Sample records for u-2375 resonances

  1. 14 CFR 23.75 - Landing distance.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Landing distance. 23.75 Section 23.75... STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Flight Performance § 23.75 Landing... the landing surface must be determined, for standard temperatures at each weight and altitude within...

  2. 21 CFR 868.2375 - Breathing frequency monitor.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Breathing frequency monitor. 868.2375 Section 868.2375 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Monitoring Devices § 868.2375 Breathing frequency monitor. (a) Identification. A breathing (ventilatory)...

  3. 40 CFR 52.2375 - Attainment dates for national standards.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    .... 52.2375 Section 52.2375 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) APPROVAL AND PROMULGATION OF IMPLEMENTATION PLANS (CONTINUED) Vermont § 52.2375... control region and nonattainment area 1 Pollutant SO2 Primary Secondary PM10 NOX CO O3 Champlain Valley...

  4. 40 CFR 52.2375 - Attainment dates for national standards.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    .... 52.2375 Section 52.2375 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) APPROVAL AND PROMULGATION OF IMPLEMENTATION PLANS (CONTINUED) Vermont § 52.2375... control region and nonattainment area 1 Pollutant SO2 Primary Secondary PM10 NOX CO O3 Champlain Valley...

  5. 40 CFR 52.2375 - Attainment dates for national standards.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    .... 52.2375 Section 52.2375 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) APPROVAL AND PROMULGATION OF IMPLEMENTATION PLANS (CONTINUED) Vermont § 52.2375... control region and nonattainment area 1 Pollutant SO2 Primary Secondary PM10 NOX CO O3 Champlain Valley...

  6. 40 CFR 52.2375 - Attainment dates for national standards.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    .... 52.2375 Section 52.2375 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) APPROVAL AND PROMULGATION OF IMPLEMENTATION PLANS (CONTINUED) Vermont § 52.2375... control region and nonattainment area 1 Pollutant SO2 Primary Secondary PM10 NOX CO O3 Champlain Valley...

  7. 21 CFR 868.2375 - Breathing frequency monitor.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Breathing frequency monitor. 868.2375 Section 868...) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Monitoring Devices § 868.2375 Breathing frequency monitor. (a) Identification. A breathing (ventilatory) frequency monitor is a device intended to measure or monitor a patient...

  8. 49 CFR 23.75 - Can recipients enter into long-term, exclusive agreements with concessionaires?

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... agreements with concessionaires? 23.75 Section 23.75 Transportation Office of the Secretary of Transportation... recipients enter into long-term, exclusive agreements with concessionaires? (a) Except as provided in... required will participate as concessionaires throughout the term of the agreement and account for at a...

  9. 50 CFR 23.75 - How can I trade internationally in vicuña (Vicugna vicugna)?

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 50 Wildlife and Fisheries 9 2014-10-01 2014-10-01 false How can I trade internationally in vicuña (Vicugna vicugna)? 23.75 Section 23.75 Wildlife and Fisheries UNITED STATES FISH AND WILDLIFE SERVICE, DEPARTMENT OF THE INTERIOR (CONTINUED) TAKING, POSSESSION, TRANSPORTATION, SALE, PURCHASE, BARTER, EXPORTATION, AND IMPORTATION OF WILDLIFE AND...

  10. 49 CFR 23.75 - Can recipients enter into long-term, exclusive agreements with concessionaires?

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... PARTICIPATION OF DISADVANTAGED BUSINESS ENTERPRISE IN AIRPORT CONCESSIONS Other Provisions § 23.75 Can... delivery space, “back-of-the-house facilities” such as kitchens, window display space, advertising space...

  11. Nuclear Resonance Fluorescence of U-235

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Warren, Glen A.; Caggiano, Joseph A.; Hensley, Walter K.

    Nuclear resonance fluorescence is a physical process that provides an isotopic-specific signature that could be used for the identification and characterization of materials. The technique involves the detection of prompt discrete-energy photons emitted from a sample which is exposed to photons in the MeV energy range. Potential applications of the technique range from detection of high explosives to characterization of special nuclear materials. One isotope of significant interest is 235U. Pacific Northwest National Laboratory and Passport Systems have collaborated to conduct measurements to search for a nuclear resonance fluorescence response of 235U below 3 MeV using a 200 g samplemore » of highly enriched uranium. Nine 235U resonances between 1650 and 2010 keV were identified in the preliminary analysis. Analysis of the measurement data to determine the integrated cross sections of the resonances is in progress.« less

  12. 49 CFR 23.75 - Can recipients enter into long-term, exclusive agreements with concessionaires?

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... PARTICIPATION OF DISADVANTAGED BUSINESS ENTERPRISE IN AIRPORT CONCESSIONS Other Provisions § 23.75 Can... information to the FAA regional office: (1) A description of the special local circumstances that warrant a..., and other amenities that will increase the ACDBE's chance to succeed). (6) Information on the...

  13. 49 CFR 23.75 - Can recipients enter into long-term, exclusive agreements with concessionaires?

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... PARTICIPATION OF DISADVANTAGED BUSINESS ENTERPRISE IN AIRPORT CONCESSIONS Other Provisions § 23.75 Can... information to the FAA regional office: (1) A description of the special local circumstances that warrant a..., and other amenities that will increase the ACDBE's chance to succeed). (6) Information on the...

  14. 49 CFR 23.75 - Can recipients enter into long-term, exclusive agreements with concessionaires?

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... PARTICIPATION OF DISADVANTAGED BUSINESS ENTERPRISE IN AIRPORT CONCESSIONS Other Provisions § 23.75 Can... information to the FAA regional office: (1) A description of the special local circumstances that warrant a..., and other amenities that will increase the ACDBE's chance to succeed). (6) Information on the...

  15. Resonant tunneling through S- and U-shaped graphene nanoribbons.

    PubMed

    Zhang, Z Z; Wu, Z H; Chang, Kai; Peeters, F M

    2009-10-14

    We theoretically investigate resonant tunneling through S- and U-shaped nanostructured graphene nanoribbons. A rich structure of resonant tunneling peaks is found emanating from different quasi-bound states in the middle region. The tunneling current can be turned on and off by varying the Fermi energy. Tunability of resonant tunneling is realized by changing the width of the left and/or right leads and without the use of any external gates.

  16. Contact resonances of U-shaped atomic force microscope probes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rezaei, E.; Turner, J. A., E-mail: jaturner@unl.edu

    Recent approaches used to characterize the elastic or viscoelastic properties of materials with nanoscale resolution have focused on the contact resonances of atomic force microscope (CR-AFM) probes. The experiments for these CR-AFM methods involve measurement of several contact resonances from which the resonant frequency and peak width are found. The contact resonance values are then compared with the noncontact values in order for the sample properties to be evaluated. The data analysis requires vibration models associated with the probe during contact in order for the beam response to be deconvolved from the measured spectra. To date, the majority of CR-AFMmore » research has used rectangular probes that have a relatively simple vibration response. Recently, U-shaped AFM probes have created much interest because they allow local sample heating. However, the vibration response of these probes is much more complex such that CR-AFM is still in its infancy. In this article, a simplified analytical model of U-shaped probes is evaluated for contact resonance applications relative to a more complex finite element (FE) computational model. The tip-sample contact is modeled using three orthogonal Kelvin-Voigt elements such that the resonant frequency and peak width of each mode are functions of the contact conditions. For the purely elastic case, the frequency results of the simple model are within 8% of the FE model for the lowest six modes over a wide range of contact stiffness values. Results for the viscoelastic contact problem for which the quality factor of the lowest six modes is compared show agreement to within 13%. These results suggest that this simple model can be used effectively to evaluate CR-AFM experimental results during AFM scanning such that quantitative mapping of viscoelastic properties may be possible using U-shaped probes.« less

  17. Biologic stability of tauro-23-[75Se] selena-25-homocholic acid.

    PubMed

    Monks, R; Boyd, G S

    1988-08-01

    The stability of tauro-23-[75Se]selena-25-homocholic acid (SeHCAT) towards deconjugation by the enzyme cholylglycine hydrolase was compared with that of taurocholate: whereas taurocholate underwent 58% deconjugation within 2 hr, SeHCAT suffered only 8% deconjugation plus 5% conversion to an unknown product within 24 hr. Incubation of SeHCAT under anaerobic conditions for 48 hr at 37 degrees C with human fecal organisms resulted in considerable deconjugation, 7 alpha-dehydroxylation, and dehydrogenation. Twenty-four hours after the simultaneous administration of SeHCAT and tauro-[24-14C]cholate to a rabbit the recovery of 75Se in bile was 90% of that of 14C. Forty-eight hours following administration of SeHCAT to a second rabbit residual bile radioactivity revealed 80% deconjugation and dehydroxylation and 60% reconjugation with glycine. Although SeHCAT is more resistant than taurocholate towards modification by fecal bacterial enzymes, within the rabbit it follows the principal metabolic pathways of the natural bile acids.

  18. Nuclear Resonance Fluorescence of U-235 above 3 MeV

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Warren, Glen A.; Caggiano, Joseph A.; Miller, Erin A.

    Pacific Northwest National Laboratory and Passport Systems have collaborated to conduct measurements to search for a nuclear resonance fluorescence response of U-235 from 3 to 5 MeV using an 8 g sample of highly enriched uranium. These new measurements complement previously reported measurements below 3 MeV. Preliminary analysis indicates that no strong resonances exist for U-235 in this energy range. A second set of measurements focused on a signature search in the 5 to 10 MeV range is still under analysis.

  19. On the Search for Nuclear Resonance Fluorescence Signatures of 235U and 238U above 3 MeV

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Warren, Glen A.; Caggiano, Joseph A.; Bertozzi, William

    Nuclear resonance fluorescence is a physical process that provides an isotope-specific signature that could be used for the identification and characterization of materials. The technique involves the detection of prompt discrete-energy photons emitted from a sample that is exposed to MeV-energy photons. Potential applications of the technique range from detection of high explosives to characterization of special nuclear materials such as 235U. Pacific Northwest National Laboratory and Passport Systems have collaborated to conduct a pair of measurements to search for a nuclear resonance fluorescence response of 235U above 3 MeV and of 238U above 5 MeV using an 8 gmore » sample of highly enriched uranium and a 90 g sample of depleted uranium. No new signatures were observed. The minimum detectable integrated cross section for 235U is presented.« less

  20. On the Search for Nuclear Resonance Fluorescence Signatures of 235U and 238U above 3 MeV

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Warren, Glen A.; Caggiano, Joseph A.; Bertozzi, William

    Abstract–Nuclear resonance fluorescence is a physical process that provides an isotope-specific signature that could be used for the identification and characterization of materials. The technique involves the detection of prompt discrete-energy photons emitted from a sample that is exposed to photons in the MeV energy range. Potential applications of the technique range from detection of high explosives to characterization of special nuclear materials such as 235U. Pacific Northwest National Laboratory and Passport Systems have collaborated to conduct a a pair of measurements to search for a nuclear resonance fluorescence response of 235U above 3 MeV and of 238U above 5more » MeV using an 8 g sample of highly enriched uranium and a 90 g sample of depleted uranium. No new signatures were observed. The minimum detectable integrated cross section for 235U is presented.« less

  1. Compact 151 W green laser with U-type resonator for prostate surgery

    NASA Astrophysics Data System (ADS)

    Bazyar, Hossein; Aghaie, Mohammad; Daemi, Mohammad Hossein; Bagherzadeh, Seyed Morteza

    2013-04-01

    We analyzed, designed and fabricated a U-type resonator for intra-cavity frequency doubling of a diode-side-pumped Q-switched Nd:YAG rod laser with high power and high stability for surgery of prostatic tissue. The resonator stability conditions were analyzed graphically in the various configurations for a U-type resonator. We obtained green light at 532 nm using a single KTP crystal, with average output power of 151 W at 10 kHz repetition rate, and with 113 ns pulse duration at 810 W input pump power. We achieved 1064-532 nm conversion efficiency of 75.8%, and pump-to-green optical-optical efficiency of 18.6%. The green power fluctuation was ±1.0% and pointing stability was better than 4 μrad. The green laser output was coupled to a side-firing medical fiber to transfer the laser beam to the prostatic tissue.

  2. Self-Reference Refractive Index Sensor Based on Independently Controlled Double Resonances in Side-Coupled U-Shaped Resonators.

    PubMed

    Ren, Xiaobin; Ren, Kun; Ming, Chengguo

    2018-04-28

    A plasmonic, refractive, index nanosensor is investigated theoretically and numerically in two U-shaped cavities side-coupled to a metal⁻dielectric⁻metal (MDM) waveguide. A transparency window between two transmission dips is observed. The physical origin of the transmission phenomenon is revealed by mapping the magnetic field distribution. Independent double resonances are realized through the proposed design. Double resonances showed diverse responses to the variations of the structural dimensions. In particular, they presented different dependences on a refraction index of the medium in an individual resonator. One resonance exhibited a remarkable shift with the increase of the refraction index; however, the other resonance remained unchanged. On the basis of this unique characteristic of differing sensitivities, self-reference sensing is discussed. The nanosensor yielded a high sensitivity of 917 nm/RIU and a figure of merit of 180 RIU −1 . This work is helpful in terms of the design of on-chip optical sensors with high sensitivity and improved detection accuracy in complicated environments.

  3. Ion Cyclotron Resonant Heating (ICRH) system used on the Tandem Mirror Experiment-Upgrade (TMX-U)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ferguson, S.W.; Maxwell, T.M.; Antelman, D.R.

    1985-11-11

    Ion Cyclotron Resonant Heating (ICRH) is part of the plasma heating system used on the TMX-U experiment. Radio frequency (RF) energy is injected into the TMX-U plasma at a frequency near the fundamental ion resonance (2 to 5 MHz). The RF fields impart high velocities to the ions in a direction perpendicular to the TMX-U magnetic field. Particle collision then converts this perpendicular heating to uniform plasma heating. This paper describes the various aspects of the ICRH system: antennas, power supplies, computer control, and data acquisition. 4 refs., 10 figs.

  4. Nuclear Resonance Fluorescence Response of U-235

    NASA Astrophysics Data System (ADS)

    Warren, Glen

    2008-05-01

    Nuclear resonance fluorescence (NRF) is a physical process that provides an isotopic-specific signature that could be used for the identification and characterization of materials. The technique involves the detection of prompt discrete-energy photons emitted from a sample, which is exposed to photons in the MeV energy range. Potential applications of the technique range from detection of high explosives to characterization of special nuclear materials. Pacific Northwest National Laboratory and Passport Systems have collaboratively conducted a set of measurements to search for an NRF response of U-235 in the 1.5 to 9 MeV energy range. Results from these measurements will be presented.

  5. Evaluation of the 235 U resonance parameters to fit the standard recommended values

    DOE PAGES

    Leal, Luiz; Noguere, Gilles; Paradela, Carlos; ...

    2017-09-13

    A great deal of effort has been dedicated to the revision of the standard values in connection with the neutron interaction for some actinides. While standard data compilation are available for decades nuclear data evaluations included in existing nuclear data libraries (ENDF, JEFF, JENDL, etc.) do not follow the standard recommended values. Indeed, the majority of evaluations for major actinides do not conform to the standards whatsoever. In particular, for the n + 235U interaction the only value in agreement with the standard is the thermal fission cross section. We performed a resonance re-evaluation of the n + 235U interactionmore » in order to address the issues regarding standard values in the energy range from 10-5 eV to 2250 eV. Recently, 235U fission cross-section measurements have been performed at the CERN Neutron Time-o-Flight facility (TOF), known as n_TOF, in the energy range from 0.7 eV to 10 keV. The data were normalized according to the recommended standard of the fission integral in the energy range 7.8 eV to 11 eV. As a result, the n_TOF averaged fission cross sections above 100 eV are in good agreement with the standard recommended values. The n_TOF data were included in the 235U resonance analysis that was performed with the code SAMMY. In addition to the average standard values related to the fission cross section, standard thermal values for fission, capture, and elastic cross sections were also included in the evaluation. Our paper presents the procedure used for re-evaluating the 235U resonance parameters including the recommended standard values as well as new cross section measurements.« less

  6. Evaluation of the 235 U resonance parameters to fit the standard recommended values

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leal, Luiz; Noguere, Gilles; Paradela, Carlos

    A great deal of effort has been dedicated to the revision of the standard values in connection with the neutron interaction for some actinides. While standard data compilation are available for decades nuclear data evaluations included in existing nuclear data libraries (ENDF, JEFF, JENDL, etc.) do not follow the standard recommended values. Indeed, the majority of evaluations for major actinides do not conform to the standards whatsoever. In particular, for the n + 235U interaction the only value in agreement with the standard is the thermal fission cross section. We performed a resonance re-evaluation of the n + 235U interactionmore » in order to address the issues regarding standard values in the energy range from 10-5 eV to 2250 eV. Recently, 235U fission cross-section measurements have been performed at the CERN Neutron Time-o-Flight facility (TOF), known as n_TOF, in the energy range from 0.7 eV to 10 keV. The data were normalized according to the recommended standard of the fission integral in the energy range 7.8 eV to 11 eV. As a result, the n_TOF averaged fission cross sections above 100 eV are in good agreement with the standard recommended values. The n_TOF data were included in the 235U resonance analysis that was performed with the code SAMMY. In addition to the average standard values related to the fission cross section, standard thermal values for fission, capture, and elastic cross sections were also included in the evaluation. Our paper presents the procedure used for re-evaluating the 235U resonance parameters including the recommended standard values as well as new cross section measurements.« less

  7. Evaluation of the 235U resonance parameters to fit the standard recommended values

    NASA Astrophysics Data System (ADS)

    Leal, Luiz; Noguere, Gilles; Paradela, Carlos; Durán, Ignacio; Tassan-Got, Laurent; Danon, Yaron; Jandel, Marian

    2017-09-01

    A great deal of effort has been dedicated to the revision of the standard values in connection with the neutron interaction for some actinides. While standard data compilation are available for decades nuclear data evaluations included in existing nuclear data libraries (ENDF, JEFF, JENDL, etc.) do not follow the standard recommended values. Indeed, the majority of evaluations for major actinides do not conform to the standards whatsoever. In particular, for the n + 235U interaction the only value in agreement with the standard is the thermal fission cross section. A resonance re-evaluation of the n + 235U interaction has been performed to address the issues regarding standard values in the energy range from 10-5 eV to 2250 eV. Recently, 235U fission cross-section measurements have been performed at the CERN Neutron Time-of-Flight facility (TOF), known as n_TOF, in the energy range from 0.7 eV to 10 keV. The data were normalized according to the recommended standard of the fission integral in the energy range 7.8 eV to 11 eV. As a result, the n_TOF averaged fission cross sections above 100 eV are in good agreement with the standard recommended values. The n_TOF data were included in the 235U resonance analysis that was performed with the code SAMMY. In addition to the average standard values related to the fission cross section, standard thermal values for fission, capture, and elastic cross sections were also included in the evaluation. This paper presents the procedure used for re-evaluating the 235U resonance parameters including the recommended standard values as well as new cross section measurements.

  8. n+235U resonance parameters and neutron multiplicities in the energy region below 100 eV

    NASA Astrophysics Data System (ADS)

    Pigni, Marco T.; Capote, Roberto; Trkov, Andrej; Pronyaev, Vladimir G.

    2017-09-01

    In August 2016, following the recent effort within the Collaborative International Evaluated Library Organization (CIELO) pilot project to improve the neutron cross sections of 235U, Oak Ridge National Laboratory (ORNL) collaborated with the International Atomic Energy Agency (IAEA) to release a resonance parameter evaluation. This evaluation restores the performance of the evaluated cross sections for the thermal- and above-thermal-solution benchmarks on the basis of newly evaluated thermal neutron constants (TNCs) and thermal prompt fission neutron spectra (PFNS). Performed with support from the US Nuclear Criticality Safety Program (NCSP) in an effort to provide the highest fidelity general purpose nuclear database for nuclear criticality applications, the resonance parameter evaluation was submitted as an ENDF-compatible file to be part of the next release of the ENDF/B-VIII.0 nuclear data library. The resonance parameter evaluation methodology used the Reich-Moore approximation of the R-matrix formalism implemented in the code SAMMY to fit the available time-of-flight (TOF) measured data for the thermal induced cross section of n+235U up to 100 eV. While maintaining reasonably good agreement with the experimental data, the validation analysis focused on restoring the benchmark performance for 235U solutions by combining changes to the resonance parameters and to the prompt resonance

  9. Determination of elastic properties of polycrystalline U 3Si 2 using resonant ultrasound spectroscopy

    DOE PAGES

    Carvajal-Nunez, Ursula; Saleh, Tarik A.; White, Joshua Taylor; ...

    2017-11-10

    For this research, the elastic properties of U 3Si 2 at room temperature have been measured via resonant ultrasound spectroscopy. Results show that the average value of Young's and the bulk modulus for U 3Si 2 are 130.4±0.5 and 68.3±0.5 GPa, respectively. Further, a numerical model to assess thermal stress in an operating fuel is evaluated. Lastly, the thermal stress evolved in U 3Si 2 is compared to UO 2 to facilitate an estimation of the probability of crack formation in U 3Si 2 under representative light water reactor operating conditions.

  10. Determination of elastic properties of polycrystalline U 3Si 2 using resonant ultrasound spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carvajal-Nunez, Ursula; Saleh, Tarik A.; White, Joshua Taylor

    For this research, the elastic properties of U 3Si 2 at room temperature have been measured via resonant ultrasound spectroscopy. Results show that the average value of Young's and the bulk modulus for U 3Si 2 are 130.4±0.5 and 68.3±0.5 GPa, respectively. Further, a numerical model to assess thermal stress in an operating fuel is evaluated. Lastly, the thermal stress evolved in U 3Si 2 is compared to UO 2 to facilitate an estimation of the probability of crack formation in U 3Si 2 under representative light water reactor operating conditions.

  11. Tunable Fano resonance in MDM stub waveguide coupled with a U-shaped cavity

    NASA Astrophysics Data System (ADS)

    Yi, Xingchun; Tian, Jinping; Yang, Rongcao

    2018-04-01

    A new compact metal-dielectric-metal waveguide system consisting of a stub coupled with a U-cavity is proposed to produce sharp and asymmetric Fano resonance. The transmission properties of the proposed structure are numerically studied by the finite element method and verified by the coupled mode theory. Simulation results reveal that the spectral profile can be easily tuned by adjusting the geometric parameters of the structure. One of the potential application of the proposed structure as a highly efficient plasmonic refractive index nanosensor was investigated with its sensitivity of more than 1000 nm/RIU and a figure of merit of up to 5500. Another application is integrated slow-light device whose group index can be greater than 6. In addition, multiple Fano resonances will occur in the broadband transmission spectrum by adding another U-cavity or (and) stub. The characteristics of the proposed structure are very promising for the highly performance filters, on-chip nanosensors, and slow-light devices.

  12. Resonant coherent excitation of 390 MeV/u Ar ions planar channeled in Si crystals

    NASA Astrophysics Data System (ADS)

    Komaki, K.; Azuma, T.; Ito, T.; Takabayashi, Y.; Yamazaki, Y.; Sano, M.; Torikoshi, M.; Kitagawa, A.; Takada, E.; Murakami, T.

    1998-12-01

    Resonant coherent excitation of the 1s electron to n=2 states in a hydrogen-like ion was studied through measurements of the survived fraction of 390 MeV/u Ar17+ planar channeled in a Si crystal. Adopting a totally depleted Si surface barrier detector as a target crystal, the charge state of the individual emerged ion was measured in coincidence with the energy deposition in the target. By changing the incident direction along the (2 overline2 0), (0 0 4), and (1 overline1 1) planes, a series of clear resonances were observed as the decrease in the survived charge fraction due to higher electron loss probability for the excited state. Each resonance profile reflects energy splitting of the n=2 manifold originated from l-s interaction and Stark effect due to the crystal field. From the correlation between the energy loss and survived charge fraction, transition energy as a function of the ion trajectory amplitude is deduced which is in good agreement with calculated results.

  13. Heath Professions Education and Distribution Act of 1980. Hearings Before the Subcommittee on Health and Scientific Research of the Committee on Labor and Human Resources, United States Senate, Ninety-Sixth Congress, Second Session on S. 2375, S. 2134, S. 2378 (March 10 and 12, 1980).

    ERIC Educational Resources Information Center

    Congress of the U.S., Washington, DC. Senate Committee on Labor and Human Resources.

    This is a report of hearings held in Washington, D.C., on March 10 and 12, 1980, on the Health Professions Education and Distribution Act of 1980--three bills amending Public Health Service Act, Titles VII and VIII, and the national health Service Corps Program. S. 2375 would extend assistance programs for training health professionals and the…

  14. Light sterile neutrinos, dark matter, and new resonances in a U(1) extension of the MSSM

    NASA Astrophysics Data System (ADS)

    Hebbar, A.; Lazarides, G.; Shafi, Q.

    2017-09-01

    We present ψ'MSSM, a model based on a U(1) ψ' extension of the minimal supersymmetric standard model. The gauge symmetry U(1)ψ', also known as U(1)N,is a linear combination of the U(1) χ and U(1)ψ subgroups of E6. The model predicts the existence of three sterile neutrinos with masses ≲0.1 eV , if the U(1)ψ' breaking scale is of order 10 TeV. Their contribution to the effective number of neutrinos at nucleosynthesis is Δ Nν≃0.29. The model can provide a variety of possible cold dark matter candidates including the lightest sterile sneutrino. If the U(1) ψ' breaking scale is increased to 1 03 TeV , the sterile neutrinos, which are stable on account of a Z2symmetry, become viable warm dark matter candidates. The observed value of the standard model Higgs boson mass can be obtained with relatively light stop quarks thanks to the D-term contribution from U(1)ψ'. The model predicts diquark and diphoton resonances which may be found at an updated LHC. The well-known μ problem is resolved and the observed baryon asymmetry of the universe can be generated via leptogenesis. The breaking of U(1)ψ' produces superconducting strings that may be present in our galaxy. A U(1) R symmetry plays a key role in keeping the proton stable and providing the light sterile neutrinos.

  15. Convoy electron emission from resonant coherently excited 390 MeV/u hydrogen-like Ar ions

    NASA Astrophysics Data System (ADS)

    Azuma, T.; Takabayashi, Y.; Ito, T.; Komaki, K.; Yamazaki, Y.; Takada, E.; Murakami, T.

    2003-12-01

    Energetic ions traveling through a single crystal are excited by an oscillating crystal field produced by a periodic arrangement of the atomic strings/planes, which is called Resonant Coherent Excitation (RCE). We have observed enhancement of convoy electron yields associated with RCE of 1s electron to the n=2 excited states of 390 MeV/u hydrogen-like Ar 17+ ions passing through a Si crystal in the (2 2¯ 0) planar channeling condition. Lost electrons from projectile ions due to ionization contribute to convoy electrons emitted in the forward direction with the same velocity as the projectile ions. With combination of a magnet and a thick Si solid-state detector, we measured the energy spectra of convoy electrons of about 200 keV emitted at 0°. The convoy electron yield as a function of the transition energy, i.e. the resonance profile, has a similar structure to the resonance profile observed through the ionized fraction of the emerging ions. It is explained by the fact that both enhancements are due to increase in the fraction of the excited states from which electrons are more easily ionized by target electron impact in the crystal than from the ground state.

  16. Investigating Prompt Fission Neutron Emission from 235U(n,f) in the Resolved Resonance Region

    NASA Astrophysics Data System (ADS)

    Göök, Alf; Hambsch, Franz-Josef; Oberstedt, Stephan

    2016-03-01

    Investigations of prompt emission in fission is of importance in understanding the fission process in general and the sharing of excitation energy among the fission fragments in particular. Experimental activities at IRMM on prompt neutron emission from fission in response to OECD/NEA nuclear data requests is presented in this contribution. Main focus lies on currently on-going investigations of prompt neutron emission from the reaction 235U(n,f) in the region of the resolved resonances. For this reaction strong fluctuations of fission fragment mass distributions and mean total kinetic energy have been observed [Nucl. Phys. A 491, 56 (1989)] as a function of incident neutron energy in the resonance region. In addition fluctuations of prompt neutron multiplicities were also observed [Phys. Rev. C 13, 195 (1976)]. The goal of the present study is to verify the current knowledge of prompt neutron multiplicity fluctuations and to study correlations with fission fragment properties.

  17. Correlates of sedentary behavior in 2,375 people with depression from 6 low- and middle-income countries.

    PubMed

    Vancampfort, Davy; Stubbs, Brendon; Mugisha, James; Firth, Joseph; Schuch, Felipe B; Koyanagi, Ai

    2018-07-01

    Sedentary behaviour (SB) is harmful for health and well-being and may be associated with depression. However, little is known about the correlates of SB in people with depression. Thus, we investigated SB correlates among community-dwelling adults with depression in six low- and middle-income countries. Cross-sectional data from the World Health Organization's Study on Global Ageing and Adult Health were analyzed. The analysis was restricted to those with DSM-IV Depression or receiving depression treatment in the last 12 months. Self-reported time spent sedentary per day was the outcome. High SB was defined as ≥8 hours of SB per day. The correlates (sociodemographic and health-related) of SB were estimated by multivariable linear and logistic regression analyses. In 2375 individuals with depression (mean age=48.0 years; 60.7% female), the prevalence of high SB was 11.1% (95%CI=8.2%-14.9%), while the mean (±SD) time spent sedentary was 215 (±192) minutes per day. Socio-demographic factors significantly associated with high SB were older age and being unmarried, being male and being unemployed. In other domains, no alcohol consumption, current smoking, mild cognitive impairment, bodily pain, arthritis, stroke, disability, and lower levels of social cohesion, COPD, visual impairment, and poor self-rated health was associated with greater time spent sedentary. Our data suggest that future interventions seeking to reduce SB among individuals with depression may target at risk groups based on identified sociodemographic correlates while the promotion of social cohesion may have the potential to increase the efficacy of future public health initiatives. From a clinical perspective, bodily pain and somatic co-morbidities need to be taken into account. Copyright © 2018 Elsevier B.V. All rights reserved.

  18. Spectroscopic study of N2(b1Πu, ν = 8) by atmospheric-pressure resonant-enhanced multiphoton ionization and fluorescence detection.

    PubMed

    Adams, Steven F; Williamson, James M

    2013-12-19

    A spectroscopic analysis of the strongly perturbed N2(b(1)Πu, ν = 8) state has been conducted, accounting for b(1)Πu(ν = 8) ← X (1)Σg(+)(ν = 0) transitions, for the first time, up to J' = 20. A novel laser spectroscopy technique, using a combination of resonant-enhanced multiphoton ionization and fluorescence detection at atmospheric pressure, avoids the severe effects of perturbation reported in past extreme vacuum ultraviolet absorption experiments that produced weak and unusable spectra for the ν = 8 level. The R, Q, and P branches of the three-photon absorption transition b(1)Πu(ν = 8) ← X(1)Σg(+)(ν = 0) were fit, allowing rotational term energy assignment up to J' = 20 and molecular constants to be determined. Evidence of the previously suspected perturbation in b(1)Πu(ν = 8) is clear in this data, with significant Λ-type doubling at higher J' along with an anomalous negative value determined for the centrifugal distortion coefficient.

  19. u d b \\xAF b \\xAF tetraquark resonances with lattice QCD potentials and the Born-Oppenheimer approximation

    NASA Astrophysics Data System (ADS)

    Bicudo, Pedro; Cardoso, Marco; Peters, Antje; Pflaumer, Martin; Wagner, Marc

    2017-09-01

    We study tetraquark resonances with lattice QCD potentials computed for a static b ¯b ¯ pair in the presence of two lighter quarks u d , the Born-Oppenheimer approximation and the emergent wave method. As a proof of concept we focus on the system with isospin I =0 , but consider different relative angular momenta l of the heavy quarks b ¯b ¯. For l =0 a bound state has already been predicted with quantum numbers I (JP)=0 (1+). Exploring various angular momenta we now compute the phase shifts and search for S and T matrix poles in the second Riemann sheet. We predict a tetraquark resonance for l =1 , decaying into two B mesons, with quantum numbers I (JP)=0 (1-) , mass m =10 57 6-4+4 MeV and decay width Γ =11 2-103+90 MeV .

  20. ORNL Resolved Resonance Covariance Generation for ENDF/B-VII.1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leal, Luiz C.; Guber, Klaus H.; Wiarda, Dorothea

    2012-12-01

    Resonance-parameter covariance matrix (RPCM) evaluations in the resolved resonance regionwere done at the Oak Ridge National Laboratory (ORNL) for the chromium isotopes, titanium isotopes, 19F, 58Ni, 60Ni, 35Cl, 37Cl, 39K, 41K, 55Mn, 233U, 235U, 238U, and 239Pu using the computer code SAMMY. The retroactive approach of the code SAMMY was used to generate the RPCMs for 233U. For 235U, the approach used for covariance generation was similar to the retroactive approach with the distinction that real experimental data were used as opposed to data generated from the resonance parameters. RPCMs for 238U and 239Pu were generated together with the resonancemore » parameter evaluations. The RPCMs were then converted in the ENDF format using the FILE32 representation. Alternatively, for computer storage reasons, the FILE32 was converted in the FILE33 cross section covariance matrix (CSCM). Both representations were processed using the computer code PUFF-IV. This paper describes the procedures used to generate the RPCM and CSCM in the resonance region for ENDF/B-VII.1. The impact of data uncertainty in nuclear reactor benchmark calculations is also presented.« less

  1. 1. VIEW EAST, SEED EXTRACTOR BUILDING ON LEFT, IMPLEMENT BUILDING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. VIEW EAST, SEED EXTRACTOR BUILDING ON LEFT, IMPLEMENT BUILDING ON RIGHT. (see also WV-237-5, WV-237-9, WV-237-h-1, WV-237-L-1) - Parsons Nursery, Seed Extractor Building, South side of U.S. Route 219, Parsons, Tucker County, WV

  2. Probing 5 f -state configurations in URu 2 Si 2 with U L III -edge resonant x-ray emission spectroscopy

    DOE PAGES

    Booth, Corwin H.; Medling, S. A.; Tobin, J. G.; ...

    2016-07-15

    Resonant x-ray emission spectroscopy (RXES) was employed at the U LIII absorption edge and the L α1 emission line to explore the 5f occupancy, nf, and the degree of 5f-orbital delocalization in the hidden-order compound URu 2Si 2. By comparing to suitable reference materials such as UF 4, UCd 11, and α-U, we conclude that the 5f orbital in URu 2Si 2 is at least partially delocalized with n f=2.87±0.08, and does not change with temperature down to 10 K within the estimated error. These results place further constraints on theoretical explanations of the hidden order, especially those requiring amore » localized f 2 ground state.« less

  3. Infrared radiative decay dynamics from the γ 1u (3P2), H 1u (3P1), and 1u (1D2) ion-pair states of I2 observed by a perturbation facilitated optical-optical double resonance technique

    NASA Astrophysics Data System (ADS)

    Hoshino, Shoma; Araki, Mitsunori; Nakano, Yukio; Ishiwata, Takashi; Tsukiyama, Koichi

    2016-01-01

    We report the spectroscopic and temporal analyses on the amplified spontaneous emission (ASE) from the single rovibrational levels of the Ω = 1u ion-pair series, γ 1u (3P2), H 1u (3P1), and 1u (1D2), of I2 by using a perturbation facilitated optical-optical double resonance technique through the c 1 Π g ˜ B 3 Π ( 0u + ) hyperfine mixed valence state as the intermediate state. The ASE detected in the infrared region was assigned to the parallel transitions from the Ω = 1u ion-pair states down to the nearby Ω = 1g ion-pair states. The subsequent ultraviolet (UV) fluorescence from the Ω = 1g states was also observed and the relative vibrational populations in the Ω = 1g states were derived through the Franck-Condon simulation of the intensity pattern of the vibrational progression. In the temporal profiles of the UV fluorescence, an obvious delay in the onset of the fluorescence was recognized after the excitation laser pulse. These results revealed that ASE is a dominant energy relaxation process between the Ω = 1u and 1g ion-pair states of I2. Finally, the lifetimes of the relevant ion-pair states were evaluated by temporal analyses of the UV fluorescence. The propensity was found which was the longer lifetime in the upper level of the ASE transitions tends to give intense ASE.

  4. Nuclear resonance fluorescence in U-238 using LaBr detectors for nuclear security

    NASA Astrophysics Data System (ADS)

    Hayakawa, Takehito; Negm, Hani; Ohgaki, Hideaki; Daito, Izuru; Kii, Toshiteru; Zen, Heishun; Omer, Mohamed; Shizuma, Toshiyuki; Hajima, Ryoichi

    2014-09-01

    Recently, a nondestructive measurement method of shielded fissional isotopes such as 235U or 239Pu has been proposed for the nuclear security. These isotopes are measured by using nuclear resonance fluorescence (NRF) with monochromatic energy gamma-ray beams generated by laser Compton-scattering (LCS). We have proposed that one measure scattered gamma-rays from NRF with LCS gamma-ray beams using the LaBr3(Ce) detectors. The LaBr3(Ce) crystals include internal radioisotopes of a meta-stable isotope 138La and alpha decay chains from some actinides as 227Ac. There is a broad pump at about 2 MeV. This pump is considered to be an overlap of alpha-rays from decay chains of some actinides but its detailed structure has not been established. Here we have measured NRF spectra of 238U using the LCS gamma-rays with energy of about 2.5 MeV at the HIgS facility of the Duke University. The background has been evaluated using a simulation code GEAT4. The 9 peaks, 8 NRF gamma-rays plus the Compton scattered gamma-ray of the incident beam, are finally assigned in an energy range of about 200 keV at about 2.5 MeV. The 8 integrated NRF cross-sections measured by LaBr3(Ce) have been consistent with results by an HPGe detector. The three levels are newly assigned using the HPGe detector. Two of them are also measured by LaBr3(Ce).

  5. Cross section for the subthreshold fission of 236U

    NASA Astrophysics Data System (ADS)

    Alekseev, A. A.; Bergman, A. A.; Berlev, A. I.; Koptelov, E. A.; Samylin, B. F.; Trufanov, A. M.; Fursov, B. I.; Shorin, V. S.

    2008-08-01

    The cross section for 236U fission in the neutron-energy range E n = 0.001 20 keV was measured by using the INR RAS (Institute of Nuclear Research, Russian Academy of Sciences, Moscow) LSDS-100 neutron spectrometer of the lead slowing-down spectrometer type. The resonance fission areas of the resonances at 5.45 eV and 1.28 keV were found, and the fission widths of these resonances were evaluated. The cross section for the 238U( n, f) fission process was measured, and the threshold sensitivity of the LSDS-100 to small values of fission cross sections was estimated. The well-known intermediate structure in the cross section for the neutron-induced subbarrier fission of 236U was confirmed.

  6. Assessment of the MPACT Resonance Data Generation Procedure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Kang Seog; Williams, Mark L.

    Currently, heterogeneous models are being used to generate resonance self-shielded cross-section tables as a function of background cross sections for important nuclides such as 235U and 238U by performing the CENTRM (Continuous Energy Transport Model) slowing down calculation with the MOC (Method of Characteristics) spatial discretization and ESSM (Embedded Self-Shielding Method) calculations to obtain background cross sections. And then the resonance self-shielded cross section tables are converted into subgroup data which are to be used in estimating problem-dependent self-shielded cross sections in MPACT (Michigan Parallel Characteristics Transport Code). Although this procedure has been developed and thus resonance data have beenmore » generated and validated by benchmark calculations, assessment has never been performed to review if the resonance data are properly generated by the procedure and utilized in MPACT. This study focuses on assessing the procedure and a proper use in MPACT.« less

  7. Sedation of Pediatric Patients in Magnetic Resonance Imaging

    DTIC Science & Technology

    2000-01-03

    f-U. 7. SEDATION OF PEDIATRIC PATIENTS IN MAGNETIC RESONANCE IMAGING Alesia D. Ricks APPROVED: ll^fll JohnJ>. McDonough,-CRNA, Ed.D., Chair...any copyrighted material in the thesis entitled: " Sedation of Pediatric Patients in Magnetic Resonance Imaging" beyond brief excerpts is with the...arise from such copyright violations. IV f SEDATION OF PEDIATRIC PATIENTS IN MAGNETIC RESONANCE IMAGING By CAPT ALESIA D. RICKS, RN, BSN, NQUSAF

  8. Hyperpolarized [U-(2) H, U-(13) C]Glucose reports on glycolytic and pentose phosphate pathway activity in EL4 tumors and glycolytic activity in yeast cells.

    PubMed

    Timm, Kerstin N; Hartl, Johannes; Keller, Markus A; Hu, De-En; Kettunen, Mikko I; Rodrigues, Tiago B; Ralser, Markus; Brindle, Kevin M

    2015-12-01

    A resonance at ∼181 ppm in the (13) C spectra of tumors injected with hyperpolarized [U-(2) H, U-(13) C]glucose was assigned to 6-phosphogluconate (6PG), as in previous studies in yeast, whereas in breast cancer cells in vitro this resonance was assigned to 3-phosphoglycerate (3PG). These peak assignments were investigated here using measurements of 6PG and 3PG (13) C-labeling using liquid chromatography tandem mass spectrometry (LC-MS/MS) METHODS: Tumor-bearing mice were injected with (13) C6 glucose and the (13) C-labeled and total 6PG and 3PG concentrations measured. (13) C MR spectra of glucose-6-phosphate dehydrogenase deficient (zwf1Δ) and wild-type yeast were acquired following addition of hyperpolarized [U-(2) H, U-(13) C]glucose and again (13) C-labeled and total 6PG and 3PG were measured by LC-MS/MS RESULTS: Tumor (13) C-6PG was more abundant than (13) C-2PG/3PG and the resonance at ∼181 ppm matched more closely that of 6PG. (13) C MR spectra of wild-type and zwf1Δ yeast cells showed a resonance at ∼181 ppm after labeling with hyperpolarized [U-(2) H, U-(13) C]glucose, however, there was no 6PG in zwf1Δ cells. In the wild-type cells 3PG was approximately four-fold more abundant than 6PG CONCLUSION: The resonance at ∼181 ppm in (13) C MR spectra following injection of hyperpolarized [U-(2) H, U-(13) C]glucose originates predominantly from 6PG in EL4 tumors and 3PG in yeast cells. © 2014 Wiley Periodicals, Inc.

  9. A New Class of Orthosteric uPAR•uPA Small-Molecule Antagonists Are Allosteric Inhibitors of the uPAR•Vitronectin Interaction

    PubMed Central

    Liu, Degang; Zhou, Donghui; Wang, Bo; Knabe, William Eric; Meroueh, Samy O.

    2015-01-01

    The urokinase receptor (uPAR) is a GPI-anchored cell surface receptor that is at the center of an intricate network of protein-protein interactions. Its immediate binding partners are the serine proteinase urokinase (uPA), and vitronectin (VTN), a component of the extracellular matrix. uPA and VTN bind at distinct sites on uPAR to promote extracellular matrix degradation and integrin signaling, respectively. Here, we report the discovery of a new class of pyrrolone small-molecule inhibitors of the tight ∼1 nM uPAR•uPA protein-protein interaction. These compounds were designed to bind to the uPA pocket on uPAR. The highest affinity compound, namely 7, displaced a fluorescently-labeled α-helical peptide (AE147-FAM) with an inhibition constant Ki of 0.7 µM and inhibited the tight uPAR•uPAATF interaction with an IC50 of 18 µM. Biophysical studies with surface plasmon resonance showed that VTN binding is highly dependent on uPA. This cooperative binding was confirmed as 7, which binds at the uPAR•uPA interface, also inhibited the distal VTN•uPAR interaction. In cell culture, 7 blocked the uPAR•uPA interaction in uPAR-expressing human embryonic kidney (HEK-293) cells, and impaired cell adhesion to VTN, a process that is mediated by integrins. As a result, 7 inhibited integrin signaling in MDA-MB-231 cancer cells as evidenced by a decrease in focal adhesion kinase (FAK) phosphorylation and Rac1 GTPase activation. Consistent with these results, 7 blocked breast MDA-MB-231 cancer cell invasion with IC50 values similar to those observed in ELISA and surface plasmon resonance competition studies. Explicit-solvent molecular dynamics simulations show that the cooperativity between uPA and VTN is attributed to stabilization of uPAR motion by uPA. In addition, free energy calculations revealed that uPA stabilizes the VTN•uPARSMB interaction through more favorable electrostatics and entropy. Disruption of the uPAR•VTNSMB interaction by 7 is consistent with the

  10. A new class of orthosteric uPAR·uPA small-molecule antagonists are allosteric inhibitors of the uPAR·vitronectin interaction.

    PubMed

    Liu, Degang; Zhou, Donghui; Wang, Bo; Knabe, William Eric; Meroueh, Samy O

    2015-06-19

    The urokinase receptor (uPAR) is a GPI-anchored cell surface receptor that is at the center of an intricate network of protein-protein interactions. Its immediate binding partners are the serine proteinase urokinase (uPA), and vitronectin (VTN), a component of the extracellular matrix. uPA and VTN bind at distinct sites on uPAR to promote extracellular matrix degradation and integrin signaling, respectively. Here, we report the discovery of a new class of pyrrolone small-molecule inhibitors of the tight ∼1 nM uPAR·uPA protein-protein interaction. These compounds were designed to bind to the uPA pocket on uPAR. The highest affinity compound, namely 7, displaced a fluorescently labeled α-helical peptide (AE147-FAM) with an inhibition constant Ki of 0.7 μM and inhibited the tight uPAR·uPAATF interaction with an IC50 of 18 μM. Biophysical studies with surface plasmon resonance showed that VTN binding is highly dependent on uPA. This cooperative binding was confirmed as 7, which binds at the uPAR·uPA interface, also inhibited the distal VTN·uPAR interaction. In cell culture, 7 blocked the uPAR·uPA interaction in uPAR-expressing human embryonic kidney (HEK-293) cells and impaired cell adhesion to VTN, a process that is mediated by integrins. As a result, 7 inhibited integrin signaling in MDA-MB-231 cancer cells as evidenced by a decrease in focal adhesion kinase (FAK) phosphorylation and Rac1 GTPase activation. Consistent with these results, 7 blocked breast MDA-MB-231 cancer cell invasion with IC50 values similar to those observed in ELISA and surface plasmon resonance competition studies. Explicit-solvent molecular dynamics simulations show that the cooperativity between uPA and VTN is attributed to stabilization of uPAR motion by uPA. In addition, free energy calculations revealed that uPA stabilizes the VTNSMB·uPAR interaction through more favorable electrostatics and entropy. Disruption of the uPAR·VTNSMB interaction by 7 is consistent with the

  11. KSC-2014-2375

    NASA Image and Video Library

    2014-05-01

    CAPE CANAVERAL, Fla. – Inside the Vehicle Assembly Building at NASA’s Kennedy Space Center in Florida, a GIZMO demonstration test is being performed on the ground test article Launch Abort System, or LAS, ogive panel and an Orion crew module simulator. Technicians are preparing the mockup of the ogive hatch for installation using the GIZMO, a pneumatically-balanced manipulator that will be used for the uncrewed Exploration Flight Test-1 and Exploration Mission-1. The Ground Systems Development and Operations Program is running the test to demonstrate that the GIZMO can meet the reach and handling requirements for the task. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted test flight of the Orion is scheduled to launch later this year atop a Delta IV rocket and in 2017 on NASA’s Space Launch System rocket. For more information, visit http://www.nasa.gov/orion. Photo credit: NASA/Daniel Casper

  12. Magnetic and microwave properties of U-type hexaferrite films with high remanence and low ferromagnetic resonance linewidth

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Su, Zhijuan; Bennett, Steven; Hu, Bolin

    2014-05-07

    U-type barium hexaferrite films (Ba{sub 4}Ni{sub 1.4}Co{sub 0.6}Fe{sub 36}O{sub 60}) were deposited on (0001) sapphire substrates by pulsed laser deposition. Microstructure and magnetic properties of the films were characterized by X-ray diffraction, scanning electron microscopy and vibrating sample magnetometry. Ferromagnetic resonance (FMR) measurements were performed at X-band. The results indicate an anisotropy field of ∼8 kOe, and the saturation magnetization (4πM{sub s}) of ∼3.6 kG. An optimal post-deposition annealing of films results in a strong (0 0 n) crystallographic texture and a high hysteresis loop squareness (M{sub r}/M{sub s} = 92%) leading to self biased properties. Furthermore, the highly self-biased ferrite films exhibitedmore » an FMR linewidth of ∼200 Oe. The U-type hexaferrite films having low microwave loss, low magnetic anisotropy field, and high squareness are a suitable alternative to Sc or In doped BaM ferrites that have been the choice material for self-biased microwave devices at X-band frequencies.« less

  13. A novel U-bent plastic optical fibre local surface plasmon resonance sensor based on a graphene and silver nanoparticle hybrid structure

    NASA Astrophysics Data System (ADS)

    Jiang, Shouzhen; Li, Zhe; Zhang, Chao; Gao, Saisai; Li, Zhen; Qiu, Hengwei; Li, Chonghui; Yang, Cheng; Liu, Mei; Liu, Yanjun

    2017-04-01

    In this work, we have presented a novel local surface plasmon resonance (LSPR) sensor based on the U-bent plastic optical fibre (U-POF). Firstly, a layer of discontinuous silver (Ag) thin film was deposited on the U-POF and then the Ag film was covered by a layer of cladding synthesized by polyvinyl alcohol (PVA), graphene and silver nanoparticles forming the PVA/G/AgNPs@Ag film. The normalized transmittance spectrum of the LSPR sensor have been collected in a range of the refractive index (RI) from 1.330 to 1.3657 in ethanol solution, and 700.3 nm/RIU sensitivity of the developed LSPR sensor has been demonstrated. By experiments, we demonstrated that the graphene could improve the sensitivity of the LSPR sensor and delay the oxidation process of the AgNPs effectively to keep the stability of the LSPR sensor. The LSPR sensor also exhibited good sensitivity and linearity in the detection of glucose solutions. This work shows that the developed LSPR sensor may have promising applications in biosensing.

  14. Total angular momenta of high-lying odd levels of U I at ∼ 4 eV using resonance ionization laser polarization spectroscopy

    NASA Astrophysics Data System (ADS)

    Rath, Asawari D.; Kundu, S.; Ray, A. K.

    2018-02-01

    Laser induced photoionization of atoms shows significant dependence on the choice of polarizations of lasers. In multi-step, multi-photon excitation and subsequent ionization of atoms different polarization combinations of the exciting lasers lead to distinctly different ion yields. This fact is exploited in this work to determine total angular momenta of odd-parity energy levels of U I lying at ∼ 4 eV from its ground level using resonance ionization laser polarization spectroscopy in time of flight mass spectrometer. These levels are populated by two-step resonant excitation using two pulsed dye lasers with preset polarizations of choice followed by nonresonant ionization by third laser. The dependence of ionization yield on specific polarizations of the first two lasers is studied experimentally for each level under consideration. This dependence when compared to simulations makes possible unambiguous assignment of J angular momenta to these levels.

  15. Dipole Resonances of 76Ge

    NASA Astrophysics Data System (ADS)

    Ilieva, R. S.; Cooper, N.; Werner, V.; Rusev, G.; Pietralla, N.; Kelly, J. H.; Tornow, W.; Yates, S. W.; Crider, B. P.; Peters, E.

    2013-10-01

    Dipole resonances in 76Ge have been studied using the method of Nuclear Resonance Fluorescence (NRF). The experiment was performed using the Free Electron Laser facility at HI γS/TUNL, which produced linearly polarised quasi-monoenergetic photons in the 4-9 MeV energy range. Photon strength, in particular dipole strength, is an important ingredient in nuclear reaction calculations, and recent interest in its study has been stimulated by observations of a pygmy dipole resonance near the neutron separation energy Sn of certain nuclei. Furthermore, 76Ge is a candidate for 0 ν 2 β -decay. The results are complimentary to a relevant experiment done at TU Darmstadt using Bremsstrahlung beams. Single-resonance parities and a preliminary estimate of the total photo-excitation cross section will be presented. This work was supported by the U.S. DOE under grant no. DE-FG02-91ER40609.

  16. Resonator coiling in thermoacoustic engines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Olson, J.R.; Swift, G.W.

    1995-11-01

    Coiling the resonator of a thermoacoustic engine is one way to try to minimize the engine`s size. However, flow in bent pipes is known to alter the fluid flow pattern because of centrifugal forces. Theory and measurements will be presented on the energy dissipation caused by oscillating flow in curved pipes. Measurements have been taken using free oscillations of liquids in U-tubes, and using a thermoacoustic engine with straight and bent resonators. [Work supported by the TTI program of the US Department of Energy, and by the Tektronix Corporation.

  17. Hyperon photoproduction in the nucleon resonance region

    NASA Astrophysics Data System (ADS)

    McNabb, J. W.; Schumacher, R. A.; Todor, L.; Adams, G.; Anciant, E.; Anghinolfi, M.; Asavapibhop, B.; Audit, G.; Auger, T.; Avakian, H.; Bagdasaryan, H.; Ball, J. P.; Barrow, S.; Battaglieri, M.; Beard, K.; Bektasoglu, M.; Bellis, M.; Berman, B. L.; Bianchi, N.; Biselli, A. S.; Boiarinov, S.; Bonner, B. E.; Bouchigny, S.; Bradford, R.; Branford, D.; Briscoe, W. J.; Brooks, W. K.; Burkert, V. D.; Butuceanu, C.; Calarco, J. R.; Carman, D. S.; Carnahan, B.; Cetina, C.; Ciciani, L.; Cole, P. L.; Coleman, A.; Cords, A. D.; Corvisiero, P.; Crabb, D.; Crannell, H.; Cummings, J. P.; de Sanctis, E.; Devita, R.; Degtyarenko, P. V.; Denizli, H.; Dennis, L.; Dharmawardane, K. V.; Dhuga, K. S.; Djalali, C.; Dodge, G. E.; Doughty, D.; Dragovitsch, P.; Dugger, M.; Dytman, S.; Eckhause, M.; Egiyan, H.; Egiyan, K. S.; Elouadrhiri, L.; Empl, A.; Eugenio, P.; Fatemi, R.; Feuerbach, R. J.; Ficenec, J.; Forest, T. A.; Funsten, H.; Gaff, S. J.; Gavalian, G.; Gilad, S.; Gilfoyle, G. P.; Giovanetti, K. L.; Girard, P.; Gordon, C. I.; Griffioen, K.; Guidal, M.; Guillo, M.; Guo, L.; Gyurjyan, V.; Hadjidakis, C.; Hakobyan, R.; Hardie, J.; Heddle, D.; Heimberg, P.; Hersman, F. W.; Hicks, K.; Hicks, R. S.; Holtrop, M.; Hu, J.; Hyde-Wright, C. E.; Ilieva, Y.; Ito, M. M.; Jenkins, D.; Joo, K.; Kelley, J. H.; Khandaker, M.; Kim, K. Y.; Kim, K.; Kim, W.; Klein, A.; Klein, F. J.; Klimenko, A. V.; Klusman, M.; Kossov, M.; Kramer, L. H.; Kuang, Y.; Kuhn, S. E.; Lachniet, J.; Laget, J. M.; Lawrence, D.; Li, Ji; Lukashin, K.; Manak, J. J.; Marchand, C.; McAleer, S.; McCarthy, J.; Mecking, B. A.; Mehrabyan, S.; Melone, J. J.; Mestayer, M. D.; Meyer, C. A.; Mikhailov, K.; Minehart, R.; Mirazita, M.; Miskimen, R.; Morand, L.; Morrow, S. A.; Muccifora, V.; Mueller, J.; Mutchler, G. S.; Napolitano, J.; Nasseripour, R.; Nelson, S. O.; Niccolai, S.; Niculescu, G.; Niculescu, I.; Niczyporuk, B. B.; Niyazov, R. A.; Nozar, M.; O'Brien, J. T.; O'Rielly, G. V.; Osipenko, M.; Park, K.; Pasyuk, E.; Peterson, G.; Philips, S. A.; Pivnyuk, N.; Pocanic, D.; Pogorelko, O.; Polli, E.; Pozdniakov, S.; Preedom, B. M.; Price, J. W.; Prok, Y.; Protopopescu, D.; Qin, L. M.; Quinn, B. P.; Raue, B. A.; Riccardi, G.; Ricco, G.; Ripani, M.; Ritchie, B. G.; Ronchetti, F.; Rossi, P.; Rowntree, D.; Rubin, P. D.; Sabatié, F.; Sabourov, K.; Salgado, C.; Santoro, J. P.; Sapunenko, V.; Serov, V. S.; Shafi, A.; Sharabian, Y. G.; Shaw, J.; Simionatto, S.; Skabelin, A. V.; Smith, E. S.; Smith, L. C.; Sober, D. I.; Spraker, M.; Stavinsky, A.; Stepanyan, S.; Stoler, P.; Strakovsky, I. I.; Strauch, S.; Taiuti, M.; Taylor, S.; Tedeschi, D. J.; Thoma, U.; Thompson, R.; Tur, C.; Ungaro, M.; Vineyard, M. F.; Vlassov, A. V.; Wang, K.; Weinstein, L. B.; Weisberg, A.; Weller, H.; Weygand, D. P.; Whisnant, C. S.; Wolin, E.; Wood, M. H.; Yegneswaran, A.; Yun, J.; Zhang, B.; Zhao, J.; Zhou, Z.

    2004-04-01

    High-statistics cross sections and recoil polarizations for the reactions γ+p→ K+ +Λ and γ+p→ K+ + Σ0 have been measured at CLAS for center-of-mass energies between 1.6 and 2.3 GeV . In the K+ Λ channel we confirm a resonance-like structure near W=1.9 GeV at backward kaon angles. Our data show more complex s - and u - channel behavior than previously seen, since structure is also present at forward angles, but not at central angles. The position and width change with angle, indicating that more than one resonance is playing a role. Large positive Λ polarization at backward angles, which is also energy dependent, is consistent with sizable s - or u -channel contributions. Presently available model calculations cannot explain these aspects of the data.

  18. Carpal tunnel and median nerve volume changes after tunnel release in patients with the carpal tunnel syndrome: a magnetic resonance imaging (MRI) study.

    PubMed

    Crnković, T; Trkulja, V; Bilić, R; Gašpar, D; Kolundžić, R

    2016-05-01

    Our aim was to study the dynamics of the post-surgical canal and nerve volumes and their relationships to objective [electromyoneurography (EMNG)] and subjective (pain) outcomes. Forty-seven patients with carpal tunnel syndrome (CTS) (median age 52, range 23-75 years) with a prominent narrowing of the median nerve within the canal (observed during carpal tunnel release) were evaluated clinically using EMNG and magnetic resonance imagining (MRI) before and at 90 and 180 days post-surgery. Canal and nerve volumes increased, EMNG findings improved and pain resolved during the follow-up. Increase in tunnel volume was independently associated with increased nerve volume. A greater post-surgical nerve volume was independently associated with a more prominent resolution of pain, but not with the extent of EMNG improvement, whereas EMNG improvement was not associated with pain resolution. Data confirm that MRI can detect even modest changes in the carpal tunnel and median nerve volume and that tunnel release results in tunnel and nerve-volume increases that are paralleled by EMNG and clinical improvements. Taken together, these observations suggest that MRI could be used to objectivise persistent post-surgical difficulties in CTS patients. Level of evidence 3 (follow-up study).

  19. IAEA CIELO Evaluation of Neutron-induced Reactions on 235U and 238U Targets

    DOE PAGES

    Capote, R.; Trkov, A.; Sin, M.; ...

    2018-02-01

    Evaluations of nuclear reaction data for the major uranium isotopes 238U and 235U were performed within the scope of the CIELO Project on the initiative of the OECD/NEA Data Bank under Working Party on Evaluation Co-operation (WPEC) Subgroup 40 coordinated by the IAEA Nuclear Data Section. Both the mean values and covariances are evaluated from 10 -5 eV up to 30 MeV. The resonance parameters of 238U and 235U were re-evaluated with the addition of newly available data to the existing experimental database. The evaluations in the fast neutron range are based on nuclear model calculations with the code EMPIRE–3.2more » Malta above the resonance range up to 30 MeV. 235U(n,f), 238U(n,f), and 238U(n,γ) cross sections and 235U(n th,f) prompt fission neutron spectrum (PFNS) were evaluated within the Neutron Standards project and are representative of the experimental state-of-the-art measurements. The Standards cross sections were matched in model calculations as closely as possible to guarantee a good predictive power for cross sections of competing neutron scattering channels. 235U(n,γ) cross section includes fluctuations observed in recent experiments. 235U(n,f) PFNS for incident neutron energies from 500 keV to 20 MeV were measured at Los Alamos Chi-Nu facility and re-evaluated using all available experimental data. While respecting the measured differential data, several compensating errors in previous evaluations were identified and removed so that the performance in integral benchmarks was restored or improved. Covariance matrices for 235U and 238U cross sections, angular distributions, spectra and neutron multiplicities were evaluated using the GANDR system that combines experimental data with model uncertainties. Unrecognized systematic uncertainties were considered in the uncertainty quantification for fission and capture cross sections above the thermal range, and for neutron multiplicities. Evaluated files were extensively benchmarked to ensure good

  20. IAEA CIELO Evaluation of Neutron-induced Reactions on 235U and 238U Targets

    NASA Astrophysics Data System (ADS)

    Capote, R.; Trkov, A.; Sin, M.; Pigni, M. T.; Pronyaev, V. G.; Balibrea, J.; Bernard, D.; Cano-Ott, D.; Danon, Y.; Daskalakis, A.; Goričanec, T.; Herman, M. W.; Kiedrowski, B.; Kopecky, S.; Mendoza, E.; Neudecker, D.; Leal, L.; Noguere, G.; Schillebeeckx, P.; Sirakov, I.; Soukhovitskii, E. S.; Stetcu, I.; Talou, P.

    2018-02-01

    Evaluations of nuclear reaction data for the major uranium isotopes 238U and 235U were performed within the scope of the CIELO Project on the initiative of the OECD/NEA Data Bank under Working Party on Evaluation Co-operation (WPEC) Subgroup 40 coordinated by the IAEA Nuclear Data Section. Both the mean values and covariances are evaluated from 10-5 eV up to 30 MeV. The resonance parameters of 238U and 235U were re-evaluated with the addition of newly available data to the existing experimental database. The evaluations in the fast neutron range are based on nuclear model calculations with the code EMPIRE-3.2 Malta above the resonance range up to 30 MeV. 235U(n,f), 238U(n,f), and 238U(n,γ) cross sections and 235U(nth,f) prompt fission neutron spectrum (PFNS) were evaluated within the Neutron Standards project and are representative of the experimental state-of-the-art measurements. The Standards cross sections were matched in model calculations as closely as possible to guarantee a good predictive power for cross sections of competing neutron scattering channels. 235U(n,γ) cross section includes fluctuations observed in recent experiments. 235U(n,f) PFNS for incident neutron energies from 500 keV to 20 MeV were measured at Los Alamos Chi-Nu facility and re-evaluated using all available experimental data. While respecting the measured differential data, several compensating errors in previous evaluations were identified and removed so that the performance in integral benchmarks was restored or improved. Covariance matrices for 235U and 238U cross sections, angular distributions, spectra and neutron multiplicities were evaluated using the GANDR system that combines experimental data with model uncertainties. Unrecognized systematic uncertainties were considered in the uncertainty quantification for fission and capture cross sections above the thermal range, and for neutron multiplicities. Evaluated files were extensively benchmarked to ensure good performance in

  1. IAEA CIELO Evaluation of Neutron-induced Reactions on 235U and 238U Targets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Capote, R.; Trkov, A.; Sin, M.

    Evaluations of nuclear reaction data for the major uranium isotopes 238U and 235U were performed within the scope of the CIELO Project on the initiative of the OECD/NEA Data Bank under Working Party on Evaluation Co-operation (WPEC) Subgroup 40 coordinated by the IAEA Nuclear Data Section. Both the mean values and covariances are evaluated from 10 -5 eV up to 30 MeV. The resonance parameters of 238U and 235U were re-evaluated with the addition of newly available data to the existing experimental database. The evaluations in the fast neutron range are based on nuclear model calculations with the code EMPIRE–3.2more » Malta above the resonance range up to 30 MeV. 235U(n,f), 238U(n,f), and 238U(n,γ) cross sections and 235U(n th,f) prompt fission neutron spectrum (PFNS) were evaluated within the Neutron Standards project and are representative of the experimental state-of-the-art measurements. The Standards cross sections were matched in model calculations as closely as possible to guarantee a good predictive power for cross sections of competing neutron scattering channels. 235U(n,γ) cross section includes fluctuations observed in recent experiments. 235U(n,f) PFNS for incident neutron energies from 500 keV to 20 MeV were measured at Los Alamos Chi-Nu facility and re-evaluated using all available experimental data. While respecting the measured differential data, several compensating errors in previous evaluations were identified and removed so that the performance in integral benchmarks was restored or improved. Covariance matrices for 235U and 238U cross sections, angular distributions, spectra and neutron multiplicities were evaluated using the GANDR system that combines experimental data with model uncertainties. Unrecognized systematic uncertainties were considered in the uncertainty quantification for fission and capture cross sections above the thermal range, and for neutron multiplicities. Evaluated files were extensively benchmarked to ensure good

  2. Radiative neutron capture cross section from 236U

    NASA Astrophysics Data System (ADS)

    Baramsai, B.; Jandel, M.; Bredeweg, T. A.; Bond, E. M.; Roman, A. R.; Rusev, G.; Walker, C. L.; Couture, A.; Mosby, S.; O'Donnell, J. M.; Ullmann, J. L.; Kawano, T.

    2017-08-01

    The 236U(n ,γ ) reaction cross section has been measured for the incident neutron energy range from 10 eV to 800 keV by using the Detector for Advanced Neutron Capture Experiments (DANCE) γ -ray calorimeter at the Los Alamos Neutron Science Center. The cross section was determined with the ratio method, which is a technique that uses the 235U(n ,f ) reaction as a reference. The results of the experiment are reported in the resolved and unresolved resonance energy regions. Individual neutron resonance parameters were obtained below 1 keV incident energy by using the R -matrix code sammy. The cross section in the unresolved resonance region is determined with improved experimental uncertainty. It agrees with both ENDF/B-VII.1 and JEFF-3.2 nuclear data libraries. The results above 10 keV agree better with the JEFF-3.2 library.

  3. Reinterpretation of femtosecond laser pump-probe and thermomodulation optical spectroscopy results on HTSC materials in terms of the resonant negative-U model

    NASA Astrophysics Data System (ADS)

    Wilson, John A.

    2000-01-01

    The laser pump/probe spectroscopy from Stevens et al (on YBCO7 ) and the thermomodulation optical data and analysis from Holcomb et al (on a selection of HTSC materials) are examined in terms of the resonant negative-U mechanism for high temperature superconductivity (HTSC) in the mixed-valent cuprates. The work centres on the universal 1.5-2 eV features becoming visible below Tc upon the optical `charge-transfer' edge. These it is argued are not simple p-to-d band-to-band excitations but are to be associated with the mixed-valent and negative-U states that instigate HTSC. This argument is supported both by the decay characteristics apparent in the new data recorded by Stevens et al and also in the outcome of the Eliashberg analysis developed by Holcomb et al to accommodate their own thermomodulation data. The interpretation provided is in line with that offered recently of the highly characteristic thermoelectric behaviour exhibited by all HTSC systems.

  4. Experimental Results from a Resonant Dielectric Laser Accelerator

    NASA Astrophysics Data System (ADS)

    Yoder, Rodney; McNeur, Joshua; Sozer, Esin; Travish, Gil; Hazra, Kiran Shankar; Matthews, Brian; England, Joel; Peralta, Edgar; Wu, Ziran

    2015-04-01

    Laser-powered accelerators have the potential to operate with very large accelerating gradients (~ GV/m) and represent a path toward extremely compact colliders and accelerator technology. Optical-scale laser-powered devices based on field-shaping structures (known as dielectric laser accelerators, or DLAs) have been described and demonstrated recently. Here we report on the first experimental results from the Micro-Accelerator Platform (MAP), a DLA based on a slab-symmetric resonant optical-scale structure. As a resonant (rather than near-field) device, the MAP is distinct from other DLAs. Its cavity resonance enhances its accelerating field relative to the incoming laser fields, which are coupled efficiently through a diffractive optic on the upper face of the device. The MAP demonstrated modest accelerating gradients in recent experiments, in which it was powered by a Ti:Sapphire laser well below its breakdown limit. More detailed results and some implications for future developments will be discussed. Supported in part by the U.S. Defense Threat Reduction Agency (UCLA); U.S. Dept of Energy (SLAC); and DARPA (SLAC).

  5. Single-level resonance parameters fit nuclear cross-sections

    NASA Technical Reports Server (NTRS)

    Drawbaugh, D. W.; Gibson, G.; Miller, M.; Page, S. L.

    1970-01-01

    Least squares analyses of experimental differential cross-section data for the U-235 nucleus have yielded single level Breit-Wigner resonance parameters that fit, simultaneously, three nuclear cross sections of capture, fission, and total.

  6. KSC-06pd2375

    NASA Image and Video Library

    2006-10-19

    KENNEDY SPACE CENTER, FLA. - Inside the mobile service tower on Launch Pad 17-B at Cape Canaveral Air Force Station, workers help maneuver one segment of the fairing around the STEREO spacecraft. The fairing is a molded structure that fits flush with the outside surface of the Delta II upper stage booster and forms an aerodynamically smooth nose cone, protecting the spacecraft during launch and ascent. The STEREO (Solar Terrestrial Relations Observatory) mission is the first to take measurements of the sun and solar wind in 3-dimension. This new view will improve our understanding of space weather and its impact on the Earth. Designed and built by the Applied Physics Laboratory (APL) , the STEREO mission is being managed by NASA Goddard Space Flight Center. APL will maintain command and control of the observatories throughout the mission, while NASA tracks and receives the data, determines the orbit of the satellites, and coordinates the science results. STEREO is expected to lift off Oct. 25. Photo credit: NASA/George Shelton

  7. KSC-08pd2375

    NASA Image and Video Library

    2008-08-12

    CAPE CANAVERAL, Fla. – An inspector stands in the Launch Pad 39A flame trench at NASA's Kennedy Space Center after tests of the repairs on the wall. Workers sprayed a heat-resistant concrete called Fondue Fyre into steel grid structures, welded to the wall of the flame trench. Fondue Fyre was developed during NASA's Apollo lunar program. Damage to the trench occurred during the launch of space shuttle Discovery on the STS-124 mission. A 75-foot by 20-foot section of the east wall was destroyed and debris scattered as far as the pad perimeter fence. Repairs being completed before the targeted Oct. 8 launch of Atlantis on the NASA Hubble Space Telescope servicing mission. Photo credit: NASA/Dimitri Gerondidakis

  8. A proposed U.S./China theoretical/experimental collaborative effort on baryon resonance extraction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    P.L. Cole

    2009-12-01

    In this paper we discuss the reasons for our work towards establishing a new collaboration between Jefferson Lab (JLab) and the Institute of High Energy Physics (IHEP) in Beijing. We seek to combine experimentalists and theorists into a dedicated group focused on better understanding the current and future data from JLab and from the Beijing Electron Positron Collider (BEPC). Recent JLab results on the extraction of single- and double-polarization observables in both the 1{pi}- and 2{pi}-channel show their high sensitivity to small production amplitudes and therefore their importance for the extraction of resonance parameters. The Beijing Electron Spectrometer (BES) atmore » the BEPC has collected high statistics data on J/{Psi} production. Its decay into baryon-antibaryon channels offers a unique and complementary way of probing nucleon resonances. The CEBAF Large Acceptance Spectrometer, CLAS, has access to N* form factors at high Q{sup 2}, which is advantageous for the study of dynamical properties of nucleon resonances, while the low-background BES results will be able to provide guidance for the search for less-dominant excited states at JLab. Moreover, with the recently approved experimental proposal Nucleon Resonance Studies with CLAS12 and the high-quality data streaming from BES-III and CLAS, the time has come for forging a new Trans-Pacific collaboration of theorists and experimentalists on NSTAR physics.« less

  9. Measurement of the ROT effect in the neutron induced fission of 235U in the 0.3 eV resonance at a hot source of polarized neutrons

    NASA Astrophysics Data System (ADS)

    Kopatch, Yuri; Novitsky, Vadim; Ahmadov, Gadir; Gagarsky, Alexei; Berikov, Daniyar; Danilyan, Gevorg; Hutanu, Vladimir; Klenke, Jens; Masalovich, Sergey

    2018-03-01

    The TRI and ROT asymmetries in fission of heavy nuclei have been extensively studied during more than a decade. The effects were first discovered in the ternary fission in a series of experiments performed at the ILL reactor (Grenoble) by a collaboration of Russian and European institutes, and were carefully measured for a number of fissioning nuclei. Later on, the ROT effect has been observed in the emission of prompt gamma rays and neutrons in fission of 235U and 233U, although its value was an order of magnitude smaller than in the α-particle emission from ternary fission. All experiments performed so far are done with cold polarized neutrons, what assumes a mixture of several spin states, the weights of these states being not well known. The present paper describes the first attempt to get "clean" data by performing the measurement of gamma and neutron asymmetries in an isolated resonance of 235U at the POLI instrument of the FRM2 reactor in Garching.

  10. Novel quad-band terahertz metamaterial absorber based on single pattern U-shaped resonator

    NASA Astrophysics Data System (ADS)

    Wang, Ben-Xin; Wang, Gui-Zhen

    2017-03-01

    A novel quad-band terahertz metamaterial absorber using four different modes of single pattern resonator is demonstrated. Four obvious frequencies with near-perfect absorption are realized. Near-field distributions of the four modes are provided to reveal the physical picture of the multiple-band absorption. Unlike most previous quad-band absorbers that typically require four or more patterns, the designed absorber has only one resonant structure, which is simpler than previous works. The presented quad-band absorber has potential applications in biological sensing, medical imaging, and material detection.

  11. Supersymmetric resonant dark matter: A thermal model for the AMS-02 positron excess

    NASA Astrophysics Data System (ADS)

    Bai, Yang; Berger, Joshua; Lu, Sida

    2018-06-01

    We construct a thermal dark matter model with annihilation mediated by a resonance to explain the positron excess observed by PAMELA, Fermi-LAT and AMS-02, while satisfying constraints from cosmic microwave background (CMB) measurements. The challenging requirement is that the resonance has twice the dark matter mass to one part in a million. We achieve this by introducing an S U (3 )f dark flavor symmetry that is spontaneously broken to S U (2 )f×U (1 )f . The resonance is the heaviest state in the dark matter flavor multiplet, and the required mass relation is protected by the vacuum structure and supersymmetry from radiative corrections. The pseudo-Nambu-Goldstone bosons (PNGBs) from the dark flavor symmetry breaking can be slightly lighter than one GeV and dominantly decay into two muons just from kinematics, with subsequent decay into positrons. The PNGBs are produced in resonant dark matter semiannihilation, where two dark matter particles annihilate into an anti-dark matter particle and a PNGB. The dark matter mass in our model is constrained to be below around 1.9 TeV from fitting thermal relic abundance, AMS-02 data and CMB constraints. The superpartners of Standard Model (SM) particles can cascade decay into a light PNGB along with SM particles, yielding a correlated signal of this model at colliders. One of the interesting signatures is a resonance of a SM Higgs boson plus two collimated muons, which has superb discovery potential at LHC Run 2.

  12. Possible Detection of an Emission Cyclotron Resonance Scattering Feature from the Accretion-Powered Pulsar 4U 1626-67

    NASA Technical Reports Server (NTRS)

    Iwakiri, W. B.; Terada, Y.; Tashiro, M. S.; Mihara, T.; Angelini, L.; Yamada, S.; Enoto, T.; Makishima, K.; Nakajima, M.; Yoshida, A.

    2012-01-01

    We present analysis of 4U 1626-67, a 7.7 s pulsar in a low-mass X-ray binary system, observed with the hard X-ray detector of the Japanese X-ray satellite Suzaku in 2006 March for a net exposure of 88 ks. The source was detected at an average 10-60 keY flux of approx 4 x 10-10 erg / sq cm/ s. The phase-averaged spectrum is reproduced well by combining a negative and positive power-law times exponential cutoff (NPEX) model modified at approx 37 keY by a cyclotron resonance scattering feature (CRSF). The phase-resolved analysis shows that the spectra at the bright phases are well fit by the NPEX with CRSF model. On the other hand. the spectrum in the dim phase lacks the NPEX high-energy cutoff component, and the CRSF can be reproduced by either an emission or an absorption profile. When fitting the dim phase spectrum with the NPEX plus Gaussian model. we find that the feature is better described in terms of an emission rather than an absorption profile. The statistical significance of this result, evaluated by means of an F test, is between 2.91 x 10(exp -3) and 1.53 x 10(exp -5), taking into account the systematic errors in the background evaluation of HXD-PIN. We find that the emission profile is more feasible than the absorption one for comparing the physical parameters in other phases. Therefore, we have possibly detected an emission line at the cyclotron resonance energy in the dim phase.

  13. Resonant vibrational-excitation cross sections and rate constants for low-energy electron scattering by molecular oxygen

    NASA Astrophysics Data System (ADS)

    Laporta, V.; Celiberto, R.; Tennyson, J.

    2013-04-01

    Resonant vibrational-excitation cross sections and rate constants for electron scattering by molecular oxygen are presented. Transitions between all 42 vibrational levels of O_2({X}\\, ^3\\Sigma_g^{-}) are considered. Molecular rotations are parametrized by the rotational quantum number J, which is considered in the range 1-151. The lowest four resonant states of O_2^- , 2Πg, 2Πu, ^4\\Sigma_u^- and ^2\\Sigma_u^- are taken into account. The calculations are performed using the fixed-nuclei R-matrix approach to determine the resonance positions and widths, and the boomerang model to characterize the nuclei motion. Two energy regions below and above 4 eV are investigated: the first one is characterized by sharp structures in the cross section and the second by a broad resonance peaked at 10 eV. The computed cross sections are compared with theoretical and experimental results available in the literature for both energy regions, and are made available for use by modelers. The effect of including rotational motion is found to be non-negligible.

  14. Relativistic Confinement Resonances

    NASA Astrophysics Data System (ADS)

    Keating, David; Manson, Steven; Deshmukh, Pranawa

    2017-04-01

    Photoionization of confined atoms in a C60 fullerene have been under intense investigation in the recent years, in particular the confinement induced resonances, termed confinement resonances. The effects of the C60 potential are modeled by a static spherical well, with (in atomic units) inner radius r0 = 5.8, width Δ = 1.9, and depth U0 = -0.302, which is reasonable in the energy region well above the C60 plasmons. At very high Z, relativistic interactions become important contributors to even the qualitative nature of atomic properties; this is true for confined atomic properties as well. To explore the extent of these interactions, a theoretical study of several heavy atoms has been performed using the relativistic random phase approximation (RRPA) methodology. In order to determine which features in the photoionization cross section are due to relativity, calculations using the (nonrelativistic) random phase approximation with exchange method (RPAE) are performed for comparison. The existence of the second subshell of the spin-orbit-split doublets can induce new confinement resonances in the total cross section, which is the sum of the spin-orbit-split doublets, due to the shift in the doublet's threshold. Several examples for confined high-Z atoms are presented. Work supported by DOE and NSF.

  15. Diagnosing Autism Spectrum Disorder through Brain Functional Magnetic Resonance Imaging

    DTIC Science & Technology

    2016-03-01

    Diagnosing Autism Spectrum Disorder through Brain Functional Magnetic Resonance Imaging THESIS MARCH 2016 Kyle A. Palko, Second Lieutenant, USAF AFIT...declared a work of the U.S. Government and is not subject to copyright protection in the United States. AFIT-ENC-MS-16-M-123 DIAGNOSING AUTISM SPECTRUM...PUBLIC RELEASE; DISTRIBUTION UNLIMITED. AFIT-ENC-MS-16-M-123 DIAGNOSING AUTISM SPECTRUM DISORDER THROUGH BRAIN FUNCTIONAL MAGNETIC RESONANCE IMAGING Kyle

  16. Neutron Resonance Densitometry for Particle-like Debris of Melted Fuel

    NASA Astrophysics Data System (ADS)

    Harada, H.; Kitatani, F.; Koizumi, M.; Takamine, J.; Kureta, M.; Tsutiya, H.; Iimura, H.; Seya, M.; Becker, B.; Kopecky, S.; Schillebeeckx, P.

    2014-04-01

    Neutron Resonance Densitometry (NRD) is proposed for the quantification of nuclear materials in particle-like debris of melted fuel from the reactors of the Fukushima Daiichi nuclear power plant. The method is based on a combination of neutron resonance transmission analysis (NRTA) and neutron resonance capture analysis (NRCA). It uses the neutron time-of-flight (TOF) technique with a pulsed white neutron source and a neutron flight path as short as 5 m. The spectrometer for NRCA is made of LaBr3(Ce) detectors. The achievable uncertainty due to only counting statistics is less than 1 % to determine Pu and U isotopes.

  17. Nondestructive assay of EBR-II blanket elements using resonance transmission analysis

    NASA Astrophysics Data System (ADS)

    Klann, Raymond Todd

    1998-10-01

    Resonance transmission analysis utilizing a filtered reactor beam was examined as a means of determining the 239Pu content in Experimental Breeder Reactor - II depleted uranium blanket elements. The technique uses cadmium and gadolinium filters along with a 239Pu fission chamber to isolate the 0.3 eV resonance in 239Pu. In the energy range of this resonance (0.1 eV to 0.5 eV), the total microscopic cross-section of 239Pu is significantly greater than the cross- sections of 238U and 235U. This large difference allows small changes in the 239Pu content of a sample to result in large changes in the mass signal response. Tests with small stacks of depleted uranium and 239Pu foils indicate a significant change in response based on the 239Pu content of the foil stack. In addition, the tests indicate good agreement between the measured and predicted values of 239Pu up to approximately two weight percent.

  18. Magnetic resonance imaging in the assessment of anomalous pulmonary venous connections.

    PubMed

    Bernal Garnes, N; Méndez Díaz, C; Soler Fernández, R; Rodríguez García, E

    2016-01-01

    To illustrate the morphological and functional magnetic resonance findings for total and partial anomalous pulmonary venous connections as well as of the most common complications after surgery. The magnetic resonance findings are fundamental in defining the type of anomalous connection, deciding on the treatment, planning the surgery, and detecting postsurgical complications. Copyright © 2015 SERAM. Published by Elsevier España, S.L.U. All rights reserved.

  19. 75 FR 39250 - Agency Information Collection Activities; Submission to OMB for Review and Approval; Comment...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-08

    ... Protocol Gas Verification Program; EPA ICR No. 2375.01, OMB Control Number 2060-NEW AGENCY: Environmental... Air Protocol Gas Verification Program. ICR numbers: EPA ICR No. 2375.01, OMB Control No. 2060-NEW. ICR...

  20. High-Resolution Triple Resonance Autoionization of Uranium Isotopes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schumann, Philipp G.; Wendt, K; Bushaw, Bruce A.

    2005-11-01

    The near-threshold autoionization (AI) spectrum of uranium has been investigated by triple-resonance excitation with single-mode continuous lasers. Spectra were recorded over the first {approx}30 cm-1 above the first ionization limit at a resolution of 3x10-4 cm 1 using intermediate states with different J values (6, 7, 8) to assign AI level total angular momentum JAI = 5 to 9. Resonances with widths ranging from 8 MHz to 30 GHz were observed; the strongest ones have JAI = 9 and widths of {approx} 60 MHz. Hyperfine structures for 235U and isotope shifts for 234,235U have been measured in the two intermediatemore » levels and in the final AI level for the most favorable excitation path. These measurements were performed using aqueous samples containing sub-milligram quantities of uranium at natural isotopic abundances, indicating the potential of this approach for trace isotope ratio determinations.« less

  1. A New Method for Generating Probability Tables in the Unresolved Resonance Region

    DOE PAGES

    Holcomb, Andrew M.; Leal, Luiz C.; Rahnema, Farzad; ...

    2017-04-18

    One new method for constructing probability tables in the unresolved resonance region (URR) has been developed. This new methodology is an extensive modification of the single-level Breit-Wigner (SLBW) pseudo-resonance pair sequence method commonly used to generate probability tables in the URR. The new method uses a Monte Carlo process to generate many pseudo-resonance sequences by first sampling the average resonance parameter data in the URR and then converting the sampled resonance parameters to the more robust R-matrix limited (RML) format. Furthermore, for each sampled set of pseudo-resonance sequences, the temperature-dependent cross sections are reconstructed on a small grid around themore » energy of reference using the Reich-Moore formalism and the Leal-Hwang Doppler broadening methodology. We then use the effective cross sections calculated at the energies of reference to construct probability tables in the URR. The RML cross-section reconstruction algorithm has been rigorously tested for a variety of isotopes, including 16O, 19F, 35Cl, 56Fe, 63Cu, and 65Cu. The new URR method also produced normalized cross-section factor probability tables for 238U that were found to be in agreement with current standards. The modified 238U probability tables were shown to produce results in excellent agreement with several standard benchmarks, including the IEU-MET-FAST-007 (BIG TEN), IEU-MET-FAST-003, and IEU-COMP-FAST-004 benchmarks.« less

  2. Retrospective Reconstruction of Radiation Doses of Chernobyl Liquidators by Electron Paramagnetic Resonance

    DTIC Science & Technology

    1997-12-01

    Armed Forces Rad I Research Institute Retrospective Reconstruction of Radiation Doses of Chernobyl Liquidators by Electron Paramagnetic Resonance A...of Radiation Doses of Chernobyl Liquidators by Electron Paramagnetic Resonance Authored by Scientific Center of Radiation Medicine Academy of Medical...libraries associated with the U.S. Government’s Depository Library System. Preface On April 26, 1986, Reactor #4 at the Chernobyl Nuclear Power Plant near

  3. Magnetic resonance imaging for staging and treatment planning in cervical cancer.

    PubMed

    López-Carballeira, A; Baleato-González, S; García-Figueiras, R; Otero-Estévez, I; Villalba-Martín, C

    2016-01-01

    To review the key points that are essential for the correct staging of cervical cancer by magnetic resonance imaging. Magnetic resonance imaging is the method of choice for locoregional staging of cervical cancer. Thorough evaluation of prognostic factors such as tumor size, invasion of adjacent structures, and the presence of lymph node metastases is fundamental for planning appropriate treatment. Copyright © 2015 SERAM. Publicado por Elsevier España, S.L.U. All rights reserved.

  4. Acquisition of a Surface Plasmon Resonance Imager, Digital Microscope, and Peristaltic Pumps for Defense-Based Research

    DTIC Science & Technology

    2016-05-05

    SECURITY CLASSIFICATION OF: The goal of this proposal is to purchase the GWC Technologies, Inc. Horizontal Surface Plasmon Resonance Imaging (SPRi...Unlimited UU UU UU UU 05-05-2016 1-Feb-2014 31-Jan-2016 Final Report: Acquisition of a Surface Plasmon Resonance Imager, Digital Microscope, and...S) AND ADDRESS (ES) U.S. Army Research Office P.O. Box 12211 Research Triangle Park, NC 27709-2211 Surface Plasmon Resonance Imager, Digital

  5. Proton nuclear magnetic resonance studies on the variant-3 neurotoxin from Centruroides sculpturatus Ewing: Sequential assignment of resonances

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nettesheim, D.G.; Klevit, R.E.; Drobny, G.

    1989-02-21

    The authors report the sequential assignment of resonances to specific residues in the proton nuclear magnetic resonance spectrum of the variant-3 neurotoxin from the scorpion Centruroides sculpturatus Ewing (range southwestern U.S.A.). A combination of two-dimensional NMR experiments such as 2D-COSY, 2D-NOESY, and single- and double-RELAY coherence transfer spectroscopy has been employed on samples of the protein dissolved in D{sub 2}O and in H{sub 2}O for assignment purposes. These studies provide a basis for the determination of the solution-phase conformation of this protein and for undertaking detailed structure-function studies of these neurotoxins that modulate the flow of sodium current by bindingmore » to the sodium channels of excitable membranes.« less

  6. Two-resonance probe for measuring electron density in low-pressure plasmas

    NASA Astrophysics Data System (ADS)

    Kim, D. W.; You, S. J.; Kim, S. J.; Kim, J. H.; Oh, W. Y.

    2017-04-01

    A technique for measuring double-checked electron density using two types of microwave resonance is presented. Simultaneous measurement of the resonances (plasma and quarter-wavelength resonator resonances), which were used for the cutoff probe (CP) and hairpin probe (HP), was achieved by the proposed microwave resonance probe. The developed two-resonance probe (TRP) consists of parallel separated coaxial cables exposing the radiation and detection tips. The structure resembles that of the CP, except the gapped coaxial cables operate not only as a microwave feeder for the CP but also as a U- shaped quarter-wavelength resonator for the HP. By virtue of this structure, the microwave resonances that have typically been used for measuring the electron density for the CP and HP were clearly identified on the microwave transmission spectrum of the TRP. The two types of resonances were measured experimentally under various power and pressure conditions for the plasma. A three-dimensional full-wave simulation model for the TRP is also presented and used to investigate and reproduce the resonances. The electron densities inferred from the resonances were compared and showed good agreement. Quantitative differences between the densities were attributed to the effects of the sheath width and spatial density gradient on the resonances. This accessible technique of using the TRP to obtain double-checked electron densities may be useful for comparative study and provides complementary uses for the CP and HP.

  7. RECONSTRUCTION OF HUMAN LUNG MORPHOLOGY MODELS FROM MAGNETIC RESONANCE IMAGES

    EPA Science Inventory


    Reconstruction of Human Lung Morphology Models from Magnetic Resonance Images
    T. B. Martonen (Experimental Toxicology Division, U.S. EPA, Research Triangle Park, NC 27709) and K. K. Isaacs (School of Public Health, University of North Carolina, Chapel Hill, NC 27514)

  8. Positron production in heavy-ion collisions. II. Application of the formalism to the case of the U+U collision

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tomoda, T.

    1982-07-01

    The method developed in the preceding paper is applied to the calculation of the spectra of positrons produced in the U + U collision. Matrix elements of the radial derivative operator between adiabatic basis states are calculated in the monopole approximation, with the finite nuclear size taken into account. These matrix elements are then modified for the supercritical case with the use of the analytical method presented in paper I of this series. The coupled differential equations for the occupation amplitudes of the basis states are solved and the positron spectra are obtained for the U + U collision. Itmore » is shown that the decomposition of the production probability into a spontaneous and an induced part depends on the definition of the resonance state and cannot be given unambiguously. The results are compared with those obtained by Reinhardt et al.« less

  9. Thermal ionization mass spectrometry U-series dating of a hominid site near Nanjing, China

    NASA Astrophysics Data System (ADS)

    Zhao, Jian-Xin; Hu, Kai; Collerson, Kenneth D.; Xu, Han-Kui

    2001-01-01

    Mass spectrometric U-series dating of speleothems from Tangshan Cave, combined with ecological and paleoclimatic evidence, indicates that Nanjing Man, a typical Homo erectus morphologically correlated with Peking Man at Zhoukoudian, should be at least 580 k.y. old, or more likely lived during the glacial oxygen isotope stage 16 (˜620 ka). Such an age estimate, which is ˜270 ka older than previous electron spin resonance and alpha-counting U-series dates, has significant implications for the evolution of Asian H. erectus. Dentine and enamel samples from the coexisting fossil layer yield significantly younger apparent ages, that of the enamel sample being only less than one-fourth of the minimum age of Nanjing Man. This suggests that U uptake history is far more complex than existing models can handle. As a result, great care must be taken in the interpretation of electron spin resonance and U-series dates of fossil teeth.

  10. Resonance treatment using pin-based pointwise energy slowing-down method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Choi, Sooyoung, E-mail: csy0321@unist.ac.kr; Lee, Changho, E-mail: clee@anl.gov; Lee, Deokjung, E-mail: deokjung@unist.ac.kr

    A new resonance self-shielding method using a pointwise energy solution has been developed to overcome the drawbacks of the equivalence theory. The equivalence theory uses a crude resonance scattering source approximation, and assumes a spatially constant scattering source distribution inside a fuel pellet. These two assumptions cause a significant error, in that they overestimate the multi-group effective cross sections, especially for {sup 238}U. The new resonance self-shielding method solves pointwise energy slowing-down equations with a sub-divided fuel rod. The method adopts a shadowing effect correction factor and fictitious moderator material to model a realistic pointwise energy solution. The slowing-down solutionmore » is used to generate the multi-group cross section. With various light water reactor problems, it was demonstrated that the new resonance self-shielding method significantly improved accuracy in the reactor parameter calculation with no compromise in computation time, compared to the equivalence theory.« less

  11. Nucleon Resonances in the Photoproduction γp → K∗+Λ

    NASA Astrophysics Data System (ADS)

    Huang, F.; Wang, A. C.; Wang, W. L.; Haberzettl, H.; Nakayama, K.

    The differential cross-section data from the CLAS Collaboration for γp → K∗+Λ have been analyzed based on an effective Lagrangian approach. The t-channel K, κ, K∗ exchanges, the s-channel N and near-threshold N∗’s exchanges, the u-channel Λ, Σ, Σ∗(1385) exchanges, and the generalized contact term are considered in constructing the reaction amplitude. It is found that by including the N(2060)5/2‑ resonance, which is responsible for the shape of the angular distribution of γp → K∗+Λ near the K∗Λ threshold, and one of the N(2000)5/2+, N(2040)3/2+, N(2100)1/2+, N(2120)3/2‑ and N(2190)7/2‑ resonances, one can describe the cross-section data for this reaction reasonably well. More experimental data on spin observables are needed to further pin down the resonance contents and associated resonance parameters in this reaction.

  12. Resonance enhancement of dark matter interactions: the case for early kinetic decoupling and velocity dependent resonance width

    NASA Astrophysics Data System (ADS)

    Duch, M.; Grzadkowski, B.

    2017-09-01

    Motivated by the possibility of enhancing dark matter (DM) self-scattering cross-section σ self , we have revisited the issue of DM annihilation through a Breit-Wigner resonance. In this case thermally averaged annihilation cross-section has strong temper-ature dependence, whereas elastic scattering of DM on the thermal bath particles is sup-pressed. This leads to the early kinetic decoupling of DM and an interesting interplay in the evolution of DM density and temperature that can be described by a set of coupled Boltzmann equations. The standard Breit-Wigner parametrization of a resonance prop-agator is also corrected by including momentum dependence of the resonance width. It has been shown that this effects may change predictions of DM relic density by more than order of magnitude in some regions of the parameter space. Model independent discussion is illustrated within a theory of Abelian vector dark matter. The model assumes extra U(1) symmetry group factor and an additional complex Higgs field needed to generate a mass for the dark vector boson, which provides an extra neutral Higgs boson h 2. We discuss the resonant amplification of σ self . It turns out that if DM abundance is properly reproduced, the Fermi-LAT data favor heavy DM and constraint the enhancement of σ self to the range, which cannot provide a solution to the small-scale structure problems.

  13. If It's Resonance, What is Resonating?

    ERIC Educational Resources Information Center

    Kerber, Robert C.

    2006-01-01

    The phenomenon under the name "resonance," which, is based on the mathematical analogy between mechanical resonance and the behavior of wave functions in quantum mechanical exchange phenomena was described. The resonating system does not have a structure intermediate between those involved in the resonance, but instead a structure which is further…

  14. Nucleon resonances in γ p →K*+Λ

    NASA Astrophysics Data System (ADS)

    Wang, A. C.; Wang, W. L.; Huang, F.; Haberzettl, H.; Nakayama, K.

    2017-09-01

    The high-precision cross section data for the reaction γ p →K*+Λ reported by the CLAS Collaboration at the Thomas Jefferson National Accelerator Facility have been analyzed based on an effective Lagrangian approach in the tree-level approximation. Apart from the t -channel K ,κ ,K* exchanges, the s -channel nucleon (N ) exchange, the u -channel Λ ,Σ ,Σ*(1385 ) exchanges, and the generalized contact term, the contributions from the near-threshold nucleon resonances in the s channel are also taken into account in constructing the reaction amplitude. It is found that to achieve a satisfactory description of the differential cross section data, at least two nucleon resonances should be included. By including the N (2060 ) 5/2 - resonance, which is responsible for the shape of the angular distribution near the K*Λ threshold, and one of the N (2000 ) 5/2 + , N (2040 ) 3/2 +,N (2100 ) 1/2 +,N (2120 ) 3/2 - and N (2190 ) 7/2 - resonances, one can describe the cross section data quite well, with the fitted resonance masses and widths compatible with those advocated by the Particle Data Group. The resulted predictions of the beam, target, and recoil asymmetries are found to be quite different from various fits, indicating the necessity of the spin observable data for γ p →K*+Λ to further pin down the resonance contents and associated parameters in this reaction.

  15. Resonant-spin-ordering of vortex cores in interacting mesomagnets

    NASA Astrophysics Data System (ADS)

    Jain, Shikha

    2013-03-01

    The magnetic system of interacting vortex-state elements have a dynamically reconfigurable ground state characterized by different relative polarities and chiralities of the individual disks; and have a corresponding dynamically controlled spectrum of collective excitation modes that determine the microwave absorption of the crystal. The development of effective methods for dynamic control of the ground state in this vortex-type magnonic crystal is of interest both from fundamental and technological viewpoints. Control of vortex chirality has been demonstrated previously using various techniques; however, control and manipulation of vortex polarities remain challenging. In this work, we present a robust and efficient way of selecting the ground state configuration of interacting magnetic elements using resonant-spin-ordering approach. This is achieved by driving the system from the linear regime of constant vortex gyrations to the non-linear regime of vortex-core reversals at a fixed excitation frequency of one of the coupled modes. Subsequently reducing the excitation field to the linear regime stabilizes the system to a polarity combination whose resonant frequency is decoupled from the initialization frequency. We have utilized the resonant approach to transition between the two polarity combinations (parallel or antiparallel) in a model system of connected dot-pairs which may form the building blocks of vortex-based magnonic crystals. Taking a step further, we have extended the technique by studying many-particle system for its potential as spin-torque oscillators or logic devices. Work at Argonne was supported by the U. S. DOE, Office of BES, under Contract No. DE-AC02-06CH11357. This work was in part supported by grant DMR-1015175 from the U. S. National Science Foundation, by a Contract from the U.S. Army TARDEC and RDECOM.

  16. Gauge U (1) dark symmetry and radiative light fermion masses

    DOE PAGES

    Kownacki, Corey; Ma, Ernest

    2016-06-22

    A gauge U (1) family symmetry is proposed, spanning the quarks and leptons as well as particles of the dark sector. The breaking of U (1) to Z(2) divides the two sectors and generates one-loop radiative masses for the first two families of quarks and leptons, as well as all three neutrinos. We study the phenomenological implications of this new connection between family symmetry and dark matter. In particular, a scalar or pseudoscalar particle associated with this U (1) breaking may be identified with the 750 GeV diphoton resonance recently observed at the Large Hadron Collider (LHC).

  17. Theory of self-resonance after inflation. II. Quantum mechanics and particle-antiparticle asymmetry

    NASA Astrophysics Data System (ADS)

    Hertzberg, Mark P.; Karouby, Johanna; Spitzer, William G.; Becerra, Juana C.; Li, Lanqing

    2014-12-01

    We further develop a theory of self-resonance after inflation in a large class of models involving multiple scalar fields. We concentrate on inflaton potentials that carry an internal symmetry, but also analyze weak breaking of this symmetry. This is the second part of a two-part series of papers. Here in Part 2 we develop an understanding of the resonance structure from the underlying many-particle quantum mechanics. We begin with a small-amplitude analysis, which obtains the central resonant wave numbers, and relate it to perturbative processes. We show that the dominant resonance structure is determined by (i) the nonrelativistic scattering of many quantum particles and (ii) the application of Bose-Einstein statistics to the adiabatic and isocurvature modes, as introduced in Part 1 [M. P. Hertzberg et al., Phys. Rev. D 90, 123528 (2014)]. Other resonance structures are understood in terms of annihilations and decays. We set up Bunch-Davies vacuum initial conditions during inflation and track the evolution of modes including Hubble expansion. In the case of a complex inflaton carrying an internal U(1) symmetry, we show that when the isocurvature instability is active, the inflaton fragments into separate regions of ϕ -particles and anti-ϕ -particles. We then introduce a weak breaking of the U(1) symmetry; this can lead to baryogenesis, as shown by some of us recently [M. P. Hertzberg and J. Karouby, Phys. Lett. B 737, 34 (2014); Phys. Rev. D 89, 063523 (2014)]. Then using our results, we compute corrections to the particle-antiparticle asymmetry from this preheating era.

  18. Enhanced Access to the Dark Triplet States of 7Li 2 through New Singlet-Triplet A1Σ +u ˜ b3Π u Perturbation Window Levels: Perturbation-Facilitated Optical-Optical Double Resonance Study of the 2 3Σ +g State

    NASA Astrophysics Data System (ADS)

    Lazarov, Guenadiy; Lyyra, A. Marjatta; Li, Li

    2001-01-01

    Two new pairs of singlet-triplet A1Σ+u ∼ b3Πu mixed levels of 7Li2 have been observed and used here as 'window' levels in cw perturbation-facilitated optical-optical double-resonance (PFOODR) experiments. Previously, only one b3Πu vibrational level, v = 19, was known to mix with the singlet A1Σ+uv = 13 level, resulting in three perturbed A ∼ b pairs [L. Li, T. An, T.-J. Whang, A. M. Lyyra, W. C. Stwalley, R. W. Field, and R. A. Bernheim, J. Chem. Phys. 96, 3342 (1992)]. The scarcity of window levels and the resulting difficulty in accessing the dark triplet states of Li2 is caused by the weak spin-orbit interaction of Li2. The two new mixed b3Πuv = 15 and 22 levels reported here enhance access to the dark triplet state manifold through expansion of the Franck-Condon overlap factor range. Furthermore, the earlier range of accessible rotational levels, N = 5, 7, and 10, is now expanded to include N = 8 and N = 16, thereby allowing for more reliable determination of the excited triplet states rotational structure. To demonstrate the importance of the new A1Σ+u ∼ b3Πu mixed levels, we have studied the 23Σ+g state by cw PFOODR fluorescence excitation spectroscopy. New molecular constants and RKR potential curve have been determined. As previously reported [L. Li, G. Lazarov, and A. M. Lyyra, J. Mol. Spectrosc. 191, 387 (1998)], the 23Σ+g state interacts with the repulsive 13Πg state by L-uncoupling and predissociates. We show that some 23Πg levels predissociate accidentally by the 13Πg state via the 23Σ+g state through L-uncoupling.

  19. Tunable resonant and non-resonant interactions between a phase qubit and LC resonator

    NASA Astrophysics Data System (ADS)

    Allman, Michael Shane; Whittaker, Jed D.; Castellanos-Beltran, Manuel; Cicak, Katarina; da Silva, Fabio; Defeo, Michael; Lecocq, Florent; Sirois, Adam; Teufel, John; Aumentado, Jose; Simmonds, Raymond W.

    2014-03-01

    We use a flux-biased radio frequency superconducting quantum interference device (rf SQUID) with an embedded flux-biased direct current (dc) SQUID to generate strong resonant and non-resonant tunable interactions between a phase qubit and a lumped-element resonator. The rf-SQUID creates a tunable magnetic susceptibility between the qubit and resonator providing resonant coupling rates from zero to near the ultra-strong coupling regime. By modulating the magnetic susceptibility, non-resonant parametric coupling achieves rates > 100 MHz . Nonlinearity of the magnetic susceptibility also leads to parametric coupling at subharmonics of the qubit-resonator detuning. Controllable coupling is generically important for constructing coupled-mode systems ubiquitous in physics, useful for both, quantum information architectures and quantum simulators. This work supported by NIST and NSA grant EAO140639.

  20. Pion single and double charge exchange in the resonance region: Dynamical corrections

    NASA Astrophysics Data System (ADS)

    Johnson, Mikkel B.; Siciliano, E. R.

    1983-04-01

    We consider pion-nucleus elastic scattering and single- and double-charge-exchange scattering to isobaric analog states near the (3,3) resonance within an isospin invariant framework. We extend previous theories by introducing terms into the optical potential U that are quadratic in density and consistent with isospin invariance of the strong interaction. We study the sensitivity of single and double charge exchange angular distributions to parameters of the second-order potential both numerically, by integrating the Klein-Gordon equation, and analytically, by using semiclassical approximations that explicate the dependence of the exact numerical results to the parameters of U. The magnitude and shape of double charge exchange angular distributions are more sensitive to the isotensor term in U than has been hitherto appreciated. An examination of recent experimental data shows that puzzles in the shape of the 18O(π+, π-)18Ne angular distribution at 164 MeV and in the A dependence of the forward double charge exchange scattering on 18O, 26Mg, 42Ca, and 48Ca at the same energy may be resolved by adding an isotensor term in U. NUCLEAR REACTIONS Scattering theory for elastic, single-, and double-charge-exchange scattering to IAS in the region of the P33 resonance. Second-order effects on charge-exchange calculations of σ(A, θ).

  1. Resonance scattering spectra of micrococcus lysodeikticus and its application to assay of lysozyme activity.

    PubMed

    Jiang, Zhi-Liang; Huang, Guo-Xia

    2007-02-01

    Several methods, including turbidimetric and colorimetric methods, have been reported for the detection of lysozyme activity. However, there is no report about the resonance scattering spectral (RSS) assay, which is based on the catalytic effect of lysozyme on the hydrolysis of micrococcus lysodeikticus (ML) and its resonance scattering effect. ML has 5 resonance scattering peaks at 360 400, 420, 470, and 520 nm with the strongest one at 470 nm. The concentration of ML in the range of 2.0x10(6)-9.3x10(8) cells/ml is proportional to the RS intensity at 470 nm (I(470 nm)). A new catalytic RSS method has been proposed for 0.24-40.0 U/ml (or 0.012-2.0 mug/ml) lysozyme activity, with a detection limit (3sigma) of 0.014 U/ml (or 0.0007 microg/ml). Saliva samples were assayed by this method, and it is in agreement with the results of turbidimetric method. The slope, intercept and the correlation coefficient of the regression analysis of the 2 assays were 0.9665, -87.50, and 0.9973, respectively. The assay has high sensitivity and simplicity.

  2. Resonant scattering experiments with radioactive nuclear beams - Recent results and future plans

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Teranishi, T.; Sakaguchi, S.; Uesaka, T.

    2013-04-19

    Resonant scattering with low-energy radioactive nuclear beams of E < 5 MeV/u have been studied at CRIB of CNS and at RIPS of RIKEN. As an extension to the present experimental technique, we will install an advanced polarized proton target for resonant scattering experiments. A Monte-Carlo simulation was performed to study the feasibility of future experiments with the polarized target. In the Monte-Carlo simulation, excitation functions and analyzing powers were calculated using a newly developed R-matrix calculation code. A project of a small-scale radioactive beam facility at Kyushu University is also briefly described.

  3. 14 CFR 23.75 - Landing distance.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... to the 50 foot height and— (1) The steady approach must be at a gradient of descent not greater than... tests that a maximum steady approach gradient steeper than 5.2 percent, down to the 50-foot height, is safe. The gradient must be established as an operating limitation and the information necessary to...

  4. 14 CFR 23.75 - Landing distance.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... to the 50 foot height and— (1) The steady approach must be at a gradient of descent not greater than 5.2 percent (3 degrees) down to the 50-foot height. (2) In addition, an applicant may demonstrate by tests that a maximum steady approach gradient steeper than 5.2 percent, down to the 50-foot height, is...

  5. 14 CFR 23.75 - Landing distance.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... to the 50 foot height and— (1) The steady approach must be at a gradient of descent not greater than 5.2 percent (3 degrees) down to the 50-foot height. (2) In addition, an applicant may demonstrate by tests that a maximum steady approach gradient steeper than 5.2 percent, down to the 50-foot height, is...

  6. 14 CFR 23.75 - Landing distance.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... to the 50 foot height and— (1) The steady approach must be at a gradient of descent not greater than 5.2 percent (3 degrees) down to the 50-foot height. (2) In addition, an applicant may demonstrate by tests that a maximum steady approach gradient steeper than 5.2 percent, down to the 50-foot height, is...

  7. Manipulation of resonant Auger processes with strong optical fields

    NASA Astrophysics Data System (ADS)

    Picón, Antonio; Buth, Christian; Doumy, Gilles; Krässig, Bertold; Young, Linda; Southworth, Stephen

    2013-05-01

    We recently reported on the optical control of core-excited states of a resonant Auger process in neon. We have focused on the resonant excitation 1 s --> 1s-1 3 p , while a strong optical field may resonantly couple two core-excited states (1s-1 3 p and 1s-1 3 s) in the Rydberg manifold as well as dressing the continuum. There is a clear signature in the Auger electron spectrum of the inner-shell dynamics induced by the strong optical field: i) the Auger electron spectrum is modified by the rapid optical-induced population transfer from the 1s-1 3 p state to the 1s-1 3 s state during their decay. ii) The angular anisotropy parameter, defining the angular distribution of the Auger electron, is manifested in the envelope of the (angle-integrated) sidebands. This work is funded by the Office of Basic Energy Sciences, Office of Science, U.S. Department of Energy, under Contract No. DE-AC02-06CH11357.

  8. Resonantly driven CNOT gate for electron spins.

    PubMed

    Zajac, D M; Sigillito, A J; Russ, M; Borjans, F; Taylor, J M; Burkard, G; Petta, J R

    2018-01-26

    Single-qubit rotations and two-qubit CNOT operations are crucial ingredients for universal quantum computing. Although high-fidelity single-qubit operations have been achieved using the electron spin degree of freedom, realizing a robust CNOT gate has been challenging because of rapid nuclear spin dephasing and charge noise. We demonstrate an efficient resonantly driven CNOT gate for electron spins in silicon. Our platform achieves single-qubit rotations with fidelities greater than 99%, as verified by randomized benchmarking. Gate control of the exchange coupling allows a quantum CNOT gate to be implemented with resonant driving in ~200 nanoseconds. We used the CNOT gate to generate a Bell state with 78% fidelity (corrected for errors in state preparation and measurement). Our quantum dot device architecture enables multi-qubit algorithms in silicon. Copyright © 2018, The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  9. Magnetic Resonance Determinations of Structure and Reaction Kinetics of Epoxy/Amine Systems.

    DTIC Science & Technology

    1981-12-31

    AD- AISA 542 MCDONNELL DOUGLAS RESEARCH LABS ST LOUIS MO FIG 7/4 MAGNETIC RESONANCE DETERMINATIONS OF STRUCTURE AND REACTION KIN--ETC (U) DEC Al I M...solvent content (methylene chloride). DD I JAN73 1473 EDITION OF I NOV 65 IS OBSOLETE UNCLASSIFIED SECURITY CLASSIFICATION OF THIS PAGE (When Doe Fntered

  10. Precession of a rapidly rotating cylinder flow: traverse through resonance

    NASA Astrophysics Data System (ADS)

    Lopez, Juan; Marques, Francisco

    2014-11-01

    The flow in a rapidly rotating cylinder that is titled and also rotating around another axis can undergo sudden transitions to turbulence. Experimental observations of this have been associated with triadic resonances. The experimental and theoretical results are well-established in the literature, but there remains a lack of understanding of the physical mechanisms at play in the sudden transition from laminar to turbulent flow with very small variations in the governing parameters. Here, we present direct numerical simulations of a traverse in parameter space through an isolated resonance, and describe in detail the bifurcations involved in the sudden transition. U.S. National Science Foundation Grant CBET-1336410 and Spanish Ministry of Education and Science Grant (with FEDER funds) FIS2013-40880.

  11. Diagnosis and quantification of the iron overload through Magnetic resonance.

    PubMed

    Alústiza Echeverría, J M; Barrera Portillo, M C; Guisasola Iñiguiz, A; Ugarte Muño, A

    There are different magnetic resonance techniques and models to quantify liver iron concentration. T2 relaxometry methods evaluate the iron concentration in the myocardium, and they are able to discriminate all the levels of iron overload in the liver. Signal intensity ratio methods saturate with high levels of liver overload and can not assess iron concentration in the myocardium but they are more accessible and are very standardized. This article reviews, in different clinical scenarios, when Magnetic Resonance must be used to assess iron overload in the liver and myocardium and analyzes the current challenges to optimize the aplication of the technique and to be it included in the clinical guidelines. Copyright © 2017 SERAM. Publicado por Elsevier España, S.L.U. All rights reserved.

  12. Optical resonator

    NASA Technical Reports Server (NTRS)

    Taghavi-Larigani, Shervin (Inventor); Vanzyl, Jakob J. (Inventor); Yariv, Amnon (Inventor)

    2006-01-01

    The invention discloses a semi-ring Fabry-Perot (SRFP) optical resonator structure comprising a medium including an edge forming a reflective facet and a waveguide within the medium, the waveguide having opposing ends formed by the reflective facet. The performance of the SRFP resonator can be further enhanced by including a Mach-Zehnder interferometer in the waveguide on one side of the gain medium. The optical resonator can be employed in a variety of optical devices. Laser structures using at least one SRFP resonator are disclosed where the resonators are disposed on opposite sides of a gain medium. Other laser structures employing one or more resonators on one side of a gain region are also disclosed.

  13. A recent U.S. patent process for a musical instrument

    NASA Astrophysics Data System (ADS)

    Baecker, James I.

    2005-09-01

    The ins and outs of going from a novel musical instrument concept to issuance of a U.S. patent. The technical work performed included the development of a musical instrument based on space-frame body construction and a definition of the instrument body's resonance characteristics. The result required a description of the invention and communication with the patent attorney and conveying a correct perception of the invention to the U.S. Patent Office. This presentation describes several technical, practical, legal, and commercial issues encountered during the patent process by the inventors and their business entity. On 7 September 2004, U.S. Patent No. 6,787,688 for a musical instrument was issued and assigned by the inventors to Harmos Music, Ltd.

  14. Auxiliary quasi-resonant dc tank electrical power converter

    DOEpatents

    Peng, Fang Z.

    2006-10-24

    An auxiliary quasi-resonant dc tank (AQRDCT) power converter with fast current charging, voltage balancing (or charging), and voltage clamping circuits is provided for achieving soft-switched power conversion. The present invention is an improvement of the invention taught in U.S. Pat. No. 6,111,770, herein incorporated by reference. The present invention provides faster current charging to the resonant inductor, thus minimizing delay time of the pulse width modulation (PWM) due to the soft-switching process. The new AQRDCT converter includes three tank capacitors or power supplies to achieve the faster current charging and minimize the soft-switching time delay. The new AQRDCT converter further includes a voltage balancing circuit to charge and discharge the three tank capacitors so that additional isolated power supplies from the utility line are not needed. A voltage clamping circuit is also included for clamping voltage surge due to the reverse recovery of diodes.

  15. Microstrip resonators for electron paramagnetic resonance experiments

    NASA Astrophysics Data System (ADS)

    Torrezan, A. C.; Mayer Alegre, T. P.; Medeiros-Ribeiro, G.

    2009-07-01

    In this article we evaluate the performance of an electron paramagnetic resonance (EPR) setup using a microstrip resonator (MR). The design and characterization of the resonator are described and parameters of importance to EPR and spin manipulation are examined, including cavity quality factor, filling factor, and microwave magnetic field in the sample region. Simulated microwave electric and magnetic field distributions in the resonator are also presented and compared with qualitative measurements of the field distribution obtained by a perturbation technique. Based on EPR experiments carried out with a standard marker at room temperature and a MR resonating at 8.17 GHz, the minimum detectable number of spins was found to be 5×1010 spins/GHz1/2 despite the low MR unloaded quality factor Q0=60. The functionality of the EPR setup was further evaluated at low temperature, where the spin resonance of Cr dopants present in a GaAs wafer was detected at 2.3 K. The design and characterization of a more versatile MR targeting an improved EPR sensitivity and featuring an integrated biasing circuit for the study of samples that require an electrical contact are also discussed.

  16. Microstrip resonators for electron paramagnetic resonance experiments.

    PubMed

    Torrezan, A C; Mayer Alegre, T P; Medeiros-Ribeiro, G

    2009-07-01

    In this article we evaluate the performance of an electron paramagnetic resonance (EPR) setup using a microstrip resonator (MR). The design and characterization of the resonator are described and parameters of importance to EPR and spin manipulation are examined, including cavity quality factor, filling factor, and microwave magnetic field in the sample region. Simulated microwave electric and magnetic field distributions in the resonator are also presented and compared with qualitative measurements of the field distribution obtained by a perturbation technique. Based on EPR experiments carried out with a standard marker at room temperature and a MR resonating at 8.17 GHz, the minimum detectable number of spins was found to be 5 x 10(10) spins/GHz(1/2) despite the low MR unloaded quality factor Q0=60. The functionality of the EPR setup was further evaluated at low temperature, where the spin resonance of Cr dopants present in a GaAs wafer was detected at 2.3 K. The design and characterization of a more versatile MR targeting an improved EPR sensitivity and featuring an integrated biasing circuit for the study of samples that require an electrical contact are also discussed.

  17. Doppler broadening of neutron-induced resonances using ab initio phonon spectrum

    NASA Astrophysics Data System (ADS)

    Noguere, G.; Maldonado, P.; De Saint Jean, C.

    2018-05-01

    Neutron resonances observed in neutron cross section data can only be compared with their theoretical analogues after a correct broadening of the resonance widths. This broadening is usually carried out by two different theoretical models, namely the Free Gas Model and the Crystal Lattice Model, which, however, are only applicable under certain assumptions. Here, we use neutron transmission experiments on UO2 samples at T=23.7 K and T=293.7 K, to investigate the limitations of these models when an ab initio phonon spectrum is introduced in the calculations. Comparisons of the experimental and theoretical transmissions highlight the underestimation of the energy transferred at low temperature and its impact on the accurate determination of the radiation widths Γ_{γ_{λ}} of the 238U resonances λ. The observed deficiency of the model represents an experimental evidence that the Debye-Waller factor is not correctly calculated at low temperature near the Neel temperature ( TN=30.8 K).

  18. Partially orthogonal resonators for magnetic resonance imaging

    NASA Astrophysics Data System (ADS)

    Chacon-Caldera, Jorge; Malzacher, Matthias; Schad, Lothar R.

    2017-02-01

    Resonators for signal reception in magnetic resonance are traditionally planar to restrict coil material and avoid coil losses. Here, we present a novel concept to model resonators partially in a plane with maximum sensitivity to the magnetic resonance signal and partially in an orthogonal plane with reduced signal sensitivity. Thus, properties of individual elements in coil arrays can be modified to optimize physical planar space and increase the sensitivity of the overall array. A particular case of the concept is implemented to decrease H-field destructive interferences in planar concentric in-phase arrays. An increase in signal to noise ratio of approximately 20% was achieved with two resonators placed over approximately the same planar area compared to common approaches at a target depth of 10 cm at 3 Tesla. Improved parallel imaging performance of this configuration is also demonstrated. The concept can be further used to increase coil density.

  19. Nuclear magnetic resonance-based model of a TF1/HmU-DNA complex.

    PubMed

    Silva, M V; Pasternack, L B; Kearns, D R

    1997-12-15

    Transcription factor 1 (TF1), a type II DNA-binding protein encoded by the Bacillus subtilis bacteriophage SPO1, has the capacity for sequence-selective DNA binding and a preference for 5-hydroxymethyl-2'-deoxyuridine (HmU)-containing DNA. In NMR studies of the TF1/HmU-DNA complex, intermolecular NOEs indicate that the flexible beta-ribbon and C-terminal alpha-helix are involved in the DNA-binding site of TF1, placing it in the beta-sheet category of DNA-binding proteins proposed to bind by wrapping two beta-ribbon "arms" around the DNA. Intermolecular and intramolecular NOEs were used to generate an energy-minimized model of the protein-DNA complex in which both DNA bending and protein structure changes are evident.

  20. Comparison of fresh fuel experimental measurements to MCNPX calculations using self-interrogation neutron resonance densitometry

    NASA Astrophysics Data System (ADS)

    LaFleur, Adrienne M.; Charlton, William S.; Menlove, Howard O.; Swinhoe, Martyn T.

    2012-07-01

    A new non-destructive assay technique called Self-Interrogation Neutron Resonance Densitometry (SINRD) is currently being developed at Los Alamos National Laboratory (LANL) to improve existing nuclear safeguards measurements for Light Water Reactor (LWR) fuel assemblies. SINRD consists of four 235U fission chambers (FCs): bare FC, boron carbide shielded FC, Gd covered FC, and Cd covered FC. Ratios of different FCs are used to determine the amount of resonance absorption from 235U in the fuel assembly. The sensitivity of this technique is based on using the same fissile materials in the FCs as are present in the fuel because the effect of resonance absorption lines in the transmitted flux is amplified by the corresponding (n,f) reaction peaks in the fission chamber. In this work, experimental measurements were performed in air with SINRD using a reference Pressurized Water Reactor (PWR) 15×15 low enriched uranium (LEU) fresh fuel assembly at LANL. The purpose of this experiment was to assess the following capabilities of SINRD: (1) ability to measure the effective 235U enrichment of the PWR fresh LEU fuel assembly and (2) sensitivity and penetrability to the removal of fuel pins from an assembly. These measurements were compared to Monte Carlo N-Particle eXtended transport code (MCNPX) simulations to verify the accuracy of the MCNPX model of SINRD. The reproducibility of experimental measurements via MCNPX simulations is essential to validating the results and conclusions obtained from the simulations of SINRD for LWR spent fuel assemblies.

  1. The role of RNA structure in the interaction of U1A protein with U1 hairpin II RNA

    PubMed Central

    Law, Michael J.; Rice, Andrew J.; Lin, Patti; Laird-Offringa, Ite A.

    2006-01-01

    The N-terminal RNA Recognition Motif (RRM1) of the spliceosomal protein U1A interacting with its target U1 hairpin II (U1hpII) has been used as a paradigm for RRM-containing proteins interacting with their RNA targets. U1A binds to U1hpII via direct interactions with a 7-nucleotide (nt) consensus binding sequence at the 5′ end of a 10-nt loop, and via hydrogen bonds with the closing C–G base pair at the top of the RNA stem. Using surface plasmon resonance (Biacore), we have examined the role of structural features of U1hpII in binding to U1A RRM1. Mutational analysis of the closing base pair suggests it plays a minor role in binding and mainly prevents “breathing” of the loop. Lengthening the stem and nontarget part of the loop suggests that the increased negative charge of the RNA might slightly aid association. However, this is offset by an increase in dissociation, which may be caused by attraction of the RRM to nontarget parts of the RNA. Studies of a single stranded target and RNAs with untethered loops indicate that structure is not very relevant for association but is important for complex stability. In particular, breaking the link between the stem and the 5′ side of the loop greatly increases complex dissociation, presumably by hindering simultaneous contacts between the RRM and stem and loop nucleotides. While binding of U1A to a single stranded target is much weaker than to U1hpII, it occurs with nanomolar affinity, supporting recent evidence that binding of unstructured RNA by U1A has physiological significance. PMID:16738410

  2. The role of RNA structure in the interaction of U1A protein with U1 hairpin II RNA.

    PubMed

    Law, Michael J; Rice, Andrew J; Lin, Patti; Laird-Offringa, Ite A

    2006-07-01

    The N-terminal RNA Recognition Motif (RRM1) of the spliceosomal protein U1A interacting with its target U1 hairpin II (U1hpII) has been used as a paradigm for RRM-containing proteins interacting with their RNA targets. U1A binds to U1hpII via direct interactions with a 7-nucleotide (nt) consensus binding sequence at the 5' end of a 10-nt loop, and via hydrogen bonds with the closing C-G base pair at the top of the RNA stem. Using surface plasmon resonance (Biacore), we have examined the role of structural features of U1hpII in binding to U1A RRM1. Mutational analysis of the closing base pair suggests it plays a minor role in binding and mainly prevents "breathing" of the loop. Lengthening the stem and nontarget part of the loop suggests that the increased negative charge of the RNA might slightly aid association. However, this is offset by an increase in dissociation, which may be caused by attraction of the RRM to nontarget parts of the RNA. Studies of a single stranded target and RNAs with untethered loops indicate that structure is not very relevant for association but is important for complex stability. In particular, breaking the link between the stem and the 5' side of the loop greatly increases complex dissociation, presumably by hindering simultaneous contacts between the RRM and stem and loop nucleotides. While binding of U1A to a single stranded target is much weaker than to U1hpII, it occurs with nanomolar affinity, supporting recent evidence that binding of unstructured RNA by U1A has physiological significance.

  3. Nanomechanical resonance detector

    DOEpatents

    Grossman, Jeffrey C; Zettl, Alexander K

    2013-10-29

    An embodiment of a nanomechanical frequency detector includes a support structure and a plurality of elongated nanostructures coupled to the support structure. Each of the elongated nanostructures has a particular resonant frequency. The plurality of elongated nanostructures has a range of resonant frequencies. An embodiment of a method of identifying an object includes introducing the object to the nanomechanical resonance detector. A resonant response by at least one of the elongated nanostructures of the nanomechanical resonance detector indicates a vibrational mode of the object. An embodiment of a method of identifying a molecular species of the present invention includes introducing the molecular species to the nanomechanical resonance detector. A resonant response by at least one of the elongated nanostructures of the nanomechanical resonance detector indicates a vibrational mode of the molecular species.

  4. Optimal gadolinium dose level for magnetic resonance imaging (MRI) contrast enhancement of U87-derived tumors in athymic nude rats for the assessment of photodynamic therapy

    NASA Astrophysics Data System (ADS)

    Cross, Nathan; Varghai, Davood; Flask, Chris A.; Feyes, Denise K.; Oleinick, Nancy L.; Dean, David

    2009-02-01

    This study aims to determine the effect of varying gadopentetate dimeglumine (Gd-DTPA) dose on Dynamic Contrast Enhanced-Magnetic Resonance Imaging (DCE-MRI) tracking of brain tumor photodynamic therapy (PDT) outcome. Methods: We injected 2.5 x 105 U87 cells (derived from human malignant glioma) into the brains of six athymic nude rats. After 9, 12, and 13 days DCE-MRI images were acquired on a 9.4 T micro-MRI scanner before and after administration of 100, 150, or 200 μL of Gd-DTPA. Results: Tumor region normalized DCE-MRI scan enhancement at peak was: 1.217 over baseline (0.018 Standard Error [SE]) at the 100 μL dose, 1.339 (0.013 SE) at the 150 μL dose, and 1.287 (0.014 SE) at the 200 μL dose. DCE-MRI peak tumor enhancement at the 150 μL dose was significantly greater than both the 100 μL dose (p < 3.323E-08) and 200 μL dose (p < 0.0007396). Discussion: In this preliminary study, the 150 μL Gd-DTPA dose provided the greatest T1 weighted contrast enhancement, while minimizing negative T2* effects, in DCE-MRI scans of U87-derived tumors. Maximizing Gd-DTPA enhancement in DCE-MRI scans may assist development of a clinically robust (i.e., unambiguous) technique for PDT outcome assessment.

  5. Integral resonator gyroscope

    NASA Technical Reports Server (NTRS)

    Shcheglov, Kirill V. (Inventor); Challoner, A. Dorian (Inventor); Hayworth, Ken J. (Inventor); Wiberg, Dean V. (Inventor); Yee, Karl Y. (Inventor)

    2008-01-01

    The present invention discloses an inertial sensor having an integral resonator. A typical sensor comprises a planar mechanical resonator for sensing motion of the inertial sensor and a case for housing the resonator. The resonator and a wall of the case are defined through an etching process. A typical method of producing the resonator includes etching a baseplate, bonding a wafer to the etched baseplate, through etching the wafer to form a planar mechanical resonator and the wall of the case and bonding an end cap wafer to the wall to complete the case.

  6. Computer Simulations of Resonant Coherent Excitation of Heavy Hydrogen-Like Ions Under Planar Channeling

    NASA Astrophysics Data System (ADS)

    Babaev, A. A.; Pivovarov, Yu L.

    2010-04-01

    Resonant coherent excitation (RCE) of relativistic hydrogen-like ions is investigated by computer simulations methods. The suggested theoretical model is applied to the simulations of recent experiments on RCE of 390 MeV/u Ar17+ ions under (220) planar channeling in a Si crystal performed by T.Azuma et al at HIMAC (Tokyo). Theoretical results are in a good agreement with these experimental data and clearly show the appearance of the doublet structure of RCE peaks. The simulations are also extended to greater ion energies in order to predict the new RCE features at the future accelerator facility FAIR OSI and as an example, RCE of II GeV/u U91+ ions is considered in detail.

  7. Adjunctive role of preoperative liver magnetic resonance imaging for potentially resectable pancreatic cancer.

    PubMed

    Kim, Hyoung Woo; Lee, Jong-Chan; Paik, Kyu-Hyun; Kang, Jingu; Kim, Young Hoon; Yoon, Yoo-Seok; Han, Ho-Seong; Kim, Jaihwan; Hwang, Jin-Hyeok

    2017-06-01

    The adjunctive role of magnetic resonance imaging of the liver before pancreatic ductal adenocarcinoma has been unclear. We evaluated whether the combination of hepatic magnetic resonance imaging with multidetector computed tomography using a pancreatic protocol (pCT) could help surgeons select appropriate candidates and decrease the risk of early recurrence. We retrospectively enrolled 167 patients in whom complete resection was achieved without grossly visible residual tumor; 102 patients underwent pCT alone (CT group) and 65 underwent both hepatic magnetic resonance imaging and pCT (magnetic resonance imaging group). By adding hepatic magnetic resonance imaging during preoperative evaluation, hepatic metastases were newly discovered in 3 of 58 patients (5%) without hepatic lesions on pCT and 17 of 53 patients (32%) with indeterminate hepatic lesions on pCT. Patients with borderline resectability, a tumor size >3 cm, or preoperative carbohydrate antigen 19-9 level >1,000 U/mL had a greater rate of hepatic metastasis on subsequent hepatic magnetic resonance imaging. Among 167 patients in whom R0/R1 resection was achieved, the median overall survival was 18.2 vs 24.7 months (P = .020) and the disease-free survival was 8.5 vs 10.0 months (P = .016) in the CT and magnetic resonance imaging groups, respectively (median follow-up, 18.3 months). Recurrence developed in 82 (80%) and 43 (66%) patients in the CT and magnetic resonance imaging groups, respectively. The cumulative hepatic recurrence rate was greater in the CT group than in the magnetic resonance imaging group (P < .001). Preoperative hepatic magnetic resonance imaging should be considered in patients with potentially resectable pancreatic ductal adenocarcinoma, especially those with high tumor burden. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Defect-mediated resonance shift of silicon-on-insulator racetrack resonators.

    PubMed

    Ackert, J J; Doylend, J K; Logan, D F; Jessop, P E; Vafaei, R; Chrostowski, L; Knights, A P

    2011-06-20

    We present a study on the effects of inert ion implantation of Silicon-On-Insulator (SOI) racetrack resonators. Selective ion implantation was used to create deep-level defects within a portion of the resonator. The resonant wavelength and round-trip loss were deduced for a range of sequential post-implantation annealing temperatures from 100 to 300 °C. As the devices were annealed there was a concomitant change in the resonance wavelength, consistent with an increase in refractive index following implantation and recovery toward the pre-implanted value. A total shift in resonance wavelength of ~2.9 nm was achieved, equivalent to a 0.02 increase in refractive index. The excess loss upon implantation increased to 301 dB/cm and was reduced to 35 dB/cm following thermal annealing. In addition to providing valuable data for those incorporating defects within resonant structures, we suggest that these results present a method for permanent tuning (or trimming) of ring resonator characteristics.

  9. Spatial Quantum Beats in Vibrational Resonant Inelastic Soft X-Ray Scattering at Dissociating States in Oxygen

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pietzsch, A.; Kennedy, B.; Sun, Y.-P.

    2011-04-15

    Resonant inelastic soft x-ray scattering (RIXS) spectra excited at the 1{sigma}{sub g}{yields}3{sigma}{sub u} resonance in gas-phase O{sub 2} show excitations due to the nuclear degrees of freedom with up to 35 well-resolved discrete vibronic states and a continuum due to the kinetic energy distribution of the separated atoms. The RIXS profile demonstrates spatial quantum beats caused by two interfering wave packets with different momenta as the atoms separate. Thomson scattering strongly affects both the spectral profile and the scattering anisotropy.

  10. The <u>Be>rkeley <u>A>tmospheric <u>C>O2 <u>O>bservation <u>N>etwork (BEACON): Measuring Greenhouse Gases and Criteria Pollutants within the Urban Dome

    NASA Astrophysics Data System (ADS)

    Teige, V. E.; Weichsel, K.; Hooker, A.; Wooldridge, P. J.; Cohen, R. C.

    2012-12-01

    Efforts to curb greenhouse gas emissions, while global in their impacts, often focus on local and regional scales for execution and are dependent on the actions of communities and individuals. Evaluating the effectiveness of local policies requires observations with much higher spatial resolution than are currently available---kilometer scale. The <u>Be>rkeley <u>A>tmospheric <u>C>O2 <u>O>bservation <u>N>etwork (BEACON):, launched at the end of 2011, aims to provide measurements of urban-scale concentrations of CO2, temperature, pressure, relative humidity, O3, CO, and NO2 with sufficient spatial and temporal resolution to characterize the sources of CO2 within cities. Our initial deployment in Oakland, California uses ~40 sensor packages at a roughly 2 km spacing throughout the city. We will present an initial analysis of the vertical gradients and other spatial patterns observed to date.

  11. Modeling of potential TAE-induced beam ion loss from NSTX-U plasmas

    NASA Astrophysics Data System (ADS)

    Darrow, Douglass; Fredrickson, Eric; Podesta, Mario; White, Roscoe; Liu, Deyong

    2015-11-01

    NSTX-U will add three additional neutral beam sources, whose tangency radii of 1.1, 1.2, and 1.3 m, are significantly larger than the 0.5, 0.6, and 0.7 m tangency radii of the neutral beams previously used in NSTX. These latter beams will also be used in NSTX-U. Here, we attempt to formulate an estimate of the propensity of the beam ions from all the various sources to be lost under a range of NSTX-U plasma conditions. This estimation is based upon TRANSP calculations of beam ion deposition in phase space, and the location of the FLR-corrected loss boundary in that phase space. Since TAEs were a prominent driver of beam ion loss in NSTX, we incorporate their effects through the following process: NOVA modeling of TAEs in the anticipated NSTX-U plasma conditions gives the mode numbers, frequencies, and mode structures that are likely to occur. Using this information as inputs to the guiding center ORBIT code, it is possible to find resonant surfaces in the same phase space along which beam ions would be able to diffuse under the influence of the modes. The degree to which these resonant surfaces intersect both the beam deposition volume and the orbit loss boundary should then give a sense of the propensity of that beam population to be lost from the plasma. Work supported by US DOE contracts DE-AC0209CH11466, DE-FG02-06ER54867, and DE-FG03-02ER54681.

  12. Coupled-Resonator-Induced Transparency

    NASA Technical Reports Server (NTRS)

    Smith, David D.; Chang, Hong-Rok; Fuller, Kirk A.; Rosenberger, A. T.; Boyd, Robert W.

    2003-01-01

    We demonstrate that a cancellation of absorption occurs on resonance for two (or any even number of) coupled optical resonators, due to mode splitting and classical destructive interference, particularly when the resonator finesse is large and the loss in the resonator furthest from the excitation waveguide is small. The linewidth and group velocity of a collection of such coupled-resonator structures may be decreased by using larger resonators of equal size, using larger resonators of unequal size where the optical path length of the larger resonator is an integer multiple of that of the smaller one, or by using a larger number of resonators per structure. We explore the analogy between these effects and electromagnetically induced transparency in an atomic system.

  13. Erbium-doped fiber ring resonator for resonant fiber optical gyro applications

    NASA Astrophysics Data System (ADS)

    Li, Chunming; Zhao, Rui; Tang, Jun; Xia, Meijing; Guo, Huiting; Xie, Chengfeng; Wang, Lei; Liu, Jun

    2018-04-01

    This paper reports a fiber ring resonator with erbium-doped fiber (EDF) for resonant fiber optical gyro (RFOG). To analyze compensation mechanism of the EDF on resonator, a mathematical model of the erbium-doped fiber ring resonator (EDFRR) is established based on Jones matrix to be followed by the design and fabrication of a tunable EDFRR. The performances of the fabricated EDFRR were measured and the experimental Q-factor of 2 . 47 × 108 and resonant depth of 109% were acquired separately. Compared with the resonator without the EDF, the resonant depth and Q-factor of the proposed device are increased by 2.5 times and 14 times, respectively. A potential optimum shot noise limited resolution of 0 . 042∘ / h can be obtained for the RFOG, which is promising for low-cost and high precise detection.

  14. 3C-SiC microdisk mechanical resonators with multimode resonances at radio frequencies

    NASA Astrophysics Data System (ADS)

    Lee, Jaesung; Zamani, Hamidrera; Rajgopal, Srihari; Zorman, Christian A.; X-L Feng, Philip

    2017-07-01

    We report on the design, modeling, fabrication and measurement of single-crystal 3C-silicon carbide (SiC) microdisk mechanical resonators with multimode resonances operating at radio frequencies (RF). These microdisk resonators (center-clamped on a vertical stem pedestal) offer multiple flexural-mode resonances with frequencies dependent on both disk and anchor dimensions. The resonators are made using a novel fabrication method comprised of focused ion beam nanomachining and hydroflouic : nitric : acetic (HNA) acid etching. Resonance peaks (in the frequency spectrum) are detected through laser-interferometry measurements. Resonators with different dimensions are tested, and multimode resonances, mode splitting, energy dissipation (in the form of quality factor measurement) are investigated. Further, we demonstrate a feedback oscillator based on a passive 3C-SiC resonator. This investigation provides important guidelines for microdisk resonator development, ranging from an analytical prediction of frequency scaling law to fabrication, suggesting RF microdisk resonators can be good candidates for future sensing applications in harsh environments.

  15. Interaction of the iron–sulfur cluster assembly protein IscU with the Hsc66/Hsc20 molecular chaperone system of Escherichia coli

    PubMed Central

    Hoff, Kevin G.; Silberg, Jonathan J.; Vickery, Larry E.

    2000-01-01

    The iscU gene in bacteria is located in a gene cluster encoding proteins implicated in iron–sulfur cluster assembly and an hsc70-type (heat shock cognate) molecular chaperone system, iscSUA-hscBA. To investigate possible interactions between these systems, we have overproduced and purified the IscU protein from Escherichia coli and have studied its interactions with the hscA and hscB gene products Hsc66 and Hsc20. IscU and its iron–sulfur complex (IscU–Fe/S) stimulated the basal steady-state ATPase activity of Hsc66 weakly in the absence of Hsc20 but, in the presence of Hsc20, increased the ATPase activity up to 480-fold. Hsc20 also decreased the apparent Km for IscU stimulation of Hsc66 ATPase activity, and surface plasmon resonance studies revealed that Hsc20 enhances binding of IscU to Hsc66. Surface plasmon resonance and isothermal titration calorimetry further showed that IscU and Hsc20 form a complex, and Hsc20 may thereby aid in the targeting of IscU to Hsc66. These results establish a direct and specific role for the Hsc66/Hsc20 chaperone system in functioning with isc gene components for the assembly of iron–sulfur cluster proteins. PMID:10869428

  16. Resolving Confined 7Li Dynamics of Uranyl Peroxide Capsule U 24

    DOE PAGES

    Xie, Jing; Neal, Harrison A.; Szymanowski, Jennifer; ...

    2018-04-18

    Here, we obtained a kerosene-soluble form of the lithium salt [UO 2(O 2)(OH) 2] 24 phase (Li-U 24), by adding cetyltrimethylammonium bromide surfactant to aqueous Li-U 24. Interestingly, its variable-temperature solution 7Li NMR spectroscopy resolves two narrowly spaced resonances down to –10 °C, which shift upfield with increasing temperature, and finally coalesce at temperatures > 85 °C. Comparison with solid-state NMR demonstrates that the Li dynamics in the Li-U 24-CTA phase involves only exchange between different local encapsulated environments. This behavior is distinct from the rapid Li exchange dynamics observed between encapsulated and external Li environments for Li-U 24 inmore » both the aqueous and the solid-state phases. Density functional theory calculations suggest that the two experimental 7Li NMR chemical shifts are due to Li cations coordinated within the square and hexagonal faces of the U 24 cage, and they can undergo exchange within the confined environment, as the solution is heated. Very different than U 24 in aqueous media, there is no evidence that the Li cations exit the cage, and therefore, this represents a truly confined space.« less

  17. Resolving Confined 7Li Dynamics of Uranyl Peroxide Capsule U 24

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xie, Jing; Neal, Harrison A.; Szymanowski, Jennifer

    Here, we obtained a kerosene-soluble form of the lithium salt [UO 2(O 2)(OH) 2] 24 phase (Li-U 24), by adding cetyltrimethylammonium bromide surfactant to aqueous Li-U 24. Interestingly, its variable-temperature solution 7Li NMR spectroscopy resolves two narrowly spaced resonances down to –10 °C, which shift upfield with increasing temperature, and finally coalesce at temperatures > 85 °C. Comparison with solid-state NMR demonstrates that the Li dynamics in the Li-U 24-CTA phase involves only exchange between different local encapsulated environments. This behavior is distinct from the rapid Li exchange dynamics observed between encapsulated and external Li environments for Li-U 24 inmore » both the aqueous and the solid-state phases. Density functional theory calculations suggest that the two experimental 7Li NMR chemical shifts are due to Li cations coordinated within the square and hexagonal faces of the U 24 cage, and they can undergo exchange within the confined environment, as the solution is heated. Very different than U 24 in aqueous media, there is no evidence that the Li cations exit the cage, and therefore, this represents a truly confined space.« less

  18. Optimal Control-Enabled Imaging and Spectroscopy using a Nanowire Magnetic Resonance Force Microscope

    NASA Astrophysics Data System (ADS)

    Rose, William; Haas, Holger; Chen, Angela; Cory, David; Budakian, Raffi

    Magnetic resonance imaging (MRI) is a powerful non-invasive technique that has transformed our ability to study the structure and function of biological systems. Key to its success has been the unique ability to combine imaging with magnetic resonance spectroscopy. Although it remains a significant challenge, there is considerable interest in extending MRI spectroscopy to the nanometer scale because it would provide a fundamentally new route for determining the structure and function of complex biomolecules. We present data taken with a nanowire magnetic resonance force microscopy (MRFM) setup. We show how the capabilities of this very sensitive spin-detection system can be extended to include spectroscopy and nanometer-scale imaging by combining optimal control theory (OCT) techniques with magic echo sequences. We apply OCT-based dynamical-decoupling pulses to nanoscale ensembles of proton spins in polystyrene, and demonstrate a 500-fold line-narrowing of the proton spin resonance, from 30 kHz to 60 Hz. We further demonstrate 1-D imaging over a 35-nm region with an average voxel size of 2.2 nm. Funding provided by the U.S. Army Research Office, Grant No. W911NF-12-1-0341.

  19. 5f delocalization-induced suppression of quadrupolar order in U(Pd 1-xPt x)₃

    DOE PAGES

    Walker, H. C.; Le, M. D.; McEwen, K. A.; ...

    2011-12-27

    We present bulk magnetic and transport measurements and x-ray resonant scattering measurements on U(Pd 1-xPt x)₃ for x=0.005 and 0.01, which demonstrate the high sensitivity of the quadrupolar order in the canonical antiferroquadrupolar ordered system UPd₃ to doping with platinum. Bulk measurements for x=0.005 reveal behavior similar to that seen in UPd₃, albeit at a lower temperature, and x-ray resonant scattering provides evidence of quadrupolar order described by the Q xy order parameter. In contrast, bulk measurements reveal only an indistinct transition in x=0.01, consistent with the observation of short-range quadrupolar order in our x-ray resonant scattering results.

  20. Computing resonance energies, widths, and wave functions using a Lanczos method in real arithmetic.

    PubMed

    Tremblay, Jean Christophe; Carrington, Tucker

    2005-06-22

    We introduce new ideas for calculating resonance energies and widths. It is shown that a non-Hermitian-Lanczos approach can be used to compute eigenvalues of H+W, where H is the Hamiltonian and W is a complex absorbing potential (CAP), without evaluating complex matrix-vector products. This is done by exploiting the link between a CAP-modified Hamiltonian matrix and a real but nonsymmetric matrix U suggested by Mandelshtam and Neumaier [J. Theor. Comput. Chem. 1, 1 (2002)] and using a coupled-two-term Lanczos procedure. We use approximate resonance eigenvectors obtained from the non-Hermitian-Lanczos algorithm and a very good CAP to obtain very accurate energies and widths without solving eigenvalue problems for many values of the CAP strength parameter and searching for cusps. The method is applied to the resonances of HCO. We compare properties of the method with those of established approaches.

  1. Effect of mechanical tactile noise on amplitude of visual evoked potentials: multisensory stochastic resonance.

    PubMed

    Méndez-Balbuena, Ignacio; Huidobro, Nayeli; Silva, Mayte; Flores, Amira; Trenado, Carlos; Quintanar, Luis; Arias-Carrión, Oscar; Kristeva, Rumyana; Manjarrez, Elias

    2015-10-01

    The present investigation documents the electrophysiological occurrence of multisensory stochastic resonance in the human visual pathway elicited by tactile noise. We define multisensory stochastic resonance of brain evoked potentials as the phenomenon in which an intermediate level of input noise of one sensory modality enhances the brain evoked response of another sensory modality. Here we examined this phenomenon in visual evoked potentials (VEPs) modulated by the addition of tactile noise. Specifically, we examined whether a particular level of mechanical Gaussian noise applied to the index finger can improve the amplitude of the VEP. We compared the amplitude of the positive P100 VEP component between zero noise (ZN), optimal noise (ON), and high mechanical noise (HN). The data disclosed an inverted U-like graph for all the subjects, thus demonstrating the occurrence of a multisensory stochastic resonance in the P100 VEP. Copyright © 2015 the American Physiological Society.

  2. Dipole Excitation of Soft and Giant Resonances in 132Sn and neighboring unstable nuclei

    NASA Astrophysics Data System (ADS)

    Boretzky, Konstanze

    2006-04-01

    The evolution of dipole-strength distributions above the one-neutron threshold was investigated for exotic neutron-rich nuclei in a series of experiments using the electromagnetic projectile excitation at beam energies around 500 MeV/u. For halo nuclei, the large observed dipole strength (shown here for 11Be) is explained within the direct-breakup model to be of non-collective character. For neutron-rich oxygen isotopes, the origin of the observed low-lying strength is concluded to be due to single-particle transitions on theoretical grounds. The dipole strength spectra for 130,132Sn exhibit resonance-like structures observed at energies around 10 MeV exhausting a few percent of the Thomas-Reiche-Kuhn (TRK) sum rule, separated clearly from the dominant Giant Dipole Resonance (GDR). The data agree with predictions for a new dipole mode related to the oscillation of excess neutrons versus the core nucleons ("pygmy resonance").

  3. DINS measurements on VESUVIO in the Resonance Detector configuration: proton mean kinetic energy in water

    NASA Astrophysics Data System (ADS)

    Pietropaolo, Antonino; Andreani, Carla; Filabozzi, Alessandra; Senesi, Roberto; Gorini, Giuseppe; Perelli-Cippo, Enrico; Tardocchi, Marco; Rhodes, Nigel J.; Schooneveld, Erik M.

    2006-04-01

    Deep Inelastic Neutron Scattering (DINS) measurements have been performed on a liquid water sample at two different temperatures and pressures. The experiments were carried out using the VESUVIO spectrometer at the ISIS spallation neutron source. This experiment represents the first DINS measurement from water using the Resonance Detector configuration, employing yttrium-aluminum-perovskite scintillator and a 238U analyzer foil. The maximum energy of the scattered neutrons was about 70 eV, allowing to access an extended kinematic space with energy and wave vector transfers at the proton recoil peak in the range 1 eV <= hbarω <= 20 eV and 25 Å-1 <= q <= 90 Å-1, respectively. Comparison with DINS measurements on water performed in the standard Resonance Filter configuration indicates the potential advantages offered by the use of Resonance Detector approach for DINS measurements at forward scattering angles.

  4. Analysis of Modes in an Unstable Strip Laser Resonator.

    DTIC Science & Technology

    1980-12-01

    1977. 9. Siegman , A.E. "Unstable Optical Resonators for Laser Applications",Proceedings of the IEEE,53(3),277-287, March 1965. 10.------- "Unstable...7 AD-AO94 722 AIR FORCE INST OF TECH WRIGHT-PATTERSON AFB OH SCHOO--ETC F/6 20/5 ANALYSIS OF MODES IN AN UNSTABLE STRIP LASER RESONATORJ(U...Patterson Air Force Base, Ohio 81 2 09 018 AFIT/GEP/PH/801D-7 ANALYSIS OF ,ODES -’ IN AN JJNSTABLE STRIP LASER 3ESONATOR. THESIS AFIT/GEP/PH/800-7 James

  5. Determining Pu-239 content by resonance transmission analysis using a filtered reactor beam.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Klann, R. T.

    A novel technique has been developed at Argonne National Laboratory to determine the {sup 239}Pu content in EBR-II blanket elements using resonance transmission analysis (RTA) with a filtered reactor beam. The technique uses cadmium and gadolinium filters along with a {sup 239}Pu fission chamber to isolate the 0.3 eV resonance in {sup 239}Pu. In the energy range from 0.1 to 0.5 eV, the total microscopic cross-section of {sup 239}Pu is significantly larger than the cross-sections of {sup 238}U and {sup 235}U. This large difference in cross-section allows small amounts of {sup 239}Pu to be detected in uranium samples. Tests usingmore » a direct beam from a 250 kW TRIGA reactor have been performed with stacks of depleted uranium and {sup 239}Pu foils. Preliminary measurement results are in good agreement with the predicted results up to about two weight percent of {sup 239}Pu in the sample. In addition, measured {sup 239}Pu masses were in agreement with actual sample masses with uncertainties less than 3.8 percent.« less

  6. Magnetic Resonance Imaging

    MedlinePlus

    ... specific information about your own examination. What is magnetic resonance imaging (MRI)? What is MRI used for? How safe ... What is the MRI examination like? What is magnetic resonance imaging (MRI)? MRI, or magnetic resonance imaging, is a ...

  7. Resonant coherent excitation of relativistic Ar 17+ ions channeled in a Si crystal

    NASA Astrophysics Data System (ADS)

    Azuma, T.; Ito, T.; Yamazaki, Y.; Komaki, K.; Sano, M.; Torikoshi, M.; Kitagawa, A.; Takada, E.; Murakami, T.

    1998-02-01

    We observed resonant coherent excitation (RCE) of 1s electron to n=2 states in Ar 17+ through measurements of the survived fraction of 390 MeV/u hydrogen-like Ar 17+ channeled in a Si crystal. We adopted a totally depleted Si surface barrier detector as a target crystal as well as a probe of the energy deposition. The charge state of emerged ions was measured by a combination of a charge separation magnet and a 2D-position sensitive detector. We observed the RCE for planar channeled ions by tilting the target Si crystal from the direction of [1 1 0] axis in the (2 2¯ 0) , (0 0 4) , and (1 1¯ 1) planes. Prominent resonances at tilt angles under the resonance condition were observed. Moreover, each resonance profile is split into several lines due to the l· s interaction and the Stark effect originating in the static crystal field. The energy deposition in the crystal gives the information of the amplitude of the ion trajectory. The resonance peak position, intensity and width in the survived fraction of Ar 17+ reflect the position dependent strength of the crystal field, the RCE and the electron loss probabilities. They are in good accord with our calculation of the transition energy and probability.

  8. Theoretical investigation of resonant frequencies of unstrapped magnetron with arbitrary side resonators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yue, Song, E-mail: yuessd@163.com; University of Chinese Academy of Sciences, Beijing 100049; Zhang, Zhao-chuan

    In this paper, a sector steps approximation method is proposed to investigate the resonant frequencies of magnetrons with arbitrary side resonators. The arbitrary side resonator is substituted with a series of sector steps, in which the spatial harmonics of electromagnetic field are also considered. By using the method of admittance matching between adjacent steps, as well as field continuity conditions between side resonators and interaction regions, the dispersion equation of magnetron with arbitrary side resonators is derived. Resonant frequencies of magnetrons with five common kinds of side resonators are calculated with sector steps approximation method and computer simulation softwares, inmore » which the results have a good agreement. The relative error is less than 2%, which verifies the validity of sector steps approximation method.« less

  9. Apex-angle-dependent resonances in triangular split-ring resonators

    NASA Astrophysics Data System (ADS)

    Burnett, Max A.; Fiddy, Michael A.

    2016-02-01

    Along with other frequency selective structures (Pendry et al. in IEEE Trans Microw Theory Tech 47(11):2075-2084, 1999) (circles and squares), triangular split-ring resonators (TSRRs) only allow frequencies near the center resonant frequency to propagate. Further, TSRRs are attractive due to their small surface area (Vidhyalakshmi et al. in Stopband characteristics of complementary triangular split ring resonator loaded microstrip line, 2011), comparatively, and large quality factors ( Q) as previously investigated by Gay-Balmaz et al. (J Appl Phys 92(5):2929-2936, 2002). In this work, we examine the effects of varying the apex angle on the resonant frequency, the Q factor, and the phase shift imparted by the TSRR element within the GHz frequency regime.

  10. A comprehensive review of lossy mode resonance-based fiber optic sensors

    NASA Astrophysics Data System (ADS)

    Wang, Qi; Zhao, Wan-Ming

    2018-01-01

    This review paper presents the achievements and present developments in lossy mode resonances-based optical fiber sensors in different sensing field, such as physical, chemical and biological, and briefly look forward to its future development trend in the eyes of the author. Lossy mode resonances (LMR) is a relatively new physical optics phenomenon put forward in recent years. Fiber sensors utilizing LMR offered a new way to improve the sensing capability. LMR fiber sensors have diverse structures such as D-shaped, cladding-off, fiber tip, U-shaped and tapered fiber structures. Major applications of LMR sensors include refraction sensors and biosensors. LMR-based fiber sensors have attracted considerable research and development interest, because of their distinct advantages such as high sensitivity and label-free measurement. This kind of sensor is also of academic interest and many novel and great ideas are continuously developed.

  11. Secular resonances. [of asteroidal dynamics

    NASA Technical Reports Server (NTRS)

    Scholl, H.; Froeschle, CH.; Kinoshita, H.; Yoshikawa, M.; Williams, J. G.

    1989-01-01

    Theories and numerical experiments regarding secular resonances are reviewed. The basic dynamics and the positions of secular resonances are discussed, and secular perturbation theories for the nu16 resonance case, the nu6 resonance, and the nu5 resonance are addressed. What numerical experiments have revealed about asteroids located in secular resonances, the stability of secular resonances, variations of eccentricities and inclinations, and chaotic orbits is considered. Resonant transport of meteorites is discussed.

  12. Resonant enhancement of Raman scattering in metamaterials with hybrid electromagnetic and plasmonic resonances

    NASA Astrophysics Data System (ADS)

    Guddala, Sriram; Narayana Rao, D.; Ramakrishna, S. Anantha

    2016-06-01

    A tri-layer metamaterial perfect absorber of light, consisting of (Al/ZnS/Al) films with the top aluminum layer patterned as an array of circular disk nanoantennas, is investigated for resonantly enhancing Raman scattering from C60 fullerene molecules deposited on the metamaterial. The metamaterial is designed to have resonant bands due to plasmonic and electromagnetic resonances at the Raman pump frequency (725 nm) as well as Stokes emission bands. The Raman scattering from C60 on the metamaterial with resonantly matched bands is measured to be enhanced by an order of magnitude more than C60 on metamaterials with off-resonant absorption bands peaking at 1090 nm. The Raman pump is significantly enhanced due to the resonance with a propagating surface plasmon band, while the highly impedance-matched electromagnetic resonance is expected to couple out the Raman emission efficiently. The nature and hybridization of the plasmonic and electromagnetic resonances to form compound resonances are investigated by numerical simulations.

  13. Resonant snubber inverter

    DOEpatents

    Lai, Jih-Sheng; Young, Sr., Robert W.; Chen, Daoshen; Scudiere, Matthew B.; Ott, Jr., George W.; White, Clifford P.; McKeever, John W.

    1997-01-01

    A resonant, snubber-based, soft switching, inverter circuit achieves lossless switching during dc-to-ac power conversion and power conditioning with minimum component count and size. Current is supplied to the resonant snubber branches solely by the main inverter switches. Component count and size are reduced by use of a single semiconductor switch in the resonant snubber branches. Component count is also reduced by maximizing the use of stray capacitances of the main switches as parallel resonant capacitors. Resonance charging and discharging of the parallel capacitances allows lossless, zero voltage switching. In one embodiment, circuit component size and count are minimized while achieving lossless, zero voltage switching within a three-phase inverter.

  14. Resonant snubber inverter

    DOEpatents

    Lai, J.S.; Young, R.W. Sr.; Chen, D.; Scudiere, M.B.; Ott, G.W. Jr.; White, C.P.; McKeever, J.W.

    1997-06-24

    A resonant, snubber-based, soft switching, inverter circuit achieves lossless switching during dc-to-ac power conversion and power conditioning with minimum component count and size. Current is supplied to the resonant snubber branches solely by the main inverter switches. Component count and size are reduced by use of a single semiconductor switch in the resonant snubber branches. Component count is also reduced by maximizing the use of stray capacitances of the main switches as parallel resonant capacitors. Resonance charging and discharging of the parallel capacitances allows lossless, zero voltage switching. In one embodiment, circuit component size and count are minimized while achieving lossless, zero voltage switching within a three-phase inverter. 14 figs.

  15. Resonant fast dynamo

    NASA Technical Reports Server (NTRS)

    Strauss, H. R.

    1986-01-01

    A resonant fast dynamo is found in chaotic shear flows. The dynamo effect is produced by resonant perturbations of the velocity field, similar to resonant diffusion in plasma physics. The dynamo is called fast because the flow produces an electric field independent of the fluid resistivity.

  16. Simple and Inexpensive Classroom Demonstrations of Nuclear Magnetic Resonance and Magnetic Resonance Imaging.

    ERIC Educational Resources Information Center

    Olson, Joel A.; Nordell, Karen J.; Chesnik, Marla A.; Landis, Clark R.; Ellis, Arthur B.; Rzchowski, M. S.; Condren, S. Michael; Lisensky, George C.

    2000-01-01

    Describes a set of simple, inexpensive, classical demonstrations of nuclear magnetic resonance (NMR) and magnetic resonance imaging (MRI) principles that illustrate the resonance condition associated with magnetic dipoles and the dependence of the resonance frequency on environment. (WRM)

  17. Lateral acoustic wave resonator comprising a suspended membrane of low damping resonator material

    DOEpatents

    Olsson, Roy H.; El-Kady; , Ihab F.; Ziaei-Moayyed, Maryam; Branch; , Darren W.; Su; Mehmet F.,; Reinke; Charles M.,

    2013-09-03

    A very high-Q, low insertion loss resonator can be achieved by storing many overtone cycles of a lateral acoustic wave (i.e., Lamb wave) in a lithographically defined suspended membrane comprising a low damping resonator material, such as silicon carbide. The high-Q resonator can sets up a Fabry-Perot cavity in a low-damping resonator material using high-reflectivity acoustic end mirrors, which can comprise phononic crystals. The lateral overtone acoustic wave resonator can be electrically transduced by piezoelectric couplers. The resonator Q can be increased without increasing the impedance or insertion loss by storing many cycles or wavelengths in the high-Q resonator material, with much lower damping than the piezoelectric transducer material.

  18. Nonminimal quartic inflation in classically conformal U(1 ) X extended standard model

    NASA Astrophysics Data System (ADS)

    Oda, Satsuki; Okada, Nobuchika; Raut, Digesh; Takahashi, Dai-suke

    2018-03-01

    We propose quartic inflation with nonminimal gravitational coupling in the context of the classically conformal U(1 ) X extension of the standard model (SM). In this model, the U(1 ) X gauge symmetry is radiatively broken through the Coleman-Weinberg mechanism, by which the U(1 ) X gauge boson (Z' boson) and the right-handed Majorana neutrinos acquire their masses. We consider their masses in the range of O (10 GeV )-O (10 TeV ) , which are accessible to high-energy collider experiments. The radiative U(1 ) X gauge symmetry breaking also generates a negative mass squared for the SM Higgs doublet, and the electroweak symmetry breaking occurs subsequently. We identify the U(1 ) X Higgs field with inflaton and calculate the inflationary predictions. Because of the Coleman-Weinberg mechanism, the inflaton quartic coupling during inflation, which determines the inflationary predictions, is correlated to the U(1 ) X gauge coupling. With this correlation, we investigate complementarities between the inflationary predictions and the current constraint from the Z' boson resonance search at the LHC Run 2 as well as the prospect of the search for the Z' boson and the right-handed neutrinos at the future collider experiments.

  19. Determination of the Boltzmann constant using a quasi-spherical acoustic resonator.

    PubMed

    Pitre, Laurent; Sparasci, Fernando; Truong, Daniel; Guillou, Arnaud; Risegari, Lara; Himbert, Marc E

    2011-10-28

    The paper reports a new experiment to determine the value of the Boltzmann constant, k(B)=1.3806477(17)×10(-23) J K(-1), with a relative standard uncertainty of 1.2 parts in 10(6). k(B) was deduced from measurements of the velocity of sound in argon, inside a closed quasi-spherical cavity at a temperature of the triple point of water. The shape of the cavity was achieved using an extremely accurate diamond turning process. The traceability of temperature measurements was ensured at the highest level of accuracy. The volume of the resonator was calculated from measurements of the resonance frequencies of microwave modes. The molar mass of the gas was determined by chemical and isotopic composition measurements with a mass spectrometer. Within combined uncertainties, our new value of k(B) is consistent with the 2006 Committee on Data for Science and Technology (CODATA) value: (k(B)(new)/k(B_CODATA)-1)=-1.96×10(-6), where the relative uncertainties are u(r)(k(B)(new))=1.2×10(-6) and u(r)(k(B_CODATA))=1.7×10(-6). The new relative uncertainty approaches the target value of 1×10(-6) set by the Consultative Committee on Thermometry as a precondition for redefining the unit of the thermodynamic temperature, the kelvin.

  20. Cardiovascular Magnetic Resonance in Cardiology Practice: A Concise Guide to Image Acquisition and Clinical Interpretation.

    PubMed

    Valbuena-López, Silvia; Hinojar, Rocío; Puntmann, Valentina O

    2016-02-01

    Cardiovascular magnetic resonance plays an increasingly important role in routine cardiology clinical practice. It is a versatile imaging modality that allows highly accurate, broad and in-depth assessment of cardiac function and structure and provides information on pertinent clinical questions in diseases such as ischemic heart disease, nonischemic cardiomyopathies, and heart failure, as well as allowing unique indications, such as the assessment and quantification of myocardial iron overload or infiltration. Increasing evidence for the role of cardiovascular magnetic resonance, together with the spread of knowledge and skill outside expert centers, has afforded greater access for patients and wider clinical experience. This review provides a snapshot of cardiovascular magnetic resonance in modern clinical practice by linking image acquisition and postprocessing with effective delivery of the clinical meaning. Copyright © 2015 Sociedad Española de Cardiología. Published by Elsevier España, S.L.U. All rights reserved.

  1. Fourteen years of resonance of Vanguard orbits

    NASA Technical Reports Server (NTRS)

    Wagner, C. A.

    1975-01-01

    Tracking of Vanguard 3 and the Vanguard 2 rocket with Baker-Nunn cameras and the U.S. Navy's Space Surveillance (radio interferometer) system over a 14 year period revealed resonant fluctuations of up to 0.035 deg in inclination (peak to peak). Six geopotential terms (lumped coefficients) of 11th order and three of 22nd order were measured using orbit inclinations derived from this tracking record. The terms of 11th order are significantly smaller than Kaula's rule. (The lumped coefficients are sensitive to geopotential effects as high as 37th degree.) These observed terms are compatible with a recent 27-satellite geopotential solution whose formal coefficient errors are increased by a factor of 3.3.

  2. Narrowband resonant transmitter

    DOEpatents

    Hutchinson, Donald P.; Simpson, Marcus L.; Simpson, John T.

    2004-06-29

    A transverse-longitudinal integrated optical resonator (TLIR) is disclosed which includes a waveguide, a first and a second subwavelength resonant grating in the waveguide, and at least one photonic band gap resonant structure (PBG) in the waveguide. The PBG is positioned between the first and second subwavelength resonant gratings. An electro-optic waveguide material may be used to permit tuning the TLIR and to permit the TLIR to perform signal modulation and switching. The TLIR may be positioned on a bulk substrate die with one or more electronic and optical devices and may be communicably connected to the same. A method for fabricating a TLIR including fabricating a broadband reflective grating is disclosed. A method for tuning the TLIR's transmission resonance wavelength is also disclosed.

  3. Multi-resonant scatterers in sonic crystals: Locally multi-resonant acoustic metamaterial

    NASA Astrophysics Data System (ADS)

    Romero-García, V.; Krynkin, A.; Garcia-Raffi, L. M.; Umnova, O.; Sánchez-Pérez, J. V.

    2013-01-01

    An acoustic metamaterial made of a two-dimensional (2D) periodic array of multi-resonant acoustic scatterers is analyzed both experimentally and theoretically. The building blocks consist of a combination of elastic beams of low-density polyethylene foam (LDPF) with cavities of known area. Elastic resonances of the beams and acoustic resonances of the cavities can be excited by sound producing several attenuation peaks in the low frequency range. Due to this behavior the periodic array with long wavelength multi-resonant structural units can be classified as a locally multi-resonant acoustic metamaterial (LMRAM) with strong dispersion of its effective properties.The results presented in this paper could be used to design effective tunable acoustic filters for the low frequency range.

  4. [Is magnetic resonance imaging absolutely necessary for musculotendinous disease?].

    PubMed

    García González, Pedro; Meana Morís, Ana R

    2016-01-01

    Disorders of the musculoskeletal system are very prevalent in our society, especially those involving muscles and tendons, above all related to sports and work. These conditions are normally diagnosed and treated according to their clinical symptoms and signs, but a precise diagnosis is often necessary. The most widely used techniques for diagnosing these conditions are ultrasonography and magnetic resonance imaging. In this article, we propose ultrasonography as the technique of choice for diagnosing the most prevalent musculotendinous diseases, because it is accurate, versatile, dynamic, and effective. Copyright © 2015 SERAM. Published by Elsevier España, S.L.U. All rights reserved.

  5. Resonant Coherent Excitation of Hydrogen-Like Ar Ions to the n =: 3 States

    NASA Astrophysics Data System (ADS)

    Azuma, T.; Ito, T.; Takabayashi, Y.; Komaki, K.; Yamazaki, Y.; Yamazaki, Y.; Takada, E.; Murakami, T.

    We have succeeded in observing resonant coherent excitaion (RCE) of 1s electrons to the n = 3 states in 390 MeV/u hydrogen-like Ar17+ ions planar channeled in a silicon crystal through measurements of the charge-state distribution of ions transmitting the crystal. Furthermore, we directly confirmed RCE to the n = 3 states by observing the enhancement of the de-excitation X-rays, i.e., Kβ X-rays under the resonance condition. The resonance profiles of the charge-state distribution as functions of the incident angle to the crystal, which uniquely relates with the transition energy, have a characteristic structure consisting of several peaks. Compared with the profile of RCE to the n = 2 states, the present profiles show a large peak shift from the j = 1/2 and 3/2 levels in vacuum, and the profiles are much wider than those expected from the Stark-split level structure of the n = 3 manifolds due to the position- (distance from the channel center in the planar channel) dependent strong static field in the crystal.

  6. Synthesis and properties of ApU analogues containing 2'-halo-2'-deoxyadenosines. Effects of 2' substituents on oligonucleotide conformation.

    PubMed

    Uesugi, S; Kaneyasu, T; Ikehara, M

    1982-11-09

    Five A-U analogues containing deoxyadenosine or 2'-halo-2'-deoxyadenosines, which are known to have widely different C3'-endo conformer populations according to their electronegativities of the halogen substituents, dAfl-U, dAcl-U, dAbr-U, dAio-U, and dA-U, were synthesized chemically. Characterization of these dimers has been performed by UV absorption, circular dichroism, and proton nuclear magnetic resonance spectroscopy. The results show that the dimers containing 2'-halo-2'-deoxyadenosines have stacked conformations with a geometry similar to that of A-U and the degree of stacking decreases in the order dAfl-U greater than dAcl-U greater than dAbr-U greater than dAio-U. dAcl-U is assumed to have the same degree of stacking as A-U. dA-U takes a more stacked conformation than does dAio-U, but the mode of stacking is different from those of the other dimers. The effects of the 2' substituents on dimer conformation are discussed in terms of electronegativity, molecular size, and hydrophobicity.

  7. The resonant body transistor.

    PubMed

    Weinstein, Dana; Bhave, Sunil A

    2010-04-14

    This paper introduces the resonant body transistor (RBT), a silicon-based dielectrically transduced nanoelectromechanical (NEM) resonator embedding a sense transistor directly into the resonator body. Combining the benefits of FET sensing with the frequency scaling capabilities and high quality factors (Q) of internal dielectrically transduced bar resonators, the resonant body transistor achieves >10 GHz frequencies and can be integrated into a standard CMOS process for on-chip clock generation, high-Q microwave circuits, fundamental quantum-state preparation and observation, and high-sensitivity measurements. An 11.7 GHz bulk-mode RBT is demonstrated with a quality factor Q of 1830, marking the highest frequency acoustic resonance measured to date on a silicon wafer.

  8. Photon-Assisted Resonant Tunneling and 2-D Plasmon Modes in Double Quantum Wells in Intense Terahertz Electric Fields

    NASA Astrophysics Data System (ADS)

    Peralta, X. G.; Allen, S. J.; Lin, S. Y.; Simmons, J. A.; Blount, M. A.; Baca, W. E.

    1998-03-01

    We explore photon-assisted resonant tunneling in double quantum well systems in intense terahertz electric fields that have separately- contacted wells. We have two goals in mind: 1) increase the basic understanding of photon assisted tunneling in semiconductors and 2) assess the potential of this structure as a detector. We can control the tunneling current by varying the electron density of each 2D electron gas or by changing the relative separation of the Fermi levels. This allows us to prepare the system in such a way that photons of the appropriate energy may induce resonant tunneling, which is monitored by a change in conductance. We also examine the possible enhancement of the resonant tunneling by resonant excitations of acoustic plasmon modes. This work is supported by ONR, the U. S. Dept. of Energy under Contract DE-AC04-94AL85000 and Consejo Nacional de Ciencia y Tecnología, México.

  9. Single-resonator double-negative metamaterial

    DOEpatents

    Warne, Larry K.; Basilio, Lorena I.; Langston, William L.; Johnson, William A.; Ihlefeld, Jon; Ginn, III, James C.; Clem, Paul G.; Sinclair, Michael B.

    2016-06-21

    Resonances can be tuned in dielectric resonators in order to construct single-resonator, negative-index metamaterials. For example, high-contrast inclusions in the form of metallic dipoles can be used to shift the first electric resonance down (in frequency) to the first magnetic resonance, or alternatively, air splits can be used to shift the first magnetic resonance up (in frequency) near the first electric resonance. Degenerate dielectric designs become especially useful in infrared- or visible-frequency applications where the resonator sizes associated with the lack of high-permittivity materials can become of sufficient size to enable propagation of higher-order lattice modes in the resulting medium.

  10. Is a Trineutron Resonance Lower in Energy than a Tetraneutron Resonance?

    NASA Astrophysics Data System (ADS)

    Gandolfi, S.; Hammer, H.-W.; Klos, P.; Lynn, J. E.; Schwenk, A.

    2017-06-01

    We present quantum Monte Carlo calculations of few-neutron systems confined in external potentials based on local chiral interactions at next-to-next-to-leading order in chiral effective field theory. The energy and radial densities for these systems are calculated in different external Woods-Saxon potentials. We assume that their extrapolation to zero external-potential depth provides a quantitative estimate of three- and four-neutron resonances. The validity of this assumption is demonstrated by benchmarking with an exact diagonalization in the two-body case. We find that the extrapolated trineutron resonance, as well as the energy for shallow well depths, is lower than the tetraneutron resonance energy. This suggests that a three-neutron resonance exists below a four-neutron resonance in nature and is potentially measurable. To confirm that the relative ordering of three- and four-neutron resonances is not an artifact of the external confinement, we test that the odd-even staggering in the helium isotopic chain is reproduced within this approach. Finally, we discuss similarities between our results and ultracold Fermi gases.

  11. Is a Trineutron Resonance Lower in Energy than a Tetraneutron Resonance?

    DOE PAGES

    Gandolfi, Stefano; Hammer, Hans -Werner; Klos, P.; ...

    2017-06-08

    Here, we present quantum Monte Carlo calculations of few-neutron systems confined in external potentials based on local chiral interactions at next-to-next-to-leading order in chiral effective field theory. The energy and radial densities for these systems are calculated in different external Woods-Saxon potentials. We assume that their extrapolation to zero external-potential depth provides a quantitative estimate of three- and four-neutron resonances. The validity of this assumption is demonstrated by benchmarking with an exact diagonalization in the two-body case. We find that the extrapolated trineutron resonance, as well as the energy for shallow well depths, is lower than the tetraneutron resonance energy.more » This suggests that a three-neutron resonance exists below a four-neutron resonance in nature and is potentially measurable. To confirm that the relative ordering of three- and four-neutron resonances is not an artifact of the external confinement, we test that the odd-even staggering in the helium isotopic chain is reproduced within this approach. Finally, we discuss similarities between our results and ultracold Fermi gases.« less

  12. High resolution neurography of the brachial plexus by 3 Tesla magnetic resonance imaging.

    PubMed

    Cejas, C; Rollán, C; Michelin, G; Nogués, M

    2016-01-01

    The study of the structures that make up the brachial plexus has benefited particularly from the high resolution images provided by 3T magnetic resonance scanners. The brachial plexus can have mononeuropathies or polyneuropathies. The mononeuropathies include traumatic injuries and trapping, such as occurs in thoracic outlet syndrome due to cervical ribs, prominent transverse apophyses, or tumors. The polyneuropathies include inflammatory processes, in particular chronic inflammatory demyelinating polyneuropathy, Parsonage-Turner syndrome, granulomatous diseases, and radiation neuropathy. Vascular processes affecting the brachial plexus include diabetic polyneuropathy and the vasculitides. This article reviews the anatomy of the brachial plexus and describes the technique for magnetic resonance neurography and the most common pathologic conditions that can affect the brachial plexus. Copyright © 2016 SERAM. Published by Elsevier España, S.L.U. All rights reserved.

  13. Experiments with Helmholtz Resonators.

    ERIC Educational Resources Information Center

    Greenslade, Thomas B., Jr.

    1996-01-01

    Presents experiments that use Helmholtz resonators and have been designed for a sophomore-level course in oscillations and waves. Discusses the theory of the Helmholtz resonator and resonance curves. (JRH)

  14. Photonic Feshbach resonance

    NASA Astrophysics Data System (ADS)

    Xu, Dazhi; Ian, Hou; Shi, Tao; Dong, Hui; Sun, Changpu

    2010-07-01

    Feshbach resonance is a resonance for two-atom scattering with two or more channels, in which a bound state is achieved in one channel. We show that this resonance phenomenon not only exists during the collisions of massive particles, but also emerges during the coherent transport of massless particles, that is, photons confined in the coupled resonator arrays linked by a separated cavity or a tunable two level system (TLS). When the TLS is coupled to one array to form a bound state in this setup, the vanishing transmission appears to display the photonic Feshbach resonance. This process can be realized through various experimentally feasible solid state systems, such as the couple defected cavities in photonic crystals and the superconducting qubit coupled to the transmission line. The numerical simulation based on the finite-different time-domain (FDTD) method confirms our assumption about the physical implementation.

  15. Injection-controlled laser resonator

    DOEpatents

    Chang, J.J.

    1995-07-18

    A new injection-controlled laser resonator incorporates self-filtering and self-imaging characteristics with an efficient injection scheme. A low-divergence laser signal is injected into the resonator, which enables the injection signal to be converted to the desired resonator modes before the main laser pulse starts. This injection technique and resonator design enable the laser cavity to improve the quality of the injection signal through self-filtering before the main laser pulse starts. The self-imaging property of the present resonator reduces the cavity induced diffraction effects and, in turn, improves the laser beam quality. 5 figs.

  16. Injection-controlled laser resonator

    DOEpatents

    Chang, Jim J.

    1995-07-18

    A new injection-controlled laser resonator incorporates self-filtering and self-imaging characteristics with an efficient injection scheme. A low-divergence laser signal is injected into the resonator, which enables the injection signal to be converted to the desired resonator modes before the main laser pulse starts. This injection technique and resonator design enable the laser cavity to improve the quality of the injection signal through self-filtering before the main laser pulse starts. The self-imaging property of the present resonator reduces the cavity induced diffraction effects and, in turn, improves the laser beam quality.

  17. Photoabsorption and S 2p photoionization of the SF6 molecule: resonances in the excitation energy range of 200-280 eV.

    PubMed

    Stener, M; Bolognesi, P; Coreno, M; O'Keeffe, P; Feyer, V; Fronzoni, G; Decleva, P; Avaldi, L; Kivimäki, A

    2011-05-07

    Photoabsorption and S 2p photoionization of the SF(6) molecule have been studied experimentally and theoretically in the excitation energy range up to 100 eV above the S 2p ionization potentials. In addition to the well-known 2t(2g) and 4e(g) shape resonances, the spin-orbit-resolved S 2p photoionization cross sections display two weak resonances between 200 and 210 eV, a wide resonance around 217 eV, a Fano-type resonance around 240 eV, and a second wide resonance around 260 eV. Calculations based on time-dependent density functional theory allow us to assign the 217-eV and 260-eV features to the shape resonances in S 2p photoionization. The Fano resonance is caused by the interference between the direct S 2p photoionization channel and the resonant channel that results from the participator decay of the S 2s(-1)6t(1u) excited state. The weak resonances below 210-eV photon energy, not predicted by theory, are tentatively suggested to originate from the coupling between S 2p shake-up photoionization and S 2p single-hole photoionization. The experimental and calculated angular anisotropy parameters for S 2p photoionization are in good agreement.

  18. Temperature dependent elastic properties of γ-phase U – 8 wt% Mo

    DOE PAGES

    Steiner, M. A.; Garlea, E.; Creasy, J.; ...

    2017-12-28

    Polycrystalline elastic moduli and stiffness tensor components of γ-phase U – 8 wt% Mo have been determined by resonant ultrasound spectroscopy in the temperature range of 25-650°C. The ambient temperature elastic properties are compared to results measured via other experimental methods and show reasonable agreement, though there is considerable variation of these properties within the literature at both the U – 8 wt% Mo composition and as a function of Mo concentration. The Young’s modulus of U – 8 wt% Mo measured in this study decreases steadily with temperature at a rate that is slower than trends previously observed atmore » similar Mo concentrations, though the difference is not statistically significant. This first measurement of the temperature dependent elastic stiffness tensor of a polycrystalline U-Mo alloy clarifies that the behavior of the Young’s modulus is due to a strongly weakening C 11 polycrystalline stiffness tensor component, along with milder decreases in C 12 and C 44. The unique partially auxetic properties recently predicted for singlecrystalline U-Mo are discussed in regard to their possible impact on the polycrystalline behavior of the alloy.« less

  19. Temperature dependent elastic properties of γ-phase U – 8 wt% Mo

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Steiner, M. A.; Garlea, E.; Creasy, J.

    Polycrystalline elastic moduli and stiffness tensor components of γ-phase U – 8 wt% Mo have been determined by resonant ultrasound spectroscopy in the temperature range of 25-650°C. The ambient temperature elastic properties are compared to results measured via other experimental methods and show reasonable agreement, though there is considerable variation of these properties within the literature at both the U – 8 wt% Mo composition and as a function of Mo concentration. The Young’s modulus of U – 8 wt% Mo measured in this study decreases steadily with temperature at a rate that is slower than trends previously observed atmore » similar Mo concentrations, though the difference is not statistically significant. This first measurement of the temperature dependent elastic stiffness tensor of a polycrystalline U-Mo alloy clarifies that the behavior of the Young’s modulus is due to a strongly weakening C 11 polycrystalline stiffness tensor component, along with milder decreases in C 12 and C 44. The unique partially auxetic properties recently predicted for singlecrystalline U-Mo are discussed in regard to their possible impact on the polycrystalline behavior of the alloy.« less

  20. Dynamic contrast enhanced-magnetic resonance imaging (DCE-MRI) for the assessment of Pc 4-sensitized photodynamic therapy of a U87-derived glioma model in the athymic nude rat

    NASA Astrophysics Data System (ADS)

    Anka, Ali; Thompson, Paul; Mott, Eric; Sharma, Rahul; Zhang, Ruozhen; Cross, Nathan; Sun, Jiayang; Flask, Chris A.; Oleinick, Nancy L.; Dean, David

    2010-02-01

    Introduction: Dynamic Contrast-Enhanced-Magnetic Resonance Imaging (DCE-MRI) may provide a means of tracking the outcome of Pc 4-sensitized photodynamic therapy (PDT) in deeply placed lesions (e.g., brain tumors). We previously determined that 150 μL of gadolinium (Gd-DTPA) produces optimal enhancement of U87-derived intracerebral tumors in an athymic nude rat glioma model. We wish to determine how consistently DCE-MRI enhancement will detect an increase in Gd-enhancement of these tumors following Pc 4-PDT. Methods: We injected 2.5 x 105 U87 cells into the brains of 6 athymic nude rats. After 7-8 days pre-Pc 4 PDT peri-tumor DCE-MRI images were acquired on a 7.0T microMRI scanner before and after administration of 150 μL Gd. DCE-MRI scans were repeated on Days 11, 12, and 13 following Pc 4-PDT (Day 8 or 9). Results: Useful DCE-MRI data were obtained for these animals before and after Pc 4- PDT. In the pre-Pc 4-PDT DCE-MRI scans an average normalized peak Gd enhancement was observed in tumor tissue that was 1.297 times greater than baseline (0.035 Standard Error [SE]). The average normalized peak Gd enhancement in the tumor tissue in the scan following PDT (Day 11) was 1.537 times greater than baseline (0.036 SE), a statistically significant increase in enhancement (p = 0.00584) over the pre-PDT level. Discussion: A 150 μL Gd dose appears to provide an unambiguous increase in signal indicating Pc 4-PDT-induced necrosis of the U87-derived tumor. Our DCEMRI protocol may allow the development of a clinically robust, unambiguous, non-invasive technique for the assessment of PDT outcome.

  1. Ultra slow muon microscopy by laser resonant ionization at J-PARC, MUSE

    NASA Astrophysics Data System (ADS)

    Miyake, Y.; Ikedo, Y.; Shimomura, K.; Strasser, P.; Kawamura, N.; Nishiyama, K.; Koda, A.; Fujimori, H.; Makimura, S.; Nakamura, J.; Nagatomo, T.; Kadono, R.; Torikai, E.; Iwasaki, M.; Wada, S.; Saito, N.; Okamura, K.; Yokoyama, K.; Ito, T.; Higemoto, W.

    2013-04-01

    As one of the principal muon beam line at the J-PARC muon facility (MUSE), we are now constructing a Muon beam line (U-Line), which consists of a large acceptance solenoid made of mineral insulation cables (MIC), a superconducting curved transport solenoid and superconducting axial focusing magnets. There, we can extract 2 × 108/s surface muons towards a hot tungsten target. At the U-Line, we are now establishing a new type of muon microscopy; a new technique with use of the intense ultra-slow muon source generated by resonant ionization of thermal Muonium (designated as Mu; consisting of a μ + and an e - ) atoms generated from the surface of the tungsten target. In this contribution, the latest status of the Ultra Slow Muon Microscopy project, fully funded, is reported.

  2. Resonant ultrasound spectrometer

    DOEpatents

    Migliori, Albert; Visscher, William M.; Fisk, Zachary

    1990-01-01

    An ultrasound resonant spectrometer determines the resonant frequency spectrum of a rectangular parallelepiped sample of a high dissipation material over an expected resonant response frequency range. A sample holder structure grips corners of the sample between piezoelectric drive and receive transducers. Each transducer is mounted on a membrane for only weakly coupling the transducer to the holder structure and operatively contacts a material effective to remove system resonant responses at the transducer from the expected response range. i.e., either a material such as diamond to move the response frequencies above the range or a damping powder to preclude response within the range. A square-law detector amplifier receives the response signal and retransmits the signal on an isolated shield of connecting cabling to remove cabling capacitive effects. The amplifier also provides a substantially frequency independently voltage divider with the receive transducer. The spectrometer is extremely sensitive to enable low amplitude resonance to be detected for use in calculating the elastic constants of the high dissipation sample.

  3. Strongly Coupled Nanotube Electromechanical Resonators.

    PubMed

    Deng, Guang-Wei; Zhu, Dong; Wang, Xin-He; Zou, Chang-Ling; Wang, Jiang-Tao; Li, Hai-Ou; Cao, Gang; Liu, Di; Li, Yan; Xiao, Ming; Guo, Guang-Can; Jiang, Kai-Li; Dai, Xing-Can; Guo, Guo-Ping

    2016-09-14

    Coupling an electromechanical resonator with carbon-nanotube quantum dots is a significant method to control both the electronic charge and the spin quantum states. By exploiting a novel microtransfer technique, we fabricate two separate strongly coupled and electrically tunable mechanical resonators for the first time. The frequency of the two resonators can be individually tuned by the bottom gates, and in each resonator, the electron transport through the quantum dot can be strongly affected by the phonon mode and vice versa. Furthermore, the conductance of either resonator can be nonlocally modulated by the other resonator through phonon-phonon interaction between the two resonators. Strong coupling is observed between the phonon modes of the two resonators, where the coupling strength larger than 200 kHz can be reached. This strongly coupled nanotube electromechanical resonator array provides an experimental platform for future studies of the coherent electron-phonon interaction, the phonon-mediated long-distance electron interaction, and entanglement state generation.

  4. Ovenized microelectromechanical system (MEMS) resonator

    DOEpatents

    Olsson, Roy H; Wojciechowski, Kenneth; Kim, Bongsang

    2014-03-11

    An ovenized micro-electro-mechanical system (MEMS) resonator including: a substantially thermally isolated mechanical resonator cavity; a mechanical oscillator coupled to the mechanical resonator cavity; and a heating element formed on the mechanical resonator cavity.

  5. Resonances from lattice QCD

    DOE PAGES

    Briceno, Raul A.

    2018-03-26

    The spectrum of hadron is mainly composed as shortly-lived states (resonance) that decay onto two or more hadrons. These resonances play an important role in a variety of phenomenologically significant processes. In this talk, I give an overview on the present status of a rigorous program for studying of resonances and their properties using lattice QCD. I explain the formalism needed for extracting resonant amplitudes from the finite-volume spectra. From these one can extract the masses and widths of resonances. I present some recent examples that illustrate the power of these ideas. I then explain similar formalism that allows formore » the determination of resonant electroweak amplitudes from finite-volume matrix elements. I use the recent calculation of the πγ* → ππ amplitude as an example illustrating the power of this formalism. From such amplitudes one can determine transition form factors of resonances. I close by reviewing on-going efforts to generalize these ideas to increasingly complex reactions and I then give a outlook of the field.« less

  6. Resonances from lattice QCD

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Briceno, Raul A.

    The spectrum of hadron is mainly composed as shortly-lived states (resonance) that decay onto two or more hadrons. These resonances play an important role in a variety of phenomenologically significant processes. In this talk, I give an overview on the present status of a rigorous program for studying of resonances and their properties using lattice QCD. I explain the formalism needed for extracting resonant amplitudes from the finite-volume spectra. From these one can extract the masses and widths of resonances. I present some recent examples that illustrate the power of these ideas. I then explain similar formalism that allows formore » the determination of resonant electroweak amplitudes from finite-volume matrix elements. I use the recent calculation of the πγ* → ππ amplitude as an example illustrating the power of this formalism. From such amplitudes one can determine transition form factors of resonances. I close by reviewing on-going efforts to generalize these ideas to increasingly complex reactions and I then give a outlook of the field.« less

  7. Magnetic resonance imaging spectrum of succinate dehydrogenase-related infantile leukoencephalopathy.

    PubMed

    Helman, Guy; Caldovic, Ljubica; Whitehead, Matthew T; Simons, Cas; Brockmann, Knut; Edvardson, Simon; Bai, Renkui; Moroni, Isabella; Taylor, J Michael; Van Haren, Keith; Taft, Ryan J; Vanderver, Adeline; van der Knaap, Marjo S

    2016-03-01

    Succinate dehydrogenase-deficient leukoencephalopathy is a complex II-related mitochondrial disorder for which the clinical phenotype, neuroimaging pattern, and genetic findings have not been comprehensively reviewed. Nineteen individuals with succinate dehydrogenase deficiency-related leukoencephalopathy were reviewed for neuroradiological, clinical, and genetic findings as part of institutional review board-approved studies at Children's National Health System (Washington, DC) and VU University Medical Center (Amsterdam, the Netherlands). All individuals had signal abnormalities in the central corticospinal tracts and spinal cord where imaging was available. Other typical findings were involvement of the cerebral hemispheric white matter with sparing of the U fibers, the corpus callosum with sparing of the outer blades, the basis pontis, middle cerebellar peduncles, and cerebellar white matter, and elevated succinate on magnetic resonance spectroscopy (MRS). The thalamus was involved in most studies, with a predilection for the anterior nucleus, pulvinar, and geniculate bodies. Clinically, infantile onset neurological regression with partial recovery and subsequent stabilization was typical. All individuals had mutations in SDHA, SDHB, or SDHAF1, or proven biochemical defect. Succinate dehydrogenase deficiency is a rare leukoencephalopathy, for which improved recognition by magnetic resonance imaging (MRI) in combination with advanced sequencing technologies allows noninvasive diagnostic confirmation. The MRI pattern is characterized by cerebral hemispheric white matter abnormalities with sparing of the U fibers, corpus callosum involvement with sparing of the outer blades, and involvement of corticospinal tracts, thalami, and spinal cord. In individuals with infantile regression and this pattern of MRI abnormalities, the differential diagnosis should include succinate dehydrogenase deficiency, in particular if MRS shows elevated succinate. © 2016 American

  8. Comparison of the brain development trajectory between Chinese and U.S. children and adolescents

    PubMed Central

    Xie, Wanze; Richards, John E.; Lei, Du; Lee, Kang; Gong, Qiyong

    2015-01-01

    This current study investigated brain development of Chinese and American children and adolescents from 8 to 16 years of age using structural magnetic resonance imaging (MRI) techniques. Analyses comparing Chinese and U.S. children brain/head MR images were performed to explore similarities and differences in the trajectory of brain development between these two groups. Our results revealed regional and age differences in both brain/head morphological and tissue level development between Chinese and U.S. children. Chinese children's brains and heads were shorter, wider, and taller than those of U.S. children. There were significant differences in the gray matter (GM) and white matter (WM) intensity between the two nationalities. Development trajectories for cerebral volume, GM, and several key brain structures were also distinct between these two populations. PMID:25698941

  9. Wavelength-tunable optical ring resonators

    DOEpatents

    Watts, Michael R [Albuquerque, NM; Trotter, Douglas C [Albuquerque, NM; Young, Ralph W [Albuquerque, NM; Nielson, Gregory N [Albuquerque, NM

    2009-11-10

    Optical ring resonator devices are disclosed that can be used for optical filtering, modulation or switching, or for use as photodetectors or sensors. These devices can be formed as microdisk ring resonators, or as open-ring resonators with an optical waveguide having a width that varies adiabatically. Electrical and mechanical connections to the open-ring resonators are made near a maximum width of the optical waveguide to minimize losses and thereby provide a high resonator Q. The ring resonators can be tuned using an integral electrical heater, or an integral semiconductor junction.

  10. Wavelength-tunable optical ring resonators

    DOEpatents

    Watts, Michael R [Albuquerque, NM; Trotter, Douglas C [Albuquerque, NM; Young, Ralph W [Albuquerque, NM; Nielson, Gregory N [Albuquerque, NM

    2011-07-19

    Optical ring resonator devices are disclosed that can be used for optical filtering, modulation or switching, or for use as photodetectors or sensors. These devices can be formed as microdisk ring resonators, or as open-ring resonators with an optical waveguide having a width that varies adiabatically. Electrical and mechanical connections to the open-ring resonators are made near a maximum width of the optical waveguide to minimize losses and thereby provide a high resonator Q. The ring resonators can be tuned using an integral electrical heater, or an integral semiconductor junction.

  11. Resonances in photoabsorption: Predissociation line shapes in the 3pπD{sup 1}Π{sup +}{sub u} ← Χ{sup 1}Σ{sub g}{sup +} system in H{sub 2}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mezei, J. Zs.; Laboratoire Ondes et Milieux Complexes, UMR-6294 CNRS and Université du Havre, 25, rue Philippe Lebon, BP 540, 76058, Le Havre France; Schneider, I. F.

    2014-08-14

    The predissociation of the 3pπD{sup 1}Π{sub u}{sup +},v≥3,N=1, N = 2, and N = 3 levels of diatomic hydrogen is calculated by ab initio multichannel quantum defect theory combined with a R-matrix type approach that accounts for interfering predissociation and autoionization. The theory yields absorption line widths and shapes that are in good agreement with those observed in the high-resolution synchrotron vacuum-ultraviolet absorption spectra obtained by Dickenson et al. [J. Chem. Phys. 133, 144317 (2010)] at the DESIRS beamline of the SOLEIL synchrotron. The theory predicts further that many of the D state resonances with v ⩾ 6 exhibit amore » complex fine structure which cannot be modeled by the Fano profile formula and which has not yet been observed experimentally.« less

  12. Synthesis of D-[U-{sup 13}C]Glucal, D-[U-{sup 13}C] Galactal, and L-[U-{sup 13}C]Fucose for NMR structure studies of oligosaccharides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, R.; Unkefer, C.J.; Silks, L.A. III

    1996-12-31

    The role of carbohydrates is well recognized in a variety of important biological phenomena such as cell surface recognition. Recent advances in carbohydrate chemistry, including the development of solid phase synthesis methods, have helped to provide significant quantities of material by offering general protocols for synthesis of well-defined, pure material. However, the study of the solution structure of oligosaccharides by nuclear magnetic resonance techniques have been hampered by the lack of enriched {sup 13}C material. In an effort to help alleviate this situation, we have been interested in the construction of the title compounds from a single economical carbon source,more » D-[U-{sup 13}C]glucose. Details of the syntheses will be provided.« less

  13. Targeting of peptide conjugated magnetic nanoparticles to urokinase plasminogen activator receptor (uPAR) expressing cells

    NASA Astrophysics Data System (ADS)

    Hansen, Line; Unmack Larsen, Esben Kjær; Nielsen, Erik Holm; Iversen, Frank; Liu, Zhuo; Thomsen, Karen; Pedersen, Michael; Skrydstrup, Troels; Nielsen, Niels Chr.; Ploug, Michael; Kjems, Jørgen

    2013-08-01

    Ultrasmall superparamagnetic iron oxide (USPIO) nanoparticles are currently being used as a magnetic resonance imaging (MRI) contrast agent in vivo, mainly by their passive accumulation in tissues of interest. However, a higher specificity can ideally be achieved when the nanoparticles are targeted towards cell specific receptors and this may also facilitate specific drug delivery by an enhanced target-mediated endocytosis. We report efficient peptide-mediated targeting of magnetic nanoparticles to cells expressing the urokinase plasminogen activator receptor (uPAR), a surface biomarker for poor patient prognosis shared by several cancers including breast, colorectal, and gastric cancers. Conjugation of a uPAR specific targeting peptide onto polyethylene glycol (PEG) coated USPIO nanoparticles by click chemistry resulted in a five times higher uptake in vitro in a uPAR positive cell line compared to nanoparticles carrying a non-binding control peptide. In accordance with specific receptor-mediated recognition, a low uptake was observed in the presence of an excess of ATF, a natural ligand for uPAR. The uPAR specific magnetic nanoparticles can potentially provide a useful supplement for tumor patient management when combined with MRI and drug delivery.Ultrasmall superparamagnetic iron oxide (USPIO) nanoparticles are currently being used as a magnetic resonance imaging (MRI) contrast agent in vivo, mainly by their passive accumulation in tissues of interest. However, a higher specificity can ideally be achieved when the nanoparticles are targeted towards cell specific receptors and this may also facilitate specific drug delivery by an enhanced target-mediated endocytosis. We report efficient peptide-mediated targeting of magnetic nanoparticles to cells expressing the urokinase plasminogen activator receptor (uPAR), a surface biomarker for poor patient prognosis shared by several cancers including breast, colorectal, and gastric cancers. Conjugation of a uPAR specific

  14. Resonant torus-assisted tunneling.

    PubMed

    Yi, Chang-Hwan; Yu, Hyeon-Hye; Kim, Chil-Min

    2016-01-01

    We report a new type of dynamical tunneling, which is mediated by a resonant torus, i.e., a nonisolated periodic orbit. To elucidate the phenomenon, we take an open elliptic cavity and show that a pair of resonances localized on two classically disconnected tori tunnel through a resonant torus when they interact with each other. This so-called resonant torus-assisted tunneling is verified by using Husimi functions, corresponding actions, Husimi function distributions, and the standard deviations of the actions.

  15. Resonances and thresholds in the Rydberg-level population of multiply charged ions at solid surfaces

    NASA Astrophysics Data System (ADS)

    Nedeljković, Lj. D.; Nedeljković, N. N.

    1998-12-01

    We present a theoretical study of resonances and thresholds, two specific features of Rydberg-state formation of multiply charged ions (Z=6, 7, and 8) escaping a solid surface at intermediate velocities (v~1 a.u.) in the normal emergence geometry. The resonances are recognized in pronounced maxima of the experimentally observed population curves of Ar VIII ions for resonant values of the principal quantum number n=nres=11 and for the angular momentum quantum numbers l=1 and 2. Absence of optical signals in detectors of beam-foil experiments for n>nthr of S VI and Cl VII ions (with l=0, 1, and 2) and Ar VIII for l=0 is interpreted as a threshold phenomenon. An interplay between resonance and threshold effects is established within the framework of quantum dynamics of the low angular momentum Rydberg-state formation, based on a generalization of Demkov-Ostrovskii's charge-exchange model. In the model proposed, the Ar VIII resonances appear as a consequence of electron tunneling in the very vicinity of the ion-surface potential barrier top and at some critical ion-surface distances Rc. The observed thresholds are explained by means of a decay mechanism of ionic Rydberg states formed dominantly above the Fermi level EF of a solid conduction band. The theoretically predicted resonant and threshold values, nres and nthr of the principal quantum number n, as well as the obtained population probabilities Pnl=Pnl(v,Z), are in sufficiently good agreement with all available experimental findings.

  16. Resonant nonlinear ultrasound spectroscopy

    DOEpatents

    Johnson, Paul A.; TenCate, James A.; Guyer, Robert A.; Van Den Abeele, Koen E. A.

    2001-01-01

    Components with defects are identified from the response to strains applied at acoustic and ultrasound frequencies. The relative resonance frequency shift .vertline..DELTA..function./.function..sub.0.vertline., is determined as a function of applied strain amplitude for an acceptable component, where .function..sub.0 is the frequency of the resonance peak at the lowest amplitude of applied strain and .DELTA..function. is the frequency shift of the resonance peak of a selected mode to determine a reference relationship. Then, the relative resonance frequency shift .vertline..DELTA..function./.function..sub.0 is determined as a function of applied strain for a component under test, where fo .function..sub.0 the frequency of the resonance peak at the lowest amplitude of applied strain and .DELTA..function. is the frequency shift of the resonance peak to determine a quality test relationship. The reference relationship is compared with the quality test relationship to determine the presence of defects in the component under test.

  17. Electron Spin Resonance at the Level of 1 04 Spins Using Low Impedance Superconducting Resonators

    NASA Astrophysics Data System (ADS)

    Eichler, C.; Sigillito, A. J.; Lyon, S. A.; Petta, J. R.

    2017-01-01

    We report on electron spin resonance measurements of phosphorus donors localized in a 200 μ m2 area below the inductive wire of a lumped element superconducting resonator. By combining quantum limited parametric amplification with a low impedance microwave resonator design, we are able to detect around 2 ×1 04 spins with a signal-to-noise ratio of 1 in a single shot. The 150 Hz coupling strength between the resonator field and individual spins is significantly larger than the 1-10 Hz coupling rates obtained with typical coplanar waveguide resonator designs. Because of the larger coupling rate, we find that spin relaxation is dominated by radiative decay into the resonator and dependent upon the spin-resonator detuning, as predicted by Purcell.

  18. Inflection-point inflation in a hyper-charge oriented U ( 1 ) X model

    DOE PAGES

    Okada, Nobuchika; Okada, Satomi; Raut, Digesh

    2017-03-31

    Inflection-point inflation is an interesting possibility to realize a successful slow-roll inflation when inflation is driven by a single scalar field with its value during inflation below the Planck mass (ΦI≲M Pl). In order for a renormalization group (RG) improved effective λΦ 4 potential to develop an inflection-point, the running quartic coupling λ(Φ) must exhibit a minimum with an almost vanishing value in its RG evolution, namely λ(Φ I)≃0 and β λ(ΦI)≃0, where β λ is the beta-function of the quartic coupling. Here in this paper, we consider the inflection-point inflation in the context of the minimal gauged U(1) Xmore » extended Standard Model (SM), which is a generalization of the minimal U(1) B$-$L model, and is constructed as a linear combination of the SM U(1) Y and U(1) B$-$L gauge symmetries. We identify the U(1) X Higgs field with the inflaton field. For a successful inflection-point inflation to be consistent with the current cosmological observations, the mass ratios among the U(1) X gauge boson, the right-handed neutrinos and the U(1) X Higgs boson are fixed. Focusing on the case that the extra U(1) X gauge symmetry is mostly aligned along the SM U(1) Y direction, we investigate a consistency between the inflationary predictions and the latest LHC Run-2 results on the search for a narrow resonance with the di-lepton final state.« less

  19. Inflection-point inflation in a hyper-charge oriented U ( 1 ) X model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Okada, Nobuchika; Okada, Satomi; Raut, Digesh

    Inflection-point inflation is an interesting possibility to realize a successful slow-roll inflation when inflation is driven by a single scalar field with its value during inflation below the Planck mass (ΦI≲M Pl). In order for a renormalization group (RG) improved effective λΦ 4 potential to develop an inflection-point, the running quartic coupling λ(Φ) must exhibit a minimum with an almost vanishing value in its RG evolution, namely λ(Φ I)≃0 and β λ(ΦI)≃0, where β λ is the beta-function of the quartic coupling. Here in this paper, we consider the inflection-point inflation in the context of the minimal gauged U(1) Xmore » extended Standard Model (SM), which is a generalization of the minimal U(1) B$-$L model, and is constructed as a linear combination of the SM U(1) Y and U(1) B$-$L gauge symmetries. We identify the U(1) X Higgs field with the inflaton field. For a successful inflection-point inflation to be consistent with the current cosmological observations, the mass ratios among the U(1) X gauge boson, the right-handed neutrinos and the U(1) X Higgs boson are fixed. Focusing on the case that the extra U(1) X gauge symmetry is mostly aligned along the SM U(1) Y direction, we investigate a consistency between the inflationary predictions and the latest LHC Run-2 results on the search for a narrow resonance with the di-lepton final state.« less

  20. Void reactivity feedback analysis for U-based and Th-based LWR incineration cycles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lindley, B.A.; Parks, G.T.; Franceschini, F.

    2013-07-01

    In reduced-moderation LWRs, an external supply of transuranic (TRU) can be incinerated by mixing it with a fertile isotope ({sup 238}U or {sup 232}Th) and recycling all the actinides after each cycle. Performance is limited by coolant reactivity feedback - the moderator density coefficient (MDC) must be kept negative. The MDC is worse when more TRU is loaded, but TRU feed is also needed to maintain criticality. To assess the performance of this fuel cycle in different neutron spectra, three LWRs are considered: 'reference' PWRs and reduced-moderation PWRs and BWRs. The MDC of the equilibrium cycle is analysed by reactivitymore » decomposition with perturbed coolant density by isotope and neutron energy. The results show that using {sup 232}Th as a fertile isotope yields superior performance to {sup 238}U. This is due essentially to the high resonance η of U bred from Th (U3), which increases the fissility of the U3-TRU isotope vector in the Th-fueled system relative to the U-fueled system, and also improves the MDC in a sufficiently hard spectrum. Spatial separation of TRU and U3 in the Th-fueled system renders further improvement by hardening the neutron spectrum in the TRU and softening it in the U3. This improves the TRU η and increases the negative MDC contribution from reduced thermal fission in U3. (authors)« less

  1. Transverse-longitudinal integrated resonator

    DOEpatents

    Hutchinson, Donald P [Knoxville, TN; Simpson, Marcus L [Knoxville, TN; Simpson, John T [Knoxville, TN

    2003-03-11

    A transverse-longitudinal integrated optical resonator (TLIR) is disclosed which includes a waveguide, a first and a second subwavelength resonant grating in the waveguide, and at least one photonic band gap resonant structure (PBG) in the waveguide. The PBG is positioned between the first and second subwavelength resonant gratings. An electro-optic waveguide material may be used to permit tuning the TLIR and to permit the TLIR to perform signal modulation and switching. The TLIR may be positioned on a bulk substrate die with one or more electronic and optical devices and may be communicably connected to the same. A method for fabricating a TLIR including fabricating a broadband reflective grating is disclosed. A method for tuning the TLIR's transmission resonance wavelength is also disclosed.

  2. Fabrication and characterization of the Si-photonics-integrated vertical resonant-cavity light-emitting diode

    NASA Astrophysics Data System (ADS)

    Kong, Duanhua; Kim, Taek; Kim, Sihan; Hong, Hyungi; Shcherbatko, Igor; Park, Youngsoo; Shin, Dongjae; Ha, Kyoung-Ho; Jeong, Gitae

    2014-03-01

    We designed and fabricated a 1.3-um hybrid vertical Resonant-Cavity Light-Emitting Diode for optical interconnect by using direct III-V wafer bonding on silicon on insulator (SOI). The device included InP based front distributed Bragg reflector (DBR), InGaAlAs based active layer, and SOI-based high-contrast-grating (HCG) as a back reflector. 42-uW continuous wave optical power was achieved at 20mA at room temperature.

  3. GAUSSIAN BEAM LASER RESONATOR PROGRAM

    NASA Technical Reports Server (NTRS)

    Cross, P. L.

    1994-01-01

    In designing a laser cavity, the laser engineer is frequently concerned with more than the stability of the resonator. Other considerations include the size of the beam at various optical surfaces within the resonator or the performance of intracavity line-narrowing or other optical elements. Laser resonators obey the laws of Gaussian beam propagation, not geometric optics. The Gaussian Beam Laser Resonator Program models laser resonators using Gaussian ray trace techniques. It can be used to determine the propagation of radiation through laser resonators. The algorithm used in the Gaussian Beam Resonator program has three major components. First, the ray transfer matrix for the laser resonator must be calculated. Next calculations of the initial beam parameters, specifically, the beam stability, the beam waist size and location for the resonator input element, and the wavefront curvature and beam radius at the input surface to the first resonator element are performed. Finally the propagation of the beam through the optical elements is computed. The optical elements can be modeled as parallel plates, lenses, mirrors, dummy surfaces, or Gradient Index (GRIN) lenses. A Gradient Index lens is a good approximation of a laser rod operating under a thermal load. The optical system may contain up to 50 elements. In addition to the internal beam elements the optical system may contain elements external to the resonator. The Gaussian Beam Resonator program was written in Microsoft FORTRAN (Version 4.01). It was developed for the IBM PS/2 80-071 microcomputer and has been implemented on an IBM PC compatible under MS DOS 3.21. The program was developed in 1988 and requires approximately 95K bytes to operate.

  4. Resonant-tunnelling diode oscillator using a slot-coupled quasioptical open resonator

    NASA Technical Reports Server (NTRS)

    Stephan, K. D.; Brown, E. R.; Parker, C. D.; Goodhue, W. D.; Chen, C. L.

    1991-01-01

    A resonant-tunneling diode has oscillated at X-band frequencies in a microwave circuit consisting of a slot antenna coupled to a semiconfocal open resonator. Coupling between the open resonator and the slot oscillator improves the noise-to-carrier ratio by about 36 dB relative to that of the slot oscillator alone in the 100-200 kHz range. A circuit operating near 10 GHz has been designed as a scale model for millimeter- and submillimeter-wave applications.

  5. Measurements of Cyclotron Features and Pulse Periods in the High-Mass X-Ray Binaries 4U 1538-522 and 4U 1907+09 with the International Gamma-Ray Astrophysics Laboratory

    NASA Technical Reports Server (NTRS)

    Hemphill, Paul B.; Rothschild, Richard E.; Caballero, Isabel; Pottschmidt, Katja; Kuhnel, Matthias; Furst, Felix; Wilms, Jorn

    2013-01-01

    We present a spectral and timing analysis of International Gamma-Ray Astrophysics Laboratory (INTEGRAL) observations of two high-mass X-ray binaries, 4U 1538-522 and 4U 1907+09. Our timing measurements for 4U 1538-522 find the pulse period to have exhibited a spin-up trend until approximately 2009, after which there is evidence for a torque reversal, with the source beginning to spin down to the most recently measured period of 525.407 plus or minus 0.001 seconds. The most recent INTEGRAL observations of 4U 1907+09 are not found to yield statistically significant pulse periods due to the significantly lower flux from the source compared with 4U 1538-522. A spectral model consisting of a power-law continuum with an exponential cutoff and modified by two cyclotron resonance scattering features is found to fit both sources well, with the cyclotron scattering features detected at approximately 22 and approximately 49 kiloelectronvolts for 4U 1538-522 and at approximately 18 and approximately 36 kiloelectronvolts for 4U 1907+09. The spectral parameters of 4U 1538-522 are generally not found to vary significantly with flux and there is little to no variation across the torque reversal. Examining our results in conjunction with previous work, we find no evidence for a correlation between cyclotron line energy and luminosity for 4U 1538-522. 4U 1907+09 shows evidence for a positive correlation between cyclotron line energy and luminosity, which would make it the fourth, and lowest luminosity, cyclotron line source to exhibit this relationship.

  6. Soft resonator of omnidirectional resonance for acoustic metamaterials with a negative bulk modulus

    PubMed Central

    Jing, Xiaodong; Meng, Yang; Sun, Xiaofeng

    2015-01-01

    Monopolar resonance is of fundamental importance in the acoustic field. Here, we present the realization of a monopolar resonance that goes beyond the concept of Helmholtz resonators. The balloon-like soft resonator (SR) oscillates omnidirectionally and radiates from all parts of its spherical surface, eliminating the need for a hard wall for the cavity and baffle effects. For airborne sound, such a low-modulus resonator can be made extremely lightweight. Deep subwavelength resonance is achieved when the SR is tuned by adjusting the shell thickness, benefiting from the large density contrast between the shell material and the encapsulated gas. The SR resonates with near-perfect monopole symmetry, as demonstrated by the theoretical and experimental results, which are in excellent agreement. For a lattice of SRs, a band gap occurs and blocks near-total transmission, and the effective bulk modulus exhibits a prominent negative band, while the effective mass density remains unchanged. Our study shows that the SR is suitable for building 3D acoustic metamaterials and provides a basis for constructing left-handed materials as a new means of creating a negative bulk modulus. PMID:26538085

  7. Resonant ultrasound spectroscopy

    DOEpatents

    Migliori, Albert

    1991-01-01

    A resonant ultrasound spectroscopy method provides a unique characterization of an object for use in distinguishing similar objects having physical differences greater than a predetermined tolerance. A resonant response spectrum is obtained for a reference object by placing excitation and detection transducers at any accessible location on the object. The spectrum is analyzed to determine the number of resonant response peaks in a predetermined frequency interval. The distribution of the resonance frequencies is then characterized in a manner effective to form a unique signature of the object. In one characterization, a small frequency interval is defined and stepped though the spectrum frequency range. Subsequent objects are similarly characterized where the characterizations serve as signatures effective to distinguish objects that differ from the reference object by more than the predetermined tolerance.

  8. Atlas of Neutron Resonances

    Science.gov Websites

    Table Resonance Integrals & Thermal Cross Sections Book Review by J. Rowlands Nuclear Reaction Atlas of Neutron Resonances Preface: This book is the fifth edition of what was previously known as BNL extensive list of detailed individual resonance parameters for each nucleus, this book contains thermal

  9. Evaluation of sub-microsecond recovery resonators for In Vivo Electron Paramagnetic Resonance Imaging

    PubMed Central

    F, Hyodo; S, Subramanian; N, Devasahayam; R, Murugesan; K, Matsumoto; JB, Mitchell; MC, Krishna

    2008-01-01

    Time-domain (TD) electron paramagnetic resonance (EPR) imaging at 300 MHz for in vivo applications requires resonators with recovery times less than 1 microsecond after pulsed excitation to reliably capture the rapidly decaying free induction decay (FID). In this study, we tested the suitability of the Litz foil coil resonator (LCR), commonly used in MRI, for in vivo EPR/EPRI applications in the TD mode and compared with parallel coil resonator (PCR). In TD mode, the sensitivity of LCR was lower than that of the PCR. However, in continuous wave (CW) mode, the LCR showed better sensitivity. The RF homogeneity was similar in both the resonators. The axis of the RF magnetic field is transverse to the cylindrical axis of the LCR, making the resonator and the magnet co-axial. Therefore, the loading of animals, and placing of the anesthesia nose cone and temperature monitors was more convenient in the LCR compared to the PCR whose axis is perpendicular to the magnet axis. PMID:18042414

  10. Performance analysis and comparison of ITO- and FTO-based optically transparent terahertz U-shaped patch antennas

    NASA Astrophysics Data System (ADS)

    Thampy, Anand Sreekantan; Dhamodharan, Sriram Kumar

    2015-02-01

    An indium-doped tin oxide (ITO) and a fluorine-doped tin oxide (FTO)-based optically transparent U-shaped patch antennas are designed to resonate at 750 GHz and their performances are analyzed. Impedance bandwidth, radiation efficiency, directivity and gain of the proposed antennas are investigated. The proposed transparent antenna's characteristics are compared with the copper-based non-transparent U-shaped patch antenna, which is also designed to resonate at 750 GHz. Terahertz antennas are essential for inter-satellite communications systems to enable the adequate spatial resolution, broad bandwidth, higher data rates and highly directional beam with secured data transfer. The proposed ITO- and FTO-based transparent antennas have yielded impedance bandwidth of 9.54% and 11.49%, respectively, in the band 719-791 GHz and 714-801 GHz, respectively. The peak gain for ITO and FTO based transparent antennas is 3.35 dB and 2.26 dB at 732 GHz and 801 GHz, respectively. The proposed antennas are designed and simulated by using a finite element method based electromagnetic solver, Ansys - HFSS.

  11. Transition of EMRIs through resonance: higher order corrections in resonant flux enhancement

    NASA Astrophysics Data System (ADS)

    Mihaylov, Deyan; Gair, Jonathan

    2017-01-01

    Extreme mass ratio inspirals (EMRIs) are candidate events for gravitational wave detection in the millihertz range (by detectors like LISA and eLISA). These events involve a stellar-mass black hole, or a similar compact object, descending into the gravitational field of a supermassive black hole, eventually merging with it. Properties of the inspiraling trajectory away from resonance are well known and have been studied extensively, however little is known about the behaviour of these binary systems at resonance, when the radial and lateral frequencies of the orbit become commensurate. There are two resonance models in the literature, the instantaneous frequency function by Gair, Bender, and Yunes, and the standard two timescales approach devised by Flanagan and Hinderer. We argue that the Gair, Bender and Yunes model provides a valid treatment of the resonance problem and extend this solution to higher order in the size of the on-resonance perturbation. The non-linear differential equations which arise in treating resonances are interesting from a mathematical view point. We present our algorithm for perturbative solutions and the results to third order in the infinitesimal parameter, and discuss the scope of this approach. Deyan Mihaylov is funded by the STFC.

  12. Alfven wave cyclotron resonance heating

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    White, R.B.; Yosikawa, S.; Oberman, C.

    1981-02-01

    The resonance absorption of fast Alfven waves at the proton ctclotron resonance of a predominately deuterium plasma is investigated. An approximate dispersion relation is derived, valid in the vicinity of the resonance, which permits an exact calculation of transmission and reflection coefficients. For reasonable plasma parameters significant linear resonance absorption is found.

  13. Surface acoustic wave resonators

    NASA Astrophysics Data System (ADS)

    Avitabile, Gianfranco; Roselli, Luca; Atzeni, Carlo; Manes, Gianfranco

    1991-10-01

    The development of surface acoustic wave (SAW) resonators is reviewed with attention given to the design of a simulation package for CAD-assisted SAW resonator design. Basic design configurations and operation parameters are set forth for the SAW resonators including the phase of the reflection factor, evaluation of the stopband center frequency, stopband width, and the free propagation speed. The use of synchronous designs is shown to reduce device sensitivity to variations in the technological process but generate higher insertion losses. The existence of transverse modes and propagation losses is shown to affect the rejection of spurious modes and the achievement of low insertion losses. Several SAW resonators are designed and fabricated with the CAD process, and the resonators in the VHF-UHF bands perform in a manner predicted by simulated results.

  14. Theory and Applications of Surface Plasmon Resonance, Resonant Mirror, Resonant Waveguide Grating, and Dual Polarization Interferometry Biosensors

    PubMed Central

    Daghestani, Hikmat N.; Day, Billy W.

    2010-01-01

    Biosensors have been used extensively in the scientific community for several purposes, most notably to determine association and dissociation kinetics, protein-ligand, protein-protein, or nucleic acid hybridization interactions. A number of different types of biosensors are available in the field, each with real or perceived benefits over the others. This review discusses the basic theory and operational arrangements of four commercially available types of optical biosensors: surface plasmon resonance, resonant mirror, resonance waveguide grating, and dual polarization interferometry. The different applications these techniques offer are discussed from experiments and results reported in recently published literature. Additionally, recent advancements or modifications to the current techniques are also discussed. PMID:22163431

  15. Historical Material Analysis of DC745U Pressure Pads

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ortiz-Acosta, Denisse

    As part of the Enhance Surveillance mission, it is the goal to provide suitable lifetime assessment of stockpile materials. This report is an accumulation of historical publication on the DC745U material and their findings. It is the intention that the B61 LEP program uses this collection of data to further develop their understanding and potential areas of study. DC745U is a commercially available silicone elastomer consisting of dimethyl, methyl-phenyl, and methyl-vinyl siloxane repeat units. Originally, this material was manufactured by Dow Corning as Silastic{reg_sign} DC745U at their manufacturing facility in Kendallville, IN. Recently, Dow Corning shifted this material to themore » Xiameter{reg_sign} brand product line. Currently, DC745U is available through Xiameter{reg_sign} or Dow Corning's distributor R. D. Abbott Company. DC745U is cured using 0.5 wt% vinyl-specific peroxide curing agent known as Luperox 101 or Varox DBPH-50. This silicone elastomer is used in numerous parts, including two major components (outer pressure pads and aft cap support) in the W80 and as pressure pads on the B61. DC745U is a proprietary formulation, thus Dow Corning provides limited information on its composition and properties. Based on past experience with Dow Corning, DC745U is at risk of formulation changes without notification to the costumer. A formulation change for DC745U may have a significant impact because the network structure is a key variable in determining material properties. The purpose of this report is to provide an overview of historical DC745U studies and identify gaps that need to be addressed in future work. Some of the previous studies include the following: 1. Spectroscopic characterization of raw gum stock. 2. Spectroscopic, thermal, and mechanical studies on cured DC745U. 3. Nuclear Magnetic Resonance (NMR) and solvent swelling studies on DC745U with different crosslink densities. 4. NMR, solvent swelling, thermal, and mechanical studies on

  16. Optical resonator and laser applications

    NASA Technical Reports Server (NTRS)

    Taghavi-Larigani, Shervin (Inventor); Vanzyl, Jakob J. (Inventor); Yariv, Amnon (Inventor)

    2006-01-01

    The invention discloses a semi-ring Fabry-Perot (SRFP) optical resonator structure comprising a medium including an edge forming a reflective facet and a waveguide within the medium, the waveguide having opposing ends formed by the reflective facet. The performance of the SRFP resonator can be further enhanced by including a Mach-Zehnder interferometer in the waveguide on one side of the gain medium. The optical resonator can be employed in a variety of optical devices. Laser structures using at least one SRFP resonator are disclosed where the resonators are disposed on opposite sides of a gain medium. Other laser structures employing one or more resonators on one side of a gain region are also disclosed.

  17. Constraints on the design of core-shell resonators of locally resonant acoustic metamaterials

    NASA Astrophysics Data System (ADS)

    Bos, Lionel; Lukyanova, Lyubov; Wunenburger, Régis

    2012-11-01

    We perform a parametric study of the analytic model of Liu [Z. Liu , Phys. Rev. B10.1103/PhysRevB.71.014103 71, 014103 (2005)] describing the mechanical response of a core-shell particle to an acoustic excitation in order to help in selecting the constitutive materials and in designing innovative processes of fabrication of downsized core-shell resonators, which are key constituents of locally resonant acoustic metamaterials. We show that the value of the first Lamé coefficient of the material constituting the shell has no marked influence on the value of the resonance frequency of the core-shell resonator, that is, it does not necessarily need to be small for satisfying the condition of subwavelength resonator dimension at resonance. Moreover, we show that the larger the density contrast between the core and the shell and the thinner the shell, the broader is the frequency band over which the effective density of the resonator suspension is negative, but that it is practically useless to decrease the dimensionless shell thickness below 0.6. Finally, we show that the dissipation is also less perceptible the thinner is the shell and the larger is the density contrast. The effect of the density contrast between the core and the shell and of the dissipation on the resonance width are explained by comparing with the harmonic oscillator and the mass-in-mass 1D lattice.

  18. An Inexpensive Resonance Demonstration

    ERIC Educational Resources Information Center

    Dukes, Phillip

    2005-01-01

    The phenomenon of resonance is applicable to almost every branch of physics. Without resonance, there wouldn't be televisions or stereos, or even swings on the playground. However, resonance also has undesirable side effects such as irritating noises in the car and the catastrophic events such as helicopters flying apart. In this article, the…

  19. Micro-machined resonator oscillator

    DOEpatents

    Koehler, Dale R.; Sniegowski, Jeffry J.; Bivens, Hugh M.; Wessendorf, Kurt O.

    1994-01-01

    A micro-miniature resonator-oscillator is disclosed. Due to the miniaturization of the resonator-oscillator, oscillation frequencies of one MHz and higher are utilized. A thickness-mode quartz resonator housed in a micro-machined silicon package and operated as a "telemetered sensor beacon" that is, a digital, self-powered, remote, parameter measuring-transmitter in the FM-band. The resonator design uses trapped energy principles and temperature dependence methodology through crystal orientation control, with operation in the 20-100 MHz range. High volume batch-processing manufacturing is utilized, with package and resonator assembly at the wafer level. Unique design features include squeeze-film damping for robust vibration and shock performance, capacitive coupling through micro-machined diaphragms allowing resonator excitation at the package exterior, circuit integration and extremely small (0.1 in. square) dimensioning. A family of micro-miniature sensor beacons is also disclosed with widespread applications as bio-medical sensors, vehicle status monitors and high-volume animal identification and health sensors. The sensor family allows measurement of temperatures, chemicals, acceleration and pressure. A microphone and clock realization is also available.

  20. Micro-machined resonator oscillator

    DOEpatents

    Koehler, D.R.; Sniegowski, J.J.; Bivens, H.M.; Wessendorf, K.O.

    1994-08-16

    A micro-miniature resonator-oscillator is disclosed. Due to the miniaturization of the resonator-oscillator, oscillation frequencies of one MHz and higher are utilized. A thickness-mode quartz resonator housed in a micro-machined silicon package and operated as a telemetered sensor beacon'' that is, a digital, self-powered, remote, parameter measuring-transmitter in the FM-band. The resonator design uses trapped energy principles and temperature dependence methodology through crystal orientation control, with operation in the 20--100 MHz range. High volume batch-processing manufacturing is utilized, with package and resonator assembly at the wafer level. Unique design features include squeeze-film damping for robust vibration and shock performance, capacitive coupling through micro-machined diaphragms allowing resonator excitation at the package exterior, circuit integration and extremely small (0.1 in. square) dimensioning. A family of micro-miniature sensor beacons is also disclosed with widespread applications as bio-medical sensors, vehicle status monitors and high-volume animal identification and health sensors. The sensor family allows measurement of temperatures, chemicals, acceleration and pressure. A microphone and clock realization is also available. 21 figs.

  1. Microelectromechanical resonator and method for fabrication

    DOEpatents

    Wittwer, Jonathan W [Albuquerque, NM; Olsson, Roy H [Albuquerque, NM

    2009-11-10

    A method is disclosed for the robust fabrication of a microelectromechanical (MEM) resonator. In this method, a pattern of holes is formed in the resonator mass with the position, size and number of holes in the pattern being optimized to minimize an uncertainty .DELTA.f in the resonant frequency f.sub.0 of the MEM resonator due to manufacturing process variations (e.g. edge bias). A number of different types of MEM resonators are disclosed which can be formed using this method, including capacitively transduced Lame, wineglass and extensional resonators, and piezoelectric length-extensional resonators.

  2. Microelectromechanical resonator and method for fabrication

    DOEpatents

    Wittwer, Jonathan W [Albuquerque, NM; Olsson, Roy H [Albuquerque, NM

    2010-01-26

    A method is disclosed for the robust fabrication of a microelectromechanical (MEM) resonator. In this method, a pattern of holes is formed in the resonator mass with the position, size and number of holes in the pattern being optimized to minimize an uncertainty .DELTA.f in the resonant frequency f.sub.0 of the MEM resonator due to manufacturing process variations (e.g. edge bias). A number of different types of MEM resonators are disclosed which can be formed using this method, including capacitively transduced Lame, wineglass and extensional resonators, and piezoelectric length-extensional resonators.

  3. Resonance coupling and polarization conversion in terahertz metasurfaces with twisted split-ring resonator pairs

    DOE PAGES

    Li, Chenyu; Chang, Chun-Chieh; Zhou, Qingli; ...

    2017-10-10

    Here, we investigate edge-coupling of twisted split-ring resonator (SRR) pairs in the terahertz (THz) frequency range. By using a simple coupled-resonator model we show that such a system exhibits resonance splitting and cross-polarization conversion. Numerical simulations and experimental measurements agree well with theoretical calculations, verifying the resonance splitting as a function of the coupling strength given by the SRR separation. We further show that a metal ground plane can be integrated to significantly enhance the resonance coupling, which enables the effective control of resonance splitting and the efficiency and bandwidth of the cross-polarization conversion. Our findings improve the fundamental understandingmore » of metamaterials with a view of accomplishing metamaterial functionalities with enhanced performance, which is of great interest in realizing THz functional devices required in a variety of applications.« less

  4. Multiquark resonances

    DOE PAGES

    Esposito, A.; Pilloni, A.; Polosa, Antonio D.

    2016-12-02

    Multiquark resonances are undoubtedly experimentally observed. The number of states and the amount of details on their properties have been growing over the years. It is very recent the discovery of two pentaquarks and the confirmation of four tetraquarks, two of which had not been observed before. We mainly review the theoretical understanding of this sector of particle physics phenomenology and present some considerations attempting a coherent description of the so called X and Z resonances. The prominent problems plaguing theoretical models, like the absence of selection rules limiting the number of states predicted, motivate new directions in model building.more » Lastly, data are reviewed going through all of the observed resonances with particular attention to their common features and the purpose of providing a starting point to further research.« less

  5. Retinoblastoma and optic nerve enhancement in a brain magnetic resonance scan: is it always a metastasis?

    PubMed

    Correa-Acosta, A; González-Alviar, M E; Gaviria-Bravo, M L

    2018-05-01

    The case is presented on a girl with a unilateral retinoblastoma that required treatment with intra-arterial chemotherapy. In the nuclear magnetic resonance imaging of the brain performed 1 month after intra-arterial chemotherapy treatment, post-laminar optic nerve (ON) enhancement was observed, leading to the suspicion of an ON tumour infiltration. Additional examinations were requested by which a probable optic neuropathy was diagnosed. The ON enhancement in magnetic resonance imaging of the brain in retinoblastoma generally corresponds to tumour invasion of the ON. However, other diagnostic alternatives associated with the use of new treatments, such as intra-arterial chemotherapy, should be considered. Copyright © 2017 Sociedad Española de Oftalmología. Publicado por Elsevier España, S.L.U. All rights reserved.

  6. Silicon photonic resonator sensors and devices

    NASA Astrophysics Data System (ADS)

    Chrostowski, Lukas; Grist, Samantha; Flueckiger, Jonas; Shi, Wei; Wang, Xu; Ouellet, Eric; Yun, Han; Webb, Mitch; Nie, Ben; Liang, Zhen; Cheung, Karen C.; Schmidt, Shon A.; Ratner, Daniel M.; Jaeger, Nicolas A. F.

    2012-02-01

    Silicon photonic resonators, implemented using silicon-on-insulator substrates, are promising for numerous applications. The most commonly studied resonators are ring/racetrack resonators. We have fabricated these and other resonators including disk resonators, waveguide-grating resonators, ring resonator reflectors, contra-directional grating-coupler ring resonators, and racetrack-based multiplexer/demultiplexers. While numerous resonators have been demonstrated for sensing purposes, it remains unclear as to which structures provide the highest sensitivity and best limit of detection; for example, disc resonators and slot-waveguide-based ring resonators have been conjectured to provide an improved limit of detection. Here, we compare various resonators in terms of sensor metrics for label-free bio-sensing in a micro-fluidic environment. We have integrated resonator arrays with PDMS micro-fluidics for real-time detection of biomolecules in experiments such as antigen-antibody binding reaction experiments using Human Factor IX proteins. Numerous resonators are fabricated on the same wafer and experimentally compared. We identify that, while evanescent-field sensors all operate on the principle that the analyte's refractive index shifts the resonant frequency, there are important differences between implementations that lie in the relationship between the optical field overlap with the analyte and the relative contributions of the various loss mechanisms. The chips were fabricated in the context of the CMC-UBC Silicon Nanophotonics Fabrication course and workshop. This yearlong, design-based, graduate training program is offered to students from across Canada and, over the last four years, has attracted participants from nearly every Canadian university involved in photonics research. The course takes students through a full design cycle of a photonic circuit, including theory, modelling, design, and experimentation.

  7. A New Look at an Old Activity: Resonance Tubes Used to Teach Resonance

    ERIC Educational Resources Information Center

    Nelson, Jim; Nelson, Jane

    2017-01-01

    There are several variations of resonance laboratory activities used to determine the speed of sound. This is "not" one of them. This activity uses the resonance tube idea to teach "resonance," not to verify the speed of sound. Prior to this activity, the speed of sound has already been measured using computer sound-sensors and…

  8. Magnetic resonance imaging in the new paradigm for the diagnosis of prostate cancer.

    PubMed

    Vilanova, J C; Catalá, V

    For various reasons, prostate cancer is a major public health problem. It is a very common cancer, but has a very low mortality rate because it comprises two types of disease: one insignificant, indolent, and much more common, and the other aggressive, significant, and much less common. The routine diagnostic approach to prostate cancer has been systematic blind biopsies, which has low detection rates and might detect low risk, insignificant prostate cancer, leading to overdiagnosis and overtreatment of indolent cancers. The possibility of including multiparametric magnetic resonance imaging in the diagnostic management to improve the detection of aggressive cancer while reducing the overdiagnosis of indolent cancer represents a change in the diagnostic management. This article updates knowledge about the diagnostic management of prostate cancer including multiparametric magnetic resonance imaging. Copyright © 2016 SERAM. Publicado por Elsevier España, S.L.U. All rights reserved.

  9. Multiple-Barrier Resonant Tunneling Structures for Application in a Microwave Generator Stabilized by Microstrip Resonator

    DTIC Science & Technology

    2000-06-23

    conductivity ( NDC ) effects in double barrier resonant tunneling structures (DBRTS) prove the extremely fast frequency response of charge transport (less...UNCLASSIFIED Defense Technical Information Center Compilation Part Notice ADP013131 TITLE: Multiple-Barrier Resonant Tunneling Structures for...Institute Multiple-barrier resonant tunneling structures for application in a microwave generator stabilized by microstrip resonator S. V. Evstigneev, A. L

  10. Parametric methods for characterizing myocardial tissue by magnetic resonance imaging (part 2): T2 mapping.

    PubMed

    Perea Palazón, R J; Solé Arqués, M; Prat González, S; de Caralt Robira, T M; Cibeira López, M T; Ortiz Pérez, J T

    2015-01-01

    Cardiac magnetic resonance imaging is considered the reference technique for characterizing myocardial tissue; for example, T2-weighted sequences make it possible to evaluate areas of edema or myocardial inflammation. However, traditional sequences have many limitations and provide only qualitative information. Moreover, traditional sequences depend on the reference to remote myocardium or skeletal muscle, which limits their ability to detect and quantify diffuse myocardial damage. Recently developed magnetic resonance myocardial mapping techniques enable quantitative assessment of parameters indicative of edema. These techniques have proven better than traditional sequences both in acute cardiomyopathy and in acute ischemic heart disease. This article synthesizes current developments in T2 mapping as well as their clinical applications and limitations. Copyright © 2014 SERAM. Published by Elsevier España, S.L.U. All rights reserved.

  11. Prompt neutron emission and energy balance in 235U(n,f)

    NASA Astrophysics Data System (ADS)

    Göök, Alf; Hambsch, Franz-Josef; Oberstedt, Stephan

    2017-09-01

    Investigations of prompt fission neutron (PFN) emission are of importance in understanding the fission process in general and the sharing of excitation energy among the fission fragments in particular. Experimental activities at JRC-Geel on PFN emission in response to OECD/NEA nuclear data requests is presented in this contribution. The focus lies on on-going investigations of PFN emission from the reaction 235U(n,f) in the region of the resolved resonances taking place at the GELINA facility. For this reaction strong fluctuations of fission fragment mass distributions and mean total kinetic energy have been observed as a function of incident neutron energy in the resonance region. In addition, fluctuations of prompt neutron multiplicities have also been observed. The goal of the present study is to verify the current knowledge of PFN multiplicity fluctuations and to study correlations with fission fragment properties. The experiment employs a scintillation detector array for neutron detection, while fission fragment properties are determined via the double kinetic energy technique using a position sensitive twin ionization chamber. Results on PFN multiplicity correlations with fission fragment properties from the present study show significant differences compared to earlier studies on this reaction, induced by thermal neutrons. Specifically, the total kinetic energy dependence of the neutron multiplicity per fission shows an inverse slope FX1TKE/FX2ν approximately 35% weaker than observed in earlier studies of thermal neutron induced fission on 235U. The inverse slope is related to the energy carried away per emitted neutron and is, thereby, closely connected to the energy balance of the fission reaction. The present result should have strong impact on the modeling of both prompt neutron and prompt γ-ray emission in fission of the 236U compound nucleus.

  12. Sound absorption by a Helmholtz resonator

    NASA Astrophysics Data System (ADS)

    Komkin, A. I.; Mironov, M. A.; Bykov, A. I.

    2017-07-01

    Absorption characteristics of a Helmholtz resonator positioned at the end wall of a circular duct are considered. The absorption coefficient of the resonator is experimentally investigated as a function of the diameter and length of the resonator neck and the depth of the resonator cavity. Based on experimental data, the linear analytic model of a Helmholtz resonator is verified, and the results of verification are used to determine the dissipative attached length of the resonator neck so as to provide the agreement between experimental and calculated data. Dependences of sound absorption by a Helmholtz resonator on its geometric parameters are obtained.

  13. Whispering Gallery Mode Optomechanical Resonator

    NASA Technical Reports Server (NTRS)

    Aveline, David C.; Strekalov, Dmitry V.; Yu, Nan; Yee, Karl Y.

    2012-01-01

    Great progress has been made in both micromechanical resonators and micro-optical resonators over the past decade, and a new field has recently emerged combining these mechanical and optical systems. In such optomechanical systems, the two resonators are strongly coupled with one influencing the other, and their interaction can yield detectable optical signals that are highly sensitive to the mechanical motion. A particularly high-Q optical system is the whispering gallery mode (WGM) resonator, which has many applications ranging from stable oscillators to inertial sensor devices. There is, however, limited coupling between the optical mode and the resonator s external environment. In order to overcome this limitation, a novel type of optomechanical sensor has been developed, offering great potential for measurements of displacement, acceleration, and mass sensitivity. The proposed hybrid device combines the advantages of all-solid optical WGM resonators with high-quality micro-machined cantilevers. For direct access to the WGM inside the resonator, the idea is to radially cut precise gaps into the perimeter, fabricating a mechanical resonator within the WGM. Also, a strategy to reduce losses has been developed with optimized design of the cantilever geometry and positions of gap surfaces.

  14. Micro-machined resonator

    DOEpatents

    Godshall, N.A.; Koehler, D.R.; Liang, A.Y.; Smith, B.K.

    1993-03-30

    A micro-machined resonator, typically quartz, with upper and lower micro-machinable support members, or covers, having etched wells which may be lined with conductive electrode material, between the support members is a quartz resonator having an energy trapping quartz mesa capacitively coupled to the electrode through a diaphragm; the quartz resonator is supported by either micro-machined cantilever springs or by thin layers extending over the surfaces of the support. If the diaphragm is rigid, clock applications are available, and if the diaphragm is resilient, then transducer applications can be achieved. Either the thin support layers or the conductive electrode material can be integral with the diaphragm. In any event, the covers are bonded to form a hermetic seal and the interior volume may be filled with a gas or may be evacuated. In addition, one or both of the covers may include oscillator and interface circuitry for the resonator.

  15. Micro-machined resonator

    DOEpatents

    Godshall, Ned A.; Koehler, Dale R.; Liang, Alan Y.; Smith, Bradley K.

    1993-01-01

    A micro-machined resonator, typically quartz, with upper and lower micro-machinable support members, or covers, having etched wells which may be lined with conductive electrode material, between the support members is a quartz resonator having an energy trapping quartz mesa capacitively coupled to the electrode through a diaphragm; the quartz resonator is supported by either micro-machined cantilever springs or by thin layers extending over the surfaces of the support. If the diaphragm is rigid, clock applications are available, and if the diaphragm is resilient, then transducer applications can be achieved. Either the thin support layers or the conductive electrode material can be integral with the diaphragm. In any event, the covers are bonded to form a hermetic seal and the interior volume may be filled with a gas or may be evacuated. In addition, one or both of the covers may include oscillator and interface circuitry for the resonator.

  16. Nonlinear elasticity in resonance experiments

    NASA Astrophysics Data System (ADS)

    Li, Xun; Sens-Schönfelder, Christoph; Snieder, Roel

    2018-04-01

    Resonant bar experiments have revealed that dynamic deformation induces nonlinearity in rocks. These experiments produce resonance curves that represent the response amplitude as a function of the driving frequency. We propose a model to reproduce the resonance curves with observed features that include (a) the log-time recovery of the resonant frequency after the deformation ends (slow dynamics), (b) the asymmetry in the direction of the driving frequency, (c) the difference between resonance curves with the driving frequency that is swept upward and downward, and (d) the presence of a "cliff" segment to the left of the resonant peak under the condition of strong nonlinearity. The model is based on a feedback cycle where the effect of softening (nonlinearity) feeds back to the deformation. This model provides a unified interpretation of both the nonlinearity and slow dynamics in resonance experiments. We further show that the asymmetry of the resonance curve is caused by the softening, which is documented by the decrease of the resonant frequency during the deformation; the cliff segment of the resonance curve is linked to a bifurcation that involves a steep change of the response amplitude when the driving frequency is changed. With weak nonlinearity, the difference between the upward- and downward-sweeping curves depends on slow dynamics; a sufficiently slow frequency sweep eliminates this up-down difference. With strong nonlinearity, the up-down difference results from both the slow dynamics and bifurcation; however, the presence of the bifurcation maintains the respective part of the up-down difference, regardless of the sweep rate.

  17. Auxiliary resonant DC tank converter

    DOEpatents

    Peng, Fang Z.

    2000-01-01

    An auxiliary resonant dc tank (ARDCT) converter is provided for achieving soft-switching in a power converter. An ARDCT circuit is coupled directly across a dc bus to the inverter to generate a resonant dc bus voltage, including upper and lower resonant capacitors connected in series as a resonant leg, first and second dc tank capacitors connected in series as a tank leg, and an auxiliary resonant circuit comprising a series combination of a resonant inductor and a pair of auxiliary switching devices. The ARDCT circuit further includes first clamping means for holding the resonant dc bus voltage to the dc tank voltage of the tank leg, and second clamping means for clamping the resonant dc bus voltage to zero during a resonant period. The ARDCT circuit resonantly brings the dc bus voltage to zero in order to provide a zero-voltage switching opportunity for the inverter, then quickly rebounds the dc bus voltage back to the dc tank voltage after the inverter changes state. The auxiliary switching devices are turned on and off under zero-current conditions. The ARDCT circuit only absorbs ripples of the inverter dc bus current, thus having less current stress. In addition, since the ARDCT circuit is coupled in parallel with the dc power supply and the inverter for merely assisting soft-switching of the inverter without participating in real dc power transmission and power conversion, malfunction and failure of the tank circuit will not affect the functional operation of the inverter; thus a highly reliable converter system is expected.

  18. Gaussian-Beam Laser-Resonator Program

    NASA Technical Reports Server (NTRS)

    Cross, Patricia L.; Bair, Clayton H.; Barnes, Norman

    1989-01-01

    Gaussian Beam Laser Resonator Program models laser resonators by use of Gaussian-beam-propagation techniques. Used to determine radii of beams as functions of position in laser resonators. Algorithm used in program has three major components. First, ray-transfer matrix for laser resonator must be calculated. Next, initial parameters of beam calculated. Finally, propagation of beam through optical elements computed. Written in Microsoft FORTRAN (Version 4.01).

  19. Higgs–photon resonances

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dobrescu, Bogdan A.; Fox, Patrick J.; Kearney, John

    We study models that produce a Higgs boson plus photon (more » $$h^0 \\gamma$$) resonance at the LHC. When the resonance is a $Z'$ boson, decays to $$h^0 \\gamma$$ occur at one loop. If the $Z'$ boson couples at tree-level to quarks, then the $$h^0 \\gamma$$ branching fraction is typically of order $$10^{-5}$$ or smaller. Nevertheless, there are models that would allow the observation of $$Z' \\to h^0 \\gamma$$ at $$\\sqrt{s} = 13$$ TeV with a cross section times branching fraction larger than 1 fb for a $Z'$ mass in the 200--450 GeV range, and larger than 0.1 fb for a mass up to 800 GeV. The 1-loop decay of the $Z'$ into lepton pairs competes with $$h^0 \\gamma$$, even if the $Z'$ couplings to leptons vanish at tree level. We also present a model in which a $Z'$ boson decays into a Higgs boson and a pair of collimated photons, mimicking an $$h^0 \\gamma$$ resonance. In this model, the $$h^0 \\gamma$$ resonance search would be the discovery mode for a $Z'$ as heavy as 2 TeV. When the resonance is a scalar, although decay to $$h^0 \\gamma$$ is forbidden by angular momentum conservation, the $h^0$ plus collimated photons channel is allowed. Here, we comment on prospects of observing an $$h^0 \\gamma$$ resonance through different Higgs decays, on constraints from related searches, and on models where $h^0$ is replaced by a nonstandard Higgs boson.« less

  20. Higgs–photon resonances

    DOE PAGES

    Dobrescu, Bogdan A.; Fox, Patrick J.; Kearney, John

    2017-10-24

    We study models that produce a Higgs boson plus photon (more » $$h^0 \\gamma$$) resonance at the LHC. When the resonance is a $Z'$ boson, decays to $$h^0 \\gamma$$ occur at one loop. If the $Z'$ boson couples at tree-level to quarks, then the $$h^0 \\gamma$$ branching fraction is typically of order $$10^{-5}$$ or smaller. Nevertheless, there are models that would allow the observation of $$Z' \\to h^0 \\gamma$$ at $$\\sqrt{s} = 13$$ TeV with a cross section times branching fraction larger than 1 fb for a $Z'$ mass in the 200--450 GeV range, and larger than 0.1 fb for a mass up to 800 GeV. The 1-loop decay of the $Z'$ into lepton pairs competes with $$h^0 \\gamma$$, even if the $Z'$ couplings to leptons vanish at tree level. We also present a model in which a $Z'$ boson decays into a Higgs boson and a pair of collimated photons, mimicking an $$h^0 \\gamma$$ resonance. In this model, the $$h^0 \\gamma$$ resonance search would be the discovery mode for a $Z'$ as heavy as 2 TeV. When the resonance is a scalar, although decay to $$h^0 \\gamma$$ is forbidden by angular momentum conservation, the $h^0$ plus collimated photons channel is allowed. Here, we comment on prospects of observing an $$h^0 \\gamma$$ resonance through different Higgs decays, on constraints from related searches, and on models where $h^0$ is replaced by a nonstandard Higgs boson.« less

  1. Effect of resonance decay on conserved number fluctuations in a hadron resonance gas model

    NASA Astrophysics Data System (ADS)

    Mishra, D. K.; Garg, P.; Netrakanti, P. K.; Mohanty, A. K.

    2016-07-01

    We study the effect of charged secondaries coming from resonance decay on the net-baryon, net-charge, and net-strangeness fluctuations in high-energy heavy-ion collisions within the hadron resonance gas (HRG) model. We emphasize the importance of including weak decays along with other resonance decays in the HRG, while comparing with the experimental observables. The effect of kinematic cuts on resonances and primordial particles on the conserved number fluctuations are also studied. The HRG model calculations with the inclusion of resonance decays and kinematical cuts are compared with the recent experimental data from STAR and PHENIX experiments. We find good agreement between our model calculations and the experimental measurements for both net-proton and net-charge distributions.

  2. Electron capture by U(91+) and U(92+) and ionization of U(90+) and U(91+)

    NASA Technical Reports Server (NTRS)

    Gould, H.; Greiner, D.; Lindstrom, P.; Symons, T. J. M.; Crawford, H.

    1984-01-01

    U(92+)/U(91+) and U(91+)/U(90+) electron-capture and ionization cross sections and equilibrium charge-state distributions are measured experimentally in mylar, Cu and Ta of varying thickness. Relativistic U(68+) ions at 437 or 962 MeV/nucleon are produced by a heavy-ion linear accelerator and synchrotron in tandem and passed through the target material into a magnetic specrometer and position-sensitive proportional counter for evaluation of charge states. The results are presented graphically and discussed. At 962 MeV/nucleon, beams containing 85 percent bare U(92+) nuclei are obtained using 150-mg/sq cm Cu or 85-mg/sq cm Ta; at 437 MeV/nucleon, 50 percent bare U(92+) nuclei are obtained with 90-mg/sq cm Cu. The techniques decribed can be applied to produce beams of bare U nuclei for acceleration to ultrarelativistic speeds or beams of few-electron U for atomic-physics experiments on quantum electrodynamics.

  3. Acoustic Levitator Maintains Resonance

    NASA Technical Reports Server (NTRS)

    Barmatz, M. B.; Gaspar, M. S.

    1986-01-01

    Transducer loading characteristics allow resonance tracked at high temperature. Acoustic-levitation chamber length automatically adjusted to maintain resonance at constant acoustic frequency as temperature changes. Developed for containerless processing of materials at high temperatures, system does not rely on microphones as resonance sensors, since microphones are difficult to fabricate for use at temperatures above 500 degrees C. Instead, system uses acoustic transducer itself as sensor.

  4. Two objects in Neptune's 9:1 resonance -- implications for resonance sticking in the scattering population

    NASA Astrophysics Data System (ADS)

    Volk, Kathryn; Murray-Clay, Ruth; Gladman, Brett; Lawler, Samantha; Yu, Tze Yeung Mathew; Alexandersen, Mike; Bannister, Michele; Chen, Ying-Yung; Dawson, Rebekah; Greenstreet, Sarah; Gwyn, Stephen; Kavelaars, J. J.; Lin, Hsing Wen; Lykawka, Patryk; Petit, Jean-Marc

    2018-04-01

    We discuss the detection in the Outer Solar System Origins Survey (OSSOS) of two objects in Neptune's distant 9:1 mean motion resonance at semimajor axis a≈130 au. Both objects are securely resonant on 10 Myr timescales, with one securely in the 9:1 resonance's leading asymmetric libration island and the other in either the symmetric or trailing asymmetric island. These two objects are the largest semimajor axis objects known with secure resonant classifications, and their detection in a carefully characterized survey allows for the first robust population estimate for a resonance beyond 100 au. The detection of these two objects implies a population in the 9:1 resonance of 1.1×104 objects with Hr<8.66 (D > 100 km) on similar orbits, with 95% confidence range of ∼0.4‑3×104. Integrations over 4 Gyr of an ensemble of clones chosen from within the orbit fit uncertainties for these objects reveal that they both have median resonance occupation timescales of ∼1 Gyr. These timescales are consistent with the hypothesis that these two objects originate in the scattering population but became transiently stuck to Neptune's 9:1 resonance within the last ∼1 Gyr of solar system evolution. Based on simulations of a model of the current scattering population, we estimate the expected resonance sticking population in the 9:1 resonance to be 1000--5000 objects with Hr<8.66 this is marginally consistent with the OSSOS 9:1 population estimate. We conclude that resonance sticking is a plausible explanation for the observed 9:1 population, but we also discuss the possibility of a primordial 9:1 population, which would have interesting implications for the Kuiper belt's dynamical history.

  5. Effects of relativity of RTEX in collisions of U sup q+ with light targets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Mau Hsiung.

    1990-11-07

    We have calculated the resonant transfer and excitation cross sections in collisions of U{sup q+} (q = 82, 89, 90) ion with H{sub 2}, He and C in impulse approximation using the multi-configuration Dirac-Fock method. The calculations were carried out in intermediate coupling with configuration interaction. The quantum electrodynamic and finite nuclear size corrections were included in the calculations of transition energies. The Auger rates were calculated including the contributions from Coulomb as well as the transverse Breit interactions. For U{sup 89+} and U{sup 90+}, effects of relatively not only shift the peak positions but also change the peak structure.more » The total dielectronic recombination strength has been found to increase by 50% due to the effects of relativity. The present theoretical RTEX cross sections for U{sup 90+} in hydrogen agree well with experiment. For U{sup 82+}, Breit interaction had been found to have little effect on the RTEX cross sections involving L-shell excitation. However, the spin-orbit interaction can still make significant change in the peak structure. 24 refs., 4 figs.« less

  6. Electric-optic resonant phase modulator

    NASA Technical Reports Server (NTRS)

    Chen, Chien-Chung (Inventor); Robinson, Deborah L. (Inventor); Hemmati, Hamid (Inventor)

    1994-01-01

    An electro-optic resonant cavity is used to achieve phase modulation with lower driving voltages. Laser damage thresholds are inherently higher than with previously used integrated optics due to the utilization of bulk optics. Phase modulation is achieved at higher speeds with lower driving voltages than previously obtained with non-resonant electro-optic phase modulators. The instant scheme uses a data locking dither approach as opposed to the conventional sinusoidal locking schemes. In accordance with a disclosed embodiment, a resonant cavity modulator has been designed to operate at a data rate in excess of 100 Mbps. By carefully choosing the cavity finesse and its dimension, it is possible to control the pulse switching time to within 4 ns and to limit the required switching voltage to within 10 V. Experimentally, the resonant cavity can be maintained on resonance with respect to the input laser signal by monitoring the fluctuation of output intensity as the cavity is switched. This cavity locking scheme can be applied by using only the random data sequence, and without the need of additional dithering of the cavity. Compared to waveguide modulators, the resonant cavity has a comparable modulating voltage requirement. Because of its bulk geometry, resonant cavity modulator has the potential of accommodating higher throughput power. Furthermore, mode matching into a bulk device is easier and typically can be achieved with higher efficiency. On the other hand, unlike waveguide modulators which are essentially traveling wave devices, the resonant cavity modulator requires that the cavity be maintained in resonance with respect to the incoming laser signal. An additional control loop is incorporated into the modulator to maintain the cavity on resonance.

  7. The U.S. East Coast Meteotsunami of June 13, 2013

    NASA Astrophysics Data System (ADS)

    Knight, W. R.; Whitmore, P.; Kim, Y.; Wang, D.; Becker, N. C.; Weinstein, S.; Walker, K.

    2013-12-01

    NOAA's two Tsunami Warning Centers (TWCs) provide advance notification to coastal communities concerning tsunami hazards. While the focus is primarily on seismic sources, the U.S. East Coast event of June 13, 2013 indicates the importance of understanding and forecasting atmospherically-driven tsunamis, or meteotsunamis, as well. Here we describe an approach which explains the generation of this event by atmospheric processes, and suggests that the causative forces can be monitored and used to forecast meteotsunami occurrence. The U.S. East Coast tsunami of June 13, 2013 was well recorded at tide gauges from North Carolina to Massachusetts as well as at Bermuda and Puerto Rico. It also triggered DART 44402, just east of the Atlantic shelf break at 39.4N. As there was no seismic energy release associated with the tsunami and an eastward propagating major weather system crossed the Atlantic coast just before the tsunami, the focus turned to atmospheric forcing. Tsunami forecast models used at the two U.S. TWCs were modified to introduce moving atmospheric pressure distributions as sources. In a simple case, a north-south oriented line air pressure jump of width 50 km and pressure of 4 mb at sea level was moved eastward at 20 m/s. The speed matched both the storm speed at the coast and the long wave speed for 40 m deep water, thus allowing for resonant coupling of atmosphere to ocean in the shelf region (Proudman Resonance). Considering the simplicity of the source, a reasonable comparison between the modeled and observed tsunami was obtained with regards to arrival time and height. The proposed source also offers an explanation of the later wave arrivals at US tide gauges. These typically lagged the arrival at Bermuda - a location much further east. This pattern can be explained within the context of Proudman resonance if the waves arriving at coastal stations originated at the shelf break as reflected waves. Model animations of wave dynamics corroborate this

  8. Multi-frequency modes in superconducting resonators: Bridging frequency gaps in off-resonant couplings

    NASA Astrophysics Data System (ADS)

    Andersen, Christian Kraglund; Mølmer, Klaus

    2015-03-01

    A SQUID inserted in a superconducting waveguide resonator imposes current and voltage boundary conditions that makes it suitable as a tuning element for the resonator modes. If such a SQUID element is subject to a periodically varying magnetic flux, the resonator modes acquire frequency side bands. We calculate the multi-frequency eigenmodes and these can couple resonantly to physical systems with different transition frequencies and this makes the resonator an efficient quantum bus for state transfer and coherent quantum operations in hybrid quantum systems. As an example of the application, we determine their coupling to transmon qubits with different frequencies and we present a bi-chromatic scheme for entanglement and gate operations. In this calculation, we obtain a maximally entangled state with a fidelity F = 95 % . Our proposal is competitive with the achievements of other entanglement-gates with superconducting devices and it may offer some advantages: (i) There is no need for additional control lines and dephasing associated with the conventional frequency tuning of qubits. (ii) When our qubits are idle, they are far detuned with respect to each other and to the resonator, and hence they are immune to cross talk and Purcell-enhanced decay.

  9. Wireless Actuation of Micromechanical Resonators

    NASA Astrophysics Data System (ADS)

    Mateen, Farrukh; Maedler, Carsten; Erramilli, Shyamsunder; Mohanty, Pritiraj

    Wireless transfer of power is of fundamental and technical interest with applications ranging from remote operation of electronics, biomedical implants, and device actuation where hard-wired power sources are neither desirable nor practical. In particular, biomedical implants in the body or the brain need small footprint power receiving elements for wireless charging, which can be accomplished by micromechanical resonators. In contrast for fundamental experiments, ultra low-power wireless operation of micromechanical resonators in the microwave range makes low-temperature studies of mechanical systems in the quantum regime possible, where heat carried by the electrical wires in standard actuation techniques is detrimental to maintaining the resonator in a quantum state. We demonstrate successful actuation of micron-sized silicon-based piezoelectric resonators with resonance frequencies from 36 MHz to 120 MHz, at power levels of nanowatts and distances of about 3 feet, including polarization, distance and power dependence measurements. Our demonstration of wireless actuation of micromechanical resonators via electric-field coupling down to nanowatt levels enables a multitude of applications based on micromechanical resonators, inaccessible until now.

  10. Ferromagnetic insulating state in tensile-strained LaCoO3 thin films from LDA + U calculations

    NASA Astrophysics Data System (ADS)

    Hsu, Han; Blaha, Peter; Wentzcovitch, Renata M.

    2012-04-01

    With local density approximation+Hubbard U (LDA+U) calculations, we show that the ferromagnetic (FM) insulating state observed in tensile-strained LaCoO3 epitaxial thin films is most likely a mixture of low-spin (LS) and high-spin (HS) Co, namely, a HS/LS mixture state. Compared with other FM states, including the intermediate-spin (IS) state (metallic within LDA+U), which consists of IS Co only, and the insulating IS/LS mixture state, the HS/LS state is the most favorable one. The FM order in the HS/LS state is stabilized via the superexchange interactions between adjacent LS and HS Co. We also show that the Co spin state can be identified by measuring the electric field gradient at the Co nucleus via nuclear magnetic resonance spectroscopy.

  11. Design of a dielectric resonator receive array at 7 Tesla using detunable ceramic resonators

    NASA Astrophysics Data System (ADS)

    Ruytenberg, Thomas; Webb, Andrew G.

    2017-11-01

    Ceramic-based dielectric resonators can be used for high frequency magnetic resonance imaging and microscopy. When used as elements in a transmit array, the intrinsically low inter-element coupling allows flexibility in designing different geometric arrangements for different regions-of-interest. However, without being able to detune such resonators, they cannot be used as elements in a receive-only array. Here, we propose and implement a method, based on mode-disruption, for detuning ceramic-based dielectric resonators to enable them to be used as receive-only elements.

  12. Scalable high-precision tuning of photonic resonators by resonant cavity-enhanced photoelectrochemical etching

    PubMed Central

    Gil-Santos, Eduardo; Baker, Christopher; Lemaître, Aristide; Gomez, Carmen; Leo, Giuseppe; Favero, Ivan

    2017-01-01

    Photonic lattices of mutually interacting indistinguishable cavities represent a cornerstone of collective phenomena in optics and could become important in advanced sensing or communication devices. The disorder induced by fabrication technologies has so far hindered the development of such resonant cavity architectures, while post-fabrication tuning methods have been limited by complexity and poor scalability. Here we present a new simple and scalable tuning method for ensembles of microphotonic and nanophotonic resonators, which enables their permanent collective spectral alignment. The method introduces an approach of cavity-enhanced photoelectrochemical etching in a fluid, a resonant process triggered by sub-bandgap light that allows for high selectivity and precision. The technique is presented on a gallium arsenide nanophotonic platform and illustrated by finely tuning one, two and up to five resonators. It opens the way to applications requiring large networks of identical resonators and their spectral referencing to external etalons. PMID:28117394

  13. Magnetic resonance conditional paramagnetic choke for suppression of imaging artifacts during magnetic resonance imaging.

    PubMed

    Wu, Kevin J; Gregory, T Stan; Boland, Brian L; Zhao, Wujun; Cheng, Rui; Mao, Leidong; Tse, Zion Tsz Ho

    2018-06-01

    Higher risk patient populations require continuous physiological monitoring and, in some cases, connected life-support systems, during magnetic resonance imaging examinations. While recently there has been a shift toward wireless technology, some of the magnetic resonance imaging devices are still connected to the outside using cabling that could interfere with the magnetic resonance imaging's radio frequency during scanning, resulting in excessive heating. We developed a passive method for radio frequency suppression on cabling that may assist in making some of these devices magnetic resonance imaging compatible. A barrel-shaped strongly paramagnetic choke was developed to suppress induced radio frequency signals which are overlaid onto physiological monitoring leads during magnetic resonance imaging. It utilized a choke placed along the signal lines, with a gadolinium solution core. The choke's magnetic susceptibility was modeled, for a given geometric design, at increasing chelate concentration levels, and measured using a vibrating sample magnetometer. Radio frequency noise suppression versus frequency was quantified with network-analyzer measurements and tested using cabling placed in the magnetic resonance imaging scanner. Temperature-elevation and image-quality reduction due to the device were measured using American Society for Testing and Materials phantoms. Prototype chokes with gadolinium solution cores exhibited increasing magnetic susceptibility, and insertion loss (S21) also showed higher attenuation as gadolinium concentration increased. Image artifacts extending <4 mm from the choke were observed during magnetic resonance imaging, which agreed well with the predicted ∼3 mm artifact from the electrochemical machining simulation. An accompanying temperature increase of <1 °C was observed in the magnetic resonance imaging phantom trial. An effective paramagnetic choke for radio frequency suppression during magnetic resonance imaging was developed

  14. Resonances in Positronium Hydride

    NASA Technical Reports Server (NTRS)

    DiRienzi, Joseph; Drachman, Richard J.; Fisher, Richard R. (Technical Monitor)

    2001-01-01

    We re-examine the problem of calculating the positions and widths of the lowest-lying resonances in the Ps + H scattering system which consists of two electrons, one positron and one proton. The first of these resonances, for L=0, was found by the methods of complex rotation and stabilization, and later described as a Feshbach resonance lying close to a bound state in the closed-channel e (+) + H (-) system. Recently, results for the L=1 and 2 scattering states were published, and it was found, surprisingly, that there is a larae shift in the positions of these resonances. In this work we repeat the analysis for L=1 and find an unexpected explanation for the shift.

  15. Analysis of the right-handed Majorana neutrino mass in an S U (4 )×S U (2 )L×S U (2 )R Pati-Salam model with democratic texture

    NASA Astrophysics Data System (ADS)

    Yang, Masaki J. S.

    2017-03-01

    In this paper, we attempt to build a unified model with the democratic texture, that has some unification between up-type Yukawa interactions Yν and Yu . Since the S3 L×S3 R flavor symmetry is chiral, the unified gauge group is assumed to be Pati-Salam type S U (4 )c×S U (2 )L×S U (2 )R. The breaking scheme of the flavor symmetry is considered to be S3 L×S3 R→S2 L×S2 R→0 . In this picture, the four-zero texture is desirable for realistic masses and mixings. This texture is realized by a specific representation for the second breaking of the S3 L×S3 R flavor symmetry. Assuming only renormalizable Yukawa interactions, type-I seesaw mechanism, and neglecting C P phases for simplicity, the right-handed neutrino mass matrix MR can be reconstructed from low energy input values. Numerical analysis shows that the texture of MR basically behaves like the "waterfall texture." Since MR tends to be the "cascade texture" in the democratic texture approach, a model with type-I seesaw and up-type Yukawa unification Yν≃Yu basically requires fine-tunings between parameters. Therefore, it seems to be more realistic to consider universal waterfall textures for both Yf and MR, e.g., by the radiative mass generation or the Froggatt-Nielsen mechanism. Moreover, analysis of eigenvalues shows that the lightest mass eigenvalue MR 1 is too light to achieve successful thermal leptogenesis. Although the resonant leptogenesis might be possible, it also requires fine-tunings of parameters.

  16. Refractive Index Sensor Based on Fano Resonances in Metal-Insulator-Metal Waveguides Coupled with Resonators.

    PubMed

    Tang, Yue; Zhang, Zhidong; Wang, Ruibing; Hai, Zhenyin; Xue, Chenyang; Zhang, Wendong; Yan, Shubin

    2017-04-06

    A surface plasmon polariton refractive index sensor based on Fano resonances in metal-insulator-metal (MIM) waveguides coupled with rectangular and ring resonators is proposed and numerically investigated using a finite element method. Fano resonances are observed in the transmission spectra, which result from the coupling between the narrow-band spectral response in the ring resonator and the broadband spectral response in the rectangular resonator. Results are analyzed using coupled-mode theory based on transmission line theory. The coupled mode theory is employed to explain the Fano resonance effect, and the analytical result is in good agreement with the simulation result. The results show that with an increase in the refractive index of the fill dielectric material in the slot of the system, the Fano resonance peak exhibits a remarkable red shift, and the highest value of sensitivity (S) is 1125 nm/RIU, RIU means refractive index unit. Furthermore, the coupled MIM waveguide structure can be integrated with other photonic devices at the chip scale. The results can provide a guide for future applications of this structure.

  17. Mitigating Thermoelastic Dissipation of Flexural Micromechanical Resonators by Decoupling Resonant Frequency from Thermal Relaxation Rate

    NASA Astrophysics Data System (ADS)

    Zhou, Xin; Xiao, Dingbang; Wu, Xuezhong; Li, Qingsong; Hou, Zhanqiang; He, Kaixuan; Wu, Yulie

    2017-12-01

    This paper reports an alternative design strategy to reduce thermoelastic dissipation (TED) for isothermal-mode micromechanical resonators. This involves hanging lumped masses on a frame structure to decouple the resonant frequency and the effective beamwidth of the resonators, which enables the separation of the thermal relaxation rate and frequency of vibration. This approach is validated using silicon-based micromechanical disklike resonators engineered to isolate TED. A threefold improvement in the quality factor and a tenfold improvement in the decay-time constant is demonstrated. This work proposes a solution for isothermal-mode (flexural) micromechanical resonators to effectively mitigate TED. Specifically, this approach is ideal for designing high-performance gyroscope resonators based on microelectromechanical systems (MEMS) technology. It may pave the way for the next generation inertial-grade MEMS gyroscope, which remains a great challenge and is very appealing.

  18. MEASUREMENTS OF CYCLOTRON FEATURES AND PULSE PERIODS IN THE HIGH-MASS X-RAY BINARIES 4U 1538–522 AND 4U 1907+09 WITH THE INTERNATIONAL GAMMA-RAY ASTROPHYSICS LABORATORY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hemphill, Paul B.; Rothschild, Richard E.; Caballero, Isabel

    We present a spectral and timing analysis of International Gamma-Ray Astrophysics Laboratory (INTEGRAL) observations of two high-mass X-ray binaries, 4U 1538–522 and 4U 1907+09. Our timing measurements for 4U 1538–522 find the pulse period to have exhibited a spin-up trend until approximately 2009, after which there is evidence for a torque reversal, with the source beginning to spin down to the most recently measured period of 525.407 ± 0.001 s. The most recent INTEGRAL observations of 4U 1907+09 are not found to yield statistically significant pulse periods due to the significantly lower flux from the source compared with 4U 1538–522.more » A spectral model consisting of a power-law continuum with an exponential cutoff and modified by two cyclotron resonance scattering features is found to fit both sources well, with the cyclotron scattering features detected at ∼22 and ∼49 keV for 4U 1538–522 and at ∼18 and ∼36 keV for 4U 1907+09. The spectral parameters of 4U 1538–522 are generally not found to vary significantly with flux and there is little to no variation across the torque reversal. Examining our results in conjunction with previous work, we find no evidence for a correlation between cyclotron line energy and luminosity for 4U 1538–522. 4U 1907+09 shows evidence for a positive correlation between cyclotron line energy and luminosity, which would make it the fourth, and lowest luminosity, cyclotron line source to exhibit this relationship.« less

  19. Transfer of sulfur from IscS to IscU during Fe/S cluster assembly.

    PubMed

    Urbina, H D; Silberg, J J; Hoff, K G; Vickery, L E

    2001-11-30

    The cysteine desulfurase enzymes NifS and IscS provide sulfur for the biosynthesis of Fe/S proteins. NifU and IscU have been proposed to serve as template or scaffold proteins in the initial Fe/S cluster assembly events, but the mechanism of sulfur transfer from NifS or IscS to NifU or IscU has not been elucidated. We have employed [(35)S]cysteine radiotracer studies to monitor sulfur transfer between IscS and IscU from Escherichia coli and have used direct binding measurements to investigate interactions between the proteins. IscS catalyzed transfer of (35)S from [(35)S]cysteine to IscU in the absence of additional thiol reagents, suggesting that transfer can occur directly and without involvement of an intermediate carrier. Surface plasmon resonance studies and isothermal titration calorimetry measurements further revealed that IscU binds to IscS with high affinity (K(d) approximately 2 microm) in support of a direct transfer mechanism. Transfer was inhibited by treatment of IscU with iodoacetamide, and (35)S was released by reducing reagents, suggesting that transfer of persulfide sulfur occurs to cysteinyl groups of IscU. A deletion mutant of IscS lacking C-terminal residues 376-413 (IscSDelta376-413) displayed cysteine desulfurase activity similar to the full-length protein but exhibited lower binding affinity for IscU, decreased ability to transfer (35)S to IscU, and reduced activity in assays of Fe/S cluster assembly on IscU. The findings with IscSDelta376-413 provide additional support for a mechanism of sulfur transfer involving a direct interaction between IscS and IscU and suggest that the C-terminal region of IscS may be important for binding IscU.

  20. LABCOM resonator Phase 3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Keres, L.J.

    1990-11-01

    The purpose of this project was to develop quartz crystal resonator designs, production processes, and test capabilities for 5-MHz, 6.2-MHz, and 10-MHz resonators for Tactical Miniature Crystal Oscillator (TMXO) applications. GE Neutron Devices (GEND) established and demonstrated the capability to produce and test quartz crystal resonators for use in the TMXO developed by the US Army ERADCOM (now LABCOM). The goals in this project were based on the ERADCOM statement of work. The scope of work indicated that the resonator production facilities for this project would not be completely independent, but that they would be supported in part by equipmentmore » and processes in place at GEND used in US Department of Energy (DOE) work. In addition, provisions for production test equipment or or eventual technology transfer costs to a commercial supplier were clearly excluded from the scope of work. The demonstrated technical capability of the deep-etched blank design is feasible and practical. It can be manufactured in quantity with reasonable yield, and its performance is readily predictable. The ceramic flatpack is a very strong package with excellent hermeticity. The four-point mount supports the crystal to reasonable shock levels and does not perturb the resonator's natural frequency-temperature behavior. The package can be sealed with excellent yields. The high-temperature, high-vacuum processing developed for the TMXO resonator, including bonding the piezoid to its mount with conductive polyimide adhesive, is consistent with precision resonator fabrication. 1 fig., 6 tabs.« less

  1. Method for fabricating a microelectromechanical resonator

    DOEpatents

    Wojciechowski, Kenneth E; Olsson, III, Roy H

    2013-02-05

    A method is disclosed which calculates dimensions for a MEM resonator in terms of integer multiples of a grid width G for reticles used to fabricate the resonator, including an actual sub-width L.sub.a=NG and an effective electrode width W.sub.e=MG where N and M are integers which minimize a frequency error f.sub.e=f.sub.d-f.sub.a between a desired resonant frequency f.sub.d and an actual resonant frequency f.sub.a. The method can also be used to calculate an overall width W.sub.o for the MEM resonator, and an effective electrode length L.sub.e which provides a desired motional impedance for the MEM resonator. The MEM resonator can then be fabricated using these values for L.sub.a, W.sub.e, W.sub.o and L.sub.e. The method can also be applied to a number j of MEM resonators formed on a common substrate.

  2. Magnetic resonance imaging of pelvic endometriosis.

    PubMed

    Méndez Fernández, R; Barrera Ortega, J

    Endometriosis is common in women of reproductive age; it can cause pelvic pain and infertility. It is important to diagnose endometriosis and to thoroughly evaluate its extension, especially when surgical treatment is being considered. Magnetic resonance imaging (MRI) with careful examination technique and interpretation enables more accurate and complete diagnosis and staging than ultrasonography, especially in cases of deep pelvic endometriosis. Furthermore, MRI can identify implants in sites that can be difficult to access in endoscopic or laparoscopic explorations. In this article, we describe the appropriate MRI protocol for the study of pelvic endometriosis and the MRI signs of pelvic organ involvement. It is necessary to know the subtle findings and to look for them so we can ensure that they are not overlooked. We describe clinical grading systems for endometriosis and review the diagnostic efficacy of MRI in comparison with other imaging techniques and surgery. Copyright © 2017 SERAM. Publicado por Elsevier España, S.L.U. All rights reserved.

  3. Fluctuation Reduction in a Si Micromechanical Resonator Tuned to Nonlinear Internal Resonance

    NASA Astrophysics Data System (ADS)

    Strachan, B. Scott; Czaplewski, David; Chen, Changyao; Dykman, Mark; Lopez, Daniel; Shaw, Steven

    2015-03-01

    We describe experimental and theoretical results on an unusual behavior of fluctuations when the system exhibits internal resonance. We study the fundamental flexural mode (FFM) of a Si microbeam. The FFM is electrically actuated and detected. It is resonantly nonlinearly coupled to another mode, which is not directly accessible and has a frequency nearly three times the FFM frequency. Both the FFM and the passive mode have long lifetimes. We find that the passive mode can be a ``sink'' for fluctuations of the FFM. This explains the recently observed dramatic decrease of these fluctuations at nonlinear resonance. The re-distribution of the vibration amplitudes and the fluctuations is reminiscent of what happens at level anti-crossing in quantum mechanics. However, here it is different because of interplay of the dependence of the vibration frequency of the FFM on its amplitude due to internal nonlinearity and the nonlinear resonance with the passive mode. We study both the response of the system to external resonant driving and also the behavior of the system in the presence of a feedback loop. The experimental and theoretical results are in good agreement.

  4. Geometrical optics model of Mie resonances

    PubMed

    Roll; Schweiger

    2000-07-01

    The geometrical optics model of Mie resonances is presented. The ray path geometry is given and the resonance condition is discussed with special emphasis on the phase shift that the rays undergo at the surface of the dielectric sphere. On the basis of this model, approximate expressions for the positions of first-order resonances are given. Formulas for the cavity mode spacing are rederived in a simple manner. It is shown that the resonance linewidth can be calculated regarding the cavity losses. Formulas for the mode density of Mie resonances are given that account for the different width of resonances and thus may be adapted to specific experimental situations.

  5. RESONATOR PARTICLE SEPARATOR

    DOEpatents

    Blewett, J.P.; Kiesling, J.D.

    1963-06-11

    A wave-guide resonator structure is designed for use in separating particles of equal momentum but differing in mass, having energies exceeding one billion eiectron volts. The particles referred to are those of sub-atomic size and are generally produced as a result of the bombardment of a target by a beam such as protons produced in a high energy accelerator. In the resonator a travelling electric wave is produced which travels at the same rate of speed as the unwanted particle which is thus deflected continuously over the length of the resonator. The wanted particle is slightly out of phase with the travelling wave so that over the whole length of the resonator it has a net deflection of substantially zero. The travelling wave is established in a wave guide of rectangular cross section in which stubs are provided to store magnetic wave energy leaving the electric wave energy in the main structure to obtain the desired travelling wave and deflection. The stubs are of such shape and spacing to establish a critical mathemitical relationship. (AEC)

  6. Magnetic resonance fingerprinting.

    PubMed

    Ma, Dan; Gulani, Vikas; Seiberlich, Nicole; Liu, Kecheng; Sunshine, Jeffrey L; Duerk, Jeffrey L; Griswold, Mark A

    2013-03-14

    Magnetic resonance is an exceptionally powerful and versatile measurement technique. The basic structure of a magnetic resonance experiment has remained largely unchanged for almost 50 years, being mainly restricted to the qualitative probing of only a limited set of the properties that can in principle be accessed by this technique. Here we introduce an approach to data acquisition, post-processing and visualization--which we term 'magnetic resonance fingerprinting' (MRF)--that permits the simultaneous non-invasive quantification of multiple important properties of a material or tissue. MRF thus provides an alternative way to quantitatively detect and analyse complex changes that can represent physical alterations of a substance or early indicators of disease. MRF can also be used to identify the presence of a specific target material or tissue, which will increase the sensitivity, specificity and speed of a magnetic resonance study, and potentially lead to new diagnostic testing methodologies. When paired with an appropriate pattern-recognition algorithm, MRF inherently suppresses measurement errors and can thus improve measurement accuracy.

  7. Resonant enhancement in leptogenesis

    NASA Astrophysics Data System (ADS)

    Dev, P. S. B.; Garny, M.; Klaric, J.; Millington, P.; Teresi, D.

    2018-02-01

    Vanilla leptogenesis within the type I seesaw framework requires the mass scale of the right-handed neutrinos to be above 109 GeV. This lower bound can be avoided if at least two of the sterile states are almost mass degenerate, which leads to an enhancement of the decay asymmetry. Leptogenesis models that can be tested in current and upcoming experiments often rely on this resonant enhancement, and a systematic and consistent description is therefore necessary for phenomenological applications. In this paper, we give an overview of different methods that have been used to study the saturation of the resonant enhancement when the mass difference becomes comparable to the characteristic width of the Majorana neutrinos. In this limit, coherent flavor transitions start to play a decisive role, and off-diagonal correlations in flavor space have to be taken into account. We compare various formalisms that have been used to describe the resonant regime and discuss under which circumstances the resonant enhancement can be captured by simplified expressions for the CP asymmetry. Finally, we briefly review some of the phenomenological aspects of resonant leptogenesis.

  8. Delta connected resonant snubber circuit

    DOEpatents

    Lai, J.S.; Peng, F.Z.; Young, R.W. Sr.; Ott, G.W. Jr.

    1998-01-20

    A delta connected, resonant snubber-based, soft switching, inverter circuit achieves lossless switching during dc-to-ac power conversion and power conditioning with minimum component count and size. Current is supplied to the resonant snubber branches solely by the dc supply voltage through the main inverter switches and the auxiliary switches. Component count and size are reduced by use of a single semiconductor switch in the resonant snubber branches. Component count is also reduced by maximizing the use of stray capacitances of the main switches as parallel resonant capacitors. Resonance charging and discharging of the parallel capacitances allows lossless, zero voltage switching. In one embodiment, circuit component size and count are minimized while achieving lossless, zero voltage switching within a three-phase inverter. 36 figs.

  9. Delta connected resonant snubber circuit

    DOEpatents

    Lai, Jih-Sheng; Peng, Fang Zheng; Young, Sr., Robert W.; Ott, Jr., George W.

    1998-01-01

    A delta connected, resonant snubber-based, soft switching, inverter circuit achieves lossless switching during dc-to-ac power conversion and power conditioning with minimum component count and size. Current is supplied to the resonant snubber branches solely by the dc supply voltage through the main inverter switches and the auxiliary switches. Component count and size are reduced by use of a single semiconductor switch in the resonant snubber branches. Component count is also reduced by maximizing the use of stray capacitances of the main switches as parallel resonant capacitors. Resonance charging and discharging of the parallel capacitances allows lossless, zero voltage switching. In one embodiment, circuit component size and count are minimized while achieving lossless, zero voltage switching within a three-phase inverter.

  10. Resonant characteristics and sensitivity dependency on the contact surface in QCM-micropillar-based system of coupled resonator sensors

    NASA Astrophysics Data System (ADS)

    Kashan, M. A. M.; Kalavally, V.; Lee, H. W.; Ramakrishnan, N.

    2016-05-01

    We report the characteristics and sensitivity dependence over the contact surface in coupled resonating sensors (CRSs) made of high aspect ratio resonant micropillars attached to a quartz crystal microbalance (QCM). Through experiments and simulation, we observed that when the pillars of resonant heights were placed in maximum displacement regions the resonance frequency of the QCM increased following the coupled resonance characteristics, as the pillar offered elastic loading to the QCM surface. However, the same pillars when placed in relatively lower displacement regions, in spite of their resonant dimension, offered inertial loading and resulted in a decrease in QCM resonance frequency, as the displacement amplitude was insufficient to couple the vibrations from the QCM to the pillars. Accordingly, we discovered that the coupled resonance characteristics not only depend on the resonant structure dimensions but also on the contact regions in the acoustic device. Further analysis revealed that acoustic pressure at the contact surface also influences the resonance frequency characteristics and sensitivity of the CRS. To demonstrate the significance of the present finding for sensing applications, humidity sensing is considered as the example measurand. When a sensing medium made of resonant SU-8 pillars was placed in a maximum displacement region on a QCM surface, the sensitivity increased by 14 times in comparison to a resonant sensing medium placed in a lower displacement region of a QCM surface.

  11. Resonant two-photon ionization spectroscopy of jet-cooled UN: determination of the ground state.

    PubMed

    Matthew, Daniel J; Morse, Michael D

    2013-05-14

    The optical transitions of supersonically cooled uranium nitride (UN) have been investigated in the range from 19,200 to 23,900 cm(-1) using resonant two-photon ionization spectroscopy. A large number of bands have been observed, of which seven have been rotationally resolved and analyzed. All are found to arise from the same state, which is presumably the ground state of the molecule. From the analysis of the bands, the ground state has Ω = 3.5, with a bond length of 1.7650(12) Å. Comparisons to the known isovalent molecules are made, and the variations in ground state configuration are explained in terms of the configurational reordering that occurs with changes in the nuclear and ligand charges. It is concluded that the UN molecule is best considered as a U(3+)N(3-) species in which the closed shell nitride ligand interacts with a U(3+) ion. The ground state of the molecule derives from a U(3+) ion in its 7s(1)5f 2) atomic configuration.

  12. Field Application of 238U/235U Measurements To Detect Reoxidation and Mobilization of U(IV).

    PubMed

    Jemison, Noah E; Shiel, Alyssa E; Johnson, Thomas M; Lundstrom, Craig C; Long, Philip E; Williams, Kenneth H

    2018-03-20

    Biostimulation to induce reduction of soluble U(VI) to relatively immobile U(IV) is an effective strategy for decreasing aqueous U(VI) concentrations in contaminated groundwater systems. If oxidation of U(IV) occurs following the biostimulation phase, U(VI) concentrations increase, challenging the long-term effectiveness of this technique. However, detecting U(IV) oxidation through dissolved U concentrations alone can prove difficult in locations with few groundwater wells to track the addition of U to a mass of groundwater. We propose the 238 U/ 235 U ratio of aqueous U as an independent, reliable tracer of U(IV) remobilization via oxidation or mobilization of colloids. Reduction of U(VI) produces 238 U-enriched U(IV), whereas remobilization of solid U(IV) should not induce isotopic fractionation. The incorporation of remobilized U(IV) with a high 238 U/ 235 U ratio into the aqueous U(VI) pool produces an increase in 238 U/ 235 U of aqueous U(VI). During several injections of nitrate to induce U(IV) oxidation, 238 U/ 235 U consistently increased, suggesting 238 U/ 235 U is broadly applicable for detecting mobilization of U(IV).

  13. Laser Resonator

    NASA Technical Reports Server (NTRS)

    Harper, L. L. (Inventor)

    1983-01-01

    An optical resonator cavity configuration has a unitary mirror with oppositely directed convex and concave reflective surfaces disposed into one fold and concertedly reversing both ends of a beam propagating from a laser rod disposed between two total internal reflection prisms. The optical components are rigidly positioned with perpendicularly crossed virtual rooflines by a compact optical bed. The rooflines of the internal reflection prisms, are arranged perpendicularly to the axis of the laser beam and to the optical axes of the optical resonator components.

  14. Detection of biological uranium reduction using magnetic resonance.

    PubMed

    Vogt, Sarah J; Stewart, Brandy D; Seymour, Joseph D; Peyton, Brent M; Codd, Sarah L

    2012-04-01

    The conversion of soluble uranyl ions (UO₂²⁺) by bacterial reduction to sparingly soluble uraninite (UO₂(s)) is being studied as a way of immobilizing subsurface uranium contamination. Under anaerobic conditions, several known types of bacteria including iron and sulfate reducing bacteria have been shown to reduce U (VI) to U (IV). Experiments using a suspension of uraninite (UO₂(s)) particles produced by Shewanella putrefaciens CN32 bacteria show a dependence of both longitudinal (T₁) and transverse (T₂) magnetic resonance (MR) relaxation times on the oxidation state and solubility of the uranium. Gradient echo and spin echo MR images were compared to quantify the effect caused by the magnetic field fluctuations (T*₂) of the uraninite particles and soluble uranyl ions. Since the precipitate studied was suspended in liquid water, the effects of concentration and particle aggregation were explored. A suspension of uraninite particles was injected into a polysaccharide gel, which simulates the precipitation environment of uraninite in the extracellular biofilm matrix. A reduction in the T₂ of the gel surrounding the particles was observed. Tests done in situ using three bioreactors under different mixing conditions, continuously stirred, intermittently stirred, and not stirred, showed a quantifiable T₂ magnetic relaxation effect over the extent of the reaction. Copyright © 2011 Wiley Periodicals, Inc.

  15. A 77-118 GHz RESONANCE-FREE SEPTUM POLARIZER

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Yen-Lin; Chiueh, Tzihong; Teng, Hsiao-Feng, E-mail: chiuehth@phys.ntu.edu.tw

    2014-03-01

    Measurements of polarized radiation often reveal specific physical properties of emission sources, such as the strengths and orientations of magnetic fields offered by synchrotron radiation and Zeeman line emission, and the electron density distribution caused by free-free emission. Polarization-capable, millimeter/sub-millimeter telescopes are normally equipped with either septum polarizers or ortho-mode transducers (OMT) to detect polarized radiation. Though the septum polarizer is limited to a significantly narrower bandwidth than the OMT, it possesses advantageous features unparalleled by the OMT when it comes to determining astronomical polarization measurements. We design an extremely wide-band circular waveguide septum polarizer, covering 42% bandwidth, from 77more » GHz to 118 GHz, without any undesired resonance, challenging the conventional bandwidth limit. Stokes parameters, constructed from the measured data between 77 GHz and 115 GHz, show that the leakage from I to Q and U is below ±2%, and the Q – U mutual leakage is below ±1%. Such a performance is comparable to other modern polarizers, but the bandwidth of this polarizer can be at least twice as wide. This extremely wide-band design removes the major weakness of the septum polarizer and opens up a new window for future astronomical polarization measurements.« less

  16. MRI (Magnetic Resonance Imaging)

    MedlinePlus

    ... IV in the arm. MRI Research Programs at FDA Magnetic Resonance Imaging (MRI) Safety Electromagnetic Modeling Related ... Resonance Imaging Equipment in Clinical Use (March 2015) FDA/CDER: Information on Gadolinium-Based Contrast Agents Safety ...

  17. Properties of resonance wave functions.

    NASA Technical Reports Server (NTRS)

    More, R. M.; Gerjuoy, E.

    1973-01-01

    Construction and study of resonance wave functions corresponding to poles of the Green's function for several illustrative models of theoretical interest. Resonance wave functions obtained from the Siegert and Kapur-Peierls definitions of the resonance energies are compared. The comparison especially clarifies the meaning of the normalization constant of the resonance wave functions. It is shown that the wave functions may be considered renormalized in a sense analogous to that of quantum field theory. However, this renormalization is entirely automatic, and the theory has neither ad hoc procedures nor infinite quantities.

  18. Orbital resonances around black holes.

    PubMed

    Brink, Jeandrew; Geyer, Marisa; Hinderer, Tanja

    2015-02-27

    We compute the length and time scales associated with resonant orbits around Kerr black holes for all orbital and spin parameters. Resonance-induced effects are potentially observable when the Event Horizon Telescope resolves the inner structure of Sgr A*, when space-based gravitational wave detectors record phase shifts in the waveform during the resonant passage of a compact object spiraling into the black hole, or in the frequencies of quasiperiodic oscillations for accreting black holes. The onset of geodesic chaos for non-Kerr spacetimes should occur at the resonance locations quantified here.

  19. Observations of the high vibrational levels of the B ' ' B ¯ 1 Σu + state of H2

    NASA Astrophysics Data System (ADS)

    Chartrand, A. M.; Duan, W.; Ekey, R. C.; McCormack, E. F.

    2016-01-01

    Double-resonance laser spectroscopy via the E F 1 Σg + , v ' = 6 , J ' = 0 -2 state was used to probe the high vibrational levels of the B ' ' B ¯ 1 Σu + state of molecular hydrogen. Resonantly enhanced multiphoton ionization spectra were recorded by detecting ion production as a function of energy using a time of flight mass spectrometer. New measurements of energies for the v = 51-66 levels for the B ' ' B ¯ state of H2 are reported, which, taken with previous results, span the v = 46-69 vibrational levels. Results for energy levels are compared to theoretical close-coupled calculations [L. Wolniewicz, T. Orlikowski, and G. Staszewska, J. Mol. Spectrosc. 238, 118-126 (2006)]. The average difference between the 84 measured energies and calculated energies is -3.8 cm-1 with a standard deviation of 5.3 cm-1. This level of agreement showcases the success of the theoretical calculations in accounting for the strong rovibronic mixing of the 1 Σu + and 1 Πu + states. Due to the ion-pair character of the outer well, the observed energies of the vibrational levels below the third dissociation limit smoothly connect with previously observed energies of ion-pair states above this limit. The results provide an opportunity for testing a heavy Rydberg multi-channel quantum defect analysis of the high vibrational states below the third dissociation limit.

  20. Resonant Mode-hopping Micromixing

    PubMed Central

    Jang, Ling-Sheng; Chao, Shih-Hui; Holl, Mark R.; Meldrum, Deirdre R.

    2009-01-01

    A common micromixer design strategy is to generate interleaved flow topologies to enhance diffusion. However, problems with these designs include complicated structures and dead volumes within the flow fields. We present an active micromixer using a resonating piezoceramic/silicon composite diaphragm to generate acoustic streaming flow topologies. Circulation patterns are observed experimentally and correlate to the resonant mode shapes of the diaphragm. The dead volumes in the flow field are eliminated by rapidly switching from one discrete resonant mode to another (i.e., resonant mode-hop). Mixer performance is characterized by mixing buffer with a fluorescence tracer containing fluorescein. Movies of the mixing process are analyzed by converting fluorescent images to two-dimensional fluorescein concentration distributions. The results demonstrate that mode-hopping operation rapidly homogenized chamber contents, circumventing diffusion-isolated zones. PMID:19551159

  1. Theoretical resolution of the H- resonance spectrum up to the n=4 threshold. I. States of 1Po, 1Do, and 1Fo symmetries

    NASA Astrophysics Data System (ADS)

    Bylicki, Mirosław; Nicolaides, Cleanthes A.

    2000-05-01

    We report on a theoretical approach to the calculation of wave functions, energies E, and widths Γ of high-lying resonances of H-, with application to the identification of 76 states of 1Po, 1Do, and 1Fo symmetries up to the n=4 threshold, with widths down to about 1×10-8-1×10-10 a.u., depending on symmetry and threshold. The overwhelming majority of these resonances have not been detected experimentally. Previous calculations by different methods allowed the identification of 35 of these states, with only very few cases having a level of accuracy comparable to the one of the present work. We suggest that the measurement of these resonances might become possible via two-step excitation mechanisms using ultrasensitive techniques capable of dealing with the problems of very small widths and preparation cross-sections. In this work, the 1D state at 10.872 eV above the H-1s2 1S ground state, already prepared and measured by electron scattering as well as by two-photon absorption, is considered as the stepping stone for the possible probing of resonances of 1Po, 1Do, and 1Fo symmetries via absorption of tunable radiation of high resolution. By classifying the results according to the Gailitis-Damburg model of dipole resonances (a product of a 1/r2-like potential) we find that there are unperturbed as well as perturbed series, in analogy with the Rydberg spectra of neutrals and positive ions (a product of a 1/r-like potential). For the former, the agreement with the Gailitis-Damburg predictions as to the relationship of the extent of the outer orbital and of the energies and widths of states is excellent. The perturbed series result from interchannel coupling and the remaining electron correlation. One of the effects is the existence of overlapping resonances. For example, for two 1Po states below the n=3 threshold there is degeneracy on the energy axis (E1=-0.0555763612 a.u. and E2=-0.0555763099 a.u.) but the widths differ (Γ1=1.14×10-4 eV and Γ2=5.45×10-6 e

  2. Resonant dynamics of gravitationally bound pair of binaries: the case of 1:1 resonance

    NASA Astrophysics Data System (ADS)

    Breiter, Slawomir; Vokrouhlický, David

    2018-04-01

    The work presents a study of the 1:1 resonance case in a hierarchical quadruple stellar system of the 2+2 type. The resonance appears if orbital periods of both binaries are approximately equal. It is assumed that both periods are significantly shorter than the period of principal orbit of one binary with respect to the other. In these circumstances, the problem can be treated as three independent Kepler problems perturbed by mutual gravitational interactions. By means of canonical perturbation methods, the planar problem is reduced to a secular system with 1 degree of freedom involving a resonance angle (the difference of mean longitudes of the binaries) and its conjugate momentum (involving the ratio of orbital period in one binary to the period of principal orbit). The resonant model is supplemented with short periodic perturbations expressions, and verified by the comparison with numerical integration of the original equations of motion. Estimates of the binaries periods variations indicate that the effect is rather weak, but possibly detectible if it occurs in a moderately compact system. However, the analysis of resonance capture scenarios implies that the 1:1 resonance should be exceptional amongst the 2+2 quadruples.

  3. Stochastic resonance in micro/nano cantilever sensors

    NASA Astrophysics Data System (ADS)

    Singh, Priyanka; Yadava, R. D. S.

    2018-05-01

    In this paper we present a comparative study on the stochastic resonance in micro/nano cantilever resonators due to fluctuations in the fundamental frequency or the damping coefficient. Considering DC+AC electrostatic actuation in the presence of zero-mean Gaussian noise with exponential autocorrelation we analyze stochastic resonance behaviors for the frequency and the damping fluctuations separately, and compare the effects of stochastic resonance on Q-factor of the resonators for different levels of damping losses. It is found that even though the stochastic resonance occurs for both types of fluctuations, only the damping fluctuation produces right cooperative influence on the fundamental resonance that improves both the amplitude response and the quality factor of the resonator.

  4. Electromagnetic fission of238U at 600 and 1000 MeV per nucleon

    NASA Astrophysics Data System (ADS)

    Rubehn, Th.; Müller, W. F. J.; Bassini, R.; Begemann-Blaich, M.; Blaich, Th.; Ferrero, A.; Groß, C.; Imme, G.; Iori, I.; Kunde, G. J.; Kunze, W. D.; Lindenstruth, V.; Lynen, U.; Möhlenkamp, T.; Moretto, L. G.; Ocker, B.; Pochodzalla, J.; Raciti, G.; Reito, S.; Sann, H.; Schüttauf, A.; Seidel, W.; Serfling, V.; Trautmann, W.; Trzcinski, A.; Verde, G.; Wörner, A.; Zude, E.; Zwieglinski, B.

    1995-06-01

    Electromagnetic fission of238U projectiles at E/A =600 and 1000 MeV was studied with the ALADIN spectrometer at the heavy-ion synchrotron SIS. Seven different targets (Be, C, Al, Cu, In, Au and U) were used. By considering only those fission events where the two charges added up to 92, most of the nuclear interactions were excluded. The nuclear contributions to the measured fission cross sections were determined by extrapolating from beryllium to the heavier targets with the concept of factorization. The obtained cross sections for electromagnetic fission are well reproduced by extended Weizsäcker-Williams calculations which include E1 and E2 excitations. The asymmetry of the fission fragments' charge distribution gives evidence for the excitation of the double giant-dipole resonance in uranium.

  5. Hadronic Resonance production in ALICE

    NASA Astrophysics Data System (ADS)

    Markert, Christina; ALICE Collaboration

    2017-07-01

    In heavy ion collisions a fireball of hot and dense matter is created. Short lived hadronic resonances are sensitive to the medium properties, in particular to the temperature, density and system size. Resonance yields and momentum distributions are used to gain insight into the hadronic phase, its expansion velocity and time duration. The multiplicity dependent hadronic resonance production in p-p, p-Pb and Pb-Pb collisions will be discussed within the context of the possible extended hadronic and partonic phase. The experimental results will be compared to EPOS+UrQMD model calculations to discuss the system size dependent interactions of the hadronic medium on various resonances. Small systems such as p-p and p-Pb collisions will be discussed with respect to resonance and strange particle measurements.

  6. Substrate influence on the interlayer electron-phonon couplings in fullerene films probed with doubly-resonant SFG spectroscopy.

    PubMed

    Elsenbeck, Dennis; Das, Sushanta K; Velarde, Luis

    2017-07-19

    We present doubly-resonant sum frequency generation (DR-SFG) spectra of fullerene thin films on metallic and dielectric substrates as a way to investigate the interplay between nuclear and electronic coupling at buried interfaces. Modal and substrate selectivity in the electronic enhancement of the C 60 vibrational signatures is demonstrated for excitation wavelengths spanning the visible range. While the SFG response of the totally symmetric A g (2) mode of fullerene is distinctly coupled to the optically allowed electronic transition corresponding to the HOMO-LUMO+1 of C 60 (ca. 2.6 eV), the T 1u (4) vibrational mode appears to be coupled to a symmetry-forbidden HOMO-LUMO transition at lower energies (ca. 2.0 eV). For dielectric substrates, the DR-SFG intensity of the T 1u (4) mode shows lack of enhancement for upconversion wavelengths off-resonance with the optically-dark LUMO. However, the T 1u (4) mode shows a unique coupling to an intermediate state (∼2.4 eV) only for the fullerene films on the gold substrate. We attribute this coupling to unique interactions at the buried C 60 /gold interface. These results demonstrate the occurrence of clear electron-phonon couplings at the C 60 /substrate interfaces and shed light on the impact of these couplings on the optical response of electronically excited fullerene. This coupling may influence charge and energy transport in organic electronic devices mediated by vibrational motions. We also demonstrate a potential use of this added selectivity in chemical imaging.

  7. Electrothermal piezoresistive cantilever resonators for personal measurements of nanoparticles in workplace exposure

    NASA Astrophysics Data System (ADS)

    Wasisto, Hutomo Suryo; Wu, Wenze; Uhde, Erik; Waag, Andreas; Peiner, Erwin

    2015-05-01

    Low-cost and low-power piezoresistive cantilever resonators with integrated electrothermal heaters are developed to support the sensing module enhancement of the second generation of handheld cantilever-based airborne nanoparticle (NP) detector (CANTOR-2). These sensors are used for direct-reading of exposure to carbon engineered nanoparticles (ENPs) at indoor workplaces. The cantilever structures having various shapes of free ends are created using silicon bulk micromachining technologies (i.e, rectangular, hammer-head, triangular, and U-shaped cantilevers). For a complete wearable CANTOR-2, all components of the proposed detector can be grouped into two main units depending on their packaging placements (i.e., the NP sampler head and the electronics mounted in a handy-format housing). In the NP sampler head, a miniaturized electrophoretic aerosol sampler and a resonant silicon cantilever mass sensor are employed to collect the ENPs from the air stream to the cantilever surfaces and measuring their mass concentration, respectively. After calibration, the detected ENP mass concentrations of CANTOR-2 show a standard deviation from fast mobility particle sizer (FMPS, TSI 3091) of 8-14%.

  8. Extraordinary acoustic transmission mediated by Helmholtz resonators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koju, Vijay; Rowe, Ebony; Robertson, William M., E-mail: William.Robertson@mtsu.edu

    2014-07-15

    We demonstrate perfect transmission of sound through a rigid barrier embedded with Helmholtz resonators. The resonators are confined within a waveguide and they are oriented such that one neck protrudes onto each side of the barrier. Perfect sound transmission occurs even though the open area of the necks is less than 3% of the barrier area. Maximum transmission occurs at the resonant frequency of the Helmholtz resonator. Because the dimensions of the Helmholtz resonators are much smaller than the resonant wavelength, the transmission is independent of the direction of sound on the barrier and of the relative placement of themore » necks. Further, we show that the transmitted sound experiences a continuous phase transition of π radians as a function of frequency through resonance. In simulations of adjacent resonators with slightly offset resonance frequencies, the phase difference leads to destructive interference. By expanding the simulation to a linear array of tuned Helmholtz resonators we show that it is possible to create an acoustic lens. The ability of Helmholtz resonator arrays to manipulate the phase of a plane acoustic wave enables a new class of sonic beam-forming devices analogous to diffractive optics.« less

  9. The resonator handbook

    NASA Technical Reports Server (NTRS)

    Cook, Jerry D.; Zhou, Shiliang

    1993-01-01

    The purpose of this work is to extend resonator theory into the region in which the planar mirror is quite small. Results of the theoretical description are then extended to resonator design and experimental arrangements as discussed in further sections of this work. Finally, a discussion of dielectric measurements for small samples is included as a specific application of this work.

  10. Nonlinear dynamics under varying temperature conditions of the resonating beams of a differential resonant accelerometer

    NASA Astrophysics Data System (ADS)

    Zhang, Jing; Wang, Yagang; Zega, Valentina; Su, Yan; Corigliano, Alberto

    2018-07-01

    In this work the nonlinear dynamic behaviour under varying temperature conditions of the resonating beams of a differential resonant accelerometer is studied from the theoretical, numerical and experimental points of view. A complete analytical model based on the Hamilton’s principle is proposed to describe the nonlinear behaviour of the resonators under varying temperature conditions and numerical solutions are presented in comparison with experimental data. This provides a novel perspective to examine the relationship between temperature and nonlinearity, which helps predicting the dynamic behaviour of resonant devices and can guide their optimal design.

  11. Graded-index whispering gallery mode resonators

    NASA Technical Reports Server (NTRS)

    Savchenkov, Anatoliy (Inventor); Maleki, Lutfollah (Inventor); Ilchenko, Vladimir (Inventor); Matsko, Andrey B. (Inventor)

    2005-01-01

    Whispering gallery mode optical resonators which have spatially-graded refractive indices. In one implementation, the refractive index spatially increases with a distance from an exterior surface of such a resonator towards an interior of the resonator to produce substantially equal spectral separations for different whispering gallery modes. An optical coupler may be used with such a resonator to provide proper optical coupling.

  12. Sphericity determination using resonant ultrasound spectroscopy

    DOEpatents

    Dixon, Raymond D.; Migliori, Albert; Visscher, William M.

    1994-01-01

    A method is provided for grading production quantities of spherical objects, such as roller balls for bearings. A resonant ultrasound spectrum (RUS) is generated for each spherical object and a set of degenerate sphere-resonance frequencies is identified. From the degenerate sphere-resonance frequencies and known relationships between degenerate sphere-resonance frequencies and Poisson's ratio, a Poisson's ratio can be determined, along with a "best" spherical diameter, to form spherical parameters for the sphere. From the RUS, fine-structure resonant frequency spectra are identified for each degenerate sphere-resonance frequency previously selected. From each fine-structure spectrum and associated sphere parameter values an asphericity value is determined. The asphericity value can then be compared with predetermined values to provide a measure for accepting or rejecting the sphere.

  13. Algorithm of resonance orders for the objects

    NASA Astrophysics Data System (ADS)

    Zhang, YongGang; Zhang, JianXue

    2018-03-01

    In mechanical engineering, the object resonance phenomena often occur when the external incident wave frequency is close to object of the natural frequency. Object resonance phenomena get the maximum value when the external incident frequency is equal to object the natural frequency. Experiments found that resonance intension of the object is changed, different objects resonance phenomena present different characteristics of ladders. Based on object orders resonance characteristics, the calculation method of object orders resonance is put forward in the paper, and the application for the light and sound waves on the seven order resonance characteristics by people feel, the result error is less than 1%.Visible in this paper, the method has high accuracy and usability. The calculation method reveals that some object resonance occur present order characteristic only four types, namely the first-orders resonance characteristics, third-orders characteristics, five orders characteristic, and seven orders characteristic.

  14. The architecture of the spliceosomal U4/U6.U5 tri-snRNP

    PubMed Central

    Nguyen, Thi Hoang Duong; Galej, Wojciech P.; Bai, Xiao-chen; Savva, Christos G.; Newman, Andrew J.; Scheres, Sjors H. W.; Nagai, Kiyoshi

    2015-01-01

    U4/U6.U5 tri-snRNP is a 1.5 MDa pre-assembled spliceosomal complex comprising U5 snRNA, extensively base-paired U4/U6 snRNAs and >30 proteins, including the key components Prp8, Brr2 and Snu114. The tri-snRNP combines with a pre-mRNA substrate bound to U1 and U2 snRNPs and transforms into a catalytically active spliceosome following extensive compositional and conformational changes triggered by unwinding of the U4/U6 snRNAs. CryoEM single-particle reconstruction of yeast tri-snRNP at 5.9Å resolution reveals the essentially complete organization of its RNA and protein components. The single-stranded region of U4 snRNA between its 3′-stem-loop and the U4/U6 snRNA stem I is loaded into the Brr2 helicase active site ready for unwinding. Snu114 and the N-terminal domain of Prp8 position U5 snRNA to insert its Loop I, which aligns the exons for splicing, into the Prp8 active site cavity. The structure provides crucial insights into the activation process and the active site of the spliceosome. PMID:26106855

  15. Cylindrical laser resonator

    DOEpatents

    Casperson, Lee W.

    1976-02-24

    The properties of an improved class of lasers is presented. In one configuration of these lasers the radiation propagates radially within the amplifying medium, resulting in high fields and symmetric illumination at the resonator axis. Thus there is a strong focusing of energy at the axis of the resonator. In a second configuration the radiation propagates back and forth in a tubular region of space.

  16. Resonant dielectric metamaterials

    DOEpatents

    Loui, Hung; Carroll, James; Clem, Paul G; Sinclair, Michael B

    2014-12-02

    A resonant dielectric metamaterial comprises a first and a second set of dielectric scattering particles (e.g., spheres) having different permittivities arranged in a cubic array. The array can be an ordered or randomized array of particles. The resonant dielectric metamaterials are low-loss 3D isotropic materials with negative permittivity and permeability. Such isotropic double negative materials offer polarization and direction independent electromagnetic wave propagation.

  17. Thermally actuated resonant silicon crystal nanobalances

    NASA Astrophysics Data System (ADS)

    Hajjam, Arash

    As the potential emerging technology for next generation integrated resonant sensors and frequency references as well as electronic filters, micro-electro-mechanical resonators have attracted a lot of attention over the past decade. As a result, a wide variety of high frequency micro/nanoscale electromechanical resonators have recently been presented. MEMS resonators, as low-cost highly integrated and ultra-sensitive mass sensors, can potentially provide new opportunities and unprecedented capabilities in the area of mass sensing. Such devices can provide orders of magnitude higher mass sensitivity and resolution compared to Film Bulk Acoustic resonators (FBAR) or the conventional quartz and Surface Acoustic Wave (SAW) resonators due to their much smaller sizes and can be batch-fabricated and utilized in highly integrated large arrays at a very low cost. In this research, comprehensive experimental studies on the performance and durability of thermally actuated micromechanical resonant sensors with frequencies up to tens of MHz have been performed. The suitability and robustness of the devices have been demonstrated for mass sensing applications related to air-borne particles and organic gases. In addition, due to the internal thermo-electro-mechanical interactions, the active resonators can turn some of the consumed electronic power back into the mechanical structure and compensate for the mechanical losses. Therefore, such resonators can provide self-sustained-oscillation without the need for any electronic circuitry. This unique property has been deployed to demonstrate a prototype self-sustained sensor for air-borne particle monitoring. I have managed to overcome one of the obstacles for MEMS resonators, which is their relatively poor temperature stability. This is a major drawback when compared with the conventional quartz crystals. A significant decrease of the large negative TCF for the resonators has been attained by doping the devices with a high

  18. Numerical dating of a Late Quaternary spit-shoreline complex at the northern end of Silver Lake playa, Mojave Desert, California: A comparison of the applicability of radiocarbon, luminescence, terrestrial cosmogenic nuclide, electron spin resonance, U-series and amino acid racemization methods

    USGS Publications Warehouse

    Owen, L.A.; Bright, Jordon; Finkel, R.C.; Jaiswal, M.K.; Kaufman, D.S.; Mahan, S.; Radtke, U.; Schneider, J.S.; Sharp, W.; Singhvi, A.K.; Warren, C.N.

    2007-01-01

    A Late Quaternary spit-shoreline complex on the northern shore of Pleistocene Lake Mojave of southeastern California, USA was studied with the goal of comparing accelerator mass spectrometry (AMS) radiocarbon, luminescence, electron spin resonance (ESR), terrestrial cosmogenic radionuclide (TCN) surface exposure, amino acid racemization (AAR) and U-series dating methods. The pattern of ages obtained by the different methods illustrates the complexity of processes acting in the lakeshore environment and highlights the utility of a multi-method approach. TCN surface exposure ages (mostly ???20-30 ka) record the initial erosion of shoreline benches, whereas radiocarbon ages on shells (determined in this and previous studies) within the spit, supported by AAR data, record its construction at fluctuating lake levels from ???16 to 10 ka. Luminescence ages on spit sediment (???6-7 ka) and ESR ages on spit shells (???4 ka) are anomalously young relative to radiocarbon ages of shells within the same deposits. The significance of the surprisingly young luminescence ages is not clear. The younger ESR ages could be a consequence of post-mortem enrichment of U in the shells. High concentrations of detrital thorium in tufa coating spit gravels inhibited the use of single-sample U-series dating. Detailed comparisons such as this provide one of the few means of assessing the accuracy of Quaternary dating techniques. More such comparisons are needed. ?? 2007 Elsevier Ltd and INQUA.

  19. Repetitive resonant railgun power supply

    DOEpatents

    Honig, E.M.; Nunnally, W.C.

    1985-06-19

    A repetitive resonant railgun power supply provides energy for repetitively propelling projectiles from a pair of parallel rails. The supply comprises an energy storage capacitor, a storage inductor to form a resonant circuit with the energy storage capacitor and a magnetic switch to transfer energy between the resonant circuit and the pair of parallel rails for the propelling of projectiles.

  20. Repetitive resonant railgun power supply

    DOEpatents

    Honig, Emanuel M.; Nunnally, William C.

    1988-01-01

    A repetitive resonant railgun power supply provides energy for repetitively propelling projectiles from a pair of parallel rails. The supply comprises an energy storage capacitor, a storage inductor to form a resonant circuit with the energy storage capacitor and a magnetic switch to transfer energy between the resonant circuit and the pair of parallel rails for the propelling of projectiles.

  1. Sphericity determination using resonant ultrasound spectroscopy

    DOEpatents

    Dixon, R.D.; Migliori, A.; Visscher, W.M.

    1994-10-18

    A method is provided for grading production quantities of spherical objects, such as roller balls for bearings. A resonant ultrasound spectrum (RUS) is generated for each spherical object and a set of degenerate sphere-resonance frequencies is identified. From the degenerate sphere-resonance frequencies and known relationships between degenerate sphere-resonance frequencies and Poisson's ratio, a Poisson's ratio can be determined, along with a 'best' spherical diameter, to form spherical parameters for the sphere. From the RUS, fine-structure resonant frequency spectra are identified for each degenerate sphere-resonance frequency previously selected. From each fine-structure spectrum and associated sphere parameter values an asphericity value is determined. The asphericity value can then be compared with predetermined values to provide a measure for accepting or rejecting the sphere. 14 figs.

  2. Improved resonance characteristics of GaAs beam resonators by epitaxially induced strain

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yamaguchi, H.; Onomitsu, K.; Kato, K.

    2008-06-23

    Micromechanical-beam resonators were fabricated using a strained GaAs film grown on relaxed In{sub 0.1}Ga{sub 0.9}As/In{sub 0.1}Al{sub 0.9}As buffer layers. The natural frequency of the fundamental mode was increased 2.5-4 times by applying tensile strain, showing good agreement with the model calculation assuming strain of 0.35% along the beam. In addition, the Q factor of 19 000 was obtained for the best sample, which is one order of magnitude higher than that for the unstrained resonator. This technique can be widely applied for improving the performance of resonator-based micro-/nanoelectromechanical devices.

  3. Sensing performance analysis on Fano resonance of metallic double-baffle contained MDM waveguide coupled ring resonator

    NASA Astrophysics Data System (ADS)

    Chen, Ying; Luo, Pei; Liu, Xiaofei; Di, Yuanjian; Han, Shuaitao; Cui, Xingning; He, Lei

    2018-05-01

    Based on the transmission property and the photon localization characteristic of the surface plasmonic sub-wavelength structure, a metallic double-baffle contained metal-dielectric-metal (MDM) waveguide coupled ring resonator is proposed. Like the electromagnetically induced transparency (EIT), the Fano resonance can be achieved by the interference between the metallic double-baffle resonator and the ring resonator. Based on the coupled mode theory, the transmission property is analyzed. Through the numerical simulation by the finite element method (FEM), the quantitative analysis on the influences of the radius R of the ring and the coupling distance g between the metallic double-baffle resonator and the ring resonator for the figure of merit (FOM) is performed. And after the structure parameter optimization, the sensing performance of the waveguide structure is discussed. The simulation results show that the FOM value of the optimized structure can attain to 5.74 ×104 and the sensitivity of resonance wavelength with refractive index drift is about 825 nm/RIU. The range of the detected refractive index is suitable for all gases. The waveguide structure can provide effective theoretical references for the design of integrated plasmonic devices.

  4. Entanglement Evolution of Jaynes-Cummings Model in Resonance Case and Non-resonance Case

    NASA Astrophysics Data System (ADS)

    Cheng, Jing; Chen, Xi; Shan, Chuan-Jia

    2018-06-01

    We investigate the entanglement evolution of a two-level atom and a quantized single model electromagnetic filed in the resonance and non-resonance cases. The effects of the initial state, detuning degree, photon number on the entanglement are shown in detail. The results show that the atom-cavity entanglement state appears with periodicity. The increasing of the photon number can make the period of quantum entanglement be shorter. In the non-resonant case, if we choose the suitable initial state the entanglement of atom-cavity can be 1.0

  5. Extreme secular excitation of eccentricity inside mean motion resonance. Small bodies driven into star-grazing orbits by planetary perturbations

    NASA Astrophysics Data System (ADS)

    Pichierri, Gabriele; Morbidelli, Alessandro; Lai, Dong

    2017-09-01

    even in the presence of a single moderately eccentric planet, but only from the vicinity of the 4:1 mean motion resonance. For sufficiently high planetary masses the General Relativity effect does not prevent the achievement of star-grazing orbits. The Mathematica notebook is only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/605/A23

  6. U.S. Korean Youth's Ideas and Experience of U.S. Education, U.S. Society, and U.S. History

    ERIC Educational Resources Information Center

    An, Sohyun

    2009-01-01

    Drawing on and conversing with the large body of research and literature on young people's historical understanding, Asian American education, transnational migration, and Korean American studies, this dissertation research explored contemporary U.S. Korean youth's ideas and experiences of U.S. education, U.S. society and U.S. history.…

  7. One of the closest exoplanet pairs to the 3:2 mean motion resonance: K2-19b and c

    NASA Astrophysics Data System (ADS)

    Armstrong, David J.; Santerne, Alexandre; Veras, Dimitri; Barros, Susana C. C.; Demangeon, Olivier; Lillo-Box, Jorge; McCormac, James; Osborn, Hugh P.; Tsantaki, Maria; Almenara, José-Manuel; Barrado, David; Boisse, Isabelle; Bonomo, Aldo S.; Brown, David J. A.; Bruno, Giovanni; Rey Cerda, Javiera; Courcol, Bastien; Deleuil, Magali; Díaz, Rodrigo F.; Doyle, Amanda P.; Hébrard, Guillaume; Kirk, James; Lam, Kristine W. F.; Pollacco, Don L.; Rajpurohit, Arvind; Spake, Jessica; Walker, Simon R.

    2015-10-01

    Aims: The K2 mission has recently begun to discover new and diverse planetary systems. In December 2014, Campaign 1 data from the mission was released, providing high-precision photometry for ~22 000 objects over an 80-day timespan. We searched these data with the aim of detecting more important new objects. Methods: Our search through two separate pipelines led to the independent discovery of K2-19b and c, a two-planet system of Neptune-sized objects (4.2 and 7.2 R⊕), orbiting a K dwarf extremely close to the 3:2 mean motion resonance. The two planets each show transits, sometimes simultaneously owing to their proximity to resonance and the alignment of conjunctions. Results: We obtained further ground-based photometry of the larger planet with the NITES telescope, demonstrating the presence of large transit timing variations (TTVs), and used the observed TTVs to place mass constraints on the transiting objects under the hypothesis that the objects are near but not in resonance. We then statistically validated the planets through the PASTIS tool, independently of the TTV analysis. Using observations made with SOPHIE on the 1.93-m telescope at Observatoire de Haute-Provence (CNRS), France.Appendix is available in electronic form at http://www.aanda.orgA table of the data plotted in Fig. 1 is only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/582/A33

  8. Interband Lateral Resonant Tunneling Transistor.

    DTIC Science & Technology

    1994-11-14

    INTERBAND LATERAL RESONANT TUNNELING TRANSISTOR 10 BACKGROUND OF THE INVENTION Field of the Invention This invention pertains to a tunneling transistor...and in 15 particular to an interband lateral resonant tunneling transistor. Description of Related Art Conventional semiconductor technologies are... interband lateral resonant tunneling transistor along the cross-section B-B of Figure 2c. Figure 4 is another preferred embodiment cross-sectional 20

  9. Nonlinear optical whispering gallery mode resonators

    NASA Technical Reports Server (NTRS)

    Ilchenko, Vladimir (Inventor); Matsko, Andrey B. (Inventor); Savchenkov, Anatoliy (Inventor); Maleki, Lutfollah (Inventor)

    2005-01-01

    Whispering gallery mode (WGM) optical resonators comprising nonlinear optical materials, where the nonlinear optical material of a WGM resonator includes a plurality of sectors within the optical resonator and nonlinear coefficients of two adjacent sectors are oppositely poled.

  10. Chiral U(1) flavor models and flavored Higgs doublets: the top FB asymmetry and the W jj

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ko, P.; Omura, Yuji; Yu, Chaehyun

    2012-01-01

    We present U(1) flavor models for leptophobic Z' with flavor dependent couplings to the right-handed up-type quarks in the Standard Model (SM), which can accommodate the recent data on the top forward-backward (FB) asymmetry and the dijet resonance associated with a W boson reported by CDF Collaboration. Such flavor-dependent leptophobic charge assignments generally require extra chiral fermions for anomaly cancellation. Also the chiral nature of U(1)' flavor symmetry calls for new U(1)'-charged Higgs doublets in order for the SM fermions to have realistic renormalizable Yukawa couplings. The stringent constraints from the top FB asymmetry at the Tevatron and the samemore » sign top pair production at the LHC can be evaded due to contributions of the extra Higgs doublets. We also show that the extension could realize cold dark matter candidates.« less

  11. Contour mode resonators with acoustic reflectors

    DOEpatents

    Olsson, Roy H [Albuquerque, NM; Fleming, James G [Albuquerque, NM; Tuck, Melanie R [Albuquerque, NM

    2008-06-10

    A microelectromechanical (MEM) resonator is disclosed which has a linear or ring-shaped acoustic resonator suspended above a substrate by an acoustic reflector. The acoustic resonator can be formed with a piezoelectric material (e.g. aluminum nitride, zinc oxide or PZT), or using an electrostatically-actuated material. The acoustic reflector (also termed an acoustic mirror) uses alternating sections of a relatively low acoustic impedance Z.sub.L material and a relatively high acoustic impedance Z.sub.H material to isolate the acoustic resonator from the substrate. The MEM resonator, which can be formed on a silicon substrate with conventional CMOS circuitry, has applications for forming oscillators, rf filters, and acoustic sensors.

  12. Nonlinear resonances in the ABC-flow

    NASA Astrophysics Data System (ADS)

    Didov, A. A.; Uleysky, M. Yu.

    2018-01-01

    In this paper, we study resonances of the ABC-flow in the near integrable case ( C ≪1 ). This is an interesting example of a Hamiltonian system with 3/2 degrees of freedom in which simultaneous existence of two resonances of the same order is possible. Analytical conditions of the resonance existence are received. It is shown numerically that the largest n :1 (n = 1, 2, 3) resonances exist, and their energies are equal to theoretical energies in the near integrable case. We provide analytical and numerical evidences for existence of two branches of the two largest n :1 (n = 1, 2) resonances in the region of finite motion.

  13. Tunable Micro- and Nanomechanical Resonators

    PubMed Central

    Zhang, Wen-Ming; Hu, Kai-Ming; Peng, Zhi-Ke; Meng, Guang

    2015-01-01

    Advances in micro- and nanofabrication technologies have enabled the development of novel micro- and nanomechanical resonators which have attracted significant attention due to their fascinating physical properties and growing potential applications. In this review, we have presented a brief overview of the resonance behavior and frequency tuning principles by varying either the mass or the stiffness of resonators. The progress in micro- and nanomechanical resonators using the tuning electrode, tuning fork, and suspended channel structures and made of graphene have been reviewed. We have also highlighted some major influencing factors such as large-amplitude effect, surface effect and fluid effect on the performances of resonators. More specifically, we have addressed the effects of axial stress/strain, residual surface stress and adsorption-induced surface stress on the sensing and detection applications and discussed the current challenges. We have significantly focused on the active and passive frequency tuning methods and techniques for micro- and nanomechanical resonator applications. On one hand, we have comprehensively evaluated the advantages and disadvantages of each strategy, including active methods such as electrothermal, electrostatic, piezoelectrical, dielectric, magnetomotive, photothermal, mode-coupling as well as tension-based tuning mechanisms, and passive techniques such as post-fabrication and post-packaging tuning processes. On the other hand, the tuning capability and challenges to integrate reliable and customizable frequency tuning methods have been addressed. We have additionally concluded with a discussion of important future directions for further tunable micro- and nanomechanical resonators. PMID:26501294

  14. Low-profile wireless passive resonators for sensing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gong, Xun; An, Linan

    A resonator for sensing a physical or an environmental parameter includes a support having a top surface that provides a ground plane, and a polymer-derived ceramic (PDC) element positioned on the top surface including a PDC layer, and a metal patch on the PDC layer. The metal patch is electrically isolated from all surrounding structure, and the resonator has a resonant frequency that changes as a function of the physical or environmental parameter. A system for wirelessly sensing a physical or environmental parameter includes at least one resonator and a wireless RF reader located remotely from the resonator for transmittingmore » a wide-band RF interrogation signal that excites the resonator. The wireless RF reader detects a sensing signal retransmitted by the resonator and includes a processor for determining the physical or environmental parameter at the location of the resonator from the sensing signal.« less

  15. A portable blood plasma clot micro-elastometry device based on resonant acoustic spectroscopy

    NASA Astrophysics Data System (ADS)

    Krebs, C. R.; Li, Ling; Wolberg, Alisa S.; Oldenburg, Amy L.

    2015-07-01

    Abnormal blood clot stiffness is an important indicator of coagulation disorders arising from a variety of cardiovascular diseases and drug treatments. Here, we present a portable instrument for elastometry of microliter volume blood samples based upon the principle of resonant acoustic spectroscopy, where a sample of well-defined dimensions exhibits a fundamental longitudinal resonance mode proportional to the square root of the Young's modulus. In contrast to commercial thromboelastography, the resonant acoustic method offers improved repeatability and accuracy due to the high signal-to-noise ratio of the resonant vibration. We review the measurement principles and the design of a magnetically actuated microbead force transducer applying between 23 pN and 6.7 nN, providing a wide dynamic range of elastic moduli (3 Pa-27 kPa) appropriate for measurement of clot elastic modulus (CEM). An automated and portable device, the CEMport, is introduced and implemented using a 2 nm resolution displacement sensor with demonstrated accuracy and precision of 3% and 2%, respectively, of CEM in biogels. Importantly, the small strains (<0.13%) and low strain rates (<1/s) employed by the CEMport maintain a linear stress-to-strain relationship which provides a perturbative measurement of the Young's modulus. Measurements of blood plasma CEM versus heparin concentration show that CEMport is sensitive to heparin levels below 0.050 U/ml, which suggests future applications in sensing heparin levels of post-surgical cardiopulmonary bypass patients. The portability, high accuracy, and high precision of this device enable new clinical and animal studies for associating CEM with blood coagulation disorders, potentially leading to improved diagnostics and therapeutic monitoring.

  16. A portable blood plasma clot micro-elastometry device based on resonant acoustic spectroscopy

    PubMed Central

    Krebs, C. R.; Li, Ling; Wolberg, Alisa S.; Oldenburg, Amy L.

    2015-01-01

    Abnormal blood clot stiffness is an important indicator of coagulation disorders arising from a variety of cardiovascular diseases and drug treatments. Here, we present a portable instrument for elastometry of microliter volume blood samples based upon the principle of resonant acoustic spectroscopy, where a sample of well-defined dimensions exhibits a fundamental longitudinal resonance mode proportional to the square root of the Young’s modulus. In contrast to commercial thromboelastography, the resonant acoustic method offers improved repeatability and accuracy due to the high signal-to-noise ratio of the resonant vibration. We review the measurement principles and the design of a magnetically actuated microbead force transducer applying between 23 pN and 6.7 nN, providing a wide dynamic range of elastic moduli (3 Pa–27 kPa) appropriate for measurement of clot elastic modulus (CEM). An automated and portable device, the CEMport, is introduced and implemented using a 2 nm resolution displacement sensor with demonstrated accuracy and precision of 3% and 2%, respectively, of CEM in biogels. Importantly, the small strains (<0.13%) and low strain rates (<1/s) employed by the CEMport maintain a linear stress-to-strain relationship which provides a perturbative measurement of the Young’s modulus. Measurements of blood plasma CEM versus heparin concentration show that CEMport is sensitive to heparin levels below 0.050 U/ml, which suggests future applications in sensing heparin levels of post-surgical cardiopulmonary bypass patients. The portability, high accuracy, and high precision of this device enable new clinical and animal studies for associating CEM with blood coagulation disorders, potentially leading to improved diagnostics and therapeutic monitoring. PMID:26233406

  17. A portable blood plasma clot micro-elastometry device based on resonant acoustic spectroscopy.

    PubMed

    Krebs, C R; Li, Ling; Wolberg, Alisa S; Oldenburg, Amy L

    2015-07-01

    Abnormal blood clot stiffness is an important indicator of coagulation disorders arising from a variety of cardiovascular diseases and drug treatments. Here, we present a portable instrument for elastometry of microliter volume blood samples based upon the principle of resonant acoustic spectroscopy, where a sample of well-defined dimensions exhibits a fundamental longitudinal resonance mode proportional to the square root of the Young's modulus. In contrast to commercial thromboelastography, the resonant acoustic method offers improved repeatability and accuracy due to the high signal-to-noise ratio of the resonant vibration. We review the measurement principles and the design of a magnetically actuated microbead force transducer applying between 23 pN and 6.7 nN, providing a wide dynamic range of elastic moduli (3 Pa-27 kPa) appropriate for measurement of clot elastic modulus (CEM). An automated and portable device, the CEMport, is introduced and implemented using a 2 nm resolution displacement sensor with demonstrated accuracy and precision of 3% and 2%, respectively, of CEM in biogels. Importantly, the small strains (<0.13%) and low strain rates (<1/s) employed by the CEMport maintain a linear stress-to-strain relationship which provides a perturbative measurement of the Young's modulus. Measurements of blood plasma CEM versus heparin concentration show that CEMport is sensitive to heparin levels below 0.050 U/ml, which suggests future applications in sensing heparin levels of post-surgical cardiopulmonary bypass patients. The portability, high accuracy, and high precision of this device enable new clinical and animal studies for associating CEM with blood coagulation disorders, potentially leading to improved diagnostics and therapeutic monitoring.

  18. Demonstration of a bronchobiliary fistula using magnetic resonance image with hepatospecific contrast agent.

    PubMed

    Baleato-González, S; Vieira-Leite, C; Alvárez-Castro, A M; García-Figueiras, R

    Bronchobiliary fistulas are a rare entity of difficult diagnosis. The utility of magnetic resonance image (MRI) with hepatospecific contrast agents to demonstrate such condition is seldom described in the literature. This case reports a patient with pulmonary infection with a past history of hepatic surgery for hydatid disease in whom the presence of bile in the sputum rose the suspicious of a bronchobiliary fistula. MRI with hepatospecific contrast agents showed the communication between the biliary and bronchial tree and provided anatomic data to allow a therapeutic approach. Copyright © 2017 SERAM. Publicado por Elsevier España, S.L.U. All rights reserved.

  19. High resolution neurography of the lumbosacral plexus on 3T magneteic resonance imaging.

    PubMed

    Cejas, C; Escobar, I; Serra, M; Barroso, F

    2015-01-01

    Magnetic resonance neurography is a technique that complements clinical and electrophysiological study of the peripheral nerves and brachial and lumbosacral plexuses. Numerous focal processes (inflammatory, traumatic, primary tumors, secondary tumors) and diffuse processes (diabetic polyneuropathy, chronic idiopathic demyelinating polyneuropathy due to amyloidosis or Charcot-Marie-Tooth disease) can involve the lumbosacral plexus. This article reviews the anatomy of the lumbosacral plexus, describes the technique for neurography of the plexus at our institution, and shows the diverse diseases that affect it. Copyright © 2014 SERAM. Published by Elsevier España, S.L.U. All rights reserved.

  20. Integrated unaligned resonant modulator tuning

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zortman, William A.; Lentine, Anthony L.

    Methods and systems for tuning a resonant modulator are disclosed. One method includes receiving a carrier signal modulated by the resonant modulator with a stream of data having an approximately equal number of high and low bits, determining an average power of the modulated carrier signal, comparing the average power to a predetermined threshold, and operating a tuning device coupled to the resonant modulator based on the comparison of the average power and the predetermined threshold. One system includes an input structure, a plurality of processing elements, and a digital control element. The input structure is configured to receive, frommore » the resonant modulator, a modulated carrier signal. The plurality of processing elements are configured to determine an average power of the modulated carrier signal. The digital control element is configured to operate a tuning device coupled to the resonant modulator based on the average power of the modulated carrier signal.« less

  1. Lasing from active optomechanical resonators

    PubMed Central

    Czerniuk, T.; Brüggemann, C.; Tepper, J.; Brodbeck, S.; Schneider, C.; Kamp, M.; Höfling, S.; Glavin, B. A.; Yakovlev, D. R.; Akimov, A. V.; Bayer, M.

    2014-01-01

    Planar microcavities with distributed Bragg reflectors (DBRs) host, besides confined optical modes, also mechanical resonances due to stop bands in the phonon dispersion relation of the DBRs. These resonances have frequencies in the 10- to 100-GHz range, depending on the resonator’s optical wavelength, with quality factors exceeding 1,000. The interaction of photons and phonons in such optomechanical systems can be drastically enhanced, opening a new route towards the manipulation of light. Here we implemented active semiconducting layers into the microcavity to obtain a vertical-cavity surface-emitting laser (VCSEL). Thereby, three resonant excitations—photons, phonons and electrons—can interact strongly with each other providing modulation of the VCSEL laser emission: a picosecond strain pulse injected into the VCSEL excites long-living mechanical resonances therein. As a result, modulation of the lasing intensity at frequencies up to 40 GHz is observed. From these findings, prospective applications of active optomechanical resonators integrated into nanophotonic circuits may emerge. PMID:25008784

  2. Magnetic field detection using magnetorheological optical resonators

    NASA Astrophysics Data System (ADS)

    Rubino, Edoardo; Ioppolo, Tindaro

    2018-02-01

    In this paper, we investigate the feasibility of a magnetic field sensor that is based on a magnetorheological micro-optical resonator. The optical resonator has a spherical shape and a diameter of a few hundred micrometers. The resonator is fabricated by using a polymeric matrix made of polyvinyl chloride (PVC) plastisol with embedded magnetically polarizable micro-particles. When the optical resonator is subjected to an external magnetic field, the morphology (radius and refractive index) of the resonator is perturbed by the magnetic forces acting on it, leading to a shift of the optical resonances also known as whispering gallery modes (WGM). In this study, the effect of a static and harmonic magnetic field, as well as the concentration of the magnetic micro-particles on the optical mode shift is investigated. The optical resonances obtained with the PVC plastisol resonator showed a quality factor of 106 . The dynamical behavior of the optical resonator is investigated in the range between 0 and 200 Hz. The sensitivity of the optical resonator reaches a maximum value for a ratio between micro-particles and the polymeric matrix of 2:1 in weight. Experimental results indicate a sensitivity of 0.297 pm/mT leading to a resolution of 336 μT.

  3. Tunable Superconducting Split Ring Resonators

    DTIC Science & Technology

    2012-09-19

    microwave field-strength distortion and quality- factor dependence on tuning. Feedback for changes in design and fabrication, (4) design and fabrication...elements. For many applications tuning of the resonance frequency of the SRR is needed. Classically this is done by varactor diodes. Their capacitance ... capacitance of the gap to form a resonator circuit. The advantage of such a circuit is its quite low resonance frequency compared to other structures

  4. Inert two-Higgs-doublet model strongly coupled to a non-Abelian vector resonance

    NASA Astrophysics Data System (ADS)

    Rojas-Abatte, Felipe; Mora, Maria Luisa; Urbina, Jose; Zerwekh, Alfonso R.

    2017-11-01

    We study the possibility of a dark matter candidate having its origin in an extended Higgs sector which, at least partially, is related to a new strongly interacting sector. More concretely, we consider an i2HDM (i.e., a Type-I two Higgs doublet model supplemented with a Z2 under which the nonstandard scalar doublet is odd) based on the gauge group S U (2 )1×S U (2 )2×U (1 )Y . We assume that one of the scalar doublets and the standard fermion transform nontrivially under S U (2 )1 while the second doublet transforms under S U (2 )2. Our main hypothesis is that standard sector is weakly coupled while the gauge interactions associated to the second group is characterized by a large coupling constant. We explore the consequences of this construction for the phenomenology of the dark matter candidate and we show that the presence of the new vector resonance reduces the relic density saturation region, compared to the usual i2DHM, in the high dark matter mass range. In the collider side, we argue that the mono-Z production is the channel which offers the best chances to manifest the presence of the new vector field. We study the departures from the usual i2HDM predictions and show that the discovery of the heavy vector at the LHC is challenging even in the mono-Z channel since the typical cross sections are of the order of 10-2 fb .

  5. Multiturn split-conductor transmission-line resonator

    NASA Astrophysics Data System (ADS)

    Haziza, Nathalie; Bittoun, Jacques; Kan, Siew

    1997-05-01

    A split-conductor parallel-plate transmission line resonator is a simple structure made from bending a strip of double-face copper-clad printed-circuit board into a loop with alternate electrical discontinuities (gaps) on opposite sides. Its natural resonant frequency (Fn) is determined by the transmission line characteristic impedance, the loop diameter or strip length, and the number (Ng) of gaps. It is easy to design high frequency resonators simply by increasing Ng. We propose here a single-gap multiturn resonator for low frequency operation as well as a simplified expression for the determination of Fn. A design procedure of this type of resonator is outlined and illustrative examples with parallel-plate as well as ordinary 50 Ω coaxial transmission lines are given. Also, for a given cable length, numerical calculation shows that the minimum resonator frequency can be attained with a form factor of the order of 2.

  6. Secular resonances with Ceres and Vesta

    NASA Astrophysics Data System (ADS)

    Tsirvoulis, Georgios; Novaković, Bojan

    2016-12-01

    In this work we explore dynamical perturbations induced by the massive asteroids Ceres and Vesta on main-belt asteroids through secular resonances. First we determine the location of the linear secular resonances with Ceres and Vesta in the main belt, using a purely numerical technique. Then we use a set of numerical simulations of fictitious asteroids to investigate the importance of these secular resonances in the orbital evolution of main-belt asteroids. We found, evaluating the magnitude of the perturbations in the proper elements of the test particles, that in some cases the strength of these secular resonances is comparable to that of known non-linear secular resonances with the giant planets. Finally we explore the asteroid families that are crossed by the secular resonances we studied, and identified several cases where the latter seem to play an important role in their post-impact evolution.

  7. Off-resonance saturation magnetic resonance imaging of superparamagnetic polymeric micelles.

    PubMed

    Khemtong, Chalermchai; Kessinger, Chase W; Togao, Osamu; Ren, Jimin; Takahashi, Masaya; Sherry, A Dean; Gao, Jinming

    2009-01-01

    An off-resonance saturation (ORS) method was used for magnetic resonance imaging of superparamagnetic polymeric micelles (SPPM). SPPM was produced by encapsulating a cluster of magnetite nanoparticles (9.9+/-0.4 nm in diameter) in poly(ethylene glycol)-b-poly(D,L-lactide) (PEG-PLA) copolymer micelles (micelle diameter: 60+/-9 nm). In ORS MRI, a selective radiofrequency (RF) pulse was applied at an off-resonance position (0-50 ppm) from the bulk water signal, and the SPPM particles were visualized by the contrast on a division image constructed from two images acquired with and without pre-saturation. Here, the effects of saturation offset frequencies, saturation durations, and RF powers on ORS contrasts were investigated as these parameters are critical for optimization of ORS MRI for in vivo imaging applications. The ability to turn "ON" and "OFF" ORS contrast of SPPM solutions permits for an accurate image subtraction and a contrast enhancement to visualize SPPM probes for in vivo imaging of cancer.

  8. Low noise cryogenic dielectric resonator oscillator

    NASA Technical Reports Server (NTRS)

    Dick, G. John (Inventor)

    1988-01-01

    A microwave oscillator is provided which can operate at a temperature of many degrees above absolute zero while providing very low phase noise that has heretofore generally required temperatures within a few degrees K. The oscillator includes a ring-shaped resonant element of ruby (sapphire plus chromium) or iron sapphire crystal, lying adjacent to a resonator element of sapphire, so that the regenerator element lies directly in the magnetic field of the resonator element. The resonator element is substantially devoid of contact with electrically conductive material. Microwave energy of a pump frequency (e.g., 31 GHz) is outputted from the regenerator element, while signal energy (e.g., 10 GHz) is outputted from the resonator element.

  9. Fiber Optic Surface Plasmon Resonance-Based Biosensor Technique: Fabrication, Advancement, and Application.

    PubMed

    Liang, Gaoling; Luo, Zewei; Liu, Kunping; Wang, Yimin; Dai, Jianxiong; Duan, Yixiang

    2016-05-03

    Fiber optic-based biosensors with surface plasmon resonance (SPR) technology are advanced label-free optical biosensing methods. They have brought tremendous progress in the sensing of various chemical and biological species. This review summarizes four sensing configurations (prism, grating, waveguide, and fiber optic) with two ways, attenuated total reflection (ATR) and diffraction, to excite the surface plasmons. Meanwhile, the designs of different probes (U-bent, tapered, and other probes) are also described. Finally, four major types of biosensors, immunosensor, DNA biosensor, enzyme biosensor, and living cell biosensor, are discussed in detail for their sensing principles and applications. Future prospects of fiber optic-based SPR sensor technology are discussed.

  10. Resonant Two-Photon Transitions

    NASA Astrophysics Data System (ADS)

    Apanasevich, P. A.; Timofeeva, G. I.

    2018-05-01

    We have developed a theory for a two-photon transition when the frequencies of the absorbed or emitted radiation are in resonance with transitions to the same intermediate level in the medium. We have determined the conditions under which such resonant two-photon transitions can play an important role.

  11. Detecting light in whispering-gallery-mode resonators

    NASA Technical Reports Server (NTRS)

    Savchenkov, Anatoliy (Inventor); Maleki, Lutfollah (Inventor); Mohageg, Makan (Inventor); Le, Thanh M. (Inventor)

    2012-01-01

    An optical device including a whispering gallery mode (WGM) optical resonator configured to support one or more whispering gallery modes; and a photodetector optically coupled to an exterior surface of the optical resonator to receive evanescent light from the optical resonator to detect light inside the optical resonator.

  12. Interpreting the 3 TeV WH resonance as a W' boson

    NASA Astrophysics Data System (ADS)

    Cheung, Kingman; Keung, Wai-Yee; Lu, Chih-Ting; Tseng, Po-Yan

    2017-06-01

    Motivated by a local 3 .2 - 3 .4 sigma resonance in WH and ZH in the ATLAS Run 2 data, we attempt to interpret the excess in terms of a W' boson in a SU(2)1 × SU(2)2×U(1)X model. We stretch the deviation from the alignment limit of the Equivalence Theorem, so as to maximize WH production while keeping the WZ production rate below the experimental limit. We found a viable though small region of parameter space that satisfies all existing constraints on {W}^'\\to jj,t\\overline{b},WZ , as well as the precision Higgs data. The cross section of W' → WH that we obtain is about 5 - 6 fb.

  13. Internal Resonance in a Vibrating Beam: A Zoo of Nonlinear Resonance Peaks

    PubMed Central

    Mangussi, Franco

    2016-01-01

    In oscillating mechanical systems, nonlinearity is responsible for the departure from proportionality between the forces that sustain their motion and the resulting vibration amplitude. Such effect may have both beneficial and harmful effects in a broad class of technological applications, ranging from microelectromechanical devices to edifice structures. The dependence of the oscillation frequency on the amplitude, in particular, jeopardizes the use of nonlinear oscillators in the design of time-keeping electronic components. Nonlinearity, however, can itself counteract this adverse response by triggering a resonant interaction between different oscillation modes, which transfers the excess of energy in the main oscillation to higher harmonics, and thus stabilizes its frequency. In this paper, we examine a model for internal resonance in a vibrating elastic beam clamped at its two ends. In this case, nonlinearity occurs in the form of a restoring force proportional to the cube of the oscillation amplitude, which induces resonance between modes whose frequencies are in a ratio close to 1:3. The model is based on a representation of the resonant modes as two Duffing oscillators, coupled through cubic interactions. Our focus is put on illustrating the diversity of behavior that internal resonance brings about in the dynamical response of the system, depending on the detailed form of the coupling forces. The mathematical treatment of the model is developed at several approximation levels. A qualitative comparison of our results with previous experiments and numerical calculations on elastic beams is outlined. PMID:27648829

  14. Ultra-small v-shaped gold split ring resonators for biosensing using fundamental magnetic resonance in the visible spectrum

    NASA Astrophysics Data System (ADS)

    Mauluidy Soehartono, Alana; Mueller, Aaron David; Tobing, Landobasa Yosef Mario; Chan, Kok Ken; Zhang, Dao Hua; Yong, Ken-Tye

    2017-10-01

    Strong light localization within metal nanostructures occurs by collective oscillations of plasmons in the form of electric and magnetic resonances. This so-called localized surface plasmon resonance (LSPR) has gained much interest in the development of low-cost sensing platforms in the visible spectrum. However, demonstrations of LSPR-based sensing are mostly limited to electric resonances due to the technological limitations for achieving magnetic resonances in the visible spectrum. In this work, we report the first demonstration of LSPR sensing based on fundamental magnetic resonance in the visible spectrum using ultrasmall gold v-shaped split ring resonators. Specifically, we show the ability for detecting adsorption of bovine serum albumin and cytochrome c biomolecules at monolayer levels, and the selective binding of protein A/G to immunoglobulin G.

  15. Tunable multiwalled nanotube resonator

    DOEpatents

    Jensen, Kenneth J; Girit, Caglar O; Mickelson, William E; Zettl, Alexander K; Grossman, Jeffrey C

    2013-11-05

    A tunable nanoscale resonator has potential applications in precise mass, force, position, and frequency measurement. One embodiment of this device consists of a specially prepared multiwalled carbon nanotube (MWNT) suspended between a metal electrode and a mobile, piezoelectrically controlled contact. By harnessing a unique telescoping ability of MWNTs, one may controllably slide an inner nanotube core from its outer nanotube casing, effectively changing its length and thereby changing the tuning of its resonance frequency. Resonant energy transfer may be used with a nanoresonator to detect molecules at a specific target oscillation frequency, without the use of a chemical label, to provide label-free chemical species detection.

  16. Tunable multiwalled nanotube resonator

    DOEpatents

    Zettl, Alex K [Kensington, CA; Jensen, Kenneth J [Berkeley, CA; Girit, Caglar [Albany, CA; Mickelson, William E [San Francisco, CA; Grossman, Jeffrey C [Berkeley, CA

    2011-03-29

    A tunable nanoscale resonator has potential applications in precise mass, force, position, and frequency measurement. One embodiment of this device consists of a specially prepared multiwalled carbon nanotube (MWNT) suspended between a metal electrode and a mobile, piezoelectrically controlled contact. By harnessing a unique telescoping ability of MWNTs, one may controllably slide an inner nanotube core from its outer nanotube casing, effectively changing its length and thereby changing the tuning of its resonance frequency. Resonant energy transfer may be used with a nanoresonator to detect molecules at a specific target oscillation frequency, without the use of a chemical label, to provide label-free chemical species detection.

  17. Resonant halide perovskite nanoparticles

    NASA Astrophysics Data System (ADS)

    Tiguntseva, Ekaterina Y.; Ishteev, Arthur R.; Komissarenko, Filipp E.; Zuev, Dmitry A.; Ushakova, Elena V.; Milichko, Valentin A.; Nesterov-Mueller, Alexander; Makarov, Sergey V.; Zakhidov, Anvar A.

    2017-09-01

    The hybrid halide perovskites is a prospective material for fabrication of cost-effective optical devices. Unique perovskites properties are used for solar cells and different photonic applications. Recently, perovskite-based nanophotonics has emerged. Here, we consider perovskite like a high-refractive index dielectric material, which can be considered to be a basis for nanoparticles fabrication with Mie resonances. As a result, we fabricate and study resonant perovskite nanoparticles with different sizes. We reveal, that spherical nanoparticles show enhanced photoluminescence signal. The achieved results lay a cornerstone in the field of novel types of organic-inorganic nanophotonics devices with optical properties improved by Mie resonances.

  18. Thin film resonator technology.

    PubMed

    Lakin, Kenneth M

    2005-05-01

    Advances in wireless systems have placed increased demands on high performance frequency control devices for operation into the microwave range. With spectrum crowding, high bandwidth requirements, miniaturization, and low cost requirements as a background, the thin film resonator technology has evolved into the mainstream of applications. This technology has been under development for over 40 years in one form or another, but it required significant advances in integrated circuit processing to reach microwave frequencies and practical manufacturing for high-volume applications. This paper will survey the development of the thin film resonator technology and describe the core elements that give rise to resonators and filters for today's high performance wireless applications.

  19. A time domain based method for the accurate measurement of Q-factor and resonance frequency of microwave resonators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gyüre, B.; Márkus, B. G.; Bernáth, B.

    2015-09-15

    We present a novel method to determine the resonant frequency and quality factor of microwave resonators which is faster, more stable, and conceptually simpler than the yet existing techniques. The microwave resonator is pumped with the microwave radiation at a frequency away from its resonance. It then emits an exponentially decaying radiation at its eigen-frequency when the excitation is rapidly switched off. The emitted microwave signal is down-converted with a microwave mixer, digitized, and its Fourier transformation (FT) directly yields the resonance curve in a single shot. Being a FT based method, this technique possesses the Fellgett (multiplex) and Connesmore » (accuracy) advantages and it conceptually mimics that of pulsed nuclear magnetic resonance. We also establish a novel benchmark to compare accuracy of the different approaches of microwave resonator measurements. This shows that the present method has similar accuracy to the existing ones, which are based on sweeping or modulating the frequency of the microwave radiation.« less

  20. White-Light Whispering-Gallery-Mode Optical Resonators

    NASA Technical Reports Server (NTRS)

    Matsko, Andrey; Savchenkov, Anatoliy; Maleki, Lute

    2006-01-01

    Whispering-gallery-mode (WGM) optical resonators can be designed to exhibit continuous spectra over wide wavelength bands (in effect, white-light spectra), with ultrahigh values of the resonance quality factor (Q) that are nearly independent of frequency. White-light WGM resonators have potential as superior alternatives to (1) larger, conventional optical resonators in ring-down spectroscopy, and (2) optical-resonator/electro-optical-modulator structures used in coupling of microwave and optical signals in atomic clocks. In these and other potential applications, the use of white-light WGM resonators makes it possible to relax the requirement of high-frequency stability of lasers, thereby enabling the use of cheaper lasers. In designing a white-light WGM resonator, one exploits the fact that the density of the mode spectrum increases predictably with the thickness of the resonator disk. By making the resonator disk sufficiently thick, one can make the frequency differences between adjacent modes significantly less than the spectral width of a single mode, so that the spectral peaks of adjacent modes overlap, making the resonator spectrum essentially continuous. Moreover, inasmuch as the Q values of the various modes are determined primarily by surface Rayleigh scattering that does not depend on mode numbers, all the modes have nearly equal Q. By use of a proper coupling technique, one can ensure excitation of a majority of the modes. For an experimental demonstration of a white-light WGM resonator, a resonator disk 0.5-mm thick and 5 mm in diameter was made from CaF2. The shape of the resonator and the fiberoptic coupling arrangement were as shown in Figure 1. The resonator was excited with laser light having a wavelength of 1,320 nm and a spectral width of 4 kHz. The coupling efficiency exceeded 80 percent at any frequency to which the laser could be set in its tuning range, which was >100-GHz wide. The resonator response was characterized by means of ring

  1. A multimode electromechanical parametric resonator array

    PubMed Central

    Mahboob, I.; Mounaix, M.; Nishiguchi, K.; Fujiwara, A.; Yamaguchi, H.

    2014-01-01

    Electromechanical resonators have emerged as a versatile platform in which detectors with unprecedented sensitivities and quantum mechanics in a macroscopic context can be developed. These schemes invariably utilise a single resonator but increasingly the concept of an array of electromechanical resonators is promising a wealth of new possibilities. In spite of this, experimental realisations of such arrays have remained scarce due to the formidable challenges involved in their fabrication. In a variation to this approach, we identify 75 harmonic vibration modes in a single electromechanical resonator of which 7 can also be parametrically excited. The parametrically resonating modes exhibit vibrations with only 2 oscillation phases which are used to build a binary information array. We exploit this array to execute a mechanical byte memory, a shift-register and a controlled-NOT gate thus vividly illustrating the availability and functionality of an electromechanical resonator array by simply utilising higher order vibration modes. PMID:24658349

  2. All-metal superconducting planar microwave resonator

    NASA Astrophysics Data System (ADS)

    Horsley, Matt; Pereverzev, Sergey; Dubois, Jonathon; Friedrich, Stephan; Qu, Dongxia; Libby, Steve; Lordi, Vincenzo; Carosi, Gianpaolo; Stoeffl, Wolfgang; Chapline, George; Drury, Owen; Quantum Noise in Superconducting Devices Team

    There is common agreement that noise and resonance frequency jitter in superconducting microwave planar resonators are caused by presence of two-level systems, or fluctuators, in resonator materials- in dielectric substrate, in superconducting and dielectric layers and on the boundaries and interfaces. Scaling of noise with device dimensions indicate that fluctuators are likely concentrated around boundaries; physical nature of those fluctuators remains unclear. The presence of dielectrics is not necessary for the superconducting device functionality, and one can ask question about properties of all-metal device, where dielectric substrate and oxide films on metal are absent. Resonator made from of thin conducting layer with cuts in it is usually called slot line resonator. We report on the design, fabrication and initial testing of multiple split rings slot line resonator made out of thin molybdenum plate. This work is being funded as part of a three year strategic initiative (LDRD 16-SI-004) to better understand noise in superconducting devices.

  3. A new design of dielectric elastomer membrane resonator with tunable resonant frequencies and mode shapes

    NASA Astrophysics Data System (ADS)

    Li, Yunlong; Oh, Inkyu; Chen, Jiehao; Hu, Yuhang

    2018-06-01

    Conventional membrane resonators are bulky, and once the geometries and materials are fixed in the fabricated device, the resonators’ characteristics are fixed. In this work, we introduce the active membrane, dielectric elastomer (DE), into the resonator design. Attaching a stiffer passive membrane onto the active DE membrane forms a two-layer system, which generates an out-of-plane deformation when the DE is actuated through a DC voltage applied across the thickness of the DE membrane. When an AC voltage is applied, the two-layer system can generate an out-of-plane oscillation which enables its use as membrane resonators. Both experiments and simulations are carried out to study the dynamic characteristics of the system. The resonant frequencies and mode shapes of the resonator can be tuned through the passive layer properties such as the modulus, thickness, density, and size. The effective stiffness of the DE film changes as the magnitude of the voltage applied on the film changes, which provides an active way to tune the dynamic characteristics of the two-layer resonator even after the device is set. The system is also light weight, low cost, and easy to fabricate, and has great potential in many engineering applications.

  4. Current-Tunable NbTiN Coplanar Photonic Bandgap Resonators

    NASA Astrophysics Data System (ADS)

    Asfaw, A.; Sigillito, A. J.; Tyryshkin, A. M.; Lyon, S. A.

    Coplanar waveguide resonators have been used in several experimental settings, from superconducting qubits to electron spin resonance. In our particular application of electron spin resonance, these resonators provide increased sensitivity to electron spins due to the small mode volume. Experiments have shown that these resonators can be used to readout as few as 300 spins per shot. Recently, photonic bandgap resonators have been shown to extend the advantages of traditional CPW resonators by allowing spin manipulation both at microwave and radio frequencies, thereby enabling both electron and nuclear spin resonance within the same resonator. We present measurements made using photonic bandgap resonators fabricated with thin NbTiN films which demonstrate microwave tunability of the resonator by modulating the kinetic inductance of the superconductor. Driving a small direct current through the center pin of the resonator allows us to tune the resonant frequency by over 30 MHz around 6.4 GHz while maintaining a quality factor over 8000 at 4.8K. This provides fast and simple tunability of coplanar waveguide resonators and opens new possibilities for multiple frequency electron spin resonance experiments.

  5. Synchrotron vacuum ultraviolet radiation studies of the D 1Πu state of H2

    NASA Astrophysics Data System (ADS)

    Dickenson, G. D.; Ivanov, T. I.; Roudjane, M.; de Oliveira, N.; Joyeux, D.; Nahon, L.; Tchang-Brillet, W.-Ü. L.; Glass-Maujean, M.; Haar, I.; Ehresmann, A.; Ubachs, W.

    2010-10-01

    The 3pπD Π1u state of the H2 molecule was reinvestigated with different techniques at two synchrotron installations. The Fourier transform spectrometer in the vacuum ultraviolet wavelength range of the DESIRS beamline at the SOLEIL synchrotron was used for recording absorption spectra of the D Π1u state at high resolution and high absolute accuracy, limited only by the Doppler contribution at 100 K. From these measurements, line positions were extracted, in particular, for the narrow resonances involving Π1u - states, with an accuracy estimated at 0.06 cm-1. The new data also closely match multichannel quantum defect calculations performed for the Π- components observed via the narrow Q-lines. The Λ-doubling in the D Π1u state was determined up to v =17. The 10 m normal incidence scanning monochromator at the beamline U125/2 of the BESSY II synchrotron, combined with a home-built target chamber and equipped with a variety of detectors, was used to unravel information on ionization, dissociation, and intramolecular fluorescence decay for the D Π1u vibrational series. The combined results yield accurate information on the characteristic Beutler-Fano profiles associated with the strongly predissociated Πu+ parity components of the D Π1u levels. Values for the parameters describing the predissociation width as well as the Fano-q line shape parameters for the J =1 and J =2 rotational states were determined for the sequence of vibrational quantum numbers up to v =17.

  6. The role of positively charged amino acids and electrostatic interactions in the complex of U1A protein and U1 hairpin II RNA

    PubMed Central

    Law, Michael J.; Linde, Michael E.; Chambers, Eric J.; Oubridge, Chris; Katsamba, Phinikoula S.; Nilsson, Lennart; Haworth, Ian S.; Laird-Offringa, Ite A.

    2006-01-01

    Previous kinetic investigations of the N-terminal RNA recognition motif (RRM) domain of spliceosomal protein U1A, interacting with its RNA target U1 hairpin II, provided experimental evidence for a ‘lure and lock’ model of binding in which electrostatic interactions first guide the RNA to the protein, and close range interactions then lock the two molecules together. To further investigate the ‘lure’ step, here we examined the electrostatic roles of two sets of positively charged amino acids in U1A that do not make hydrogen bonds to the RNA: Lys20, Lys22 and Lys23 close to the RNA-binding site, and Arg7, Lys60 and Arg70, located on ‘top’ of the RRM domain, away from the RNA. Surface plasmon resonance-based kinetic studies, supplemented with salt dependence experiments and molecular dynamics simulation, indicate that Lys20 predominantly plays a role in association, while nearby residues Lys22 and Lys23 appear to be at least as important for complex stability. In contrast, kinetic analyses of residues away from the RNA indicate that they have a minimal effect on association and stability. Thus, well-positioned positively charged residues can be important for both initial complex formation and complex maintenance, illustrating the multiple roles of electrostatic interactions in protein–RNA complexes. PMID:16407334

  7. Exploring the resonant vibration of thin plates: Reconstruction of Chladni patterns and determination of resonant wave numbers.

    PubMed

    Tuan, P H; Wen, C P; Chiang, P Y; Yu, Y T; Liang, H C; Huang, K F; Chen, Y F

    2015-04-01

    The Chladni nodal line patterns and resonant frequencies for a thin plate excited by an electronically controlled mechanical oscillator are experimentally measured. Experimental results reveal that the resonant frequencies can be fairly obtained by means of probing the variation of the effective impedance of the exciter with and without the thin plate. The influence of the extra mass from the central exciter is confirmed to be insignificant in measuring the resonant frequencies of the present system. In the theoretical aspect, the inhomogeneous Helmholtz equation is exploited to derive the response function as a function of the driving wave number for reconstructing experimental Chladni patterns. The resonant wave numbers are theoretically identified with the maximum coupling efficiency as well as the maximum entropy principle. Substituting the theoretical resonant wave numbers into the derived response function, all experimental Chladni patterns can be excellently reconstructed. More importantly, the dispersion relationship for the flexural wave of the vibrating plate can be determined with the experimental resonant frequencies and the theoretical resonant wave numbers. The determined dispersion relationship is confirmed to agree very well with the formula of the Kirchhoff-Love plate theory.

  8. Magnetostrictive resonance excitation

    DOEpatents

    Schwarz, Ricardo B.; Kuokkala, Veli-Tapani

    1992-01-01

    The resonance frequency spectrum of a magnetostrictive sample is remotely determined by exciting the magnetostrictive property with an oscillating magnetic field. The permeability of a magnetostrictive material and concomitant coupling with a detection coil varies with the strain in the material whereby resonance responses of the sample can be readily detected. A suitable sample may be a magnetostrictive material or some other material having at least one side coated with a magnetostrictive material. When the sample is a suitable shape, i.e., a cube, rectangular parallelepiped, solid sphere or spherical shell, the elastic moduli or the material can be analytically determined from the measured resonance frequency spectrum. No mechanical transducers are required and the sample excitation is obtained without contact with the sample, leading to highly reproducible results and a measurement capability over a wide temperature range, e.g. from liquid nitrogen temperature to the Curie temperature of the magnetostrictive material.

  9. Flow-excited acoustic resonance of a Helmholtz resonator: Discrete vortex model compared to experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dai, Xiwen; Jing, Xiaodong, E-mail: jingxd@buaa.edu.cn; Sun, Xiaofeng

    The acoustic resonance in a Helmholtz resonator excited by a low Mach number grazing flow is studied theoretically. The nonlinear numerical model is established by coupling the vortical motion at the cavity opening with the cavity acoustic mode through an explicit force balancing relation between the two sides of the opening. The vortical motion is modeled in the potential flow framework, in which the oscillating motion of the thin shear layer is described by an array of convected point vortices, and the unsteady vortex shedding is determined by the Kutta condition. The cavity acoustic mode is obtained from the one-dimensionalmore » acoustic propagation model, the time-domain equivalent of which is given by means of a broadband time-domain impedance model. The acoustic resistances due to radiation and viscous loss at the opening are also taken into account. The physical processes of the self-excited oscillations, at both resonance and off-resonance states, are simulated directly in the time domain. Results show that the shear layer exhibits a weak flapping motion at the off-resonance state, whereas it rolls up into large-scale vortex cores when resonances occur. Single and dual-vortex patterns are observed corresponding to the first and second hydrodynamic modes. The simulation also reveals different trajectories of the two vortices across the opening when the first and second hydrodynamic modes co-exist. The strong modulation of the shed vorticity by the acoustic feedback at the resonance state is demonstrated. The model overestimates the pressure pulsation amplitude by a factor 2, which is expected to be due to the turbulence of the flow which is not taken into account. The model neglects vortex shedding at the downstream and side edges of the cavity. This will also result in an overestimation of the pulsation amplitude.« less

  10. Calligraphic Poling for WGM Resonators

    NASA Technical Reports Server (NTRS)

    Mohageg, Makan; Strekalov, Dmitry; Savchenkov, Anatoliy; Matsko, Andrey; Ilchenko, Vladimir; Maleki, Lute

    2007-01-01

    By engineering the geometry of a nonlinear optical crystal, the effective efficiency of all nonlinear optical oscillations can be increased dramatically. Specifically, sphere and disk shaped crystal resonators have been used to demonstrate nonlinear optical oscillations at sub-milliwatt input power when cs light propagates in a Whispering Gallery Mode (WGM) of such a resonant cavity. in terms of both device production and experimentation in quantum optics, some nonlinear optical effects with naturally high efficiency can occult the desired nonlinear scattering process. the structure to the crystal resonator. In this paper, I will discuss a new method for generating poling structures in ferroelectric crystal resonators called calligraphic poling. The details of the poling apparatus, experimental results and speculation on future applications will be discussed.

  11. Chaos-Assisted Quantum Tunneling and Delocalization Caused by Resonance or Near-Resonance

    NASA Astrophysics Data System (ADS)

    Liang, Danfu; Zhang, Jiawei; Zhang, Xili

    2018-05-01

    We investigate the quantum transport of a single particle trapped in a tilted optical lattice modulated with periodical delta kicks, and attempt to figure out the relationship between chaos and delocalization or quantum tunneling. We illustrate some resonant parameter lines existing in both chaotic and regular parameter regions, and discover the velocity of delocalization of particle tends to faster in the resonant line as well as the lines in which the lattice tilt is an integral multiple n of tilt driving frequency in chaotic region. While the degree of localization is linked to the distance between parameter points and resonant lines. Those useful results can be experimentally applied to control chaos-assisted transport of single particle held in optical lattices.

  12. Transverse Mode Multi-Resonant Single Crystal Transducer

    NASA Technical Reports Server (NTRS)

    Snook, Kevin A. (Inventor); Liang, Yu (Inventor); Luo, Jun (Inventor); Hackenberger, Wesley S. (Inventor); Sahul, Raffi (Inventor)

    2015-01-01

    A transducer is disclosed that includes a multiply resonant composite, the composite having a resonator bar of a piezoelectric single crystal configured in a d(sub 32) transverse length-extensional resonance mode having a crystallographic orientation set such that the thickness axis is in the (110) family and resonance direction is the (001) family.

  13. Magnetic Resonance for Noninvasive Detection of Microcirculatory Disease Associated With Allograft Vasculopathy: Intracoronary Measurement Validation.

    PubMed

    Mirelis, Jesús G; García-Pavía, Pablo; Cavero, Miguel A; González-López, Esther; Echavarria-Pinto, Mauro; Pastrana, Miguel; Segovia, Javier; Oteo, Juan F; Alonso-Pulpón, Luis; Escaned, Javier

    2015-07-01

    comprehensive dobutamine stress magnetic resonance appears to be a reliable technique for noninvasive detection of microcirculatory coronary disease associated with cardiac allograft vasculopathy. Copyright © 2014 Sociedad Española de Cardiología. Published by Elsevier España, S.L.U. All rights reserved.

  14. System and method for regulating resonant inverters

    DOEpatents

    Stevanovic, Ljubisa Dragoljub [Clifton Park, NY; Zane, Regan Andrew [Superior, CO

    2007-08-28

    A technique is provided for direct digital phase control of resonant inverters based on sensing of one or more parameters of the resonant inverter. The resonant inverter control system includes a switching circuit for applying power signals to the resonant inverter and a sensor for sensing one or more parameters of the resonant inverter. The one or more parameters are representative of a phase angle. The resonant inverter control system also includes a comparator for comparing the one or more parameters to a reference value and a digital controller for determining timing of the one or more parameters and for regulating operation of the switching circuit based upon the timing of the one or more parameters.

  15. Space charge in nanostructure resonances

    NASA Astrophysics Data System (ADS)

    Price, Peter J.

    1996-10-01

    In quantum ballistic propagation of electrons through a variety of nanostructures, resonance in the energy-dependent transmission and reflection probabilities generically is associated with (1) a quasi-level with a decay lifetime, and (2) a bulge in electron density within the structure. It can be shown that, to a good approximation, a simple formula in all cases connects the density of states for the latter to the energy dependence of the phase angles of the eigen values of the S-matrix governing the propagation. For both the Lorentzian resonances (normal or inverted) and for the Fano-type resonances, as a consequence of this eigen value formula, the space charge due to filled states over the energy range of a resonance is just equal (for each spin state) to one electron charge. The Coulomb interaction within this space charge is known to 'distort' the electrical characteristics of resonant nanostructures. In these systems, however, the exchange effect should effectively cancel the interaction between states with parallel spins, leaving only the anti-parallel spin contribution.

  16. Method of making a piezoelectric shear wave resonator

    DOEpatents

    Wang, Jin S.; Lakin, Kenneth M.; Landin, Allen R.

    1987-02-03

    An acoustic shear wave resonator comprising a piezoelectric film having its C-axis substantially inclined from the film normal such that the shear wave coupling coefficient significantly exceeds the longitudinal wave coupling coefficient, whereby the film is capable of shear wave resonance, and means for exciting said film to resonate. The film is prepared by deposition in a dc planar magnetron sputtering system to which a supplemental electric field is applied. The resonator structure may also include a semiconductor material having a positive temperature coefficient of resonance such that the resonator has a temperature coefficient of resonance approaching 0 ppm/.degree.C.

  17. Strange baryonic resonances and resonances coupling to strange hadrons at SIS energies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fabbietti, L.

    2016-01-22

    The role played by baryonic resonances in the production of final states containing strangeness for proton-proton reactions at 3.5 GeV measured by HADES is discussed by means of several very different measurements. First the associate production of Δ resonances accompanying final states with strange hadrons is presented, then the role of interferences among N{sup *} resonances, as measured by HADES for the first time, is summarised. Last but not least the role played by heavy resonances, with a mass larger than 2 GeV/c{sup 2} in the production of strange and non-strange hadrons is discussed. Experimental evidence for the presence ofmore » a Δ(2000){sup ++} are presented and hypotheses are discussed employing the contribution of similar objects to populate the excesses measured by HADES for the Ξ in A+A and p+A collisions and in the dilepton sector for A+A collisions. This extensive set of results helps to better understand the dynamic underlaying particle production in elementary reactions and sets a more solid basis for the understanding of heavy ion collisions at the same energies and even higher as planned at the FAIR facility.« less

  18. Fano resonances in bilayer phosphorene nanoring

    NASA Astrophysics Data System (ADS)

    Zhang, Rui; Wu, Zhenhua; Li, X. J.; Li, L. L.; Chen, Qiao; Li, Yun-Mei; Peeters, F. M.

    2018-05-01

    Tunable transport properties and Fano resonances are predicted in a circular bilayer phosphorene nanoring. The conductance exhibits Fano resonances with varying incident energy and applied perpendicular magnetic field. These Fano resonance peaks can be accurately fitted with the well known Fano curves. When a magnetic field is applied to the nanoring, the conductance oscillates periodically with magnetic field which is reminiscent of the Aharonov–Bohm effect. Fano resonances are tightly related to the discrete states in the central nanoring, some of which are tunable by the magnetic field.

  19. Electro-optic resonant phase modulator

    NASA Technical Reports Server (NTRS)

    Chen, Chien-Chung (Inventor); Hemmati, Hamid (Inventor); Robinson, Deborah L. (Inventor)

    1992-01-01

    An electro-optic resonant cavity is used to achieve phase modulation with lower driving voltages. Laser damage thresholds are inherently higher than with previously used integrated optics due to the utilization of bulk optics. Phase modulation is achieved at higher speeds with lower driving voltages than previously obtained with non-resonant electro-optic phase modulators. The instant scheme uses a data locking dither approach as opposed to the conventional sinusoidal locking schemes. In accordance with a disclosed embodiment, a resonant cavity modulator has been designed to operate at a data rate in excess of 100 megabits per sec. By carefully choosing the cavity finesse and its dimension, it is possible to control the pulse switching time to within 4 nano-sec. and to limit the required switching voltage to within 10 V. This cavity locking scheme can be applied by using only the random data sequence, and without the need of dithering of the cavity. Compared to waveguide modulators, the resonant cavity has a comparable modulating voltage requirement. Because of its bulk geometry, the resonant cavity modulator has the potential of accommodating higher throughput power. Mode matching into the bulk device is easier and typically can be achieved with higher efficiency. An additional control loop is incorporated into the modulator to maintain the cavity on resonance.

  20. U 3Si 2 Fabrication and Testing for Implementation into the BISON Fuel Performance Code

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Knight, Travis W.

    A creep test stand was designed and constructed for compressive creep testing of U 3Si 2 pellets. This is described in Chapter 3. Creep testing of U 3Si 2 pellets was completed. In total, 13 compressive creep tests of U 3Si 2 pellets was successfully completed. This is reported in Chapter 3. Secondary creep model of U 3Si 2 was developed and implemented in BISON. This is described in Chapter 4. Properties of U 3Si 2 were implemented in BISON. This is described in Chapter 4. A resonant frequency and damping analyzer (RFDA) using impulse excitation technique (IET) was setup,more » tested, and used to analyze U 3Si 2 samples to measure Young’s and Shear Moduli which were then used to calculate the Poisson ratio for U 3Si 2. This is described in Chapter 5. Characterization of U 3Si 2 samples was completed. Samples were prepared and analyzed by XRD, SEM, and optical microscopy. Grain size analysis was conducted on images. SEM with EDS was used to analyze second phase precipitates. Impulse excitation technique was used to determine the Young’s and Shear Moduli of a tile specimen which allowed for the determination of the Poisson ratio. Helium pycnometry and mercury intrusion porosimetry was performed and used with image analysis to determine porosity size distribution. Vickers microindentation characterization method was used to evaluate the mechanical properties of U 3Si 2 including toughness, hardness, and Vickers hardness. Electrical resistivity measurement was done using the four-point probe method. This is reported in Chapter 5.« less

  1. The Concept of Resonance

    ERIC Educational Resources Information Center

    Truhlar, Donald G.

    2007-01-01

    A general example of a delocalization system associated with a higher energy than the localized one, which suggests that it is wrong to consider delocalization as equivalent to resonance stabilization, is presented. The meaning of resonance energy as it appears in valence bond theory is described as the lowering of the calculated ground-state…

  2. Off-resonance energy absorption in a linear Paul trap due to mass selective resonant quenching

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sivarajah, I.; Goodman, D. S.; Wells, J. E.

    Linear Paul traps (LPT) are used in many experimental studies such as mass spectrometry, atom-ion collisions, and ion-molecule reactions. Mass selective resonant quenching (MSRQ) is implemented in LPT either to identify a charged particle's mass or to remove unwanted ions from a controlled experimental environment. In the latter case, MSRQ can introduce undesired heating to co-trapped ions of different mass, whose secular motion is off resonance with the quenching ac field, which we call off-resonance energy absorption (OREA). We present simulations and experimental evidence that show that the OREA increases exponentially with the number of ions loaded into the trapmore » and with the amplitude of the off-resonance external ac field.« less

  3. Fano resonances in bilayer graphene superlattices.

    PubMed

    Briones-Torres, J A; Rodríguez-Vargas, I

    2017-12-01

    In this work, we address the ubiquitous phenomenon of Fano resonances in bilayer graphene. We consider that this phenomenon is as exotic as other phenomena in graphene because it can arise without an external extended states source or elaborate nano designs. However, there are not theoretical and/or experimental studies that report the impact of Fano resonances on the transport properties. Here, we carry out a systematic assessment of the contribution of the Fano resonances on the transport properties of bilayer graphene superlattices. Specifically, we find that by changing the number of periods, adjusting the barriers height as well as modifying the barriers and wells width it is possible to identify the contribution of Fano resonances on the conductance. Particularly, the coupling of Fano resonances with the intrinsic minibands of the superlattice gives rise to specific and identifiable changes in the conductance. Moreover, by reducing the angular range for the computation of the transport properties it is possible to obtain conductance curves with line-shapes quite similar to the Fano profile and the coupling profile between Fano resonance and miniband states. In fact, these conductance features could serve as unequivocal characteristic of the existence of Fano resonances in bilayer graphene.

  4. Magnetostatic wave tunable resonators

    NASA Astrophysics Data System (ADS)

    Castera, J.-P.; Hartemann, P.

    1983-06-01

    Theoretical principles and techniques for the implementation of magnetostatic surface wave and volume wave resonators in high frequency oscillators are discussed. Magnetostatic waves are magnetic waves that propagate in materials exposed to a polarized magnetic field. The propagation speed ranges from 3-300 km/sec for wavelengths between 1 micron and 10 mm, in the presence of lags from 10-1000 nsec/ cm. Tunable resonators in the 1-20 GHz frequency range have been manufactured with YIG using liquid phase epitaxy for deposition on gadolinium and gallium substrates. Distributed-mirror Fabry-Perot cavity resonators are described and performance tests results are reported, including losses of 8 dB, a quality coefficient under voltage of 450, and frequency rejection outside of resonance better than 10 dB. However, saturation occurs at low power levels at frequencies lower than 4.2 GHz, a feature overcome with forward volume magnetostatic wave generators, which have a quality factor of 500, an insertion loss of 22 dB, and rejection around 15 dB.

  5. Classification of thyroid nodules using a resonance-frequency-based electrical impedance spectroscopy: progress assessment

    NASA Astrophysics Data System (ADS)

    Zheng, Bin; Tublin, Mitchell E.; Lederman, Dror; Klym, Amy H.; Brown, Erica D.; Gur, David

    2012-02-01

    The incidence of thyroid cancer is rising faster than other malignancies and has nearly doubled in the United States (U.S.) in the last 30 years. However, classifying between malignant and benign thyroid nodules is often difficult. Although ultrasound guided Fine Needle Aspiration Biopsy (FNAB) is considered an excellent tool for triaging patients, up to 25% of FNABs are inconclusive. As a result, definitive diagnosis requires an exploratory surgery and a large number of these are performed in the U.S. annually. It would be extremely beneficial to develop a non-invasive tool or procedure that could assist in assessing the likelihood of malignancy of otherwise indeterminate thyroid nodules, thereby reducing the number of exploratory thyroidectomies that are performed under general anesthesia. In this preliminary study we demonstrate a unique hand-held Resonance-frequency based Electrical Impedance Spectroscopy (REIS) device with six pairs of detection probes to detect and classify thyroid nodules using multi-channel EIS output signal sweeps. Under an Institutional Review Board (IRB)-approved case collection protocol, this REIS device is being tested in our clinical facility and we have been collecting an initial patient data set since March of this year. Between March and August of 2011, 65 EIS tests were conducted on 65 patients. Among these cases, six depicted pathology-verified malignant cells. Our initial assessment indicates the feasibility of easily applying this REIS device and measurement approach in a very busy clinical setting. The measured resonance frequency differences between malignant and benign nodules could potentially make it possible to accurately classify indeterminate thyroid nodules.

  6. Hexagonal quartz resonator

    DOEpatents

    Peters, Roswell D. M.

    1982-01-01

    A generally flat, relatively thin AT-cut piezoelectric resonator element structured to minimize the force-frequency effect when mounted and energized in a housing. The resonator is in the form of an equilateral hexagon with the X crystallographic axis of the crystal passing through one set of opposing corners with mounting being effected at an adjacent set of corners respectively .+-.60.degree. away from the X axis which thereby results in a substantially zero frequency shift of the operating frequency.

  7. Hexagonal quartz resonator

    DOEpatents

    Peters, R.D.M.

    1982-11-02

    A generally flat, relatively thin AT-cut piezoelectric resonator element structured to minimize the force-frequency effect when mounted and energized in a housing. The resonator is in the form of an equilateral hexagon with the X crystallographic axis of the crystal passing through one set of opposing corners with mounting being effected at an adjacent set of corners respectively [+-]60[degree] away from the X axis which thereby results in a substantially zero frequency shift of the operating frequency. 3 figs.

  8. Averaging, passage through resonances, and capture into resonance in two-frequency systems

    NASA Astrophysics Data System (ADS)

    Neishtadt, A. I.

    2014-10-01

    Applying small perturbations to an integrable system leads to its slow evolution. For an approximate description of this evolution the classical averaging method prescribes averaging the rate of evolution over all the phases of the unperturbed motion. This simple recipe does not always produce correct results, because of resonances arising in the process of evolution. The phenomenon of capture into resonance consists in the system starting to evolve in such a way as to preserve the resonance property once it has arisen. This paper is concerned with application of the averaging method to a description of evolution in two-frequency systems. It is assumed that the trajectories of the averaged system intersect transversally the level surfaces of the frequency ratio and that certain other conditions of general position are satisfied. The rate of evolution is characterized by a small parameter \\varepsilon. The main content of the paper is a proof of the following result: outside a set of initial data with measure of order \\sqrt \\varepsilon the averaging method describes the evolution to within O(\\sqrt \\varepsilon \\vert\\ln\\varepsilon\\vert) for periods of time of order 1/\\varepsilon. This estimate is sharp. The exceptional set of measure \\sqrt \\varepsilon contains the initial data for phase points captured into resonance. A description of the motion of such phase points is given, along with a survey of related results on averaging. Examples of capture into resonance are presented for some problems in the dynamics of charged particles. Several open problems are stated. Bibliography: 65 titles.

  9. Fundamental properties of resonances

    PubMed Central

    Ceci, S.; Hadžimehmedović, M.; Osmanović, H.; Percan, A.; Zauner, B.

    2017-01-01

    All resonances, from hydrogen nuclei excited by the high-energy gamma rays in deep space to newly discovered particles produced in Large Hadron Collider, should be described by the same fundamental physical quantities. However, two distinct sets of properties are used to describe resonances: the pole parameters (complex pole position and residue) and the Breit-Wigner parameters (mass, width, and branching fractions). There is an ongoing decades-old debate on which one of them should be abandoned. In this study of nucleon resonances appearing in the elastic pion-nucleon scattering we discover an intricate interplay of the parameters from both sets, and realize that neither set is completely independent or fundamental on its own. PMID:28345595

  10. Thermal response of chalcogenide microsphere resonators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ahmad, H; Aryanfar, I; Lim, K S

    2012-05-31

    A chalcogenide microsphere resonator (CMR) used for temperature sensing is proposed and demonstrated. The CMR is fabricated using a simple technique of heating chalcogenide glass and allowing the molten glass to form a microsphere on the waist of a tapered silica fibre. The thermal responses of the CMR is investigated and compared to that of a single-mode-fibre (SMF) based microsphere resonator. It is observed that the CMR sensitivity to ambient temperature changes is 8 times higher than that of the SMF-based microsphere resonator. Heating the chalcogenide microsphere with a laser beam periodically turned on and off shows periodic shifts inmore » the transmission spectrum of the resonator. By injecting an intensity-modulated cw signal through the resonator a thermal relaxation time of 55 ms is estimated.« less

  11. A Latin-cross-shaped integrated resonant cantilever with second torsion-mode resonance for ultra-resoluble bio-mass sensing

    NASA Astrophysics Data System (ADS)

    Xia, Xiaoyuan; Zhang, Zhixiang; Li, Xinxin

    2008-03-01

    Second torsion-mode resonance is proposed for microcantilever biosensors for ultra-high mass-weighing sensitivity and resolution. By increasing both the resonant frequency and Q-factor, the higher mode torsional resonance is favorable for improving the mass-sensing performance. For the first time, a Latin-cross-shaped second-mode resonant cantilever is constructed and optimally designed for both signal-readout and resonance-exciting elements. The cantilever sensor is fabricated by using silicon micromachining techniques. The transverse piezoresistive sensing element and the specific-shaped resonance-exciting loop are successfully integrated in the cantilever. Alpha-fetoprotein (AFP) antibody-antigen specific binding is implemented for the sensing experiment. The proposed cantilever sensor is designed with significantly superior sensitivity to the previously reported first torsion-mode one. After analysis with an Allan variance algorithm, which can be easily embedded in the sensing system, the Latin-cross-shaped second torsion-mode resonant cantilever is evaluated with ultra-high mass resolution. Therefore, the high-performance integrated micro-sensor is promising for on-the-spot bio-molecule detection.

  12. Quantification of aquifer properties with surface nuclear magnetic resonance in the Platte River valley, central Nebraska, using a novel inversion method

    USGS Publications Warehouse

    Irons, Trevor P.; Hobza, Christopher M.; Steele, Gregory V.; Abraham, Jared D.; Cannia, James C.; Woodward, Duane D.

    2012-01-01

    Surface nuclear magnetic resonance, a noninvasive geophysical method, measures a signal directly related to the amount of water in the subsurface. This allows for low-cost quantitative estimates of hydraulic parameters. In practice, however, additional factors influence the signal, complicating interpretation. The U.S. Geological Survey, in cooperation with the Central Platte Natural Resources District, evaluated whether hydraulic parameters derived from surface nuclear magnetic resonance data could provide valuable input into groundwater models used for evaluating water-management practices. Two calibration sites in Dawson County, Nebraska, were chosen based on previous detailed hydrogeologic and geophysical investigations. At both sites, surface nuclear magnetic resonance data were collected, and derived parameters were compared with results from four constant-discharge aquifer tests previously conducted at those same sites. Additionally, borehole electromagnetic-induction flowmeter data were analyzed as a less-expensive surrogate for traditional aquifer tests. Building on recent work, a novel surface nuclear magnetic resonance modeling and inversion method was developed that incorporates electrical conductivity and effects due to magnetic-field inhomogeneities, both of which can have a substantial impact on the data. After comparing surface nuclear magnetic resonance inversions at the two calibration sites, the nuclear magnetic-resonance-derived parameters were compared with previously performed aquifer tests in the Central Platte Natural Resources District. This comparison served as a blind test for the developed method. The nuclear magnetic-resonance-derived aquifer parameters were in agreement with results of aquifer tests where the environmental noise allowed data collection and the aquifer test zones overlapped with the surface nuclear magnetic resonance testing. In some cases, the previously performed aquifer tests were not designed fully to characterize

  13. The N+CPT resonance

    NASA Astrophysics Data System (ADS)

    Crescimanno, Michael; Hohensee, Michael; Hancox, Cindy; Phillips, David; Walsworth, Ron

    2007-06-01

    Of relevance to compact atomic frequency standards, we investigate a model of the N+CPT joint optical resonance. We compare analytical solutions of a 4-state theory, as well as numerical solutions of the optical Bloch equations, to experimental investigations of N+CPT resonances in 87Rb. Our results inform the optimization of N+CPT based frequency standards.

  14. 238U/235U determinations of some commonly used reference materials and U-bearing accessory minerals (Invited)

    NASA Astrophysics Data System (ADS)

    Condon, D.; Noble, S.; McLean, N.; Bowring, S. A.

    2009-12-01

    We have determined 238U/235U ratios for a suite of commonly used natural (CRM 112a, SRM 950a, HU-1) and synthetic (IRMM 184 and CRM U500) uranium reference materials in addition to several U-bearing accessory phases (zircon and monazite) by thermal ionisation mass-spectrometry (TIMS) using the IRMM 3636 233U-236U double spike to accurately correct for mass fractionation. The 238U/235U values for the natural uranium reference materials differ, by up to 0.1%, from the widely used ‘consensus’ value (137.88) with all having 238U/235U values less than 137.88. Similarly, initial 238U/235U data from zircon and monazite yield 238U/235U values that are lower than the ‘consensus’ value. The data obtained from U-bearing minerals is used to assess how the uncertainty in the 238U/235U ratio contributes to the systematic discordance observed in 238U/206Pb and 235U/207Pb dates (Mattinson, 2000; Schoene et al., 2006) which has traditionally been wholly attributed to error in the U decay constants. The 238U/235U determinations made on the synthetic reference materials yield results that are considerably more precise and accurate than the certified values (0.02% vs. 0.1% for CRM U500). The calibration of isotopic tracers used for U-daughter geochronology that are partially based upon these reference materials, and the resultant age determinations, will benefit from increased accuracy and precision. Mattinson, J.M., 2000. Revising the “gold standard”—the uranium decay constants of Jaffey et al., 1971. Eos Trans. AGU, Spring Meet. Suppl., Abstract V61A-02. Schoene B., Crowley J.L., Condon D.C., Schmitz M.D., Bowring S.A., 2006, Reassessing the uranium decay constants for geochronology using ID-TIMS U-Pb data. Geochimica et Cosmochimica Acta 70: 426-445

  15. Anti-U-like as an alloantibody in S-s-U- and S-s-U+(var) black people.

    PubMed

    Peyrard, Thierry; Lam, Yin; Saison, Carole; Arnaud, Lionel; Babinet, Jérôme; Rouger, Philippe; Bierling, Philippe; Janvier, Daniel

    2012-03-01

    S, s, and U antigens belong to the MNS system. They are carried by glycophorin B (GPB), encoded by GYPB. Black people with the low-prevalence S-s- phenotype, either U- or U+(var), can make a clinically significant anti-U. Anti-U-like, a cold immunoglobulin G autoantibody quite commonly observed in S-s+U+ black persons, was previously described to be nonreactive with ficin-, α-chymotrypsin-, and pronase-treated red blood cells (RBCs); nonreactive or weakly reactive with papain-treated RBCs; and reactive with trypsin-treated RBCs. Here we describe, in S-s- people from different molecular backgrounds, an alloantibody to a high-prevalence GPB antigen, which presents the same pattern of reactivity with proteases as autoanti-U-like. Four S-s- patients with an alloantibody to a high-prevalence GPB antigen were investigated by serologic and molecular methods. An alloantibody was observed in two S-s-U-/Del GYPB, one S-s-U+(var)/GYPB(P2), and one S-s-U+(var)/GYPB(NY) patients. As this alloantibody showed the same pattern of reactivity with proteases as autoanti-U-like, we decided to name it "anti-U-like." Anti-U-like made by the two S-s-U- patients was reactive with the S-s-U+(var) RBCs of the two other patients. S-s-U-/Del GYPB, S-s-U+(var)/GYPB(P2), and S-s-U+(var)/GYPB(NY) patients can make an alloanti-U-like. Anti-U-like made by S-s-U- people appears reactive with GYPB(P2) and GYPB(NY) RBCs, which both express a weak and partial U-like reactivity. We recommend transfusing S-s-U- RBCs in S-s-U- patients showing alloanti-U-like. Our study contributes to a better understanding of alloimmunization to GPB in black people and confirms importance of genotyping in S-s- patients, especially those with sickle cell disease to be frequently transfused. © 2011 American Association of Blood Banks.

  16. RESONATOR PARTICLE SEPARATOR

    DOEpatents

    Blewett, J.P.

    1962-01-01

    A wave guide resonator structure is described for use in separating particles of equal momentum but differing in mass and having energies exceeding one billion electron volts. The particles are those of sub-atomic size and are generally produced as a result of the bombardment of a target by a beam such as protons produced in a high-energy accelerator. In this wave guide construction, the particles undergo preferential deflection as a result of the presence of an electric field. The boundary conditions established in the resonator are such as to eliminate an interfering magnetic component, and to otherwise phase the electric field to obtain a traveling wave such as one which moves at the same speed as the unwanted particle. The latter undergoes continuous deflection over the whole length of the device and is, therefore, eliminated while the wanted particle is deflected in opposite directions over the length of the resonator and is thus able to enter an exit aperture. (AEC)

  17. Anatomy of the ρ resonance from lattice QCD at the physical point

    NASA Astrophysics Data System (ADS)

    Sun, Wei; Alexandru, Andrei; Chen, Ying; Draper, Terrence; Liu, Zhaofeng; Yang, Yi-Bo; χQCD Collaboration

    2018-05-01

    We propose a strategy to access the q\\bar{q} component of the ρ resonance in lattice QCD. Through a mixed action formalism (overlap valence on domain wall sea), the energy of the q\\bar{q} component is derived at different valence quark masses, and shows a linear dependence on {m}{{π }}2. The slope is determined to be {c}1=0.505(3) {{{GeV}}}-1, from which the valence {{π }}{{ρ }} sigma term is extracted to be {σ }{{π }{{ρ }}}({val)}=9.82(6) MeV using the Feynman-Hellman theorem. At the physical pion mass, the mass of the q\\bar{q} component is interpolated to be {m}{{ρ }}=775.9+/- 6.0+/- 1.8 {{MeV}}, which is close to the ρ resonance mass. We also obtain the leptonic decay constant of the q\\bar{q} component to be {f}{{{ρ }}-}=208.5+/- 5.5+/- 0.9 {{MeV}}, which can be compared with the experimental value {f}{{ρ }}{{\\exp }}≈ 221 {{MeV}} through the relation {f}{{ρ }}{{\\exp }}=\\sqrt{{Z}{{ρ }}}{f}{{{ρ }}+/- }, with {Z}{{ρ }}≈ 1.13 being the on-shell wavefunction renormalization of ρ owing to the {{ρ }}-{{π }} interaction. We emphasize that {m}{{ρ }} and {f}{{ρ }} of the q\\bar{q} component, which are obtained for the first time from QCD, can be taken as the input parameters of ρ in effective field theory studies where ρ acts as a fundamental degree of freedom. Supported in part by the U.S. DOE Grant No. DE-SC0013065, the National Nature Science Foundation of China (NSFC) (11335001, 11575196, 11575197, 11621131001) (CRC110 by DFG and NSFC), A. A. is supported in part by the National Science Foundation CAREER (PHY-1151648) and by U.S. DOE (DE-FG02-95ER40907), Y. C. thanks the CAS Center for Excellence in Particle Physics (CCEPP) for their support, this research used the resources of the Oak Ridge Leadership Computing Facility at the Oak Ridge National Laboratory, which is supported by the Office of Science of the U.S. Department of Energy (DE-AC05-00OR22725)

  18. Tri-Band CPW-Fed Stub-Loaded Slot Antenna Design for WLAN/WiMAX Applications

    NASA Astrophysics Data System (ADS)

    Li, Jianxing; Guo, Jianying; He, Bin; Zhang, Anxue; Liu, Qing Huo

    2016-11-01

    A novel uniplanar CPW-fed tri-band stub-loaded slot antenna is proposed for wireless local area network (WLAN) and worldwide interoperability for microwave access (WiMAX) applications. Dual resonant modes were effectively excited in the upper band by using two identical pairs of slot stubs and parasitic slots symmetrically along the arms of a traditional CPW-fed slot dipole, achieving a much wider bandwidth. The middle band was realized by the fundamental mode of the slot dipole. To obtain the lower band, two identical inverted-L-shaped open-ended slots were symmetrically etched in the ground plane. A prototype was fabricated and measured, showing that tri-band operation with 10-dB return loss bandwidths of 150 MHz from 2.375 to 2.525 GHz, 725 MHz from 3.075 to 3.8 GHz, and 1.9 GHz from 5.0 to 6.9 GHz has been achieved. Details of the antenna design as well as the measured and simulated results are presented and discussed.

  19. Quartz crystal and superconductive resonators and oscillators

    NASA Technical Reports Server (NTRS)

    Besson, R. S.

    1978-01-01

    A general overview of piezoelectric resonators is given with emphasis on evolution of the resonator design. Superconducting cavities and crystals at low temperature and the use of resonant frequencies are also discussed.

  20. National Oceanic and Atmospheric Administration hydrographic survey data used in a U.S. Geological Survey regional geologic framework study along the Delmarva Peninsula

    USGS Publications Warehouse

    Pendleton, Elizabeth A.; Brothers, Laura L.; Thieler, E. Robert; Danforth, William W.; Parker, Castle E.

    2014-01-01

    The U.S. Geological Survey obtained raw Reson multibeam data files from Science Applications International Corporation and the National Oceanic and Atmospheric Administration for 20 hydrographic surveys and extracted backscatter data using the Fledermaus Geocoder Toolbox from Quality Positioning Service. The backscatter mosaics produced by the U.S. Geological Survey for the inner continental shelf of the Delmarva Peninsula using National Oceanic and Atmospheric Administration data increased regional geophysical surveying efficiency, collaboration among government agencies, and the area over which geologic data can be interpreted by the U.S. Geological Survey. This report describes the methods by which the backscatter data were extracted and processed and includes backscatter mosaics and interpolated bathymetric surfaces.

  1. Polarization spectroscopy of the sodium dimer utilizing a triple-resonance technique in the presence of argon

    NASA Astrophysics Data System (ADS)

    Arndt, Phillip; Horton, Timothy; McFarland, Jacob; Bayram, Burcin; Miami University Spectroscopy Team

    2015-05-01

    The collisional dynamics of molecular sodium in the 61Σg electronic state is under investigation using a triple resonance technique in the presence of argon. A continuous wave ring dye laser is used to populate specific rovibrational levels of the A1Σu electronic state. A pump-probe technique is then employed where the pump laser populates the 61Σg state, and the probe laser dumps the population to the B1Σu state. From this level, fluorescence is detected as the system decays to the X1Σg state. We measure the polarization of this signal in the presence of various argon pressures. We will present our current work as well as the processes involved in the experiment. Financial support from the National Science Foundation (Grant No. NSF-PHY-1309571) is gratefully acknowledged.

  2. The Stability of Resonant Chains of Moons

    NASA Astrophysics Data System (ADS)

    Rimlinger, Thomas; Hamilton, Douglas

    2018-04-01

    Unlike other giant planets, Saturn has a satellite system that is dominated by a single massive body, Titan, which features an unusually large inclination and eccentricity. Its origin has yet to be satisfactorily explained; neither in situ formation nor capture from heliocentric orbit can easily produce all of its measured properties. We argue that dynamical instability and subsequent mergers within a resonant chain of satellites analogous to the Galilean moons could be responsible for Titan’s unusual features.To explore this idea, we perform simulations in which we vary a wide range of parameters, including the number of satellites, their masses, their spacings, and their tidal migration and eccentricity damping rates. In our preliminary modeling, we initialize our simulations with three moons in the 1:2:4 mean-motion resonance (currently occupied by Io, Europa, and Ganymede at Jupiter) and study how varying each parameter affects the resonant stability. We find that in some cases, the satellites do indeed escape from this three-body resonance, while in others, the bodies’ period ratios remain locked. We study the evolution of these systems and seek a deeper understanding of the competing mechanisms responsible for resonant capture and escape.Accordingly, we investigate the role that specific two-body eccentricity and inclination resonances play in determining stability conditions. For three satellites in a 1:2:4 resonance, there exist four nearby first-order eccentricity resonances along with many other weaker eccentricity and inclination resonances. In our simulations, we track entrance into and exit from these resonances to provide a more cohesive picture of how the system evolves and find that this evolution depends sensitively on the masses and damping rates. We will report further details of our findings and will discuss their implications for the stability of resonant chains of moons.

  3. Multi-stage phononic crystal structure for anchor-loss reduction of thin-film piezoelectric-on-silicon microelectromechanical-system resonator

    NASA Astrophysics Data System (ADS)

    Bao, Fei-Hong; Bao, Lei-Lei; Li, Xin-Yi; Ammar Khan, Muhammad; Wu, Hua-Ye; Qin, Feng; Zhang, Ting; Zhang, Yi; Bao, Jing-Fu; Zhang, Xiao-Sheng

    2018-06-01

    Thin-film piezoelectric-on-silicon acoustic wave resonators are promising for the development of system-on-chip integrated circuits with micro/nano-engineered timing reference. However, in order to realize their large potentials, a further enhancement of the quality factor (Q) is required. In this study, a novel approach, based on a multi-stage phononic crystal (PnC) structure, was proposed to achieve an ultra-high Q. A systematical study revealed that the multi-stage PnC structure formed a frequency-selective band-gap to effectively prohibit the dissipation of acoustic waves through tethers, which significantly reduced the anchor loss, leading to an insertion-loss reduction and enhancement of Q. The maximum unloaded Q u of the fabricated resonators reached the value of ∼10,000 at 109.85 MHz, indicating an enhancement by 19.4 times.

  4. Stagnancy of the pygmy dipole resonance

    NASA Astrophysics Data System (ADS)

    Sun, Xu-Wei; Chen, Jing; Lu, Ding-Hui

    2018-01-01

    The pygmy dipole resonance (PDR) of nickel isotopes is studied using the deformed random phase approximation method. The isoscalar character of the pygmy resonance is confirmed, and the correlation between the pygmy resonance and neutron skin thickness is discussed. Our investigation shows a linear correlation between PDR integral cross section and neutron skin thickness when the excess neutrons lie in pf orbits, with a correlation rate of about 0.27 fm-1. However, in more neutron-rich nickel isotopes, the growth of the pygmy dipole resonance is stagnant. Although the neutron skin thickness increases, the whole skin is not active. There is an inertial part in the nuclei 70-78Ni which does not participate in the pygmy resonance actively and as a result, contributes little to the photo-absorption cross section. Supported by National Science Foundation of China

  5. A study of the semiconductor compound СuAlO2 by the method of nuclear quadrupole resonance of Cu

    NASA Astrophysics Data System (ADS)

    Matukhin, V. L.; Khabibulin, I. Kh.; Shul'gin, D. A.; Smidt, S. V.

    2012-07-01

    The method of nuclear quadrupole resonance of Cu (NQR Cu) is used to study the samples of a semiconductor compound CuAlO2. The crystal structure of CuAlO2 belongs to the family of delafossite - the mineral of a basic CuFeO2 structure. Transparent semiconductor oxides, such as CuAlO2, have attracted recent attention as promising thermoelectric materials.

  6. Parametric Investigation of Holographic Gratings and Optical Phase Conjugation Through Degenerate Four Wave Mixing in Saturable Absorptive/Resonant/Nonresonant Systems

    DTIC Science & Technology

    1991-11-26

    WAVE MIXING IN SATURABLE ABSORPTIVEIRESONANTINONRESONANT SYSTEMS I Final Report Putcha Venkateswarlu November 26, 1991 U.S. ARMY RESEARCH OFFICE GRANT...and Optical Phase Conjugation Through Degenerate Four Wave Mixin2 in Saturable Absorptive/Resonant/Nonresonant System DAAL03-87-G-0078 6. AUTHOR(S) P...author(s) and should not be construed as an official Department of the Army position, policy, or decision, unless so designated by other

  7. Secular Resonances In Planetary Satellites

    NASA Astrophysics Data System (ADS)

    Yokoyama, T.; Marinho, E. P.

    1999-09-01

    Due to the tides the orbits of Phobos and Triton are spiralling in towards their host planets. On the contrary, our Moon is being driven away from the Earth. Most probably, in the past many other particles experienced similar variations. During this evolution, the semimajor axis assumes several values which can cause significant resonances, involving the node, pericenter and the longitude of the Sun. Recently Touma and Wisdom showed the decisive effect played by evection and iviction resonances in the Earth-Moon system. In this work we derive the averaged equations of a satellite disturbed by the Sun and the oblateness of the planet. Neglecting higher order (third) in the ratio of the distances, all possible resonances are studied. In general we are used to small values of the ecliptic. However in the past, the obliquity of the inner planets could have attained very high values (Laskar et all). Then taking into account large values of the obliquity we find some significant variations in the inclinations, besides others in the eccentricities. If some empirical law of the variation of the semimajor axis is assumed, then with the averaged equations we can easily see the jumps in these elements when the satellite crosses some resonance. Finally we show the possible variations in the Phobos' eccentricity since it will cross the evection resonance in the future. We also show some possible and significant resonances faced by Triton in the past. For partial financial support we thank FAPESP.

  8. Empathy in schizophrenia: impaired resonance.

    PubMed

    Haker, Helene; Rössler, Wulf

    2009-09-01

    Resonance is the phenomenon of one person unconsciously mirroring the motor actions as basis of emotional expressions of another person. This shared representation serves as a basis for sharing physiological and emotional states of others and is an important component of empathy. Contagious laughing and contagious yawning are examples of resonance. In the interpersonal contact with individuals with schizophrenia we can often experience impaired empathic resonance. The aim of this study is to determine differences in empathic resonance-in terms of contagion by yawning and laughing-in individuals with schizophrenia and healthy controls in the context of psychopathology and social functioning. We presented video sequences of yawning, laughing or neutral faces to 43 schizophrenia outpatients and 45 sex- and age-matched healthy controls. Participants were video-taped during the stimulation and rated regarding contagion by yawning and laughing. In addition, we assessed self-rated empathic abilities (Interpersonal Reactivity Index), psychopathology (Positive and Negative Syndrome Scale in the schizophrenia group resp. Schizotypal Personality Questionnaire in the control group), social dysfunction (Social Dysfunction Index) and executive functions (Stroop, Fluency). Individuals with schizophrenia showed lower contagion rates for yawning and laughing. Self-rated empathic concern showed no group difference and did not correlate with contagion. Low rate of contagion by laughing correlated with the schizophrenia negative syndrome and with social dysfunction. We conclude that impaired resonance is a handicap for individuals with schizophrenia in social life. Blunted observable resonance does not necessarily reflect reduced subjective empathic concern.

  9. Magnetic Resonance Imaging (MRI) Safety

    MedlinePlus

    ... News Physician Resources Professions Site Index A-Z Magnetic Resonance Imaging (MRI) Safety What is MRI and how does ... What is MRI and how does it work? Magnetic resonance imaging, or MRI, is a way of obtaining detailed ...

  10. Magnetic Resonance Imaging (MRI): Dynamic Pelvic Floor

    MedlinePlus

    ... Site Index A-Z Magnetic Resonance Imaging (MRI) – Dynamic Pelvic Floor Dynamic pelvic floor magnetic resonance imaging ( ... the limitations of pelvic floor MRI? What is dynamic pelvic floor MRI? Magnetic resonance imaging (MRI) is ...

  11. Nonlinear Dynamics of Nanomechanical Resonators

    NASA Astrophysics Data System (ADS)

    Ramakrishnan, Subramanian; Gulak, Yuiry; Sundaram, Bala; Benaroya, Haym

    2007-03-01

    Nanoelectromechanical systems (NEMS) offer great promise for many applications including motion and mass sensing. Recent experimental results suggest the importance of nonlinear effects in NEMS, an issue which has not been addressed fully in theory. We report on a nonlinear extension of a recent analytical model by Armour et al [1] for the dynamics of a single-electron transistor (SET) coupled to a nanomechanical resonator. We consider the nonlinear resonator motion in both (a) the Duffing and (b) nonlinear pendulum regimes. The corresponding master equations are derived and solved numerically and we consider moment approximations as well. In the Duffing case with hardening stiffness, we observe that the resonator is damped by the SET at a significantly higher rate. In the cases of softening stiffness and the pendulum, there exist regimes where the SET adds energy to the resonator. To our knowledge, this is the first instance of a single model displaying both negative and positive resonator damping in different dynamical regimes. The implications of the results for SET sensitivity as well as for, as yet unexplained, experimental results will be discussed. 1. Armour et al. Phys.Rev.B (69) 125313 (2004).

  12. A New Resonance Tube

    ERIC Educational Resources Information Center

    Bates, Alan

    2017-01-01

    The measurement of the speed of sound in air with the resonance tube is a popular experiment that often yields accurate results. One approach is to hold a vibrating tuning fork over an air column that is partially immersed in water. The column is raised and lowered in the water until the generated standing wave produces resonance: this occurs at…

  13. Nested trampoline resonators for optomechanics

    NASA Astrophysics Data System (ADS)

    Weaver, M. J.; Pepper, B.; Luna, F.; Buters, F. M.; Eerkens, H. J.; Welker, G.; Perock, B.; Heeck, K.; de Man, S.; Bouwmeester, D.

    2016-01-01

    Two major challenges in the development of optomechanical devices are achieving a low mechanical and optical loss rate and vibration isolation from the environment. We address both issues by fabricating trampoline resonators made from low pressure chemical vapor deposition Si3N4 with a distributed Bragg reflector mirror. We design a nested double resonator structure with 80 dB of mechanical isolation from the mounting surface at the inner resonator frequency, and we demonstrate up to 45 dB of isolation at lower frequencies in agreement with the design. We reliably fabricate devices with mechanical quality factors of around 400 000 at room temperature. In addition, these devices were used to form optical cavities with finesse up to 181 000 ± 1000. These promising parameters will enable experiments in the quantum regime with macroscopic mechanical resonators.

  14. Spectroscopy of baryon resonances

    NASA Astrophysics Data System (ADS)

    Beck, Reinhard; Thoma, Ulrike

    2017-01-01

    Within project A.1 of the SFB/TR16 "Subnuclear Structure of Matter", a large amount of data on photoproduction reactions has been accumulated at the Bonn Electron Stretcher Accelerator ELSA with the CBELSA/TAPS detector and was analysed in detail. In particular, data have been taken with unpolarized or with linearly or circularly polarized photons and with unpolarized or with longitudinally or transversely polarized protons. Photoproduction off neutrons was studied to determine the helicity amplitudes for the excitation of resonances off neutrons. In a partial wave analysis of the data, new resonances have been found and the properties of new and of known resonances have been determined, including the measurement of partial widths of so far unmeasured decay modes.

  15. Quartz resonator processing system

    DOEpatents

    Peters, Roswell D. M.

    1983-01-01

    Disclosed is a single chamber ultra-high vacuum processing system for the oduction of hermetically sealed quartz resonators wherein electrode metallization and sealing are carried out along with cleaning and bake-out without any air exposure between the processing steps. The system includes a common vacuum chamber in which is located a rotatable wheel-like member which is adapted to move a plurality of individual component sets of a flat pack resonator unit past discretely located processing stations in said chamber whereupon electrode deposition takes place followed by the placement of ceramic covers over a frame containing a resonator element and then to a sealing stage where a pair of hydraulic rams including heating elements effect a metallized bonding of the covers to the frame.

  16. Polarization effects in recoil-induced resonances

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lazebnyi, D. B., E-mail: becks.ddf@gmail.com; Brazhnikov, D. V.; Taichenachev, A. V.

    2017-01-15

    The effect of the field polarization on the amplitude of recoil-induced resonances (RIRs) is considered for laser-cooled free atoms and for atoms in a working magneto-optical trap (MOT). For all closed dipole transitions, explicit analytical expressions are obtained for the polarization dependence of the resonance amplitudes within a perturbation theory. Optimal polarization conditions are found for the observation of resonances.

  17. Isotopic and geochemical tracers for U(VI) reduction and U mobility at an in situ recovery U mine

    DOE PAGES

    Basu, Anirban; Brown, Shaun T.; Christensen, John N.; ...

    2015-05-19

    In situ recovery (ISR) uranium (U) mining mobilizes U in its oxidized hexavalent form (U(VI)) by oxidative dissolution of U from the roll-front U deposits. Post-mining natural attenuation of residual U(VI) at ISR mines is a potential remediation strategy. Detection and monitoring of naturally occurring reducing subsurface environments are important for successful implementation of this remediation scheme. We used the isotopic tracers ²³⁸U/²³⁵U (δ²³⁸U), ²³⁴U/²³⁸U activity ratio, and ³⁴S/³²S (δ³⁴S), and geochemical measurements of U ore and groundwater collected from 32 wells located within, upgradient, and downgradient of a roll-front U deposit to detect U(VI) reduction and U mobility atmore » an ISR mining site at Rosita, TX, USA. The δ²³⁸U in Rosita groundwater varies from 0.61‰ to -2.49‰, with a trend toward lower δ²³⁸U in downgradient wells. The concurrent decrease in U(VI) concentration and δ²³⁸U with an ε of 0.48‰ ± 0.08‰ is indicative of naturally occurring reducing environments conducive to U(VI) reduction. Additionally, characteristic ²³⁴U/²³⁸U activity ratio and δ³⁴S values may also be used to trace the mobility of the ore zone groundwater after mining has ended. These results support the use of U isotope-based detection of natural attenuation of U(VI) at Rosita and other similar ISR mining sites.« less

  18. Isotopic and geochemical tracers for U(VI) reduction and U mobility at an in situ recovery U mine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Basu, Anirban; Brown, Shaun T.; Christensen, John N.

    In situ recovery (ISR) uranium (U) mining mobilizes U in its oxidized hexavalent form (U(VI)) by oxidative dissolution of U from the roll-front U deposits. Post-mining natural attenuation of residual U(VI) at ISR mines is a potential remediation strategy. Detection and monitoring of naturally occurring reducing subsurface environments are important for successful implementation of this remediation scheme. We used the isotopic tracers ²³⁸U/²³⁵U (δ²³⁸U), ²³⁴U/²³⁸U activity ratio, and ³⁴S/³²S (δ³⁴S), and geochemical measurements of U ore and groundwater collected from 32 wells located within, upgradient, and downgradient of a roll-front U deposit to detect U(VI) reduction and U mobility atmore » an ISR mining site at Rosita, TX, USA. The δ²³⁸U in Rosita groundwater varies from 0.61‰ to -2.49‰, with a trend toward lower δ²³⁸U in downgradient wells. The concurrent decrease in U(VI) concentration and δ²³⁸U with an ε of 0.48‰ ± 0.08‰ is indicative of naturally occurring reducing environments conducive to U(VI) reduction. Additionally, characteristic ²³⁴U/²³⁸U activity ratio and δ³⁴S values may also be used to trace the mobility of the ore zone groundwater after mining has ended. These results support the use of U isotope-based detection of natural attenuation of U(VI) at Rosita and other similar ISR mining sites.« less

  19. A loop-gap resonator for chirality-sensitive nuclear magneto-electric resonance (NMER)

    NASA Astrophysics Data System (ADS)

    Garbacz, Piotr; Fischer, Peer; Krämer, Steffen

    2016-09-01

    Direct detection of molecular chirality is practically impossible by methods of standard nuclear magnetic resonance (NMR) that is based on interactions involving magnetic-dipole and magnetic-field operators. However, theoretical studies provide a possible direct probe of chirality by exploiting an enantiomer selective additional coupling involving magnetic-dipole, magnetic-field, and electric field operators. This offers a way for direct experimental detection of chirality by nuclear magneto-electric resonance (NMER). This method uses both resonant magnetic and electric radiofrequency (RF) fields. The weakness of the chiral interaction though requires a large electric RF field and a small transverse RF magnetic field over the sample volume, which is a non-trivial constraint. In this study, we present a detailed study of the NMER concept and a possible experimental realization based on a loop-gap resonator. For this original device, the basic principle and numerical studies as well as fabrication and measurements of the frequency dependence of the scattering parameter are reported. By simulating the NMER spin dynamics for our device and taking the 19F NMER signal of enantiomer-pure 1,1,1-trifluoropropan-2-ol, we predict a chirality induced NMER signal that accounts for 1%-5% of the standard achiral NMR signal.

  20. Global analysis of data on the spin-orbit-coupled A {sup 1{Sigma}}{sub u}{sup +} and b {sup 3{Pi}}{sub u} states of Cs{sub 2}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bai, Jianmei; Ahmed, E. H.; Beser, B.

    2011-03-15

    We present experimentally derived potential curves and spin-orbit interaction functions for the strongly perturbed A {sup 1{Sigma}}{sub u}{sup +} and b {sup 3{Pi}}{sub u} states of the cesium dimer. The results are based on data from several sources. Laser-induced fluorescence Fourier transform spectroscopy (LIF FTS) was used some time ago in the Laboratoire Aime Cotton primarily to study the X {sup 1{Sigma}}{sub g}{sup +} state. More recent work at Tsinghua University provides information from moderate resolution spectroscopy on the lowest levels of the b {sup 3{Pi}}{sub 0u}{sup {+-}} state as well as additional high-resolution data. From Innsbruck University, we havemore » precision data obtained with cold Cs{sub 2} molecules. Recent data from Temple University was obtained using the optical-optical double resonance polarization spectroscopy technique, and finally, a group at the University of Latvia has added additional LIF FTS data. In the Hamiltonian matrix, we have used analytic potentials (the expanded Morse oscillator form) with both finite-difference (FD) coupled-channel and discrete variable representation (DVR) calculations of the term values. Fitted diagonal and off-diagonal spin-orbit functions are obtained and compared with ab initio results from Temple and Moscow State universities.« less

  1. Few-Mode Whispering-Gallery-Mode Resonators

    NASA Technical Reports Server (NTRS)

    Savchenkov, Anatoliy; Strekalov, Dmitry; Matsko, Andrey; Iltchenko, Vladimir; Maleki, Lute

    2006-01-01

    Whispering-gallery-mode (WGM) optical resonators of a type now under development are designed to support few well-defined waveguide modes. In the simplest case, a resonator of this type would support one equatorial family of WGMs; in a more complex case, such a resonator would be made to support two, three, or some other specified finite number of modes. Such a resonator can be made of almost any transparent material commonly used in optics. The nature of the supported modes does not depend on which material is used, and the geometrical dispersion of this resonator is much smaller than that of a typical prior WGM resonator. Moreover, in principle, many such resonators could be fabricated as integral parts of a single chip. Basically, a resonator of this type consists of a rod, made of a suitable transparent material, from which protrudes a thin circumferential belt of the same material. The belt is integral with the rest of the rod (see figure) and acts as a circumferential waveguide. If the depth (d) and width (w) of the belt are made appropriately small, then the belt acts as though it were the core of a single-mode optical fiber: the belt and its adjacent supporting rod material support a single, circumferentially propagating mode or family of modes. It has been shown theoretically that the fiber-optic-like behavior of the belton- rod resonator structure can be summarized, in part, by the difference, Dn, between (1) an effective index of refraction of an imaginary fiber core and (2) the index of refraction (n) of the transparent rod/belt material. It has also been shown theoretically that for a given required value of Dn, the required depth of the belt can be estimated as d R Dn, where R is the radius of the rod. It must be emphasized that this estimated depth is independent of n and, hence, is independent of the choice of rod material. As in the cases of prior WGM resonators, input/output optical coupling involves utilization of evanescent fields. In the

  2. Resonance Frequency Tuning of a Double Ring Resonator in GaInAsP/InP: Experiment and Simulation

    NASA Astrophysics Data System (ADS)

    Rabus, Dominik Gerhard; Hamacher, Michael; Heidrich, Helmut

    2002-02-01

    A racetrack shaped double ring resonator (DRR) filter is demonstrated with radii of 200 μm. The double ring resonator contains two -3 dB multimode interference (MMI) couplers for I/O coupling and a -13 dB codirectional coupler in between the rings. A free spectral range of 50 GHz has been realized. A simulation model has been developed to describe the DRR. As fabrication tolerances do not allow the realization of two identical rings with required nm-circumference accuracy in the resonator, a frequency alignment of the resonator is indispensable. The resonance frequency tuning is performed thermally using platinum resistors which have been placed on top of the waveguides in both rings. An on-off ratio increase has been achieved of more than 3 dB, resulting in a total on-off ratio larger than 18 dB. The frequency alignment is inevitable in the case of multiple coupled micro ring resonators.

  3. RESONATORS. MODES: Modes of a plano - spherical laser resonator with the Gaussian gain distribution of the active medium

    NASA Astrophysics Data System (ADS)

    Malyutin, A. A.

    2007-03-01

    Modes of a laser with plano-spherical degenerate and nondegenerate resonators are calculated upon diode pumping producing the Gaussian gain distribution in the active medium. Axially symmetric and off-axis pumpings are considered. It is shown that in the first case the lowest Hermite-Gaussian mode is excited with the largest weight both in the degenerate and nondegenerate resonator if the pump level is sufficiently high or the characteristic size wg of the amplifying region greatly exceeds the mode radius w0. The high-order Ince-Gaussian modes are excited upon weak off-axis pumping in the nondegenerate resonator both in the absence and presence of the symmetry of the gain distribution with respect to the resonator axis. It is found that when the level of off-axis symmetric pumping of the resonator is high enough, modes with the parameters of the TEM00 mode periodically propagating over a closed path in the resonator can exist. The explanation of this effect is given.

  4. Microwave-to-Optical Conversion in WGM Resonators

    NASA Technical Reports Server (NTRS)

    Savchenkov, Anatoliy; Strekalov, Dmitry; Yu, Nan; Matsko, Andrey; Maleki, Lute

    2008-01-01

    Microwave-to-optical frequency converters based on whispering-gallery-mode (WGM) resonators have been proposed as mixers for the input ends of microwave receivers in which, downstream of the input ends, signals would be processed photonically. A frequency converter as proposed (see figure) would exploit the nonlinearity of the electromagnetic response of a WGM resonator made of LiNbO3 or another suitable ferroelectric material. Up-conversion would take place by three-wave mixing in the resonator. The WGM resonator would be de - signed and fabricated to obtain (1) resonance at both the microwave and the optical operating frequencies and (2) phase matching among the input and output microwave and optical signals as described in the immediately preceding article. Because the resonator would be all dielectric there would be no metal electrodes signal losses would be very low and, consequently, the resonance quality factors (Q values) of the microwave and optical fields would be very large. The long lifetimes associated with the large Q values would enable attainment of high efficiency of nonlinear interaction with low saturation power. It is anticipated that efficiency would be especially well enhanced by the combination of optical and microwave resonances in operation at input signal frequencies between 90 and 300 GHz.

  5. High-Q BBO whispering gallery mode resonators

    NASA Astrophysics Data System (ADS)

    Lin, Guoping; Fürst, Josef U.; Strekalov, Dmitry V.; Grudinin, Ivan S.; Yu, Nan

    2013-02-01

    We report an investigation on optical whispering gallery mode (WGM) resonators made from non z-cut beta barium borate (BBO) crystals. We first fabricated high quality (Q) factor WGM resonators made of an angle-cut BBO crystal. Q factors of 1×108 level have been demonstrated at various wavelengths including UV. They led to new upper bounds for the absorption coefficients of BBO at 1560 nm, 980 nm and 370 nm. We observed only one set of ordinarily polarized WGMs with polarization rotating along the resonator circumference. We also fabricated xy-cut BBO WGM resonators, in which the optic axis is parallel to the resonator plane. In that case, two WGM families with different polarization exist, one with constant the other with oscillatory phase velocity. This enables a novel way of broadband phase matching in WGM resonators with cyclic gain. We experimentally demonstrated efficient second harmonic generation (SHG) to a wide harmonic wavelength range from 780 nm at near infrared to 317 nm in UV. It is also the first reported direct UV SHG in a high-Q WGM resonator. This work lays a foundation for further investigations of WGM properties of non-z cut birefringent resonators and their applications in nonlinear optics.

  6. Scattering Resonances in the Simplest Chemical Reaction

    NASA Astrophysics Data System (ADS)

    Fernandez-Alonso, Felix; Zare, Richard N.

    2002-10-01

    Recent studies of state-resolved angular distributions show the participation of reactive scattering resonances in the simplest chemical reaction. This review is intended for those who wish to learn about the state-of-the-art in the study of the H + H2 reaction family that has made this breakthrough possible. This review is also intended for those who wish to gain insight into the nature of reactive scattering resonances. Following a tour across several fields of physics and chemistry where the concept of resonance has been crucial for the understanding of new phenomena, we offer an operational definition and taxonomy of reactive scattering resonances. We introduce simple intuitive models to illustrate each resonance type. We focus next on the last decade of H + H2 reaction dynamics. Emphasis is placed on the various experimental approaches that have been applied to the search for resonance behavior in the H + H2 reaction family. We conclude by sketching the road ahead in the study of H + H2 reactive scattering resonances.

  7. Microfabricated teeter-totter resonator

    DOEpatents

    Adkins, Douglas Ray; Heller, Edwin J.; Shul, Randy J.

    2004-11-23

    A microfabricated teeter-totter resonator comprises a frame, a paddle pivotably anchored to the frame by pivot arms that define an axis of rotation, a current conductor line on a surface of the paddle, means for applying a static magnetic field substantially perpendicular to the rotational axis and in the plane of the paddle, and means for energizing the current conductor line with an alternating current. A Lorentz force is generated by the interaction of the magnetic field with the current flowing in the conductor line, causing the paddle to oscillate about the axis of rotation. The teeter-totter resonator can be fabricated with micromachining techniques with materials used in the integrated circuits manufacturing industry. The microfabricated teeter-totter resonator has many varied applications, both as an actuation device and as a sensor. When used as a chemical sensor, a chemically sensitive coating can be disposed on one or both surfaces of the paddle to enhance the absorption of chemical analytes from a fluid stream. The resulting mass change can be detected as a change in the resonant frequency or phase of the oscillatory motion of the paddle.

  8. Ultrasonic signal enhancement by resonator techniques

    NASA Technical Reports Server (NTRS)

    Heyman, J. S.

    1973-01-01

    Ultrasonic resonators increase experimental sensitivity to acoustic dispersion and changes in attenuation. Experimental sensitivity enhancement line shapes are presented which were obtained by modulating the acoustic properties of a CdS resonator with a light beam. Small changes in light level are made to produce almost pure absorptive or dispersive changes in the resonator signal. This effect is due to the coupling of the ultrasonic wave to the CdS conductivity which is proportional to incident light intensity. The resonator conductivity is adjusted in this manner to obtain both dispersive and absorptive sensitivity enhancement line shapes. The data presented verify previous thoretical calculations based on a propagating wave model.

  9. Persistence, resistance, resonance

    NASA Astrophysics Data System (ADS)

    Tsadka, Maayan

    Sound cannot travel in a vacuum, physically or socially. The ways in which sound operates are a result of acoustic properties, and the ways by which it is considered to be music are a result of social constructions. Therefore, music is always political, regardless of its content: the way it is performed and composed; the choice of instrumentation, notation, tuning; the medium of its distribution; its inherent hierarchy and power dynamics, and more. My compositional praxis makes me less interested in defining a relationship between music and politics than I am in erasing---or at least blurring---the borders between them. In this paper I discuss the aesthetics of resonance and echo in their metaphorical, physical, social, and musical manifestations. Also discussed is a political aesthetic of resonance, manifested through protest chants. I transcribe and analyze common protest chants from around the world, categorizing and unifying them as universal crowd-mobilizing rhythms. These ideas are explored musically in three pieces. Sumud: Rhetoric of Resistance in Three Movements, for two pianos and two percussion players, is a musical interpretation of the political/social concept of sumud, an Arabic word that literally means "steadfastness" and represents Palestinian non-violent resistance. The piece is based on common protest rhythms and uses the acoustic properties inherent to the instruments. The second piece, Three Piano Studies, extends some of the musical ideas and techniques used in Sumud, and explores the acoustic properties and resonance of the piano. The final set of pieces is part of my Critical Mess Music Project. These are site-specific musical works that attempt to blur the boundaries between audience, performers and composer, in part by including people without traditional musical training in the process of music making. These pieces use the natural structure and resonance of an environment, in this case, locations on the UCSC campus, and offer an active

  10. Strongly driven electron spins using a Ku band stripline electron paramagnetic resonance resonator

    NASA Astrophysics Data System (ADS)

    Yap, Yung Szen; Yamamoto, Hiroshi; Tabuchi, Yutaka; Negoro, Makoto; Kagawa, Akinori; Kitagawa, Masahiro

    2013-07-01

    This article details our work to obtain strong excitation for electron paramagnetic resonance (EPR) experiments by improving the resonator's efficiency. The advantages and application of strong excitation are discussed. Two 17 GHz transmission-type, stripline resonators were designed, simulated and fabricated. Scattering parameter measurements were carried out and quality factor were measured to be around 160 and 85. Simulation results of the microwave's magnetic field distribution are also presented. To determine the excitation field at the sample, nutation experiments were carried out and power dependence were measured using two organic samples at room temperature. The highest recorded Rabi frequency was rated at 210 MHz with an input power of about 1 W, which corresponds to a π/2 pulse of about 1.2 ns.

  11. A New Look at an Old Activity: Resonance Tubes Used to Teach Resonance

    NASA Astrophysics Data System (ADS)

    Nelson, Jim; Nelson, Jane

    2017-12-01

    There are several variations of resonance laboratory activities used to determine the speed of sound. This is not one of them. This activity uses the resonance tube idea to teach resonance, not to verify the speed of sound. Prior to this activity, the speed of sound has already been measured using computer sound-sensors and timing echoes produced in long tubes like carpet tubes. There are other methods to determine the speed of sound. Some methods are referenced at the end of this article. The students already know the speed of sound when they are confronted with data that contradict their prior knowledge. Here, the mystery is something the students solve with the help of a series of demonstrations by the instructor.

  12. Magneto-optical Effects in the Scattering Polarization Wings of the Ca I 4227 Å Resonance Line

    NASA Astrophysics Data System (ADS)

    Alsina Ballester, E.; Belluzzi, L.; Trujillo Bueno, J.

    2018-02-01

    The linear polarization pattern produced by scattering processes in the Ca I 4227 Å resonance line is a valuable observable for probing the solar atmosphere. Via the Hanle effect, the very significant Q/I and U/I line-center signals are sensitive to the presence of magnetic fields in the lower chromosphere with strengths between 5 and 125 G, approximately. On the other hand, partial frequency redistribution (PRD) produces sizable signals in the wings of the Q/I profile, which have always been thought to be insensitive to the presence of magnetic fields. Interestingly, novel observations of this line revealed a surprising behavior: fully unexpected signals in the wings of the U/I profile and spatial variability in the wings of both Q/I and U/I. We show that the magneto-optical (MO) terms of the Stokes-vector transfer equation produce sizable signals in the wings of U/I and a clear sensitivity of the Q/I and U/I wings to the presence of photospheric magnetic fields with strengths similar to those that produce the Hanle effect in the line core. This radiative transfer investigation on the joint action of scattering processes and the Hanle and Zeeman effects in the Ca I 4227 Å line should facilitate the development of more reliable techniques for exploring the magnetism of stellar atmospheres. To this end, we can now exploit the circular polarization produced by the Zeeman effect, the magnetic sensitivity caused by the above-mentioned MO effects in the Q/I and U/I wings, and the Hanle effect in the line core.

  13. Suppression of Helmholtz resonance using inside acoustic liner

    NASA Astrophysics Data System (ADS)

    Hong, Zhiliang; Dai, Xiwen; Zhou, Nianfa; Sun, Xiaofeng; Jing, Xiaodong

    2014-08-01

    When a Helmholtz resonator is exposed to grazing flow, an unstable shear layer at the opening can cause the occurrence of acoustic resonance under appropriate conditions. In this paper, in order to suppress the flow-induced resonance, the effects of inside acoustic liners placed on the side wall or the bottom of a Helmholtz resonator are investigated. Based on the one-dimensional sound propagation theory, the time domain impedance model of a Helmholtz resonator with inside acoustic liner is derived, and then combined with a discrete vortex model the resonant behavior of the resonator under grazing flow is simulated. Besides, an experiment is conducted to validate the present model, showing significant reduction of the peak sound pressure level achieved by the use of the side-wall liners. And the simulation results match reasonably well with the experimental data. The present results reveal that the inside acoustic liner can not only absorb the resonant sound pressure, but also suppress the fluctuation motion of the shear layer over the opening of the resonator. In all, the impact of the acoustic liners is to dampen the instability of the flow-acoustic coupled system. This demonstrates that it is a convenient and effective method for suppressing Helmholtz resonance by using inside acoustic liner.

  14. Load characteristics of wireless power transfer system with different resonant types and resonator numbers

    NASA Astrophysics Data System (ADS)

    Zhang, Yiming; Zhao, Zhengming; Chen, Kainan; Fan, Jun

    2017-05-01

    Wireless Power Transfer (WPT) has been the research focus and applied in many fields. Normally power is transferred wirelessly to charge the battery, which requires specific load characteristics. The load characteristics are essential for the design and operation of the WPT system. This paper investigates the load characteristics of the WPT system with different resonant types and resonator numbers. It is found that in a WPT system with series or LCL resonance under a constant voltage source, the load characteristic is determined by the number of inductors. Even number of inductors results in a constant current characteristic and odd number constant voltage characteristic. Calculations, simulations, and experiments verify the analysis.

  15. Multi-frequency interpolation in spiral magnetic resonance fingerprinting for correction of off-resonance blurring.

    PubMed

    Ostenson, Jason; Robison, Ryan K; Zwart, Nicholas R; Welch, E Brian

    2017-09-01

    Magnetic resonance fingerprinting (MRF) pulse sequences often employ spiral trajectories for data readout. Spiral k-space acquisitions are vulnerable to blurring in the spatial domain in the presence of static field off-resonance. This work describes a blurring correction algorithm for use in spiral MRF and demonstrates its effectiveness in phantom and in vivo experiments. Results show that image quality of T1 and T2 parametric maps is improved by application of this correction. This MRF correction has negligible effect on the concordance correlation coefficient and improves coefficient of variation in regions of off-resonance relative to uncorrected measurements. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Resonance suppression from color reconnection

    NASA Astrophysics Data System (ADS)

    Acconcia, R.; Chinellato, D. D.; de Souza, R. Derradi; Takahashi, J.; Torrieri, G.; Markert, C.

    2018-02-01

    We present studies that show how multi-parton interaction and color reconnection affect the hadro-chemistry in proton-proton (pp) collisions with special focus on the production of resonances using the pythia8 event generator. We find that color reconnection suppresses the relative production of meson resonances such as ρ0 and K* , providing an alternative explanation for the K*/K decrease observed in proton-proton collisions as a function of multiplicity by the ALICE collaboration. Detailed studies of the underlying mechanism causing meson resonance suppression indicate that color reconnection leads to shorter, less energetic strings whose fragmentation is less likely to produce more massive hadrons for a given quark content, therefore reducing ratios such as K*/K and ρ0/π in high-multiplicity pp collisions. In addition, we have also studied the effects of allowing string junctions to form and found that these may also contribute to resonance suppression.

  17. Nested trampoline resonators for optomechanics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weaver, M. J., E-mail: mweaver@physics.ucsb.edu; Pepper, B.; Luna, F.

    2016-01-18

    Two major challenges in the development of optomechanical devices are achieving a low mechanical and optical loss rate and vibration isolation from the environment. We address both issues by fabricating trampoline resonators made from low pressure chemical vapor deposition Si{sub 3}N{sub 4} with a distributed Bragg reflector mirror. We design a nested double resonator structure with 80 dB of mechanical isolation from the mounting surface at the inner resonator frequency, and we demonstrate up to 45 dB of isolation at lower frequencies in agreement with the design. We reliably fabricate devices with mechanical quality factors of around 400 000 at room temperature. Inmore » addition, these devices were used to form optical cavities with finesse up to 181 000 ± 1000. These promising parameters will enable experiments in the quantum regime with macroscopic mechanical resonators.« less

  18. Resonant x-ray scattering from a skyrmion lattice

    NASA Astrophysics Data System (ADS)

    Roy, S.; Langner, M. C.; Mishra, S. K.; Lee, J. C. T.; Shi, X. W.; Hossain, M. A.; Chuang, Y.-D.; Kevan, S. D.; Schoenlein, R. W.; Seki, S.; Tokura, Y.

    2014-03-01

    Topologically protected novel phases in condensed matter systems are a current research topic of tremendous interest due to both the unique physics and their potential in device applications. Skyrmions are a topological phase that in magnetic systems manifest as a hexagonal lattice of spin-swirls. We report the first observation of the skyrmion lattice using resonant soft x-ray diffraction in Cu2OSeO3, a cubic insulator that exhibits degenerate helical magnetic structures along <100> axes in zero magnetic field. Within a narrow window of temperature and applied magnetic field we observed the six fold symmetric satellite peaks due to the skyrmion lattice around the (001) lattice Bragg peak. As a function of incident photon energy a rotational splitting of the skyrmion satellite peaks was observed that we ascribe to the two Cu sublattices of Cu2OSeO3, with different magnetically active orbitals. The splitting implies a long wavelength modulation of the skyrmion lattice. Work supported by U.S. DOE.

  19. Cerebral magnetic resonance changes associated with fibromyalgia syndrome.

    PubMed

    Murga, Iñigo; Guillen, Virginia; Lafuente, José-Vicente

    2017-06-07

    Fibromyalgia syndrome is a chronic disease, of unknown origin, whose diagnostic criteria were established in 1990 by the American College of Rheumatology. New criteria were proposed in 2010 that have not yet been validated. It is characterized by a generalized chronic musculoskeletal pain, accompanied by hyperalgesia and allodynia, as well as other motor, vegetative, cognitive and affective symptoms and signs. We have reviewed a set of studies with cerebral magnetic resonance (morphometry, connectivity and spectroscopy) that refer to changes in areas involved in pain processing. Modifications in gray and white matter volume, as well as in levels of N-acetylaspartate, choline or glutamate, among other metabolites, have been observed in the hippocampus, insula, prefrontal and cingular cortex. Neuroradiological findings are nonspecific and similar to those found in other examples of chronic pain. An increase in the sample size and a standardized methodology would facilitate comparison, allowing the drawing of general conclusions. Copyright © 2017 Elsevier España, S.L.U. All rights reserved.

  20. Development and validation of a questionnaire evaluating patient anxiety during Magnetic Resonance Imaging: the Magnetic Resonance Imaging-Anxiety Questionnaire (MRI-AQ).

    PubMed

    Ahlander, Britt-Marie; Årestedt, Kristofer; Engvall, Jan; Maret, Eva; Ericsson, Elisabeth

    2016-06-01

    To develop and validate a new instrument measuring patient anxiety during Magnetic Resonance Imaging examinations, Magnetic Resonance Imaging- Anxiety Questionnaire. Questionnaires measuring patients' anxiety during Magnetic Resonance Imaging examinations have been the same as used in a wide range of conditions. To learn about patients' experience during examination and to evaluate interventions, a specific questionnaire measuring patient anxiety during Magnetic Resonance Imaging is needed. Psychometric cross-sectional study with test-retest design. A new questionnaire, Magnetic Resonance Imaging-Anxiety Questionnaire, was designed from patient expressions of anxiety in Magnetic Resonance Imaging-scanners. The sample was recruited between October 2012-October 2014. Factor structure was evaluated with exploratory factor analysis and internal consistency with Cronbach's alpha. Criterion-related validity, known-group validity and test-retest was calculated. Patients referred for Magnetic Resonance Imaging of either the spine or the heart, were invited to participate. The development and validation of Magnetic Resonance Imaging-Anxiety Questionnaire resulted in 15 items consisting of two factors. Cronbach's alpha was found to be high. Magnetic Resonance Imaging-Anxiety Questionnaire correlated higher with instruments measuring anxiety than with depression scales. Known-group validity demonstrated a higher level of anxiety for patients undergoing Magnetic Resonance Imaging scan of the heart than for those examining the spine. Test-retest reliability demonstrated acceptable level for the scale. Magnetic Resonance Imaging-Anxiety Questionnaire bridges a gap among existing questionnaires, making it a simple and useful tool for measuring patient anxiety during Magnetic Resonance Imaging examinations. © 2016 The Authors. Journal of Advanced Nursing Published by John Wiley & Sons Ltd.

  1. Magnetic resonance for laryngeal cancer.

    PubMed

    Maroldi, Roberto; Ravanelli, Marco; Farina, Davide

    2014-04-01

    This review summarizes the most recent experiences on the integration of magnetic resonance in assessing the local extent of laryngeal cancer and detecting submucosal recurrences. Advances in magnetic resonance have been characterized by the development of technical solutions that shorten the acquisition time, thereby reducing motion artifacts, and increase the spatial resolution. Phased-array surface coils, directly applied to the neck, enable the use of parallel-imaging techniques, which greatly reduce the acquisition time, and amplify the signal intensity, being closer to the larynx. One of the most important drawbacks of this technique is the small field-of-view, restricting the imaged area to the larynx. Furthermore, diffusion-weighted imaging (DWI) has increased the set of magnetic resonance sequences. Differently from computed tomography (CT), which has only two variables (precontrast/postcontrast), magnetic resonance is based on a multiparameter analysis (T2-weighting and T1-weighting, DWI, and postcontrast acquisition). This multiparameter approach amplifies the contrast resolution. It has, also, permitted to differentiate scar tissue (after laser resection) from submucosal recurrent disease. In addition, DWI sequences have the potential of a more precise discrimination of peritumoral edema from neoplastic tissue, which may lead to improve the assessment of paraglottic space invasion. Magnetic resonance of the larynx is technically challenging. The use of surface coils and motion-reducing techniques is critical to achieve adequate image quality. The intrinsic high-contrast resolution is further increased by the integration of information from different sequences. When CT has not been conclusive, magnetic resonance is indicated in the pretreatment local assessment and in the suspicion of submucosal recurrence.

  2. Characteristics of tuneable optical filters using optical ring resonator with PCF resonance loop

    NASA Astrophysics Data System (ADS)

    Shalmashi, K.; Seraji, F. E.; Mersagh, M. R.

    2012-05-01

    A theoretical analysis of a tuneable optical filter is presented by proposing an optical ring resonator (ORR) using photonic crystal fiber (PCF) as the resonance loop. The influences of the characteristic parameters of the PCF on the filter response have been analyzed under steady-state condition of the ORR. It is shown that the tuneability of the filter is mainly achieved by changing the modulation frequency of the light signal applied to the resonator. The analyses have shown that the sharpness and the depth of the filter response are controlled by parameters such as amplitude modulation index of applied field, the coupling coefficient of the ORR, and hole-spacing and air-filling ratio of the PCF, respectively. When transmission coefficient of the loop approaches the coupling coefficient, the filter response enhances sharply with PCF parameters. The depth and the full-width at half-maximum (FWHM) of the response strongly depend on the number of field circulations in the resonator loop. With the proposed tuneability scheme for optical filter, we achieved an FWHM of ~1.55 nm. The obtained results may be utilized in designing optical add/drop filters used in WDM communication systems.

  3. Influence of kinetic effects on the resonance behavior of the Multipole Resonance Probe

    NASA Astrophysics Data System (ADS)

    Oberrath, Jens; Mussenbrock, Thomas; Brinkmann, Ralf Peter

    2012-10-01

    Active plasma resonance spectroscopy is a well known diagnostic method. Many concepts of this method are theoretically investigated and realized as a diagnostic tool. One of these tools is the multipole resonance probe (MRP) [1]. The application of such a probe in plasmas with pressures of only a few Pa raises the question whether kinetic effects have to be taken into account or not. To address this question a kinetic model is necessary. A general kinetic model for an electrostatic concept of active plasma resonance spectroscopy has already been presented by the authors [2]. This model can be used to describe the dynamical behavior of the MRP, which is interpretable as a special case of the general model. Neglecting electron-neutral collisions, this model can be solved analytically. Based on this solution we derive an approximated expression for the admittance of the system to investigate the influence of kinetic effects on the resonance behavior of the MRP. [4pt] [1] M. Lapke et al., Plasma Sources Sci. Technol. 20, 2011, 042001[0pt] [2] J. Oberrath et al., Proceedings of the 30th International Conference on Phenomena in Ionized Gases, 28th August - 2nd September, 2011

  4. Quantum resonant activation.

    PubMed

    Magazzù, Luca; Hänggi, Peter; Spagnolo, Bernardo; Valenti, Davide

    2017-04-01

    Quantum resonant activation is investigated for the archetype setup of an externally driven two-state (spin-boson) system subjected to strong dissipation by means of both analytical and extensive numerical calculations. The phenomenon of resonant activation emerges in the presence of either randomly fluctuating or deterministic periodically varying driving fields. Addressing the incoherent regime, a characteristic minimum emerges in the mean first passage time to reach an absorbing neighboring state whenever the intrinsic time scale of the modulation matches the characteristic time scale of the system dynamics. For the case of deterministic periodic driving, the first passage time probability density function (pdf) displays a complex, multipeaked behavior, which depends crucially on the details of initial phase, frequency, and strength of the driving. As an interesting feature we find that the mean first passage time enters the resonant activation regime at a critical frequency ν^{*} which depends very weakly on the strength of the driving. Moreover, we provide the relation between the first passage time pdf and the statistics of residence times.

  5. Quantum resonant activation

    NASA Astrophysics Data System (ADS)

    Magazzó, Luca; Hänggi, Peter; Spagnolo, Bernardo; Valenti, Davide

    2017-04-01

    Quantum resonant activation is investigated for the archetype setup of an externally driven two-state (spin-boson) system subjected to strong dissipation by means of both analytical and extensive numerical calculations. The phenomenon of resonant activation emerges in the presence of either randomly fluctuating or deterministic periodically varying driving fields. Addressing the incoherent regime, a characteristic minimum emerges in the mean first passage time to reach an absorbing neighboring state whenever the intrinsic time scale of the modulation matches the characteristic time scale of the system dynamics. For the case of deterministic periodic driving, the first passage time probability density function (pdf) displays a complex, multipeaked behavior, which depends crucially on the details of initial phase, frequency, and strength of the driving. As an interesting feature we find that the mean first passage time enters the resonant activation regime at a critical frequency ν* which depends very weakly on the strength of the driving. Moreover, we provide the relation between the first passage time pdf and the statistics of residence times.

  6. Identifying resonance frequency deviations for high order nano-wire ring resonator filters based on a coupling strength variation

    NASA Astrophysics Data System (ADS)

    Park, Sahnggi; Kim, Kap-Joong; Kim, Duk-Jun; Kim, Gyungock

    2009-02-01

    Third order ring resonators are designed and their resonance frequency deviations are analyzed experimentally by processing them with E-beam lithography and ICP etching in a CMOS nano-Fabrication laboratory. We developed a reliable method to identify and reduce experimentally the degree of deviation of each ring resonance frequency before completion of the fabrication process. The identified deviations can be minimized by the way to be presented in this paper. It is expected that this method will provide a significant clue to make a high order multi-channel ring resonators.

  7. Resonance capture and dynamics of three-planet systems

    NASA Astrophysics Data System (ADS)

    Charalambous, C.; Martí, J. G.; Beaugé, C.; Ramos, X. S.

    2018-06-01

    We present a series of dynamical maps for fictitious three-planet systems in initially circular coplanar orbits. These maps have unveiled a rich resonant structure involving two or three planets, as well as indicating possible migration routes from secular to double resonances or pure three-planet commensurabilities. These structures are then compared to the present-day orbital architecture of observed resonant chains. In a second part of the paper, we describe N-body simulations of type-I migration. Depending on the orbital decay time-scale, we show that three-planet systems may be trapped in different combinations of independent commensurabilities: (i) double resonances, (ii) intersection between a two-planet and a first-order three-planet resonances, and (iii) simultaneous libration in two first-order three-planet resonances. These latter outcomes are found for slow migrations, while double resonances are almost always the final outcome in high-density discs. Finally, we discuss an application to the TRAPPIST-1 system. We find that, for low migration rates and planetary masses of the order of the estimated values, most three-planet sub-systems are able to reach the observed double resonances after following evolutionary routes defined by pure three-planet resonances. The final orbital configuration shows resonance offsets comparable with present-day values without the need of tidal dissipation. For the 8/5 resonance proposed to dominate the dynamics of the two inner planets, we find little evidence of its dynamical significance; instead, we propose that this relation between mean motions could be a consequence of the interaction between a pure three-planet resonance and a two-planet commensurability between planets c and d.

  8. Fabrication and Characterization of Superconducting Resonators

    PubMed Central

    Cataldo, Giuseppe; Barrentine, Emily M.; Brown, Ari D.; Moseley, Samuel H.; U-Yen, Kongpop; Wollack, Edward J.

    2016-01-01

    Superconducting microwave resonators are of interest for a wide range of applications, including for their use as microwave kinetic inductance detectors (MKIDs) for the detection of faint astrophysical signatures, as well as for quantum computing applications and materials characterization. In this paper, procedures are presented for the fabrication and characterization of thin-film superconducting microwave resonators. The fabrication methodology allows for the realization of superconducting transmission-line resonators with features on both sides of an atomically smooth single-crystal silicon dielectric. This work describes the procedure for the installation of resonator devices into a cryogenic microwave testbed and for cool-down below the superconducting transition temperature. The set-up of the cryogenic microwave testbed allows one to do careful measurements of the complex microwave transmission of these resonator devices, enabling the extraction of the properties of the superconducting lines and dielectric substrate (e.g., internal quality factors, loss and kinetic inductance fractions), which are important for device design and performance. PMID:27284966

  9. Resonance magnetoplasticity in ultralow magnetic fields

    NASA Astrophysics Data System (ADS)

    Alshits, V. I.; Darinskaya, E. V.; Koldaeva, M. V.; Petrzhik, E. A.

    2016-09-01

    Resonance relaxation displacements of dislocations in NaCl crystals placed in crossed static and alternating ultralow magnetic fields in the electron paramagnetic resonance scheme are discussed. The Earth's magnetic field B Earth ≈ 50μT and other fields in the range of 26-261 μT are used as the static field. New strongly anisotropic properties of the effect have been revealed. Frequency spectra including numerous peaks of paths at low pump frequencies beginning with 10 kHz, as well as the quartet of equidistant peaks at high frequencies ( 1.4 MHz at B= B Earth), have been measured. The effect is also observed in the pulsed pump field with a resonance duration of 0.5 μs. Resonance changes have been detected in the microhardness of ZnO, triglycine sulfate, and potassium hydrogen phthalate crystals after their exposure in the Earth's magnetic field in the same electron paramagnetic resonance scheme.

  10. Terahertz molecular resonance of cancer DNA.

    PubMed

    Cheon, Hwayeong; Yang, Hee-Jin; Lee, Sang-Hun; Kim, Young A; Son, Joo-Hiuk

    2016-11-15

    Carcinogenesis involves the chemical and structural alteration of biomolecules in cells. Aberrant methylation of DNA is a well-known carcinogenic mechanism and a common chemical modification of DNA. Terahertz waves can directly observe changes in DNA because the characteristic energies lie in the same frequency region. In addition, terahertz energy levels are not high enough to damage DNA by ionization. Here, we present terahertz molecular resonance fingerprints of DNA methylation in cancer DNA. Methylated cytidine, a nucleoside, has terahertz characteristic energies that give rise to the molecular resonance of methylation in DNA. Molecular resonance is monitored in aqueous solutions of genomic DNA from cancer cell lines using a terahertz time-domain spectroscopic technique. Resonance signals can be quantified to identify the types of cancer cells with a certain degree of DNA methylation. These measurements reveal the existence of molecular resonance fingerprints of cancer DNAs in the terahertz region, which can be utilized for the early diagnosis of cancer cells at the molecular level.

  11. Terahertz molecular resonance of cancer DNA

    NASA Astrophysics Data System (ADS)

    Cheon, Hwayeong; Yang, Hee-Jin; Lee, Sang-Hun; Kim, Young A.; Son, Joo-Hiuk

    2016-11-01

    Carcinogenesis involves the chemical and structural alteration of biomolecules in cells. Aberrant methylation of DNA is a well-known carcinogenic mechanism and a common chemical modification of DNA. Terahertz waves can directly observe changes in DNA because the characteristic energies lie in the same frequency region. In addition, terahertz energy levels are not high enough to damage DNA by ionization. Here, we present terahertz molecular resonance fingerprints of DNA methylation in cancer DNA. Methylated cytidine, a nucleoside, has terahertz characteristic energies that give rise to the molecular resonance of methylation in DNA. Molecular resonance is monitored in aqueous solutions of genomic DNA from cancer cell lines using a terahertz time-domain spectroscopic technique. Resonance signals can be quantified to identify the types of cancer cells with a certain degree of DNA methylation. These measurements reveal the existence of molecular resonance fingerprints of cancer DNAs in the terahertz region, which can be utilized for the early diagnosis of cancer cells at the molecular level.

  12. Multiple resonant railgun power supply

    DOEpatents

    Honig, E.M.; Nunnally, W.C.

    1985-06-19

    A multiple repetitive resonant railgun power supply provides energy for repetitively propelling projectiles from a pair of parallel rails. A plurality of serially connected paired parallel rails are powered by similar power supplies. Each supply comprises an energy storage capacitor, a storage inductor to form a resonant circuit with the energy storage capacitor and a magnetic switch to transfer energy between the resonant circuit and the pair of parallel rails for the propelling of projectiles. The multiple serial operation permits relatively small energy components to deliver overall relatively large amounts of energy to the projectiles being propelled.

  13. Multiple resonant railgun power supply

    DOEpatents

    Honig, Emanuel M.; Nunnally, William C.

    1988-01-01

    A multiple repetitive resonant railgun power supply provides energy for repetitively propelling projectiles from a pair of parallel rails. A plurality of serially connected paired parallel rails are powered by similar power supplies. Each supply comprises an energy storage capacitor, a storage inductor to form a resonant circuit with the energy storage capacitor and a magnetic switch to transfer energy between the resonant circuit and the pair of parallel rails for the propelling of projectiles. The multiple serial operation permits relatively small energy components to deliver overall relatively large amounts of energy to the projectiles being propelled.

  14. Noise suppression for micromechanical resonator via intrinsic dynamic feedback

    NASA Astrophysics Data System (ADS)

    Ian, Hou; Gong, Zhi-Rui; Sun, Chang-Pu

    2008-09-01

    We study a dynamic mechanism to passively suppress the thermal noise of a micromechanical resonator through an intrinsic self-feedback that is genuinely non-Markovian. We use two coupled resonators, one as the target resonator and the other as an ancillary resonator, to illustrate the mechanism and its noise reduction effect. The intrinsic feedback is realized through the dynamics of coupling between the two resonators: the motions of the target resonator and the ancillary resonator mutually inthence each other in a cyclic fashion. Specifically, the states that the target resonator has attained earlier will affect the state it attains later due to the presence of the ancillary resonator. We show that the feedback mechanism will bring forth the effect of noise suppression in the spectrum of displacement, but not in the spectrum of momentum.

  15. Coupled microstrip line transverse electromagnetic resonator model for high-field magnetic resonance imaging.

    PubMed

    Bogdanov, G; Ludwig, R

    2002-03-01

    The performance modeling of RF resonators at high magnetic fields of 4.7 T and more requires a physical approach that goes beyond conventional lumped circuit concepts. The treatment of voltages and currents as variables in time and space leads to a coupled transmission line model, whereby the electric and magnetic fields are assumed static in planes orthogonal to the length of the resonator, but wave-like along its longitudinal axis. In this work a multiconductor transmission line (MTL) model is developed and successfully applied to analyze a 12-element unloaded and loaded microstrip line transverse electromagnetic (TEM) resonator coil for animal studies. The loading involves a homogeneous cylindrical dielectric insert of variable radius and length. This model formulation is capable of estimating the resonance spectrum, field distributions, and certain types of losses in the coil, while requiring only modest computational resources. The boundary element method is adopted to compute all relevant transmission line parameters needed to set up the transmission line matrices. Both the theoretical basis and its engineering implementation are discussed and the resulting model predictions are placed in context with measurements. A comparison between a conventional lumped circuit model and this distributed formulation is conducted, showing significant departures in the resonance response at higher frequencies. This MTL model is applied to simulate two small-bore animal systems: one of 7.5-cm inner diameter, tuned to 200 MHz (4.7 T for proton imaging), and one of 13.36-cm inner diameter, tuned to both 200 and 300 MHz (7 T). Copyright 2002 Wiley-Liss, Inc.

  16. Acoustic resonance frequency locked photoacoustic spectrometer

    DOEpatents

    Pilgrim, Jeffrey S.; Bomse, David S.; Silver, Joel A.

    2003-09-09

    A photoacoustic spectroscopy method and apparatus for maintaining an acoustic source frequency on a sample cell resonance frequency comprising: providing an acoustic source to the sample cell, the acoustic source having a source frequency; repeatedly and continuously sweeping the source frequency across the resonance frequency at a sweep rate; and employing an odd-harmonic of the source frequency sweep rate to maintain the source frequency sweep centered on the resonance frequency.

  17. CHARACTERIZATION OF THE RESONANT CAUSTIC PERTURBATION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chung, Sun-Ju, E-mail: sjchung@kasi.re.k

    Four of nine exoplanets found by microlensing were detected by the resonant caustic, which represents the merging of the planetary and central caustics at the position when the projected separation of a host star and a bounded planet is s approx 1. One of the resonant caustic lensing events, OGLE-2005-BLG-169, was a caustic-crossing high-magnification event with A {sub max}approx 800 and the source star was much smaller than the caustic, nevertheless the perturbation was not obviously apparent on the light curve of the event. In this paper, we investigate the perturbation pattern of the resonant caustic to understand why themore » perturbations induced by the caustic do not leave strong traces on the light curves of high-magnification events despite a small source/caustic size ratio. From this study, we find that the regions with small magnification excess around the center of the resonant caustic are rather widely formed, and the event passing the small-excess region produces a high-magnification event with a weak perturbation that is small relative to the amplification caused by the star and thus does not noticeably appear on the light curve of the event. We also find that the positive excess of the inside edge of the resonant caustic and the negative excess inside the caustic become stronger and wider as q increases, and thus the resonant caustic-crossing high-magnification events with the weak perturbation occur in the range of q <= 10{sup -4}. We determine the probability of the occurrence of events with the small excess |epsilon| <= 3% in high-magnification events induced by a resonant caustic. As a result, we find that for Earth-mass planets with a separation of approx2.5 AU the resonant caustic high-magnification events with the weak perturbation can occur with a significant frequency.« less

  18. On the coupling of resonance and Bragg scattering effects in three-dimensional locally resonant sonic materials.

    PubMed

    Yuan, Bo; Humphrey, Victor F; Wen, Jihong; Wen, Xisen

    2013-09-01

    Three-dimensional (3D) locally resonant sonic materials (LRSMs) are studied theoretically for purpose of optimising their sub-wavelength performance by coupling resonance and Bragg scattering effects together. Through the study of effective sound speeds of LRSMs, we find that the starting frequency of Bragg scattering can be shifted to sub-wavelength region by softening coats of resonators when the matrix is a low shear-velocity medium. A similar result can be achieved by compressing the lattice constant. By using a layer-multiple-scattering method, we investigate the complex band structure and the transmission spectrum of an LRSM whose Bragg gap is already close to the resonance gap in frequency. The wave fields of the composite simulated by COMSOL are further analysed at several typical frequencies. The result shows that the approaching of two kinds of gaps not only broadens the bandwidth of the resonance gap, but also increases the depth of the Bragg gap since the interaction between resonant modes and scattering waves are enhanced. By varying the shear velocity of coats, we obtain a coupled gap, which exhibits a broad transmission gap in the sub-wavelength region. When the loss of coats is considered, the coupled gap can not only maintain a good sound blocking performance, but also perform an efficient absorption in the low frequency region. Copyright © 2013 Elsevier B.V. All rights reserved.

  19. An Electromagnetic Resonance Circuit for Liquid Level Detection

    ERIC Educational Resources Information Center

    Hauge, B. L.; Helseth, L. E.

    2012-01-01

    Electromagnetic resonators are often used to detect foreign materials. Here we present a simple experiment for the measurement of liquid level. The resonator, consisting of a coil and a capacitor, is brought to resonance by an external magnetic field source, and the corresponding resonance frequency is determined using Fourier analysis combined…

  20. 14 CFR 29.663 - Ground resonance prevention means.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Ground resonance prevention means. 29.663... Ground resonance prevention means. (a) The reliability of the means for preventing ground resonance must... or tests that malfunction or failure of a single means will not cause ground resonance. (b) The...

  1. 14 CFR 29.663 - Ground resonance prevention means.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Ground resonance prevention means. 29.663... Ground resonance prevention means. (a) The reliability of the means for preventing ground resonance must... or tests that malfunction or failure of a single means will not cause ground resonance. (b) The...

  2. A silicon micromachined resonant pressure sensor

    NASA Astrophysics Data System (ADS)

    Tang, Zhangyang; Fan, Shangchun; Cai, Chenguang

    2009-09-01

    This paper describes the design, fabrication and test of a silicon micromachined resonant pressure sensor. A square membrane and a doubly clamped resonant beam constitute a compound structure. The former senses the pressure directly, while the latter changes its resonant frequency according to deformation of the membrane. The final output relation between the resonant frequency and the applied pressure is deducted according to the structure mechanical properties. Sensors are fabricated by micromachining technology, and then sealed in vaccum. These sensors are tested by open-loop and close-loop system designed on purpose. The experiment results demonstrate that the sensor has a sensitivity of 49.8Hz/kPa and repeatability of 0.08%.

  3. Coupling influence on the sensitivity of microfiber resonator sensors

    NASA Astrophysics Data System (ADS)

    Guo, Wei; Chen, Ye; Kou, Jun-long; Xu, Fei; Lu, Yan-qing

    2011-12-01

    By modifying the resonant condition of microfiber resonator sensors while taking the coupling effect into account, we theoretically investigate coupling influence on the resonant wavelength and sensitivity. Numerical calculation shows significant difference in resonant wavelength and sensitivity with different coupling strength. Tuning the coupling can shift the resonant position as far as several nanometers and change the sensitivity as large as 30 nm/RIU in an all-coupling microfiber coil resonator.

  4. Dynamics of the retrograde 1/1 mean motion resonance

    NASA Astrophysics Data System (ADS)

    Huang, Yukun; Li, Miao; Li, Junfeng; Gong, Shengping

    2018-04-01

    Mean motion resonances are very common in the solar system. Asteroids in mean motion resonances with giant planets have been studied for centuries. But it was not until recently that asteroids in retrograde mean motion resonances with Jupiter and Saturn were discovered. The newly discovered asteroid, 2015 BZ509 is confirmed to be the first asteroid in retrograde 1:1 mean motion resonance (or retrograde co-orbital resonance) with Jupiter, which gives rise to our interests in its unique resonant dynamics. In this study, we thoroughly investigate the phase-space structure of the retrograde 1:1 resonance within the framework of the circular restricted three-body problem. We begin by constructing a simple integrable approximation for the planar retrograde resonance with the Hamiltonian approach and show that the variables definition of the retrograde resonance is very different to the prograde one. When it comes to the disturbing function, we abandon the classical series expansion approach, whereas numerically carry out the averaging process on the disturbing function in closed form. The phase portrait of the retrograde 1:1 resonance is depicted with the level curves of the averaged Hamiltonian. We find that the topological structure of phase space for the retrograde 1:1 resonance is very different to other resonances, due to the consistent existence of the collision separatrix. And the surprising bifurcation of equilibrium point around 180° (i.e., the apocentric libration center) has never been found in any other mean motion resonances before. We thoroughly analyze the novel apocentric librations and find that close encounter with the planet does not always lead to the disruption of a stable apocentric libration. Afterwards, we examine the Kozai dynamics inside the mean motion resonance with the similar Hamiltonian approach and explain why the exact resonant point does not exist in the 3D retrograde 1:1 resonance model.

  5. Injector with integrated resonator

    DOEpatents

    Johnson, Thomas Edward; Ziminsky, Willy Steve; York, William David; Stevenson, Christian Xavier

    2014-07-29

    The system may include a turbine engine. The turbine engine may include a fuel nozzle. The fuel nozzle may include an air path. The fuel nozzle may also include a fuel path such that the fuel nozzle is in communication with a combustion zone of the turbine engine. Furthermore, the fuel nozzle may include a resonator. The resonator may be disposed in the fuel nozzle directly adjacent to the combustion zone.

  6. A dual RF resonator system for high-field functional magnetic resonance imaging of small animals.

    PubMed

    Ludwig, R; Bodgdanov, G; King, J; Allard, A; Ferris, C F

    2004-01-30

    A new apparatus has been developed that integrates an animal restrainer arrangement for small animals with an actively tunable/detunable dual radio-frequency (RF) coil system for in vivo anatomical and functional magnetic resonance imaging of small animals at 4.7 T. The radio-frequency coil features an eight-element microstrip line configuration that, in conjunction with a segmented outer copper shield, forms a transversal electromagnetic (TEM) resonator structure. Matching and active tuning/detuning is achieved through fixed/variable capacitors and a PIN diode for each resonator element. These components along with radio-frequency chokes (RFCs) and blocking capacitors are placed on two printed circuit boards (PCBs) whose copper coated ground planes form the front and back of the volume coil and are therefore an integral part of the resonator structure. The magnetic resonance signal response is received with a dome-shaped single-loop surface coil that can be height-adjustable with respect to the animal's head. The conscious animal is immobilized through a mechanical arrangement that consists of a Plexiglas body tube and a head restrainer. This restrainer has a cylindrical holder with a mouthpiece and position screws to receive and restrain the head of the animal. The apparatus is intended to perform anatomical and functional magnetic resonance imaging in conscious animals such as mice, rats, hamsters, and marmosets. Cranial images acquired from fully conscious rats in a 4.7 T Bruker 40 cm bore animal scanner underscore the feasibility of this approach and bode well to extend this system to the imaging of other animals.

  7. Resonator memories and optical novelty filters

    NASA Astrophysics Data System (ADS)

    Anderson, Dana Z.; Erle, Marie C.

    Optical resonators having holographic elements are potential candidates for storing information that can be accessed through content addressable or associative recall. Closely related to the resonator memory is the optical novelty filter, which can detect the differences between a test object and a set of reference objects. We discuss implementations of these devices using continuous optical media such as photorefractive materials. The discussion is framed in the context of neural network models. There are both formal and qualitative similarities between the resonator memory and optical novelty filter and network models. Mode competition arises in the theory of the resonator memory, much as it does in some network models. We show that the role of the phenomena of "daydreaming" in the real-time programmable optical resonator is very much akin to the role of "unlearning" in neural network memories. The theory of programming the real-time memory for a single mode is given in detail. This leads to a discussion of the optical novelty filter. Experimental results for the resonator memory, the real-time programmable memory, and the optical tracking novelty filter are reviewed. We also point to several issues that need to be addressed in order to implement more formal models of neural networks.

  8. Resonator Memories And Optical Novelty Filters

    NASA Astrophysics Data System (ADS)

    Anderson, Dana Z.; Erie, Marie C.

    1987-05-01

    Optical resonators having holographic elements are potential candidates for storing information that can be accessed through content-addressable or associative recall. Closely related to the resonator memory is the optical novelty filter, which can detect the differences between a test object and a set of reference objects. We discuss implementations of these devices using continuous optical media such as photorefractive ma-terials. The discussion is framed in the context of neural network models. There are both formal and qualitative similarities between the resonator memory and optical novelty filter and network models. Mode competition arises in the theory of the resonator memory, much as it does in some network models. We show that the role of the phenomena of "daydream-ing" in the real-time programmable optical resonator is very much akin to the role of "unlearning" in neural network memories. The theory of programming the real-time memory for a single mode is given in detail. This leads to a discussion of the optical novelty filter. Experimental results for the resonator memory, the real-time programmable memory, and the optical tracking novelty filter are reviewed. We also point to several issues that need to be addressed in order to implement more formal models of neural networks.

  9. Resonances in odd-odd 182Ta

    NASA Astrophysics Data System (ADS)

    Brits, C. P.; Wiedeking, M.; Bello Garrote, F. L.; Bleuel, D. L.; Giacoppo, F.; Görgen, A.; Guttormsen, M.; Hadynska-Klek, K.; Hagen, T. W.; Ingeberg, V. W.; Kheswa, B. V.; Klintefjord, M.; Larsen, A. C.; Malatji, K. L.; Nyhus, H. T.; Papka, P.; Renstrøm, T.; Rose, S.; Sahin, E.; Siem, S.; Tveten, G. M.; Zeiser, F.

    2017-09-01

    Enhanced γ-decay on the tail of the giant electric dipole resonance, such as the scissors or pygmy resonances, can have significant impact on (n,γ) reaction rates. These rates are important input for modeling processes that take place in astrophysical environments and nuclear reactors. Recent results from the University of Oslo indicate the existence of a significant enhancement in the photon strength function for nuclei in the actinide region due to the scissors resonance. Further, the M1 strength distribution of the scissors resonances in rare earth nuclei has been studied extensively over the years. To investigate the evolution and persistence of the scissor resonance in other mass regions, an experiment was performed utilizing the NaI(Tl) γ-ray detector array (CACTUS) and silicon particle telescopes (SiRi) at the University of Oslo Cyclotron laboratory. Particle-γ coincidences from the 181Ta(d,p)182Ta and 181Ta(d,d')181Ta reactions were used to measure the nuclear level density and photon strength function of the well-deformed 181Ta and 182Ta systems, to investigate the existence of resonances below the neutron separation energy. Note to the reader: the title of this article has been corrected on September 19, 2017.

  10. Microwave Oscillators Based on Nonlinear WGM Resonators

    NASA Technical Reports Server (NTRS)

    Maleki, Lute; Matsko, Andrey; Savchenkov, Anatoliy; Strekalov, Dmitry

    2006-01-01

    Optical oscillators that exploit resonantly enhanced four-wave mixing in nonlinear whispering-gallery-mode (WGM) resonators are under investigation for potential utility as low-power, ultra-miniature sources of stable, spectrally pure microwave signals. There are numerous potential uses for such oscillators in radar systems, communication systems, and scientific instrumentation. The resonator in an oscillator of this type is made of a crystalline material that exhibits cubic Kerr nonlinearity, which supports the four-photon parametric process also known as four-wave mixing. The oscillator can be characterized as all-optical in the sense that the entire process of generation of the microwave signal takes place within the WGM resonator. The resonantly enhanced four-wave mixing yields coherent, phase-modulated optical signals at frequencies governed by the resonator structure. The frequency of the phase-modulation signal, which is in the microwave range, equals the difference between the frequencies of the optical signals; hence, this frequency is also governed by the resonator structure. Hence, further, the microwave signal is stable and can be used as a reference signal. The figure schematically depicts the apparatus used in a proof-of-principle experiment. Linearly polarized pump light was generated by an yttrium aluminum garnet laser at a wavelength of 1.32 microns. By use of a 90:10 fiber-optic splitter and optical fibers, some of the laser light was sent into a delay line and some was transmitted to one face of glass coupling prism, that, in turn, coupled the laser light into a crystalline CaF2 WGM disk resonator that had a resonance quality factor (Q) of 6x10(exp 9). The output light of the resonator was collected via another face of the coupling prism and a single-mode optical fiber, which transmitted the light to a 50:50 fiber-optic splitter. One output of this splitter was sent to a slow photodiode to obtain a DC signal for locking the laser to a particular

  11. Heterogeneity in the 238U/235U Ratios of Angrites.

    NASA Astrophysics Data System (ADS)

    Tissot, F.; Dauphas, N.; Grove, T. L.

    2016-12-01

    Angrites are differentiated meteorites of basaltic composition, of either volcanic or plutonic origin, that display minimal post-crystallization alteration, metamorphism, shock or impact brecciation. Because quenched angrites cooled very rapidly, all radiochronometric systems closed simultaneously in these samples. Quenched angrites are thus often used as anchors for cross-calibrating short-lived dating methods (e.g., 26Al-26Mg) and the absolute dating techniques (e.g, Pb-Pb). Due to the constancy of the 238U/235U ratio in natural samples, Pb-Pb ages have long been calculated using a "consensus" 238U/235U ratio, but the discovery of resolvable variations in the 238U/235U ratio of natural samples, means that the U isotopic composition of the material to date also has to be determined in order to obtain high-precision Pb-Pb ages. We set out (a) to measure at high-precision the 238U/235U ratio of a large array of angrites to correct their Pb-Pb ages, and (b) to identify whether all angrites have a similar U isotopic composition, and, if not, what were the processes responsible for this variability. Recently, Brennecka & Wadhwa (2012) suggested that the angrite-parent body had a homogeneous 238U/235U ratio. They reached this conclusion partly because they propagated the uncertainties of the U isotopic composition of the various U double spikes that they used onto the final 238U/235U ratio the sample. Because this error is systematic (i.e., it affects all samples similarly), differences in the δ238U values of samples corrected by the same double spike are better known than one would be led to believe if uncertainties on the spike composition are propagated. At the conference, we will present the results of the high-precision U isotope analyses for six angrite samples: NWA 4590, NWA 4801, NWA 6291, Angra dos Reis, D'Orbigny, and Sahara 99555. We will show that there is some heterogeneity in the δ238U values of the angrites and will discuss the possible processes by

  12. Rate equation model of laser induced bias in uranium isotope ratios measured by resonance ionization mass spectrometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Isselhardt, B. H.; Prussin, S. G.; Savina, M. R.

    2016-01-01

    Resonance Ionization Mass Spectrometry (RIMS) has been developed as a method to measure uranium isotope abundances. In this approach, RIMS is used as an element-selective ionization process between uranium atoms and potential isobars without the aid of chemical purification and separation. The use of broad bandwidth lasers with automated feedback control of wavelength was applied to the measurement of the U-235/U-238 ratio to decrease laser-induced isotopic fractionation. In application, isotope standards are used to identify and correct bias in measured isotope ratios, but understanding laser-induced bias from first-principles can improve the precision and accuracy of experimental measurements. A rate equationmore » model for predicting the relative ionization probability has been developed to study the effect of variations in laser parameters on the measured isotope ratio. The model uses atomic data and empirical descriptions of laser performance to estimate the laser-induced bias expected in experimental measurements of the U-235/U-238 ratio. Empirical corrections are also included to account for ionization processes that are difficult to calculate from first principles with the available atomic data. Development of this model has highlighted several important considerations for properly interpreting experimental results.« less

  13. Rate equation model of laser induced bias in uranium isotope ratios measured by resonance ionization mass spectrometry

    DOE PAGES

    Isselhardt, B. H.; Prussin, S. G.; Savina, M. R.; ...

    2015-12-07

    Resonance Ionization Mass Spectrometry (RIMS) has been developed as a method to measure uranium isotope abundances. In this approach, RIMS is used as an element-selective ionization process between uranium atoms and potential isobars without the aid of chemical purification and separation. The use of broad bandwidth lasers with automated feedback control of wavelength was applied to the measurement of the 235U/238U ratio to decrease laser-induced isotopic fractionation. In application, isotope standards are used to identify and correct bias in measured isotope ratios, but understanding laser-induced bias from first-principles can improve the precision and accuracy of experimental measurements. A rate equationmore » model for predicting the relative ionization probability has been developed to study the effect of variations in laser parameters on the measured isotope ratio. The model uses atomic data and empirical descriptions of laser performance to estimate the laser-induced bias expected in experimental measurements of the 235U/ 238U ratio. Empirical corrections are also included to account for ionization processes that are difficult to calculate from first principles with the available atomic data. As a result, development of this model has highlighted several important considerations for properly interpreting experimental results.« less

  14. Electrothermally actuated tunable clamped-guided resonant microbeams

    NASA Astrophysics Data System (ADS)

    Alcheikh, N.; Hajjaj, A. Z.; Jaber, N.; Younis, M. I.

    2018-01-01

    We present simulation and experimental investigation demonstrating active alteration of the resonant and frequency response behavior of resonators by controlling the electrothermal actuation method on their anchors. In-plane clamped-guided arch and straight microbeams resonators are designed and fabricated with V-shaped electrothermal actuators on their anchors. These anchors not only offer various electrothermal actuation options, but also serve as various mechanical stiffness elements that affect the operating resonance frequency of the structures. We have shown that for an arch, the first mode resonance frequency can be increased up to 50% of its initial value. For a straight beam, we have shown that before buckling, the resonance frequency decreases to very low values and after buckling, it increases up to twice of its initial value. These results can be promising for the realization of different wide-range tunable microresonator. The experimental results have been compared to multi-physics finite-element simulations showing good agreement among them.

  15. Resonance Shift of Single-Axis Acoustic Levitation

    NASA Astrophysics Data System (ADS)

    Xie, Wen-Jun; Wei, Bing-Bo

    2007-01-01

    The resonance shift due to the presence and movement of a rigid spherical sample in a single-axis acoustic levitator is studied with the boundary element method on the basis of a two-cylinder model of the levitator. The introduction of a sample into the sound pressure nodes, where it is usually levitated, reduces the resonant interval Hn (n is the mode number) between the reflector and emitter. The larger the sample radius, the greater the resonance shift. When the sample moves along the symmetric axis, the resonance interval Hn varies in an approximately periodical manner, which reaches the minima near the pressure nodes and the maxima near the pressure antinodes. This suggests a resonance interval oscillation around its minimum if the stably levitated sample is slightly perturbed. The dependence of the resonance shift on the sample radius R and position h for the single-axis acoustic levitator is compared with Leung's theory for a closed rectangular chamber, which shows a good agreement.

  16. Nanostructures Exploit Hybrid-Polariton Resonances

    NASA Technical Reports Server (NTRS)

    Anderson, Mark

    2008-01-01

    Nanostructured devices that exploit the hybrid-polariton resonances arising from coupling among photons, phonons, and plasmons are subjects of research directed toward the development of infrared-spectroscopic sensors for measuring extremely small quantities of molecules of interest. The spectroscopic techniques in question are surface enhanced Raman scattering (SERS) and surface enhanced infrared absorption (SEIRA). An important intermediate goal of this research is to increase the sensitivity achievable by these techniques. The basic idea of the approach being followed in this research is to engineer nanostructured devices and thereby engineer their hybrid-polariton resonances to concentrate infrared radiation incident upon their surfaces in such a manner as to increase the absorption of the radiation for SEIRA and measure the frequency shifts of surface vibrational modes. The underlying hybrid-polariton-resonance concept is best described by reference to experimental devices that have been built and tested to demonstrate the concept. The nanostructure of each such device includes a matrix of silicon carbide particles of approximately 1 micron in diameter that are supported on a potassium bromide (KBr) or poly(tetrafluoroethylene) [PTFE] window. These grains are sputter-coated with gold grains of 40-nm size (see figure). From the perspective of classical electrodynamics, in this nanostructure, that includes a particulate or otherwise rough surface, the electric-field portion of an incident electromagnetic field becomes concentrated on the particles when optical resonance conditions are met. Going beyond the perspective of classical electrodynamics, it can be seen that when the resonance frequencies of surface phonons and surface plasmons overlap, the coupling of the resonances gives rise to an enhanced radiation-absorption or -scattering mechanism. The sizes, shapes, and aggregation of the particles determine the frequencies of the resonances. Hence, the task of

  17. 7 CFR 51.1575 - U.S. Grade A Small; U.S. Grade A Medium; U.S. Grade A Medium to Large; U.S. Grade A Large.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false U.S. Grade A Small; U.S. Grade A Medium; U.S. Grade A Medium to Large; U.S. Grade A Large. 51.1575 Section 51.1575 Agriculture Regulations of the Department of... Potatoes Grades § 51.1575 U.S. Grade A Small; U.S. Grade A Medium; U.S. Grade A Medium to Large; U.S. Grade...

  18. 7 CFR 51.1576 - U.S. Grade B Small; U.S. Grade B Medium; U.S. Grade B Medium to Large; U.S. Grade B Large.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 2 2012-01-01 2012-01-01 false U.S. Grade B Small; U.S. Grade B Medium; U.S. Grade B Medium to Large; U.S. Grade B Large. 51.1576 Section 51.1576 Agriculture Regulations of the Department of... Potatoes Grades § 51.1576 U.S. Grade B Small; U.S. Grade B Medium; U.S. Grade B Medium to Large; U.S. Grade...

  19. 7 CFR 51.1575 - U.S. Grade A Small; U.S. Grade A Medium; U.S. Grade A Medium to Large; U.S. Grade A Large.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 2 2012-01-01 2012-01-01 false U.S. Grade A Small; U.S. Grade A Medium; U.S. Grade A Medium to Large; U.S. Grade A Large. 51.1575 Section 51.1575 Agriculture Regulations of the Department of... Potatoes Grades § 51.1575 U.S. Grade A Small; U.S. Grade A Medium; U.S. Grade A Medium to Large; U.S. Grade...

  20. 7 CFR 51.1576 - U.S. Grade B Small; U.S. Grade B Medium; U.S. Grade B Medium to Large; U.S. Grade B Large.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 2 2011-01-01 2011-01-01 false U.S. Grade B Small; U.S. Grade B Medium; U.S. Grade B Medium to Large; U.S. Grade B Large. 51.1576 Section 51.1576 Agriculture Regulations of the Department of... Potatoes Grades § 51.1576 U.S. Grade B Small; U.S. Grade B Medium; U.S. Grade B Medium to Large; U.S. Grade...

  1. 7 CFR 51.1575 - U.S. Grade A Small; U.S. Grade A Medium; U.S. Grade A Medium to Large; U.S. Grade A Large.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 2 2011-01-01 2011-01-01 false U.S. Grade A Small; U.S. Grade A Medium; U.S. Grade A Medium to Large; U.S. Grade A Large. 51.1575 Section 51.1575 Agriculture Regulations of the Department of... Potatoes Grades § 51.1575 U.S. Grade A Small; U.S. Grade A Medium; U.S. Grade A Medium to Large; U.S. Grade...

  2. 7 CFR 51.1576 - U.S. Grade B Small; U.S. Grade B Medium; U.S. Grade B Medium to Large; U.S. Grade B Large.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false U.S. Grade B Small; U.S. Grade B Medium; U.S. Grade B Medium to Large; U.S. Grade B Large. 51.1576 Section 51.1576 Agriculture Regulations of the Department of... Potatoes Grades § 51.1576 U.S. Grade B Small; U.S. Grade B Medium; U.S. Grade B Medium to Large; U.S. Grade...

  3. On the Role of Resonances in Nonradial Pulsators

    NASA Technical Reports Server (NTRS)

    Buchler, J. R.; Goupil, M. J.; Hansen, C. J.

    1997-01-01

    Resonances or near resonances are ubiquitous among the excited nonradial pulsation modes of variable stars and they must play an important role in determining their pulsational behavior. Here in a first step at nonlinear asteroseismology, we explore some of the consequences of resonances by means of the amplitude equation formalism. We show how parity and angular momentum constraints can be used to eliminate many of the possible nonlinear resonant couplings between modes (and multiplets of modes), and how the amplitude equations can thus be simplified. Even when we may not be able, nor wish, to make an ab initio computation of the values of the coupling coefficients, it is still possible to obtain constraints on the nature of the excited modes if a resonance between observed frequencies can be identified. Resonances can cause nonlinear frequency locking of modes. This means that the observed frequencies appear in exact resonance even though the linear frequencies are only approximately in resonance. The nonlinear frequency lock, when it occurs, it does so over a range of departures from linear resonance, and it is accompanied by constant pulsation amplitudes. The locked, nonlinear frequencies can differ noticeably from their nonresonant counterparts which are usually used in seismology. This is particularly true for multiplets of modes split by rotation. Beyond the regime of the frequency lock, amplitude and frequency modulations can appear in the pulsations. Far from the resonance condition one recovers the regime of steady pulsations with nonresonant frequencies for which the seismological studies, as they are presently carried out, are justified (provided furthermore, of course, that nonlinear frequency shifts are negligible). Success in identifying a resonance in an observed power spectrum depends on the quality of the data. While keeping this limitation in mind, ew discuss the possible existence of peculiar resonances the pulsations specific variable white

  4. Analysis of Alternative Ring Resonator Designs

    DTIC Science & Technology

    2014-08-01

    the ring strip of the antenna as in the case of the original design. Both the alternative dielectric laminate and the increased thickness laminate...adjustments to the geometry parameters. 2. Ring Resonator Antenna Design The ring resonator is a two port antenna consisting of a ring strip and two...for various soil sample depths indicates that most of the measureable response is from within 2 mm of the resonator antenna strip surface. For the

  5. 75 FR 9407 - Agency Information Collection Activities; Proposed Collection; Comment Request; Implementation of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-02

    ... Participation Survey; EPA ICR No. 2375.01 OMB Control No. 2060-New AGENCY: Environmental Protection Agency (EPA... No. 2060-New. ICR status: This ICR is for a new information collection activity. An Agency may not...

  6. Evaluation of the fetal cerebellum by magnetic resonance imaging.

    PubMed

    Llorens Salvador, R; Viegas Sainz, A; Montoya Filardi, A; Montoliu Fornas, G; Menor Serrano, F

    Obstetric protocols dictate that the fetal cerebellum should always be assessed during sonograms during pregnancy. For various reasons, including technical limitations or inconclusive sonographic findings, suspicion of cerebellar abnormalities is one of the most common indications for prenatal magnetic resonance imaging (MRI). Although sonography is the imaging technique of choice to assess the cerebellum, MRI shows the anatomy of the posterior fossa and abnormalities in the development of the fetal cerebellum in greater detail and thus enables a more accurate prenatal diagnosis. We describe and illustrate the normal anatomy of the fetal cerebellum on MRI as well as the different diseases that can affect its development. Moreover, we review the most appropriate terminology to define developmental abnormalities, their differential diagnoses, and the role of MRI in the prenatal evaluation of the posterior fossa. Copyright © 2017 SERAM. Publicado por Elsevier España, S.L.U. All rights reserved.

  7. Piezoelectric shear wave resonator and method of making same

    DOEpatents

    Wang, Jin S.; Lakin, Kenneth M.; Landin, Allen R.

    1988-01-01

    An acoustic shear wave resonator comprising a piezoelectric film having its C-axis substantially inclined from the film normal such that the shear wave coupling coefficient significantly exceeds the longitudinal wave coupling coefficient, whereby the film is capable of shear wave resonance, and means for exciting said film to resonate. The film is prepared by deposition in a dc planar magnetron sputtering system to which a supplemental electric field is applied. The resonator structure may also include a semiconductor material having a positive temperature coefficient of resonance such that the resonator has a temperature coefficient of resonance approaching 0 ppm/.degree.C.

  8. Numerical Investigations of High Pressure Acoustic Waves in Resonators

    NASA Technical Reports Server (NTRS)

    Athavale, Mahesh; Pindera, Maciej; Daniels, Christopher C.; Steinetz, Bruce M.

    2004-01-01

    This presentation presents work on numerical investigations of nonlinear acoustic phenomena in resonators that can generate high-pressure waves using acoustic forcing of the flow. Time-accurate simulations of the flow in a closed cone resonator were performed at different oscillation frequencies and amplitudes, and the numerical results for the resonance frequency and fluid pressure increase match the GRC experimental data well. Work on cone resonator assembly simulations has started and will involve calculations of the flow through the resonator assembly with and without acoustic excitation. A new technique for direct calculation of resonance frequency of complex shaped resonators is also being investigated. Script-driven command procedures will also be developed for optimization of the resonator shape for maximum pressure increase.

  9. Effect of giant charge-transfer resonance σCT 109 barn on operation of magnetic fusion reactor below ``critical energy.''

    NASA Astrophysics Data System (ADS)

    Hester, Timothy; Maglich, Bogdan; Scott, Dan; Vaucher, Alexander

    2016-10-01

    Charge transfer (CT) reactivity was assumed to be negligible compared to ionization (IO) before Belfast measurements1-3 revealed the opposite: CT predominance over IO, σCT 109 b , σCT /σIO U 100 , below critical `atomic unit of velocity', vo = 2.2 ×108cms-1 , which is orbital velocity of e in H atom. Near vo, U = 1 , i.e. σCT σIO . Critical ion energy is T0 (lab) = k 25 M [ KeV ] = 200 KeV for [ ERR : md : MbegChr = 0 x 2329 , MendChr = 0 x 232 A , nParams = 1 ] = ion mass [ amu ] = 4 for DT mix ; k = 2 . ``Burnout'' pumping that requires U << 1 is inoperable in the U >> 1 regime whereas CT continually acts like compressor increasing operating vacuum pressure during neutral beam discharge to 10-3 Torr/0.3 s; this, in turn, sets upper limits to ion life-time against neutralization to τ =10-6 s. τ is 105 times shorter than thermalization time constant; hence plasma cannot be created. Lawson4 was unaware of CT resonance; his ``critical temperature'' (30 KeV for DT) should be replaced with T0.

  10. Miniature Sapphire Acoustic Resonator - MSAR

    NASA Technical Reports Server (NTRS)

    Wang, Rabi T.; Tjoelker, Robert L.

    2011-01-01

    A room temperature sapphire acoustics resonator incorporated into an oscillator represents a possible opportunity to improve on quartz ultrastable oscillator (USO) performance, which has been a staple for NASA missions since the inception of spaceflight. Where quartz technology is very mature and shows a performance improvement of perhaps 1 dB/decade, these sapphire acoustic resonators when integrated with matured quartz electronics could achieve a frequency stability improvement of 10 dB or more. As quartz oscillators are an essential element of nearly all types of frequency standards and reference systems, the success of MSAR would advance the development of frequency standards and systems for both groundbased and flight-based projects. Current quartz oscillator technology is limited by quartz mechanical Q. With a possible improvement of more than x 10 Q with sapphire acoustic modes, the stability limit of current quartz oscillators may be improved tenfold, to 10(exp -14) at 1 second. The electromagnetic modes of sapphire that were previously developed at JPL require cryogenic temperatures to achieve the high Q levels needed to achieve this stability level. However sapphire fs acoustic modes, which have not been used before in a high-stability oscillator, indicate the required Q values (as high as Q = 10(exp 8)) may be achieved at room temperature in the kHz range. Even though sapphire is not piezoelectric, such a high Q should allow electrostatic excitation of the acoustic modes with a combination of DC and AC voltages across a small sapphire disk (approximately equal to l mm thick). The first evaluations under this task will test predictions of an estimated input impedance of 10 kilohms at Q = 10(exp 8), and explore the Q values that can be realized in a smaller resonator, which has not been previously tested for acoustic modes. This initial Q measurement and excitation demonstration can be viewed similar to a transducer converting electrical energy to

  11. Nuclear magnetic resonance contrast agents

    DOEpatents

    Smith, P.H.; Brainard, J.R.; Jarvinen, G.D.; Ryan, R.R.

    1997-12-30

    A family of contrast agents for use in magnetic resonance imaging and a method of enhancing the contrast of magnetic resonance images of an object by incorporating a contrast agent of this invention into the object prior to forming the images or during formation of the images. A contrast agent of this invention is a paramagnetic lanthanide hexaazamacrocyclic molecule, where a basic example has the formula LnC{sub 16}H{sub 14}N{sub 6}. Important applications of the invention are in medical diagnosis, treatment, and research, where images of portions of a human body are formed by means of magnetic resonance techniques. 10 figs.

  12. Nuclear magnetic resonance contrast agents

    DOEpatents

    Smith, Paul H.; Brainard, James R.; Jarvinen, Gordon D.; Ryan, Robert R.

    1997-01-01

    A family of contrast agents for use in magnetic resonance imaging and a method of enhancing the contrast of magnetic resonance images of an object by incorporating a contrast agent of this invention into the object prior to forming the images or during formation of the images. A contrast agent of this invention is a paramagnetic lanthanide hexaazamacrocyclic molecule, where a basic example has the formula LnC.sub.16 H.sub.14 N.sub.6. Important applications of the invention are in medical diagnosis, treatment, and research, where images of portions of a human body are formed by means of magnetic resonance techniques.

  13. Superconducting Resonators with Parasitic Electromagnetic Environments

    NASA Astrophysics Data System (ADS)

    Hornibrook, John; Mitchell, Emma; Reilly, David

    2012-02-01

    Microwave losses in niobium superconducting resonators are investigated at milli-Kelvin temperatures and with low drive power. In addition to the well-known suppression of Q-factor that arises from coupling between the resonator and two-level defects in the dielectric substrate [1-4], we report strong dependence of the loaded Q-factor and resonance line-shape on the electromagnetic environment. Methods to suppress parasitic coupling between the resonator and its environment are demonstrated.[4pt] [1] Day, P.K. et al., Nature 425, 817-821 (2003).[0pt] [2] Wallraff, A. et. al., Nature 451, 162-167 (2004).[0pt] [3] Macha, P. et. al., Appl. Phys. Lett., 96, 062503 (2010).[0pt] [4] O'Connell, A.D. et. al., Appl. Phys. Lett., 92, 112903 (2008).

  14. Comment on "Exact solution of resonant modes in a rectangular resonator".

    PubMed

    Gutiérrez-Vega, Julio C; Bandres, Miguel A

    2006-08-15

    We comment on the recent Letter by J. Wu and A. Liu [Opt. Lett. 31, 1720 (2006)] in which an exact scalar solution to the resonant modes and the resonant frequencies in a two-dimensional rectangular microcavity were presented. The analysis is incorrect because (a) the field solutions were imposed to satisfy simultaneously both Dirichlet and Neumann boundary conditions at the four sides of the rectangle, leading to an overdetermined problem, and (b) the modes in the cavity were expanded using an incorrect series ansatz, leading to an expression for the mode fields that does not satisfy the Helmholtz equation.

  15. Piezoelectric shear wave resonator and method of making same

    DOEpatents

    Wang, J.S.; Lakin, K.M.; Landin, A.R.

    1985-05-20

    An acoustic shear wave resonator comprising a piezoelectric film having its C-axis substantially inclined from the film normal such that the shear wave coupling coefficient significantly exceeds the longitudinal wave coupling coefficient, whereby the film is capable of shear wave resonance, and means for exciting said film to resonate. The film is prepared by deposition in a dc planar magnetron sputtering system to which a supplemental electric field is applied. The resonator structure may also include a semiconductor material having a positive temperature coefficient of resonance such that the resonator has a temperature coefficient of resonance approaching 0 ppM//sup 0/C.

  16. Piezoelectric shear wave resonator and method of making same

    DOEpatents

    Wang, J.S.; Lakin, K.M.; Landin, A.R.

    1983-10-25

    An acoustic shear wave resonator comprising a piezoelectric film having its C-axis substantially inclined from the film normal such that the shear wave coupling coefficient significantly exceeds the longitudinal wave coupling coefficient, whereby the film is capable of shear wave resonance, and means for exciting said film to resonate. The film is prepared by deposition in a dc planar magnetron sputtering system to which a supplemental electric field is applied. The resonator structure may also include a semiconductor material having a positive temperature coefficient of resonance such that the resonator has a temperature coefficient of resonance approaching 0 ppM//sup 0/C.

  17. 7 CFR 51.1576 - U.S. Grade B Small; U.S. Grade B Medium; U.S. Grade B Medium to Large; U.S. Grade B Large.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 2 2013-01-01 2013-01-01 false U.S. Grade B Small; U.S. Grade B Medium; U.S. Grade B Medium to Large; U.S. Grade B Large. 51.1576 Section 51.1576 Agriculture Regulations of the Department of...) United States Consumer Standards for Potatoes Grades § 51.1576 U.S. Grade B Small; U.S. Grade B Medium; U...

  18. 7 CFR 51.1575 - U.S. Grade A Small; U.S. Grade A Medium; U.S. Grade A Medium to Large; U.S. Grade A Large.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 2 2014-01-01 2014-01-01 false U.S. Grade A Small; U.S. Grade A Medium; U.S. Grade A Medium to Large; U.S. Grade A Large. 51.1575 Section 51.1575 Agriculture Regulations of the Department of...) United States Consumer Standards for Potatoes Grades § 51.1575 U.S. Grade A Small; U.S. Grade A Medium; U...

  19. 7 CFR 51.1576 - U.S. Grade B Small; U.S. Grade B Medium; U.S. Grade B Medium to Large; U.S. Grade B Large.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 2 2014-01-01 2014-01-01 false U.S. Grade B Small; U.S. Grade B Medium; U.S. Grade B Medium to Large; U.S. Grade B Large. 51.1576 Section 51.1576 Agriculture Regulations of the Department of...) United States Consumer Standards for Potatoes Grades § 51.1576 U.S. Grade B Small; U.S. Grade B Medium; U...

  20. 7 CFR 51.1575 - U.S. Grade A Small; U.S. Grade A Medium; U.S. Grade A Medium to Large; U.S. Grade A Large.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 2 2013-01-01 2013-01-01 false U.S. Grade A Small; U.S. Grade A Medium; U.S. Grade A Medium to Large; U.S. Grade A Large. 51.1575 Section 51.1575 Agriculture Regulations of the Department of...) United States Consumer Standards for Potatoes Grades § 51.1575 U.S. Grade A Small; U.S. Grade A Medium; U...

  1. Resonant vibration control of rotating beams

    NASA Astrophysics Data System (ADS)

    Svendsen, Martin Nymann; Krenk, Steen; Høgsberg, Jan

    2011-04-01

    Rotating structures, like e.g. wind turbine blades, may be prone to vibrations associated with particular modes of vibration. It is demonstrated, how this type of vibrations can be reduced by using a collocated sensor-actuator system, governed by a resonant controller. The theory is here demonstrated by an active strut, connecting two cross-sections of a rotating beam. The structure is modeled by beam elements in a rotating frame of reference following the beam. The geometric stiffness is derived in a compact form from an initial stress formulation in terms of section forces and moments. The stiffness, and thereby the natural frequencies, of the beam depend on the rotation speed and the controller is tuned to current rotation speed to match the resonance frequency of the selected mode. It is demonstrated that resonant control leads to introduction of the intended level of damping in the selected mode and, with good modal connectivity, only very limited modal spill-over is generated. The controller acts by resonance and therefore has only a moderate energy consumption, and successfully reduces modal vibrations at the resonance frequency.

  2. Multi-tunable microelectromechanical system (MEMS) resonators

    DOEpatents

    Stalford, Harold L [Norman, OK; Butler, Michael A [Andover, MA; Schubert, W Kent [Albuquerque, NM

    2006-08-22

    A method for tuning a vibratory device including a cantilevered resonator comprising the steps of increasing a voltage V.sub.0 supplied to the vibratory device to thereby increase the bandwidth of the vibratory device; and keeping the resonant frequency of the vibratory device at substantially that natural frequency of the cantilevered resonator, wherein the vibratory device comprises: a capacitor including a movable plate and a fixed plate spaced from each other, the movable plate being part of the cantilevered resonator; a voltage source connected to the capacitor for providing voltage V.sub.0 across the capacitor to produce an attractive force between movable plate and fixed plate; a circuit connecting the voltage source to the capacitor; and a load resistor in said circuit having a resistance R.sub.L satisfying the following equation: .mu..omega..times..times..lamda. ##EQU00001## where: .mu. is at least 10; .omega..sub.0 is the beam constant for the cantilevered resonator; c.sub.0 is the capacitance for the capacitor; and .lamda. is the voltage dependent coupling parameter for voltage V.sub.0.

  3. Mean motion resonances. [of asteroid belt structure

    NASA Technical Reports Server (NTRS)

    Froeschle, CL.; Greenberg, R.

    1989-01-01

    Recent research on the resonant structure of the asteroid belt is reviewed. The resonant mechanism is discussed, and analytical models for the study of mean motion resonances are examined. Numerical averaging methods and mapping methods are considered. It is shown how fresh insight can be obtained by means of a new semianalytical approach.

  4. Single crystal micromechanical resonator and fabrication methods thereof

    DOEpatents

    Olsson, Roy H.; Friedmann, Thomas A.; Homeijer, Sara Jensen; Wiwi, Michael; Hattar, Khalid Mikhiel; Clark, Blythe; Bauer, Todd; Van Deusen, Stuart B.

    2016-12-20

    The present invention relates to a single crystal micromechanical resonator. In particular, the resonator includes a lithium niobate or lithium tantalate suspended plate. Also provided are improved microfabrication methods of making resonators, which does not rely on complicated wafer bonding, layer fracturing, and mechanical polishing steps. Rather, the methods allow the resonator and its components to be formed from a single crystal.

  5. Study on Dynamic Alignment Technology of COIL Resonator

    NASA Astrophysics Data System (ADS)

    Xiong, M. D.; Zou, X. J.; Guo, J. H.; Jia, S. N.; Zhang2, Z. B.

    2006-10-01

    The performance of great power chemical oxygen-iodine laser (COIL) beam is decided mostly by resonator mirror maladjustment and environment vibration. To improve the performance of light beam, an auto-alignment device is used in COIL resonator, the device can keep COIL resonator collimating by adjusting the optical components of resonator. So the coupling model of COIL resonator is present. The multivariable self study fuzzy uncoupling arithmetic and six-dimensional micro drive technology are used to design a six-input-three-output uncoupling controller, resulting in the realization of the high precision dynamic alignment. The experiments indicate that the collimating range of this system is 8 mrad, precision is 5 urad and frequency response is 20Hz, which meet the demand of resonator alignment system.

  6. Piezoelectric resonator assembly with thin molybdenum mounting clips

    DOEpatents

    Peters, R. Donald

    1981-01-01

    A resonator mounting assembly wherein the resonator blank is mounted agai an essentially planar surface presented by a plurality of peripherally disposed mounting clips and bonded to this surface to provide substantially all the mechanical support for the blank in a direction normal to the major faces of the resonator blank, while being flexible in the directions parallel to said major faces so as to minimize radial stresses on the resonator blank, particularly during thermal cycling of the resonator assembly. The clips are fabricated of a low thermal expansion material, such as molybdenum, which also has considerable yield strength after exposure to processing temperatures; the bonding of the clips to the edges of the resonator blank can be achieved by a polyimide containing electrically conductive particles.

  7. Nanomechanical resonators based on group IV element monolayers

    NASA Astrophysics Data System (ADS)

    He, Ji-Dong; Sun, Jia-Sheng; Jiang, Jin-Wu

    2018-04-01

    We perform molecular dynamics simulations to investigate the energy dissipation of the resonant oscillation for the group IV monolayers of puckered configuration, in which the oscillation is driven with different actuation velocities. We find that, in the moderate actuation velocity regime, the nonlinear coupling between the resonant oscillation mode and other high-frequency modes will lead to the non-resonant motion of the system. For the larger actuation velocity, the effective strain generated during the resonant oscillating causes a structural transition from the puckered configuration into the planar configuration, which is a characteristic energy dissipation mechanism for the resonant oscillation of these group IV puckered monolayers. Our findings shed light on mechanical applications of the group IV monolayers in the nanomechanical resonator field.

  8. Real time studies of Elastic Moduli Pu Aging using Resonant Ultrasound Spectroscopy

    NASA Astrophysics Data System (ADS)

    Maiorov, Boris

    Elastic moduli are fundamental thermodynamic susceptibilities that connect directly to thermodynamics, electronic structure and give important information about mechanical properties. To determine the time evolution of the elastic properties in 239Pu and it Ga alloys, is imperative to study its phase stability and self-irradiation damage process. The most-likely sources of these changes include a) ingrowth of radioactive decay products like He and U, b) the introduction of radiation damage, c) δ-phase instabilities towards α-Pu or to Pu3Ga. The measurement of mechanical resonance frequencies can be made with extreme precision and used to compute the elastic moduli without corrections giving important insight in this problem. Using Resonant Ultrasound Spectroscopy, we measured the time dependence of the mechanical resonance frequencies of fine-grained polycrystalline δ-phase 239Pu, from 300K up to 480K. At room temperature, the shear modulus shows an increase in time (stiffening), but the bulk modulus decreases (softening). These are the first real-time measurements of room temperature aging of the elastic moduli, and the changes are consistent with elastic moduli measurements performed on 44 year old δ-Pu. As the temperature is increased, the rate of change increases exponentially, with both moduli becoming stiffer with time. For T>420K an abrupt change in the time dependence is observed indicating that the bulk and shear moduli have opposite rates of change. Our measurements provide a basis for ruling out the decomposition of δ-Pu towards α-Pu or Pu3Ga, and indicate a complex defect-related scenario from which we are gathering important clues.

  9. Right-handed neutrino dark matter in the classically conformal U(1 ) ' extended standard model

    NASA Astrophysics Data System (ADS)

    Oda, Satsuki; Okada, Nobuchika; Takahashi, Dai-suke

    2017-11-01

    We consider the dark matter (DM) scenario in the context of the classically conformal U(1 ) ' extended standard model (SM), with three right-handed neutrinos (RHNs) and the U(1 ) ' Higgs field. The model is free from all of the U(1 ) ' gauge and gravitational anomalies in the presence of the three RHNs. We introduce a Z2 parity in the model, under which an odd parity is assigned to one RHN, while all of the other particles are assigned to be Z2 even, and hence the Z2-odd RHN serves as a DM candidate. In this model, the U(1 ) ' gauge symmetry is radiatively broken through the Coleman-Weinberg mechanism, by which the electroweak symmetry breaking is triggered. There are three free parameters in our model—the U(1 ) ' charge of the SM Higgs doublet (xH ), the new U(1 ) ' gauge coupling (gX ), and the U(1 ) ' gauge boson (Z') mass (mZ')—which are severely constrained in order to solve the electroweak vacuum instability problem, and satisfy the LHC Run-2 bounds from the search for the Z' boson resonance. In addition to these constraints, we investigate the RHN DM physics. Because of the nature of classical conformality, we find that a RHN DM pair mainly annihilates into the SM particles through Z' boson exchange. This is the so-called Z'-portal DM scenario. Combining the electroweak vacuum stability condition, the LHC Run-2 bounds, and the cosmological constraint from the observed DM relic density, we find that all constraints work together to narrow the allowed parameter regions and, in particular, exclude mZ'≲3.5 TeV . For the obtained allowed regions, we calculate the spin-independent cross section of the RHN DM with nucleons. We find that the resultant cross section is well below the current experimental upper bounds.

  10. Tunable Magnetic Resonance in Microwave Spintronics Devices

    NASA Technical Reports Server (NTRS)

    Chen, Yunpeng; Fan, Xin; Xie, Yunsong; Zhou, Yang; Wang, Tao; Wilson, Jeffrey D.; Simons, Rainee N.; Chui, Sui-Tat; Xiao, John Q.

    2015-01-01

    Magnetic resonance is one of the key properties of magnetic materials for the application of microwave spintronics devices. The conventional method for tuning magnetic resonance is to use an electromagnet, which provides very limited tuning range. Hence, the quest for enhancing the magnetic resonance tuning range without using an electromagnet has attracted tremendous attention. In this paper, we exploit the huge exchange coupling field between magnetic interlayers, which is on the order of 4000 Oe and also the high frequency modes of coupled oscillators to enhance the tuning range. Furthermore, we demonstrate a new scheme to control the magnetic resonance frequency. Moreover, we report a shift in the magnetic resonance frequency as high as 20 GHz in CoFe based tunable microwave spintronics devices, which is 10X higher than conventional methods.

  11. Subphotospheric Resonator and Local Oscillations in Sunspots

    NASA Astrophysics Data System (ADS)

    Zhugzhda, Yu. D.

    2018-05-01

    The conditions under which the subphotospheric slow-wave resonator can be responsible for the local oscillations in a sunspot have been determined. A rich spectrum of local 3-min oscillations can be produced by the subphotospheric resonator only if the magnetic field in the resonator magnetic flux tube is much weaker than the surrounding sunspot magnetic field. Convective upflows of hot plasma in the sunspot magnetic field satisfy this condition. Consequently, there must be a correlation between the local oscillations and umbral dots, because the latter are produced by convective flows. Various modes of operation of the subphotospheric resonator give rise to wave packets of 3-min oscillations and umbral flashes. It is shown that giant local umbral flashes can emerge under certain conditions for the excitation of oscillations in the subphotospheric resonator.

  12. Whispering-Gallery Mode Resonators for Detecting Cancer

    PubMed Central

    Pongruengkiat, Weeratouch; Pechprasarn, Suejit

    2017-01-01

    Optical resonators are sensors well known for their high sensitivity and fast response time. These sensors have a wide range of applications, including in the biomedical fields, and cancer detection is one such promising application. Sensor diagnosis currently has many limitations, such as being expensive, highly invasive, and time-consuming. New developments are welcomed to overcome these limitations. Optical resonators have high sensitivity, which enable medical testing to detect disease in the early stage. Herein, we describe the principle of whispering-gallery mode and ring optical resonators. We also add to the knowledge of cancer biomarker diagnosis, where we discuss the application of optical resonators for specific biomarkers. Lastly, we discuss advancements in optical resonators for detecting cancer in terms of their ability to detect small amounts of cancer biomarkers. PMID:28902169

  13. Torque-mixing magnetic resonance spectroscopy (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Losby, Joseph; Fani Sani, Fatemeh; Grandmont, Dylan T.; Diao, Zhu; Belov, Miro; Burgess, Jacob A.; Compton, Shawn R.; Hiebert, Wayne K.; Vick, Doug; Mohammad, Kaveh; Salimi, Elham; Bridges, Gregory E.; Thomson, Douglas J.; Freeman, Mark R.

    2016-10-01

    An optomechanical platform for magnetic resonance spectroscopy will be presented. The method relies on frequency mixing of orthogonal RF fields to yield a torque amplitude (arising from the transverse component of a precessing dipole moment, in analogy to magnetic resonance detection by electromagnetic induction) on a miniaturized resonant mechanical torsion sensor. In contrast to induction, the method is fully broadband and allows for simultaneous observation of the equilibrium net magnetic moment alongside the associated magnetization dynamics. To illustrate the method, comprehensive electron spin resonance spectra of a mesoscopic, single-crystal YIG disk at room temperature will be presented, along with situations where torque spectroscopy can offer complimentary information to existing magnetic resonance detection techniques. The authors are very grateful for support from NSERC, CRC, AITF, and NINT. Reference: Science 350, 798 (2015).

  14. Tunable Magnetic Resonance in Microwave Spintronics Devices

    NASA Technical Reports Server (NTRS)

    Chen, Yunpeng; Fan, Xin; Xie, Yungsong; Zhou, Yang; Wang, Tao; Wilson, Jeffrey D.; Simons, Rainee N.; Chui, Sui-Tat; Xiao, John Q.

    2015-01-01

    Magnetic resonance is one of the key properties of magnetic materials for the application of microwave spintronics devices. The conventional method for tuning magnetic resonance is to use an electromagnet, which provides very limited tuning range. Hence, the quest for enhancing the magnetic resonance tuning range without using an electromagnet has attracted tremendous attention. In this paper, we exploit the huge exchange coupling field between magnetic interlayers, which is on the order of 4000 Oe and also the high frequency modes of coupled oscillators to enhance the tuning range. Furthermore, we demonstrate a new scheme to control the magnetic resonance frequency. Moreover, we report a shift in the magnetic resonance frequency as high as 20 GHz in CoFe-based tunable microwave spintronics devices, which is 10X higher than conventional methods.

  15. Non-resonant multipactor--A statistical model

    NASA Astrophysics Data System (ADS)

    Rasch, J.; Johansson, J. F.

    2012-12-01

    High power microwave systems operating in vacuum or near vacuum run the risk of multipactor breakdown. In order to avoid multipactor, it is necessary to make theoretical predictions of critical parameter combinations. These treatments are generally based on the assumption of electrons moving in resonance with the electric field while traversing the gap between critical surfaces. Through comparison with experiments, it has been found that only for small system dimensions will the resonant approach give correct predictions. Apparently, the resonance is destroyed due to the statistical spread in electron emission velocity, and for a more valid description it is necessary to resort to rather complicated statistical treatments of the electron population, and extensive simulations. However, in the limit where resonance is completely destroyed it is possible to use a much simpler treatment, here called non-resonant theory. In this paper, we develop the formalism for this theory, use it to calculate universal curves for the existence of multipactor, and compare with previous results. Two important effects that leads to an increase in the multipactor threshold in comparison with the resonant prediction are identified. These are the statistical spread of impact speed, which leads to a lower average electron impact speed, and the impact of electrons in phase regions where the secondary electrons are immediately reabsorbed, leading to an effective removal of electrons from the discharge.

  16. Non-resonant multipactor-A statistical model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rasch, J.; Johansson, J. F.

    2012-12-15

    High power microwave systems operating in vacuum or near vacuum run the risk of multipactor breakdown. In order to avoid multipactor, it is necessary to make theoretical predictions of critical parameter combinations. These treatments are generally based on the assumption of electrons moving in resonance with the electric field while traversing the gap between critical surfaces. Through comparison with experiments, it has been found that only for small system dimensions will the resonant approach give correct predictions. Apparently, the resonance is destroyed due to the statistical spread in electron emission velocity, and for a more valid description it is necessarymore » to resort to rather complicated statistical treatments of the electron population, and extensive simulations. However, in the limit where resonance is completely destroyed it is possible to use a much simpler treatment, here called non-resonant theory. In this paper, we develop the formalism for this theory, use it to calculate universal curves for the existence of multipactor, and compare with previous results. Two important effects that leads to an increase in the multipactor threshold in comparison with the resonant prediction are identified. These are the statistical spread of impact speed, which leads to a lower average electron impact speed, and the impact of electrons in phase regions where the secondary electrons are immediately reabsorbed, leading to an effective removal of electrons from the discharge.« less

  17. Isolated resonator gyroscope with isolation trimming using a secondary element

    NASA Technical Reports Server (NTRS)

    Challoner, A. Dorian (Inventor); Shcheglov, Kirill V. (Inventor)

    2006-01-01

    The present invention discloses a resonator gyroscope including an isolated resonator. One or more flexures support the isolated resonator and a baseplate is affixed to the resonator by the flexures. Drive and sense elements are affixed to the baseplate and used to excite the resonator and sense movement of the gyroscope. In addition, at least one secondary element (e.g., another electrode) is affixed to the baseplate and used for trimming isolation of the resonator. The resonator operates such that it transfers substantially no net momentum to the baseplate when the resonator is excited. Typically, the isolated resonator comprises a proof mass and a counterbalancing plate.

  18. Environmental control of U concentration and 234U/238U in speleothems at subannual resolution

    NASA Astrophysics Data System (ADS)

    Hu, C.; Henderson, G. M.

    2003-12-01

    Trace element and isotope variability in speleothems encodes a range of information about the past environment, although its interpretation is often problematic. U concentration and isotopes have frequently been analysed in speleothems in order to provide chronology, but their use as environmental proxies in their own right has not been comprehensively investigated. In this study, we have investigated the environmental controls of U in a stalagmite from the Central Yangtze Valley in China. This stalagmite grew rapidly throughout the Holocone and contains visible annual layers about 300microns thick. Analysis of a portion of the stalagmite corresponding to the 1970s by electron probe, LA-ICP-MS, and by physical subsampling indicate clear annual cycles in Sr/Ca, Mg/Ca, and Ba/Ca. The reasonably open cave structure and the correlation of Sr/Ca with Mg/Ca suggest that temperature exerts considerable control over these trace element variations. U/Ca also varies seasonally by up to 42 % and shows a clear anti-correlation with Mg/Ca (correlation coefficient -0.64). Based on the inverse relationship between U/Ca and temperature exhibited in other carbonates (e.g. corals) the speleothem U/Ca is suggested to be controlled primarily by temperature and may provide a paleo cave thermometer with less rainfall influence than Mg/Ca. Ongoing monitoring of the cave temperature and humidity will assess the robustness of this conclusion and the sensitivity of speleothem U/Ca to temperature. (234U/238U) in this stalagmite range from 1.733 to 1.872 during the Holocene. The U concentration is high enough (typically 0.48 ppm) and growth rate fast enough, that (234U/238U) can also be measured at a subannual resolution. The expected alpha-recoil control of excess 234U supply suggests that these measurements may provide a measure of the transit time of recharge waters to the stalagmite during the seasonal cycle. Such a proxy would enable deconvolution of temperature and recharge-rate control

  19. The inverse resonance problem for CMV operators

    NASA Astrophysics Data System (ADS)

    Weikard, Rudi; Zinchenko, Maxim

    2010-05-01

    We consider the class of CMV operators with super-exponentially decaying Verblunsky coefficients. For these we define the concept of a resonance. Then we prove the existence of Jost solutions and a uniqueness theorem for the inverse resonance problem: given the location of all resonances, taking multiplicities into account, the Verblunsky coefficients are uniquely determined.

  20. 7 CFR 51.2541 - U.S. Fancy, U.S. Extra No. 1, U.S. No. 1 And U.S. Select Grades.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... PRODUCTS 1,2 (INSPECTION, CERTIFICATION, AND STANDARDS) United States Standards for Grades of Pistachio.... Fancy,” “U.S. Extra No. 1,” “U.S. No. 1,” and “U.S. Select” consists of pistachio nuts in the shell...