Sample records for u-3aus disposal site

  1. 43 CFR 2743.3 - Leased disposal sites.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 43 Public Lands: Interior 2 2012-10-01 2012-10-01 false Leased disposal sites. 2743.3 Section 2743.3 Public Lands: Interior Regulations Relating to Public Lands (Continued) BUREAU OF LAND MANAGEMENT, DEPARTMENT OF THE INTERIOR LAND RESOURCE MANAGEMENT (2000) RECREATION AND PUBLIC PURPOSES ACT Recreation and...

  2. 43 CFR 2743.3 - Leased disposal sites.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 43 Public Lands: Interior 2 2014-10-01 2014-10-01 false Leased disposal sites. 2743.3 Section 2743.3 Public Lands: Interior Regulations Relating to Public Lands (Continued) BUREAU OF LAND MANAGEMENT, DEPARTMENT OF THE INTERIOR LAND RESOURCE MANAGEMENT (2000) RECREATION AND PUBLIC PURPOSES ACT Recreation and...

  3. 43 CFR 2743.3 - Leased disposal sites.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 43 Public Lands: Interior 2 2013-10-01 2013-10-01 false Leased disposal sites. 2743.3 Section 2743.3 Public Lands: Interior Regulations Relating to Public Lands (Continued) BUREAU OF LAND MANAGEMENT, DEPARTMENT OF THE INTERIOR LAND RESOURCE MANAGEMENT (2000) RECREATION AND PUBLIC PURPOSES ACT Recreation and...

  4. Application for a Permit to Operate a Class III Solid Waste Disposal Site at the Nevada Test Site Area 5 Asbestiform Low-Level Solid Waste Disposal Site

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NSTec Environmental Programs

    The NTS solid waste disposal sites must be permitted by the state of Nevada Solid Waste Management Authority (SWMA). The SWMA for the NTS is the Nevada Division of Environmental Protection, Bureau of Federal Facilities (NDEP/BFF). The U.S. Department of Energy's National Nuclear Security Administration Nevada Site Office (NNSA/NSO) as land manager (owner), and National Security Technologies (NSTec), as operator, will store, collect, process, and dispose all solid waste by means that do not create a health hazard, a public nuisance, or cause impairment of the environment. NTS disposal sites will not be included in the Nye County Solid Wastemore » Management Plan. The NTS is located approximately 105 kilometers (km) (65 miles [mi]) northwest of Las Vegas, Nevada (Figure 1). The U.S. Department of Energy (DOE) is the federal lands management authority for the NTS, and NSTec is the Management and Operations contractor. Access on and off the NTS is tightly controlled, restricted, and guarded on a 24-hour basis. The NTS has signs posted along its entire perimeter. NSTec is the operator of all solid waste disposal sites on the NTS. The Area 5 RWMS is the location of the permitted facility for the Solid Waste Disposal Site (SWDS). The Area 5 RWMS is located near the eastern edge of the NTS (Figure 2), approximately 26 km (16 mi) north of Mercury, Nevada. The Area 5 RWMS is used for the disposal of low-level waste (LLW) and mixed low-level waste. Many areas surrounding the RWMS have been used in conducting nuclear tests. A Notice of Intent to operate the disposal site as a Class III site was submitted to the state of Nevada on January 28, 1994, and was acknowledged as being received in a letter to the NNSA/NSO on August 30, 1994. Interim approval to operate a Class III SWDS for regulated asbestiform low-level waste (ALLW) was authorized on August 12, 1996 (in letter from Paul Liebendorfer to Runore Wycoff), with operations to be conducted in accordance with the

  5. Closure Report for Corrective Action Unit 139: Waste Disposal Sites, Nevada Test Site, Nevada

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NSTec Environmental Restoration

    2009-07-31

    Corrective Action Unit (CAU) 139 is identified in the Federal Facility Agreement and Consent Order (FFACO) as 'Waste Disposal Sites' and consists of the following seven Corrective Action Sites (CASs), located in Areas 3, 4, 6, and 9 of the Nevada Test Site: CAS 03-35-01, Burn Pit; CAS 04-08-02, Waste Disposal Site; CAS 04-99-01, Contaminated Surface Debris; CAS 06-19-02, Waste Disposal Site/Burn Pit; CAS 06-19-03, Waste Disposal Trenches; CAS 09-23-01, Area 9 Gravel Gertie; and CAS 09-34-01, Underground Detection Station. Closure activities were conducted from December 2008 to April 2009 according to the FFACO (1996, as amended February 2008) andmore » the Corrective Action Plan for CAU 139 (U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office, 2007b). The corrective action alternatives included No Further Action, Clean Closure, and Closure in Place with Administrative Controls. Closure activities are summarized. CAU 139, 'Waste Disposal Sites,' consists of seven CASs in Areas 3, 4, 6, and 9 of the NTS. The closure alternatives included No Further Action, Clean Closure, and Closure in Place with Administrative Controls. This CR provides a summary of completed closure activities, documentation of waste disposal, and confirmation that remediation goals were met. The following site closure activities were performed at CAU 139 as documented in this CR: (1) At CAS 03-35-01, Burn Pit, soil and debris were removed and disposed as LLW, and debris was removed and disposed as sanitary waste. (2) At CAS 04-08-02, Waste Disposal Site, an administrative UR was implemented. No postings or post-closure monitoring are required. (3) At CAS 04-99-01, Contaminated Surface Debris, soil and debris were removed and disposed as LLW, and debris was removed and disposed as sanitary waste. (4) At CAS 06-19-02, Waste Disposal Site/Burn Pit, no work was performed. (5) At CAS 06-19-03, Waste Disposal Trenches, a native soil cover was installed, and a UR was

  6. Plant uptake of 238U, 235U, 232Th, 226Ra, 210Pb and 40K from a coal ash and slag disposal site and control soil under field conditions: A preliminary study.

    PubMed

    Skoko, Božena; Marović, Gordana; Babić, Dinko; Šoštarić, Marko; Jukić, Mirela

    2017-06-01

    The aim of this study was to investigate the uptake of 238 U, 235 U, 232 Th, 226 Ra, 210 Pb and 40 K by plants that grow on a coal ash and slag disposal site known for its higher content of naturally occurring radionuclides. Plant species that were sampled are common for the Mediterranean flora and can be divided as follows: grasses & herbs, shrubs and trees. To compare the activity concentrations and the resultant concentration ratios of the disposal site with those in natural conditions, we used control data specific for the research area, obtained for plants growing on untreated natural soil. Radionuclide activity concentrations were determined by high resolution gamma-ray spectrometry. Media parameters (pH, electrical conductivity and organic matter content) were also analysed. We confirmed significantly higher activity concentrations of 238 U, 235 U, 226 Ra and 210 Pb in ash and slag compared to control soil. However, a significant increase in the radionuclide activity concentration in the disposal site's vegetation was observed only for 226 Ra. On the contrary, a significantly smaller activity concentration of 40 K in ash and slag had no impact on its activity concentration in plant samples. The calculated plant uptake of 238 U, 235 U, 226 Ra and 210 Pb is significantly smaller in comparison with the uptake at the control site, while it is vice versa for 40 K. No significant difference was observed between the disposal site and the control site's plant uptake of 232 Th. These results can be the foundation for further radioecological assessment of this disposal site but also, globally, they can contribute to a better understanding of nature and long-term management of such disposal sites. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Ocean Disposal Site Monitoring

    EPA Pesticide Factsheets

    EPA is responsible for managing all designated ocean disposal sites. Surveys are conducted to identify appropriate locations for ocean disposal sites and to monitor the impacts of regulated dumping at the disposal sites.

  8. 43 CFR 2743.3-1 - Patent provisions for leased disposal sites.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 43 Public Lands: Interior 2 2013-10-01 2013-10-01 false Patent provisions for leased disposal sites. 2743.3-1 Section 2743.3-1 Public Lands: Interior Regulations Relating to Public Lands (Continued) BUREAU OF LAND MANAGEMENT, DEPARTMENT OF THE INTERIOR LAND RESOURCE MANAGEMENT (2000) RECREATION AND...

  9. 43 CFR 2743.3-1 - Patent provisions for leased disposal sites.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 43 Public Lands: Interior 2 2014-10-01 2014-10-01 false Patent provisions for leased disposal sites. 2743.3-1 Section 2743.3-1 Public Lands: Interior Regulations Relating to Public Lands (Continued) BUREAU OF LAND MANAGEMENT, DEPARTMENT OF THE INTERIOR LAND RESOURCE MANAGEMENT (2000) RECREATION AND...

  10. 43 CFR 2743.3-1 - Patent provisions for leased disposal sites.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 43 Public Lands: Interior 2 2012-10-01 2012-10-01 false Patent provisions for leased disposal sites. 2743.3-1 Section 2743.3-1 Public Lands: Interior Regulations Relating to Public Lands (Continued) BUREAU OF LAND MANAGEMENT, DEPARTMENT OF THE INTERIOR LAND RESOURCE MANAGEMENT (2000) RECREATION AND...

  11. 78 FR 57668 - U.S. Nuclear Regulatory Commission Planned for Monitoring Activities for the Saltstone Disposal...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-19

    ... Monitoring Activities for the Saltstone Disposal Facility at the Savannah River Site, Revision 1 AGENCY... responsibilities for monitoring DOE's waste disposal activities at the Saltstone Disposal Facility (SDF) at the... Monitoring Disposal Actions Taken by the U.S. Department of Energy at the Savannah River Site Saltstone...

  12. 2013 Annual Site Inspection and Monitoring Report for Uranium Mill Tailings Radiation Control Act Title II Disposal Sites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    This report, in fulfillment of a license requirement, presents the results of long-term surveillance and maintenance activities conducted by the U.S. Department of Energy (DOE) Office of Legacy Management in 2013 at six uranium mill tailings disposal sites reclaimed under Title II of the Uranium Mill Tailings Radiation Control Act (UMTRCA) of 1978. These activities verified that the UMTRCA Title II disposal sites remain in compliance with license requirements. DOE manages six UMTRCA Title II disposal sites under a general license granted by the U.S. Nuclear Regulatory Commission (NRC) established at Title 10 Code of Federal Regulations Part 40.28. Reclamationmore » and site transition activities continue at other sites, and DOE ultimately expects to manage approximately 27 Title II disposal sites. Long-term surveillance and maintenance activities and services for these disposal sites include inspecting and maintaining the sites; monitoring environmental media and institutional controls; conducting any necessary corrective action; and performing administrative, records, stakeholder services, and other regulatory functions. Annual site inspections and monitoring are conducted in accordance with site-specific long-term surveillance plans (LTSPs) and procedures established by DOE to comply with license requirements. Each site inspection is performed to verify the integrity of visible features at the site; to identify changes or new conditions that may affect the long-term performance of the site; and to determine the need, if any, for maintenance, follow-up inspections, or corrective action. LTSPs and site compliance reports are available online at http://www.lm.doe.gov« less

  13. Long-term surveillance plan for the Green River, Utah, disposal site

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1997-06-01

    The long-term surveillance plan (LTSP) for the Green River, Utah, Uranium Mill Tailings Remedial Action (UMTRA) Project disposal site describes the surveillance activities for the Green River disposal cell. The U.S. Department of Energy (DOE) will carry out these activities to ensure that the disposal cell continues to function as designed. This final LTSP was prepared as a requirement for acceptance under the U.S. Nuclear Regulatory Commission (NRC) general license for custody and long-term care of residual radioactive materials (RRM). This LTSP documents whether the land and interests are owned by the United States or an Indian tribe and detailsmore » how the long-term care of the disposal site will be carried out. The Green River, Utah, LTSP is based on the DOE`s Guidance for Implementing the UMTRA Project Long-term Surveillance Program (DOE, 1992a).« less

  14. 10 CFR 61.51 - Disposal site design for land disposal.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 2 2011-01-01 2011-01-01 false Disposal site design for land disposal. 61.51 Section 61.51 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) LICENSING REQUIREMENTS FOR LAND DISPOSAL OF RADIOACTIVE WASTE Technical Requirements for Land Disposal Facilities § 61.51 Disposal site design for land...

  15. 10 CFR 61.51 - Disposal site design for land disposal.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 2 2014-01-01 2014-01-01 false Disposal site design for land disposal. 61.51 Section 61.51 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) LICENSING REQUIREMENTS FOR LAND DISPOSAL OF RADIOACTIVE WASTE Technical Requirements for Land Disposal Facilities § 61.51 Disposal site design for land...

  16. 10 CFR 61.51 - Disposal site design for land disposal.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 2 2013-01-01 2013-01-01 false Disposal site design for land disposal. 61.51 Section 61.51 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) LICENSING REQUIREMENTS FOR LAND DISPOSAL OF RADIOACTIVE WASTE Technical Requirements for Land Disposal Facilities § 61.51 Disposal site design for land...

  17. 10 CFR 61.51 - Disposal site design for land disposal.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 2 2012-01-01 2012-01-01 false Disposal site design for land disposal. 61.51 Section 61.51 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) LICENSING REQUIREMENTS FOR LAND DISPOSAL OF RADIOACTIVE WASTE Technical Requirements for Land Disposal Facilities § 61.51 Disposal site design for land...

  18. 10 CFR 61.51 - Disposal site design for land disposal.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 2 2010-01-01 2010-01-01 false Disposal site design for land disposal. 61.51 Section 61.51 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) LICENSING REQUIREMENTS FOR LAND DISPOSAL OF RADIOACTIVE WASTE Technical Requirements for Land Disposal Facilities § 61.51 Disposal site design for land...

  19. 10 CFR 61.50 - Disposal site suitability requirements for land disposal.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 2 2013-01-01 2013-01-01 false Disposal site suitability requirements for land disposal. 61.50 Section 61.50 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) LICENSING REQUIREMENTS FOR LAND DISPOSAL OF RADIOACTIVE WASTE Technical Requirements for Land Disposal Facilities § 61.50 Disposal site...

  20. 10 CFR 61.50 - Disposal site suitability requirements for land disposal.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 2 2012-01-01 2012-01-01 false Disposal site suitability requirements for land disposal. 61.50 Section 61.50 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) LICENSING REQUIREMENTS FOR LAND DISPOSAL OF RADIOACTIVE WASTE Technical Requirements for Land Disposal Facilities § 61.50 Disposal site...

  1. 10 CFR 61.50 - Disposal site suitability requirements for land disposal.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 2 2014-01-01 2014-01-01 false Disposal site suitability requirements for land disposal. 61.50 Section 61.50 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) LICENSING REQUIREMENTS FOR LAND DISPOSAL OF RADIOACTIVE WASTE Technical Requirements for Land Disposal Facilities § 61.50 Disposal site...

  2. 10 CFR 61.50 - Disposal site suitability requirements for land disposal.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 2 2011-01-01 2011-01-01 false Disposal site suitability requirements for land disposal. 61.50 Section 61.50 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) LICENSING REQUIREMENTS FOR LAND DISPOSAL OF RADIOACTIVE WASTE Technical Requirements for Land Disposal Facilities § 61.50 Disposal site...

  3. 10 CFR 61.50 - Disposal site suitability requirements for land disposal.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 2 2010-01-01 2010-01-01 false Disposal site suitability requirements for land disposal. 61.50 Section 61.50 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) LICENSING REQUIREMENTS FOR LAND DISPOSAL OF RADIOACTIVE WASTE Technical Requirements for Land Disposal Facilities § 61.50 Disposal site...

  4. Granite disposal of U.S. high-level radioactive waste.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Freeze, Geoffrey A.; Mariner, Paul E.; Lee, Joon H.

    This report evaluates the feasibility of disposing U.S. high-level radioactive waste in granite several hundred meters below the surface of the earth. The U.S. has many granite formations with positive attributes for permanent disposal. Similar crystalline formations have been extensively studied by international programs, two of which, in Sweden and Finland, are the host rocks of submitted or imminent repository license applications. This report is enabled by the advanced work of the international community to establish functional and operational requirements for disposal of a range of waste forms in granite media. In this report we develop scoping performance analyses, basedmore » on the applicable features, events, and processes (FEPs) identified by international investigators, to support generic conclusions regarding post-closure safety. Unlike the safety analyses for disposal in salt, shale/clay, or deep boreholes, the safety analysis for a mined granite repository depends largely on waste package preservation. In crystalline rock, waste packages are preserved by the high mechanical stability of the excavations, the diffusive barrier of the buffer, and favorable chemical conditions. The buffer is preserved by low groundwater fluxes, favorable chemical conditions, backfill, and the rigid confines of the host rock. An added advantage of a mined granite repository is that waste packages would be fairly easy to retrieve, should retrievability be an important objective. The results of the safety analyses performed in this study are consistent with the results of comprehensive safety assessments performed for sites in Sweden, Finland, and Canada. They indicate that a granite repository would satisfy established safety criteria and suggest that a small number of FEPs would largely control the release and transport of radionuclides. In the event the U.S. decides to pursue a potential repository in granite, a detailed evaluation of these FEPs would be needed to

  5. Humboldt Open Ocean Disposal Site (HOODS) Survey Work 2014

    EPA Pesticide Factsheets

    The Humboldt Open Ocean Disposal Site (HOODS) is a dredged material disposal site located 3 nautical miles (nm) offshore of Humboldt Bay in Northern California. HOODS was permanently designated by EPA Region 9 in 1995, and has been actively used for dredged material disposal operations since then. The HOODS has received higher volumes of dredged material than predicted since its designation in 1995, mainly from USACE construction and maintenance dredging.

  6. Application for a Permit to Operate a Class III Solid Waste Disposal Site at the Nevada National Security Site Area 5 Asbestiform Low-Level Solid Waste Disposal Site

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NSTec Environmental Programs

    2010-10-04

    The Nevada National Security Site (NNSS) is located approximately 105 km (65 mi) northwest of Las Vegas, Nevada. The U.S. Department of Energy National Nuclear Security Administration Nevada Site Office (NNSA/NSO) is the federal lands management authority for the NNSS and National Security Technologies, LLC (NSTec) is the Management and Operations contractor. Access on and off the NNSS is tightly controlled, restricted, and guarded on a 24-hour basis. The NNSS is posted with signs along its entire perimeter. NSTec is the operator of all solid waste disposal sites on the NNSS. The Area 5 Radioactive Waste Management Site (RWMS) ismore » the location of the permitted facility for the Solid Waste Disposal Site (SWDS). The Area 5 RWMS is located near the eastern edge of the NNSS (Figure 1), approximately 26 km (16 mi) north of Mercury, Nevada. The Area 5 RWMS is used for the disposal of low-level waste (LLW) and mixed low-level waste. Many areas surrounding the RWMS have been used in conducting nuclear tests. The site will be used for the disposal of regulated Asbestiform Low-Level Waste (ALLW), small quantities of low-level radioactive hydrocarbon-burdened (LLHB) media and debris, LLW, LLW that contains Polychlorinated Biphenyl (PCB) Bulk Product Waste greater than 50 ppm that leaches at a rate of less than 10 micrograms of PCB per liter of water, and small quantities of LLHB demolition and construction waste (hereafter called permissible waste). Waste containing free liquids, or waste that is regulated as hazardous waste under the Resource Conservation and Recovery Act (RCRA) or state-of-generation hazardous waste regulations, will not be accepted for disposal at the site. Waste regulated under the Toxic Substances Control Act (TSCA) that will be accepted at the disposal site is regulated asbestos-containing materials (RACM) and PCB Bulk Product Waste greater than 50 ppm that leaches at a rate of less than 10 micrograms of PCB per liter of water. The term

  7. 2013 Annual Site Inspection and Monitoring Report for Uranium Mill Tailings Radiation Control Act Title I Disposal Sites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None, None

    This report, in fulfillment of a license requirement, presents the results of long-term surveillance and maintenance activities conducted by the U.S. Department of Energy (DOE) Office of Legacy Management (LM) in 2013 at 19 uranium mill tailings disposal sites established under Title I of the Uranium Mill Tailings Radiation Control Act (UMTRCA) of 1978.1 These activities verified that the UMTRCA Title I disposal sites remain in compliance with license requirements. DOE operates 18 UMTRCA Title I sites under a general license granted by the U.S. Nuclear Regulatory Commission (NRC) in accordance with Title 10 Code of Federal Regulations Part 40.27more » (10 CFR 40.27). As required under the general license, a long-term surveillance plan (LTSP) for each site was prepared by DOE and accepted by NRC. The Grand Junction, Colorado, Disposal Site, one of the 19 Title I sites, will not be included under the general license until the open, operating portion of the cell is closed. The open portion will be closed either when it is filled or in 2023. This site is inspected in accordance with an interim LTSP. Long-term surveillance and maintenance services for these disposal sites include inspecting and maintaining the sites; monitoring environmental media and institutional controls; conducting any necessary corrective actions; and performing administrative, records, stakeholder relations, and other regulatory stewardship functions. Annual site inspections and monitoring are conducted in accordance with site-specific LTSPs and procedures established by DOE to comply with license requirements. Each site inspection is performed to verify the integrity of visible features at the site; to identify changes or new conditions that may affect the long-term performance of the site; and to determine the need, if any, for maintenance, follow-up or contingency inspections, or corrective action in accordance with the LTSP. LTSPs and site compliance reports are available on the Internet at

  8. Disposal site quality team final report

    DOT National Transportation Integrated Search

    2001-09-01

    The disposal site quality team was formed in July 2000 to address Caltrans (Department) and Federal Highway Administration (FHWA) policies on disposal, staging, and borrow areas (DSB), including plant sites, contractor yards, and access roads. Caltra...

  9. Chemical Stockpile Disposal Program. Risk Analysis of the Disposal of Chemical Munitions at Regional or National Sites.

    DTIC Science & Technology

    1987-08-01

    THE DISPOSAL OF CNEM.. CU) GA TECHNOLOGIES INC SRN DIEGO CA A H SARSELL ET AL. RUG 97 GA-C- i @563 UNLRSS FIED S APEO-CDE-IS- 9 ?SIGDRAA±5-85-D-822...F/ 15/.3 NL I ihhhhhhhhhhhhlm I fflfflffllfllfllfllf smhhhhhhhhhhh ~1.02 U.,5 A I *Pig- FiLE copy CHEMICAL STOCKPILE DISPOSAL PROGRAM RISK ANALYSIS...vr~. ’ . - a ’ a’ ’- . ,I1 - .V [ N- VW; W UU V. , U .U : , r ,,, - . ..... . SECURITY CLASSIFICATION OF THIS PAGE IM : I omApproved

  10. Siting, design and operational controls for snow disposal sites.

    PubMed

    Wheaton, S R; Rice, W J

    2003-01-01

    The Municipality of Anchorage (MOA), at 61 degrees north latitude, ploughs and hauls snow from urban streets throughout the winter, incorporating grit and chloride applied to street surfaces for traffic safety. Hauled snow is stored at snow disposal facilities, where it melts at ambient spring temperatures. MOA studies performed from 1998 through 2001 show that disposal site melt processes can be manipulated, through site design and operation practices, to control chloride and turbidity in meltwater. An experimental passive "V-swale" pad configuration tested by MOA investigators reduced site meltwater turbidity by an order of magnitude (to about 50 NTU from the 500 NTU typical of more conventional planar pad geometry). The MOA has developed new siting, design and operational criteria for snow disposal facilities to conform to the tested V-swale pad configuration.

  11. 43 CFR 2743.2 - New disposal sites.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... Public Purposes Act: Solid Waste Disposal § 2743.2 New disposal sites. (a) Public lands may be conveyed... 43 Public Lands: Interior 2 2014-10-01 2014-10-01 false New disposal sites. 2743.2 Section 2743.2 Public Lands: Interior Regulations Relating to Public Lands (Continued) BUREAU OF LAND MANAGEMENT...

  12. 43 CFR 2743.2 - New disposal sites.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... Public Purposes Act: Solid Waste Disposal § 2743.2 New disposal sites. (a) Public lands may be conveyed... 43 Public Lands: Interior 2 2013-10-01 2013-10-01 false New disposal sites. 2743.2 Section 2743.2 Public Lands: Interior Regulations Relating to Public Lands (Continued) BUREAU OF LAND MANAGEMENT...

  13. 43 CFR 2743.2 - New disposal sites.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... Public Purposes Act: Solid Waste Disposal § 2743.2 New disposal sites. (a) Public lands may be conveyed... 43 Public Lands: Interior 2 2012-10-01 2012-10-01 false New disposal sites. 2743.2 Section 2743.2 Public Lands: Interior Regulations Relating to Public Lands (Continued) BUREAU OF LAND MANAGEMENT...

  14. Data Validation Package August 2015 Groundwater Sampling at the Grand Junction, Colorado, Disposal Site October 2015

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Frazier, William; Baur, Gary

    2015-11-03

    The 1998 Interim Long-Term Surveillance Plan for the Cheney Disposal Site Near Grand Junction, Colorado, requires annual monitoring to assess the performance of the disposal cell. Monitoring wells 0731, 0732 and 0733 were sampled as specified in the plan. Sampling and analyses were conducted in accordance with Sampling and Analysis Plan for the U.S. Department of Energy Office of Legacy Management Sites.

  15. Acoustic mapping of the regional seafloor geology in and around Hawaiian ocean dredged-material disposal sites

    USGS Publications Warehouse

    Torresan, Michael E.; Gardner, James V.

    2000-01-01

    During January and February 1998 the U.S. Geological Survey Coastal and Marine Geology Team (USGS) conducted regional high-resolution multibeam mapping surveys of the area surrounding EPA-designated ocean disposal sites located offshore of the Hawaiian Islands of Oahu, Kauai, Maui, and Hawaii. The sites are all located within 5 nautical miles of shore on insular shelves or slopes. Regional maps were required of areas much larger than the disposal sites themselves to assess both the regional seafloor geology and the immediate vicinity of the disposal sites. The purpose of the disposal site surveys was to delimit the extent of disposal material by producing detailed bathymetric and backscatter maps of the seafloor with a ± 1 m spatial accuracy and <1% depth error. The advantage of using multibeam over conventional towed, single-beam sidescan sonar is that the multibeam data are accurately georeferenced for precise location of all imaged features. The multibeam produces a coregistered acoustic-backscatter map that is often required to locate individual disposal deposits. These data were collected by the USGS as part of its regional seafloor mapping and in support of ocean disposal site monitoring studies conducted in cooperation with the US Environmental Protection Agency (EPA) and the US Army Corps of Engineers (COE).

  16. Site Selection for the Disposal of LLW in Taiwan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chuang, W.S.; Chi, L.M.; Tien, N.C.

    2006-07-01

    This paper presents the implementation status of the low-level radioactive waste (LLW) disposal program in Taiwan, including the disposal facility regulations, status of waste management, final disposal program, licensing procedures, waste acceptance criteria, site selection criteria and processes and preliminary disposal concepts. The first phase of site selection for low-level radioactive waste final disposal in Taiwan was implemented between 1992 and 2002. The site selection process adopted a Geographic Information System (GIS), Hierarchical Analysis System, Expert Evaluation System, and site reconnaissance. An incentive program for voluntary sites was also initiated. After a series of evaluations and discussion of 30 potentialmore » candidate sites, including 8 recommended sites, 5 qualified voluntary townships, and several remote uninhabited small islets, Hsiao-chiou islet was selected as the first priority candidate site in February 1998. The geological investigation work in Hsiao-chiou was conducted from March 1999 through October 2000. An Environmental Impact Statement Report (EIS) and the Investment Feasibility Study Report (IFS) were submitted to the Environmental Protection Agency (EPA) in November 2000 and to the Ministry of Economic Affairs (MOEA) in June 2001, respectively. Unfortunately, the site investigation was discontinued in 2002 due to political and public acceptance consideration. After years of planning, the second phase of the site selection process was launched in August 2004 and will be conducted through 2008. It is planned that a repository will be constructed in early 2009 and start to operate in 2014. The site selection process for the second phase is based on the earlier work and four potential candidate sites were selected for evaluation until 2005. A near surface disposal concept is proposed for a site located in the Taiwan strait, and cavern disposal concepts are proposed for three other sites located on the main island. This

  17. Regional hydrogeological screening characteristics used for siting near-surface waste-disposal facilities in Oklahoma, U.S.A.

    USGS Publications Warehouse

    Johnson, K.S.

    1991-01-01

    The Oklahoma Geological Survey has developed several maps and reports for preliminary screening of the state of Oklahoma to identify areas that are generally acceptable or unacceptable for disposal of a wide variety of waste materials. These maps and reports focus on the geologic and hydrogeologic parameters that must be evaluated in the screening process. One map (and report) shows the outcrop distribution of 35 thick shale or clay units that are generally suitable for use as host rocks for surface disposal of wastes. A second map shows the distribution of unconsolidated alluvial and terrace-deposit aquifers, and a third map shows the distribution and hydrologic character of bedrock aquifers and their recharge areas. These latter two maps show the areas in the state where special attention must be exercised in permitting storage or disposal of waste materials that could degrade the quality of groundwater. State regulatory agencies and industry are using these maps and reports in preliminary screening of the state to identify potential disposal sites. These maps in no way replace the need for site-specific investigations to prove (or disprove) the adequacy of a site to safely contain waste materials. ?? 1991 Springer-Verlag New York Inc.

  18. Guidance for implementing the long-term surveillance program for UMTRA Project Title I Disposal Sites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1996-02-01

    This guidance document has two purposes: it provides guidance for writing site-specific long-term surveillance plans (LTSP) and it describes site surveillance, monitoring, and long-term care techniques for Title I disposal sites of the Uranium Mill Tailings Radiation Control Act (UMTRCA) (42 USC Section 7901 et seq.). Long-term care includes monitoring, maintenance, and emergency measures needed to protect public health and safety and the environment after remedial action is completed. This document applies to the UMTRCA-designated Title I disposal sites. The requirements for long-term care of the Title I sites and the contents of the LTSPs are provided in U.S. Nuclearmore » Regulatory Commission (NRC) regulations (10 CFR Section 40.27) provided in Attachment 1.« less

  19. Corrective Action Investigation Plan for Corrective Action Unit 139: Waste Disposal Sites, Nevada Test Site, Nevada, Rev. No.: 0

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grant Evenson

    2006-04-01

    Corrective Action Unit (CAU) 139 is located in Areas 3, 4, 6, and 9 of the Nevada Test Site, which is 65 miles northwest of Las Vegas, Nevada. Corrective Action Unit 139 is comprised of the seven corrective action sites (CASs) listed below: (1) 03-35-01, Burn Pit; (2) 04-08-02, Waste Disposal Site; (3) 04-99-01, Contaminated Surface Debris; (4) 06-19-02, Waste Disposal Site/Burn Pit; (5) 06-19-03, Waste Disposal Trenches; (6) 09-23-01, Area 9 Gravel Gertie; and (7) 09-34-01, Underground Detection Station. These sites are being investigated because existing information on the nature and extent of potential contamination is insufficient to evaluatemore » and recommend corrective action alternatives with the exception of CASs 09-23-01 and 09-34-01. Regarding these two CASs, CAS 09-23-01 is a gravel gertie where a zero-yield test was conducted with all contamination confined to below ground within the area of the structure, and CAS 09-34-01 is an underground detection station where no contaminants are present. Additional information will be obtained by conducting a corrective action investigation (CAI) before evaluating corrective action alternatives and selecting the appropriate corrective action for the other five CASs where information is insufficient. The results of the field investigation will support a defensible evaluation of viable corrective action alternatives that will be presented in the Corrective Action Decision Document. The sites will be investigated based on the data quality objectives (DQOs) developed on January 4, 2006, by representatives of the Nevada Division of Environmental Protection; U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office; Stoller-Navarro Joint Venture; and Bechtel Nevada. The DQO process was used to identify and define the type, amount, and quality of data needed to develop and evaluate appropriate corrective actions for CAU 139.« less

  20. 1995 Report on Hanford site land disposal restrictions for mixed waste

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Black, D.G.

    This report was submitted to meet the requirements of Hanford Federal Facility Agreement and Consent Order Milestone M-26-01E. This milestone requires the preparation of an annual report that covers characterization, treatment, storage, minimization, and other aspects of land disposal restricted mixed waste at the Hanford Site. The U.S. Department of Energy, its predecessors, and contractors at the Hanford Site were involved in the production and purification of nuclear defense materials from the early 1940s to the late 1980s. These production activities have generated large quantities of liquid and solid radioactive mixed waste. This waste is subject to regulation under authoritymore » of both the Resource Conservation and Recovery Act of 1976 and Atomic Energy Act of 1954. This report covers mixed waste only. The Washington State Department of Ecology, U.S. Environmental Protection Agency, and U.S. Department of Energy have entered into an agreement, the Hanford Federal Facility Agreement and Consent Order (commonly referred to as the Tri-Party Agreement) to bring the Hanford Site operations into compliance with dangerous waste regulations. The Tri-Party Agreement required development of the original land disposal restrictions (LDRs) plan and its annual updates to comply with LDR requirements for radioactive mixed waste. This report is the fifth update of the plan first issued in 1990. Tri-Party Agreement negotiations completed in 1993 and approved in January 1994 changed and added many new milestones. Most of the changes were related to the Tank Waste Remediation System and these changes are incorporated into this report.« less

  1. Special Analysis for the Disposal of the Consolidated Edison Uranium Solidification Project Waste Stream at the Area 5 Radioactive Waste Management Site, Nevada National Security Site, Nye County, Nevada

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NSTec Environmental Management

    2013-01-31

    The purpose of this Special Analysis (SA) is to determine if the Oak Ridge (OR) Consolidated Edison Uranium Solidification Project (CEUSP) uranium-233 (233U) waste stream (DRTK000000050, Revision 0) is acceptable for shallow land burial (SLB) at the Area 5 Radioactive Waste Management Site (RWMS) on the Nevada National Security Site (NNSS). The CEUSP 233U waste stream requires a special analysis because the concentrations of thorium-229 (229Th), 230Th, 232U, 233U, and 234U exceeded their NNSS Waste Acceptance Criteria action levels. The acceptability of the waste stream is evaluated by determining if performance assessment (PA) modeling provides a reasonable expectation that SLBmore » disposal is protective of human health and the environment. The CEUSP 233U waste stream is a long-lived waste with unique radiological hazards. The SA evaluates the long-term acceptability of the CEUSP 233U waste stream for near-surface disposal as a two tier process. The first tier, which is the usual SA process, uses the approved probabilistic PA model to determine if there is a reasonable expectation that disposal of the CEUSP 233U waste stream can meet the performance objectives of U.S. Department of Energy Manual DOE M 435.1-1, “Radioactive Waste Management,” for a period of 1,000 years (y) after closure. The second tier addresses the acceptability of the OR CEUSP 233U waste stream for near-surface disposal by evaluating long-term site stability and security, by performing extended (i.e., 10,000 and 60,000 y) modeling analyses, and by evaluating the effect of containers and the depth of burial on performance. Tier I results indicate that there is a reasonable expectation of compliance with all performance objectives if the OR CEUSP 233U waste stream is disposed in the Area 5 RWMS SLB disposal units. The maximum mean and 95th percentile PA results are all less than the performance objective for 1,000 y. Monte Carlo uncertainty analysis indicates that there is a high

  2. US DOE-EM On-Site Disposal Cell Working Group - Fostering Communication On Performance Assessment Challenges

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seitz, Roger R.; Suttora, Linda C.; Phifer, Mark

    On-site disposal cells are in use and being considered at several U.S. Department of Energy (USDOE) sites as the final disposition for large amounts of waste associated with cleanup of contaminated areas and facilities. These facilities are typically developed with regulatory oversight from States and/or the US Environmental Protection Agency (USEPA) in addition to USDOE. The facilities are developed to meet design standards for disposal of hazardous waste as well as the USDOE performance based standards for disposal of radioactive waste. The involvement of multiple and different regulators for facilities across separate sites has resulted in some differences in expectationsmore » for performance assessments and risk assessments (PA/RA) that are developed for the disposal facilities. The USDOE-EM Office of Site Restoration formed a working group to foster improved communication and sharing of information for personnel associated with these Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) disposal cells and work towards more consistent assumptions, as appropriate, for technical and policy considerations related to performance and risk assessments in support of a Record of Decision and Disposal Authorization Statement. The working group holds teleconferences, as needed, focusing on specific topics of interest. The topics addressed to date include an assessment of the assumptions used for performance assessments and risk assessments (PA/RAs) for on-site disposal cells, requirements and assumptions related to assessment of inadvertent intrusion, DOE Manual 435.1-1 requirements, and approaches for consideration of the long-term performance of liners and covers in the context of PAs. The working group has improved communication among the staff and oversight personnel responsible for onsite disposal cells and has provided a forum to identify and resolve common concerns.« less

  3. Decision Support System For Management Of Low-Level Radioactive Waste Disposal At The Nevada Test Site

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shott, G.; Yucel, V.; Desotell, L.

    2006-07-01

    The long-term safety of U.S. Department of Energy (DOE) low-level radioactive disposal facilities is assessed by conducting a performance assessment -- a systematic analysis that compares estimated risks to the public and the environment with performance objectives contained in DOE Manual 435.1-1, Radioactive Waste Management Manual. Before site operations, facilities design features such as final inventory, waste form characteristics, and closure cover design may be uncertain. Site operators need a modeling tool that can be used throughout the operational life of the disposal site to guide decisions regarding the acceptance of problematic waste streams, new disposal cell design, environmental monitoringmore » program design, and final site closure. In response to these needs the National Nuclear Security Administration Nevada Site Office (NNSA/NSO) has developed a decision support system for the Area 5 Radioactive Waste Management Site in Frenchman Flat on the Nevada Test Site. The core of the system is a probabilistic inventory and performance assessment model implemented in the GoldSim{sup R} simulation platform. The modeling platform supports multiple graphic capabilities that allow clear documentation of the model data sources, conceptual model, mathematical implementation, and results. The combined models have the capability to estimate disposal site inventory, contaminant concentrations in environmental media, and radiological doses to members of the public engaged in various activities at multiple locations. The model allows rapid assessment and documentation of the consequences of waste management decisions using the most current site characterization information, radionuclide inventory, and conceptual model. The model is routinely used to provide annual updates of site performance, evaluate the consequences of disposal of new waste streams, develop waste concentration limits, optimize the design of new disposal cells, and assess the adequacy of

  4. Closure Report for Corrective Action Unit 536: Area 3 Release Site, Nevada Test Site, Nevada

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NSTec Environmental Restoration

    Corrective Action Unit (CAU) 536 is located in Area 3 of the Nevada Test Site. CAU 536 is listed in the Federal Facility Agreement and Consent Order of 1996 as Area 3 Release Site, and comprises a single Corrective Action Site (CAS): {sm_bullet} CAS 03-44-02, Steam Jenny Discharge The Nevada Division of Environmental Protection (NDEP)-approved corrective action alternative for CAS 03-44-02 is clean closure. Closure activities included removing and disposing of total petroleum hydrocarbon (TPH)- and polyaromatic hydrocarbon (PAH)-impacted soil, soil impacted with plutonium (Pu)-239, and concrete pad debris. CAU 536 was closed in accordance with the NDEP-approved CAU 536more » Corrective Action Plan (CAP), with minor deviations as approved by NDEP. The closure activities specified in the CAP were based on the recommendations presented in the CAU 536 Corrective Action Decision Document (U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office, 2004). This Closure Report documents CAU 536 closure activities. During closure activities, approximately 1,000 cubic yards (yd3) of hydrocarbon waste in the form of TPH- and PAH-impacted soil and debris, approximately 8 yd3 of Pu-239-impacted soil, and approximately 100 yd3 of concrete debris were generated, managed, and disposed of appropriately. Additionally, a previously uncharacterized, buried drum was excavated, removed, and disposed of as hydrocarbon waste as a best management practice. Waste minimization techniques, such as the utilization of laboratory analysis to characterize and classify waste streams, were employed during the performance of closure« less

  5. Aquatic disposal field investigations Galveston, Texas, offshore disposal site. Evaluative summary. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wright, T.D.; Mathis, D.B.; Brannon, J.M.

    This study was part of an investigation to determine the environmental effects of offshore dredged material disposal at Galveston, Texas. The biological portion of the study was conducted in two phases: a pilot survey of the dredged material disposal site (DMDS) to determine the areal distribution of the biota and sediments; and an experimental study to assess the effect of dredged material disposal on the biota at selected sites in the DMDS. Three experimental sites were investigated: a sandy bottom that received sand, shell, and silt-clay dredged material; a muddy bottom that received sand and shell dredged material; and amore » muddy bottom that received silt-clay dredged material. The magnitude of the effect on the benthic populations could not be accurately assessed because adequate predisposal data on natural sediment and benthic population changes were not available. Dredged material deposits had no apparent effect on feeding habits of fish or on the distribution of nekton, although some nektonic species may have congregated in the turbid water following dredged material disposal. Zooplankton and phytoplankton studies detected no population changes during disposal that could not have been due to sampling error. It is probable that sudden abiotic changes and commercial fishing activities cause more destruction of biota than dredging-related activities.« less

  6. U.S. Geological Survey research in radioactive waste disposal - Fiscal years 1986-1990

    USGS Publications Warehouse

    Trask, N.J.; Stevens, P.R.

    1991-01-01

    The report summarizes progress on geologic and hydrologic research related to the disposal of radioactive wastes. The research efforts are categorized according to whether they are related most directly to: (1) high-level wastes, (2) transuranic wastes, (3) low-level and mixed low-level and hazardous wastes, or (4) uranium mill tailings. Included is research applicable to the identification and geohydrologic characterization of waste-disposal sites, to investigations of specific sites where wastes have been stored, to development of techniques and methods for characterizing disposal sites, and to studies of geologic and hydrologic processes related to the transport and/or retention of waste radionuclides.

  7. U.S. Geological Survey research in radioactive waste disposal - Fiscal years 1983, 1984, and 1985

    USGS Publications Warehouse

    Dinwiddie, G.A.; Trask, N.J.

    1986-01-01

    The report summarizes progress on geologic and hydrologic research related to the disposal of radioactive wastes. The research is described according to whether it is related most directly to: (1) high-level and transuranic wastes, (2) low-level wastes, or (3) uranium mill tailings. Included is research applicable to the identification and geohydrologic characterization of waste-disposal sites, to investigations of specific sites where wastes have been stored, and to studies of regions or environments where waste-disposal sites might be located. A significant part of the activity is concerned with techniques and methods for characterizing disposal sites and studies of geologic and hydrologic processes related to the transport and (or) retention of waste radionuclides.

  8. 40 CFR 61.154 - Standard for active waste disposal sites.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 8 2011-07-01 2011-07-01 false Standard for active waste disposal... for Asbestos § 61.154 Standard for active waste disposal sites. Each owner or operator of an active... visible emissions to the outside air from any active waste disposal site where asbestos-containing waste...

  9. 40 CFR 61.154 - Standard for active waste disposal sites.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 9 2013-07-01 2013-07-01 false Standard for active waste disposal... for Asbestos § 61.154 Standard for active waste disposal sites. Each owner or operator of an active... visible emissions to the outside air from any active waste disposal site where asbestos-containing waste...

  10. 40 CFR 61.154 - Standard for active waste disposal sites.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 9 2012-07-01 2012-07-01 false Standard for active waste disposal... for Asbestos § 61.154 Standard for active waste disposal sites. Each owner or operator of an active... visible emissions to the outside air from any active waste disposal site where asbestos-containing waste...

  11. 40 CFR 61.154 - Standard for active waste disposal sites.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 8 2010-07-01 2010-07-01 false Standard for active waste disposal... for Asbestos § 61.154 Standard for active waste disposal sites. Each owner or operator of an active... visible emissions to the outside air from any active waste disposal site where asbestos-containing waste...

  12. 40 CFR 61.154 - Standard for active waste disposal sites.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 9 2014-07-01 2014-07-01 false Standard for active waste disposal... for Asbestos § 61.154 Standard for active waste disposal sites. Each owner or operator of an active... visible emissions to the outside air from any active waste disposal site where asbestos-containing waste...

  13. 10 CFR 61.44 - Stability of the disposal site after closure.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 2 2013-01-01 2013-01-01 false Stability of the disposal site after closure. 61.44 Section 61.44 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) LICENSING REQUIREMENTS FOR LAND DISPOSAL OF RADIOACTIVE WASTE Performance Objectives § 61.44 Stability of the disposal site after closure. The disposal...

  14. 10 CFR 61.44 - Stability of the disposal site after closure.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 2 2011-01-01 2011-01-01 false Stability of the disposal site after closure. 61.44 Section 61.44 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) LICENSING REQUIREMENTS FOR LAND DISPOSAL OF RADIOACTIVE WASTE Performance Objectives § 61.44 Stability of the disposal site after closure. The disposal...

  15. 10 CFR 61.44 - Stability of the disposal site after closure.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 2 2014-01-01 2014-01-01 false Stability of the disposal site after closure. 61.44 Section 61.44 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) LICENSING REQUIREMENTS FOR LAND DISPOSAL OF RADIOACTIVE WASTE Performance Objectives § 61.44 Stability of the disposal site after closure. The disposal...

  16. 10 CFR 61.44 - Stability of the disposal site after closure.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 2 2012-01-01 2012-01-01 false Stability of the disposal site after closure. 61.44 Section 61.44 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) LICENSING REQUIREMENTS FOR LAND DISPOSAL OF RADIOACTIVE WASTE Performance Objectives § 61.44 Stability of the disposal site after closure. The disposal...

  17. 10 CFR 61.44 - Stability of the disposal site after closure.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 2 2010-01-01 2010-01-01 false Stability of the disposal site after closure. 61.44 Section 61.44 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) LICENSING REQUIREMENTS FOR LAND DISPOSAL OF RADIOACTIVE WASTE Performance Objectives § 61.44 Stability of the disposal site after closure. The disposal...

  18. Data Validation Package October 2016 Groundwater and Surface Water Sampling at the Monticello, Utah, Disposal and Processing Sites January 2017

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nguyen, Jason; Smith, Fred

    Sampling Period: October 10–12, 2016. This semiannual event includes sampling groundwater and surface water at the Monticello Disposal and Processing Sites. Sampling and analyses were conducted as specified in the Sampling and Analysis Plan for U.S. Department of Energy Office of Legacy Management Sites (LMS/PRO/S04351, continually updated) and Program Directive MNT-2016-01. Samples were collected from 54 of 64 planned locations (16 of 17 former mill site wells, 15 of 18 downgradient wells, 7 of 9 downgradient permeable reactive barrier wells, 3 of 3 bedrock wells, 4 of 7 seeps and wetlands, and 9 of 10 surface water locations).

  19. 43 CFR 2743.4 - Patented disposal sites.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... that such land has been used for solid waste disposal or for any other purpose that the authorized... 43 Public Lands: Interior 2 2013-10-01 2013-10-01 false Patented disposal sites. 2743.4 Section 2743.4 Public Lands: Interior Regulations Relating to Public Lands (Continued) BUREAU OF LAND...

  20. 43 CFR 2743.4 - Patented disposal sites.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... that such land has been used for solid waste disposal or for any other purpose that the authorized... 43 Public Lands: Interior 2 2014-10-01 2014-10-01 false Patented disposal sites. 2743.4 Section 2743.4 Public Lands: Interior Regulations Relating to Public Lands (Continued) BUREAU OF LAND...

  1. 43 CFR 2743.4 - Patented disposal sites.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... that such land has been used for solid waste disposal or for any other purpose that the authorized... 43 Public Lands: Interior 2 2012-10-01 2012-10-01 false Patented disposal sites. 2743.4 Section 2743.4 Public Lands: Interior Regulations Relating to Public Lands (Continued) BUREAU OF LAND...

  2. 40 CFR 228.11 - Modification in disposal site use.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ....11 Section 228.11 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) OCEAN DUMPING CRITERIA FOR THE MANAGEMENT OF DISPOSAL SITES FOR OCEAN DUMPING § 228.11 Modification in disposal site use... designation set forth in this part 228 and will be based on the results of the analyses of impact described in...

  3. 40 CFR 228.11 - Modification in disposal site use.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ....11 Section 228.11 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) OCEAN DUMPING CRITERIA FOR THE MANAGEMENT OF DISPOSAL SITES FOR OCEAN DUMPING § 228.11 Modification in disposal site use... designation set forth in this part 228 and will be based on the results of the analyses of impact described in...

  4. 40 CFR 228.11 - Modification in disposal site use.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ....11 Section 228.11 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) OCEAN DUMPING CRITERIA FOR THE MANAGEMENT OF DISPOSAL SITES FOR OCEAN DUMPING § 228.11 Modification in disposal site use... designation set forth in this part 228 and will be based on the results of the analyses of impact described in...

  5. 40 CFR 228.11 - Modification in disposal site use.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ....11 Section 228.11 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) OCEAN DUMPING CRITERIA FOR THE MANAGEMENT OF DISPOSAL SITES FOR OCEAN DUMPING § 228.11 Modification in disposal site use... designation set forth in this part 228 and will be based on the results of the analyses of impact described in...

  6. 40 CFR 228.11 - Modification in disposal site use.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ....11 Section 228.11 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) OCEAN DUMPING CRITERIA FOR THE MANAGEMENT OF DISPOSAL SITES FOR OCEAN DUMPING § 228.11 Modification in disposal site use... designation set forth in this part 228 and will be based on the results of the analyses of impact described in...

  7. Sources of Radium Accumulation in Stream Sediments near Disposal Sites in Pennsylvania: Implications for Disposal of Conventional Oil and Gas Wastewater.

    PubMed

    Lauer, Nancy E; Warner, Nathaniel R; Vengosh, Avner

    2018-02-06

    In Pennsylvania, Appalachian oil and gas wastewaters (OGW) are permitted for release to surface waters after some treatment by centralized waste treatment (CWT) facilities. While this practice was largely discontinued in 2011 for unconventional Marcellus OGW at facilities permitted to release high salinity effluents, it continues for conventional OGW. This study aimed to evaluate the environmental implications of the policy allowing the disposal of conventional OGW. We collected stream sediments from three disposal sites receiving treated OGW between 2014 and 2017 and measured 228 Ra, 226 Ra, and their decay products, 228 Th and 210 Pb, respectively. We consistently found elevated activities of 228 Ra and 226 Ra in stream sediments in the vicinity of the outfall (total Ra = 90-25,000 Bq/kg) compared to upstream sediments (20-80 Bq/kg). In 2015 and 2017, 228 Th/ 228 Ra activity ratios in sediments from two disposal sites were relatively low (0.2-0.7), indicating that a portion of the Ra has accumulated in the sediments in recent (<3) years, when no unconventional Marcellus OGW was reportedly discharged. 228 Ra/ 226 Ra activity ratios were also higher than what would be expected solely from disposal of low 228 Ra/ 226 Ra Marcellus OGW. Based on these variations, we concluded that recent disposal of treated conventional OGW is the source of high Ra in stream sediments at CWT facility disposal sites. Consequently, policies pertaining to the disposal of only unconventional fluids are not adequate in preventing radioactive contamination in sediments at disposal sites, and the permission to release treated Ra-rich conventional OGW through CWT facilities should be reconsidered.

  8. Operational Strategies for Low-Level Radioactive Waste Disposal Site in Egypt - 13513

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mohamed, Yasser T.

    The ultimate aims of treatment and conditioning is to prepare waste for disposal by ensuring that the waste will meet the waste acceptance criteria of a disposal facility. Hence the purpose of low-level waste disposal is to isolate the waste from both people and the environment. The radioactive particles in low-level waste emit the same types of radiation that everyone receives from nature. Most low-level waste fades away to natural background levels of radioactivity in months or years. Virtually all of it diminishes to natural levels in less than 300 years. In Egypt, The Hot Laboratories and Waste Management Centermore » has been established since 1983, as a waste management facility for LLW and ILW and the disposal site licensed for preoperational in 2005. The site accepts the low level waste generated on site and off site and unwanted radioactive sealed sources with half-life less than 30 years for disposal and all types of sources for interim storage prior to the final disposal. Operational requirements at the low-level (LLRW) disposal site are listed in the National Center for Nuclear Safety and Radiation Control NCNSRC guidelines. Additional procedures are listed in the Low-Level Radioactive Waste Disposal Facility Standards Manual. The following describes the current operations at the LLRW disposal site. (authors)« less

  9. Estimating contamination potential at waste-disposal sites using a natural tracer

    NASA Astrophysics Data System (ADS)

    Stone, William J.

    1992-05-01

    Chloride is a conservative, natural tracer found in precipitation, soil water, and groundwater. The chloride mass-balance approach, long used to estimate groundwater recharge, also provides a downward flux of moisture and solute at sites where there is a potential for groundwater contamination. The flux is obtained by dividing the product of the mean annual precipitation and total annual chloride input (via precipitation and dust) by the mean soil-water chloride content. Chlorideversusdepth profiles can also be used to determine optimum depth of waste burial to minimize deterioration of waste containers. The method has been applied to three sites in arid alluvial-basin settings in New Mexico, U.S.A.: a proposed landfill, a battery recycling plant, and a hazardous-waste disposal facility. It is concluded that the method is reliable, economical, and practical. Furthermore, it can be applied at any stage in the development of a site. The chloride method should apply in any recharge area where the base of the root zone is separated from the water table by at least 3 m or so and chloride in soil water comes only from precipitation and dust.

  10. Health effects of a thorium waste disposal site.

    PubMed Central

    Najem, G R; Voyce, L K

    1990-01-01

    A case-control study of 112 households residing in the vicinity of a thorium waste disposal site found a higher prevalence of birth defects (RR 2.1) and liver diseases (RR 2.3) among exposed than the unexposed group. The numbers were quite small and the confidence intervals wide, however, so that no definite conclusions can be drawn from these data. PMID:2316775

  11. Probleme aus der Physik

    NASA Astrophysics Data System (ADS)

    Vogel, Helmut

    Das beliebte Arbeitsbuch "Probleme aus der Physik" bietet nun auch zur 17. Auflage von Gerthsen Vogel "Physik" (ISBN 3-540-56638-4) mit über 1150 gelösten Aufgaben aus der Physik und ihren Anwendungen in Technik, Astrophysik, Geound Biowissenschaften eine Fülle an Material zum Üben und Weiterlernen, zur Prüfungsvorbereitung und zum Selbststudium. Neu hinzugekommen ist ein Kapitel zur nichtlinearen Dynamik. Aufgaben aller Schwierigkeitsgrade machen "Probleme aus der Physik" unentbehrlich für Studenten der Physik im Haupt- und Nebenfach; Schüler der Leistungskurse Physik finden hier eine hervorragende Ergänzung.

  12. Distribution of sewage indicated by Clostridium perfringens at a deep-water disposal site after cessation of sewage disposal.

    PubMed

    Hill, R T; Straube, W L; Palmisano, A C; Gibson, S L; Colwell, R R

    1996-05-01

    Clostridium perfringens, a marker of domestic sewage contamination, was enumerated in sediment samples obtained from the vicinity of the 106-Mile Site 1 month and 1 year after cessation of sewage disposal at this site. C. perfringens counts in sediments collected at the disposal site and from stations 26 nautical miles (ca. 48 km) and 50 nautical miles (ca. 92 km) to the southwest of the site were, in general, more than 10-fold higher than counts from an uncontaminated reference site. C. perfringens counts at the disposal site were not significantly different between 1992 and 1993, suggesting that sewage sludge had remained in the benthic environment at this site. At stations where C. perfringens counts were elevated (i.e., stations other than the reference station), counts were generally higher in the top 1 cm and decreased down to 5 cm. In some cases, C. perfringens counts in the bottom 4 or 5 cm showed a trend of higher counts in 1993 than in 1992, suggesting bioturbation. We conclude that widespread sludge contamination of the benthic environment has persisted for at least 1 year after cessation of ocean sewage disposal at the 106-Mile Site.

  13. 36 CFR 6.5 - Solid waste disposal sites in operation on September 1, 1984.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 36 Parks, Forests, and Public Property 1 2011-07-01 2011-07-01 false Solid waste disposal sites in..., DEPARTMENT OF THE INTERIOR SOLID WASTE DISPOSAL SITES IN UNITS OF THE NATIONAL PARK SYSTEM § 6.5 Solid waste disposal sites in operation on September 1, 1984. (a) The operator of a solid waste disposal site in...

  14. 36 CFR 6.5 - Solid waste disposal sites in operation on September 1, 1984.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 36 Parks, Forests, and Public Property 1 2010-07-01 2010-07-01 false Solid waste disposal sites in..., DEPARTMENT OF THE INTERIOR SOLID WASTE DISPOSAL SITES IN UNITS OF THE NATIONAL PARK SYSTEM § 6.5 Solid waste disposal sites in operation on September 1, 1984. (a) The operator of a solid waste disposal site in...

  15. 36 CFR 6.5 - Solid waste disposal sites in operation on September 1, 1984.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 36 Parks, Forests, and Public Property 1 2013-07-01 2013-07-01 false Solid waste disposal sites in..., DEPARTMENT OF THE INTERIOR SOLID WASTE DISPOSAL SITES IN UNITS OF THE NATIONAL PARK SYSTEM § 6.5 Solid waste disposal sites in operation on September 1, 1984. (a) The operator of a solid waste disposal site in...

  16. 36 CFR 6.5 - Solid waste disposal sites in operation on September 1, 1984.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 36 Parks, Forests, and Public Property 1 2012-07-01 2012-07-01 false Solid waste disposal sites in..., DEPARTMENT OF THE INTERIOR SOLID WASTE DISPOSAL SITES IN UNITS OF THE NATIONAL PARK SYSTEM § 6.5 Solid waste disposal sites in operation on September 1, 1984. (a) The operator of a solid waste disposal site in...

  17. 36 CFR 6.5 - Solid waste disposal sites in operation on September 1, 1984.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 36 Parks, Forests, and Public Property 1 2014-07-01 2014-07-01 false Solid waste disposal sites in..., DEPARTMENT OF THE INTERIOR SOLID WASTE DISPOSAL SITES IN UNITS OF THE NATIONAL PARK SYSTEM § 6.5 Solid waste disposal sites in operation on September 1, 1984. (a) The operator of a solid waste disposal site in...

  18. Site Management and Monitoring Plan (SMMP) for the Los Angeles/Long Beach, Newport and San Diego Ocean Dredged Material Disposal Sites, CA

    EPA Pesticide Factsheets

    This SMMP is intended to provide management and monitoring strategies for disposal in the Los Angeles/Long Beach (LA-2), Newport (LA-3) and San Diego (LA-5) Ocean Dredged Material Disposal Sites in California.

  19. Closure Plan for Corrective Action Unit 109: U-2bu Subsidence Crater Nevada Test Site, Nevada

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shannon Parsons

    1999-03-01

    The U-2bu subsidence crater, Corrective Action Unit 109, will be closed in accordance with the Resource Conservation and Recovery Act, the Nevada Division of Environmental Protection operational permit, and the Federal Facilities Agreement and Consent Order. The U-2bu subsidence crater is located in Area 2 of the Nevada Test Site. It was created in 1971 by an underground nuclear test with the name Miniata. The crater has a diameter of 288 meters (944 feet) and an approximate depth of 35 meters (115 feet). The subsidence crater was used as a land disposal unit for radioactive and hazardous waste from 1973more » to 1988. Site disposal history is supported by memorandums, letters, and personnel who worked at the Nevada Test Site at the time of active disposal. Closure activities will include the excavation and disposal of impacted soil form the tip of the crater. Upon completion of excavation, verification samples will be collected to show that lead has been removed to concentrations be low regulatory action level. The area will then be backfilled and a soil flood diversion berm will be constructed, and certified by an independent professional engineer as to having followed the approved Closure Plan.« less

  20. Data Validation Package August 2015 Groundwater Sampling at the Grand Junction, Colorado, Disposal Site October 2015

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Frazier, William; Baur, Gary

    Sampling Period: August 4, 2015. The 1998 Interim Long-Term Surveillance Plan for the Cheney Disposal Site Near Grand Junction, Colorado, requires annual monitoring to assess the performance of the disposal cell. Monitoring wells 0731, 0732, and 0733 were sampled as specified in the plan. Sampling and analyses were conducted in accordance with Sampling and Analysis Plan for the U.S. Department of Energy Office of Legacy Management Sites (LMS/PRO/S04351, continually updated). The water level was measured at each sampled well. The water level in well 0733, located in the disposal cell, is lower than water levels in adjacent wells 0731 andmore » 0732, indicating a hydraulic gradient toward the disposal cell. Results from this sampling event were generally consistent with results from the past as shown in the attached concentration-versus-time graphs. There have been no large changes in contaminant concentration observed over the last several years with the following exception. The uranium concentration in well 0733 has been trending upward since 2003. High uranium concentrations are expected in this well because it is located in the disposal cell. The selenium concentrations observed in wells 0731 and 0732 are elevated when compared to the disposal cell 0733. Wells 0731 and 0732 are completed at the alluvium/Mancos contact; here, elevated selenium concentrations are expected due to contributions from the Mancos shale.« less

  1. Procedural Guide for Designation Surveys of Ocean Dredged Material Disposal Sites.

    DTIC Science & Technology

    1981-01-01

    sites in the ocean will be executed by EPA or CE and will be based on Environmental studies of each site, and on historical knowledge of the impact...3 The results of the-s’ studies will be used to prepare an E-A and in some cases an EIS. An important provision regarding the number of separate...assessment for all sites within a particular geographic area may be prepared based on complete disposal site designation or evaluation studies on a typical

  2. Remediation of a Former USAF Radioactive Material Disposal Site

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hoffman, D. E.; Cushman, M; Tupyi, B.

    2003-02-25

    This paper describes the remediation of a low-level radiological waste burial site located at the former James Connally Air Force Base in Waco, Texas. Burial activities at the site occurred during the 1950's when the property was under the ownership of the United States Air Force. Included is a discussion of methods and strategies that were used to successfully exhume and characterize the wastes for proper disposal at offsite disposal facilities. Worker and environmental protection measures are also described. Information gained from this project may be used at other similar project sites. A total of nine burial tubes had beenmore » identified for excavation, characterization, and removal from the site. The disposal tubes were constructed of 4-ft lengths of concrete pipe buried upright with the upper ends flush with ground surface. Initial ground level observations of the burial tubes indicated that some weathering had occurred; however, the condition of the subsurface portions of the tubes was unknown. Soil excavation occurred in 1-foot lifts in order that the tubes could be inspected and to allow for characterization of the soils at each stage of the excavation. Due to the weight of the concrete pipe and the condition of the piping joints it was determined that special measures would be required to maintain the tubes intact during their removal. Special tube anchoring and handling methods were required to relocate the tubes from their initial positions to a staging area where they could be further characterized. Characterization of the disposal tubes was accomplished using a combination of gamma spectroscopy and activity mapping methods. Important aspects of the project included the use of specialized excavation and disposal tube reinforcement measures to maintain the disposal tubes intact during excavation, removal and subsequent characterization. The non-intrusive gamma spectroscopy and data logging methods allowed for effective characterization of the wastes

  3. NEVADA TEST SITE WASTE ACCEPTANCE CRITERIA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    U.S. DEPARTMENT OF ENERGY, NATIONAL NUCLEAR SECURITY ADMINISTRATION, NEVADA SITE OFFICE

    This document establishes the U. S. Department of Energy, National Nuclear Security Administration Nevada Site Office (NNSA/NSO) waste acceptance criteria (WAC). The WAC provides the requirements, terms, and conditions under which the Nevada Test Site will accept low-level radioactive and mixed waste for disposal. Mixed waste generated within the State of Nevada by NNSA/NSO activities is accepted for disposal. It includes requirements for the generator waste certification program, characterization, traceability, waste form, packaging, and transfer. The criteria apply to radioactive waste received at the Nevada Test Site Area 3 and Area 5 Radioactive Waste Management Site for storage or disposal.

  4. Long-term surveillance plan for the Bodo Canyon Disposal Site, Durango, Colorado

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1994-03-01

    This long-term surveillance plan (LTSP) for the Durango, Colorado, Uranium Mill Tailings Remedial Action (UMTRA) Project disposal site describes the surveillance activities for the Durango (Bodo Canyon) disposal site, which will be referred to as the disposal site throughout this document. The US Department of Energy (DOE) will carry out these activities to ensure that the disposal site continues to function as designed. This LTSP was prepared as a requirement for acceptance under the US Nuclear Regulatory Commission (NRC) general license for custody and long-term care of residual radioactive materials (RRM). RRMs include tailings and other uranium ore processing wastesmore » still at the site, which the DOE determines to be radioactive. This LTSP is based on the DOE`s Guidance for Implementing the UMTRA Project Long-term Surveillance Program (DOE, 1992).« less

  5. Remediation System Evaluation, Elmore Waste Disposal Superfund Site

    EPA Pesticide Factsheets

    The Elmore Waste Disposal, Inc. Superfund site is located in Greer, South Carolina. The originalElmore Site occupies approximately half an acre between South Carolina Route 290 on the south, a CSXrail line on the north and is bounded on the west by...

  6. 10 CFR 61.62 - Funding for disposal site closure and stabilization.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... Section 61.62 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) LICENSING REQUIREMENTS FOR LAND DISPOSAL OF RADIOACTIVE WASTE Financial Assurances § 61.62 Funding for disposal site closure and stabilization. (a) The... and stabilization, including: (1) Decontamination or dismantlement of land disposal facility...

  7. 10 CFR 61.62 - Funding for disposal site closure and stabilization.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... Section 61.62 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) LICENSING REQUIREMENTS FOR LAND DISPOSAL OF RADIOACTIVE WASTE Financial Assurances § 61.62 Funding for disposal site closure and stabilization. (a) The... and stabilization, including: (1) Decontamination or dismantlement of land disposal facility...

  8. 10 CFR 61.62 - Funding for disposal site closure and stabilization.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... Section 61.62 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) LICENSING REQUIREMENTS FOR LAND DISPOSAL OF RADIOACTIVE WASTE Financial Assurances § 61.62 Funding for disposal site closure and stabilization. (a) The... and stabilization, including: (1) Decontamination or dismantlement of land disposal facility...

  9. 10 CFR 61.62 - Funding for disposal site closure and stabilization.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Section 61.62 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) LICENSING REQUIREMENTS FOR LAND DISPOSAL OF RADIOACTIVE WASTE Financial Assurances § 61.62 Funding for disposal site closure and stabilization. (a) The... and stabilization, including: (1) Decontamination or dismantlement of land disposal facility...

  10. 10 CFR 61.62 - Funding for disposal site closure and stabilization.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Section 61.62 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) LICENSING REQUIREMENTS FOR LAND DISPOSAL OF RADIOACTIVE WASTE Financial Assurances § 61.62 Funding for disposal site closure and stabilization. (a) The... and stabilization, including: (1) Decontamination or dismantlement of land disposal facility...

  11. Disposal Site Selection. Technical Appendix - Phase 1 (Central Puget Sound). Volume 3

    DTIC Science & Technology

    1988-06-01

    Department of Natural lesources Kevin Anderson, State of Washington Department of Ecology Carl Kassebaum, U.S. Evironmental Protection Agency Prepared for...Physical Fate at Open Waer Sites. Technical Report D-78-47, U.S. Army &nineer Waterways 2Xperltent Station. Vicksburg, Mississippi. Johnson, B.H., and

  12. Dungeness crab survey for the Southwest Ocean Disposal Site off Grays Harbor, Washington, June 1990

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Higgins, B.J.; Pearson, W.H.

    1991-09-01

    As part of the Grays Harbor Navigation Improvement Project, the Seattle District of the US Army Corps of Engineers has begun active use of the Southwest Ocean Disposal Site off Grays Harbor, Washington. This survey was to verify that the location of the area of high crab density observed during site selection surveys has not shifted into the Southeast Ocean Disposal Site. In June 1990, mean densities of juvenile Dungeness crab were 146 crab/ha within the disposal site and 609 crab/ha outside ad north of the disposal site. At nearshore locations outside the disposal site, juvenile crab density was 3275more » crab/ha. Despite the low overall abundance, the spatial distribution of crab was such that the high crab densities in 1990 have remained outside the Southwest Ocean Disposal Site. The survey data have confirmed the appropriateness of the initial selection of the disposal site boundaries and indicated no need to move to the second monitoring tier. 8 refs., 9 figs., 2 tabs.« less

  13. Validity of the AusTOM scales: A comparison of the AusTOMs and EuroQol-5D

    PubMed Central

    Unsworth, Carolyn A; Duckett, Stephen J; Duncombe, Dianne; Perry, Alison; Skeat, Jemma; Taylor, Nicholas

    2004-01-01

    Background Clinicians require brief outcome measures in their busy daily practice to document global client outcomes. Based on the UK Therapy Outcome Measure, the Australian Therapy Outcome Measures were designed to capture global therapy outcomes of occupational therapy, physiotherapy and speech pathology in the Australian clinical context. The aim of this study was to investigate the construct (convergent) validity of the Australian Therapy Outcome Measures (AusTOMs) by comparing it with the EuroQuol-5D (EQ-5D). Methods The research was a prospective, longitudinal cohort study, with data collected over a seven month time period. The study was conducted at a total of 13 metropolitan and rural health-care sites including acute, sub-acute and community facilities. Two-hundred and five clients were asked to score themselves on the EQ-5D, and the same clients were scored by approximately 115 therapists (physiotherapists, speech pathologists and occupational therapists) using the AusTOMs at admission and discharge. Clients were consecutive admissions who agreed to participate in the study. Clients of all diagnoses, aged 18 years and over (a criteria of the EQ-5D), and able to give informed consent were scored on the measures. Spearman rank order correlation coefficients were used to analyze the relationships between scores from the two tools. The clients were scored on the AusTOMs and EQ-5D. Results There were many health care areas where correlations were expected and found between scores on the AusTOMs and the EQ-5D. Conclusion In the quest to measure the effectiveness of therapy services, managers, health care founders and clinicians are urgently seeking to undertake the first step by identifying tools that can measure therapy outcome. AusTOMs is one tool that can measure global client outcomes following therapy. In this study, it was found that on the whole, the AusTOMs and the EQ-5D measure similar constructs. Hence, although the validity of a tool is never

  14. Site characterization for LIL radioactive waste disposal in Romania

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Diaconu, D. R.; Birdsell, K. H.; Witkowski, M. S.

    2001-01-01

    Recent studies in radioactive waste management in Romania have focussed mainly on the disposal of low and intermediate level waste from the operation of the new nuclear power plant at Cernavoda. Following extensive geological, hydrological, seismological, physical and chemical investigations, a disposal site at Saligny has been selected. This paper presents description of the site at Saligny as well as the most important results of the site characterisation. These are reflected in the three-dimensional, stratigraphical representation of the loess and clay layers and in representative parameter values for the main layers. Based on these data, the simulation of the background,more » unsaturated-zone water flow at the Saligny site, calculated by the FEHM code, is in a good agreement with the measured moisture profile.« less

  15. Siting process for disposal site of low level radiactive waste in Thailand

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yamkate, P.; Sriyotha, P.; Thiengtrongjit, S.

    The radioactive waste in Thailand is composed of low level waste from the application of radioisotopes in medical treatment and industry, the operation of the 2 MW TRIGA Mark III Research Reactor and the production of radioisotopes at OAEP. In addition, the high activity of sealed radiation sources i.e. Cs-137 Co-60 and Ra-226 are also accumulated. Since the volume of treated waste has been gradually increased, the general needs for a repository become apparent. The near surface disposal method has been chosen for this aspect. The feasibility study on the underground disposal site has been done since 1982. The sitemore » selection criteria have been established, consisting of the rejection criteria, the technical performance criteria and the economic criteria. About 50 locations have been picked for consideration and 5 candidate sites have been selected and subsequent investigated. After thoroughly investigation, a definite location in Ratchburi Province, about 180 kilometers southwest of Bangkok, has been selected as the most suitable place for the near surface disposal of radioactive waste in Thailand.« less

  16. Hydrogeologic factors in the selection of shallow land burial sites for the disposal of low-level radioactive waste

    USGS Publications Warehouse

    Fischer, John N.

    1986-01-01

    In the United States, low-level radioactive waste is disposed of by shallow land burial. Commercial low-level radioactive waste has been buried at six sites, and low-level radioactive waste generated by the Federal Government has been buried at nine major and several minor sites. Several existing low-level radioactive waste sites have not provided expected protection of the environment. These shortcomings are related, at least in part, to an inadequate understanding of site hydrogeology at the time the sites were selected. To better understand the natural systems and the effect of hydrogeologic factors on long-term site performance, the U.S. Geological Survey has conducted investigations at five of the six commercial low-level radioactive waste sites and at three Federal sites. These studies, combined with those of other Federal and State agencies, have identified and confirmed important hydrogeologic factors in the effective disposal of low-level radioactive waste by shallow land burial. These factors include precipitation, surface drainage, topography, site stability, geology, thickness of the host soil-rock horizon, soil and sediment permeability, soil and water chemistry, and depth to the water table.

  17. Alternative methods of salt disposal at the seven salt sites for a nuclear waste repository

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1987-02-01

    This study discusses the various alternative salt management techniques for the disposal of excess mined salt at seven potentially acceptable nuclear waste repository sites: Deaf Smith and Swisher Counties, Texas; Richton and Cypress Creek Domes, Mississippi; Vacherie Dome, Louisiana; and Davis and Lavender Canyons, Utah. Because the repository development involves the underground excavation of corridors and waste emplacement rooms, in either bedded or domed salt formations, excess salt will be mined and must be disposed of offsite. The salt disposal alternatives examined for all the sites include commercial use, ocean disposal, deep well injection, landfill disposal, and underground mine disposal.more » These alternatives (and other site-specific disposal methods) are reviewed, using estimated amounts of excavated, backfilled, and excess salt. Methods of transporting the excess salt are discussed, along with possible impacts of each disposal method and potential regulatory requirements. A preferred method of disposal is recommended for each potentially acceptable repository site. 14 refs., 5 tabs.« less

  18. Ground-water quality beneath solid-waste disposal sites at anchorage, Alaska

    USGS Publications Warehouse

    Zenone, Chester; Donaldson, D.E.; Grunwaldt, J.J.

    1975-01-01

    Studies at three solid-waste disposal sites in the Anchorage area suggest that differences in local geohydrologic conditions influence ground-water quality. A leachate was detected in ground water within and beneath two sites where the water table is very near land surface and refuse is deposited either at or below the water table in some parts of the filled areas. No leachate was detected in ground water beneath a third site where waste disposal is well above the local water table.

  19. Nebraska files suit to block disposal site

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    Just when the Central Interstate Low-Level Radioactive Waste Compact thought things might be starting to go its way, the state of Nebraska, following instructions from Gov. Ben Nelson, has filed a new lawsuit to block development of an LLW disposal site within its borders. The suit maintains that the recently reconfigured proposed site (in which an area of wetlands was excluded) has not received [open quotes]community consent,[close quotes] as required by state law; says that site developer, US Ecology, has not obtained county consent; and asks that the court permanently prevent development of any LLW site in Nebraska until communitymore » consent is demonstrated.« less

  20. 36 CFR 6.4 - Solid waste disposal sites not in operation on September 1, 1984.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 36 Parks, Forests, and Public Property 1 2010-07-01 2010-07-01 false Solid waste disposal sites... PARK SERVICE, DEPARTMENT OF THE INTERIOR SOLID WASTE DISPOSAL SITES IN UNITS OF THE NATIONAL PARK SYSTEM § 6.4 Solid waste disposal sites not in operation on September 1, 1984. (a) No person may operate...

  1. 36 CFR 6.4 - Solid waste disposal sites not in operation on September 1, 1984.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 36 Parks, Forests, and Public Property 1 2011-07-01 2011-07-01 false Solid waste disposal sites... PARK SERVICE, DEPARTMENT OF THE INTERIOR SOLID WASTE DISPOSAL SITES IN UNITS OF THE NATIONAL PARK SYSTEM § 6.4 Solid waste disposal sites not in operation on September 1, 1984. (a) No person may operate...

  2. 36 CFR 6.4 - Solid waste disposal sites not in operation on September 1, 1984.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 36 Parks, Forests, and Public Property 1 2012-07-01 2012-07-01 false Solid waste disposal sites... PARK SERVICE, DEPARTMENT OF THE INTERIOR SOLID WASTE DISPOSAL SITES IN UNITS OF THE NATIONAL PARK SYSTEM § 6.4 Solid waste disposal sites not in operation on September 1, 1984. (a) No person may operate...

  3. 36 CFR 6.4 - Solid waste disposal sites not in operation on September 1, 1984.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 36 Parks, Forests, and Public Property 1 2014-07-01 2014-07-01 false Solid waste disposal sites... PARK SERVICE, DEPARTMENT OF THE INTERIOR SOLID WASTE DISPOSAL SITES IN UNITS OF THE NATIONAL PARK SYSTEM § 6.4 Solid waste disposal sites not in operation on September 1, 1984. (a) No person may operate...

  4. 36 CFR 6.4 - Solid waste disposal sites not in operation on September 1, 1984.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 36 Parks, Forests, and Public Property 1 2013-07-01 2013-07-01 false Solid waste disposal sites... PARK SERVICE, DEPARTMENT OF THE INTERIOR SOLID WASTE DISPOSAL SITES IN UNITS OF THE NATIONAL PARK SYSTEM § 6.4 Solid waste disposal sites not in operation on September 1, 1984. (a) No person may operate...

  5. Evaluation of potential risks from ash disposal site leachate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mills, W.B.; Loh, J.Y.; Bate, M.C.

    1999-04-01

    A risk-based approach is used to evaluate potential human health risks associated with a discharge from an ash disposal site into a small stream. The RIVRISK model was used to estimate downstream concentrations and corresponding risks. The modeling and risk analyses focus on boron, the constituent of greatest potential concern to public health at the site investigated, in Riddle Run, Pennsylvania. Prior to performing the risk assessment, the model is validated by comparing observed and predicted results. The comparison is good and an uncertainty analysis is provided to explain the comparison. The hazard quotient (HQ) for boron is predicted tomore » be greater than 1 at presently regulated compliance points over a range of flow rates. The reference dose (RfD) currently recommended by the United States Environmental Protection Agency (US EPA) was used for the analyses. However, the toxicity of boron as expressed by the RfD is now under review by both the U.S. EPA and the World Health Organization. Alternative reference doses being examined would produce predicted boron hazard quotients of less than 1 at nearly all flow conditions.« less

  6. Well-construction and hydrogeologic data for observation wells in the vicinity of a low-level radioactive-waste disposal site near Sheffield, Illinois

    USGS Publications Warehouse

    Mansue, Lawrence J.; Mills, Patrick C.

    1991-01-01

    The U.S. Geological Survey conducted hydrogeologic studies at the low-level radioactive-waste disposal site near Sheffield, Illinois, from 1976 through 1987. During that period, 108 observation wells were installed in the vicinity of the disposal site in glacial and post-glacial deposits of Quaternary age and bedrock of Pennsylvanian age. Data in this report include the location of each well, the date each well was drilled, the geologic units penetrated by each well, the physical measurements of each well, the elevations of the top (measuring point) of each well and geologic-unit contacts at each well, and the highest and lowest recorded water levels in each well.

  7. Modeling Groundwater Flow and Infiltration at Potential Low-Level Radioactive Waste Disposal Sites in Taiwan

    NASA Astrophysics Data System (ADS)

    Arnold, B. W.; Lee, C.; Ma, C.; Knowlton, R. G.

    2006-12-01

    the performance assessment model with the BLT-MS software. Infiltration through the engineered cover is simulated to be about 3 mm/yr and 49 mm/yr, with and without a geomembrane layer, respectively. For the cavern LLW disposal site, the FEHM basin-scale flow model uses specified recharge flux, constant head at the ocean shoreline, and head-dependent flux boundaries along flowing streams. Groundwater flow vectors are extracted along a cross section for use in radionuclide transport simulations. Transport simulations indicate that a significant fraction of contaminants may ultimately discharge to nearby streams. FEHM flow simulations with the drift-scale model indicate that the flow rates within the backfilled tunnels may be more than two orders of magnitude lower than in the host rock. Sandia National Laboratories is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy under Contract DE-AC04-94AL85000.

  8. Analytical methods for characterization of explosives-contaminated sites on U.S. Army installations

    NASA Astrophysics Data System (ADS)

    Jenkins, Thomas F.; Walsh, Marianne E.; Thorne, Philip G.

    1995-10-01

    The U.S. Army manufactures munitions at facilities throughout the United States. Many of these facilities are contaminated with residues of explosives from production, disposal of off- specification, and out-of-data munitions. The first step in remediating these sites is careful characterization. Currently sites are being characterized using a combination of on-site field screening and off-site laboratory analysis. Most of the contamination is associated with TNT (2,4,6-trinitrotoluene) and RDX (hexahydro-1,3,5-tri-nitro-1,3,5-triazine) and their manufacturing impurities and environmental transformation products. Both colorimetric and enzyme immunoassay-based field screening methods have been used successfully for on-site characterization. These methods have similar detection capabilities but differ in their selectivity. Although field screening is very cost-effective, laboratory analysis is still required to fully characterize a site. Laboratory analysis for explosives residues in the United States is generally conducted using high-performance liquid chromatography equipped with a UV detector. Air-dried soils are extracted with acetonitrile in an ultrasonic bath. Water is analyzed directly if detection limits in the range of 10 - 20 (mu) g/L are acceptable, or preconcentrated using either salting-out solvent extraction with acetonitrile or solid phase extraction.

  9. A mutational analysis of U12-dependent splice site dinucleotides

    PubMed Central

    DIETRICH, ROSEMARY C.; FULLER, JOHN D.; PADGETT, RICHARD A.

    2005-01-01

    Introns spliced by the U12-dependent minor spliceosome are divided into two classes based on their splice site dinucleotides. The /AU-AC/ class accounts for about one-third of U12-dependent introns in humans, while the /GU-AG/ class accounts for the other two-thirds. We have investigated the in vivo and in vitro splicing phenotypes of mutations in these dinucleotide sequences. A 5′ A residue can splice to any 3′ residue, although C is preferred. A 5′ G residue can splice to 3′ G or U residues with a preference for G. Little or no splicing was observed to 3′ A or C residues. A 5′ U or C residue is highly deleterious for U12-dependent splicing, although some combinations, notably 5′ U to 3U produced detectable spliced products. The dependence of 3′ splice site activity on the identity of the 5′ residue provides evidence for communication between the first and last nucleotides of the intron. Most mutants in the second position of the 5′ splice site and the next to last position of the 3′ splice site were defective for splicing. Double mutants of these residues showed no evidence of communication between these nucleotides. Varying the distance between the branch site and the 3′ splice site dinucleotide in the /GU-AG/ class showed that a somewhat larger range of distances was functional than for the /AU-AC/ class. The optimum branch site to 3′ splice site distance of 11–12 nucleotides appears to be the same for both classes. PMID:16043500

  10. The utility of the AusEd driving simulator in the clinical assessment of driver fatigue.

    PubMed

    Desai, Anup V; Wilsmore, Brad; Bartlett, Delwyn J; Unger, Gunnar; Constable, Ben; Joffe, David; Grunstein, Ronald R

    2007-08-01

    Several driving simulators have been developed which range in complexity from PC based driving tasks to advanced "real world" simulators. The AusEd driving simulator is a PC based task, which was designed to be conducive to and test for driver fatigue. This paper describes the AusEd driving simulator in detail, including the technical requirements, hardware, screen and file outputs, and analysis software. Some aspects of the test are standardized, while others can be modified to suit the experimental situation. The AusEd driving simulator is sensitive to performance decrement from driver fatigue in the laboratory setting, potentially making it useful as a laboratory or office based test for driver fatigue risk management. However, more research is still needed to correlate laboratory based simulator performance with real world driving performance and outcomes.

  11. Near-bottom pelagic bacteria at a deep-water sewage sludge disposal site.

    PubMed

    Takizawa, M; Straube, W L; Hill, R T; Colwell, R R

    1993-10-01

    The epibenthic bacterial community at deep-ocean sewage sludge disposal site DWD-106, located approximately 106 miles (ca. 196 km) off the coast of New Jersey, was assessed for changes associated with the introduction of large amounts of sewage sludge. Mixed cultures and bacterial isolates obtained from water overlying sediment core samples collected at the deep-water (2,500 m) municipal sewage disposal site were tested for the ability to grow under in situ conditions of temperature and pressure. The responses of cultures collected at a DWD-106 station heavily impacted by sewage sludge were compared with those of samples collected from a station at the same depth which was not contaminated by sewage sludge. Significant differences were observed in the ability of mixed bacterial cultures and isolates from the two sites to grow under deep-sea pressure and temperature conditions. The levels of sludge contamination were established by enumerating Clostridium perfringens, a sewage indicator bacterium, in sediment samples from the two sites. The results of hybridization experiments in which DNAs extracted directly from the water overlying sediment core samples were used indicate that the reference site epibenthic community, the disposal site epibenthic community, and the community in a surface sludge plume share many members. Decreased culturability of reference site mixed cultures in the presence of sewage sludge was observed. Thus, the culturable portions of both the autochthonous and allochthonous bacterial communities at the disposal site may be inhibited in situ, the former by sewage sludge and the latter by high pressure and low temperature.

  12. 36 CFR 6.6 - Solid waste disposal sites within new additions to the National Park System.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 36 Parks, Forests, and Public Property 1 2011-07-01 2011-07-01 false Solid waste disposal sites... NATIONAL PARK SERVICE, DEPARTMENT OF THE INTERIOR SOLID WASTE DISPOSAL SITES IN UNITS OF THE NATIONAL PARK SYSTEM § 6.6 Solid waste disposal sites within new additions to the National Park System. (a) An operator...

  13. 36 CFR 6.6 - Solid waste disposal sites within new additions to the National Park System.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 36 Parks, Forests, and Public Property 1 2010-07-01 2010-07-01 false Solid waste disposal sites... NATIONAL PARK SERVICE, DEPARTMENT OF THE INTERIOR SOLID WASTE DISPOSAL SITES IN UNITS OF THE NATIONAL PARK SYSTEM § 6.6 Solid waste disposal sites within new additions to the National Park System. (a) An operator...

  14. Identification of U2AF(35)-dependent exons by RNA-Seq reveals a link between 3′ splice-site organization and activity of U2AF-related proteins

    PubMed Central

    Kralovicova, Jana; Knut, Marcin; Cross, Nicholas C. P.; Vorechovsky, Igor

    2015-01-01

    The auxiliary factor of U2 small nuclear RNA (U2AF) is a heterodimer consisting of 65- and 35-kD proteins that bind the polypyrimidine tract (PPT) and AG dinucleotides at the 3′ splice site (3′ss). The gene encoding U2AF35 (U2AF1) is alternatively spliced, giving rise to two isoforms U2AF35a and U2AF35b. Here, we knocked down U2AF35 and each isoform and characterized transcriptomes of HEK293 cells with varying U2AF35/U2AF65 and U2AF35a/b ratios. Depletion of both isoforms preferentially modified alternative RNA processing events without widespread failure to recognize 3′ss or constitutive exons. Over a third of differentially used exons were terminal, resulting largely from the use of known alternative polyadenylation (APA) sites. Intronic APA sites activated in depleted cultures were mostly proximal whereas tandem 3′UTR APA was biased toward distal sites. Exons upregulated in depleted cells were preceded by longer AG exclusion zones and PPTs than downregulated or control exons and were largely activated by PUF60 and repressed by CAPERα. The U2AF(35) repression and activation was associated with a significant interchange in the average probabilities to form single-stranded RNA in the optimal PPT and branch site locations and sequences further upstream. Although most differentially used exons were responsive to both U2AF subunits and their inclusion correlated with U2AF levels, a small number of transcripts exhibited distinct responses to U2AF35a and U2AF35b, supporting the existence of isoform-specific interactions. These results provide new insights into function of U2AF and U2AF35 in alternative RNA processing. PMID:25779042

  15. Reisen im freien Fall - Teil 2: Das Zwillingsparadoxon aus dem Blickwinkel der ART

    NASA Astrophysics Data System (ADS)

    Sonne, Bernd; Weiß, Reinhard

    2013-07-01

    Nachdem wir uns mit den Prinzipien der ART und einigen Beispielen vertraut gemacht haben, kommen wir nun zur Berechnung des Zwillingsparadoxons aus Sicht des reisenden Zwillings. Dabei spielt das Äquivalenzprinzip eine große Rolle. Deshalb wird die Bewegungssituation noch einmal erläutert, diesmal aus Sicht von Katrin. Sie befindet sich in ihrem System S'in Ruhe. In ihrem System läuft die Zeit t'ab. Nach dem Start fühlt Katrin jedoch eine Kraft, die sie als Gravitationskraft interpretieren kann. Sie merkt es daran, dass sie in den Sitz gedrückt wird. Nach einiger Zeit werden die Triebwerke abgeschaltet, und das Raumschiff fliegt mit konstanter Geschwindigkeit weiter, Phase 2. Anschließend wird der Schub der Triebwerke solange umgekehrt, bis das Raumschiff irgendwo mit der Geschwindigkeit null am Umkehrpunkt U landet, Phase 3 (Abb. 15.1). Die Erde, auf der sich Michael befindet, bewegt sich mit x'(t') aus Sicht von Katrin im freien Fall von ihr weg, s. das Experiment mit dem steigenden Fahrstuhl in Abschn. 13.2.1.

  16. Long-term surveillance plan for the Bodo Canyon Disposal Site, Durango, Colorado. Revision 1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1995-11-01

    This long-term surveillance plan (LTSP) for the Uranium Mill Tailings Remedial Act on (UMTRA) Project Bodo Canyon disposal site at Durango, Colorado, describes the surveillance activities for the disposal site. The US Department of Energy (DOE) will carry out these activities to ensure that the disposal call continues to function as designed This LTSP was prepared as a requirement for DOE acceptance under the US Nuclear Regulatory Commission (NRC) general license for custody and long-term care of residual radioactive materials (RRM) from processing uranium ore. This LTSP documents that the land and interests are owned by the United States andmore » details how long-term care of the disposal site will be carried out. It is based on the DOE`s Guidance for Implementing the UMTRA Project Long-term Surveillance Program (DOE, 1992a). Following the introduction, contents of this report include the following: site final condition; site drawings and photographs; permanent site surveillance features; ground water monitoring; annual site inspections; unscheduled inspections; custodial maintenance; corrective action; record keeping and reporting requirements; emergency notification and reporting; quality assurance; personal health and safety; list of contributions; and references.« less

  17. 76 FR 32360 - Casmalia Disposal Site; Notice of Proposed CERCLA Administrative De Minimis Settlement

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-06

    ... ENVIRONMENTAL PROTECTION AGENCY [FRL-9314-3] Casmalia Disposal Site; Notice of Proposed CERCLA Administrative De Minimis Settlement AGENCY: Environmental Protection Agency (EPA). ACTION: Notice; correction. SUMMARY: On April 4, 2011, a published notice of a proposed administrative de minimis settlement...

  18. Mid-Brunhes magnetic excursions in marine isotope stages 9, 13, 14, and 15 (286, 495, 540, and 590 ka) at North Atlantic IODP Sites U1302/3, U1305, and U1306

    NASA Astrophysics Data System (ADS)

    Channell, J. E. T.

    2017-02-01

    Integrated Ocean Drilling Program (IODP) Site U1302/3 (Orphan Knoll, off Newfoundland) recorded magnetic excursions in marine isotope stages (MIS) 9a (at 286 ka) and 13a (at 495 ka). Sites U1306 and U1305 (Eirik Drift, off SE Greenland) record excursions in MIS 14a/b (at 540 ka) and 15b/c (at 590 ka). In the excursion intervals, magnetic measurements of continuous "u-channel" samples from multiple holes within site are augmented by measurements of cubic (8 cm3) discrete samples. The excursions lie in relative paleointensity (RPI) minima at each site and in RPI reference stacks, and correspond to dated intervals of 10Be overproduction in other deep-sea sediment records. Although observed at multiple holes at each site, and from u-channel and discrete samples, the excursions are not observed at all three sites, and often at only one of the three sites. Sporadic recording of these magnetic excursions, and excursions in general, is attributed to a combination of filtering by the process of acquisition of detrital remanent magnetization (DRM), postdepositional overprint of weak excursion magnetizations, the millennial or even centennial duration of directional excursions, and nonuniform sedimentation rates at these timescales in North Atlantic sediment drifts.

  19. Geological and Geochemical Analysis of Seabed Stability at the Norfolk Ocean Disposal Site. Part 1: Geological Analysis.

    DTIC Science & Technology

    1983-05-31

    ANALYSIS OF SEABED STABILITY AT THE NORFOLK OCEAN DISPOSAL SITE PART 1: GEOLOGICAL ANALYSIS U LU D George F. Oertel, Principal Investigator i- Final Report...eC.it ,ie _. _ r. .. .... All e d !t-o i’~$ ~- - - • ° . .. • : " . o . . . , . . ... - . • , .. . . . . . kkN 4. 18. parameters, diver reconnaissance of...For the period ending September 30, 1982 Prepared for the Department of the Army Norfolk District, Corps of Engineers 803 Front Street D I *Norfolk

  20. Inadvertent Intruder Analysis For The Portsmouth On-Site Waste Disposal Facility (OSWDF)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, Frank G.; Phifer, Mark A.

    2014-01-22

    The inadvertent intruder analysis considers the radiological impacts to hypothetical persons who are assumed to inadvertently intrude on the Portsmouth OSWDF site after institutional control ceases 100 years after site closure. For the purposes of this analysis, we assume that the waste disposal in the OSWDF occurs at time zero, the site is under institutional control for the next 100 years, and inadvertent intrusion can occur over the following 1,000 year time period. Disposal of low-level radioactive waste in the OSWDF must meet a requirement to assess impacts on such individuals, and demonstrate that the effective dose equivalent to anmore » intruder would not likely exceed 100 mrem per year for scenarios involving continuous exposure (i.e. chronic) or 500 mrem for scenarios involving a single acute exposure. The focus in development of exposure scenarios for inadvertent intruders was on selecting reasonable events that may occur, giving consideration to regional customs and construction practices. An important assumption in all scenarios is that an intruder has no prior knowledge of the existence of a waste disposal facility at the site. Results of the analysis show that a hypothetical inadvertent intruder at the OSWDF who, in the worst case scenario, resides on the site and consumes vegetables from a garden established on the site using contaminated soil (chronic agriculture scenario) would receive a maximum chronic dose of approximately 7.0 mrem/yr during the 1000 year period of assessment. This dose falls well below the DOE chronic dose limit of 100 mrem/yr. Results of the analysis also showed that a hypothetical inadvertent intruder at the OSWDF who, in the worst case scenario, excavates a basement in the soil that reaches the waste (acute basement construction scenario) would receive a maximum acute dose of approximately 0.25 mrem/yr during the 1000 year period of assessment. This dose falls well below the DOE acute dose limit of 500 mrem/yr. Disposal

  1. Ground-water levels and precipitation data at the Maxey Flats low-level radioactive waste disposal site near Morehead, Kentucky, October 1988-September 2000

    USGS Publications Warehouse

    Zettwoch, Douglas D.

    2002-01-01

    The U.S. Geological Survey, in cooperation with the Kentucky Natural Resources and Environmental Protection Cabinet--Department for Environmental Protection--Division of Waste Management, has an ongoing program to monitor water levels at the Maxey Flats low-level radioactive waste disposal site near Morehead, Kentucky. Ground-water-level and precipitation data were collected from 112 wells and 1 rain gage at the Maxey Flats low-level radioactive waste disposal site during October 1988-September 2000. Data were collected on a semi-annual basis from 62 wells, continuously from 6 wells, and monthly or bimonthly from 44 wells (13 of which had continuous recorders installed for the period October 1998-September 2000). One tipping-bucket rain gage was used to collect data at the Maxey Flats site for the period October 1988-September 2000.

  2. Special Analysis for the Disposal of the Lawrence Livermore National Laboratory EnergyX Macroencapsulated Waste Stream at the Area 5 Radioactive Waste Management Site, Nevada National Security Site, Nye County, Nevada

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shott, Gregory J.

    This special analysis (SA) evaluates whether the Lawrence Livermore National Laboratory (LLNL) EnergyX Macroencapsulated waste stream (B LAMACRONCAP, Revision 1) is suitable for disposal by shallow land burial (SLB) at the Area 5 Radioactive Waste Management Site (RWMS) at the Nevada National Security Site (NNSS). The LLNL EnergyX Macroencapsulated waste stream is macroencapsulated mixed waste generated during research laboratory operations and maintenance (LLNL 2015). The LLNL EnergyX Macroencapsulated waste stream required a special analysis due to tritium (3H), cobalt-60 (60Co), cesium-137 (137Cs), and radium-226 (226Ra) exceeding the NNSS Waste Acceptance Criteria (WAC) Action Levels (U.S. Department of Energy, National Nuclearmore » Security Administration Nevada Field Office [NNSA/NFO] 2015).The results indicate that all performance objectives can be met with disposal of the waste stream in a SLB trench. Addition of the LLNL EnergyX Macroencapsulated inventory slightly increases multiple performance assessment results, with the largest relative increase occurring for the all-pathways annual total effective dose (TED). The maximum mean and 95th percentile 222Rn flux density remain less than the performance objective throughout the compliance period. The LLNL EnergyX Macroencapsulated waste stream is suitable for disposal by SLB at the Area 5 RWMS. The waste stream is recommended for approval without conditions.« less

  3. Nevada Test Site Waste Acceptance Criteria

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    U. S. Department of Energy, National Nuclear Security Administration Nevada Site Office

    This document establishes the U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Site Office (NNSA/NSO) waste acceptance criteria (WAC). The WAC provides the requirements, terms, and conditions under which the Nevada Test Site (NTS) will accept low-level radioactive (LLW) and mixed waste (MW) for disposal. It includes requirements for the generator waste certification program, characterization, traceability, waste form, packaging, and transfer. The criteria apply to radioactive waste received at the NTS Area 3 and Area 5 Radioactive Waste Management Complex (RWMC) for storage or disposal.

  4. Installation Restoration Program. Phase I. Records Search, Hazardous Materials Disposal Sites, Griffiss AFB, New York.

    DTIC Science & Technology

    1981-07-01

    Disposal Methods 4-31 Evaluation of Past and Present Waste 4-35 Disposal Facilities Landfills 4-35 Dry Wells 4-37 Rating of Waste Disposal Sites 4-37 V 2...Problems Identified at GAPE Landfills 4-36 4.12 Priority Ranking of Potential 4-38 Contamination Sources 4.13 -4.31 Rating Forms for Waste Disposal Sites 4...39 -4-76 5.1 Priority Ranking of Potential Con- 5-2 tamination Sources B.1 Rating Factor System B-2 -B-5 4W EXECUTIVE SUMMARY The Resource

  5. Tritium migration from a low-level radioactive-waste disposal site near Chicago, Illinois

    USGS Publications Warehouse

    Nicholas, J.R.; Healy, R.W.

    1988-01-01

    This paper describes the results of a study to determine the geologic and hydrologic factors that control migration of tritium from a closed, low-level radioactive-waste disposal site. The disposal site, which operated from 1943 to mid1949, contains waste generated by research activities at the world's first nuclear reactors. Tritium has migrated horizontally at least 1,300 feet northward in glacial drift and more than 650 feet in the underlying dolomite. Thin, gently sloping sand layers in an otherwise clayey glacial drift are major conduits for ground-water flow and tritium migration in a perched zone beneath the disposal site. Tritium concentrations in the drift beneath the disposal site exceed 100,000 nanocuries per liter. Regional horizontal joints in the dolomite are enlarged by solution and are the major conduits for ground-water flow and tritium migration in the dolomite. A weathered zone at the top of the dolomite also is a pathway for tritium migration. The maximum measured tritium concentration in the dolomite is 29.4 nanocuries per liter. Fluctuations of tritium concentration in the dolomite are the result of dilution by seasonal recharge from the drift.

  6. Importance of geologic characterization of potential low-level radioactive waste disposal sites

    USGS Publications Warehouse

    Weibel, C.P.; Berg, R.C.

    1991-01-01

    Using the example of the Geff Alternative Site in Wayne County, Illinois, for the disposal of low-level radioactive waste, this paper demonstrates, from a policy and public opinion perspective, the importance of accurately determining site stratigraphy. Complete and accurate characterization of geologic materials and determination of site stratigraphy at potential low-level waste disposal sites provides the frame-work for subsequent hydrologic and geochemical investigations. Proper geologic characterization is critical to determine the long-term site stability and the extent of interactions of groundwater between the site and its surroundings. Failure to adequately characterize site stratigraphy can lead to the incorrect evaluation of the geology of a site, which in turn may result in a lack of public confidence. A potential problem of lack of public confidence was alleviated as a result of the resolution and proper definition of the Geff Alternative Site stratigraphy. The integrity of the investigation was not questioned and public perception was not compromised. ?? 1991 Springer-Verlag New York Inc.

  7. 40 CFR Table Hh-2 to Subpart Hh of... - U.S. Per Capita Waste Disposal Rates

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... (CONTINUED) AIR PROGRAMS (CONTINUED) MANDATORY GREENHOUSE GAS REPORTING Municipal Solid Waste Landfills Pt. 98, Subpt. HH, Table HH-2 Table HH-2 to Subpart HH of Part 98—U.S. Per Capita Waste Disposal Rates... 40 Protection of Environment 21 2011-07-01 2011-07-01 false U.S. Per Capita Waste Disposal Rates...

  8. An investigation of the presence of methane and other gases at the Uzundere-Izmir solid waste disposal site, Izmir, Turkey.

    PubMed

    Onargan, T; Kucuk, K; Polat, M

    2003-01-01

    Izmir is a large metropolitan city with a population of 3,114,860. The city consists of 27 townships, each township has a population of not less than 10,000 inhabitants. The two major solid waste disposal sites are in the townships of Uzundere and Harmandali. The amount of solid waste that is disposed at each of these sites is about 800 and 1800 t/day, respectively. In Uzundere, compost is produced from the organic fraction of urban solid wastes while the residual material is deposited at a disposal site with a remaining capacity of 700,000 m(3) as of 2001. Gas monitoring and measurements were carried out at the disposal site in Uzundere. For this purpose, nine sampling wells were drilled on selected locations. Each well was furnished with perforated metal pipes suitable for gas monitoring and measurements. The following gases were monitored: O(2), CH(4), CO, CO(2), and H(2)S. The most important finding was that the concentrations of CH(4) in the wells ranged from 7 to 57%. Dilution of the CH(4) by O(2) down to the LEL levels (5-15%) is always possible and poses a continuing risk at the site. Furthermore, the levels of O(2) require that access to the site be limited to only authorized personnel.

  9. Journey to the Nevada Test Site Radioactive Waste Management Complex

    ScienceCinema

    None

    2018-01-16

    Journey to the Nevada Test Site Radioactive Waste Management Complex begins with a global to regional perspective regarding the location of low-level and mixed low-level waste disposal at the Nevada Test Site. For decades, the Nevada National Security Site (NNSS) has served as a vital disposal resource in the nation-wide cleanup of former nuclear research and testing facilities. State-of-the-art waste management sites at the NNSS offer a safe, permanent disposal option for U.S. Department of Energy/U.S. Department of Defense facilities generating cleanup-related radioactive waste.

  10. Pyramiding tumuli waste disposal site and method of construction thereof

    DOEpatents

    Golden, Martin P.

    1989-01-01

    An improved waste disposal site for the above-ground disposal of low-level nuclear waste as disclosed herein. The disposal site is formed from at least three individual waste-containing tumuli, wherein each tumuli includes a central raised portion bordered by a sloping side portion. Two of the tumuli are constructed at ground level with adjoining side portions, and a third above-ground tumulus is constructed over the mutually adjoining side portions of the ground-level tumuli. Both the floor and the roof of each tumulus includes a layer of water-shedding material such as compacted clay, and the clay layer in the roofs of the two ground-level tumuli form the compacted clay layer of the floor of the third above-ground tumulus. Each tumulus further includes a shield wall, preferably formed from a solid array of low-level handleable nuclear wate packages. The provision of such a shield wall protects workers from potentially harmful radiation when higher-level, non-handleable packages of nuclear waste are stacked in the center of the tumulus.

  11. A new leaf rust resistance gene Lr79 mapped in chromosome 3BL from the durum wheat landrace Aus26582.

    PubMed

    Qureshi, Naeela; Bariana, Harbans; Kumran, Vikas Venu; Muruga, Sivasamy; Forrest, Kerrie L; Hayden, Mathew J; Bansal, Urmil

    2018-05-01

    A new leaf rust resistance gene Lr79 has been mapped in the long arm of chromosome 3B and a linked marker was identified for marker-assisted selection. Aus26582, a durum wheat landrace from the A. E. Watkins Collection, showed seedling resistance against durum-specific and common wheat-specific Puccinia triticina (Pt) pathotypes. Genetic analysis using a recombinant inbred line (RIL) population developed from a cross between Aus26582 and the susceptible parent Bansi with Australian Pt pathotype showed digenic inheritance and the underlying loci were temporarily named LrAW2 and LrAW3. LrAW2 was located in chromosome 6BS and this study focused on characterisation of LrAW3 using RILs lacking LrAW2. LrAW3 was incorporated into the DArTseq map of Aus26582/Bansi and was located in chromosome 3BL. Markers linked with LrAW3 were developed from the chromosome survey sequence contig 3B_10474240 in which closely-linked DArTseq markers 1128708 and 3948563 were located. Although bulk segregant analysis (BSA) with the 90 K Infinium array identified 51 SNPs associated with LrAW3, only one SNP-derived KASP marker mapped close to the locus. Deletion bin mapping of LrAW3-linked markers located LrAW3 between bins 3BL11-0.85-0.90 and 3BL7-0.63. Since no other all stage leaf rust resistance gene is located in chromosome 3BL, LrAW3 represented a new locus and was designated Lr79. Marker sun786 mapped 1.8 cM distal to Lr79 and Aus26582 was null for this locus. However, the marker can be reliably scored as it also amplifies a monomorphic fragment that serves as an internal control to differentiate the null status of Aus26582 from reaction failure. This marker was validated among a set of durum and common wheat cultivars and was shown to be useful for marker-assisted selection of Lr79 at both ploidy levels.

  12. Hydrogeology of a hazardous-waste disposal site near Brentwood, Williamson County, Tennessee

    USGS Publications Warehouse

    Tucci, Patrick; Hanchar, D.W.; Lee, R.W.

    1990-01-01

    Approximately 44,000 gal of industrial solvent wastes were disposed in pits on a farm near Brentwood, Tennessee, in 1978, and contaminants were reported in the soil and shallow groundwater on the site in 1985. In order for the State to evaluate possible remedial-action alternatives, an 18-month study was conducted to define the hydrogeologic setting of the site and surrounding area. The area is underlain by four hydrogeologic units: (1) an upper aquifer consisting of saturated regolith, Bigby-Cannon Limestone, and weathered Hermitage Formation; (2) the Hermitage confining unit; (3) a lower aquifer consisting of the Carters Limestone; and (4) the Lebanon confining unit. Wells generally are low yielding less than 1 gal/min ), although locally the aquifers may yield as much as 80 gal/minute. This lower aquifer is anisotropic, and transmissivity of this aquifer is greatest in a northwest-southeast direction. Recharge to the groundwater system is primarily from precipitation, and estimates of average annual recharge rates range from 6 to 15 inches/year. Discharge from the groundwater system is primarily to the Little Harpeth River and its tributaries. Groundwater flow at the disposal site is mainly to a small topographic depression that drains the site. Geochemical data indicate four distinct water types. These types represent (1) shallow, rapidly circulating groundwater; (2) deeper (> than 100 ft), rapidly circulating groundwater; (3) shallow, slow moving groundwater; and (4) deeper, slow moving groundwater. Results of the numerical model indicate that most flow is in the upper aquifer. (USGS)

  13. Rapid movement of wastewater from on-site disposal systems into surface waters in the lower Florida Keys

    USGS Publications Warehouse

    Paul, John H.; McLaughlin, Molly R.; Griffin, Dale W.; Lipp, Erin K.; Stokes, Rodger; Rose, Joan B.

    2000-01-01

    Viral tracer studies have been used previously to study the potential for wastewater contamination of surface marine waters in the Upper and Middle Florida Keys. Two bacteriophages, the marine bacteriophage φHSIC and the Salmonella phage PRD1, were used as tracers in injection well and septic tank studies in Saddlebunch Keys of the Lower Florida Keys and in septic tank studies in Boot Key Harbor, Marathon, of the Middle Keys. In Boot Key Harbor, both phages were detected in a canal adjacent to the seeded septic tank within 3 h 15 min of the end of the seed period. The tracer was then detected at all sampling sites in Boot Key Harbor, including one on the opposite side of U. S. Highway 1 in Florida Bay, and at an Atlantic Ocean beach outside Boot Key Harbor. Rates of migration based on first appearance of the phage ranged from 1.7 to 57.5 m h-1. In Saddlebunch Keys, φHSIC and PRD1 were used to seed a residential septic tank and a commercial injection well. The septic tank tracer was not found in any surface water samples. The injection well tracer was first detected at a site most distant from the seed site, a channel that connected Sugarloaf Sound with the Atlantic Ocean. The rate of tracer migration from the injection well to this channel ranged from 66.8 to 141 m h-1. Both tracer studies showed a rapid movement of wastewater from on-site sewage treatment and disposal systems in a southeasterly direction toward the reef tract and Atlantic Ocean, with preferential movement through tidal channels. These studies indicate that wastewater disposal systems currently in widespread use in the Florida Keys can rapidly contaminate the marine environment.

  14. Pulp fiction - The volunteer concept (or how not to site additional LLRW disposal capacity)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burton, D.A.

    1995-12-31

    Experiences of compacts and of individual states throughout the nation indicate that low-level radioactive waste disposal siting processes, based from the beginning upon the volunteer concept are fraught with problems. Most apparent among these problems is that the volunteer concept does not lead to scientifically and technically based siting endeavors. Ten years have passed since the Amendments Act of 1985, and no compact or state has been - successful in providing for new LLRW disposal capacity. That failure can be traced in part to the reliance upon the volunteer concept in siting attempts. If success is to be achieved, themore » future direction for LLRW management must focus on three areas: first, a comprehensive evaluation of all LLRW management options, including reduction of waste generated and on-site storage; secondly, a comprehensive evaluation of the current as well as projected waste stream, to determine the amount of disposal capacity actually needed; and, finally, sound scientifically and technically based siting processes.« less

  15. Draft Site Management and Monitoring Plan for Corpus Christi Maintenance and New Work Ocean Dredged Material Disposal Site

    EPA Pesticide Factsheets

    USEPA Region 6 and the US Army Corps of Engineers submit for public comment the Draft Site Management and Monitoring Plan for Corpus Christi Maintenance and New Work Ocean Dredged Material Disposal Site

  16. Field Test to Evaluate Deep Borehole Disposal.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hardin, Ernest; Brady, Patrick Vane.; Clark, Andrew Jordan

    The U.S. Department of Energy (DOE) has embarked on the Deep Borehole Field Test (DBFT), which will investigate whether conditions suitable for disposal of radioactive waste can be found at a depth of up to 5 km in the earth’s crust. As planned, the DBFT will demonstrate drilling and construction of two boreholes, one for initial scientific characterization, and the other at a larger diameter such as could be appropriate for waste disposal (the DBFT will not involve radioactive waste). A wide range of geoscience activities is planned for the Characterization Borehole, and an engineering demonstration of test package emplacementmore » and retrieval is planned for the larger Field Test Borehole. Characterization activities will focus on measurements and samples that are important for evaluating the long-term isolation capability of the Deep Borehole Disposal (DBD) concept. Engineering demonstration activities will focus on providing data to evaluate the concept’s operational safety and practicality. Procurement of a scientifically acceptable DBFT site and a site management contractor is now underway. The concept of deep borehole disposal (DBD) for radioactive wastes is not new. It was considered by the National Academy of Science (NAS 1957) for liquid waste, studied in the 1980’s in the U.S. (Woodward–Clyde 1983), and has been evaluated by European waste disposal R&D programs in the past few decades (for example, Grundfelt and Crawford 2014; Grundfelt 2010). Deep injection of wastewater including hazardous wastes is ongoing in the U.S. and regulated by the Environmental Protection Agency (EPA 2001). The DBFT is being conducted with a view to use the DBD concept for future disposal of smaller-quantity, DOE-managed wastes from nuclear weapons production (i.e., Cs/Sr capsules and granular solid wastes). However, the concept may also have broader applicability for nations that have a need to dispose of limited amounts of spent fuel from nuclear power reactors

  17. Malignancy Rate in Thyroid Nodules Classified as Bethesda Category III (AUS/FLUS)

    PubMed Central

    Ho, Allen S.; Sarti, Evan E.; Jain, Kunal S.; Wang, Hangjun; Nixon, Iain J.; Shaha, Ashok R.; Shah, Jatin P.; Kraus, Dennis H.; Ghossein, Ronald; Fish, Stephanie A.; Wong, Richard J.; Lin, Oscar

    2014-01-01

    Background: The Bethesda System for Reporting Thyroid Cytopathology is the standard for interpreting fine needle aspiration (FNA) specimens. The “atypia of undetermined significance/follicular lesion of undetermined significance” (AUS/FLUS) category, known as Bethesda Category III, has been ascribed a malignancy risk of 5–15%, but the probability of malignancy in AUS/FLUS specimens remains unclear. Our objective was to determine the risk of malignancy in thyroid FNAs categorized as AUS/FLUS at a comprehensive cancer center. Methods: The management of 541 AUS/FLUS thyroid nodule patients treated at Memorial Sloan–Kettering Cancer Center between 2008 and 2011 was analyzed. Clinical and radiologic features were examined as predictors for surgery. Target AUS/FLUS nodules were correlated with surgical pathology. Results: Of patients with an FNA initially categorized as AUS/FLUS, 64.7% (350/541) underwent immediate surgery, 17.7% (96/541) had repeat FNA, and 17.6% (95/541) were observed. Repeat FNA cytology was unsatisfactory in 5.2% (5/96), benign in 42.7% (41/96), AUS/FLUS in 38.5% (37/96), suspicious for follicular neoplasm in 5.2% (5/96), suspicious for malignancy in 4.2% (4/96), and malignant in 4.2% (4/96). Of nodules with two consecutive AUS/FLUS diagnoses that were resected, 26.3% (5/19) were malignant. Among all index AUS/FLUS nodules (triaged to surgery, repeat FNA, or observation), malignancy was confirmed on surgical pathology in 26.6% [CI 22.4–31.3]. Among AUS/FLUS nodules triaged to surgery, the malignancy rate was 37.8% [CI 33.1–42.8]. Incidental cancers were found in 22.3% of patients. On univariate logistic regression analysis, factors associated with triage to surgery were younger patient age (p<0.0001), increasing nodule size (p<0.0001), and nodule hypervascularity (p=0.032). Conclusions: In patients presenting to a comprehensive cancer center, malignancy rates in nodules with AUS/FLUS cytology are higher than previously estimated, with 26

  18. Craney Island Disposal Area. Site Operations and Monitoring Report, 1980-1987

    DTIC Science & Technology

    1990-07-01

    STCFITE nmpyv FMISCELLANEOUS PAPER EL-90-10 * * *CRANEY ISLAND DISPOSAL AREA SITE OPERATIONS AND MONITORING REPORT, 1980-1987 N by Michael R. Palermo...4. PERFORMING ORGANIZATION REPORT NUMBER(S) 5. MONITORING ORGANIZATION REPORT NUMBER(S) Miscellaneous Paper EL-90-0 0 So. M OF :RFRMING ORGANIZATION...area is a 2,500-acre confined dredged material disposal facility located near Norfolk, VA. In 1981, the Craney Island Management Plan ( CIMP ) was

  19. (Low-level waste disposal facility siting and site characterization)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mezga, L.J.; Ketelle, R.H.; Pin, F.G.

    A US team consisting of representatives of Oak Ridge National Laboratory (ORNL), Savannah River Plant (SRP), Savannah river Laboratory (SRL), and the Department of Energy Office of Defense Waste and Byproducts Management participated in the fourth meeting held under the US/French Radioactive Waste Management Agreement between the US Department of Energy and the Commissariat a l'Energie Atomique. This meeting, held at Agence Nationale pour les Gestion des Dechets Radioactifs' (ANDRA's) Headquarters in Paris, was a detailed, technical topical workshop focusing on Low-Level Waste Disposal Facility Siting and Site Characterization.'' The meeting also included a visit to the Centre de lamore » Manche waste management facility operated by ANDRA to discuss and observe the French approach to low-level waste management. The final day of the meeting was spent at the offices of Societe Generale pour les Techniques Nouvelles (SGN) discussing potential areas of future cooperation and exchange. 20 figs.« less

  20. Data Validation Package - July 2016 Groundwater Sampling at the Gunnison, Colorado, Disposal Site

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Linard, Joshua; Campbell, Sam

    Groundwater sampling at the Gunnison, Colorado, Disposal Site is conducted every 5 years to monitor disposal cell performance. During this event, samples were collected from eight monitoring wells as specified in the 1997 Long-Term Surveillance Plan for the Gunnison, Colorado, Disposal Site. Sampling and analyses were conducted as specified in the Sampling and Analysis Plan for US Department of Energy Office of Legacy Management Sites (LMS/PRO/S04351, continually updated, http://energy.gov/lm/downloads/sampling-and­ analysis-plan-us-department-energy-office-legacy-management-sites). Planned monitoring locations are shown in Attachment 1, Sampling and Analysis Work Order. A duplicate sample was collected from location 0723. Water levels were measured at all monitoring wells thatmore » were sampled and seven additional wells. The analytical data and associated qualifiers can be viewed in environmental database reports and are also available for viewing with dynamic mapping via the GEMS (Geospatial Environmental Mapping System) website at http://gems.lm.doe.gov/#. No issues were identified during the data validation process that require additional action or follow-up.« less

  1. Investigative studies for the use of an inactive asbestos mine as a disposal site for asbestos wastes.

    PubMed

    Gidarakos, Evangelos; Anastasiadou, Kalliopi; Koumantakis, Emmanuil; Nikolaos, Stappas

    2008-05-30

    Although, according to European legislation the use of Asbestos Containing Materials is forbidden, many buildings in Greece still contain asbestos products, which must be removed at some point in the near future. Therefore, suitable disposal sites must be found within Greece, so that the unverified disposal of asbestos waste in municipal waste Landfills is brought to an end. In the present work, an innovative approach to the disposal problem of asbestos wastes in Greece has been examined, through a risk assessment analysis of the inactive asbestos mine of Northern Greece and an evaluation of its suitability as a disposal site for asbestos wastes in the future. According to the research carried out, two areas (Site 1 and Site 2) inside the mine area are suitable for the construction of a disposal site for asbestos wastes. The geological investigations showed that in Site 1 and Site 2 ultrabasic rocks of ophiolite complex were prevalent, which have been intensely serpentinized and converted into the fibrous shape of serpentine (asbestos). Concentrations of hazardous substances such as heavy metals in the soil of Site 1 and Site 2 oscillate at low levels, with the exception of the concentrations of nickel and chrome which are high. The investigative work also included the collection of meteorological data and the monitoring of the water level of the artificial lake, which has developed inside the open mine. The main aim is to safely dispose asbestos wastes inside the mine, to minimize any pollution of the wider vicinity of the mine, as well as to engage in restoration activities.

  2. Low-level radioactive waste management: transitioning to off-site disposal at Los Alamos National Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dorries, Alison M

    2010-11-09

    Facing the closure of nearly all on-site management and disposal capability for low-level radioactive waste (LLW), Los Alamos National Laboratory (LANL) is making ready to ship the majority of LLW off-site. In order to ship off-site, waste must meet the Treatment, Storage, and Disposal Facility's (TSDF) Waste Acceptance Criteria (WAC). In preparation, LANL's waste management organization must ensure LANL waste generators characterize and package waste compliantly and waste characterization documentation is complete and accurate. Key challenges that must be addressed to successfully make the shift to off-site disposal of LLW include improving the detail, accuracy, and quality of process knowledgemore » (PK) and acceptable knowledge (AK) documentation, training waste generators and waste management staff on the higher standard of data quality and expectations, improved WAC compliance for off-site facilities, and enhanced quality assurance throughout the process. Certification of LANL generators will allow direct off-site shipping of LLW from their facilities.« less

  3. Special Analysis for the Disposal of the Materials and Energy Corporation Sealed Sources at the Area 5 Radioactive Waste Management Site

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shott, Gregory

    This special analysis (SA) evaluates whether the Materials and Energy Corporation (M&EC) Sealed Source waste stream (PERM000000036, Revision 0) is suitable for shallow land burial (SLB) at the Area 5 Radioactive Waste Management Site (RWMS) on the Nevada National Security Site (NNSS). Disposal of the M&EC Sealed Source waste meets all U.S. Department of Energy (DOE) Manual DOE M 435.1-1, “Radioactive Waste Management Manual,” Chapter IV, Section P performance objectives (DOE 1999). The M&EC Sealed Source waste stream is recommended for acceptance without conditions.

  4. NEVADA TEST SITE WASTE ACCEPTANCE CRITERIA, JUNE 2006

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    U.S. DEPARTMENT OF ENERGY, NATIONAL NUCLEAR SECURITY ADMINISTRATION NEVADA SITE OFFICE

    This document establishes the U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Site Office (NNSA/NSO) waste acceptance criteria (WAC). The WAC provides the requirements, terms, and conditions under which the Nevada Test Site (NTS) will accept low-level radioactive (LLW) and mixed waste (MW) for disposal. It includes requirements for the generator waste certification program, characterization, traceability, waste form, packaging, and transfer. The criteria apply to radioactive waste received at the NTS Area 3 and Area 5 Radioactive Waste Management Complex (RWMC) for storage or disposal.

  5. Movement of tagged dredged sand at thalweg disposal sites in the Upper Mississippi River. Volume 2. Savanna Bay and Duck Creek sites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Paddock, R.A.; McCown, D.L.

    Experiments were conducted on the Upper Mississippi River at two sites, Savanna Bay and Duck Creek, to investigate the movement of dredged sand after disposal in the thalweg. These experiments are part of a larger study, which includes similar experiments conducted earlier at two other sites on the Upper Mississippi River. At the Savanna Bay site, hydraulically dredged sand was tagged with sand coated with fluorescent dye before being deposited as a pile in the thalweg. Bathymetric surveys and surficial bottom sampling were conducted on five occasions over a nine-month period following disposal to identify changes in the topography ofmore » the pile and to detect the presence of dyed sand. At the Duck Creek site, only bathymetric surveys were conducted. The general behavior of the disposal piles at these two new sites was similar to that of the piles at the first two sites. Topographic evidence of the piles disappeared, and bottom conditions similar to the predisposal conditions were reestablished following the first period of high river flows after disposal. At Savanna Bay, as had happened at the first two sites, the tagged sand remained in the main river channel as it moved downstream in response to flood currents and did not migrate into nearby border areas, backwaters, or sloughs. 6 references, 89 figures, 2 tables.« less

  6. A DFT+U study of A-site and B-site substitution in BaFeO3-δ.

    PubMed

    Baiyee, Zarah Medina; Chen, Chi; Ciucci, Francesco

    2015-09-28

    BaFeO3-δ (BFO)-based perovskites have emerged as cheap and effective oxygen electrocatalysts for oxygen reduction reaction at high temperatures. The BFO cubic phase facilitates a high oxygen deficiency and is commonly stabilised by partial substitution. Understanding the electronic mechanisms of substitution and oxygen deficiency is key to rational material design, and can be realised through DFT analysis. In this work an in-depth first principle DFT+U study is undertaken to determine site distinctive characteristics for 12.5%, Y, La and Ce substitutions in BFO. In particular, it is shown that B-site doped structures exhibit a lower energy cost for oxygen vacancy formation relative to A site doping and pristine BFO. This is attributed to the stabilisation of holes in the oxygen sub-lattice and increased covalency of the Fe-O bonds of the FeO6 octahedra in B-site-substituted BFO. Charge analysis shows that A-site substitution amounts to donor doping and consequently impedes the accommodation of other donors (i.e. oxygen vacancies). However, A-site substitution may also exhibit a higher electronic conductivity due to less lattice distortion for oxygen deficiency compared to B-site doped structures. Furthermore, analysis of the local structural effects provides physical insight into stoichiometric expansions observed for this material.

  7. 15 CFR Appendix C to Subpart M of... - Dredged Material Disposal Sites Within the Sanctuary

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 15 Commerce and Foreign Trade 3 2010-01-01 2010-01-01 false Dredged Material Disposal Sites Within the Sanctuary C Appendix C to Subpart M of Part 922 Commerce and Foreign Trade Regulations Relating to Commerce and Foreign Trade (Continued) NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION, DEPARTMENT OF...

  8. Recognition of the 3′ splice site RNA by the U2AF heterodimer involves a dynamic population shift

    PubMed Central

    Voith von Voithenberg, Lena; Sánchez-Rico, Carolina; Kang, Hyun-Seo; Madl, Tobias; Zanier, Katia; Barth, Anders; Warner, Lisa R.; Sattler, Michael; Lamb, Don C.

    2016-01-01

    An essential early step in the assembly of human spliceosomes onto pre-mRNA involves the recognition of regulatory RNA cis elements in the 3′ splice site by the U2 auxiliary factor (U2AF). The large (U2AF65) and small (U2AF35) subunits of the U2AF heterodimer contact the polypyrimidine tract (Py-tract) and the AG-dinucleotide, respectively. The tandem RNA recognition motif domains (RRM1,2) of U2AF65 adopt closed/inactive and open/active conformations in the free form and when bound to bona fide Py-tract RNA ligands. To investigate the molecular mechanism and dynamics of 3′ splice site recognition by U2AF65 and the role of U2AF35 in the U2AF heterodimer, we have combined single-pair FRET and NMR experiments. In the absence of RNA, the RRM1,2 domain arrangement is highly dynamic on a submillisecond time scale, switching between closed and open conformations. The addition of Py-tract RNA ligands with increasing binding affinity (strength) gradually shifts the equilibrium toward an open conformation. Notably, the protein–RNA complex is rigid in the presence of a strong Py-tract but exhibits internal motion with weak Py-tracts. Surprisingly, the presence of U2AF35, whose UHM domain interacts with U2AF65 RRM1, increases the population of the open arrangement of U2AF65 RRM1,2 in the absence and presence of a weak Py-tract. These data indicate that the U2AF heterodimer promotes spliceosome assembly by a dynamic population shift toward the open conformation of U2AF65 to facilitate the recognition of weak Py-tracts at the 3′ splice site. The structure and RNA binding of the heterodimer was unaffected by cancer-linked myelodysplastic syndrome mutants. PMID:27799531

  9. 75 FR 22524 - Ocean Dumping; Designation of Ocean Dredged Material Disposal Sites Offshore of the Siuslaw River...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-29

    ... location to dispose of material dredged from the Siuslaw River navigation channel, and to provide a... sediments from Site A back into the dredged channel resulted in a selection of disposal Sites B and C by the... conflicts. The final Sites are located close to the approach to the Siuslaw River entrance channel but are...

  10. Application of geographical information system in disposal site selection for hazardous wastes.

    PubMed

    Rezaeimahmoudi, Mehdi; Esmaeli, Abdolreza; Gharegozlu, Alireza; Shabanian, Hassan; Rokni, Ladan

    2014-01-01

    The aim of this study was to provide a scientific method based on Geographical Information System (GIS) regarding all sustainable development measures to locate a proper landfill for disposal of hazardous wastes, especially industrial (radioactive) wastes. Seven effective factors for determining hazardous waste landfill were applied in Qom Province, central Iran. These criteria included water, slope, population centers, roads, fault, protected areas and geology. The Analysis Hierarchical Process (AHP) model based on pair comparison was used. First, the weight of each factor was determined by experts; afterwards each layer of maps entered to ARC GIS and with special weight multiplied together, finally the best suitable site was introduced. The most suitable sites for burial were in northwest and west of Qom Province and eventually five zones were introduced as the sample sites. GIs and AHP model is introduced as the technical, useful and accelerator tool for disposal site selection. Furthermore it is determined that geological factor is the most effective layer for site selection. It is suggested that geological conditions should be considered primarily then other factors are taken into consideration.

  11. EXECUTIVE SUMMARY OF STATE DATA RELATED TO ABANDONED CENTRALIZED AND COMMERCIAL DRILLING-FLUID DISPOSAL SITES IN LOUISIANA, NEW MEXICO, OKLAHOMA, AND TEXAS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    H. Seay Nance

    2003-03-01

    This 2003 Spring Semi-Annual Report contains a summary of the Final Technical Report being prepared for the Soil Remediation Requirements at Commercial and Centralized Drilling-Fluid Disposal (CCDD) Sites project funded by the United States Department of Energy under DOE Award No. DE-AC26-99BC15225. The summary describes (1) the objectives of the investigation, (2) a rationale and methodology of the investigation, (3) sources of data, assessment of data quality, and data availability, (4) examples of well documented centralized and commercial drilling-fluid disposal (CCDD) sites and other sites where drilling fluid was disposed of, and (5) examples of abandoned sites and measures undertakenmore » for their assessment and remediation. The report also includes most of the figures, tables, and appendices that will be included in the final report.« less

  12. 36 CFR 6.6 - Solid waste disposal sites within new additions to the National Park System.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... within new additions to the National Park System. 6.6 Section 6.6 Parks, Forests, and Public Property NATIONAL PARK SERVICE, DEPARTMENT OF THE INTERIOR SOLID WASTE DISPOSAL SITES IN UNITS OF THE NATIONAL PARK SYSTEM § 6.6 Solid waste disposal sites within new additions to the National Park System. (a) An operator...

  13. 36 CFR 6.6 - Solid waste disposal sites within new additions to the National Park System.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... within new additions to the National Park System. 6.6 Section 6.6 Parks, Forests, and Public Property NATIONAL PARK SERVICE, DEPARTMENT OF THE INTERIOR SOLID WASTE DISPOSAL SITES IN UNITS OF THE NATIONAL PARK SYSTEM § 6.6 Solid waste disposal sites within new additions to the National Park System. (a) An operator...

  14. 36 CFR 6.6 - Solid waste disposal sites within new additions to the National Park System.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... within new additions to the National Park System. 6.6 Section 6.6 Parks, Forests, and Public Property NATIONAL PARK SERVICE, DEPARTMENT OF THE INTERIOR SOLID WASTE DISPOSAL SITES IN UNITS OF THE NATIONAL PARK SYSTEM § 6.6 Solid waste disposal sites within new additions to the National Park System. (a) An operator...

  15. Transuranic Contamination in Sediment and Groundwater at the U.S. DOE Hanford Site

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cantrell, Kirk J.

    2009-08-20

    transuranic radionuclides have been co-disposed with acidic liquid waste, transport through the vadose zone for considerable distances has occurred. For example, at the 216-Z-9 Crib, plutonium-239 and americium-241 have moved to depths in excess of 36 m (118 ft) bgs. Acidic conditions increase the solubility of these contaminants and reduce adsorption to mineral surfaces. Subsequent neutralization of the acidity by naturally occurring calcite in the vadose zone (particularly in the Cold Creek unit) appears to have effectively stopped further migration. The vast majority of transuranic contaminants disposed to the vadose zone on the Hanford Site (10,200 Ci [86%] of plutonium-239; 27,900 Ci [97%] of americium-241; and 41.8 Ci [78%] of neptunium-237) were disposed in sites within the PFP Closure Zone. This closure zone is located within the 200 West Area (see Figures 1.1 and 3.1). Other closure zones with notably high quantities of transuranic contaminant disposal include the T Farm Zone with 408 Ci (3.5%) plutonium-239, the PUREX Zone with 330 Ci (2.8%) plutonium-239, 200-W Ponds Zone with 324 Ci (2.8%) plutonium-239, B Farm Zone with 183 Ci (1.6%) plutonium-239, and the REDOX Zone with 164 Ci (1.4%) plutonium 239. Characterization studies for most of the sites reviewed in the document are generally limited. The most prevalent characterization methods used were geophysical logging methods. Characterization of a number of sites included laboratory analysis of borehole sediment samples specifically for radionuclides and other contaminants, and geologic and hydrologic properties. In some instances, more detailed research level studies were conducted. Results of these studies were summarized in the document.« less

  16. AusLAMP long period magnetotellurics: progress update and new insights into Victorian geology and mineral prospectivity

    NASA Astrophysics Data System (ADS)

    Chopping, R. G.; Duan, J.; Czarnota, K.; Kemp, T.

    2016-12-01

    It is becoming generally accepted that world-class mineral deposits have a footprint on a scale of the lithosphere. For this reason, Australia has embarked on the Australian Lithospheric Architecture Magnetotelluric Project (AusLAMP) to map the conductivity of the mid to lower crust and the lithospheric mantle. AusLAMP is a collaborative project between Geoscience Australia, State and Territory Geological Surveys and Universities. The project aims to collect long-period magnetotelluric data across the Australian continent on a nominal 0.5x0.5° ( 55x55 km) grid. To date, more than 450 sites have been acquired including all sites for the state of Victoria, two-thirds of sites in South Australia and Tasmania, and approximately 25 stations in Western Australia. Progress is ramping up with acquisition to turn to the state of New South Wales, the remainder of South Australia and also acquisition in northern Australia. To support this increasing acquisition activity, additional instruments have been purchased to add to those already in Australia. 3D inversion results are now available for AusLAMP Victoria. In collaboration with the National Computational Infrastructure (NCI), the 3D ModEM codes were optimised for use on the NCI's supercomputer, speeding up large-scale inversions by an order of magnitude. The results of these inversions indicate anomalously conductive lithospheric mantle associated with the central region of Victoria which contains significant mineral deposits and prospectivity, and also anomalous resistive lithosphere associated with the southern extension of the dynamically supported Australian Alps and the Newer Volcanics Province. Modelled conductivities are also consistent with mantle xenolith data from central Victoria. Within the crust, the dominant trend of the data is along elongate north-eastern corridors of conductive material. These results shed new questions on the geological history of this region and the lithospheric architecture of the

  17. LINERS FOR SANITARY LANDFILLS AND CHEMICAL AND HAZARDOUS WASTE DISPOSAL SITES

    EPA Science Inventory

    This report lists addresses of sanitary landfills and chemical and hazardous waste disposal sites and holding ponds with some form of impermeable lining. Liners included are polyethylene, polyvinyl chloride, Hypalon R, ethylene propylene diene monomer, butyl rubber, conventional ...

  18. 15 CFR Appendix C to Subpart M of... - Dredged Material Disposal Sites Within the Sanctuary

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 15 Commerce and Foreign Trade 3 2011-01-01 2011-01-01 false Dredged Material Disposal Sites Within the Sanctuary C Appendix C to Subpart M of Part 922 Commerce and Foreign Trade Regulations Relating to... National Marine Sanctuary Pt. 922, Subpt. M, App. C Appendix C to Subpart M of Part 922—Dredged Material...

  19. Mega-pockmarks surrounding IODP Site U1414: Insights from the CRISP 3D seismic survey

    NASA Astrophysics Data System (ADS)

    Nale, S. M.; Kluesner, J. W.; Silver, E. A.; Bangs, N. L.; McIntosh, K. D.; Ranero, C. R.

    2013-12-01

    Visualization of neural network meta-attribute analyses reveals fluid migration pathways associated with mega-pockmarks within the CRISP 3D seismic volume offshore southern Costa Rica, near site U1414 of IODP Expedition 344. A 245km2 field of mega-pockmarks was imaged on the Cocos Ridge using EM122 multibeam bathymetry, backscatter and 3D seismic reflection aboard R/V Marcus G. Langseth during the 2011 CRISP seismic survey. We utilize the OpendTect software package to calculate supervised neural network meta-attributes within the 3D seismic volume, in order to detect and visualize probable faults and fluid-migration pathways within the sedimentary section of the incoming Cocos plate [see Kluesner et al., this meeting]. Pockmarks imaged within the 3D volume near the trench commonly show a two-tier structure with upper pockmarks located above the steep walls of deeper, older pockmarks. The latter appear to truncate surrounding strata, including widespread high-amplitude reverse polarity reflectors (RPRs), interpreted as trapping horizons. In addition, RPRs are also truncated by positive polarity crosscutting reflections (CCRs), most of which form the base and sides of lens-like structures below the RPRs that are frequently located next to imaged pockmarks. Site U1414 intersects one of these lens-like structures and this appears to correlate to a sharp density and porosity swing observed at ~255 mbsf. In addition, preliminary geochemical analyses from site U1414 show evidence of lateral fluid flow through sediments below the RPR [Expedition 344 Scientists, 2013]. Thus, we interpret the 3D lens-like structures to be pockets of trapped gas and/or over-pressured fluid. Based on 3D imaging we propose a 3-stage pockmark evolution: (1) Overpressure and blowout along RPRs, resulting in pockmark formation, (2) sustained seepage along pockmark walls, resulting in preferential deposition near the center of the pockmark, and (3) rapid burial as pockmarks near the trench axis. On

  20. NRC Monitoring of Salt Waste Disposal at the Savannah River Site - 13147

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pinkston, Karen E.; Ridge, A. Christianne; Alexander, George W.

    2013-07-01

    As part of monitoring required under Section 3116 of the Ronald W. Reagan National Defense Authorization Act for Fiscal Year 2005 (NDAA), the NRC staff reviewed an updated DOE performance assessment (PA) for salt waste disposal at the Saltstone Disposal Facility (SDF). The NRC staff concluded that it has reasonable assurance that waste disposal at the SDF meets the 10 CFR 61 performance objectives for protection of individuals against intrusion (chap.61.42), protection of individuals during operations (chap.61.43), and site stability (chap.61.44). However, based on its evaluation of DOE's results and independent sensitivity analyses conducted with DOE's models, the NRC staffmore » concluded that it did not have reasonable assurance that DOE's disposal activities at the SDF meet the performance objective for protection of the general population from releases of radioactivity (chap.61.41) evaluated at a dose limit of 0.25 mSv/yr (25 mrem/yr) total effective dose equivalent (TEDE). NRC staff also concluded that the potential dose to a member of the public is expected to be limited (i.e., is expected to be similar to or less than the public dose limit in chap.20.1301 of 1 mSv/yr [100 mrem/yr] TEDE) and is expected to occur many years after site closure. The NRC staff used risk insights gained from review of the SDF PA, its experience monitoring DOE disposal actions at the SDF over the last 5 years, as well as independent analysis and modeling to identify factors that are important to assessing whether DOE's disposal actions meet the performance objectives. Many of these factors are similar to factors identified in the NRC staff's 2005 review of salt waste disposal at the SDF. Key areas of interest continue to be waste form and disposal unit degradation, the effectiveness of infiltration and erosion controls, and estimation of the radiological inventory. Based on these factors, NRC is revising its plan for monitoring salt waste disposal at the SDF in coordination with

  1. Operating Experience and Lessons Learned in the Use of Soft-Sided Packaging for Transportation and Disposal of Low Activity Radioactive Waste

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kapoor, A.; Gordon, S.; Goldston, W.

    2013-07-08

    This paper describes the operating experience and lessons learned at U.S. Department of Energy (DOE) sites as a result of an evaluation of potential trailer contamination and soft-sided packaging integrity issues related to the disposal of low-level and mixed low-level (LLW/MLLW) radioactive waste shipments. Nearly 4.3 million cubic meters of LLW/MLLW will have been generated and disposed of during fiscal year (FY) 2010 to FY 2015—either at commercial disposal sites or disposal sites owned by DOE. The LLW/MLLW is packaged in several different types of regulatory compliant packaging and transported via highway or rail to disposal sites safely and efficientlymore » in accordance with federal, state, and local regulations and DOE orders. In 1999, DOE supported the development of LLW containers that are more volumetrically efficient, more cost effective, and easier to use as compared to metal or wooden containers that existed at that time. The DOE Idaho National Engineering and Environmental Laboratory (INEEL), working in conjunction with the plastic industry, tested several types of soft-sided waste packaging systems that meet U.S. Department of Transportation requirements for transport of low specific activity and surface contaminated objects. Since then, soft-sided packaging of various capacities have been used successfully by the decontamination and decommissioning (D&D) projects to package, transport, and dispose D&D wastes throughout the DOE complex. The joint team of experts assembled by the Energy Facility Contractors Group from DOE waste generating sites, DOE and commercial waste disposal facilities, and soft-sided packaging suppliers conducted the review of soft-sided packaging operations and transportation of these packages to the disposal sites. As a result of this evaluation, the team developed several recommendations and best practices to prevent or minimize the recurrences of equipment contamination issues and proper use of soft-sided packaging for

  2. Spatial patterns of serial murder: an analysis of disposal site location choice.

    PubMed

    Lundrigan, S; Canter, D

    2001-01-01

    Although the murders committed by serial killers may not be considered rational, there is growing evidence that the locations in which they commit their crimes may be guided by an implicit, if limited rationality. The hypothesized logic of disposal site choice of serial killers led to predictions that (a) their criminal domains would be around their home base and relate to familiar travel distances, (b) they would have a size that was characteristic of each offender, (c) the distribution would be biased towards other non-criminal activities, and (d) the size of the domains would increase over time. Examination of the geographical distribution of the sites at which 126 US and 29 UK serial killers disposed of their victims' bodies supported all four hypotheses. It was found that rational choice and routine activity models of criminal behavior could explain the spatial choices of serial murderers. It was concluded that the locations at which serial killers dispose of their victims' bodies reflect the inherent logic of the choices that underlie their predatory activities. Copyright 2001 John Wiley & Sons, Ltd.

  3. Site Management and Monitoring Plan (SMMP) for the Mouth of Columbia River- Deep and Shallow Water Ocean Dredged Material Disposal Sites, OR/WA

    EPA Pesticide Factsheets

    This SMMP is intended to provide management and monitoring strategies for disposal in the Mouth of Columbia River- Deep and Shallow Ocean Dredged Material Disposal Sites on the border of Oregon and Washington.

  4. Rooting Characteristics of Vegetation Near Areas 3 and 5 Radioactive Waste Management Sites at the Nevada Test Site--Part 1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    D. J. Hansen

    2003-09-30

    The U.S. Department of Energy emplaced high-specific-activity low-level radioactive wastes and limited quantities of classified transuranic wastes in Greater Confinement Disposal (GCD) boreholes from 1984 to 1989. The boreholes are located at the Area 5 Radioactive Waste Management Site (RWMS) on the Nevada Test Site (NTS) in southern Nevada. The boreholes were backfilled with native alluvium soil. The surface of these boreholes and trenches is expected to be colonized by native vegetation in the future. Considering the long-term performance of the disposal facilities, bioturbation (the disruption of buried wastes by biota) is considered a primary release mechanism for radionuclides disposedmore » in GCD boreholes as well as trenches at both Areas 3 and 5 RWMSs. This report provides information about rooting characteristics of vegetation near Areas 3 and 5 RWMSs. Data from this report are being used to resolve uncertainties involving parameterization of performance assessment models used to characterize the biotic mixing of soils and radionuclide transport processes by biota. The objectives of this study were to: (1) survey the prior ecological literature on the NTS and identify pertinent information about the vegetation, (2) conduct limited field studies to describe the current vegetation in the vicinity of Areas 3 and 5 RWMSs so as to correlate findings with more extensive vegetation data collected at Yucca Mountain and the NTS, ( 3 ) review prior performance assessment documents and evaluate model assumptions based on current ecological information, and (4) identify data deficiencies and make recommendations for correcting such deficiencies.« less

  5. LLRW disposal facility siting approaches: Connecticut`s innovative volunteer approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Forcella, D.; Gingerich, R.E.; Holeman, G.R.

    1994-12-31

    The Connecticut Hazardous Waste Management Service (CHWMS) has embarked on a volunteer approach to siting a LLRW disposal facility in Connecticut. This effort comes after an unsuccessful effort to site a facility using a step-wise, criteria-based site screening process that was a classic example of the decide/announce/defend approach. While some of the specific features of the CHWMS` volunteer process reflect the unique challenge presented by the state`s physical characteristics, political structure and recent unsuccessful siting experience, the basic elements of the process are applicable to siting LLRW disposal facilities in many parts of the United States. The CHWMS` volunteer processmore » is structured to reduce the {open_quotes}outrage{close_quotes} dimension of two of the variables that affect the public`s perception of risk. The two variables are the degree to which the risk is taken on voluntarily (voluntary risks are accepted more readily than those that are imposed) and the amount of control one has over the risk (risks under individual control are accepted more readily than those under government control). In the volunteer process, the CHWMS will only consider sites that have been been voluntarily offered by the community in which they are located and the CHWMS will share control over the development and operation of the facility with the community. In addition to these elements which have broad applicability, the CHWMS has tailored the volunteer approach to take advantage of the unique opportunities made possible by the earlier statewide site screening process. Specifically, the approach presents a {open_quotes}win-win{close_quotes} situation for elected officials in many communities if they decide to participate in the process.« less

  6. Assessment of site conditions for disposal of low- and intermediate-level radioactive wastes: a case study in southern China.

    PubMed

    Yi, Shuping; Ma, Haiyi; Zheng, Chunmiao; Zhu, Xiaobin; Wang, Hua'an; Li, Xueshan; Hu, Xueling; Qin, Jianbo

    2012-01-01

    zone has low saturated hydraulic conductivities on the order of 10(-5)cm/s and in this respect is well-suited for the disposal of LILW. The saturated formations are primarily made up of silt and moderately-to-slightly weathered granite, which exhibit even lower hydraulic conductivities, on the order of 10(-6)cm/s, also favorable for restraining the transport of radionuclides. Chemical analyses indicate that the groundwaters at the site are of the HCO(3)-Na · Ca and HCO(3) · SO(4)-Na · Ca types and are weakly corrosive to concrete and steel. Geochemical analyses indicate that the rock and soil materials (particularly weathered granite) at the site contain very small fractions of colloidal particles and exhibit low Cation Exchange Capacities (CEC), and would therefore have limited capacity for sorption of radionuclides. Groundwater flow and solute transport models of the candidate site have been developed using MODFLOW and MT3DMS, incorporating the data obtained during the assessment program. Calibration was based on the available measured groundwater level fluctuations and tracer concentrations from in situ dispersion tests. The longitudinal dispersion coefficient as determined in calibration is equal to 5.0 × 10(-3) m(2)/d. Numerical sensitivity analyses indicate that the hydraulic conductivity and the longitudinal dispersion coefficient are the key parameters controlling the transport of radionuclides, while the numerical model is not sensitive to changes in the effective porosity and the specific yield. Preliminary predictions have been performed with the calibrated model both for the natural setting of the site and the graded site in which the valleys of the site are backfilled with low permeable materials. Results indicate that the proposed site grading increases the safety of the site for disposal of LILW by reducing both the groundwater level and the hydraulic gradient and that radionuclide transport would not likely be a problem or cause groundwater

  7. Special Analysis for the Disposal of the Sandia National Laboratory Classified Macroencapsulated Mixed Waste at the Area 5 Radioactive Waste Management Site, Nevada National Security Site, Nye County, Nevada

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gregory, Louis B.

    This special analysis evaluates whether the Sandia National Laboratory (SNL) Classified Macroencapsulated Mixed Waste stream (ASLA000001007, Revision 4) is suitable for disposal by shallow land burial (SLB) at the Area 5 Radioactive Waste Management Site (RWMS) at the Nevada National Security Site (NNSS). The SNL Classified Macroencapsulated Mixed Waste stream consists of debris from classified nuclear weapons components (SNL 2015). The SNL Classified Macroencapsulated Mixed Waste stream required a special analysis due to tritium (3H) exceeding the NNSS Waste Acceptance Criteria (WAC) Action Levels (U.S. Department of Energy, National Nuclear Security Administration Nevada Field Office [NNSA/NFO] 2015). The SNL Classifiedmore » Macroencapsulated Mixed Waste stream had no significant effect on the maximum mean and 95th percentile results for the resident air pathway and all-pathways annual total effective dose (TED). The SNL Classified Macroencapsulated Mixed Waste stream increases the mean air pathway and all-pathways annual TED from approximately 100 to 200 years after closure. Addition of the SNL Classified Macroencapsulated Mixed Waste stream inventory shifts the maximum TED to approximately 100 years after closure and increases the TED for several alternative exposure scenarios. The maximum mean and the 95th percentile 222Rn flux density remain less than the performance objective throughout the compliance period. The SNL Classified Macroencapsulated Mixed Waste stream is suitable for disposal by SLB at the Area 5 RWMS. The waste stream is recommended for approval without conditions.« less

  8. Small mammal populations at hazardous waste disposal sites near Houston, Texas, USA

    USGS Publications Warehouse

    Robbins, C.S.

    1990-01-01

    Small mammals were trapped, tagged and recaptured in 0?45 ha plots at six hazardous industrial waste disposal sites to determine if populations, body mass and age structures were different from paired control site plots. Low numbers of six species of small mammals were captured on industrial waste sites or control sites. Only populations of hispid cotton rats at industrial waste sites and control sites were large enough for comparisons. Overall population numbers, age structure, and body mass of adult male and female cotton rats were similar at industrial waste sites and control sites. Populations of small mammals (particularly hispid cotton rats) may not suffice as indicators of environments with hazardous industrial waste contamination.

  9. DREDGED MATERIAL RECLAMATION AT THE JONES ISLAND CONFINED DISPOSAL FACILITY SITE CAPSULE

    EPA Science Inventory

    In this SITE demonstration, phytoremediation technology was applied to contaminated dredged materials from the Jones Island Confined Disposal Facility (CDF) located in Milwaukee Harbor, Wisconsin. The Jones Island CDF receives dredged materials from normal maintenance of Milwauke...

  10. Assessment of compost application to coal ash disposal sites to promote the rapid vegetation establishment

    NASA Astrophysics Data System (ADS)

    Repmann, F.; Slazak, A.; Babic, M.; Schneider, B. U.; Schaaf, W.; Hüttl, R. F.

    2009-04-01

    In the city of Tuzla, located in Bosnia and Herzegovina, a coal fired thermo electric power plant is operated by the company JP ELEKTROPRIVERDA BIH TERMOELEKTRANA "TUZLA". High amounts of ash are produced by the power plant, which are currently disposed into settlement ponds bordered by dams in natural valleys. A total of four ash disposal sites covering an area of approx. 170 ha have been established during the last decades. Due to the fact that residual ash from coal combustion was found to contain a variety of trace elements (Ni, Cr, As, B), it must be assumed that ash disposal of that magnitude constitutes an environmental problem which is investigated within the EU-FP6 / STREP project "Reintegration of Coal Ash Disposal Sites and Mitigation of Pollution in the West Balkan Area" RECOAL. The main hazards relate to soil and groundwater contamination due to leaching toxins, dust dispersion, and toxins entering the food chain as these disposal sites are used for agricultural purposes. In order to rapidly establish a vegetation cover on barren ash dumps that particularly would prevent dust erosion we assessed the applicability of compost, produced from locally available municipal and industrial organic residues as an amendment to ash to improve substrate fertility. The envisaged remediation technology was considered to be a low cost, easy applicable and rapid method capable of substantially enhancing living conditions of residents in the vicinity of the abandoned disposal sites. Various compost application rates were evaluated in the field on experimental site Divkovici I in Tuzla and additionally in the greenhouse environment at Brandenburg Technical University Cottbus. Field and laboratory tests revealed that plant growth and cover rate can substantially be improved by mixing compost into the upper ash layer to a maximum depth of approx. 20 cm. Besides direct growth observations in the field analysis of soil parameters gave evidence that the fertility of ashy

  11. 43 CFR 2743.2-1 - Patent provisions for new disposal sites.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 43 Public Lands: Interior 2 2012-10-01 2012-10-01 false Patent provisions for new disposal sites. 2743.2-1 Section 2743.2-1 Public Lands: Interior Regulations Relating to Public Lands (Continued) BUREAU OF LAND MANAGEMENT, DEPARTMENT OF THE INTERIOR LAND RESOURCE MANAGEMENT (2000) RECREATION AND...

  12. 43 CFR 2743.2-1 - Patent provisions for new disposal sites.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 43 Public Lands: Interior 2 2013-10-01 2013-10-01 false Patent provisions for new disposal sites. 2743.2-1 Section 2743.2-1 Public Lands: Interior Regulations Relating to Public Lands (Continued) BUREAU OF LAND MANAGEMENT, DEPARTMENT OF THE INTERIOR LAND RESOURCE MANAGEMENT (2000) RECREATION AND...

  13. 43 CFR 2743.2-1 - Patent provisions for new disposal sites.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 43 Public Lands: Interior 2 2014-10-01 2014-10-01 false Patent provisions for new disposal sites. 2743.2-1 Section 2743.2-1 Public Lands: Interior Regulations Relating to Public Lands (Continued) BUREAU OF LAND MANAGEMENT, DEPARTMENT OF THE INTERIOR LAND RESOURCE MANAGEMENT (2000) RECREATION AND...

  14. A temporal and spatial assessment of TBT concentrations at dredged material disposal sites around the coast of England and Wales.

    PubMed

    Bolam, Thi; Barry, Jon; Law, Robin J; James, David; Thomas, Boby; Bolam, Stefan G

    2014-02-15

    Despite legislative interventions since the 1980s, contemporary concentrations of organotin compounds in marine sediments still impose restrictions on the disposal of dredged material in the UK. Here, we analyse temporal and spatial data to assess the effectiveness of the ban on the use of TBT paints in reducing concentrations at disposal sites. At a national scale, there was a statistically significant increase in the proportion of samples in which the concentration was below the limit of detection (LOD) from 1998 to 2010. This was observed for sediments both inside and outside the disposal sites. However, this temporal decline in organotin concentration is disposal site-specific. Of the four sites studied in detail, two displayed significant increases in proportion of samples below LOD over time. We argue that site-specificity in the effectiveness of the TBT ban results from variations in historical practices at source and unique environmental characteristics of each site. Crown Copyright © 2013. Published by Elsevier Ltd. All rights reserved.

  15. Evaluation of Low-Level Waste Disposal Receipt Data for Los Alamos National Laboratory Technical Area 54, Area G Disposal Facility - Fiscal Year 2011

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    French, Sean B.; Shuman, Robert

    2012-04-17

    The Los Alamos National Laboratory (LANL or the Laboratory) generates radioactive waste as a result of various activities. Operational or institutional waste is generated from a wide variety of research and development activities including nuclear weapons development, energy production, and medical research. Environmental restoration (ER), and decontamination and decommissioning (D and D) waste is generated as contaminated sites and facilities at LANL undergo cleanup or remediation. The majority of this waste is low-level radioactive waste (LLW) and is disposed of at the Technical Area 54 (TA-54), Area G disposal facility. U.S. Department of Energy (DOE) Order 435.1 (DOE, 2001) requiresmore » that radioactive waste be managed in a manner that protects public health and safety, and the environment. To comply with this order, DOE field sites must prepare and maintain site-specific radiological performance assessments for LLW disposal facilities that accept waste after September 26, 1988. Furthermore, sites are required to conduct composite analyses that account for the cumulative impacts of all waste that has been (or will be) disposed of at the facilities and other sources of radioactive material that may interact with the facilities. Revision 4 of the Area G performance assessment and composite analysis was issued in 2008 (LANL, 2008). These analyses estimate rates of radionuclide release from the waste disposed of at the facility, simulate the movement of radionuclides through the environment, and project potential radiation doses to humans for several on-site and off-site exposure scenarios. The assessments are based on existing site and disposal facility data and on assumptions about future rates and methods of waste disposal. The accuracy of the performance assessment and composite analysis depends upon the validity of the data used and assumptions made in conducting the analyses. If changes in these data and assumptions are significant, they may invalidate

  16. Selected hydrologic data from a wastewater spray disposal site on Hilton Head Island, South Carolina

    USGS Publications Warehouse

    Speiran, G.K.; Belval, D.L.

    1985-01-01

    This study presents data collected during a study of the effects on the water table aquifer from wastewater application at rates of up to 5 inches per week on a wastewater spray disposal site on Hilton Head Island, South Carolina. The study was conducted from April 1982 through December 1983. The disposal site covers approximately 14 acres. Water level and water quality data from organic, inorganic, and nutrient analyses from the water table aquifer to a depth of 30 ft and similar water quality data from the wastewater treatment plant are included. (USGS)

  17. Safe disposal of radionuclides in low-level radioactive-waste repository sites; Low-level radioactive-waste disposal workshop, U.S. Geological Survey, July 11-16, 1987, Big Bear Lake, Calif., Proceedings

    USGS Publications Warehouse

    Bedinger, Marion S.; Stevens, Peter R.

    1990-01-01

    In the United States, low-level radioactive waste is disposed by shallow-land burial. Low-level radioactive waste generated by non-Federal facilities has been buried at six commercially operated sites; low-level radioactive waste generated by Federal facilities has been buried at eight major and several minor Federally operated sites (fig. 1). Generally, low-level radioactive waste is somewhat imprecisely defined as waste that does not fit the definition of high-level radioactive waste and does not exceed 100 nCi/g in the concentration of transuranic elements. Most low-level radioactive waste generated by non-Federal facilities is generated at nuclear powerplants; the remainder is generated primarily at research laboratories, hospitals, industrial facilities, and universities. On the basis of half lives and concentrations of radionuclides in low-level radioactive waste, the hazard associated with burial of such waste generally lasts for about 500 years. Studies made at several of the commercially and Federally operated low-level radioactive-waste repository sites indicate that some of these sites have not provided containment of waste nor the expected protection of the environment.

  18. 10 CFR 40.27 - General license for custody and long-term care of residual radioactive material disposal sites.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... disposed. In such cases, the Commission shall grant a license permitting use of the land if it finds that... the disposal site to be licensed, including documentation on whether land and interests are owned by the United States or an Indian tribe. If the site is on Indian land, then, as specified in the Uranium...

  19. Community Involvement as an Effective Institutional Control at the Weldon Spring Site, a U.S. Department of Energy Office of Legacy Management Site

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deyo, Y.E.; Pauling, T.

    2006-07-01

    The U.S. Department of Energy (DOE) Weldon Spring Site Remedial Action Project (WSSRAP) was conducted for the purpose of remediating a portion of a former trinitrotoluene and dinitrotoluene production plant that was operational from 1941 to 1945 and a former uranium refinery that was operational from 1957 to 1966. Surface remediation activities concluded in 2001 with the completion of a 45-acre (.18 square kilometer) on-site engineered disposal facility. Long-term surveillance and maintenance activities at the site were officially transferred to the DOE Office of Legacy Management in 2003. The Weldon Spring Site is located within the St. Louis, Missouri, metropolitanmore » area (population 3 million). DOE's close relationship with surrounding land owners created a need for innovative solutions to long-term surveillance and maintenance issues at the site. Through a Secretarial proclamation, a plan was established for development of a comprehensive public involvement and education program. This program would act as an institutional control to communicate the historical legacy of the site and would make information available about contamination present at the site to guide people in making decisions about appropriate site activities. In August 2002, the Weldon Spring Site Interpretive Center opened to the public with exhibits about the history of the area, the remediation work that was completed, and a site information repository that is available to visitors. In addition, the Hamburg Trail for hiking and biking was constructed as a joint DOE/MDC effort. The 8-mile trail travels through both DOE and MDC property; a series of historical markers posted along its length to communicate the history of the area and the remediation work that was done as part of WSSRAP activities. A ramp and viewing platform with informational plaques were constructed on the disposal cell to provide an additional mechanism for public education. With a basic marketing program, site visitor

  20. Closure Report for Corrective Action Unit 356: Mud Pits and Disposal Sites, Nevada Test Site, Nevada with Errata Sheet

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NNSA /NV

    2002-11-12

    This Closure Report (CR) has been prepared for Corrective Action Unit (CAU) 356, Mud Pits and Disposal Sites, in accordance with the Federal Facility Agreement and Consent Order. This CAU is located in Areas 3 and 20 of the Nevada Test Site (NTS) approximately 65 miles northwest of Las Vegas, Nevada. Corrective Action Unit 356 consists of seven Corrective Action Sites (CASs): 03-04-01, Area 3 Change House Septic System; 03-09-01, Mud Pit Spill Over; 03-09-03, Mud Pit; 03-09-04, Mud Pit; 03-09-05, Mud Pit; 20-16-01, Landfill; and 20-22-21, Drums. This CR identifies and rationalizes the U.S. Department of Energy (DOE), Nationalmore » Nuclear Security Administration Nevada Operations Office's (NNSA/NV's) recommendation that no further corrective action and closure in place is deemed necessary for CAU 356. This recommendation is based on the results of field investigation/closure activities conducted November 20, 2001, through January 3, 2002, and March 11 to 14, 2002. These activities were conducted in accordance with the Streamlined Approach for Environmental Restoration Plan (SAFER) for CAU 356. For CASs 03-09-01, 03-09-03, 20-16-01, and 22-20-21, analytes detected in soil during the corrective action investigation were evaluated against Preliminary Action Levels (PALs) and it was determined that no Contaminants of Concern (COCs) were present. Therefore, no further action is necessary for the soil at these CASs. For CASs 03-04-01, 03-09-04, and 03-09-05, analytes detected in soil during the corrective action investigation were evaluated against PALs and identifies total petroleum hydrocarbons (TPHs) and radionuclides (i.e., americium-241 and/or plutonium 239/240) as COCs. The nature, extent, and concentration of the TPH and radionuclide COCs were bounded by sampling and shown to be relatively immobile. Therefore, closure in place is recommended for these CASs in CAU 356. Further, use restrictions are not required at this CAU beyond the NTS use restrictions

  1. Site Selection and Geological Research Connected with High Level Waste Disposal Programme in the Czech Republic

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tomas, J.

    2003-02-25

    Attempts to solve the problem of high-level waste disposal including the spent fuel from nuclear power plants have been made in the Czech Republic for over the 10 years. Already in 1991 the Ministry of Environment entitled The Czech Geological Survey to deal with the siting of the locality for HLW disposal and the project No. 3308 ''The geological research of the safe disposal of high level waste'' had started. Within this project a sub-project ''A selection of perspective HLW disposal sites in the Bohemian Massif'' has been elaborated and 27 prospective areas were identified in the Czech Republic. Thismore » selection has been later narrowed to 8 areas which are recently studied in more detail. As a parallel research activity with siting a granitic body Melechov Massif in Central Moldanubian Pluton has been chosen as a test site and the 1st stage of research i.e. evaluation and study of its geological, hydrogeological, geophysical, tectonic and structural properties has been already completed. The Melechov Massif was selected as a test site after the recommendation of WATRP (Waste Management Assessment and Technical Review Programme) mission of IAEA (1993) because it represents an area analogous with the host geological environment for the future HLW and spent fuel disposal in the Czech Republic, i.e. variscan granitoids. It is necessary to say that this site would not be in a locality where the deep repository will be built, although it is a site suitable for oriented research for the sampling and collection of descriptive data using up to date and advanced scientific methods. The Czech Republic HLW and spent fuel disposal programme is now based on The Concept of Radioactive Waste and Spent Nuclear Fuel Management (''Concept'' hereinafter) which has been prepared in compliance with energy policy approved by Government Decree No. 50 of 12th January 2000 and approved by the Government in May 2002. Preparation of the Concept was required, amongst other reasons in

  2. Effect of on-site wastewater disposal on quality of ground water and base flow: A pilot study in Chester County, Southeastern Pennsylvania, 2005

    USGS Publications Warehouse

    Senior, Lisa A.; Cinotto, Peter J.

    2007-01-01

    On-site wastewater disposal has the potential to introduce contaminants into ground water and subsequently, by ground-water discharge, to streams. A pilot study was conducted during 2005 by the U.S. Geological Survey in cooperation with the Chester County Health Department and the Chester County Water Resources Authority to determine if wastewater components, including inorganic constituents and selected organic wastewater compounds, such as detergents, considered to be emerging contaminants, were present in ground water and stream base flow in areas with on-site wastewater disposal. The study area was a small watershed (about 7.1 square miles) of mixed land use drained by Broad Run in central Chester County, Pa. The area is underlain by fractured metamorphic rocks that form aquifers recharged by precipitation. Surface- and ground-water sampling was done in areas with and without on-site wastewater disposal for comparison, including a relatively densely populated village with cesspools and septic systems, a residential area with septic systems, a residential area served by sewers, and agricultural land. Samples were collected in May-June and September 2005 from eight headwater stream sites under base-flow conditions and in June 2005 from eight wells and two springs. Samples were analyzed for major ions, nutrients, boron, bacteria, and a suite of organic wastewater compounds. Several emerging contaminant wastewater compounds, including detergent components, insect repellents, and flame retardants, were detected in base-flow and ground-water samples. Stream base-flow samples generally contained more compounds and higher concentrations of those compounds than did ground-water samples, and of the ground-water samples, samples from springs contained more compounds and higher concentrations than samples from wells. Concentrations of nitrate, chloride, and boron (inorganic constituents associated with wastewater) generally were all elevated in base-flow and ground

  3. Data Validation Package: April 2016 Groundwater Sampling at the Falls City, Texas, Disposal Site

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jasso, Tashina; Widdop, Michael

    Nine groundwater samples were collected at the Falls City, Texas, Disposal Site as specified in the March 2008 Long-Term Surveillance Plan for the US Department of Energy Falls City Uranium Mill Tailings Disposal Site, Falls City, Texas (DOE-LM/1602-2008). Sampling and analyses were conducted as specified in the Sampling and Analysis Plan for US Department of Energy Office of Legacy Management Sites (LMS/PRO/S04351, continually updated). The wells sampled included the cell performance monitoring wells (0709, 0858, 0880, 0906, and 0921) and the groundwater monitoring wells (0862, 0886, 0891, 0924, and 0963). A duplicate sample was collected from location 0891. Water levelsmore » were measured at each sampled well. Historically, cell performance monitoring wells 0908 and 0916 have not produced water and were confirmed as dry during this sampling event. These wells are completed above the saturated interval in the formation. Notable observations for time-concentration graphs in this report include: (1) uranium concentrations in well 0891 continue to increase; (2) the uranium concentration in well 0880 is higher than the 2015 value and lower than the 2014 value, and it remains within the range of historical values; and (3) uranium concentrations in the other sampled wells are below 2 mg/L and consistent with previous results.« less

  4. Development of a Korean reference HLW disposal system under the Korean representative geologic conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Choi, Heui-Joo; Lee, Jong Youl; Choi, Jongwon

    2007-07-01

    The development of a Korean Reference disposal System for the spent fuels from PWR and CANDU reactors is outlined in this paper. Around 36,000 tU of spent fuels are being projected based on the lifetimes of 28 nuclear power reactors in Korea. Since the site for the geological disposal has not yet been decided, a hypothetical site with representative Korean geologic conditions is proposed for the conceptual design of the repository. The disposal rates of the spent fuels are determined according to the total operation time of 55 years. The canisters are optimized by considering natural Korean conditions, and themore » buffer is designed with domestic Ca-bentonite. The depth of the repository is determined to be 500 m below the ground's surface. The canister separation distances are determined through a thermal analysis. The main features of the repository are presented from the layout to the closure. A computer program has been developed to calculate and analyze the volume and the area of the disposal system to help in the cost analysis. The final output of the design is presented as a unit disposal cost, US $315 /kgU. (authors)« less

  5. 49 CFR 599.201 - Identification of salvage auctions and disposal facilities.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... on the Web site at http://www.cars.gov/disposal; or (3) A facility that disposes of vehicles in...) of this section, be currently listed on the Web site at http://www.cars.gov/disposal, as of the date.... (1) A disposal facility that qualifies as such by active membership in ELVS and that fails to...

  6. 49 CFR 599.201 - Identification of salvage auctions and disposal facilities.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... on the Web site at http://www.cars.gov/disposal; or (3) A facility that disposes of vehicles in...) of this section, be currently listed on the Web site at http://www.cars.gov/disposal, as of the date.... (1) A disposal facility that qualifies as such by active membership in ELVS and that fails to...

  7. 49 CFR 599.201 - Identification of salvage auctions and disposal facilities.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... on the Web site at http://www.cars.gov/disposal; or (3) A facility that disposes of vehicles in...) of this section, be currently listed on the Web site at http://www.cars.gov/disposal, as of the date.... (1) A disposal facility that qualifies as such by active membership in ELVS and that fails to...

  8. 49 CFR 599.201 - Identification of salvage auctions and disposal facilities.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... on the Web site at http://www.cars.gov/disposal; or (3) A facility that disposes of vehicles in...) of this section, be currently listed on the Web site at http://www.cars.gov/disposal, as of the date.... (1) A disposal facility that qualifies as such by active membership in ELVS and that fails to...

  9. Geological considerations in hazardouswaste disposal

    NASA Astrophysics Data System (ADS)

    Cartwright, K.; Gilkeson, R. H.; Johnson, T. M.

    1981-12-01

    Present regulations assume that long-term isolation of hazardous wastes — including toxic chemical, biological, radioactive, flammable and explosive wastes — may be effected by disposal in landfills that have liners of very low hydraulic conductivity. In reality, total isolation of wastes in humid areas is not possible; some migration of leachate from wastes buried in the gound will always occur. Regulations should provide performance standards applicable on a site-by-site basis rather than rigid criteria for site selection and design. The performance standards should take into account several factors: (1) the categories, segregation, degradation and toxicity of the wastes; (2) the site hydrogeology, which governs the direction and rate of contaminant transport; (3) the attenuation of contaminants by geochemical interactions with geologic materials; and (4) the release rate of unattenuated pollutants to surface or groundwater. An adequate monitoring system is essential. The system should both test the extent to which the operation of the site meets performance standards and provide sufficient warning of pollution problems to allow implementation of remedial measures. In recent years there has been a trend away from numerous, small disposal sites toward fewer and larger sites. The size of a disposal site should be based on the attenuation capacity of the geologic material, which has a finite, though generally not well-defined, limit. For slowly degradable wastes, engineered sites with leachate-collection systems appear to be only a temporary solution since the leachate collected will also require final disposal.

  10. Geological considerations in hazardouswaste disposal

    USGS Publications Warehouse

    Cartwright, K.; Gilkeson, R.H.; Johnson, T.M.

    1981-01-01

    Present regulations assume that long-term isolation of hazardous wastes - including toxic chemical, biological, radioactive, flammable and explosive wastes - may be effected by disposal in landfills that have liners of very low hydraulic conductivity. In reality, total isolation of wastes in humid areas is not possible; some migration of leachate from wastes buried in the gound will always occur. Regulations should provide performance standards applicable on a site-by-site basis rather than rigid criteria for site selection and design. The performance standards should take into account several factors: (1) the categories, segregation, degradation and toxicity of the wastes; (2) the site hydrogeology, which governs the direction and rate of contaminant transport; (3) the attenuation of contaminants by geochemical interactions with geologic materials; and (4) the release rate of unattenuated pollutants to surface or groundwater. An adequate monitoring system is essential. The system should both test the extent to which the operation of the site meets performance standards and provide sufficient warning of pollution problems to allow implementation of remedial measures. In recent years there has been a trend away from numerous, small disposal sites toward fewer and larger sites. The size of a disposal site should be based on the attenuation capacity of the geologic material, which has a finite, though generally not well-defined, limit. For slowly degradable wastes, engineered sites with leachate-collection systems appear to be only a temporary solution since the leachate collected will also require final disposal. ?? 1981.

  11. Special Analysis for the Disposal of the Lawrence Livermore National Laboratory Low Activity Beta/Gamma Sources Waste Stream at the Area 5 Radioactive Waste Management Site, Nevada National Security Site, Nye County, Nevada

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shott, Gregory J.

    This special analysis (SA) evaluates whether the Lawrence Livermore National Laboratory (LLNL) Low Activity Beta/Gamma Sources waste stream (BCLALADOEOSRP, Revision 0) is suitable for disposal by shallow land burial (SLB) at the Area 5 Radioactive Waste Management Site (RWMS) at the Nevada National Security Site (NNSS). The LLNL Low Activity Beta/Gamma Sources waste stream consists of sealed sources that are no longer needed. The LLNL Low Activity Beta/Gamma Sources waste stream required a special analysis because cobalt-60 (60Co), strontium-90 (90Sr), cesium-137 (137Cs), and radium-226 (226Ra) exceeded the NNSS Waste Acceptance Criteria (WAC) Action Levels (U.S. Department of Energy, National Nuclearmore » Security Administration Nevada Field Office [NNSA/NFO] 2015). The results indicate that all performance objectives can be met with disposal of the LLNL Low Activity Beta/Gamma Sources in a SLB trench. The LLNL Low Activity Beta/Gamma Sources waste stream is suitable for disposal by SLB at the Area 5 RWMS. However, the activity concentration of 226Ra listed on the waste profile sheet significantly exceeds the action level. Approval of the waste profile sheet could potentially allow the disposal of high activity 226Ra sources. To ensure that the generator does not include large 226Ra sources in this waste stream without additional evaluation, a control is need on the maximum 226Ra inventory. A limit based on the generator’s estimate of the total 226Ra inventory is recommended. The waste stream is recommended for approval with the control that the total 226Ra inventory disposed shall not exceed 5.5E10 Bq (1.5 Ci).« less

  12. Cornell University remote sensing program. [application to waste disposal site selection, study of drainage patterns, and water quality management.

    NASA Technical Reports Server (NTRS)

    Liang, T.; Mcnair, A. J.; Philipson, W. R.

    1977-01-01

    Aircraft and satellite remote sensing technology were applied in the following areas: (1) evaluation of proposed fly ash disposal sites; (2) development of priorities for drainage improvements; (3) state park analysis for rehabilitation and development; (4) watershed study for water quality planning; and (5) assistance project-landfill site selection. Results are briefly summarized. Other projects conducted include: (1) assessment of vineyard-related problems; (2) LANDSAT analysis for pheasant range management; (3) photo-historic evaluation of Revolutionary War sites; and (4) thermal analysis of building insulation. The objectives, expected benefits and actions, and status of these projects are described.

  13. A Methodology for Characterizing Potential Uranium Transport in Deep Geological Disposal Sites

    NASA Astrophysics Data System (ADS)

    Dittrich, T. M.; Reimus, P. W.

    2013-12-01

    In order to make safe and reasonable decisions about radioactive waste disposal in deep geologic sites, it is important to understand the fate and potential transport of long half-life transuranic radionuclides over a wide range of time and distance scales. The objective of this study was to evaluate and demonstrate new experimental methods for quantifying the potential for actinide transport in deep fractured crystalline rock formations. We selected a fractured/weathered granodiorite at the Grimsel Test Site (GTS) in Switzerland as a model system because field experiments involving uranium, as well as other actinides, have already been conducted. Working on this system provides a unique opportunity to compare lab experimental results with field-scale observations. Drilled rock cores and weathered fracture fill material (FFM) from the GTS were shipped to Los Alamos National Laboratory, characterized by x-ray diffraction and microscopy, and used in batch sorption/desorption and column breakthrough experiments. Uranium solutions were made by adding uranium to a synthetic Grimsel groundwater that matched the natural water chemistry found in the GTS groundwater. Batch and breakthrough experiments were conducted using solutions between pH 6.9 and 9.0. All column experiments were conducted using syringe pumps at low flow rate (<0.3 ml h-1) in small columns containing 5 g of material with pore volumes of 2-3 ml. These small columns allow rapid and economical evaluation of sorption/desorption behavior under flowing conditions (and in duplicate or triplicate). Solutions were switched to uranium-free synthetic Grimsel groundwater after equilibration in batch experiments or after near-steady uranium breakthrough occurred in column experiments. The measurement of uranium concentrations as a function of time under these conditions allowed interrogation of desorption rates which we believe control uranium fate and transport over long time and distance scales. Uranium transport

  14. Fuzzy multicriteria disposal method and site selection for municipal solid waste.

    PubMed

    Ekmekçioğlu, Mehmet; Kaya, Tolga; Kahraman, Cengiz

    2010-01-01

    The use of fuzzy multiple criteria analysis (MCA) in solid waste management has the advantage of rendering subjective and implicit decision making more objective and analytical, with its ability to accommodate both quantitative and qualitative data. In this paper a modified fuzzy TOPSIS methodology is proposed for the selection of appropriate disposal method and site for municipal solid waste (MSW). Our method is superior to existing methods since it has capability of representing vague qualitative data and presenting all possible results with different degrees of membership. In the first stage of the proposed methodology, a set of criteria of cost, reliability, feasibility, pollution and emission levels, waste and energy recovery is optimized to determine the best MSW disposal method. Landfilling, composting, conventional incineration, and refuse-derived fuel (RDF) combustion are the alternatives considered. The weights of the selection criteria are determined by fuzzy pairwise comparison matrices of Analytic Hierarchy Process (AHP). It is found that RDF combustion is the best disposal method alternative for Istanbul. In the second stage, the same methodology is used to determine the optimum RDF combustion plant location using adjacent land use, climate, road access and cost as the criteria. The results of this study illustrate the importance of the weights on the various factors in deciding the optimized location, with the best site located in Catalca. A sensitivity analysis is also conducted to monitor how sensitive our model is to changes in the various criteria weights. 2010 Elsevier Ltd. All rights reserved.

  15. A Foundation to Prioritize Coast Guard AtoN Battery Disposal Sites for Characterization and Treatment

    DOT National Transportation Integrated Search

    1994-07-12

    The logical basis for prioritizing Coast Guard AtoN battery disposal sites for character : ization and treatment rests with values. The question is, "What does the Coast Guard : wish to achieve by cleaning up these sites?" Four separate meetings with...

  16. The Storage, Transportation, and Disposal of Nuclear Waste

    NASA Astrophysics Data System (ADS)

    Younker, J. L.

    2002-12-01

    The U.S. Congress established a comprehensive federal policy to dispose of wastes from nuclear reactors and defense facilities, centered on deep geologic disposal of high-level radioactive waste. Site screening led to selection of three potential sites and in 1987, Congress directed the Secretary of Energy to characterize only one site: Yucca Mountain in Nevada. For more than 20 years, teams of scientists and engineers have been evaluating the potential suitability of the site. On the basis of their work, the U.S. Secretary of Energy, Spencer Abraham, concluded in February 2002 that a safe repository can be sited at Yucca Mountain. On July 23, 2002, President Bush signed Joint Resolution 87 approving the site at Yucca Mountain for development of a repository, which allows the U.S. Department of Energy (DOE) to prepare and submit a license application to the U.S. Nuclear Regulatory Commission (NRC). Concerns have been raised relative to the safe transportation of nuclear materials. The U.S. history of transportation of nuclear materials demonstrates that high-level nuclear materials can be safely transported. Since the 1960s, over 1.6 million miles have been traveled by more than 2,700 spent nuclear fuel shipments, and there has never been an accident severe enough to cause a release of radioactive materials. The DOE will use NRC-certified casks that must be able to withstand very stringent tests. The same design features that allow the casks to survive severe accidents also limit their vulnerability to sabotage. In addition, the NRC will approve all shipping routes and security plans. With regard to long-term safety, the Yucca Mountain disposal system has five key attributes. First, the arid climate and geology of Yucca Mountain combine to ensure that limited water will enter the emplacement tunnels. Second, the DOE has designed a waste package and drip shield that are expected to have very long lifetimes in the repository environment. Third, waste form

  17. Data Validation Package, July 2016 Groundwater Sampling at the Shirley Basin South, Wyoming, Disposal Site November 2016

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Frazier, William; Price, Jeffrey

    Sampling Period: July 14-15, 2016 The 2004 Long-Term Surveillance Plan for the Shirley Basin South (UMTRCA Title II) Disposal Site, Carbon County, Wyoming, requires annual monitoring to verify continued compliance with the pertinent alternate concentration limits (ACLs) and Wyoming Class III (livestock use) groundwater protection standards. Planned monitoring locations are shown in Attachment 1, Sampling and Analysis Work Order. Point-of-compliance (POC) wells 19-DC, 5-DC, and 5-SC, and monitoring wells 10-DC, 110-DC, 112-DC, 113-DC, 40-SC, 54-SC, 100-SC, 102-SC, and K.G.S.#3 were sampled. POC well 51-SC and downgradient well 101-SC were dry at the time of sampling. The water level was measuredmore » at each sampled well. See Attachment 2, Trip Report for additional details. Sampling and analyses were conducted in accordance with the Sampling and Analysis Plan for the U S. Department of Energy Office of Legacy Management Sites (LMS/PRO/S04351, continually updated, http://energy.gov/lm/downloads/sampling-and­ analysis-plan-us-department-energy-office-legacy-management-sites). ACLs are approved for cadmium, chromium, lead, nickel, radium-226, radium-228, selenium, thorium-230, and uranium in site groundwater. Time-concentration graphs of the contaminants of concern in POC wells are included in Attachment 3, Data Presentation. The only ACL exceedance in a POC well was radium-228 in well 5-DC where the concentration was 30.7 picocuries per liter (pCi/L), exceeding the ACL of 25.7 pCi/L. Concentrations of sulfate and total dissolved solids continue to exceed their respective Wyoming Class III groundwater protection standards for livestock use in wells 5-DC, 5-SC, and 54-SC as they have done throughout the sampling history; however, there is no livestock use of the water from these aquifers at the site, and no constituent concentrations exceed groundwater protection standards at the wells near the site boundary.« less

  18. Closure plan for Corrective Action Unit 109: U-2bu subsidence crater, Nevada Test Site, Nevada

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1999-03-01

    The U-2bu subsidence crater, Corrective Action Unit 109, will be closed in accordance with the Resource Conservation and Recovery Act, the Nevada Division of Environmental Protection operational permit, and the Federal Facility Agreement and Consent Order. The U-2bu subsidence crater is located in Area 2 of the Nevada Test Site. It was created in 1971 by an underground nuclear test with the name Miniata. The crater has a diameter of 288 meters (944 feet) and an approximate depth of 35 meters (115 feet). Based on the results of the analyses reported in the site characterization report, the only constituents ofmore » concern in the U-2bu subsidence crater include leachable lead and total petroleum hydrocarbons. Closure activities will include the excavation and disposal of impacted soil from the top of the crater. Upon completion of excavation, verification samples will be collected to show that the leachable lead has been removed to concentrations below the regulatory action level. After sample results show that the lead has been removed, the excavated area will be backfilled and a soil flood diversion berm will be constructed as a best management practice. An independent registered professional engineer will certify the site was closed following the approved Closure Plan. Post-closure care is not warranted for this site because closure activities will involve removal of the Resource Conservation and Recovery Act constituents of concern.« less

  19. 43 CFR 2743.3 - Leased disposal sites.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... review of all records and inspection reports on file with the Bureau of Land Management, State, and local... landfill concerning site management and a review of all reports and logs pertaining to the type and amount...

  20. U2AF1 mutations alter splice site recognition in hematological malignancies.

    PubMed

    Ilagan, Janine O; Ramakrishnan, Aravind; Hayes, Brian; Murphy, Michele E; Zebari, Ahmad S; Bradley, Philip; Bradley, Robert K

    2015-01-01

    Whole-exome sequencing studies have identified common mutations affecting genes encoding components of the RNA splicing machinery in hematological malignancies. Here, we sought to determine how mutations affecting the 3' splice site recognition factor U2AF1 alter its normal role in RNA splicing. We find that U2AF1 mutations influence the similarity of splicing programs in leukemias, but do not give rise to widespread splicing failure. U2AF1 mutations cause differential splicing of hundreds of genes, affecting biological pathways such as DNA methylation (DNMT3B), X chromosome inactivation (H2AFY), the DNA damage response (ATR, FANCA), and apoptosis (CASP8). We show that U2AF1 mutations alter the preferred 3' splice site motif in patients, in cell culture, and in vitro. Mutations affecting the first and second zinc fingers give rise to different alterations in splice site preference and largely distinct downstream splicing programs. These allele-specific effects are consistent with a computationally predicted model of U2AF1 in complex with RNA. Our findings suggest that U2AF1 mutations contribute to pathogenesis by causing quantitative changes in splicing that affect diverse cellular pathways, and give insight into the normal function of U2AF1's zinc finger domains. © 2015 Ilagan et al.; Published by Cold Spring Harbor Laboratory Press.

  1. Assessment of land suitability for olive mill wastewater disposal site selection by integrating fuzzy logic, AHP, and WLC in a GIS.

    PubMed

    Aydi, Abdelwaheb; Abichou, Tarek; Nasr, Imen Hamdi; Louati, Mourad; Zairi, Moncef

    2016-01-01

    This paper presents a geographic information system-based multi-criteria site selection tool of an olive mill wastewater (OMW) disposal site in Sidi Bouzid Region, Tunisia. The multi-criteria decision framework integrates ten constraints and six factors that relate to environmental and economic concerns, and builds a hierarchy model for OMW disposal site suitability. The methodology is used for preliminary assessment of the most suitable OMW disposal sites by combining fuzzy set theory and analytic hierarchy process (AHP). The fuzzy set theory is used to standardize factors using different fuzzy membership functions while the AHP is used to establish the relative importance of the criteria. The AHP makes pairwise comparisons of relative importance between hierarchy elements grouped by both environmental and economic decision criteria. The OMW disposal site suitability is achieved by applying a weighted linear combination that uses a comparison matrix to aggregate different importance scenarios associated with environmental and economic objectives. Three different scenarios generated by different weights applied to the two objectives. The scenario (a) assigns a weight of 0.75 to the environmental and 0.25 to the economic objective, scenario (b) has equal weights, and scenario (c) features weights of 0.25 and 0.75 for environmental and economic objectives, respectively. The results from this study assign the least suitable OMW disposal site of 2.5 % when environmental and economic objectives are rated equally, while a more suitable OMW disposal site of 1.0 % is generated when the economic objective is rated higher.

  2. Data Validation Package April 2016 Groundwater and Surface Water Sampling at the Monticello, Utah, Disposal and Processing Sites August 2016

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nguyen, Jason; Smith, Fred

    This semiannual event includes sampling groundwater and surface water at the Monticello Disposal and Processing Sites. Sampling and analyses were conducted as specified in the Sampling and Analysis Plan for U.S. Department of Energy Office of Legacy Management Sites (LMS/PRO/S04351, continually updated) and Program Directive MNT-2016-01. Complete sample sets were collected from 42 of 48 planned locations (9 of 9 former mill site wells, 13 of 13 downgradient wells, 7 of 9 downgradient permeable reactive barrier wells, 4 of 7 seeps and wetlands, and 9 of 10 surface water locations). Planned monitoring locations are shown in Attachment 1, Sampling andmore » Analysis Work Order. Locations R6-M3, SW00-01, Seep 1, Seep 2, and Seep 5 were not sampled due to insufficient water availability. A partial sample was collected at location R4-M3 due to insufficient water. All samples from the permeable reactive barrier wells were filtered as specified in the program directive. Duplicate samples were collected from surface water location Sorenson and from monitoring wells 92-07 and RlO-Ml. Water levels were measured at all sampled wells and an additional set of wells. See Attachment2, Trip Report for additional details. The contaminants of concern (COCs) for the Monticello sites are arsenic, manganese, molybdenum, nitrate+ nitrite as nitrogen (nitrate+ nitrite as N), selenium, uranium, and vanadium. Locations with COCs that exceeded remediation goals are listed in Table 1 and Table 2. Time-concentration graphs of the COCs for all groundwater and surface water locations are included in Attachment 3, Data Presentation. An assessment of anomalous data is included in Attachment 4.« less

  3. Geology, hydrology, and results of tracer testing in the Galena-Platteville aquifer at a waste-disposal site near Byron, Illinois

    USGS Publications Warehouse

    Kay, Robert T.; Yeskis, Douglas J.; Prinos, Scott T.; Morrow, William S.; Vendl, Mark

    1999-01-01

    A study was conducted by the U.S. Geological Survey and the U.S. Environmental Protection Agency of the geohydrology of the dolomite bedrock at a waste-disposal site near Byron, Illinois. The study was designed to identify and characterize the flow pathways through the bedrock aquifer beneath the site. The geologic units of concern at the site are the Glenwood Formation of the Ancell Group, and the Platteville and Galena Groups. These deposits compose the Galena-Platteville aquifer and the underlying Harmony Hill Shale semiconfining unit. The Galena-Platteville aquifer is an unconfined aquifer. Geophysical logging, water levels, and aquifer-test data indicate the presence of interconnected, hydraulically active fractures in the middle of the Galena-Platteville aquifer (the upper flow pathway), and a second set of hydraulically active fractures (the lower flow pathway). The lower flow pathway may be present through much of the site. Few hydraulically active fractures are present in the upper part of the aquifer near the center of the site, but appear to be more numerous in the upper part of the aquifer in the western and northeastern parts of the site. Water-level data obtained during the tracer test indicate that pumping effects were present near the pumped wells. Pumping effects may have been present at several wells located along directions of identified fracture orientation from the pumped well. The upper part of the aquifer did not appear to be hydraulically well connected to the flow pathways supplying water to the pumped well. Large background changes in water levels obscured the effects of pumping and prevented calculation of aquifer properties. The velocity of the bromide tracer through the lower flow pathway under the hydraulic gradient resulting from the pumping was about 152 feet per day. Solution of the Darcy velocity equation results in a calculated effective porosity for this interval of 3.5 percent, indicating hydraulic interconnection between the

  4. A reference time scale for Site U1385 (Shackleton Site) on the SW Iberian Margin

    NASA Astrophysics Data System (ADS)

    Hodell, D.; Lourens, L.; Crowhurst, S.; Konijnendijk, T.; Tjallingii, R.; Jiménez-Espejo, F.; Skinner, L.; Tzedakis, P. C.; Abrantes, Fatima; Acton, Gary D.; Alvarez Zarikian, Carlos A.; Bahr, André; Balestra, Barbara; Barranco, Estefanìa Llave; Carrara, Gabriela; Ducassou, Emmanuelle; Flood, Roger D.; Flores, José-Abel; Furota, Satoshi; Grimalt, Joan; Grunert, Patrick; Hernández-Molina, Javier; Kim, Jin Kyoung; Krissek, Lawrence A.; Kuroda, Junichiro; Li, Baohua; Lofi, Johanna; Margari, Vasiliki; Martrat, Belen; Miller, Madeline D.; Nanayama, Futoshi; Nishida, Naohisa; Richter, Carl; Rodrigues, Teresa; Rodríguez-Tovar, Francisco J.; Roque, Ana Cristina Freixo; Sanchez Goñi, Maria F.; Sierro Sánchez, Francisco J.; Singh, Arun D.; Sloss, Craig R.; Stow, Dorrik A. V.; Takashimizu, Yasuhiro; Tzanova, Alexandrina; Voelker, Antje; Xuan, Chuang; Williams, Trevor

    2015-10-01

    We produced a composite depth scale and chronology for Site U1385 on the SW Iberian Margin. Using log(Ca/Ti) measured by core scanning XRF at 1-cm resolution in all holes, a composite section was constructed to 166.5 meter composite depth (mcd) that corrects for stretching and squeezing in each core. Oxygen isotopes of benthic foraminifera were correlated to a stacked δ18O reference signal (LR04) to produce an oxygen isotope stratigraphy and age model. Variations in sediment color contain very strong precession signals at Site U1385, and the amplitude modulation of these cycles provides a powerful tool for developing an orbitally-tuned age model. We tuned the U1385 record by correlating peaks in L* to the local summer insolation maxima at 37°N. The benthic δ18O record of Site U1385, when placed on the tuned age model, generally agrees with other time scales within their respective chronologic uncertainties. The age model is transferred to down-core data to produce a continuous time series of log(Ca/Ti) that reflect relative changes of biogenic carbonate and detrital sediment. Biogenic carbonate increases during interglacial and interstadial climate states and decreases during glacial and stadial periods. Much of the variance in the log(Ca/Ti) is explained by a linear combination of orbital frequencies (precession, tilt and eccentricity), whereas the residual signal reflects suborbital climate variability. The strong correlation between suborbital log(Ca/Ti) variability and Greenland temperature over the last glacial cycle at Site U1385 suggests that this signal can be used as a proxy for millennial-scale climate variability over the past 1.5 Ma. Millennial climate variability, as expressed by log(Ca/Ti) at Site U1385, was a persistent feature of glacial climates over the past 1.5 Ma, including glacial periods of the early Pleistocene ('41-kyr world') when boundary conditions differed significantly from those of the late Pleistocene ('100-kyr world'). Suborbital

  5. Closure Plan for the Area 5 Radioactive Waste Management Site at the Nevada Test Site

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NSTec Environmental Management

    The Area 5 Radioactive Waste Management Site (RMWS) at the Nevada Test Site (NTS) is managed and operated by National Security Technologies, LLC (NSTec), for the U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Site Office (NNSA/NSO). This document is the first update of the preliminary closure plan for the Area 5 RWMS at the NTS that was presented in the Integrated Closure and Monitoring Plan (DOE, 2005a). The major updates to the plan include a new closure schedule, updated closure inventory, updated site and facility characterization data, the Title II engineering cover design, and the closure processmore » for the 92-Acre Area of the RWMS. The format and content of this site-specific plan follows the Format and Content Guide for U.S. Department of Energy Low-Level Waste Disposal Facility Closure Plans (DOE, 1999a). This interim closure plan meets closure and post-closure monitoring requirements of the order DOE O 435.1, manual DOE M 435.1-1, Title 40 Code of Federal Regulations (CFR) Part 191, 40 CFR 265, Nevada Administrative Code (NAC) 444.743, and Resource Conservation and Recovery Act (RCRA) requirements as incorporated into NAC 444.8632. The Area 5 RWMS accepts primarily packaged low-level waste (LLW), low-level mixed waste (LLMW), and asbestiform low-level waste (ALLW) for disposal in excavated disposal cells.« less

  6. Berm design to reduce risks of catastrophic slope failures at solid waste disposal sites.

    PubMed

    De Stefano, Matteo; Gharabaghi, Bahram; Clemmer, Ryan; Jahanfar, M Ali

    2016-11-01

    Existing waste disposal sites are being strained by exceeding their volumetric capacities because of exponentially increasing rates of municipal solid waste generation worldwide, especially in densely populated metropolises. Over the past 40 years, six well-documented and analyzed disposal sites experienced catastrophic failure. This research presents a novel analysis and design method for implementation of a series of in-situ earth berms to slow down the movement of waste material flow following a catastrophic failure. This is the first study of its kind that employs a dynamic landslide analysis model, DAN-W, and the Voellmy rheological model to approximate solid waste avalanche flow. A variety of single and multiple berm configuration scenarios were developed and tested to find an optimum configuration of the various earth berm geometries and number of berms to achieve desired energy dissipation and reduction in total waste material runout length. The case study application of the novel mitigation measure shows that by constructing a series of six relatively inexpensive 3 m high earth berms at an optimum distance of 250 m from the slope toe, the total runout length of 1000 m and associated fatalities of the Leuwigajah dumpsite catastrophic failure in Bandung, Indonesia, could have been reduced by half. © The Author(s) 2016.

  7. Treatability of nonylphenol ethoxylate surfactants in on-site wastewater disposal systems.

    PubMed

    Huntsman, Brent E; Staples, Charles A; Naylor, Carter G; Williams, Jim-Bob

    2006-11-01

    The fate of nine-mole nonylphenol ethoxylate (NPE9) discharged to an on-site wastewater disposal (septic) system was the focus of a 2-year investigation. Known amounts of NPE9-based detergent were metered daily into the plumbing at a single-family household. The ethoxylate-containing wastewater was discharged to the highly anoxic environment of a 4500-L septic tank before distribution to the oxic subsurface via 100 m of leach line. After 180 days of injecting detergent to the septic system, periodic soil pore water and/or groundwater samples were collected and analyzed for nonylphenol ethoxylates (NPEs), nonylphenol ether carboxylates, and nonylphenol. The NPE9 and degradation intermediates that were measured were reduced by 99.99% on a molar basis. An 18% reduction in molar concentration within the septic tank was observed. This was followed by a further 96.7% reduction of molar concentration within the leach lines. As the pore water migrated through the vadose zone, an additional 99.69% reduction in molar concentration was measured between the bottom of the leach lines (leach line effluent) and the lowest vadose zone monitoring location. The results obtained from these analyses indicate that degradation of the surfactant occurs within the anoxic portion of the disposal system with continued rapid biodegradation in the oxic unsaturated zone. Only trace amounts of degradation residuals were detected in soil pore water. The concentration and distribution of various degradation intermediates with respect to location, time, and ambient physical conditions were evaluated. Rapid and systematic degradation of NPE in on-site wastewater disposal systems was documented.

  8. Summary environmental site assessment report for the U.S. Department of Energy Oxnard Facility, Oxnard, California

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1996-02-01

    This report summarizes the investigations conducted by Rust Geotech at the U.S. Department of Energy (DOE) Oxnard facility, 1235 East Wooley Road, Oxnard, California. These investigations were designed to locate, identify, and characterize any regulated contaminated media on the site. The effort included site visits; research of ownership, historical uses of the Oxnard facility and adjacent properties, incidences of and investigations for contaminants on adjacent properties, and the physical setting of the site; sampling and analysis; and reporting. These investigations identified two friable asbestos gaskets on the site, which were removed, and nonfriable asbestos, which will be managed through themore » implementation of an asbestos management plan. The California primary drinking water standards were exceeded for aluminum on two groundwater samples and for lead in one sample collected from the shallow aquifer underlying the site; remediation of the groundwater in this aquifer is not warranted because it is not used. Treated water is available from a municipal water system. Three sludge samples indicated elevated heavy metals concentrations; the sludge must be handled as a hazardous waste if disposed. Polychlorinated biphenyls (PCBs) were detected at concentrations below remediation criteria in facility soils at two locations. In accordance with U.S. Environmental Protection Agency (EPA) and State of California guidance, remediation of the PCBs is not required. No other hazardous substances were detected in concentrations exceeding regulatory limits.« less

  9. CENSUS AND STATISTICAL CHARACTERIZATION OF SOIL AND WATER QUALITY AT ABANDONED AND OTHER CENTRALIZED AND COMMERCIAL DRILLING-FLUID DISPOSAL SITES IN LOUISIANA, NEW MEXICO, OKLAHOMA, AND TEXAS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alan R. Dutton; H. Seay Nance

    2003-06-01

    Commercial and centralized drilling-fluid disposal (CCDD) sites receive a portion of spent drilling fluids for disposal from oil and gas exploration and production (E&P) operations. Many older and some abandoned sites may have operated under less stringent regulations than are currently enforced. This study provides a census, compilation, and summary of information on active, inactive, and abandoned CCDD sites in Louisiana, New Mexico, Oklahoma, and Texas, intended as a basis for supporting State-funded assessment and remediation of abandoned sites. Closure of abandoned CCDD sites is within the jurisdiction of State regulatory agencies. Sources of data used in this study onmore » abandoned CCDD sites mainly are permit files at State regulatory agencies. Active and inactive sites were included because data on abandoned sites are sparse. Onsite reserve pits at individual wells for disposal of spent drilling fluid are not part of this study. Of 287 CCDD sites in the four States for which we compiled data, 34 had been abandoned whereas 54 were active and 199 were inactive as of January 2002. Most were disposal-pit facilities; five percent were land treatment facilities. A typical disposal-pit facility has fewer than 3 disposal pits or cells, which have a median size of approximately 2 acres each. Data from well-documented sites may be used to predict some conditions at abandoned sites; older abandoned sites might have outlier concentrations for some metal and organic constituents. Groundwater at a significant number of sites had an average chloride concentration that exceeded nonactionable secondary drinking water standard of 250 mg/L, or a total dissolved solids content of >10,000 mg/L, the limiting definition for underground sources of drinking water source, or both. Background data were lacking, however, so we did not determine whether these concentrations in groundwater reflected site operations. Site remediation has not been found necessary to date for most

  10. 75 FR 54497 - Ocean Dumping; Guam Ocean Dredged Material Disposal Site Designation

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-08

    ... of special scientific importance, and other legitimate uses of the ocean. Minor short-term... option available since 1997. EPA determined that there is a long-term need for an ocean disposal site... Guam and surrounding waters. This is based on the long-term need to support the Naval and commercial...

  11. A Probabilistic Performance Assessment Study of Potential Low-Level Radioactive Waste Disposal Sites in Taiwan

    NASA Astrophysics Data System (ADS)

    Knowlton, R. G.; Arnold, B. W.; Mattie, P. D.; Kuo, M.; Tien, N.

    2006-12-01

    For several years now, Taiwan has been engaged in a process to select a low-level radioactive waste (LLW) disposal site. Taiwan is generating LLW from operational and decommissioning wastes associated with nuclear power reactors, as well as research, industrial, and medical radioactive wastes. The preliminary selection process has narrowed the search to four potential candidate sites. These sites are to be evaluated in a performance assessment analysis to determine the likelihood of meeting the regulatory criteria for disposal. Sandia National Laboratories and Taiwan's Institute of Nuclear Energy Research have been working together to develop the necessary performance assessment methodology and associated computer models to perform these analyses. The methodology utilizes both deterministic (e.g., single run) and probabilistic (e.g., multiple statistical realizations) analyses to achieve the goals. The probabilistic approach provides a means of quantitatively evaluating uncertainty in the model predictions and a more robust basis for performing sensitivity analyses to better understand what is driving the dose predictions from the models. Two types of disposal configurations are under consideration: a shallow land burial concept and a cavern disposal concept. The shallow land burial option includes a protective cover to limit infiltration potential to the waste. Both conceptual designs call for the disposal of 55 gallon waste drums within concrete lined trenches or tunnels, and backfilled with grout. Waste emplaced in the drums may be solidified. Both types of sites are underlain or placed within saturated fractured bedrock material. These factors have influenced the conceptual model development of each site, as well as the selection of the models to employ for the performance assessment analyses. Several existing codes were integrated in order to facilitate a comprehensive performance assessment methodology to evaluate the potential disposal sites. First, a need

  12. Nevada Test Site Waste Acceptance Criteria (NTSWAC)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NNSA /NSO Waste Management Project

    This document establishes the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office, Nevada Test Site Waste Acceptance Criteria (NTSWAC). The NTSWAC provides the requirements, terms, and conditions under which the Nevada Test Site will accept low-level radioactive (LLW) and LLW Mixed Waste (MW) for disposal.

  13. NRC Consultation and Monitoring at the Savannah River Site: Focusing Reviews of Two Different Disposal Actions - 12181

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ridge, A. Christianne; Barr, Cynthia S.; Pinkston, Karen E.

    Section 3116 of the Ronald W. Reagan National Defense Authorization Act for Fiscal Year 2005 (NDAA) requires the U.S. Department of Energy (DOE) to consult with the U.S. Nuclear Regulatory Commission (NRC) for certain non-high level waste determinations. The NDAA also requires NRC to monitor DOE's disposal actions related to those determinations. In Fiscal Year 2011, the NRC staff reviewed DOE performance assessments for tank closure at the F-Tank Farm (FTF) Facility and salt waste disposal at the Saltstone Disposal Facility (SDF) at the Savannah River Site (SRS) as part of consultation and monitoring, respectively. Differences in inventories, waste forms,more » and key barriers led to different areas of focus in the NRC reviews of these two activities at the SRS. Because of the key role of chemically reducing grouts in both applications, the evaluation of chemical barriers was significant to both reviews. However, radionuclide solubility in precipitated metal oxides is expected to play a significant role in FTF performance whereas release of several key radionuclides from the SDF is controlled by sorption or precipitation within the cementitious wasteform itself. Similarly, both reviews included an evaluation of physical barriers to flow, but differences in the physical configurations of the waste led to differences in the reviews. For example, NRC's review of the FTF focused on the modeled degradation of carbon steel tank liners while the staff's review of the SDF performance included a detailed evaluation of the physical degradation of the saltstone wasteform and infiltration-limiting closure cap. Because of the long time periods considered (i.e., tens of thousands of years), the NRC reviews of both facilities included detailed evaluation of the engineered chemical and physical barriers. The NRC staff reviews of residual waste disposal in the FTF and salt waste disposal in the SDF focused on physical barriers to flow and chemical barriers to radionuclide

  14. Data Validation Package - June 2016 Groundwater and Surface Water Sampling at the Green River, Utah, Disposal Site

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Linard, Joshua; Price, Jeffrey

    This event included annual sampling of groundwater and surface water locations at the Green River, Utah, Disposal Site. Sampling and analyses were conducted as specified in Sampling and Analysis Plan for US. Department of Energy Office of Legacy Management Sites (LMS/PRO/S04351, continually updated, http://energy.gov/lrnldownloads/sampling-and- analysis-plan-us-department-energy-office-legacy-management-sites). Samples were collected from 15 monitoring wells and two surface locations at the disposal site as specified in the draft 2011 Ground Water Compliance Action Plan for the Green River, Utah, Disposal Site. Planned monitoring locations are shown in Attachment 1, Sampling and Analysis Work Order. A duplicate sample was collected from location 0179. Onemore » equipment blank was collected during this sampling event. Water levels were measured at all monitoring wells that were sampled. See Attachment 2, Trip Reports for additional details. The analytical data and associated qualifiers can be viewed in environmental database reports and are also available for viewing with dynamic mapping via the GEMS (Geospatial Environmental Mapping System) website at http://gems.lm.doe.gov/#. No issues were identified during the data validation process that requires additional action or follow-up.« less

  15. Coastal monitoring of the May 2005 dredge disposal offshore of Ocean Beach, San Francisco, Calif.

    USGS Publications Warehouse

    Barnard, Patrick L.; Hanes, Daniel M.

    2006-01-01

    Ocean Beach, California, contains an erosion hot spot in the shadow of the San Francisco ebb tidal delta south of Sloat Boulevard that threatens valuable public infrastructure as well as the safe recreational use of the beach. In an effort to reduce the erosion at this location and avoid hazardous navigation conditions at the current disposal site (SF-8), a new plan for the management of sediment dredged annually from the main shipping channel at the mouth of Francisco Bay was implemented in May 2005 by the United States Army Corps of Engineers, San Francisco District (COE). The objective for COE was to perform a test dredge disposal of ~230,000 m3 (300,000 yd3) of sand just offshore of the erosion hot spot, in depths between approximately 9 and 14 m. This disposal site was chosen because it is in a location where the strong tidal currents associated with the mouth of San Francisco Bay and waves can potentially feed sediment toward the littoral zone in the reach of the beach that is experiencing critical erosion. The onshore migration of sediment from the target disposal location might feed the primary longshore bar or the nearshore zone, and provide a buffer to erosion that peaks during winter months when large waves impact the region. The U.S. Geological Survey (USGS), in collaboration with the Sea Floor Mapping Lab (SFML) of California State University, Monterey Bay, monitored the initial bathymetric evolution of the test dredge disposal site and the adjacent coastal region from May 2005 to November 2005. This paper reports on this monitoring effort and assesses the short-term coastal response.

  16. Soil Segregation Methods for Reducing Transportation and Disposal Costs - 13544

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Frothingham, David; Andrews, Shawn; Barker, Michelle

    2013-07-01

    At Formerly Utilized Sites Remedial Action Program (FUSRAP) sites where the selected alternative for contaminated soil is excavation and off-site disposal, the most significant budget items of the remedial action are the costs for transportation and disposal of soil at an off-site facility. At these sites, the objective is to excavate and dispose of only those soils that exceed derived concentration guideline levels. In situ soil segregation using gross gamma detectors to guide the excavation is often challenging at sites where the soil contamination is overlain by clean soil or where the contaminated soil is located in isolated, subsurface pockets.more » In addition, data gaps are often identified during the alternative evaluation and selection process, resulting in increased uncertainty in the extent of subsurface contamination. In response, the U.S. Army Corps of Engineers, Buffalo District is implementing ex situ soil segregation methods. At the remediated Painesville Site, soils were excavated and fed through a conveyor-belt system, which automatically segregated them into above- and below-cleanup criteria discharge piles utilizing gamma spectroscopy. At the Linde Site and the Shallow Land Disposal Area (SLDA) Site, which are both in the remediation phase, soils are initially segregated during the excavation process using gross gamma detectors and then transported to a pad for confirmatory manual surveying and sampling. At the Linde Site, the ex situ soils are analyzed on the basis of a site-specific method, to establish compliance with beneficial reuse criteria that were developed for the Linde remediation. At the SLDA Site, the ex situ soils are surveyed and sampled based on Multi-Agency Radiation Survey and Site Investigation Manual (MARSSIM) final status survey guidance to demonstrate compliance with the derived concentration guideline levels. At all three sites, the ex situ soils that meet the site- specific DCGLs are retained on-site and used as

  17. Hydrologic evaluation methodology for estimating water movement through the unsaturated zone at commercial low-level radioactive waste disposal site

    USGS Publications Warehouse

    Meyer, P.D.; Rockhold, M.L.; Nichols, W.E.; Gee, G.W.

    1996-01-01

    This report identifies key technical issues related to hydrologic assessment of water flow in the unsaturated zone at low-level radioactive waste (LLW) disposal facilities. In addition, a methodology for incorporating these issues in the performance assessment of proposed LLW disposal facilities is identified and evaluated. The issues discussed fall into four areas:Estimating the water balance at a site (i.e., infiltration, runoff, water storage, evapotranspiration, and recharge);Analyzing the hydrologic performance of engineered components of a facility;Evaluating the application of models to the prediction of facility performance; andEstimating the uncertainty in predicted facility performance.An estimate of recharge at a LLW site is important since recharge is a principal factor in controlling the release of contaminants via the groundwater pathway. The most common methods for estimating recharge are discussed in Chapter 2. Many factors affect recharge; the natural recharge at an undisturbed site is not necessarily representative either of the recharge that will occur after the site has been disturbed or of the flow of water into a disposal facility at the site. Factors affecting recharge are discussed in Chapter 2.At many sites engineered components are required for a LLW facility to meet performance requirements. Chapter 3 discusses the use of engineered barriers to control the flow of water in a LLW facility, with a particular emphasis on cover systems. Design options and the potential performance and degradation mechanisms of engineered components are also discussed.Water flow in a LLW disposal facility must be evaluated before construction of the facility. In addition, hydrologic performance must be predicted over a very long time frame. For these reasons, the hydrologic evaluation relies on the use of predictive modeling. In Chapter 4, the evaluation of unsaturated water flow modeling is discussed. A checklist of items is presented to guide the evaluation

  18. Endocrine disrupting activities of surface water associated with a West Virginia oil and gas industry wastewater disposal site.

    PubMed

    Kassotis, Christopher D; Iwanowicz, Luke R; Akob, Denise M; Cozzarelli, Isabelle M; Mumford, Adam C; Orem, William H; Nagel, Susan C

    2016-07-01

    Currently, >95% of end disposal of hydraulic fracturing wastewater from unconventional oil and gas operations in the US occurs via injection wells. Key data gaps exist in understanding the potential impact of underground injection on surface water quality and environmental health. The goal of this study was to assess endocrine disrupting activity in surface water at a West Virginia injection well disposal site. Water samples were collected from a background site in the area and upstream, on, and downstream of the disposal facility. Samples were solid-phase extracted, and extracts assessed for agonist and antagonist hormonal activities for five hormone receptors in mammalian and yeast reporter gene assays. Compared to reference water extracts upstream and distal to the disposal well, samples collected adjacent and downstream exhibited considerably higher antagonist activity for the estrogen, androgen, progesterone, glucocorticoid and thyroid hormone receptors. In contrast, low levels of agonist activity were measured in upstream/distal sites, and were inhibited or absent at downstream sites with significant antagonism. Concurrent analyses by partner laboratories (published separately) describe the analytical and geochemical profiling of the water; elevated conductivity as well as high sodium, chloride, strontium, and barium concentrations indicate impacts due to handling of unconventional oil and gas wastewater. Notably, antagonist activities in downstream samples were at equivalent authentic standard concentrations known to disrupt reproduction and/or development in aquatic animals. Given the widespread use of injection wells for end-disposal of hydraulic fracturing wastewater, these data raise concerns for human and animal health nearby. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Endocrine disrupting activities of surface water associated with a West Virginia oil and gas industry wastewater disposal site

    USGS Publications Warehouse

    Kassotis, Christopher D.; Iwanowicz, Luke R.; Akob, Denise M.; Cozzarelli, Isabelle M.; Mumford, Adam; Orem, William H.; Nagel, Susan C.

    2016-01-01

    Currently, >95% of end disposal of hydraulic fracturing wastewater from unconventional oil and gas operations in the US occurs via injection wells. Key data gaps exist in understanding the potential impact of underground injection on surface water quality and environmental health. The goal of this study was to assess endocrine disrupting activity in surface water at a West Virginia injection well disposal site. Water samples were collected from a background site in the area and upstream, on, and downstream of the disposal facility. Samples were solid-phase extracted, and extracts assessed for agonist and antagonist hormonal activities for five hormone receptors in mammalian and yeast reporter gene assays. Compared to reference water extracts upstream and distal to the disposal well, samples collected adjacent and downstream exhibited considerably higher antagonist activity for the estrogen, androgen, progesterone, glucocorticoid and thyroid hormone receptors. In contrast, low levels of agonist activity were measured in upstream/distal sites, and were inhibited or absent at downstream sites with significant antagonism. Concurrent analyses by partner laboratories (published separately) describe the analytical and geochemical profiling of the water; elevated conductivity as well as high sodium, chloride, strontium, and barium concentrations indicate impacts due to handling of unconventional oil and gas wastewater. Notably, antagonist activities in downstream samples were at equivalent authentic standard concentrations known to disrupt reproduction and/or development in aquatic animals. Given the widespread use of injection wells for end-disposal of hydraulic fracturing wastewater, these data raise concerns for human and animal health nearby.

  20. Addendum to the Closure Report for Corrective Action Unit 356: Mud Pits and Disposal Sites Nevada Test Site, Nevada, Revision 0

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lynn Kidman

    This document constitutes an addendum to the November 2002, Closure Report for Corrective Action Unit 356: Mud Pits and Disposal Sites as described in the document Recommendations and Justifications for Modifications for Use Restrictions Established under the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office Federal Facility Agreement and Consent Order (UR Modification document) dated February 2008. The UR Modification document was approved by NDEP on February 26, 2008. The approval of the UR Modification document constituted approval of each of the recommended UR modifications. In conformance with the UR Modification document, this addendum consists of: •more » This cover page that refers the reader to the UR Modification document for additional information • The cover and signature pages of the UR Modification document • The NDEP approval letter • The corresponding section of the UR Modification document This addendum provides the documentation justifying the cancellation of the URs for: • CAS 03-04-01, Area 3 Change House Septic System • CAS 03-09-04, Mud Pit These URs were established as part of Federal Facility Agreement and Consent Order (FFACO) corrective actions and were based on the presence of contaminants at concentrations greater than the action levels established at the time of the initial investigation (FFACO, 1996; as amended August 2006). Since these URs were established, practices and procedures relating to the implementation of risk-based corrective actions (RBCA) have changed. Therefore, these URs were re-evaluated against the current RBCA criteria as defined in the Industrial Sites Project Establishment of Final Action Levels (NNSA/NSO, 2006c). This re-evaluation consisted of comparing the original data (used to define the need for the URs) to risk-based final action levels (FALs) developed using the current Industrial Sites RBCA process. The re-evaluation resulted in a recommendation to remove

  1. Siting industrial waste land disposal facilities in Thailand: A risk based approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fingleton, D.J.; Habegger, L.; Peters, R.

    The Thailand Industrial Works Department (IWD) has established a toxic industrial waste Central Treatment and Stabilization Center (CTSC) for textile dyeing and electroplating industries located in the Thonburi region of the Bangkok metropolitan area. Industrial waste is treated, stabilized, and stored at the CTSC. Although the IWD plans to ship the stabilized sludge to the Ratchaburi Province in western Thailand for burial, the location for the land disposal site has not been selected. Assessing the relative health risks from exposure to toxic chemicals released from an industrial waste land disposal site is a complicated, data-intensive process that requires a multidisciplinarymore » approach. This process is further complicated by the unique physical and cultural characteristics exhibited by the rapidly industrializing Thai economy. The purpose of this paper is to describe the research approach taken and to detail the constraints to health risk assessments in Thailand. issues discussed include data availability and quality, effectiveness of control or mitigation methods, cultural differences, and the basic assumptions inherent in many of the risk assessment components.« less

  2. Clinicopathological factors increased the risk of malignancy in thyroid nodules with atypical or follicular lesions of undetermined significance (AUS/FLUS) risk factor of malignancy in thyroid nodule with AUS/FLUS

    PubMed Central

    Hong, In Ki; Kim, Jun Ho; Cho, Young Up; Park, Shin-Young

    2016-01-01

    Purpose Ultrasound-guided fine needle aspiration (US-FNA) in thyroid nodules is presently most commonly used to identify whether these nodules are benign or malignant. However, atypical or follicular lesions of undetermined significance (AUS/FLUS), as categorized in the Bethesda System for reporting the results of FNA, cannot be classified as benign or malignant. Therefore, several clinical factors should be considered to assess the risk of malignancy in patients with AUS/FLUS. The purpose of the present study was to determine which clinical factor increased the risk of malignancy in patients with AUS/FLUS. Methods A retrospective study was done on 129 patients with fine needle aspiration categorized as AUS/FLUS from January 2011 through April 2015. Univariate and multivariate analyses were performed to assess the independent effect of risk factors such as age, sex, size of nodule, atypical descriptors, and ultrasonography criteria for malignancy. Results We identified that the presence of spiculated margin (odds ratio [OR], 5.655; 95% confidence interval [CI], 2.114-15.131; P = 0.001), nuclear grooving (OR, 3.697; 95% CI, 1.409-9.701; P = 0.008), irregular nuclei (OR, 3.903; 95% CI, 1.442-10.560; P = 0.001) were shown to be significantly related to malignancy on univariate and multivariate analyses. Conclusion We recommend that surgical resection of thyroid nodules be considered in patients with AUS/FLUS showing the histologic findings such as nuclear grooving, irregular nuclei along with spiculated margin of ultrasonographic finding. PMID:27073790

  3. Gas production, composition and emission at a modern disposal site receiving waste with a low-organic content

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scheutz, Charlotte, E-mail: chs@env.dtu.dk; Fredenslund, Anders M., E-mail: amf@env.dtu.dk; Nedenskov, Jonas, E-mail: jne@amfor.dk

    2011-05-15

    AV Miljo is a modern waste disposal site receiving non-combustible waste with a low-organic content. The objective of the current project was to determine the gas generation, composition, emission, and oxidation in top covers on selected waste cells as well as the total methane (CH{sub 4}) emission from the disposal site. The investigations focused particularly on three waste disposal cells containing shredder waste (cell 1.5.1), mixed industrial waste (cell 2.2.2), and mixed combustible waste (cell 1.3). Laboratory waste incubation experiments as well as gas modeling showed that significant gas generation was occurring in all three cells. Field analysis showed thatmore » the gas generated in the cell with mixed combustible waste consisted of mainly CH{sub 4} (70%) and carbon dioxide (CO{sub 2}) (29%) whereas the gas generated within the shredder waste, primarily consisted of CH{sub 4} (27%) and nitrogen (N{sub 2}) (71%), containing no CO{sub 2}. The results indicated that the gas composition in the shredder waste was governed by chemical reactions as well as microbial reactions. CH{sub 4} mass balances from three individual waste cells showed that a significant part (between 15% and 67%) of the CH{sub 4} generated in cell 1.3 and 2.2.2 was emitted through leachate collection wells, as a result of the relatively impermeable covers in place at these two cells preventing vertical migration of the gas. At cell 1.5.1, which is un-covered, the CH{sub 4} emission through the leachate system was low due to the high gas permeability of the shredder waste. Instead the gas was emitted through the waste resulting in some hotspot observations on the shredder surface with higher emission rates. The remaining gas that was not emitted through surfaces or the leachate collection system could potentially be oxidized as the measured oxidation capacity exceeded the potential emission rate. The whole CH{sub 4} emission from the disposal site was found to be 820 {+-} 202 kg CH{sub 4

  4. Three-dimensional electrical resistivity model of a nuclear waste disposal site

    NASA Astrophysics Data System (ADS)

    Rucker, Dale F.; Levitt, Marc T.; Greenwood, William J.

    2009-12-01

    A three-dimensional (3D) modeling study was completed on a very large electrical resistivity survey conducted at a nuclear waste site in eastern Washington. The acquisition included 47 pole-pole two-dimensional (2D) resistivity profiles collected along parallel and orthogonal lines over an area of 850 m × 570 m. The data were geo-referenced and inverted using EarthImager3D (EI3D). EI3D runs on a Microsoft 32-bit operating system (e.g. WIN-2K, XP) with a maximum usable memory of 2 GB. The memory limits the size of the domain for the inversion model to 200 m × 200 m, based on the survey electrode density. Therefore, a series of increasing overlapping models were run to evaluate the effectiveness of dividing the survey area into smaller subdomains. The results of the smaller subdomains were compared to the inversion results of a single domain over a larger area using an upgraded form of EI3D that incorporates multi-processing capabilities and 32 GB of RAM memory. The contours from the smaller subdomains showed discontinuity at the boundaries between the adjacent models, which do not match the hydrogeologic expectations given the nature of disposal at the site. At several boundaries, the contours of the low resistivity areas close, leaving the appearance of disconnected plumes or open contours at boundaries are not met with a continuance of the low resistivity plume into the adjacent subdomain. The model results of the single large domain show a continuous monolithic plume within the central and western portion of the site, directly beneath the elongated trenches. It is recommended that where possible, the domain not be subdivided, but instead include as much of the domain as possible given the memory of available computing resources.

  5. Results of hydrologic research at a low-level radioactive-waste disposal site near Sheffield, Illinois

    USGS Publications Warehouse

    Ryan, Barbara J.

    1989-01-01

    Ten years of hydrologic research have been conducted by the U.S. Geological Survey at a commercial low-level radioactive-waste disposal site near Sheffield, Illinois. Research included studies of microclimate, evapotranspiration, and tritium release by plants; runoff and land modification; water movement through a trench cover; water and tritium movement in the unsaturated zone; gases in the unsaturated zone; water and tritium movement in the saturated zone; and water chemistry. Implications specific to each research topic and those based on overlapping research topics are summarized as to their potential effect on the selection, characterization, design, operation, and decommissioning processes of future low-level radioactive-waste disposal sites. Unconsolidated deposits at the site are diverse in lithologic character and are spatially and stratigraphically complex. Thickness of these Quaternary deposits ranges from 3 to 27 meters and averages 17 meters. The unconsolidated deposits overlay 140 meters of Pennsylvanian shale, mudstone, siltstone, and coal. Approximately 90,500 cubic meters of waste were buried from August 1967 through August 1978, in 21 trenches that were constructed in glacial materials by using a cut-and-fill process. Trenches generally were constructed below grade and ranged from 11 to 180 meters long, 2.4 to 21 meters wide, and 2.4 to about 7.9 meters deep. Research on microclimate and evapotranspiration at the site was conducted from July 1982 through June 1984. Continuous measurements were made of precipitation, incoming and reflected solar (shortwave) radiation, incoming and emitted terrestrial (longwave) radiation, horizontal windspeed and direction, wet- and dry-bulb air temperature, barometric pressure, soil-heat fluxes, and soil temperature. Soil-moisture content, for this research phase, was measured approximately biweekly. Evapotranspiration rates were estimated by using three techniques--energy budget, aerodynamic profile, and water

  6. Investigations of the unsaturated zone at two radioactive waste disposal sites in Lithuania.

    PubMed

    Skuratovič, Žana; Mažeika, Jonas; Petrošius, Rimantas; Martma, Tõnu

    2016-01-01

    The unsaturated zone is an important part of the water cycle, governed by many hydrological and hydrogeological factors and processes and provide water and nutrients to the terrestrial ecosystem. Besides, the soils of the unsaturated zone are regarded as the first natural barrier to a large extent and are able to limit the spread of contaminants depending on their properties. The unsaturated zone provides a linkage between atmospheric moisture, groundwater, and seepage of groundwater to streams, lakes, or other surface water bodies. The major difference between water flow in saturated and unsaturated soils is that the hydraulic conductivity, which is conventionally assumed to be a constant in saturated soils, is a function of the degree of saturation or matrix suction in the unsaturated soils. In Lithuania, low and intermediate level radioactive wastes generated from medicine, industry and research were accumulated at the Maisiagala radioactive waste repository. Short-lived low and intermediate levels radioactive waste, generated during the operation of the Ignalina Nuclear Power Plant (INPP) and arising after the INPP decommissioning will be disposed of in the near surface repository close to the INPP (Stabatiske site). Extensive data sets of the hydraulic properties and water content attributed to unsaturated zone soil profiles of the two radioactive waste disposal sites have been collected and summarized. Globally widespread radionuclide tritium ((3)H) and stable isotope ratio ((18)O/(16)O and (2)H/(1)H) distribution features were determined in precipitation, unsaturated zone soil moisture profiles and groundwater.

  7. 15 CFR Appendix D to Subpart M of... - Dredged Material Disposal Sites Adjacent to the Monterey Bay National Marine Sanctuary

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 15 Commerce and Foreign Trade 3 2010-01-01 2010-01-01 false Dredged Material Disposal Sites Adjacent to the Monterey Bay National Marine Sanctuary D Appendix D to Subpart M of Part 922 Commerce and Foreign Trade Regulations Relating to Commerce and Foreign Trade (Continued) NATIONAL OCEANIC AND...

  8. The Yeast Plasma Membrane ATP Binding Cassette (ABC) Transporter Aus1

    PubMed Central

    Marek, Magdalena; Milles, Sigrid; Schreiber, Gabriele; Daleke, David L.; Dittmar, Gunnar; Herrmann, Andreas; Müller, Peter; Pomorski, Thomas Günther

    2011-01-01

    The ATP binding cassette (ABC) transporter Aus1 is expressed under anaerobic growth conditions at the plasma membrane of the yeast Saccharomyces cerevisiae and is required for sterol uptake. These observations suggest that Aus1 promotes the translocation of sterols across membranes, but the precise transport mechanism has yet to be identified. In this study, an extraction and purification procedure was developed to characterize the Aus1 transporter. The detergent-solubilized protein was able to bind and hydrolyze ATP. Mutagenesis of the conserved lysine to methionine in the Walker A motif abolished ATP hydrolysis. Likewise, ATP hydrolysis was inhibited by classical inhibitors of ABC transporters. Upon reconstitution into proteoliposomes, the ATPase activity of Aus1 was specifically stimulated by phosphatidylserine (PS) in a stereoselective manner. We also found that Aus1-dependent sterol uptake, but not Aus1 expression and trafficking to the plasma membrane, was affected by changes in cellular PS levels. These results suggest a direct interaction between Aus1 and PS that is critical for the activity of the transporter. PMID:21521689

  9. E-waste bans and U.S. households' preferences for disposing of their e-waste.

    PubMed

    Milovantseva, Natalia; Saphores, Jean-Daniel

    2013-07-30

    To deal with the inadequate disposal of e-waste, many states have instituted bans on its disposal in municipal landfills. However, the effectiveness of e-waste bans does not seem to have been analyzed yet. This paper starts addressing this gap. Using data from a survey of U.S. households, we estimate multivariate logit models to explain past disposal behavior by households of broken/obsolete ("junk") cell phones and disposal intentions for "junk" TVs. Our explanatory variables include factors summarizing general awareness of environmental issues, pro-environmental behavior in the past year, attitudes toward recycling small electronics (for the cell phones model only), socio-economic and demographic characteristics, and the presence of state e-waste bans. We find that California's Cell Phone Recycling Act had a significant and positive impact on the recycling of junk cell phones; however, state disposal bans for junk TVs seem to have been mostly ineffective, probably because they were poorly publicized and enforced. Their effectiveness could be enhanced by providing more information about e-waste recycling to women, and more generally to adults under 60. Given the disappointing performance of policies implemented to-date to enhance the collection of e-waste, it may be time to explore economic instruments such as deposit-refund systems. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. Closure Report for Corrective Action Unit 104: Area 7 Yucca Flat Atmospheric Test Sites, Nevada National Security Site, Nevada

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2013-06-27

    This Closure Report (CR) presents information supporting closure of Corrective Action Unit (CAU) 104, Area 7 Yucca Flat Atmospheric Test Sites, and provides documentation supporting the completed corrective actions and confirmation that closure objectives for CAU 104 were met. This CR complies with the requirements of the Federal Facility Agreement and Consent Order (FFACO) that was agreed to by the State of Nevada; the U.S. Department of Energy (DOE), Environmental Management; the U.S. Department of Defense; and DOE, Legacy Management. CAU 104 consists of the following 15 Corrective Action Sites (CASs), located in Area 7 of the Nevada National Securitymore » Site: · CAS 07-23-03, Atmospheric Test Site T-7C · CAS 07-23-04, Atmospheric Test Site T7-1 · CAS 07-23-05, Atmospheric Test Site · CAS 07-23-06, Atmospheric Test Site T7-5a · CAS 07-23-07, Atmospheric Test Site - Dog (T-S) · CAS 07-23-08, Atmospheric Test Site - Baker (T-S) · CAS 07-23-09, Atmospheric Test Site - Charlie (T-S) · CAS 07-23-10, Atmospheric Test Site - Dixie · CAS 07-23-11, Atmospheric Test Site - Dixie · CAS 07-23-12, Atmospheric Test Site - Charlie (Bus) · CAS 07-23-13, Atmospheric Test Site - Baker (Buster) · CAS 07-23-14, Atmospheric Test Site - Ruth · CAS 07-23-15, Atmospheric Test Site T7-4 · CAS 07-23-16, Atmospheric Test Site B7-b · CAS 07-23-17, Atmospheric Test Site - Climax Closure activities began in October 2012 and were completed in April 2013. Activities were conducted according to the Corrective Action Decision Document/Corrective Action Plan for CAU 104. The corrective actions included No Further Action and Clean Closure. Closure activities generated sanitary waste, mixed waste, and recyclable material. Some wastes exceeded land disposal limits and required treatment prior to disposal. Other wastes met land disposal restrictions and were disposed in appropriate onsite landfills. The U.S. Department of Energy, National Nuclear Security Administration Nevada Field

  11. Corrective Action Investigation Plan for Corrective Action Unit 410: Waste Disposal Trenches, Tonopah Test Range, Nevada, Revision 0 (includes ROTCs 1, 2, and 3)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NNSA /NV

    This Corrective Action Investigation Plan contains the U.S. Department of Energy, National Nuclear Security Administration Nevada Operations Office's approach to collect the data necessary to evaluate corrective action alternatives appropriate for the closure of Corrective Action Unit (CAU) 410 under the Federal Facility Agreement and Consent Order. Corrective Action Unit 410 is located on the Tonopah Test Range (TTR), which is included in the Nevada Test and Training Range (formerly the Nellis Air Force Range) approximately 140 miles northwest of Las Vegas, Nevada. This CAU is comprised of five Corrective Action Sites (CASs): TA-19-002-TAB2, Debris Mound; TA-21-003-TANL, Disposal Trench; TA-21-002-TAAL,more » Disposal Trench; 09-21-001-TA09, Disposal Trenches; 03-19-001, Waste Disposal Site. This CAU is being investigated because contaminants may be present in concentrations that could potentially pose a threat to human health and/or the environment, and waste may have been disposed of with out appropriate controls. Four out of five of these CASs are the result of weapons testing and disposal activities at the TTR, and they are grouped together for site closure based on the similarity of the sites (waste disposal sites and trenches). The fifth CAS, CAS 03-19-001, is a hydrocarbon spill related to activities in the area. This site is grouped with this CAU because of the location (TTR). Based on historical documentation and process know-ledge, vertical and lateral migration routes are possible for all CASs. Migration of contaminants may have occurred through transport by infiltration of precipitation through surface soil which serves as a driving force for downward migration of contaminants. Land-use scenarios limit future use of these CASs to industrial activities. The suspected contaminants of potential concern which have been identified are volatile organic compounds; semivolatile organic compounds; high explosives; radiological constituents including depleted

  12. Potential for effects of land contamination on human health. 2. The case of waste disposal sites.

    PubMed

    Kah, Melanie; Levy, Len; Brown, Colin

    2012-01-01

    This review of the epidemiological literature shows that evidence for negative impacts of land contaminated by waste disposal on human health is limited. However, the potential for health impacts cannot be dismissed. The link between residence close to hazardous waste disposal sites and heightened levels of stress and anxiety is relatively well established. However, studies on self-reported outcomes generally suffer from interpretational problems, as subjective symptoms may be due to increased perception and recall. Several recent multiple-site studies support a plausible linkage between residence near waste disposal sites and reproductive effects (including congenital anomalies and low birth weight). There is some conflict in the literature investigating links between land contamination and cancers; the evidence for and against a link is equally balanced and is insufficient to make causal inferences. These are difficult to establish because of lack of data on individual exposures, and other socioeconomic and lifestyle factors that may confound a relationship with area of residence. There is no consistently occurring risk for any specific tumor across multiple studies on sites expected to contain similar contaminants. Further insights on health effects of land contamination are likely to be gained from studies that consider exposure pathways and biomarkers of exposure and effect, similar to those deployed with some success in investigating impacts of cadmium on human health.

  13. Special Analysis for the Disposal of the INL Waste Associated with the Unirradiated Light Water Breeder Reactor (LWBR) Waste Stream at the Area 5 Radioactive Waste Management Site

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shott, Gregory

    This special analysis (SA) evaluates whether the Idaho National Laboratory (INL) Waste Associated with the Unirradiated Light Water Breeder Reactor (LWBR) waste stream (INEL167203QR1, Revision 0) is suitable for shallow land burial (SLB) at the Area 5 Radioactive Waste Management Site (RWMS) on the Nevada National Security Site (NNSS). Disposal of the INL Waste Associated with the Unirradiated LWBR waste meets all U.S. Department of Energy (DOE) Manual DOE M 435.1-1, “Radioactive Waste Management Manual,” Chapter IV, Section P performance objectives (DOE 1999). The INL Waste Associated with the Unirradiated LWBR waste stream is recommended for acceptance with the conditionmore » that the total uranium-233 ( 233U) inventory be limited to 2.7E13 Bq (7.2E2 Ci).« less

  14. 40 CFR 229.3 - Transportation and disposal of vessels.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 25 2014-07-01 2014-07-01 false Transportation and disposal of vessels. 229.3 Section 229.3 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) OCEAN... procedures; (iv) Information on the potential effect of the vessel disposal on the marine environment; and (v...

  15. 40 CFR 229.3 - Transportation and disposal of vessels.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 24 2010-07-01 2010-07-01 false Transportation and disposal of vessels. 229.3 Section 229.3 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) OCEAN... procedures; (iv) Information on the potential effect of the vessel disposal on the marine environment; and (v...

  16. 10 CFR 61.52 - Land disposal facility operation and disposal site closure.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... meters below the top surface of the cover or must be disposed of with intruder barriers that are designed... mapped by means of a land survey. Near-surface disposal units must be marked in such a way that the boundaries of each unit can be easily defined. Three permanent survey marker control points, referenced to...

  17. 10 CFR 61.52 - Land disposal facility operation and disposal site closure.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... meters below the top surface of the cover or must be disposed of with intruder barriers that are designed... mapped by means of a land survey. Near-surface disposal units must be marked in such a way that the boundaries of each unit can be easily defined. Three permanent survey marker control points, referenced to...

  18. 10 CFR 61.52 - Land disposal facility operation and disposal site closure.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... meters below the top surface of the cover or must be disposed of with intruder barriers that are designed... mapped by means of a land survey. Near-surface disposal units must be marked in such a way that the boundaries of each unit can be easily defined. Three permanent survey marker control points, referenced to...

  19. 10 CFR 61.52 - Land disposal facility operation and disposal site closure.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... meters below the top surface of the cover or must be disposed of with intruder barriers that are designed... mapped by means of a land survey. Near-surface disposal units must be marked in such a way that the boundaries of each unit can be easily defined. Three permanent survey marker control points, referenced to...

  20. 10 CFR 61.52 - Land disposal facility operation and disposal site closure.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... meters below the top surface of the cover or must be disposed of with intruder barriers that are designed... mapped by means of a land survey. Near-surface disposal units must be marked in such a way that the boundaries of each unit can be easily defined. Three permanent survey marker control points, referenced to...

  1. DESIGN ANALYSIS FOR THE DEFENSE HIGH-LEVEL WASTE DISPOSAL CONTAINER

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    G. Radulesscu; J.S. Tang

    The purpose of ''Design Analysis for the Defense High-Level Waste Disposal Container'' analysis is to technically define the defense high-level waste (DHLW) disposal container/waste package using the Waste Package Department's (WPD) design methods, as documented in ''Waste Package Design Methodology Report'' (CRWMS M&O [Civilian Radioactive Waste Management System Management and Operating Contractor] 2000a). The DHLW disposal container is intended for disposal of commercial high-level waste (HLW) and DHLW (including immobilized plutonium waste forms), placed within disposable canisters. The U.S. Department of Energy (DOE)-managed spent nuclear fuel (SNF) in disposable canisters may also be placed in a DHLW disposal container alongmore » with HLW forms. The objective of this analysis is to demonstrate that the DHLW disposal container/waste package satisfies the project requirements, as embodied in Defense High Level Waste Disposal Container System Description Document (SDD) (CRWMS M&O 1999a), and additional criteria, as identified in Waste Package Design Sensitivity Report (CRWMS M&Q 2000b, Table 4). The analysis briefly describes the analytical methods appropriate for the design of the DHLW disposal contained waste package, and summarizes the results of the calculations that illustrate the analytical methods. However, the analysis is limited to the calculations selected for the DHLW disposal container in support of the Site Recommendation (SR) (CRWMS M&O 2000b, Section 7). The scope of this analysis is restricted to the design of the codisposal waste package of the Savannah River Site (SRS) DHLW glass canisters and the Training, Research, Isotopes General Atomics (TRIGA) SNF loaded in a short 18-in.-outer diameter (OD) DOE standardized SNF canister. This waste package is representative of the waste packages that consist of the DHLW disposal container, the DHLW/HLW glass canisters, and the DOE-managed SNF in disposable canisters. The intended use of this analysis

  2. Total gaseous mercury and volatile organic compounds measurements at five municipal solid waste disposal sites surrounding the Mexico City Metropolitan Area

    NASA Astrophysics Data System (ADS)

    de la Rosa, D. A.; Velasco, A.; Rosas, A.; Volke-Sepúlveda, T.

    The daily municipal solid waste (MSW) generation in the Mexico City Metropolitan Area (MCMA) is the highest nationwide (˜26000 ton day -1); this amount is discarded in sanitary landfills and controlled dumps. Information about the type and concentration of potential pollutants contained in landfill gas (LFG) from these MSW disposal sites is limited. This study intends to generate information about the composition of LFG from five MSW disposal sites with different operational characteristics and stages, in order to identify their contribution as potential pollutant sources of total gaseous mercury (TGM) and volatile organic compounds (VOCs). Important methane (CH 4) contents (>55%) in LFG were registered at three of the five sites, while two sites were found in semi-aerobic conditions (CH 4<32%). Only at one site (a closed site), potentially polluting emissions from the LFG were detected, including toluene (˜90 ppm) and other VOCs, and especially high TGM concentrations (1100-1500 ng m -3). At the remaining sites, TGM levels in LFG were between 12.5 and 52.4 ng m -3. The impact of TGM contained in LFG emissions in ambient air was assessed by means of the TGM air/LFG ratio. This quotient indicated that values below 0.2, such as those found at two closed sites with final synthetic covers, could imply better closure practices than places with higher ratios, such as sites with only periodical clay cover. High values of the TGM air/LFG ratio were also related to external TGM sources of influence, as a landfill in operation stage located at a highly industrialized area.

  3. Alternative disposal options for transuranic waste

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Loomis, G.G.

    1994-12-31

    Three alternative concepts are proposed for the final disposal of stored and retrieved buried transuranic waste. These proposed options answer criticisms of the existing U.S. Department of Energy strategy of directly disposing of stored transuranic waste in deep, geological salt formations at the Waste Isolation Pilot Plant (WIPP) in Carlsbad, New Mexico. The first option involves enhanced stabilization of stored waste by thermal treatment followed by convoy transportation and internment in the existing WIPP facility. This concept could also be extended to retrieved buried waste with proper permitting. The second option involves in-state, in situ internment using an encapsulating lensmore » around the waste. This concept applies only to previously buried transuranic waste. The third option involves sending stored and retrieved waste to the Nevada Test Site and configuring the waste around a thermonuclear device from the U.S. or Russian arsenal in a specially designed underground chamber. The thermonuclear explosion would transmute plutonium and disassociate hazardous materials while entombing the waste in a national sacrifice area.« less

  4. U2 small nuclear ribonucleoprotein particle (snRNP) auxiliary factor of 65 kDa, U2AF65, can promote U1 snRNP recruitment to 5' splice sites.

    PubMed Central

    Förch, Patrik; Merendino, Livia; Martínez, Concepción; Valcárcel, Juan

    2003-01-01

    The splicing factor U2AF(65), U2 small nuclear ribonucleoprotein particle (snRNP) auxillary factor of 65 kDa, binds to pyrimidine-rich sequences at 3' splice sites to recruit U2 snRNP to pre-mRNAs. We report that U2AF(65) can also promote the recruitment of U1 snRNP to weak 5' splice sites that are followed by uridine-rich sequences. The arginine- and serine-rich domain of U2AF(65) is critical for U1 recruitment, and we discuss the role of its RNA-RNA annealing activity in this novel function of U2AF(65). PMID:12558503

  5. Validation of the Australian Propensity for Angry Driving Scale (Aus-PADS).

    PubMed

    Leal, Nerida L; Pachana, Nancy A

    2009-09-01

    The present study used a university sample to assess the test-retest reliability and validity of the Australian Propensity for Angry Driving Scale (Aus-PADS). The scale has stability over time, and convergent validity was established, as Aus-PADS scores correlated significantly with established anger and impulsivity measures. Discriminant validity was also established, as Aus-PADS scores did not correlate with Venturesomeness scores. The Aus-PADS has demonstrated criterion validity, as scores were correlated with behavioural measures, such as yelling at other drivers, gesturing at other drivers, and feeling angry but not doing anything. Aus-PADS scores reliably predicted the frequency of these behaviours over and above other study variables. No significant relationship between aggressive driving and crash involvement was observed. It was concluded that the Aus-PADS is a reliable and valid tool appropriate for use in Australian research, and that the potential relationship between aggressive driving and crash involvement warrants further investigation with a more representative (and diverse) driver sample.

  6. Studies of Current Circulation at Ocean Waste Disposal Sites

    NASA Technical Reports Server (NTRS)

    Klemas, V. (Principal Investigator); Davis, G.; Henry, R.

    1976-01-01

    The author has identified the following significant results. Acid waste plume was observed in LANDSAT imagery fourteen times ranging from during dump up to 54 hours after dump. Circulation processes at the waste disposal site are highly storm-dominated, with the majority of the water transport occurring during strong northeasterlies. There is a mean flow to the south along shore. This appears to be due to the fact that northeasterly winds produce stronger currents than those driven by southeasterly winds and by the thermohaline circulation. During the warm months (May through October), the ocean at the dump site stratifies with a distinct thermocline observed during all summer cruising at depths ranging from 10 to 21 m. During stratified conditions, the near-bottom currents were small. Surface currents responded to wind conditions resulting in rapid movement of surface drogues on windy days. Mid-depth drogues showed an intermediate behavior, moving more rapidly as wind velocities increased.

  7. Site evaluation for U.S. Bureau of Mines experimental oil-shale mine, Piceance Creek basin, Rio Blanco County, Colorado

    USGS Publications Warehouse

    Ege, John R.; Leavesley, G.H.; Steele, G.S.; Weeks, J.B.

    1978-01-01

    The U.S. Geological Survey is cooperating with the U.S. Bureau of Mines in the selection of a site for a shaft and experimental mine to be constructed in the Piceance Creek basin, Rio Blanco County, Colo. The Piceance Creek basin, an asymmetric, northwest-trending large structural downwarp, is located approximately 40 km (25 mi) west of the town of Meeker in Rio Blanco County, Colo. The oil-shale, dawsonite, nahcolite, and halite deposits of the Piceance Creek basin occur in the lacustrine Green River Formation of Eocene age. In the basin the Green River Formation comprises three members. In ascending order, they are the Douglas Creek, the Garden Gulch, and the Parachute Creek Members, Four sites are presented for consideration and evaluated on geology and hydrology with respect to shale-oil economics. Evaluated criteria include: (1) stratigraphy, (2) size of site, (3) oil-shale yield, (4) representative quantities of the saline minerals dawsonite and nahcolite, which must be present with a minimum amount of halite, (5) thickness of a 'leached' saline zone, (6) geologic structure, (7) engineering characteristics of rock, (8) representative surface and ground-water conditions, with emphasis on waste disposal and dewatering, and (9) environmental considerations. Serious construction and support problems are anticipated in sinking a deep shaft in the Piceance Creek basin. The two major concerns will be dealing with incompetent rock and large inflow of saline ground water, particularly in the leached zone. Engineering support problems will include stabilizing and hardening the rock from which a certain amount of ground water has been removed. The relative suitability of the four potential oil-shale experimental shaft sites in the Piceance Creek basin has been considered on the basis of all available geologic, hydrologic, and engineering data; site 2 is preferred to sites 1, 3, and 4, The units in this report are presented in the form: metric (English). Both units of

  8. Study of Heavy Metals in a Wetland Area Adjacent to a Waste Disposal Site Near Resolute Bay, Canadian High Arctic

    NASA Astrophysics Data System (ADS)

    Lund, K. E.; Young, K. L.

    2004-05-01

    Heavy metal contamination in High Arctic systems is of growing concern. Studies have been conducted measuring long range and large point source pollutants, but little research has been done on small point sources such as municipal waste disposal sites. Many Arctic communities are coastal, and local people consume marine wildlife in which concentrations of heavy metals can accumulate. Waste disposal sites are often located in very close proximity to the coastline and leaching of these metals could contaminate food sources on a local scale. Cadmium and lead are the metals focussed on by this study, as the Northern Contaminants Program recognizes them as metals of concern. During the summer of 2003 a study was conducted near Resolute, Nunavut, Canada, to determine the extent of cadmium and lead leaching from a local dumpsite to an adjacent wetland. The ultimate fate of these contaminants is approximately 1 km downslope in the ocean. Transects covering an area of 0.3 km2 were established downslope from the point of disposal and water and soil samples were collected and analyzed for cadmium and lead. Only trace amounts of cadmium and lead were found in the water samples. In the soil samples, low uniform concentrations of cadmium were found that were slightly above background levels, except for adjacent to the point of waste input where higher concentrations were found. Lead soil concentrations were higher than cadmium and varied spatially with soil material and moisture. Overall, excessive amounts of cadmium and lead contamination do not appear to be entering the marine ecosystem. However, soil material and moisture should be considered when establishing waste disposal sites in the far north

  9. U.S. Geological Survey 2013 assessment of undiscovered resources in the Bakken and Three Forks Formations of the U.S. Williston Basin Province

    USGS Publications Warehouse

    Gaswirth, Stephanie B.; Marra, Kristen R.

    2014-01-01

    The Upper Devonian Three Forks and Upper Devonian to Lower Mississippian Bakken Formations comprise a major United States continuous oil resource. Current exploitation of oil is from horizontal drilling and hydraulic fracturing of the Middle Member of the Bakken and upper Three Forks, with ongoing exploration of the lower Three Forks, and the Upper, Lower, and Pronghorn Members of the Bakken Formation. In 2008, the U.S. Geological Survey (USGS) estimated a mean of 3.65 billion bbl of undiscovered, technically recoverable oil resource within the Bakken Formation. The USGS recently reassessed the Bakken Formation, which included an assessment of the underlying Three Forks Formation. The Pronghorn Member of the Bakken Formation, where present, was included as part of the Three Forks assessment due to probable fluid communication between reservoirs. For the Bakken Formation, five continuous and one conventional assessment units (AUs) were defined. These AUs are modified from the 2008 AU boundaries to incorporate expanded geologic and production information. The Three Forks Formation was defined with one continuous and one conventional AU. Within the continuous AUs, optimal regions of hydrocarbon recovery, or “sweet spots,” were delineated and estimated ultimate recoveries were calculated for each continuous AU. Resulting undiscovered, technically recoverable resource estimates were 3.65 billion bbl for the five Bakken continuous oil AUs and 3.73 billion bbl for the Three Forks Continuous Oil AU, generating a total mean resource estimate of 7.38 billion bbl. The two conventional AUs are hypothetical and represent a negligible component of the total estimated resource (8 million barrels of oil).

  10. ESTIMATION OF EXPOSURE DOSES FOR THE SAFE MANAGEMENT OF NORM WASTE DISPOSAL.

    PubMed

    Jeong, Jongtae; Ko, Nak Yul; Cho, Dong-Keun; Baik, Min Hoon; Yoon, Ki-Hoon

    2018-03-16

    Naturally occurring radioactive materials (NORM) wastes with different radiological characteristics are generated in several industries. The appropriate options for NORM waste management including disposal options should be discussed and established based on the act and regulation guidelines. Several studies calculated the exposure dose and mass of NORM waste to be disposed in landfill site by considering the activity concentration level and exposure dose. In 2012, the Korean government promulgated an act on the safety control of NORM around living environments to protect human health and the environment. For the successful implementation of this act, we suggest a reference design for a landfill for the disposal of NORM waste. Based on this reference landfill, we estimate the maximum exposure doses and the relative impact of each pathway to exposure dose for three scenarios: a reference scenario, an ingestion pathway exclusion scenario, and a low leach rate scenario. Also, we estimate the possible quantity of NORM waste disposal into a landfill as a function of the activity concentration level of U series, Th series and 40K and two kinds of exposure dose levels, 1 and 0.3 mSv/y. The results of this study can be used to support the establishment of technical bases of the management strategy for the safe disposal of NORM waste.

  11. 78 FR 73097 - Ocean Dumping; Sabine-Neches Waterway (SNWW) Ocean Dredged Material Disposal Site Designation

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-05

    ... of the Entrance Channel into the Gulf of Mexico, pursuant to the Marine Protection, Research and... exists, and if analysis of the dredged material indicates that it is suitable for open-water disposal... material from the Sabine-Neches Waterway, under the Marine Protection Research and Sanctuaries Act, 33 U.S...

  12. 40 CFR 61.151 - Standard for inactive waste disposal sites for asbestos mills and manufacturing and fabricating...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... sites for asbestos mills and manufacturing and fabricating operations. 61.151 Section 61.151 Protection... STANDARDS FOR HAZARDOUS AIR POLLUTANTS National Emission Standard for Asbestos § 61.151 Standard for inactive waste disposal sites for asbestos mills and manufacturing and fabricating operations. Each owner...

  13. 40 CFR 61.151 - Standard for inactive waste disposal sites for asbestos mills and manufacturing and fabricating...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... sites for asbestos mills and manufacturing and fabricating operations. 61.151 Section 61.151 Protection... STANDARDS FOR HAZARDOUS AIR POLLUTANTS National Emission Standard for Asbestos § 61.151 Standard for inactive waste disposal sites for asbestos mills and manufacturing and fabricating operations. Each owner...

  14. 40 CFR 61.151 - Standard for inactive waste disposal sites for asbestos mills and manufacturing and fabricating...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... sites for asbestos mills and manufacturing and fabricating operations. 61.151 Section 61.151 Protection... STANDARDS FOR HAZARDOUS AIR POLLUTANTS National Emission Standard for Asbestos § 61.151 Standard for inactive waste disposal sites for asbestos mills and manufacturing and fabricating operations. Each owner...

  15. 40 CFR 61.151 - Standard for inactive waste disposal sites for asbestos mills and manufacturing and fabricating...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... sites for asbestos mills and manufacturing and fabricating operations. 61.151 Section 61.151 Protection... STANDARDS FOR HAZARDOUS AIR POLLUTANTS National Emission Standard for Asbestos § 61.151 Standard for inactive waste disposal sites for asbestos mills and manufacturing and fabricating operations. Each owner...

  16. 40 CFR 61.151 - Standard for inactive waste disposal sites for asbestos mills and manufacturing and fabricating...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... sites for asbestos mills and manufacturing and fabricating operations. 61.151 Section 61.151 Protection... STANDARDS FOR HAZARDOUS AIR POLLUTANTS National Emission Standard for Asbestos § 61.151 Standard for inactive waste disposal sites for asbestos mills and manufacturing and fabricating operations. Each owner...

  17. 47 CFR 90.383 - RSU sites near the U.S./Canada or U.S./Mexico border.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 5 2010-10-01 2010-10-01 false RSU sites near the U.S./Canada or U.S./Mexico... Communications Service (dsrcs) § 90.383 RSU sites near the U.S./Canada or U.S./Mexico border. Until such time as agreements between the United States and Canada or the United States and Mexico, as applicable, become...

  18. 47 CFR 90.383 - RSU sites near the U.S./Canada or U.S./Mexico border.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 5 2012-10-01 2012-10-01 false RSU sites near the U.S./Canada or U.S./Mexico... Communications Service (dsrcs) § 90.383 RSU sites near the U.S./Canada or U.S./Mexico border. Until such time as agreements between the United States and Canada or the United States and Mexico, as applicable, become...

  19. 47 CFR 90.383 - RSU sites near the U.S./Canada or U.S./Mexico border.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 5 2011-10-01 2011-10-01 false RSU sites near the U.S./Canada or U.S./Mexico... Communications Service (dsrcs) § 90.383 RSU sites near the U.S./Canada or U.S./Mexico border. Until such time as agreements between the United States and Canada or the United States and Mexico, as applicable, become...

  20. 47 CFR 90.383 - RSU sites near the U.S./Canada or U.S./Mexico border.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 5 2013-10-01 2013-10-01 false RSU sites near the U.S./Canada or U.S./Mexico... Communications Service (dsrcs) § 90.383 RSU sites near the U.S./Canada or U.S./Mexico border. Until such time as agreements between the United States and Canada or the United States and Mexico, as applicable, become...

  1. 47 CFR 90.383 - RSU sites near the U.S./Canada or U.S./Mexico border.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 5 2014-10-01 2014-10-01 false RSU sites near the U.S./Canada or U.S./Mexico... Communications Service (dsrcs) § 90.383 RSU sites near the U.S./Canada or U.S./Mexico border. Until such time as agreements between the United States and Canada or the United States and Mexico, as applicable, become...

  2. Geohydrologic aspects for siting and design of low-level radioactive-waste disposal

    USGS Publications Warehouse

    Bedinger, M.S.

    1989-01-01

    The objective for siting and design of low-level radioactive-waste repository sites is to isolate the waste from the biosphere until the waste no longer poses an unacceptable hazard as a result of radioactive decay. Low-level radioactive waste commonly is isolated at shallow depths with various engineered features to stabilize the waste and to reduce its dissolution and transport by ground water. The unsaturated zone generally is preferred for isolating the waste. Low-level radioactive waste may need to be isolated for 300 to 500 years. Maintenance and monitoring of the repository site are required by Federal regulations for only the first 100 years. Therefore, geohydrology of the repository site needs to provide natural isolation of the waste for the hazardous period following maintenance of the site. Engineering design of the repository needs to be compatible with the natural geohydrologic conditions at the site. Studies at existing commercial and Federal waste-disposal sites provide information on the problems encountered and the basis for establishing siting guidelines for improved isolation of radioactive waste, engineering design of repository structures, and surveillance needs to assess the effectiveness of the repositories and to provide early warning of problems that may require remedial action.Climate directly affects the hydrology of a site and probably is the most important single factor that affects the suitability of a site for shallow-land burial of low-level radioactive waste. Humid and subhumid regions are not well suited for shallow isolation of low-level radioactive waste in the unsaturated zone; arid regions with zero to small infiltration from precipitation, great depths to the water table, and long flow paths to natural discharge areas are naturally well suited to isolation of the waste. The unsaturated zone is preferred for isolation of low-level radioactive waste. The guiding rationale is to minimize contact of water with the waste and to

  3. A Strategy to Conduct an Analysis of the Long-Term Performance of Low-Activity Waste Glass in a Shallow Subsurface Disposal System at Hanford

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Neeway, James J.; Pierce, Eric M.; Freedman, Vicky L.

    2014-08-04

    The federal facilities located on the Hanford Site in southeastern Washington State have been used extensively by the U.S. government to produce nuclear materials for the U.S. strategic defense arsenal. Currently, the Hanford Site is under the stewardship of the U.S. Department of Energy (DOE) Office of Environmental Management (EM). A large inventory of radioactive and mixed waste resulting from the production of nuclear materials has accumulated, mainly in 177 underground single- and double-shell tanks located in the central plateau of the Hanford Site (Mann et al., 2001). The DOE-EM Office of River Protection (ORP) is proceeding with plans tomore » immobilize and permanently dispose of the low-activity waste (LAW) fraction onsite in a shallow subsurface disposal facility (the Integrated Disposal Facility [IDF]). Pacific Northwest National Laboratory (PNNL) was contracted to provide the technical basis for estimating radionuclide release from the engineered portion of the IDF (the source term) as part of an immobilized low-activity waste (ILAW) glass testing program to support future IDF performance assessments (PAs).« less

  4. Mapping the Sea Floor of the Historic Area Remediation Site (HARS) Offshore of New York City

    USGS Publications Warehouse

    Butman, Bradford

    2002-01-01

    The area offshore of New York City has been used for the disposal of dredged material for over a century. The area has also been used for the disposal of other materials such as acid waste, industrial waste, municipal sewage sludge, cellar dirt, and wood. Between 1976 and 1995, the New York Bight Dredged Material Disposal Site, also known as the Mud Dump Site (MDS), received on average about 6 million cubic yards of dredged material annually. In September 1997 the MDS was closed as a disposal site, and it and the surrounding area were designated as the Historic Area Remediation Site (HARS). The sea floor of the HARS, approximately 9 square nautical miles in area, currently is being remediated by placing a minimum 1-m-thick cap of clean dredged material on top of the surficial sediments that are contaminated from previous disposal of dredged and other materials. The U.S. Geological Survey (USGS) is working cooperatively with the U.S. Army Corps of Engineers (USACE) to map the sea floor geology of the HARS and changes in the characteristics of the surficial sediments over time.

  5. 76 FR 19003 - Land Disposal Restrictions: Nevada and California; Site Specific Treatment Variances for...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-06

    ... both a site-specific treatment variance to U.S. Ecology Nevada (USEN) located in Beatty, Nevada and... site-specific treatment variance to U.S. Ecology Nevada (USEN) located in Beatty, Nevada and withdraw... section of this document. II. Does this action apply to me? This proposal applies only to U. S. Ecology...

  6. Study of contaminant transport at an open-tipping waste disposal site.

    PubMed

    Ashraf, Muhammad Aqeel; Yusoff, Ismail; Yusof, Mohamad; Alias, Yatimah

    2013-07-01

    Field and laboratory studies were conducted to estimate concentration of potential contaminants from landfill in the underlying groundwater, leachate, and surface water. Samples collected in the vicinity of the landfill were analyzed for physiochemical parameters, organic contaminants, and toxic heavy metals. Water quality results obtained were compared from published data and reports. The results indicate serious groundwater and surface water contamination in and around the waste disposal site. Analysis of the organic samples revealed that the site contains polychlorinated biphenyls and other organo-chlorine chemicals, principally chloro-benzenes. Although the amount of PCB concentration discovered was not extreme, their presence indicates a potentially serious environmental threat. Elevated concentrations of lead, copper, nickel, manganese, cadmium, and cobalt at the downgradient indicate that the contamination plume migrated further from the site, and the distribution of metals and metals containing wastes in the site is nonhomogeneous. These results clearly indicate that materials are poorly contained and are at risk of entering the environment. Therefore, full characterization of the dump contents and the integrity of the site are necessary to evaluate the scope of the problem and to identify suitable remediation options.

  7. Hydrogeochemical characteristics and bacterial community diversity in leachate from animal carcass disposal

    NASA Astrophysics Data System (ADS)

    Kaown, D.; Kim, H.; Lee, S.; Hyun, Y.; Moon, H.; Ko, K.; Lee, K.

    2012-12-01

    The release of leachate from animal carcass disposal can potentially contaminate soil and groundwater. During the Korea's foot-and-mouth disease (FMD) outbreak in 2010-2011, about 3.53 million of pigs and cattle were slaughtered and 4,538 burial sites were constructed. The objectives of this study are to determine the hydrogeochemical characteristics and bacterial community diversity in leachate from animal carcass disposal. Hydrogeochemical characteristics and bacterial community diversity in leachate from animal carcass burial facilities were monitored to prevent further soil and groundwater contamination and to build effective plans for stabilization of the burial site. Two burial sites were investigated in this study. An animal carcass disposal site is located in a flat area and another disposal site is found in mountain area. The hydrogeochemical and hydrogeological characteristics were analyzed to identify groundwater contamination by leachate from livestock burial sites. After 5-6 months of burial, the concentrations of NH4+, Cl-, and HCO3- in leachate were decreased since the leachate was regularly pumped and treated. However, high concentrations of major contaminants (NH4+, Cl-, and HCO3-) were still observed in landfill leachate of mountain area even though pumping and treatment of leachate were continuously conducted. Bacterial community diversity over time in leachate from animal carcass disposal was analyzed using 16S rRNA gene-based pyrosequencing. The impact of landfill leachate on change of bacterial community in soil and groundwater were monitored for a year.

  8. 36 CFR 13.1008 - Solid waste disposal.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 36 Parks, Forests, and Public Property 1 2011-07-01 2011-07-01 false Solid waste disposal. 13.1008... § 13.1008 Solid waste disposal. (a) A solid waste disposal site may accept non-National Park Service solid waste generated within the boundaries of the park area. (b) A solid waste disposal site may be...

  9. 36 CFR 13.1604 - Solid waste disposal.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 36 Parks, Forests, and Public Property 1 2011-07-01 2011-07-01 false Solid waste disposal. 13.1604... Solid waste disposal. (a) A solid waste disposal site may accept non-National Park Service solid waste generated within the boundaries of the park area. (b) A solid waste disposal site may be located within one...

  10. 36 CFR 13.1118 - Solid waste disposal.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 36 Parks, Forests, and Public Property 1 2010-07-01 2010-07-01 false Solid waste disposal. 13.1118... Provisions § 13.1118 Solid waste disposal. (a) A solid waste disposal site may accept non-National Park Service solid waste generated within the boundaries of the park area. (b) A solid waste disposal site may...

  11. 36 CFR 13.1604 - Solid waste disposal.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 36 Parks, Forests, and Public Property 1 2010-07-01 2010-07-01 false Solid waste disposal. 13.1604... Solid waste disposal. (a) A solid waste disposal site may accept non-National Park Service solid waste generated within the boundaries of the park area. (b) A solid waste disposal site may be located within one...

  12. 36 CFR 13.1912 - Solid waste disposal.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 36 Parks, Forests, and Public Property 1 2011-07-01 2011-07-01 false Solid waste disposal. 13.1912....1912 Solid waste disposal. (a) A solid waste disposal site may accept non-National Park Service solid waste generated within the boundaries of the park area. (b) A solid waste disposal site may be located...

  13. 36 CFR 13.1008 - Solid waste disposal.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 36 Parks, Forests, and Public Property 1 2010-07-01 2010-07-01 false Solid waste disposal. 13.1008... § 13.1008 Solid waste disposal. (a) A solid waste disposal site may accept non-National Park Service solid waste generated within the boundaries of the park area. (b) A solid waste disposal site may be...

  14. 36 CFR 13.1118 - Solid waste disposal.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 36 Parks, Forests, and Public Property 1 2011-07-01 2011-07-01 false Solid waste disposal. 13.1118... Provisions § 13.1118 Solid waste disposal. (a) A solid waste disposal site may accept non-National Park Service solid waste generated within the boundaries of the park area. (b) A solid waste disposal site may...

  15. Effect of dredge spoil deposition on fecal coliform counts in sediments at a disposal site.

    PubMed Central

    Babinchak, J A; Graikoski, J T; Dudley, S; Nitkowski, M F

    1977-01-01

    The most-probable-number of fecal coliforms in sediments was monitored at the New London dump site in Long Island Sound during the deposition of dredge spoil from the Thames River. Although the geometric mean for fecal coliforms at five stations in the river was 14,000/100 ml before dredging commenced, the deposition of this material did not increase the incidence of fecal coliforms at 17 spoil stations and 13 control stations in the disposal and surrounding areas. Fecal coliforms appear to occur only in the surface sediment material and are diluted by the subsurface material during the dredging operation. Fecal coliform analyses of bottom waters during high and low tides indicated that the flow of water from the Thames River played a major role in determining the most-probable-number of fecal coliforms in the sediments at the disposal site. PMID:329761

  16. U.S. Nuclear Regulatory Commission Role and Activities Related to U.S. Department of Energy Incidental Waste Determinations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bradford, A.H.; Esh, D.W.; Ridge, A.C.

    2006-07-01

    Section 3116 of the Ronald W. Reagan National Defense Authorization Act for Fiscal Year 2005 (NDAA) requires the U.S. Department of Energy (DOE) to consult with the U.S. Nuclear Regulatory Commission (NRC) for certain non-high level waste (HLW) determinations. Under the NDAA, NRC performs consultative technical reviews of DOE's waste determinations and monitors DOE's disposal actions for such waste, but the NRC does not have regulatory authority over DOE's waste disposal activities. The NDAA provides the criteria that must be met to determine that waste is not HLW. The criteria require that the waste does not need to be disposedmore » of in a geologic repository, that highly radioactive radionuclides be removed to the maximum extent practical, and that the performance objectives of 10 CFR 61, Subpart C, be met. The performance objectives contain criteria for protection of the public, protection of inadvertent intruders, protection of workers, and stability of the disposal site after closure. This paper describes NRC's approach to implementing its responsibilities under the NDAA, as well as similar activities being performed for sites not covered by the NDAA. (authors)« less

  17. 16 CFR 682.3 - Proper disposal of consumer information.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... OF CONSUMER REPORT INFORMATION AND RECORDS § 682.3 Proper disposal of consumer information. (a) Standard. Any person who maintains or otherwise possesses consumer information for a business purpose must... 16 Commercial Practices 1 2010-01-01 2010-01-01 false Proper disposal of consumer information. 682...

  18. 16 CFR 682.3 - Proper disposal of consumer information.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 16 Commercial Practices 1 2011-01-01 2011-01-01 false Proper disposal of consumer information. 682... OF CONSUMER REPORT INFORMATION AND RECORDS § 682.3 Proper disposal of consumer information. (a) Standard. Any person who maintains or otherwise possesses consumer information for a business purpose must...

  19. Lessons Learned from Radioactive Waste Storage and Disposal Facilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Esh, David W.; Bradford, Anna H.

    2008-01-15

    The safety of radioactive waste disposal facilities and the decommissioning of complex sites may be predicated on the performance of engineered and natural barriers. For assessing the safety of a waste disposal facility or a decommissioned site, a performance assessment or similar analysis is often completed. The analysis is typically based on a site conceptual model that is developed from site characterization information, observations, and, in many cases, expert judgment. Because waste disposal facilities are sited, constructed, monitored, and maintained, a fair amount of data has been generated at a variety of sites in a variety of natural systems. Thismore » paper provides select examples of lessons learned from the observations developed from the monitoring of various radioactive waste facilities (storage and disposal), and discusses the implications for modeling of future waste disposal facilities that are yet to be constructed or for the development of dose assessments for the release of decommissioning sites. Monitoring has been and continues to be performed at a variety of different facilities for the disposal of radioactive waste. These include facilities for the disposal of commercial low-level waste (LLW), reprocessing wastes, and uranium mill tailings. Many of the lessons learned and problems encountered provide a unique opportunity to improve future designs of waste disposal facilities, to improve dose modeling for decommissioning sites, and to be proactive in identifying future problems. Typically, an initial conceptual model was developed and the siting and design of the disposal facility was based on the conceptual model. After facility construction and operation, monitoring data was collected and evaluated. In many cases the monitoring data did not comport with the original site conceptual model, leading to additional investigation and changes to the site conceptual model and modifications to the design of the facility. The following cases are

  20. A non-intrusive screening methodology for environmental hazard assessment at waste disposal sites for water resources protection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Simons, B.A.; Woldt, W.E.; Jones, D.D.

    The environmental and health risks posed by unregulated waste disposal sites are potential concerns of Pacific Rim regions and island ares because of the need to protect aquifers and other valuable water resources. A non-intrusive screening methodology to determine site characteristics including possible soil and/or groundwater contamination, areal extent of waste, etc. is being developed and tested at waste disposal sites in Nebraska. This type of methodology would be beneficial to Pacific Rim regions in investigating and/or locating unknown or poorly documented contamination areas for hazard assessment and groundwater protection. Traditional assessment methods are generally expensive, time consuming, and potentiallymore » exacerbate the problem. Ideally, a quick and inexpensive assessment method to reliably characterize these sites is desired. Electromagnetic (EM) conductivity surveying and soil-vapor sampling techniques, combined with innovative three-dimensional geostatistical methods are used to map the data to develop a site characterization of the subsurface and to aid in tracking any contaminant plumes. The EM data is analyzed to determine/estimate the extent and volume of waste and/or leachate. Soil-vapor data are analyzed to estimate a site`s volatile organic compound (VOC) emission rate to the atmosphere. The combined information could then be incorporated as one part of an overall hazard assessment system.« less

  1. Improving Site-Specific Radiological Performance Assessments - 13431

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tauxe, John; Black, Paul; Catlett, Kate

    2013-07-01

    An improved approach is presented for conducting complete and defensible radiological site-specific performance assessments (PAs) to support radioactive waste disposal decisions. The basic tenets of PA were initiated some thirty years ago, focusing on geologic disposals and evaluating compliance with regulations. Some of these regulations were inherently probabilistic (i.e., addressing uncertainty in a quantitative fashion), such as the containment requirements of the U.S. Environmental Protection Agency's (EPA's) 40 CFR 191, Environmental Radiation Protection Standards for Management and Disposal of Spent Nuclear Fuel, High-Level and Transuranic Radioactive Wastes, Chap. 191.13 [1]. Methods of analysis were developed to meet those requirements, butmore » at their core early PAs used 'conservative' parameter values and modeling approaches. This limited the utility of such PAs to compliance evaluation, and did little to inform decisions about optimizing disposal, closure and long-term monitoring and maintenance, or, in general, maintaining doses 'as low as reasonably achievable' (ALARA). This basic approach to PA development in the United States was employed essentially unchanged through the end of the 20. century, principally by the U.S. Department of Energy (DOE). Performance assessments developed in support of private radioactive waste disposal operations, regulated by the U.S. Nuclear Regulatory Commission (NRC) and its agreement states, were typically not as sophisticated. Discussion of new approaches to PA is timely, since at the time of this writing, the DOE is in the midst of revising its Order 435.1, Radioactive Waste Management [2], and the NRC is revising 10 CFR 61, Licensing Requirements for Land Disposal of Radioactive Waste [3]. Over the previous decade, theoretical developments and improved computational technology have provided the foundation for integrating decision analysis (DA) concepts and objective-focused thinking, plus a Bayesian approach to

  2. Maintenance Plan for the Composite Analysis of the Hanford Site, Southeast Washington.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lehman, L. L.; Nichols, W. E.

    The U.S. Department of Energy (DOE) manuals for radioactive waste management, DOE M 435.1-1 Chg 21 and DOE-STD-5002-2017, require that the Hanford Site maintain site performance assessments and composite analyses (CAs). This document describes the plan for maintaining the CA that supports waste disposal and remedial actions for the Hanford Site. An initial CA of the site was issued in 1998, conditionally approved in 1999, received further analysis to satisfy conditions in an addendum in 2001, and was approved in 2002. This document meets the maintenance plan requirements described in DOE M 435.1-1 Chg 2 and DOE-STD-5002-2017 and implements themore » requirements of the disposal authorization related to the CA for the U.S. Department of Energy, Richland Operations Office, the responsible field office, and its contractors.« less

  3. Using 3D Geologic Models to Synthesize Large and Disparate Datasets for Site Characterization and Verification Purposes

    NASA Astrophysics Data System (ADS)

    Hillesheim, M. B.; Rautman, C. A.; Johnson, P. B.; Powers, D. W.

    2008-12-01

    As we are all aware, increases in computing power and efficiency have allowed for the development of many modeling codes capable of processing large and sometimes disparate datasets (e.g., geological, hydrological, geochemical, etc). Because people sometimes have difficulty visualizing in three dimensions (3D) or understanding how multiple figures of various geologic features relate as a whole, 3D geologic models can be excellent tools to illustrate key concepts and findings, especially to lay persons, such as stakeholders, customers, and other concerned parties. In this presentation, we will show examples of 3D geologic modeling efforts using data collected during site characterization and verification work at the Waste Isolation Pilot Plant (WIPP). The WIPP is a U.S. Department of Energy (DOE) facility located in southeastern New Mexico, designed for the safe disposal of transuranic wastes resulting from U.S. defense programs. The 3D geologic modeling efforts focused on refining our understanding of the WIPP site by integrating a variety of geologic data. Examples include: overlaying isopach surfaces of unit thickness and overburden thickness, a map of geologic facies changes, and a transmissivity field onto a 3D structural map of a geologic unit of interest. In addition, we also present a 4D hydrogeologic model of the effects of a large-scale pumping test on water levels. All these efforts have provided additional insights into the controls on transmissivity and flow in the WIPP vicinity. Ultimately, by combining these various types of data we have increased our understanding of the WIPP site's hydrogeologic system, which is a key aspect of continued certification. Sandia is a multi program laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under Contract DE-AC04- 94AL85000. This research is funded by WIPP programs administered by the Office of Environmental

  4. PORTSMOUTH ON-SITE DISPOSAL CELL HIGH DENSITY POLYETHYLENE GEOMEMBRANE LONGEVITY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Phifer, M.

    It is anticipated that high density polyethylene (HDPE) geomembranes will be utilized within the liner and closure cap of the proposed On-Site Disposal Cell (OSDC) at the Portsmouth Gaseous Diffusion Plant. The likely longevity (i.e. service life) of HDPE geomembranes in OSDC service is evaluated within the following sections of this report: (1) Section 2.0 provides an overview of HDPE geomembranes, (2) Section 3.0 outlines potential HDPE geomembranes degradation mechanisms, (3) Section 4.0 evaluates the applicability of HDPE geomembrane degradation mechanisms to the Portsmouth OSDC, (4) Section 5.0 provides a discussion of the current state of knowledge relative to themore » longevity (service life) of HDPE geomembranes, including the relation of this knowledge to the Portsmouth OSDC, and (5) Section 6.0 provides summary and conclusions relative to the anticipated service life of HDPE geomembranes in OSDC service. Based upon this evaluation it is anticipated that the service life of HDPE geomembranes in OSDC service would be significantly greater than the 200 year service life assumed for the OSDC closure cap and liner HDPE geomembranes. That is, a 200 year OSDC HDPE geomembrane service life is considered a conservative assumption.« less

  5. Integrated tephrostratigraphy and stable isotope stratigraphy in the Japan Sea and East China Sea using IODP Sites U1426, U1427, and U1429, Expedition 346 Asian Monsoon

    NASA Astrophysics Data System (ADS)

    Sagawa, Takuya; Nagahashi, Yoshitaka; Satoguchi, Yasufumi; Holbourn, Ann; Itaki, Takuya; Gallagher, Stephen J.; Saavedra-Pellitero, Mariem; Ikehara, Ken; Irino, Tomohisa; Tada, Ryuji

    2018-12-01

    Integrated Ocean Drilling Program Expedition 346 "Asian Monsoon" obtained sediment successions at seven sites in the Japan Sea (Sites U1422-U1427 and U1430) and at two closely located sites in the northern East China Sea (Sites U1428 and U1429). The Quaternary sediments of the Japan Sea are characterized by centimeter- to decimeter-scale dark-light alternations at all sites deeper than 500 m water depth. The sedimentary records from these sites allow an investigation of the regional environmental response to global climate change, including changes in the Asian Monsoon and eustatic sea level. However, the discontinuous occurrence of calcareous microfossils in the deep-sea sediments and their distinct isotope signature that deviates from standard marine δ18O records do not permit the development of a detailed stable isotope stratigraphy for Japan Sea sediments. Here, we present the tephrostratigraphy for the two southernmost sites drilled in the Japan Sea (Sites U1426 and U1427) and for one site drilled in the East China Sea (Site U1429) along with the benthic δ18O isotope stratigraphy for the shallower Site U1427 and the East China Sea Site U1429. Eighteen tephra layers can be correlated between sites using the major-element composition and morphology of volcanic glass shards, and the compositions of grains and heavy minerals. Tephra correlations show that negative δ18O peaks in the Japan Sea correspond to positive glacial maxima peaks in the East China Sea. Using this integrated stratigraphic approach, we establish an orbital-scale age model at Site U1427 for the past 1.1 Myr. The correlation of tephra layers between the shallower Site U1427 (330 m below sea level: mbsl) and the deeper Site U1426 (903 mbsl) in the southern Japan Sea provides the opportunity for further age constraints. Our results show that alternations in sediment color at Sites U1426 and U1427 can be correlated for the past 1.1 Myr with minor exceptions. Thus, the stable isotope stratigraphy

  6. Report: EPA Should Improve Its Oversight of Long-Term Monitoring at Wheeling Disposal Superfund Site in Missouri

    EPA Pesticide Factsheets

    Report #11-P-0034, December 20, 2010. Our independent sampling results from the Wheeling Disposal Superfund Site were generally consistent with the sampling data that Region 7 has obtained historically.

  7. Water balance at a low-level radioactive-waste disposal site

    USGS Publications Warehouse

    Healy, R.W.; Gray, J.R.; De Vries, G. M.; Mills, P.C.

    1989-01-01

    The water balance at a low-level radioactive-waste disposal site in northwestern Illinois was studied from July 1982 through June 1984. Continuous data collection allowed estimates to be made for each component of the water-balance equation independent of other components. The average annual precipitation was 948 millimeters. Average annual evapotranspiration was estimated at 637 millimeters, runoff was 160 millimeters, change in water storage in a waste-trench cover was 24 millimeters, and deep percolation was 208 millimeters. The magnitude of the difference between precipitation and all other components (81 millimeters per year) indicates that, in a similar environment, the water-budget method would be useful in estimating evapotranspiration, but questionable for estimation of other components. Precipitation depth and temporal distribution had a very strong effect on all other components of the water-balance equation. Due to the variability of precipitation from year to year, it appears that two years of data are inadequate for characterization of the long-term average water balance at the site.

  8. The application of magnetic gradiometry and electromagnetic induction at a former radioactive waste disposal site.

    PubMed

    Rucker, Dale Franklin

    2010-04-01

    A former radioactive waste disposal site is surveyed with two non-intrusive geophysical techniques, including magnetic gradiometry and electromagnetic induction. Data were gathered over the site by towing the geophysical equipment mounted to a non-electrically conductive and non-magnetic fibre-glass cart. Magnetic gradiometry, which detects the location of ferromagnetic material, including iron and steel, was used to map the existence of a previously unknown buried pipeline formerly used in the delivery of liquid waste to a number of surface disposal trenches and concrete vaults. The existence of a possible pipeline is reinforced by historical engineering drawing and photographs. The electromagnetic induction (EMI) technique was used to map areas of high and low electrical conductivity, which coincide with the magnetic gradiometry data. The EMI also provided information on areas of high electrical conductivity unrelated to a pipeline network. Both data sets demonstrate the usefulness of surface geophysical surveillance techniques to minimize the risk of exposure in the event of future remediation efforts.

  9. Congress Examines Nuclear Waste Disposal Recommendations

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    2012-02-01

    During an 8 February U.S. congressional hearing to examine how to move forward on dealing with spent nuclear fuel and to review other recommendations of the recently released final report of the White House-appointed Blue Ribbon Commission on America's Nuclear Future (BRC), Yucca Mountain was the 65,000-ton gorilla in the room. BRC's charge was to conduct a comprehensive review of policies to manage the back end of the nuclear fuel cycle and recommend a new strategy for dealing with the 65,000 tons of spent nuclear fuel currently stored at 75 sites around the country and the 2000 tons of new spent fuel being produced each year. However, BRC specifically did not evaluate Yucca Mountain. A 26 January letter from BRC to U.S. secretary of energy Steven Chu states, "You directed that the Commission was not to serve as a siting body. Accordingly, we have not evaluated Yucca Mountain or any other location as a potential site for the storage of spent nuclear fuel or disposal of high-level waste nor have we taken a position on the administration's request to withdraw the Yucca Mountain license application."

  10. Special Analysis: Disposal Plan for Pit 38 at Technical Area 54, Area G

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    French, Sean B.; Shuman, Rob

    2012-06-26

    Los Alamos National Laboratory (LANL) generates radioactive waste as a result of various activities. Operational waste is generated from a wide variety of research and development activities including nuclear weapons development, energy production, and medical research; environmental restoration (ER), and decontamination and decommissioning (D&D) waste is generated as contaminated sites and facilities at LANL undergo cleanup or remediation. The majority of this waste is low-level radioactive waste (LLW) and is disposed of at the Technical Area 54 (TA-54), Area G disposal facility. U.S. Department of Energy (DOE) Order 435.1 (DOE, 2001) requires that radioactive waste be managed in a mannermore » that protects public health and safety, and the environment. To comply with this order, DOE field sites must prepare site-specific radiological performance assessments for LLW disposal facilities that accept waste after September 26, 1988. Furthermore, sites are required to conduct composite analyses that account for the cumulative impacts of all waste that has been (or will be) disposed of at the facilities and other sources of radioactive material that may interact with the facilities. Revision 4 of the Area G performance assessment and composite analysis was issued in 2008 (LANL, 2008). These analyses estimate rates of radionuclide release from the waste disposed of at the facility, simulate the movement of radionuclides through the environment, and project potential radiation doses to humans for several on- and off-site exposure scenarios. The assessments are based on existing site and disposal facility data, and on assumptions about future rates and methods of waste disposal. The Area G disposal facility consists of Material Disposal Area (MDA) G and the Zone 4 expansion area. To date, disposal operations have been confined to MDA G and are scheduled to continue in that region until MDA G undergoes final closure at the end of 2013. Given its impending closure

  11. Geotechnical, geological, and selected radionuclide retention characteristics of the radioactive waste disposal site near the Farallon Islands

    USGS Publications Warehouse

    Booth, J.S.; Winters, W.J.; Poppe, L.J.; Neiheisel, J.; Dyer, R.S.

    1989-01-01

    A geotechnical and geological investigation of the Farallon Islands low-level radioactive waste (LLW) disposal area was conducted to qualitatively assess the host sediments' relative effectiveness as a barrier to radionuclide migration, to estimate the portion of the barrier that is in contact with the waste packages at the three primary disposal sites, and to provide a basic physical description of the sediments. Box cores recovered from within the general disposal area at depths of 500, 1000, and 1500 m were subcored to provide samples (~30 cm in length) for detailed descriptions, textural and mineralogical analyses, and a suite of geotechnical tests (index property, CRS consolidation, and CIU triaxial compression). -from Authors

  12. 76 FR 30027 - Land Disposal Restrictions: Site-Specific Treatment Variance for Hazardous Selenium-Bearing Waste...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-24

    ... Restrictions: Site-Specific Treatment Variance for Hazardous Selenium-Bearing Waste Treated by U.S. Ecology.... Ecology Nevada in Beatty, Nevada and withdrew an existing site- specific treatment variance issued to... 268.44(o)) by granting a site-specific treatment variance to U.S. Ecology Nevada in Beatty, Nevada and...

  13. Impact of Construction Waste Disposal Charging Scheme on work practices at construction sites in Hong Kong.

    PubMed

    Yu, Ann T W; Poon, C S; Wong, Agnes; Yip, Robin; Jaillon, Lara

    2013-01-01

    Waste management in the building industry in Hong Kong has become an important environmental issue. Particularly, an increasing amount of construction and demolition (C&D) waste is being disposed at landfill sites. In order to reduce waste generation and encourage reuse and recycling, the Hong Kong Government has implemented the Construction Waste Disposal Charging Scheme (CWDCS) to levy charges on C&D waste disposal to landfills. In order to provide information on the changes in reducing waste generation practice among construction participants in various work trades, a study was conducted after 3 years of implementation of the CWDCS via a structured questionnaire survey in the building industry in Hong Kong. The study result has revealed changes with work flows of the major trades as well as differentiating the levels of waste reduced. Three building projects in the public and private sectors were selected as case studies to demonstrate the changes in work flows and the reduction of waste achieved. The research findings reveal that a significant reduction of construction waste was achieved at the first 3 years (2006-2008) of CWDCS implementation. However, the reduction cannot be sustained. The major trades have been influenced to a certain extent by the implementation of the CWDCS. Slight improvement in waste management practices was observed, but reduction of construction waste in the wet-finishing and dry-finishing trades has undergone little improvement. Implementation of the CWDCS has not yet motivated subcontractors to change their methods of construction so as to reduce C&D waste. Copyright © 2012 Elsevier Ltd. All rights reserved.

  14. 3rd Quarter Transportation Report FY 2014: Radioactive Waste Shipments to and from the Nevada National Security Site (NNSS)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gregory, Louis

    2014-09-20

    This report satisfies the U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Field Office (NNSA/NFO) commitment to prepare a quarterly summary report of radioactive waste shipments to the Nevada National Security Site (NNSS) Radioactive Waste Management Complex (RWMC) at Area 5. There were no shipments sent for offsite treatment and returned to the NNSS this quarter. This report summarizes the 3rd quarter of Fiscal Year (FY) 2014 low-level radioactive waste (LLW) and mixed low-level radioactive waste (MLLW) shipments. This report also includes annual summaries for FY 2014 in Tables 4 and 5. Tabular summaries are provided which includemore » the following: Sources of and carriers for LLW and MLLW shipments to and from the NNSS; Number and external volume of LLW and MLLW shipments; Highway routes used by carriers; and Incident/accident data applicable to LLW and MLLW shipments. In this report shipments are accounted for upon arrival at the NNSS, while disposal volumes are accounted for upon waste burial. The disposal volumes presented in this report do not include minor volumes of non-radioactive materials that were approved for disposal. Volume reports showing cubic feet generated using the Low-Level Waste Information System may vary slightly due to differing rounding conventions.« less

  15. Puget Sound Dredged Disposal Analysis (PSDDA). Unconfined, Open-Water Disposal Sites for Dredged Material. Phase 1 (Central Puget Sound). National Environmental Policy Act (NEPA)/State Environmental Policy Act (SEPA)

    DTIC Science & Technology

    1988-06-01

    confined to a relatively small area. In 400 feet of water the descending cloud is approximately 250 feet in diameter (B. Trawle, personal communica- tion...when it hits the bottom, occuring 30 seconds after disposal is initiated. The collapsing cloud then spreads out in all directions. Ten minutes later...Compliance inspection6. Environ- mental monitorig an permin dp&nce insp ecti, arso part -disposal site management, are described in the MPR and the Management

  16. Water-quality and hydrogeologic data for three phosphate industry waste-disposal sites in central Florida, 1979-80

    USGS Publications Warehouse

    Miller, Ronald L.; Sutcliffe, Horace

    1982-01-01

    This report is a complilation of geologic, hydrologic, and water-quality data and information on test holes collected in the vicinity of gypsum stack complexes at two phosphate chemical plants and one phosphatic clayey waste disposal pond at a phosphate mine and beneficiation plant in central Florida. The data were collected from September 1979 to October 1980 at thee AMAX Phosphate, Inc., chemical plant, Piney Point; the USS AgriChemicals chemical plant, Bartow; and the International Minerals and Chemical Corporation Clear Springs mine, Bartow. Approximmmtely 5,400 field and laboratory water-quality determinations on water samples were collected from about 78 test holes and 31 surface-water, rainfall, and other sampling sites at phosphate industry beneficiation and chemical plant waste-disposal operations. Maps show locations of sampling sites. (USGS)

  17. State waste discharge permit application for the 200 Area Effluent Treatment Facility and the State-Approved Land Disposal Site

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1993-08-01

    Application is being made for a permit pursuant to Chapter 173--216 of the Washington Administrative Code (WAC), to discharge treated waste water and cooling tower blowdown from the 200 Area Effluent Treatment Facility (ETF) to land at the State-Approved Land Disposal Site (SALDS). The ETF is located in the 200 East Area and the SALDS is located north of the 200 West Area. The ETF is an industrial waste water treatment plant that will initially receive waste water from the following two sources, both located in the 200 Area on the Hanford Site: (1) the Liquid Effluent Retention Facility (LERF)more » and (2) the 242-A Evaporator. The waste water discharged from these two facilities is process condensate (PC), a by-product of the concentration of waste from DSTs that is performed in the 242-A Evaporator. Because the ETF is designed as a flexible treatment system, other aqueous waste streams generated at the Hanford Site may be considered for treatment at the ETF. The origin of the waste currently contained in the DSTs is explained in Section 2.0. An overview of the concentration of these waste in the 242-A Evaporator is provided in Section 3.0. Section 4.0 describes the LERF, a storage facility for process condensate. Attachment A responds to Section B of the permit application and provides an overview of the processes that generated the wastes, storage of the wastes in double-shell tanks (DST), preliminary treatment in the 242-A Evaporator, and storage at the LERF. Attachment B addresses waste water treatment at the ETF (under construction) and the addition of cooling tower blowdown to the treated waste water prior to disposal at SALDS. Attachment C describes treated waste water disposal at the proposed SALDS.« less

  18. Impact of Construction Waste Disposal Charging Scheme on work practices at construction sites in Hong Kong

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu, Ann T.W., E-mail: bsannyu@polyu.edu.hk; Poon, C.S.; Wong, Agnes

    Highlights: Black-Right-Pointing-Pointer A significant reduction of construction waste was achieved at the first 3 years of CWDCS implementation. Black-Right-Pointing-Pointer However, the reduction cannot be sustained. Black-Right-Pointing-Pointer Implementation of the CWDCS has generated positive effects in waste reduction by all main trades. - Abstract: Waste management in the building industry in Hong Kong has become an important environmental issue. Particularly, an increasing amount of construction and demolition (C and D) waste is being disposed at landfill sites. In order to reduce waste generation and encourage reuse and recycling, the Hong Kong Government has implemented the Construction Waste Disposal Charging Scheme (CWDCS)more » to levy charges on C and D waste disposal to landfills. In order to provide information on the changes in reducing waste generation practice among construction participants in various work trades, a study was conducted after 3 years of implementation of the CWDCS via a structured questionnaire survey in the building industry in Hong Kong. The study result has revealed changes with work flows of the major trades as well as differentiating the levels of waste reduced. Three building projects in the public and private sectors were selected as case studies to demonstrate the changes in work flows and the reduction of waste achieved. The research findings reveal that a significant reduction of construction waste was achieved at the first 3 years (2006-2008) of CWDCS implementation. However, the reduction cannot be sustained. The major trades have been influenced to a certain extent by the implementation of the CWDCS. Slight improvement in waste management practices was observed, but reduction of construction waste in the wet-finishing and dry-finishing trades has undergone little improvement. Implementation of the CWDCS has not yet motivated subcontractors to change their methods of construction so as to reduce C and D waste.« less

  19. Assessment of groundwater quality by unsaturated zone study due to migration of leachate from Abloradjei waste disposal site, Ghana

    NASA Astrophysics Data System (ADS)

    Egbi, Courage Davidson; Akiti, Tetteh Thomas; Osae, Shiloh; Dampare, Samuel Boakye; Abass, Gibrilla; Adomako, Dickson

    2017-05-01

    Leachate generated by open solid waste disposal sites contains substances likely to contaminate groundwater. The impact of potential contaminants migrating from leachate on groundwater can be quantified by monitoring their concentration and soil properties at specific points in the unsaturated zone. In this study, physical and chemical analyses were carried out on leachate, soil and water samples within the vicinity of the municipal solid waste disposal site at Abloradjei, a suburb of Accra, Ghana. The area has seen a massive increase in population and the residents depend on groundwater as the main source of water supply. Results obtained indicate alkaline pH for leachate and acidic conditions for unsaturated zone water. High EC values were recorded for leachate and unsaturated zone water. Major ions (Ca2+, Na+, Mg2+, K+, NO3 -, SO4 2-, Cl-, PO4 3- were analysed in leachate, unsaturated zone water, soil solution and groundwater while trace metals (Al, Fe, Cu, Zn, Pb) were analysed in both soil and extracted soil solution. Concentrations of major ions were high in all samples indicating possible anthropogenic origin. Mean % gravel, % sand, % clay, bulk density, volumetric water content and porosity were 28.8, 63.93, 6.6, 1 g cm-3, 35 and 62.7 %, respectively. Distribution of trace elements showed Kd variation of Al > Cu > Fe > Pb > Zn in the order of sequential increasing solubility. It was observed that the quality of groundwater is not suitable for drinking.

  20. Global SO(3) x SO(3) x U(1) symmetry of the Hubbard model on bipartite lattices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carmelo, J.M.P., E-mail: carmelo@fisica.uminho.p; Ostlund, Stellan; Sampaio, M.J.

    2010-08-15

    In this paper the global symmetry of the Hubbard model on a bipartite lattice is found to be larger than SO(4). The model is one of the most studied many-particle quantum problems, yet except in one dimension it has no exact solution, so that there remain many open questions about its properties. Symmetry plays an important role in physics and often can be used to extract useful information on unsolved non-perturbative quantum problems. Specifically, here it is found that for on-site interaction U {ne} 0 the local SU(2) x SU(2) x U(1) gauge symmetry of the Hubbard model on amore » bipartite lattice with N{sub a}{sup D} sites and vanishing transfer integral t = 0 can be lifted to a global [SU(2) x SU(2) x U(1)]/Z{sub 2}{sup 2} = SO(3) x SO(3) x U(1) symmetry in the presence of the kinetic-energy hopping term of the Hamiltonian with t > 0. (Examples of a bipartite lattice are the D-dimensional cubic lattices of lattice constant a and edge length L = N{sub a}a for which D = 1, 2, 3,... in the number N{sub a}{sup D} of sites.) The generator of the new found hidden independent charge global U(1) symmetry, which is not related to the ordinary U(1) gauge subgroup of electromagnetism, is one half the rotated-electron number of singly occupied sites operator. Although addition of chemical-potential and magnetic-field operator terms to the model Hamiltonian lowers its symmetry, such terms commute with it. Therefore, its 4{sup N}{sub a}{sup D} energy eigenstates refer to representations of the new found global [SU(2) x SU(2) x U(1)]/Z{sub 2}{sup 2} = SO(3) x SO(3) x U(1) symmetry. Consistently, we find that for the Hubbard model on a bipartite lattice the number of independent representations of the group SO(3) x SO(3) x U(1) equals the Hilbert-space dimension 4{sup N}{sub a}{sup D}. It is confirmed elsewhere that the new found symmetry has important physical consequences.« less

  1. Geological investigations in the U12b.03 and U12b.04 tunnels, Nevada Test Site

    USGS Publications Warehouse

    Diment, W.H.; Wilmarth, V. R.; McKeown, F.A.; Dickey, D.D.; Hinrichs, E.N.; Botinelly, T.; Roach, C.H.; Byers, F.M.; Hawley, C.C.; Izett, G.A.; Clebsch, Alfred

    1959-01-01

    The U12b.03 and .04 tunnels are part of the U12b (Rainier) tunnel complex that was driven northwestward from the steep east slope of Rainier Mesa (a prominent topographic feature in the northwest part of the Test Site (fig . 2)). The U12b.03 tunnel trends north from a point about 980 feet from the portal of the U12b tunnel (fig. 3). The U12b.03 tunnel consists of 620 feet of tunnel, two alcoves, and a shot chamber. The tunnel is irregular, ranging from 6 to 10 feet in width, and 6 to 9 feet in height. The shot chamber at the north end of the tunnel is 22 feet on each sidee The vertical and minimum cover over the shot chamber are 610 and 510 feet, respectively.

  2. Reconnaissance of water quality at a US Department of Energy site, Pinellas County, Florida

    USGS Publications Warehouse

    Fernandez, Mario

    1985-01-01

    Sanitary and industrial wastes at the Pinellas Plant of the U.S. Department of Energy, prior to December 1982, were combined, treated, and disposed of by ponding and spray irrigation on a 10-acre tract within the plant site. Prior to 1972, the treated wastes were released to surface drainage features. An electromagnetic survey for ground conductivity was made to identify changes in the ground conductivity that may be due to the spray irrigation disposal operations. Water samples from four test wells drilled into the surficial aquifer and the two disposal ponds and bottom material from the ponds were analyzed for priority and nonpriority pollutants, total organic carbon, volatile organic carbon, herbicides, insecticides, trace metals, nutrients, and major constituents. Overall, concentrations of constituents in the water samples were (1) less than the detection limits, (2) within U.S. Environmental Protection Agency quality criteria for water, or (3) within the range of results for a designated background water-quality site. Concentrations of 12 priority pollutants were found to be considerably above detection limits. Concentrations of these compounds, mostly coal-tar derivatives, ranged from 220 to 5,500 micrograms per kilogram; the detection limit for these compounds is 10 micrograms per kilogram. Included in these compounds were anthracene, pyrenes, and chrysene. (USGS)

  3. Exploring traditional aus-type rice for metabolites conferring drought tolerance.

    PubMed

    Casartelli, Alberto; Riewe, David; Hubberten, Hans Michael; Altmann, Thomas; Hoefgen, Rainer; Heuer, Sigrid

    2018-01-25

    Traditional varieties and landraces belonging to the aus-type group of rice (Oryza sativa L.) are known to be highly tolerant to environmental stresses, such as drought and heat, and are therefore recognized as a valuable genetic resource for crop improvement. Using two aus-type (Dular, N22) and two drought intolerant irrigated varieties (IR64, IR74) an untargeted metabolomics analysis was conducted to identify drought-responsive metabolites associated with tolerance. The superior drought tolerance of Dular and N22 compared with the irrigated varieties was confirmed by phenotyping plants grown to maturity after imposing severe drought stress in a dry-down treatment. Dular and N22 did not show a significant reduction in grain yield compared to well-watered control plants, whereas the intolerant varieties showed a significant reduction in both, total spikelet number and grain yield. The metabolomics analysis was conducted with shoot and root samples of plants at the tillering stage at the end of the dry-down treatment. The data revealed an overall higher accumulation of N-rich metabolites (amino acids and nucleotide-related metabolites allantoin and uridine) in shoots of the tolerant varieties. In roots, the aus-type varieties were characterised by a higher reduction of metabolites representative of glycolysis and the TCA cycle, such as malate, glyceric acid and glyceric acid-3-phosphate. On the other hand, the oligosaccharide raffinose showed a higher fold increase in both, shoots and roots of the sensitive genotypes. The data further showed that, for certain drought-responsive metabolites, differences between the contrasting rice varieties were already evident under well-watered control conditions. The drought tolerance-related metabolites identified in the aus-type varieties provide a valuable set of protective compounds and an entry point for assessing genetic diversity in the underlying pathways for developing drought tolerant rice and other crops.

  4. Hydrology and subsurface transport of oil-field brine at the U.S. Geological Survey OSPER site "A", Osage County, Oklahoma

    USGS Publications Warehouse

    Herkelrath, W.N.; Kharaka, Y.K.; Thordsen, J.J.; Abbott, M.M.

    2007-01-01

    Spillage and improper disposal of saline produced water from oil wells has caused environmental damage at thousands of sites in the United States. In order to improve understanding of the fate and transport of contaminants at these sites, the U.S. Geological Survey carried out multidisciplinary investigations at two oil production sites near Skiatook Lake, Oklahoma. As a part of this effort, the hydrology and subsurface transport of brine at OSPER site "A", a tank battery and pit complex that was abandoned in 1973, was investigated. Based on data from 41 new boreholes that were cored and completed with monitoring wells, a large (???200 m ?? 200 m ?? 20 m) plume of saline ground water was mapped. The main dissolved species are Na and Cl, with TDS in the plume ranging as high as 30,000 mg/L. Analysis of the high barometric efficiency of the wells indicated a confined aquifer response. Well-slug tests indicated the hydraulic conductivity is low (0.3-7.0 cm/day). Simplified flow and transport modeling supports the following conceptual model: (1) prior to the produced water releases, recharge was generally low (???1 cm/a); (2) in ???60 a of oil production enough saline produced water in pits leaked into the subsurface to create the plume; (3) following abandonment of the site in 1973 and filling of Skiatook Reservoir in the mid-1980s, recharge and lateral flow of water through the plume returned to low values; (4) as a result, spreading of the brine plume caused by mixing with fresh ground water recharge, as well as natural attenuation, are very slow.

  5. U.S. EPA'S STRATEGY FOR GROUND WATER QUALITY MONITORING AT HAZARDOUS WASTE LAND DISPOSAL FACILITIES LOCATED IN KARST TERRANES

    EPA Science Inventory

    Ground water monitoring of hazardous waste land disposal units by a network of wells is ineffective when located in karstic terranes. The U.S. Environmental Protection Agency (EPA) is currently proposing to modify its current ground water quality monitoring requirement of one upg...

  6. The road to Yucca Mountain—Evolution of nuclear waste disposal in the United States

    USGS Publications Warehouse

    Stuckless, John S.; Levich, Robert A.

    2016-01-01

    The generation of electricity by nuclear power and the manufacturing of atomic weapons have created a large amount of spent nuclear fuel and high-level radioactive waste. There is a world-wide consensus that the best way to protect mankind and the environment is to dispose of this waste in a deep geologic repository. Initial efforts focused on salt as the best medium for disposal, but the heat generated by the radioactive waste led many earth scientists to examine other rock types. In 1976, the director of the U.S. Geological Survey (USGS) wrote to the U.S. Energy Research and Development Administration (ERDA), predecessor agency of the U.S. Department of Energy (DOE), suggesting that there were several favorable environments at the Nevada Test Site (NTS), and that the USGS already had extensive background information on the NTS. Later, in a series of communications and one publication, the USGS espoused the favorability of the thick unsaturated zone. After the passage of the Nuclear Waste Policy Act (1982), the DOE compiled a list of nine favorable sites and settled on three to be characterized. In 1987, as the costs of characterizing three sites ballooned, Congress amended the Nuclear Waste Policy Act directing the DOE to focus only on Yucca Mountain in Nevada, with the proviso that if anything unfavorable was discovered, work would stop immediately. The U.S. DOE, the U.S. DOE national laboratories, and the USGS developed more than 100 detailed plans to study various earth-science aspects of Yucca Mountain and the surrounding area, as well as materials studies and engineering projects needed for a mined geologic repository. The work, which cost more than 10 billion dollars and required hundreds of man-years of work, culminated in a license application submitted to the U.S. Nuclear Regulatory Commission (NRC) in 2008.

  7. Surface-water hydrology at three coal-refuse disposal sites in southern Illinois: Staunton 1, New Kathleen, and Superior

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mele, L.M.; Prodan, P.F.

    1983-04-01

    Hydrologic data were collected and analyzed for three coal refuse disposal sites in southern Illinois. The disposal sites were associated with underground mines and consisted of piles of coarse waste (gob) and slurry areas where fine waste rejected from coal washing was deposited. Prereclamation data were available for the Superior washer site in Macoupin County and the New Kathleen site in Perry County. Post-reclamation data were available for the Staunton 1 site in Macoupin County and the New Kathleen site. Data analyzed from each phase (i.e., pre- or post-reclamation) were limited to one year. Storm event runoff coefficients were calculatedmore » for each site. Average runoff coefficients were compared for sites within the same reclamation phase to determine the effects of topographical parameters such as gob pile slope and percentage of drainage basin covered by the gob pile. Average runoff coefficients were then compared for pre- and post-reclamation data. Multiple regression analyses were performed on rainfall-runoff data for each site to determine the significance of independent variables other than rainfall in determining runoff. A generalized regression equation corrected data for topographical differences and included only those independent variables that were significant at all sites. Regression coefficients were compared for pre- and post-reclamation sites. The results of rainfall-runoff analysis indicate that the runoff coefficient increases because of reclamation. It is hypothesized that this effect is due to the placement of a soil cover that is less permeable than gob or slurry and occurs despite reduction in slope and the establishment of vegetation.« less

  8. Progress and future direction for the interim safe storage and disposal of Hanford high-level waste

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kinzer, J.E.; Wodrich, D.D.; Bacon, R.F.

    This paper describes the progress made at the largest environmental cleanup program in the United States. Substantial advances in methods to start interim safe storage of Hanford Site high-level wastes, waste characterization to support both safety- and disposal-related information needs, and proceeding with cost-effective disposal by the U.S. Department of Energy (DOE) and its Hanford Site contractors, have been realized. Challenges facing the Tank Waste Remediation System (TWRS) Program, which is charged with the dual and parallel missions of interim safe storage and disposal of the high-level tank waste stored at the Hanford Site, are described. In these times ofmore » budget austerity, implementing an ongoing program that combines technical excellence and cost effectiveness is the near-term challenge. The technical initiatives and progress described in this paper are made more cost effective by DOE`s focus on work force productivity improvement, reduction of overhead costs, and reduction, integration and simplification of DOE regulations and operations requirements to more closely model those used in the private sector.« less

  9. Surface Complexation Modeling of U(VI) Adsorption onto Savannah River Site Sediments

    NASA Astrophysics Data System (ADS)

    Dong, W.; Wan, J.; Tokunaga, T. K.; Denham, M.; Davis, J.; Hubbard, S. S.

    2011-12-01

    The Savannah River Site (SRS) was a U.S. Department of Energy facility for plutonium production during the Cold War. Waste plumes containing low-level radioactivity and acidic waste solutions were discharged to a series of unlined seepage basins in the F-Area of the SRS from 1955 to 1988. Although the site has undergone many years of active remediation, the groundwater remains acidic, and the concentrations of U and other radionuclides are still significantly higher than their Maximum Contaminant Levels (MCLs). The objective of this effort is to understand and predict U(VI) mobility in acidic waste plumes through developing surface complexation models (SCMs). Laboratory batch experiments were conducted to evaluate U adsorption behavior over the pH range of 3.0 to 9.5. Ten sorbent samples were selected including six contaminated sediment samples from three boreholes drilled within the plume and along the groundwater flow direction, two uncontaminated (pristine) sediment samples from a borehole outside of the plume, and two reference minerals, goethite and kaolinite (identified as the dominant minerals in the clay size fraction of the F-Area sediments). The results show that goethite and kaolinite largely control U partitioning behavior. In comparison with the pristine sediment, U(VI) adsorption onto contaminated sediments exhibits adsorption edges shifted toward lower pH by about 1.0 unit (e.g., from pH≈4.5 to pH≈3.5). We developed a SCMs based component additivity (CA) approach, which can successfully predict U(VI) adsorption onto uncontaminated SRS sediments. However, application of the same SCMs based CA approach to contaminated sediments resulted in underestimates of U(VI) adsorption at acidic pH conditions. The model sensitivity analyses indicate that both goethite and kaolinite surfaces co-contributed to U(VI) adsorption under acidic pH conditions. In particular, the exchange sites of clay minerals might play an important role in adsorption of U(VI) at p

  10. Data Validation Package December 2015 Groundwater Sampling at the Ambrosia Lake, New Mexico, Disposal Site March 2016

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tsosie, Bernadette; Johnson, Dick

    The Long-Term Surveillance Plan for the Ambrosia Lake, New Mexico, Disposal Site does not require groundwater monitoring because groundwater in the uppermost aquifer is of limited use, and supplemental standards have been applied to the aquifer. However, at the request of the New Mexico Environment Department, the U.S. Department of Energy conducts annual monitoring at three locations: monitoring wells 0409, 0675, and 0678. Sampling and analyses were conducted as specified in the Sampling and Analysis Plan for US. Department of Energy Office of Legacy Management Sites (LMS/PRO/S04351, continually updated). Monitoring Well 0409 was not sampled during this event because itmore » was dry. Water levels were measured at each sampled well. One duplicate sample was collected from location 0675. Groundwater samples from the two sampled wells were analyzed for the constituents listed in Table 1. Time-concentration graphs for selected analytes are included in this report. At well 0675, the duplicate results for total dissolved solids and for most metals (magnesium, molybdenum, potassium, selenium, sodium, and uranium) were outside acceptance criteria, which may indicate non-homogeneous conditions at this location. November 2014 results for molybdenum and uranium at well 0675 also were outside acceptance criteria. The well condition will be evaluated prior to the next sampling event.« less

  11. Salmon Site Remedial Investigation Report, Exhibit 5

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    USDOE /NV

    1999-09-01

    This Salmon Site Remedial Investigation Report provides the results of activities initiated by the U.S. Department of Energy (DOE) to determine if contamination at the Salmon Site poses a current or future risk to human health and the environment. These results were used to develop and evaluate a range of risk-based remedial alternatives. Located in Lamar County, Mississippi, the Salmon Site was used by the U.S. Atomic Energy Commission (predecessor to the DOE) between 1964 and 1970 for two nuclear and two gas explosions conducted deep underground in a salt dome. The testing resulted in the release of radionuclides intomore » the salt dome. During reentry drilling and other site activities, liquid and solid wastes containing radioactivity were generated resulting in surface soil and groundwater contamination. Most of the waste and contaminated soil and water were disposed of in 1993 during site restoration either in the cavities left by the tests or in an injection well. Other radioactive wastes were transported to the Nevada Test Site for disposal. Nonradioactive wastes were disposed of in pits at the site and capped with clean soil and graded. The preliminary investigation showed residual contamination in the Surface Ground Zero mud pits below the water table. Remedial investigations results concluded the contaminant concentrations detected present no significant risk to existing and/or future land users, if surface institutional controls and subsurface restrictions are maintained. Recent sampling results determined no significant contamination in the surface or shallow subsurface. The test cavity resulting from the experiments is contaminated and cannot be economically remediated with existing technologies. The ecological sampling did not detect biological uptake of contaminants in the plants or animals sampled. Based on the current use of the Salmon Site, the following remedial actions were identified to protect both human health and the environment: (1) the

  12. Salmon Site Remedial Investigation Report, Main Body

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    US DOE /NV

    1999-09-01

    This Salmon Site Remedial Investigation Report provides the results of activities initiated by the U.S. Department of Energy (DOE) to determine if contamination at the Salmon Site poses a current or future risk to human health and the environment. These results were used to develop and evaluate a range of risk-based remedial alternatives. Located in Lamar County, Mississippi, the Salmon Site was used by the U.S. Atomic Energy Commission (predecessor to the DOE) between 1964 and 1970 for two nuclear and two gas explosions conducted deep underground in a salt dome. The testing resulted in the release of radionuclides intomore » the salt dome. During reentry drilling and other site activities, liquid and solid wastes containing radioactivity were generated resulting in surface soil and groundwater contamination. Most of the waste and contaminated soil and water were disposed of in 1993 during site restoration either in the cavities left by the tests or in an injection well. Other radioactive wastes were transported to the Nevada Test Site for disposal. Nonradioactive wastes were disposed of in pits at the site and capped with clean soil and graded. The preliminary investigation showed residual contamination in the Surface Ground Zero mud pits below the water table. Remedial investigations results concluded the contaminant concentrations detected present no significant risk to existing and/or future land users, if surface institutional controls and subsurface restrictions are maintained. Recent sampling results determined no significant contamination in the surface or shallow subsurface. The test cavity resulting from the experiments is contaminated and cannot be economically remediated with existing technologies. The ecological sampling did not detect biological uptake of contaminants in the plants or animals sampled. Based on the current use of the Salmon Site, the following remedial actions were identified to protect both human health and the environment: (1) the

  13. Salmon Site Remedial Investigation Report, Exhibit 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    USDOE NV

    1999-09-01

    This Salmon Site Remedial Investigation Report provides the results of activities initiated by the U.S. Department of Energy (DOE) to determine if contamination at the Salmon Site poses a current or future risk to human health and the environment. These results were used to develop and evaluate a range of risk-based remedial alternatives. Located in Lamar County, Mississippi, the Salmon Site was used by the U.S. Atomic Energy Commission (predecessor to the DOE) between 1964 and 1970 for two nuclear and two gas explosions conducted deep underground in a salt dome. The testing resulted in the release of radionuclides intomore » the salt dome. During reentry drilling and other site activities, liquid and solid wastes containing radioactivity were generated resulting in surface soil and groundwater contamination. Most of the waste and contaminated soil and water were disposed of in 1993 during site restoration either in the cavities left by the tests or in an injection well. Other radioactive wastes were transported to the Nevada Test Site for disposal. Nonradioactive wastes were disposed of in pits at the site and capped with clean soil and graded. The preliminary investigation showed residual contamination in the Surface Ground Zero mud pits below the water table. Remedial investigations results concluded the contaminant concentrations detected present no significant risk to existing and/or future land users, if surface institutional controls and subsurface restrictions are maintained. Recent sampling results determined no significant contamination in the surface or shallow subsurface. The test cavity resulting from the experiments is contaminated and cannot be economically remediated with existing technologies. The ecological sampling did not detect biological uptake of contaminants in the plants or animals sampled. Based on the current use of the Salmon Site, the following remedial actions were identified to protect both human health and the environment: (1) the

  14. Chemical Stockpile Disposal Program. Chemical Agent and Munition Disposal. Summary of the U.S. Army’s Experience

    DTIC Science & Technology

    1987-09-21

    a difficult process to control; continuous generation of acidic products results in the possibility of side reactions and in gaseous by- products . Ion...dissolved in hydrochlorlo acid. The acid chlorination forms non-toxic reaction products as per Figure 3-3. (2) To initiate the neutralization process ...et al, "Emission and Control of By- Products From Hazarduus Waste Combustion Processes ", Land Disposal, Remedial Action, Incineration and Treatment

  15. 40 CFR 228.13 - Guidelines for ocean disposal site baseline or trend assessment surveys under section 102 of the...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... baseline or trend assessment surveys under section 102 of the Act. 228.13 Section 228.13 Protection of... SITES FOR OCEAN DUMPING § 228.13 Guidelines for ocean disposal site baseline or trend assessment surveys under section 102 of the Act. The purpose of a baseline or trend assessment survey is to determine the...

  16. 40 CFR 228.13 - Guidelines for ocean disposal site baseline or trend assessment surveys under section 102 of the...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... baseline or trend assessment surveys under section 102 of the Act. 228.13 Section 228.13 Protection of... SITES FOR OCEAN DUMPING § 228.13 Guidelines for ocean disposal site baseline or trend assessment surveys under section 102 of the Act. The purpose of a baseline or trend assessment survey is to determine the...

  17. 40 CFR 228.13 - Guidelines for ocean disposal site baseline or trend assessment surveys under section 102 of the...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... baseline or trend assessment surveys under section 102 of the Act. 228.13 Section 228.13 Protection of... SITES FOR OCEAN DUMPING § 228.13 Guidelines for ocean disposal site baseline or trend assessment surveys under section 102 of the Act. The purpose of a baseline or trend assessment survey is to determine the...

  18. 40 CFR 228.13 - Guidelines for ocean disposal site baseline or trend assessment surveys under section 102 of the...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... baseline or trend assessment surveys under section 102 of the Act. 228.13 Section 228.13 Protection of... SITES FOR OCEAN DUMPING § 228.13 Guidelines for ocean disposal site baseline or trend assessment surveys under section 102 of the Act. The purpose of a baseline or trend assessment survey is to determine the...

  19. 40 CFR 228.13 - Guidelines for ocean disposal site baseline or trend assessment surveys under section 102 of the...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... baseline or trend assessment surveys under section 102 of the Act. 228.13 Section 228.13 Protection of... SITES FOR OCEAN DUMPING § 228.13 Guidelines for ocean disposal site baseline or trend assessment surveys under section 102 of the Act. The purpose of a baseline or trend assessment survey is to determine the...

  20. 40 CFR 257.3 - Criteria for classification of solid waste disposal facilities and practices.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... PROTECTION AGENCY (CONTINUED) SOLID WASTES CRITERIA FOR CLASSIFICATION OF SOLID WASTE DISPOSAL FACILITIES AND PRACTICES Classification of Solid Waste Disposal Facilities and Practices § 257.3 Criteria for classification of solid waste disposal facilities and practices. Solid waste disposal facilities or practices...

  1. 40 CFR 257.3 - Criteria for classification of solid waste disposal facilities and practices.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... PROTECTION AGENCY (CONTINUED) SOLID WASTES CRITERIA FOR CLASSIFICATION OF SOLID WASTE DISPOSAL FACILITIES AND PRACTICES Classification of Solid Waste Disposal Facilities and Practices § 257.3 Criteria for classification of solid waste disposal facilities and practices. Solid waste disposal facilities or practices...

  2. Avoiding Thiol Compound Interference: A Nanoplatform Based on High-Fidelity Au-Se Bonds for Biological Applications.

    PubMed

    Hu, Bo; Kong, Fanpeng; Gao, Xiaonan; Jiang, Lulu; Li, Xiaofeng; Gao, Wen; Xu, Kehua; Tang, Bo

    2018-05-04

    Gold nanoparticles (Au NPs) assembled through Au-S covalent bonds have been widely used in biomolecule-sensing technologies. However, during the process, detection distortions caused by high levels of thiol compounds can still significantly influence the result and this problem has not really been solved. Based on the higher stability of Au-Se bonds compared to Au-S bonds, we prepared selenol-modified Au NPs as an Au-Se nanoplatform (NPF). Compared with the Au-S NPF, the Au-Se NPF exhibits excellent anti-interference properties in the presence of millimolar levels of glutathione (GSH). Such an Au-Se NPF that can effectively avoid detection distortions caused by high levels of thiols thus offers a new perspective in future nanomaterial design, as well as a novel platform with higher stability and selectivity for the in vivo application of chemical sensing and clinical therapies. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. 78 FR 13712 - U.S. Nuclear Regulatory Commission Planned Monitoring Activities for F-Area Tank Farm at the...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-28

    ... Monitoring Activities for F-Area Tank Farm at the Savannah River Site, Revision 0 AGENCY: Nuclear Regulatory... carrying out its responsibilities for monitoring DOE's waste disposal activities at the F-Area Tank Farm at... the availability of ``U.S. Nuclear Regulatory Commission Plan for Monitoring Disposal Actions Taken by...

  4. Leachate migration from a pesticide waste disposal site in Hardeman County, Tennessee

    USGS Publications Warehouse

    Sprinkle, C.L.

    1978-01-01

    Between 1964 and 1972, approximately 300,000 drums (55-gallon steel barrels) of waste derived from the manufacturing of pesticides were buried on 45 acres of land in northern Hardemen County, Tennessee. Leachates from these wastes are migrating from the disposal site in surface runoff, through shallow perched water zones, and through the local water-table aquifer. Compounds identified in the leachates included: dieldrin, endrin , chlordene, heptachlor, heptachlor epoxide, pentachlorocyclopentadiene, and hexachloro-bicycloheptadiene. The rate of migration of some of the leachate compounds in the water-table aquifer was found to be at least 80 feet per year. (Woodard-USGS)

  5. Preliminary risk benefit assessment for nuclear waste disposal in space

    NASA Technical Reports Server (NTRS)

    Rice, E. E.; Denning, R. S.; Friedlander, A. L.; Priest, C. C.

    1982-01-01

    This paper describes the recent work of the authors on the evaluation of health risk benefits of space disposal of nuclear waste. The paper describes a risk model approach that has been developed to estimate the non-recoverable, cumulative, expected radionuclide release to the earth's biosphere for different options of nuclear waste disposal in space. Risk estimates for the disposal of nuclear waste in a mined geologic repository and the short- and long-term risk estimates for space disposal were developed. The results showed that the preliminary estimates of space disposal risks are low, even with the estimated uncertainty bounds. If calculated release risks for mined geologic repositories remain as low as given by the U.S. DOE, and U.S. EPA requirements continue to be met, then no additional space disposal study effort in the U.S. is warranted at this time. If risks perceived by the public are significant in the acceptance of mined geologic repositories, then consideration of space disposal as a complement to the mined geologic repository is warranted.

  6. Comment and response document for the long-term surveillance plan for the Bodo Canyon Disposal Site, Durango. Colorado

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1996-07-01

    This document contains comments made by the US Nuclear Regulatory Commission upon their review of the Long-Term Surveillance Plan for the Bodo Canyon Disposal Site, Durango, Colorado. Responses to the comments are also included in the document.

  7. Protein arginine methylation of Npl3 promotes splicing of the SUS1 intron harboring non-consensus 5' splice site and branch site.

    PubMed

    Muddukrishna, Bhavana; Jackson, Christopher A; Yu, Michael C

    2017-06-01

    Protein arginine methylation occurs on spliceosomal components and spliceosome-associated proteins, but how this modification contributes to their function in pre-mRNA splicing remains sparse. Here we provide evidence that protein arginine methylation of the yeast SR-/hnRNP-like protein Npl3 plays a role in facilitating efficient splicing of the SUS1 intron that harbors a non-consensus 5' splice site and branch site. In yeast cells lacking the major protein arginine methyltransferase HMT1, we observed a change in the co-transcriptional recruitment of the U1 snRNP subunit Snp1 and Npl3 to pre-mRNAs harboring both consensus (ECM33 and ASC1) and non-consensus (SUS1) 5' splice site and branch site. Using an Npl3 mutant that phenocopies wild-type Npl3 when expressed in Δhmt1 cells, we showed that the arginine methylation of Npl3 is responsible for this. Examination of pre-mRNA splicing efficiency in these mutants reveals the requirement of Npl3 methylation for the efficient splicing of SUS1 intron 1, but not of ECM33 or ASC1. Changing the 5' splice site and branch site in SUS1 intron 1 to the consensus form restored splicing efficiency in an Hmt1-independent manner. Results from biochemical studies show that methylation of Npl3 promotes its optimal association with the U1 snRNP through its association with the U1 snRNP subunit Mud1. Based on these data, we propose a model in which Hmt1, via arginine methylation of Npl3, facilitates U1 snRNP engagement with the pre-mRNA to promote usage of non-consensus splice sites by the splicing machinery. Published by Elsevier B.V.

  8. FFTF disposable solid waste cask

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thomson, J. D.; Goetsch, S. D.

    1983-01-01

    Disposal of radioactive waste from the Fast Flux Test Facility (FFTF) will utilize a Disposable Solid Waste Cask (DSWC) for the transport and burial of irradiated stainless steel and inconel materials. Retrievability coupled with the desire for minimal facilities and labor costs at the disposal site identified the need for the DSWC. Design requirements for this system were patterned after Type B packages as outlined in 10 CFR 71 with a few exceptions based on site and payload requirements. A summary of the design basis, supporting analytical methods and fabrication practices developed to deploy the DSWC is provided in thismore » paper.« less

  9. Wastewater disposal to landfill-sites: a synergistic solution for centralized management of olive mill wastewater and enhanced production of landfill gas.

    PubMed

    Diamantis, Vasileios; Erguder, Tuba H; Aivasidis, Alexandros; Verstraete, Willy; Voudrias, Evangelos

    2013-10-15

    The present paper focuses on a largely unexplored field of landfill-site valorization in combination with the construction and operation of a centralized olive mill wastewater (OMW) treatment facility. The latter consists of a wastewater storage lagoon, a compact anaerobic digester operated all year round and a landfill-based final disposal system. Key elements for process design, such as wastewater pre-treatment, application method and rate, and the potential effects on leachate quantity and quality, are discussed based on a comprehensive literature review. Furthermore, a case-study for eight (8) olive mill enterprises generating 8700 m(3) of wastewater per year, was conceptually designed in order to calculate the capital and operational costs of the facility (transportation, storage, treatment, final disposal). The proposed facility was found to be economically self-sufficient, as long as the transportation costs of the OMW were maintained at ≤4.0 €/m(3). Despite that EU Landfill Directive prohibits wastewater disposal to landfills, controlled application, based on appropriately designed pre-treatment system and specific loading rates, may provide improved landfill stabilization and a sustainable (environmentally and economically) solution for effluents generated by numerous small- and medium-size olive mill enterprises dispersed in the Mediterranean region. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. Surface complexation modeling of U(VI) adsorption by aquifer sediments from a former mill tailings site at Rifle, Colorado

    USGS Publications Warehouse

    Hyun, S.P.; Fox, P.M.; Davis, J.A.; Campbell, K.M.; Hayes, K.F.; Long, P.E.

    2009-01-01

    A study of U(VI) adsorption by aquifer sediment samples from a former uranium mill tailings site at Rifle, Colorado, was conducted under oxic conditions as a function of pH, U(VI), Ca, and dissolved carbonate concentration. Batch adsorption experiments were performed using <2mm size sediment fractions, a sand-sized fraction, and artificial groundwater solutions prepared to simulate the field groundwater composition. To encompass the geochemical conditions of the alluvial aquifer at the site, the experimental conditions ranged from 6.8 ?? 10-8 to 10-5 M in [U(VI)]tot, 7.2 to 8.0 in pH, 3.0 ?? 10-3 to 6.0 ?? 10 -3 M in [Ca2+], and 0.05 to 2.6% in partial pressure of carbon dioxide. Surface area normalized U(VI) adsorption Kd values for the sand and <2 mm sediment fraction were similar, suggesting a similar reactive surface coating on both fractions. A two-site two-reaction, nonelectrostatic generalized composite surface complexation model was developed and successfully simulated the U(VI) adsorption data. The model successfully predicted U(VI) adsorption observed from a multilevel sampling well installed at the site. A comparison of the model with the one developed previously for a uranium mill tailings site at Naturita, Colorado, indicated that possible calcite nonequilibrium of dissolved calcium concentration should be evaluated. The modeling results also illustrate the importance of the range of data used in deriving the best fit model parameters. ?? 2009 American Chemical Society.

  11. Crushing leads to waste disposal savings for FUSRAP

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Darby, J.

    1997-02-01

    In this article the author discusses the application of a rock crusher as a means of implementing cost savings in the remediation of FUSRAP sites. Transportation and offsite disposal costs are at present the biggest cost items in the remediation of FUSRAP sites. If these debris disposal problems can be handled in different manners, then remediation savings are available. Crushing can result in the ability to handle some wastes as soil disposal problems, which have different disposal regulations, thereby permitting cost savings.

  12. High Resolution Dating of Louisville Guyots from IODP Sites U1372, U1375, U1376 and U1377: Implications for post-erosional hotspot ocean island processes and volcanism

    NASA Astrophysics Data System (ADS)

    Heaton, D. E.; Koppers, A. A. P.

    2014-12-01

    Here we will present new 40Ar/39Ar Ages results from the International Ocean Drilling Project (IODP) Sites U1372 (n=18), U1375 (n=3), U1376 (n=15) and U1377 (n=7) during Expedition 330 that drilled the northern end of the Louisville Seamount trail. The Louisville Seamount trail displays age progressive volcanism thought to be formed as the Pacific plate moved over a hotspot. The older seamounts are located in the north (80 Ma, Osbourn Guyot) and younger seamounts to the south. Seamounts in this study are all guyots from the older section of the seamount trail (~74 Ma, Site U1372 at Canopus Guyot to ~51 Ma, Site U1377 at Hadar Guyot). Sites U1372 and U1376 respectively recovered ~230 m and ~140 m of basaltic material beneath a thin sediment interface and contain many in-situ lava flows that are interlayed with volcaniclastics, breccias and intrusive sheets. 40Ar/39Ar measurements will be used to date these different lithologies and, along with paleomagnetic inclination data, determine whether there was post-erosional volcanism and postulate which processes are involved with either the construction or deconstruction of ocean islands. Koppers et al. (2012) noted that some holes had consistent paleomagnetic inclinations suggesting that at least the larger clasts in the volcaniclastic breccias were emplaced hot or otherwise had been reset post deposition. If this is the case and breccias were emplaced hot then this would explain the undetectable levels of CO2 remaining in glasses after a complete degassing of the lithologies (Nichols et al., 2014). This would further support evidence for shallow eruption depths and post-erosional volcanism. In addition, the 40Ar/39Ar ages should be able to resolve whether or not the breccias were emplaced during the same time period as underlying and overlying intrusive sheets. Samples were analyzed using a high-resolution incremental step-heating method at Oregon State University in the Geochronology Lab using a Thermo Scientific ARGUS

  13. Study of extraterrestrial disposal of radioactive wastes. Part 3: Preliminary feasibility screening study of space disposal of the actinide radioactive wastes with 1 percent and 0.1 percent fission product contamination

    NASA Technical Reports Server (NTRS)

    Hyland, R. E.; Wohl, M. L.; Finnegan, P. M.

    1973-01-01

    A preliminary study was conducted of the feasibility of space disposal of the actinide class of radioactive waste material. This waste was assumed to contain 1 and 0.1 percent residual fission products, since it may not be feasible to completely separate the actinides. The actinides are a small fraction of the total waste but they remain radioactive much longer than the other wastes and must be isolated from human encounter for tens of thousands of years. Results indicate that space disposal is promising but more study is required, particularly in the area of safety. The minimum cost of space transportation would increase the consumer electric utility bill by the order of 1 percent for earth escape and 3 percent for solar escape. The waste package in this phase of the study was designed for normal operating conditions only; the design of next phase of the study will include provisions for accident safety. The number of shuttle launches per year required to dispose of all U.S. generated actinide waste with 0.1 percent residual fission products varies between 3 and 15 in 1985 and between 25 and 110 by 2000. The lower values assume earth escape (solar orbit) and the higher values are for escape from the solar system.

  14. Impact of oil-based drill mud disposal on benthic foraminiferal assemblages on the continental margin off Angola

    NASA Astrophysics Data System (ADS)

    Jorissen, F. J.; Bicchi, E.; Duchemin, G.; Durrieu, J.; Galgani, F.; Cazes, L.; Gaultier, M.; Camps, R.

    2009-12-01

    In order to assess the possible environmental impact of oily cuttings discharged during oil exploration activities, we studied the benthic foraminiferal faunas in a five-station, 4-km-long sampling transect around a cuttings disposal site at about 670 m depth offshore Angola (W Africa), where drilling activities started 1.5 years before sampling. Living (Rose Bengal stained) and dead foraminiferal faunas were sampled in March 2006. The faunal patterns mirror the spatial distribution of hydrocarbons, which are dispersed into a southeastern direction. Four different areas can be distinguished on the basis of the investigated faunal parameters (density, diversity and species composition of the living fauna, and comparison with subrecent dead faunas). The fauna at station S31, 300 m SE of the oil cuttings disposal site, appears to be clearly impacted: the faunal density and diversity are maximal, but evenness is minimal. Taxa sensitive to organic enrichment, such as Uvigerina peregrina, Cancris auriculus and Cribrostomoides subglobosus, have largely disappeared, whereas the low-oxygen-resistant taxon Chilostomella oolina and opportunistic buliminids and bolivinids attain relatively high densities. At station S32, 500 m SE of the disposal site, environmental impact is still perceptible. The faunal density is slightly increased, and U. peregrina, apparently the most sensitive species, is still almost absent. The faunas found at 1 and 1.8 km SE of the disposal site are apparently no longer impacted by the drill mud disposal. Faunal density and diversity are low, and the faunal composition is typical for a mesotrophic to eutrophic upper slope environment. Finally, Station S35, 2 km NW of the disposal site, contains an intermediate fauna, where both the low-oxygen-resistant C. oolina and the more sensitive taxa ( U. peregrina, C. auriculus and C. subglobosus) are present. All taxa live close to the sediment-water interface here, indicating a reduced oxygen penetration into

  15. 36 CFR 221.3 - Disposal of national forest timber according to management plans.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 36 Parks, Forests, and Public Property 2 2010-07-01 2010-07-01 false Disposal of national forest timber according to management plans. 221.3 Section 221.3 Parks, Forests, and Public Property FOREST SERVICE, DEPARTMENT OF AGRICULTURE TIMBER MANAGEMENT PLANNING § 221.3 Disposal of national forest timber...

  16. Mapping the binding site of snurportin 1 on native U1 snRNP by cross-linking and mass spectrometry

    PubMed Central

    Kühn-Hölsken, Eva; Lenz, Christof; Dickmanns, Achim; Hsiao, He-Hsuan; Richter, Florian M.; Kastner, Berthold; Ficner, Ralf; Urlaub, Henning

    2010-01-01

    Mass spectrometry allows the elucidation of molecular details of the interaction domains of the individual components in macromolecular complexes subsequent to cross-linking of the individual components. Here, we applied chemical and UV cross-linking combined with tandem mass-spectrometric analysis to identify contact sites of the nuclear import adaptor snurportin 1 to the small ribonucleoprotein particle U1 snRNP in addition to the known interaction of m3G cap and snurportin 1. We were able to define previously unknown sites of protein–protein and protein–RNA interactions on the molecular level within U1 snRNP. We show that snurportin 1 interacts with its central m3G-cap-binding domain with Sm proteins and with its extreme C-terminus with stem-loop III of U1 snRNA. The crosslinking data support the idea of a larger interaction area between snurportin 1 and U snRNPs and the contact sites identified prove useful for modeling the spatial arrangement of snurportin 1 domains when bound to U1 snRNP. Moreover, this suggests a functional nuclear import complex that assembles around the m3G cap and the Sm proteins only when the Sm proteins are bound and arranged in the proper orientation to the cognate Sm site in U snRNA. PMID:20421206

  17. Hanford Site ground-water monitoring for 1993

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dresel, P.E.; Luttrell, S.P.; Evans, J.C.

    This report presents the results of the Ground-Water Surveillance Project monitoring for calendar year 1993 on the Hanford Site, Washington. Hanford Site operations from 1943 onward produced large quantities of radiological and chemical waste that have impacted ground-water quality on the Site. Monitoring of water levels and ground-water chemistry is performed to track the extent of contamination and trends in contaminant concentrations. The 1993 monitoring was also designed to identify emerging ground-water quality problems. The information obtained is used to verify compliance with applicable environmental regulations and to evaluate remedial actions. Data from other monitoring and characterization programs were incorporatedmore » to provide an integrated assessment of Site ground-water quality. Additional characterization of the Site`s geologic setting and hydrology was performed to support the interpretation of contaminant distributions. Numerical modeling of sitewide ground-water flow also supported the overall project goals. Water-level monitoring was performed to evaluate ground-water flow directions, to track changes in water levels, and to relate such changes to changes in site disposal practices. Water levels over most of the Hanford Site continued to decline between June 1992 and June 1993. The greatest declines occurred in the 200-West Area. These declines are part of the continued response to the cessation of discharge to U Pond and other disposal facilities. The low permeability in this area which enhanced mounding of waste-water discharge has also slowed the response to the reduction of disposal. Water levels remained nearly constant in the vicinity of B Pond, as a result of continued disposal to the pond. Water levels measured from wells in the unconfined aquifer north and east of the Columbia River indicate that the primary source of recharge is irrigation practices.« less

  18. Joint US Geological Survey, US Nuclear Regulatory Commission workshop on research related to low-level radioactive waste disposal, May 4-6, 1993, National Center, Reston, Virginia; Proceedings

    USGS Publications Warehouse

    Stevens, Peter R.; Nicholson, Thomas J.

    1996-01-01

    This report contains papers presented at the "Joint U.S. Geological Survey (USGS) and U.S. Nuclear Regulatory Commission (NRC) Technical Workshop on Research Related to Low-Level Radioactive Waste (LLW) Disposal" that was held at the USGS National Center Auditorium, Reston, Virginia, May 4-6, 1993. The objective of the workshop was to provide a forum for exchange of information, ideas, and technology in the geosciences dealing with LLW disposal. This workshop was the first joint activity under the Memorandum of Understanding between the USGS and NRC's Office of Nuclear Regulatory Research signed in April 1992.Participants included invited speakers from the USGS, NRC technical contractors (U.S. Department of Energy (DOE) National Laboratories and universities) and NRC staff for presentation of research study results related to LLW disposal. Also in attendance were scientists from the DOE, DOE National Laboratories, the U.S. Environmental Protection Agency, State developmental and regulatory agencies involved in LLW disposal facility siting and licensing, Atomic Energy Canada Limited (AECL), private industry, Agricultural Research Service, universities, USGS and NRC.

  19. The records of terrestrial and marine biomarkers in South China Sea EXP349 Sites U1432C and U1433A, B: Implications for East Asian monsoon variability and paleoceanographic variations.

    NASA Astrophysics Data System (ADS)

    hyun, Sangmin; kim, Songyi

    2016-04-01

    Marine and terrestrial biomarkers, alkenones and n-alkanes compound, were investigated in sediment taken from the South China Sea (SCS) IODP Sites Exp. U1432C, U1433A and U1433B to evaluate Asian monsoon variability and paleoceanographic variations. Alkenone-based sea surface temperature (SSTalk) from the northern Site (U1432C) ranges from approximately 18.2oC to 28.3oC with an average of 24.4oC (n=65). Estimated SSTalk were slightly higher in the southern Site U1433A than at U1432C. SSTalk in Site U1433A ranges from 24.3oC to 27.4oC with an average 26.1oC (n=32), showing as much as 1.7oC higher SSTs than at U1432C. High concentrations of n-alkanes (nC21-35) are present throughout the Site SC1432C with strong fluctuations in the upper part (average = 496ug/g, n=140). The much higher records at U1433A and U1433B show long-range variations, but the concentration of n-alkanes remains constant below 244mbsf in Site 1433B (less than 200ug/g), suggesting an important change occurred at this horizon, dividing two different environmental domains. These differences in SSTalk and n-alkane concentration between two Sites might not only link with latitudinal location but also the influx of terrestrial biomarker due to the Asian monsoon variability and local oceanographic variations since the last approximately 1.5 Ma. Several indices of Average Chain Length (ACL) and Carbon Preferences Index (ICP) showed large shifts and fluctuations in both Sites. In particular, one of the paleo-plant proxy, Paq, also shows time-dependent large fluctuations in both Sites suggesting long time-scale variations in the flux of terrestrial organic compound as well as paleoclimatic changes in the East Asian area.

  20. Quantification of Food Waste Disposal in the United States: A Meta-Analysis.

    PubMed

    Thyberg, Krista L; Tonjes, David J; Gurevitch, Jessica

    2015-12-15

    Food waste has major consequences for social, nutritional, economic, and environmental issues, and yet the amount of food waste disposed in the U.S. has not been accurately quantified. We introduce the transparent and repeatable methods of meta-analysis and systematic reviewing to determine how much food is discarded in the U.S., and to determine if specific factors drive increased disposal. The aggregate proportion of food waste in U.S. municipal solid waste from 1995 to 2013 was found to be 0.147 (95% CI 0.137-0.157) of total disposed waste, which is lower than that estimated by U.S. Environmental Protection Agency for the same period (0.176). The proportion of food waste increased significantly with time, with the western U.S. region having consistently and significantly higher proportions of food waste than other regions. There were no significant differences in food waste between rural and urban samples, or between commercial/institutional and residential samples. The aggregate disposal rate for food waste was 0.615 pounds (0.279 kg) (95% CI 0.565-0.664) of food waste disposed per person per day, which equates to over 35.5 million tons (32.2 million tonnes) of food waste disposed annually in the U.S.

  1. Application of Geographic Information System and Remotesensing in effective solid waste disposal sites selection in Wukro town, Tigray, Ethiopia

    NASA Astrophysics Data System (ADS)

    Mohammedshum, A. A.; Gebresilassie, M. A.; Rulinda, C. M.; Kahsay, G. H.; Tesfay, M. S.

    2014-11-01

    Identifying solid waste disposal sites and appropriately managing them is a challenging task to many developing countries. This is a critical problem too in Ethiopia in general and in Wukro town in particular. The existing site for Wukro town is not sufficient in its capacity and it is damaging the environment due to its location, and the type of waste dumped, while the surrounding area is being irrigated. Due to the swift expansion and urbanization developments in Wukro town, it badly needs to develop controlled solid waste dumping site to prevent several contamination problems. This study was conducted first, to assess the existing waste management strategies in Wukro town; and second, to find out the potential waste disposal sites for the town, using GIS and Remote Sensing techniques. The study exploited the Multi-Criteria Evaluation (MCE) methods to combine necessary factors considered for dumping site selection. The selected method also uses various geographical data including remote sensing data, with GIS spatial analysis tools. Accordingly, site suitability maps for each of the factors were developed in a GIS environment. Results indicate that 12 dumping sites were appropriate and they were further ranked against their suitability in terms of wind direction, proximity to settlement area and distance from the center of the town. Finally, two sites are the best suitable for dumping site. This study indicated that the application of Geographic Information System and Remote Sensing techniques are efficient and low cost tools to study and select appropriate dumping site so as to facilitate decision making processes.

  2. 76 FR 18921 - Land Disposal Restrictions: Nevada and California; Site Specific Treatment Variances for...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-06

    ... final actions to both issue a site- specific treatment variance to U.S. Ecology Nevada (USEN) in Beatty... me? This action applies only to U.S. Ecology Nevada located in Beatty, Nevada and to Chemical Waste... This Variance A. U.S. Ecology Nevada Petition B. What Type and How Much Waste Will be Subject to This...

  3. Post-Closure Challenges of U.S. Department of Energy Sites in Desert Environments of the Southwestern United States - 12095

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gil, April; Steckley, Deborah; Gauthier, Cassie

    2012-07-01

    U.S. Department of Energy (DOE) sites located in harsh desert environments of the Four Corners region of the southwestern United States require diligence and continual maintenance to ensure the remediation systems function as designed to protect human health and the environment. The geology and climate of this area create issues that are unique to these sites. Geologic formations contain naturally occurring constituents that are often the same as the residual contaminants remaining from historical milling activities at the sites. Although annual precipitation is low, when precipitation events occur they can be of extreme intensity, resulting in erosion and flooding thatmore » can quickly destroy infrastructure and rapidly change site conditions. Winds can cause sand storms and sand mounding that effect site features. These challenging environmental conditions, along with the remote locations of the sites, require active management beyond what was originally envisioned for uranium disposal sites to address concerns in a safe and cost-effective manner. The unique environment of the Four Corners region creates many challenges to the LTSM of LM sites in southwestern United States. The remediation efforts and approaches to infrastructure have to be specifically structured to work in this environment. Often, the systems and structures have to be modified based on lessons learned on how to best adapt to these difficult conditions and remote locations. These sites require continual maintenance and additional efforts compared to many other LM sites. (authors)« less

  4. Closure Report for Corrective Action Unit 166: Storage Yards and Contaminated Materials, Nevada Test Site, Nevada

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NSTec Environmental Restoration

    2009-08-01

    Corrective Action Unit (CAU) 166 is identified in the Federal Facility Agreement and Consent Order (FFACO) as 'Storage Yards and Contaminated Materials' and consists of the following seven Corrective Action Sites (CASs), located in Areas 2, 3, 5, and 18 of the Nevada Test Site: CAS 02-42-01, Condo Release Storage Yd - North; CAS 02-42-02, Condo Release Storage Yd - South; CAS 02-99-10, D-38 Storage Area; CAS 03-42-01, Conditional Release Storage Yard; CAS 05-19-02, Contaminated Soil and Drum; CAS 18-01-01, Aboveground Storage Tank; and CAS 18-99-03, Wax Piles/Oil Stain. Closure activities were conducted from March to July 2009 according tomore » the FF ACO (1996, as amended February 2008) and the Corrective Action Plan for CAU 166 (U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office, 2007b). The corrective action alternatives included No Further Action and Clean Closure. Closure activities are summarized. CAU 166, Storage Yards and Contaminated Materials, consists of seven CASs in Areas 2, 3, 5, and 18 of the NTS. The closure alternatives included No Further Action and Clean Closure. This CR provides a summary of completed closure activities, documentation of waste disposal, and confirmation that remediation goals were met. The following site closure activities were performed at CAU 166 as documented in this CR: (1) At CAS 02-99-10, D-38 Storage Area, approximately 40 gal of lead shot were removed and are currently pending treatment and disposal as MW, and approximately 50 small pieces of DU were removed and disposed as LLW. (2) At CAS 03-42-01, Conditional Release Storage Yard, approximately 7.5 yd{sup 3} of soil impacted with lead and Am-241 were removed and disposed as LLW. As a BMP, approximately 22 ft{sup 3} of asbestos tile were removed from a portable building and disposed as ALLW, approximately 55 gal of oil were drained from accumulators and are currently pending disposal as HW, the portable building was removed and

  5. 2012 Annual Summary Report for the Area 3 and Area 5 Radioactive Waste Management Sites at the Nevada National Security Site, Nye County, Nevada: Review of the Performance Assessments and Composite Analyses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shott, G.

    2013-03-18

    The Maintenance Plan for the Performance Assessments and Composite Analyses for the Area 3 and Area 5 Radioactive Waste Management Sites at the Nevada Test Site (National Security Technologies, LLC 2007a) requires an annual review to assess the adequacy of the performance assessments (PAs) and composite analyses (CAs), with the results submitted to the U.S. Department of Energy (DOE) Office of Environmental Management. The Disposal Authorization Statements for the Area 3 and Area 5 Radioactive Waste Management Sites (RWMSs) also require that such reviews be made and that secondary or minor unresolved issues be tracked and addressed as part ofmore » the maintenance plan (DOE 1999a, 2000). The U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office performed an annual review of the Area 3 and Area 5 RWMS PAs and CAs for fiscal year (FY) 2012. This annual summary report presents data and conclusions from the FY 2012 review, and determines the adequacy of the PAs and CAs. Operational factors (e.g., waste forms and containers, facility design, and waste receipts), closure plans, monitoring results, and research and development (R&D) activities were reviewed to determine the adequacy of the PAs. Likewise, the environmental restoration activities at the Nevada National Security Site (NNSS) relevant to the sources of residual radioactive material that are considered in the CAs, the land-use planning, and the results of the environmental monitoring and R&D activities were reviewed to determine the adequacy of the CAs. Important developments in FY 2012 include the following: Release of a special analysis for the Area 3 RWMS assessing the continuing validity of the PA and CA; Development of a new Area 5 RWMS closure inventory estimate based on disposals through FY 2012; Evaluation of new or revised waste streams by special analysis; and Development of version 4.114 of the Area 5 RWMS GoldSim PA model. The Area 3 RWMS has been in inactive

  6. Interaction of U-69,593 with. mu. -, delta- and k-opioid binding sites and its analgesic and intestinal effects in rats

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    La Regina, A.; Petrillo, P.; Sbacchi, M.

    1988-01-01

    The k-opioid compound U-69,593 was studied in rats in vitro in binding assays to assess its selectivity at the single types of opioid sites and in vivo to assess its analgesic activity and effect on intestinal propulsion. In vitro the U-69,593 inhibition curve of (/sup 3/H)-(-)-bremazocine binding suppressed at ..mu..- and delta-sites was biphasic and the inhibition constant (K/sub l/) at the high-affinity site (10-18nM) was two orders of magnitude smaller the K/sub l/ at the low-affinity site. The K/sub l/ at ..mu..- and delta-sites were respectively 3.3 and 8.5 ..mu..M. Thus (/sup 3/H)-(-)-bremazocine, suppressed at ..mu..- and delta-sites, maymore » still bind more than one site, which U-69,593 might distinguish. In vivo U-69,593 i.p. prolonged the reaction time of rats on a 55/sup 0/C hot-plate and the dose of naloxone required to antagonize this effect was 40 times the dose that antagonized morphine-induced antinociception, suggesting the involvement of the k-receptor. In the intestinal transit test U-69,593 at doses between 0.5 and 15 mg/kg i.p. only slightly slowed intestinal transit of a charcoal meal in rats with no dose-relation; it partly but significantly antagonized morphine-induced constipation. These results suggest that the k-type of opioid receptor, with which U-69,593 interacts may induce analgesia, but has no appreciable role in the mechanisms of opioid-induced inhibition of intestinal transit in rats.« less

  7. Environmental site description for a Uranium Atomic Vapor Laser Isotope Separation (U-AVLIS) production plant at the Oak Ridge Gaseous Diffusion Plant Site

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1991-09-01

    In January 1990, the Secretary of Energy approved a plan for the demonstration and deployment of the Uranium Atomic Vapor Laser Isotope Separation (U-AVLIS) technology, with the near-term goal to provide the necessary information to make a deployment decision by November 1992. The U-AVLIS process is based on electrostatic extraction of photoionized U-235 atoms from an atomic vapor stream created by electron-beam vaporization of uranium metal alloy. A programmatic document for use in screening DOE sites to locate the U-AVLIS production plant was developed and implemented in two parts (Wolsko et al. 1991). The first part consisted of a seriesmore » of screening analyses, based on exclusionary and other criteria, that identified a reasonable number of candidate sites. These sites were then subjected to a more rigorous and detailed comparative analysis for the purpose of developing a short list of reasonable alternative sites for later environmental examination. This environmental site description (ESD) provides a detailed description of the ORGDP site and vicinity suitable for use in an environmental impact statement (EIS). The report is based on existing literature, data collected at the site, and information collected by Argonne National Laboratory (ANL) staff during a site visit. The organization of the ESD is as follows. Topics addressed in Sec. 2 include a general site description and the disciplines of geology, water resources, biotic resources, air resources, noise, cultural resources, land use, socioeconomics, and waste management. Identification of any additional data that would be required for an EIS is presented in Sec. 3. Following the site description and additional data requirements, Sec. 4 provides a short, qualitative assessment of potential environmental issues. 37 refs., 20 figs., 18 tabs.« less

  8. Microbial activity of trench leachates from shallow-land, low-level radioactive waste disposal sites.

    PubMed Central

    Francis, A J; Dobbs, S; Nine, B J

    1980-01-01

    Trench leachate samples collected anoxically from shallow-land, low-level radioactive waste disposal sites were analyzed for total aerobic and anaerobic populations, sulfate reducers, denitrifiers, and methanogens. Among the several aerobic and anaerobic bacteria isolated, only Bacillus sp., Pseudomonas sp., Citrobacter sp., and Clostridium sp. were identified. Mixed bacterial cultures isolated from the trench leachates were able to grow anaerobically in trench leachates, which indicates that the radionuclides and organic chemicals present were not toxic to these bacteria. Changes in concentrations of several of the organic constituents of the waste leachate samples were observed due to anaerobic microbial activity. Growth of a mixed culture of trench-water bacteria in media containing a mixture of radionuclides, 60Co, 85Sr, and 134,137Cs, was not affected at total activity concentrations of 2.6 X 10(2) and 2.7 X 10(3) pCi/ml. PMID:7406490

  9. Geology Report: Area 3 Radioactive Waste Management Site DOE/Nevada Test Site, Nye County, Nevada

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NSTec Environmental Management

    2006-07-01

    Surficial geologic studies near the Area 3 Radioactive Waste Management Site (RWMS) were conducted as part of a site characterization program. Studies included evaluation of the potential for future volcanism and Area 3 fault activity that could impact waste disposal operations at the Area 3 RWMS. Future volcanic activity could lead to disruption of the Area 3 RWMS. Local and regional studies of volcanic risk indicate that major changes in regional volcanic activity within the next 1,000 years are not likely. Mapped basalts of Paiute Ridge, Nye Canyon, and nearby Scarp Canyon are Miocene in age. There is a lackmore » of evidence for post-Miocene volcanism in the subsurface of Yucca Flat, and the hazard of basaltic volcanism at the Area 3 RWMS, within the 1,000-year regulatory period, is very low and not a forseeable future event. Studies included a literature review and data analysis to evaluate unclassified published and unpublished information regarding the Area 3 and East Branch Area 3 faults mapped in Area 3 and southern Area 7. Two trenches were excavated along the Area 3 fault to search for evidence of near-surface movement prior to nuclear testing. Allostratigraphic units and fractures were mapped in Trenches ST02 and ST03. The Area 3 fault is a plane of weakness that has undergone strain resulting from stress imposed by natural events and underground nuclear testing. No major vertical displacement on the Area 3 fault since the Early Holocene, and probably since the Middle Pleistocene, can be demonstrated. The lack of major displacement within this time frame and minimal vertical extent of minor fractures suggest that waste disposal operations at the Area 3 RWMS will not be impacted substantially by the Area 3 fault, within the regulatory compliance period. A geomorphic surface map of Yucca Flat utilizes the recent geomorphology and soil characterization work done in adjacent northern Frenchman Flat. The approach taken was to adopt the map unit boundaries

  10. Installation Restoration Program. Phase 1. Records Search, Hazardous Materials Disposal Sites, Eglin AFB, Florida

    DTIC Science & Technology

    1981-10-01

    Okaloosa Co. 3-12 Crestview South Quadrangle, Florida-Okaloosa Co. -13 Mossy ead Quadrangle, Florida-Walton Co 3-14 E-1 EGUN AFB 4,h aa V, WRAMATIO...I) Um AYPM hIN1DS SP * So". AM T 0 Tou A is a O I. h E-2 ES ENGINEERING -SCIENCE V%777-7NN7 .7-7 EGUN AFB 0.4 .m ... (1) WMg LAN DOSAMU *Y* CO u...r Oumm *p S(S Ann~ Il~~O 0*aAMa 2-3 ES ENGINEER ING - SCIENCE EGUN AFB %Tt MAR ESTHER * : . . - . - ~ - ~ r W R G H T L A N D F I L L 3 SITE 0296

  11. Cognitive performance among cohorts of children exposed to a waste disposal site containing heavy metals in Chile

    PubMed Central

    Burgos, Soledad; Tenorio, Marcela; Zapata, Pamela; Cáceres, Dante D.; Klarian, José; Alvarez, Nancy; Oviedo, Renato; Toro-Campos, Rosario; Claudio, Luz; Iglesias, Verónica

    2017-01-01

    Between 1984-1998, people living in Arica were involuntarily exposed to metal-containing waste stored in the urban area. The study aims to determine whether children who lived near the waste disposal site during early childhood experienced negative effects on their cognitive development. The cognitive performance was assessed using the Wechsler Intelligence Scale for Children. The exposure variable was defined by the year of birth in three categories: (1) Pre-remediation (born before 1999); (2) During-remediation (born between 1999-2003); and (3) Post-remediation (born after 2003). In the crude analysis a difference of 10 points in the IQ average was observed between the group born in the pre (81.9 points) and post remediation period (91.1 points). The difference between both groups was five times higher as compared to children of similar age and socioeconomic status in other cities of Chile. This result could be related with a period of high potential for exposure to this contaminated site. PMID:28245674

  12. AmeriFlux US-ADR Amargosa Desert Research Site (ADRS)

    DOE Data Explorer

    Moreo, Michael [U.S. Geological Survey

    2018-01-01

    This is the AmeriFlux version of the carbon flux data for the site US-ADR Amargosa Desert Research Site (ADRS). Site Description - This tower is located at the Amargosa Desert Research Site (ADRS). The U.S. Geological Survey (USGS) began studies of unsaturated zone hydrology at ADRS in 1976. Over the years, USGS investigations at ADRS have provided long-term "benchmark" information about the hydraulic characteristics and soil-water movement for both natural-site conditions and simulated waste-site conditions in an arid environment. The ADRS is located in a creosote-bush community adjacent to disposal trenches for low-level radioactive waste.

  13. Water quality impacts from on-site waste disposal systems to coastal areas through groundwater discharge

    NASA Astrophysics Data System (ADS)

    Harris, P. J.

    1995-12-01

    This report summarizes research studies linking on-site waste disposal systems (OSDS) to pathogen and nutrient concentrations in groundwater with the potential to impact coastal embayments. Few studies connect OSDS to coastal water quality. Most studies examined pathogen and nutrient impacts to groundwater and omitted estimations of contaminants discharged to surface water. The majority of studies focused on nitrogen, with little information on pathogens and even less on phosphorus. Nitrogen discharged from OSDS poses the greatest threat to water quality. Vertical distance of septic tank infiltration system from the water table, septic system design, and siting remain the key components in minimizing potential impacts from OSDS for control of both pathogens and nutrients. The most comprehensive information connecting nutrient contributions from OSDS to surface water quality was the study conducted on Buttermilk Bay in Massachusetts where 74% of nitrogen to the bay was attributed to onsite disposal systems. In conclusion, further studies on the viability and transport of pathogens and nutrients through the groundwater aquifer and across the groundwater/surface-water interface are needed. Additional research on the importance of septic system design on the availability of contaminants to groundwater as well as the minimum distance between the septic system and water table necessary to protect groundwater are also indicated.

  14. Regulatory Requirements and Technical Analysis for Department of Energy Regulated Performance Assessments of Shallow-Trench Disposal of Low-Level Radioactive Waste at the Nevada Test Site

    NASA Astrophysics Data System (ADS)

    Crowe, B.; Black, P.; Tauxe, J.; Yucel, V.; Rawlinson, S.; Colarusso, A.; DiSanza, F.

    2001-12-01

    The National Nuclear Security Administration, Nevada Operations Office (NNSA/NV) operates and maintains two active facilities on the Nevada Test Site (NTS) that dispose Department of Energy (DOE) defense-generated low-level radioactive (LLW), mixed radioactive, and classified waste in shallow trenches, pits and large-diameter boreholes. The operation and maintenance of the LLW disposal sites are self-regulated under DOE Order 435.1, which requires review of a Performance Assessment for four performance objectives: 1) all pathways 25 mrem/yr limit; 2) atmospheric pathways 10 mrem/yr limit; 3) radon flux density of 20 pCi/m2/s; and 4) groundwater resource protection (Safe Drinking Water Act; 4 mrem/yr limit). The inadvertent human intruder is protected under a dual 500- and 100-mrem limit (acute and chronic exposure). In response to the Defense Nuclear Facilities Safety Board Recommendation 92 2, a composite analysis is required that must examine all interacting sources for compliance against both 30 and 100 mrem/yr limits. A small component of classified transuranic waste is buried at intermediate depths in 3-meter diameter boreholes at the Area 5 LLW disposal facility and is assessed through DOE-agreement against the requirements of the Environmental Protection Agency (EPA)'s 40 CFR 191. The hazardous components of mixed LLW are assessed against RCRA requirements. The NTS LLW sites fall directly under three sets of federal regulations and the regulatory differences result not only in organizational challenges, but also in different decision objectives and technical paths to completion. The DOE regulations require deterministic analysis for a 1,000-year compliance assessment supplemented by probabilistic analysis under a long-term maintenance program. The EPA regulations for TRU waste are probabilistically based for a compliance interval of 10,000 years. Multiple steps in the assessments are strongly dependent on assumptions for long-term land use policies

  15. Environmental site description for a Uranium Atomic Vapor Laser Isotope Separation (U-AVLIS) production plant at the Paducah Gaseous Diffusion Plant site

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marmer, G.J.; Dunn, C.P.; Moeller, K.L.

    Uranium enrichment in the United States has utilized a diffusion process to preferentially enrich the U-235 isotope in the uranium product. The U-AVLIS process is based on electrostatic extraction of photoionized U-235 atoms from an atomic vapor stream created by electron-beam vaporization of uranium metal alloy. The U-235 atoms are ionized when precisely tuned laser light -- of appropriate power, spectral, and temporal characteristics -- illuminates the uranium vapor and selectively photoionizes the U-235 isotope. A programmatic document for use in screening DOE site to locate a U-AVLIS production plant was developed and implemented in two parts. The first partmore » consisted of a series of screening analyses, based on exclusionary and other criteria, that identified a reasonable number of candidate sites. These sites were subjected to a more rigorous and detailed comparative analysis for the purpose of developing a short list of reasonable alternative sites for later environmental examination. This environmental site description (ESD) provides a detailed description of the PGDP site and vicinity suitable for use in an environmental impact statement (EIS). The report is based on existing literature, data collected at the site, and information collected by Argonne National Laboratory (ANL) staff during a site visit. 65 refs., 15 tabs.« less

  16. 15 CFR 721.3 - Destruction or disposal of records.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 15 Commerce and Foreign Trade 2 2011-01-01 2011-01-01 false Destruction or disposal of records. 721.3 Section 721.3 Commerce and Foreign Trade Regulations Relating to Commerce and Foreign Trade (Continued) BUREAU OF INDUSTRY AND SECURITY, DEPARTMENT OF COMMERCE CHEMICAL WEAPONS CONVENTION REGULATIONS...

  17. 15 CFR 721.3 - Destruction or disposal of records.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 15 Commerce and Foreign Trade 2 2010-01-01 2010-01-01 false Destruction or disposal of records. 721.3 Section 721.3 Commerce and Foreign Trade Regulations Relating to Commerce and Foreign Trade (Continued) BUREAU OF INDUSTRY AND SECURITY, DEPARTMENT OF COMMERCE CHEMICAL WEAPONS CONVENTION REGULATIONS...

  18. Delineation of soil and groundwater contamination using geophysical methods at a waste disposal site in Canakkale, Turkey.

    PubMed

    Kaya, M Ali; Ozürlan, Gülçin; Sengül, Ebru

    2007-12-01

    Direct current (DC) resistivity, self potential (SP) and very low frequency electromagnetic (VLF-EM) measurements are carried out to detect the spread of groundwater contamination and to locate possible pathways of leachate plumes, that resulted from an open waste disposal site of Canakkale municipality. There is no proper management of the waste disposal site in which industrial and domestic wastes were improperly dumped. Furthermore, because of the dumpsite is being located at the catchment area borders of a small creek and is being topographically at a high elevation relative to the urban area, the groundwater is expected to be hazardously contaminated. Interpretations of DC resistivity geoelectrical data showed a low resistivity zone (<5 ohm-m), which appears to be a zone, that is fully saturated with leachate from an open dumpsite. The VLF-EM and SP method, support the results of geoelectrical method relating a contaminated zone in the survey area. There is a good correlation between the geophysical investigations and the results of previously collected geochemical and hydrochemical measurements.

  19. Superfund Record of Decision (EPA Region 3): Buckingham County Landfill Superfund Site, VA, September 1994

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1994-10-01

    The Record of Decision (ROD) presents the final remedial action selected for the Buckingham County Landfill Superfund Site (Site), located near the town of Sprouse's Corner in Buckingham County, Virginia. The remedial action was chosen in accordance with the requirements of the Comprehensive Environmental Response Compensation and Liability Act of 1980 (CERCLA), 42 U.S.C. Section 9601 et. seg., as amended by the Superfund Amendments and Reauthorization Act of 1986 (SARA), and the National Oil and Hazardous Substances Pollution Contingency Plan (NCP), 40 C.F.R. Part 300. The decision document explains the factual and legal basis for selecting the remedial action. Themore » selected remedy includes the two following options, both of which are fully protective of human health and the environment: Monitor the ground water and cap the hazardous waste disposal area; and Implement the source control measures.« less

  20. Landfill disposal systems.

    PubMed

    Slimak, K M

    1978-12-01

    The current status of landfill disposal of hazardous wastes in the United States is indicated by presenting descriptions of six operating landfills. These landfills illustrate the variety of techniques that exist in landfill disposal of hazardous wastes. Although some landfills more effectively isolate hazardous waste than others, all landfills must deal with the following problems. Leachate from hazardous waste landfills is generally highly polluted. Most landfills attempt to contain leachate at the site and prevent its discharge to surface or groundwaters. To retain leachate within a disposal area, subsurface barriers of materials such as concrete, asphalt, butyl rubber, vinyl, and clay are used. It is difficult to assure that these materials can seal a landfill indefinitely. When a subsurface barrier fails, the leachate enters the groundwater in a concentrated, narrow band which may bypass monitoring wells. Once a subsurface barrier has failed, repairs are time-consuming and costly, since the waste above the repair site may have to be removed. The central problem in landfill disposal is leachate control. Recent emphasis has been on developing subsurface barriers to contain the wastes and any leachate. Future emphasis should also be on techniques for removing water from hazardous wastes before they are placed in landfills, and on methods for preventing contact of the wastes with water during and after disposal operations. When leachate is eliminated, the problems of monitoring, and subsurface barrier failure and repair can be addressed, and a waste can be effectively isolated.A surface seal landfill design is recommended for maintaining the dry state of solid hazardous wastes and for controlling leachate. Any impervious liner is utilized over the top of the landfill to prevent surface water from seeping into the waste. The surface barrier is also the site where monitoring and maintenance activities are focused. Barrier failure can be detected by visual

  1. 10 CFR 40.27 - General license for custody and long-term care of residual radioactive material disposal sites.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 1 2011-01-01 2011-01-01 false General license for custody and long-term care of residual... residual radioactive material disposal sites. (a) A general license is issued for the custody of and long... water characterization and any necessary ground water protection activities or strategies. This...

  2. Effects of low-level radioactive-waste disposal on water chemistry in the unsaturated zone at a site near Sheffield, Illinois, 1982-84

    USGS Publications Warehouse

    Peters, C.A.; Striegl, Robert G.; Mills, P.C.; Healy, R.W.

    1992-01-01

    A 1982-84 field study defined the chemistry of water collected from the unsaturated zone at a low-level radioactive-waste disposal site near Sheffield, Bureau County, Ill. Chemical data were evaluated to determine the principal, naturally occurring geochemical reactions in the unsaturated zone and to evaluate waste-induced effects on pore-water chemistry. Samples of precipitation, unsaturated-zone pore water, and saturated-zone water were analyzed for specific conductance, pH, alkalinity, major cations and anions, dissolved organic carbon, gross alpha and beta radiation, and tritium. Little change in concentration of most major constituents in the unsaturated-zone water was observed with respect to depth or distance from disposal trenches. Tritium and dissolved organic carbon concentrations were, however, dependent on proximity to trenches. The primary reactions, both on-site and off-site, were carbonate and clay dissolution, cation exchange, and the oxidation of pyrite. The major difference between on-site and off-site inorganic water chemistry resulted from the removal of the Roxana Silt and the Radnor Till Member of the Glasford Formation from on-site. Off-site, the Roxana Silt contributed substantial quantities of sodium to solution from montmorillonite dissolution and associated cation-exchange reactions. The Radnor Till Member provided exchange surfaces for magnesium. Precipitation at the site had an ionic composition of calcium zinc sulfate and an average pH of 4.6. Within 0.3 meter of the land surface, infiltrating rainwater or snowmelt changed to an ionic composition of calcium sulfate off-site and calcium bicarbonate on-site and had an average pH of 7.9; below that depth, pH averaged 7.5 and the ionic composition generally was calcium magnesium bicarbonate. Alkalinity and specific conductance differed primarily according to composition of geologic materials. Tritium concentrations ranged from 0.2 (detection limit) to 1,380 nanocuries per liter. The

  3. Effects of low-level radioactive-waste disposal on water chemistry in the unsaturated zone at a site near Sheffield, Illinois, 1982-84

    USGS Publications Warehouse

    Peters, C.A.; Striegl, Robert G.; Mills, P.C.; Healy, R.W.

    1992-01-01

    A 1982-84 field study defined the chemistry of water collected from the unsaturated zone at a low-level radioactive-waste disposal site near Sheffield, Bureau County, Illinois. Chemical data were evaluated to determine the principal naturally occurring geochemical reactions in the unsaturated zone and to evaluate waste-induced effects on pore-water chemistry. Samples of precipitation, unsaturated-zone pore water, and saturated-zone water were analyzed for specific conductance, pH, alkalinity, major cations and anions, dissolved organic carbon, gross alpha and beta radiation, and tritium. Little change in concentration of most major constituents in the unsaturated-zone water was observed with respect to depth or distance from disposal trenches. Tritium and dissolved organic carbon concentrations were, however, dependent on proximity to trenches. The primary reactions, both on- site and off-site, were carbonate and clay dissolution, cation exchange, and the oxidation of pyrite. The major difference between on-site and off-site inorganic water chemistry resulted from the removal of the Roxana Silt and the Radnor Till Member of the Glasford Formation from on-site. Off-site, the Roxana Silt contributed substantial quantities of sodium to solution from montmorillonite dissolution and associated cation-exchange reactions. The Radnor Till Member provided exchange surfaces for magnesium. Precipitation at the site had an ionic composition of calcium zinc sulfate and an average pH of 4.6. Within 0.3 meter of the land surface, infiltrating rain water or snowmelt changed to an ionic canposition of calcium sulfate off-site and calcium bicarbonate on-site and had an average pH of 7.9; below that depth, pH averaged 7.5 and the ionic composition generally was calcium magnesium bicarbonate. Alkalinity and specific conductance differed primarily according to composition of geologic materials. Tritium concentrations ranged from 0.2 (detection limit) to 1,380 nanocuries per liter. The

  4. The status of LILW disposal facility construction in Korea

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Min-Seok; Chung, Myung-Sub; Park, Kyu-Wan

    2013-07-01

    In this paper, we discuss the experiences during the construction of the first LILW disposal facility in South Korea. In December 2005, the South Korean Government designated Gyeongju-city as a host city of Low- and Intermediate-Level Radioactive Waste(LILW) disposal site through local referendums held in regions whose local governments had applied to host disposal facility in accordance with the site selection procedures. The LILW disposal facility is being constructed in Bongilri, Yangbuk-myeon, Gyeongju. The official name of the disposal facility is called 'Wolsong Low and Intermediate Level Radioactive Waste Disposal Center (LILW Disposal Center)'. It can dispose of 800,000 drumsmore » of radioactive wastes in a site of 2,100,000 square meters. At the first stage, LILW repository of underground silo type with disposal capacity of 100,000 drums is under construction expected to be completed by June of 2014. The Wolsong Low and Intermediate Level Radioactive Waste Disposal Center consists of surface facilities and underground facilities. The surface facilities include a reception and inspection facility, an interim storage facility, a radioactive waste treatment building, and supporting facilities such as main control center, equipment and maintenance shop. The underground facilities consist of a construction tunnel for transport of construction equipment and materials, an operation tunnel for transport of radioactive waste, an entrance shaft for workers, and six silos for final disposal of radioactive waste. As of Dec. 2012, the overall project progress rate is 93.8%. (authors)« less

  5. Application of the Spanish methodological approach for biosphere assessment to a generic high-level waste disposal site.

    PubMed

    Agüero, A; Pinedo, P; Simón, I; Cancio, D; Moraleda, M; Trueba, C; Pérez-Sánchez, D

    2008-09-15

    A methodological approach which includes conceptual developments, methodological aspects and software tools have been developed in the Spanish context, based on the BIOMASS "Reference Biospheres Methodology". The biosphere assessments have to be undertaken with the aim of demonstrating compliance with principles and regulations established to limit the possible radiological impact of radioactive waste disposals on human health and on the environment, and to ensure that future generations will not be exposed to higher radiation levels than those that would be acceptable today. The biosphere in the context of high-level waste disposal is defined as the collection of various radionuclide transfer pathways that may result in releases into the surface environment, transport within and between the biosphere receptors, exposure of humans and biota, and the doses/risks associated with such exposures. The assessments need to take into account the complexity of the biosphere, the nature of the radionuclides released and the long timescales considered. It is also necessary to make assumptions related to the habits and lifestyle of the exposed population, human activities in the long term and possible modifications of the biosphere. A summary on the Spanish methodological approach for biosphere assessment are presented here as well as its application in a Spanish generic case study. A reference scenario has been developed based on current conditions at a site located in Central-West Spain, to indicate the potential impact to the actual population. In addition, environmental change has been considered qualitatively through the use of interaction matrices and transition diagrams. Unit source terms of (36)Cl, (79)Se, (99)Tc, (129)I, (135)Cs, (226)Ra, (231)Pa, (238)U, (237)Np and (239)Pu have been taken. Two exposure groups of infants and adults have been chosen for dose calculations. Results are presented and their robustness is evaluated through the use of uncertainty and

  6. Message development for surface markers at the Hanford Radwaste Disposal sites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kaplan, M.F.

    1984-12-31

    At the Hanford Reservation in Washington, there are sites which received liquid and solid transuranic wastes from the late 1940`s until 1970. Rockwell Hanford Operations (Rockwell) is investigating the feasibility of several options for the permanent disposal of these wastes. One option is to stabilize the wastes in their present locations and to add barriers to minimize water infiltration and root penetration into the wastes. This report forms part of the project to develop a marking system for transuranic wastes on the Hanford Reservation. The focus of this report is the development of the message system to appear on themore » surface markers. A logical framework is developed to deduce what is required by the message system. Alternatives for each message component are evaluated and justification is provided for the choice of each component. The components are then laid out on the surface marker to provide a legible, comprehensible message system. The surface markers are tall, standing monoliths which ring the perimeter of each disposal area. Based on the logical framework, it is recommended that three domains of representation -- symbols, pictures, and language -- be used in the message system. The warning symbol chosen for the message system is the radiation trefoil. Two other options were considered, including the warning symbol developed by the Human Interference Task Force for a high-level waste repository. The trefoil was preferred because of the widespread usage and international acceptance which is already enjoys.« less

  7. Initial report for magnetostratigraphy of IODP Site U1490

    NASA Astrophysics Data System (ADS)

    Kumagai, Y.; Hatfield, R. G.; Nakamura, N.; Yamazaki, T.

    2017-12-01

    We report preliminary paleomagnetic results from between 175-296 meters composite depth (Miocene in age) of IODP Site U1490 recovered during Expedition 363. Site U1490 is located at 05°48.95´N, 142°39.27´E (the northern edge of the Eauripik Rise in the equatorial Pacific) in 2341 m water depth. A primary objective of Expedition 363 was to reconstruct the regional climate variability within the Western Pacific Warm Pool (WPWP) in a broad spatial coverage and different temporal resolutions through the time interval from the middle Miocene to late Pleistocene. The recovered pelagic sediments contains calcareous and siliceous nannofossils with varying proportions of clay and ash. It is also characterized by current-controlled mud waves with gradually decreasing amplitude upsection (Rosenthal et al., 2017). Since deep water is enriched in dissolved oxygen due to downwelling in polar regions, the mud waves were probably formed in an oxic environment by bottom currents, hindering the dissolution of magnetic minerals in the sediments. Shipboard analysis revealed that magnetic minerals between 20-175 m composite depth at Site U1490 have been dissolved by diagenetic alteration and the paleomagnetic data is uninterpretable. But the upper 20 m and below 175 m have a stable magnetization that spans from present to early Pleistocene (0-1.9 Ma) and middle to late Miocene period ( 9-19 Ma), respectively. The latter is an exceptionally long-time range continuous core sample, so it provides us an opportunity to reveal long-range variations of paleomagnetic field. We will show stepwise alternate-field (AF) demagnetization of the natural remanent magnetization on U-channel samples from the composite stratigraphic section to establish magnetostratigraphy at this site.

  8. An industry perspective on commercial radioactive waste disposal conditions and trends.

    PubMed

    Romano, Stephen A

    2006-11-01

    The United States is presently served by Class-A, -B and -C low-level radioactive waste and naturally-occurring and accelerator-produced radioactive material disposal sites in Washington and South Carolina; a Class-A and mixed waste disposal site in Utah that also accepts naturally-occurring radioactive material; and hazardous and solid waste facilities and uranium mill tailings sites that accept certain radioactive materials on a site-specific basis. The Washington site only accepts low-level radioactive waste from 11 western states due to interstate Compact restrictions on waste importation. The South Carolina site will be subject to geographic service area restrictions beginning 1 July 2008, after which only three states will have continued access. The Utah site dominates the commercial Class-A and mixed waste disposal market due to generally lower state fees than apply in South Carolina. To expand existing commercial services, an existing hazardous waste site in western Texas is seeking a Class-A, -B and -C and mixed waste disposal license. With that exception, no new Compact facilities are proposed. This fluid, uncertain situation has inspired national level rulemaking initiatives and policy studies, as well as alternative disposal practices for certain low-activity materials.

  9. Advancing Performance Assessment for Disposal of Depleted Uranium at Clive Utah - 12493

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Black, Paul; Tauxe, John; Perona, Ralph

    2012-07-01

    A Performance Assessment (PA) for disposal of depleted uranium (DU) waste has recently been completed for a potential disposal facility at Clive in northwestern Utah. For the purposes of this PA, 'DU waste' includes uranium oxides of all naturally-occurring isotopes, though depleted in U-235, varying quantities of other radionuclides introduced to the uranium enrichment process in the form of used nuclear reactor fuel (reactor returns), and decay products of all of these radionuclides. The PA will be used by the State of Utah to inform an approval decision for disposal of DU waste at the facility, and will be availablemore » to federal regulators as they revisit rulemaking for the disposal of DU. The specific performance objectives of the Clive DU PA relate to annual individual radiation dose within a 10,000-year performance period, groundwater concentrations of specific radionuclides within a 500-year compliance period, and site stability in the longer term. Fate and transport processes that underlie the PA model include radioactive decay and ingrowth, diffusion in gaseous and water phases, water advection in unsaturated and saturated zones, transport caused by plant and animal activity, cover naturalization, natural and anthropogenic erosion, and air dispersion. Fate and transport models were used to support the dose assessment and the evaluation of groundwater concentrations. Exposure assessment was based on site-specific scenarios, since the traditional human exposure scenarios suggested by DOE and NRC guidance are unrealistic for this site. Because the U-238 in DU waste reaches peak radioactivity (secular equilibrium) after 2 million years (My) following its separation, the PA must also evaluate the impact of climate change cycles, including the return of pluvial lakes such as Lake Bonneville. The first draft of the PA has been submitted to the State of Utah for review. The results of this preliminary analysis indicate that doses are very low for the site

  10. Application of frequency- and time-domain electromagnetic surveys to characterize hydrostratigraphy and landfill construction at the Amargosa Desert Research Site, Beatty, Nevada

    USGS Publications Warehouse

    White, Eric A.; Day-Lewis, Frederick D.; Johnson, Carole D.; Lane, John W.

    2016-01-01

    In 2014 and 2015, the U.S. Geological Survey (USGS), conducted frequency-domain electromagnetic (FDEM) surveys at the USGS Amargosa Desert Research Site (ADRS), approximately 17 kilometers (km) south of Beatty, Nevada. The FDEM surveys were conducted within and adjacent to a closed low-level radioactive waste disposal site located at the ADRS. FDEM surveys were conducted on a grid of north-south and east-west profiles to assess the locations and boundaries of historically recorded waste-disposal trenches. In 2015, the USGS conducted time-domain (TDEM) soundings along a profile adjacent to the disposal site (landfill) in cooperation with the U.S. Environmental Protection Agency (USEPA), to assess the thickness and characteristics of the underlying deep unsaturated zone, and the hydrostratigraphy of the underlying saturated zone.FDEM survey results indicate the general location and extent of the waste-disposal trenches and reveal potential differences in material properties and the type and concentration of waste in several areas of the landfill. The TDEM surveys provide information on the underlying hydrostratigraphy and characteristics of the unsaturated zone that inform the site conceptual model and support an improved understanding of the hydrostratigraphic framework. Additional work is needed to interpret the TDEM results in the context of the local and regional structural geology.

  11. U.S. Geological Survey ground-water studies in Florida

    USGS Publications Warehouse

    Vecchioli, John

    1988-01-01

    The first groundwater study by the U.S. Geological Survey (USGS) in Florida began in 1910. In 1930, a cooperative program of study was started with the Florida Geological Survey, and in 1938, the first groundwater office of the USGS was established in Miami. In fiscal year 1987, the USGS program in Florida included 35 active groundwater studies, all of which dealt with at least one of the principal groundwater issues. The 35 active studies were divided among the issues as follows: groundwater quality management, 9 studies; groundwater availability, 12 studies; seawater intrusion, 3 studies; contamination from wastewater disposal, 6 studies; contamination from landfills and hazardous waste sites, 3 studies; and contamination from agricultural practices, 2 studies. (Lantz-PTT)

  12. 2015 Uranium Mill Tailings Radiation Control Act (UMTRCA) Title ll Annual Report, L-Bar, New Mexico Disposal Site

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Frazier, William; Johnson, Dick

    The L-Bar, New Mexico, Uranium Mill Tailings Radiation Control Act (UMTRCA) Title II Disposal Site was inspected on August 18, 2015. The tailings impoundment was in excellent condition. Erosion and vegetation measurements to monitor the condition of the impoundment cover indicated that no erosion is occurring, and perennial vegetation foliar cover at the measurement plots increased substantially compared to previous years due to above-average precipitation for the year. A short segment of the perimeter fence near the site entrance was realigned in spring 2015 because a gully was undermining the fence corner. Loose fence strands at another location were repairedmore » during the inspection, and a section of fence needs to be realigned to avoid areas affected by deep gullies and sediment deposition. Inspectors identified no other maintenance needs or cause for a follow-up inspection. Groundwater monitoring is required every 3 years. The next monitoring event will be in 2016.« less

  13. Technical and design update in the AUBE French low-level radioactive waste disposal facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marque, Y.

    1989-01-01

    Long-term industrial management of radioactive waste in France is carried out by the Agence Nationale pour la Gestion des Dechets Radioactifs (ANDRA). ANDRA is in charge of design, siting, construction, and operation of disposal centers. The solution selected in France for the disposal of low- and medium-level, short-lived radioactive waste is near-surface disposal in the earth using the principle of multiple barriers, in accordance with national safety rules and regulations, and based on operating experience from the Centre de Stockage de la Manche. Since the center's start-up in 1969, 400,000 m{sup 3} of waste have been disposed of. The Frenchmore » national program for waste management is proceeding with the construction of a second near-surface disposal, which is expected to be operational in 1991. It is located in the department of AUBE (from which its name derives), 100 miles southeast of Paris. The paper describes the criteria for siting and design of the AUBE disposal facility, design of the AUBE facility disposal module, and comparison with North Carolina and Pennsylvania disposal facility designs.« less

  14. Closure Report for Corrective Action Unit 151: Septic Systems and Discharge Area, Nevada Test Site, Nevada

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NSTec Environmental Restoration

    2008-04-01

    Corrective Action Unit (CAU) 151 is identified in the Federal Facility Agreement and Consent Order (FFACO) as Septic Systems and Discharge Area. CAU 151 consists of the following eight Corrective Action Sites (CASs), located in Areas 2, 12, and 18 of the Nevada Test Site, approximately 65 miles northwest of Las Vegas, Nevada: (1) CAS 02-05-01, UE-2ce Pond; (2) CAS 12-03-01, Sewage Lagoons (6); (3) CAS 12-04-01, Septic Tanks; (4) CAS 12-04-02, Septic Tanks; (5) CAS 12-04-03, Septic Tank; (6) CAS 12-47-01, Wastewater Pond; (7) CAS 18-03-01, Sewage Lagoon; and (8) CAS 18-99-09, Sewer Line (Exposed). CAU 151 closure activitiesmore » were conducted according to the FFACO (FFACO, 1996; as amended February 2008) and the Corrective Action Plan for CAU 151 (U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office, 2007) from October 2007 to January 2008. The corrective action alternatives included no further action, clean closure, and closure in place with administrative controls. CAU 151 closure activities are summarized in Table 1. Closure activities generated liquid remediation waste, sanitary waste, hydrocarbon waste, and mixed waste. Waste generated was appropriately managed and disposed. Waste that is currently staged onsite is being appropriately managed and will be disposed under approved waste profiles in permitted landfills. Waste minimization activities included waste characterization sampling and segregation of waste streams. Some waste exceeded land disposal restriction limits and required offsite treatment prior to disposal. Other waste meeting land disposal restrictions was disposed of in appropriate onsite or offsite landfills. Waste disposition documentation is included as Appendix C.« less

  15. Preliminary identification of potentially disruptive scenarios at the Greater Confinement Disposal Facility, Area 5 of the Nevada Test Site

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guzowski, R.V.; Newman, G.

    1993-12-01

    The Greater Confinement Disposal location is being evaluated to determine whether defense-generated transuranic waste buried at this location complies with the Containment Requirements established by the US Environmental Protection Agency. One step in determining compliance is to identify those combinations of events and processes (scenarios) that define possible future states of the disposal system for which performance assessments must be performed. An established scenario-development procedure was used to identify a comprehensive set of mutually exclusive scenarios. To assure completeness, 761 features, events, processes, and other listings (FEPS) were compiled from 11 references. This number was reduced to 205 primarily throughmore » the elimination of duplications. The 205 FEPs were screened based on site-specific, goal-specific, and regulatory criteria. Four events survived screening and were used in preliminary scenario development: (1) exploratory drilling penetrates a GCD borehole, (2) drilling of a withdrawal/injection well penetrates a GCD borehole, (3) subsidence occurs at the RWMS, and (4) irrigation occurs at the RWMS. A logic diagram was used to develop 16 scenarios from the four events. No screening of these scenarios was attempted at this time. Additional screening of the currently retained events and processes will be based on additional data and information from site-characterization activities. When screening of the events and processes is completed, a final set of scenarios will be developed and screened based on consequence and probability of occurrence.« less

  16. Human pathogenic viruses at sewage sludge disposal sites in the Middle Atlantic region.

    PubMed

    Goyal, S M; Adams, W N; O'Malley, M L; Lear, D W

    1984-10-01

    Human enteric viruses were detected in samples of water, crabs, and bottom sediments obtained from two sewage sludge disposal sites in the Atlantic Ocean. Viruses were isolated from sediments 17 months after the cessation of sludge dumping. These findings indicate that, under natural conditions, viruses can survive for a long period of time in the marine environment and that they may present potential public health problems to humans using these resources for food and recreation. The isolation of viruses in the absence of fecal indicator bacteria reinforces previous observations on the inadequacy of these bacteria for predicting the virological quality of water and shellfish.

  17. Patient-oriented interactive E-health tools on U.S. hospital Web sites.

    PubMed

    Huang, Edgar; Chang, Chiu-Chi Angela

    2012-01-01

    The purpose of this study is to provide evidence for strategic planning regarding e-health development in U.S. hospitals. A content analysis of a representative sample of the U.S. hospital Web sites has revealed how U.S. hospitals have taken advantage of the 21 patient-oriented interactive tools identified in this study. Significant gaps between various types of hospitals have also been found. It is concluded that although the majority of the U.S. hospitals have adopted traditional functional tools, they need to make significant inroad in implementing the core e-business tools to serve their patients/users, making their Web sites more efficient marketing tools.

  18. Superfund record of decision (EPA Region 2): Hercules Incorporated (Gibbstown Plant), Solid Waste Disposal Area, Operable Unit 3, Greenwich Township, Gloucester County, NJ, January 22, 1966

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1996-10-01

    This decision document presents the selected remedial action for the Solid Waste Disposal Area (SWDA) - Operable Unit 3, Hercules Incorporated, Higgins Plant (hereinafter Hercules site or site), in Greenwhich Township, Gloucester County, New Jersey. The Record of Decision (ROD) addresses all contaminated media at the SWDA portion of the site including soil and ground water. The selected remedy is a modified version of the `In-Place Containment` remedy of the Porposed Plan.

  19. Enforcement Alert: Hazardous Waste Management Practices at Mineral Processing Facilities Under Scrutiny by U.S. EPA; EPA Clarifies 'Bevill Exclusion' Wastes and Establishes Disposal Standards

    EPA Pesticide Factsheets

    This is the enforcement alert for Hazardous Waste Management Practices at Mineral Processing Facilities Under Scrutiny by U.S. EPA; EPA Clarifies 'Bevill Exclusion' Wastes and Establishes Disposal Standards

  20. 48 CFR 49.206-3 - Submission of inventory disposal schedules.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 48 Federal Acquisition Regulations System 1 2010-10-01 2010-10-01 false Submission of inventory disposal schedules. 49.206-3 Section 49.206-3 Federal Acquisition Regulations System FEDERAL ACQUISITION REGULATION CONTRACT MANAGEMENT TERMINATION OF CONTRACTS Additional Principles for Fixed-Price Contracts...

  1. Overview of research on water, gas, and radionuclide transport at the Amargosa Desert Research Site, Nevada: A section in U.S. Geological Survey Toxic Substances Hydrology Program: Proceedings of the technical meeting, Charleston, South Carolina, March 8-12, 1999: Volume 3 (Part C) (WRI 99-4018C)

    USGS Publications Warehouse

    Andraski, Brian J.; Stonestrom, David A.; Morganwalp, David W.; Buxton, Herbert T.

    1999-01-01

    Studies at the U.S. Geological Survey Amargosa Desert Research Site have focused on characterizing factors and processes that control transport and fate of contaminants in arid environments. This paper summarizes research results that have been published through 1998. Results have improved understanding of water and gas movement through a thick unsaturated zone, including the degree to which features of the natural unsaturated-flow system can be altered by installation of a waste-disposal facility. The study of radioactive-contaminant transport at the site is at an early stage. Field data measured in association with this new component of research have generated speculation regarding the exact mechanisms that control tritium transport in arid unsaturated zones.

  2. U(VI) adsorption on aquifer sediments at the Hanford Site.

    PubMed

    Um, Wooyong; Serne, R Jeffrey; Brown, Christopher F; Last, George V

    2007-08-15

    Aquifer sediments collected via split-spoon sampling in two new groundwater wells in the 200-UP-1 operable unit at the Hanford Site were characterized and showed typical Ringold Unit E Formation properties dominated by gravel and sand. High iron-oxide content in Fe oxide/clay coatings caused the highest U(VI) adsorption as quantified by batch K(d) values, indicating iron oxides are the key solid adsorbent in the 200-UP-1 sediments that affect U(VI) fate and mobility. Even though U(VI) adsorption on the gravel-sized fraction of the sediments is considered to be negligible, careful characterization should be conducted to determine U(VI) adsorption on gravel, because of presence of Fe oxides coatings and diffusion-controlled adsorption into the gravel particles' interior surfaces. A linear adsorption isotherm was observed up to 10(-6) M (238 microg/L) of total U(VI) concentration in batch U(VI) adsorption tests with varying total U(VI) concentrations in spiked groundwater. U(VI) adsorption decreased with increasing concentrations of dissolved carbonate, because strong anionic aqueous uranium-carbonate complexes formed at high pH and high alkalinity conditions. Noticeable uranium desorption hysteresis was observed in a flow-through column experiment, suggesting that desorption K(d) values for aged uranium-contaminated sediments at the Hanford Site can be larger than adsorption K(d) values determined in short-term laboratory experiments and slow uranium release from contaminated sediments into the groundwater is expected.

  3. Final closure of a low level waste disposal facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Potier, J.M.

    1995-12-31

    The low-level radioactive waste disposal facility operated by the Agence Nationale pour la Gestion des Dechets Radioactifs near La Hague, France was opened in 1969 and is scheduled for final closure in 1996. The last waste package was received in June 1994. The total volume of disposed waste is approximately 525,000 m{sup 3}. The site closure consists of covering the disposal structures with a multi-layer impervious cap system to prevent rainwater from infiltrating the waste isolation system. A monitoring system has been set up to verify the compliance of infiltration rates with hydraulic performance objectives (less than 10 liters permore » square meter and per year).« less

  4. Postconstruction report of the United Nuclear Corporation Disposal Site at the Oak Ridge Y-12 Plant, Oak Ridge, Tennessee. Environmental Restoration Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oakley, L.B.; Siberell, J.K.; Voskuil, T.L.

    1993-06-01

    Remedial actions conducted under the auspices of the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) were completed at the Y-12 United Nuclear Corporation (UNC) Disposal Site in August 1992. The purpose of this Postconstruction Report is to summarize numerous technical reports and provide CERCLA documentation for completion of the remedial actions. Other CERCLA reports, such as the Feasibility Study for the UNC Disposal Site, provide documentation leading up to the remedial action decision. The remedial action chosen, placement of a modified RCRA cap, was completed successfully, and performance standards were either met or exceeded. This remedial action provided solutionsmore » to two environmentally contaminated areas and achieved the goal of minimizing the potential for contamination of the shallow groundwater downgradient of the site, thereby providing protection of human health and the environment. Surveillance and maintenance of the cap will be accomplished to ensure cap integrity, and groundwater monitoring downgradient of the site will continue to confirm the acceptability of the remedial action chosen.« less

  5. (234)U/(238)U signatures associated with uranium ore bodies: part 3 Koongarra.

    PubMed

    Lowson, Richard T

    2013-04-01

    The Koongarra ore body is an early Proterozoic U ore body in the Alligator Rivers U province, Northern Territory, Australia. It has surface expression with a redox front located ∼30 m below the surface. The (234)U/(238)U activity ratios (AR) for the ground water and the amorphous phase of the solid have been analysed for the ore zone and dispersion halo as a function of depth. The results display a (234)U/(238)U AR signature with depth which may be common to all U ore bodies. The (234)U/(238)U AR is depressed below secular equilibrium in the weathered material above the redox front; rises significantly above secular equilibrium in the vicinity of the redox front; and is followed by a gradual decrease with depth below the redox front. The amplitude of the profile is a function of local conditions. A model is proposed for the signature in which oxidising waters preferentially leach the (234)U sites at the redox front due to preconditioning of the (234)U sites by α recoil during the decay of (23)(8)U to (23)(4)U. Mass balance requires the solid material left behind the redox front to have a (234)U/(238)U AR reduced below 1. Local second order effects may be superimposed on the signature. The signature may have application to calibrating scenarios for nuclear waste repositories, assisting in understanding historical climates, economic evaluation of U ore bodies and U exploration. Copyright © 2012 Elsevier Ltd. All rights reserved.

  6. A Report to Congress on Long-Term Stewardship. Volume II, Site Summaries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None, None

    2001-01-01

    During World War II and the Cold War, the Federal government developed and operated a vast network of industrial facilities for the research, production, and testing of nuclear weapons, as well as for other scientific and engineering research. These processes left a legacy of radioactive and chemical waste, environmental contamination, and hazardous facilities and materials at well over a 100 sites in 30 States and one U.S. Territory. Hundreds of thousand of acres of residually contaminated soils, contaminated groundwater, surface water and sediment contamination, and contaminated buildings are present at many sites across the country. These sites range in sizemore » from less than one acre, containing only a single facility, to large sites spanning over 100,000 acres with huge uranium enrichment plants and plutonium processing canyons. Since 1989, the U.S. Department of Energy’s (DOE) Environmental Management (EM) program has made significant progress in addressing this environmental legacy. Millions of cubic meters of waste have been removed, stabilized, or disposed of, resulting in significant risk and cost reduction. In addition, DOE began disposing of transuranic (i.e., plutonium-contaminated) waste in the nation’s first deep geologic repository – the Waste Isolation Pilot Plant in New Mexico. DOE is now carrying out its long-term stewardship obligations at dozens of sites, including smaller sites where DOE has completed cleanup work for the entire site and many larger sites where DOE has remediated portions of the site.« less

  7. Self-interaction corrected LDA + U investigations of BiFeO3 properties: plane-wave pseudopotential method

    NASA Astrophysics Data System (ADS)

    Yaakob, M. K.; Taib, M. F. M.; Lu, L.; Hassan, O. H.; Yahya, M. Z. A.

    2015-11-01

    The structural, electronic, elastic, and optical properties of BiFeO3 were investigated using the first-principles calculation based on the local density approximation plus U (LDA + U) method in the frame of plane-wave pseudopotential density functional theory. The application of self-interaction corrected LDA + U method improved the accuracy of the calculated properties. Results of structural, electronic, elastic, and optical properties of BiFeO3, calculated using the LDA + U method were in good agreement with other calculation and experimental data; the optimized choice of on-site Coulomb repulsion U was 3 eV for the treatment of strong electronic localized Fe 3d electrons. Based on the calculated band structure and density of states, the on-site Coulomb repulsion U had a significant effect on the hybridized O 2p and Fe 3d states at the valence and the conduction band. Moreover, the elastic stiffness tensor, the longitudinal and shear wave velocities, bulk modulus, Poisson’s ratio, and the Debye temperature were calculated for U = 0, 3, and 6 eV. The elastic stiffness tensor, bulk modulus, sound velocities, and Debye temperature of BiFeO3 consistently decreased with the increase of the U value.

  8. Macrobenthic succession following the cessation of sewage sludge disposal

    NASA Astrophysics Data System (ADS)

    Birchenough, Silvana N. R.; Frid, Chris L. J.

    2009-11-01

    Half a million tonnes of sewage sludge was disposed annually over an 18-yr period at a licensed area off the Northumberland coast, UK. The disposal operation ceased in December 1998, providing the ecological opportunity to study macrobenthic changes in relation to theoretical succession models. A transect from the centre of the disposal site to a control station was monitored three times a year (i.e. March, August and December). This study provides a description of the changes in the macrobenthos and physical environment in the initial '3 years' (i.e. 1999 - 2001). During the period of sewage sludge disposal there were indications of an impact on the macrobenthic community with a high total abundance of individuals ( N) and high total number of species ( S) at the stations located in the centre of the disposal ground. During the immediate post-disposal phase the site continued to show a localised increased of individuals and species in the disposal area. Over time the communities showed signs of successional changes when the reduction of organic matter source was eliminated from the natural system. Multivariate analysis demonstrated a clear gradient of change in the community composition between impacted and control stations. While most benthic studies assess re-colonisation and succession stages of macrobenthos by using manipulative field experiments, this study provides an in situ long-term assessment in the offshore environment. This study contributes with information on: i) initial colonization and succession of macrobenthic communities over a large scale and real world data; ii) macrobenthic data into existing successional models and iii) resilience of benthic communities following the cessation of sewage sludge disposal. This information has the potential to contribute to an effective management of the marine communities in the North Sea.

  9. Low-level radioactive waste disposal. Study of a conceptual nuclear energy center at Green River, Utah

    NASA Astrophysics Data System (ADS)

    Card, D. H.; Hunter, P. H.; Barg, D.; Desouza, F.; Felthauser, K.; Winkler, V.; White, R.

    1982-02-01

    The ramifications of constructing a nuclear energy center in an arid western region were studied. The alternatives for disposing of the low level waste on the site are compared with the alternative of transporting the waste to the nearest commercial waste disposal site for permanent disposal. Both radiological and nonradiological impacts on the local socioeconomic infrastructure and the environment are considered. Disposal on the site was found to cost considerably less than off site disposal with only negligible impacts associated with the disposal option on either mankind or the environment.

  10. Characterization of 618-11 solid waste burial ground, disposed waste, and description of the waste generating facilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hladek, K.L.

    1997-10-07

    The 618-11 (Wye or 318-11) burial ground received transuranic (TRTJ) and mixed fission solid waste from March 9, 1962, through October 2, 1962. It was then closed for 11 months so additional burial facilities could be added. The burial ground was reopened on September 16, 1963, and continued operating until it was closed permanently on December 31, 1967. The burial ground received wastes from all of the 300 Area radioactive material handling facilities. The purpose of this document is to characterize the 618-11 solid waste burial ground by describing the site, burial practices, the disposed wastes, and the waste generatingmore » facilities. This document provides information showing that kilogram quantities of plutonium were disposed to the drum storage units and caissons, making them transuranic (TRU). Also, kilogram quantities of plutonium and other TRU wastes were disposed to the three trenches, which were previously thought to contain non-TRU wastes. The site burial facilities (trenches, caissons, and drum storage units) should be classified as TRU and the site plutonium inventory maintained at five kilograms. Other fissile wastes were also disposed to the site. Additionally, thousands of curies of mixed fission products were also disposed to the trenches, caissons, and drum storage units. Most of the fission products have decayed over several half-lives, and are at more tolerable levels. Of greater concern, because of their release potential, are TRU radionuclides, Pu-238, Pu-240, and Np-237. TRU radionuclides also included slightly enriched 0.95 and 1.25% U-231 from N-Reactor fuel, which add to the fissile content. The 618-11 burial ground is located approximately 100 meters due west of Washington Nuclear Plant No. 2. The burial ground consists of three trenches, approximately 900 feet long, 25 feet deep, and 50 feet wide, running east-west. The trenches constitute 75% of the site area. There are 50 drum storage units (five 55-gallon steel drums welded

  11. 77 FR 50622 - Land Disposal Restrictions: Site-Specific Treatment Variance for Hazardous Selenium-Bearing Waste...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-22

    ... Restrictions: Site-Specific Treatment Variance for Hazardous Selenium-Bearing Waste Treated by U.S. Ecology... program, to U.S. Ecology Nevada in Beatty, Nevada for the treatment of a hazardous selenium- bearing waste.... Ecology Nevada located in Beatty, Nevada. B. Table of Contents I. Background [[Page 50623

  12. Hydrologic data for the Weldon Spring radioactive waste-disposal sites, St. Charles County, Missouri; 1984-1986

    USGS Publications Warehouse

    Kleeschulte, M.J.; Emmett, L.F.; Barks, J.H.

    1986-01-01

    Hydrologic and water quality data were collected during an investigation of the Weldon Spring radioactive waste disposal sites and surroundings area in St. Charles County, Missouri, from 1984 to 1986. The data consists of water quality analyses of samples collected from 45 groundwater and 27 surface water sites. This includes analyses of water from four raffinate pits and from the Weldon Spring quarry. Also included in the report are the results of a seepage run on north flowing tributaries to Dardenne Creek from Kraut Run to Crooked Creek. Mean daily discharge from April 1985 to April 1986 is given for two springs located about 1.5 mi north of the chemical plant. (USGS)

  13. Impacts of maintenance dredged material disposal on macrobenthic structure and secondary productivity.

    PubMed

    Bolam, S G; Barry, J; Bolam, T; Mason, C; Rumney, H S; Thain, J E; Law, R J

    2011-10-01

    The results of a monitoring programme to assess the spatial impacts associated with ongoing dredged material disposal activity at a dispersive, coastal disposal site (southwest UK) are described. Benthic impacts were assessed using benthic community structure and secondary productivity estimates. Analyses of univariate indices (including secondary production) and multivariate community structure revealed differences between stations inside and those outside the disposal site were minimal. Generally, stations within and outside the disposal site were characterised by the same species. Regression models indicated that the variability in biological structure and secondary production was predominantly accounted for by natural variables (e.g., depth, sediment granulometry) with only a small amount of residual variability being due to contaminant variables. Thus, the elevated levels of certain contaminants in the vicinity of the disposal area were not sufficient to result in significant ecological or ecotoxicological changes. We ascribe such findings partly to the dispersive nature of the disposal site. Crown Copyright © 2011. Published by Elsevier Ltd. All rights reserved.

  14. Environmental impact assessment of radionuclide and metal contamination at the former U site at Kadji Sai, Kyrgyzstan.

    PubMed

    Lind, O C; Stegnar, P; Tolongutov, B; Rosseland, B O; Strømman, G; Uralbekov, B; Usubalieva, A; Solomatina, A; Gwynn, J P; Lespukh, E; Salbu, B

    2013-09-01

    During 1949-1967, a U mine, a coal-fired thermal power plant and a processing plant for the extraction of U from the produced ash were operated at the Kadji Sai U mining site in Tonsk district, Issyk-Kul County, Kyrgyzstan. The Kadji Sai U legacy site represents a source of contamination of the local environment by naturally occurring radionuclides and associated trace elements. To assess the environmental impact of radionuclides and trace metals at the site, field expeditions were performed in 2007 and 2008 by the Joint collaboration between Norway, Kazakhstan, Kyrgyzstan, Tajikistan (JNKKT) project and the NATO SfP RESCA project. In addition to in situ gamma and Rn dose rate measurements, sampling included at site fractionation of water and sampling of water, fish, sediment, soils and vegetation. The concentrations of radionuclides and trace metals in water from Issyk-Kul Lake were in general low, but surprisingly high for As. Uptake of U and As was also observed in fish from the lake with maximum bioconcentration factors for liver of 1.6 and 75, respectively. The concentrations of U in water within the Kadji Sai area varied from 0.01 to 0.05 mg/L, except for downstream from the mining area where U reached a factor of 10 higher, 0.2 mg/L. Uranium concentrations in the drinking water of Kadji Sai village were about the level recommended by the WHO for drinking water. The (234)U/(238)U activity ratio reflected equilibrium conditions in the mining pond, but far from equilibrium outside this area (reaching 2.3 for an artesian well). Uranium, As and Ni were mainly present as low molecular mass (LMM, less than 10 kDa) species in all samples, indicating that these elemental species are mobile and potentially bioavailable. The soils from the mining sites were enriched in U, As and trace metals. Hot spots with elevated radioactivity levels were easily detected in Kadji Sai and radioactive particles were observed. The presence of particles carrying significant amount of

  15. Oligocene-Miocene magnetic stratigraphy carried by biogenic magnetite at sites U1334 and U1335 (equatorial Pacific Ocean)

    NASA Astrophysics Data System (ADS)

    Channell, J. E. T.; Ohneiser, C.; Yamamoto, Y.; Kesler, M. S.

    2013-02-01

    AbstractSediments from the equatorial Pacific Ocean, at the Integrated Ocean Drilling Program <span class="hlt">sites</span> <span class="hlt">U</span>1334 and <span class="hlt">U</span>1335, record reliable magnetic polarity stratigraphies back to ~26.5 Ma (late Oligocene) at sedimentation rates usually in the 5-20 m/Myr range. Putative polarity subchrons that do not appear in current polarity timescales occur within Chrons C5ACr, C5ADn, and C5Bn.1r at <span class="hlt">Site</span> <span class="hlt">U</span>1335; and within Chrons C6AAr.2r, C6Br, C7Ar, and C8n.1n at <span class="hlt">Site</span> <span class="hlt">U</span>1334. Subchron C5Dr.1n (~17.5 Ma) is recorded at both <span class="hlt">sites</span>, supporting its apparent recording in the South Atlantic Ocean, and has an estimated duration of ~40 kyr. The Oligocene-Miocene calcareous oozes have magnetizations carried by submicron magnetite, as indicated by thermal demagnetization of magnetic remanences, the anhysteretic remanence to susceptibility ratio, and magnetic hysteresis parameters. Transmission electron microscopy of magnetic separates indicates the presence of low-titanium iron oxide (magnetite) grains with size (50-100 nm) and shape similar to modern and fossil bacterial magnetite, supporting other evidence that biogenic submicron magnetite is the principal remanence carrier in these sediments. In the equatorial Pacific Ocean, low organic-carbon burial arrests microbial pore-water sulfate reduction, thereby aiding preservation of bacterial magnetite.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/878656','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/878656"><span>POST CLOSURE INSPECTION AND MONITORING REPORT FOR CORRECTIVE ACTION UNIT 110: AREA <span class="hlt">3</span> WMD <span class="hlt">U</span>-<span class="hlt">3</span>AX/BL CRATER, NEVADA TEST <span class="hlt">SITE</span>, NEVADA FOR THE PERIOD JULY 2004 - JUNE 2005</span></a></p> <p><a target="_blank" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>BECHTEL NEVADA</p> <p>2005-08-01</p> <p>This Post-Closure Inspection and Monitoring report provides the results of inspections and monitoring for Corrective Action Unit (CAU) 110, Area <span class="hlt">3</span> Waste Management Division (WMD) <span class="hlt">U</span>-<span class="hlt">3</span>ax/bl Crater. This report includes an analysis and summary of the <span class="hlt">site</span> inspections, repairs and maintenance, meteorological information, and soil moisture monitoring data obtained at CAU 110, for the annual period July 2004 through June 2005. <span class="hlt">Site</span> inspections of the cover were performed quarterly to identify any significant changes to the <span class="hlt">site</span> requiring action. The overall condition of the cover, cover vegetation, perimeter fence, and use restriction warning signs was good. Settling was observed thatmore » exceeded the action level as specified in Section VII.B.7 of the Hazardous Waste Permit Number NEV HW009 (Nevada Division of Environmental Protection, 2000). This permit states that cracks or settling greater than 15 centimeters (cm) (6 inches [in]) deep that extend 1.0 meter (m) (<span class="hlt">3</span> feet [ft]) or more on the cover will be evaluated and repaired within 60 days of detection.« less</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1010548','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1010548"><span>A Historical Evaluation of the <span class="hlt">U</span>12t Tunnel, Nevada Test <span class="hlt">Site</span>, Nye County, Nevada, Volume <span class="hlt">3</span> of 6</span></a></p> <p><a target="_blank" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Harold Drollinger; Robert C. Jones; and Thomas F. Bullard</p> <p>2009-02-01</p> <p>This report presents a historical evaluation of the <span class="hlt">U</span>12t Tunnel on the Nevada Test <span class="hlt">Site</span> in southern Nevada. The work was conducted by the Desert Research Institute at the request of the <span class="hlt">U</span>.S. Department of Energy, National Nuclear Security Administration Nevada <span class="hlt">Site</span> Office and the <span class="hlt">U</span>.S. Department of Defense, Defense Threat Reduction Agency (DTRA). The <span class="hlt">U</span>12t Tunnel is one of a series of tunnels used for underground nuclear weapons effects tests on the east side of Rainier and Aqueduct Mesas. Six nuclear weapons effects tests, Mint Leaf, Diamond Sculls, Husky Pup, Midas Myth/Milagro, Mighty Oak, and Mission Ghost, and onemore » high explosive test, SPLAT, were conducted within the <span class="hlt">U</span>12t Tunnel from 1970 to 1987. All six of the nuclear weapons effects tests and the high explosive test were sponsored by DTRA. Two conventional weapons experiments, Dipole Knight and Divine Eagle, were conducted in the tunnel portal area in 1997 and 1998. These experiments were sponsored by the Defense Special Weapons Agency. The <span class="hlt">U</span>12t Tunnel complex is composed of the Portal and Mesa Areas and includes an underground tunnel with a main access drift and nine primary drifts, a substantial tailings pile fronting the tunnel portal, a series of discharge ponds downslope of the tailings pile, and two instrumentation trailer parks and 16 drill holes on top of Aqueduct Mesa. A total of 89 cultural features were recorded: 54 at the portal and 35 on the mesa. In the Portal Area, cultural features are mostly concrete pads and building foundations; other features include the portal, rail lines, the camel back, ventilation and cooling system components, communication equipment, and electrical equipment. On the mesa are drill holes, a few concrete pads, a loading ramp, and electrical equipment.« less</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFMPP21B2237D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFMPP21B2237D"><span>Towards an Accurate Orbital Calibration of Late Miocene Climate Events: Insights From a High-Resolution Chemo- and Magnetostratigraphy (8-6 Ma) from Equatorial Pacific IODP <span class="hlt">Sites</span> <span class="hlt">U</span>1337 and <span class="hlt">U</span>1338</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Drury, A. J.; Westerhold, T.; Frederichs, T.; Wilkens, R.; Channell, J. E. T.; Evans, H. F.; Hodell, D. A.; John, C. M.; Lyle, M. W.; Roehl, U.; Tian, J.</p> <p>2015-12-01</p> <p>In the 8-6 Ma interval, the late Miocene is characterised by a long-term -0.<span class="hlt">3</span> ‰ reduction in benthic foraminiferal δ18O and distinctive short-term δ18O cycles, possibly related to dynamic Antarctic ice sheet variability. In addition, the late Miocene carbon isotope shift (LMCIS) marks a permanent long-term -1 ‰ shift in oceanic δ13CDIC, which is the largest, long-term perturbation in the global marine carbon cycle since the mid Miocene Monterey excursion. Accurate age control is crucial to investigate the origin of the δ18O cyclicity and determine the precise onset of the LMCIS. The current Geological Time Scale in the 8-6 Ma interval is constructed using astronomical tuning of sedimentary cycles in Mediterranean outcrops. However, outside of the Mediterranean, a comparable high-resolution chemo-, magneto-, and cyclostratigraphy at a single DSDP/ODP/IODP <span class="hlt">site</span> does not exist. Generating an accurate astronomically-calibrated chemo- and magneto-stratigraphy in the 8-6 Ma interval became possible with retrieval of equatorial Pacific IODP <span class="hlt">Sites</span> <span class="hlt">U</span>1337 and <span class="hlt">U</span>1338, as both <span class="hlt">sites</span> have sedimentation rates ~2 cm/kyr, high biogenic carbonate content, and magnetic polarity stratigraphies. Here we present high-resolution correlation of <span class="hlt">Sites</span> <span class="hlt">U</span>1337 and <span class="hlt">U</span>1338 using Milankovitch-related cycles in core images and X-ray fluorescence core scanning data. By combining inclination and declination data from ~400 new discrete samples with shipboard measurements, we are able to identify 14 polarity reversals at <span class="hlt">Site</span> <span class="hlt">U</span>1337 from the young end of Chron C<span class="hlt">3</span>An.1n (~6.03 Ma) to the onset of Chron C4n.2n (~8.11 Ma). New high-resolution (<1.5 kyr) stable isotope records from <span class="hlt">Site</span> <span class="hlt">U</span>1337 correlate highly with <span class="hlt">Site</span> <span class="hlt">U</span>1338 records, enabling construction of a high-resolution stack. Initial orbital tuning of the <span class="hlt">U</span>1337-<span class="hlt">U</span>1338 records show that the δ18O cyclicity is obliquity driven, indicating high-latitude climate forcing. The LMCIS starts ~7.55 Ma and is anchored in Chron C4n.1n, which is</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://pubs.usgs.gov/wsp/2386/report.pdf','USGSPUBS'); return false;" href="https://pubs.usgs.gov/wsp/2386/report.pdf"><span>Water and tritium movement through the unsaturated zone at a low-level radioactive-waste <span class="hlt">disposal</span> <span class="hlt">site</span> near Sheffield, Illinois, 1981-85</span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Mills, Patrick C.; Healy, Richard W.</p> <p>1993-01-01</p> <p>The movement of water and tritium through the unsaturated zone was studied at a low-level radioactive-waste <span class="hlt">disposal</span> <span class="hlt">site</span> near Sheffield, Bureau County, Illinois, from 1981 to 1985. Water and tritium movement occurred in an annual, seasonally timed cycle; recharge to the saturated zone generally occurred in the spring and early summer. Mean annual precipitation (1982-85) was 871 mm (millimeters); mean annual recharge to the <span class="hlt">disposal</span> trenches (July 1982 through June 1984) was estimated to be 107 mm. Average annual tritium flux below the study trenches was estimated to be <span class="hlt">3</span>.4 mCi/yr (millicuries per year). <span class="hlt">Site</span> geology, climate, and waste-<span class="hlt">disposal</span> practices influenced the spatial and temporal variability of water and tritium movement. Of the components of the water budget, evapotranspiration contributed most to the temporal variability of water and tritium movement. <span class="hlt">Disposal</span> trenches are constructed in complexly layered glacial and postglacial deposits that average 17 m (meters) in thickness and overlie a thick sequence of Pennsylvanian shale. The horizontal saturated hydraulic conductivity of the clayey-silt to sand-sized glacial and postglacial deposits ranges from 4.8x10 -1 to <span class="hlt">3</span>.4x10 4 mm/d (millimeters per day). A 120-m-long horizontal tunnel provided access for hydrologic measurements and collection of sediment and water samples from the unsaturated and saturated geologic deposits below four <span class="hlt">disposal</span> trenches. Trench-cover and subtrench deposits were monitored with soil-moisture tensiometers, vacuum and gravity lysimeters, piezometers, and a nuclear soil-moisture gage. A cross-sectional, numerical ground-water-flow model was used to simulate water movement in the variably saturated geologic deposits in the tunnel area. Concurrent studies at the <span class="hlt">site</span> provided water-budget data for estimating recharge to the <span class="hlt">disposal</span> trenches. Vertical water movement directly above the trenches was impeded by a zone of compaction within the clayey-silt trench covers. Water entered</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/20141','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/20141"><span>Water and tritium movement through the unsaturated zone at a low-level radioactive-waste <span class="hlt">disposal</span> <span class="hlt">site</span> near Sheffield, Illinois, 1981-85</span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Mills, Patrick C.; Healy, R.W.</p> <p>1991-01-01</p> <p>The movement of water and tritium through the unsaturated zone was studied at a low-level radioactive-waste <span class="hlt">disposal</span> <span class="hlt">site</span> near Sheffield, Bureau County, Illinois, from 1981 to 1985. Water and tritium movement occurred in an annual, seasonally timed cycle; recharge to the saturated zone generally occurred in the spring and early summer. Mean annual precipitation (1982-85) was 871 millimeters; mean annual recharge to the <span class="hlt">disposal</span> trenches (July 1982 through June 1984) was estimated to be 107 millimeters. Average annual tritium flux below the study trenches was estimated to be <span class="hlt">3</span>.4 millicuries per year. <span class="hlt">Site</span> geology, climate, and waste-<span class="hlt">disposal</span> practices influenced the spatial and temporal variability of water and tritium movement. Of the components of the water budget, evapotranspiration contributed most to the temporal variability of water and tritium movement. <span class="hlt">Disposal</span> trenches are constructed in complexly layered glacial and postglacial deposits that average 17 meters in thickness and overlie a thick sequence of Pennsylvanian shale. The horizontal saturated hydraulic conductivity of the clayey-silt to sand-sized glacial and postglacial deposits ranges from 4.8x10^-1 to <span class="hlt">3</span>.4x10^4 millimeters per day. A 120-meter-long horizontal tunnel provided access for hydrologic measurements and collection of sediment and water samples from the unsaturated and saturated geologic deposits below four <span class="hlt">disposal</span> trenches. Trench-cover and subtrench deposits were monitored with soil-moisture tensiometers, vacuum and gravity lysimeters, piezometers, and a nuclear soil-moisture gage. A cross-sectional, numerical ground-water-flow model was used to simulate water movement in the variably saturated geologic deposits in the tunnel area. Concurrent studies at the <span class="hlt">site</span> provided water-budget data for estimating recharge to the <span class="hlt">disposal</span> trenches. Vertical water movement directly above the trenches was impeded by a zone of compaction within the clayey-silt trench covers. Water entered the</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li class="active"><span>20</span></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_20 --> <div id="page_21" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li class="active"><span>21</span></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="401"> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/biblio/6218627-engineering-assessment-inactive-uranium-mill-tailings-durango-site-durango-colorado','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/6218627-engineering-assessment-inactive-uranium-mill-tailings-durango-site-durango-colorado"><span>Engineering assessment of inactive uranium mill tailings, Durango <span class="hlt">Site</span>, Durango, Colorado</span></a></p> <p><a target="_blank" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Not Available</p> <p>1981-06-01</p> <p>Ford, Bacon and Davis Utah Inc. has reevaluated the Durango <span class="hlt">site</span> in order to revise the November 1977 engineering assessment of the problems resulting from the existence of radioactive uranium mill tailings at Durango, Colorado. This engineering assessment has included the preparation of topographic maps, the performance of core drillings and radiometric measurements sufficient to determine areas and volumes of tailings and radiation exposures of individuals and nearby populations, the investigations of <span class="hlt">site</span> hydrology and meteorology, and the evaluation and costing of alternative corrective actions. Radon gas released from the nearly 1.6 million tons of tailings at the Durango sitemore » constitutes the most significant environmental impact, although windblown tailings and external gamma radiation also are factors. The four alternative actions presented in this engineering assessment range from millsite and off-<span class="hlt">site</span> decontamination with the addition of <span class="hlt">3</span> m of stabilization cover material (Option I), to removal of the tailings to remote <span class="hlt">disposal</span> <span class="hlt">sites</span> and decontamination of the tailings <span class="hlt">site</span> (Options II through IV). Cost estimates for the seven options range from about $10,700,000 for stabilization in-place, to about $21,800,000 for <span class="hlt">disposal</span> at a distance of about 10 mi. Three principal alternatives for the reprocessing of the Durango tailings were examined: (a) heap leaching; (b) treatment at an existing mill; and (c) reprocessing at a new conventional mill constructed for tailings reprocessing. The cost of the uranium recovered would be about $30/lb <span class="hlt">U</span>/sub <span class="hlt">3</span>/O/sub 8/ by either heap leach or conventional plant processes.« less</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1035196','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1035196"><span>PREPARATION OF <span class="hlt">U</span>-PLANT FOR FINAL DEMOLITION AND <span class="hlt">DISPOSAL</span> - 12109E</span></a></p> <p><a target="_blank" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>FARABEE OA; HERZOG B; CAMERON C</p> <p>2012-02-16</p> <p>The <span class="hlt">U</span>-Plant is one of the five major nuclear materials processing facilities at Hanford and was chosen as a pilot project to develop the modalities for closure of the other four facilities at Hanford and the rest of the Department of Energy (DOE) complex. The remedy for this facility was determined by a Record of Decision (ROD) pursuant to the Comprehensive Environmental Response, Compensation and Liability Act of 1980 (CERCLA). That remedy was to 'Close in Place - Partially Demolished Structure'. The <span class="hlt">U</span>-Plant facility is identified as the 221-<span class="hlt">U</span> Building and is a large, concrete structure nominally 247m (810 ft)more » long, 20 M (66 ft) wide and 24 m (77 ft) high with approximately 9 m (30 ft) being below grade level. It is a robust facility with walls ranging from 0.9 m to 2.7 m (<span class="hlt">3</span> ft to 9 ft) thick. One large room extends the entire length of the building that provides access to 40 sub-grade processing cells containing tanks, piping and other components. The work breakdown was divided into three major deliverables: (1) Tank D-10 Removal: removal of Tank D-10, which contained TRU waste; (2) Equipment Disposition: placement of contaminated equipment in the sub-grade cells; and (<span class="hlt">3</span>) Canyon Grouting: grouting canyon void spaces to the maximum extent practical. A large number of pieces of contaminated equipment (pumps, piping, centrifuges, tanks, etc) from other facilities that had been stored on the canyon operating floor were placed inside of the sub-grade cells as final disposition, grouted and the cell shield plug reinstalled. This action precluded a large volume of waste being transported to another burial <span class="hlt">site</span>. Finally, {approx}19,000 m<span class="hlt">3</span> ({approx}25,000 yd<span class="hlt">3</span>) of grout was placed inside of the cells (in and around the contaminated equipment), in the major galleries. the ventilation tunnel, the external ventilation duct, and the hot pipe trench to minimize the potential for void spaces and to reduce the mobility, solubility, and/or toxicity of the grouted waste</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/biblio/6641724-remedial-action-plan-site-design-stabilization-inactive-uranium-mill-tailings-site-durango-colorado-attachment-water-resources-protection-strategy','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/6641724-remedial-action-plan-site-design-stabilization-inactive-uranium-mill-tailings-site-durango-colorado-attachment-water-resources-protection-strategy"><span>Remedial Action Plan and <span class="hlt">site</span> design for stabilization of the inactive uranium mill tailings <span class="hlt">site</span> at Durango, Colorado: Attachment 4, Water resources protection strategy</span></a></p> <p><a target="_blank" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Not Available</p> <p>1991-12-01</p> <p>To achieve compliance with the proposed US Environmental Protection Agency (EPA) groundwater protection standards (Subpart A of 40 CFR 192), the US Department of Energy (DOE) proposes to meet background concentrations or the EPA maximum concentration limits (MCLS) for hazardous constituents in groundwater in the uppermost aquifer (Cliff House/Menefee aquifer) at the point of compliance (POC) at the Uranium Mill Tailings Remedial Action (UMTRA) Project <span class="hlt">disposal</span> <span class="hlt">site</span> in Bodo Canyon near Durango, Colorado (DOE, 1989). Details of hydrologic <span class="hlt">site</span> characterization at the <span class="hlt">disposal</span> <span class="hlt">site</span> are provided in Attachment <span class="hlt">3</span>, Groundwater Hydrology Report. The principal features of the water resources protectionmore » strategy for the Bodo Canyon <span class="hlt">disposal</span> <span class="hlt">site</span> are presented in this document.« less</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/biblio/6787178-plant-soil-concentration-ratios-sswra-contrasting-sites-around-active-mine-mill','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/6787178-plant-soil-concentration-ratios-sswra-contrasting-sites-around-active-mine-mill"><span>Plant/soil concentration ratios of SSWRa for contrasting <span class="hlt">sites</span> around an active <span class="hlt">U</span> mine-mill</span></a></p> <p><a target="_blank" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Ibrahim, S.A.; Whicker, F.W.</p> <p></p> <p>Concentrations of 226Ra were determined in native vegetation and underlying substrate (soil and tailings) at various <span class="hlt">sites</span> around a conventional open-pit, acid leach <span class="hlt">U</span> production operation in Wyoming. Plant/soil concentration ratios (CRs) for 226Ra were estimated for various <span class="hlt">sites</span>, including weathered tailings; a tailings impoundment shoreline; downwind from exposed tailings; a mine overburden reclamation area; and several background locations. Radium-226 concentrations for vegetation and substrate and CR values from the perturbed <span class="hlt">sites</span> were elevated above background. The highest vegetation concentration (1.<span class="hlt">3</span> Bq g-1) was found in a grass which had invaded exposed, weathered tailings. Levels of 226Ra in soil andmore » vegetation and CR values decreased with distance from the tailings impoundment edge. CR values varied significantly among <span class="hlt">sites</span>, but few differences were found between plant species groups. The observed CR values ranged from 0.07 at the background and reclamation areas to 0.4 downwind from the tailings area. Average CR values for plants growing on exposed tailings and within one meter from the impoundment edge were 0.15 and 0.<span class="hlt">3</span>, respectively. CR values of 226Ra for plants on tailings substrates were comparatively low in contrast to other radionuclides in the <span class="hlt">U</span> chain. We speculate that in the case of sulfuric acid leached tailings-derived material, 226Ra is sequestered as sulfate, which is highly insoluble relative to the sulfates of the other elements (e.g., <span class="hlt">U</span> and Th) resulting in reduced availability for plant uptake.« less</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=1637308','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=1637308"><span>Effects from past solid waste <span class="hlt">disposal</span> practices.</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Johnson, L J; Daniel, D E; Abeele, W V; Ledbetter, J O; Hansen, W R</p> <p>1978-01-01</p> <p>This paper reviews documented environmental effects experience from the <span class="hlt">disposal</span> of solid waste materials in the <span class="hlt">U</span>.S. Selected case histories are discussed that illustrate waste migration and its actual or potential effects on human or environmental health. Principal conclusions resulting from this review were: solid waste materials do migrate beyond the geometric confines of the initial placement location; environmental effects have been experienced from <span class="hlt">disposal</span> of municipal, agricultural, and toxic chemical wastes; and utilization of presently known science and engineering principles in sitting and operating solid waste <span class="hlt">disposal</span> facilities would make a significant improvement in the containment capability of shallow land <span class="hlt">disposal</span> facilities. PMID:367769</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/24631872','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/24631872"><span>First measurements of (236)<span class="hlt">U</span> concentrations and (236)<span class="hlt">U</span>/(239)Pu isotopic ratios in a Southern Hemisphere soil far from nuclear test or reactor <span class="hlt">sites</span>.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Srncik, M; Tims, S G; De Cesare, M; Fifield, L K</p> <p>2014-06-01</p> <p>The variation of the (236)<span class="hlt">U</span> and (239)Pu concentrations as a function of depth has been studied in a soil profile at a <span class="hlt">site</span> in the Southern Hemisphere well removed from nuclear weapon test <span class="hlt">sites</span>. Total inventories of (236)<span class="hlt">U</span> and (239)Pu as well as the (236)<span class="hlt">U</span>/(239)Pu isotopic ratio were derived. For this investigation a soil core from an undisturbed forest area in the Herbert River catchment (17°30' - 19°S) which is located in north-eastern Queensland (Australia) was chosen. The chemical separation of <span class="hlt">U</span> and Pu was carried out with a double column which has the advantage of the extraction of both elements from a relatively large soil sample (∼20 g) within a day. The samples were measured by Accelerator Mass Spectrometry using the 14UD pelletron accelerator at the Australian National University. The highest atom concentrations of both (236)<span class="hlt">U</span> and (239)Pu were found at a depth of 2-<span class="hlt">3</span> cm. The (236)<span class="hlt">U</span>/(239)Pu isotopic ratio in fallout at this <span class="hlt">site</span>, as deduced from the ratio of the (236)<span class="hlt">U</span> and (239)Pu inventories, is 0.085 ± 0.003 which is clearly lower than the Northern Hemisphere value of ∼0.2. The (236)<span class="hlt">U</span> inventory of (8.4 ± 0.<span class="hlt">3</span>) × 10(11) at/m(2) was more than an order of magnitude lower than values reported for the Northern Hemisphere. The (239)Pu activity concentrations are in excellent agreement with a previous study and the (239+240)Pu inventory was (13.85 ± 0.29) Bq/m(2). The weighted mean (240)Pu/(239)Pu isotopic ratio of 0.142 ± 0.005 is slightly lower than the value for global fallout, but our results are consistent with the average ratio of 0.173 ± 0.027 for the southern equatorial region (0-30°S). Copyright © 2014 Elsevier Ltd. All rights reserved.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/biblio/10145933-evaluation-potential-hazard-exposure-resulting-from-doe-waste-treatment-disposal-rollins-environmental-services-baton-rouge-la','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/10145933-evaluation-potential-hazard-exposure-resulting-from-doe-waste-treatment-disposal-rollins-environmental-services-baton-rouge-la"><span>Evaluation of potential hazard exposure resulting from DOE waste treatment and <span class="hlt">disposal</span> at Rollins Environmental Services, Baton Rouge, LA</span></a></p> <p><a target="_blank" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Not Available</p> <p>1992-04-01</p> <p>The equivalent dose rate to populations potentially exposed to wastes shipped to Rollins Environmental Services, Baton Rouge, LA from Oak Ridge and Savannah River Operations of the Department of Energy was estimated. Where definitive information necessary to the estimation of a dose rate was unavailable, bounding assumptions were employed to ensure an overestimate of the actual dose rate experienced by the potentially exposed population. On this basis, it was estimated that a total of about <span class="hlt">3</span>.85 million pounds of waste was shipped from these DOE operations to Rollins with a maximum combined total activity of about 0.048 Curies. Populations nearmore » the Rollins <span class="hlt">site</span> could potentially be exposed to the radionuclides in the DOE wastes via the air pathway after incineration of the DOE wastes or by migration from the soil after landfill <span class="hlt">disposal</span>. AIRDOS was used to estimate the dose rate after incineration. RESRAD was used to estimate the dose rate after landfill <span class="hlt">disposal</span>. Calculations were conducted with the estimated radioactive specie distribution in the wastes and, as a test of the sensitivity of the results to the estimated distribution, with the entire activity associated with individual radioactive species such as Cs-137, Ba-137, Sr-90, Co-60, <span class="hlt">U</span>-234, <span class="hlt">U</span>-235 and <span class="hlt">U</span>-238. With a given total activity, the dose rates to nearby individuals were dominated by the uranium species.« less</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/22773082','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/22773082"><span>Contamination by perfluorinated compounds in water near waste recycling and <span class="hlt">disposal</span> <span class="hlt">sites</span> in Vietnam.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Kim, Joon-Woo; Tue, Nguyen Minh; Isobe, Tomohiko; Misaki, Kentaro; Takahashi, Shin; Viet, Pham Hung; Tanabe, Shinsuke</p> <p>2013-04-01</p> <p>There are very few reports on the contamination by perfluorinated chemicals (PFCs) in the environment of developing countries, especially regarding their emission from waste recycling and <span class="hlt">disposal</span> <span class="hlt">sites</span>. This is the first study on the occurrence of a wide range of PFCs (17 compounds) in ambient water in Vietnam, including samples collected from a municipal dumping <span class="hlt">site</span> (MD), an e-waste recycling <span class="hlt">site</span> (ER), a battery recycling <span class="hlt">site</span> (BR) and a rural control <span class="hlt">site</span>. The highest PFC concentration was found in a leachate sample from MD (360 ng/L). The PFC concentrations in ER and BR (mean, 57 and 16 ng/L, respectively) were also significantly higher than those detected in the rural control <span class="hlt">site</span> (mean, 9.4 ng/L), suggesting that municipal solid waste and waste electrical and electronic equipment are potential contamination sources of PFCs in Vietnam. In general, the most abundant PFCs were perfluorooctanoic acid (PFOA), perfluorononanoic acid (PFNA), and perfluoroundecanoic acid (PFUDA; <1.4-100, <1.2-100, and <0.5-20 ng/L, respectively). Interestingly, there were specific PFC profiles: perfluoroheptanoic acid and perfluorohexanoic acid (88 and 77 ng/L, respectively) were almost as abundant as PFOA in MD leachate (100 ng/L), whereas PFNA was prevalent in ER and BR (mean, 17 and 6.2 ng/L, respectively) and PFUDA was the most abundant in municipal wastewater (mean, 5.6 ng/L), indicating differences in PFC contents in different waste materials.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009DSRII..56.1775B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009DSRII..56.1775B"><span>Long-term benthic infaunal monitoring at a deep-ocean dredged material <span class="hlt">disposal</span> <span class="hlt">site</span> off Northern California</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Blake, James A.; Maciolek, Nancy J.; Ota, Allan Y.; Williams, Isabelle P.</p> <p>2009-09-01</p> <p>One hundred and thirty-five benthic infaunal samples were collected from the San Francisco Deep-Ocean <span class="hlt">Disposal</span> <span class="hlt">Site</span> (SF-DODS) over a 10-year period from January 1996 to September 2004. Each sample was 0.1 m 2, cut to a depth of 10 cm, and sieved through a 300-μm mesh. A total of 810 species of benthic invertebrates were identified; the majority of taxa (65.4%) new to science. The fauna represents a rich lower slope infaunal assemblage that rivals similarly studied locations in the western North Atlantic. No regional impact or degradation of benthic infauna due to dredged material <span class="hlt">disposal</span> was detected. All reference stations and stations on the <span class="hlt">site</span> boundary maintained high species richness and diversity during the monitoring period. Exceptions included an occasional sample with anomalously high numbers of one or two species that reduced the diversity and/or equitability. Within SF-DODS species richness and diversity were often reduced. Stations within the <span class="hlt">disposal</span> <span class="hlt">site</span> were recolonized by the same taxa that normally occurred in adjacent reference areas. Initial colonizers of fresh dredged material included spionid and paraonid polychaetes that were typical dominants at the <span class="hlt">site</span>. At least one polychaete species, Ophelina sp. 1, sometimes colonized dredged materials containing coarse sand. One sample at Station 13, located in the middle of SF-DODS (September 2002), contained 57 species of benthic invertebrates, suggesting that colonization of fresh dredged material is rapid. It seems unlikely that larval dispersal and settlement account for this rapid recolonization; therefore it is postulated that adult organisms from adjacent areas move to the disturbed <span class="hlt">sites</span> via boundary layer currents. The steep continental slope adjacent to SF-DODS is subject to turbidity flows and the resident fauna are likely pre-adapted to rapidly colonize disturbed sediments. Larval dispersal, especially by spionid polychaetes such as Prionospio delta, may also be important in colonizing</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19830030064&hterms=radioactive+waste&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3Dradioactive%2Bwaste','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19830030064&hterms=radioactive+waste&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3Dradioactive%2Bwaste"><span><span class="hlt">U</span>.S. program assessing nuclear waste <span class="hlt">disposal</span> in space - A 1981 status report</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Rice, E. E.; Edgecombe, D. S.; Best, R. E.; Compton, P. R.</p> <p>1982-01-01</p> <p>Concepts, current studies, and technology and equipment requirements for using the STS for space <span class="hlt">disposal</span> of selected nuclear wastes as a complement to geological storage are reviewed. An orbital transfer vehicle carried by the Shuttle would kick the waste cannister into a 0.85 AU heliocentric orbit. One flight per week is regarded as sufficient to <span class="hlt">dispose</span> of all high level wastes chemically separated from reactor fuel rods from 200 GWe nuclear power capacity. Studies are proceeding for candidate wastes, the STS system suited to each waste, and the risk/benefits of a space <span class="hlt">disposal</span> system. Risk assessments are being extended to total waste <span class="hlt">disposal</span> risks for various <span class="hlt">disposal</span> programs with and without a space segment, and including side waste streams produced as a result of separating substances for launch.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1357190-analytical-method-using-tracers-application-contaminated-nuclear-disposal-facility','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1357190-analytical-method-using-tracers-application-contaminated-nuclear-disposal-facility"><span>237Np analytical method using 239Np tracers and application to a contaminated nuclear <span class="hlt">disposal</span> facility</span></a></p> <p><a target="_blank" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>Snow, Mathew S.; Morrison, Samuel S.; Clark, Sue B.; ...</p> <p>2017-03-21</p> <p>In this study, environmental 237Np analyses are challenged by low 237Np concentrations and lack of an available yield tracer; we report a rapid, inexpensive 237Np analytical approach employing the short lived 239Np (t1/2 = 2.<span class="hlt">3</span> days) as a chemical yield tracer followed by 237Np quantification using inductively coupled plasma-mass spectrometry. 239Np tracer is obtained via separation from a 243Am stock solution and standardized using gamma spectrometry immediately prior to sample processing. Rapid digestions using a commercial, 900 W "Walmart" microwave and Parr microwave vessels result in 99.8 ± 0.1% digestion yields, while chromatographic separations enable Np/<span class="hlt">U</span> separation factors on themore » order of 10 6 and total Np yields of 95 ± 4% (2σ). Application of this method to legacy soil samples surrounding a radioactive <span class="hlt">disposal</span> facility (the Subsurface <span class="hlt">Disposal</span> Area at Idaho National Laboratory) reveal the presence of low level 237Np contamination within 600 m of this <span class="hlt">site</span>, with maximum 237Np concentrations on the order of 10 <span class="hlt">3</span> times greater than nuclear weapons testing fallout levels.« less</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28340392','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28340392"><span>237Np analytical method using 239Np tracers and application to a contaminated nuclear <span class="hlt">disposal</span> facility.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Snow, Mathew S; Morrison, Samuel S; Clark, Sue B; Olson, John E; Watrous, Matthew G</p> <p>2017-06-01</p> <p>Environmental 237 Np analyses are challenged by low 237 Np concentrations and lack of an available yield tracer; we report a rapid, inexpensive 237 Np analytical approach employing the short lived 239 Np (t 1/2  = 2.<span class="hlt">3</span> days) as a chemical yield tracer followed by 237 Np quantification using inductively coupled plasma-mass spectrometry. 239 Np tracer is obtained via separation from a 243 Am stock solution and standardized using gamma spectrometry immediately prior to sample processing. Rapid digestions using a commercial, 900 W "Walmart" microwave and Parr microwave vessels result in 99.8 ± 0.1% digestion yields, while chromatographic separations enable Np/<span class="hlt">U</span> separation factors on the order of 10 6 and total Np yields of 95 ± 4% (2σ). Application of this method to legacy soil samples surrounding a radioactive <span class="hlt">disposal</span> facility (the Subsurface <span class="hlt">Disposal</span> Area at Idaho National Laboratory) reveal the presence of low level 237 Np contamination within 600 m of this <span class="hlt">site</span>, with maximum 237 Np concentrations on the order of 10 <span class="hlt">3</span> times greater than nuclear weapons testing fallout levels. Copyright © 2017 Elsevier Ltd. All rights reserved.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/15004048','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/15004048"><span>Analogue Study of Actinide Transport at <span class="hlt">Sites</span> in Russia</span></a></p> <p><a target="_blank" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Novikov, A P; Simmons, A M; Halsey, W G</p> <p>2003-02-12</p> <p>The <span class="hlt">U</span>. S. Department of Energy (DOE) and the Russian Academy of Sciences (RAS) are engaged in a three-year cooperative study to observe the behavior of actinides in the natural environment at selected <span class="hlt">disposal</span> <span class="hlt">sites</span> and/or contamination <span class="hlt">sites</span> in Russia. The purpose is to develop experimental data and models for actinide speciation, mobilization and transport processes in support of geologic repository design, safety and performance analyses. Currently at the mid-point of the study, the accomplishments to date include: evaluation of existing data and data needs, <span class="hlt">site</span> screening and selection, initial data acquisition, and development of preliminary conceptual models.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5886761','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5886761"><span>Unsafe <span class="hlt">disposal</span> of feces of children <<span class="hlt">3</span> years among households with latrine access in rural Bangladesh: Association with household characteristics, fly presence and child diarrhea</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Ercumen, Ayse; Ashraf, Sania; Rahman, Mahbubur; Shoab, Abul K.; Luby, Stephen P.; Unicomb, Leanne</p> <p>2018-01-01</p> <p>Background Young children frequently defecate in the living environment in low-income countries. Unsafe child feces <span class="hlt">disposal</span> has been associated with risk of diarrhea. Additionally, reported practices can underestimate socially undesirable unhygienic behaviors. This analysis aimed to assess (1) the sensitivity of reported child feces <span class="hlt">disposal</span> practices as an indicator for observed presence of human feces in the domestic environment, (2) household characteristics associated with reported unsafe feces <span class="hlt">disposal</span> and (<span class="hlt">3</span>) whether unsafe feces <span class="hlt">disposal</span> is associated with fly presence and diarrhea among children <<span class="hlt">3</span> years. Methods We recorded caregiver-reported feces <span class="hlt">disposal</span> practices for children <<span class="hlt">3</span> years; unsafe <span class="hlt">disposal</span> was defined as feces put/rinsed into a drain, ditch, bush or garbage heap or left on the ground and safe <span class="hlt">disposal</span> as feces put/rinsed into latrine or specific pit or buried. We conducted spot checks for human feces, counted flies in the compound and recorded caregiver-reported child diarrhea prevalence among 803 rural Bangladeshi households. We assessed associations using generalized estimating equations (GEE) and generalized linear models (GLM) with robust standard errors. Results Unsafe <span class="hlt">disposal</span> of child feces was reported by 80% of households. Reported <span class="hlt">disposal</span> practices had high sensitivity (91%) but low positive predictive value (15%) as an indicator of observed feces in the compound. Unsafe <span class="hlt">disposal</span> was more common among households that reported daily adult open defecation (PR: 1.13, 1.02–1.24) and had children defecating in a nappy or on the ground versus in a potty (PR: 2.92, 1.98–4.32), and less common in households where adults reported always defecating in latrines (PR: 0.91, 0.84–0.98). The presence of observed human feces was similarly associated with these household characteristics. Reported unsafe feces <span class="hlt">disposal</span> or observed human feces were not associated with fly detection or child diarrhea. Conclusion Despite access to on-<span class="hlt">site</span></p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/biblio/21156534-support-iraq-nuclear-facility-dismantlement-disposal-program','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/21156534-support-iraq-nuclear-facility-dismantlement-disposal-program"><span>Support of the Iraq nuclear facility dismantlement and <span class="hlt">disposal</span> program</span></a></p> <p><a target="_blank" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Coates, Roger; Cochran, John; Danneels, Jeff</p> <p>2007-07-01</p> <p>Available in abstract form only. Full text of publication follows: Iraq's former nuclear facilities contain large quantities of radioactive materials and radioactive waste. The Iraq Nuclear Facility Dismantlement and <span class="hlt">Disposal</span> Program (the Iraq NDs Program) is a new program to decontaminate and permanently <span class="hlt">dispose</span> of radioactive wastes in Iraq. The NDs Program is led by the Government of Iraq, under International Atomic Energy Agency (IAEA) auspices, with guidance and assistance from a number of countries. The <span class="hlt">U</span>.S. participants include Texas Tech University and Sandia National Laboratories. A number of activities are ongoing under the broad umbrella of the Iraq NDsmore » Program: drafting a new nuclear law that will provide the legal basis for the cleanup and <span class="hlt">disposal</span> activities; assembly and analysis of existing data; characterization of soil contamination; bringing Iraqi scientists to the world's largest symposium on radioactive waste management; touring <span class="hlt">U</span>.S. government and private sector operating radwaste <span class="hlt">disposal</span> facilities in the <span class="hlt">U</span>.S., and hosting a planning workshop on the characterization and cleanup of the Al-Tuwaitha Nuclear Facility. (authors)« less</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/21397999','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/21397999"><span>Biotic, temporal and spatial variability of tritium concentrations in transpirate samples collected in the vicinity of a near-surface low-level nuclear waste <span class="hlt">disposal</span> <span class="hlt">site</span> and nearby research reactor.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Twining, J R; Hughes, C E; Harrison, J J; Hankin, S; Crawford, J; Johansen, M; Dyer, L</p> <p>2011-06-01</p> <p>The results of a 21 month sampling program measuring tritium in tree transpirate with respect to local sources are reported. The aim was to assess the potential of tree transpirate to indicate the presence of sub-surface seepage plumes. Transpirate gathered from trees near low-level nuclear waste <span class="hlt">disposal</span> trenches contained activity concentrations of (<span class="hlt">3</span>)H that were significantly higher (up to ∼700 Bq L(-1)) than local background levels (0-10 Bq L(-1)). The effects of the waste source declined rapidly with distance to be at background levels within 10s of metres. A research reactor 1.6 km south of the <span class="hlt">site</span> contributed significant (p < 0.01) local fallout (<span class="hlt">3</span>)H but its influence did not reach as far as the <span class="hlt">disposal</span> trenches. The elevated (<span class="hlt">3</span>)H levels in transpirate were, however, substantially lower than groundwater concentrations measured across the <span class="hlt">site</span> (ranging from 0 to 91% with a median of 2%). Temporal patterns of tree transpirate (<span class="hlt">3</span>)H, together with local meteorological observations, indicate that soil water within the active root zones comprised a mixture of seepage and rainfall infiltration. The degree of mixing was variable given that the soil water activity concentrations were heterogeneous at a scale equivalent to the effective rooting volume of the trees. In addition, water taken up by roots was not well mixed within the trees. Based on correlation modelling, net rainfall less evaporation (a surrogate for infiltration) over a period of from 2 to <span class="hlt">3</span> weeks prior to sampling seems to be the optimum predictor of transpirate (<span class="hlt">3</span>)H variability for any sampled tree at this <span class="hlt">site</span>. The results demonstrate successful use of (<span class="hlt">3</span>)H in transpirate from trees to indicate the presence and general extent of sub-surface contamination at a low-level nuclear waste <span class="hlt">site</span>. Crown Copyright © 2011. Published by Elsevier Ltd. All rights reserved.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1132793','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1132793"><span>Process for Transition of Uranium Mill Tailings Radiation Control Act Title II <span class="hlt">Disposal</span> <span class="hlt">Sites</span> to the <span class="hlt">U</span>.S. Department of Energy Office of Legacy Management for Long-Term Surveillance and Maintenance</span></a></p> <p><a target="_blank" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>None</p> <p></p> <p>This document presents guidance for implementing the process that the <span class="hlt">U</span>.S. Department of Energy (DOE) Office of Legacy Management (LM) will use for assuming perpetual responsibility for a closed uranium mill tailings <span class="hlt">site</span>. The transition process specifically addresses <span class="hlt">sites</span> regulated under Title II of the Uranium Mill Tailings Radiation Control Act (UMTRCA) but is applicable in principle to the transition of <span class="hlt">sites</span> under other regulatory structures, such as the Formerly Utilized <span class="hlt">Sites</span> Remedial Action Program.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1419157','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1419157"><span>Conceptual Model of Iodine Behavior in the Subsurface at the Hanford <span class="hlt">Site</span></span></a></p> <p><a target="_blank" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Truex, Michael J.; Lee, Brady D.; Johnson, Christian D.</p> <p></p> <p>Isotopes of iodine were generated during plutonium production within the nine production reactors at the <span class="hlt">U</span>.S. Department of Energy Hanford <span class="hlt">Site</span>. The short half-life 131I that was released from the fuel into the atmosphere during the dissolution process (when the fuel was dissolved) in the Hanford <span class="hlt">Site</span> 200 Area is no longer present at concentrations of concern in the environment. The long half-life 129I generated at the Hanford <span class="hlt">Site</span> during reactor operations was (1) stored in single-shell and double-shell tanks, (2) discharged to liquid <span class="hlt">disposal</span> <span class="hlt">sites</span> (e.g., cribs and trenches), (<span class="hlt">3</span>) released to the atmosphere during fuel reprocessing operations, ormore » (4) captured by off-gas absorbent devices (silver reactors) at chemical separations plants (PUREX, B-Plant, T-Plant, and REDOX). Releases of 129I to the subsurface have resulted in several large, though dilute, plumes in the groundwater. There is also 129I remaining in the vadose zone beneath <span class="hlt">disposal</span> or leak locations. The fate and transport of 129I in the environment and potential remediation technologies are currently being studied as part of environmental remediation activities at the Hanford <span class="hlt">Site</span>. A conceptual model describing the nature and extent of subsurface contamination, factors that control plume behavior, and factors relevant to potential remediation processes is needed to support environmental remedy decisions. Because 129I is an uncommon contaminant, relevant remediation experience and scientific literature are limited. In addition, its behavior in subsurface is different from that of other more common and important contaminants (e.g., <span class="hlt">U</span>, Cr and Tc) in terms of sorption (adsorption and precipitation), and aqueous phase species transformation via redox reactions. Thus, the conceptual model also needs to both describe known contaminant and biogeochemical process information and identify aspects about which additional information is needed to effectively support remedy decisions.« less</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://pubs.usgs.gov/wri/1992/4010/report.pdf','USGSPUBS'); return false;" href="https://pubs.usgs.gov/wri/1992/4010/report.pdf"><span>Estimation of ground-water recharge from precipitation, runoff into drywells, and on-<span class="hlt">site</span> waste-<span class="hlt">disposal</span> systems in the Portland Basin, Oregon and Washington</span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Snyder, D.T.; Morgan, D.S.; McGrath, T.S.</p> <p>1994-01-01</p> <p>The average recharge rate in the Portland Basin, in northwestern Oregon and southwestern Washington, is estimated to be about 22.0 inches per year. Of that amount, precipitation accounts for about 20.8 inches per year, runoff into drywells 0.9 inches per year, and on-<span class="hlt">site</span> waste <span class="hlt">disposal</span> about 0.4 inches per year. Recharge is highest, about 49 inches per year, in the Cascade Range. Recharge is lowest, near zero, along and between the Columbia and Willamette Rivers. Recharge is higher locally in discrete areas owing to recharge from runoff into drywells and on-<span class="hlt">site</span>, waste-<span class="hlt">disposal</span> systems in urbanized parts of the study area. In these urbanized areas, recharge ranges from 0 to 49 inches per year.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/FR-2013-06-27/pdf/2013-14911.pdf','FEDREG'); return false;" href="https://www.gpo.gov/fdsys/pkg/FR-2013-06-27/pdf/2013-14911.pdf"><span>78 FR 38672 - Ocean Dumping; Sabine-Neches Waterway (SNWW) Ocean Dredged Material <span class="hlt">Disposal</span> <span class="hlt">Site</span> Designation</span></a></p> <p><a target="_blank" href="http://www.gpo.gov/fdsys/browse/collection.action?collectionCode=FR">Federal Register 2010, 2011, 2012, 2013, 2014</a></p> <p></p> <p>2013-06-27</p> <p>... March 2011 prepared by the <span class="hlt">U</span>.S. Army Corps of Engineers (also Corps or USACE). Appendix B of Volume III... be considered on the proposed <span class="hlt">site</span> designations. The <span class="hlt">U</span>.S. Army Corps of Engineers Final EIS for the... of dredged material from the Sabine-Neches Waterway. Currently, the US Army Corps of Engineers will...</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li class="active"><span>21</span></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_21 --> <div id="page_22" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li class="active"><span>22</span></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="421"> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.epa.gov/newsreleases/epa-settlement-uconn-resolves-improper-pcb-disposal-activity','PESTICIDES'); return false;" href="https://www.epa.gov/newsreleases/epa-settlement-uconn-resolves-improper-pcb-disposal-activity"><span>EPA Settlement with UConn Resolves Improper PCB <span class="hlt">Disposal</span> Activity</span></a></p> <p><a target="_blank" href="http://www.epa.gov/pesticides/search.htm">EPA Pesticide Factsheets</a></p> <p></p> <p></p> <p>The University of Connecticut has taken steps to ensure its PCB waste is properly <span class="hlt">disposed</span> of in the future to settle claims by the <span class="hlt">U</span>.S. Environmental Protection Agency (EPA) that it improperly <span class="hlt">disposed</span> of PCBs during a 2013 renovation project at its Storr</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://cfpub.epa.gov/si/si_public_record_report.cfm?direntryid=139712','PESTICIDES'); return false;" href="https://cfpub.epa.gov/si/si_public_record_report.cfm?direntryid=139712"><span>DOSE ASSESSMENTS FROM THE <span class="hlt">DISPOSAL</span> OF LOW ...</span></a></p> <p><a target="_blank" href="http://www.epa.gov/pesticides/search.htm">EPA Pesticide Factsheets</a></p> <p></p> <p></p> <p>Modeling the long-term performance of the RCRA-C <span class="hlt">disposal</span> cell and potential doses to off-<span class="hlt">site</span> receptors is used to derive maximum radionuclide specific concentrations in the wastes that would enable these wastes to be <span class="hlt">disposed</span> of safely using the RCRA-C <span class="hlt">disposal</span> cell technology. Modeling potential exposures to derive these waste acceptance concentrations involves modeling exposures to workers during storage, treatment and <span class="hlt">disposal</span> of the wastes, as well as exposures to individuals after <span class="hlt">disposal</span> operations have ceased. Post facility closure exposures can result from the slow expected degradation of the <span class="hlt">disposal</span> cell over long time periods (one thousand years after <span class="hlt">disposal</span>) and in advertent human intrusion. Provide a means of determining waste acceptance radionuclide concentrations for <span class="hlt">disposal</span> of debris from radiological dispersal device incidents as well as low-activity wastes generated in commercial, medical and research activities, potentially serve as the technical basis for guidance on <span class="hlt">disposal</span> of these materials.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70032200','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70032200"><span>Transport of elemental mercury in the unsaturated zone from a waste <span class="hlt">disposal</span> <span class="hlt">site</span> in an arid region</span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Walvoord, Michelle Ann; Andraski, Brian J.; Krabbenhoft, D.P.; Striegl, Robert G.</p> <p>2008-01-01</p> <p>Mercury contained in buried landfill waste may be released via upward emission to the atmosphere or downward leaching to groundwater. Data from the US Geological Survey’s Amargosa Desert Research <span class="hlt">Site</span> (ADRS) in arid southwestern Nevada reveal another potential pathway of Hg release: long-distance (102 m) lateral migration of elemental Hg (Hg0) through the unsaturated zone. Gas collected from multiple depths from two instrumented boreholes that sample the entire 110-m unsaturated zone thickness and are located 100 and 160 m away from the closest waste burial trench exhibit gaseous Hg concentrations of up to 33 and 11 ng m−<span class="hlt">3</span>, respectively. The vertical distribution of gaseous Hg in the borehole closest to the <span class="hlt">disposal</span> <span class="hlt">site</span> shows distinct subsurface peaks in concentration at depths of 1.5 and 24 m that cannot be explained by radial diffusive transport through a heterogeneous layered unsaturated zone. The inability of current models to explain gaseous Hg distribution at the ADRS highlights the need to advance the understanding of gas-phase contaminant transport in unsaturated zones to attain a comprehensive model of landfill Hg release.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26794166','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26794166"><span>Wastewater <span class="hlt">Disposal</span> Wells, Fracking, and Environmental Injustice in Southern Texas.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Johnston, Jill E; Werder, Emily; Sebastian, Daniel</p> <p>2016-03-01</p> <p>To investigate race and poverty in areas where oil and gas wastewater <span class="hlt">disposal</span> wells, which are used to permanently inject wastewater from hydraulic fracturing (fracking) operations, are permitted. With location data of oil and gas <span class="hlt">disposal</span> wells permitted between 2007 and 2014 in the Eagle Ford area, a region of intensive fracking in southern Texas, we analyzed the racial composition of residents living less than 5 kilometers from a <span class="hlt">disposal</span> well and those farther away, adjusting for rurality and poverty, using a Poisson regression. The proportion of people of color living less than 5 kilometers from a <span class="hlt">disposal</span> well was 1.<span class="hlt">3</span> times higher than was the proportion of non-Hispanic Whites. Adjusting for rurality, <span class="hlt">disposal</span> wells were 2.04 times (95% confidence interval = 2.02, 2.06) as common in areas with 80% people of color or more than in majority White areas. <span class="hlt">Disposal</span> wells are also disproportionately <span class="hlt">sited</span> in high-poverty areas. Wastewater <span class="hlt">disposal</span> wells in southern Texas are disproportionately permitted in areas with higher proportions of people of color and residents living in poverty, a pattern known as "environmental injustice."</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4816143','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4816143"><span>Wastewater <span class="hlt">Disposal</span> Wells, Fracking, and Environmental Injustice in Southern Texas</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Werder, Emily; Sebastian, Daniel</p> <p>2016-01-01</p> <p>Objectives. To investigate race and poverty in areas where oil and gas wastewater <span class="hlt">disposal</span> wells, which are used to permanently inject wastewater from hydraulic fracturing (fracking) operations, are permitted. Methods. With location data of oil and gas <span class="hlt">disposal</span> wells permitted between 2007 and 2014 in the Eagle Ford area, a region of intensive fracking in southern Texas, we analyzed the racial composition of residents living less than 5 kilometers from a <span class="hlt">disposal</span> well and those farther away, adjusting for rurality and poverty, using a Poisson regression. Results. The proportion of people of color living less than 5 kilometers from a <span class="hlt">disposal</span> well was 1.<span class="hlt">3</span> times higher than was the proportion of non-Hispanic Whites. Adjusting for rurality, <span class="hlt">disposal</span> wells were 2.04 times (95% confidence interval = 2.02, 2.06) as common in areas with 80% people of color or more than in majority White areas. <span class="hlt">Disposal</span> wells are also disproportionately <span class="hlt">sited</span> in high-poverty areas. Conclusions. Wastewater <span class="hlt">disposal</span> wells in southern Texas are disproportionately permitted in areas with higher proportions of people of color and residents living in poverty, a pattern known as “environmental injustice.” PMID:26794166</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/18930591','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/18930591"><span>Geostatistical risk estimation at waste <span class="hlt">disposal</span> <span class="hlt">sites</span> in the presence of hot spots.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Komnitsas, Kostas; Modis, Kostas</p> <p>2009-05-30</p> <p>The present paper aims to estimate risk by using geostatistics at the wider coal mining/waste <span class="hlt">disposal</span> <span class="hlt">site</span> of Belkovskaya, Tula region, in Russia. In this area the presence of hot spots causes a spatial trend in the mean value of the random field and a non-Gaussian data distribution. Prior to application of geostatistics, subtraction of trend and appropriate smoothing and transformation of the data into a Gaussian form were carried out; risk maps were then generated for the wider study area in order to assess the probability of exceeding risk thresholds. Finally, the present paper discusses the need for homogenization of soil risk thresholds regarding hazardous elements that will enhance reliability of risk estimation and enable application of appropriate rehabilitation actions in contaminated areas.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/biblio/481291-superfund-record-decision-epa-region-loring-air-force-base-operable-unit-debris-disposal-unit-limestone-me-september','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/481291-superfund-record-decision-epa-region-loring-air-force-base-operable-unit-debris-disposal-unit-limestone-me-september"><span>Superfund record of decision (EPA Region 1): Loring Air Force Base, operable unit <span class="hlt">3</span> (Debris <span class="hlt">Disposal</span> Unit), Limestone, ME, September 27, 1996</span></a></p> <p><a target="_blank" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>NONE</p> <p>1997-04-01</p> <p>This decision document presents the final remedies for OU<span class="hlt">3</span>, which consists of 17 <span class="hlt">sites</span>: No further action for the following 14 NFA (no further action) <span class="hlt">sites</span> - Ohio Road Debris Area, Oklahoma Road Debris Area, KC-135 Crash Area, Dumpster Cleaning Area <span class="hlt">Site</span>/Building 7841, Explosive Ordnance <span class="hlt">Disposal</span> (EOD) Area-Cylinders, Golf Course Maintenance Shed Area, Chapman Pit Debris Area, 9000 Debris Area, Solvent/Paint Dock Area, Prima Beef Debris Area, Buildings 8951 and 8960 (DRMO), Old PX Gas Station UST, F-106A Crash Area, and Demineralization Plant; Further investigation for the Outdoor Firing Range and EOD Range; and Remedial action for the Contract Storagemore » Shed Area <span class="hlt">site</span> to address the contaminated soils/sediments.« less</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFMNS31A1937B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFMNS31A1937B"><span>Applying <span class="hlt">3</span>D Full Waveform Inversion in resolving fracture damage zones around a modelled geological <span class="hlt">disposal</span> facility in granite</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Bentham, H. L. M.; Morgan, J. V.; Angus, D. A.</p> <p>2016-12-01</p> <p>The UK has a large volume of high level and intermediate level radioactive waste and government policy is to <span class="hlt">dispose</span> of this waste in a Geological <span class="hlt">Disposal</span> Facility (GDF). This will be a highly-engineered facility capable of isolating radioactive waste within multiple protective barriers, deep underground, to ensure that no harmful quantities of radioactivity ever reach the surface environment. Although no specific GDF <span class="hlt">site</span> in the UK has been chosen, granite is one of the candidate host rocks due to its strength, in engineering terms, and because of its low permeability in consideration of groundwater movement. We design time-lapse seismic surveys to characterise geological models of naturally fractured granite with GDF-related tunnel damage zones at a potential <span class="hlt">disposal</span> depth of 1000 m (the UK GDF might be shallower). Additionally, we use effective medium models to calculate the velocity change when the fracture density is increased in the damage zones, and find a reduction of 60 m/s in P-wave velocity when the fracture density is doubled. Next, we simulate seismic surveys and apply <span class="hlt">3</span>D Full Waveform Inversion (FWI) to see how well we can recover the low-velocity damage zones. Furthermore we evaluate the effectiveness of using a survey design consisting of surface and tunnel receivers (a combined array) to resolve the target. After applying FWI we find the velocity anomaly within the damage zone can be resolved to within 2 m/s (<span class="hlt">3</span>%) and the shape of the damage zone is resolved to 12.5 m (within a single grid cell). Using the combined array we are able to resolve the anomaly strength and shape more completely. When we add further complexity to the model by including tunnel infrastructure, we conclude the combined array is essential in recovering the tunnel damage zone. Our findings show that it is beneficial to use <span class="hlt">3</span>D FWI and novel survey designs for characterising subtle variations as may be present in granite, information that could assist in the GDF <span class="hlt">site</span> selection</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://pubs.usgs.gov/of/2008/1347/','USGSPUBS'); return false;" href="https://pubs.usgs.gov/of/2008/1347/"><span>The Performance of Nearshore Dredge <span class="hlt">Disposal</span> at Ocean Beach, San Francisco, California, 2005-2007</span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Barnard, Patrick L.; Erikson, Li H.; Hansen, Jeff E.; Elias, Edwin</p> <p>2009-01-01</p> <p>Ocean Beach, California, contains an erosion hot spot in the shadow of the San Francisco ebb tidal delta that threatens valuable public infrastructure as well as the safe recreational use of the beach. In an effort to reduce the erosion at this location a new plan for the management of sediment dredged annually from the main shipping channel at the mouth of San Francisco Bay was implemented in May 2005 by the United States Army Corps of Engineers, San Francisco District (USACE). The USACE designated a temporary nearshore dredge <span class="hlt">disposal</span> <span class="hlt">site</span> for the annual <span class="hlt">disposal</span> of about 230,000 m<span class="hlt">3</span> (300,000 yd<span class="hlt">3</span>) of sand about 750 m offshore and slightly south of the erosion hot spot, in depths between approximately 9 and 14 m. The <span class="hlt">site</span> has now been used three times for a total sediment <span class="hlt">disposal</span> of about 690,000 m<span class="hlt">3</span> (about 900,000 yds<span class="hlt">3</span>). The <span class="hlt">disposal</span> <span class="hlt">site</span> was chosen because it is in a location where strong tidal currents and open-ocean waves can potentially feed sediment toward the littoral zone in the reach of the beach that is experiencing critical erosion, as well as prevent further scour on an exposed outfall pipe. The onshore migration of sediment from the target <span class="hlt">disposal</span> location might feed the primary longshore bar or the nearshore zone, and provide a buffer to erosion that peaks during winter months when large waves impact the region. The United States Geological Survey (USGS) has been monitoring and modeling the bathymetric evolution of the test dredge <span class="hlt">disposal</span> <span class="hlt">site</span> and the adjacent coastal region since inception in May 2005. This paper reports on the first 2.5 years of this monitoring program effort (May 2005 to December 2007) and assesses the short-term coastal response. Here are the key findings of this report: *Approximately half of the sediment that has been placed in the nearshore dredge-<span class="hlt">disposal</span> <span class="hlt">site</span> during the 2.5 years of this study remains within the dredge focus area. *In the winter of 2006-7, large waves transported the dredge-mound material onshore. *High</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFM.V13C2853S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFM.V13C2853S"><span>40Ar/39Ar dating and zircon chronochemistry for the Izu-Bonin rear arc, IODP <span class="hlt">site</span> <span class="hlt">U</span>1437</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Schmitt, A. K.; Konrad, K.; Andrews, G. D.; Horie, K.; Brown, S. R.; Koppers, A. A. P.; Busby, C.; Tamura, Y.</p> <p>2016-12-01</p> <p>The scientific objective of IODP Expedition 350 drilling at <span class="hlt">Site</span> <span class="hlt">U</span>1437 (31°47.390'N, 139°01.580'E) was to reveal the "missing half of the subduction factory": the rear arc of a long-lived intraoceanic subduction zone. <span class="hlt">Site</span> <span class="hlt">U</span>1437 lies in a 50 km long and 20 km wide volcano-bounded basin, 90 km west of the Izu arc front, and is the only IODP <span class="hlt">site</span> drilled in the rear arc. The Izu rear arc is dominated by Miocene basaltic to dacitic seamount chains, which strike at a high angle to the arc front. Radiometric dating targeted a single igneous unit (1390 mbsf), and fine to coarse volcaniclastic units for which we present zircon and 40Ar/39Ar (hornblende, plagioclase, and groundmass) age determinations. All zircons analyzed as grain separates were screened for contamination from drill-mud (Andrews et al., 2016) by analyzing trace elements and, where material was available, O and Hf isotope compositions. Igneous Unit 1 is a rhyolite sheet and yielded concordant in-situ and crystal separate <span class="hlt">U</span>-Pb zircon ages (13.7±0.<span class="hlt">3</span> Ma; MSWD = 1.<span class="hlt">3</span>; n = 40 spots), whereas the 40Ar/39Ar hornblende plateau age (12.9±0.<span class="hlt">3</span>; MSWD = 1.1; n = 9 steps) is slightly younger, possibly reflecting pre-eruptive zircon crystallization, or alteration of hornblende. <span class="hlt">U</span>-Pb zircon and 40Ar/39Ar plateau ages from samples above igneous Unit 1 are concordant with biostratigraphic and paleomagnetic ages (available to 1300 mbsf), but plagioclase and groundmass samples below 1300 m become younger with depth, hinting at post-depositional alteration. A single zircon from 1600 mbsf yielded a <span class="hlt">U</span>-Pb age of 15.4±1.8 Ma; its trace element composition resembles other igneous zircons from <span class="hlt">U</span>1437, and is tentatively interpreted as a Middle Miocene age for the lowermost lithostratigraphic unit VII. Oxygen and Hf isotopic values of igneous zircon indicate mantle origins, with some influence of assimilation of hydrothermally altered oceanic crust evident in sub-mantle oxygen isotopic compositions. Lessons from <span class="hlt">site</span> <span class="hlt">U</span>1437 are</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28484188','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28484188"><span>C-to-<span class="hlt">U</span> editing and <span class="hlt">site</span>-directed RNA editing for the correction of genetic mutations.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Vu, Luyen Thi; Tsukahara, Toshifumi</p> <p>2017-07-24</p> <p>Cytidine to uridine (C-to-<span class="hlt">U</span>) editing is one type of substitutional RNA editing. It occurs in both mammals and plants. The molecular mechanism of C-to-<span class="hlt">U</span> editing involves the hydrolytic deamination of a cytosine to a uracil base. C-to-<span class="hlt">U</span> editing is mediated by RNA-specific cytidine deaminases and several complementation factors, which have not been completely identified. Here, we review recent findings related to the regulation and enzymatic basis of C-to-<span class="hlt">U</span> RNA editing. More importantly, when C-to-<span class="hlt">U</span> editing occurs in coding regions, it has the power to reprogram genetic information on the RNA level, therefore it has great potential for applications in transcript repair (diseases related to thymidine to cytidine (T>C) or adenosine to guanosine (A>G) point mutations). If it is possible to manipulate or mimic C-to-<span class="hlt">U</span> editing, T>C or A>G genetic mutation-related diseases could be treated. Enzymatic and non-enzymatic <span class="hlt">site</span>-directed RNA editing are two different approaches for mimicking C-to-<span class="hlt">U</span> editing. For enzymatic <span class="hlt">site</span>-directed RNA editing, C-to-<span class="hlt">U</span> editing has not yet been successfully performed, and in theory, adenosine to inosine (A-to-I) editing involves the same strategy as C-to-<span class="hlt">U</span> editing. Therefore, in this review, for applications in transcript repair, we will provide a detailed overview of enzymatic <span class="hlt">site</span>-directed RNA editing, with a focus on A-to-I editing and non-enzymatic <span class="hlt">site</span>-directed C-to-<span class="hlt">U</span> editing.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/928845','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/928845"><span>Special Analysis of Transuranic Waste in Trench T04C at the Area 5 Radioactive Waste Management <span class="hlt">Site</span>, Nevada Test <span class="hlt">Site</span>, Nye County, Nevada, Revision 1</span></a></p> <p><a target="_blank" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Greg Shott, Vefa Yucel, Lloyd Desotell</p> <p>2008-05-01</p> <p>, consisting of a performance assessment (PA), composite analysis (CA), closure plan, monitoring plan, waste acceptance criteria, and a PA/CA maintenance plan. The DOE issued a DAS for the Area 5 RWMS in 2000. The Area 5 RWMS DAS was, in part, based on review of a CA as required under DOE M 435.1-1, Chapter IV, Section P.(<span class="hlt">3</span>). A CA is a radiological assessment required for DOE waste <span class="hlt">disposed</span> before 26 September 1988 and includes the radiological dose from all sources of radioactive material interacting with all radioactive waste <span class="hlt">disposed</span> at the Area 5 RWMS. The approved Area 5 RWMS CA, which includes the inventory of TRU waste in T04C, indicates that the Area 5 RWMS waste inventory and all interacting sources of radioactive material can meet the 0.<span class="hlt">3</span> mSv dose constraint. The composite analysis maximum annual dose for a future resident at the Area 5 RWMS was estimated to be 0.01 mSv at 1,000 years. Therefore, the inadvertent <span class="hlt">disposal</span> of TRU in T04C is protective of the public and the environment, and compliant with all the applicable requirements in DOE M 435.1-1 and the DAS. The <span class="hlt">U</span>.S. Environmental Protection Agency promulgated 40 CFR 191 to establish standards for the planned <span class="hlt">disposal</span> of spent nuclear fuel, high level, and transuranic wastes in geologic repositories. Although not required, the National Nuclear Security Administration Nevada <span class="hlt">Site</span> Office requested a supplemental analysis to evaluate the likelihood that the inadvertent <span class="hlt">disposal</span> of TRU waste in T04C meets the requirements of 40 CFR 191. The SA evaluates the likelihood of meeting the 40 CFR 191 containment requirements (CRs), assurance requirements, individual protection requirements (IPRs), and groundwater protection standards. The results of the SA indicate that there is a reasonable expectation of meeting all the requirements of 40 CFR 191. The conclusion of the SA is that the Area 5 RWMS with the TRU waste buried in T04C is in compliance with all requirements in DOE M 435.1-1 and the DAS. Compliance with the DAS</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2014-title36-vol1/pdf/CFR-2014-title36-vol1-sec13-1118.pdf','CFR2014'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2014-title36-vol1/pdf/CFR-2014-title36-vol1-sec13-1118.pdf"><span>36 CFR 13.1118 - Solid waste <span class="hlt">disposal</span>.</span></a></p> <p><a target="_blank" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2014&page.go=Go">Code of Federal Regulations, 2014 CFR</a></p> <p></p> <p>2014-07-01</p> <p>... Section 13.1118 Parks, Forests, and Public Property NATIONAL PARK SERVICE, DEPARTMENT OF THE INTERIOR NATIONAL PARK SYSTEM UNITS IN ALASKA Special Regulations-Glacier Bay National Park and Preserve General Provisions § 13.1118 Solid waste <span class="hlt">disposal</span>. (a) A solid waste <span class="hlt">disposal</span> <span class="hlt">site</span> may accept non-National Park...</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2014-title36-vol1/pdf/CFR-2014-title36-vol1-sec13-1008.pdf','CFR2014'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2014-title36-vol1/pdf/CFR-2014-title36-vol1-sec13-1008.pdf"><span>36 CFR 13.1008 - Solid waste <span class="hlt">disposal</span>.</span></a></p> <p><a target="_blank" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2014&page.go=Go">Code of Federal Regulations, 2014 CFR</a></p> <p></p> <p>2014-07-01</p> <p>... Section 13.1008 Parks, Forests, and Public Property NATIONAL PARK SERVICE, DEPARTMENT OF THE INTERIOR NATIONAL PARK SYSTEM UNITS IN ALASKA Special Regulations-Gates of the Arctic National Park and Preserve § 13.1008 Solid waste <span class="hlt">disposal</span>. (a) A solid waste <span class="hlt">disposal</span> <span class="hlt">site</span> may accept non-National Park Service...</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2013-title36-vol1/pdf/CFR-2013-title36-vol1-sec13-1118.pdf','CFR2013'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2013-title36-vol1/pdf/CFR-2013-title36-vol1-sec13-1118.pdf"><span>36 CFR 13.1118 - Solid waste <span class="hlt">disposal</span>.</span></a></p> <p><a target="_blank" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2013&page.go=Go">Code of Federal Regulations, 2013 CFR</a></p> <p></p> <p>2013-07-01</p> <p>... Section 13.1118 Parks, Forests, and Public Property NATIONAL PARK SERVICE, DEPARTMENT OF THE INTERIOR NATIONAL PARK SYSTEM UNITS IN ALASKA Special Regulations-Glacier Bay National Park and Preserve General Provisions § 13.1118 Solid waste <span class="hlt">disposal</span>. (a) A solid waste <span class="hlt">disposal</span> <span class="hlt">site</span> may accept non-National Park...</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29560515','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29560515"><span>Characterisation and mapping of adult plant stripe rust resistance in wheat accession <span class="hlt">Aus</span>27284.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Nsabiyera, Vallence; Bariana, Harbans S; Qureshi, Naeela; Wong, Debbie; Hayden, Matthew J; Bansal, Urmil K</p> <p>2018-07-01</p> <p>A new adult plant stripe rust resistance gene, Yr80, was identified in a common wheat landrace <span class="hlt">Aus</span>27284. Linked markers were developed and validated for their utility in marker-assisted selection. Stripe rust, caused by Puccinia striiformis f. sp. tritici (Pst), is among the most important constraints to global wheat production. The identification and characterisation of new sources of host plant resistance enrich the gene pool and underpin deployment of resistance gene pyramids in new cultivars. <span class="hlt">Aus</span>27284 exhibited resistance at the adult plant stage against predominant Pst pathotypes and was crossed with a susceptible genotype Avocet S. A recombinant inbred line (RIL) population comprising 121 lines was developed and tested in the field at three locations in 2016 and two in 2017 crop seasons. Monogenic segregation for adult plant stripe rust response was observed among the <span class="hlt">Aus</span>27284/Avocet S RIL population and the underlying locus was temporarily designated YrAW11. Bulked-segregant analysis using the Infinium iSelect 90K SNP wheat array placed YrAW11 in chromosome <span class="hlt">3</span>B. Kompetitive allele specific PCR (KASP) primers were designed for the linked SNPs and YrAW11 was flanked by KASP_65624 and KASP_53292 (<span class="hlt">3</span> cM) proximally and KASP_53113 (4.9 cM) distally. A partial linkage map of the genomic region carrying YrAW11 comprised nine KASP and two SSR markers. The physical position of KASP markers in the pseudomolecule of chromosome <span class="hlt">3</span>B placed YrAW11 in the long arm and the location of markers gwm108 and gwm376 in the deletion bin <span class="hlt">3</span>BL2-0.22 supported this conclusion. As no other stripe rust resistance locus has been reported in chromosome <span class="hlt">3</span>BL, YrAW11 was formally designated Yr80. Marker KASP_ 53113 was polymorphic among 94% of 81 Australian wheat cultivars used for validation.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.epa.gov/ocean-dumping/ocean-disposal-dredged-material','PESTICIDES'); return false;" href="https://www.epa.gov/ocean-dumping/ocean-disposal-dredged-material"><span>Ocean <span class="hlt">Disposal</span> of Dredged Material</span></a></p> <p><a target="_blank" href="http://www.epa.gov/pesticides/search.htm">EPA Pesticide Factsheets</a></p> <p></p> <p></p> <p>Permits and authorizations for the ocean dumping of dredged material is issued by <span class="hlt">U</span>.S. Army Corps of Engineers. Information is provided about where to <span class="hlt">dispose</span> dredged material and the process for obtaining an ocean dumping permit for dredged material.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012AGUFM.H34C..06M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012AGUFM.H34C..06M"><span>Tritium Plume Dynamics in the Shallow Unsaturated Zone Adjacent to an Arid Waste <span class="hlt">Disposal</span> Facility</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Maples, S.; Andraski, B. J.; Stonestrom, D. A.; Cooper, C. A.; Michel, R. L.; Pohll, G. M.</p> <p>2012-12-01</p> <p>Previous studies at the <span class="hlt">U</span>.S. Geological Survey's Amargosa Desert Research <span class="hlt">Site</span> (ADRS) in southern Nevada have documented two plumes of tritiated water-vapor (<span class="hlt">3</span>HHOg) adjacent to a closed, commercial low-level radioactive waste <span class="hlt">disposal</span> facility. Wastes were <span class="hlt">disposed</span> on-<span class="hlt">site</span> from 1962-92. Tritium has moved long distances (> 400 m) through a shallow (1-2-m depth) dry gravelly layer—orders of magnitude further than anticipated by standard transport models. Geostatistical methods, spatial moment analyses and tritium flux calculations were applied to assess shallow plume dynamics. A grid-based plant-water sampling method was utilized to infer detailed, field-scale <span class="hlt">3</span>HHOg concentrations at 5-yr intervals during 2001-11. Results indicate that gravel-layer <span class="hlt">3</span>HHOg mass diminished faster than would be expected from radioactive decay (~70% in 10 yr). Both plumes exhibited center-of-mass stability, suggesting that bulk-plume movement is minimal during the period of study. Nonetheless, evidence of localized lateral advancement along some margins, combined with increases in the spatial covariance of concentration distribution, indicates intra-plume mass redistribution is ongoing. Previous studies have recognized that vertical movement of tritiated water from sub-root-zone gravel into the root-zone contributes to atmospheric release via evapotranspiration. Estimates of lateral and vertical tritium fluxes during the study period indicate (1) vertical tritiated water fluxes were dominated by diffusive-vapor fluxes (> 90%), and (2) vertical diffusive-vapor fluxes were roughly an order of magnitude greater than lateral diffusive-vapor fluxes. This behavior highlights the importance of the atmosphere as a tritium sink. Estimates of cumulative vertical diffusive-vapor flux and radioactive decay with time were comparable to observed declines in total shallow plume mass with time. This suggests observed changes in plume mass may (1) be attributed, in considerable part, to these removal</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2011-title15-vol3/pdf/CFR-2011-title15-vol3-part922-subpartM-appD.pdf','CFR2011'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2011-title15-vol3/pdf/CFR-2011-title15-vol3-part922-subpartM-appD.pdf"><span>15 CFR Appendix D to Subpart M of... - Dredged Material <span class="hlt">Disposal</span> <span class="hlt">Sites</span> Adjacent to the Monterey Bay National Marine Sanctuary</span></a></p> <p><a target="_blank" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2011&page.go=Go">Code of Federal Regulations, 2011 CFR</a></p> <p></p> <p>2011-01-01</p> <p>... Adjacent to the Monterey Bay National Marine Sanctuary D Appendix D to Subpart M of Part 922 Commerce and... SANCTUARY PROGRAM REGULATIONS Monterey Bay National Marine Sanctuary Pt. 922, Subpt. M, App. D Appendix D to Subpart M of Part 922—Dredged Material <span class="hlt">Disposal</span> <span class="hlt">Sites</span> Adjacent to the Monterey Bay National Marine...</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/biblio/10139557-remedial-action-plan-site-design-stabilization-inactive-uranium-mill-tailings-site-durango-colorado-attachment-water-resources-protection-strategy-revised-final-report','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/10139557-remedial-action-plan-site-design-stabilization-inactive-uranium-mill-tailings-site-durango-colorado-attachment-water-resources-protection-strategy-revised-final-report"><span>Remedial Action Plan and <span class="hlt">site</span> design for stabilization of the inactive uranium mill tailings <span class="hlt">site</span> at Durango, Colorado: Attachment 4, Water resources protection strategy. Revised final report</span></a></p> <p><a target="_blank" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Not Available</p> <p>1991-12-01</p> <p>To achieve compliance with the proposed US Environmental Protection Agency (EPA) groundwater protection standards (Subpart A of 40 CFR 192), the US Department of Energy (DOE) proposes to meet background concentrations or the EPA maximum concentration limits (MCLS) for hazardous constituents in groundwater in the uppermost aquifer (Cliff House/Menefee aquifer) at the point of compliance (POC) at the Uranium Mill Tailings Remedial Action (UMTRA) Project <span class="hlt">disposal</span> <span class="hlt">site</span> in Bodo Canyon near Durango, Colorado (DOE, 1989). Details of hydrologic <span class="hlt">site</span> characterization at the <span class="hlt">disposal</span> <span class="hlt">site</span> are provided in Attachment <span class="hlt">3</span>, Groundwater Hydrology Report. The principal features of the water resources protectionmore » strategy for the Bodo Canyon <span class="hlt">disposal</span> <span class="hlt">site</span> are presented in this document.« less</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li class="active"><span>22</span></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_22 --> <div id="page_23" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li class="active"><span>23</span></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="441"> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1418132','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1418132"><span>Preliminary <span class="hlt">disposal</span> limits, plume interaction factors, and final <span class="hlt">disposal</span> limits</span></a></p> <p><a target="_blank" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Flach, G.</p> <p></p> <p>In the 2008 E-Area Performance Assessment (PA), each final <span class="hlt">disposal</span> limit was constructed as the product of a preliminary <span class="hlt">disposal</span> limit and a plume interaction factor. The following mathematical development demonstrates that performance objectives are generally expected to be satisfied with high confidence under practical PA scenarios using this method. However, radionuclides that experience significant decay between a <span class="hlt">disposal</span> unit and the 100-meter boundary, such as H-<span class="hlt">3</span> and Sr-90, can challenge performance objectives, depending on the <span class="hlt">disposed</span>-of waste composition, facility geometry, and the significance of the plume interaction factor. Pros and cons of analyzing single <span class="hlt">disposal</span> units or multiple disposalmore » units as a group in the preliminary <span class="hlt">disposal</span> limits analysis are also identified.« less</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/biblio/218653-superfund-record-decision-amendment-epa-region-carter-industrials-site-detroit-mi-february','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/218653-superfund-record-decision-amendment-epa-region-carter-industrials-site-detroit-mi-february"><span>Superfund record of decision amendment (EPA Region 5): Carter Industrials <span class="hlt">Site</span>, Detroit, MI, February 28, 1995</span></a></p> <p><a target="_blank" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>NONE</p> <p></p> <p>This decision document changes a decision made on September 18, 1991 in which the United States Environmental Protection Agency (<span class="hlt">U</span>.S. EPA) chose low-temperature thermal desorption as the remedy for PCB contamination at the Carter Industrials <span class="hlt">Site</span> in Detroit, Michigan. <span class="hlt">U</span>.S. EPA is hereby amending the 1991 Record of Decision (PB92-964126) to select off-<span class="hlt">site</span> <span class="hlt">disposal</span> as the remedy. This response action addresses remediation of PCB-contaminated soil, debris, and buildings at the Carter Industrials <span class="hlt">Site</span>. The principal threats posed by conditions at the <span class="hlt">Site</span> include inhalation of volatilized PCBs and fugitive dust, and dermal contact with contaminated materials. The amended remedy willmore » eliminate these threats.« less</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012AGUFM.H23E1417P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012AGUFM.H23E1417P"><span>Evaluation method of leachate leaking from carcass burial <span class="hlt">site</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Park, S.; Kim, H.; Lee, M.; Lee, K.; Kim, S.; Kim, M.; Kim, H.; Kim, T.; Han, J.</p> <p>2012-12-01</p> <p>More than 150,000 cattle carcasses and <span class="hlt">3</span>,140,000 pig carcasses were buried all over the nation in Korea because of 2010 outbreak of foot and mouth disease (FMD). Various <span class="hlt">disposal</span> Techniques such as incineration, composting, rendering, and burial have been developed and applied to effectively <span class="hlt">dispose</span> an animal carcass. Since a large number of carcasses should be <span class="hlt">disposed</span> for a short-term period to prevent the spread of FMD virus, most of the carcasses were <span class="hlt">disposed</span> by mass burial technique. However, a long-term management and monitoring of leachate discharges are required because mass burial can cause soil and groundwater contamination. In this study, we used key parameters related to major components of leachate such as NH4-N, NO<span class="hlt">3</span>-N, Cl-, E.coli and electrical conductivity as potential leachate contamination indicator to determine leachate leakage from the <span class="hlt">site</span>. We monitored 300 monitoring wells in both burial <span class="hlt">site</span> and the monitoring well 5m away from burial <span class="hlt">sites</span> to identify leachate leaking from burial <span class="hlt">site</span>. Average concentration of NH<span class="hlt">3</span>-N in 300 monitoring wells, both burial <span class="hlt">site</span> and the well 5m away from burial <span class="hlt">sites</span>, were 2,593 mg/L and 733 mg/L, respectively. 24% out of 300 monitoring wells showed higher than 10 mg/L NH4-N, 100 mg/L Cl- and than 800 μS/cm electrical conductivity. From this study, we set up 4 steps guidelines to evaluate leachate leakage like; step 1 : High potential step of leachate leakage, step 2 : Middle potential step of leachate leakage, step <span class="hlt">3</span> : Low potential step of leachate leakage, step 4 : No leachate leakage. On the basis of this result, we moved 34 leachate leaking burial <span class="hlt">sites</span> to other places safely and it is necessary to monitor continuously the monitoring wells for environmental protection and human health.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JNuM..489..187Y','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JNuM..489..187Y"><span>Kinetic study of the thermal decomposition of uranium metaphosphate, <span class="hlt">U</span>(PO<span class="hlt">3</span>)4, into uranium pyrophosphate, UP2O7</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Yang, Hee-Chul; Kim, Hyung-Ju; Lee, Si-Young; Yang, In-Hwan; Chung, Dong-Yong</p> <p>2017-06-01</p> <p>The thermochemical properties of uranium compounds have attracted much interest in relation to thermochemical treatments and the safe <span class="hlt">disposal</span> of radioactive waste bearing uranium compounds. The characteristics of the thermal decomposition of uranium metaphosphate, <span class="hlt">U</span>(PO<span class="hlt">3</span>)4, into uranium pyrophosphate, UP2O7, have been studied from the view point of reaction kinetics and acting mechanisms. A mixture of <span class="hlt">U</span>(PO<span class="hlt">3</span>)4 and UP2O7 was prepared from the pyrolysis residue of uranium-bearing spent TBP. A kinetic analysis of the reaction of <span class="hlt">U</span>(PO<span class="hlt">3</span>)4 into UP2O7 was conducted using an isoconversional method and a master plot method on the basis of data from a non-isothermal thermogravimetric analysis. The thermal decomposition of <span class="hlt">U</span>(PO<span class="hlt">3</span>)4 into UP2O7 followed a single-step reaction with an activation energy of 175.29 ± 1.58 kJ mol-1. The most probable kinetic model was determined as a type of nucleation and nuclei-growth models, the Avrami-Erofeev model (A<span class="hlt">3</span>), which describes that there are certain restrictions on nuclei growth of UP2O7 during the solid-state decomposition of <span class="hlt">U</span>(PO<span class="hlt">3</span>)4.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=84939','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=84939"><span>Nuclear Retention Elements of <span class="hlt">U</span><span class="hlt">3</span> Small Nucleolar RNA</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Speckmann, Wayne; Narayanan, Aarthi; Terns, Rebecca; Terns, Michael P.</p> <p>1999-01-01</p> <p>The processing and methylation of precursor rRNA is mediated by the box C/D small nucleolar RNAs (snoRNAs). These snoRNAs differ from most cellular RNAs in that they are not exported to the cytoplasm. Instead, these RNAs are actively retained in the nucleus where they assemble with proteins into mature small nucleolar ribonucleoprotein particles and are targeted to their intranuclear <span class="hlt">site</span> of action, the nucleolus. In this study, we have identified the cis-acting sequences responsible for the nuclear retention of <span class="hlt">U</span><span class="hlt">3</span> box C/D snoRNA by analyzing the nucleocytoplasmic distributions of an extensive panel of <span class="hlt">U</span><span class="hlt">3</span> RNA variants after injection of the RNAs into Xenopus oocyte nuclei. Our data indicate the importance of two conserved sequence motifs in retaining <span class="hlt">U</span><span class="hlt">3</span> RNA in the nucleus. The first motif is comprised of the conserved box C′ and box D sequences that characterize the box C/D family. The second motif contains conserved box sequences B and C. Either motif is sufficient for nuclear retention, but disruption of both motifs leads to mislocalization of the RNAs to the cytoplasm. Variant RNAs that are not retained also lack 5′ cap hypermethylation and fail to associate with fibrillarin. Furthermore, our results indicate that nuclear retention of <span class="hlt">U</span><span class="hlt">3</span> RNA does not simply reflect its nucleolar localization. A fragment of <span class="hlt">U</span><span class="hlt">3</span> containing the box B/C motif is not localized to nucleoli but retained in coiled bodies. Thus, nuclear retention and nucleolar localization are distinct processes with differing sequence requirements. PMID:10567566</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25306301','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25306301"><span>A sediment mesocosm experiment to determine if the remediation of a shoreline waste <span class="hlt">disposal</span> <span class="hlt">site</span> in Antarctica caused further environmental impacts.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Stark, Jonathan S; Johnstone, Glenn J; Riddle, Martin J</p> <p>2014-12-15</p> <p>A shoreline waste <span class="hlt">disposal</span> <span class="hlt">site</span> at Casey Station, Antarctica was removed because it was causing impacts in the adjacent marine environment (Brown Bay). We conducted a field experiment to determine whether the excavation created further impacts. Trays of clean, defaunated sediment were deployed at two locations within Brown Bay and two control locations, two years prior to remediation. Trays were sampled one year before, 1month before, 1month after and two years after the excavation. An increase in metals was found at Brown Bay two years after the remediation. However there was little evidence of impacts on sediment assemblages. Communities at each location were different, but differences from before to after the remediation were comparable, indicating there were unlikely to have been further impacts. We demonstrate that abandoned waste <span class="hlt">disposal</span> <span class="hlt">sites</span> in hydrologically active places in Antarctica can be removed without creating greater adverse impacts to ecosystems downstream. Crown Copyright © 2014. Published by Elsevier Ltd. All rights reserved.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011AGUFMGP11A1006Y','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011AGUFMGP11A1006Y"><span>Paleomagnetic and rock magnetic study of the IODP <span class="hlt">Site</span> <span class="hlt">U</span>1332 sediments - relative paleointensity during Eocene and Oligocene</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Yamamoto, Y.; Acton, G.; Channell, J. E.; Palmer, E. C.; Richter, C.; Yamazaki, T.</p> <p>2011-12-01</p> <p>Integrated Ocean Drilling Program (IODP) Expeditions 320 and 321 recovered sediment cores from equatorial Pacific. Cores were taken at eight <span class="hlt">Sites</span> (<span class="hlt">U</span>1331-<span class="hlt">U</span>1338) and onboard measurements showed that those from <span class="hlt">Sites</span> <span class="hlt">U</span>1331, <span class="hlt">U</span>1332, <span class="hlt">U</span>1333 and <span class="hlt">U</span>1334 covered Eocene and/or Oligocene (Expedition 320/321 Scientists, 2010). Although many efforts have been made to reveal relative geomagnetic paleointensity variations in geologic time, those prior to ca. <span class="hlt">3</span> m.y. have been not yet reported except a few studies (e.g. ca. 23-34 Ma, Tauxe and Hartl, 1997). This study concentrates on paleomagnetic and rock magnetic measurements on the <span class="hlt">Site</span> <span class="hlt">U</span>1332 sediment core. The measurements include stepwise alternating field demagnetization of the natural remanent magnetization (NRM), the anhysteretic remanent magnetization (ARM) and the isothermal remanent magnetization (IRM). The magnetostrartigraphy constructed from the NRM data show that the sedimentary section extends from the early Oligocene to middle Eocene (23.030-41.358 Ma). Intensity variation of ARM and IRM is within about a factor of six throughout the core. Magnetic grain size proxy, ARM/IRM, differ between Eocene (about 0.11) and Oligocene (about 0.14). These suggest that relative paleointensity (RPI) estimation is basically possible if we divide the core into Eocene and Oligocene periods. RPI estimates have been done by using ARM and IRM as normalizers for NRM. RPIs by ARM and IRM generally show consistent variations. However, several experimental results imply that RPI by IRM may be more preferable. We will compare the <span class="hlt">U</span>1332 RPI record with the <span class="hlt">U</span>1331, <span class="hlt">U</span>1333 and <span class="hlt">U</span>1334 RPI records.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://pubs.usgs.gov/wri/1987/4009/report.pdf#page=93','USGSPUBS'); return false;" href="https://pubs.usgs.gov/wri/1987/4009/report.pdf#page=93"><span>Beatty, Nevada: A section in <span class="hlt">U</span>.S. Geological Survey research in radioactive waste <span class="hlt">disposal</span> - Fiscal years 1983, 1984, and 1985 (WRI 87-4009)</span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Fischer, Jeffrey M.; Nichols, William D.; Dinwiddie, G.A.; Trask, N.J.</p> <p>1986-01-01</p> <p>A commercial low-level radioactive-waste <span class="hlt">disposal</span> <span class="hlt">site</span> has been operating near Beatty, Nevada, about 150 km northwest of Las Vegas, since 1962. The 32-ha <span class="hlt">site</span> is situated in a desolate region of the Amargosa River Valley, sometimes referred to as the Amargosa Desert. Average annual precipitation is only about 114 mm. The <span class="hlt">site</span> is underlain by 175 m of unconsolidated, generally coarse-grained, alluvial-fan and flood-plain deposits. The water table is at a depth of 90 m.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/21521689','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/21521689"><span>The yeast plasma membrane ATP binding cassette (ABC) transporter <span class="hlt">Aus</span>1: purification, characterization, and the effect of lipids on its activity.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Marek, Magdalena; Milles, Sigrid; Schreiber, Gabriele; Daleke, David L; Dittmar, Gunnar; Herrmann, Andreas; Müller, Peter; Pomorski, Thomas Günther</p> <p>2011-06-17</p> <p>The ATP binding cassette (ABC) transporter <span class="hlt">Aus</span>1 is expressed under anaerobic growth conditions at the plasma membrane of the yeast Saccharomyces cerevisiae and is required for sterol uptake. These observations suggest that <span class="hlt">Aus</span>1 promotes the translocation of sterols across membranes, but the precise transport mechanism has yet to be identified. In this study, an extraction and purification procedure was developed to characterize the <span class="hlt">Aus</span>1 transporter. The detergent-solubilized protein was able to bind and hydrolyze ATP. Mutagenesis of the conserved lysine to methionine in the Walker A motif abolished ATP hydrolysis. Likewise, ATP hydrolysis was inhibited by classical inhibitors of ABC transporters. Upon reconstitution into proteoliposomes, the ATPase activity of <span class="hlt">Aus</span>1 was specifically stimulated by phosphatidylserine (PS) in a stereoselective manner. We also found that <span class="hlt">Aus</span>1-dependent sterol uptake, but not <span class="hlt">Aus</span>1 expression and trafficking to the plasma membrane, was affected by changes in cellular PS levels. These results suggest a direct interaction between <span class="hlt">Aus</span>1 and PS that is critical for the activity of the transporter.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.epa.gov/ocean-dumping/reports-public-scoping-meetings-supplemental-environmental-impact-statement','PESTICIDES'); return false;" href="https://www.epa.gov/ocean-dumping/reports-public-scoping-meetings-supplemental-environmental-impact-statement"><span>Reports of Public Scoping Meetings for the Supplemental Environmental Impact Statement for the Designation of Dredged Material <span class="hlt">Disposal</span> <span class="hlt">Sites</span> in Eastern Long Island Sound</span></a></p> <p><a target="_blank" href="http://www.epa.gov/pesticides/search.htm">EPA Pesticide Factsheets</a></p> <p></p> <p></p> <p>These reports provide summaries of the scoping meetings as part of the Supplemental Environmental Impact Statement (SEIS) process for the designation of dredged material <span class="hlt">disposal</span> <span class="hlt">sites</span> in Eastern Long Island Sound.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.epa.gov/ocean-dumping/southeast-regional-implementation-manual-requirements-and-procedures-evaluation-ocean','PESTICIDES'); return false;" href="https://www.epa.gov/ocean-dumping/southeast-regional-implementation-manual-requirements-and-procedures-evaluation-ocean"><span>Southeast Regional Implementation Manual for Requirements and Procedures for Evaluation of the Ocean <span class="hlt">Disposal</span> of Dredged Material in Southeastern <span class="hlt">U</span>.S. Atlantic and Gulf Coast Waters</span></a></p> <p><a target="_blank" href="http://www.epa.gov/pesticides/search.htm">EPA Pesticide Factsheets</a></p> <p></p> <p></p> <p>This Regional Implementation Manual was prepared by EPA Region 4 to provide guidance for applicants proposing open-water <span class="hlt">disposal</span> of dredged material in southeastern <span class="hlt">U</span>.S. coastal waters of the Atlantic Ocean and the Gulf of Mexico.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25002369','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25002369"><span>Using MCDA and GIS for hazardous waste landfill <span class="hlt">siting</span> considering land scarcity for waste <span class="hlt">disposal</span>.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>De Feo, Giovanni; De Gisi, Sabino</p> <p>2014-11-01</p> <p>The main aim of this study was to develop a procedure that minimizes the wasting of space for the <span class="hlt">siting</span> of hazardous waste landfills as part of a solid waste management system. We wanted to tackle the shortage of land for waste <span class="hlt">disposal</span> that is a serious and growing problem in most large urban regions. The procedure combines a multi-criteria decision analysis (MCDA) approach with a geographical information system (GIS). The GIS was utilised to obtain an initial screening in order to eliminate unsuitable areas, whereas the MCDA was developed to select the most suitable <span class="hlt">sites</span>. The novelty of the proposed <span class="hlt">siting</span> procedure is the introduction of a new screening phase before the macro-<span class="hlt">siting</span> step aimed at producing a "land use map of potentially suitable areas" for the <span class="hlt">siting</span> of solid waste facilities which simultaneously takes into consideration all plant types. The issue of obtaining <span class="hlt">sites</span> evaluations of a specific facility was coupled with the issue of not wasting land appropriate to facilitate other types of waste management options. In the developed case study, the use of an innovative criteria weighting tool (the "Priority Scale") in combination with the Analytic Hierarchy Process was useful to easier define the priorities of the evaluation criteria in comparison with other classic methods such as the Paired Comparison Technique in combination with the Simple Additive Weighting method. Copyright © 2014 Elsevier Ltd. All rights reserved.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2012-title32-vol4/pdf/CFR-2012-title32-vol4-sec644-322.pdf','CFR2012'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2012-title32-vol4/pdf/CFR-2012-title32-vol4-sec644-322.pdf"><span>32 CFR 644.322 - Disposition of proceeds from <span class="hlt">disposal</span>.</span></a></p> <p><a target="_blank" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2012&page.go=Go">Code of Federal Regulations, 2012 CFR</a></p> <p></p> <p>2012-07-01</p> <p>... covered into the land and water conservation fund in the Treasury of the United States (16 <span class="hlt">U</span>.S.C. 460L-5(a... water conservation fund as provided in paragraph (a) of this section. ... PROPERTY REAL ESTATE HANDBOOK <span class="hlt">Disposal</span> § 644.322 Disposition of proceeds from <span class="hlt">disposal</span>. (a) Land and Water...</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2011-title32-vol4/pdf/CFR-2011-title32-vol4-sec644-322.pdf','CFR2011'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2011-title32-vol4/pdf/CFR-2011-title32-vol4-sec644-322.pdf"><span>32 CFR 644.322 - Disposition of proceeds from <span class="hlt">disposal</span>.</span></a></p> <p><a target="_blank" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2011&page.go=Go">Code of Federal Regulations, 2011 CFR</a></p> <p></p> <p>2011-07-01</p> <p>... covered into the land and water conservation fund in the Treasury of the United States (16 <span class="hlt">U</span>.S.C. 460L-5(a... water conservation fund as provided in paragraph (a) of this section. ... PROPERTY REAL ESTATE HANDBOOK <span class="hlt">Disposal</span> § 644.322 Disposition of proceeds from <span class="hlt">disposal</span>. (a) Land and Water...</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2014-title32-vol4/pdf/CFR-2014-title32-vol4-sec644-322.pdf','CFR2014'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2014-title32-vol4/pdf/CFR-2014-title32-vol4-sec644-322.pdf"><span>32 CFR 644.322 - Disposition of proceeds from <span class="hlt">disposal</span>.</span></a></p> <p><a target="_blank" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2014&page.go=Go">Code of Federal Regulations, 2014 CFR</a></p> <p></p> <p>2014-07-01</p> <p>... covered into the land and water conservation fund in the Treasury of the United States (16 <span class="hlt">U</span>.S.C. 460L-5(a... water conservation fund as provided in paragraph (a) of this section. ... PROPERTY REAL ESTATE HANDBOOK <span class="hlt">Disposal</span> § 644.322 Disposition of proceeds from <span class="hlt">disposal</span>. (a) Land and Water...</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2013-title32-vol4/pdf/CFR-2013-title32-vol4-sec644-322.pdf','CFR2013'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2013-title32-vol4/pdf/CFR-2013-title32-vol4-sec644-322.pdf"><span>32 CFR 644.322 - Disposition of proceeds from <span class="hlt">disposal</span>.</span></a></p> <p><a target="_blank" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2013&page.go=Go">Code of Federal Regulations, 2013 CFR</a></p> <p></p> <p>2013-07-01</p> <p>... covered into the land and water conservation fund in the Treasury of the United States (16 <span class="hlt">U</span>.S.C. 460L-5(a... water conservation fund as provided in paragraph (a) of this section. ... PROPERTY REAL ESTATE HANDBOOK <span class="hlt">Disposal</span> § 644.322 Disposition of proceeds from <span class="hlt">disposal</span>. (a) Land and Water...</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2010-title32-vol4/pdf/CFR-2010-title32-vol4-sec644-322.pdf','CFR'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2010-title32-vol4/pdf/CFR-2010-title32-vol4-sec644-322.pdf"><span>32 CFR 644.322 - Disposition of proceeds from <span class="hlt">disposal</span>.</span></a></p> <p><a target="_blank" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2010&page.go=Go">Code of Federal Regulations, 2010 CFR</a></p> <p></p> <p>2010-07-01</p> <p>... covered into the land and water conservation fund in the Treasury of the United States (16 <span class="hlt">U</span>.S.C. 460L-5(a... water conservation fund as provided in paragraph (a) of this section. ... PROPERTY REAL ESTATE HANDBOOK <span class="hlt">Disposal</span> § 644.322 Disposition of proceeds from <span class="hlt">disposal</span>. (a) Land and Water...</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/15792153','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/15792153"><span>[Cause-specific mortality in an area of Campania with numerous waste <span class="hlt">disposal</span> <span class="hlt">sites</span>].</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Altavista, Pierluigi; Belli, Stefano; Bianchi, Fabrizio; Binazzi, Alessandra; Comba, Pietro; Del Giudice, Raffaele; Fazzo, Lucia; Felli, Angelo; Mastrantonio, Marina; Menegozzo, Massimo; Musmeci, Loredana; Pizzuti, Renato; Savarese, Anna; Trinca, Stefania; Uccelli, Raffaella</p> <p>2004-01-01</p> <p>To investigate cause-specific mortality in an area of Campania region, in the surroundings of Naples, characterized by many toxic waste dumping grounds <span class="hlt">sites</span> and by widespread burning of urban wastes. The study area was characterized by examining the spatial distribution of waste <span class="hlt">disposal</span> <span class="hlt">sites</span> and toxic waste dumping grounds, using a geographic information system (GIS). Mortality (1986-2000) was studied in the three municipalities of Giugliano in Campania, Qualiano and Villaricca, encompassing a population of about 150,000 inhabitants. Mortality rates of the population resident in the Campania region were used in order to generate expected figures. Causes of death of a priori interest where those previously associated to residence in the neighbourhood of (toxic) waste <span class="hlt">sites</span>, including lung cancer, bladder cancer, leukemia and liver cancer. Overall 39 waste <span class="hlt">sites</span>, 27 of which characterized by the likely presence of toxic wastes, were identified in the area of interest. A good agreement was found between two independent surveys of the Regional Environmental Protection Agency and of the environmentalist association Legambiente. Cancer mortality was significantly increased, with special reference to malignant neoplasm of lung, pleura, larynx, bladder, liver and brain. Circulatory diseases were also significantly in excess and diabetes showed some increases. Mortality statistics provide preliminary evidence of the disease load in the area. Mapping waste dumping grounds provides information for defining high risk areas. Improvements in exposure assessment together with the use of a range of health data (hospital discharge cards, malformation notifications, observations of general practitioners) will contribute to second generation studies aimed at inferring causal relationships.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFM.T41D2965K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFM.T41D2965K"><span>Biogenic opal production changes in the Gulf of Alaska (IODP Expedition 341 <span class="hlt">Site</span> <span class="hlt">U</span>1417) during the Pliocene to Miocene</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Khim, B. K.; Kim, S.; Asahi, H.</p> <p>2016-12-01</p> <p>IODP Expedition 341 <span class="hlt">Site</span> <span class="hlt">U</span>1417 (56o57.59'N, 147o6.59'W, 4200 m) is located in the distal Surveyor Fan in the Gulf of Alaska, Northeast Pacific. In this study, we documented biogenic opal content and its mass accumulation rate using a total of 445 sediments from Hole <span class="hlt">U</span>1417D (below core 43X, 275 CSF-A m) and from Hole <span class="hlt">U</span>1417E (below core 14R, 465 CSF-A m) which were assigned to Pliocene-Miocene epoch on the basis of shipboard age model. Biogenic opal content and MAR were generally low (<10% and 0.5 g/cm2/kyr, respectively) throughout the core. A significant offset of biogenic opal contents between <span class="hlt">Site</span> <span class="hlt">U</span>1417 and <span class="hlt">Site</span> 887 (54o21.9'N, 148o26.8'W, 3633 m) is observed; much lower at <span class="hlt">Site</span> <span class="hlt">U</span>1417. However, biogenic opal content was distinctively high (20 to 40%) at 23 Ma, 15 Ma, 12 Ma, and 8 Ma, which correspond to the lithologic unit changes. These intervals are also characterized by low NGR, MS, and linear sedimentation rate (LSR), indicating the sediment deposition under warm climate/less glacier influence. Thus, the intervals seem to correspond to climatic optimums during the Miocene. Based on terrigenous MAR at <span class="hlt">Site</span> 887, terrigenous materials supplied by glacial denudation increased greatly since the Northern Hemisphere Glaciation (NHG; <span class="hlt">3</span>.5-2.5 Ma). However, <span class="hlt">Site</span> <span class="hlt">U</span>1417 shows that high MS representing the terrestrial input occurred far earlier since 8 Ma. It may imply that the formation of glacier in the Gulf of Alaska began earlier or that terrestrial material input was enhanced by sea-ice or turbidite. Intermittent peaks of biogenic opal content and MAR after 8 Ma coincided with the occurrence of cold water/littoral and neritic diatoms and deep cold water radiolarian species, which is likely related to gradual glaciation. Biogenic opal productivity was high during the early Pliocene (5-<span class="hlt">3</span>.5 Ma), and then it decreased during the NHG.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/biblio/22221369-environmental-protection-agency-safety-standards-disposal-spent-nuclear-fuel-potential-path-forward-response-report-blue-ribbon-commission-america-nuclear-future','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22221369-environmental-protection-agency-safety-standards-disposal-spent-nuclear-fuel-potential-path-forward-response-report-blue-ribbon-commission-america-nuclear-future"><span>The Environmental Protection Agency's Safety Standards for <span class="hlt">Disposal</span> of Spent Nuclear Fuel: Potential Path Forward in Response to the Report of the Blue Ribbon Commission on America's Nuclear Future - 13388</span></a></p> <p><a target="_blank" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Forinash, Betsy; Schultheisz, Daniel; Peake, Tom</p> <p>2013-07-01</p> <p>Following the decision to withdraw the Yucca Mountain license application, the Department of Energy created a Blue Ribbon Commission (BRC) on America's Nuclear Future, tasked with recommending a national strategy to manage the back end of the nuclear fuel cycle. The BRC issued its final report in January 2012, with recommendations covering transportation, storage and <span class="hlt">disposal</span> of spent nuclear fuel (SNF); potential reprocessing; and supporting institutional measures. The BRC recommendations on <span class="hlt">disposal</span> of SNF and high-level waste (HLW) are relevant to the <span class="hlt">U</span>.S. Environmental Protection Agency (EPA), which shares regulatory responsibility with the Nuclear Regulatory Commission (NRC): EPA issues 'generallymore » applicable' performance standards for <span class="hlt">disposal</span> repositories, which are then implemented in licensing. For <span class="hlt">disposal</span>, the BRC endorses developing one or more geological repositories, with <span class="hlt">siting</span> based on an approach that is adaptive, staged and consent-based. The BRC recommends that EPA and NRC work cooperatively to issue generic <span class="hlt">disposal</span> standards-applying equally to all <span class="hlt">sites</span>-early in any <span class="hlt">siting</span> process. EPA previously issued generic <span class="hlt">disposal</span> standards that apply to all <span class="hlt">sites</span> other than Yucca Mountain. However, the BRC concluded that the existing regulations should be revisited and revised. The BRC proposes a number of general principles to guide the development of future regulations. EPA continues to review the BRC report and to assess the implications for Agency action, including potential regulatory issues and considerations if EPA develops new or revised generic <span class="hlt">disposal</span> standards. This review also involves preparatory activities to define potential process and public engagement approaches. (authors)« less</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li class="active"><span>23</span></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_23 --> <div id="page_24" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li class="active"><span>24</span></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="461"> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA184859','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA184859"><span>Framework for Comparative Risk Analysis of Dredged Material <span class="hlt">Disposal</span> Options.</span></a></p> <p><a target="_blank" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>1986-10-01</p> <p>TC3898-62 DACU67-85-D-8829 UNCLASSIFIED F/G 24/<span class="hlt">3</span> NL 125 ൖ ൘ ilil;1III -I <span class="hlt">u</span>PSDDAR UTReports m ~ Puget Sound Dredged DipslAnalysis e~ od Washington State...I rB T T for Puget Sound Dredged <span class="hlt">Disposal</span> Analysis c/o <span class="hlt">U</span>.S. Army Corps of Engineers Seattle District 1 A" October, 1986 l-jq .__ .. _ Tetra Tech, Inc...priority pollutants C-2 E-1 Hypothetical example of total or bulk contaminant concentrations in four Puget Sound sediments E-1 E-2 ’Hypothetical example</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1224518','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1224518"><span>Evaluating Transport and Attenuation of Inorganic Contaminants in the Vadose Zone for Aqueous Waste <span class="hlt">Disposal</span> <span class="hlt">Sites</span></span></a></p> <p><a target="_blank" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Truex, Michael J.; Oostrom, Martinus; Tartakovsky, Guzel D.</p> <p></p> <p>An approach was developed for evaluating vadose zone transport and attenuation of aqueous wastes containing inorganic (non-volatile) contaminants that were <span class="hlt">disposed</span> of at the land surface (i.e., directly to the ground in cribs, trenches, tile fields, etc.) and their effect on the underlying groundwater. The approach provides a structured method for estimating transport of contaminants through the vadose zone and the resulting temporal profile of groundwater contaminant concentrations. The intent of the approach is also to provide a means for presenting and explaining the results of the transport analysis in the context of the <span class="hlt">site</span>-specific waste <span class="hlt">disposal</span> conditions and sitemore » properties, including heterogeneities and other complexities. The document includes considerations related to identifying appropriate monitoring to verify the estimated contaminant transport and associated predictions of groundwater contaminant concentrations. While primarily intended for evaluating contaminant transport under natural attenuation conditions, the approach can also be applied to identify types of, and targets for, mitigation approaches in the vadose zone that would reduce the temporal profile of contaminant concentrations in groundwater, if needed.« less</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012LPI....43.1981T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012LPI....43.1981T"><span>^2^<span class="hlt">3</span>^8<span class="hlt">U</span>/^2^<span class="hlt">3</span>^5<span class="hlt">U</span> Ratios of Anagrams: Angrites and Granites</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Tissot, F. L. H.; Dauphas, N.</p> <p>2012-03-01</p> <p>We report ^2^<span class="hlt">3</span>^8<span class="hlt">U</span>/^2^<span class="hlt">3</span>^5<span class="hlt">U</span> ratios of five angrites and give the corresponding Pb-Pb ages of D'Orbigny and Angra Dos Reis. The <span class="hlt">U</span>-isotopic composition of terrestrial granites (I, S, and A types) is also assessed to determine the influence of the protolith.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/biblio/943926-performance-assessment-methodology-preliminary-results-low-level-radioactive-waste-disposal-taiwan','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/943926-performance-assessment-methodology-preliminary-results-low-level-radioactive-waste-disposal-taiwan"><span>Performance assessment methodology and preliminary results for low-level radioactive waste <span class="hlt">disposal</span> in Taiwan.</span></a></p> <p><a target="_blank" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Arnold, Bill Walter; Chang, Fu-lin; Mattie, Patrick D.</p> <p>2006-02-01</p> <p>Sandia National Laboratories (SNL) and Taiwan's Institute for Nuclear Energy Research (INER) have teamed together to evaluate several candidate <span class="hlt">sites</span> for Low-Level Radioactive Waste (LLW) <span class="hlt">disposal</span> in Taiwan. Taiwan currently has three nuclear power plants, with another under construction. Taiwan also has a research reactor, as well as medical and industrial wastes to contend with. Eventually the reactors will be decomissioned. Operational and decommissioning wastes will need to be <span class="hlt">disposed</span> in a licensed <span class="hlt">disposal</span> facility starting in 2014. Taiwan has adopted regulations similar to the US Nuclear Regulatory Commission's (NRC's) low-level radioactive waste rules (10 CFR 61) to govern themore » <span class="hlt">disposal</span> of LLW. Taiwan has proposed several potential <span class="hlt">sites</span> for the final <span class="hlt">disposal</span> of LLW that is now in temporary storage on Lanyu Island and on-<span class="hlt">site</span> at operating nuclear power plants, and for waste generated in the future through 2045. The planned final <span class="hlt">disposal</span> facility will have a capacity of approximately 966,000 55-gallon drums. Taiwan is in the process of evaluating the best candidate <span class="hlt">site</span> to pursue for licensing. Among these proposed <span class="hlt">sites</span> there are basically two <span class="hlt">disposal</span> concepts: shallow land burial and cavern <span class="hlt">disposal</span>. A representative potential <span class="hlt">site</span> for shallow land burial is located on a small island in the Taiwan Strait with basalt bedrock and interbedded sedimentary rocks. An engineered cover system would be constructed to limit infiltration for shallow land burial. A representative potential <span class="hlt">site</span> for cavern <span class="hlt">disposal</span> is located along the southeastern coast of Taiwan in a tunnel system that would be about 500 to 800 m below the surface. Bedrock at this <span class="hlt">site</span> consists of argillite and meta-sedimentary rocks. Performance assessment analyses will be performed to evaluate future performance of the facility and the potential dose/risk to exposed populations. Preliminary performance assessment analyses will be used in the <span class="hlt">site</span>-selection process and to aid in design of</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://files.eric.ed.gov/fulltext/ED462913.pdf','ERIC'); return false;" href="http://files.eric.ed.gov/fulltext/ED462913.pdf"><span>Designing Metaphorically Appropriate Graphics for a PT<span class="hlt">3</span> World Wide Web <span class="hlt">Site</span>.</span></a></p> <p><a target="_blank" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Henry, Anne; Crawford, Caroline M.</p> <p></p> <p>This paper describes the design and development of a World Wide Web <span class="hlt">site</span> associated with a Preparing Tomorrow's Teachers to Use Technology (PT<span class="hlt">3</span>) grant that was awarded to the University of Houston at Clear Lake (Texas) by the <span class="hlt">U</span>.S. Department of Education. The Web <span class="hlt">site</span> that created the electronic community (e-community) was to meet the needs and…</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1395750','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1395750"><span>Advances in Geologic <span class="hlt">Disposal</span> System Modeling and Shale Reference Cases</span></a></p> <p><a target="_blank" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Mariner, Paul E.; Stein, Emily R.; Frederick, Jennifer M.</p> <p></p> <p>The Spent Fuel and Waste Science and Technology (SFWST) Campaign of the <span class="hlt">U</span>.S. Department of Energy (DOE) Office of Nuclear Energy (NE), Office of Fuel Cycle Technology (OFCT) is conducting research and development (R&D) on geologic <span class="hlt">disposal</span> of spent nuclear fuel (SNF) and high level nuclear waste (HLW). Two high priorities for SFWST <span class="hlt">disposal</span> R&D are design concept development and <span class="hlt">disposal</span> system modeling (DOE 2011, Table 6). These priorities are directly addressed in the SFWST Generic <span class="hlt">Disposal</span> Systems Analysis (GDSA) work package, which is charged with developing a <span class="hlt">disposal</span> system modeling and analysis capability for evaluating <span class="hlt">disposal</span> system performance formore » nuclear waste in geologic media (e.g., salt, granite, shale, and deep borehole <span class="hlt">disposal</span>).« less</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1056477','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1056477"><span>Closure Report for Corrective Action Unit 562: Waste Systems, Nevada National Security <span class="hlt">Site</span>, Nevada</span></a></p> <p><a target="_blank" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>NSTec Environmental Restoration</p> <p>2012-08-15</p> <p>This Closure Report (CR) presents information supporting closure of Corrective Action Unit (CAU) 562, Waste Systems, and provides documentation supporting the completed corrective actions and confirmation that closure objectives for CAU 562 were met. This CR complies with the requirements of the Federal Facility Agreement and Consent Order (FFACO) that was agreed to by the State of Nevada; the <span class="hlt">U</span>.S. Department of Energy (DOE), Environmental Management; the <span class="hlt">U</span>.S. Department of Defense; and DOE, Legacy Management (FFACO, 1996 as amended). CAU 562 consists of the following 13 Corrective Action <span class="hlt">Sites</span> (CASs), located in Areas 2, 23, and 25 of the Nevadamore » National Security <span class="hlt">Site</span>: · CAS 02-26-11, Lead Shot · CAS 02-44-02, Paint Spills and French Drain · CAS 02-59-01, Septic System · CAS 02-60-01, Concrete Drain · CAS 02-60-02, French Drain · CAS 02-60-03, Steam Cleaning Drain · CAS 02-60-04, French Drain · CAS 02-60-05, French Drain · CAS 02-60-06, French Drain · CAS 02-60-07, French Drain · CAS 23-60-01, Mud Trap Drain and Outfall · CAS 23-99-06, Grease Trap · CAS 25-60-04, Building 3123 Outfalls Closure activities began in October 2011 and were completed in April 2012. Activities were conducted according to the Corrective Action Plan for CAU 562 (<span class="hlt">U</span>.S. Department of Energy, National Nuclear Security Administration Nevada <span class="hlt">Site</span> Office [NNSA/NSO], 2011). The corrective actions included No Further Action and Clean Closure. Closure activities generated sanitary waste and hazardous waste. Some wastes exceeded land <span class="hlt">disposal</span> limits and required offsite treatment prior to <span class="hlt">disposal</span>. Other wastes met land <span class="hlt">disposal</span> restrictions and were <span class="hlt">disposed</span> in appropriate onsite or offsite landfills. NNSA/NSO requests the following: · A Notice of Completion from the Nevada Division of Environmental Protection to NNSA/NSO for closure of CAU 562 · The transfer of CAU 562 from Appendix III to Appendix IV, Closed Corrective Action Units, of the FFACO« less</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/22789313','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/22789313"><span>Environmental impact assessment of radionuclides and trace elements at the Kurday <span class="hlt">U</span> mining <span class="hlt">site</span>, Kazakhstan.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Salbu, B; Burkitbaev, M; Strømman, G; Shishkov, I; Kayukov, P; Uralbekov, B; Rosseland, B O</p> <p>2013-09-01</p> <p>The Kurday uranium mining <span class="hlt">site</span> in Kazakhstan operated from 1954 to 1965 as part of the USSR nuclear weapon programme. To assess the environmental impact of radionuclides and trace elements associated with the Kurday mining <span class="hlt">site</span>, field expeditions were performed in 2006. In addition to in situ gamma and (220)Rn dose rate measurements, sampling included at <span class="hlt">site</span> fractionation of water as well as sampling of water, fish, sediment, soils and vegetation. The concentrations of <span class="hlt">U</span> and associated trace metals were enriched in the Pit Lake and in the artesian water (<span class="hlt">U</span> exceeding the WHO guideline value for drinking water), and decreased downstream from the mining area. Uranium, As, Mo and Ni were predominantly present as mobile low molecular mass species in waters, while a significant proportion of Cr, Mn and Fe were associated with colloids and particles. Due to oxidation of divalent iron in the artesian ground water upon contact with air, Fe served as scavenger for other elements, and peak concentrations of <span class="hlt">U</span>-, Ra-isotopes, As and Mn were seen. Most radionuclides and trace elements were contained in minerals in soils and sediments, and good correlations were obtained between <span class="hlt">U</span> and As, Cd, Mo and (226)Ra. Based on sequential extractions, a significant fraction of <span class="hlt">U</span>, Pb and Cd could be considered mobile. Radioactive particles carrying significant amount of trace metals may represent a hazard during strong wind events. The transfer of radionuclides and metals from soils or sediments to water was in general low. The Kd levels varied with the element in question, ranging from 0.5 to <span class="hlt">3</span> × 10(2) L/kg d.w. for (238)<span class="hlt">U</span> being relatively mobile, 10(<span class="hlt">3</span>) for (226)Ra, As, Cd, Ni, to 10(4) L/kg d.w. for Cu, Cr and Pb being rather inert The transfer of radionuclides and metals from soils to vegetation (TF) was low, while higher if the transfer to vegetation, especially underwater mosses, occurred via water (e.g., BCF 37 L/kg w.w. for (238)<span class="hlt">U</span> and <span class="hlt">3</span> × 10(<span class="hlt">3</span>) L/kg w.w. for (226)Ra). The transfer</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://pubs.usgs.gov/wri/1986/4153/report.pdf','USGSPUBS'); return false;" href="https://pubs.usgs.gov/wri/1986/4153/report.pdf"><span>Hydrogeology, ground-water flow, and tritium movement at low-level radioactive-waste <span class="hlt">disposal</span> <span class="hlt">site</span> near Sheffield, Illinois</span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Garklavs, George; Healy, R.W.</p> <p>1986-01-01</p> <p>Groundwater flow and tritium movement are described at and near a low-level radioactive waste <span class="hlt">disposal</span> <span class="hlt">site</span> near Sheffield, Illinois. Flow in the shallow aquifer is confined to three basins that ultimately drain into a stripmine lake. Most of the flow from the <span class="hlt">site</span> is through a buried, pebbly sandfilled channel. Remaining flow is toward alluvium of an existing stream. Conceptual flow models for the two largest basins are used to improve definition of flow velocity and direction. Flow velocities range from about 25 to 2,500 ft/yr. Tritium was found in all three basins. The most extensive migration of tritium is coincident with buried channel. Tritium concentrations ranged from detection level to more than 300 nanocuries/L. (USGS)</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/biblio/220975-multiple-criteria-approach-site-selection-radioactive-waste-disposal-facility-republic-croatia','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/220975-multiple-criteria-approach-site-selection-radioactive-waste-disposal-facility-republic-croatia"><span>Multiple criteria approach to <span class="hlt">site</span> selection of radioactive waste <span class="hlt">disposal</span> facility in the Republic of Croatia</span></a></p> <p><a target="_blank" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Schaller, A.; Skanata, D.</p> <p>1995-12-31</p> <p><span class="hlt">Site</span> selection approach to radioactive waste <span class="hlt">disposal</span> facility, which is under way in Croatia, is presented in the paper. This approach is based on application of certain relevant terrestrial and technical criteria in the <span class="hlt">site</span> selection process. Basic documentation used for this purpose are regional planning documents prepared by the Regional Planning Institute of Croatia. The basic result of research described in the paper is the proposal of several potential areas which are suitable for <span class="hlt">siting</span> a radioactive waste repository. All relevant conclusions are based on both data groups -- generic and on-field experienced (measured). Out of a dozen potentialmore » areas, four have been chosen as representative by the authors. The presented comparative analysis was made by means of the VISA II computer code, developed by the V. Belton and SPV Software Products. The code was donated to the APO by the IAEA. The main objective of the paper is to initiate and facilitate further discussions on possible ways of evaluation and comparison of potential areas for sitting of radioactive waste repository in this country, as well as to provide additional contributions to the current <span class="hlt">site</span> selection process in the Republic of Croatia.« less</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20060044077&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DTitle%26N%3D0%26No%3D20%26Ntt%3DG','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20060044077&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DTitle%26N%3D0%26No%3D20%26Ntt%3DG"><span>Integral cross sections for the direct excitation of the A <span class="hlt">3</span> (sigma) <span class="hlt">u</span> +, B <span class="hlt">3</span> (pi) g, W <span class="hlt">3</span> (delta) <span class="hlt">u</span>, B' <span class="hlt">3</span> (sigma) <span class="hlt">u</span> -, a' 1 (sigma) <span class="hlt">u</span> -, a 1 (pi) g, w 1 (delta) <span class="hlt">u</span>, and C <span class="hlt">3</span> (pi) <span class="hlt">u</span> electronic states in</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Johnson, P. V.; Malone, C. P.; Kanik, I.</p> <p>2005-01-01</p> <p>Integral cross sections for electron impact excitation out of the ground state (X 1(sigma)g +) to the A <span class="hlt">3</span>(sigma)<span class="hlt">u</span> +, B <span class="hlt">3</span>(pi)g, W <span class="hlt">3</span>(delta)<span class="hlt">u</span>, B' <span class="hlt">3</span>(sigma)<span class="hlt">u</span> -, a' 1(sigma)<span class="hlt">u</span> -, a 1(pi)g, w 1(delta)<span class="hlt">u</span>, and states in N2 are reported at incident energies ranging between 10 and 100 eV. These data have been derived by integrating differential cross sections previously reported by this group. New differential cross section measurements for the a 1(pi)g state at 200 eV are also presented to extend the range of the reported integral cross sections for this state, which is responsible for the emissions of the Lyman-Birge-Hopfield band system (a 1(pi)g (rightwards arrow) X 1(sigma)g +). The present results are compared and critically evaluated against existing cross sec In general, the present cross sections are smaller than previous results at low impact energies from threshold through the excitation function peak regions. These lower cross sections have potentially significant implications on our understanding of UV emissions in the atmospheres of Earth and Titan.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AtmEn.150..434F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AtmEn.150..434F"><span>Spatial and temporal patterns of nitrogen isotopic composition of ammonia at <span class="hlt">U</span>.S. ammonia monitoring network <span class="hlt">sites</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Felix, J. David; Elliott, Emily M.; Gay, David A.</p> <p>2017-02-01</p> <p>Ammonia (NH<span class="hlt">3</span>) emissions and ammonium (NH4+) deposition can have harmful effects on the environment and human health but remain generally unregulated in the <span class="hlt">U</span>.S. PM2.5 regulations require that an area not exceed an annual average PM2.5 value of 12 μg/m<span class="hlt">3</span> (averaged over three years), and since NH<span class="hlt">3</span> is a significant precursor to PM2.5 formation these are the closest indirect regulations of NH<span class="hlt">3</span> emissions in the <span class="hlt">U</span>.S. If the <span class="hlt">U</span>.S. elects to adopt NH<span class="hlt">3</span> emission regulations similar to those applied by the European Union, it will be imperative to first adequately quantify NH<span class="hlt">3</span> emission sources and transport, and also understand the factors causing varying emissions from each source. To further investigate NH<span class="hlt">3</span> emission sources and transport at a regional scale, NH<span class="hlt">3</span> was sampled monthly at a subset of nine Ammonia Monitoring Network (AMoN) <span class="hlt">sites</span> and analyzed for nitrogen isotopic composition of NH<span class="hlt">3</span> (δ15N-NH<span class="hlt">3</span>). The observed δ15N-NH<span class="hlt">3</span> values ranged from -42.4 to +7.1‰ with an average of -15.1 ± 9.7. The observed δ15N-NH<span class="hlt">3</span> values reported here provide insight into the spatial and temporal trends of the NH<span class="hlt">3</span> sources that contribute to ambient [NH<span class="hlt">3</span>] in the <span class="hlt">U</span>.S. In regions where agriculture is prevalent (i.e., <span class="hlt">U</span>.S. Midwest), low and seasonally variable δ15N-NH<span class="hlt">3</span> values are observed and are associated with varying agricultural sources. In comparison, rural nonagricultural areas have higher and more seasonally consistent δ15N-NH<span class="hlt">3</span> values associated with a constant "natural" (e.g. soil, vegetation, bi-directional flux, ocean) NH<span class="hlt">3</span> source. With regards to temporal variation, the peak in <span class="hlt">U</span>.S. spring agricultural activity (e.g. fertilizer application, livestock waste volatilization) is accompanied by a decrease in δ15N-NH<span class="hlt">3</span> values at a majority of the <span class="hlt">sites</span>, whereas higher δ15N-NH<span class="hlt">3</span> values in other seasons could be due to shifting sources (e.g. coal-fired power plants) and/or fractionation scenarios. Fractionation processes that may mask NH<span class="hlt">3</span> source signatures are discussed and require</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1030664','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1030664"><span>Result Summary for the Area 5 Radioactive Waste Management <span class="hlt">Site</span> Performance Assessment Model Version 4.110</span></a></p> <p><a target="_blank" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>NSTec Environmental Management</p> <p>2011-07-20</p> <p>Results for Version 4.110 of the Area 5 Radioactive Waste Management <span class="hlt">Site</span> (RWMS) performance assessment (PA) model are summarized. Version 4.110 includes the fiscal year (FY) 2010 inventory estimate, including a future inventory estimate. Version 4.110 was implemented in GoldSim 10.11(SP4). The following changes have been implemented since the last baseline model, Version 4.105: (1) Updated the inventory and <span class="hlt">disposal</span> unit configurations with data through the end of FY 2010. (1) Implemented Federal Guidance Report 13 Supplemental CD dose conversion factors (<span class="hlt">U</span>.S. Environmental Protection Agency, 1999). Version 4.110 PA results comply with air pathway and all-pathways annual total effective dosemore » (TED) performance objectives (Tables 2 and <span class="hlt">3</span>, Figures 1 and 2). Air pathways results decrease moderately for all scenarios. The time of the maximum for the air pathway open rangeland scenario shifts from 1,000 to 100 years (y). All-pathways annual TED increases for all scenarios except the resident scenario. The maximum member of public all-pathways dose occurs at 1,000 y for the resident farmer scenario. The resident farmer dose was predominantly due to technetium-99 (Tc-99) (82 percent) and lead-210 (Pb-210) (13 percent). Pb-210 present at 1,000 y is produced predominantly by radioactive decay of uranium-234 (<span class="hlt">U</span>-234) present at the time of <span class="hlt">disposal</span>. All results for the postdrilling and intruder-agriculture scenarios comply with the performance objectives (Tables 4 and 5, Figures <span class="hlt">3</span> and 4). The postdrilling intruder results are similar to Version 4.105 results. The intruder-agriculture results are similar to Version 4.105, except for the Pit 6 Radium <span class="hlt">Disposal</span> Unit (RaDU). The intruder-agriculture result for the Shallow Land Burial (SLB) <span class="hlt">disposal</span> units is a significant fraction of the performance objective and exceeds the performance objective at the 95th percentile. The intruder-agriculture dose is due predominantly to Tc-99 (75 percent) and <span class="hlt">U</span>-238 (9.5 percent). The</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/6974339','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/6974339"><span>Soils, surficial geology, and geomorphology of the Bear Creek Valley Low-Level Waste <span class="hlt">Disposal</span> Development and Demonstration Program <span class="hlt">site</span></span></a></p> <p><a target="_blank" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Lietzke, D.A.; Lee, S.Y.; Lambert, R.E.</p> <p>1988-04-01</p> <p>An intensive soil survey was conducted on the proposed Low-Level Waste <span class="hlt">Disposal</span> Development and Demonstration Program <span class="hlt">site</span> (LLWDDD) in Bear Creek Valley. Soils on the <span class="hlt">site</span> were related to the underlying residuum and to the surficial colluvium and alluvium. Within any particular geologic formation, soils were subdivided based mostly on the degree of weathering, as reflected by saprolite weathering and morphologic features of the soils. Degree of weathering was related both to slope shape and gradient and to the joint-fracture system. Erosion classes were also used to make further subdivisions of any particular soil. Deep pits were dug in eachmore » of the major Conasauga Group formations (Pumpkin Valley, Rogersville, Maryville, and Nolichucky) for soil and saprolite characterization. Because of the widespread presence of alluvium and colluvium, which are potential sources of fill and final cover material, pits and trenches were dug to characterize the properties of these soils and to try to understand the past geomorphic history of the <span class="hlt">site</span>. The results of the soil survey investigation indicated that the deeply weathered Pumpkin Valley residuum has good potential for the construction of tumuli or other types of belowground or aboveground burial of prepackaged compacted waste. 11 refs., 30 figs., <span class="hlt">3</span> tabs.« less</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/biblio/4781250-contribution-kinetic-study-metatectic-reaction-u+u-sub-si-sub-yields-sub-si-contribution-al-estudio-cinetico-de-la-reaccion-metatectica-u+u-sub-si-sub-yields-sub-si','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/4781250-contribution-kinetic-study-metatectic-reaction-u+u-sub-si-sub-yields-sub-si-contribution-al-estudio-cinetico-de-la-reaccion-metatectica-u+u-sub-si-sub-yields-sub-si"><span>A Contribution to the Kinetic Study of the Metatectic Reaction <span class="hlt">U+U</span>$sub <span class="hlt">3</span>$Si$sub 2$$Yields$<span class="hlt">U</span>$sub <span class="hlt">3</span>$Si; CONTRIBUTION AL ESTUDIO CINETICO DE LA REACCION METATECTICA <span class="hlt">U+U</span>$sub <span class="hlt">3</span>$Si$sub 2$$Yields$<span class="hlt">U</span>$sub <span class="hlt">3</span>$Si</span></a></p> <p><a target="_blank" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Ruiperez, J.A.; Hernandez, J.A.E.</p> <p>1962-01-01</p> <p>An experimental study was made to decide upon the advantages and drawbacks of the different methods and reagents employed in the metallography of <span class="hlt">U</span>-Si alloys. It has been observed that all samples thermally treated to the epsilon-phase undergo a coalescence of the <span class="hlt">U</span>/sub <span class="hlt">3</span>/Si/sub 2/ particles. The coalescence decreases the surface available for reaction and consequently the reaction rate. The growth of the <span class="hlt">U</span>/sub <span class="hlt">3</span>/Si/sub 2/ phase particles was determined as a function of time and temperature. To obtain samples with nuclei sufficiently isolated so that the <span class="hlt">U</span>/sub <span class="hlt">3</span>/Si rings will not interfere their respective growth, the conditions that regulatemore » coalescence, Si content and thermal treatment, were determined. Data rel1tive to the growth of the <span class="hlt">U</span>/sub <span class="hlt">3</span>/ Si phase-rings were obtained. Curves relating growth, time, and temperature are presented. The parameters that define the diffusion regulated reaction can be deduced from these curves. (auth)« less</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1128696','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1128696"><span>230Th/<span class="hlt">U</span> ages Supporting Hanford <span class="hlt">Site</span>-Wide Probabilistic Seismic Hazard Analysis</span></a></p> <p><a target="_blank" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Paces, James B.</p> <p></p> <p>This product represents a USGS Administrative Report that discusses samples and methods used to conduct uranium-series isotope analyses and resulting ages and initial 234<span class="hlt">U</span>/238<span class="hlt">U</span> activity ratios of pedogenic cements developed in several different surfaces in the Hanford area middle to late Pleistocene. Samples were collected and dated to provide calibration of soil development in surface deposits that are being used in the Hanford <span class="hlt">Site</span>-Wide probabilistic seismic hazard analysis conducted by AMEC. The report includes description of sample locations and physical characteristics, sample preparation, chemical processing and mass spectrometry, analytical results, and calculated ages for individual <span class="hlt">sites</span>. Ages of innermost rindsmore » on a number of samples from five <span class="hlt">sites</span> in eastern Washington are consistent with a range of minimum depositional ages from 17 ka for cataclysmic flood deposits to greater than 500 ka for alluvium at several <span class="hlt">sites</span>.« less</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25150051','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25150051"><span>Analysis of multi-temporal landsat satellite images for monitoring land surface temperature of municipal solid waste <span class="hlt">disposal</span> <span class="hlt">sites</span>.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Yan, Wai Yeung; Mahendrarajah, Prathees; Shaker, Ahmed; Faisal, Kamil; Luong, Robin; Al-Ahmad, Mohamed</p> <p>2014-12-01</p> <p>This studypresents a remote sensing application of using time series Landsat satellite images for monitoring the Trail Road and Nepean municipal solid waste (MSW) <span class="hlt">disposal</span> <span class="hlt">sites</span> in Ottawa, Ontario, Canada. Currently, the Trail Road landfill is in operation; however, during the 1960s and 1980s, the city relied heavily on the Nepean landfill. More than 400 Landsat satellite images were acquired from the US Geological Survey (USGS) data archive between 1984 and 2011. Atmospheric correction was conducted on the Landsat images in order to derive the landfill <span class="hlt">sites</span>' land surface temperature (LST). The findings unveil that the average LST of the landfill was always higher than the immediate surrounding vegetation and air temperature by 4 to 10 °C and 5 to 11.5 °C, respectively. During the summer, higher differences of LST between the landfill and its immediate surrounding vegetation were apparent, while minima were mostly found in fall. Furthermore, there was no significant temperature difference between the Nepean landfill (closed) and the Trail Road landfill (active) from 1984 to 2007. Nevertheless, the LST of the Trail Road landfill was much higher than the Nepean by 15 to 20 °C after 2007. This is mainly due to the construction and dumping activities (which were found to be active within the past few years) associated with the expansion of the Trail Road landfill. The study demonstrates that the use of the Landsat data archive can provide additional and viable information for the aid of MSW <span class="hlt">disposal</span> <span class="hlt">site</span> monitoring.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25418066','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25418066"><span>Formation of stable uranium(VI) colloidal nanoparticles in conditions relevant to radioactive waste <span class="hlt">disposal</span>.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Bots, Pieter; Morris, Katherine; Hibberd, Rosemary; Law, Gareth T W; Mosselmans, J Frederick W; Brown, Andy P; Doutch, James; Smith, Andrew J; Shaw, Samuel</p> <p>2014-12-09</p> <p>The favored pathway for <span class="hlt">disposal</span> of higher activity radioactive wastes is via deep geological <span class="hlt">disposal</span>. Many geological <span class="hlt">disposal</span> facility designs include cement in their engineering design. Over the long term, interaction of groundwater with the cement and waste will form a plume of a hyperalkaline leachate (pH 10-13), and the behavior of radionuclides needs to be constrained under these extreme conditions to minimize the environmental hazard from the wastes. For uranium, a key component of many radioactive wastes, thermodynamic modeling predicts that, at high pH, <span class="hlt">U</span>(VI) solubility will be very low (nM or lower) and controlled by equilibrium with solid phase alkali and alkaline-earth uranates. However, the formation of <span class="hlt">U</span>(VI) colloids could potentially enhance the mobility of <span class="hlt">U</span>(VI) under these conditions, and characterizing the potential for formation and medium-term stability of <span class="hlt">U</span>(VI) colloids is important in underpinning our understanding of <span class="hlt">U</span> behavior in waste <span class="hlt">disposal</span>. Reflecting this, we applied conventional geochemical and microscopy techniques combined with synchrotron based in situ and ex situ X-ray techniques (small-angle X-ray scattering and X-ray adsorption spectroscopy (XAS)) to characterize colloidal <span class="hlt">U</span>(VI) nanoparticles in a synthetic cement leachate (pH > 13) containing 4.2-252 μM <span class="hlt">U</span>(VI). The results show that in cement leachates with 42 μM <span class="hlt">U</span>(VI), colloids formed within hours and remained stable for several years. The colloids consisted of 1.5-1.8 nm nanoparticles with a proportion forming 20-60 nm aggregates. Using XAS and electron microscopy, we were able to determine that the colloidal nanoparticles had a clarkeite (sodium-uranate)-type crystallographic structure. The presented results have clear and hitherto unrecognized implications for the mobility of <span class="hlt">U</span>(VI) in cementitious environments, in particular those associated with the geological <span class="hlt">disposal</span> of nuclear waste.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/432776','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/432776"><span>Evaluation of Dredged Material Proposed for Ocean <span class="hlt">Disposal</span> from Federal Projects in New York and New Jersey and the Military Ocean Terminal (MOTBY)</span></a></p> <p><a target="_blank" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Barrows, E.S.; Antrim, L.D.; Pinza, M.R.</p> <p>1996-08-01</p> <p>The <span class="hlt">U</span>.S. Army Corps of Engineers (USACE) is authorized by Section 103 of the Marine Protection, Research, and Sanctuaries Act of 1972 (MPRSA), Public Law 92-532, and by the Clean Water Act of 1972 (CWA) and Amendments of 1977 to permit, evaluate, and regulate the <span class="hlt">disposal</span> of dredged material in ocean waters to minimize adverse environmental effects. Compliance with the regulations of the MPRSA calls for physical and biological testing of sediment proposed for dredging prior to its <span class="hlt">disposal</span> in ocean waters. The testing required by the MPRSA criteria is conducted under a testing manual developed by the USACE andmore » the <span class="hlt">U</span>.S. Environmental Protection Agency (EPA), Evaluation of Dredged Material Proposed for Ocean <span class="hlt">Disposal</span> (Testing Manual), commonly referred to as the `Green Book.` Testing protocols in the Green Book include bulk sediment analysis, grain size analysis, elutriate testing, and biological testing. The biological testing includes bioassays for acute toxicity as well as analysis to determine bioaccumulation of certain contaminants by marine organisms. The objective of the USACE-NYD Federal Projects Program was to evaluate sediment proposed for dredging and unconfined ocean <span class="hlt">disposal</span> at the Mud Dump <span class="hlt">Site</span>. The results of analytical measurements and bioassays performed on the test sediments were compared with analyses of sediment from the Mud Dump Reference <span class="hlt">Site</span> to determine whether the test sediments were acutely toxic to marine organisms or resulted in statistically significantly greater bioaccumulation of contaminants in marine organisms, relative to the reference sediment. Testing for the federal project areas was performed according to the requirements.« less</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26636614','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26636614"><span>Structural Insights and the Surprisingly Low Mechanical Stability of the <span class="hlt">Au-S</span> Bond in the Gold-Specific Protein GolB.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Wei, Wei; Sun, Yang; Zhu, Mingli; Liu, Xiangzhi; Sun, Peiqing; Wang, Feng; Gui, Qiu; Meng, Wuyi; Cao, Yi; Zhao, Jing</p> <p>2015-12-16</p> <p>The coordination bond between gold and sulfur (<span class="hlt">Au-S</span>) has been widely studied and utilized in many fields. However, detailed investigations on the basic nature of this bond are still lacking. A gold-specific binding protein, GolB, was recently identified, providing a unique opportunity for the study of the <span class="hlt">Au-S</span> bond at the molecular level. We probed the mechanical strength of the gold-sulfur bond in GolB using single-molecule force spectroscopy. We measured the rupture force of the <span class="hlt">Au-S</span> bond to be 165 pN, much lower than <span class="hlt">Au-S</span> bonds measured on different gold surfaces (∼1000 pN). We further solved the structures of apo-GolB and Au(I)-GolB complex using X-ray crystallography. These structures showed that the average <span class="hlt">Au-S</span> bond length in GolB is much longer than the reported average value of <span class="hlt">Au-S</span> bonds. Our results highlight the dramatic influence of the unique biological environment on the stability and strength of metal coordination bonds in proteins.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li class="active"><span>24</span></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_24 --> <div id="page_25" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li class="active"><span>25</span></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="481"> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20170002730','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20170002730"><span>Tropospheric Ozonesonde Profiles at Long-term <span class="hlt">U</span>.S. Monitoring <span class="hlt">Sites</span>: 1. A Climatology Based on Self-Organizing Maps</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Stauffer, Ryan M.; Thompson, Anne M.; Young, George S.</p> <p>2016-01-01</p> <p>Sonde-based climatologies of tropospheric ozone (O<span class="hlt">3</span>) are vital for developing satellite retrieval algorithms and evaluating chemical transport model output. Typical O<span class="hlt">3</span> climatologies average measurements by latitude or region, and season. A recent analysis using self-organizing maps (SOM) to cluster ozonesondes from two tropical <span class="hlt">sites</span> found that clusters of O<span class="hlt">3</span> mixing ratio profiles are an excellent way to capture O<span class="hlt">3</span>variability and link meteorological influences to O<span class="hlt">3</span> profiles. Clusters correspond to distinct meteorological conditions, e.g., convection, subsidence, cloud cover, and transported pollution. Here the SOM technique is extended to four long-term <span class="hlt">U</span>.S. <span class="hlt">sites</span> (Boulder, CO; Huntsville, AL; Trinidad Head, CA; and Wallops Island, VA) with4530 total profiles. Sensitivity tests on k-means algorithm and SOM justify use of <span class="hlt">3</span> <span class="hlt">3</span> SOM (nine clusters). Ateach <span class="hlt">site</span>, SOM clusters together O<span class="hlt">3</span> profiles with similar tropopause height, 500 hPa height temperature, and amount of tropospheric and total column O<span class="hlt">3</span>. Cluster means are compared to monthly O<span class="hlt">3</span> climatologies.For all four <span class="hlt">sites</span>, near-tropopause O<span class="hlt">3</span> is double (over +100 parts per billion by volume; ppbv) the monthly climatological O<span class="hlt">3</span> mixing ratio in three clusters that contain 1316 of profiles, mostly in winter and spring.Large midtropospheric deviations from monthly means (6 ppbv, +710 ppbv O<span class="hlt">3</span> at 6 km) are found in two of the most populated clusters (combined 3639 of profiles). These two clusters contain distinctly polluted(summer) and clean O<span class="hlt">3</span> (fall-winter, high tropopause) profiles, respectively. As for tropical profiles previously analyzed with SOM, O<span class="hlt">3</span> averages are often poor representations of <span class="hlt">U</span>.S. O<span class="hlt">3</span> profile statistics.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29619288','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29619288"><span>Tropospheric ozonesonde profiles at long-term <span class="hlt">U</span>.S. monitoring <span class="hlt">sites</span>: 1. A climatology based on self-organizing maps.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Stauffer, Ryan M; Thompson, Anne M; Young, George S</p> <p>2016-02-16</p> <p>Sonde-based climatologies of tropospheric ozone (O <span class="hlt">3</span> ) are vital for developing satellite retrieval algorithms and evaluating chemical transport model output. Typical O <span class="hlt">3</span> climatologies average measurements by latitude or region, and season. Recent analysis using self-organizing maps (SOM) to cluster ozonesondes from two tropical <span class="hlt">sites</span> found clusters of O <span class="hlt">3</span> mixing ratio profiles are an excellent way to capture O <span class="hlt">3</span> variability and link meteorological influences to O <span class="hlt">3</span> profiles. Clusters correspond to distinct meteorological conditions, e.g. convection, subsidence, cloud cover, and transported pollution. Here, the SOM technique is extended to four long-term <span class="hlt">U</span>.S. <span class="hlt">sites</span> (Boulder, CO; Huntsville, AL; Trinidad Head, CA; Wallops Island, VA) with 4530 total profiles. Sensitivity tests on k-means algorithm and SOM justify use of <span class="hlt">3</span>×<span class="hlt">3</span> SOM (nine clusters). At each <span class="hlt">site</span>, SOM clusters together O <span class="hlt">3</span> profiles with similar tropopause height, 500 hPa height/temperature, and amount of tropospheric and total column O <span class="hlt">3</span> . Cluster means are compared to monthly O <span class="hlt">3</span> climatologies. For all four <span class="hlt">sites</span>, near-tropopause O <span class="hlt">3</span> is double (over +100 parts per billion by volume; ppbv) the monthly climatological O <span class="hlt">3</span> mixing ratio in three clusters that contain 13 - 16% of profiles, mostly in winter and spring. Large mid-tropospheric deviations from monthly means (-6 ppbv, +7 - 10 ppbv O <span class="hlt">3</span> at 6 km) are found in two of the most populated clusters (combined 36 - 39% of profiles). These two clusters contain distinctly polluted (summer) and clean O <span class="hlt">3</span> (fall-winter, high tropopause) profiles, respectively. As for tropical profiles previously analyzed with SOM, O <span class="hlt">3</span> averages are often poor representations of <span class="hlt">U</span>.S. O <span class="hlt">3</span> profile statistics.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2002PhDT.......165S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2002PhDT.......165S"><span>On policies to regulate long-term risks from hazardous waste <span class="hlt">disposal</span> <span class="hlt">sites</span> under both intergenerational equity and intragenerational equity</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Shu, Zhongbin</p> <p></p> <p>In recent years, it has been recognized that there is a need for a general philosophic policy to guide the regulation of societal activities that involve long-term and very long-term risks. Theses societal activities not only include the <span class="hlt">disposal</span> of high-level radioactive wastes and global warming, but also include the <span class="hlt">disposal</span> of non-radioactive carcinogens that never decay, such as arsenic, nickel, etc. In the past, attention has been focused on nuclear wastes. However, there has been international recognition that large quantities of non-radioactive wastes are being <span class="hlt">disposed</span> of with little consideration of their long-term risks. The objectives of this dissertation are to present the significant long-term risks posed by non-radioactive carcinogens through case studies; develop the conceptual decision framework for setting the long-term risk policy; and illustrate that certain factors, such as discount rate, can significantly influence the results of long-term risk analysis. Therefore, the proposed decision-making framework can be used to systematically study the important policy questions on long-term risk regulations, and then subsequently help the decision-maker to make informed decisions. Regulatory disparities between high-level radioactive wastes and non-radioactive wastes are summarized. Long-term risk is rarely a consideration in the regulation of <span class="hlt">disposal</span> of non-radioactive hazardous chemicals; and when it is, the matter has been handled in a somewhat perfunctory manner. Case studies of long-term risks are conducted for five Superfund <span class="hlt">sites</span> that are contaminated with one or more non-radioactive carcinogens. Under the same assumptions used for the <span class="hlt">disposal</span> of high-level radioactive wastes, future subsistence farmers would be exposed to significant individual risks, in some cases with lifetime fatality risk equal to unity. The important policy questions on long-term risk regulation are identified, and the conceptual decision-making framework to regulate</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3857827','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3857827"><span>Application of <span class="hlt">U</span>/Th and 40Ar/39Ar Dating to Orgnac <span class="hlt">3</span>, a Late Acheulean and Early Middle Palaeolithic <span class="hlt">Site</span> in Ardèche, France</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Michel, Véronique; Shen, Guanjun; Shen, Chuan-Chou; Wu, Chung-Che; Vérati, Chrystèle; Gallet, Sylvain; Moncel, Marie-Hélène; Combier, Jean; Khatib, Samir; Manetti, Michel</p> <p>2013-01-01</p> <p>Refined radio-isotopic dating techniques have been applied to Orgnac <span class="hlt">3</span>, a Late Acheulean and Early Middle Palaeolithic <span class="hlt">site</span> in France. Evidence of Levallois core technology appeared in level 4b in the middle of the sequence, became predominant in the upper horizons, and was best represented in uppermost level 1, making the <span class="hlt">site</span> one of the oldest examples of Levallois technology. In our dating study, fourteen speleothem samples from levels 7, 6 and 5b, were <span class="hlt">U</span>/Th-dated. Four pure calcite samples from the speleothem PL1 (levels 5b, 6) yield ages between 265 ± 4 (PL1-<span class="hlt">3</span>) and 312 ± 15 (PL1-6) thousand years ago (ka). Three samples from the top of a second stalagmite, PL2, yield dates ranging from 288 ± 10 ka (PL2-1) to 298 ± 17 ka (PL2-<span class="hlt">3</span>). Three samples from the base of PL2 (level 7) yield much younger <span class="hlt">U</span>/Th dates between 267 and 283 ka. These dates show that the speleothems PL1 and PL2 are contemporaneous and formed during marine isotope stage (MIS) 9 and MIS 8. Volcanic minerals in level 2, the upper sequence, were dated by the 40Ar/39Ar method, giving a weighted mean of 302.9 ± 2.5 ka (2σ) and an inverse isochron age of 302.9 ± 5.9 ka (2σ). Both 40Ar/39Ar dating of volcanic sanidines and <span class="hlt">U</span>/Th dating of relatively pure and dense cave calcites are known to be well established. The first parallel application of the two geochronometers to Orgnac <span class="hlt">3</span> yields generally consistent results, which point to the reliability of the two methods. The difference between their age results is discussed. PMID:24349273</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/24349273','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/24349273"><span>Application of <span class="hlt">U</span>/Th and 40Ar/39Ar dating to Orgnac <span class="hlt">3</span>, a Late Acheulean and Early Middle Palaeolithic <span class="hlt">site</span> in Ardèche, France.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Michel, Véronique; Shen, Guanjun; Shen, Chuan-Chou; Wu, Chung-Che; Vérati, Chrystèle; Gallet, Sylvain; Moncel, Marie-Hélène; Combier, Jean; Khatib, Samir; Manetti, Michel</p> <p>2013-01-01</p> <p>Refined radio-isotopic dating techniques have been applied to Orgnac <span class="hlt">3</span>, a Late Acheulean and Early Middle Palaeolithic <span class="hlt">site</span> in France. Evidence of Levallois core technology appeared in level 4b in the middle of the sequence, became predominant in the upper horizons, and was best represented in uppermost level 1, making the <span class="hlt">site</span> one of the oldest examples of Levallois technology. In our dating study, fourteen speleothem samples from levels 7, 6 and 5b, were <span class="hlt">U</span>/Th-dated. Four pure calcite samples from the speleothem PL1 (levels 5b, 6) yield ages between 265 ± 4 (PL1-<span class="hlt">3</span>) and 312 ± 15 (PL1-6) thousand years ago (ka). Three samples from the top of a second stalagmite, PL2, yield dates ranging from 288 ± 10 ka (PL2-1) to 298 ± 17 ka (PL2-<span class="hlt">3</span>). Three samples from the base of PL2 (level 7) yield much younger <span class="hlt">U</span>/Th dates between 267 and 283 ka. These dates show that the speleothems PL1 and PL2 are contemporaneous and formed during marine isotope stage (MIS) 9 and MIS 8. Volcanic minerals in level 2, the upper sequence, were dated by the (40)Ar/(39)Ar method, giving a weighted mean of 302.9 ± 2.5 ka (2σ) and an inverse isochron age of 302.9 ± 5.9 ka (2σ). Both (40)Ar/(39)Ar dating of volcanic sanidines and <span class="hlt">U</span>/Th dating of relatively pure and dense cave calcites are known to be well established. The first parallel application of the two geochronometers to Orgnac <span class="hlt">3</span> yields generally consistent results, which point to the reliability of the two methods. The difference between their age results is discussed.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA549065','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA549065"><span>Excess Facilities: DOD Needs More Complete Information and a Strategy to Guide Its Future <span class="hlt">Disposal</span> Efforts</span></a></p> <p><a target="_blank" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>2011-09-01</p> <p><span class="hlt">Disposal</span> Efforts 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR (S) 5d. PROJECT NUMBER 5e. TASK NUMBER 5f. WORK UNIT NUMBER...8 40 <span class="hlt">U</span>.S.C. § 102(<span class="hlt">3</span>). 9 DOD has delegated authority to <span class="hlt">dispose</span> of properties located at military...the State Historic Preservation Officer, among others, to consider a method to best preserve the historic value of the property prior to authorizing</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018JNuM..504..215J','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018JNuM..504..215J"><span>Determination of interstitial oxygen atom position in <span class="hlt">U</span>2N<span class="hlt">3</span>+xOy by near edge structure study</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Jiang, A. K.; Zhao, Y. W.; Long, Z.; Hu, Y.; Wang, X. F.; Yang, R. L.; Bao, H. L.; Zeng, R. G.; Liu, K. Z.</p> <p>2018-06-01</p> <p>The determination of interstitial oxygen atom <span class="hlt">site</span> in <span class="hlt">U</span>2N<span class="hlt">3</span>+xOy film could facilitate the understanding of the oxidation mechanism of α-<span class="hlt">U</span>2N<span class="hlt">3</span> and the effect of <span class="hlt">U</span>2N<span class="hlt">3</span>+xOy on anti-oxidation. By comparing the similarities and variances between N K edge and O K edge electron energy loss spectra (EELS) for oxidized α-<span class="hlt">U</span>2N<span class="hlt">3</span> and UO2, the present work looks at the local structure of nitrogen and oxygen atoms in <span class="hlt">U</span>2N<span class="hlt">3</span>+xOy film, identifying the most possible position of interstitial O atom.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1407012-luminescence-excitation-spectra-doped-rby-cl-single-crystals','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1407012-luminescence-excitation-spectra-doped-rby-cl-single-crystals"><span>Luminescence and Excitation Spectra of <span class="hlt">U</span> <span class="hlt">3</span>+ doped RbY 2 Cl 7 Single Crystals</span></a></p> <p><a target="_blank" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>Karbowiak, M.; Murdoch, K.; Drożdżyński, J.; ...</p> <p>1996-08-01</p> <p>Uranium(<span class="hlt">3</span>+) doped single crystals of RbY 2 Cl 7 with a uranium concentration of 0.05% and 0.2% were grown by the Bridgman-Stockbarger method using Rb<span class="hlt">U</span> 2 Cl 7 as the doping substance. Polished plates of ca. 5 mm in diameter were used for measurements of luminescence and excitation spectra. And since the <span class="hlt">U</span> <span class="hlt">3</span>+ ions occupy two somewhat different <span class="hlt">site</span> symmetries, a splitting of all observed f-f bands was observed. Furthermore, the analysis of the spectra enabled definitively an assignment of 22 crystal field bands for both <span class="hlt">site</span> symmetries as well as the total crystal field splitting of the groundmore » level, equal to 473 cm -1 and 567 cm -1 for the first and second <span class="hlt">site</span> symmetry, respectively.« less</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3694450','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3694450"><span><span class="hlt">U</span>1snRNP-mediated suppression of polyadenylation in conjunction with the RNA structure controls poly (A) <span class="hlt">site</span> selection in foamy viruses</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p></p> <p>2013-01-01</p> <p>Background During reverse transcription, retroviruses duplicate the long terminal repeats (LTRs). These identical LTRs carry both promoter regions and functional polyadenylation <span class="hlt">sites</span>. To express full-length transcripts, retroviruses have to suppress polyadenylation in the 5′LTR and activate polyadenylation in the <span class="hlt">3</span>′LTR. Foamy viruses have a unique LTR structure with respect to the location of the major splice donor (MSD), which is located upstream of the polyadenylation signal. Results Here, we describe the mechanisms of foamy viruses regulating polyadenylation. We show that binding of the <span class="hlt">U</span>1 small nuclear ribonucleoprotein (<span class="hlt">U</span>1snRNP) to the MSD suppresses polyadenylation at the 5′LTR. In contrast, polyadenylation at the <span class="hlt">3</span>′LTR is achieved by adoption of a different RNA structure at the MSD region, which blocks <span class="hlt">U</span>1snRNP binding and furthers RNA cleavage and subsequent polyadenylation. Conclusion Recently, it was shown that <span class="hlt">U</span>1snRNP is able to suppress the usage of intronic cryptic polyadenylation <span class="hlt">sites</span> in the cellular genome. Foamy viruses take advantage of this surveillance mechanism to suppress premature polyadenylation at the 5’end of their RNA. At the <span class="hlt">3</span>’end, Foamy viruses use a secondary structure to presumably block access of <span class="hlt">U</span>1snRNP and thereby activate polyadenylation at the end of the genome. Our data reveal a contribution of <span class="hlt">U</span>1snRNP to cellular polyadenylation <span class="hlt">site</span> selection and to the regulation of gene expression. PMID:23718736</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4536768','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4536768"><span>The architecture of the spliceosomal <span class="hlt">U</span>4/<span class="hlt">U</span>6.<span class="hlt">U</span>5 tri-snRNP</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Nguyen, Thi Hoang Duong; Galej, Wojciech P.; Bai, Xiao-chen; Savva, Christos G.; Newman, Andrew J.; Scheres, Sjors H. W.; Nagai, Kiyoshi</p> <p>2015-01-01</p> <p><span class="hlt">U</span>4/<span class="hlt">U</span>6.<span class="hlt">U</span>5 tri-snRNP is a 1.5 MDa pre-assembled spliceosomal complex comprising <span class="hlt">U</span>5 snRNA, extensively base-paired <span class="hlt">U</span>4/<span class="hlt">U</span>6 snRNAs and >30 proteins, including the key components Prp8, Brr2 and Snu114. The tri-snRNP combines with a pre-mRNA substrate bound to <span class="hlt">U</span>1 and <span class="hlt">U</span>2 snRNPs and transforms into a catalytically active spliceosome following extensive compositional and conformational changes triggered by unwinding of the <span class="hlt">U</span>4/<span class="hlt">U</span>6 snRNAs. CryoEM single-particle reconstruction of yeast tri-snRNP at 5.9Å resolution reveals the essentially complete organization of its RNA and protein components. The single-stranded region of <span class="hlt">U</span>4 snRNA between its <span class="hlt">3</span>′-stem-loop and the <span class="hlt">U</span>4/<span class="hlt">U</span>6 snRNA stem I is loaded into the Brr2 helicase active <span class="hlt">site</span> ready for unwinding. Snu114 and the N-terminal domain of Prp8 position <span class="hlt">U</span>5 snRNA to insert its Loop I, which aligns the exons for splicing, into the Prp8 active <span class="hlt">site</span> cavity. The structure provides crucial insights into the activation process and the active <span class="hlt">site</span> of the spliceosome. PMID:26106855</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2010-title22-vol1/pdf/CFR-2010-title22-vol1-sec3-9.pdf','CFR'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2010-title22-vol1/pdf/CFR-2010-title22-vol1-sec3-9.pdf"><span>22 CFR <span class="hlt">3</span>.9 - <span class="hlt">Disposal</span> of gifts and decorations which become the property of the United States.</span></a></p> <p><a target="_blank" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2010&page.go=Go">Code of Federal Regulations, 2010 CFR</a></p> <p></p> <p>2010-04-01</p> <p>... 22 Foreign Relations 1 2010-04-01 2010-04-01 false <span class="hlt">Disposal</span> of gifts and decorations which become the property of the United States. <span class="hlt">3</span>.9 Section <span class="hlt">3</span>.9 Foreign Relations DEPARTMENT OF STATE GENERAL GIFTS AND DECORATIONS FROM FOREIGN GOVERNMENTS § <span class="hlt">3</span>.9 <span class="hlt">Disposal</span> of gifts and decorations which become the...</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4697970','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4697970"><span>Diagnostic Thyroidectomy May Be Preferable in Patients With Suspicious Ultrasonography Features After Cytopathology Diagnosis of <span class="hlt">AUS</span>/FLUS in the Bethesda System</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Lee, Yong Sang; Kim, Hyeung Kyoo; Chang, Hojin; Kim, Seok Mo; Kim, Bup-Woo; Chang, Hang-Seok; Park, Cheong Soo</p> <p>2015-01-01</p> <p>Abstract Atypia/follicular lesion of undetermined significance (<span class="hlt">AUS</span>/FLUS) is a new category in the Bethesda System for Reporting Thyroid Cytopathology (BSRTC) for which repeat fine-needle aspiration cytology (FNAC) is recommended. The aim of this study was to identify specific ultrasonography and clinical predictors of malignancy in a subset of thyroid nodules associated with cytology diagnoses of <span class="hlt">AUS</span>/FLUS. Between January 2011 and December 2102, 5440 patients underwent thyroid surgery at our institution. Of these, 213 patients were diagnosed <span class="hlt">AUS</span>/FLUS at the preoperative cytopathology diagnosis. The frequency of FNAC and ultrasonography images was compared between patients with cancerous and benign tumors based on their final pathology. Of the 213 patients, 158 (74.2%) were diagnosed with thyroid carcinoma in their final pathology reports. In univariate and multivariate analyses, the frequency of FNAC was not significantly correlated with the cancer diagnosis. Hypoechogenicity (odds ratio 2.521, P = 0.007) and microcalcification (odds ratio <span class="hlt">3</span>.247, P = 0.005) were statistically correlated with cancer risk. Although <span class="hlt">AUS</span>/FLUS in cytopathology is recommended for repeating FNAC in BSRTC, we proposed that thyroid nodules with ultrasonography findings that suggest the possibility of cancer should undergo thyroidectomy with diagnostic intent. PMID:26705204</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017heut.book..477S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017heut.book..477S"><span>Wie man Wert <span class="hlt">aus</span> Smart Data schöpft</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Schüller, Katharina; Fritsch, Stefan</p> <p></p> <p>Der vorliegende Beitrag diskutiert an einem konkreten Forschungsprojekt, wie <span class="hlt">aus</span> den Überwachungsdaten von Photovoltaikanlagen Algorithmen entwickelt wurden, die zukünftig die automatisierte Fehlererkennung und damit eine verbesserte Betriebsführung ermöglichen können. Um von Daten zum optimierten Prozess zu gelangen, sind vier Stufen notwendig. Nach der Datenintegration folgen die Qualitätssicherung, dann die Analyse und schließlich die Umsetzung in eine betrieblich nutzbare Anwendung. Für die Entwicklung valider, praxisrelevanter Modelle stellte es sich als unumgänglich heraus, dass bereits frühzeitig die datengenerierenden Prozesse und damit auch die physikalischen Grundlagen der Anlagen nicht nur von den Prozessexperten, sondern genauso von den Data Scientists verstanden wurden: Es genügt eben nicht, Daten zu konsolidieren und in ein Analysetool zu stecken, sondern die Wertschöpfung <span class="hlt">aus</span> Daten gelingt nur, wenn eine domänen- und kompetenzübergreifend interdisziplinäre Zusammenarbeit erfolgt, in der beide Seiten bereit sind, kontinuierlich voneinander zu lernen.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA256068','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA256068"><span>Craney Island <span class="hlt">Disposal</span> Area: Updated Projections for Filling Rates through 1989</span></a></p> <p><a target="_blank" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>1992-08-01</p> <p>2,500-acre confined dredged material <span class="hlt">disposal</span> facility located near Norfolk, VA. In 1981, the Cwaney Island Management Plan ( CIMP ) was developed to extend...the useful life of the <span class="hlt">site</span> for <span class="hlt">disposal</span> of maintenance material from the project area. The CIMP called for subdivision of the <span class="hlt">site</span> into three...subcontainments and use of alternating filling and dewatering cycles. Management of the <span class="hlt">site</span> in general accordance with the CIMP was implemented in 1984</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70120281','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70120281"><span>Monitoring and modeling nearshore dredge <span class="hlt">disposal</span> for indirect beach nourishment, Ocean Beach, San Francisco</span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Barnard, Patrick L.; Hanes, Daniel M.; Lescinski, Jamie; Elias, Edwin</p> <p>2007-01-01</p> <p>Nearshore dredge <span class="hlt">disposal</span> was performed during the summer of 2005 at Ocean Beach, San Francisco, CA, a high energy tidal and wave environment. This trial run was an attempt to provide a buffer to a reach of coastline where wave attack during the winter months has had a severe impact on existing sewage infrastructure. Although the subsequent beach response was inconclusive, after one year the peak of the <span class="hlt">disposal</span> mound had migrated ~100 m toward the shore, providing evidence that annual dredge <span class="hlt">disposal</span> at this <span class="hlt">site</span> could be beneficial over the long-term by at the very least providing: 1) additional wave dissipation during storms 2) compatible sediment to feed nearshore bars, <span class="hlt">3</span>) sediment cover on an exposed sewage outfall pipe, and 4) a viable alternative to the shoaling offshore <span class="hlt">disposal</span> <span class="hlt">site</span>. Numerical modeling suggests that despite the strong tidal currents in the region, wave forcing is the dominant factor moving the sediment slowly toward shore, and placing sediment at just slightly shallower depths (e.g. 9 m) in the future would have a more immediate impact.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/biblio/22436824-using-mcda-gis-hazardous-waste-landfill-siting-considering-land-scarcity-waste-disposal','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22436824-using-mcda-gis-hazardous-waste-landfill-siting-considering-land-scarcity-waste-disposal"><span>Using MCDA and GIS for hazardous waste landfill <span class="hlt">siting</span> considering land scarcity for waste <span class="hlt">disposal</span></span></a></p> <p><a target="_blank" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Feo, Giovanni De, E-mail: g.defeo@unisa.it; Gisi, Sabino De</p> <p></p> <p>Highlights: • Wasting land for the <span class="hlt">siting</span> of hazardous waste landfills must be avoided. • The <span class="hlt">siting</span> procedure is based on a land use map of potentially suitable areas. • All the waste facilities of the management system are simultaneously considered. • A case study is developed considering two multi-criteria techniques. • An innovative criteria weighting tool (PSW) is used in combination with the AHP. - Abstract: The main aim of this study was to develop a procedure that minimizes the wasting of space for the <span class="hlt">siting</span> of hazardous waste landfills as part of a solid waste management system. Wemore » wanted to tackle the shortage of land for waste <span class="hlt">disposal</span> that is a serious and growing problem in most large urban regions. The procedure combines a multi-criteria decision analysis (MCDA) approach with a geographical information system (GIS). The GIS was utilised to obtain an initial screening in order to eliminate unsuitable areas, whereas the MCDA was developed to select the most suitable <span class="hlt">sites</span>. The novelty of the proposed <span class="hlt">siting</span> procedure is the introduction of a new screening phase before the macro-<span class="hlt">siting</span> step aimed at producing a “land use map of potentially suitable areas” for the <span class="hlt">siting</span> of solid waste facilities which simultaneously takes into consideration all plant types. The issue of obtaining <span class="hlt">sites</span> evaluations of a specific facility was coupled with the issue of not wasting land appropriate to facilitate other types of waste management options. In the developed case study, the use of an innovative criteria weighting tool (the “Priority Scale”) in combination with the Analytic Hierarchy Process was useful to easier define the priorities of the evaluation criteria in comparison with other classic methods such as the Paired Comparison Technique in combination with the Simple Additive Weighting method.« less</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/22616282','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/22616282"><span>Volatile organic compound emissions from municipal solid waste <span class="hlt">disposal</span> <span class="hlt">sites</span>: a case study of Mumbai, India.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Majumdar, Dipanjali; Srivastava, Anjali</p> <p>2012-04-01</p> <p>Improper solid waste management leads to aesthetic and environmental problems. Emission ofvolatile organic compounds (VOCs) is one of the problems from uncontrolled dumpsite. VOCs are well known to be hazardous to human health and many of them are known or potential carcinogens. They also contribute to ozone formation at ground level and climate change as well. The qualitative and quantitative analysis of VOCs emitting from two municipal waste (MSW) <span class="hlt">disposal</span> <span class="hlt">sites</span> in Mumbai, India, namely Deonar and Malad, are presented in this paper. Air at dumpsites was sampled and analyzed on gas chromatography-mass spectrometry (GC-MS) in accordance with <span class="hlt">U</span>.S. Environmental Protection Agency (EPA) TO-17 compendium method for analysis of toxic compounds. As many as 64 VOCs were qualitatively identified, among which 13 are listed under hazardous air pollutants (HAPs). Study of environmental distribution of a few major VOCs indicates that although air is the principal compartment of residence, they also get considerably partitioned in soil and vegetation. The CO2 equivalent of target VOCs from the landfills in Malad and Deonar shows that the total yearly emissions are 7.89E+03 and 8.08E+02 kg, respectively. The total per hour ozone production from major VOCs was found to be 5.34E-01 ppb in Deonar and 9.55E-02 ppb in Malad. The total carcinogenic risk for the workers in the dumpsite considering all target HAPs are calculated to be 275 persons in 1 million in Deonar and 139 persons in 1 million in Malad.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/240889','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/240889"><span>Performance-assessment progress for the Rozan low-level waste <span class="hlt">disposal</span> facility</span></a></p> <p><a target="_blank" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Smietanski, L.; Mitrega, J.; Frankowski, Z.</p> <p>1995-12-31</p> <p>The paper presents a condensed progress report on the performance assessment of Poland`s low-level waste <span class="hlt">disposal</span> facility which is operating since 1961. The Rozan repository is of near-surface type with facilities which are the concrete fortifications built about 1910. <span class="hlt">Site</span> characterization activities supplied information on regional geology, geohydrology, climatic and hydrologic conditions and terrain surface evolution due to geodynamic processes. Field surveys enabled to decode lithological, hydrogeological and geochemical <span class="hlt">site</span> specific conditions. From the laboratory tests the data on groundwater chemistry and soil geochemical and hydraulic characteristics were obtained. The <span class="hlt">site</span> geohydrologic main vulnerable element is the upmost directly endangeredmore » unconfined aquifer which is perched in relation to the region-wide hydraulic system. Heterogeneity of this system reflects in a wide range of hydraulic conductivity and thickness variations. It strongly affects velocity and flow directions. The chemistry of groundwater is unstable due to large sensitivity to external impacts. Modeling of the migration of the critical long-lived radionuclides Tc-99, <span class="hlt">U</span>-238 and Pu-239 showed that the nearly 20 m thick unsaturated zone plays crucial role as an effective protective barrier. These radionuclides constitute minor part of the total inventory. Modeling of the development of the H-<span class="hlt">3</span> plume pointed out the role the macrodispersion plays in the unsaturated zone beneath the repository.« less</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016OcDyn..66.1497F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016OcDyn..66.1497F"><span>The impact of <span class="hlt">disposal</span> of fine-grained sediments from maintenance dredging works on SPM concentration and fluid mud in and outside the harbor of Zeebrugge</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Fettweis, Michael; Baeye, Matthias; Cardoso, Claudio; Dujardin, Arvid; Lauwaert, Brigitte; Van den Eynde, Dries; Van Hoestenberghe, Thomas; Vanlede, Joris; Van Poucke, Luc; Velez, Carlos; Martens, Chantal</p> <p>2016-11-01</p> <p>The amount of sediments to be dredged and <span class="hlt">disposed</span> depends to a large part on the suspended particulate matter (SPM) concentration. Tidal, meteorological, climatological, and seasonal forcings have an influence on the horizontal and vertical distribution of the SPM in the water column and on the bed and control the inflow of fine-grained sediments towards harbors and navigation channels. About <span class="hlt">3</span> million tons (dry matter) per year of mainly fine-grained sediments is dredged in the port of Zeebrugge and is <span class="hlt">disposed</span> on a nearby <span class="hlt">disposal</span> <span class="hlt">site</span>. The <span class="hlt">disposed</span> sediments are quickly resuspended and transported away from the <span class="hlt">site</span>. The hypothesis is that a significant part of the <span class="hlt">disposed</span> sediments recirculates back to the dredging places and that a relocation of the <span class="hlt">disposal</span> <span class="hlt">site</span> to another location at equal distance to the dredging area would reduce this recirculation. In order to validate the hypothesis, a 1-year field study was set up in 2013-2014. During 1 month, the dredged material was <span class="hlt">disposed</span> at a new <span class="hlt">site</span>. Variations in SPM concentration were related to tides, storms, seasonal changes, and human impacts. In the high-turbidity Belgian near-shore area, the natural forcings are responsible for the major variability in the SPM concentration signal, while <span class="hlt">disposal</span> has only a smaller influence. The conclusion from the measurements is that the SPM concentration decreases after relocation of the <span class="hlt">disposal</span> <span class="hlt">site</span> but indicate stronger (first half of field experiment) or weaker (second half of field experiment) effects that are, however, supported by the environmental conditions. The results of the field study may have consequences on the management of <span class="hlt">disposal</span> operations as the effectiveness of the <span class="hlt">disposal</span> <span class="hlt">site</span> depends on environmental conditions, which are inherently associated with chaotic behavior.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/9814758','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/9814758"><span>Neighborhood of 16S rRNA nucleotides <span class="hlt">U</span>788/<span class="hlt">U</span>789 in the 30S ribosomal subunit determined by <span class="hlt">site</span>-directed crosslinking.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Mundus, D; Wollenzien, P</p> <p>1998-11-01</p> <p><span class="hlt">Site</span>-specific photo crosslinking has been used to investigate the RNA neighborhood of 16S rRNA positions <span class="hlt">U</span>788/ <span class="hlt">U</span>789 in Escherichia coli 30S subunits. For these studies, <span class="hlt">site</span>-specific psoralen (SSP) which contains a sulfhydryl group on a 17 A side chain was first added to nucleotides <span class="hlt">U</span>788/<span class="hlt">U</span>789 using a complementary guide DNA by annealing and phototransfer. Modified RNA was purified from the DNA and unmodified RNA. For some experiments, the SSP, which normally crosslinks at an 8 A distance, was derivitized with azidophenacylbromide (APAB) resulting in the photoreactive azido moiety at a maximum of 25 A from the 4' position on psoralen (SSP25APA). 16S rRNA containing SSP, SSP25APA or control 16S rRNA were reconstituted and 30S particles were isolated. The reconstituted subunits containing SSP or SSP25APA had normal protein composition, were active in tRNA binding and had the usual pattern of chemical reactivity except for increased kethoxal reactivity at G791 and modest changes in four other regions. Irradiation of the derivatized 30S subunits in activation buffer produced several intramolecular RNA crosslinks that were visualized and separated by gel electrophoresis and characterized by primer extension. Four major crosslink <span class="hlt">sites</span> made by the SSP reagent were identified at positions <span class="hlt">U</span>561/<span class="hlt">U</span>562, <span class="hlt">U</span>920/<span class="hlt">U</span>921, C866 and <span class="hlt">U</span>723; a fifth major crosslink at G693 was identified when the SSP25APA reagent was used. A number of additional crosslinks of lower frequency were seen, particularly with the APA reagent. These data indicate a central location close to the decoding region and central pseudoknot for nucleotides <span class="hlt">U</span>788/<span class="hlt">U</span>789 in the activated 30S subunit.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li class="active"><span>25</span></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_25 --> <div class="footer-extlink text-muted" style="margin-bottom:1rem; text-align:center;">Some links on this page may take you to non-federal websites. Their policies may differ from this site.</div> </div><!-- container --> <footer><a id="backToTop" href="#top"> </a><nav><a id="backToTop" href="#top"> </a><ul class="links"><a id="backToTop" href="#top"> </a><li><a id="backToTop" href="#top"></a><a href="/sitemap.html">Site Map</a></li> <li><a href="/members/index.html">Members Only</a></li> <li><a href="/website-policies.html">Website Policies</a></li> <li><a href="https://doe.responsibledisclosure.com/hc/en-us" target="_blank">Vulnerability Disclosure Program</a></li> <li><a href="/contact.html">Contact Us</a></li> </ul> <div class="small">Science.gov is maintained by the U.S. Department of Energy's <a href="https://www.osti.gov/" target="_blank">Office of Scientific and Technical Information</a>, in partnership with <a href="https://www.cendi.gov/" target="_blank">CENDI</a>.</div> </nav> </footer> <script type="text/javascript"><!-- // var lastDiv = ""; function showDiv(divName) { // hide last div if (lastDiv) { document.getElementById(lastDiv).className = "hiddenDiv"; } //if value of the box is not nothing and an object with that name exists, then change the class if (divName && document.getElementById(divName)) { document.getElementById(divName).className = "visibleDiv"; lastDiv = divName; } } //--> </script> <script> /** * Function that tracks a click on an outbound link in Google Analytics. * This function takes a valid URL string as an argument, and uses that URL string * as the event label. */ var trackOutboundLink = function(url,collectionCode) { try { h = window.open(url); setTimeout(function() { ga('send', 'event', 'topic-page-click-through', collectionCode, url); }, 1000); } catch(err){} }; </script> <!-- Google Analytics --> <script> (function(i,s,o,g,r,a,m){i['GoogleAnalyticsObject']=r;i[r]=i[r]||function(){ (i[r].q=i[r].q||[]).push(arguments)},i[r].l=1*new Date();a=s.createElement(o), m=s.getElementsByTagName(o)[0];a.async=1;a.src=g;m.parentNode.insertBefore(a,m) })(window,document,'script','//www.google-analytics.com/analytics.js','ga'); ga('create', 'UA-1122789-34', 'auto'); ga('send', 'pageview'); </script> <!-- End Google Analytics --> <script> showDiv('page_1') </script> </body> </html>