches equilibrium expands and shifts the input dynamic range

    PubMed Central

    Ventura, Alejandra C.; Bush, Alan; Vasen, Gustavo; Goldín, Matías A.; Burkinshaw, Brianne; Bhattacharjee, Nirveek; Folch, Albert; Brent, Roger; Chernomoretz, Ariel; Colman-Lerner, Alejandro

    2014-01-01

    Cell signaling systems sense and respond to ligands that bind cell surface receptors. These systems often respond to changes in the concentration of extracellular ligand more rapidly than the ligand equilibrates with its receptor. We demonstrate, by modeling and experiment, a general “systems level” mechanism cells use to take advantage of the information present in the early signal, before receptor binding reaches a new steady state. This mechanism, pre-equilibrium sensing and signaling (PRESS), operates in signaling systems in which the kinetics of ligand-receptor binding are slower than the downstream signaling steps, and it typically involves transient activation of a downstream step. In the systems where it operates, PRESS expands and shifts the input dynamic range, allowing cells to make different responses to ligand concentrations so high as to be otherwise indistinguishable. Specifically, we show that PRESS applies to the yeast directional polarization in response to pheromone gradients. Consideration of preexisting kinetic data for ligand-receptor interactions suggests that PRESS operates in many cell signaling systems throughout biology. The same mechanism may also operate at other levels in signaling systems in which a slow activation step couples to a faster downstream step. PMID:25172920

  16. A preliminary analysis of recent HVAC energy projects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gaddy, P.J.; Haake, C.F.

    A typical Government HVAC design over the last 30 years consisted of two oversized (equal tonnage) electric chillers, two oversized (equal NBTU ratings) boilers, an air economizer cycle, a constant air volume system and a central station pneumatic control system. This typical basic layout for plant design has certain advantages such as simplicity and ease to construct throughout the country. The cookie cutter design/build approach suited federal facilities, when utility costs were not a major consideration, in-house maintenance and operations personnel were plentiful and energy conservation was a moral priority and not an economic concern. Those days are history asmore » energy costs have escalated and operating budgets continue to shrink leaving fewer personnel to maintain the same buildings. Advances in HVAC technology and the reduction in costs for energy efficient systems have finally started affecting the Federal Government`s HVAC replacement and new construction designs. This paper is a brief description of three HVAC projects that go outside the traditional government HVAC design parameters. GSA`s Pacific Rim Region, covering the states of Hawaii, California, Nevada, and Arizona, has implemented three HVAC projects utilizing different technologies not normally found in GSA Federal facilities.« less

  17. Intra-operative 3D guidance and edema detection in prostate brachytherapy using a non-isocentric C-arm

    PubMed Central

    Jain, A.; Deguet, A.; Iordachita, I.; Chintalapani, G.; Vikal, S.; Blevins, J.; Le, Y.; Armour, E.; Burdette, C.; Song, D.; Fichtinger, G.

    2015-01-01

    Purpose Brachytherapy (radioactive seed insertion) has emerged as one of the most effective treatment options for patients with prostate cancer, with the added benefit of a convenient outpatient procedure. The main limitation in contemporary brachytherapy is faulty seed placement, predominantly due to the presence of intra-operative edema (tissue expansion). Though currently not available, the capability to intra-operatively monitor the seed distribution, can make a significant improvement in cancer control. We present such a system here. Methods Intra-operative measurement of edema in prostate brachytherapy requires localization of inserted radioactive seeds relative to the prostate. Seeds were reconstructed using a typical non-isocentric C-arm, and exported to a commercial brachytherapy treatment planning system. Technical obstacles for 3D reconstruction on a non-isocentric C-arm include pose-dependent C-arm calibration; distortion correction; pose estimation of C-arm images; seed reconstruction; and C-arm to TRUS registration. Results In precision-machined hard phantoms with 40–100 seeds and soft tissue phantoms with 45–87 seeds, we correctly reconstructed the seed implant shape with an average 3D precision of 0.35 mm and 0.24 mm, respectively. In a DoD Phase-1 clinical trial on six patients with 48–82 planned seeds, we achieved intra-operative monitoring of seed distribution and dosimetry, correcting for dose inhomogeneities by inserting an average of over four additional seeds in the six enrolled patients (minimum 1; maximum 9). Additionally, in each patient, the system automatically detected intra-operative seed migration induced due to edema (mean 3.84 mm, STD 2.13 mm, Max 16.19 mm). Conclusions The proposed system is the first of a kind that makes intra-operative detection of edema (and subsequent re-optimization) possible on any typical non-isocentric C-arm, at negligible additional cost to the existing clinical installation. It achieves a significantly more homogeneous seed distribution, and has the potential to affect a paradigm shift in clinical practice. Large scale studies and commercialization are currently underway. PMID:21168357

  18. Feasibility and systems definition study for microwave multi-application payload (MMAP)

    NASA Technical Reports Server (NTRS)

    Horton, J. B.; Allen, C. C.; Massaro, M. J.; Zemany, J. L.; Murrell, J. W.; Stanhouse, R. W.; Condon, G. P.; Stone, R. F.

    1977-01-01

    There were three Shuttle/Spacelab experiments: adaptive multibeam phased array antenna (AMPA) experiment, electromagnetic environment experiment (EEE), and millimeter wave communications experiment (MWCE). Work on the AMPA experiment was completed. Results included are definition of operating modes, sequence of operation, radii of operation about several ground stations, signal format, foot prints of typical orbits and preliminary definition of ground and user terminals. Definition of the MOD I EEE included conceptual hardware designs, spacelab interfaces, preliminary data handling methods, experiment tests and verification, and EMC studies. The MWCE was defined conceptually for a steerable high gain antenna.

  19. Comparison of two stand-alone CADe systems at multiple operating points

    NASA Astrophysics Data System (ADS)

    Sahiner, Berkman; Chen, Weijie; Pezeshk, Aria; Petrick, Nicholas

    2015-03-01

    Computer-aided detection (CADe) systems are typically designed to work at a given operating point: The device displays a mark if and only if the level of suspiciousness of a region of interest is above a fixed threshold. To compare the standalone performances of two systems, one approach is to select the parameters of the systems to yield a target false-positive rate that defines the operating point, and to compare the sensitivities at that operating point. Increasingly, CADe developers offer multiple operating points, which necessitates the comparison of two CADe systems involving multiple comparisons. To control the Type I error, multiple-comparison correction is needed for keeping the family-wise error rate (FWER) less than a given alpha-level. The sensitivities of a single modality at different operating points are correlated. In addition, the sensitivities of the two modalities at the same or different operating points are also likely to be correlated. It has been shown in the literature that when test statistics are correlated, well-known methods for controlling the FWER are conservative. In this study, we compared the FWER and power of three methods, namely the Bonferroni, step-up, and adjusted step-up methods in comparing the sensitivities of two CADe systems at multiple operating points, where the adjusted step-up method uses the estimated correlations. Our results indicate that the adjusted step-up method has a substantial advantage over other the two methods both in terms of the FWER and power.

  20. Automating the SMAP Ground Data System to Support Lights-Out Operations

    NASA Technical Reports Server (NTRS)

    Sanders, Antonio

    2014-01-01

    The Soil Moisture Active Passive (SMAP) Mission is a first tier mission in NASA's Earth Science Decadal Survey. SMAP will provide a global mapping of soil moisture and its freeze/thaw states. This mapping will be used to enhance the understanding of processes that link the terrestrial water, energy, and carbon cycles, and to enhance weather and forecast capabilities. NASA's Jet Propulsion Laboratory has been selected as the lead center for the development and operation of SMAP. The Jet Propulsion Laboratory (JPL) has an extensive history of successful deep space exploration. JPL missions have typically been large scale Class A missions with significant budget and staffing. SMAP represents a new area of JPL focus towards low cost Earth science missions. Success in this new area requires changes to the way that JPL has traditionally provided the Mission Operations System (MOS)/Ground Data System (GDS) functions. The operation of SMAP requires more routine operations activities and support for higher data rates and data volumes than have been achieved in the past. These activities must be addressed by a reduced operations team and support staff. To meet this challenge, the SMAP ground data system provides automation that will perform unattended operations, including automated commanding of the SMAP spacecraft.

  1. RELBET 4.0 user's guide

    NASA Technical Reports Server (NTRS)

    Cerbins, F. C.; Huysman, B. P.; Knoedler, J. K.; Kwong, P. S.; Pieniazek, L. A.; Strom, S. W.

    1986-01-01

    This manual describes the operation and use of RELBET 4.0 implemented on the Hewlett Packard model 9000. The RELBET System is an integrated collection of computer programs which support the analysis and post-flight reconstruction of vehicle to vehicle relative trajectories of two on-orbit free-flying vehicles: the Space Shuttle Orbiter and some other free-flyer. The manual serves both as a reference and as a training guide. Appendices provide experienced users with details and full explanations of program usage. The body of the manual introduces new users to the system by leading them through a step by step example of a typical production. This should equip the new user both to execute a typical production process and to understand the most significant variables in that process.

  2. System Design Considerations for Microcomputer Based Instructional Laboratories.

    DTIC Science & Technology

    1986-04-01

    when wrong procedures are tried as well as correct procedures. This is sometimes called " free play " simulation. While this form of simulation...steps are performed correctly. Unlike " free play " system simulations, the student must perform the operation in an approved manner. 28 V. Technical...Supports free play exercises o Typically does not tutor a student o Used for skill development and performance measurement Task Simulation o Computer

  3. Energy consumption and energy-saving potential analysis of pollutant abatement systems in a 1000MW coal-fired power plant.

    PubMed

    Yang, Hang; Zhang, Yongxin; Zheng, Chenghang; Wu, Xuecheng; Chen, Linghong; Gao, Xiang; Fu, Joshua S

    2018-05-10

    The pollutant abatement systems are widely applied in the coal-fired power sector and the energy consumption was considered an important part of the auxiliary power. An energy consumption analysis and assessment model of pollutant abatement systems in a power unit was developed based on the dynamic parameters and technology. The energy consumption of pollutant abatement systems in a 1000 MW coal-fired power unit which meet the ultra-low emission limits and the factors of operating parameters including unit load and inlet concentration of pollutants on the operating power were analyzed. The results show that the total power consumption of the pollutant abatement systems accounted for 1.27% of the gross power generation during the monitoring period. The WFGD system consumed 67% of the rate while the SCR and ESP systems consumed 8.9% and 24.1%. The power consumption rate of pollutant abatement systems decreased with the increase of unit load and increased with the increase of the inlet concentration of pollutants. The operation adjustment was also an effective method to increase the energy efficiency. For example, the operation adjustment of slurry circulation pumps could promote the energy-saving operation of WFGD system. Implication Statement The application of pollutant abatement technologies increases the internal energy consumption of the power plant, which will lead to an increase of power generation costs. The real-time energy consumption of the different pollutant abatement systems in a typical power unit is analyzed based on the dynamic operating data. Further, the influence of different operating parameters on the operating power of the system and the possible energy-saving potential are analyzed.

  4. Performance analysis of the Microsoft Kinect sensor for 2D Simultaneous Localization and Mapping (SLAM) techniques.

    PubMed

    Kamarudin, Kamarulzaman; Mamduh, Syed Muhammad; Shakaff, Ali Yeon Md; Zakaria, Ammar

    2014-12-05

    This paper presents a performance analysis of two open-source, laser scanner-based Simultaneous Localization and Mapping (SLAM) techniques (i.e., Gmapping and Hector SLAM) using a Microsoft Kinect to replace the laser sensor. Furthermore, the paper proposes a new system integration approach whereby a Linux virtual machine is used to run the open source SLAM algorithms. The experiments were conducted in two different environments; a small room with no features and a typical office corridor with desks and chairs. Using the data logged from real-time experiments, each SLAM technique was simulated and tested with different parameter settings. The results show that the system is able to achieve real time SLAM operation. The system implementation offers a simple and reliable way to compare the performance of Windows-based SLAM algorithm with the algorithms typically implemented in a Robot Operating System (ROS). The results also indicate that certain modifications to the default laser scanner-based parameters are able to improve the map accuracy. However, the limited field of view and range of Kinect's depth sensor often causes the map to be inaccurate, especially in featureless areas, therefore the Kinect sensor is not a direct replacement for a laser scanner, but rather offers a feasible alternative for 2D SLAM tasks.

  5. Performance Analysis of the Microsoft Kinect Sensor for 2D Simultaneous Localization and Mapping (SLAM) Techniques

    PubMed Central

    Kamarudin, Kamarulzaman; Mamduh, Syed Muhammad; Shakaff, Ali Yeon Md; Zakaria, Ammar

    2014-01-01

    This paper presents a performance analysis of two open-source, laser scanner-based Simultaneous Localization and Mapping (SLAM) techniques (i.e., Gmapping and Hector SLAM) using a Microsoft Kinect to replace the laser sensor. Furthermore, the paper proposes a new system integration approach whereby a Linux virtual machine is used to run the open source SLAM algorithms. The experiments were conducted in two different environments; a small room with no features and a typical office corridor with desks and chairs. Using the data logged from real-time experiments, each SLAM technique was simulated and tested with different parameter settings. The results show that the system is able to achieve real time SLAM operation. The system implementation offers a simple and reliable way to compare the performance of Windows-based SLAM algorithm with the algorithms typically implemented in a Robot Operating System (ROS). The results also indicate that certain modifications to the default laser scanner-based parameters are able to improve the map accuracy. However, the limited field of view and range of Kinect's depth sensor often causes the map to be inaccurate, especially in featureless areas, therefore the Kinect sensor is not a direct replacement for a laser scanner, but rather offers a feasible alternative for 2D SLAM tasks. PMID:25490595

  6. Thermo-mechanical Design Methodology for ITER Cryodistribution cold boxes

    NASA Astrophysics Data System (ADS)

    Shukla, Vinit; Patel, Pratik; Das, Jotirmoy; Vaghela, Hitensinh; Bhattacharya, Ritendra; Shah, Nitin; Choukekar, Ketan; Chang, Hyun-Sik; Sarkar, Biswanath

    2017-04-01

    The ITER cryo-distribution (CD) system is in charge of proper distribution of the cryogen at required mass flow rate, pressure and temperature level to the users; namely the superconducting (SC) magnets and cryopumps (CPs). The CD system is also capable to use the magnet structures as a thermal buffer in order to operate the cryo-plant as much as possible at a steady state condition. A typical CD cold box is equipped with mainly liquid helium (LHe) bath, heat exchangers (HX’s), cryogenic valves, filter, heaters, cold circulator, cold compressor and process piping. The various load combinations which are likely to occur during the life cycle of the CD cold boxes are imposed on the representative model and impacts on the system are analyzed. This study shows that break of insulation vacuum during nominal operation (NO) along with seismic event (Seismic Level-2) is the most stringent load combination having maximum stress of 224 MPa. However, NO+SMHV (Séismes Maximaux Historiquement Vraisemblables = Maximum Historically Probable Earthquakes) load combination is having the least safety margin and will lead the basis of the design of the CD system and its sub components. This paper presents and compares the results of different load combinations which are likely to occur on a typical CD cold box.

  7. Overview of TAMU-CC Unmanned Aircraft Systems Coastal Research in the Port Mansfield Area, June 2015

    NASA Astrophysics Data System (ADS)

    Starek, M. J.; Bridges, D. H.

    2016-02-01

    In June, 2015, the TAMU-CC Unmanned Aircraft Systems Program, with the support of the Lone Star UAS Center of Excellence and Innovation, conducted a week-long UAS exercise in the coastal region near Port Mansfield, Texas. The platform used was TAMU-CC's RS-16, a variant of the Arcturus T-16XL, that was equipped with a three-camera imaging system which acquired high-resolution images in the optical range of the electromagnetic spectrum and lower resolution images in the infrared and ultraviolet ranges of the spectrum. The RS-16 has a wingspan of 12.9 ft, a typical take-off weight of 70 lbs, and a typical cruising speed of 60 kt. A total of 9 flights were conducted over 7 days, with a total of 22.9 flight hours. Different areas of interest were mapped for different researchers investigating specific coastal phenomena. This poster will describe the overall operational aspects of the exercise. The aircraft and imaging system will be described in detail, as will the operational procedures and subsequent data reduction procedures. The process of selection of the coastal regions for investigation and the flight planning involved in mapping those regions will be discussed. A summary of the resulting image data will be presented.

  8. High-Intensity Radiated Field Fault-Injection Experiment for a Fault-Tolerant Distributed Communication System

    NASA Technical Reports Server (NTRS)

    Yates, Amy M.; Torres-Pomales, Wilfredo; Malekpour, Mahyar R.; Gonzalez, Oscar R.; Gray, W. Steven

    2010-01-01

    Safety-critical distributed flight control systems require robustness in the presence of faults. In general, these systems consist of a number of input/output (I/O) and computation nodes interacting through a fault-tolerant data communication system. The communication system transfers sensor data and control commands and can handle most faults under typical operating conditions. However, the performance of the closed-loop system can be adversely affected as a result of operating in harsh environments. In particular, High-Intensity Radiated Field (HIRF) environments have the potential to cause random fault manifestations in individual avionic components and to generate simultaneous system-wide communication faults that overwhelm existing fault management mechanisms. This paper presents the design of an experiment conducted at the NASA Langley Research Center's HIRF Laboratory to statistically characterize the faults that a HIRF environment can trigger on a single node of a distributed flight control system.

  9. Loyola University, New Orleans, Louisiana solar energy system performance evaluation, February 1981-June 1981

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Welch, K.M.

    1981-01-01

    The Loyola University site is a student dormitory in New Orleans, Louisiana whose active solar energy system is designed to supply 52% of the hot water demand. The system is equipped with 4590 square feet of flat-plate collectors, a 5000-gallon water tank, auxiliary water supplied at high temperature and pressure from a central heating plant with a gas-fired boiler, and a differential controller that selects from 5 operating modes. System performance data are given, including the solar fraction, solar savings ratio, conventional fuel savings, system performance factor, and system coefficient of performance. The solar fraction is well below the designmore » goal; this is attributed to great fluctuations in demand. Insolation, temperature, operation and solar energy utilization data are also presented. The performance of the collector, storage, and domestic hot water subsystems, the system operating energy, energy savings, and weather conditions are also evaluated. Appended are a system description, performance evaluation techniques and equations, site history, sensor technology, and typical monthly data. (LEW)« less

  10. How to justify small-refinery info/control system modernization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haskins, D.E.

    1993-05-01

    Information and control systems modernization can be justified by successful implementation of advanced process control (APC) in nearly all refineries, even the small ones. However, the small refineries require special solutions to meet the challenges of limited resources in both finance and manpower. Based on a number of case studies, a typical small refinery as it operates today is described. A sample information and control system modernization plan is described and the typical cost and benefits show how the project cost can be justified. Business objectives of an HPI plant are to satisfy customers by providing specific products, to satisfymore » the owners by maximizing profits and to satisfy the public by being safe and environmentally correct. Managers have always tried to meet these objectives with functions for the total plant.« less

  11. Making the most of data: An information selection and assessment framework to improve water systems operations

    NASA Astrophysics Data System (ADS)

    Giuliani, M.; Pianosi, F.; Castelletti, A.

    2015-11-01

    Advances in Environmental monitoring systems are making a wide range of data available at increasingly higher temporal and spatial resolution. This creates an opportunity to enhance real-time understanding of water systems conditions and to improve prediction of their future evolution, ultimately increasing our ability to make better decisions. Yet, many water systems are still operated using very simple information systems, typically based on simple statistical analysis and the operator's experience. In this work, we propose a framework to automatically select the most valuable information to inform water systems operations supported by quantitative metrics to operationally and economically assess the value of this information. The Hoa Binh reservoir in Vietnam is used to demonstrate the proposed framework in a multiobjective context, accounting for hydropower production and flood control. First, we quantify the expected value of perfect information, meaning the potential space for improvement under the assumption of exact knowledge of the future system conditions. Second, we automatically select the most valuable information that could be actually used to improve the Hoa Binh operations. Finally, we assess the economic value of sample information on the basis of the resulting policy performance. Results show that our framework successfully select information to enhance the performance of the operating policies with respect to both the competing objectives, attaining a 40% improvement close to the target trade-off selected as potentially good compromise between hydropower production and flood control.

  12. Construction and Operation of a High-Speed, High-Precision Eye Tracker for Tight Stimulus Synchronization and Real-Time Gaze Monitoring in Human and Animal Subjects.

    PubMed

    Farivar, Reza; Michaud-Landry, Danny

    2016-01-01

    Measurements of the fast and precise movements of the eye-critical to many vision, oculomotor, and animal behavior studies-can be made non-invasively by video oculography. The protocol here describes the construction and operation of a research-grade video oculography system with ~0.1° precision over the full typical viewing range at over 450 Hz with tight synchronization with stimulus onset. The protocol consists of three stages: (1) system assembly, (2) calibration for both cooperative, and for minimally cooperative subjects (e.g., animals or infants), and (3) gaze monitoring and recording.

  13. First on-sky results with ARGOS at LBT

    NASA Astrophysics Data System (ADS)

    Orban de Xivry, G.; Rabien, S.; Busoni, L.; Gaessler, W.; Bonaglia, M.; Borelli, J.; Deysenroth, M.; Esposito, S.; Gemperlein, H.; Kulas, M.; Lefebvre, M.; Mazzoni, T.; Peter, D.; Puglisi, A.; Raab, W.; Rahmer, G.; Sivitilli, A.; Storm, J.; Ziegleder, J.

    2016-07-01

    One year and an half after ARGOS first light, the Large Binocular Telescope (LBT) laser guided ground-layer adaptive optics (GLAO) system has been operated on both sides of the LBT. The system fulfills the GLAO promise and typically delivers an improvement by a factor of 2 in FWHM over the 4'×4' field of view of both Luci instruments, the two near-infrared imagers and multi-object spectrographs. In this paper, we report on the first on-sky results and analyze the performances based on the data collected so far. We also discuss adaptive optics procedures and the joint operations with Luci for science observations.

  14. 3D display for enhanced tele-operation and other applications

    NASA Astrophysics Data System (ADS)

    Edmondson, Richard; Pezzaniti, J. Larry; Vaden, Justin; Hyatt, Brian; Morris, James; Chenault, David; Bodenhamer, Andrew; Pettijohn, Bradley; Tchon, Joe; Barnidge, Tracy; Kaufman, Seth; Kingston, David; Newell, Scott

    2010-04-01

    In this paper, we report on the use of a 3D vision field upgrade kit for TALON robot consisting of a replacement flat panel stereoscopic display, and multiple stereo camera systems. An assessment of the system's use for robotic driving, manipulation, and surveillance operations was conducted. A replacement display, replacement mast camera with zoom, auto-focus, and variable convergence, and a replacement gripper camera with fixed focus and zoom comprise the upgrade kit. The stereo mast camera allows for improved driving and situational awareness as well as scene survey. The stereo gripper camera allows for improved manipulation in typical TALON missions.

  15. Distributed intelligence for supervisory control

    NASA Technical Reports Server (NTRS)

    Wolfe, W. J.; Raney, S. D.

    1987-01-01

    Supervisory control systems must deal with various types of intelligence distributed throughout the layers of control. Typical layers are real-time servo control, off-line planning and reasoning subsystems and finally, the human operator. Design methodologies must account for the fact that the majority of the intelligence will reside with the human operator. Hierarchical decompositions and feedback loops as conceptual building blocks that provide a common ground for man-machine interaction are discussed. Examples of types of parallelism and parallel implementation on several classes of computer architecture are also discussed.

  16. Effects of Induction-System Icing on Aircraft-Engine Operating Characteristics

    NASA Technical Reports Server (NTRS)

    Stevens, Howard C., Jr.

    1947-01-01

    An investigation was conducted on a multicylinder aircraft engine on a dynamometer stand to determine the effect of induction-system icing on engine operating characteristics and to compare the results with those of a previous laboratory investigation in which only the carburetor and the engine-stage supercharger assembly from the engine were used. The experiments were conducted at simulated glide power, low cruise power, and normal rated power through a range of humidity ratios and air temperatures at approximately sea-level pressure. Induction-system icing was found to occur within approximately the same limits as those established by the previous laboratory investigation after making suitable allowances for the difference in fuel volatility and throttle angles. Rough operation of the engine was experienced when ice caused a marked reduction in the air flow. Photographs of typical ice formations from this investigation indicate close similarity to icing previously observed in the laboratory.

  17. Ion extraction capabilities of two-grid accelerator systems. [for spacecraft propulsion

    NASA Technical Reports Server (NTRS)

    Rovang, D. C.; Wilbur, P. J.

    1984-01-01

    An experimental investigation into the ion extraction capabilities of two-grid accelerator systems common to electrostatic ion thrusters is described. A large body of experimental data which facilitates the selection of the accelerator system geometries and operating parameters necessary to maximize the extracted ion current is presented. Results suggest that the impingement-limited perveance is not dramatically affected by reductions in screen hole diameter to 0.5 mm. Impingement-limited performance is shown to depend most strongly on grid separation distance, accelerator hole diameter ratio, the discharge-to-total accelerating voltage ratio, and the net-to-total accelerating voltage ratio. Results obtained at small grid separation ratios suggest a new grid operating condition where high beam current per hole levels are achieved at a specified net accelerating voltage. It is shown that this operating condition is realized at an optimum ratio of net-to-total accelerating voltage ratio which is typically quite high.

  18. Derived virtual devices: a secure distributed file system mechanism

    NASA Technical Reports Server (NTRS)

    VanMeter, Rodney; Hotz, Steve; Finn, Gregory

    1996-01-01

    This paper presents the design of derived virtual devices (DVDs). DVDs are the mechanism used by the Netstation Project to provide secure shared access to network-attached peripherals distributed in an untrusted network environment. DVDs improve Input/Output efficiency by allowing user processes to perform I/O operations directly from devices without intermediate transfer through the controlling operating system kernel. The security enforced at the device through the DVD mechanism includes resource boundary checking, user authentication, and restricted operations, e.g., read-only access. To illustrate the application of DVDs, we present the interactions between a network-attached disk and a file system designed to exploit the DVD abstraction. We further discuss third-party transfer as a mechanism intended to provide for efficient data transfer in a typical NAP environment. We show how DVDs facilitate third-party transfer, and provide the security required in a more open network environment.

  19. Concept considerations for a small orbital transfer vehicle

    NASA Technical Reports Server (NTRS)

    Green, M.; Sibila, A. I.

    1979-01-01

    This paper summarizes a study of small orbital transfer vehicles to place payloads in orbits with altitudes above those of the standard Shuttle operations. The overall objective of the study is to examine the role of the small orbital transfer vehicle (SOTV) in Shuttle operations and to identify typical propulsion concepts for accomplishing the mission. Consideration is given to existing and planned systems and upper stages, along with new propulsion stages. The new propulsion concept development examines tandem and clustered solids, controlled solids, monopropellant and bipropellant liquids, and staged solid/liquid combinations. The paper presents considerations of the mission requirements, tradeoffs of the various configurations, and candidate selections. For the selected candidate concepts the performance, support equipment, operational considerations and program costs were determined. The results show that a new modular liquid stage system is cost effective in handling the majority of the payloads considered. The remainder of the payloads can be accomodated by existing systems.

  20. Pulsed Electric Propulsion Thrust Stand Calibration Method

    NASA Technical Reports Server (NTRS)

    Wong, Andrea R.; Polzin, Kurt A.; Pearson, J. Boise

    2011-01-01

    The evaluation of the performance of any propulsion device requires the accurate measurement of thrust. While chemical rocket thrust is typically measured using a load cell, the low thrust levels associated with electric propulsion (EP) systems necessitate the use of much more sensitive measurement techniques. The design and development of electric propulsion thrust stands that employ a conventional hanging pendulum arm connected to a balance mechanism consisting of a secondary arm and variable linkage have been reported in recent publications by Polzin et al. These works focused on performing steady-state thrust measurements and employed a static analysis of the thrust stand response. In the present work, we present a calibration method and data that will permit pulsed thrust measurements using the Variable Amplitude Hanging Pendulum with Extended Range (VAHPER) thrust stand. Pulsed thrust measurements are challenging in general because the pulsed thrust (impulse bit) occurs over a short timescale (typically 1 micros to 1 millisecond) and cannot be resolved directly. Consequently, the imparted impulse bit must be inferred through observation of the change in thrust stand motion effected by the pulse. Pulsed thrust measurements have typically only consisted of single-shot operation. In the present work, we discuss repetition-rate pulsed thruster operation and describe a method to perform these measurements. The thrust stand response can be modeled as a spring-mass-damper system with a repetitive delta forcing function to represent the impulsive action of the thruster.

  1. Exhaustive Thresholds and Resistance Checkpoints

    NASA Technical Reports Server (NTRS)

    Easton, Charles; Khuzadi, Mbuyi

    2008-01-01

    Once deployed, all intricate systems that operate for a long time (such as an airplane or chemical processing plant) experience degraded performance during operational lifetime. These can result from losses of integrity in subsystems and parts that generally do not materially impact the operation of the vehicle (e.g., the light behind the button that opens the sliding door of the minivan). Or it can result from loss of more critical parts or subsystems. Such losses need to be handled quickly in order to avoid loss of personnel, mission, or part of the system itself. In order to manage degraded systems, knowledge of its potential problem areas and the means by which these problems are detected should be developed during the initial development of the system. Once determined, a web of sensors is employed and their outputs are monitored with other system parameters while the system is in preparation or operation. Just gathering the data is only part of the story. The interpretation of the data itself and the response of the system must be carefully developed as well to avoid a mishap. Typically, systems use a test-threshold-response paradigm to process potential system faults. However, such processing sub-systems can suffer from errors and oversights of a consistent type, causing system aberrant behavior instead of expected system and recovery operations. In our study, we developed a complete checklist for determining the completeness of a fault system and its robustness to common processing and response difficulties.

  2. The DAWN Project's Transition to Mission Operations: on Its Way to Rendezvous with (4) Vesta and (1) Ceres

    NASA Technical Reports Server (NTRS)

    Rayman, Marc D.; Patel, Keyur C.

    2008-01-01

    Dawn launched on 27 September 2007 on a mission to orbit main belt asteroids (4) Vesta in 2011 - 2012 and (1) Ceres in 2015. The operations team conducted an extensive set of assessments of the engineering subsystems and science instruments during the first 80 days of the mission. A major objective of this period was to thrust for one week with the ion propulsion system to verify flight and ground systems readiness for typical interplanetary operations. Upon successful conclusion of the checkout phase, the interplanetary cruise phase began, most of which will be devoted to thrusting. The flexibility afforded by the use of ion propulsion enabled the project to accommodate a launch postponement of more than 3 months caused by a combination of launch vehicle and tracking system readiness, unfavorable weather, and then conflicts with other launches. Even with the shift in the launch date, all of the science objectives are retained with the same schedule and greater technical margins. This paper describes the conclusion of the development phase of the project, launch operations, and the progress of mission operations.

  3. The Top Six Compatibles: A Closer Look at the Machines That Are Most Compatible with the IBM PC.

    ERIC Educational Resources Information Center

    McMullen, Barbara E.; And Others

    1984-01-01

    Reviews six operationally compatible microcomputers that are most able to run IBM software without modifications--Compaq, Columbia, Corona, Hyperion, Eagle PC, and Chameleon. Information given for each includes manufacturer, uses, standard features, base list price, typical system price, and options and accessories. (MBR)

  4. Incorporating intelligent transportation systems into planning analysis : summary of key findings from a 2020 case study -- improving travel time reliability with ITS

    DOT National Transportation Integrated Search

    2002-05-01

    ITS is typically considered an operational detail to be worked out after infrastructure planning is complete. This approach ignores the potential for the introduction of ITS to change the decisions made during infrastructure planning, or even the ove...

  5. Turbine and superheater bypass evaluation. Final report. [Faster startup in cycling operation and less erosion with steam bypass systems, including bypass design

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rosard, D.D.; Steltz, W.G.

    1986-10-01

    Properly sized turbine and boiler bypass systems permit two-shift cycling operation of units, shorten start-up time, and reduce life expenditures of plant components. With bypasses installed, faster startups can reduce fuel costs by $100,000 per year for a typical 500-MW fossil-fired unit. This report discusses the technical characteristics of existing bypass systems and provides guidelines for sizing bypass systems to achieve economical and reliable two-shift operation. The collection and analysis of startup data from several generating units were used in conjunction with computer simulations to illustrate the effects of adding various arrangements and sizes of steam bypass systems. The report,more » which indicates that shutdown procedures have significant impact on subsequent startup and loading time, describes operating practices to optimize the effectiveness of bypass systems. To determine the effectiveness of large turbine bypass systems of less than 100% capacity in preventing boiler trips following load rejection, transient field data were compared to a load rejection simulation using the modular modeling system (MMS). The MMS was then used to predict system response to other levels of load rejection. 7 refs., 87 figs., 8 tabs.« less

  6. Note: A simple multi-channel optical system for modulation spectroscopies.

    PubMed

    Solís-Macías, J; Sánchez-López, J D; Castro-García, R; Flores-Camacho, J M; Flores-Rangel, G; Ciou, Jian-Jhih; Chen, Kai-Wei; Chen, Chang-Hsiao; Lastras-Martínez, L F; Balderas-Navarro, R E

    2017-12-01

    Photoreflectance-difference (PR/PRD) and reflectance-difference (RD) spectroscopies employ synchronic detection usually with lock-in amplifiers operating at moderate (200-1000 Hz) and high (50-100 KHz) modulation frequencies, respectively. Here, we report a measurement system for these spectroscopies based on a multichannel CCD spectrometer without a lock-in amplifier. In the proposed scheme, a typical PRD or RD spectrum consists of numerical subtractions between a thousand CCD captures recorded, while a photoelastic modulator is either operating or inhibited. This is advantageous and fits the slow response of CCD detectors to high modulation frequencies. The resulting spectra are processed with Savitzky-Golay filtering and compared well with those measured with conventional scanning systems based on lock-in amplifiers.

  7. The shock-absorbed system of the airplane landing gear

    NASA Technical Reports Server (NTRS)

    Callerio, Pietro

    1940-01-01

    A discussion is given of the behavior of the shock-absorbing system, consisting of elastic struts and tires, under landing, take-off, and taxying conditions, and a general formula derived for obtaining the minimum stroke required to satisfy the conditions imposed on the landing gear. Finally, the operation of some typical shock-absorbing systems are examined and the necessity brought out for taking into account, in dynamic landing-gear tests, the effect of the wing lift at the instant of contact with the ground.

  8. The ACE multi-user web-based Robotic Observatory Control System

    NASA Astrophysics Data System (ADS)

    Mack, P.

    2003-05-01

    We have developed an observatory control system that can be operated in interactive, remote or robotic modes. In interactive and remote mode the observer typically acquires the first object then creates a script through a window interface to complete observations for the rest of the night. The system closes early in the event of bad weather. In robotic mode observations are submitted ahead of time through a web-based interface. We present observations made with a 1.0-m telescope using these methods.

  9. Application of computer-aided dispatch in law enforcement: An introductory planning guide

    NASA Technical Reports Server (NTRS)

    Sohn, R. L.; Gurfield, R. M.; Garcia, E. A.; Fielding, J. E.

    1975-01-01

    A set of planning guidelines for the application of computer-aided dispatching (CAD) to law enforcement is presented. Some essential characteristics and applications of CAD are outlined; the results of a survey of systems in the operational or planning phases are summarized. Requirements analysis, system concept design, implementation planning, and performance and cost modeling are described and demonstrated with numerous examples. Detailed descriptions of typical law enforcement CAD systems, and a list of vendor sources, are given in appendixes.

  10. Waste receiving and processing plant control system; system design description

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    LANE, M.P.

    1999-02-24

    The Plant Control System (PCS) is a heterogeneous computer system composed of numerous sub-systems. The PCS represents every major computer system that is used to support operation of the Waste Receiving and Processing (WRAP) facility. This document, the System Design Description (PCS SDD), includes several chapters and appendices. Each chapter is devoted to a separate PCS sub-system. Typically, each chapter includes an overview description of the system, a list of associated documents related to operation of that system, and a detailed description of relevant system features. Each appendice provides configuration information for selected PCS sub-systems. The appendices are designed asmore » separate sections to assist in maintaining this document due to frequent changes in system configurations. This document is intended to serve as the primary reference for configuration of PCS computer systems. The use of this document is further described in the WRAP System Configuration Management Plan, WMH-350, Section 4.1.« less

  11. Recent developments in the structural design and optimization of ITER neutral beam manifold

    NASA Astrophysics Data System (ADS)

    Chengzhi, CAO; Yudong, PAN; Zhiwei, XIA; Bo, LI; Tao, JIANG; Wei, LI

    2018-02-01

    This paper describes a new design of the neutral beam manifold based on a more optimized support system. A proposed alternative scheme has presented to replace the former complex manifold supports and internal pipe supports in the final design phase. Both the structural reliability and feasibility were confirmed with detailed analyses. Comparative analyses between two typical types of manifold support scheme were performed. All relevant results of mechanical analyses for typical operation scenarios and fault conditions are presented. Future optimization activities are described, which will give useful information for a refined setting of components in the next phase.

  12. The Lewis Research Center geomagnetic substorm simulation facility

    NASA Technical Reports Server (NTRS)

    Berkopec, F. D.; Stevens, N. J.; Sturman, J. C.

    1977-01-01

    A simulation facility was established to determine the response of typical spacecraft materials to the geomagnetic substorm environment and to evaluate instrumentation that will be used to monitor spacecraft system response to this environment. Space environment conditions simulated include the thermal-vacuum conditions of space, solar simulation, geomagnetic substorm electron fluxes and energies, and the low energy plasma environment. Measurements for spacecraft material tests include sample currents, sample surface potentials, and the cumulative number of discharges. Discharge transients are measured by means of current probes and oscilloscopes and are verified by a photomultiplier. Details of this facility and typical operating procedures are presented.

  13. The rodent Research Animal Holding Facility as a barrier to environmental contamination

    NASA Technical Reports Server (NTRS)

    Savage, P. D., Jr.; Jahns, G. C.; Dalton, B. P.; Hogan, R. P.; Wray, A. E.

    1989-01-01

    The rodent Research Animal Holding Facility (RAHF), developed by NASA Ames Research Center (ARC) to separately house rodents in a Spacelab, was verified as a barrier to environmental contaminants during a 12-day biocompatibility test. Environmental contaminants considered were solid particulates, microorganisms, ammonia, and typical animal odors. The 12-day test conducted in August 1988 was designed to verify that the rodent RAHF system would adequately support and maintain animal specimens during normal system operations. Additional objectives of this test were to demonstrate that: (1) the system would capture typical particulate debris produced by the animal; (2) microorganisms would be contained; and (3) the passage of animal odors was adequately controlled. In addition, the amount of carbon dioxide exhausted by the RAHF system was to be quantified. Of primary importance during the test was the demonstration that the RAHF would contain particles greater than 150 micrometers. This was verified after analyzing collection plates placed under exhaust air ducts and and rodent cages during cage maintenance operations, e.g., waste tray and feeder changeouts. Microbiological testing identified no additional organisms in the test environment that could be traced to the RAHF. Odor containment was demonstrated to be less than barely detectable. Ammonia could not be detected in the exhaust air from the RAHF system. Carbon dioxide levels were verified to be less than 0.35 percent.

  14. The rodent research animal holding facility as a barrier to environmental contamination

    NASA Technical Reports Server (NTRS)

    Savage, P. D., Jr.; Jahns, G. C.; Dalton, B. P.; Hogan, R. P.; Wray, A. E.

    1989-01-01

    The rodent Research Animal Holding Facility (RAHF), developed by NASA Ames Research Center (ARC) to separately house rodents in a Spacelab, was verified as a barrier to environmental contaminants during a 12-day biocompatibility test. Environmental contaminants considered were solid particulates, microorganisms, ammonia, and typical animal odors. The 12-day test conducted in August 1988 was designed to verify that the rodent RAHF system would adequately support and maintain animal specimens during normal system operations. Additional objectives of this test were to demonstrate that: (1) the system would capture typical particulate debris produced by the animal; (2) microorganisms would be contained; and (3) the passage of animal odors was adequately controlled. In addition, the amount of carbon dioxide exhausted by the RAHF system was to be quantified. Of primary importance during the test was the demonstration that the RAHF would contain particles greater than 150 micrometers. This was verified after analyzing collection plates placed under exhaust air ducts and rodent cages during cage maintenance operations, e.g., waste tray and feeder changeouts. Microbiological testing identified no additional organisms in the test environment that could be traced to the RAHF. Odor containment was demonstrated to be less than barely detectable. Ammonia could not be detected in the exhaust air from the RAHF system. Carbon dioxide levels were verified to be less than 0.35 percent.

  15. Models of unit operations used for solid-waste processing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Savage, G.M.; Glaub, J.C.; Diaz, L.F.

    1984-09-01

    This report documents the unit operations models that have been developed for typical refuse-derived-fuel (RDF) processing systems. These models, which represent the mass balances, energy requirements, and economics of the unit operations, are derived, where possible, from basic principles. Empiricism has been invoked where a governing theory has yet to be developed. Field test data and manufacturers' information, where available, supplement the analytical development of the models. A literature review has also been included for the purpose of compiling and discussing in one document the available information pertaining to the modeling of front-end unit operations. Separate analytics have been donemore » for each task.« less

  16. Three typical examples of activation of the international charter space and major disasters

    NASA Astrophysics Data System (ADS)

    Bessis, J.; Bequignon, J.; Mahmood, A.

    The purpose of the International Charter is to provide a unified system of space data acquisition and delivery for users affected by disasters, to promote co - operation between space agencies and space system operators and to allow participation in the organisation of emergency assistance or subsequent operations. The Charter which is officially in operation since November 1, 2000 was signed on June 20, 2000 by CNES (1) and ESA (2) and enlarged later on with the membership of the CSA (3) in October 2000 and of the NOAA (4) and the ISRO (5), both in September 2001. All Partner agencies undertake to co-operate on a voluntary basis with no exchange of funds between them in the event of a major natural or man-induced disaster. This paper, after a brief description of the Charter organisation and of its implementation procedures, addresses three typical cases of Charter activation and the lessons learned to date. The first example will deal with the major earthquakes in January and February 2001 in El Salvador for the benefit of the Salvadorian National Register Centre, the second concerning flooding in the North East of France early 2002 with quick delivery of flood maps to the French Civil Protection Authority and the last one will focus on the Nyiragongo volcanic eruption near the town of Goma in the Democratic Republic of Congo. It will include feedback from the Authorised Users concerning the usefulness of the Charter and the suggested improvements in terms of response time, sensors capability and resolution, delivered products (scale and ease of operational utilisation) and adapted scenarios.(1) Centre National d'Etudes Spatiales, (2) European Space Agency, (3) Canadian Space Agency, (4) National Oceanic and Atmospheric Administration , (5) Indian Space Research Organisation

  17. Stackable air-cooled heatsinks for diode lasers

    NASA Astrophysics Data System (ADS)

    Crum, T. R.; Harrison, J.; Srinivasan, R.; Miller, R. L.

    2007-02-01

    Micro-channel heatsink assemblies made from bonding multi-layered etched metal sheets are commercially available and are often used for removing the high waste heat loads generated by the operation of diode-laser bars. Typically, a diode-laser bar is bonded onto a micro-channel (also known as mini-channel) heatsink then stacked in an array to create compact high power diode-laser sources for a multitude of applications. Under normal operation, the diode-laser waste heat is removed by passing coolant (typically de-ionized water) through the channels of the heatsink. Because of this, the heatsink internal structure, including path length and overall channel size, is dictated by the liquid coolant properties. Due to the material characteristics of these conductive heatsinks, and the necessary electrically serial stacking geometry, there are several restrictions imparted on the coolant liquid to maintain performance and lifetime. Such systems require carefully monitored and conductive limited de-ionized water, as well as require stable pH levels, and suitable particle filtration. These required coolant systems are either stand alone, or heat exchangers are typically costly and heavy restricting certain applications where minimal weight to power ratios are desired. In this paper, we will baseline the existing water cooled Spectra-Physics Monsoon TM heatsink technology utilizing compressed air, and demonstrate a novel modular stackable heatsink concept for use with gaseous fluids that, in some applications may replace the existing commercially available water-cooled heatsink technology. We will explain the various benefits of utilizing air while maintaining mechanical form factors and packing densities. We will also show thermal-fluid modeling results and predictions as well as operational performance curves for efficiency and power and compare these data to the existing commercially available technology.

  18. Multi-Temporal Analysis of Landsat Imagery for Bathymetry.

    DTIC Science & Technology

    1983-05-01

    this data set, typical results obtained when these data were used to implement proposed procedures, an interpretation of these analyses, and based...warping, etc.) have been carried out * as described in section 3.4 and the DIPS operator manuals . For each date * the best available parameter...1982. 5. Digital Image Processing System User’s Manual DBA Systems, Inc., Under Contract DMA800-78-C-0101, 8 November 1979. 6. Naylor, L.D. Status of

  19. Intra-operative 3D guidance in prostate brachytherapy using a non-isocentric C-arm.

    PubMed

    Jain, A; Deguet, A; Iordachita, I; Chintalapani, G; Blevins, J; Le, Y; Armour, E; Burdette, C; Song, D; Fichtinger, G

    2007-01-01

    Intra-operative guidance in Transrectal Ultrasound (TRUS) guided prostate brachytherapy requires localization of inserted radioactive seeds relative to the prostate. Seeds were reconstructed using a typical C-arm, and exported to a commercial brachytherapy system for dosimetry analysis. Technical obstacles for 3D reconstruction on a non-isocentric C-arm included pose-dependent C-arm calibration; distortion correction; pose estimation of C-arm images; seed reconstruction; and C-arm to TRUS registration. In precision-machined hard phantoms with 40-100 seeds, we correctly reconstructed 99.8% seeds with a mean 3D accuracy of 0.68 mm. In soft tissue phantoms with 45-87 seeds and clinically realistic 15 degrees C-arm motion, we correctly reconstructed 100% seeds with an accuracy of 1.3 mm. The reconstructed 3D seed positions were then registered to the prostate segmented from TRUS. In a Phase-1 clinical trial, so far on 4 patients with 66-84 seeds, we achieved intra-operative monitoring of seed distribution and dosimetry. We optimized the 100% prescribed iso-dose contour by inserting an average of 3.75 additional seeds, making intra-operative dosimetry possible on a typical C-arm, at negligible additional cost to the existing clinical installation.

  20. Applying Behavior-Based Robotics Concepts to Telerobotic Use of Power Tooling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Noakes, Mark W; Hamel, Dr. William R.

    While it has long been recognized that telerobotics has potential advantages to reduce operator fatigue, to permit lower skilled operators to function as if they had higher skill levels, and to protect tools and manipulators from excessive forces during operation, relatively little laboratory research in telerobotics has actually been implemented in fielded systems. Much of this has to do with the complexity of the implementation and its lack of ability to operate in complex unstructured remote systems environments. One possible solution is to approach the tooling task using an adaptation of behavior-based techniques to facilitate task decomposition to a simplermore » perspective and to provide sensor registration to the task target object in the field. An approach derived from behavior-based concepts has been implemented to provide automated tool operation for a teleoperated manipulator system. The generic approach is adaptable to a wide range of typical remote tools used in hot-cell and decontamination and dismantlement-type operations. Two tasks are used in this work to test the validity of the concept. First, a reciprocating saw is used to cut a pipe. The second task is bolt removal from mockup process equipment. This paper explains the technique, its implementation, and covers experimental data, analysis of results, and suggestions for implementation on fielded systems.« less

  1. Evaluation of innovative operation concept for flat sheet MBR filtration system.

    PubMed

    Weinrich, L; Grélot, A

    2008-01-01

    One of the most limiting factors for the extension and acceptance of MBR filtration systems for municipal and industrial wastewater is the impact of membrane fouling on maintenance, operation and cleaning efforts. One field of action in the European Research Project "AMEDEUS" is the development and testing of MBR module concepts with innovative fouling-prevention technology from three European module manufacturers. This article deals with the performances of the flat-sheet modules by A3 Water Solutions GmbH in double-deck configuration evaluated over 10 months in Anjou Recherche under typical biological operation conditions for MBR systems (MLSS = 10 g/l; SRT = 25 days). By using a double-deck configuration, it is possible to operate with a net flux of 25.5 l/m2.h at 20 degrees C, a membrane air flow rate of 0.21 Nm3/h.m2 of membrane to achieve a stable permeability of around 500-600 l/m2.h.bar. Additionally, it was observed that it is possible to recover the membrane performance after biofouling during operation without intensive cleaning and to maintain stable permeability during peak flows. The evaluated concepts for equipping and operating MBR systems will be applied to several full-scale plants constructed by A3 Water Solutions GmbH.

  2. OAST Space Theme Workshop. Volume 2: Theme summary. 5: Global service (no. 11). A. Statement. B. 26 April 1976 presentation. C. Summary

    NASA Technical Reports Server (NTRS)

    1976-01-01

    The benefits to be obtained from cost-effective global observation of the earth, its environment, and its natural and man-made features are examined using typical spacecraft and missions which could enhance the benefits of space operations. The technology needs and areas of interest include: (1) a ten-fold increase in the dimensions of deployable and erectable structures to provide booms, antennas, and platforms for global sensor systems; (2) control and stabilization systems capable of pointing accuracies of 1 arc second or less to locate targets of interest and maintain platform or sensor orientation during operations; (3) a factor of five improvements in spacecraft power capacity to support payloads and supporting electronics; (4) auxiliary propulsion systems capable of 5 to 10 years on orbit operation; (5) multipurpose sensors; and (6) end-to-end data management and an information system configured to accept new components or concepts as they develop.

  3. Lessons learned: design, start-up, and operation of cryogenic systems

    NASA Astrophysics Data System (ADS)

    Bell, W. M.; Bagley, R. E.; Motew, S.; Young, P.-W.

    2014-11-01

    Cryogenic systems involving a pumped cryogenic fluid, such as liquid nitrogen (LN2), require careful design since the cryogen is close to its boiling point and cold. At 1 atmosphere, LN2 boils at 77.4 K (-320.4 F). These systems, typically, are designed to transport the cryogen, use it for process heat removal, or for generation of gas (GN2) for process use. As the design progresses, it is important to consider all aspects of the design including, cryogen storage, pressure control and safety relief systems, thermodynamic conditions, equipment and instrument selection, materials, insulation, cooldown, pump start-up, maximum design and minimum flow rates, two phase flow conditions, heat flow, process control to meet and maintain operating conditions, piping integrity, piping loads on served equipment, warm-up, venting, and shut-down. "Cutting corners" in the design process can result in stalled start-ups, field rework, schedule hits, or operational restrictions. Some of these "lessoned learned" are described in this paper.

  4. Feasibility of geothermal space/water heating for Mammoth Lakes Village, California. Final report, September 1976--September 1977

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sims, A.V.; Racine, W.C.

    1977-12-01

    Results of a study to determine the technical, economic, and environmental feasibility of geothermal district heating for Mammoth Lakes Village, California are reported. The geothermal district heating system selected is technically feasible and will use existing technology in its design and operation. District heating can provide space and water heating energy for typical customers at lower cost than alternative sources of energy. If the district heating system is investor owned, lower costs are realized after five to six years of operation, and if owned by a nonprofit organization, after zero to three years. District heating offers lower costs than alternativesmore » much sooner in time if co-generation and/or DOE participation in system construction are included in the analysis. During a preliminary environmental assessment, no potential adverse environmental impacts could be identified of sufficient consequence to preclude the construction and operation of the proposed district heating system. A follow-on program aimed at implementing district heating in Mammoth is outlined.« less

  5. Packaging of fiber lasers and components for use in harsh environments

    NASA Astrophysics Data System (ADS)

    Creeden, Daniel; Johnson, Benjamin R.; Jones, Casey; Ibach, Charles; Lemons, Michael; Budni, Peter A.; Zona, James P.; Marcinuk, Adam; Willis, Chris; Sweeney, James; Setzler, Scott D.

    2016-03-01

    High power continuous and pulsed fiber lasers and amplifiers have become more prevalent in laser systems over the last ten years. In fielding such systems, strong environmental and operational factors drive the packaging of the components. These include large operational temperature ranges, non-standard wavelengths of operation, strong vibration, and lack of water cooling. Typical commercial fiber components are not designed to survive these types of environments. Based on these constraints, we have had to develop and test a wide range of customized fiber-based components and systems to survive in these conditions. In this paper, we discuss some of those designs and detail the testing performed on those systems and components. This includes the use of commercial off-the-shelf (COTS) components, modified to survive extended temperature ranges, as well as customized components designed specifically for performance in harsh environments. Some of these custom components include: ruggedized/monolithic fiber spools; detachable and repeatable fiber collimators; low loss fiber-to-fiber coupling schemes; and high power fiber-coupled isolators.

  6. A Historical and Engineering View of Power Transmission Systems in Kansai Electric Power Co., Inc.

    NASA Astrophysics Data System (ADS)

    Ito, Shunichi; Akiyama, Tetsuo

    During our work in operations related to power transmission technology, we have encountered various natural calamities and man-made disasters. Over the years, we learned many valuable lessons from these bitter experiences, and we now have more reliable, cost-effective and flexible electric power systems. This paper describes the new technologies we have introduced in the facilities making up the power systems and how we operate these systems and facilities. It also takes up the Southern Hyogo Earthquake and loss of Ohi nuclear power generation due to galloping phenomena as typical examples showing how a set of measures as mentioned above substantially improved the reliability of the electric power systems to such an extent that the Japanese electric power systems have attained the world's highest level of reliability. These facts prove that steady and continuous efforts are a prerequisite to success for all power engineers.

  7. Investigation of Icing Characteristics of Typical Light Airplane Engine Induction Systems

    NASA Technical Reports Server (NTRS)

    Coles, W. D.

    1949-01-01

    The icing characteristics of two typical light-airplane engine induction systems were investigated using the carburetors and manifolds of engines in the horsepower ranges from 65 to 85 and 165 to 185. The smaller system consisted of a float-type carburetor with an unheated manifold and the larger system consisted of a single-barrel pressure-type carburetor with an oil-jacketed manifold. Carburetor-air temperature and humidity limits of visible and serious Icing were determined for various engine power conditions. Several.methods of achieving ice-free induction systems are discussed along with estimates of surface heating requirements of the various induct ion-system components. A study was also made of the icing characteristics of a typical light-airplane air scoop with an exposed filter and a modified system that provided a normal ram inlet with the filter located in a position to Induce inertia separation of the free water from the charge air. The principle of operation of float-type carburetors is proved to make them inherently more susceptible to icing at the throttle plate than pressure-type carburetors.. The results indicated that proper jacketing and heating of all parts exposed to the fuel spray can satisfactorily reduce or eliminate icing in the float-type carburetor and the manifold. Pressure-type carburetors can be protected from serious Icing by proper location of the fuel-discharge nozzle combined with suitable application of heat to critical parts.

  8. Development of a decision support tool for seasonal water supply management incorporating system uncertainties and operational constraints

    NASA Astrophysics Data System (ADS)

    Wang, H.; Asefa, T.

    2017-12-01

    A real-time decision support tool (DST) for water supply system would consider system uncertainties, e.g., uncertain streamflow and demand, as well as operational constraints and infrastructure outage (e.g., pump station shutdown, an offline reservoir due to maintenance). Such DST is often used by water managers for resource allocation and delivery for customers. Although most seasonal DST used by water managers recognize those system uncertainties and operational constraints, most use only historical information or assume deterministic outlook of water supply systems. This study presents a seasonal DST that incorporates rainfall/streamflow uncertainties, seasonal demand outlook and system operational constraints. Large scale climate-information is captured through a rainfall simulator driven by a Bayesian non-homogeneous Markov Chain Monte Carlo model that allows non-stationary transition probabilities contingent on Nino 3.4 index. An ad-hoc seasonal demand forecasting model considers weather conditions explicitly and socio-economic factors implicitly. Latin Hypercube sampling is employed to effectively sample probability density functions of flow and demand. Seasonal system operation is modelled as a mixed-integer optimization problem that aims at minimizing operational costs. It embeds the flexibility of modifying operational rules at different components, e.g., surface water treatment plants, desalination facilities, and groundwater pumping stations. The proposed framework is illustrated at a wholesale water supplier in Southeastern United States, Tampa Bay Water. The use of the tool is demonstrated in proving operational guidance in a typical drawdown and refill cycle of a regional reservoir. The DST provided: 1) probabilistic outlook of reservoir storage and chance of a successful refill by the end of rainy season; 2) operational expectations for large infrastructures (e.g., high service pumps and booster stations) throughout the season. Other potential use of such DST is also discussed.

  9. Testing of an Arcjet Thruster with Capability of Direct-Drive Operation

    NASA Technical Reports Server (NTRS)

    Martin, Adam K.; Polzin, Kurt A.; Eskridge, Richard H.; Smith, James W.; Schoenfeld, Michael P.; Riley, Daniel P.

    2015-01-01

    Electric thrusters typically require a power processing unit (PPU) to convert the spacecraft provided power to the voltage-current that a thruster needs for operation. Testing has been initiated to study whether an arcjet thruster can be operated directly with the power produced by solar arrays without any additional conversion. Elimination of the PPU significantly reduces system-level complexity of the propulsion system, and lowers developmental cost and risk. The work aims to identify and address technical questions related to power conditioning and noise suppression in the system and heating of the thruster in long-duration operation. The apparatus under investigation has a target power level from 400-1,000 W. However, the proposed direct-drive arcjet is potentially a highly scalable concept, applicable to solar-electric spacecraft with up to 100's of kW and beyond. A direct-drive electric propulsion system would be comprised of a thruster that operates with the power supplied directly from the power source (typically solar arrays) with no further power conditioning needed between those two components. Arcjet thrusters are electric propulsion devices, with the power supplied as a high current at low voltage; of all the different types of electric thruster, they are best suited for direct drive from solar arrays. One advantage of an arcjet over Hall or gridded ion thrusters is that for comparable power the arcjet is a much smaller device and can provide more thrust and orders of magnitude higher thrust density (approximately 1-10 N/sq m), albeit at lower I(sub sp) (approximately 800-1000 s). In addition, arcjets are capable of operating on a wide range of propellant options, having been demonstrated on H2, ammonia, N2, Ar, Kr, Xe, while present SOA Hall and ion thrusters are primarily limited to Xe propellant. Direct-drive is often discussed in terms of Hall thrusters, but they require 250-300 V for operation, which is difficult even with high-voltage solar arrays. The arcjet requires under 100 V, which is more in-line with what is easily possible with a solar array. Direct-drive of an electric propulsion system confers the advantage of reducing or eliminating the power processing unit (PPU) that is typically needed to convert the spacecraft-provided power to the voltage and current needed for thruster operation. Since the PPU is typically the most expensive piece of an electric thruster system, from both a fabrication and qualification standpoint, its elimination offers the potential for major reductions in system cost and risk. The design of the arcjet built for this effort was based on previous low power (1 kW class) arcjets. It has a precision machined 99.95% pure tungsten anode which also serves as the nozzle. The anode constrictor region is 1 mm (0.040-in) diameter and 1 mm (0.040-in) long. The cathode is a tungsten welding electrode doped with LaO2; its tip was precision ground to a 30? angle ending in a blunt end. The two electrodes are separated by a boron-nitride insulator which also serves as the propellant injection manifold; it ends in six small holes which introduce the propellant gas in the diverging section of the nozzle, directly adjacent to the cathode. The electrodes and insulator are housed in a stainless-steel outer-body, with a Macor insulator at the mid-plane to provide thermal isolation between the front and back halves of the device. The gas seals were made using Grafoil gaskets. Figure 1A shows the assembled thruster in the vacuum chamber; figure 1B shows the thruster in operation on argon at a flow rate of 676 sccm (20 mg/s). Initial testing was conducted in a 3.5-ft diameter vacuum chamber; the ultimate pressure reached during quasi-steady operation of the thruster was about 330 millitorr. The thruster was powered with a high-current, 0-100A, 15 kW power supply. The discharge was initiated with a high-voltage (approximately 10 kV) spark initiator that was isolated from the supply by a stack of diodes. The testing indicated that an operating point exists within the I-V characteristics that is compatible with direct-drive solar-electric operation; for a flow rate of 20 mg/s (argon) the arc could be sustained at a voltage of about 20 V and a current of 25 A (500W).

  10. Flight Operations Analysis Tool

    NASA Technical Reports Server (NTRS)

    Easter, Robert; Herrell, Linda; Pomphrey, Richard; Chase, James; Wertz Chen, Julie; Smith, Jeffrey; Carter, Rebecca

    2006-01-01

    Flight Operations Analysis Tool (FLOAT) is a computer program that partly automates the process of assessing the benefits of planning spacecraft missions to incorporate various combinations of launch vehicles and payloads. Designed primarily for use by an experienced systems engineer, FLOAT makes it possible to perform a preliminary analysis of trade-offs and costs of a proposed mission in days, whereas previously, such an analysis typically lasted months. FLOAT surveys a variety of prior missions by querying data from authoritative NASA sources pertaining to 20 to 30 mission and interface parameters that define space missions. FLOAT provides automated, flexible means for comparing the parameters to determine compatibility or the lack thereof among payloads, spacecraft, and launch vehicles, and for displaying the results of such comparisons. Sparseness, typical of the data available for analysis, does not confound this software. FLOAT effects an iterative process that identifies modifications of parameters that could render compatible an otherwise incompatible mission set.

  11. The impacts of storing solar energy in the home to reduce reliance on the utility

    NASA Astrophysics Data System (ADS)

    Fares, Robert L.; Webber, Michael E.

    2017-01-01

    There has been growing interest in using energy storage to capture solar energy for later use in the home to reduce reliance on the traditional utility. However, few studies have critically assessed the trade-offs associated with storing solar energy rather than sending it to the utility grid, as is typically done today. Here we show that a typical battery system could reduce peak power demand by 8-32% and reduce peak power injections by 5-42%, depending on how it operates. However, storage inefficiencies increase annual energy consumption by 324-591 kWh per household on average. Furthermore, storage operation indirectly increases emissions by 153-303 kg CO2, 0.03-0.20 kg SO2 and 0.04-0.26 kg NOx per Texas household annually. Thus, home energy storage would not automatically reduce emissions or energy consumption unless it directly enables renewable energy.

  12. BPM Motors in Residential Gas Furnaces: What are theSavings?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lutz, James; Franco, Victor; Lekov, Alex

    2006-05-12

    Residential gas furnaces contain blowers to distribute warm air. Currently, furnace blowers use either a Permanent Split Capacitor (PSC) or a Brushless Permanent Magnet (BPM) motor. Blowers account for the majority of furnace electricity consumption. Therefore, accurate determination of the blower electricity consumption is important for understanding electricity consumption of furnaces. The electricity consumption of blower motors depends on the static pressure across the blower. This paper examines both types of blower motors in non-condensing non-weatherized gas furnaces at a range of static pressures. Fan performance data is based on manufacturer product literature and laboratory tests. We use field-measured staticmore » pressure in ducts to get typical system curves to calculate how furnaces would operate in the field. We contrast this with the electricity consumption of a furnace blower operating under the DOE test procedure and manufacturer rated conditions. Furnace electricity use is also affected by operating modes that happen at the beginning and end of each furnace firing cycle. These operating modes are the pre-purge and post-purge by the draft inducer, the on-delay and off-delay of the blower, and the hot surface ignitor operation. To accurately calculate this effect, we use the number of firing cycles in a typical California house in the Central Valley of California. Cooling hours are not considered in the DOE test procedure. We also account for furnace blower use by the air conditioner and stand-by power. Overall BPM motors outperform PSC motors, but the total electricity savings are significantly less than projected using the DOE test procedure conditions. The performance gains depend on the static pressure of the household ducts, which are typically much higher than in the test procedures.« less

  13. Data mining of space heating system performance in affordable housing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ren, Xiaoxin; Yan, Da; Hong, Tianzhen

    The space heating in residential buildings accounts for a considerable amount of the primary energy use. Therefore, understanding the operation and performance of space heating systems becomes crucial in improving occupant comfort while reducing energy use. This study investigated the behavior of occupants adjusting their thermostat settings and heating system operations in a 62-unit affordable housing complex in Revere, Massachusetts, USA. The data mining methods, including clustering approach and decision trees, were used to ascertain occupant behavior patterns. Data tabulating ON/OFF space heating states was assessed, to provide a better understanding of the intermittent operation of space heating systems inmore » terms of system cycling frequency and the duration of each operation. The decision tree was used to verify the link between room temperature settings, house and heating system characteristics and the heating energy use. The results suggest that the majority of apartments show fairly constant room temperature profiles with limited variations during a day or between weekday and weekend. Data clustering results revealed six typical patterns of room temperature profiles during the heating season. Space heating systems cycled more frequently than anticipated due to a tight range of room thermostat settings and potentially oversized heating capacities. In conclusion, from this study affirm data mining techniques are an effective method to analyze large datasets and extract hidden patterns to inform design and improve operations.« less

  14. Data mining of space heating system performance in affordable housing

    DOE PAGES

    Ren, Xiaoxin; Yan, Da; Hong, Tianzhen

    2015-02-16

    The space heating in residential buildings accounts for a considerable amount of the primary energy use. Therefore, understanding the operation and performance of space heating systems becomes crucial in improving occupant comfort while reducing energy use. This study investigated the behavior of occupants adjusting their thermostat settings and heating system operations in a 62-unit affordable housing complex in Revere, Massachusetts, USA. The data mining methods, including clustering approach and decision trees, were used to ascertain occupant behavior patterns. Data tabulating ON/OFF space heating states was assessed, to provide a better understanding of the intermittent operation of space heating systems inmore » terms of system cycling frequency and the duration of each operation. The decision tree was used to verify the link between room temperature settings, house and heating system characteristics and the heating energy use. The results suggest that the majority of apartments show fairly constant room temperature profiles with limited variations during a day or between weekday and weekend. Data clustering results revealed six typical patterns of room temperature profiles during the heating season. Space heating systems cycled more frequently than anticipated due to a tight range of room thermostat settings and potentially oversized heating capacities. In conclusion, from this study affirm data mining techniques are an effective method to analyze large datasets and extract hidden patterns to inform design and improve operations.« less

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    O'Hara, J.M.; W. Gunther, G. Martinez-Guridi

    New and advanced reactors will use integrated digital instrumentation and control (I&C) systems to support operators in their monitoring and control functions. Even though digital systems are typically highly reliable, their potential for degradation or failure could significantly affect operator performance and, consequently, impact plant safety. The U.S. Nuclear Regulatory Commission (NRC) supported this research project to investigate the effects of degraded I&C systems on human performance and plant operations. The objective was to develop human factors engineering (HFE) review guidance addressing the detection and management of degraded digital I&C conditions by plant operators. We reviewed pertinent standards and guidelines,more » empirical studies, and plant operating experience. In addition, we conducted an evaluation of the potential effects of selected failure modes of the digital feedwater system on human-system interfaces (HSIs) and operator performance. The results indicated that I&C degradations are prevalent in plants employing digital systems and the overall effects on plant behavior can be significant, such as causing a reactor trip or causing equipment to operate unexpectedly. I&C degradations can impact the HSIs used by operators to monitor and control the plant. For example, sensor degradations can make displays difficult to interpret and can sometimes mislead operators by making it appear that a process disturbance has occurred. We used the information obtained as the technical basis upon which to develop HFE review guidance. The guidance addresses the treatment of degraded I&C conditions as part of the design process and the HSI features and functions that support operators to monitor I&C performance and manage I&C degradations when they occur. In addition, we identified topics for future research.« less

  16. Planning ATES systems under uncertainty

    NASA Astrophysics Data System (ADS)

    Jaxa-Rozen, Marc; Kwakkel, Jan; Bloemendal, Martin

    2015-04-01

    Aquifer Thermal Energy Storage (ATES) can contribute to significant reductions in energy use within the built environment, by providing seasonal energy storage in aquifers for the heating and cooling of buildings. ATES systems have experienced a rapid uptake over the last two decades; however, despite successful experiments at the individual level, the overall performance of ATES systems remains below expectations - largely due to suboptimal practices for the planning and operation of systems in urban areas. The interaction between ATES systems and underground aquifers can be interpreted as a common-pool resource problem, in which thermal imbalances or interference could eventually degrade the storage potential of the subsurface. Current planning approaches for ATES systems thus typically follow the precautionary principle. For instance, the permitting process in the Netherlands is intended to minimize thermal interference between ATES systems. However, as shown in recent studies (Sommer et al., 2015; Bakr et al., 2013), a controlled amount of interference may benefit the collective performance of ATES systems. An overly restrictive approach to permitting is instead likely to create an artificial scarcity of available space, limiting the potential of the technology in urban areas. In response, master plans - which take into account the collective arrangement of multiple systems - have emerged as an increasingly popular alternative. However, permits and master plans both take a static, ex ante view of ATES governance, making it difficult to predict the effect of evolving ATES use or climactic conditions on overall performance. In particular, the adoption of new systems by building operators is likely to be driven by the available subsurface space and by the performance of existing systems; these outcomes are themselves a function of planning parameters. From this perspective, the interactions between planning authorities, ATES operators, and subsurface conditions form a complex adaptive system, for which agent-based modelling provides a useful analysis framework. This study therefore explores the interactions between endogenous ATES adoption processes and the relative performance of different planning schemes, using an agent-based adoption model coupled with a hydrologic model of the subsurface. The models are parameterized to simulate typical operating conditions for ATES systems in a dense urban area. Furthermore, uncertainties relating to planning parameters, adoption processes, and climactic conditions are explicitly considered using exploratory modelling techniques. Results are therefore presented for the performance of different planning policies over a broad range of plausible scenarios.

  17. Chromatographic separation of radioactive noble gases from xenon

    NASA Astrophysics Data System (ADS)

    Akerib, D. S.; Araújo, H. M.; Bai, X.; Bailey, A. J.; Balajthy, J.; Beltrame, P.; Bernard, E. P.; Bernstein, A.; Biesiadzinski, T. P.; Boulton, E. M.; Bramante, R.; Cahn, S. B.; Carmona-Benitez, M. C.; Chan, C.; Chiller, A. A.; Chiller, C.; Coffey, T.; Currie, A.; Cutter, J. E.; Davison, T. J. R.; Dobi, A.; Dobson, J. E. Y.; Druszkiewicz, E.; Edwards, B. N.; Faham, C. H.; Fiorucci, S.; Gaitskell, R. J.; Gehman, V. M.; Ghag, C.; Gibson, K. R.; Gilchriese, M. G. D.; Hall, C. R.; Hanhardt, M.; Haselschwardt, S. J.; Hertel, S. A.; Hogan, D. P.; Horn, M.; Huang, D. Q.; Ignarra, C. M.; Ihm, M.; Jacobsen, R. G.; Ji, W.; Kamdin, K.; Kazkaz, K.; Khaitan, D.; Knoche, R.; Larsen, N. A.; Lee, C.; Lenardo, B. G.; Lesko, K. T.; Lindote, A.; Lopes, M. I.; Manalaysay, A.; Mannino, R. L.; Marzioni, M. F.; McKinsey, D. N.; Mei, D.-M.; Mock, J.; Moongweluwan, M.; Morad, J. A.; Murphy, A. St. J.; Nehrkorn, C.; Nelson, H. N.; Neves, F.; O'Sullivan, K.; Oliver-Mallory, K. C.; Palladino, K. J.; Pease, E. K.; Pech, K.; Phelps, P.; Reichhart, L.; Rhyne, C.; Shaw, S.; Shutt, T. A.; Silva, C.; Solovov, V. N.; Sorensen, P.; Stephenson, S.; Sumner, T. J.; Szydagis, M.; Taylor, D. J.; Taylor, W.; Tennyson, B. P.; Terman, P. A.; Tiedt, D. R.; To, W. H.; Tripathi, M.; Tvrznikova, L.; Uvarov, S.; Verbus, J. R.; Webb, R. C.; White, J. T.; Whitis, T. J.; Witherell, M. S.; Wolfs, F. L. H.; Yazdani, K.; Young, S. K.; Zhang, C.

    2018-01-01

    The Large Underground Xenon (LUX) experiment operates at the Sanford Underground Research Facility to detect nuclear recoils from the hypothetical Weakly Interacting Massive Particles (WIMPs) on a liquid xenon target. Liquid xenon typically contains trace amounts of the noble radioactive isotopes 85Kr and 39Ar that are not removed by the in situ gas purification system. The decays of these isotopes at concentrations typical of research-grade xenon would be a dominant background for a WIMP search experiment. To remove these impurities from the liquid xenon, a chromatographic separation system based on adsorption on activated charcoal was built. 400 kg of xenon was processed, reducing the average concentration of krypton from 130 ppb to 3.5 ppt as measured by a cold-trap assisted mass spectroscopy system. A 50 kg batch spiked to 0.001 g/g of krypton was processed twice and reduced to an upper limit of 0.2 ppt.

  18. Chromatographic separation of radioactive noble gases from xenon

    DOE PAGES

    Akerib, DS; Araújo, HM; Bai, X; ...

    2017-10-31

    The Large Underground Xenon (LUX) experiment operates at the Sanford Underground Research Facility to detect nuclear recoils from the hypothetical Weakly Interacting Massive Particles (WIMPs) on a liquid xenon target. Liquid xenon typically contains trace amounts of the noble radioactive isotopesmore » $$^{85}$$Kr and $$^{39}$$Ar that are not removed by the in situ gas purification system. The decays of these isotopes at concentrations typical of research-grade xenon would be a dominant background for a WIMP search exmperiment. To remove these impurities from the liquid xenon, a chromatographic separation system based on adsorption on activated charcoal was built. 400 kg of xenon was processed, reducing the average concentration of krypton from 130 ppb to 3.5 ppt as measured by a cold-trap assisted mass spectroscopy system. A 50 kg batch spiked to 0.001 g/g of krypton was processed twice and reduced to an upper limit of 0.2 ppt.« less

  19. Monitoring data transfer latency in CMS computing operations

    DOE PAGES

    Bonacorsi, Daniele; Diotalevi, Tommaso; Magini, Nicolo; ...

    2015-12-23

    During the first LHC run, the CMS experiment collected tens of Petabytes of collision and simulated data, which need to be distributed among dozens of computing centres with low latency in order to make efficient use of the resources. While the desired level of throughput has been successfully achieved, it is still common to observe transfer workflows that cannot reach full completion in a timely manner due to a small fraction of stuck files which require operator intervention.For this reason, in 2012 the CMS transfer management system, PhEDEx, was instrumented with a monitoring system to measure file transfer latencies, andmore » to predict the completion time for the transfer of a data set. The operators can detect abnormal patterns in transfer latencies while the transfer is still in progress, and monitor the long-term performance of the transfer infrastructure to plan the data placement strategy.Based on the data collected for one year with the latency monitoring system, we present a study on the different factors that contribute to transfer completion time. As case studies, we analyze several typical CMS transfer workflows, such as distribution of collision event data from CERN or upload of simulated event data from the Tier-2 centres to the archival Tier-1 centres. For each workflow, we present the typical patterns of transfer latencies that have been identified with the latency monitor.We identify the areas in PhEDEx where a development effort can reduce the latency, and we show how we are able to detect stuck transfers which need operator intervention. Lastly, we propose a set of metrics to alert about stuck subscriptions and prompt for manual intervention, with the aim of improving transfer completion times.« less

  20. Monitoring data transfer latency in CMS computing operations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bonacorsi, Daniele; Diotalevi, Tommaso; Magini, Nicolo

    During the first LHC run, the CMS experiment collected tens of Petabytes of collision and simulated data, which need to be distributed among dozens of computing centres with low latency in order to make efficient use of the resources. While the desired level of throughput has been successfully achieved, it is still common to observe transfer workflows that cannot reach full completion in a timely manner due to a small fraction of stuck files which require operator intervention.For this reason, in 2012 the CMS transfer management system, PhEDEx, was instrumented with a monitoring system to measure file transfer latencies, andmore » to predict the completion time for the transfer of a data set. The operators can detect abnormal patterns in transfer latencies while the transfer is still in progress, and monitor the long-term performance of the transfer infrastructure to plan the data placement strategy.Based on the data collected for one year with the latency monitoring system, we present a study on the different factors that contribute to transfer completion time. As case studies, we analyze several typical CMS transfer workflows, such as distribution of collision event data from CERN or upload of simulated event data from the Tier-2 centres to the archival Tier-1 centres. For each workflow, we present the typical patterns of transfer latencies that have been identified with the latency monitor.We identify the areas in PhEDEx where a development effort can reduce the latency, and we show how we are able to detect stuck transfers which need operator intervention. Lastly, we propose a set of metrics to alert about stuck subscriptions and prompt for manual intervention, with the aim of improving transfer completion times.« less

  1. Potential impacts of advanced technologies on the ATC capacity of high-density terminal areas

    NASA Technical Reports Server (NTRS)

    Simpson, R. W.; Odoni, A. R.; Salas-Roche, F.

    1986-01-01

    Advanced technologies for airborne systems (automatic flight control, flight displays, navigation) and for ground ATC systems (digital communications, improved surveillance and tracking, automated decision-making) create the possibility of advanced ATC operations and procedures which can bring increased capacity for runway systems. A systematic analysis is carried out to identify certain such advanced ATC operations, and then to evaluate the potential benefits occurring over time at typical US high-density airports (Denver and Boston). The study is divided into three parts: (1) A Critical Examination of Factors Which Determine Operational Capacity of Runway Systems at Major Airports, is an intensive review of current US separation criteria and terminal area ATC operations. It identifies 11 new methods to increase the capacity of landings and takeoffs for runway systems; (2) Development of Risk Based Separation Criteria is the development of a rational structure for establishing reduced ATC separation criteria which meet a consistent Target Level of Safety using advanced technology and operational procedures; and (3) Estimation of Capacity Benefits from Advanced Terminal Area Operations - Denver and Boston, provides an estimate of the overall annual improvement in runway capacity which might be expected at Denver and Boston from using some of the advanced ATC procedures developed in Part 1. Whereas Boston achieved a substantial 37% increase, Denver only achieved a 4.7% increase in its overall annual capacity.

  2. Expansion of transient operating data

    NASA Astrophysics Data System (ADS)

    Chipman, Christopher; Avitabile, Peter

    2012-08-01

    Real time operating data is very important to understand actual system response. Unfortunately, the amount of physical data points typically collected is very small and often interpretation of the data is difficult. Expansion techniques have been developed using traditional experimental modal data to augment this limited set of data. This expansion process allows for a much improved description of the real time operating response. This paper presents the results from several different structures to show the robustness of the technique. Comparisons are made to a more complete set of measured data to validate the approach. Both analytical simulations and actual experimental data are used to illustrate the usefulness of the technique.

  3. Development of a Dynamic Operational Scheduling Algorithm for an Independent Micro-Grid with Renewable Energy

    NASA Astrophysics Data System (ADS)

    Obara, Shin'ya

    A micro-grid with the capacity for sustainable energy is expected to be a distributed energy system that exhibits quite a small environmental impact. In an independent micro-grid, “green energy,” which is typically thought of as unstable, can be utilized effectively by introducing a battery. In the past study, the production-of-electricity prediction algorithm (PAS) of the solar cell was developed. In PAS, a layered neural network is made to learn based on past weather data and the operation plan of the compound system of a solar cell and other energy systems was examined using this prediction algorithm. In this paper, a dynamic operational scheduling algorithm is developed using a neural network (PAS) and a genetic algorithm (GA) to provide predictions for solar cell power output. We also do a case study analysis in which we use this algorithm to plan the operation of a system that connects nine houses in Sapporo to a micro-grid composed of power equipment and a polycrystalline silicon solar cell. In this work, the relationship between the accuracy of output prediction of the solar cell and the operation plan of the micro-grid was clarified. Moreover, we found that operating the micro-grid according to the plan derived with PAS was far superior, in terms of equipment hours of operation, to that using past average weather data.

  4. Optimal Reservoir Operation using Stochastic Model Predictive Control

    NASA Astrophysics Data System (ADS)

    Sahu, R.; McLaughlin, D.

    2016-12-01

    Hydropower operations are typically designed to fulfill contracts negotiated with consumers who need reliable energy supplies, despite uncertainties in reservoir inflows. In addition to providing reliable power the reservoir operator needs to take into account environmental factors such as downstream flooding or compliance with minimum flow requirements. From a dynamical systems perspective, the reservoir operating strategy must cope with conflicting objectives in the presence of random disturbances. In order to achieve optimal performance, the reservoir system needs to continually adapt to disturbances in real time. Model Predictive Control (MPC) is a real-time control technique that adapts by deriving the reservoir release at each decision time from the current state of the system. Here an ensemble-based version of MPC (SMPC) is applied to a generic reservoir to determine both the optimal power contract, considering future inflow uncertainty, and a real-time operating strategy that attempts to satisfy the contract. Contract selection and real-time operation are coupled in an optimization framework that also defines a Pareto trade off between the revenue generated from energy production and the environmental damage resulting from uncontrolled reservoir spills. Further insight is provided by a sensitivity analysis of key parameters specified in the SMPC technique. The results demonstrate that SMPC is suitable for multi-objective planning and associated real-time operation of a wide range of hydropower reservoir systems.

  5. Teaching an Old Dog New Tricks: Disaster Recovery in a Small Business Context

    ERIC Educational Resources Information Center

    Rossmiller, Zach; Lawrence, Cameron; Clouse, Shawn; Looney, Clayton

    2017-01-01

    Many entrepreneurs and small business owners lack disaster recovery plans, which minimize business disruptions caused by failures of critical technical systems. Typically, technology is not the main focus for a small business owner, as most of their time is spent focused on business operations. This case study demonstrates that when a business…

  6. Application of Shuttle EVA Systems to Payloads. Volume 2: Payload EVA Task Completion Plans

    NASA Technical Reports Server (NTRS)

    1976-01-01

    Candidate payload tasks for EVA application were identified and selected, based on an analysis of four representative space shuttle payloads, and typical EVA scenarios with supporting crew timelines and procedures were developed. The EVA preparations and post EVA operations, as well as the timelines emphasizing concurrent payload support functions, were also summarized.

  7. Nuclear Technology. Course 30: Mechanical Inspection. Module 30-1, Pump Inspection.

    ERIC Educational Resources Information Center

    Wasil, Ed; Espy, John

    This first in a series of eight modules for a course titled Mechanical Inspection describes the type of pumps used in nuclear power plant systems, the basic operating principles of each type, and the inspection activities performed by the quality assurance/quality control technician. The module follows a typical format that includes the following…

  8. Professional Development Needs of American International Schools Overseas: An Opportunity for Service.

    ERIC Educational Resources Information Center

    Ortloff, Warren G.; Escobar-Ortloff, Luz Marina

    This paper discusses U.S. international schools overseas, addressing the typical American international schools' staff development needs and looking at past and present involvement of U.S. universities in support of these schools. The two major types of overseas schools are those operated by the Department of Defense Dependent Schools system and…

  9. Commercial Technology at the Tactical Edge

    DTIC Science & Technology

    2013-06-01

    Typical environmental examples are survivability in the face of hostile action, lack of fixed infrastructure , high mobility and ruggedness...Disconnected, Intermittent, and Limited (DIL) Communications Delay Tolerance Mobile Ad Hoc Networks (MANETs) Loss of infrastructure Security Cyber...for Apple’s IOS.25 In particular, various vendors have built application infrastructures around the various mobile phone operating systems (OSs) such

  10. Residue distribution and biomass recovery following biomass harvest of plantation pine

    Treesearch

    Johnny Grace III; John Klepac; S. Taylor; Dana Mitchell

    2016-01-01

    Forest biomass is anticipated to play a significant role in addressing an alternative energy supply. However, the efficiencies of current state-of-the-art recovery systems operating in forest biomass harvests are still relatively unknown. Forest biomass harvest stands typically have higher stand densities and smaller diameter trees than conventional stands which may...

  11. NASA Facts. An Educational Publication of the National Aeronautics and Space Administration: Space Shuttle

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The versatility of space shuttle, its heat shieldings, principal components, and facilities for various operations are described as well as the accomodations for the spacecrew and experiments. The capabilities of an improved space suit and a personal rescue enclosure containing life support and communication systems are highlighted. A typical mission is described.

  12. Real time UNIX in embedded control-a case study within the context of LynxOS

    NASA Astrophysics Data System (ADS)

    Kleines, H.; Zwoll, K.

    1996-02-01

    Intelligent communication controllers for a layered protocol profile are a typical example of an embedded control application, where the classical approach for the software development is based on a proprietary real-time operating system kernel under which the individual layers are implemented as tasks. Based on the exemplary implementation of a derivative of MAP 3.0, an unusual and innovative approach is presented, where the protocol software is implemented under the UNIX-compatible real-time operating system LynxOS. The overall design of the embedded control application is presented under a more general view and economical implications as well as aspects of the development environment and performance are discussed

  13. SAR operational aspects

    NASA Astrophysics Data System (ADS)

    Holmdahl, P. E.; Ellis, A. B. E.; Moeller-Olsen, P.; Ringgaard, J. P.

    1981-12-01

    The basic requirements of the SAR ground segment of ERS-1 are discussed. A system configuration for the real time data acquisition station and the processing and archive facility is depicted. The functions of a typical SAR processing unit (SPU) are specified, and inputs required for near real time and full precision, deferred time processing are described. Inputs and the processing required for provision of these inputs to the SPU are dealt with. Data flow through the systems, and normal and nonnormal operational sequence, are outlined. Prerequisites for maintaining overall performance are identified, emphasizing quality control. The most demanding tasks to be performed by the front end are defined in order to determine types of processors and peripherals which comply with throughput requirements.

  14. Performance evaluation of the Solar Building Test Facility

    NASA Technical Reports Server (NTRS)

    Jensen, R. N.

    1981-01-01

    The general performance of the NASA Solar Building Test Facility (SBTF) and its subsystems and components over a four year operational period is discussed, and data are provided for a typical one year period. The facility consists of a 4645 sq office building modified to accept solar heated water for operation of an absorption air conditioner and a baseboard heating system. An adjoining 1176 sq solar flat plate collector field with a 114 cu tank provides the solar heated water. The solar system provided 57 percent of the energy required for heating and cooling on an annual basis. The average efficiency of the solar collectors was 26 percent over a one year period.

  15. Research on the operation control strategy of the cooling ceiling combined with fresh air system

    NASA Astrophysics Data System (ADS)

    Huang, Tao; Li, Hao

    2018-03-01

    The cooling ceiling combined with independent fresh air system was built by TRNSYS. And the cooling effects of the air conditioning system of an office in Beijing in a summer typical day were simulated. Based on the “variable temperature” control strategy, the operation strategy of “variable air volume auxiliary adjustment” was put forward. The variation of the indoor temperature, the indoor humidity, the temperature of supplying water and the temperature of returning water were simulated under the two control strategies. The energy consumption of system during the whole summer was compared by utilizing the two control strategies, and the indoor thermal comfort was analyzed. The optimal control strategy was proposed under the condition that the condensation on the surface of the cooling ceiling is not occurred and the indoor thermal comfort is satisfied.

  16. Autonomous exploration and mapping of unknown environments

    NASA Astrophysics Data System (ADS)

    Owens, Jason; Osteen, Phil; Fields, MaryAnne

    2012-06-01

    Autonomous exploration and mapping is a vital capability for future robotic systems expected to function in arbitrary complex environments. In this paper, we describe an end-to-end robotic solution for remotely mapping buildings. For a typical mapping system, an unmanned system is directed to enter an unknown building at a distance, sense the internal structure, and, barring additional tasks, while in situ, create a 2-D map of the building. This map provides a useful and intuitive representation of the environment for the remote operator. We have integrated a robust mapping and exploration system utilizing laser range scanners and RGB-D cameras, and we demonstrate an exploration and metacognition algorithm on a robotic platform. The algorithm allows the robot to safely navigate the building, explore the interior, report significant features to the operator, and generate a consistent map - all while maintaining localization.

  17. Hybrid membrane contactor system for creating semi-breathing air

    NASA Astrophysics Data System (ADS)

    Timofeev, D. V.

    2012-02-01

    Typically, the equipment to create an artificial climate does not involve changing the composition of the respiratory air. In particular in medical institutions assumes the existence of plant of artificial climate and disinfection in operating rooms and intensive care wards. The use of a hybrid membrane-absorption systems for the generation of artificial atmospheres are improving the respiratory system, blood is enriched or depleted of various gases, resulting in increased stamina, there is a better, faster or slower metabolism, improves concentration and memory. Application of the system contributes to easy and rapid recovery after the operation. By adding a special component, with drug activity, air ionization, and adjust its composition, you can create a special, more favorable for patients with the atmosphere. These factors allow for the treatment and rehabilitation of patients and reduce mortality of heavy patients.

  18. High voltage solar cell power generating system

    NASA Technical Reports Server (NTRS)

    Levy, E., Jr.; Opjorden, R. W.; Hoffman, A. C.

    1974-01-01

    A laboratory solar power system regulated by on-panel switches has been delivered for operating high power (3 kW), high voltage (15,000 volt) loads (communication tubes, ion thrusters). The modular system consists of 26 solar arrays, each with an integral light source and cooling system. A typical array contains 2,560 series-connected cells. Each light source consists of twenty 500-watt tungsten iodide lamps providing plus or minus 5 percent uniformity at one solar constant. An array temperature of less than 40 C is achieved using an infrared filter, a water-cooled plate, a vacuum hold-down system, and air flushing.

  19. Normalization as a canonical neural computation

    PubMed Central

    Carandini, Matteo; Heeger, David J.

    2012-01-01

    There is increasing evidence that the brain relies on a set of canonical neural computations, repeating them across brain regions and modalities to apply similar operations to different problems. A promising candidate for such a computation is normalization, in which the responses of neurons are divided by a common factor that typically includes the summed activity of a pool of neurons. Normalization was developed to explain responses in the primary visual cortex and is now thought to operate throughout the visual system, and in many other sensory modalities and brain regions. Normalization may underlie operations such as the representation of odours, the modulatory effects of visual attention, the encoding of value and the integration of multisensory information. Its presence in such a diversity of neural systems in multiple species, from invertebrates to mammals, suggests that it serves as a canonical neural computation. PMID:22108672

  20. Conceptual design and integration of a space station resistojet propulsion assembly

    NASA Technical Reports Server (NTRS)

    Tacina, Robert R.

    1987-01-01

    The resistojet propulsion module is designed as a simple, long life, low risk system offering operational flexibility to the space station program. It can dispose of a wide variety of typical space station waste fluids by using them as propellants for orbital maintenance. A high temperature mode offers relatively high specific impulse with long life while a low temperature mode can propulsively dispose of mixtures that contain oxygen or hydrocarbons without reducing thruster life or generating particulates in the plume. A low duty cycle and a plume that is confined to a small aft region minimizes the impacts on the users. Simple interfaces with other space station systems facilitate integration. It is concluded that there are no major obstacles and many advantages to developing, installing, and operating a resistojet propulsion module aboard the Initial Operational Capability (IOC) space station.

  1. RFID Technology for Continuous Monitoring of Physiological Signals in Small Animals.

    PubMed

    Volk, Tobias; Gorbey, Stefan; Bhattacharyya, Mayukh; Gruenwald, Waldemar; Lemmer, Björn; Reindl, Leonhard M; Stieglitz, Thomas; Jansen, Dirk

    2015-02-01

    Telemetry systems enable researchers to continuously monitor physiological signals in unrestrained, freely moving small rodents. Drawbacks of common systems are limited operation time, the need to house the animals separately, and the necessity of a stable communication link. Furthermore, the costs of the typically proprietary telemetry systems reduce the acceptance. The aim of this paper is to introduce a low-cost telemetry system based on common radio frequency identification technology optimized for battery-independent operational time, good reusability, and flexibility. The presented implant is equipped with sensors to measure electrocardiogram, arterial blood pressure, and body temperature. The biological signals are transmitted as digital data streams. The device is able of monitoring several freely moving animals housed in groups with a single reader station. The modular concept of the system significantly reduces the costs to monitor multiple physiological functions and refining procedures in preclinical research.

  2. Updated System-Availability and Resource-Allocation Program

    NASA Technical Reports Server (NTRS)

    Viterna, Larry

    2004-01-01

    A second version of the Availability, Cost and Resource Allocation (ACARA) computer program has become available. The first version was reported in an earlier tech brief. To recapitulate: ACARA analyzes the availability, mean-time-between-failures of components, life-cycle costs, and scheduling of resources of a complex system of equipment. ACARA uses a statistical Monte Carlo method to simulate the failure and repair of components while complying with user-specified constraints on spare parts and resources. ACARA evaluates the performance of the system on the basis of a mathematical model developed from a block-diagram representation. The previous version utilized the MS-DOS operating system and could not be run by use of the most recent versions of the Windows operating system. The current version incorporates the algorithms of the previous version but is compatible with Windows and utilizes menus and a file-management approach typical of Windows-based software.

  3. Displacement sensing system and method

    DOEpatents

    VunKannon, Jr., Robert S

    2006-08-08

    A displacement sensing system and method addresses demanding requirements for high precision sensing of displacement of a shaft, for use typically in a linear electro-dynamic machine, having low failure rates over multi-year unattended operation in hostile environments. Applications include outer space travel by spacecraft having high-temperature, sealed environments without opportunity for servicing over many years of operation. The displacement sensing system uses a three coil sensor configuration, including a reference and sense coils, to provide a pair of ratio-metric signals, which are inputted into a synchronous comparison circuit, which is synchronously processed for a resultant displacement determination. The pair of ratio-metric signals are similarly affected by environmental conditions so that the comparison circuit is able to subtract or nullify environmental conditions that would otherwise cause changes in accuracy to occur.

  4. Another expert system rule inference based on DNA molecule logic gates

    NASA Astrophysics Data System (ADS)

    WÄ siewicz, Piotr

    2013-10-01

    With the help of silicon industry microfluidic processors were invented utilizing nano membrane valves, pumps and microreactors. These so called lab-on-a-chips combined together with molecular computing create molecular-systems-ona- chips. This work presents a new approach to implementation of molecular inference systems. It requires the unique representation of signals by DNA molecules. The main part of this work includes the concept of logic gates based on typical genetic engineering reactions. The presented method allows for constructing logic gates with many inputs and for executing them at the same quantity of elementary operations, regardless of a number of input signals. Every microreactor of the lab-on-a-chip performs one unique operation on input molecules and can be connected by dataflow output-input connections to other ones.

  5. Unraveling mirror properties in time-delayed quantum feedback scenarios

    NASA Astrophysics Data System (ADS)

    Faulstich, Fabian M.; Kraft, Manuel; Carmele, Alexander

    2018-06-01

    We derive in the Heisenberg picture a widely used phenomenological coupling element to treat feedback effects in quantum optical platforms. Our derivation is based on a microscopic Hamiltonian, which describes the mirror-emitter dynamics based on a dielectric, a mediating fully quantized electromagnetic field and a single two-level system in front of the dielectric. The dielectric is modelled as a system of identical two-state atoms. The Heisenberg equation yields a system of describing differential operator equations, which we solve in the Weisskopf-Wigner limit. Due to a finite round-trip time between emitter and dielectric, we yield delay differential operator equations. Our derivation motivates and justifies the typical phenomenologicalassumed coupling element and allows, furthermore, a generalization to a variety of mirrors, such as dissipative mirrors or mirrors with gain dynamics.

  6. Optical spectral singularities as threshold resonances

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mostafazadeh, Ali

    2011-04-15

    Spectral singularities are among generic mathematical features of complex scattering potentials. Physically they correspond to scattering states that behave like zero-width resonances. For a simple optical system, we show that a spectral singularity appears whenever the gain coefficient coincides with its threshold value and other parameters of the system are selected properly. We explore a concrete realization of spectral singularities for a typical semiconductor gain medium and propose a method of constructing a tunable laser that operates at threshold gain.

  7. An optical profilometer for spatial characterization of three-dimensional surfaces

    NASA Technical Reports Server (NTRS)

    Kelly, W. L., IV; Burcher, E. E.; Skolaut, M. W., Jr.

    1977-01-01

    The design concept and system operation of an optical profilometer are discussed, and a preliminary evaluation of a breadboard system is presented to demonstrate the feasibility of the optical profilometer technique. Measurement results are presented for several test surfaces; and to illustrate a typical application, results are shown for a cleft palate cast used by dental surgeons. Finally, recommendations are made for future development of the optical profilometer technique for specific engineering or scientific applications.

  8. Precedent approach to the formation of programs for cyclic objects control

    NASA Astrophysics Data System (ADS)

    Kulakov, S. M.; Trofimov, V. B.; Dobrynin, A. S.; Taraborina, E. N.

    2018-05-01

    The idea and procedure for formalizing the precedent method of formation of complex control solutions (complex control programs) is discussed with respect to technological or organizational objects, the operation of which is organized cyclically. A typical functional structure of the system of precedent control by complex technological unit is developed, including a subsystem of retrospective optimization of actually implemented control programs. As an example, the problem of constructing replaceable planograms for the operation of the link of a heading-and-winning machine on the basis of precedents is considered.

  9. Corruption in emergency procurement.

    PubMed

    Schultz, Jessica; Søreide, Tina

    2008-12-01

    Corruption in emergency procurement reduces the resources available for life-saving operations, lowers the quality of products and services provided, and diverts aid from those who need it most.(1) It also negatively influences public support for humanitarian relief, both in the affected country and abroad. This paper aims to unpack and analyse the following question in order to mitigate risk: how and where does corruption typically occur, and what can be done? Suggested strategies reflect a multi-layered approach that stresses internal agency control mechanisms, conflict-sensitive management, and the need for common systems among operators.

  10. Experience with ActiveX control for simple channel access

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Timossi, C.; Nishimura, H.; McDonald, J.

    2003-05-15

    Accelerator control system applications at Berkeley Lab's Advanced Light Source (ALS) are typically deployed on operator consoles running Microsoft Windows 2000 and utilize EPICS[2]channel access for data access. In an effort to accommodate the wide variety of Windows based development tools and developers with little experience in network programming, ActiveX controls have been deployed on the operator stations. Use of ActiveX controls for use in the accelerator control environment has been presented previously[1]. Here we report on some of our experiences with the use and development of these controls.

  11. Session 6: Dynamic Modeling and Systems Analysis

    NASA Technical Reports Server (NTRS)

    Csank, Jeffrey; Chapman, Jeffryes; May, Ryan

    2013-01-01

    These presentations cover some of the ongoing work in dynamic modeling and dynamic systems analysis. The first presentation discusses dynamic systems analysis and how to integrate dynamic performance information into the systems analysis. The ability to evaluate the dynamic performance of an engine design may allow tradeoffs between the dynamic performance and operability of a design resulting in a more efficient engine design. The second presentation discusses the Toolbox for Modeling and Analysis of Thermodynamic Systems (T-MATS). T-MATS is a Simulation system with a library containing the basic building blocks that can be used to create dynamic Thermodynamic Systems. Some of the key features include Turbo machinery components, such as turbines, compressors, etc., and basic control system blocks. T-MAT is written in the Matlab-Simulink environment and is open source software. The third presentation focuses on getting additional performance from the engine by allowing the limit regulators only to be active when a limit is danger of being violated. Typical aircraft engine control architecture is based on MINMAX scheme, which is designed to keep engine operating within prescribed mechanical/operational safety limits. Using a conditionally active min-max limit regulator scheme, additional performance can be gained by disabling non-relevant limit regulators

  12. Autonomous Satellite Operations Via Secure Virtual Mission Operations Center

    NASA Technical Reports Server (NTRS)

    Miller, Eric; Paulsen, Phillip E.; Pasciuto, Michael

    2011-01-01

    The science community is interested in improving their ability to respond to rapidly evolving, transient phenomena via autonomous rapid reconfiguration, which derives from the ability to assemble separate but collaborating sensors and data forecasting systems to meet a broad range of research and application needs. Current satellite systems typically require human intervention to respond to triggers from dissimilar sensor systems. Additionally, satellite ground services often need to be coordinated days or weeks in advance. Finally, the boundaries between the various sensor systems that make up such a Sensor Web are defined by such things as link delay and connectivity, data and error rate asymmetry, data reliability, quality of service provisions, and trust, complicating autonomous operations. Over the past ten years, researchers from the NASA Glenn Research Center (GRC), General Dynamics, Surrey Satellite Technology Limited (SSTL), Cisco, Universal Space Networks (USN), the U.S. Geological Survey (USGS), the Naval Research Laboratory, the DoD Operationally Responsive Space (ORS) Office, and others have worked collaboratively to develop a virtual mission operations capability. Called VMOC (Virtual Mission Operations Center), this new capability allows cross-system queuing of dissimilar mission unique systems through the use of a common security scheme and published application programming interfaces (APIs). Collaborative VMOC demonstrations over the last several years have supported the standardization of spacecraft to ground interfaces needed to reduce costs, maximize space effects to the user, and allow the generation of new tactics, techniques and procedures that lead to responsive space employment.

  13. Using computer graphics to enhance astronaut and systems safety

    NASA Technical Reports Server (NTRS)

    Brown, J. W.

    1985-01-01

    Computer graphics is being employed at the NASA Johnson Space Center as a tool to perform rapid, efficient and economical analyses for man-machine integration, flight operations development and systems engineering. The Operator Station Design System (OSDS), a computer-based facility featuring a highly flexible and versatile interactive software package, PLAID, is described. This unique evaluation tool, with its expanding data base of Space Shuttle elements, various payloads, experiments, crew equipment and man models, supports a multitude of technical evaluations, including spacecraft and workstation layout, definition of astronaut visual access, flight techniques development, cargo integration and crew training. As OSDS is being applied to the Space Shuttle, Orbiter payloads (including the European Space Agency's Spacelab) and future space vehicles and stations, astronaut and systems safety are being enhanced. Typical OSDS examples are presented. By performing physical and operational evaluations during early conceptual phases. supporting systems verification for flight readiness, and applying its capabilities to real-time mission support, the OSDS provides the wherewithal to satisfy a growing need of the current and future space programs for efficient, economical analyses.

  14. Experimental Results of Integrated Refrigeration and Storage System Testing

    NASA Technical Reports Server (NTRS)

    Notardonato, W. U.; Johnson, W. L.; Jumper, K.

    2009-01-01

    Launch operations engineers at the Kennedy Space Center have identified an Integrated Refrigeration and Storage system as a promising technology to reduce launch costs and enable advanced cryogenic operations. This system uses a close cycle Brayton refrigerator to remove energy from the stored cryogenic propellant. This allows for the potential of a zero loss storage and transfer system, as well and control of the state of the propellant through densification or re-liquefaction. However, the behavior of the fluid in this type of system is different than typical cryogenic behavior, and there will be a learning curve associated with its use. A 400 liter research cryostat has been designed, fabricated and delivered to KSC to test the thermo fluid behavior of liquid oxygen as energy is removed from the cryogen by a simulated DC cycle cryocooler. Results of the initial testing phase focusing on heat exchanger characterization and zero loss storage operations using liquid oxygen are presented in this paper. Future plans for testing of oxygen densification tests and oxygen liquefaction tests will also be discussed. KEYWORDS: Liquid Oxygen, Refrigeration, Storage

  15. Potential use of advanced process control for safety purposes during attack of a process plant.

    PubMed

    Whiteley, James R

    2006-03-17

    Many refineries and commodity chemical plants employ advanced process control (APC) systems to improve throughputs and yields. These APC systems utilize empirical process models for control purposes and enable operation closer to constraints than can be achieved with traditional PID regulatory feedback control. Substantial economic benefits are typically realized from the addition of APC systems. This paper considers leveraging the control capabilities of existing APC systems to minimize the potential impact of a terrorist attack on a process plant (e.g., petroleum refinery). Two potential uses of APC are described. The first is a conventional application of APC and involves automatically moving the process to a reduced operating rate when an attack first begins. The second is a non-conventional application and involves reconfiguring the APC system to optimize safety rather than economics. The underlying intent in both cases is to reduce the demands on the operator to allow focus on situation assessment and optimal response planning. An overview of APC is provided along with a brief description of the modifications required for the proposed new applications of the technology.

  16. Research on Bifurcation and Chaos in a Dynamic Mixed Game System with Oligopolies Under Carbon Emission Constraint

    NASA Astrophysics Data System (ADS)

    Ma, Junhai; Yang, Wenhui; Lou, Wandong

    This paper establishes an oligopolistic game model under the carbon emission reduction constraint and investigates its complex characteristics like bifurcation and chaos. Two oligopolistic manufacturers comprise three mixed game models, aiming to explore the variation in the status of operating system as per the upgrading of benchmark reward-penalty mechanism. Firstly, we set up these basic models that are respectively distinguished with carbon emission quantity and study these models using different game methods. Then, we concentrate on one typical game model to further study the dynamic complexity of variations in the system status, through 2D bifurcation diagrams and 4D parameter adjustment features based on the bounded rationality scheme for price, and the adaptive scheme for carbon emission. The results show that the carbon emission constraint has significant influence on the status variation of two-oligopolistic game operating systems no matter whether it is stable or chaotic. Besides, the new carbon emission regulation meets government supervision target and achieves the goal of being environment friendly by motivating the system to operate with lower carbon emission.

  17. Evaluation of reinitialization-free nonvolatile computer systems for energy-harvesting Internet of things applications

    NASA Astrophysics Data System (ADS)

    Onizawa, Naoya; Tamakoshi, Akira; Hanyu, Takahiro

    2017-08-01

    In this paper, reinitialization-free nonvolatile computer systems are designed and evaluated for energy-harvesting Internet of things (IoT) applications. In energy-harvesting applications, as power supplies generated from renewable power sources cause frequent power failures, data processed need to be backed up when power failures occur. Unless data are safely backed up before power supplies diminish, reinitialization processes are required when power supplies are recovered, which results in low energy efficiencies and slow operations. Using nonvolatile devices in processors and memories can realize a faster backup than a conventional volatile computer system, leading to a higher energy efficiency. To evaluate the energy efficiency upon frequent power failures, typical computer systems including processors and memories are designed using 90 nm CMOS or CMOS/magnetic tunnel junction (MTJ) technologies. Nonvolatile ARM Cortex-M0 processors with 4 kB MRAMs are evaluated using a typical computing benchmark program, Dhrystone, which shows a few order-of-magnitude reductions in energy in comparison with a volatile processor with SRAM.

  18. An alternative to sneakernet

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Orrell, S.; Ralstin, S.

    1992-04-01

    Many computer security plans specify that only a small percentage of the data processed will be classified. Thus, the bulk of the data on secure systems must be unclassified. Secure limited access sites operating approved classified computing systems sometimes also have a system ostensibly containing only unclassified files but operating within the secure environment. That system could be networked or otherwise connected to a classified system(s) in order that both be able to use common resources for file storage or computing power. Such a system must operate under the same rules as the secure classified systems. It is in themore » nature of unclassified files that they either came from, or will eventually migrate to, a non-secure system. Today, unclassified files are exported from systems within the secure environment typically by loading transport media and carrying them to an open system. Import of unclassified files is handled similarly. This media transport process, sometimes referred to as sneaker net, often is manually logged and controlled only by administrative procedures. A comprehensive system for secure bi-directional transfer of unclassified files between secure and open environments has yet to be developed. Any such secure file transport system should be required to meet several stringent criteria. It is the purpose of this document to begin a definition of these criteria.« less

  19. An alternative to sneakernet

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Orrell, S.; Ralstin, S.

    1992-01-01

    Many computer security plans specify that only a small percentage of the data processed will be classified. Thus, the bulk of the data on secure systems must be unclassified. Secure limited access sites operating approved classified computing systems sometimes also have a system ostensibly containing only unclassified files but operating within the secure environment. That system could be networked or otherwise connected to a classified system(s) in order that both be able to use common resources for file storage or computing power. Such a system must operate under the same rules as the secure classified systems. It is in themore » nature of unclassified files that they either came from, or will eventually migrate to, a non-secure system. Today, unclassified files are exported from systems within the secure environment typically by loading transport media and carrying them to an open system. Import of unclassified files is handled similarly. This media transport process, sometimes referred to as sneaker net, often is manually logged and controlled only by administrative procedures. A comprehensive system for secure bi-directional transfer of unclassified files between secure and open environments has yet to be developed. Any such secure file transport system should be required to meet several stringent criteria. It is the purpose of this document to begin a definition of these criteria.« less

  20. Federal Aviation Regulations - National Aviation Regulations of Russia

    NASA Astrophysics Data System (ADS)

    Chernykh, O.; Bakiiev, M.

    2018-03-01

    Chinese Aerospace Engineering is currently developing cooperation with Russia on a wide-body airplane project that has directed the work towards better understanding of Russian airworthiness management system. The paper introduces national Aviation regulations of Russia, presents a comparison of them with worldwide recognized regulations, and highlights typical differences. They have been found to be: two general types of regulations used in Russia (Aviation Regulations and Federal Aviation Regulations), non-unified structure of regulations on Aircraft Operation management, various separate agencies responsible for regulation issuance instead of one national aviation authority, typical confusions in references. The paper also gives a list of effective Russian Regulations of both types.

  1. Advanced Stirling Convertor Control Unit Testing at NASA Glenn Research Center in the Radioisotope Power Systems System Integration Laboratory

    NASA Technical Reports Server (NTRS)

    Dugala, Gina M.; Taylor, Linda M.; Kussmaul, Michael; Casciani, Michael; Brown, Gregory; Wiser, Joel

    2017-01-01

    Future NASA missions could include establishing Lunar or Martian base camps, exploring Jupiters moons and travelling beyond where generating power from sunlight may be limited. Radioisotope Power Systems (RPS) provide a dependable power source for missions where inadequate sunlight or operational requirements make other power systems impractical. Over the past decade, NASA Glenn Research Center (GRC) has been supporting the development of RPSs. The Advanced Stirling Radioisotope Generator (ASRG) utilized a pair of Advanced Stirling Convertors (ASC). While flight development of the ASRG has been cancelled, much of the technology and hardware continued development and testing to guide future activities. Specifically, a controller for the convertor(s) is an integral part of a Stirling-based RPS. For the ASRG design, the controller maintains stable operation of the convertors, regulates the alternating current produced by the linear alternator of the convertor, provides a specified direct current output voltage for the spacecraft, synchronizes the piston motion of the two convertors in order to minimize vibration as well as manage and maintain operation with a stable piston amplitude and hot end temperature. It not only provides power to the spacecraft but also must regulate convertor operation to avoid damage to internal components and maintain safe thermal conditions after fueling. Lockheed Martin Coherent Technologies has designed, developed and tested an Engineering Development Unit (EDU) Advanced Stirling Convertor Control Unit (ACU) to support this effort. GRC used the ACU EDU as part of its non-nuclear representation of a RPS which also consists of a pair of Dual Advanced Stirling Convertor Simulator (DASCS), and associated support equipment to perform a test in the Radioisotope Power Systems System Integration Laboratory (RSIL). The RSIL was designed and built to evaluate hardware utilizing RPS technology. The RSIL provides insight into the electrical interactions between as many as 3 radioisotope power generators, associated control strategies, and typical electric system loads. The first phase of testing included a DASCS which was developed by Johns Hopkins UniversityApplied Physics Laboratory and simulates the operation and electrical behavior of a pair of ASCs in real time via a combination of hardware and software. Testing included the following spacecraft electrical energy storage configurations: capacitive, battery, and supercapacitor. Testing of the DASCS and ACU in each energy storage configuration included simulation of a typical mission profile, and transient voltage and current data during load turn-on/turn-off. Testing for these devices also included the initiation of several system faults such as short circuits, electrical bus over-voltage, under-voltage and a dead bus recovery to restore normal power operations. The goal of this testing was to verify operation of the ACU(s) when connected to a spacecraft electrical bus.

  2. Ecological analysis of a typical farm-scale biogas plant in China

    NASA Astrophysics Data System (ADS)

    Duan, Na; Lin, Cong; Wang, Pingzhi; Meng, Jing; Chen, Hui; Li, Xue

    2014-09-01

    The aim of this work was to present the common anaerobic digestion technologies in a typical farm-scale biogas plant in China. The comprehensive benefits of most biogas plants in China have not been fully assessed in past decades due to the limited information of the anaerobic digestion processes in biogas plants. This paper analyzed four key aspects (i.e., operational performance, nonrenewable energy (NE) savings, CO2 emission reduction (CER) and economic benefits (EBs)) of a typical farm-scale biogas plant, where beef cattle manure was used as feedstock. Owing to the monitoring system, stable operation was achieved with a hydraulic retention time of 18-22 days and a production of 876,000 m3 of biogas and 37,960 t of digestate fertilizer annually. This could substantially substitute for the nonrenewable energy and chemical fertilizer. The total amount of NE savings and CER derived from biogas and digestate fertilizer was 2.10×107 MJ (equivalent to 749.7 tce) and 9.71×105 kg, respectively. The EBs of the biogas plant was 6.84×105 CNY·yr-1 with an outputs-to-inputs ratio of 2.37. As a result, the monitoring system was proved to contribute significantly to the sound management and quantitative assessment of the biogas plant. Biogas plants could produce biogas which could be used to substitute fossil fuels and reduce the emissions of greenhouse gases, and digestate fertilizer is also an important bio-product.

  3. Ground Operations Autonomous Control and Integrated Health Management

    NASA Technical Reports Server (NTRS)

    Daniels, James

    2014-01-01

    The Ground Operations Autonomous Control and Integrated Health Management plays a key role for future ground operations at NASA. The software that is integrated into this system is called G2 2011 Gensym. The purpose of this report is to describe the Ground Operations Autonomous Control and Integrated Health Management with the use of the G2 Gensym software and the G2 NASA toolkit for Integrated System Health Management (ISHM) which is a Computer Software Configuration Item (CSCI). The decision rationale for the use of the G2 platform is to develop a modular capability for ISHM and AC. Toolkit modules include knowledge bases that are generic and can be applied in any application domain module. That way, there's a maximization of reusability, maintainability, and systematic evolution, portability, and scalability. Engine modules are generic, while application modules represent the domain model of a specific application. Furthermore, the NASA toolkit, developed since 2006 (a set of modules), makes it possible to create application domain models quickly, using pre-defined objects that include sensors and components libraries for typical fluid, electrical, and mechanical systems.

  4. Preliminary Validation of the Small Aircraft Transportation System Higher Volume Operations (SATS HVO) Concept

    NASA Technical Reports Server (NTRS)

    Williams, Daniel; Consiglio, Maria; Murdoch, Jennifer; Adams, Catherine

    2004-01-01

    This document provides a preliminary validation of the Small Aircraft Transportation System (SATS) Higher Volume Operations (HVO) concept for normal conditions. Initial results reveal that the concept provides reduced air traffic delays when compared to current operations without increasing pilot workload. Characteristic to the SATS HVO concept is the establishment of a newly defined area of flight operations called a Self-Controlled Area (SCA) which would be activated by air traffic control (ATC) around designated non-towered, non-radar airports. During periods of poor visibility, SATS pilots would take responsibility for separation assurance between their aircraft and other similarly equipped aircraft in the SCA. Using onboard equipment and simple instrument flight procedures, they would then be better able to approach and land at the airport or depart from it. This concept would also require a new, ground-based automation system, typically located at the airport that would provide appropriate sequencing information to the arriving aircraft. Further validation of the SATS HVO concept is required and is the subject of ongoing research and subsequent publications.

  5. ADAMS: AIRLAB data management system user's guide

    NASA Technical Reports Server (NTRS)

    Conrad, C. L.; Ingogly, W. F.; Lauterbach, L. A.

    1986-01-01

    The AIRLAB Data Management System (ADAMS) is an online environment that supports research at NASA's AIRLAB. ADAMS provides an easy to use interactive interface that eases the task of documenting and managing information about experiments and improves communication among project members. Data managed by ADAMS includes information about experiments, data sets produced, software and hardware available in AIRLAB as well as that used in a particular experiment, and an on-line engineer's notebook. The User's Guide provides an overview of the ADAMS system as well as details of the operations available within ADAMS. A tutorial section takes the user step-by-step through a typical ADAMS session. ADAMS runs under the VAX/VMS operating system and uses the ORACLE database management system and DEC/FMS (the Forms Management System). ADAMS can be run from any VAX connected via DECnet to the ORACLE host VAX. The ADAMS system is designed for simplicity, so interactions within the underlying data management system and communications network are hidden from the user.

  6. Key technology research of HILS based on real-time operating system

    NASA Astrophysics Data System (ADS)

    Wang, Fankai; Lu, Huiming; Liu, Che

    2018-03-01

    In order to solve the problems that the long development cycle of traditional simulation and digital simulation doesn't have the characteristics of real time, this paper designed a HILS(Hardware In the Loop Simulation) system based on the real-time operating platform xPC. This system solved the communication problems between HMI and Simulink models through the MATLAB engine interface, and realized the functions of system setting, offline simulation, model compiling and downloading, etc. Using xPC application interface and integrating the TeeChart ActiveX chart component to realize the monitoring function of real-time target application; Each functional block in the system is encapsulated in the form of DLL, and the data interaction between modules was realized by MySQL database technology. When the HILS system runs, search the address of the online xPC target by means of the Ping command, to establish the Tcp/IP communication between the two machines. The technical effectiveness of the developed system is verified through the typical power station control system.

  7. A fuzzy Petri-net-based mode identification algorithm for fault diagnosis of complex systems

    NASA Astrophysics Data System (ADS)

    Propes, Nicholas C.; Vachtsevanos, George

    2003-08-01

    Complex dynamical systems such as aircraft, manufacturing systems, chillers, motor vehicles, submarines, etc. exhibit continuous and event-driven dynamics. These systems undergo several discrete operating modes from startup to shutdown. For example, a certain shipboard system may be operating at half load or full load or may be at start-up or shutdown. Of particular interest are extreme or "shock" operating conditions, which tend to severely impact fault diagnosis or the progression of a fault leading to a failure. Fault conditions are strongly dependent on the operating mode. Therefore, it is essential that in any diagnostic/prognostic architecture, the operating mode be identified as accurately as possible so that such functions as feature extraction, diagnostics, prognostics, etc. can be correlated with the predominant operating conditions. This paper introduces a mode identification methodology that incorporates both time- and event-driven information about the process. A fuzzy Petri net is used to represent the possible successive mode transitions and to detect events from processed sensor signals signifying a mode change. The operating mode is initialized and verified by analysis of the time-driven dynamics through a fuzzy logic classifier. An evidence combiner module is used to combine the results from both the fuzzy Petri net and the fuzzy logic classifier to determine the mode. Unlike most event-driven mode identifiers, this architecture will provide automatic mode initialization through the fuzzy logic classifier and robustness through the combining of evidence of the two algorithms. The mode identification methodology is applied to an AC Plant typically found as a component of a shipboard system.

  8. Charge scheduling of an energy storage system under time-of-use pricing and a demand charge.

    PubMed

    Yoon, Yourim; Kim, Yong-Hyuk

    2014-01-01

    A real-coded genetic algorithm is used to schedule the charging of an energy storage system (ESS), operated in tandem with renewable power by an electricity consumer who is subject to time-of-use pricing and a demand charge. Simulations based on load and generation profiles of typical residential customers show that an ESS scheduled by our algorithm can reduce electricity costs by approximately 17%, compared to a system without an ESS and by 8% compared to a scheduling algorithm based on net power.

  9. Lignocellulosic crop supply chains (eg, Miscanthus, switchgrass, reed canary grass, rye, giant reed, etc.) Chapter 12 of "Biomass Supply Chains for Bioenergy and Biorefining"

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roni, Mohammad S.; Cafferty, Kara G.; Hess, J. Richard

    This chapter provides an overview of lignocellulosic crop supply chains such as Miscanthus, switch grass, reed canary grass, rye, and giant reed by outlining typical logistic operations in support of a liquid biofuel market. We present two strategies for managing feedstocks within the biomass supply system: (1) the conventional bale feedstock supply system and (2) the advanced supply system concept. Finally, we discuss feedstock blending and integrated landscape management as innovative improvements to the lignocellulosic crop supply chain.

  10. Charge Scheduling of an Energy Storage System under Time-of-Use Pricing and a Demand Charge

    PubMed Central

    Yoon, Yourim

    2014-01-01

    A real-coded genetic algorithm is used to schedule the charging of an energy storage system (ESS), operated in tandem with renewable power by an electricity consumer who is subject to time-of-use pricing and a demand charge. Simulations based on load and generation profiles of typical residential customers show that an ESS scheduled by our algorithm can reduce electricity costs by approximately 17%, compared to a system without an ESS and by 8% compared to a scheduling algorithm based on net power. PMID:25197720

  11. The instrumental principles of MST radars and incoherent scatter radars and the configuration of radar system hardware

    NASA Technical Reports Server (NTRS)

    Roettger, Juergen

    1989-01-01

    The principle of pulse modulation used in the case of coherent scatter radars (MST radars) is discussed. Coherent detection and the corresponding system configuration is delineated. Antenna requirements and design are outlined and the phase-coherent transmitter/receiver system is described. Transmit/receive duplexers, transmitters, receivers, and quadrature detectors are explained. The radar controller, integrator, decoder and correlator design as well as the data transfer and the control and monitoring by the host computer are delineated. Typical operation parameters of some well-known radars are summarized.

  12. Microwave systems applications in deep space telecommunications and navigation - Space Exploration Initiative architectures

    NASA Technical Reports Server (NTRS)

    Hall, Justin R.; Hastrup, Rolf C.; Bell, David J.

    1992-01-01

    The general support requirements of a typical SEI mission set, along with the mission operations objectives and related telecommunications, navigation, and information management (TNIM) support infrastructure options are described. Responsive system architectures and designs are proposed, including a Mars orbiting communications relay satellite system and a Mars-centered navigation capability for servicing all Mars missions. With the TNIM architecture as a basis, key elements of the microwave link design are proposed. The needed new technologies which enable these designs are identified, and current maturity is assessed.

  13. Microwave systems applications in deep space telecommunications and navigation - Space Exploration Initiative architectures

    NASA Astrophysics Data System (ADS)

    Hall, Justin R.; Hastrup, Rolf C.; Bell, David J.

    1992-06-01

    The general support requirements of a typical SEI mission set, along with the mission operations objectives and related telecommunications, navigation, and information management (TNIM) support infrastructure options are described. Responsive system architectures and designs are proposed, including a Mars orbiting communications relay satellite system and a Mars-centered navigation capability for servicing all Mars missions. With the TNIM architecture as a basis, key elements of the microwave link design are proposed. The needed new technologies which enable these designs are identified, and current maturity is assessed.

  14. Hybrid estimation of complex systems.

    PubMed

    Hofbaur, Michael W; Williams, Brian C

    2004-10-01

    Modern automated systems evolve both continuously and discretely, and hence require estimation techniques that go well beyond the capability of a typical Kalman Filter. Multiple model (MM) estimation schemes track these system evolutions by applying a bank of filters, one for each discrete system mode. Modern systems, however, are often composed of many interconnected components that exhibit rich behaviors, due to complex, system-wide interactions. Modeling these systems leads to complex stochastic hybrid models that capture the large number of operational and failure modes. This large number of modes makes a typical MM estimation approach infeasible for online estimation. This paper analyzes the shortcomings of MM estimation, and then introduces an alternative hybrid estimation scheme that can efficiently estimate complex systems with large number of modes. It utilizes search techniques from the toolkit of model-based reasoning in order to focus the estimation on the set of most likely modes, without missing symptoms that might be hidden amongst the system noise. In addition, we present a novel approach to hybrid estimation in the presence of unknown behavioral modes. This leads to an overall hybrid estimation scheme for complex systems that robustly copes with unforeseen situations in a degraded, but fail-safe manner.

  15. In-Pile Qualification of the Fast-Neutron-Detection-System

    NASA Astrophysics Data System (ADS)

    Fourmentel, D.; Villard, J.-F.; Destouches, C.; Geslot, B.; Vermeeren, L.; Schyns, M.

    2018-01-01

    In order to improve measurement techniques for neutron flux assessment, a unique system for online measurement of fast neutron flux has been developed and recently qualified in-pile by the French Alternative Energies and Atomic Energy Commission (CEA) in cooperation with the Belgian Nuclear Research Centre (SCK•ECEN). The Fast-Neutron-Detection-System (FNDS) has been designed to monitor accurately high-energy neutrons flux (E > 1 MeV) in typical Material Testing Reactor conditions, where overall neutron flux level can be as high as 1015 n.cm-2.s-1 and is generally dominated by thermal neutrons. Moreover, the neutron flux is coupled with a high gamma flux of typically a few 1015 γ.cm-2.s-1, which can be highly disturbing for the online measurement of neutron fluxes. The patented FNDS system is based on two detectors, including a miniature fission chamber with a special fissile material presenting an energy threshold near 1 MeV, which can be 242Pu for MTR conditions. Fission chambers are operated in Campbelling mode for an efficient gamma rejection. FNDS also includes a specific software that processes measurements to compensate online the fissile material depletion and to adjust the sensitivity of the detectors, in order to produce a precise evaluation of both thermal and fast neutron flux even after long term irradiation. FNDS has been validated through a two-step experimental program. A first set of tests was performed at BR2 reactor operated by SCK•CEN in Belgium. Then a second test was recently completed at ISIS reactor operated by CEA in France. FNDS proved its ability to measure online the fast neutron flux with an overall accuracy better than 5%.

  16. High-integrity databases for helicopter operations

    NASA Astrophysics Data System (ADS)

    Pschierer, Christian; Schiefele, Jens; Lüthy, Juerg

    2009-05-01

    Helicopter Emergency Medical Service missions (HEMS) impose a high workload on pilots due to short preparation time, operations in low level flight, and landings in unknown areas. The research project PILAS, a cooperation between Eurocopter, Diehl Avionics, DLR, EADS, Euro Telematik, ESG, Jeppesen, the Universities of Darmstadt and Munich, and funded by the German government, approached this problem by researching a pilot assistance system which supports the pilots during all phases of flight. The databases required for the specified helicopter missions include different types of topological and cultural data for graphical display on the SVS system, AMDB data for operations at airports and helipads, and navigation data for IFR segments. The most critical databases for the PILAS system however are highly accurate terrain and obstacle data. While RTCA DO-276 specifies high accuracies and integrities only for the areas around airports, HEMS helicopters typically operate outside of these controlled areas and thus require highly reliable terrain and obstacle data for their designated response areas. This data has been generated by a LIDAR scan of the specified test region. Obstacles have been extracted into a vector format. This paper includes a short overview of the complete PILAS system and then focus on the generation of the required high quality databases.

  17. Man-equivalent telepresence through four fingered human-like hand system

    NASA Technical Reports Server (NTRS)

    Jau, Bruno M.

    1992-01-01

    The author describes a newly developed mechanical hand system. The robot hand is in human-like configuration with a thumb and three fingers, a palm, a wrist, and the forearm in which the hand and wrist actuators are located. Each finger and the wrist has its own active electromechanical compliance system, allowing the joint drive trains to be stiffened or loosened. This mechanism imitates the human muscle dual function of positioner and stiffness controller. This is essential for soft grappling operations. The hand-wrist assembly has 16 finger joints, three wrist joints, and five compliance mechanisms for a total of 24 degrees of freedom. The strength of the hand is roughly half that of the human hand and its size is comparable to a male hand. The hand is controlled through an exoskeleton glove controller that the operator wears. The glove provides the man-machine interface in telemanipulation control mode: it senses the operator's inputs to guide the mechanical hand in hybrid position and force control. The hand system is intended for dexterous manipulations in structured environments. Typical applications will include work in hostile environment such as space operations and nuclear power plants.

  18. Construction of In-house Databases in a Corporation

    NASA Astrophysics Data System (ADS)

    Sano, Hikomaro

    This report outlines “Repoir” (Report information retrieval) system of Toyota Central R & D Laboratories, Inc. as an example of in-house information retrieval system. The online system was designed to process in-house technical reports with the aid of a mainframe computer and has been in operation since 1979. Its features are multiple use of the information for technical and managerial purposes and simplicity in indexing and data input. The total number of descriptors, specially selected for the system, was minimized for ease of indexing. The report also describes the input items, processing flow and typical outputs in kanji letters.

  19. Managing Space System Faults: Coalescing NASA's Views

    NASA Technical Reports Server (NTRS)

    Muirhead, Brian; Fesq, Lorraine

    2012-01-01

    Managing faults and their resultant failures is a fundamental and critical part of developing and operating aerospace systems. Yet, recent studies have shown that the engineering "discipline" required to manage faults is not widely recognized nor evenly practiced within the NASA community. Attempts to simply name this discipline in recent years has been fraught with controversy among members of the Integrated Systems Health Management (ISHM), Fault Management (FM), Fault Protection (FP), Hazard Analysis (HA), and Aborts communities. Approaches to managing space system faults typically are unique to each organization, with little commonality in the architectures, processes and practices across the industry.

  20. Typical event horizons in AdS/CFT

    NASA Astrophysics Data System (ADS)

    Avery, Steven G.; Lowe, David A.

    2016-01-01

    We consider the construction of local bulk operators in a black hole background dual to a pure state in conformal field theory. The properties of these operators in a microcanonical ensemble are studied. It has been argued in the literature that typical states in such an ensemble contain firewalls, or otherwise singular horizons. We argue this conclusion can be avoided with a proper definition of the interior operators.

  1. The Behavioralist Goes to School: Leveraging Behavioral Economics to Improve Educational Performance. NBER Working Paper No. 18165

    ERIC Educational Resources Information Center

    Levitt, Steven D.; List, John A.; Neckermann, Susanne; Sadoff, Sally

    2012-01-01

    A long line of research on behavioral economics has established the importance of factors that are typically absent from the standard economic framework: reference dependent preferences, hyperbolic preferences, and the value placed on non-financial rewards. To date, these insights have had little impact on the way the educational system operates.…

  2. LABORATORY PROCESS CONTROLLER USING NATURAL LANGUAGE COMMANDS FROM A PERSONAL COMPUTER

    NASA Technical Reports Server (NTRS)

    Will, H.

    1994-01-01

    The complex environment of the typical research laboratory requires flexible process control. This program provides natural language process control from an IBM PC or compatible machine. Sometimes process control schedules require changes frequently, even several times per day. These changes may include adding, deleting, and rearranging steps in a process. This program sets up a process control system that can either run without an operator, or be run by workers with limited programming skills. The software system includes three programs. Two of the programs, written in FORTRAN77, record data and control research processes. The third program, written in Pascal, generates the FORTRAN subroutines used by the other two programs to identify the user commands with the user-written device drivers. The software system also includes an input data set which allows the user to define the user commands which are to be executed by the computer. To set the system up the operator writes device driver routines for all of the controlled devices. Once set up, this system requires only an input file containing natural language command lines which tell the system what to do and when to do it. The operator can make up custom commands for operating and taking data from external research equipment at any time of the day or night without the operator in attendance. This process control system requires a personal computer operating under MS-DOS with suitable hardware interfaces to all controlled devices. The program requires a FORTRAN77 compiler and user-written device drivers. This program was developed in 1989 and has a memory requirement of about 62 Kbytes.

  3. Data fusion for automated non-destructive inspection

    PubMed Central

    Brierley, N.; Tippetts, T.; Cawley, P.

    2014-01-01

    In industrial non-destructive evaluation (NDE), it is increasingly common for data acquisition to be automated, driving a recent substantial increase in the availability of data. The collected data need to be analysed, typically necessitating the painstaking manual labour of a skilled operator. Moreover, in automated NDE a region of an inspected component is typically interrogated several times, be it within a single data channel due to multiple probe passes, across several channels acquired simultaneously or over the course of repeated inspections. The systematic combination of these diverse readings is recognized to offer an opportunity to improve the reliability of the inspection, but is not achievable in a manual analysis. This paper describes a data-fusion-based software framework providing a partial automation capability, allowing component regions to be declared defect-free to a very high probability while readily identifying defect indications, thereby optimizing the use of the operator's time. The system is designed to applicable to a wide range of automated NDE scenarios, but the processing is exemplified using the industrial ultrasonic immersion inspection of aerospace turbine discs. Results obtained for industrial datasets demonstrate an orders-of-magnitude reduction in false-call rates, for a given probability of detection, achievable using the developed software system. PMID:25002828

  4. An integrated eVoucher mechanism for flexible loads in real-time retail electricity market

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Tao; Pourbabak, Hajir; Liang, Zheming

    This study proposes an innovative economic and engineering coupled framework to encourage typical flexible loads or load aggregators, such as parking lots with high penetration of electric vehicles, to participate directly in the real-time retail electricity market based on an integrated eVoucher program. The integrated eVoucher program entails demand side management, either in the positive or negative direction, following a popular customer-centric design principle. It provides the extra economic benefit to end-users and reduces the risk associated with the wholesale electricity market for electric distribution companies (EDCs), meanwhile improving the potential resilience of the distribution networks with consideration for frequencymore » deviations. When implemented, the eVoucher program allows typical flexible loads, such as electric vehicle parking lots, to adjust their demand and consumption behavior according to financial incentives from an EDC. A distribution system operator (DSO) works as a third party to hasten negotiations between such parking lots and EDCs, as well as the price clearing process. Eventually, both electricity retailers and power system operators will benefit from the active participation of the flexible loads and energy customers.« less

  5. An integrated eVoucher mechanism for flexible loads in real-time retail electricity market

    DOE PAGES

    Chen, Tao; Pourbabak, Hajir; Liang, Zheming; ...

    2017-01-26

    This study proposes an innovative economic and engineering coupled framework to encourage typical flexible loads or load aggregators, such as parking lots with high penetration of electric vehicles, to participate directly in the real-time retail electricity market based on an integrated eVoucher program. The integrated eVoucher program entails demand side management, either in the positive or negative direction, following a popular customer-centric design principle. It provides the extra economic benefit to end-users and reduces the risk associated with the wholesale electricity market for electric distribution companies (EDCs), meanwhile improving the potential resilience of the distribution networks with consideration for frequencymore » deviations. When implemented, the eVoucher program allows typical flexible loads, such as electric vehicle parking lots, to adjust their demand and consumption behavior according to financial incentives from an EDC. A distribution system operator (DSO) works as a third party to hasten negotiations between such parking lots and EDCs, as well as the price clearing process. Eventually, both electricity retailers and power system operators will benefit from the active participation of the flexible loads and energy customers.« less

  6. A low-cost touchscreen operant chamber using a Raspberry Pi™.

    PubMed

    O'Leary, James D; O'Leary, Olivia F; Cryan, John F; Nolan, Yvonne M

    2018-03-08

    The development of a touchscreen platform for rodent testing has allowed new methods for cognitive testing that have been back-translated from clinical assessment tools to preclinical animal models. This platform for cognitive assessment in animals is comparable to human neuropsychological tests such as those employed by the Cambridge Neuropsychological Test Automated Battery, and thus has several advantages compared to the standard maze apparatuses typically employed in rodent behavioral testing, such as the Morris water maze. These include improved translation of preclinical models, as well as high throughput and the automation of animal testing. However, these systems are relatively expensive, which can impede progress for researchers with limited resources. Here we describe a low-cost touchscreen operant chamber based on the single-board computer, Raspberry Pi TM , which is capable of performing tasks similar to those supported by current state-of-the-art systems. This system provides an affordable alternative for cognitive testing in a touchscreen operant paradigm for researchers with limited funding.

  7. Medium Deep High Temperature Heat Storage

    NASA Astrophysics Data System (ADS)

    Bär, Kristian; Rühaak, Wolfram; Schulte, Daniel; Welsch, Bastian; Chauhan, Swarup; Homuth, Sebastian; Sass, Ingo

    2015-04-01

    Heating of buildings requires more than 25 % of the total end energy consumption in Germany. Shallow geothermal systems for indirect use as well as shallow geothermal heat storage systems like aquifer thermal energy storage (ATES) or borehole thermal energy storage (BTES) typically provide low exergy heat. The temperature levels and ranges typically require a coupling with heat pumps. By storing hot water from solar panels or thermal power stations with temperatures of up to 110 °C a medium deep high temperature heat storage (MDHTS) can be operated on relatively high temperature levels of more than 45 °C. Storage depths of 500 m to 1,500 m below surface avoid conflicts with groundwater use for drinking water or other purposes. Permeability is typically also decreasing with greater depth; especially in the crystalline basement therefore conduction becomes the dominant heat transport process. Solar-thermal charging of a MDHTS is a very beneficial option for supplying heat in urban and rural systems. Feasibility and design criteria of different system configurations (depth, distance and number of BHE) are discussed. One system is designed to store and supply heat (300 kW) for an office building. The required boreholes are located in granodioritic bedrock. Resulting from this setup several challenges have to be addressed. The drilling and completion has to be planned carefully under consideration of the geological and tectonical situation at the specific site.

  8. Natural interaction for unmanned systems

    NASA Astrophysics Data System (ADS)

    Taylor, Glenn; Purman, Ben; Schermerhorn, Paul; Garcia-Sampedro, Guillermo; Lanting, Matt; Quist, Michael; Kawatsu, Chris

    2015-05-01

    Military unmanned systems today are typically controlled by two methods: tele-operation or menu-based, search-andclick interfaces. Both approaches require the operator's constant vigilance: tele-operation requires constant input to drive the vehicle inch by inch; a menu-based interface requires eyes on the screen in order to search through alternatives and select the right menu item. In both cases, operators spend most of their time and attention driving and minding the unmanned systems rather than on being a warfighter. With these approaches, the platform and interface become more of a burden than a benefit. The availability of inexpensive sensor systems in products such as Microsoft Kinect™ or Nintendo Wii™ has resulted in new ways of interacting with computing systems, but new sensors alone are not enough. Developing useful and usable human-system interfaces requires understanding users and interaction in context: not just what new sensors afford in terms of interaction, but how users want to interact with these systems, for what purpose, and how sensors might enable those interactions. Additionally, the system needs to reliably make sense of the user's inputs in context, translate that interpretation into commands for the unmanned system, and give feedback to the user. In this paper, we describe an example natural interface for unmanned systems, called the Smart Interaction Device (SID), which enables natural two-way interaction with unmanned systems including the use of speech, sketch, and gestures. We present a few example applications SID to different types of unmanned systems and different kinds of interactions.

  9. A low frequency RFI monitoring system

    NASA Astrophysics Data System (ADS)

    Amiri, Shahram; Shankar, N. Udaya; Girish, B. S.; Somashekar, R.

    Radio frequency interference (RFI) is a growing problem for research in radio astronomy particularly at wavelengths longer than 2m. For satisfactory operation of a radio telescope, several bands have been protected for radio astronomy observations by the International Telecommunication Union. Since the radiation from cosmic sources are typically 40 to 100 dB below the emission from services operating in unprotected bands, often the out-of-band emission limits the sensitivity of astronomical observations. Moreover, several radio spectral emissions from cosmic sources are present in the frequency range outside the allocated band for radio astronomy. Thus monitoring of RFI is essential before building a receiver system for low frequency radio astronomy. We describe the design and development of an RFI monitoring system operating in the frequency band 30 to 100 MHz. This was designed keeping in view our proposal to extend the frequency of operation of GMRT down to 40 MHz. The monitor is a PC based spectrometer recording the voltage output of a receiver connected to an antenna, capable of digitizing the low frequency RF directly with an 8 bit ADC and sampling bandwidths up to 16 MHz. The system can operate continuously in almost real-time with a loss of only 2% of data. Here we will present the systems design aspects and the results of RFI monitoring carried out at the Raman Research Institute, Bangalore and at the GMRT site in Khodad.

  10. Neural net controller for inlet pressure control of rocket engine testing

    NASA Technical Reports Server (NTRS)

    Trevino, Luis C.

    1994-01-01

    Many dynamic systems operate in select operating regions, each exhibiting characteristic modes of behavior. It is traditional to employ standard adjustable gain proportional-integral-derivative (PID) loops in such systems where no apriori model information is available. However, for controlling inlet pressure for rocket engine testing, problems in fine tuning, disturbance accommodation, and control gains for new profile operating regions (for research and development) are typically encountered. Because of the capability of capturing I/O peculiarities, using NETS, a back propagation trained neural network is specified. For select operating regions, the neural network controller is simulated to be as robust as the PID controller. For a comparative analysis, the higher order moment neural array (HOMNA) method is used to specify a second neural controller by extracting critical exemplars from the I/O data set. Furthermore, using the critical exemplars from the HOMNA method, a third neural controller is developed using NETS back propagation algorithm. All controllers are benchmarked against each other.

  11. Analysis of an operator-differential model for magnetostrictive energy harvesting

    NASA Astrophysics Data System (ADS)

    Davino, D.; Krejčí, P.; Pimenov, A.; Rachinskii, D.; Visone, C.

    2016-10-01

    We present a model of, and analysis of an optimization problem for, a magnetostrictive harvesting device which converts mechanical energy of the repetitive process such as vibrations of the smart material to electrical energy that is then supplied to an electric load. The model combines a lumped differential equation for a simple electronic circuit with an operator model for the complex constitutive law of the magnetostrictive material. The operator based on the formalism of the phenomenological Preisach model describes nonlinear saturation effects and hysteresis losses typical of magnetostrictive materials in a thermodynamically consistent fashion. We prove well-posedness of the full operator-differential system and establish global asymptotic stability of the periodic regime under periodic mechanical forcing that represents mechanical vibrations due to varying environmental conditions. Then we show the existence of an optimal solution for the problem of maximization of the output power with respect to a set of controllable parameters (for the periodically forced system). Analytical results are illustrated with numerical examples of an optimal solution.

  12. Security warning method and system for worker safety during live-line working

    NASA Astrophysics Data System (ADS)

    Jiang, Chilong; Zou, Dehua; Long, Chenhai; Yang, Miao; Zhang, Zhanlong; Mei, Daojun

    2017-09-01

    Live-line working is an essential part in the operations in an electric power system. Live-line workers are required to wear shielding clothing. Shielding clothing, however, acts as a closed environment for the human body. Working in a closed environment for a long time can change the physiological responses of the body and even endanger personal safety. According to the typical conditions of live-line working, this study synthesizes environmental factors related to shielding clothing and the physiological factors of the body to establish the heart rate variability index RMSSD and the comprehensive security warning index SWI. On the basis of both indices, this paper proposes a security warning method and system for the safety live-line workers. The system can monitor the real-time status of workers during live-line working to provide security warning and facilitate the effective safety supervision by the live operation center during actual live-line working.

  13. Fixation of operating point and measurement of turn on characteristics of IGBT F4-75R06W1E3

    NASA Astrophysics Data System (ADS)

    Haseena, A.; Subhash Joshi T., G.; George, Saly

    2018-05-01

    For the proficient operation of the Power electronic circuit, signal level performance of power electronic devices are very important. For getting good signal level characteristics, fixing operating point is very critical. Device deviates from the typical characteristics given in the datasheet due to the presence of stray components in the circuit lay out. Fixation of operating point of typical silicon IGBT and its turn on characteristics is discussed in this paper.

  14. Improving P2P live-content delivery using SVC

    NASA Astrophysics Data System (ADS)

    Schierl, T.; Sánchez, Y.; Hellge, C.; Wiegand, T.

    2010-07-01

    P2P content delivery techniques for video transmission have become of high interest in the last years. With the involvement of client into the delivery process, P2P approaches can significantly reduce the load and cost on servers, especially for popular services. However, previous studies have already pointed out the unreliability of P2P-based live streaming approaches due to peer churn, where peers may ungracefully leave the P2P infrastructure, typically an overlay networks. Peers ungracefully leaving the system cause connection losses in the overlay, which require repair operations. During such repair operations, which typically take a few roundtrip times, no data is received from the lost connection. While taking low delay for fast-channel tune-in into account as a key feature for broadcast-like streaming applications, the P2P live streaming approach can only rely on a certain media pre-buffer during such repair operations. In this paper, multi-tree based Application Layer Multicast as a P2P overlay technique for live streaming is considered. The use of Flow Forwarding (FF), a.k.a. Retransmission, or Forward Error Correction (FEC) in combination with Scalable video Coding (SVC) for concealment during overlay repair operations is shown. Furthermore the benefits of using SVC over the use of AVC single layer transmission are presented.

  15. Implementation of EPICS based vacuum control system for variable energy cyclotron centre, Kolkata

    NASA Astrophysics Data System (ADS)

    Roy, Anindya; Bhole, R. B.; Nandy, Partha P.; Yadav, R. C.; Pal, Sarbajit; Roy, Amitava

    2015-03-01

    The vacuum system of the Room Temperature (K = 130) Cyclotron of Variable Energy Cyclotron Centre is comprised of vacuum systems of main machine and Beam Transport System. The vacuum control system is upgraded to a PLC based Automated system from the initial relay based Manual system. The supervisory control of the vacuum system is implemented in Experimental Physics and Industrial Control System (EPICS). An EPICS embedded ARM based vacuum gauge controller is developed to mitigate the requirement of vendor specific gauge controller for gauges and also for seamless integration of the gauge controllers with the control system. A set of MS-Windows ActiveX components with embedded EPICS Channel Access interface are developed to build operator interfaces with less complex programming and to incorporate typical Windows feature, e.g., user authentication, file handling, better fonts, colors, mouse actions etc. into the operator interfaces. The control parameters, monitoring parameters, and system interlocks of the system are archived in MySQL based EPICS MySQL Archiver developed indigenously. In this paper, we describe the architecture, the implementation details, and the performance of the system.

  16. Implementation of EPICS based vacuum control system for variable energy cyclotron centre, Kolkata.

    PubMed

    Roy, Anindya; Bhole, R B; Nandy, Partha P; Yadav, R C; Pal, Sarbajit; Roy, Amitava

    2015-03-01

    The vacuum system of the Room Temperature (K = 130) Cyclotron of Variable Energy Cyclotron Centre is comprised of vacuum systems of main machine and Beam Transport System. The vacuum control system is upgraded to a PLC based Automated system from the initial relay based Manual system. The supervisory control of the vacuum system is implemented in Experimental Physics and Industrial Control System (EPICS). An EPICS embedded ARM based vacuum gauge controller is developed to mitigate the requirement of vendor specific gauge controller for gauges and also for seamless integration of the gauge controllers with the control system. A set of MS-Windows ActiveX components with embedded EPICS Channel Access interface are developed to build operator interfaces with less complex programming and to incorporate typical Windows feature, e.g., user authentication, file handling, better fonts, colors, mouse actions etc. into the operator interfaces. The control parameters, monitoring parameters, and system interlocks of the system are archived in MySQL based EPICS MySQL Archiver developed indigenously. In this paper, we describe the architecture, the implementation details, and the performance of the system.

  17. OMA analysis of a launcher under operational conditions with time-varying properties

    NASA Astrophysics Data System (ADS)

    Eugeni, M.; Coppotelli, G.; Mastroddi, F.; Gaudenzi, P.; Muller, S.; Troclet, B.

    2018-05-01

    The objective of this paper is the investigation of the capability of operational modal analysis approaches to deal with time-varying system in the low-frequency domain. Specifically, the problem of the identification of the dynamic properties of a launch vehicle, working under actual operative conditions, is studied. Two OMA methods are considered: the frequency-domain decomposition and the Hilbert transform method. It is demonstrated that both OMA approaches allow the time-tracking of modal parameters, namely, natural frequencies, damping ratios, and mode shapes, from the response accelerations only recorded during actual flight tests of a launcher characterized by a large mass variation due to fuel burning typical of the first phase of the flight.

  18. Airborne Transducer Integrity under Operational Environment for Structural Health Monitoring

    PubMed Central

    Salmanpour, Mohammad Saleh; Sharif Khodaei, Zahra; Aliabadi, Mohammad Hossein

    2016-01-01

    This paper investigates the robustness of permanently mounted transducers used in airborne structural health monitoring systems, when exposed to the operational environment. Typical airliners operate in a range of conditions, hence, structural health monitoring (SHM) transducer robustness and integrity must be demonstrated for these environments. A set of extreme temperature, altitude and vibration environment test profiles are developed using the existing Radio Technical Commission for Aeronautics (RTCA)/DO-160 test methods. Commercially available transducers and manufactured versions bonded to carbon fibre reinforced polymer (CFRP) composite materials are tested. It was found that the DuraAct transducer is robust to environmental conditions tested, while the other transducer types degrade under the same conditions. PMID:27973450

  19. The design of an irradiator for the continuous processing of liquid latex

    NASA Astrophysics Data System (ADS)

    Reuter, O.; Langley, R.; Zn, Wan Manshol Bin W.

    1998-06-01

    This paper presents anew design concept for a gamma irradiation plant for the continuous processing of pumpable liquids. Typical applications of such a plant include ∗ the irradiation vulcanisation of natural latex rubber ∗ disinfection of municipal sewage sludge for agricultural use ∗ sterilisation of liquids in the pharmaceutical and cosmetics industries ∗ industrial processing of bulk liquids The authors describe the design and operation of the latex irradiator now operating on a small production scale in Malaysia and proposed developments. The design allows irradiation processing to be carried out under an inert or other gaseous environment. State-of-the-art computer control system ensures the fully automatic processing operation needed by industrial computers.

  20. Biofiltration for stormwater harvesting: Comparison of Campylobacter spp. and Escherichia coli removal under normal and challenging operational conditions

    NASA Astrophysics Data System (ADS)

    Chandrasena, G. I.; Deletic, A.; McCarthy, D. T.

    2016-06-01

    Knowledge of pathogen removal in stormwater biofilters (also known as stormwater bioretention systems or rain gardens) has predominately been determined using bacterial indicators, and the removal of reference pathogens in these systems has rarely been investigated. Furthermore, current understanding of indicator bacteria removal in these systems is largely built upon laboratory-scale work. This paper examines whether indicator organism removal from urban stormwater using biofilters in laboratory settings are representative of the removal of pathogens in field conditions, by studying the removal of Escherichia coli (a typical indicator microorganism) and Campylobacter spp. (a typical reference pathogen) from urban stormwater by two established field-scale biofilters. It was found that E. coli log reduction was higher than that of Campylobacter spp. in both biofilters, and that there was no correlation between E. coli and Campylobacter spp. log removal performance. This confirms that E. coli behaves significantly differently to this reference pathogen, reinforcing that single organisms should not be employed to understand faecal microorganism removal in urban stormwater treatment systems. The average reduction in E. coli from only one of the tested biofilters was able to meet the log reduction targets suggested in the current Australian stormwater harvesting guidelines for irrigating sports fields and golf courses. The difference in the performance of the two biofilters is likely a result of a number of design and operational factors; the most important being that the biofilter that did not meet the guidelines was tested using extremely high influent volumes and microbial concentrations, and long antecedent dry weather periods. As such, the E. coli removal performances identified in this study confirmed laboratory findings that inflow concentration and antecedent dry period impact overall microbial removal. In general, this paper emphasizes the need for the validation of stormwater harvesting systems, namely, the testing of treatment systems under challenging operational conditions using multiple indicators and reference pathogens.

  1. Performance and safety aspects of the XV-15 tilt rotor research aircraft

    NASA Technical Reports Server (NTRS)

    Wernicke, K. G.

    1977-01-01

    Aircraft performance is presented illustrating the flexibility and capability of the XV-15 to conduct its planned proof-of-concept flight research in the areas of dynamics, stability and control, and aerodynamics. Additionally, the aircraft will demonstrate mission-type performance typical of future operational aircraft. The aircraft design is described and discussed with emphasis on the safety and fail-operate features of the aircraft and its systems. Two or more levels of redundancy are provided in the dc and ac electrical systems, hydraulics, conversion, flaps, landing gear extension, SCAS, and force-feel. RPM is maintained by a hydro-electrical blade pitch governor that consists of a primary and standby governor with a cockpit wheel control for manual backup. The two engines are interconnected for operation on a single engine. In the event of total loss of power, the aircraft can enter autorotation starting from the airplane as well as the helicopter mode of flight.

  2. Operating wind turbines in strong wind conditions by using feedforward-feedback control

    NASA Astrophysics Data System (ADS)

    Feng, Ju; Sheng, Wen Zhong

    2014-12-01

    Due to the increasing penetration of wind energy into power systems, it becomes critical to reduce the impact of wind energy on the stability and reliability of the overall power system. In precedent works, Shen and his co-workers developed a re-designed operation schema to run wind turbines in strong wind conditions based on optimization method and standard PI feedback control, which can prevent the typical shutdowns of wind turbines when reaching the cut-out wind speed. In this paper, a new control strategy combing the standard PI feedback control with feedforward controls using the optimization results is investigated for the operation of variable-speed pitch-regulated wind turbines in strong wind conditions. It is shown that the developed control strategy is capable of smoothening the power output of wind turbine and avoiding its sudden showdown at high wind speeds without worsening the loads on rotor and blades.

  3. Learning gestures for customizable human-computer interaction in the operating room.

    PubMed

    Schwarz, Loren Arthur; Bigdelou, Ali; Navab, Nassir

    2011-01-01

    Interaction with computer-based medical devices in the operating room is often challenging for surgeons due to sterility requirements and the complexity of interventional procedures. Typical solutions, such as delegating the interaction task to an assistant, can be inefficient. We propose a method for gesture-based interaction in the operating room that surgeons can customize to personal requirements and interventional workflow. Given training examples for each desired gesture, our system learns low-dimensional manifold models that enable recognizing gestures and tracking particular poses for fine-grained control. By capturing the surgeon's movements with a few wireless body-worn inertial sensors, we avoid issues of camera-based systems, such as sensitivity to illumination and occlusions. Using a component-based framework implementation, our method can easily be connected to different medical devices. Our experiments show that the approach is able to robustly recognize learned gestures and to distinguish these from other movements.

  4. Electronics for Deep Space Cryogenic Applications

    NASA Technical Reports Server (NTRS)

    Patterson, R. L.; Hammond, A.; Dickman, J. E.; Gerber, S. S.; Elbuluk, M. E.; Overton, E.

    2002-01-01

    Deep space probes and planetary exploration missions require electrical power management and control systems that are capable of efficient and reliable operation in very cold temperature environments. Typically, in deep space probes, heating elements are used to keep the spacecraft electronics near room temperature. The utilization of power electronics designed for and operated at low temperature will contribute to increasing efficiency and improving reliability of space power systems. At NASA Glenn Research Center, commercial-off-the-shelf devices as well as developed components are being investigated for potential use at low temperatures. These devices include semiconductor switching devices, magnetics, and capacitors. Integrated circuits such as digital-to-analog and analog-to-digital converters, DC/DC converters, operational amplifiers, and oscillators are also being evaluated. In this paper, results will be presented for selected analog-to-digital converters, oscillators, DC/DC converters, and pulse width modulation (PWM) controllers.

  5. M-DAS: System for multispectral data analysis. [in Saginaw Bay, Michigan

    NASA Technical Reports Server (NTRS)

    Johnson, R. H.

    1975-01-01

    M-DAS is a ground data processing system designed for analysis of multispectral data. M-DAS operates on multispectral data from LANDSAT, S-192, M2S and other sources in CCT form. Interactive training by operator-investigators using a variable cursor on a color display was used to derive optimum processing coefficients and data on cluster separability. An advanced multivariate normal-maximum likelihood processing algorithm was used to produce output in various formats: color-coded film images, geometrically corrected map overlays, moving displays of scene sections, coverage tabulations and categorized CCTs. The analysis procedure for M-DAS involves three phases: (1) screening and training, (2) analysis of training data to compute performance predictions and processing coefficients, and (3) processing of multichannel input data into categorized results. Typical M-DAS applications involve iteration between each of these phases. A series of photographs of the M-DAS display are used to illustrate M-DAS operation.

  6. Containment of Ebola and Polio in Low-Resource Settings Using Principles and Practices of Emergency Operations Centers in Public Health.

    PubMed

    Shuaib, Faisal M; Musa, Philip F; Muhammad, Ado; Musa, Emmanuel; Nyanti, Sara; Mkanda, Pascal; Mahoney, Frank; Corkum, Melissa; Durojaiye, Modupeoluwa; Nganda, Gatei Wa; Sani, Samuel Usman; Dieng, Boubacar; Banda, Richard; Ali Pate, Muhammad

    Emergency Operations Centers (EOCs) have been credited with driving the recent successes achieved in the Nigeria polio eradication program. EOC concept was also applied to the Ebola virus disease outbreak and is applicable to a range of other public health emergencies. This article outlines the structure and functionality of a typical EOC in addressing public health emergencies in low-resource settings. It ascribes the successful polio and Ebola responses in Nigeria to several factors including political commitment, population willingness to engage, accountability, and operational and strategic changes made by the effective use of an EOC and Incident Management System. In countries such as Nigeria where the central or federal government does not directly hold states accountable, the EOC provides a means to improve performance and use data to hold health workers accountable by using innovative technologies such as geographic position systems, dashboards, and scorecards.

  7. Metallurgical Plant Optimization Through the use of Flowsheet Simulation Modelling

    NASA Astrophysics Data System (ADS)

    Kennedy, Mark William

    Modern metallurgical plants typically have complex flowsheets and operate on a continuous basis. Real time interactions within such processes can be complex and the impacts of streams such as recycles on process efficiency and stability can be highly unexpected prior to actual operation. Current desktop computing power, combined with state-of-the-art flowsheet simulation software like Metsim, allow for thorough analysis of designs to explore the interaction between operating rate, heat and mass balances and in particular the potential negative impact of recycles. Using plant information systems, it is possible to combine real plant data with simple steady state models, using dynamic data exchange links to allow for near real time de-bottlenecking of operations. Accurate analytical results can also be combined with detailed unit operations models to allow for feed-forward model-based-control. This paper will explore some examples of the application of Metsim to real world engineering and plant operational issues.

  8. The NOνA Module Factory Quality Assurance System

    NASA Astrophysics Data System (ADS)

    Smith, Alex; the NOνA Collaboration

    The NOνA experiment will measure neutrino oscillations using a long-baseline beam, a ∼220-ton near detector and a ∼14-kiloton far detector. Production of ∼12500 modules to build these detectors is an industrial scale operation requiring careful quality assurance to meet the stringent technical specifications. Unlike a typical industrial operation, this project will use primarily a part time labor force of ∼200 University of Minnesota undergraduate students managed by a small team of full time employees. The quality assurance system is involved in nearly every aspect of the production: assembly, scheduling, training, payroll, materials, machine maintenance, test data, and safety compliance. The quality assurance data collected during the assembly process allows us to quickly identify and correct any problems that arise.

  9. Real time UNIX in embedded control -- A case study within context of LynxOS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kleines, H.; Zwoll, K.

    1996-02-01

    Intelligent communication controllers for a layered protocol profile are a typical example of an embedded control application, where the classical approach for the software development is based on a proprietary real-time operating system kernel under which the individual layers are implemented as tasks. Based on the exemplary implementation of a derivative of MAP 3.0, an unusual and innovative approach is presented, where the protocol software is implemented under the UNIX-compatible real-time operating system LynxOS. The overall design of the embedded control application is presented under a more general view and economical implications as well as aspects of the development environmentmore » and performance are discussed.« less

  10. The operation of a single-sided linear induction motor with squirrel-cage and solid-steel reaction rails

    NASA Astrophysics Data System (ADS)

    Eastham, A. R.; Katz, R. M.

    1980-09-01

    Two test programs have been conducted to evaluate the performance of a single-sided linear induction motor with a squirrel-cage reaction rail and with a solid steel reaction rail. A 1.73-m-long six-pole stator interacted with the rails mounted on the rim of a 7.6-m-diam wheel. A 64-channel data acquisition system allowed tests to be performed over a wide range of operating conditions at speeds up to 20 m/sec. Typical test results which compare and contrast the mechanical, electrical and magnetic behavior of the SLIMs are presented. The test data are being used to assess the SLIM as an integrated suspension/propulsion system and for other transportation applications.

  11. Discharge measurements using a broad-band acoustic Doppler current profiler

    USGS Publications Warehouse

    Simpson, Michael R.

    2002-01-01

    The measurement of unsteady or tidally affected flow has been a problem faced by hydrologists for many years. Dynamic discharge conditions impose an unreasonably short time constraint on conventional current-meter discharge-measurement methods, which typically last a minimum of 1 hour. Tidally affected discharge can change more than 100 percent during a 10-minute period. Over the years, the U.S. Geological Survey (USGS) has developed moving-boat discharge-measurement techniques that are much faster but less accurate than conventional methods. For a bibliography of conventional moving-boat publications, see Simpson and Oltmann (1993, page 17). The advent of the acoustic Doppler current profiler (ADCP) made possible the development of a discharge-measurement system capable of more accurately measuring unsteady or tidally affected flow. In most cases, an ADCP discharge-measurement system is dramatically faster than conventional discharge-measurement systems, and has comparable or better accuracy. In many cases, an ADCP discharge-measurement system is the only choice for use at a particular measurement site. ADCP systems are not yet ?turnkey;? they are still under development, and for proper operation, require a significant amount of operator training. Not only must the operator have a rudimentary knowledge of acoustic physics, but also a working knowledge of ADCP operation, the manufacturer's discharge-measurement software, and boating techniques and safety.

  12. The research of automatic speed control algorithm based on Green CBTC

    NASA Astrophysics Data System (ADS)

    Lin, Ying; Xiong, Hui; Wang, Xiaoliang; Wu, Youyou; Zhang, Chuanqi

    2017-06-01

    Automatic speed control algorithm is one of the core technologies of train operation control system. It’s a typical multi-objective optimization control algorithm, which achieve the train speed control for timing, comfort, energy-saving and precise parking. At present, the train speed automatic control technology is widely used in metro and inter-city railways. It has been found that the automatic speed control technology can effectively reduce the driver’s intensity, and improve the operation quality. However, the current used algorithm is poor at energy-saving, even not as good as manual driving. In order to solve the problem of energy-saving, this paper proposes an automatic speed control algorithm based on Green CBTC system. Based on the Green CBTC system, the algorithm can adjust the operation status of the train to improve the efficient using rate of regenerative braking feedback energy while ensuring the timing, comfort and precise parking targets. Due to the reason, the energy-using of Green CBTC system is lower than traditional CBTC system. The simulation results show that the algorithm based on Green CBTC system can effectively reduce the energy-using due to the improvement of the using rate of regenerative braking feedback energy.

  13. Energy Efficient Operation of Ammonia Refrigeration Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mohammed, Abdul Qayyum; Wenning, Thomas J; Sever, Franc

    Ammonia refrigeration systems typically offer many energy efficiency opportunities because of their size and complexity. This paper develops a model for simulating single-stage ammonia refrigeration systems, describes common energy saving opportunities, and uses the model to quantify those opportunities. The simulation model uses data that are typically available during site visits to ammonia refrigeration plants and can be calibrated to actual consumption and performance data if available. Annual electricity consumption for a base-case ammonia refrigeration system is simulated. The model is then used to quantify energy savings for six specific energy efficiency opportunities; reduce refrigeration load, increase suction pressure, employmore » dual suction, decrease minimum head pressure set-point, increase evaporative condenser capacity, and reclaim heat. Methods and considerations for achieving each saving opportunity are discussed. The model captures synergistic effects that result when more than one component or parameter is changed. This methodology represents an effective method to model and quantify common energy saving opportunities in ammonia refrigeration systems. The results indicate the range of savings that might be expected from common energy efficiency opportunities.« less

  14. Ion extraction capabilities of two-grid accelerator systems. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Rovang, D. C.; Wilbur, P. J.

    1984-01-01

    An experimental investigation into the ion extraction capabilities of two-grid accelerator systems common to electrostatic ion thrusters is described. This work resulted in a large body of experimental data which facilitates the selection of the accelerator system geometries and operating parameters necessary to maximize the extracted ion current. Results suggest that the impingement-limited perveance is not dramatically affected by reductions in screen hole diameter to 0.5 mm. Impingement-limited performance is shown to depend most strongly on grid separation distance, accelerator hole diameter ratio, the discharge-to-total accelerating voltage ratio, and the net-to-total accelerating voltage ratio. Results obtained at small grid separation ratios suggest a new grid operating condition where high beam current per hole levels are achieved at a specified net accelerating voltage. It is shown that this operating condition is realized at an optimum ratio of net-to-total accelerating voltage ratio which is typically quite high. The apparatus developed for this study is also shown to be well suited measuring the electron backstreaming and electrical breakdown characteristics of two-grid accelerator systems.

  15. High voltage solar cell power generating system for regulated solar array development

    NASA Technical Reports Server (NTRS)

    Levy, E., Jr.; Hoffman, A. C.

    1973-01-01

    A laboratory solar power system regulated by on-panel switches has been delivered for operating high power (3 kw), high voltage (15,000 volt) loads (communication tubes, ion thrusters). The modular system consists of 26 solar arrays, each with an integral light source and cooling system. A typical array contains 2560 series-connected cells. Each light source consists of twenty 500 watt tungsten iodide lamps providing plus or minus 5 per cent uniformity at one solar constant. An array temperature of less than 40 C is achieved using an infrared filter, a water cooled plate, a vacuum hold-down system, and air flushing.

  16. Sex differences in the brain: implications for explaining autism.

    PubMed

    Baron-Cohen, Simon; Knickmeyer, Rebecca C; Belmonte, Matthew K

    2005-11-04

    Empathizing is the capacity to predict and to respond to the behavior of agents (usually people) by inferring their mental states and responding to these with an appropriate emotion. Systemizing is the capacity to predict and to respond to the behavior of nonagentive deterministic systems by analyzing input-operation-output relations and inferring the rules that govern such systems. At a population level, females are stronger empathizers and males are stronger systemizers. The "extreme male brain" theory posits that autism represents an extreme of the male pattern (impaired empathizing and enhanced systemizing). Here we suggest that specific aspects of autistic neuroanatomy may also be extremes of typical male neuroanatomy.

  17. Venturi vacuum systems for hypobaric chamber operations.

    PubMed

    Robinson, R; Swaby, G; Sutton, T; Fife, C; Powell, M; Butler, B D

    1997-11-01

    Physiological studies of the effects of high altitude on man often require the use of a hypobaric chamber to simulate the reduced ambient pressures. Typical "altitude" chambers in use today require complex mechanical vacuum systems to evacuate the chamber air, either directly or via reservoir system. Use of these pumps adds to the cost of both chamber procurement and maintenance, and service of these pumps requires trained support personnel and regular upkeep. In this report we describe use of venturi vacuum pumps to perform the function of mechanical vacuum pumps for human and experimental altitude chamber operations. Advantages of the venturi pumps include their relatively low procurement cost, small size and light weight, ease of installation and plumbing, lack of moving parts, and independence from electrical power sources, fossil fuels and lubricants. Conversion of three hyperbaric chambers to combined hyper/hypobaric use is described.

  18. 3D vision upgrade kit for TALON robot

    NASA Astrophysics Data System (ADS)

    Edmondson, Richard; Vaden, Justin; Hyatt, Brian; Morris, James; Pezzaniti, J. Larry; Chenault, David B.; Tchon, Joe; Barnidge, Tracy; Kaufman, Seth; Pettijohn, Brad

    2010-04-01

    In this paper, we report on the development of a 3D vision field upgrade kit for TALON robot consisting of a replacement flat panel stereoscopic display, and multiple stereo camera systems. An assessment of the system's use for robotic driving, manipulation, and surveillance operations was conducted. The 3D vision system was integrated onto a TALON IV Robot and Operator Control Unit (OCU) such that stock components could be electrically disconnected and removed, and upgrade components coupled directly to the mounting and electrical connections. A replacement display, replacement mast camera with zoom, auto-focus, and variable convergence, and a replacement gripper camera with fixed focus and zoom comprise the upgrade kit. The stereo mast camera allows for improved driving and situational awareness as well as scene survey. The stereo gripper camera allows for improved manipulation in typical TALON missions.

  19. Bathymetry of Clear Creek Reservoir, Chaffee County, Colorado, 2016

    USGS Publications Warehouse

    Kohn, Michael S.; Kinzel, Paul J.; Mohrmann, Jacob S.

    2017-03-06

    To better characterize the water supply capacity of Clear Creek Reservoir, Chaffee County, Colorado, the U.S. Geological Survey, in cooperation with the Pueblo Board of Water Works and Colorado Mountain College, carried out a bathymetry survey of Clear Creek Reservoir. A bathymetry map of the reservoir is presented here with the elevation-surface area and the elevation-volume relations. The bathymetry survey was carried out June 6–9, 2016, using a man-operated boat-mounted, multibeam echo sounder integrated with a Global Positioning System and a terrestrial survey using real-time kinematic Global Navigation Satellite Systems. The two collected datasets were merged and imported into geographic information system software. The equipment and methods used in this study allowed water-resource managers to maintain typical reservoir operations, eliminating the need to empty the reservoir to carry out the survey.

  20. Dual Arm Work Package performance estimates and telerobot task network simulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Draper, J.V.; Blair, L.M.

    1997-02-01

    This paper describes the methodology and results of a network simulation study of the Dual Arm Work Package (DAWP), to be employed for dismantling the Argonne National Laboratory CP-5 reactor. The development of the simulation model was based upon the results of a task analysis for the same system. This study was performed by the Oak Ridge National Laboratory (ORNL), in the Robotics and Process Systems Division. Funding was provided the US Department of Energy`s Office of Technology Development, Robotics Technology Development Program (RTDP). The RTDP is developing methods of computer simulation to estimate telerobotic system performance. Data were collectedmore » to provide point estimates to be used in a task network simulation model. Three skilled operators performed six repetitions of a pipe cutting task representative of typical teleoperation cutting operations.« less

  1. Typical event horizons in AdS/CFT

    DOE PAGES

    Avery, Steven G.; Lowe, David A.

    2016-01-14

    We consider the construction of local bulk operators in a black hole background dual to a pure state in conformal field theory. The properties of these operators in a microcanonical ensemble are studied. It has been argued in the literature that typical states in such an ensemble contain firewalls, or otherwise singular horizons. Here, we argue this conclusion can be avoided with a proper definition of the interior operators.

  2. Robonaut 2 and You: Specifying and Executing Complex Operations

    NASA Technical Reports Server (NTRS)

    Baker, William; Kingston, Zachary; Moll, Mark; Badger, Julia; Kavraki, Lydia

    2017-01-01

    Crew time is a precious resource due to the expense of trained human operators in space. Efficient caretaker robots could lessen the manual labor load required by frequent vehicular and life support maintenance tasks, freeing astronaut time for scientific mission objectives. Humanoid robots can fluidly exist alongside human counterparts due to their form, but they are complex and high-dimensional platforms. This paper describes a system that human operators can use to maneuver Robonaut 2 (R2), a dexterous humanoid robot developed by NASA to research co-robotic applications. The system includes a specification of constraints used to describe operations, and the supporting planning framework that solves constrained problems on R2 at interactive speeds. The paper is developed in reference to an illustrative, typical example of an operation R2 performs to highlight the challenges inherent to the problems R2 must face. Finally, the interface and planner is validated through a case-study using the guiding example on the physical robot in a simulated microgravity environment. This work reveals the complexity of employing humanoid caretaker robots and suggest solutions that are broadly applicable.

  3. Economic analysis of linking operating room scheduling and hospital material management information systems for just-in-time inventory control.

    PubMed

    Epstein, R H; Dexter, F

    2000-08-01

    Operating room (OR) scheduling information systems can decrease perioperative labor costs. Material management information systems can decrease perioperative inventory costs. We used computer simulation to investigate whether using the OR schedule to trigger purchasing of perioperative supplies is likely to further decrease perioperative inventory costs, as compared with using sophisticated, stand-alone material management inventory control. Although we designed the simulations to favor financially linking the information systems, we found that this strategy would be expected to decrease inventory costs substantively only for items of high price ($1000 each) and volume (>1000 used each year). Because expensive items typically have different models and sizes, each of which is used by a hospital less often than this, for almost all items there will be no benefit to making daily adjustments to the order volume based on booked cases. We conclude that, in a hospital with a sophisticated material management information system, OR managers will probably achieve greater cost reductions from focusing on negotiating less expensive purchase prices for items than on trying to link the OR information system with the hospital's material management information system to achieve just-in-time inventory control. In a hospital with a sophisticated material management information system, operating room managers will probably achieve greater cost reductions from focusing on negotiating less expensive purchase prices for items than on trying to link the operating room information system with the hospital's material management information system to achieve just-in-time inventory control.

  4. Technical assessment of maglev system concepts. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lever, J.H.

    1998-10-01

    The Government Maglev System Assessment Team operated from 1991 to 1993 as part of the National Maglev Initiative. They assessed the technical viability of four US Maglev system concepts, using the French TGV high speed train and the German TR07 Maglev system as assessment baselines. Maglev in general offers advantages that include high speed potential, excellent system control, high capacity, low energy consumption, low maintenance, modest land requirements, low operating costs, and ability to meet a variety of transportation missions. Further, the US Maglev concepts could provide superior performance to TR07 for similar cost or similar performance for less cost.more » They also could achieve both lower trip times and lower energy consumption along typical US routes. These advantages result generally from the use of large gap magnetic suspensions, more powerful linear synchronous motors and tilting vehicles. Innovative concepts for motors, guideways, suspension, and superconducting magnets all contribute to a potential for superior long term performance of US Maglev systems compared with TGV and TR07.« less

  5. Submillimetre wave imaging and security: imaging performance and prediction

    NASA Astrophysics Data System (ADS)

    Appleby, R.; Ferguson, S.

    2016-10-01

    Within the European Commission Seventh Framework Programme (FP7), CONSORTIS (Concealed Object Stand-Off Real-Time Imaging for Security) has designed and is fabricating a stand-off system operating at sub-millimetre wave frequencies for the detection of objects concealed on people. This system scans people as they walk by the sensor. This paper presents the top level system design which brings together both passive and active sensors to provide good performance. The passive system operates in two bands between 100 and 600GHz and is based on a cryogen free cooled focal plane array sensor whilst the active system is a solid-state 340GHz radar. A modified version of OpenFX was used for modelling the passive system. This model was recently modified to include realistic location-specific skin temperature and to accept animated characters wearing up to three layers of clothing that move dynamically, such as those typically found in cinematography. Targets under clothing have been modelled and the performance simulated. The strengths and weaknesses of this modelling approach are discussed.

  6. [A computer-aided image diagnosis and study system].

    PubMed

    Li, Zhangyong; Xie, Zhengxiang

    2004-08-01

    The revolution in information processing, particularly the digitizing of medicine, has changed the medical study, work and management. This paper reports a method to design a system for computer-aided image diagnosis and study. Combined with some good idea of graph-text system and picture archives communicate system (PACS), the system was realized and used for "prescription through computer", "managing images" and "reading images under computer and helping the diagnosis". Also typical examples were constructed in a database and used to teach the beginners. The system was developed by the visual developing tools based on object oriented programming (OOP) and was carried into operation on the Windows 9X platform. The system possesses friendly man-machine interface.

  7. Method of fabricating a uranium-bearing foil

    DOEpatents

    Gooch, Jackie G [Seymour, TN; DeMint, Amy L [Kingston, TN

    2012-04-24

    Methods of fabricating a uranium-bearing foil are described. The foil may be substantially pure uranium, or may be a uranium alloy such as a uranium-molybdenum alloy. The method typically includes a series of hot rolling operations on a cast plate material to form a thin sheet. These hot rolling operations are typically performed using a process where each pass reduces the thickness of the plate by a substantially constant percentage. The sheet is typically then annealed and then cooled. The process typically concludes with a series of cold rolling passes where each pass reduces the thickness of the plate by a substantially constant thickness amount to form the foil.

  8. Application of Morphological Segmentation to Leaking Defect Detection in Sewer Pipelines

    PubMed Central

    Su, Tung-Ching; Yang, Ming-Der

    2014-01-01

    As one of major underground pipelines, sewerage is an important infrastructure in any modern city. The most common problem occurring in sewerage is leaking, whose position and failure level is typically idengified through closed circuit television (CCTV) inspection in order to facilitate rehabilitation process. This paper proposes a novel method of computer vision, morphological segmentation based on edge detection (MSED), to assist inspectors in detecting pipeline defects in CCTV inspection images. In addition to MSED, other mathematical morphology-based image segmentation methods, including opening top-hat operation (OTHO) and closing bottom-hat operation (CBHO), were also applied to the defect detection in vitrified clay sewer pipelines. The CCTV inspection images of the sewer system in the 9th district, Taichung City, Taiwan were selected as the experimental materials. The segmentation results demonstrate that MSED and OTHO are useful for the detection of cracks and open joints, respectively, which are the typical leakage defects found in sewer pipelines. PMID:24841247

  9. Dust Plume Modeling at Fort Bliss: Move-Out Operations, Combat Training and Wind Erosion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chapman, Elaine G.; Rishel, Jeremy P.; Rutz, Frederick C.

    2006-09-29

    The potential for air-quality impacts from heavy mechanized vehicles operating in the training ranges and on the unpaved main supply routes at Fort Bliss was investigated. This report details efforts by the staff of Pacific Northwest National Laboratory for the Fort Bliss Directorate of Environment in this investigation. Dust emission and dispersion from typical activities, including move outs and combat training, occurring on the installation were simulated using the atmospheric modeling system DUSTRAN. Major assumptions associated with designing specific modeling scenarios are summarized, and results from the simulations are presented.

  10. RN, CIO: an executive informatics career.

    PubMed

    Staggers, Nancy; Lasome, Caterina E M

    2005-01-01

    The Chief Information Officer (CIO) position is a viable new career track for clinical informaticists. Nurses, especially informatics nurses, are uniquely positioned for the CIO role because of their operational knowledge of clinical processes, communication skills, systems thinking abilities, and knowledge about information structures and processes. This article describes essential knowledge and skills for the CIO executive position. Competencies not typical to nurses can be learned and developed, particularly strategic visioning and organizational finesse. This article concludes by describing career development steps toward the CIO position: leadership and management; healthcare operations; organizational finesse; and informatics knowledge, processes, methods, and structures.

  11. Managing Sustainable Demand-side Infrastructure for Power System Ancillary Services

    NASA Astrophysics Data System (ADS)

    Parkinson, Simon Christopher

    Widespread access to renewable electricity is seen as a viable method to mitigate carbon emissions, although problematic are the issues associated with the integration of the generation systems within current power system configurations. Wind power plants are the primary large-scale renewable generation technology applied globally, but display considerable short-term supply variability that is difficult to predict. Power systems are currently not designed to operate under these conditions, and results in the need to increase operating reserve in order to guarantee stability. Often, operating conventional generation as reserve is both technically and economically inefficient, which can overshadow positive benefits associated with renewable energy exploitation. The purpose of this thesis is to introduce and assess an alternative method of enhancing power system operations through the control of electric loads. In particular, this thesis focuses on managing highly-distributed sustainable demand-side infrastructure, in the form of heat pumps, electric vehicles, and electrolyzers, as dispatchable short-term energy balancing resources. The main contribution of the thesis is an optimal control strategy capable of simultaneously balancing grid- and demand-side objectives. The viability of the load control strategy is assessed through model-based simulations that explicitly track end-use functionality of responsive devices within a power systems analysis typically implemented to observe the effects of integrated wind energy systems. Results indicate that there is great potential for the proposed method to displace the need for increased reserve capacity in systems considering a high penetration of wind energy, thereby allowing conventional generation to operate more efficiently and avoid the need for possible capacity expansions.

  12. Applying the Theory of Constraints to a Base Civil Engineering Operations Branch

    DTIC Science & Technology

    1991-09-01

    Figure Page 1. Typical Work Order Processing . .......... 7 2. Typical Job Order Processing . .......... 8 3. Typical Simplified In-Service Work Plan for...Customers’ Customer Request Service Planning Unit Production] Control Center Material Control Scheduling CE Shops Figure 1.. Typical Work Order Processing 7

  13. Centrifugal compressor surge detecting method based on wavelet analysis of unsteady pressure fluctuations in typical stages

    NASA Astrophysics Data System (ADS)

    Izmaylov, R.; Lebedev, A.

    2015-08-01

    Centrifugal compressors are complex energy equipment. Automotive control and protection system should meet the requirements: of operation reliability and durability. In turbocompressors there are at least two dangerous areas: surge and rotating stall. Antisurge protecting systems usually use parametric or feature methods. As a rule industrial system are parametric. The main disadvantages of anti-surge parametric systems are difficulties in mass flow measurements in natural gas pipeline compressor. The principal idea of feature method is based on the experimental fact: as a rule just before the onset of surge rotating or precursor stall established in compressor. In this case the problem consists in detecting of unsteady pressure or velocity fluctuations characteristic signals. Wavelet analysis is the best method for detecting onset of rotating stall in spite of high level of spurious signals (rotating wakes, turbulence, etc.). This method is compatible with state of the art DSP systems of industrial control. Examples of wavelet analysis application for detecting onset of rotating stall in typical stages centrifugal compressor are presented. Experimental investigations include unsteady pressure measurement and sophisticated data acquisition system. Wavelet transforms used biorthogonal wavelets in Mathlab systems.

  14. 10 000-hr Cyclic Oxidation Behavior of 68 High-Temperature Co-, Fe-, and Ni- Base Alloys Evaluated at 982 deg. C (1800 deg. F)

    NASA Technical Reports Server (NTRS)

    Barrett, Charles A.

    1999-01-01

    Power systems with operating temperatures in the range of 815 to 982 C (1500 to 1800 F) frequently require alloys that can operate for long times at these temperatures. A critical requirement is that these alloys have adequate oxidation resistance. The alloys used in these power systems require thousands of hours of operating life with intermittent shutdown to room temperature. Intermittent power plant shutdowns, however, offer the possibility that the protective scale will tend to spall (i.e., crack and flake off) upon cooling, increasing the rate of oxidative attack in subsequent heating cycles. Thus, it is critical that candidate alloys be evaluated for cyclic oxidation behavior. It was determined that exposing test alloys to ten 1000-hr cycles in static air at 982 10 000-hr Cyclic Oxidation Behavior of 68 High-Temperature Co-, Fe-, and Ni-Base Alloys Evaluated at 982 C (1800 F) could give a reasonable simulation of long-time power plant operation. Iron- (Fe-), nickel- (Ni-), and cobalt- (Co-) based high-temperature alloys with sufficient chromium (Cr) and/or aluminum (Al) content can exhibit excellent oxidation resistance. The protective oxides formed by these classes of alloys are typically Cr2O3 and/or Al2O3, and are usually influenced by their Cr, or Cr and Al, content. Sixty-eight Co-, Fe-, and Ni-base high-temperature alloys, typical of those used at this temperature or higher, were used in this study. At the NASA Lewis Research Center, the alloys were tested and compared on the basis of their weight change as a function of time, x-ray diffraction of the protective scale composition, and the physical appearance of the exposed samples. Although final appearance and x-ray diffraction of the final scale products were two factors used to evaluate the oxidation resistance of each alloy, the main criterion was the oxidation kinetics inferred from the specific weight change versus time data. These data indicated a range of oxidation behavior including parabolic (typical of isothermal oxidation), paralinear, linear, and mixed-linear kinetics.

  15. Work Domain Analysis of a Predecessor Sodium-cooled Reactor as Baseline for AdvSMR Operational Concepts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ronald Farris; David Gertman; Jacques Hugo

    This report presents the results of the Work Domain Analysis for the Experimental Breeder Reactor (EBR-II). This is part of the phase of the research designed to incorporate Cognitive Work Analysis in the development of a framework for the formalization of an Operational Concept (OpsCon) for Advanced Small Modular Reactors (AdvSMRs). For a new AdvSMR design, information obtained through Cognitive Work Analysis, combined with human performance criteria, can and should be used in during the operational phase of a plant to assess the crew performance aspects associated with identified AdvSMR operational concepts. The main objective of this phase was tomore » develop an analytical and descriptive framework that will help systems and human factors engineers to understand the design and operational requirements of the emerging generation of small, advanced, multi-modular reactors. Using EBR-II as a predecessor to emerging sodium-cooled reactor designs required the application of a method suitable to the structured and systematic analysis of the plant to assist in identifying key features of the work associated with it and to clarify the operational and other constraints. The analysis included the identification and description of operating scenarios that were considered characteristic of this type of nuclear power plant. This is an invaluable aspect of Operational Concept development since it typically reveals aspects of future plant configurations that will have an impact on operations. These include, for example, the effect of core design, different coolants, reactor-to-power conversion unit ratios, modular plant layout, modular versus central control rooms, plant siting, and many more. Multi-modular plants in particular are expected to have a significant impact on overall OpsCon in general, and human performance in particular. To support unconventional modes of operation, the modern control room of a multi-module plant would typically require advanced HSIs that would provide sophisticated operational information visualization, coupled with adaptive automation schemes and operator support systems to reduce complexity. These all have to be mapped at some point to human performance requirements. The EBR-II results will be used as a baseline that will be extrapolated in the extended Cognitive Work Analysis phase to the analysis of a selected advanced sodium-cooled SMR design as a way to establish non-conventional operational concepts. The Work Domain Analysis results achieved during this phase have not only established an organizing and analytical framework for describing existing sociotechnical systems, but have also indicated that the method is particularly suited to the analysis of prospective and immature designs. The results of the EBR-II Work Domain Analysis have indicated that the methodology is scientifically sound and generalizable to any operating environment.« less

  16. Multivariate statistical monitoring as applied to clean-in-place (CIP) and steam-in-place (SIP) operations in biopharmaceutical manufacturing.

    PubMed

    Roy, Kevin; Undey, Cenk; Mistretta, Thomas; Naugle, Gregory; Sodhi, Manbir

    2014-01-01

    Multivariate statistical process monitoring (MSPM) is becoming increasingly utilized to further enhance process monitoring in the biopharmaceutical industry. MSPM can play a critical role when there are many measurements and these measurements are highly correlated, as is typical for many biopharmaceutical operations. Specifically, for processes such as cleaning-in-place (CIP) and steaming-in-place (SIP, also known as sterilization-in-place), control systems typically oversee the execution of the cycles, and verification of the outcome is based on offline assays. These offline assays add to delays and corrective actions may require additional setup times. Moreover, this conventional approach does not take interactive effects of process variables into account and cycle optimization opportunities as well as salient trends in the process may be missed. Therefore, more proactive and holistic online continued verification approaches are desirable. This article demonstrates the application of real-time MSPM to processes such as CIP and SIP with industrial examples. The proposed approach has significant potential for facilitating enhanced continuous verification, improved process understanding, abnormal situation detection, and predictive monitoring, as applied to CIP and SIP operations. © 2014 American Institute of Chemical Engineers.

  17. Research Needs for Human Factors

    DTIC Science & Technology

    1983-01-01

    their relative merits. Until such comparisons are made, practitioners will continue to advocate their own products without a basis for choice among ...judgments among a group of experts; (2) formulating questions for "experts in a way that is compatible with their mental structures or "cognitive...system* Typically the operators work in teams and control compute3, which in turn mediate information flow among various automatic components. Other

  18. Unified Behavior Framework for Reactive Robot Control in Real-Time Systems

    DTIC Science & Technology

    2007-03-01

    maintain coherent operation in concurrent programs by employing standard communication and synchronization patterns. Some typical ones are: semaphores ...through the semaphore . Signals, whether persistent or transient, are used to communicate between threads as a means of synchronizing their progress...tasks to be decomposed into collections of low-level primitive behaviors, Figure 2.b. This approach takes on the self- contradictory term, reactive

  19. An Analysis of Electrical Consumption at Representative Army Installations.

    DTIC Science & Technology

    1980-05-01

    can be done by analyzing and optimizing HVAC system and building operation. For example, if the minimum hourly usage (demand) of a typical bachelor...equipment. (Major candidates for scheduling are air-handler motors, chillers , air compressors, exhaust fans, exterior lights, hot water heaters, and hot...location: Thermostats Setpoint Measured Limiters Setback Area Temperature Temperature Yes No Yes No Are night setback thermostats recommended? Yes _ No

  20. TREE Simulation Facilities, Second Edition, Revision 2

    DTIC Science & Technology

    1979-01-01

    included radiation effects on propellants , ordnance, electronics and chemicals, vehicle shielding, neutron radiography , dosimetry, and health physics...Special Capabilities 2.11.10.1 Radiography Facility 2.11.10.2 Flexo-Rabbit System Support Capabilities 2.11.11.1 Staff 2.11.11.2 Electronics...5,400-MW pulsing operation (experimental dosimetry values for a typical core loading of 94 fuel elements). 2-156 2-46 ACPR radiography facility

  1. High Reliability Engine Control Demonstrated for Aircraft Engines

    NASA Technical Reports Server (NTRS)

    Guo, Ten-Huei

    1999-01-01

    For a dual redundant-control system, which is typical for short-haul aircraft, if a failure is detected in a control sensor, the engine control is transferred to a safety mode and an advisory is issued for immediate maintenance action to replace the failed sensor. The safety mode typically results in severely degraded engine performance. The goal of the High Reliability Engine Control (HREC) program was to demonstrate that the neural-network-based sensor validation technology can safely operate an engine by using the nominal closed-loop control during and after sensor failures. With this technology, engine performance could be maintained, and the sensor could be replaced as a conveniently scheduled maintenance action.

  2. Impact of Installation Faults on Heat Pump Performance

    DOE PAGES

    Hourahan, Glenn; Baxter, Van D.

    2015-01-01

    Numerous studies and surveys indicate that typically-installed HVAC equipment operate inefficiently and waste considerable energy due to varied installation errors (faults) such as improper refrigerant charge, incorrect airflow, oversized equipment, and leaky ducts. This article summarizes the results of a large United States (U.S.) experimental/analytical study (U.S. contribution to IEA HPP Annex 36) of the impact that different faults have on the performance of an air-source heat pump (ASHP) in a typical U.S. single-family house. It combines building effects, equipment effects, and climate effects in an evaluation of the faults impact on seasonal energy consumption through simulations of the house/ASHPmore » pump system.« less

  3. Affordable Freight Logistics Transport Information Management Optimisation and Asset Tracking Solution Using Smartphone GPS Capabilities

    NASA Astrophysics Data System (ADS)

    Muna, Joseph T.; Prescott, Kevin

    2011-08-01

    Traditionally, freight transport and telematics solutions that exploit the GPS capabilities of in- vehicle devices to provide innovative Location Based Services (LBS) including track and trace transport systems have been the preserve of a select cluster of transport operators and organisations with the financial resources to develop the requisite custom software and hardware on which they are deployed. The average cost of outfitting a typical transport vehicle or truck with the latest Intelligent Transport System (ITS) increases the cost of the vehicle by anything from a couple to several thousand Euros, depending on the complexity and completeness of the solution. Though this does not generally deter large fleet transport owners since they typically get Return on Investment (ROI) based on economies of scale, it presents a barrier for the smaller independent entities that constitute the majority of freight transport operators [1].The North Sea Freight Intelligent Transport Solution (NS FRITS), a project co-funded by the European Commission Interreg IVB North Sea Region Programme, aims to make acquisition of such transport solutions easier for those organisations that cannot afford the expensive, bespoke systems used by their larger competitors.The project addresses transport security threats by developing a system capable of informing major actors along the freight logistics supply chain, of changing circumstances within the region's major transport corridors and between transport modes. The project also addresses issues of freight volumes, inter-modality, congestion and eco-mobility [2].

  4. Detection of MAVs (Micro Aerial Vehicles) based on millimeter wave radar

    NASA Astrophysics Data System (ADS)

    Noetel, Denis; Johannes, Winfried; Caris, Michael; Hommes, Alexander; Stanko, Stephan

    2016-10-01

    In this paper we present two system approaches for perimeter surveillance with radar techniques focused on the detection of Micro Aerial Vehicles (MAVs). The main task of such radars is to detect movements of targets such as an individual or a vehicle approaching a facility. The systems typically cover a range of several hundred meters up to several kilometers. In particular, the capability of identifying Remotely Piloted Aircraft Systems (RPAS), which pose a growing threat on critical infrastructure areas, is of great importance nowadays. The low costs, the ease of handling and a considerable payload make them an excellent tool for unwanted surveillance or attacks. Most platforms can be equipped with all kind of sensors or, in the worst case, with destructive devices. A typical MAV is able to take off and land vertically, to hover, and in many cases to fly forward at high speed. Thus, it can reach all kinds of places in short time while the concealed operator of the MAV resides at a remote and riskless place.

  5. Comparative analysis on flexibility requirements of typical Cryogenic Transfer lines

    NASA Astrophysics Data System (ADS)

    Jadon, Mohit; Kumar, Uday; Choukekar, Ketan; Shah, Nitin; Sarkar, Biswanath

    2017-04-01

    The cryogenic systems and their applications; primarily in large Fusion devices, utilize multiple cryogen transfer lines of various sizes and complexities to transfer cryogenic fluids from plant to the various user/ applications. These transfer lines are composed of various critical sections i.e. tee section, elbows, flexible components etc. The mechanical sustainability (under failure circumstances) of these transfer lines are primary requirement for safe operation of the system and applications. The transfer lines need to be designed for multiple design constraints conditions like line layout, support locations and space restrictions. The transfer lines are subjected to single load and multiple load combinations, such as operational loads, seismic loads, leak in insulation vacuum loads etc. [1]. The analytical calculations and flexibility analysis using professional software are performed for the typical transfer lines without any flexible component, the results were analysed for functional and mechanical load conditions. The failure modes were identified along the critical sections. The same transfer line was then refurbished with the flexible components and analysed for failure modes. The flexible components provide additional flexibility to the transfer line system and make it safe. The results obtained from the analytical calculations were compared with those obtained from the flexibility analysis software calculations. The optimization of the flexible component’s size and selection was performed and components were selected to meet the design requirements as per code.

  6. Embedding human annoyance rate models in wireless smart sensors for assessing the influence of subway train-induced ambient vibration

    NASA Astrophysics Data System (ADS)

    Sun, Ke; Zhang, Wei; Ding, Huaping; Kim, Robin E.; Spencer, Billie F., Jr.

    2016-10-01

    The operation of subway trains induces ambient vibrations, which may cause annoyance and other adverse effects on humans, eventually leading to physical, physiological, and psychological problems. In this paper, the human annoyance rate (HAR) models, used to assess the human comfort under the subway train-induced ambient vibrations, were deduced and the calibration curves for 5 typical use circumstances were addressed. An autonomous measurement system, based on the Imote2, wireless smart sensor (WSS) platform, plus the SHM-H, high-sensitivity accelerometer board, was developed for the HAR assessment. The calibration curves were digitized and embedded in the computational core of the WSS unit. Experimental validation was conducted, using the developed system on a large underground reinforced concrete frame structure adjoining the subway station. The ambient acceleration of both basement floors was measured; the embedded computation was implemented and the HAR assessment results were wirelessly transmitted to the central server, all by the WSS unit. The HAR distributions of the testing areas were identified, and the extent to which both basements will be influenced by the close-up subway-train’s operation, in term of the 5 typical use circumstances, were quantitatively assessed. The potential of the WSS-based autonomous system for the fast environment impact assessment of the subway train-induced ambient vibration was well demonstrated.

  7. Automation technology for aerospace power management

    NASA Technical Reports Server (NTRS)

    Larsen, R. L.

    1982-01-01

    The growing size and complexity of spacecraft power systems coupled with limited space/ground communications necessitate increasingly automated onboard control systems. Research in computer science, particularly artificial intelligence has developed methods and techniques for constructing man-machine systems with problem-solving expertise in limited domains which may contribute to the automation of power systems. Since these systems perform tasks which are typically performed by human experts they have become known as Expert Systems. A review of the current state of the art in expert systems technology is presented, and potential applications in power systems management are considered. It is concluded that expert systems appear to have significant potential for improving the productivity of operations personnel in aerospace applications, and in automating the control of many aerospace systems.

  8. Recent advances in characterisation of subsonic axisymmetric nozzles

    NASA Astrophysics Data System (ADS)

    Tesař, Václav

    2018-06-01

    Nozzles are devices generating jets. They are widely used in fluidics and also in active control of flows past bodies. Being practically always a component of larger system, design and optimisation of the system needs characterisation of nozzle properties by an invariant quantity. Perhaps surprisingly, no suitable invariant has been so far introduced. This article surveys approaches to characterisation quantities and presents several examples of their typical use in systems such as parallel operation of two nozzles, matching a nozzle to its fluid supply source, apparent resistance increase in flows with pulsation, and the secondary invariants of a family of quasi-similar nozzles.

  9. Powertrain system for a hybrid electric vehicle

    DOEpatents

    Reed, Jr., Richard G.; Boberg, Evan S.; Lawrie, Robert E.; Castaing, Francois J.

    1999-08-31

    A hybrid electric powertrain system is provided including an electric motor/generator drivingly engaged with the drive shaft of a transmission. The electric is utilized for synchronizing the rotation of the drive shaft with the driven shaft during gear shift operations. In addition, a mild hybrid concept is provided which utilizes a smaller electric motor than typical hybrid powertrain systems. Because the electric motor is drivingly engaged with the drive shaft of the transmission, the electric motor/generator is driven at high speed even when the vehicle speed is low so that the electric motor/generator provides more efficient regeneration.

  10. Powertrain system for a hybrid electric vehicle

    DOEpatents

    Reed, R.G. Jr.; Boberg, E.S.; Lawrie, R.E.; Castaing, F.J.

    1999-08-31

    A hybrid electric powertrain system is provided including an electric motor/generator drivingly engaged with the drive shaft of a transmission. The electric is utilized for synchronizing the rotation of the drive shaft with the driven shaft during gear shift operations. In addition, a mild hybrid concept is provided which utilizes a smaller electric motor than typical hybrid powertrain systems. Because the electric motor is drivingly engaged with the drive shaft of the transmission, the electric motor/generator is driven at high speed even when the vehicle speed is low so that the electric motor/generator provides more efficient regeneration. 34 figs.

  11. Toward a Model-Based Approach for Flight System Fault Protection

    NASA Technical Reports Server (NTRS)

    Day, John; Meakin, Peter; Murray, Alex

    2012-01-01

    Use SysML/UML to describe the physical structure of the system This part of the model would be shared with other teams - FS Systems Engineering, Planning & Execution, V&V, Operations, etc., in an integrated model-based engineering environment Use the UML Profile mechanism, defining Stereotypes to precisely express the concepts of the FP domain This extends the UML/SysML languages to contain our FP concepts Use UML/SysML, along with our profile, to capture FP concepts and relationships in the model Generate typical FP engineering products (the FMECA, Fault Tree, MRD, V&V Matrices)

  12. The deployment of information systems and information technology in field hospitals.

    PubMed

    Crowe, Ian R J; Naguib, Raouf N G

    2010-01-01

    Information systems and related technologies continue to develop and have become an integral part of healthcare provision and hospital care in particular. Field hospitals typically operate in the most austere and difficult of conditions and have yet to fully exploit related technologies. This paper addresses those aspects of healthcare informatics, healthcare knowledge management and lean healthcare that can be applied to field hospitals, with a view to improving patient care. The aim is to provide a vision for the deployment of information systems and information technology in field hospitals, using the British Army's field hospital as a representative model.

  13. Data acquisition system for the Belle experiment

    NASA Astrophysics Data System (ADS)

    Nakao, M.; Yamauchi, M.; Suzuki, S. Y.; Itoh, R.; Fujii, H.

    2000-04-01

    We built a data acquisition system for the Belle experiment at the KEK B-factory. The system is designed to record the signals from the detectors at 500 Hz trigger rate with a less than 10% dead time fraction. A typical event size is 30 kbyte, which corresponds to a data transfer rate of 15 Mbyte/s. Main components are two kinds of detector readout systems, an event builder, an online computer farm and a data storage system. The system has been reliably in operation at the design performance for a half year. We have completed cosmic-ray data taking for 2.5 months and have started physics data taking on Jun. 1, 1999.

  14. Costing Information Services

    PubMed Central

    Lutz, Raymond P.

    1971-01-01

    Information centers are being established for many disciplines. For the medical profession, users can benefit directly from these centers by having information searched by medical library professionals and readily available. If the users of an information system are to share in the operating expenses, some equitable system of charges must be established. The numerous systems of establishing user charges are listed and discussed, with the advantages or disadvantages of each system explained. After the systems have been reviewed, alternative methods of establishing prices are presented along with a typical example of what these prices might be, ranging from $7.50 to $2.50 per request. The implementation of the cost system is outlined and certain philosophical questions are posed. PMID:5582090

  15. Optimized MCT IR-modules for high-performance imaging applications

    NASA Astrophysics Data System (ADS)

    Breiter, R.; Eich, D.; Figgemeier, H.; Lutz, H.; Wendler, J.; Rühlich, I.; Rutzinger, S.; Schallenberg, T.

    2014-06-01

    In today's typical military operations situational awareness is a key element for mission success. In contrast to what is known from conventional warfare with typical targets such as tanks, asymmetric scenarios now dominate military operations. These scenarios require improved identification capabilities, for example the assessment of threat levels posed by personnel targets. Also, it is vital to identify and reliably distinguish between combatants, non-combatants and friendly forces. To satisfy these requirements, high-definition (HD) large format systems are well suited due to their high spatial and thermal resolution combined with high contrast. Typical applications are sights for long-range surveillance, targeting and reconnaissance platforms as well as rotorcraft pilotage sight systems. In 2012 AIM presented first prototypes of large format detectors with 1280 × 1024 elements in a 15μm pitch for both spectral bands MWIR and LWIR. The modular design allows integration of different cooler types, like AIM's split linear coolers SX095 or SX040 or rotary integral types depending whatever fits best to the application. Large format FPAs have been fabricated using liquid phase epitaxy (LPE) or molecular beam epitaxy (MBE) grown MCT. To offer high resolution in a more compact configuration AIM started the development of a 1024 × 768 10μm pitch IRmodule. Keeping electro/optical performance is achieved by a higher specific charge handling capacity of the readout integrated circuit (ROIC) in a 0.18μm Si CMOS technology. The FPA size fits to a dewar cooler configuration used for 640 × 512 15μm pitch modules.

  16. Design of a smart, survivable sensor system for rapid transit applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hogan, J.R.; Mitchell, J.L.

    1994-08-01

    An application of smart sensor technology developed by Sandia National Laboratories has been proposed for real-time monitoring and tracking in the transportation industry. Its primary purpose is to reduce operating costs by improving preventative maintenance scheduling, reducing the number, severity and consequence of accidents and by reducing losses due to theft. The concept uses a strap-on sensor package, the Green Box, that can be attached to any vehicle. The Green Box is designed as a valued-added component, integrated into existing transportation industry systems and standards. The device, designed to provide advanced warning of component failures, would be capable of survivingmore » most typical accidents. In an accident, the system would send a distress signal notifying authorities of the location and condition of the cargo; permitting them to respond in the most effective manner. In addition, the Green Box is adaptable for use as a notification/locator system to enhance the security of operators and passengers for various modes of public transportation. The modular architecture which facilitates system integration in a number of different applications is discussed. A test plan for evaluating performance in both normal and abnormal operating and accident conditions is described.« less

  17. A dynamic vulnerability evaluation model to smart grid for the emergency response

    NASA Astrophysics Data System (ADS)

    Yu, Zhen; Wu, Xiaowei; Fang, Diange

    2018-01-01

    Smart grid shows more significant vulnerability to natural disasters and external destroy. According to the influence characteristics of important facilities suffered from typical kinds of natural disaster and external destroy, this paper built a vulnerability evaluation index system of important facilities in smart grid based on eight typical natural disasters, including three levels of static and dynamic indicators, totally forty indicators. Then a smart grid vulnerability evaluation method was proposed based on the index system, including determining the value range of each index, classifying the evaluation grade standard and giving the evaluation process and integrated index calculation rules. Using the proposed evaluation model, it can identify the most vulnerable parts of smart grid, and then help adopting targeted emergency response measures, developing emergency plans and increasing its capacity of disaster prevention and mitigation, which guarantee its safe and stable operation.

  18. Preliminary design for a Zero Gravity Test Facility (ZGTF). Volume 1: Technical

    NASA Technical Reports Server (NTRS)

    Germain, A.

    1981-01-01

    The functional requirements and best conceptual design of a test facility that simulates weightless operating conditions for a high gain antenna systems (HGAS), that will broadcast to the Tracking Data Relay Satellites were defined. The typical HGAS defined is mounted on a low Earth orbiting satellite, and consists of an antenna with a double gimbal pointing system mounted on a 13 foot long mast. Typically, the gimbals are driven by pulse modulated dc motors or stepper motors. These drivers produce torques on the mast, with jitter that excites the satellite and may cause disturbances to sensitive experiments. The dynamic properties of the antenna support structure (mast), including flexible mode characteristics were defined. The torque profile induced on the spacecraft by motion of the high gain antenna was estimated. Gain and phase margins of the servo control loop of the gimbal drive electronics was also verified.

  19. Real-time operating system timing jitter and its impact on motor control

    NASA Astrophysics Data System (ADS)

    Proctor, Frederick M.; Shackleford, William P.

    2001-12-01

    General-purpose microprocessors are increasingly being used for control applications due to their widespread availability and software support for non-control functions like networking and operator interfaces. Two classes of real-time operating systems (RTOS) exist for these systems. The traditional RTOS serves as the sole operating system, and provides all OS services. Examples include ETS, LynxOS, QNX, Windows CE and VxWorks. RTOS extensions add real-time scheduling capabilities to non-real-time OSes, and provide minimal services needed for the time-critical portions of an application. Examples include RTAI and RTL for Linux, and HyperKernel, OnTime and RTX for Windows NT. Timing jitter is an issue in these systems, due to hardware effects such as bus locking, caches and pipelines, and software effects from mutual exclusion resource locks, non-preemtible critical sections, disabled interrupts, and multiple code paths in the scheduler. Jitter is typically on the order of a microsecond to a few tens of microseconds for hard real-time operating systems, and ranges from milliseconds to seconds in the worst case for soft real-time operating systems. The question of its significance on the performance of a controller arises. Naturally, the smaller the scheduling period required for a control task, the more significant is the impact of timing jitter. Aside from this intuitive relationship is the greater significance of timing on open-loop control, such as for stepper motors, than for closed-loop control, such as for servo motors. Techniques for measuring timing jitter are discussed, and comparisons between various platforms are presented. Techniques to reduce jitter or mitigate its effects are presented. The impact of jitter on stepper motor control is analyzed.

  20. Preliminary evaluation of a space AMTEC power conversion system

    NASA Technical Reports Server (NTRS)

    Crowley, Christopher J.; Sievers, Robert K.

    1991-01-01

    As original evaluation of a space solar energy source coupled with Alkali Metal Thermoelectric Conversion (AMTEC) is presented here. This study indicates that an AMTEC system would have 30 percent of the mass of a photovoltaic system and 70 percent of the mass of a Stirling cycle system at the 35-kWe level of power generation modules typical of the baseline for the U.S. Space Station. The operating temperatures and sodium heat pipe components for solar receiver/TES hardware (currently being developed by NASA) integrate well with AMTEC power conversion. AMTEC is therefore an attractive alternative specifically for space solar power generation.

  1. Real-time simulations for automated rendezvous and capture

    NASA Technical Reports Server (NTRS)

    Cuseo, John A.

    1991-01-01

    Although the individual technologies for automated rendezvous and capture (AR&C) exist, they have not yet been integrated to produce a working system in the United States. Thus, real-time integrated systems simulations are critical to the development and pre-flight demonstration of an AR&C capability. Real-time simulations require a level of development more typical of a flight system compared to purely analytical methods, thus providing confidence in derived design concepts. This presentation will describe Martin Marietta's Space Operations Simulation (SOS) Laboratory, a state-of-the-art real-time simulation facility for AR&C, along with an implementation for the Satellite Servicer System (SSS) Program.

  2. An automated gas exchange tank for determining gas transfer velocities in natural seawater samples

    NASA Astrophysics Data System (ADS)

    Schneider-Zapp, K.; Salter, M. E.; Upstill-Goddard, R. C.

    2014-07-01

    In order to advance understanding of the role of seawater surfactants in the air-sea exchange of climatically active trace gases via suppression of the gas transfer velocity (kw), we constructed a fully automated, closed air-water gas exchange tank and coupled analytical system. The system allows water-side turbulence in the tank to be precisely controlled with an electronically operated baffle. Two coupled gas chromatographs and an integral equilibrator, connected to the tank in a continuous gas-tight system, allow temporal changes in the partial pressures of SF6, CH4 and N2O to be measured simultaneously in the tank water and headspace at multiple turbulence settings, during a typical experimental run of 3.25 h. PC software developed by the authors controls all operations and data acquisition, enabling the optimisation of experimental conditions with high reproducibility. The use of three gases allows three independent estimates of kw for each turbulence setting; these values are subsequently normalised to a constant Schmidt number for direct comparison. The normalised kw estimates show close agreement. Repeated experiments with Milli-Q water demonstrate a typical measurement accuracy of 4% for kw. Experiments with natural seawater show that the system clearly resolves the effects on kw of spatial and temporal trends in natural surfactant activity. The system is an effective tool with which to probe the relationships between kw, surfactant activity and biogeochemical indices of primary productivity, and should assist in providing valuable new insights into the air-sea gas exchange process.

  3. An automated gas exchange tank for determining gas transfer velocities in natural seawater samples

    NASA Astrophysics Data System (ADS)

    Schneider-Zapp, K.; Salter, M. E.; Upstill-Goddard, R. C.

    2014-02-01

    In order to advance understanding of the role of seawater surfactants in the air-sea exchange of climatically active trace gases via suppression of the gas transfer velocity (kw), we constructed a fully automated, closed air-water gas exchange tank and coupled analytical system. The system allows water-side turbulence in the tank to be precisely controlled with an electronically operated baffle. Two coupled gas chromatographs and an integral equilibrator, connected to the tank in a continuous gas-tight system, allow temporal changes in the partial pressures of SF6, CH4 and N2O to be measured simultaneously in the tank water and headspace at multiple turbulence settings, during a typical experimental run of 3.25 h. PC software developed by the authors controls all operations and data acquisition, enabling the optimisation of experimental conditions with high reproducibility. The use of three gases allows three independent estimates of kw for each turbulence setting; these values are subsequently normalised to a constant Schmidt number for direct comparison. The normalised kw estimates show close agreement. Repeated experiments with MilliQ water demonstrate a typical measurement accuracy of 4% for kw. Experiments with natural seawater show that the system clearly resolves the effects on kw of spatial and temporal trends in natural surfactant activity. The system is an effective tool with which to probe the relationships between kw, surfactant activity and biogeochemical indices of primary productivity, and should assist in providing valuable new insights into the air-sea gas exchange process.

  4. Model-Based Anomaly Detection for a Transparent Optical Transmission System

    NASA Astrophysics Data System (ADS)

    Bengtsson, Thomas; Salamon, Todd; Ho, Tin Kam; White, Christopher A.

    In this chapter, we present an approach for anomaly detection at the physical layer of networks where detailed knowledge about the devices and their operations is available. The approach combines physics-based process models with observational data models to characterize the uncertainties and derive the alarm decision rules. We formulate and apply three different methods based on this approach for a well-defined problem in optical network monitoring that features many typical challenges for this methodology. Specifically, we address the problem of monitoring optically transparent transmission systems that use dynamically controlled Raman amplification systems. We use models of amplifier physics together with statistical estimation to derive alarm decision rules and use these rules to automatically discriminate between measurement errors, anomalous losses, and pump failures. Our approach has led to an efficient tool for systematically detecting anomalies in the system behavior of a deployed network, where pro-active measures to address such anomalies are key to preventing unnecessary disturbances to the system's continuous operation.

  5. A CO trace gas detection system based on continuous wave DFB-QCL

    NASA Astrophysics Data System (ADS)

    Dang, Jingmin; Yu, Haiye; Sun, Yujing; Wang, Yiding

    2017-05-01

    A compact and mobile system was demonstrated for the detection of carbon monoxide (CO) at trace level. This system adopted a high-power, continuous wave (CW), distributed feedback quantum cascade laser (DFB-QCL) operating at ∼22 °C as excitation source. Wavelength modulation spectroscopy (WMS) as well as second harmonic detection was used to isolate complex, overlapping spectral absorption features typical of ambient pressures and to achieve excellent specificity and high detection sensitivity. For the selected P(11) absorption line of CO molecule, located at 2099.083 cm-1, a limit of detection (LoD) of 26 ppb by volume (ppbv) at atmospheric pressure was achieved with a 1 s acquisition time. Allan deviation analysis was performed to investigate the long term performance of the CO detection system, and a measurement precision of 3.4 ppbv was observed with an optimal integration time of approximate 114 s, which verified the reliable and robust operation of the developed system.

  6. ATTDES: An Expert System for Satellite Attitude Determination and Control. 2

    NASA Technical Reports Server (NTRS)

    Mackison, Donald L.; Gifford, Kevin

    1996-01-01

    The design, analysis, and flight operations of satellite attitude determintion and attitude control systems require extensive mathematical formulations, optimization studies, and computer simulation. This is best done by an analyst with extensive education and experience. The development of programs such as ATTDES permit the use of advanced techniques by those with less experience. Typical tasks include the mission analysis to select stabilization and damping schemes, attitude determination sensors and algorithms, and control system designs to meet program requirements. ATTDES is a system that includes all of these activities, including high fidelity orbit environment models that can be used for preliminary analysis, parameter selection, stabilization schemes, the development of estimators covariance analyses, and optimization, and can support ongoing orbit activities. The modification of existing simulations to model new configurations for these purposes can be an expensive, time consuming activity that becomes a pacing item in the development and operation of such new systems. The use of an integrated tool such as ATTDES significantly reduces the effort and time required for these tasks.

  7. Lessons Learned In Developing Multiple Distributed Planning Systems for the International Space Station

    NASA Technical Reports Server (NTRS)

    Maxwell, Theresa G.; McNair, Ann R. (Technical Monitor)

    2002-01-01

    The planning processes for the International Space Station (ISS) Program are quite complex. Detailed mission planning for ISS on-orbit operations is a distributed function. Pieces of the on-orbit plan are developed by multiple planning organizations, located around the world, based on their respective expertise and responsibilities. The "pieces" are then integrated to yield the final detailed plan that will be executed onboard the ISS. Previous space programs have not distributed the planning and scheduling functions to this extent. Major ISS planning organizations are currently located in the United States (at both the NASA Johnson Space Center (JSC) and NASA Marshall Space Flight Center (MSFC)), in Russia, in Europe, and in Japan. Software systems have been developed by each of these planning organizations to support their assigned planning and scheduling functions. Although there is some cooperative development and sharing of key software components, each planning system has been tailored to meet the unique requirements and operational environment of the facility in which it operates. However, all the systems must operate in a coordinated fashion in order to effectively and efficiently produce a single integrated plan of ISS operations, in accordance with the established planning processes. This paper addresses lessons learned during the development of these multiple distributed planning systems, from the perspective of the developer of one of the software systems. The lessons focus on the coordination required to allow the multiple systems to operate together, rather than on the problems associated with the development of any particular system. Included in the paper is a discussion of typical problems faced during the development and coordination process, such as incompatible development schedules, difficulties in defining system interfaces, technical coordination and funding for shared tools, continually evolving planning concepts/requirements, programmatic and budget issues, and external influences. Techniques that mitigated some of these problems will also be addressed, along with recommendations for any future programs involving the development of multiple planning and scheduling systems. Many of these lessons learned are not unique to the area of planning and scheduling systems, so may be applied to other distributed ground systems that must operate in concert to successfully support space mission operations.

  8. Lessons Learned in Developing Multiple Distributed Planning Systems for the International Space Station

    NASA Technical Reports Server (NTRS)

    Maxwell, Theresa G.

    2002-01-01

    The planning processes for the International Space Station (ISS) Program are quite complex. Detailed mission planning for ISS on-orbit operations is a distributed function. Pieces of the on-orbit plan are developed by multiple planning organizations, located around the world, based on their respective expertise and responsibilities. The pieces are then integrated to yield the final detailed plan that will be executed onboard the ISS. Previous space programs have not distributed the planning and scheduling functions to this extent. Major ISS planning organizations are currently located in the United States (at both the NASA Johnson Space Center (JSC) and NASA Marshall Space Flight Center (MSFC)), in Russia, in Europe, and in Japan. Software systems have been developed by each of these planning organizations to support their assigned planning and scheduling functions. Although there is some cooperative development and sharing of key software components, each planning system has been tailored to meet the unique requirements and operational environment of the facility in which it operates. However, all the systems must operate in a coordinated fashion in order to effectively and efficiently produce a single integrated plan of ISS operations, in accordance with the established planning processes. This paper addresses lessons learned during the development of these multiple distributed planning systems, from the perspective of the developer of one of the software systems. The lessons focus on the coordination required to allow the multiple systems to operate together, rather than on the problems associated with the development of any particular system. Included in the paper is a discussion of typical problems faced during the development and coordination process, such as incompatible development schedules, difficulties in defining system interfaces, technical coordination and funding for shared tools, continually evolving planning concepts/requirements, programmatic and budget issues, and external influences. Techniques that mitigated some of these problems will also be addressed, along with recommendations for any future programs involving the development of multiple planning and scheduling systems. Many of these lessons learned are not unique to the area of planning and scheduling systems, so may be applied to other distributed ground systems that must operate in concert to successfully support space mission operations.

  9. Energy saving system with high effluent quality for municipal sewage treatment by UASB-DHS.

    PubMed

    Tanaka, H; Takahashi, M; Yoneyama, Y; Syutsubo, K; Kato, K; Nagano, A; Yamaguchi, T; Harada, H

    2012-01-01

    An up-flow anaerobic sludge blanket (UASB) - down-flow hanging sponge (DHS) was applied to Japanese municipal sewage treatment, and its treatability, energy consumption, and sludge production were evaluated. The designed sewage load was 50 m(3)/d. The sewage typically had a chemical oxygen demand (COD) of 402 mg/L, a suspended solids (SS) content of 167 mg/L, and a temperature of 17-29 °C. The UASB and DHS exhibited theoretical hydraulic retention times of 9.7 and 2.5 h, respectively. The entire system was operated without temperature control. Operation was started with mesophilic anaerobic digested sludge for the UASB and various sponge media for the DHS. Continuous operational data suggest that although the cellulose decomposition and methanogenic process in the UASB are temperature sensitive, stable operation can be obtained by maintaining a satisfactory sludge volume index and sludge concentration. For the DHS, the cube-type medium G3-2 offers superior filling rates, biological preservation and operational execution. The SS derived from the DHS contaminated the effluent but could be removed by optional sand filtration. A comparison with conventional activated sludge (CAS) treatment confirmed that this system is adequate for municipal sewage treatment, with an estimated energy requirement and excess sludge production approximately 75 and 85% less than those of CAS, respectively.

  10. Detection and classification of alarm threshold violations in condition monitoring systems working in highly varying operational conditions

    NASA Astrophysics Data System (ADS)

    Strączkiewicz, M.; Barszcz, T.; Jabłoński, A.

    2015-07-01

    All commonly used condition monitoring systems (CMS) enable defining alarm thresholds that enhance efficient surveillance and maintenance of dynamic state of machinery. The thresholds are imposed on the measured values such as vibration-based indicators, temperature, pressure, etc. For complex machinery such as wind turbine (WT) the total number of thresholds might be counted in hundreds multiplied by the number of operational states. All the parameters vary not only due to possible machinery malfunctions, but also due to changes in operating conditions and these changes are typically much stronger than the former ones. Very often, such a behavior may lead to hundreds of false alarms. Therefore, authors propose a novel approach based on parameterized description of the threshold violation. For this purpose the novelty and severity factors are introduced. The first parameter refers to the time of violation occurrence while the second one describes the impact of the indicator-increase to the entire machine. Such approach increases reliability of the CMS by providing the operator with the most useful information of the system events. The idea of the procedure is presented on a simulated data similar to those from a wind turbine.

  11. An open source hydroeconomic model for California's water supply system: PyVIN

    NASA Astrophysics Data System (ADS)

    Dogan, M. S.; White, E.; Herman, J. D.; Hart, Q.; Merz, J.; Medellin-Azuara, J.; Lund, J. R.

    2016-12-01

    Models help operators and decision makers explore and compare different management and policy alternatives, better allocate scarce resources, and predict the future behavior of existing or proposed water systems. Hydroeconomic models are useful tools to increase benefits or decrease costs of managing water. Bringing hydrology and economics together, these models provide a framework for different disciplines that share similar objectives. This work proposes a new model to evaluate operation and adaptation strategies under existing and future hydrologic conditions for California's interconnected water system. This model combines the network structure of CALVIN, a statewide optimization model for California's water infrastructure, along with an open source solver written in the Python programming language. With the flexibilities of the model, reservoir operations, including water supply and hydropower, groundwater pumping, and the Delta water operations and requirements can now be better represented. Given time series of hydrologic inputs to the model, typical outputs include urban, agricultural and wildlife refuge water deliveries and shortage costs, conjunctive use of surface and groundwater systems, and insights into policy and management decisions, such as capacity expansion and groundwater management policies. Water market operations also represented in the model, allocating water from lower-valued users to higher-valued users. PyVIN serves as a cross-platform, extensible model to evaluate systemwide water operations. PyVIN separates data from the model structure, enabling model to be easily applied to other parts of the world where water is a scarce resource.

  12. "Smoke": Characterization Of Smoke Particulate For Spacecraft Fire Detection

    NASA Technical Reports Server (NTRS)

    Urban, David L.; Mulholland, George W.; Yang, Jiann; Cleary, Thomas G.; Yuan, Zeng-Guang

    2003-01-01

    The "Smoke" experiment is a flight definition investigation that seeks to increase our understanding of spacecraft fire detection through measurements of particulate size distributions of preignition smokes from typical spacecraft materials. Owing to the catastrophic risk posed by even a very small fire in a spacecraft, the design goal for spacecraft fire detection is to detect the fire as quickly as possible, preferably in the preignition phase before a real flaming fire has developed. Consequently the target smoke for detection is typically not soot (typical of established hydrocarbon fires) but instead, pyrolysis products, and recondensed polymer particles. At the same time, false alarms are extremely costly as the crew and the ground team must respond quickly to every alarm. The U.S. Space Shuttle (STS: Space Transportation System) and the International Space Station (ISS) both use smoke detection as the primary means of fire detection. These two systems were designed in the absence of any data concerning low-gravity smoke particle (and background dust) size distributions. The STS system uses an ionization detector coupled with a sampling pump and the ISS system is a forward light scattering detector operating in the near IR. These two systems have significantly different sensitivities with the ionization detector being most sensitive (on a mass concentration basis) to smaller particulate and the light scattering detector being most sensitive to particulate that is larger than 1 micron. Since any smoke detection system has inherent size sensitivity characteristics, proper design of future smoke detection systems will require an understanding of the background and alarm particle size distributions that can be expected in a space environment.

  13. Group III-arsenide-nitride long wavelength laser diodes

    NASA Astrophysics Data System (ADS)

    Coldren, Christopher W.

    Semiconductor laser diodes transmitting data over silica optical fiber form the backbone of modern day communications systems, enabling terabit per second data transmission over hundreds to thousands of kilometers of distance. The wavelength of emission of the transmission semiconductor laser diode is a critical parameter that determines the performance of the communications system. In high performance fiber optic communications systems, lasers emitting at 1300nm and 1550nm are used because of the low loss and distortion properties of the fiber in these spectral windows. The available lasers today that operate in these fiber optic transmission windows suffer from high cost and poor performance under the typical environmental conditions and require costly and unreliable cooling systems. This dissertation presents work that demonstrates that it is possible to make lasers devices with 1300nm laser emission that are compatible with low cost and operation under extreme operating conditions. The key enabling technology developed is a novel semiconductor material based structure. A group III-Arsenide-Nitride quantum well structure was developed that can be grown expitaxially on GaAs substrates. The properties of this group III-Arsenide-Nitride structure allowed high performance edge emitting and vertical cavity surface emitting lasers to be fabricated which exhibited low threshold currents and low sensitivity to operating temperature.

  14. Non-LTE radiative transfer with lambda-acceleration - Convergence properties using exact full and diagonal lambda-operators

    NASA Technical Reports Server (NTRS)

    Macfarlane, J. J.

    1992-01-01

    We investigate the convergence properties of Lambda-acceleration methods for non-LTE radiative transfer problems in planar and spherical geometry. Matrix elements of the 'exact' A-operator are used to accelerate convergence to a solution in which both the radiative transfer and atomic rate equations are simultaneously satisfied. Convergence properties of two-level and multilevel atomic systems are investigated for methods using: (1) the complete Lambda-operator, and (2) the diagonal of the Lambda-operator. We find that the convergence properties for the method utilizing the complete Lambda-operator are significantly better than those of the diagonal Lambda-operator method, often reducing the number of iterations needed for convergence by a factor of between two and seven. However, the overall computational time required for large scale calculations - that is, those with many atomic levels and spatial zones - is typically a factor of a few larger for the complete Lambda-operator method, suggesting that the approach should be best applied to problems in which convergence is especially difficult.

  15. A least-squares parameter estimation algorithm for switched hammerstein systems with applications to the VOR

    NASA Technical Reports Server (NTRS)

    Kukreja, Sunil L.; Kearney, Robert E.; Galiana, Henrietta L.

    2005-01-01

    A "Multimode" or "switched" system is one that switches between various modes of operation. When a switch occurs from one mode to another, a discontinuity may result followed by a smooth evolution under the new regime. Characterizing the switching behavior of these systems is not well understood and, therefore, identification of multimode systems typically requires a preprocessing step to classify the observed data according to a mode of operation. A further consequence of the switched nature of these systems is that data available for parameter estimation of any subsystem may be inadequate. As such, identification and parameter estimation of multimode systems remains an unresolved problem. In this paper, we 1) show that the NARMAX model structure can be used to describe the impulsive-smooth behavior of switched systems, 2) propose a modified extended least squares (MELS) algorithm to estimate the coefficients of such models, and 3) demonstrate its applicability to simulated and real data from the Vestibulo-Ocular Reflex (VOR). The approach will also allow the identification of other nonlinear bio-systems, suspected of containing "hard" nonlinearities.

  16. Integrated Vehicle Thermal Management for Advanced Vehicle Propulsion Technologies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bennion, K.; Thornton, M.

    A critical element to the success of new propulsion technologies that enable reductions in fuel use is the integration of component thermal management technologies within a viable vehicle package. Vehicle operation requires vehicle thermal management systems capable of balancing the needs of multiple vehicle systems that may require heat for operation, require cooling to reject heat, or require operation within specified temperature ranges. As vehicle propulsion transitions away from a single form of vehicle propulsion based solely on conventional internal combustion engines (ICEs) toward a wider array of choices including more electrically dominant systems such as plug-in hybrid electric vehiclesmore » (PHEVs), new challenges arise associated with vehicle thermal management. As the number of components that require active thermal management increase, so do the costs in terms of dollars, weight, and size. Integrated vehicle thermal management is one pathway to address the cost, weight, and size challenges. The integration of the power electronics and electric machine (PEEM) thermal management with other existing vehicle systems is one path for reducing the cost of electric drive systems. This work demonstrates techniques for evaluating and quantifying the integrated transient and continuous heat loads of combined systems incorporating electric drive systems that operate primarily under transient duty cycles, but the approach can be extended to include additional steady-state duty cycles typical for designing vehicle thermal management systems of conventional vehicles. The work compares opportunities to create an integrated low temperature coolant loop combining the power electronics and electric machine with the air conditioning system in contrast to a high temperature system integrated with the ICE cooling system.« less

  17. The Feasibility of Railgun Horizontal-Launch Assist

    NASA Technical Reports Server (NTRS)

    Youngquist, Robert C.; Cox, Robert B.

    2011-01-01

    Railguns typically operate for a few milliseconds, supplying thousands of G's of acceleration to a small projectile, resulting in exceptional speeds. This paper argues through analysis and experiment, that this "standard" technology can be modified to provide 2-3 G's acceleration to a relatively heavy launch vehicle for a time period exceeding several seconds, yielding a launch assist velocity in excess of Mach 1. The key insight here is that an efficient rail gun operates at a speed approximately given by the system resistance divided by the inductance gradient, which can be tailored because recent MOSFET and ultra-capacitor advances allow very low total power supply resistances with high capacitance and augmented railgun architectures provide a scalable inductance gradient. Consequently, it should now be possible to construct a horizontal launch assist system utilizing railgun based architecture.

  18. ESM of ionic and electrochemical phenomena on the nanoscale

    DOE PAGES

    Kalinin, Sergei V.; Kumar, Amit; Balke, Nina; ...

    2011-01-01

    Operation of energy storage and conversion devices is ultimately controlled by series of intertwined ionic and electronic transport processes and electrochemical reactions at surfaces and interfaces, strongly mediated by strain and mechanical processes. In a typical fuel cell, these include chemical species transport in porous cathode and anode materials, gas-solid electrochemical reactions at grains and triple-phase boundaries (TPBs), ionic and electronic flows in multicomponent electrodes, and chemical and electronic potential drops at internal interfaces in electrodes and electrolytes. Furthermore, all these phenomena are sensitively affected by the microstructure of materials from device level to the atomic scales. Similar spectrum ofmore » length scales and phenomena underpin operation of other energy systems including primary and secondary batteries, as well as hybrid systems such flow and metal-air/water batteries.« less

  19. A Best Practice for Developing Availability Guarantee Language in Photovoltaic (PV) O&M Agreements.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Klise, Geoffrey Taylor; Balfour, John

    This document outlines the foundation for developing language that can be utilized in an Equipment Availability Guarantee, typically included in an O&M services agreement between a PV system or plant owner and an O&M services provider, or operator. Many of the current PV O&M service agreement Availability Guarantees are based on contracts used for traditional power generation, which create challenges for owners and operators due to the variable nature of grid-tied photovoltaic generating technologies. This report documents language used in early PV availability guarantees and presents best practices and equations that can be used to more openly communicate how themore » reliability of the PV system and plant equipment can be expressed in an availability guarantee. This work will improve the bankability of PV systems by providing greater transparency into the equipment reliability state to all parties involved in an O&M services contract.« less

  20. Forecasting sea fog on the coast of southern China

    NASA Astrophysics Data System (ADS)

    Huang, H.; Huang, B.; Liu, C.; Tu, J.; Wen, G.; Mao, W.

    2016-12-01

    Forecast sea fog is still full of challenges. We have performed the numerical forecasting of sea fog on the coast of southern China by using the operational meso-scale regional model GRAPES (Global/Regional assimilation and prediction system). The GRAPES model horizontal resolution was 3km and with 66 vertical levels. A total of 72 hours forecasting of sea fog was conducted with hourly outputs over the sea fog event. The results show that the model system can predict reasonable characteristics of typical sea fog events on the coast of southern China. The scope of sea fog coincides with the observations of meteorological stations, the observations of the Marine Meteorological Science Experiment Base (MMSEB) at Bohe, Maoming and satellite products of sea fog. The goal of this study is to establish an operational numerical forecasting model system of sea fog on the coast of southern China.

  1. Modernizing engine displays

    NASA Technical Reports Server (NTRS)

    Schneider, E. T.; Enevoldson, E. K.

    1984-01-01

    The introduction of electronic fuel control to modern turbine engines has a number of advantages, which are related to an increase in engine performance and to a reduction or elimination of the problems associated with high angle of attack engine operation from the surface to 50,000 feet. If the appropriate engine display devices are available to the pilot, the fuel control system can provide a great amount of information. Some of the wealth of information available from modern fuel controls are discussed in this paper. The considered electronic engine control systems in their most recent forms are known as the Full Authority Digital Engine Control (FADEC) and the Digital Electronic Engine Control (DEEC). Attention is given to some details regarding the control systems, typical engine problems, the solution of problems with the aid of displays, engine displays in normal operation, an example display format, a multipage format, flight strategies, and hardware considerations.

  2. First demonstration of a vehicle mounted 250GHz real time passive imager

    NASA Astrophysics Data System (ADS)

    Mann, Chris

    2009-05-01

    This paper describes the design and performance of a ruggedized passive Terahertz imager, the frequency of operation is a 40GHz band centred around 250GHz. This system has been specifically targeted at vehicle mounted operation, outdoors in extreme environments. The unit incorporates temperature stabilization along with an anti-vibration chassis and is sealed to allow it to be used in a dusty environment. Within the system, a 250GHz heterodyne detector array is mated with optics and scanner to allow real time imaging out to 100 meters. First applications are envisaged to be stand-off, person borne IED detection to 30 meters but the unique properties in this frequency band present other potential uses such as seeing through smoke and fog. The possibility for use as a landing aid is discussed. A detailed description of the system design and video examples of typical imaging output will be presented.

  3. Off-Design Performance Analysis of a Solid-Oxide Fuel Cell/Gas Turbine Hybrid for Auxiliary Aerospace Power

    NASA Technical Reports Server (NTRS)

    Freeh, Joshua E.; Steffen, J., Jr.; Larosiliere, Louis M.

    2005-01-01

    A solid-oxide fuel cell/gas turbine hybrid system for auxiliary aerospace power is analyzed using 0-D and 1-D system-level models. The system is designed to produce 440 kW of net electrical power, sized for a typical long-range 300-passenger civil airplane, at both sea level and cruise flight level (12,500 m). In addition, a part power level of 250 kW is analyzed at the cruise condition, a requirement of the operating power profile. The challenge of creating a balanced system for the three distinct conditions is presented, along with the compromises necessary for each case. A parametric analysis is described for the cruise part power operating point, in which the system efficiency is maximized by varying the air flow rate. The system is compared to an earlier version that was designed solely for cruise operation. The results show that it is necessary to size the turbomachinery, fuel cell, and heat exchangers at sea level full power rather than cruise full power. The resulting estimated mass of the system is 1912 kg, which is significantly higher than the original cruise design point mass, 1396 kg. The net thermal efficiencies with respect to the fuel LHV are calculated to be 42.4 percent at sea level full power, 72.6 percent at cruise full power, and 72.8 percent at cruise part power. The cruise conditions take advantage of pre-compressed air from the on-board Environmental Control System, which accounts for a portion of the unusually high thermal efficiency at those conditions. These results show that it is necessary to include several operating points in the overall assessment of an aircraft power system due to the variations throughout the operating profile.

  4. Experimental Applications of Automatic Test Markup Language (ATML)

    NASA Technical Reports Server (NTRS)

    Lansdowne, Chatwin A.; McCartney, Patrick; Gorringe, Chris

    2012-01-01

    The authors describe challenging use-cases for Automatic Test Markup Language (ATML), and evaluate solutions. The first case uses ATML Test Results to deliver active features to support test procedure development and test flow, and bridging mixed software development environments. The second case examines adding attributes to Systems Modelling Language (SysML) to create a linkage for deriving information from a model to fill in an ATML document set. Both cases are outside the original concept of operations for ATML but are typical when integrating large heterogeneous systems with modular contributions from multiple disciplines.

  5. Northwest Boundary Containment/Treatment System Baseline Conditions, System Startup, and Operational Assessment. Volume 1.

    DTIC Science & Technology

    1987-12-01

    combination pressure reducing check valve that is manually I controlled. A shutoff valve is installed on each well discharge line to iso - late the well from...3are 10 to 70 ft thick. The greatest thickness of surficial deposits pene- trated in borings in the study area was 69.7 ft in Well 27002 , in which...approximately 37 ft of silty clay and fine sand overlie 33 ft of gravelly sand. The gravelly sand of well 27002 is typical of the sediments comprising the

  6. A computer program for estimation from incomplete multinomial data

    NASA Technical Reports Server (NTRS)

    Credeur, K. R.

    1978-01-01

    Coding is given for maximum likelihood and Bayesian estimation of the vector p of multinomial cell probabilities from incomplete data. Also included is coding to calculate and approximate elements of the posterior mean and covariance matrices. The program is written in FORTRAN 4 language for the Control Data CYBER 170 series digital computer system with network operating system (NOS) 1.1. The program requires approximately 44000 octal locations of core storage. A typical case requires from 72 seconds to 92 seconds on CYBER 175 depending on the value of the prior parameter.

  7. Aerodynamic preliminary analysis system 2. Part 1: Theory

    NASA Technical Reports Server (NTRS)

    Bonner, E.; Clever, W.; Dunn, K.

    1981-01-01

    A subsonic/supersonic/hypersonic aerodynamic analysis was developed by integrating the Aerodynamic Preliminary Analysis System (APAS), and the inviscid force calculation modules of the Hypersonic Arbitrary Body Program. APAS analysis was extended for nonlinear vortex forces using a generalization of the Polhamus analogy. The interactive system provides appropriate aerodynamic models for a single input geometry data base and has a run/output format similar to a wind tunnel test program. The user's manual was organized to cover the principle system activities of a typical application, geometric input/editing, aerodynamic evaluation, and post analysis review/display. Sample sessions are included to illustrate the specific task involved and are followed by a comprehensive command/subcommand dictionary used to operate the system.

  8. A study of the effects of long-term exposure to fuels and fluids on the behavior of advanced composite materials

    NASA Technical Reports Server (NTRS)

    Tanimoto, E. Y.

    1981-01-01

    The periodic testing and evaluation of graphite/epoxy and Kevlar/epoxy material systems after subjecting test specimens to prolonged exposure to several laboratory-controlled environments deemed typical of normal aircraft operations is discussed. It is noted that specimen immersion in water or water-based fluids resulted in the greatest effect on the mechanical properties tested. Also, the environmental fluids showed a tendency to affect Kevlar/epoxy systems at an earlier exposure period than the graphite/epoxy systems. Results also indicate mechanical property strength retention generally being lower for the Kevlar/epoxy systems when compared to the corresponding graphite/epoxy systems in similar environments, after prolonged exposure.

  9. Study of robotics systems applications to the space station program

    NASA Technical Reports Server (NTRS)

    Fox, J. C.

    1983-01-01

    Applications of robotics systems to potential uses of the Space Station as an assembly facility, and secondarily as a servicing facility, are considered. A typical robotics system mission is described along with the pertinent application guidelines and Space Station environmental assumptions utilized in developing the robotic task scenarios. A functional description of a supervised dual-robot space structure construction system is given, and four key areas of robotic technology are defined, described, and assessed. Alternate technologies for implementing the more routine space technology support subsystems that will be required to support the Space Station robotic systems in assembly and servicing tasks are briefly discussed. The environmental conditions impacting on the robotic configuration design and operation are reviewed.

  10. Latent energy storage with salt and metal mixtures for solar dynamic applications

    NASA Technical Reports Server (NTRS)

    Crane, R. A.; Konstantinou, K. S.

    1988-01-01

    This paper examines three design alternatives for the development of a solar dynamic heat receiver as applied to power systems operating in low earth orbit. These include a base line design used for comparison in ongoing NASA studies, a system incorporating a salt energy storage system with the salt dispersed within a metal mesh and a hybrid system incorporating both a molten salt and molten metal for energy storage. Based on a typical low earth orbit condition, designs are developed and compared to determine the effect of resultant conductivity, heat capacity and heat of fusion on system size, weight, temperature gradients, cycle turbine inlet temperature and material utilization.

  11. Minimizing a Wireless Passive LC-Tank Sensor to Monitor Bladder Pressure: A Simulation Study.

    PubMed

    Melgaard, Jacob; Struijk, Johannes J; Rijkhoff, Nico J M

    2017-01-01

    In this simulation study, a wireless passive LC-tank sensor system was characterized. Given the application of continuous bladder monitoring, a specific system was proposed in terms of coil geometries and electronic circuitry. Coupling coefficients were spatially mapped by simulation, as a function of both coil distance, and longitudinal and transverse translation of the sensor relative to the antenna. Further, two interrogation schemes were outlined. One was an auto-balancing bridge for computing the sensor-system impedance. In this case, the theoretical noise limit of the analogue part of the system was found by simulations. As the full system is not necessary for obtaining a pressure reading from the sensor, a simplified circuit more suited for an implantable system was deduced. For this system, both the analogue and digital parts were simulated. First, the required ADC resolution for operating the system at a given coupling was found by simulations in the noise-free case. Then, for one selected typical operational point, noise was added gradually, and through Monte-Carlo type simulations, the system performance was obtained. Combining these results, it was found that it at least is possible to operate the proposed system for distances up to 12 mm, or equivalently for coupling coefficients above 0.005. In this case a 14 bit ADC is required, and a carrier SNR of 27 dB can be tolerated.

  12. Energy and operation management of a microgrid using particle swarm optimization

    NASA Astrophysics Data System (ADS)

    Radosavljević, Jordan; Jevtić, Miroljub; Klimenta, Dardan

    2016-05-01

    This article presents an efficient algorithm based on particle swarm optimization (PSO) for energy and operation management (EOM) of a microgrid including different distributed generation units and energy storage devices. The proposed approach employs PSO to minimize the total energy and operating cost of the microgrid via optimal adjustment of the control variables of the EOM, while satisfying various operating constraints. Owing to the stochastic nature of energy produced from renewable sources, i.e. wind turbines and photovoltaic systems, as well as load uncertainties and market prices, a probabilistic approach in the EOM is introduced. The proposed method is examined and tested on a typical grid-connected microgrid including fuel cell, gas-fired microturbine, wind turbine, photovoltaic and energy storage devices. The obtained results prove the efficiency of the proposed approach to solve the EOM of the microgrids.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Z.; Liu, C.; Botterud, A.

    Renewable energy resources have been rapidly integrated into power systems in many parts of the world, contributing to a cleaner and more sustainable supply of electricity. Wind and solar resources also introduce new challenges for system operations and planning in terms of economics and reliability because of their variability and uncertainty. Operational strategies based on stochastic optimization have been developed recently to address these challenges. In general terms, these stochastic strategies either embed uncertainties into the scheduling formulations (e.g., the unit commitment [UC] problem) in probabilistic forms or develop more appropriate operating reserve strategies to take advantage of advanced forecastingmore » techniques. Other approaches to address uncertainty are also proposed, where operational feasibility is ensured within an uncertainty set of forecasting intervals. In this report, a comprehensive review is conducted to present the state of the art through Spring 2015 in the area of stochastic methods applied to power system operations with high penetration of renewable energy. Chapters 1 and 2 give a brief introduction and overview of power system and electricity market operations, as well as the impact of renewable energy and how this impact is typically considered in modeling tools. Chapter 3 reviews relevant literature on operating reserves and specifically probabilistic methods to estimate the need for system reserve requirements. Chapter 4 looks at stochastic programming formulations of the UC and economic dispatch (ED) problems, highlighting benefits reported in the literature as well as recent industry developments. Chapter 5 briefly introduces alternative formulations of UC under uncertainty, such as robust, chance-constrained, and interval programming. Finally, in Chapter 6, we conclude with the main observations from our review and important directions for future work.« less

  14. Renewable Energy, Photovoltaic Systems Near Airfields: Electromagnetic Interference

    DTIC Science & Technology

    2015-04-01

    equipment to this standard and it is easily validated when procuring equipment. The FCC limits specify an upper bound on the amount of radiated ...60 Hz) operation. TYPICAL EMISSION SPECTRA AND COUNTERMEASURES Compliance with FCC Part 15 radiated specification does not guarantee a lack of ...TECHNIQUE To conduct field measurements of radiated emission, a wide-band spectrum analyzer with sensitivity down to 150 kHz is required, along with an

  15. Segmentation of the Knee for Analysis of Osteoarthritis

    NASA Astrophysics Data System (ADS)

    Zerfass, Peter; Museyko, Oleg; Bousson, Valérie; Laredo, Jean-Denis; Kalender, Willi A.; Engelke, Klaus

    Osteoarthritis changes the load distribution within joints and also changes bone density and structure. Within typical timelines of clinical studies these changes can be very small. Therefore precise definition of evaluation regions which are highly robust and show little to no interand intra-operator variance are essential for high quality quantitative analysis. To achieve this goal we have developed a system for the definition of such regions with minimal user input.

  16. Planned Burn-Piedmont. A local operational numerical meteorological model for tracking smoke on the ground at night: Model development and sensitivity tests

    Treesearch

    Gary L. Achtemeier

    2005-01-01

    Smoke from both prescribed fires and wildfires can, under certain meteorological conditions, become entrapped within shallow layers of air near the ground at night and get carried to unexpected destinations as a combination of weather systems push air through interlocking ridge-valley terrain typical of the Piedmont of the Soutthern United States. Entrapped smoke...

  17. Remotely Operated Vehicle ROV/AUV Reliability Study. Phase 2.

    DTIC Science & Technology

    1989-09-01

    produce workable configurations for large diameter cyl nders strong enough to survive high compression forces. 11 1.4.5.1.1 Composites Although FWE...Since the main cylinder in manned submersibles is typically large diameter , and the interior is only partially filled with equipment, these systems...ceramics involve control of tolerances when manufacturing large diameter cylinders, although ongoing R&D may provide solutions to this. The major

  18. Modelling Agent-Environment Interaction in Multi-Agent Simulations with Affordances

    DTIC Science & Technology

    2010-04-01

    allow operations analysts to conduct statistical studies comparing the effectiveness of different systems or tactics in different scenarios. 11 Instead of...in a Monte-Carlo batch mode, producing statistical outcomes for particular measures of effectiveness. They typically also run at many times faster...Combined with annotated signs, the affordances allowed the traveller agents to find their way around the virtual airport and to conduct their business

  19. Discrete event simulation and the resultant data storage system response in the operational mission environment of Jupiter-Saturn /Voyager/ spacecraft

    NASA Technical Reports Server (NTRS)

    Mukhopadhyay, A. K.

    1978-01-01

    The Data Storage Subsystem Simulator (DSSSIM) simulating (by ground software) occurrence of discrete events in the Voyager mission is described. Functional requirements for Data Storage Subsystems (DSS) simulation are discussed, and discrete event simulation/DSSSIM processing is covered. Four types of outputs associated with a typical DSSSIM run are presented, and DSSSIM limitations and constraints are outlined.

  20. Hybrid Techniques for Optimizing Complex Systems

    DTIC Science & Technology

    2009-12-01

    Service , Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of...These vectors are randomly generated, and conventional functional simulation propagates signatures to the internal and output nodes. In a typical...instance, if two internal nodes x and y satisfy the property (y = 1) ⇒ (x = 1), where ⇒ denotes “implies”, then y gives information about x whenever y = 1

  1. An Improved X-Band Maser System for Deep Space Network Applications

    NASA Astrophysics Data System (ADS)

    Britcliffe, M.; Hanson, T.; Fernandez, J.

    2000-01-01

    An 8450-MHz (X-band) maser system utilizing a commercial Gifford--McMahon (GM) closed-cycle cryocooler (CCR) was designed, fabricated, and demonstrated. The CCR system was used to cool a maser operating at 8450 MHz. The prototype GM CCR system meets or exceeds all Deep Space Network requirements for maser performance. The two-stage GM CCR operates at 4.2 K; for comparison, the DSN's current three-stage cryocooler, which uses a Joule--Thompson cooling stage in addition to GM cooling, operates at 4.5 K. The new CCR withstands heat loads of 1.5 W at 4.2 K as compared to 1 W at 4.5 K for the existing DSN cryocooler used for cooling masers. The measured noise temperature, T_e, of the maser used for these tests is defined at the ambient connection to the antenna feed system. The T_e measured 5.0 K at a CCR temperature of 4.5 K, about 1.5 K higher than the noise temperature of a typical DSN Block II-A X-band traveling-wave maser (TWM). Reducing the temperature of the CCR significantly lowers the maser noise temperature and increases maser gain and bandwidth. The new GM CCR gives future maser systems significant operational advantages, including reduced maintenance time and logistics requirements. The results of a demonstration of this new system are presented. Advantages of using a GM-cooled maser and the effects of the reduced CCR temperature on maser performance are discussed.

  2. A Hybrid Synthetic Vision System for the Tele-operation of Unmanned Vehicles

    NASA Technical Reports Server (NTRS)

    Delgado, Frank; Abernathy, Mike

    2004-01-01

    A system called SmartCam3D (SC3D) has been developed to provide enhanced situational awareness for operators of a remotely piloted vehicle. SC3D is a Hybrid Synthetic Vision System (HSVS) that combines live sensor data with information from a Synthetic Vision System (SVS). By combining the dual information sources, the operators are afforded the advantages of each approach. The live sensor system provides real-time information for the region of interest. The SVS provides information rich visuals that will function under all weather and visibility conditions. Additionally, the combination of technologies allows the system to circumvent some of the limitations from each approach. Video sensor systems are not very useful when visibility conditions are hampered by rain, snow, sand, fog, and smoke, while a SVS can suffer from data freshness problems. Typically, an aircraft or satellite flying overhead collects the data used to create the SVS visuals. The SVS data could have been collected weeks, months, or even years ago. To that extent, the information from an SVS visual could be outdated and possibly inaccurate. SC3D was used in the remote cockpit during flight tests of the X-38 132 and 131R vehicles at the NASA Dryden Flight Research Center. SC3D was also used during the operation of military Unmanned Aerial Vehicles. This presentation will provide an overview of the system, the evolution of the system, the results of flight tests, and future plans. Furthermore, the safety benefits of the SC3D over traditional and pure synthetic vision systems will be discussed.

  3. Operational Performance of Sensor Systems Used to Determine Atmospheric Boundary Layer Properties as Part of the NASA Aircraft Vortex Spacing System Project

    NASA Technical Reports Server (NTRS)

    Zak, J. Allen; Rodgers, William G., Jr.; Nolf, Scott; McKissick, Burnell T. (Technical Monitor)

    2001-01-01

    There has been a renewed interest in the application of remote sensor technology to operational aviation and airport-related activities such as Aircraft Vortex Spacing System (AVOSS). Radio Acoustic Sounding Systems (RASS), Doppler-acoustic sodars, Ultrahigh Frequencies (UHF) profilers and lidars have many advantages in measuring wind and temperature profiles in the lower atmospheric boundary layer since they can operate more or less continuously and unattended; however, there are limitations in their operational use at airports. For example, profilers deteriorate (limited altitude coverage or missing) in moderate or greater rain and can be affected by airplane targets in their field of view. Sodars can handle precipitation better but are affected by the high noise environments of airports and strong winds. Morning temperature inversions typically limit performance of RASS, sodars and profilers. Fog affects sonic anemometers. Lidars can have difficulties in clouds, fog or heavy precipitation. Despite their limitations these sensors have proven useful to provide wind and temperature profiles for AVOSS. Capabilities and limitations of these and other sensors used in the AVOSS program are discussed, parameter settings for the sensor systems are documented, and recommendations are made for the most cost-effective group of sensors for the future. The potential use of specially tuned dynamic forecast models and measurements from landing and departing aircraft are addressed.

  4. A novel craniotomy simulation system for evaluation of stereo-pair reconstruction fidelity and tracking

    NASA Astrophysics Data System (ADS)

    Yang, Xiaochen; Clements, Logan W.; Conley, Rebekah H.; Thompson, Reid C.; Dawant, Benoit M.; Miga, Michael I.

    2016-03-01

    Brain shift compensation using computer modeling strategies is an important research area in the field of image-guided neurosurgery (IGNS). One important source of available sparse data during surgery to drive these frameworks is deformation tracking of the visible cortical surface. Possible methods to measure intra-operative cortical displacement include laser range scanners (LRS), which typically complicate the clinical workflow, and reconstruction of cortical surfaces from stereo pairs acquired with the operating microscopes. In this work, we propose and demonstrate a craniotomy simulation device that permits simulating realistic cortical displacements designed to measure and validate the proposed intra-operative cortical shift measurement systems. The device permits 3D deformations of a mock cortical surface which consists of a membrane made of a Dragon Skin® high performance silicone rubber on which vascular patterns are drawn. We then use this device to validate our stereo pair-based surface reconstruction system by comparing landmark positions and displacements measured with our systems to those positions and displacements as measured by a stylus tracked by a commercial optical system. Our results show a 1mm average difference in localization error and a 1.2mm average difference in displacement measurement. These results suggest that our stereo-pair technique is accurate enough for estimating intra-operative displacements in near real-time without affecting the surgical workflow.

  5. A General Provincial Situation Visualization System Based on iPhone Operating System of Shandong Province

    NASA Astrophysics Data System (ADS)

    Ye, Z.; Xiang, H.

    2014-04-01

    The paper discusses the basic principles and the problem solutions during the design and implementation of the mobile GIS system, and base on the research result, we developed the General Provincial Situation Visualization System Based on iOS of Shandong Province. The system is developed in the Objective-C programming language, and use the ArcGIS Runtime SDK for IOS as the development tool to call the "World-map Shandong" services to implement the development of the General Provincial Situation Visualization System Based on iOS devices. The system is currently available for download in the Appstore and is chosen as the typical application case of ESRI China ArcGIS API for iOS.

  6. Implementation of EPICS based vacuum control system for variable energy cyclotron centre, Kolkata

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roy, Anindya, E-mail: r-ani@vecc.gov.in; Bhole, R. B.; Nandy, Partha P.

    2015-03-15

    The vacuum system of the Room Temperature (K = 130) Cyclotron of Variable Energy Cyclotron Centre is comprised of vacuum systems of main machine and Beam Transport System. The vacuum control system is upgraded to a PLC based Automated system from the initial relay based Manual system. The supervisory control of the vacuum system is implemented in Experimental Physics and Industrial Control System (EPICS). An EPICS embedded ARM based vacuum gauge controller is developed to mitigate the requirement of vendor specific gauge controller for gauges and also for seamless integration of the gauge controllers with the control system. A setmore » of MS-Windows ActiveX components with embedded EPICS Channel Access interface are developed to build operator interfaces with less complex programming and to incorporate typical Windows feature, e.g., user authentication, file handling, better fonts, colors, mouse actions etc. into the operator interfaces. The control parameters, monitoring parameters, and system interlocks of the system are archived in MySQL based EPICS MySQL Archiver developed indigenously. In this paper, we describe the architecture, the implementation details, and the performance of the system.« less

  7. Evaluation of the response of tritium-in-air instrumentation to HT in dry and humid conditions and to HTO vapor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Phillips, H.; Dean, J.; Privas, E.

    2015-03-15

    Nuclear plant operators (power generation, decommissioning and reprocessing operations) are required to monitor releases of tritium species for regulatory compliance and radiation protection purposes. Tritium monitoring is performed using tritium-in-air gas monitoring instrumentation based either on flow-through ion chambers or proportional counting systems. Tritium-in-air monitors are typically calibrated in dry conditions but in service may operate at elevated levels of relative humidity. The NPL (National Physical Laboratory) radioactive gas-in-air calibration system has been used to study the effect of humidity on the response to tritium of two tritium-in-air ion chamber based monitors and one proportional counting system which uses amore » P10/air gas mixture. The response of these instruments to HTO vapour has also been evaluated. In each case, instrument responses were obtained for HT in dry conditions (relative humidity (RH) about 2%), HT in 45% RH, and finally HTO at 45% RH. Instrumentation response to HT in humid conditions has been found to slightly exceed that in dry conditions. (authors)« less

  8. In-vehicle carbon dioxide concentration in commuting cars in Bangkok, Thailand.

    PubMed

    Luangprasert, Maytat; Vasithamrong, Chainarin; Pongratananukul, Suphasit; Chantranuwathana, Sunhapos; Pumrin, Suree; De Silva, I P D

    2017-05-01

    It is known that in-vehicle carbon dioxide (CO 2 ) concentration tends to increase due to occupant exhalation when the HVAC (heating, ventilation, and air conditioning) air is in recirculation mode. Field experiments were conducted to measure CO 2 concentration during typical commute in Bangkok, Thailand. The measured concentrations agreed with the concentration predicted using first-order mass balance equation, in both recirculating and outside air modes. The long-term transient decay of the concentration when the vehicle was parked and the HVAC system was turned off was also studied. This decay was found to follow Fickian diffusion process. The paper also provides useful operational details of the automotive HVAC system and fresh air ventilation exchange between cabin interior and exterior. Drivers in tropical Asian countries typically use HVAC recirculation mode in their automobiles. This behavior leads to excessive buildup of cabin CO 2 concentration levels. The paper describes the CO 2 buildup in a typical commute in Bangkok, Thailand. Auto manufacturers can potentially take measures to alleviate such high concentration levels. The paper also discusses the diffusion of CO 2 through the vehicle envelope, an area that has never been investigated before.

  9. Cryogenic Insulation System for Soft Vacuum

    NASA Technical Reports Server (NTRS)

    Augustynowicz, S. D.; Fesmire, J. E.

    1999-01-01

    The development of a cryogenic insulation system for operation under soft vacuum is presented in this paper. Conventional insulation materials for cryogenic applications can be divided into three levels of thermal performance, in terms of apparent thermal conductivity [k-value in milliwatt per meter-kelvin (mW/m-K)]. System k-values below 0.1 can be achieved for multilayer insulation operating at a vacuum level below 1 x 10(exp -4) torr. For fiberglass or powder operating below 1 x 10(exp -3) torr, k-values of about 2 are obtained. For foam and other materials at ambient pressure, k-values around 30 are typical. New industry and aerospace applications require a versatile, robust, low-cost thermal insulation with performance in the intermediate range. The target for the new composite insulation system is a k-value below 4.8 mW/m-K (R-30) at a soft vacuum level (from 1 to 10 torr) and boundary temperatures of approximately 77 and 293 kelvin (K). Many combinations of radiation shields, spacers, and composite materials were tested from high vacuum to ambient pressure using cryostat boiloff methods. Significant improvement over conventional systems in the soft vacuum range was demonstrated. The new layered composite insulation system was also shown to provide key benefits for high vacuum applications as well.

  10. Compact, self-contained enhanced-vision system (EVS) sensor simulator

    NASA Astrophysics Data System (ADS)

    Tiana, Carlo

    2007-04-01

    We describe the model SIM-100 PC-based simulator, for imaging sensors used, or planned for use, in Enhanced Vision System (EVS) applications. Typically housed in a small-form-factor PC, it can be easily integrated into existing out-the-window visual simulators for fixed-wing or rotorcraft, to add realistic sensor imagery to the simulator cockpit. Multiple bands of infrared (short-wave, midwave, extended-midwave and longwave) as well as active millimeter-wave RADAR systems can all be simulated in real time. Various aspects of physical and electronic image formation and processing in the sensor are accurately (and optionally) simulated, including sensor random and fixed pattern noise, dead pixels, blooming, B-C scope transformation (MMWR). The effects of various obscurants (fog, rain, etc.) on the sensor imagery are faithfully represented and can be selected by an operator remotely and in real-time. The images generated by the system are ideally suited for many applications, ranging from sensor development engineering tradeoffs (Field Of View, resolution, etc.), to pilot familiarization and operational training, and certification support. The realistic appearance of the simulated images goes well beyond that of currently deployed systems, and beyond that required by certification authorities; this level of realism will become necessary as operational experience with EVS systems grows.

  11. UAV-borne X-band radar for MAV collision avoidance

    NASA Astrophysics Data System (ADS)

    Moses, Allistair A.; Rutherford, Matthew J.; Kontitsis, Michail; Valavanis, Kimon P.

    2011-05-01

    Increased use of Miniature (Unmanned) Aerial Vehicles (MAVs) is coincidentally accompanied by a notable lack of sensors suitable for enabling further increases in levels of autonomy and consequently, integration into the National Airspace System (NAS). The majority of available sensors suitable for MAV integration are based on infrared detectors, focal plane arrays, optical and ultrasonic rangefinders, etc. These sensors are generally not able to detect or identify other MAV-sized targets and, when detection is possible, considerable computational power is typically required for successful identification. Furthermore, performance of visual-range optical sensor systems can suffer greatly when operating in the conditions that are typically encountered during search and rescue, surveillance, combat, and most common MAV applications. However, the addition of a miniature radar system can, in consort with other sensors, provide comprehensive target detection and identification capabilities for MAVs. This trend is observed in manned aviation where radar systems are the primary detection and identification sensor system. Within this document a miniature, lightweight X-Band radar system for use on a miniature (710mm rotor diameter) rotorcraft is described. We present analyses of the performance of the system in a realistic scenario with two MAVs. Additionally, an analysis of MAV navigation and collision avoidance behaviors is performed to determine the effect of integrating radar systems into MAV-class vehicles.

  12. Low-intensity calibration source for optical imaging systems

    NASA Astrophysics Data System (ADS)

    Holdsworth, David W.

    2017-03-01

    Laboratory optical imaging systems for fluorescence and bioluminescence imaging have become widely available for research applications. These systems use an ultra-sensitive CCD camera to produce quantitative measurements of very low light intensity, detecting signals from small-animal models labeled with optical fluorophores or luminescent emitters. Commercially available systems typically provide quantitative measurements of light output, in units of radiance (photons s-1 cm-2 SR-1) or intensity (photons s-1 cm-2). One limitation to current systems is that there is often no provision for routine quality assurance and performance evaluation. We describe such a quality assurance system, based on an LED-illuminated thin-film transistor (TFT) liquid-crystal display module. The light intensity is controlled by pulse-width modulation of the backlight, producing radiance values ranging from 1.8 x 106 photons s-1 cm-2 SR-1 to 4.2 x 1013 photons s-1 cm-2 SR-1. The lowest light intensity values are produced by very short backlight pulses (i.e. approximately 10 μs), repeated every 300 s. This very low duty cycle is appropriate for laboratory optical imaging systems, which typically operate with long-duration exposures (up to 5 minutes). The low-intensity light source provides a stable, traceable radiance standard that can be used for routine quality assurance of laboratory optical imaging systems.

  13. Recent trends in the development of heat exchangers for geothermal systems

    NASA Astrophysics Data System (ADS)

    Franco, A.; Vaccaro, M.

    2017-11-01

    The potential use of geothermal resources has been a remarkable driver for market players and companies operating in the field of geothermal energy conversion. For this reason, medium to low temperature geothermal resources have been the object of recent rise in consideration, with strong reference to the perspectives of development of Organic Rankine Cycle (ORC) technology. The main components of geothermal plants based on ORC cycle are surely the heat exchangers. A lot of different heat exchangers are required for the operation of ORC plants. Among those it is surely of major importance the Recovery Heat Exchanger (RHE, typically an evaporator), in which the operating fluid is evaporated. Also the Recuperator, in regenerative Organic Rankine Cycle, is of major interest in technology. Another important application of the heat exchangers is connected to the condensation, according to the possibility of liquid or air cooling media availability. The paper analyzes the importance of heat exchangers sizing and the connection with the operation of ORC power plants putting in evidence the real element of innovation: the consideration of the heat exchangers as central element for the optimum design of ORC systems.

  14. Automated Operant Conditioning in the Mouse Home Cage.

    PubMed

    Francis, Nikolas A; Kanold, Patrick O

    2017-01-01

    Recent advances in neuroimaging and genetics have made mice an advantageous animal model for studying the neurophysiology of sensation, cognition, and locomotion. A key benefit of mice is that they provide a large population of test subjects for behavioral screening. Reflex-based assays of hearing in mice, such as the widely used acoustic startle response, are less accurate than operant conditioning in measuring auditory processing. To date, however, there are few cost-effective options for scalable operant conditioning systems. Here, we describe a new system for automated operant conditioning, the Psibox. It is assembled from low cost parts, designed to fit within typical commercial wire-top cages, and allows large numbers of mice to train independently in their home cages on positive reinforcement tasks. We found that groups of mice trained together learned to accurately detect sounds within 2 weeks of training. In addition, individual mice isolated from groups also showed good task performance. The Psibox facilitates high-throughput testing of sensory, motor, and cognitive skills in mice, and provides a readily available animal population for studies ranging from experience-dependent neural plasticity to rodent models of mental disorders.

  15. Microsurgical Clipping of an Anterior Communicating Artery Aneurysm Using a Novel Robotic Visualization Tool in Lieu of the Binocular Operating Microscope: Operative Video.

    PubMed

    Klinger, Daniel R; Reinard, Kevin A; Ajayi, Olaide O; Delashaw, Johnny B

    2018-01-01

    The binocular operating microscope has been the visualization instrument of choice for microsurgical clipping of intracranial aneurysms for many decades. To discuss recent technological advances that have provided novel visualization tools, which may prove to be superior to the binocular operating microscope in many regards. We present an operative video and our operative experience with the BrightMatterTM Servo System (Synaptive Medical, Toronto, Ontario, Canada) during the microsurgical clipping of an anterior communicating artery aneurysm. To the best of our knowledge, the use of this device for the microsurgical clipping of an intracranial aneurysm has never been described in the literature. The BrightMatterTM Servo System (Synaptive Medical) is a surgical exoscope which avoids many of the ergonomic constraints of the binocular operating microscope, but is associated with a steep learning curve. The BrightMatterTM Servo System (Synaptive Medical) is a maneuverable surgical exoscope that is positioned with a directional aiming device and a surgeon-controlled foot pedal. While utilizing this device comes with a steep learning curve typical of any new technology, the BrightMatterTM Servo System (Synaptive Medical) has several advantages over the conventional surgical microscope, which include a relatively unobstructed surgical field, provision of high-definition images, and visualization of difficult angles/trajectories. This device can easily be utilized as a visualization tool for a variety of cranial and spinal procedures in lieu of the binocular operating microscope. We anticipate that this technology will soon become an integral part of the neurosurgeon's armamentarium. Copyright © 2017 by the Congress of Neurological Surgeons

  16. Very-Long-Distance Remote Hearing and Vibrometry

    NASA Technical Reports Server (NTRS)

    Maleki, Lute; Yu, Nan; Matsko, Andrey; Savchenkov, Anatoliy

    2009-01-01

    A proposed development of laser-based instrumentation systems would extend the art of laser Doppler vibrometry beyond the prior limits of laser-assisted remote hearing and industrial vibrometry for detecting defects in operating mechanisms. A system according to the proposal could covertly measure vibrations of objects at distances as large as thousands of kilometers and could process the measurement data to enable recognition of vibrations characteristic of specific objects of interest, thereby enabling recognition of the objects themselves. A typical system as envisioned would be placed in orbit around the Earth for use as a means of determining whether certain objects on or under the ground are of interest as potential military targets. Terrestrial versions of these instruments designed for airborne or land- or sea-based operation could be similarly useful for military or law-enforcement purposes. Prior laser-based remote-hearing systems are not capable of either covert operation or detecting signals beyond modest distances when operated at realistic laser power levels. The performances of prior systems for recognition of objects by remote vibrometry are limited by low signal-to-noise ratios and lack of filtering of optical signals returned from targets. The proposed development would overcome these limitations. A system as proposed would include a narrow-band laser as its target illuminator, a lock-in-detection receiver subsystem, and a laser-power-control subsystem that would utilize feedback of the intensity of background illumination of the target to adjust the laser power. The laser power would be set at a level high enough to enable the desired measurements but below the threshold of detectability by an imaginary typical modern photodetector located at the target and there exposed to the background illumination. The laser beam would be focused tightly on the distant target, such that the receiving optics would be exposed to only one speckle. The return signal would be extremely-narrow-band filtered (to sub-kilohertz bandwidth) in the optical domain by a whispering-gallery- mode filter so as to remove most of the background illumination. The filtered optical signal would be optically amplified. This combination of optical filtering and optical amplification would provide an optical signal that would be strong enough to be detectable but not so strong as to saturate the detector in the lock-in detection subsystem.

  17. Fabrication of Flex Joint Utilizing Additively Manufactured Parts

    NASA Technical Reports Server (NTRS)

    Eddleman, David; Richard, Jim

    2015-01-01

    The Selective Laser Melting (SLM) manufacturing technique has been utilized in the manufacture of a flex joint typical of those found in rocket engine and main propulsion system ducting. The SLM process allowed for the combination of parts that are typically machined separately and welded together. This resulted in roughly a 65% reduction of the total number of parts, roughly 70% reduction in the total number of welds, and an estimated 60% reduction in the number of machining operations. The majority of the new design was in three SLM pieces. These pieces, as well as a few traditionally fabricated parts, were assembled into a complete unit, which has been pressure tested. The design and planned cryogenic testing of the unit will be presented.

  18. Pickless event detection and location: The waveform correlation event detection system (WCEDS) revisited

    DOE PAGES

    Arrowsmith, Stephen John; Young, Christopher J.; Ballard, Sanford; ...

    2016-01-01

    The standard paradigm for seismic event monitoring breaks the event detection problem down into a series of processing stages that can be categorized at the highest level into station-level processing and network-level processing algorithms (e.g., Le Bras and Wuster (2002)). At the station-level, waveforms are typically processed to detect signals and identify phases, which may subsequently be updated based on network processing. At the network-level, phase picks are associated to form events, which are subsequently located. Furthermore, waveforms are typically directly exploited only at the station-level, while network-level operations rely on earth models to associate and locate the events thatmore » generated the phase picks.« less

  19. Water-hyacinth production primary and advanced treatment of wastewater. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schwegler, B.R. Jr.

    1983-01-01

    A prototype water hyacinth wastewater treatment system has been in operation for two years at Walt Disney World, near Orlando, Florida. Typically, the hyacinth system removes 80-90% total suspended solids and B.O.D. from the influent stream. Major impacts on water quality exiting the system are: seasonal variations in solar radiation, air and water temperature; operational problems, particularly harvesting equipment breakdown, and retention time in the ponds. Phosphorus and nitrogen removal show a strong seasonal dependence, with removal rates varying from 0.08 to 1.11 g/m/sup 2//day for N and from 0.05 to 0.29 g/m/sup 2//day for P. Nitrogen removal rates showmore » a strong dependence on retention times, with a retention time of 5 days appearing to be a critical limit for the establishment of an active population of denitrifying bacteria. Hyacinth biomass productivity of the system was approximately 66.7 dry metric tons per hectare year (30 dry tons/acre year) during the second year of operation. An Experimental Test Unit (ETU) for anaerobic digestion of hyacinths to methane will be installed by late 1983.« less

  20. InfuShield: a shielded enclosure for administering therapeutic radioisotope treatments using standard syringe pumps

    PubMed Central

    Pratt, Brenda E.; Chittenden, Sarah J.; Murray, Iain S.; Causer, Louise; Grey, Matthew J.; Gear, Jonathan I.; Du, Yong; Flux, Glenn D.

    2017-01-01

    The administration of radionuclide therapies presents significant radiation protection challenges. The aim of this work was to develop a delivery system for intravenous radioisotope therapies to substantially moderate radiation exposures to staff and operators. A novel device (InfuShield) was designed and tested before being used clinically. The device consists of a shielded enclosure which contains the therapeutic activity and, through the hydraulic action of back-to-back syringes, allows the activity to be administered using a syringe pump external to the enclosure. This enables full access to the pump controls while simultaneously reducing dose to the operator. The system is suitable for use with all commercially available syringe pumps and does not require specific consumables, maximising both the flexibility and economy of the system. Dose rate measurements showed that at key stages in an 131I mIBG treatment procedure, InfuShield can reduce dose to operators by several orders of magnitude. Tests using typical syringes and infusion speeds show no significant alteration in administered flow rates (maximum of 1.2%). The InfuShield system provides a simple, safe and low cost method of radioisotope administration. PMID:28187040

  1. Institutional and financial guide to geothermal district heating, serial no. 2

    NASA Astrophysics Data System (ADS)

    1982-03-01

    General planning considerations which affect nearly every community are reviewed, and alternative operating structures which are available to communities are reviewed, including local governments, nonprofit cooperatives, private enterprises, and joint ventures. The financing options available to publicly-owned and privately-owned district heating systems are then summarized. The geothermal production and distribution activities most appropriate to each type of operating structure are reviewed, along with typical equity and debt funding sources. The tax advantages for private developers are described, as are the issues of customer contracts and service prices, and customer retrofit financing. The treatment is limited to an introductory overview.

  2. Legislated emergency locating transmitters and emergency position indicating radio beacons

    NASA Technical Reports Server (NTRS)

    Wade, William R. (Inventor)

    1988-01-01

    An emergency locating transmitting (ELT) system is disclosed which comprises a legislated ELT modified with an interface unit and connected by a multiwire cable to a remote control monitor (RCM), typically located at the pilot position. The RCM can remotely test the ELT by disabling the legislated swept tone and allowing transmission of a single tone, turn the ELT on for legislated ELT transmission, and reset the ELT to an armed condition. The RCM also provides visual and audio indications of transmitter operating condition as well as ELT battery condition. Removing the RCM or shorting or opening the interface input connections will not affect traditional ELT operation.

  3. Interaction of electromagnetic and acoustic waves in a stochastic atmosphere

    NASA Technical Reports Server (NTRS)

    Bhatnagar, N.; Frankel, M. S.; Peterson, A. M.

    1977-01-01

    This paper considers the interaction of electromagnetic and acoustic waves where a Radio Acoustic Sounding System (RASS) is operated in a stochastic environment characterized by turbulence, winds and mean-temperature gradients. It has been shown that for a RASS operating at acoustic frequencies below a few kilohertz propagating under typical atmospheric conditions, turbulence has little effect on the strength of the received radio signal scattered from the pulse at heights up to a few kilometers. This result implies that the received RF signal level (power) is primarily a function of sound intensity which decreases as x exp minus 2 where x is the altitude.

  4. Customizing the JPL Multimission Ground Data System: Lessons learned

    NASA Technical Reports Server (NTRS)

    Murphy, Susan C.; Louie, John J.; Guerrero, Ana Maria; Hurley, Daniel; Flora-Adams, Dana

    1994-01-01

    The Multimission Ground Data System (MGDS) at NASA's Jet Propulsion Laboratory has brought improvements and new technologies to mission operations. It was designed as a generic data system to meet the needs of multiple missions and avoid re-inventing capabilities for each new mission and thus reduce costs. It is based on adaptable tools that can be customized to support different missions and operations scenarios. The MGDS is based on a distributed client/server architecture, with powerful Unix workstations, incorporating standards and open system architectures. The distributed architecture allows remote operations and user science data exchange, while also providing capabilities for centralized ground system monitor and control. The MGDS has proved its capabilities in supporting multiple large-class missions simultaneously, including the Voyager, Galileo, Magellan, Ulysses, and Mars Observer missions. The Operations Engineering Lab (OEL) at JPL has been leading Customer Adaptation Training (CAT) teams for adapting and customizing MGDS for the various operations and engineering teams. These CAT teams have typically consisted of only a few engineers who are familiar with operations and with the MGDS software and architecture. Our experience has provided a unique opportunity to work directly with the spacecraft and instrument operations teams and understand their requirements and how the MGDS can be adapted and customized to minimize their operations costs. As part of this work, we have developed workstation configurations, automation tools, and integrated user interfaces at minimal cost that have significantly improved productivity. We have also proved that these customized data systems are most successful if they are focused on the people and the tasks they perform and if they are based upon user confidence in the development team resulting from daily interactions. This paper will describe lessons learned in adapting JPL's MGDS to fly the Voyager, Galileo, and Mars Observer missions. We will explain how powerful, existing ground data systems can be adapted and packaged in a cost effective way for operations of small and large planetary missions. We will also describe how the MGDS was adapted to support operations within the Galileo Spacecraft Testbed. The Galileo testbed provided a unique opportunity to adapt MGDS to support command and control operations for a small autonomous operations team of a handful of engineers flying the Galileo Spacecraft flight system model.

  5. An introduction to optimal power flow: Theory, formulation, and examples

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Frank, Stephen; Rebennack, Steffen

    The set of optimization problems in electric power systems engineering known collectively as Optimal Power Flow (OPF) is one of the most practically important and well-researched subfields of constrained nonlinear optimization. OPF has enjoyed a rich history of research, innovation, and publication since its debut five decades ago. Nevertheless, entry into OPF research is a daunting task for the uninitiated--both due to the sheer volume of literature and because OPF's ubiquity within the electric power systems community has led authors to assume a great deal of prior knowledge that readers unfamiliar with electric power systems may not possess. This articlemore » provides an introduction to OPF from an operations research perspective; it describes a complete and concise basis of knowledge for beginning OPF research. The discussion is tailored for the operations researcher who has experience with nonlinear optimization but little knowledge of electrical engineering. Topics covered include power systems modeling, the power flow equations, typical OPF formulations, and common OPF extensions.« less

  6. A novel visual pipework inspection system

    NASA Astrophysics Data System (ADS)

    Summan, Rahul; Jackson, William; Dobie, Gordon; MacLeod, Charles; Mineo, Carmelo; West, Graeme; Offin, Douglas; Bolton, Gary; Marshall, Stephen; Lille, Alexandre

    2018-04-01

    The interior visual inspection of pipelines in the nuclear industry is a safety critical activity conducted during outages to ensure the continued safe and reliable operation of plant. Typically, the video output by a manually deployed probe is viewed by an operator looking to identify and localize surface defects such as corrosion, erosion and pitting. However, it is very challenging to estimate the nature and extent of defects by viewing a large structure through a relatively small field of view. This work describes a new visual inspection system employing photogrammetry using a fisheye camera and a structured light system to map the internal geometry of pipelines by generating a photorealistic, geometrically accurate surface model. The error of the system output was evaluated through comparison to a ground truth laser scan (ATOS GOM Triple Scan) of a nuclear grade split pipe sample (stainless steel 304L, 80mm internal diameter) containing defects representative of the application - the error was found to be submillimeter across the sample.

  7. Integration of a photocatalytic multi-tube reactor for indoor air purification in HVAC systems: a feasibility study.

    PubMed

    van Walsem, Jeroen; Roegiers, Jelle; Modde, Bart; Lenaerts, Silvia; Denys, Siegfried

    2018-04-24

    This work is focused on an in-depth experimental characterization of multi-tube reactors for indoor air purification integrated in ventilation systems. Glass tubes were selected as an excellent photocatalyst substrate to meet the challenging requirements of the operating conditions in a ventilation system in which high flow rates are typical. Glass tubes show a low-pressure drop which reduces the energy demand of the ventilator, and additionally, they provide a large exposed surface area to allow interaction between indoor air contaminants and the photocatalyst. Furthermore, the performance of a range of P25-loaded sol-gel coatings was investigated, based on their adhesion properties and photocatalytic activities. Moreover, the UV light transmission and photocatalytic reactor performance under various operating conditions were studied. These results provide vital insights for the further development and scaling up of multi-tube reactors in ventilation systems which can provide a better comfort, improved air quality in indoor environments, and reduced human exposure to harmful pollutants.

  8. Surgical Models of Roux-en-Y Gastric Bypass Surgery and Sleeve Gastrectomy in Rats and Mice

    PubMed Central

    Bruinsma, Bote G.; Uygun, Korkut; Yarmush, Martin L.; Saeidi, Nima

    2015-01-01

    Bariatric surgery is the only definitive solution currently available for the present obesity pandemic. These operations typically involve reconfiguration of gastrointestinal tract anatomy and impose profound metabolic and physiological benefits, such as substantially reducing body weight and ameliorating type II diabetes. Therefore, animal models of these surgeries offer unique and exciting opportunities to delineate the underlying mechanisms that contribute to the resolution of obesity and diabetes. Here we describe a standardized procedure for mouse and rat models of Roux-en-Y gastric bypass (80–90 minutes operative time) and sleeve gastrectomy (30–45 minutes operative time), which, to a high degree resemble operations in human. We also provide detailed protocols for both pre- and post-operative techniques that ensure a high success rate in the operations. These protocols provide the opportunity to mechanistically investigate the systemic effects of the surgical interventions, such as regulation of body weight, glucose homeostasis, and gut microbiome. PMID:25719268

  9. Investigation of the impact of main control room digitalization on operators cognitive reliability in nuclear power plants.

    PubMed

    Zhou, Yong; Mu, Haiying; Jiang, Jianjun; Zhang, Li

    2012-01-01

    Currently, there is a trend in nuclear power plants (NPPs) toward introducing digital and computer technologies into main control rooms (MCRs). Safe generation of electric power in NPPs requires reliable performance of cognitive tasks such as fault detection, diagnosis, and response planning. The digitalization of MCRs has dramatically changed the whole operating environment, and the ways operators interact with the plant systems. If the design and implementation of the digital technology is incompatible with operators' cognitive characteristics, it may have negative effects on operators' cognitive reliability. Firstly, on the basis of three essential prerequisites for successful cognitive tasks, a causal model is constructed to reveal the typical human performance issues arising from digitalization. The cognitive mechanisms which they impact cognitive reliability are analyzed in detail. Then, Bayesian inference is used to quantify and prioritize the influences of these factors. It suggests that interface management and unbalanced workload distribution have more significant impacts on operators' cognitive reliability.

  10. Modeling Operations Costs for Human Exploration Architectures

    NASA Technical Reports Server (NTRS)

    Shishko, Robert

    2013-01-01

    Operations and support (O&S) costs for human spaceflight have not received the same attention in the cost estimating community as have development costs. This is unfortunate as O&S costs typically comprise a majority of life-cycle costs (LCC) in such programs as the International Space Station (ISS) and the now-cancelled Constellation Program. Recognizing this, the Constellation Program and NASA HQs supported the development of an O&S cost model specifically for human spaceflight. This model, known as the Exploration Architectures Operations Cost Model (ExAOCM), provided the operations cost estimates for a variety of alternative human missions to the moon, Mars, and Near-Earth Objects (NEOs) in architectural studies. ExAOCM is philosophically based on the DoD Architecture Framework (DoDAF) concepts of operational nodes, systems, operational functions, and milestones. This paper presents some of the historical background surrounding the development of the model, and discusses the underlying structure, its unusual user interface, and lastly, previous examples of its use in the aforementioned architectural studies.

  11. Design and study of water supply system for supercritical unit boiler in thermal power station

    NASA Astrophysics Data System (ADS)

    Du, Zenghui

    2018-04-01

    In order to design and optimize the boiler feed water system of supercritical unit, the establishment of a highly accurate controlled object model and its dynamic characteristics are prerequisites for developing a perfect thermal control system. In this paper, the method of mechanism modeling often leads to large systematic errors. Aiming at the information contained in the historical operation data of the boiler typical thermal system, the modern intelligent identification method to establish a high-precision quantitative model is used. This method avoids the difficulties caused by the disturbance experiment modeling for the actual system in the field, and provides a strong reference for the design and optimization of the thermal automation control system in the thermal power plant.

  12. System and Method for Outlier Detection via Estimating Clusters

    NASA Technical Reports Server (NTRS)

    Iverson, David J. (Inventor)

    2016-01-01

    An efficient method and system for real-time or offline analysis of multivariate sensor data for use in anomaly detection, fault detection, and system health monitoring is provided. Models automatically derived from training data, typically nominal system data acquired from sensors in normally operating conditions or from detailed simulations, are used to identify unusual, out of family data samples (outliers) that indicate possible system failure or degradation. Outliers are determined through analyzing a degree of deviation of current system behavior from the models formed from the nominal system data. The deviation of current system behavior is presented as an easy to interpret numerical score along with a measure of the relative contribution of each system parameter to any off-nominal deviation. The techniques described herein may also be used to "clean" the training data.

  13. Embedding Human Expert Cognition Into Autonomous UAS Trajectory Planning.

    PubMed

    Narayan, Pritesh; Meyer, Patrick; Campbell, Duncan

    2013-04-01

    This paper presents a new approach for the inclusion of human expert cognition into autonomous trajectory planning for unmanned aerial systems (UASs) operating in low-altitude environments. During typical UAS operations, multiple objectives may exist; therefore, the use of multicriteria decision aid techniques can potentially allow for convergence to trajectory solutions which better reflect overall mission requirements. In that context, additive multiattribute value theory has been applied to optimize trajectories with respect to multiple objectives. A graphical user interface was developed to allow for knowledge capture from a human decision maker (HDM) through simulated decision scenarios. The expert decision data gathered are converted into value functions and corresponding criteria weightings using utility additive theory. The inclusion of preferences elicited from HDM data within an automated decision system allows for the generation of trajectories which more closely represent the candidate HDM decision preferences. This approach has been demonstrated in this paper through simulation using a fixed-wing UAS operating in low-altitude environments.

  14. Cloth media filtration and membrane microfiltration: serial operation.

    PubMed

    Tooker, Nicholas Brewster; Darby, Jeannie L

    2007-02-01

    A combined system comprised of a cloth media filter and a membrane microfilter operated in series was used to treat secondary effluent. The study objective was to investigate the effect of premembrane filtration on the maximum sustainable membrane flux, transmembrane pressure, and effluent quality. The maximum sustainable time-averaged flux under predefined operating conditions (i.e., 15-minute process cycle, 24-hour chemical cleaning cycle, and 30-day intensive cleaning cycle) was 127 L/m(2)x h. Typical flux rates for secondary effluent ranged from 40 to 55 L/m(2) x h. Effluent water quality from the combined system was high and independent of membrane flux and influent quality. Average membrane effluent water quality values were 0.04 NTU for turbidity and 1.4 mg/L for 5-day biochemical oxygen demand. Neither total nor fecal coliforms were detected. Based on the results presented herein, prefiltration would provide an annualized cost savings of approximately 12% over microfiltration alone for a 3.8 x 10(3) m(3)/d treatment facility.

  15. Design and Verification of a Distributed Communication Protocol

    NASA Technical Reports Server (NTRS)

    Munoz, Cesar A.; Goodloe, Alwyn E.

    2009-01-01

    The safety of remotely operated vehicles depends on the correctness of the distributed protocol that facilitates the communication between the vehicle and the operator. A failure in this communication can result in catastrophic loss of the vehicle. To complicate matters, the communication system may be required to satisfy several, possibly conflicting, requirements. The design of protocols is typically an informal process based on successive iterations of a prototype implementation. Yet distributed protocols are notoriously difficult to get correct using such informal techniques. We present a formal specification of the design of a distributed protocol intended for use in a remotely operated vehicle, which is built from the composition of several simpler protocols. We demonstrate proof strategies that allow us to prove properties of each component protocol individually while ensuring that the property is preserved in the composition forming the entire system. Given that designs are likely to evolve as additional requirements emerge, we show how we have automated most of the repetitive proof steps to enable verification of rapidly changing designs.

  16. Experience with small turbomachinery in a 400 watt refrigerator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fuerst, J.D.

    1996-12-31

    A refrigerator similar to one of the Fermilab Tevatron satellites was re-configured to use turbomachinery instead of the reciprocating equipment typical of the installations. A Sulzer dry turboexpander, Creare wet turboexpander, and IHI centrifugal cold compressor have been installed and operated for about 8000 hours. Experience was gained both with the rotating machinery and with the refrigerator itself as it interfaced with the load. Equipment was set up to regulate in the same manner as the reciprocating devices had. Heat loads and operating mode were adjusted and evaluations made regarding the behavior of the devices. Individual equipment performance is described,more » as well as system behavior and overall integration of the machinery. In particular, attention is paid to the Creare wet turboexpander. This device is operated for the first time as part of a full scale refrigeration system, testing not only its performance at the design point but also its off design characteristics and behavior in transient situations.« less

  17. Experience with small turbomachinery in a 400 watt refrigerator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fuerst, J.D.

    1996-09-01

    A refrigerator similar to one of the Fermilab Tevatron satellites was reconfigured to use turbomachinery instead of the reciprocating equipment typical of the installations. A Sulzer dry turboexpander, Creare wet turboexpander, and IHI centrifugal cold compressor have been installed and operated for about 8000 hours. Experience was gained both with the rotating machinery and with the refrigerator itself as it interfaced with the load. Equipment was set up to regulate in the same manner as the reciprocating devices had. Heat load and operating mode were adjusted and evaluations made regarding the behavior of the devices. Individual equipment performance is describedmore » as well as system behavior and overall integration of the machinery. In particular, attention is paid to the Creare wet turboexpander. This device is operated for the first time as part of a full scale refrigeration system, testing not only its performance at the design point but also its off design characteristics and behavior in transient situations.« less

  18. Using Large-Scale Cooperative Control to Manage Operational Uncertainties for Aquifer Thermal Energy Storage

    NASA Astrophysics Data System (ADS)

    Jaxa-Rozen, M.; Rostampour, V.; Kwakkel, J. H.; Bloemendal, M.

    2017-12-01

    Seasonal Aquifer Thermal Energy Storage (ATES) technology can help reduce the demand of energy for heating and cooling in buildings, and has become a popular option for larger buildings in northern Europe. However, the larger-scale deployment of this technology has evidenced some issues of concern for policymakers; in particular, recent research shows that operational uncertainties contribute to inefficient outcomes under current planning methods for ATES. For instance, systems in the Netherlands typically use less than half of their permitted pumping volume on an annual basis. This overcapacity gives users more flexibility to operate their systems in response to the uncertainties which drive building energy demand; these include short-term operational factors such as weather and occupancy, and longer-term, deeply uncertain factors such as changes in climate and aquifer conditions over the lifespan of the buildings. However, as allocated subsurface volume remains unused, this situation limits the adoption of the technology in dense areas. Previous work using coupled agent-based/geohydrological simulation has shown that the cooperative operation of neighbouring ATES systems can support more efficient spatial planning, by dynamically managing thermal interactions in response to uncertain operating conditions. An idealized case study with centralized ATES control thus showed significant improvements in the energy savings which could obtained per unit of allocated subsurface volume, without degrading the recovery performance of systems. This work will extend this cooperative approach for a realistic case study of ATES planning in the city of Utrecht, in the Netherlands. This case was previously simulated under different scenarios for individual ATES operation. The poster will compare these results with a cooperative case under which neighbouring systems can coordinate their operation to manage interactions. Furthermore, a cooperative game-theoretical framework will be used to analyze the theoretical conditions under which cooperation between ATES operators could be assumed to be stable and beneficial, under a range of scenarios for climate trends and ATES adoption pathways.

  19. Automating the Transition Between Sensorless Motor Control Methods for the NASA Glenn Research Center Flywheel Energy Storage System

    NASA Technical Reports Server (NTRS)

    Fehrmann, Elizabeth A.; Kenny, Barbara H.

    2004-01-01

    The NASA Glenn Research Center (GRC) has been working to advance the technology necessary for a flywheel energy storage system for the past several years. Flywheels offer high efficiency, durability, and near-complete discharge capabilities not produced by typical chemical batteries. These characteristics show flywheels to be an attractive alternative to the more typical energy storage solutions. Flywheels also offer the possibility of combining what are now two separate systems in space applications into one: energy storage, which is currently provided by batteries, and attitude control, which is currently provided by control moment gyroscopes (CMGs) or reaction wheels. To date, NASA Glenn research effort has produced the control algorithms necessary to demonstrate flywheel operation up to a rated speed of 60,000 RPM and the combined operation of two flywheel machines to simultaneously provide energy storage and single axis attitude control. Two position-sensorless algorithms are used to control the motor/generator, one for low (0 to 1200 RPM) speeds and one for high speeds. The algorithm allows the transition from the low speed method to the high speed method, but the transition from the high to low speed method was not originally included. This leads to a limitation in the existing motor/generator control code that does not allow the flywheels to be commanded to zero speed (and back in the negative speed direction) after the initial startup. In a multi-flywheel system providing both energy storage and attitude control to a spacecraft, speed reversal may be necessary.

  20. Study on real-time force feedback for a master-slave interventional surgical robotic system.

    PubMed

    Guo, Shuxiang; Wang, Yuan; Xiao, Nan; Li, Youxiang; Jiang, Yuhua

    2018-04-13

    In robot-assisted catheterization, haptic feedback is important, but is currently lacking. In addition, conventional interventional surgical robotic systems typically employ a master-slave architecture with an open-loop force feedback, which results in inaccurate control. We develop herein a novel real-time master-slave (RTMS) interventional surgical robotic system with a closed-loop force feedback that allows a surgeon to sense the true force during remote operation, provide adequate haptic feedback, and improve control accuracy in robot-assisted catheterization. As part of this system, we also design a unique master control handle that measures the true force felt by a surgeon, providing the basis for the closed-loop control of the entire system. We use theoretical and empirical methods to demonstrate that the proposed RTMS system provides a surgeon (using the master control handle) with a more accurate and realistic force sensation, which subsequently improves the precision of the master-slave manipulation. The experimental results show a substantial increase in the control accuracy of the force feedback and an increase in operational efficiency during surgery.

Top