Sample records for u-4mo u-9nb-3zr u-6nb-4zr

  1. Effect of thermo-mechanical processing on microstructure and mechanical properties of U - Nb - Zr alloys: Part 2 - U - 3 wt % Nb - 9 wt % Zr and U - 9 wt% Nb - 3 wt% Zr

    NASA Astrophysics Data System (ADS)

    Morais, Nathanael Wagner Sales; Lopes, Denise Adorno; Schön, Cláudio Geraldo

    2018-04-01

    The present work is the second and final part of an extended investigation on Usbnd Nb - Zr alloys. It investigates the effect of mechanical processing routes on microstructure of alloys U - 3 wt % Nb - 9 wt % Zr and U - 9 wt% Nb - 3 wt% Zr, through X-ray diffraction and scanning electron microscopy, completing the investigation, which started with alloy U - 6 wt% Nb - 6 wt% Zr in part 1. Mechanical properties are determined using microhardness and bending tests and correlated with the developed microstructures. The results show that processing sequence, in particular the inclusion of a 1000 °C heat treatment step, affects significantly the microstructure and mechanical properties of these alloys alloy in different ways. Microstructural characterization shows that both alloys present significant volume fraction of precipitates of a body-centered cubic (BCC) γ-Nb-Zr rich phase in addition the uranium-rich matrix. Bending tests show that sample ductility does not correlate necessarily with hardness and that the key factor appears to be the amount of the γ-Nb-Zr precipitates, which controls the matrix microstructure. Samples with a monoclinic α″ cellular microstructure and/or with the tetragonally-distorted BCC phase (γ0), although not strictly ductile, showed the largest allowed strains-before-break and complete elastic recovery of the broken pieces, pointing out to the macroscopic observation of superelasticity.

  2. Structural, microstructural and thermal analysis of U-(6-x)Zr-xNb alloys (x = 0, 2, 4, 6)

    NASA Astrophysics Data System (ADS)

    Kaity, Santu; Banerjee, Joydipta; Parida, S. C.; Bhasin, Vivek

    2018-06-01

    Uranium-rich U-Zr-Nb alloy is considered as a good alternative fuel for fast reactors from the perspective of excellent dimensional stability and desired thermo-physical properties to achieve higher burnup. Detailed investigations related to the structural and microstructural characterization, thermal expansion, phase transformation, microhardness were carried out on U-6Zr, U-4Zr-2Nb, U-2Zr-4Nb and U-6Nb alloys (composition in wt%) where the total amount of alloying elements was restricted to 6 wt%. Structural, microstructural and thermal analysis studies revealed that these alloys undergo a series of transformations from high temperature bcc γ-phase to a variety of equilibrium and intermediate phases depending upon alloy composition, cooling rate and quenching. The structural analysis was carried out by Rietveld refinement. The data of U-Nb and U-Zr-Nb alloys have been highlighted and compared with binary U-Zr alloy.

  3. Processing of U-2.5Zr-7.5Nb and U-3Zr-9Nb alloys by sintering process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dos Santos, A. M. M.; Ferraz, W. B.; Lameiras, F. S.

    2012-07-01

    To minimize the risk of nuclear proliferation, there is worldwide interest in reducing fuel enrichment of research and test reactors. To achieve this objective while still guaranteeing criticality and cycle length requirements, there is need of developing high density uranium metallic fuels. Alloying elements such as Zr, Nb and Mo are added to uranium to improve fuel performance in reactors. In this context, the Centro de Desenvolvimento da Tecnologia Nuclear (CDTN) is developing the U-2.5Zr-7.5Nb and U-3Zr-9Nb (weight %) alloys by the innovative process of sintering that utilizes raw materials in the form of powders. The powders were pressed atmore » 400 MPa and then sintered under a vacuum of about 1x10{sup -4} Torr at temperatures ranging from 1050 deg. to 1500 deg.C. The densities of the alloys were measured geometrically and by hydrostatic method and the phases identified by X ray diffraction (XRD). The microstructures of the pellets were observed by scanning electron microscopy (SEM) and the alloying elements were analyzed by energy dispersive X-ray spectroscopy (EDS). The results obtained showed the fuel density to slightly increase with the sintering temperature. The highest density achieved was approximately 80% of theoretical density. It was observed in the pellets a superficial oxide layer formed during the sintering process. (authors)« less

  4. Transformation behavior of the γU(Zr,Nb) phase under continuous cooling conditions

    NASA Astrophysics Data System (ADS)

    Komar Varela, C. L.; Gribaudo, L. M.; González, R. O.; Aricó, S. F.

    2014-10-01

    The selected alloy for designing a high-density monolithic-type nuclear fuel with U-Zr-Nb alloy as meat and Zry-4 as cladding, has to remain in the γU(Zr,Nb) phase during the whole fabrication process. Therefore, it is necessary to define a range of concentrations in which the γU(Zr,Nb) phase does not decompose under the process conditions. In this work, several U alloys with concentrations between 28.2-66.9 at.% Zr and 0-13.3 at.% Nb were fabricated to study the possible transformations of the γU(Zr,Nb) phase under different continuous cooling conditions. The results of the electrical resistivity vs temperature experiments are presented. For a cooling rate of 4 °C/min a linear regression was determined by fitting the starting decomposition temperature as a function of Nb concentration. Under these conditions, a concentration of 45.3 at.% Nb would be enough to avoid any transformation of the γU(Zr,Nb) phase. In experiments that involve higher cooling conditions, it has been determined that this concentration can be halved.

  5. Diffusion Barrier Selection from Refractory Metals (Zr, Mo and Nb) via Interdiffusion Investigation for U-Mo RERTR Fuel Alloy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    K. Huang; C. Kammerer; D. D. Keiser, Jr.

    2014-04-01

    U-Mo alloys are being developed as low enrichment monolithic fuel under the Reduced Enrichment for Research and Test Reactor (RERTR) Program. Diffusional interactions between the U-Mo fuel alloy and Al-alloy cladding within the monolithic fuel plate construct necessitate incorporation of a barrier layer. Fundamentally, a diffusion barrier candidate must have good thermal conductivity, high melting point, minimal metallurgical interaction, and good irradiation performance. Refractory metals, Zr, Mo, and Nb are considered based on their physical properties, and the diffusion behavior must be carefully examined first with U-Mo fuel alloy. Solid-to-solid U-10wt.%Mo vs. Mo, Zr, or Nb diffusion couples were assembledmore » and annealed at 600, 700, 800, 900 and 1000 degrees C for various times. The interdiffusion microstructures and chemical composition were examined via scanning electron microscopy and electron probe microanalysis, respectively. For all three systems, the growth rate of interdiffusion zone were calculated at 1000, 900 and 800 degrees C under the assumption of parabolic growth, and calculated for lower temperature of 700, 600 and 500 degrees C according to Arrhenius relationship. The growth rate was determined to be about 10 3 times slower for Zr, 10 5 times slower for Mo and 10 6 times slower for Nb, than the growth rates reported for the interaction between the U-Mo fuel alloy and pure Al or Al-Si cladding alloys. Zr, however was selected as the barrier metal due to a concern for thermo- mechanical behavior of UMo/Nb interface observed from diffusion couples, and for ductile-to-brittle transition of Mo near room temperature.« less

  6. Identification of phases in the interaction layer between U-Mo-Zr/Al and U-Mo-Zr/Al-Si

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Varela, C.L. Komar; Arico, S.F.; Mirandou, M.

    Out-of-pile diffusion experiments were performed between U-7wt.% Mo-1wt.% Zr and Al or Al A356 (7,1wt.% Si) at 550 deg. C. In this work morphological characterization and phase identification on both interaction layer are presented. They were carried out by the use of different techniques: optical and scanning electron microscopy, X-Ray diffraction and WDS microanalysis. In the interaction layer U-7wt.% Mo-1wt.% Zr/Al, the phases UAl{sub 3}, UAl{sub 4}, Al{sub 20}Mo{sub 2}U and Al{sub 43}Mo{sub 4}U{sub 6} were identified. In the interaction layer U-7wt.% Mo-1wt.% Zr/Al A356, the phases U(Al, Si) with 25at.% Si and Si{sub 5}U{sub 3} were identified. This lastmore » phase, with a higher Si concentration, was identified with XRD Synchrotron radiation performed at the National Synchrotron Light Laboratory (LNLS), Campinas, Brasil. (author)« less

  7. Optical and structural characterization of Nb, Zr, Nb/Zr, Zr/Nb thin films on Si3N4 membranes windows

    NASA Astrophysics Data System (ADS)

    Jimenez, K.; Gaballah, A. E. H.; Ahmed, Nadeem; Zuppella, P.; Nicolosi, P.

    2017-05-01

    High brilliance sources in the EUV spectral range such as Synchrotron and Free Electron Lasers (FEL) are widely used in multiple scientific and technological applications thanks to their peculiar characteristics. One main technical problem of FEL is related to the rejection of high harmonics, seed laser, first stage photons, and diffuse light; in order to improve the quality of the beam delivered by these sources, a suitable optical system acting as band-pass filters is necessary. In this paper we discuss the optical and structure characterization of Nb/Zr and Zr/Nb self-stand transmittance filters, designed for 4.5 nm-20 nm wavelength ranges. In order to understand the properties of these bilayers filters, a campaign of measurements has been planned to be performed on Zr and Nb films on Si3N4 membrane windows and silicon substrates, deposited with e- beam deposition technique. Comparison of the results has been planned too. IMD transmittance and reflectance simulations, together with preliminary AFM and reflectance measurements will be shown in this work.

  8. Variation of Nb-Ta, Zr-Hf, Th-U and K-Cs in two diabase-granophyre suites

    USGS Publications Warehouse

    Gottfried, D.; Greenland, L.P.; Campbell, E.Y.

    1968-01-01

    Concentrations of Nb, Ta, Zr, Hf, Th, U and Cs have been determined in samples of igneous rocks representing the diabase-granophyre suites from Dillsburg, Pennsylvania, and Great Lake, Tasmania. Niobium and tantalum have a three to fourfold increase with differentiation in each of the suites. The chilled margin of the Great Lake intrusion contains half the niobium and tantalum content (5.3 ppm and 0.4 ppm, respectively) of the chilled basalt from Dillsburg (10 ppm and 0.9 ppm, respectively). The twofold difference between the suites is correlated with differences in their titanium content. The average Nb Ta ratios for each suite are similar: 13.5 for the Great Lake suite, and 14.4 for the Dillsburg suite. The zirconium content of the two suites is essentially the same and increases from 50 to 60 ppm in the chilled margins to 240-300 ppm in the granophyres. Hafnium is low in the early formed rocks (0.5 -1.5 ppm and achieves a maximum in the granophyres (5-8 ppm). The Zr Hfratio decreases from 68 to 33 with progressive differentiation. In the Dillsburg suite thorium and uranium increase from 2.6 ppm and 0.6 ppm, respectively, in the chilled samples to 11.8 ppm and 3.1 ppm in the granophyres. The chilled margin of the Great Lake suite contains 3.2 ppm thorium and 9.8 ppm uranium; the granophyre contains 11.2 ppm thorium and 2.8 ppm uranium. The average Th U ratios of the Dillsburg and Great Lake suites are nearly the same-4.1 and 4.4, respectively. Within each suite the Th U ratio remains quite constant. Cesium and the K Cs ratio do not vary systematically in the Dillsburg suite possibly because of redistribution or loss of cesium by complex geologic processes. Except for the chilled margin of the Great Lake suite, the variation of Cs and the K Cs ratio are in accord with theoretical considerations. Cesium increases from about 0.6 ppm in the lower zone to 3.5 ppm in the granophyre; the K Cs ratio varies from 10 ?? 103 in the lower zone to 6 ?? 103 in the granophyre. A

  9. Effect of annealing temperature on microstructure and superelastic properties of a Ti-18Zr-4.5Nb-3Sn-2Mo alloy.

    PubMed

    Fu, Jie; Kim, Hee Young; Miyazaki, Shuichi

    2017-01-01

    In this study a new superelastic Ti-18Zr-4.5Nb-3Sn-2Mo alloy was prepared by adding 2at% of Mo as a substitute for Nb to the Ti-18Zr-11Nb-3Sn alloy, and heat treatment at different temperatures was conducted. The temperature dependence of superelasticity and annealing texture was investigated. Texture showed a dependence of annealing temperature: the specimen annealed at 923K for 0.3ks exhibited {113} β <47¯1> β type texture which was similar to the deformation texture, while specimens annealed at 973, 1073K, and 1173K showed {001} β <110> β type recrystallization texture which was preferable for recovery strain. The largest recovery strain of 6.2%, which is the same level as that of the Ti-18Zr-11Nb-3Sn alloy, was obtained in the specimen annealed at 1173K for 0.3ks due to the well-developed {001} β <110> β type recrystallization texture. The Ti-18Zr-3Nb-3Sn-2Mo alloy presented a higher tensile strength compared with the Ti-18Zr-11Nb-3Sn alloy when heat treated at 1173K for 0.3ks, which was due to the solid solution strengthening effect of Mo. Annealing at 923K for 0.3ks was effective in obtaining a good combination of a high strength as 865MPa and a large recovery strain as 5.6%. The high recovery strain was due to the high stress at which the maximum recovery stain was obtained which was attributed to the small grain size formed at low annealing temperature. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Comparison of bio-mineralization behavior of Ti-6Al-4V-1Nb and Zr-1Nb nano-tubes formed by anodization

    NASA Astrophysics Data System (ADS)

    Choi, Yong; Hong, Sun I.

    2014-12-01

    Nano-tubes of titanium and zirconium alloys like Ti-6Al-4V-1Nb and Zr-1Nb were prepared by anodization followed by coating with hydroxylapatite (HA) and their bio-mineralization behaviors were compared to develop a bio-compatible material for implants in orthopedics, dentistry and cardiology. Ti-6Al-4V-1Nb weight gain in a simulated body solution increased gradually. The bigger tube diameter was, the heavier HA was deposited. Surface roughness of both alloys increased highly with the increasing diameter of nano-tube. Their surface roughness decreased by HA deposition due to the removal of the empty space of the nano-tubes. Zr-1Nb alloy had faster growth of nano-tubes layers more than Ti-6Al-4V-1Nb alloy.

  11. Comparisons of immersion and electrochemical properties of highly biocompatible Ti-15Zr-4Nb-4Ta alloy and other implantable metals for orthopedic implants

    NASA Astrophysics Data System (ADS)

    Okazaki, Yoshimitsu; Nagata, Hiroyuki

    2012-12-01

    Metal release from implantable metals and the properties of oxide films formed on alloy surfaces were analyzed, focusing on the highly biocompatible Ti-15Zr-4Nb-4Ta alloy. The thickness and electrical resistance (Rp) of the oxide film on such an alloy were compared with those of other implantable metals. The quantity of metal released during a 1-week immersion test was considerably smaller for the Ti-15Zr-4Nb-4Ta than the Ti-6Al-4V alloy. The potential (E10) indicating a current density of 10 μA cm-2 estimated from the anodic polarization curve was significantly higher for the Ti-15Zr-4Nb-4Ta than the Ti-6Al-4V alloy and other metals. Moreover, the oxide film (4-7 nm thickness) formed on the Ti-15Zr-4Nb-4Ta surface is electrochemically robust. The oxide film mainly consisted of TiO2 with small amounts of ZrO2, Nb2O5 and Ta2O5 that made the film electrochemically stable. The Rp of Ti-15Zr-4Nb-4Ta was higher than that of Ti-6Al-4V, i.e. 0.9 Ω cm2 in 0.9% NaCl and 1.3 Ω cm2 in Eagle's medium. This Rp was approximately five-fold higher than that of stainless steel, which has a history of more than 40 years of clinical use in the human body. Ti-15Zr-4Nb-4Ta is a potential implant material for long-term clinical use. Moreover, E10 and Rp were found to be useful parameters for assessing biological safety.

  12. Effect of [Li]/[Nb] ratio on composition and defect structure of Zr:Yb:Tm:LiNbO3 crystals

    NASA Astrophysics Data System (ADS)

    Liu, Chunrui; Dai, Li; Wang, Luping; Shao, Yu; Yan, Zhehua; Xu, Yuheng

    2018-04-01

    Zr:Yb:Tm:LiNbO3 crystals with various [Li]/[Nb] ratios (0.946, 1.05, 1.20 and 1.38) were grown by the Czochralski technique. Distribution coefficients of Zr4+, Yb3+ and Tm3+ ions were analyzed by the inductively coupled plasma-atomic emission spectrometer (ICP-AES). The influence of [Li]/[Nb] ratio on the composition and defect structure of Zr:Yb:Tm:LiNbO3 crystals was investigated by X-ray diffraction and IR transmission spectrum. The results show that as the [Li]/[Nb] ratio increases in the melt, the distribution coefficients of Yb3+ and Tm3+ ions both increase while that of Zr4+ ion deceases. When the [Li]/[Nb] ratio increases to 1.20 in the melt, Zr:Yb:Tm:LiNbO3 crystal is nearly stoichiometric. In addition, when the [Li]/[Nb] ratio reaches up to 1.38, NbLi4+ are completely replaced and Li+ starts to impel the Zr4+, Yb3+ and Tm3+ into the normal Li sites.

  13. Interdiffusion and reactions between U-Mo and Zr at 650 °C as a function of time

    NASA Astrophysics Data System (ADS)

    Park, Y.; Keiser, D. D.; Sohn, Y. H.

    2015-01-01

    Development of monolithic U-Mo alloy fuel (typically U-10 wt.%Mo) for the Reduced Enrichment for Research and Test Reactors (RERTR) program entails a use of Zr diffusion barrier to eliminate the interdiffusion-reactions between the fuel alloy and Al-alloy cladding. The application of Zr barrier to the U-Mo fuel system requires a co-rolling process that utilizes a soaking temperature of 650 °C, which represents the highest temperature the fuel system is exposed to during both fuel manufacturing and reactor application. Therefore, in this study, development of phase constituents, microstructure and diffusion kinetics of U-10 wt.%Mo and Zr was examined using solid-to-solid diffusion couples annealed at 650 °C for 240, 480 and 720 h. Phase constituents and microstructural development were analyzed by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Concentration profiles were mapped as diffusion paths on the isothermal ternary phase diagram. Within the diffusion zone, single-phase layers of β-Zr and β-U were observed along with a discontinuous layer of Mo2Zr between the β-Zr and β-U layers. In the vicinity of Mo2Zr phase, islands of α-Zr phases were also found. In addition, acicular α-Zr and U6Zr3Mo phases were observed within the γ-U(Mo) terminal alloy. Growth rate of the interdiffusion-reaction zone was determined to be 7.75 (± 5.84) × 10-16 m2/s at 650 °C, however with an assumption of a certain incubation period.

  14. Microstructural analysis of as-processed U-10 wt.%Mo monolithic fuel plate in AA6061 matrix with Zr diffusion barrier

    NASA Astrophysics Data System (ADS)

    Perez, E.; Yao, B.; Keiser, D. D., Jr.; Sohn, Y. H.

    2010-07-01

    For higher U-loading in low-enriched U-10 wt.%Mo fuels, monolithic fuel plate clad in AA6061 is being developed as a part of Reduced Enrichment for Research and Test Reactor (RERTR) program. This paper reports the first characterization results from a monolithic U-10 wt.%Mo fuel plate with a Zr diffusion barrier that was fabricated as part of a plate fabrication campaign for irradiation testing in the Advanced Test Reactor (ATR). Both scanning and transmission electron microscopy (SEM and TEM) were employed for analysis. At the interface between the Zr barrier and U-10 wt.%Mo, going from Zr to U(Mo), UZr 2, γ-UZr, Zr solid-solution and Mo 2Zr phases were observed. The interface between AA6061 cladding and Zr barrier plate consisted of four layers, going from Al to Zr, (Al, Si) 2Zr, (Al, Si)Zr 3 (Al, Si) 3Zr, and AlSi 4Zr 5. Irradiation behavior of these intermetallic phases is discussed based on their constituents. Characterization of as-fabricated phase constituents and microstructure would help understand the irradiation behavior of these fuel plates, interpret post-irradiation examination, and optimize the processing parameters of monolithic fuel system.

  15. Are new TiNbZr alloys potential substitutes of the Ti6Al4V alloy for dental applications? An electrochemical corrosion study.

    PubMed

    Ribeiro, Ana Lúcia Roselino; Hammer, Peter; Vaz, Luís Geraldo; Rocha, Luís Augusto

    2013-12-01

    The main aim of this work was to assess the electrochemical behavior of new Ti35Nb5Zr and Ti35Nb10Zr alloys in artificial saliva at 37 °C to verify if they are indicated to be used as biomaterials in dentistry as alternatives to Ti6Al4V alloys in terms of corrosion protection efficiency of the material. Electrochemical impedance spectroscopy (EIS) experiments were carried out for different periods of time (0.5-216 h) in a three-electrode cell, where the working electrode (Ti alloys) was exposed to artificial saliva at 37 °C. The near-surface region of the alloys was investigated using x-ray photoelectron spectroscopy (XPS). All alloys exhibited an increase in corrosion potential with the immersion time, indicating the growth and stabilization of the passive film. Ti35Nb5Zr and Ti6Al4V alloys had their EIS results interpreted by a double-layer circuit, while the Ti35Nb10Zr alloy was modeled by a one-layer circuit. In general, the new TiNbZr alloys showed similar behavior to that observed for the Ti6Al4V. XPS results suggest, in the case of the TiNbZr alloys, the presence of a thicker passive layer containing a lower fraction of TiO2 phase than that of Ti6Al4V. After long-term immersion, all alloys develop a calcium phosphate phase on the surface. The new TiNbZr alloys appear as potential candidates to be used as a substitute to Ti6Al4V in the manufacturing of dental implant-abutment sets.

  16. 3D surface topography study of the biofunctionalized nanocrystalline Ti-6Zr-4Nb/Ca-P

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jakubowicz, J., E-mail: jaroslaw.jakubowicz@put.poznan.pl; Adamek, G.; Jurczyk, M.U.

    2012-08-15

    In this work surface of the sintered Ti-6Zr-4Nb nanocrystalline alloy was electrochemically biofunctionalized. The porous surface was produced by anodic oxidation in 1 M H{sub 3}PO{sub 4} + 2%HF electrolyte at 10 V for 30 min. Next the calcium-phosphate (Ca-P) layer was deposited, onto the formed porous surface, using cathodic potential - 5 V kept for 60 min in 0.042 M Ca(NO{sub 3}){sub 2} + 0.025 M (NH{sub 4}){sub 2}HPO{sub 4} + 0.1 M HCl electrolyte. The deposited Ca-P layer anchored in the pores. The biofunctionalized surface was studied by XRD, SEM and EDS. In vitro tests culture of normalmore » human osteoblast (NHOst) cells showed very good cells proliferation, colonization and multilayering. Using optical profiler, roughness and hybrid 3D surface topography parameters were estimated. Correlation between surface composition, morphology, roughness and biocompatibility results was done. It has been shown by us that surface with appropriate chemical composition and topography, after combined electrochemical anodic and cathodic surface treatment, supports osteoblast adhesion and proliferation. 3D topography measurements using optical profiler play a key role in the biomaterials surface analysis. - Highlights: Black-Right-Pointing-Pointer Nanocrystalline Ti-6Zr-4Nb/Ca-P material was produced for hard tissue implant applications. Black-Right-Pointing-Pointer Calcium-phosphate results in surface biofunctionalization. Black-Right-Pointing-Pointer The biofunctionalized surface shows good in-vitro behavior.« less

  17. Report on the Synchrotron Characterization of U-Mo and U-Zr Alloys and the Modeling Results

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Okuniewski, Maria A.; Ganapathy, Varsha; Hamilton, Brenden

    2016-09-01

    ABSTRACT Uranium-molybdenum (U-Mo) and uranium-zirconium (U-Zr) are two promising fuel candidates for nuclear transmutation reactors which burn long-lived minor actinides and fission products within fast spectrum reactors. The objectives of this research are centered on understanding the early stages of fuel performance through the examination of the irradiation induced microstructural changes in U-Zr and U-Mo alloys subjected to low neutron fluences. Specimens that were analyzed include those that were previously irradiated in the Advanced Test Reactor at INL. This most recent work has focused on a sub-set of the irradiated specimens, specifically U-Zr and U-Mo alloys that were irradiated tomore » 0.01 dpa at temperatures ranging from (150-800oC). These specimens were analyzed with two types of synchrotron techniques, including X-ray absorption fine structure and X-ray diffraction. These techniques provide non-destructive microstructural analysis, including phase identification and quantitation, lattice parameters, crystallite sizes, as well as bonding, structure, and chemistry. Preliminary research has shown changes in the phase fractions, crystallite sizes, and lattice parameters as a function of irradiation and temperature. Future data analyses will continue to explore these microstructural changes.« less

  18. Microstructural characterization of annealed U-12Zr-4Pd and U-12Zr-4Pd-5Ln: Investigating Pd as a metallic fuel additive

    NASA Astrophysics Data System (ADS)

    Benson, Michael T.; He, Lingfeng; King, James A.; Mariani, Robert D.

    2018-04-01

    Palladium is being investigated as a potential additive to metallic fuel to control fuel-cladding chemical interaction (FCCI). A primary cause of FCCI is the lanthanide fission products moving to the fuel periphery and interacting with the cladding. This interaction will lead to wastage of the cladding and, given enough time or burn-up, eventually to a cladding breach. The current study is a scanning electron microscopy (SEM) and transmission electron microscopy (TEM) characterization of annealed U-12Zr-4Pd and U-12Zr-4Pd-5Ln, where Ln = 53Nd-25Ce-16Pr-6La. The present study shows that Pd preferentially binds the lanthanides over other fuel constituents, which may prevent lanthanide migration and interaction with the cladding during irradiation. The SEM analysis indicates the 1:1 Pd-Ln compound is being formed, while the TEM analysis, due to higher resolution, found the 1:1 compound, as well as Pd-rich compounds Pd2Ln and Pd3Ln2.

  19. The characterisation of second phases in the Zr-Nb and Zr-Nb-Sn-Fe alloys: A critical review

    NASA Astrophysics Data System (ADS)

    Harte, Allan; Griffiths, Malcolm; Preuss, Michael

    2018-07-01

    The nature and evolution of the Fe environment in Zr-Nb and Zr-Nb-Sn-Fe systems is essential to alloy performance during corrosion, hardening and irradiation-induced growth. Unfortunately, there is ambiguity in the literature regarding the characterisation of secondary phases in these systems. The presence, or not, of Fe in β-Nb phase has been a source of disagreement. In ternary ZrNbFe intermetallics, identical compositions have been designated as Zr(Nb,Fe)2 or (Zr,Nb)3Fe. We show that while Zr(Nb,Fe)2 is commonly reported, it is not always justified. The cubic phase (Zr,Nb)2Fe is easily identified, but its composition is more variable after low temperature heat treatments. We demonstrate the need for correlative approaches in the assessment of phase composition, crystallography and local Fe environment under different heat treatment regimes. Irradiation effects allow us to draw clues regarding phase designation, but there is diverse behaviour under irradiation due to initial phase composition, irradiation dose rate and temperature.

  20. Elastic-Plastic Behavior of U6Nb Under Ramp Wave Loading

    NASA Astrophysics Data System (ADS)

    Hayes, D. B.; Hall, C.; Hixson, R. S.

    2005-07-01

    Prior shock experiments on the alloy uranium-niobium-6 wt.% (U6Nb) were absent an elastic precursor when one was expected (A. K. Zurek, et. al., <u>Journal de Physique IV, u>10 (#9) p677-682). This was later explained as a consequence of shear stress relaxation from time-dependent twinning that prevented sufficient shear stress for plastic yielding. (D. B. Hayes, et. al., <u>Shock Compression of Condensed Matter-2003, p1177, American Institute of Physics 2004) Pressure was ramped to 13 GPa in 150-ns on eight U6Nb specimens with thicknesses from 0.5 -- 1.1-mm and the back surface velocities were measured with laser interferometry. This pressure load produces a stress wave with sufficiently fast rise time so that, according to the prior work, twins do not have time to form. Four of the U6Nb specimens had been cold-rolled which increased the yield stress. Each velocity history was analyzed with a backward integration analysis to give the stress-strain response of the U6Nb. Comparison of these results with prior Hugoniot measurements shows that the U6Nb in the present experiments responds as an elastic-plastic material and the deduced yield strength of the baseline and of the cold-rolled material agree with static results.u>

  1. The influence of Zr substitution for Nb on the corrosion behaviors of the Ni-Nb-Zr bulk metallic glasses

    NASA Astrophysics Data System (ADS)

    Li, DengKe; Zhu, ZhengWang; Zhang, HaiFeng; Wang, AiMin; Hu, ZhuangQi

    2012-12-01

    The influence of Zr content on corrosion behaviors of the Ni61.5Nb38.5- x Zr x ( x=1, 3, 5, 7, 9 at.%) bulk metallic glasses (BMGs) in 1 M HCl aqueous solution was investigated by potentiodynamic polarization measurements and X-ray photo-electron spectroscopy (XPS). It was found that these BMG alloys possess superior corrosion resistance, that is, with large passive region of about 1.5 V and low passive current density (as low as 0.05 Am-2 for Ni61.5Nb31.5Zr7). XPS analysis indicates that the high corrosion resistance is attributed to the formation of Nb- and Zr-enriched surface films formed in the aggressive acid solution. The Zr substitution for Nb effectively reduces the Ni content, particularly the metallic state Ni content in the surface films, which depresses the electrical conduction of the surface films and reduces the passive current density, thus leading to the enhancement of the corrosion resistance of these Ni-Nb-Zr BMGs. These alloys may potentially be useful for engineering applications.

  2. Electric resistivity and thermoelectricity of Ni-Nb-Zr and Ni-Nb-Zr-H glassy alloys

    NASA Astrophysics Data System (ADS)

    Fukuhara, Mikio; Inoue, Akihisa

    2010-09-01

    Electric resistivity ρ and thermoelectric power S of Ni 36Nb 24Zr 40 and (Ni 0.36Nb 0.24Zr 0.4) 90H 10 glassy alloys were investigated in temperature region between 1.5 and 300 K. After resistivity curves of both alloys increase gradually with decreasing temperature down to around 6 K, they dropped suddenly and then reached zero resistivity at 2.1 K, leading to superconductivity. Linear curve with negative TCR of ρ vs T2 and slight increase of S/ T in temperature region down to around 6 K clearly reveal Fermi-liquid phenomenon in electronic state for both alloys independent of hydrogen content.

  3. Microstructure and Properties of a Refractory NbCrMo0.5Ta0.5ZrTi Alloy (Preprint)

    DTIC Science & Technology

    2011-10-01

    slightly enriched with Nb , Mo and Ta and depleted with Zr and Cr, and its lattice parameter after HIP was a = 324.76 ± 0.16 pm. The BCC2 phase was...FCC phase was highly enriched with Cr and it was identified as a Laves C15 phase, ( Zr ,Ta)(Cr,Mo, Nb )2, with the lattice parameter a = 733.38 ± 0.18 pm...with Nb , Mo and Ta and depleted with Zr and Cr, and its lattice parameter after HIP was a = 324.76 ± 0.16 pm. The BCC2 phase was enriched with Zr and Ti

  4. A comparison of the fatigue behavior of cast Ti-7.5Mo with c.p. titanium, Ti-6Al-4V and Ti-13Nb-13Zr alloys.

    PubMed

    Lin, Chia-Wei; Ju, Chien-Ping; Chern Lin, Jiin-Huey

    2005-06-01

    The purpose of the present study is to compare the high-cycle fatigue behavior of newly developed Ti-7.5Mo alloy with that of c.p. Ti, Ti-13Nb-13Zr and Ti-6Al-4V alloys in their as-cast state. Experimental results indicate that Ti-6Al-4V and c.p. Ti have higher stress-controlled fatigue resistance but lower strain-controlled fatigue resistance than Ti-7.5Mo and Ti-13Nb-13Zr. Among four materials Ti-7.5Mo demonstrates the best strain-controlled fatigue performance. The fracture surfaces of the present materials are comprised of three morphologically distinct zones: crack initiation zone, crack propagation zone, and the final-stage overload zone. The fatigue cracks almost always initiate from casting-induced surface/subsurface pores. A river pattern is observed in the propagation zone. In the overload zone dimples are typically observed. Three factors most significantly affecting the fatigue performance of the present materials are the presence of the casting-induced surface/subsurface pores; the location of the pores; and the inherent mechanical properties of the materials.

  5. The Mechanical Properties and In Vitro Biocompatibility of PM-Fabricated Ti-28Nb-35.4Zr Alloy for Orthopedic Implant Applications

    PubMed Central

    Xu, Wei; Li, Ming; Wen, Cuie; Lv, Shaomin; Liu, Chengcheng; Lu, Xin

    2018-01-01

    A biocompatible Ti-28Nb-35.4Zr alloy used as bone implant was fabricated through the powder metallurgy process. The effects of mechanical milling and sintering temperatures on the microstructure and mechanical properties were investigated systematically, before in vitro biocompatibility of full dense Ti-28Nb-35.4Zr alloy was evaluated by cytotoxicity tests. The results show that the mechanical milling and sintering temperatures have significantly effects on the density and mechanical properties of the alloys. The relative density of the alloy fabricated by the atomized powders at 1500 °C is only 83 ± 1.8%, while the relative density of the alloy fabricated by the ball-milled powders can rapidly reach at 96.4 ± 1.3% at 1500 °C. When the temperature was increased to 1550 °C, the alloy fabricated by ball-milled powders achieve full density (relative density is 98.1 ± 1.2%). The PM-fabricated Ti-28Nb-35.4Zr alloy by ball-milled powders at 1550 °C can achieve a wide range of mechanical properties, with a compressive yield strength of 1058 ± 35.1 MPa, elastic modulus of 50.8 ± 3.9 GPa, and hardness of 65.8 ± 1.5 HRA. The in vitro cytotoxicity test suggests that the PM-fabricated Ti-28Nb-35.4Zr alloy by ball-milled powders at 1550 °C has no adverse effects on MC3T3-E1 cells with cytotoxicity ranking of 0 grade, which is nearly close to ELI Ti-6Al-4V or CP Ti. These properties and the net-shape manufacturability makes PM-fabricated Ti-28Nb-35.4Zr alloy a low-cost, highly-biocompatible, Ti-based biomedical alloy. PMID:29601517

  6. The Mechanical Properties and In Vitro Biocompatibility of PM-Fabricated Ti-28Nb-35.4Zr Alloy for Orthopedic Implant Applications.

    PubMed

    Xu, Wei; Li, Ming; Wen, Cuie; Lv, Shaomin; Liu, Chengcheng; Lu, Xin; Qu, Xuanhui

    2018-03-30

    A biocompatible Ti-28Nb-35.4Zr alloy used as bone implant was fabricated through the powder metallurgy process. The effects of mechanical milling and sintering temperatures on the microstructure and mechanical properties were investigated systematically, before in vitro biocompatibility of full dense Ti-28Nb-35.4Zr alloy was evaluated by cytotoxicity tests. The results show that the mechanical milling and sintering temperatures have significantly effects on the density and mechanical properties of the alloys. The relative density of the alloy fabricated by the atomized powders at 1500 °C is only 83 ± 1.8%, while the relative density of the alloy fabricated by the ball-milled powders can rapidly reach at 96.4 ± 1.3% at 1500 °C. When the temperature was increased to 1550 °C, the alloy fabricated by ball-milled powders achieve full density (relative density is 98.1 ± 1.2%). The PM-fabricated Ti-28Nb-35.4Zr alloy by ball-milled powders at 1550 °C can achieve a wide range of mechanical properties, with a compressive yield strength of 1058 ± 35.1 MPa, elastic modulus of 50.8 ± 3.9 GPa, and hardness of 65.8 ± 1.5 HRA. The in vitro cytotoxicity test suggests that the PM-fabricated Ti-28Nb-35.4Zr alloy by ball-milled powders at 1550 °C has no adverse effects on MC3T3-E1 cells with cytotoxicity ranking of 0 grade, which is nearly close to ELI Ti-6Al-4V or CP Ti. These properties and the net-shape manufacturability makes PM-fabricated Ti-28Nb-35.4Zr alloy a low-cost, highly-biocompatible, Ti-based biomedical alloy.

  7. Interdiffusion and reaction between U and Zr

    NASA Astrophysics Data System (ADS)

    Park, Y.; Newell, R.; Mehta, A.; Keiser, D. D.; Sohn, Y. H.

    2018-04-01

    The microstructural development and diffusion kinetics were examined for the binary U vs. Zr system using solid-to-solid diffusion couples, U vs. Zr, annealed at 580 °C for 960 h, 650 °C for 480 h, 680 °C for 240 h, and 710 °C for 96 h. Scanning and transmission electron microscopies with X-ray energy dispersive spectroscopy were employed for detailed microstructural and compositional analyses. Interdiffusion and reaction in U vs. Zr diffusion couples primarily produced: δ-UZr2 solid solution (hP3) and α‧-U at 580 °C; and (γU,βZr) solid solution (cI2) and α‧-U at 650°, 680° and 710 °C. The α‧-phase was confirmed as a reduced variant of the α-U orthorhombic structure with lattice parameters, a × b × c = 2.65 × 5.40 × 4.75 (Å) with a negligible solubility for Zr at room temperature. Concentration profiles were examined to determine interdiffusion coefficients, integrated interdiffusion coefficients, and intrinsic diffusion coefficients using Boltzmann-Matano, Wagner, and Heumann analyses, respectively. Composition-dependence of interdiffusion coefficients were documented for α-U, δ-UZr2 (at 580 °C) and (γU,βZr) solid solution (at 650°, 680° and 710 °C). U was determined to intrinsically diffuse faster than Zr, approximately by an order of magnitude, in the δ-UZr2 at 580 °C, and (γU,βZr) phases at 650°, 680° and 710 °C. Based on Darken's approach, thermodynamic data available in literature were coupled to estimate the tracer diffusion coefficients and atomic mobilities of U and Zr.

  8. Irradiation testing of high density uranium alloy dispersion fuels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hayes, S.L.; Trybus, C.L.; Meyer, M.K.

    1997-10-01

    Two irradiation test vehicles have been designed, fabricated, and inserted into the Advanced Test Reactor in Idaho. Irradiation of these experiments began in August 1997. These irradiation tests were designed to obtain irradiation performance information on a variety of potential new, high-density dispersion fuels. Each of the two irradiation vehicles contains 32 microplates. Each microplate is aluminum clad, having an aluminum matrix phase and containing one of the following compositions as the fuel phase: U-10Mo, U-8Mo, U-6Mo, U-4Mo, U-9Nb-3Zr, U-6Nb-4Zr, U-5Nb-3Zr, U-6Mo-1Pt, U-6Mo-0.6Ru, U-10Mo-0.05Sn, U{sub 2}Mo, or U{sub 3}Si{sub 2}. These experiments will be discharged at peak fuel burnups ofmore » 40% and 80%. Of particular interest is the fission gas retention/swelling characteristics of these new fuel alloys. This paper presents the design of the irradiation vehicles and the irradiation conditions.« less

  9. Crystallographic study of Si and ZrN coated U-Mo atomised particles and of their interaction with al under thermal annealing

    NASA Astrophysics Data System (ADS)

    Zweifel, T.; Palancher, H.; Leenaers, A.; Bonnin, A.; Honkimaki, V.; Tucoulou, R.; Van Den Berghe, S.; Jungwirth, R.; Charollais, F.; Petry, W.

    2013-11-01

    A new type of high density fuel is needed for the conversion of research and test reactors from high to lower enriched uranium. The most promising one is a dispersion of atomized uranium-molybdenum (U-Mo) particles in an Al matrix. However, during in-pile irradiation the growth of an interaction layer between the U-Mo and the Al matrix strongly limits the fuel's performance. To improve the in-pile behaviour, the U-Mo particles can be coated with protective layers. The SELENIUM (Surface Engineering of Low ENrIched Uranium-Molybdenum) fuel development project consists of the production, irradiation and post-irradiation examination of 2 flat, full-size dispersion fuel plates containing respectively Si and ZrN coated U-Mo atomized powder dispersed in a pure Al matrix. In this paper X-ray diffraction analyses of the Si and ZrN layers after deposition, fuel plate manufacturing and thermal annealing are reported. It was found for the U-Mo particles coated with ZrN (thickness 1 μm), that the layer is crystalline, and exhibits lower density than the theoretical one. Fuel plate manufacturing does not strongly influence these crystallographic features. For the U-Mo particles coated with Si (thickness 0.6 μm), the measurements of the as received material suggest an amorphous state of the deposited layer. Fuel plate manufacturing strongly modifies its composition: Si reacts with the U-Mo particles and the Al matrix to grow U(Al, Si)3 and U3Si5 phases. Finally both coatings have shown excellent performances under thermal treatment by limiting drastically the U-Mo/Al interdiffusion. U(Al,Si)3 with two lattice parameters (4.16 Å and 4.21 Å), A distorted U3Si5 phase. Note that these phases were not present in the U-Mo(Si) powders. These phases are usually found in the Silicon rich diffusion layer (SiRDL) obtained in dispersed fuels (as-manufactured U-Mo/Al(Si) fuel plates [12,3] or annealed UMo(Si)/Al fuel rods [40]) as well as in diffusion couples (U-Mo/Al(Si7) [37-39] or U-Mo

  10. Micro-abrasion-corrosion behaviour of a biomedical Ti-25Nb-3Mo-3Zr-2Sn alloy in simulated physiological fluid.

    PubMed

    Wang, Zhenguo; Li, Yan; Huang, Weijiu; Chen, Xiaoli; He, Haoran

    2016-10-01

    The micro-abrasion-corrosion behaviour of the biomedical Ti-25Nb-3Mo-3Zr-2Sn alloy in Hank׳s solution with protein has been investigated using electrochemical measurements, tribological tests and scanning electron microscope (SEM) observations. The potentiodynamic polarization tests showed that the corrosion potential (Ecorr) exhibits the maximum value at the abrasive concentration of 0.05gcm(-3) despite of the load level. The tribological results indicated that the total material loss of the Ti-25Nb-3Mo-3Zr-2Sn alloy during micro-abrasion increased with the increasing abrasive concentration at a certain applied load. When the abrasive concentration is no more than 0.15gcm(-3), the total material loss increases with increasing load, while the total material loss exhibits the maximum value at a moderate load in case of higher abrasive concentration levels. This was ascribed to the three-body or two-body micro-abrasion-corrosion at different abrasive concentration levels. The wastage map, abrasion mode map and synergy map associated with the applied load and the abrasive concentration were constructed to evaluate the micro-abrasion-corrosion behaviour of the Ti-25Nb-3Mo-3Zr-2Sn alloy in potential biomedical applications. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Two-Dimensional Nb-Based M 4 C 3 Solid Solutions (MXenes)

    DOE PAGES

    Yang, Jian; Naguib, Michael; Ghidiu, Michael; ...

    2015-10-15

    Two new two-dimensional Nb 4C 3-based solid solutions (MXenes), (Nb 0.8,Ti 0.2) 4C 3T x and (Nb 0.8,Zr 0.2) 4C 3T x (where T is a surface termination) were synthesizedas confirmed by X-ray diffractionfrom their corresponding MAX phase precursors (Nb 0.8,Ti 0.2) 4AlC 3 and (Nb 0.8,Zr 0.2) 4AlC 3. In our report we discuss Zr-containing MXene. We also studied intercalation of Li ions into these two compositions, and Nb 4C 3T x in order to determine the potential of those materials for energy storage applications. Lithiation and delithiation peaks at 2.26 and 2.35 V, respectively, appeared in the casemore » of Nb 4C 3T x, but were not present in Nb 2CT x. After 20 cycles at a rate of C/4, the specific capacities of (Nb 0.8,Ti 0.2) 4C 3T xand (Nb 0.8,Ti 0.2) 4C 3T x were 158 and 132 mAh/g, respectively, both slightly lower than the capacity of Nb 4C 3T x.« less

  12. Oxidation/reduction studies on Zr yU 1-yO 2+x and delineation of a new orthorhombic phase in U-Zr-O system

    NASA Astrophysics Data System (ADS)

    Sali, S. K.; Kulkarni, N. K.; Krishnan, K.; Achary, S. N.; Tyagi, A. K.

    2008-08-01

    In this communication, we report the oxidation and reduction behavior of fluorite type solid solutions in U-Zr-O. The maximum solubility of ZrO 2 in UO 2 lattice could be achieved with a mild oxidizing followed by reducing conditions. The role of valency state of U is more dominating in controlling the unit cell parameters than the incorporated interstitial oxygen in the fluorite lattice. The controlled oxidation studies on U-Zr-O solid solutions led to the delineation of a new distorted fluorite lattice at the U:Zr=2:1 composition. The detailed crystal structure analysis of this ordered composition Zr 0.33U 0.67O 2.33 (ZrU 2O 7) has been carried from the powder XRD data. This phase crystallizes in an orthorhombically distorted fluorite type lattice with unit cell parameters: a=5.1678(2), b=5.4848(2), c=5.5557(2) Å and V=157.47(1) Å 3 (Space group: Cmcm, No. 63). The metal ions have distorted cubical polyhedra with anion similar to the fluorite structure. The excess anions are occupied in the interstitial (empty cubes) of the fluorite unit cell. The crystal structure and chemical analyses suggest approximately equal fractions of U 4+ and U 6+ in this compound. The details of the thermal stability as well as kinetics of formation and oxidation of ZrU 2O 7 are also studied using thermogravimetry.

  13. SEM in situ MiniCantilever Beam Bending of U-10Mo/Zr/Al Fuel Elements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mook, William; Baldwin, Jon K.; Martinez, Ricardo M.

    2014-06-16

    In this work, the fracture behavior of Al/Zr and Zr/dU-10Mo interfaces was measured via the minicantilever bend technique. The energy dissipation rates were found to be approximately 3.7-5 mj/mm 2 and 5.9 mj/mm 2 for each interface, respectively. It was found that in order to test the Zr/U-10Mo interface, location of the hinge of the cantilever was a key parameter. While this test could be adapted to hot cell use through careful alignment fixturing and measurement of crack lengths with an optical microscope (as opposed to SEM, which was used here out of convenience), machining of the cantilevers via MiniMillmore » in such a way as to locate the interfaces at the cantilever hinge, as well as proper placement of a femtosecond laser notch will continue to be key challenges in a hot cell environment.« less

  14. Corrosion behavior and oxide properties of Zr 1.1 wt%Nb 0.05 wt%Cu alloy

    NASA Astrophysics Data System (ADS)

    Park, Jeong-Yong; Choi, Byung-Kwon; Yoo, Seung Jo; Jeong, Yong Hwan

    2006-12-01

    The corrosion behavior and oxide properties of Zr-1.1 wt%Nb-0.05 wt%Cu (ZrNbCu) and Zircaloy-4 have been investigated. The corrosion rate of the ZrNbCu alloy was much lower than that of the Zirclaoy-4 in the 360 °C water and 360 °C PWR-simulating loop condition without a neutron flux and it was increased with an increase of the final annealing temperature from 470 °C to 570 °C. TEM observations revealed that the precipitates in the ZrNbCu were β-Nb and ZrNbFe-precipitate with β-Nb being more frequently observed and that the precipitates were more finely distributed in the ZrNbCu alloy. It was also observed that the oxides of the ZrNbCu and Zircaloy-4 consisted of two and seven layers, respectively, after 1000 days in the PWR-simulating loop condition and that the thickness of a fully-developed layer was higher in the ZrNbCu than in the Zircaloy-4. It was also found that the β-Nb in ZrNbCu was oxidized more slowly when compared to the Zr(Fe, Cr) 2 in Zirclaoy-4 when the precipitates in the oxide were observed by TEM. Cracks were observed in the vicinity of the oxidized Zr(Fe, Cr) 2, while no cracks were formed near β-Nb which had retained a metallic state. From the results obtained, it is suggested that the oxide formed on the ZrNbCu has a more protective nature against a corrosion when compared to that of the Zircaloy-4.

  15. Biomimetic Hydroxyapatite Growth on Functionalized Surfaces of Ti-6Al-4V and Ti-Zr-Nb Alloys

    NASA Astrophysics Data System (ADS)

    Pylypchuk, Ie V.; Petranovskaya, A. L.; Gorbyk, P. P.; Korduban, A. M.; Markovsky, P. E.; Ivasishin, O. M.

    2015-08-01

    A biomimetic approach for coating titanium-containing alloys with hydroxyapatite (HA) is reported in the article. Two types of Ti-containing alloys were chosen as an object for coating: Ti-6Al-4V (recommended for orthopedic application) and a novel highly biocompatible Ti-Zr-Nb alloy, with good mechanical compatibility due to a modulus that is more close to that of human bones (E ≈ 50 GPa instead of 110 GPa in Ti-6Al-4V). Coating process was carried out in a 10×-concentrated simulated body fluid (SBF)—synthetic analog of human body plasma. The effect of oxidized and carboxylated alloy surface on formation of biomimetic hydroxyapatite has been studied. By XRD, we found influence of thermal conditions on HA crystal formation and size. SEM images and Fourier transform infrared confirmed that hydroxyapatite with different morphology, crystallinity, and Ca/P ratio formed on metallic surfaces. X-ray photoelectron spectroscopy showed that in the Ti-6AL-4V sample the observed Ca/P ratio reach 0.97, whereas in the Ti-Zr-Nb sample the observed Ca/P ratio reach 1.15.

  16. High-field superconductivity in the Nb-Ti-Zr ternary system

    NASA Astrophysics Data System (ADS)

    Ralls, K. M.; Rose, R. M.; Wulff, J.

    1980-06-01

    Resistive critical current densities, critical fields, and normal-state electrical resistivities were obtained at 4.2 °K for 55 alloys in the Nb-Ti-Zr ternary alloy system, excepting Ti-Zr binary compositions. The resistive critical field as a function of ternary composition has a saddle point between the Nb-Ti and Nb-Zr binaries, so that ternary alloying in this system is not expected to result in higher critical fields than the binary alloys.

  17. High strength Sn-Mo-Nb-Zr alloy tubes and method of making same

    DOEpatents

    Cheadle, Brian A.

    1977-01-01

    Tubes for use in nuclear reactors fabricated from a quaternary alloy comprising 2.5-4.0 wt% Sn, 0.5-1.5 wt% Mo, 0.5-1.5 wt% Nb, balance essentially Zr. The tubes are fabricated by a process of hot extrusion, heat treatment, cold working to size and age hardening, so as to produce a microstructure comprising elongated .alpha. grains with an acicular transformed .beta. grain boundary phase.

  18. Color tone and interfacial microstructure of white oxide layer on commercially pure Ti and Ti-Nb-Ta-Zr alloys

    NASA Astrophysics Data System (ADS)

    Miura-Fujiwara, Eri; Mizushima, Keisuke; Watanabe, Yoshimi; Kasuga, Toshihiro; Niinomi, Mitsuo

    2014-11-01

    In this study, the relationships among oxidation condition, color tone, and the cross-sectional microstructure of the oxide layer on commercially pure (CP) Ti and Ti-36Nb-2Ta-3Zr-0.3O were investigated. “White metals” are ideal metallic materials having a white color with sufficient strength and ductility like a metal. Such materials have long been sought for in dentistry. We have found that the specific biomedical Ti alloys, such as CP Ti, Ti-36Nb-2Ta-3Zr-0.3O, and Ti-29Nb-13Ta-4.6Zr, form a bright yellowish-white oxide layer after a particular oxidation heat treatment. The brightness L* and yellowness +b* of the oxide layer on CP Ti and Ti-36Nb-2Ta-3Zr-0.3O increased with heating time and temperature. Microstructural observations indicated that the oxide layer on Ti-29Nb-13Ta-4.6Zr and Ti-36Nb-2Ta-3Zr-0.3O was dense and firm, whereas a piecrust-like layer was formed on CP Ti. The results obtained in this study suggest that oxide layer coating on Ti-36Nb-2Ta-3Zr-0.3O is an excellent technique for dental applications.

  19. Development of Ti-Nb-Zr alloys with high elastic admissible strain for temporary orthopedic devices.

    PubMed

    Ozan, Sertan; Lin, Jixing; Li, Yuncang; Ipek, Rasim; Wen, Cuie

    2015-07-01

    A new series of beta Ti-Nb-Zr (TNZ) alloys with considerable plastic deformation ability during compression test, high elastic admissible strain, and excellent cytocompatibility have been developed for removable bone tissue implant applications. TNZ alloys with nominal compositions of Ti-34Nb-25Zr, Ti-30Nb-32Zr, Ti-28Nb-35.4Zr and Ti-24.8Nb-40.7Zr (wt.% hereafter) were fabricated using the cold-crucible levitation technique, and the effects of alloying element content on their microstructures, mechanical properties (tensile strength, yield strength, compressive yield strength, Young's modulus, elastic energy, toughness, and micro-hardness), and cytocompatibilities were investigated and compared. Microstructural examinations revealed that the TNZ alloys consisted of β phase. The alloy samples displayed excellent ductility with no cracking, or fracturing during compression tests. Their tensile strength, Young's modulus, elongation at rupture, and elastic admissible strain were measured in the ranges of 704-839 MPa, 62-65 GPa, 9.9-14.8% and 1.08-1.31%, respectively. The tensile strength, Young's modulus and elongation at rupture of the Ti-34Nb-25Zr alloy were measured as 839 ± 31.8 MPa, 62 ± 3.6 GPa, and 14.8 ± 1.6%, respectively; this alloy exhibited the elastic admissible strain of approximately 1.31%. Cytocompatibility tests indicated that the cell viability ratios (CVR) of the alloys are greater than those of the control group; thus the TNZ alloys possess excellent cytocompatibility. Copyright © 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  20. Growth kinetics and microstructural evolution during hot isostatic pressing of U-10 wt.% Mo monolithic fuel plate in AA6061 cladding with Zr diffusion barrier

    NASA Astrophysics Data System (ADS)

    Park, Y.; Yoo, J.; Huang, K.; Keiser, D. D.; Jue, J. F.; Rabin, B.; Moore, G.; Sohn, Y. H.

    2014-04-01

    Phase constituents and microstructure changes in RERTR fuel plate assemblies as functions of temperature and duration of hot-isostatic pressing (HIP) during fabrication were examined. The HIP process was carried out as functions of temperature (520, 540, 560 and 580 °C for 90 min) and time (45-345 min at 560 °C) to bond 6061 Al-alloy to the Zr diffusion barrier that had been co-rolled with U-10 wt.% Mo (U10Mo) fuel monolith prior to the HIP process. Scanning and transmission electron microscopies were employed to examine the phase constituents, microstructure and layer thickness of interaction products from interdiffusion. At the interface between the U10Mo and Zr, following the co-rolling, the UZr2 phase was observed to develop adjacent to Zr, and the α-U phase was found between the UZr2 and U10Mo, while the Mo2Zr was found as precipitates mostly within the α-U phase. The phase constituents and thickness of the interaction layer at the U10Mo-Zr interface remained unchanged regardless of HIP processing variation. Observable growth due to HIP was only observed for the (Al,Si)3Zr phase found at the Zr/AA6061 interface, however, with a large activation energy of 457 ± 28 kJ/mole. Thus, HIP can be carried to improve the adhesion quality of fuel plate without concern for the excessive growth of the interaction layer, particularly at the U10Mo-Zr interface with the α-U, Mo2Zr, and UZr2 phases.

  1. (Nbx, Zr1-x)4AlC3 MAX Phase Solid Solutions: Processing, Mechanical Properties, and Density Functional Theory Calculations.

    PubMed

    Lapauw, Thomas; Tytko, Darius; Vanmeensel, Kim; Huang, Shuigen; Choi, Pyuck-Pa; Raabe, Dierk; Caspi, El'ad N; Ozeri, Offir; To Baben, Moritz; Schneider, Jochen M; Lambrinou, Konstantina; Vleugels, Jozef

    2016-06-06

    The solubility of zirconium (Zr) in the Nb4AlC3 host lattice was investigated by combining the experimental synthesis of (Nbx, Zr1-x)4AlC3 solid solutions with density functional theory calculations. High-purity solid solutions were prepared by reactive hot pressing of NbH0.89, ZrH2, Al, and C starting powder mixtures. The crystal structure of the produced solid solutions was determined using X-ray and neutron diffraction. The limited Zr solubility (maximum of 18.5% of the Nb content in the host lattice) in Nb4AlC3 observed experimentally is consistent with the calculated minimum in the energy of mixing. The lattice parameters and microstructure were evaluated over the entire solubility range, while the chemical composition of (Nb0.85, Zr0.15)4AlC3 was mapped using atom probe tomography. The hardness, Young's modulus, and fracture toughness at room temperature as well as the high-temperature flexural strength and E-modulus of (Nb0.85, Zr0.15)4AlC3 were investigated and compared to those of pure Nb4AlC3. Quite remarkably, an appreciable increase in fracture toughness was observed from 6.6 ± 0.1 MPa/m(1/2) for pure Nb4AlC3 to 10.1 ± 0.3 MPa/m(1/2) for the (Nb0.85, Zr0.15)4AlC3 solid solution.

  2. Composition, response to pressure, and negative thermal expansion in M IIB IVF 6 (M = Ca, Mg; B = Zr, Nb) [Composition, response to pressure, and negative thermal expansion in A IIB IVF 6; A - Ca, Mg, B - Zr, Nb

    DOE PAGES

    Hester, Brett R.; Hancock, Justin C.; Lapidus, Saul H.; ...

    2016-12-27

    CaZrF 6 has recently been shown to combine strong negative thermal expansion (NTE) over a very wide temperature range (at least 10–1000 K) with optical transparency from mid-IR into the UV range. Variable-temperature and high-pressure diffraction has been used to determine how the replacement of calcium by magnesium and zirconium by niobium(IV) modifies the phase behavior and physical properties of the compound. Similar to CaZrF 6, CaNbF 6 retains a cubic ReO 3-type structure down to 10 K and displays NTE up until at least 900 K. It undergoes a reconstructive phase transition upon compression to ~400 MPa at room temperature and pressure-induced amorphization above ~4 GPa. Prior to the first transition, it displays very strong pressure-induced softening. MgZrF 6 adopts a cubic ( Fmmore » $$\\bar{3}$$m) structure at 300 K and undergoes a symmetry-lowering phase transition involving octahedral tilts at ~100 K. Immediately above this transition, it shows modest NTE. Its’ thermal expansion increases upon heating, crossing through zero at ~500 K. Unlike CaZrF 6 and CaNbF 6, it undergoes an octahedral tilting transition upon compression (~370 MPa) prior to a reconstructive transition at ~1 GPa. Cubic MgZrF 6 displays both pressure-induced softening and stiffening upon heating. MgNbF 6 is cubic ( Fm$$\\bar{3}$$m) at room temperature, but it undergoes a symmetry-lowering octahedral tilting transition at ~280 K. It does not display NTE within the investigated temperature range (100–950 K). Furthermore the replacement of Zr(IV) by Nb(IV) leads to minor changes in phase behavior and properties, the replacement of the calcium by the smaller and more polarizing magnesium leads to large changes in both phase behavior and thermal expansion.« less

  3. Composition, response to pressure, and negative thermal expansion in M IIB IVF 6 (M = Ca, Mg; B = Zr, Nb) [Composition, response to pressure, and negative thermal expansion in A IIB IVF 6; A - Ca, Mg, B - Zr, Nb

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hester, Brett R.; Hancock, Justin C.; Lapidus, Saul H.

    CaZrF 6 has recently been shown to combine strong negative thermal expansion (NTE) over a very wide temperature range (at least 10–1000 K) with optical transparency from mid-IR into the UV range. Variable-temperature and high-pressure diffraction has been used to determine how the replacement of calcium by magnesium and zirconium by niobium(IV) modifies the phase behavior and physical properties of the compound. Similar to CaZrF 6, CaNbF 6 retains a cubic ReO 3-type structure down to 10 K and displays NTE up until at least 900 K. It undergoes a reconstructive phase transition upon compression to ~400 MPa at room temperature and pressure-induced amorphization above ~4 GPa. Prior to the first transition, it displays very strong pressure-induced softening. MgZrF 6 adopts a cubic ( Fmmore » $$\\bar{3}$$m) structure at 300 K and undergoes a symmetry-lowering phase transition involving octahedral tilts at ~100 K. Immediately above this transition, it shows modest NTE. Its’ thermal expansion increases upon heating, crossing through zero at ~500 K. Unlike CaZrF 6 and CaNbF 6, it undergoes an octahedral tilting transition upon compression (~370 MPa) prior to a reconstructive transition at ~1 GPa. Cubic MgZrF 6 displays both pressure-induced softening and stiffening upon heating. MgNbF 6 is cubic ( Fm$$\\bar{3}$$m) at room temperature, but it undergoes a symmetry-lowering octahedral tilting transition at ~280 K. It does not display NTE within the investigated temperature range (100–950 K). Furthermore the replacement of Zr(IV) by Nb(IV) leads to minor changes in phase behavior and properties, the replacement of the calcium by the smaller and more polarizing magnesium leads to large changes in both phase behavior and thermal expansion.« less

  4. New intermetallic MIrP (M=Ti, Zr, Nb, Mo) and MgRuP compounds related with MoM'P (M'=Ni and Ru) superconductor

    NASA Astrophysics Data System (ADS)

    Kito, Hijiri; Iyo, Akira; Wada, Toshimi

    2011-01-01

    Using a cubic-anvil high-pressure apparatus, ternary iridium phosphides MIrP (M=Ti, Zr, Nb, Mo) and MgRuP have been prepared by reaction of stoichiometric amounts of each metal and phosphide powders at around 2 Gpa and above 1523 K for the first time. The structure of these compounds prepared at high-pressure has been characterized by X-ray powder diffraction. Diffraction lines of these compounds are assigned by the index of the Co2Si-type structure. The electrical resistivity and the d.c magnetic susceptibility of MIrP (M=Ti, Zr, Nb, Mo) have measured at low temperatures. Unfortunately, no superconducting transition for MIrP (M=Ti, Zr, Nb, Mo) and MgRuP are observed down to 2 K.

  5. Ferroelectric performances and crystal structures of (Pb, La)(Zr, Ti, Nb)O{sub 3}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kitamura, Naoto; Division of Ecosystem Research, Research Institute for Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510; Mizoguchi, Takuma

    2014-02-15

    In this study, we focused on Nb and La substituted Pb(Zr, Ti)O{sub 3}: i.e., (Pb, La)(Zr, Ti, Nb)O{sub 3}. As for the samples, dependences of ferroelectric properties on La and Nb compositions were examined. In addition, the crystal structures were analyzed by the Rietveld method, and then a relationship between the metal compositions and the crystal structures were discussed. From P–E hysteresis loop measurements, it was found that the remanant polarization of Pb(Zr, Ti)O{sub 3} was increased by both the La and Nb substitutions although the heavy substitution of La had an undesirable effect. It was also indicated that themore » Curie temperature decreased with increasing La content. The Rietveld analysis using synchrotron X-ray diffraction patterns demonstrated that the structure distortion was relaxed by the La and Nb substitutions. Such a change in the crystals was well consistent with the harmful effects on the Curie temperature and the remanent polarization by the heavy La substitution. - Graphical abstract: Rietveld refinement pattern of 2 mol% PbSiO{sub 3}-added Pb{sub 0.95}La{sub 0.05}Zr{sub 0.50}Ti{sub 0.45}Nb{sub 0.05}O{sub 3} (synchrotron X-ray diffraction). Display Omitted - Highlights: • (Pb,La)(Zr,Ti,Nb)O{sub 3} were successfully synthesized. • Remanant polarization of Pb(Zr,Ti)O{sub 3} was improved by substitutions of La and Nb. • Crystal structures of (Pb,La)(Zr,Ti,Nb)O{sub 3} were refined and the distortions were estimated.« less

  6. Study of a ;hot; particle with a matrix of U-bearing metallic Zr: Clue to supercriticality during the Chernobyl nuclear accident

    NASA Astrophysics Data System (ADS)

    Pöml, P.; Burakov, B.

    2017-05-01

    This paper is dedicated to the 30th anniversary of the severe nuclear accident that occurred at the Chernobyl NPP on 26 April 1986. A detailed study on a Chernobyl "hot" particle collected from contaminated soil was performed. Optical and electron microscopy, as well as quantitative x-ray microbeam analysis methods were used to determine the properties of the sample. The results show that the particle (≈ 240 x 165 μm) consists of a metallic Zr matrix containing 2-3 wt. % U and bearing veins of an U,Nb admixture. The metallic Zr matrix contains two phases with different amounts of O with the atomic proportions (U,Zr,Nb)0.73O0.27 and (U,Zr,Nb)0.61O0.39. The results confirm the interaction between UO2 fuel and zircaloy cladding in the reactor core. To explain the process of formation of the particle, its properties are compared to laboratory experiments. Because of the metallic nature of the particle it is concluded that it must have formed during a very high temperature (> 2400∘C) process that lasted for only a very short time (few microseconds or less); otherwise the particle should have been oxidised. Such a rapid very high temperature process indicates that at least part of the reactor core could have been supercritical prior to an explosion as it was previously suggested in the literature.

  7. Growth kinetics and microstructural evolution during hot isostatic pressing of U-10 wt.% Mo monolithic fuel plate in AA6061 cladding with Zr diffusion barrier

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Y. Park; J. Yoo; K. Huang

    2014-04-01

    Phase constituents and microstructure changes in RERTR fuel plate assemblies as functions of temperature and duration of hot-isostatic pressing (HIP) during fabrication were examined. The HIP process was carried out as functions of temperature (520, 540, 560 and 580 °C for 90 min) and time (45–345 min at 560 °C) to bond 6061 Al-alloy to the Zr diffusion barrier that had been co-rolled with U-10 wt.% Mo (U10Mo) fuel monolith prior to the HIP process. Scanning and transmission electron microscopies were employed to examine the phase constituents, microstructure and layer thickness of interaction products from interdiffusion. At the interface betweenmore » the U10Mo and Zr, following the co-rolling, the UZr2 phase was observed to develop adjacent to Zr, and the a-U phase was found between the UZr2 and U10Mo, while the Mo2Zr was found as precipitates mostly within the a-U phase. The phase constituents and thickness of the interaction layer at the U10Mo-Zr interface remained unchanged regardless of HIP processing variation. Observable growth due to HIP was only observed for the (Al,Si)3Zr phase found at the Zr/AA6061 interface, however, with a large activation energy of 457 ± 28 kJ/mole. Thus, HIP can be carried to improve the adhesion quality of fuel plate without concern for the excessive growth of the interaction layer, particularly at the U10Mo-Zr interface with the a-U, Mo2Zr, and UZr2 phases.« less

  8. Microstructure and Elevated Temperature Properties of a Refractory TaNbHfZrTi Alloy

    DTIC Science & Technology

    2012-01-24

    composition of the TaNbHfZrTi alloy produced by vacuum arc melting Composition Ta Nb Hf Zr Ti at.% 19.68 18.93 20.46 21.23 19.7 wt. % 30.04 14.84 30.82 16.34...metallic materials with higher melting points, such as refractory molybdenum (Mo) and niobium ( Nb ) alloys, are examined as alternatives by academic and...creep resistance are the key properties of these alloys, since considerable alloy softening generally occurs at tempera- tures above *0.5 0.6 Tm

  9. Bone response to a novel Ti-Ta-Nb-Zr alloy.

    PubMed

    Stenlund, Patrik; Omar, Omar; Brohede, Ulrika; Norgren, Susanne; Norlindh, Birgitta; Johansson, Anna; Lausmaa, Jukka; Thomsen, Peter; Palmquist, Anders

    2015-07-01

    Commercially pure titanium (cp-Ti) is regarded as the state-of-the-art material for bone-anchored dental devices, whereas the mechanically stronger alloy (Ti-6Al-4V), made of titanium, aluminum (Al) and vanadium (V), is regarded as the material of choice for high-load applications. There is a call for the development of new alloys, not only to eliminate the potential toxic effect of Al and V but also to meet the challenges imposed on dental and maxillofacial reconstructive devices, for example. The present work evaluates a novel, dual-stage, acid-etched, Ti-Ta-Nb-Zr alloy implant, consisting of elements that create low toxicity, with the potential to promote osseointegration in vivo. The alloy implants (denoted Ti-Ta-Nb-Zr) were evaluated after 7 days and 28 days in a rat tibia model, with reference to commercially pure titanium grade 4 (denoted Ti). Analyses were performed with respect to removal torque, histomorphometry and gene expression. The Ti-Ta-Nb-Zr showed a significant increase in implant stability over time in contrast to the Ti. Further, the histological and gene expression analyses suggested faster healing around the Ti-Ta-Nb-Zr, as judged by the enhanced remodeling, and mineralization, of the early-formed woven bone and the multiple positive correlations between genes denoting inflammation, bone formation and remodeling. Based on the present experiments, it is concluded that the Ti-Ta-Nb-Zr alloy becomes osseointegrated to at least a similar degree to that of pure titanium implants. This alloy is therefore emerging as a novel implant material for clinical evaluation. Copyright © 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  10. Corrosion resistance of new beta type titanium alloy, Ti-29Nb-13Ta-4.6Zr in artificial saliva solution

    NASA Astrophysics Data System (ADS)

    Gunawarman; Giatmana, D. D.; Ilhamdi; Affi, J.; Fonna, S.; Niinomi, M.; Nakai, M.

    2018-05-01

    The corrosion resistance of Ti-29Nb-13Ta-4.6Zr (TNTZ) and Ti-6Al-4V alloys in oral cavity environment were studied by investigating its corrosion rate in artificial saliva solution. Corrosion measurement was conducted in 600 ml solution of Fusayama-Meyer artificial saliva containing 0.4g NaCl, 0.4g KCl, 0.795g CaCl2.2H2O, 0.69g NaH2PO4, and 1 g urea using a potentiostat controlled by a personal computer. The solution was maintained at pH 5.2 and controlled the temperature of 37°C to imitate oral cavity condition. After corrosion test, specimen surfaces were examined by SEM and EDX. The results show that the average corrosion rate of TNTZ and Ti-6Al-4V is 4,5×10-9 mmy-1 and 6,4×10-8 mmy-1, respectively, indicating that the corrosion resistance of TNTZ is slightly better than Ti-6Al-4V. This is suggested mainly due to the formation of multiple layers of Ti, Nb and Zr oxides in the surface of TNTZ. However, the formation of micro-pitting corrosion is more severe in TNTZ as compared to that of Ti-6Al-4V. The intense pitting corrosion in TNTZ is found strongly corresponded to its high impurities content and wide elemental segregation. It is recommended, therefore, a longer homogenizing process is required in TNTZ for reducing pitting corrosion attack. However, the details of corrosion mechanism are needed to be explored further.

  11. DFT investigation of electronic structures and magnetic properties of halides family MeHal3 (Me=Ti, Mo,Zr,Nb, Ru, Hal=Cl,Br,I) one dimensional structures

    NASA Astrophysics Data System (ADS)

    Kuzubov, A. A.; Kovaleva, E. A.; Popova, M. I.; Kholtobina, A. S.; Mikhaleva, N. S.; Visotin, M. A.; Fedorov, A. S.

    2017-10-01

    Using DFT GGA calculations, electronic structure and magnetic properties of wide family of transition metal trihalides (TMHal3) (Zr, Ti and Nb iodides, Mo, Ru, Ti and Zr bromides and Ti or Zr chlorides) are investigated. These structures consist of transition metal atoms chains surrounded by halides atoms. Chains are connected to each other by weak interactions. All TMHal3 compounds were found to be conductive along chain axis except of MoBr3 which is indirect gap semiconductor. It was shown that NbI3 and MoBr3 have large magnetic moments on metal atoms (1.17 and 1.81 μB, respectively) but other TMHal3 materials have small or zero magnetic moments. For all structures ferromagnetic and anti-ferromagnetic phases have almost the same energies. The causes of these properties are debated.

  12. Metallurgical characterization of melt-spun ribbons of U-5.4 wt%Nb alloy

    NASA Astrophysics Data System (ADS)

    Ma, Rong; Ren, Zhiyong; Tang, Qingfu; Chen, Dong; Liu, Tingyi; Su, Bin; Wang, Zhenhong; Luo, Chao

    2018-06-01

    The microstructures and micro-mechanical properties of the melt-spun ribbons of U-5.4 wt%Nb alloy were characterized using optical microscopy, scanning electron microscopy, X-ray diffraction and nanoindentation. Observed variations in microstructures and properties are related to the changes in ribbon thicknesses and cooling rates. The microstructures of the melt-spun ribbon consist of fine-scale columnar grains (∼1 μm) adjacent to the chill surface and coarse cellular grains in the remainder of the ribbon. In addition, the formation of inclusions in the ribbon is suppressed kinetically due to the high cooling rate during melt spinning. Compared with the water-quenched specimen prepared by traditional gravity casting and solution heat treatment, the elastic modulus values of the U-5.4 wt%Nb alloy were examined to vary with grain size and exhibited diverse energy dissipation capacities.

  13. Microstructure studies of interdiffusion behavior of U 3Si 2/Zircaloy-4 at 800 and 1000 °C

    DOE PAGES

    He, Lingfeng; Harp, Jason M.; Hoggan, Rita E.; ...

    2017-01-22

    Fuel swelling during normal reactor operations could lead to unfavorable chemical interactions when in contact with its cladding. As new fuel types are developed, it is crucial to understand the interaction behavior between fuel and its cladding. Diffusion experiments between U 3Si 2 and Zricaloy-4 (Zry-4) were conducted at 800 and 1000°C up to 100 hours. The microstructure of pristine U 3Si 2 and U 3Si 2/Zry-4 interdiffusion products were examined using scanning electron microscopy (SEM) and transmission electron microscopy (TEM) equipped with an energy dispersive X-ray spectroscopy (EDS) system. The primary interdiffusion product observed at 800°C is ZrSi 2,more » with secondary phases of U-Zr in the Zry-4, and Fe-Cr-W-Zr-Si phases at Zry-4/ZrSi 2 interface and Fe-Cr-U-Si phases at ZrSi 2/U-Si interface. As a result, the primary interdiffusion products at 1000°C were Zr 2Si, U-Zr-Fe-Ni, U, U-Zr, and a low melting point phase U 6Fe.« less

  14. Microstructural characterization of a thin film ZrN diffusion barrier in an As-fabricated U-7Mo/Al matrix dispersion fuel plate

    NASA Astrophysics Data System (ADS)

    Keiser, Dennis D.; Perez, Emmanuel; Wiencek, Tom; Leenaers, Ann; Van den Berghe, Sven

    2015-03-01

    The United States High Performance Research Reactor Fuel Development program is developing low enriched uranium fuels for application in research and test reactors. One concept utilizes U-7 wt.% Mo (U-7Mo) fuel particles dispersed in Al matrix, where the fuel particles are coated with a 1 μm-thick ZrN coating. The ZrN serves as a diffusion barrier to eliminate a deleterious reaction that can occur between U-7Mo and Al when a dispersion fuel is irradiated under aggressive reactor conditions. To investigate the final microstructure of a physically-vapor-deposited ZrN coating in a dispersion fuel plate after it was fabricated using a rolling process, characterization samples were taken from a fuel plate that was fabricated at 500 °C using ZrN-coated U-7Mo particles, Al matrix and AA6061 cladding. Scanning electron and transmission electron microscopy analysis were performed. Data from these analyses will be used to support future microstructural examinations of irradiated fuel plates, in terms of understanding the effects of irradiation on the ZrN microstructure, and to determine the role of diffusion barrier microstructure in eliminating fuel/matrix interactions during irradiation. The as-fabricated coating was determined to be cubic-ZrN (cF8) phase. It exhibited a columnar microstructure comprised of nanometer-sized grains and a region of relatively high porosity, mainly near the Al matrix. Small impurity-containing phases were observed at the U-7Mo/ZrN interface, and no interaction zone was observed at the ZrN/Al interface. The bonding between the U-7Mo and ZrN appeared to be mechanical in nature. A relatively high level of oxygen was observed in the ZrN coating, extending from the Al matrix in the ZrN coating in decreasing concentration. The above microstructural characteristics are discussed in terms of what may be most optimal for a diffusion barrier in a dispersion fuel plate application.

  15. Phase composition, microstructure, and mechanical properties of porous Ti-Nb-Zr alloys prepared by a two-step foaming powder metallurgy method.

    PubMed

    Rao, X; Chu, C L; Zheng, Y Y

    2014-06-01

    Porous Ti-Nb-Zr alloys with different porosities from 6.06 to 62.8% are prepared by a two-step foaming powder metallurgy method using TiH2, Nb, and Zr powders together with 0 to 50wt% of NH4HCO3. The effects of the amounts of Nb and Zr as well as the sintering temperature (1473 to 1673K) on their phase composition, porosity, morphology, and mechanical characteristics are investigated. By controlling the porosity, Nb and Zr concentrations as well as the sintering temperature, porous Ti-Nb-Zr alloys with different mechanical properties can be obtained, for example, the hardness between 290 and 63HV, the compressive strength between 1530.5 and 73.4MPa, and the elastic modulus between 10.8 and 1.2GPa. The mechanical properties of the sintered porous Ti-Nb-Zr alloys can be tailored to match different requirements for the human bones and are thus potentially useful in the hard tissue implants. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Preparation and electrochemical properties of Zr-site substituted Li7La3(Zr2-xMx)O12 (M = Ta, Nb) solid electrolytes

    NASA Astrophysics Data System (ADS)

    Huang, Mian; Shoji, Mao; Shen, Yang; Nan, Ce-Wen; Munakata, Hirokazu; Kanamura, Kiyoshi

    2014-09-01

    Li7La3Zr2O12 (LLZ) solid electrolytes with Zr site partially substituted by Ta and Nb elements were prepared via the conventional solid-state reaction. All the compositions could lead to the cubic garnet-type structure after sintering at 1150 °C. The use of γ-Al2O3 as a sintering aid in the preparation of doped LLZ was studied. It was shown that Al could help to improve the micro-structure for Nb doping, but not necessary for Ta doping. The Ta and Nb doping enhanced the ionic conductivity at 25 °C to 4.09 × 10-4 S cm-1 and 4.50 × 10-4 S cm-1, respectively. A conductivity as high as 1.23 × 10-3 S cm-1 was obtained when measured at 50 °C in air for the Nb-doped LLZ. All-solid-state batteries with LLZTa and LLZNb solid electrolytes were assembled and tested. The cyclic voltammetry (CV) measurement indicated the successful working of the batteries.

  17. Corrosion-Resistant Ti- xNb- xZr Alloys for Nitric Acid Applications in Spent Nuclear Fuel Reprocessing Plants

    NASA Astrophysics Data System (ADS)

    Manivasagam, Geetha; Anbarasan, V.; Kamachi Mudali, U.; Raj, Baldev

    2011-09-01

    This article reports the development, microstructure, and corrosion behavior of two new alloys such as Ti-4Nb-4Zr and Ti-2Nb-2Zr in boiling nitric acid environment. The corrosion test was carried out in the liquid, vapor, and condensate phases of 11.5 M nitric acid, and the potentiodynamic anodic polarization studies were performed at room temperature for both alloys. The samples subjected to three-phase corrosion testing were characterized using scanning electron microscopy (SEM) and energy-dispersive X-ray microanalysis (EDAX). As Ti-2Nb-2Zr alloy exhibited inferior corrosion behavior in comparison to Ti-4Nb-4Zr in all three phases, weldability and heat treatment studies were carried out only on Ti-4Nb-4Zr alloy. The weldability of the new alloy was evaluated using tungsten inert gas (TIG) welding processes, and the welded specimen was thereafter tested for its corrosion behavior in all three phases. The results of the present investigation revealed that the newly developed near alpha Ti-4Nb-4Zr alloy possessed superior corrosion resistance in all three phases and excellent weldability compared to conventional alloys used for nitric acid application in spent nuclear reprocessing plants. Further, the corrosion resistance of the beta heat-treated Ti-4Nb-4Zr alloy was superior when compared to the sample heat treated in the alpha + beta phase.

  18. U-Zr alloy: XPS and TEM study of surface passivation

    NASA Astrophysics Data System (ADS)

    Paukov, M.; Tkach, I.; Huber, F.; Gouder, T.; Cieslar, M.; Drozdenko, D.; Minarik, P.; Havela, L.

    2018-05-01

    Surface reactivity of Uranium metal is an important factor limiting its practical applications. Bcc alloys of U with various transition metals are much less reactive than pure Uranium. So as to specify the mechanism of surface protection, we have been studying the U-20 at.% Zr alloy by photoelectron spectroscopy and transmission electron microscopy. The surface was studied in as-obtained state, in various stages of surface cleaning, and during an isochronal annealing cycle. The analysis based on U-4f, Zr-3p, and O-1 s spectra shows that a Zr-rich phase segregates at the surface at temperatures exceeding 550 K, which provides a self-assembled coating. The comparison of oxygen exposure of the stoichiometric and coated surfaces shows that the coating is efficiently preventing the oxidation of uranium even at elevated temperatures. The coating can be associated with the UZr2+x phase. TEM study indicated that the coating is about 20 nm thick. For the clean state, the U-4f core-level lines of the bcc alloy are practically identical to those of α-U, revealing similar delocalization of the 5f electronic states.

  19. Effect of Zr substitution on the thermal and mechanical properties of Rh3A (A=Nb,Ta) - A theoretical study

    NASA Astrophysics Data System (ADS)

    Manjula, M.; Sundareswari, M.; Viswanathan, E.

    2018-04-01

    The present study focuses upon the thermal and mechanical properties of Rh3ZrxA1-x (A= Nb,Ta) ternary alloys using ab initio density functional theory where Nb/Ta is substituted by Zr. These ternary alloys were investigated for the first time using elastic moduli, hardness, Debye temperature, Debye average velocity and Gruneisen parameter. Further the ductile/brittle analysis was made by using Cauchy pressure, degree of brittleness and Poisson's ratio. Systematic addition of Zr with Rh3Nb/Ta shows that Rh3Zr0.75Nb0.25, Rh3Zr0.875Nb0.125 and Rh3Zr0.875Ta0.125combinations are more ductile. Further the melting temperature of Rh3Zr0.75Nb0.25(2227 K), Rh3Zr0.875Nb0.125(2200 K) and Rh3Zr0.875Ta0.125 (2134 K) alloys are nearer to those of their parent binary alloys namely Rh3Nb (2636 K) and Rh3Ta (2562 K). Their corresponding density values (10.84 gm/cm3, 10.77 gm/cm3 and 11.09 gm/cm3) are found to be much less than those of their parent materials.

  20. Skin effect suppression for Cu/CoZrNb multilayered inductor

    NASA Astrophysics Data System (ADS)

    Sato, Noriyuki; Endo, Yasushi; Yamaguchi, Masahiro

    2012-04-01

    The Cu/Co85Zr3Nb12 multilayer is studied as a conductor of a spiral inductor to suppress the skin effect at the 5 GHz range (matches IEEE 802.11 a standard) using negative-permeability in CoZrNb films beyond the ferromagnetic resonance frequency. The skin effect suppression becomes remarkable when the thickness of Cu in each period of the multilayer, tCu, is less than the skin depth of Cu at the targeting frequency. For the 5 GHz operation, tCu ≤ 750 nm. The resistance of the Cu/CoZrNb multilayered spiral inductor decreases as much as 8.7%, while keeping the same inductance of 1.1 nH as that of a similar air core. Accordingly, Q = 16. Therefore, the proposed method can contribute to realize a high-Q spiral inductor. We also study the potentially applicable frequency of this method. Given a soft magnetic material with Ms = 105 emu/cc and Hk = 5 Oe, the method can be applied at 700 MHz, the lowermost carrier frequency band for the 4th generation cellular phone system.

  1. Dielectric and phonon spectroscopy of Nb-doped Pb(Zr1-yTiy)O3-CoFe2O4 composites

    NASA Astrophysics Data System (ADS)

    Sakanas, Aurimas; Nuzhnyy, Dmitry; Grigalaitis, Robertas; Banys, Juras; Borodavka, Fedir; Kamba, Stanislav; Ciomaga, Cristina Elena; Mitoseriu, Liliana

    2017-06-01

    Broad-band dielectric and phonon response of Nb-doped (1-x)Pb(Zr1-yTiy)O3-xCoFe2O4 composites with x = 10%-30% was investigated between 0.1 MHz and 100 THz. At room temperature, a broad distribution of relaxation times causes a constant dielectric loss below 1 GHz. Above room temperature, a strong Maxwell-Wagner relaxation process dominates below 1 GHz due to the conductivity of CoFe2O4 (CF). Two additional relaxation processes are seen between 1 GHz and 1 THz. The lower-frequency one, coming from domain wall motion, disappears above TC ≈ 650 K. The higher-frequency component slows down on heating towards TC, because it is the central mode, which drives the ferroelectric phase transition. Time-domain THz transmission and infrared reflectivity spectra reveal a mixture of polar phonons from both ferroelectric Nb-doped Pb(Zr,Ti)O3 (PZTN) and magnetic CoFe2O4 (CF) components, while the micro-Raman scattering spectra allow to study phonons from both components separately. Similar temperature behavior of phonons as in the pure PZTN and CF was observed. While in CoFe2O4 the Raman-active phonons gradually reduce their intensities on heating due to increasing conductivity and related reduced Raman-scattering volume, some phonons in PZTN disappear above TC due to change of selection rules in the paraelectric phase. Like in the pure Pb(Zr,Ti)O3, the soft phonon and central modes were also observed.

  2. An intermetallic powder-in-tube approach to increased flux-pinning in Nb 3Sn by internal oxidation of Zr

    DOE PAGES

    Motowidlo, Leszek R.; Lee, P. J.; Tarantini, C.; ...

    2017-11-28

    We report on the development of multifilamentary Nb 3Sn superconductors by a versatile powder-in-tube technique (PIT) that demonstrates a simple pathway to a strand with a higher density of flux-pinning sites that has the potential to increase critical current density beyond present levels. The approach uses internal oxidation of Zr-alloyed Nb tubes to produce Zr oxide particles within the Nb 3Sn layer that act as a dispersion of artificial pinning centres (APCs). In this design, SnO 2 powder is mixed with Cu 5Sn 4 powder within the PIT core that supplies the Sn for the A15 reaction with Nb1Zr filamentmore » tubes. Initial results show an average grain size of ~38 nm in the A15 layer, compared to the 90–130 nm of typical APC-free high-J c strands made by conventional PIT or Internal Sn processing. Furthermore, there is a shift in the peak of the pinning force curve from H/H irr of ~0.2 to ~0.3 and the pinning force curves can be deconvoluted into grain boundary and point-pinning components, the point-pinning contribution dominating for the APC Nb-1wt%Zr strands.« less

  3. An intermetallic powder-in-tube approach to increased flux-pinning in Nb3Sn by internal oxidation of Zr

    NASA Astrophysics Data System (ADS)

    Motowidlo, L. R.; Lee, P. J.; Tarantini, C.; Balachandran, S.; Ghosh, A. K.; Larbalestier, D. C.

    2018-01-01

    We report on the development of multifilamentary Nb3Sn superconductors by a versatile powder-in-tube technique (PIT) that demonstrates a simple pathway to a strand with a higher density of flux-pinning sites that has the potential to increase critical current density beyond present levels. The approach uses internal oxidation of Zr-alloyed Nb tubes to produce Zr oxide particles within the Nb3Sn layer that act as a dispersion of artificial pinning centres (APCs). In this design, SnO2 powder is mixed with Cu5Sn4 powder within the PIT core that supplies the Sn for the A15 reaction with Nb1Zr filament tubes. Initial results show an average grain size of ˜38 nm in the A15 layer, compared to the 90-130 nm of typical APC-free high-J c strands made by conventional PIT or Internal Sn processing. There is a shift in the peak of the pinning force curve from H/H irr of ˜0.2 to ˜0.3 and the pinning force curves can be deconvoluted into grain boundary and point-pinning components, the point-pinning contribution dominating for the APC Nb-1wt%Zr strands.

  4. An intermetallic powder-in-tube approach to increased flux-pinning in Nb 3Sn by internal oxidation of Zr

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Motowidlo, Leszek R.; Lee, P. J.; Tarantini, C.

    We report on the development of multifilamentary Nb 3Sn superconductors by a versatile powder-in-tube technique (PIT) that demonstrates a simple pathway to a strand with a higher density of flux-pinning sites that has the potential to increase critical current density beyond present levels. The approach uses internal oxidation of Zr-alloyed Nb tubes to produce Zr oxide particles within the Nb 3Sn layer that act as a dispersion of artificial pinning centres (APCs). In this design, SnO 2 powder is mixed with Cu 5Sn 4 powder within the PIT core that supplies the Sn for the A15 reaction with Nb1Zr filamentmore » tubes. Initial results show an average grain size of ~38 nm in the A15 layer, compared to the 90–130 nm of typical APC-free high-J c strands made by conventional PIT or Internal Sn processing. Furthermore, there is a shift in the peak of the pinning force curve from H/H irr of ~0.2 to ~0.3 and the pinning force curves can be deconvoluted into grain boundary and point-pinning components, the point-pinning contribution dominating for the APC Nb-1wt%Zr strands.« less

  5. Thermal stability and specular reflection behaviour of CoNbZr-based bottom spin valves with nano-oxide layer

    NASA Astrophysics Data System (ADS)

    Kim, Jong Soo; Lee, Seong-Rae

    2004-06-01

    The thermal stability and specularity aspects of a CoNbZr-based bottom spin valve (SV) employing a nano-oxide layer (NOL) were investigated. The magnetoresistance (MR) ratio of the as-deposited CoNbZr-based bottom SV increased by 62% (from 6.3 to 10.2%) with incorporation of the NOL. The enhancement of the MR ratio was considered to be due to the specular effect ( increased from 0.722 to 1.363 cm) of the NOL. The MR ratio of a Ta-based bottom SV decreased by about 45% (from 6.9 to 3.8%) when the samples were annealed at 300 °C for 240 min. By contrast, the MR ratio of the CoNbZr-based bottom SV with NOL increase d by 14 % (from 10.2 to 11.7%). The root mean square roughness value of the CoNbZr layer (0.07 nm) was superior to that of the Ta layer (0.43 nm). Although Mn in IrMn diffused out to the surface through the active layers resulting in the formation of Mn oxide at the surface in the CoNbZr-based bottom SV, no trace of Mn was found in the active layers and no significant degradation occurred.

  6. Thermal stability of the microstructure of an aged Nb-Zr-C alloy

    NASA Technical Reports Server (NTRS)

    Uz, Mehmet; Titran, Robert H.

    1990-01-01

    The effects of thermal aging with and without an applied stress on the microstructure of a Nb-Zr-C alloy containing 0.9 wt percent Zr and 0.06 wt percent C were studied. Chemical analysis, metallographic examination, energy dispersive x-ray spectra of the bulk material, and chemical and x-ray analyses of the phase-extracted residue were used to characterize the microstructure. The samples examined were from a creep strength study involving hot and cold working, and various combinations of exposure to temperatures ranging from 1350 to 1755 K with and without applied load for times as long as 34,000 plus hours. The results showed that the initial microstructure consisted primarily of orthorombic precipitates of Nb sub 2 C which were partially or completely transformed to face-centered cubic carbides of nb and Zr, (Zr, Nb)C, upon prolonged exposure to elevated temperatures. Furthermore, it was found that the microstructure of the alloy is extremely stable owing to the very finely distributed precipitates throughout its matrix and along the grain boundaries. The lattice parameters of the cubic carbides were determed to vary from 0.458 to 0.465 nm as the Zr/Nb ratio varied from 38/62 to 75/25.

  7. Direct Cast U-6Nb – 2017 Progress on Cylindrical Castings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aikin, Jr., Robert M.

    2017-10-04

    This report describes work to further develop a sound technical basis and best practices for mold design and process parameters for the Direct Casting of U-6wt%Nb components. One major challenge to the production of U-6Nb components is the propensity for niobium segregation during casting and solidification. This is especially true for cylindrical castings where the vertical side walls allow flotation of Nb resulting in severe inverse macrosegregation. In this work, a small (120 mm diameter by 180 mm tall) and large cylinder (250 mm diameter by 310 mm tall) are examined with a focus on reducing, or eliminating, niobium segregation.more » It is demonstrated that counter gravity casting (top-to-bottom solidification) can be used to minimize segregation in the small cylinder. Attempts to counter gravity cast the large cylinder were unsuccessful, in large part due to size limitations of the current furnace. A path forward for casting of the large cylinders is discussed.« less

  8. Unique dielectric tunability of Pb0.99[(Zr0.6Sn0.4)0.94Ti0.06]0.98Nb0.02O3 antiferroelectric ceramics

    NASA Astrophysics Data System (ADS)

    Li, Lei; Spreitzer, Matjaž; Suvorov, Danilo; Chen, Xiang Ming

    2016-08-01

    The tunable dielectric properties of Pb0.99[(Zr0.6Sn0.4)0.94Ti0.06]0.98Nb0.02O3 antiferroelectric ceramics were investigated, and high relative tunability of 49% was obtained at 25 °C under a low bias electric field of 50 kV/cm. Abrupt changes and a significant hysteresis in dielectric constant and dielectric loss against bias electric field were observed, which are very different from the previously reported antiferroelectric materials. The unique dielectric tunability is attributed to the square-shaped double hysteresis loop and indicates the possible applications in some special tunable devices, such as an electrically-controlled switch. Pb0.99[(Zr0.6Sn0.4)0.94Ti0.06]0.98Nb0.02O3 ceramics also exhibit unique dielectric tunability at -5 °C. Abrupt changes in dielectric constant and dielectric loss were observed when the bias electric field increased to 31 kV/cm for the fresh sample, which is similar to the antiferroelectric-like dielectric tunability at 25 °C. However, the dielectric tunability was ferroelectric-like in the following measurement. This response is consistent with the hysteresis loop and can be explained by the electric field-assisted irreversible antiferroelectric-ferroelectric phase transition.

  9. Enhancement of wear and corrosion resistance of low modulus β-type Zr-20Nb-xTi (x=0, 3) dental alloys through thermal oxidation treatment.

    PubMed

    Zhang, Jianfeng; Gan, Xiaxia; Tang, Hongqun; Zhan, Yongzhong

    2017-07-01

    In order to obtain material with low elastic modulus, good abrasion resistance and high corrosion stability as screw for dental implant, the biomedical Zr-20Nb and Zr-20Nb-3Ti alloy with low elastic modulus were thermal oxidized respectively at 700°C for 1h and 600°C for 1.25h to obtain the compact oxidized layer to improve its wear resistance and corrosion resistance. The results show that smooth compact oxidized layer (composed of monoclinic ZrO 2 , tetragonal ZrO 2 and 6ZrO 2 -Nb 2 O 5 ) with 22.6μm-43.5μm thickness and 1252-1306HV hardness can be in-situ formed on the surface of the Zr-20Nb-xTi (x=0, 3). The adhesion of oxidized layers to the substrates is determined to be 58.35-66.25N. The oxidized Zr-20Nb-xTi alloys reveal great improvement of the pitting corrosion resistance in comparison with the un-oxidized alloys. In addition, the oxidized Zr-20Nb-3Ti exhibits sharply reduction of the corrosion rates and the oxidized Zr-20Nb shows higher corrosion rates than un-oxidized alloys, which is relevant with the content of the t-ZrO 2 . Wear test in artificial saliva demonstrates that the wear losses of the oxidized Zr-20Nb-xTi (x=0, 3) are superior to pure Ti. All of the un-oxidized Zr-20Nb-xTi (x=0, 3) alloys suffer from serious adhesive wear due to its high plasticity. Because of the protection from compact oxide layer with high adhesion and high hardness, the coefficients of friction and wear losses of the oxidized Zr-20Nb-xTi (x=0, 3) alloys decrease 50% and 95%, respectively. The defects on the oxidized Zr-20Nb have a negative effect on the friction and wear properties. In addition, after the thermal oxidation, compression test show that elastic modulus and strength of Zr-20Nb-xTi (x=0, 3) increase slightly with plastic deformation after 40% of transformation. Furthermore, stripping of the oxidized layer from the alloy matrix did not occur during the whole experiments. As the surface oxidized Zr-20Nb-3Ti alloy has a combination of excellent performance

  10. Molecular dynamics simulation of liquid structure for undercooled Zr-Nb alloys assisted with electrostatic levitation experiments

    NASA Astrophysics Data System (ADS)

    Yang, S. J.; Hu, L.; Wang, L.; Wei, B.

    2018-06-01

    The liquid structures of undercooled Zr90Nb10, Zr70Nb30 and Zr50Nb50 alloys were studied by molecular dynamics simulation combined with electrostatic levitation experiments. The densities of three alloys were measured by electrostatic levitation to modify the Zr-Nb potential functions by adjusting parameters in potential functions. In simulation, the atomic packing in Zr-Nb alloys was more ordered at lower temperatures. The Voronoi tessellation analyses indicated Nb-centered clusters were easier to form than Zr-centered clusters although the Nb content was less than 50%. The partial pair distribution functions showed that the interactions among Zr atoms are quite different to that among Nb atoms.

  11. Effects of heat treatment on U-Mo fuel foils with a zirconium diffusion barrier

    NASA Astrophysics Data System (ADS)

    Jue, Jan-Fong; Trowbridge, Tammy L.; Breckenridge, Cynthia R.; Moore, Glenn A.; Meyer, Mitchell K.; Keiser, Dennis D.

    2015-05-01

    A monolith fuel design based on U-Mo alloy has been selected as the fuel type for conversion of the United States' high performance research reactors (HPRRs) from highly enriched uranium (HEU) to low-enriched uranium (LEU). In this fuel design, a thin layer of zirconium is used to eliminate the direct interaction between the U-Mo fuel meat and the aluminum-alloy cladding during irradiation. The co-rolling process used to bond the Zr barrier layer to the U-Mo foil during fabrication alters the microstructure of both the U-10Mo fuel meat and the U-Mo/Zr interface. This work studied the effects of post-rolling annealing treatment on the microstructure of the co-rolled U-Mo fuel meat and the U-Mo/Zr interaction layer. Microscopic characterization shows that the grain size of U-Mo fuel meat increases with the annealing temperature, as expected. The grain sizes were ∼9, ∼13, and ∼20 μm for annealing temperature of 650, 750, and 850 °C, respectively. No abnormal grain growth was observed. The U-Mo/Zr interaction-layer thickness increased with the annealing temperature with an Arrhenius constant for growth of 184 kJ/mole, consistent with a previous diffusion-couple study. The interaction layer thickness was 3.2 ± 0.5 μm, 11.1 ± 2.1 μm, 27.1 ± 0.9 μm for annealing temperature of 650, 750, to 850 °C, respectively. The homogeneity of Mo improves with post rolling annealing temperature and with U-Mo coupon homogenization. The phases in the Zr/U-Mo interaction layer produced by co-rolling, however, differ from those reported in the previous diffusion couple studies.

  12. Superelasticity, corrosion resistance and biocompatibility of the Ti-19Zr-10Nb-1Fe alloy.

    PubMed

    Xue, Pengfei; Li, Yan; Li, Kangming; Zhang, Deyuan; Zhou, Chungen

    2015-05-01

    Microstructure, mechanical properties, superelasticity and biocompatibility of a Ti-19Zr-10Nb-1Fe alloy are investigated. X-ray diffraction spectroscopy and transmission electron microscopy observations show that the as-cast Ti-19Zr-10Nb-1Fe alloy is composed of α' and β phases, but only the β phase exists in the as-rolled and as-quenched alloys. The tensile stress-strain tests indicate that the as-quenched alloy exhibits a good combination of mechanical properties with a large elongation of 25%, a low Young's modulus of 59 GPa and a high ultimate tensile stress of 723 MPa. Superelastic recovery behavior is found in the as-quenched alloy during tensile tests, and the corresponding maximum of superelastic strain is 4.7% at the pre-strain of 6%. A superelastic recovery of 4% with high stability is achieved after 10 cyclic loading-unloading training processes. Potentiodynamic polarization and ion release measurements indicate that the as-quenched alloy shows a lower corrosion rate in Hank's solution and a much less ion release rate in 0.9% NaCl solution than those of the NiTi alloys. Cell culture results indicate that the osteoblasts' adhesion and proliferation are similar on both the Ti-19Zr-10Nb-1Fe and NiTi alloys. A better hemocompatibility is confirmed for the as-quenched Ti-19Zr-10Nb-1Fe alloy, attributed to more stable platelet adhesion and small activation degree, and a much lower hemolysis rate compared with the NiTi alloy. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Ternary aurides La4In3Au10 and Yb4In3Au10 and platinide U4In3Pt10 with ordered Zr7Ni10 type structure

    NASA Astrophysics Data System (ADS)

    Muts, Ihor; Kharkhalis, Anton; Hlukhyy, Viktor; Kaczorowski, Dariusz; Rodewald, Ute Ch.; Pöttgen, Rainer; Zaremba, Vasyl` I.

    2017-09-01

    The ternary aurides La4In3Au10 and Yb4In3Au10 and the platinide U4In3Pt10 with ordered Zr7Ni10 type structure were synthesized from the elements by induction-melting in sealed tantalum tubes or via arc-melting. The polycrystalline samples were characterized by powder X-ray diffraction and the structures were refined from single crystal X-ray diffractometer data: Cmce, a = 1426.7(3), b = 1020.3(2), c = 1025.2(2) pm, wR2 = 0.0441, 1510 F2 values, 46 variables for La4In3Au10, a = 1361.5(3), b = 998.3(2), c = 1007.8(2), wR2 = 0.0804, 1404 F2 values, 46 variables for Yb4In3Au10 and a = 1344.4(3), b = 973.9(2), c = 978.9(2), wR2 = 0.0922, 741 F2 values, 48 variables for U4.15In3.03Pt9.82 (with small degrees of In/U, respectively Pt/In mixing on Wyckoff sites 4a and 8 f). The La4In3Au10, Yb4In3Au10 and U4In3Pt10 structures contain pronounced two-dimensional gold, respectively platinum substructures which are filled and condensed by two crystallographically independent indium and rare earth atoms. The crystal chemical features clearly classify these intermetallics as aurides and platinides. The physical properties of U4In3Pt10 were characterized by means of magnetic and electrical transport measurements. The compound exhibits metallic conductivity and shows no magnetic ordering down to 1.72 K. Its magnetic behavior is governed by hybridization between 5f and ligand electrons that results in significant delocalization of the 5f states.

  14. Phase stability, crystal structure and magnetism in (U1-xNbx)2 Ni21B6 and (UyNb1-y)3Ni20B6

    NASA Astrophysics Data System (ADS)

    Provino, Alessia; Bhattacharya, Amitava; Dhar, Sudesh K.; Pani, Marcella; Gatti, Flavio; Paudyal, Durga; Manfrinetti, Pietro

    Ternary phases with composition T2M21X6 and T3M20X6 (T = transition metal; M = 3 d metal; X = B, C, P) are reported to crystallize with the W2Cr21C6-type and Mg3Ni20B6-type, respectively (ternary ordered derivatives of the cubic Cr23C6-type, cF116). They attract interest due to their refractory, mechanical, and peculiar magnetic properties. Literature data on these compounds only concern apparently stoichiometric 2:21:6 and 3:20:6 phases. Often only nominal composition has been reported, with few structural refinements and no measurements of physical properties. Lack of detailed stoichiometry and crystallographic data does not allow sufficient understanding of the crystal chemistry and properties of these compounds. We studied stability, crystal structure and magnetism of (U1-xNbx)2 Ni21B6 and (UyNb1-y)3Ni20B6; stable phases are U2Ni21B6 and Nb3Ni20B6, as also confirmed by theoretical calculations. The two pristine compounds solubilize Nb and U, respectively, up to a given extent. The substitution of U by Nb leads to a structural change from the W2Cr21C6- to the Mg3Ni20B6-type. While U2Ni21B6 is a Pauli paramagnet (itinerant non-magnetic state of U-5 f electrons), in agreement with literature, magnetization data for (UyNb1-y)3 Ni20B6 show itinerant ferromagnetism with TC >300 K.

  15. Partitioning of Nb, Mo, Ba, Ce, Pb, Th and U between immiscible carbonate and silicate liquids: Evaluating the effects of P2O5,F, and carbonate composition

    NASA Technical Reports Server (NTRS)

    Jones, J. H.; Walker, D.

    1993-01-01

    Previously we have reported carbonate liq./silicate liq. partition coefficients (D) for a standard suite of trace elements (Nb, Mo, Ba, Ce, Pb, Th, and U) and Ra and Pa as well. In brief, we have found that immiscible liquid partitioning is a strong function of temperature. As the critical temperature of the carbonate-silicate solvus is approached, all partition coefficients approach unity. Additionally, for the overwhelming majority of the partitioning elements, InD is a linear function of 'ionic field strength,' z/r, where z is the charge of the partitioned cation and r is its ionic radius.

  16. Mechanical Properties of Low-Density, Refractory Multi-Principal Element Alloys of the Cr-Nb-Ti-V-Zr System (Postprint)

    DTIC Science & Technology

    2014-04-01

    PROPERTIES OF LOW-DENSITY, REFRACTORY MULTI-PRINCIPAL ELEMENT ALLOYS OF THE Cr– Nb –Ti–V– Zr SYSTEM (POSTPRINT) 5a. CONTRACT NUMBER In-house 5b...element alloys of the Cr– Nb –Ti–V– Zr systemO.N. Senkov n, S.V. Senkova, D.B. Miracle, C. Woodward Air Force Research Laboratory, Materials and...densities below 7.0 g/cm3 have recently been produced by alloying Nb (rNb¼8.57 g/cm3) with four low density refractory elements, V (rV¼6.11 g/cm3), Zr

  17. Isoelectronic substitutions and aluminium alloying in the Ta-Nb-Hf-Zr-Ti high-entropy alloy superconductor

    NASA Astrophysics Data System (ADS)

    von Rohr, Fabian O.; Cava, Robert J.

    2018-03-01

    High-entropy alloys (HEAs) are a new class of materials constructed from multiple principal elements statistically arranged on simple crystallographic lattices. Due to the large amount of disorder present, they are excellent model systems for investigating the properties of materials intermediate between crystalline and amorphous states. Here we report the effects of systematic isoelectronic replacements, using Mo-Y, Mo-Sc, and Cr-Sc mixtures, for the valence electron count 4 and 5 elements in the body-centered cubic (BCC) Ta-Nb-Zr-Hf-Ti high-entropy alloy (HEA) superconductor. We find that the superconducting transition temperature Tc strongly depends on the elemental makeup of the alloy, and not exclusively its electron count. The replacement of niobium or tantalum by an isoelectronic mixture lowers the transition temperature by more than 60%, while the isoelectronic replacement of hafnium, zirconium, or titanium has a limited impact on Tc. We further explore the alloying of aluminium into the nearly optimal electron count [TaNb] 0.67(ZrHfTi) 0.33 HEA superconductor. The electron count dependence of the superconducting Tc for (HEA)Al x is found to be more crystallinelike than for the [TaNb] 1 -x(ZrHfTi) x HEA solid solution. For an aluminum content of x =0.4 the high-entropy stabilization of the simple BCC lattice breaks down. This material crystallizes in the tetragonal β -uranium structure type and superconductivity is not observed above 1.8 K.

  18. Irradiated microstructure of U-10Mo monolithic fuel plate at very high fission density

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gan, J.; Miller, B. D.; Keiser, D. D.

    Monolithic U-10Mo alloy fuel plates with Al-6061 cladding are being developed for use in research and test reactors as low enrichment fuel (< 20% U-235 enrichment) as a result of its high uranium loading capacity compared to that of U-7Mo dispersion fuel. These fuel plates contain a Zr diffusion barrier between the U-10Mo fuel and Al-6061 cladding that suppresses the interaction between the U-Mo fuel foil and Al alloy cladding that is known to be problematic under irradiation. This paper discusses the TEM results of the U-10Mo/Zr/Al6061 monolithic fuel plate (Plate ID: L1P09T, ~ 59% U-235 enrichment) irradiated in Advancedmore » Test Reactor at Idaho National Laboratory as part of RERTR-9B irradiation campaign with an unprecedented high local fission density of 9.8E+21 fissions/cm3. The calculated fuel foil centerline temperature at the beginning of life and the end of life is 141 and 194 C, respectively. A total of 5 TEM lamellas were prepared using focus ion beam lift-out technique. The estimated U-Mo fuel swelling, based on the fuel foil thickness change from SEM, is approximately 76%. Large bubbles (> 1 µm) are distributed evenly in U-Mo and interlink of these bubbles is evident. The average size of subdivided grains at this fission density appears similar to that at 5.2E+21 fissions/cm3. The measured average Mo and Zr content in the fuel matrix is ~ 30 at% and ~ 7 at%, respectively, in general agreement with the calculated Mo and Zr from fission density.« less

  19. Effects of thermomechanical processing on the microstructure and mechanical properties of Nb-1Zr-C alloys

    NASA Technical Reports Server (NTRS)

    Titran, Robert H.; Uz, Mehmet

    1996-01-01

    A systematic study to evaluate the effects of thermomechanical processing on the microstructure and mechanical properties of Nb-1Zr alloy sheet containing 0.06 and 0.1 wt.%C (PWC-11) was conducted and compared to the results of Nb-1Zr. Coarse orthorhombic Nb2C precipitates were present in all the cast, extruded and cold rolled Nb-Zr samples containing C. After high temperature (greater than 0.5 T(sub m)) exposure (with or without applied stress), the Nb2C transforms to very fine and extremely stable FCC (Zr, Nb)C dispersoid, resulting in a highly creep resistant material. Only ZrO2 precipitates were found in Nb-1Zr. The creep strength of the 0.06C and the 0.1C carbide strengthened alloys were much superior to Nb-1Zr. At 1350 K the strength of the 0.06C alloy was about three times that of Nb-1Zr, while the 0.1C alloy had about five times the creep stress capability of Nb-1Zr. The tensile strength, long term creep strength, and stability of the microstructure of the PWC-11 sheet appear to be independent of the number of 1900 K extrusions performed prior to cold rolling. The microhardness of these single, double and triple extnided PWC-11 sheets also were comparable. The tensile strength of PWC-11 and Nb-1Zr at room temperature and 1350 K were comparable.

  20. Micro-structural study and Rietveld analysis of fast reactor fuels: U-Mo fuels

    NASA Astrophysics Data System (ADS)

    Chakraborty, S.; Choudhuri, G.; Banerjee, J.; Agarwal, Renu; Khan, K. B.; Kumar, Arun

    2015-12-01

    U-Mo alloys are the candidate fuels for both research reactors and fast breeder reactors. In-reactor performance of the fuel depends on the microstructural stability and thermal properties of the fuel. To improve the fuel performance, alloying elements viz. Zr, Mo, Nb, Ti and fissium are added in the fuel. The first reactor fuels are normally prepared by injection casting. The objective of this work is to compare microstructure, phase-fields and hardness of as-cast four different U-Mo alloy (2, 5, 10 and 33 at.% Mo) fuels with the equilibrium microstructure of the alloys. Scanning electron microscope with energy dispersive spectrometer and optical microscope have been used to characterize the morphology of the as-cast and annealed alloys. The monoclinic α'' phase in as-cast U-10 at.% Mo alloy has been characterized through Rietveld analysis. A comparison of metallographic and Rietveld analysis of as-cast (dendritic microstructure) and annealed U-33 at.% Mo alloy, corresponding to intermetallic compound, has been reported here for the first time. This study will provide in depth understanding of microstructural and phase evolution of U-Mo alloys as fast reactor fuel.

  1. Mechanical properties and bio-tribological behaviors of novel beta-Zr-type Zr-Al-Fe-Nb alloys for biomedical applications.

    PubMed

    Hua, Nengbin; Chen, Wenzhe; Zhang, Lei; Li, Guanghui; Liao, Zhenlong; Lin, Yan

    2017-07-01

    The present study prepares novel Zr 70+x Al 5 Fe 15-x Nb 10 (x=0, 5) alloys by arc-melting for potential biomedical application. The mechanical properties and bio-tribological behaviors of the Zr-based alloys are evaluated and compared with biomedical pure Zr. The as-prepared alloys exhibit a microstructure containing a micrometer-sized dendritic beta-Zr phase dispersed in a Zr 2 Fe-typed matrix. It is found that increasing the content of Zr is favorable for the mechanical compatibility with a combination of low Young's modulus, large plasticity, and high compressive strength. The wear resistance of the Zr-Al-Fe-Nb alloys in air and phosphate buffer saline (PBS) solution is superior to that of pure Zr. The wear mechanism of Zr-based alloys sliding in air is controlled by oxidation and abrasive wear whereas that sliding in PBS is controlled by synergistic effects of the abrasive and corrosive wear. Electrochemical measurements demonstrate that the Zr-based alloys are corrosion resistant in PBS. Their bio-corrosion resistance is improved with the increase in Zr content, which is attributed to the enrichment in Zr and decrease in Al concentration in the surface passive film of alloys. The Zr 75 Al 5 Fe 10 Nb 10 exhibits the best corrosion resistance in PBS, which contributes to its superior wear resistance in a simulated body environment. The combination of good mechanical properties, corrosion resistance, and biotribological behaviors of the Zr-Al-Fe-Nb alloys offers them potential advantages in biomedical applications. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Electric Properties of Pb(Sb1/2Nb1/2)O3 PbTiO3 PbZrO3 Ceramics

    NASA Astrophysics Data System (ADS)

    Kawamura, Yasushi; Ohuchi, Hiromu

    1994-09-01

    Solid-solution ceramics of ternary system xPb(Sb1/2Nb1/2)O3 yPbTiO3 zPbZrO3 were prepared by the solid-state reaction of powder materials. Ceramic, electric, dielectric and piezoelectric properties and crystal structures of the system were studied. Sintering of the system xPb(Sb1/2Nb1/2)O3 yPbTiO3 zPbZrO3 is much easier than that of each end composition, and well-sintered high-density ceramics were obtained for the compositions near the morphotropic transformation. Piezoelectric ceramics with high relative dielectric constants, high radial coupling coefficient and low resonant resistance were obtained for the composition near the morphotropic transformation. The composition Pb(Sb1/2Nb1/2)0.075Ti0.45Zr0.475O3 showed the highest dielectric constant (ɛr=1690), and the composition Pb(Sb1/2Nb1/2)0.05Ti0.45Zr0.5O3 showed the highest radial coupling coefficient (kp=64%).

  3. High temperature dielectrics and defect characteristic of (Nb, Mn, Zr) modified 0.4(Ba0.8Ca0.2)TiO3 - 0.6Bi(Mg0.5Ti0.5)O3 ceramics

    NASA Astrophysics Data System (ADS)

    Ren, Shaokai; Chen, Zhi; Yan, Tianxiang; Han, Feifei; Kuang, Xiaojun; Fang, Liang; Liu, Laijun

    2018-07-01

    Transition elements Nb, Mn and Zr were selected to substitute Ti of 0.4(Ba0.8Ca0.2)TiO3 -0.6Bi(Mg0.5Ti0.5)O3 (BCT-BMT) ceramic in order to extend its operation temperature and decrease its dielectric loss for the application of high-temperature capacitors. Nb and Mn play an opposite role on the defect compensation, decreasing and increasing the concentration of oxygen vacancies, respectively. The temperature of the maximum relative permittivity, Tm, decreases from 140 °C to 90 °C for the Nb and Zr modified BCT-BMT ceramics. The permittivity (εr) peak of the former exhibits a broad and stable relative permittivity ∼600 (±5% variation) from 50 °C to 520 °C with the dielectric loss ≤0.02 from 60 °C to 440 °C (1 kHz). The modified Curie-Weiss law indicates that the doping elements result in an enhancement of diffuse phase transition. Activation energies of relaxation frequency and conduction of the samples were characterized by the impedance spectroscopy. A clear relationship between the magnitude of activation energy and the concentration of oxygen vacancies was revealed.

  4. Irradiated microstructure of U-10Mo monolithic fuel plate at very high fission density

    NASA Astrophysics Data System (ADS)

    Gan, J.; Miller, B. D.; Keiser, D. D.; Jue, J. F.; Madden, J. W.; Robinson, A. B.; Ozaltun, H.; Moore, G.; Meyer, M. K.

    2017-08-01

    Monolithic U-10Mo alloy fuel plates with Al-6061 cladding are being developed for use in research and test reactors as low enrichment fuel (<20% U-235 enrichment) as a result of its high uranium loading capacity compared to that of U-7Mo dispersion fuel. These fuel plates contain a Zr diffusion barrier between the U-10Mo fuel and Al-6061 cladding that suppresses the interaction between the U-Mo fuel foil and Al alloy cladding that is known to be problematic under irradiation. Different methods have been employed to fabricate monolithic fuel plates, including hot-rolling with no cold-rolling. L1P09T is a hot-rolled fuel plate irradiated to high fission density in the RERTR-9B experiment. This paper discusses the TEM characterization results for this U-10Mo/Zr/Al6061 monolithic fuel plate (∼59% U-235 enrichment) irradiated in Advanced Test Reactor at Idaho National Laboratory with an unprecedented high local fission density of 9.8E+21 fissions/cm3. The calculated fuel foil centerline temperature at the beginning of life and the end of life is 141 and 194 °C, respectively. TEM lamellas were prepared using focus ion beam lift-out technique. The estimated U-Mo fuel swelling, based on the fuel foil thickness change from SEM, is approximately 76%. Large bubbles (>1 μm) are distributed evenly in U-Mo and interlink of these bubbles is evident. The average size of subdivided grains at this fission density appears similar to that at 5.2E+21 fissions/cm3. The measured average Mo and Zr content in the fuel matrix is ∼30 at% and ∼7 at%, respectively, in general agreement with the calculated Mo and Zr from fission density.

  5. Effect of structural evolution on mechanical properties of ZrO2 coated Ti-6Al-7Nb-biomedical application

    NASA Astrophysics Data System (ADS)

    Zalnezhad, E.

    2016-05-01

    Zirconia (ZrO2) nanotube arrays were fabricated by anodizing pure zirconium (Zr) coated Ti-6Al-7Nb in fluoride/glycerol electrolyte at a constant potential of 60 V for different times. Zr was deposited atop Ti-6Al-7Nb via a physical vapor deposition magnetron sputtering (PVDMS) technique. Structural investigations of coating were performed utilizing X-ray diffraction (XRD) analysis. Field emission scanning electron microscopy (FESEM) and atomic force microscopy (AFM) were used to characterize the morphology and microstructure of coatings. Unannealed ZrO2 nanotube arrays were amorphous. Monoclinic and tetragonal ZrO2 appeared when the coated substrates were heat treated at 450 °C and 650 °C, while monoclinic ZrO2 was found at 850 °C and 900 °C. Mechanical properties, including nanohardness and modulus of elasticity, were evaluated at different annealing temperatures using a nanoindentation test. The nanoindentation results show that the nanohardness and modulus of elasticity for Ti-6AL-7Nb increased by annealing ZrO2 coated substrate at 450 °C. The nanohardness and modulus of elasticity for coated substrate decreased with annealing temperatures of 650, 850, and 900 °C. At an annealing temperature of 900 °C, cracks in the ZrO2 thin film coating occurred. The highest nanohardness and elastic modulus values of 6.34 and 218 GPa were achieved at an annealing temperature of 450 °C.

  6. The mechanism of the UV band edge photorefractivity suppression in highly doped LiNbO3:Zr crystals

    NASA Astrophysics Data System (ADS)

    Xin, Fei-fei

    2017-11-01

    The ultraviolet (UV) band edge photorefractivity of LiNbO3:Zr at 325 nm has been investigated. The experimental results show that the resistance against photorefraction at 325 nm is quite obvious but not as strong as that at 351 nm, when the doping concentration of Zr reaches 2.0 mol%. It is reported that the photorefractivity in other tetravalently doped LiNbO3 crystals, such as LiNbO3:Hf and LiNbO3:Sn, is enhanced dramatically with doping concentration over threshold. Here we give an explicit explanation on such seemly conflicting behaviors of tetravalently doped LiNbO3, which is ascribed to the combined effect of increased photoconductivity and the absorption strength of the band edge photorefractive centers.

  7. Nanostructured Ti-Zr-Pd-Si-(Nb) bulk metallic composites: Novel biocompatible materials with superior mechanical strength and elastic recovery.

    PubMed

    Hynowska, A; Blanquer, A; Pellicer, E; Fornell, J; Suriñach, S; Baró, M D; Gebert, A; Calin, M; Eckert, J; Nogués, C; Ibáñez, E; Barrios, L; Sort, J

    2015-11-01

    The microstructure, mechanical behaviour, and biocompatibility (cell culture, morphology, and cell adhesion) of nanostructured Ti45 Zr15 Pd35- x Si5 Nbx with x = 0, 5 (at. %) alloys, synthesized by arc melting and subsequent Cu mould suction casting, in the form of rods with 3 mm in diameter, are investigated. Both Ti-Zr-Pd-Si-(Nb) materials show a multi-phase (composite-like) microstructure. The main phase is cubic β-Ti phase (Im3m) but hexagonal α-Ti (P63/mmc), cubic TiPd (Pm3m), cubic PdZr (Fm3m), and hexagonal (Ti, Zr)5 Si3 (P63/mmc) phases are also present. Nanoindentation experiments show that the Ti45 Zr15 Pd30 Si5 Nb5 sample exhibits lower Young's modulus than Ti45 Zr15 Pd35 Si5 . Conversely, Ti45 Zr15 Pd35 Si5 is mechanically harder. Actually, both alloys exhibit larger values of hardness when compared with commercial Ti-40Nb, (HTi-Zr-Pd-Si ≈ 14 GPa, HTi-Zr-Pd-Si-Nb ≈ 10 GPa and HTi-40Nb ≈ 2.7 GPa). Concerning the biological behaviour, preliminary results of cell viability performed on several Ti-Zr-Pd-Si-(Nb) discs indicate that the number of live cells is superior to 94% in both cases. The studied Ti-Zr-Pd-Si-(Nb) bulk metallic system is thus interesting for biomedical applications because of the outstanding mechanical properties (relatively low Young's modulus combined with large hardness), together with the excellent biocompatibility. © 2014 Wiley Periodicals, Inc.

  8. Heavy-ion irradiation effects on U3O8 incorporated Gd2Zr2O7 waste forms.

    PubMed

    Lu, Xirui; Shu, Xiaoyan; Chen, Shunzhang; Zhang, Kuibao; Chi, Fangtin; Zhang, Haibin; Shao, Dadong; Mao, Xueli

    2018-06-12

    In this research, the heavy-ion irradiation effects of U-bearing Gd 2 Zr 2 O 7 ceramics were explored for nuclear waste immobilization. U 3 O 8 was designed to be incorporated into Gd 2 Zr 2 O 7 from two different routes in the form of (Gd 1-4 x U 2 x ) 2 (Zr 1- x U x ) 2 O 7 (x = 0.1, 0.14). The self-irradiation of actinide nuclides was simulated by Xe 20+ heavy-ion radiation under different fluences. Grazing incidence X-ray diffraction (GIXRD) analysis reveals the relationship between radiation dose, damage and depth. The radiation tolerance is promoted with the increment of U 3 O 8 content in the discussed range. Raman spectroscopy testifies the enhancement of radiation tolerance and microscopically existed phase evolution from the chemical bond vibrations. In addition, the microstructure and elemental distribution of the irradiated samples were analyzed as well. The amorphization degree of the sample surface declines as the U content was elevated from x = 0.1 to x = 0.14. Copyright © 2018 Elsevier B.V. All rights reserved.

  9. Cross Section Measurement for the 95Mo(n, {alpha})92Zr Reaction at 4.0, 5.0 and 6.0 MeV

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Guohui; Wu, Hao; Zhang, Jiaguo

    2011-01-01

    For the {sup 95}Mo(n, {alpha}){sup 92}Zr reaction cross section, there is only one experimental datum in the MeV neutron energy region with large uncertainty. As a result, very large deviations exist in different evaluated nuclear data libraries. This paper report the measurement of cross sections of the {sup 95}Mo(n, {alpha}){sup 92}Zr reaction at En = 4.0, 5.0 and 6.0 MeV. Experiments were performed at the 4.5 MV Van de Graaff of Peking University, China. A twin gridded ionization chamber was used as alpha particle detector and two large area {sup 95}Mo samples placed back to back were adopted. Fast neutronsmore » were produced through the D(d, n){sup 3}He reaction by using a deuterium gas target. A small {sup 238}U fission chamber was adopted for absolute neutron flux determination and a BF{sub 3} long counter was used for neutron flux monitor. Present experimental data are compared with existing evaluations and measurement.« less

  10. Electrochemical studies on zirconium and its biocompatible alloys Ti-50Zr at.% and Zr-2.5Nb wt.% in simulated physiologic media.

    PubMed

    Oliveira, Nilson T C; Biaggio, Sonia R; Rocha-Filho, Romeu C; Bocchi, Nerilso

    2005-09-01

    Different electrochemical studies were carried out for Zr and its biocompatible alloys Ti-50Zr at.% and Zr-2.5Nb wt.% in solutions simulating physiologic media, Ringer and PBS (phosphate buffered saline) solutions. The results from rest-potential measurements showed that the three materials are spontaneously passivated in both solutions and that the Ti-50Zr alloy has the greatest tendency for spontaneous oxide formation. Some corrosion parameters (such as the pitting and repassivation potentials) were obtained via cyclic voltammetry in both solutions, revealing that the Ti-50Zr has the best corrosion protection while Zr has the worst. On the other hand, the pre-anodization (up to 8 V vs. SCE) of the alloys in a 0.15 mol/L Na2SO4 solution led to a significant improvement in their protection against pitting corrosion when exposed to the Ringer solution. Elemental analyses by EDX showed that during pitting corrosion, there is no preferential corrosion of any of the alloying elements (Zr, Ti, Nb). Copyright (c) 2005 Wiley Periodicals, Inc.

  11. Microstructure and mechanical properties of the NiNbZrTiAl amorphous alloys with 10 and 25 at.% Nb content.

    PubMed

    Czeppe, T; Ochin, P; Sypień, A; Major, L

    2010-03-01

    The results of investigation of two different Ni-based glasses with compositions Ni(58)Nb(10)Zr(13)Ti(12)Al(7) and Ni(58)Nb(25)Zr(8)Ti(6)Al(3) are presented. The structure of the melt spun ribbons was amorphous. The supercooled liquid range decreased and primary crystallization temperature increased with increasing Nb content while the parameter T(g)/T(m) slightly increased. The crystallization process proceeded in a different way. The ribbon containing 10 at.% Nb showed typical primary crystallization of the 50 nm grains of the NiTi(Nb) cubic phase; the ribbon containing 25 at.% of Nb revealed high thermal stability of the amorphous phase, which crystallized only in a small amount in the range of primary crystallization, preserving large fraction of the amorphous phase even high above the end of the crystallization. The tensile load-displacement curves were also different. In both cases, the ribbons revealed quite a large range of the plastic elongation. The ribbon containing 10% Nb showed stress relaxation and was maximally elongated up to 0.6. The ribbon with 25 at.% Nb revealed a hardening effect and the slightly smaller maximal elongation following it. The microstructure of the deformed specimens showed deformation bands parallel to the tensile axis, microcracks formation along shear bands and river-like pattern at the fracture surfaces. In both cases, high resolution electron microscope did not reveal any crystallization after deformation.

  12. Surface phenomena of hydroxyapatite film on the nanopore formed Ti-29Nb-xZr alloy by anodization for bioimplants.

    PubMed

    Kim, Eun-Ju; Jeong, Yong-Hoon; Choe, Han-Cheol

    2013-03-01

    In this study, surface phenomena of hydroxyapatite (HA) film on the nanopore formed Ti-29Nb-xZr alloy by anodization for bioimplants have been investigated by electron beam physical vapor deposition (EB-PVD), field emission scanning electron microscope (FE-SEM), X-ray diffractometer (XRD), potentiostat and contact angle. The microstructure of Ti-29Nb-xZr alloys exhibited equiaxed structure and alpha" phase decreased, whereas beta phase increased as Zr content increased. The increment of Zr contents in HA coated nanotubular Ti-29Nb-xZr alloys showed good corrosion potential in 0.9% NaCI solution. The wettability of HA coated nanotubular surface was higher than that of non-coated samples.

  13. The architecture of the spliceosomal U4/U6.U5 tri-snRNP

    PubMed Central

    Nguyen, Thi Hoang Duong; Galej, Wojciech P.; Bai, Xiao-chen; Savva, Christos G.; Newman, Andrew J.; Scheres, Sjors H. W.; Nagai, Kiyoshi

    2015-01-01

    U4/U6.U5 tri-snRNP is a 1.5 MDa pre-assembled spliceosomal complex comprising U5 snRNA, extensively base-paired U4/U6 snRNAs and >30 proteins, including the key components Prp8, Brr2 and Snu114. The tri-snRNP combines with a pre-mRNA substrate bound to U1 and U2 snRNPs and transforms into a catalytically active spliceosome following extensive compositional and conformational changes triggered by unwinding of the U4/U6 snRNAs. CryoEM single-particle reconstruction of yeast tri-snRNP at 5.9Å resolution reveals the essentially complete organization of its RNA and protein components. The single-stranded region of U4 snRNA between its 3′-stem-loop and the U4/U6 snRNA stem I is loaded into the Brr2 helicase active site ready for unwinding. Snu114 and the N-terminal domain of Prp8 position U5 snRNA to insert its Loop I, which aligns the exons for splicing, into the Prp8 active site cavity. The structure provides crucial insights into the activation process and the active site of the spliceosome. PMID:26106855

  14. Hydrogen absorption properties of amorphous (Ni 0.6Nb 0.4-yTa y ) 100-x Zr x membranes

    DOE PAGES

    Palumbo, O.; Trequattrini, F.; Pal, N.; ...

    2017-02-01

    Ni based amorphous materials have great potential as hydrogen purification membranes. In the present work the melt spun (Ni 0.6Nb 0.4-yTa y) 100-xZr x with y=0, 0.1 and x=20, 30 was studied. Our result of X-ray diffraction spectra of the ribbons showed an amorphous nature of the alloys. Heating these ribbons below T < 400 °C, even in a hydrogen atmosphere (1-10 bar), the amorphous structure was retained. Furthermore, the crystallization process was characterized by differential thermal analysis and the activation energy of such process was obtained. The hydrogen absorption properties of the samples in their amorphous state were studiedmore » by the volumetric method, and the results showed that the addition of Ta did not significantly influence the absorption properties, a clear change of the hydrogen solubility was observed with the variation of the Zr content. The values of the hydrogenation enthalpy changed from ~37 kJ/mol for x=30 to ~9 kJ/mol for x=20. Our analysis of the volumetric data provides the indications about the hydrogen occupation sites during hydrogenation, suggesting that at the beginning of the absorption process the deepest energy levels are occupied, while only shallower energy levels are available at higher hydrogen content, with the available interstitial sites forming a continuum of energy levels.« less

  15. Hydrogen absorption properties of amorphous (Ni 0.6Nb 0.4-yTa y ) 100-x Zr x membranes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Palumbo, O.; Trequattrini, F.; Pal, N.

    Ni based amorphous materials have great potential as hydrogen purification membranes. In the present work the melt spun (Ni 0.6Nb 0.4-yTa y) 100-xZr x with y=0, 0.1 and x=20, 30 was studied. Our result of X-ray diffraction spectra of the ribbons showed an amorphous nature of the alloys. Heating these ribbons below T < 400 °C, even in a hydrogen atmosphere (1-10 bar), the amorphous structure was retained. Furthermore, the crystallization process was characterized by differential thermal analysis and the activation energy of such process was obtained. The hydrogen absorption properties of the samples in their amorphous state were studiedmore » by the volumetric method, and the results showed that the addition of Ta did not significantly influence the absorption properties, a clear change of the hydrogen solubility was observed with the variation of the Zr content. The values of the hydrogenation enthalpy changed from ~37 kJ/mol for x=30 to ~9 kJ/mol for x=20. Our analysis of the volumetric data provides the indications about the hydrogen occupation sites during hydrogenation, suggesting that at the beginning of the absorption process the deepest energy levels are occupied, while only shallower energy levels are available at higher hydrogen content, with the available interstitial sites forming a continuum of energy levels.« less

  16. Unraveling the Age Hardening Response in U-Nb Alloys

    DOE PAGES

    Hackenberg, Robert Errol; Hemphill, Geralyn M. Sewald; Forsyth, Robert Thomas; ...

    2016-11-15

    Complicating factors that have stymied understanding of uranium-niobium’s aging response are briefly reviewed, including (1) niobium inhomogeneity, (2) machining damage effects on tensile properties, (3) early-time transients of ductility increase, and (4) the variety of phase transformations. A simple Logistic-Arrhenius model was applied to predict yield and ultimate tensile strengths and tensile elongation of U-4Nb as a function of thermal age. Lastly, fits to each model yielded an apparent activation energy that was compared with phase transformation mechanisms.

  17. Fe4Nb2O9 : A magnetoelectric antiferromagnet

    NASA Astrophysics Data System (ADS)

    Maignan, Antoine; Martin, Christine

    2018-04-01

    The structural, magnetic, and electrical properties of a Fe4Nb2O9 polycrystalline sample have been characterized. It is found that this compound crystallizes in the P 3 ¯c 1 space group of the α -A l2O3 structure and is thus isostructural to Co4Nb2O9 and Mn4Nb2O9 , two linear magnetoelectric oxides. But in marked contrast, its ɛ'(T ) curve reveals two broad transitions at TN 1≅90 K and TN 2≅77 K , the former corresponding to the antiferromagnetic ordering temperature. Below TN 1, the M(H ) magnetization curves reveal the existence of spin flop at about 6 T. In this temperature region, a H-induced electric polarization for μ0H >6 T is evidenced by both sets of Ip(T) H and P (H) T curves. All these results point towards Fe4Nb2O9 being a magnetoelectric member of the A4B2O9 family (A =Mn , Fe, Co and B =Nb , Ta).

  18. Electrochemical characterization of pulsed layer deposited hydroxyapatite-zirconia layers on Ti-21Nb-15Ta-6Zr alloy for biomedical application

    NASA Astrophysics Data System (ADS)

    Izquierdo, Javier; Bolat, Georgiana; Cimpoesu, Nicanor; Trinca, Lucia Carmen; Mareci, Daniel; Souto, Ricardo Manuel

    2016-11-01

    A new titanium base Ti-21Nb-15Ta-6Zr alloy covered with hydroxyapatite-zirconia (HA-ZrO2) by pulsed laser deposition (PLD) technique was characterized regarding its corrosion resistance in simulated physiological Ringer's solution at 37 °C. For the sake of comparison, Ti-6Al-4V standard implant alloy, with and without hydroxyapatite-zirconia coating, was also characterized. Multiscale electrochemical analysis using both conventional averaging electrochemical techniques, namely electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization, and spatially-resolved microelectrochemical techniques (scanning electrochemical microscopy, SECM) were used to investigate the electrochemical behaviour of the materials. In addition, scanning electron microscopy evidenced that no relevant surface morphology changes occurred on the materials upon immersion in the simulated physiological solution, despite variations in their electrochemical behaviour. Although uncoated metals appear to show better performances during conventional corrosion tests, the response is still quite similar for the HA-ZrO2 coated materials while providing superior resistance towards electron transfer due to the formation of a more dense film on the surface, thus effectively behaving as a passive material. It is believed corrosion of the HA-ZrO2 coated Ti-21Nb-15Ta-6Zr alloy will have negligible effect upon biochemical and cellular events at the bone-implant interface and could facilitate osseointegration.

  19. Neutronic performance of high-density LEU fuels in water-moderated and water-reflected research reactors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bretscher, M.M.; Matos, J.E.

    At the Reduced Enrichment for Research and Test Reactors (RERTR) meeting in September 1994, Durand reported that the maximum uranium loading attainable with U{sub 3}Si{sub 2} fuel is about 6.0 g U/cm{sup 3}. The French Commissariat a l`Energie Atomique (CEA) plan to perform irradiation tests with 5 plates at this loading. Compagnie pour L`Etude et La Realisation de Combustibles Atomiques (CERCA) has also fabricated a few uranium nitride (UN) plates with a uranium density in the fuel meat of 7.0 g/cm{sup 3} and found that UN is compatible with the aluminum matrix at temperatures below 500 C. High density dispersionmore » fuels proposed for development include U-Zr(4 wt%)-Nb(2 wt%), U-Mo(5 wt%), and U-Mo(9 wt%). The purpose of this note is to examine the relative neutronic behavior of these high density fuels in a typical light water-reflected and water-moderated MTR-type research reactor. The results show that a dispersion of the U-Zr-Nb alloy has the most favorable neutronic properties and offers the potential for uranium densities greater than 8.0 g/cm{sup 3}. On the other hand, UN is the least reactive fuel because of the relatively large {sup 14}N(n,p) cross section. For a fixed value of k{sub eff}, the required {sup 235}U loading per fuel element is least for the U-Zr-Nb fuel and steadily increases for the U-Mo(5%), U-Mo(9%), and UN fuels. Because of volume fraction limitations, the UO{sub 2} dispersions are only useful for uranium densities below 5.0 g/cm{sup 3}. In this density range, however, UO{sub 2} is more reactive than U{sub 3}Si{sub 2}.« less

  20. Assessment of solid/liquid equilibria in the (U, Zr)O2+y system

    NASA Astrophysics Data System (ADS)

    Mastromarino, S.; Seibert, A.; Hashem, E.; Ciccioli, A.; Prieur, D.; Scheinost, A.; Stohr, S.; Lajarge, P.; Boshoven, J.; Robba, D.; Ernstberger, M.; Bottomley, D.; Manara, D.

    2017-10-01

    Solid/liquid equilibria in the system UO2sbnd ZrO2 are revisited in this work by laser heating coupled with fast optical thermometry. Phase transition points newly measured under inert gas are in fair agreement with the early measurements performed by Wisnyi et al., in 1957, the only study available in the literature on the whole pseudo-binary system. In addition, a minimum melting point is identified here for compositions near (U0.6Zr0.4)O2+y, around 2800 K. The solidus line is rather flat on a broad range of compositions around the minimum. It increases for compositions closer to the pure end members, up to the melting point of pure UO2 (3130 K) on one side and pure ZrO2 (2970 K) on the other. Solid state phase transitions (cubic-tetragonal-monoclinic) have also been observed in the ZrO2-rich compositions X-ray diffraction. Investigations under 0.3 MPa air (0.063 MPa O2) revealed a significant decrease in the melting points down to 2500 K-2600 K for increasing uranium content (x(UO2)> 0.2). This was found to be related to further oxidation of uranium dioxide, confirmed by X-ray absorption spectroscopy. For example, a typical oxidised corium composition U0.6Zr0.4O2.13 was observed to solidify at a temperature as low as 2493 K. The current results are important for assessing the thermal stability of the system fuel - cladding in an oxide based nuclear reactor, and for simulating the system behaviour during a hypothetical severe accident.

  1. Experimental determination of the phase relationships in Zr/2.5 8.0 at% Nb/0 6.7 at% Al alloys with 750 at ppm 0 and 250 at ppm N between 730 900° C

    NASA Astrophysics Data System (ADS)

    Peruzzi, A.; Bolcich, J.

    1990-11-01

    Zr alloys with 2.5 to 8.0 at% Nb and 0 to 6.7 at% Al were subjected to dynamic and static treatments between 730-900° C and studied by qualitative and quantitative optical metallography, electrical resistance, X-ray diffractometry and electron microanalysis. The experimental data were analyzed by taking into account the effects of oxygen and nitrogen impurities. The main results for Zn-Nb-Al alloys with 750 at ppm O and 250 at ppm N are the following: (i) Equilibrium relationships are established between the α (hcp), β (bcc) and Zr 3Al (Cu 3Au) phases along isothermal sections at 730, 771 and 800°C. (ii) The β/ α + β boundaries are determined along iso-aluminum vertical sections at 6.7, 3.3 and 0 at% Al. (iii) The addition of Al to Zr-Nb alloys increases the solubility of Nb in the α phase, its maximum value at 730° C being about 0.7-0.8 at% for 4 at% Al. (iv) Solubility values for Al in the α-phase of Zr-Al were estimated by extrapolation from ternary alloys. These estimates help to solve an existing discrepancy in the Zr-Al system.

  2. Electrical resistance oscillations during plastic deformation in A Ti-Al-Nb-Zr alloy at 4·2 K

    NASA Astrophysics Data System (ADS)

    Nikiforenko, V. N.; Lavrentev, F. F.

    1986-10-01

    The serrated plastic flow in titanium alloy containing 5% Al, 2·5% Zr and 2% Nb has been investigated by measuring its electrical resistance and applying selective chemical etching. The electrical resistance was found to oscillate under active deformation at 4·2 K. Analysis of the possible causes seems to indicate a dominant role of break by dislocation pile-ups through obstacles, viz second phase precipitates and grain boundaries.

  3. Mass measurements of neutron-deficient Y, Zr, and Nb isotopes and their impact on rp and νp nucleosynthesis processes

    NASA Astrophysics Data System (ADS)

    Xing, Y. M.; Li, K. A.; Zhang, Y. H.; Zhou, X. H.; Wang, M.; Litvinov, Yu. A.; Blaum, K.; Wanajo, S.; Kubono, S.; Martínez-Pinedo, G.; Sieverding, A.; Chen, R. J.; Shuai, P.; Fu, C. Y.; Yan, X. L.; Huang, W. J.; Xu, X.; Tang, X. D.; Xu, H. S.; Bao, T.; Chen, X. C.; Gao, B. S.; He, J. J.; Lam, Y. H.; Li, H. F.; Liu, J. H.; Ma, X. W.; Mao, R. S.; Si, M.; Sun, M. Z.; Tu, X. L.; Wang, Q.; Yang, J. C.; Yuan, Y. J.; Zeng, Q.; Zhang, P.; Zhou, X.; Zhan, W. L.; Litvinov, S.; Audi, G.; Uesaka, T.; Yamaguchi, Y.; Yamaguchi, T.; Ozawa, A.; Fröhlich, C.; Rauscher, T.; Thielemann, F.-K.; Sun, B. H.; Sun, Y.; Dai, A. C.; Xu, F. R.

    2018-06-01

    Using isochronous mass spectrometry at the experimental storage ring CSRe in Lanzhou, the masses of 82Zr and 84Nb were measured for the first time with an uncertainty of ∼10 keV, and the masses of 79Y, 81Zr, and 83Nb were re-determined with a higher precision. The latter are significantly less bound than their literature values. Our new and accurate masses remove the irregularities of the mass surface in this region of the nuclear chart. Our results do not support the predicted island of pronounced low α separation energies for neutron-deficient Mo and Tc isotopes, making the formation of Zr-Nb cycle in the rp-process unlikely. The new proton separation energy of 83Nb was determined to be 490(400) keV smaller than that in the Atomic Mass Evaluation 2012. This partly removes the overproduction of the p-nucleus 84Sr relative to the neutron-deficient molybdenum isotopes in the previous νp-process simulations.

  4. Regulation of depletion layer width in Pb(Zr,Ti)O3/Nb:SrTiO3 heterostructures

    NASA Astrophysics Data System (ADS)

    Bai, Yu; Jie Wang, Zhan; Cui, Jian Zhong; Zhang, Zhi Dong

    2018-05-01

    Improving the tunability of depletion layer width (DLW) in ferroelectric/semiconductor heterostructures is important for the performance of some devices. In this work, 200-nm-thick Pb(Zr0.4Ti0.6)O3 (PZT) films were deposited on different Nb-doped SrTiO3 (NSTO) substrates, and the tunability of DLW at PZT/NSTO interfaces were studied. Our results showed that the maximum tunability of the DLW was achieved at the NSTO substrate with 0.5 wt% Nb. On the basis of the modified capacitance model and the ferroelectric semiconductor theory, we suggest that the tunability of the DLW in PZT/NSTO heterostructures can be attributed to a delicate balance of the depletion layer charge and the ferroelectric polarization charge. Therefore, the performance of some devices related to the tunability of DLW in ferroelectric/semiconductor heterostructures can be improved by modulating the doping concentration in semiconducting electrode materials.

  5. Photoluminescence properties of Eu(3+)/ Sm(3+) activated CaZr4(PO4)6 phosphors.

    PubMed

    Nair, Govind B; Dhoble, S J

    2016-09-01

    Solid state reaction method was employed for the synthesis of a series of CaZr4(PO4)6: Eu(3+)/Sm(3+) phosphors. The red-emitting CaZr4(PO4)6:Eu(3+) phosphors can be efficiently excited at 396 nm and thereby, exhibit a strong red luminescence predominantly corresponding to the electric dipole transition at 615 nm. Under 405 nm excitation, CaZr4(PO4)6:Sm(3+) phosphors display orange emission with color temperatures approximately around 2200 K. The acquired results reveal that CaZr4(PO4)6: RE(3+) (RE = Eu, Sm) phosphors could be potential candidates for red and orange emitting phosphor, respectively, for UV/blue-pump LEDs.

  6. Isolation and structures of sulfonium salts derived from thioethers: [{o-C(6)H(4)(CH(2)SMe)(2)}H][NbF(6)] and [{[9]aneS(3)}H][NbF(6)].

    PubMed

    Jura, Marek; Levason, William; Reid, Gillian; Webster, Michael

    2009-10-07

    Two very unusual sulfonium salts, [{o-C(6)H(4)(CH(2)SMe)(2)}H][NbF(6)] and [{[9]aneS(3)}H][NbF(6)], obtained from reaction of the thioethers with NbF(5) in CH(2)Cl(2) solution, are reported and their structures described; the eight-coordinate tetrafluoro Nb(v) cation of the dithioether is obtained from the same reaction.

  7. High-temperature Mechanical Properties and Microstructure of ZrTiHfNbMox (x=0.5, 1.0, 1.5) Refractory High Entropy Alloys

    NASA Astrophysics Data System (ADS)

    Chen, Y. W.; Li, Y. K.; Cheng, X. W.; Wu, C.; Cheng, B.

    2018-05-01

    Refractory high entropy alloys (RHEAs), with excellent properties at high temperature, have several applications. In this work, the ZrTiHfNbMox (x=0.5, 1.0, 1.5) alloys were prepared by arc melting. All these alloys form body centered cubic (BCC) structure without other intermediate phases. The Mo element contributes to the strength of alloys at high temperature, but too much of Mo decreases the plasticity severely and enhances the strength. The ZrTiHfNbMo alloy, whose compressive stress is 1099 MPa at 800° C, is a promising material for high-temperature applications.

  8. Implications of Nb/U, Th/U and Sm/Nd in plume magmas for the relationship between continental and oceanic crust formation and the development of the depleted mantle

    NASA Astrophysics Data System (ADS)

    Campbell, Ian H.

    2002-05-01

    The Nb/U and Th/U of the primitive mantle are 34 and 4.04 respectively, which compare with 9.7 and 3.96 for the continental crust. Extraction of continental crust from the mantle therefore has a profound influence on its Nb/U but little influence on its Th/U. Conversely, extraction of midocean ridge-type basalts lowers the Th/U of the mantle residue but has little influence on its Nb/U. As a consequence, variations in Th/U and Nb/U with Sm/Nd can be used to evaluate the relative importance of continental and basaltic crust extraction in the formation of the depleted (Sm/Nd enriched) mantle reservoir. This study evaluates Nb/U, Th/U, and Sm/Nd variations in suites of komatiites, picrites, and their associated basalts, of various ages, to determine whether basalt and/or continental crust have been extracted from their source region. Emphasis is placed on komatiites and picrites because they formed at high degrees of partial melting and are expected to have Nb/U, Th/U, and Sm/Nd that are essentially the same as the mantle that melted to produce them. The results show that all of the studied suites, with the exception of the Barberton, have had both continental crust and basaltic crust extracted from their mantle source region. The high Sm/Nd of the Gorgona and Munro komatiites require the elevated ratios seen in these suites to be due primarily to extraction of basaltic crust from their source regions, whereas basaltic and continental crust extraction are of subequal importance in the source regions of the Yilgarn and Belingwe komatiites. The Sm/Nd of modern midocean ridge basalts lies above the crustal extraction curve on a plot of Sm/Nd against Nb/U, which requires the upper mantle to have had both basaltic and continental crust extracted from it. It is suggested that the extraction of the basaltic reservoir from the mantle occurs at midocean ridges and that the basaltic crust, together with its complementary depleted mantle residue, is subducted to the core

  9. Vanadium Oxide Thin Films Alloyed with Ti, Zr, Nb, and Mo for Uncooled Infrared Imaging Applications

    NASA Astrophysics Data System (ADS)

    Ozcelik, Adem; Cabarcos, Orlando; Allara, David L.; Horn, Mark W.

    2013-05-01

    Microbolometer-grade vanadium oxide (VO x ) thin films with 1.3 < x < 2.0 were prepared by pulsed direct-current (DC) sputtering using substrate bias in a controlled oxygen and argon environment. These films were systematically alloyed with Ti, Nb, Mo, and Zr using a second gun and radiofrequency (RF) reactive co-sputtering to probe the effects of the transition metals on the film charge transport characteristics. The results reveal that the temperature coefficient of resistance (TCR) and resistivity are unexpectedly similar for alloyed and unalloyed films up to alloy compositions in the ˜20 at.% range. Analysis of the film structures for the case of the 17% Nb-alloyed film by glancing-angle x-ray diffraction and transmission electron microscopy shows that the microstructure remains even with the addition of high concentrations of alloy metal, demonstrating the robust character of the VO x films to maintain favorable electrical transport properties for bolometer applications. Postdeposition thermal annealing of the alloyed VO x films further reveals improvement of electrical properties compared with unalloyed films, indicating a direction for further improvements in the materials.

  10. Effects of processing and prolonged high temperature exposure on the microstructure of Nb-1Zr-C sheet

    NASA Technical Reports Server (NTRS)

    Uz, Mehmet; Titran, R. H.

    1993-01-01

    High temperature stability of the microstructure of Nb-1Zr sheet containing 0.1 and 0.06 wt. percent C was studied as affected by processing and prolonged 1350 K exposure with and without applied stress. Sheets were fabricated by cold rolling bars that were single-, double-, or triple-extruded at 1900 K. Creep samples were double-annealed (1 h at 1755 K + 2 h at 1475 K) prior to testing at 1350 K and 10,000 - 34,500 h. The microstructures of the as-cast, extruded, rolled, DA, and crept samples were characterized using various metallographic and analytical methods. The precipitates were rather coarse Nb2C initially, but transformed to finer (less than or equal to 1 micron) carbides of (Zr, Nb)C with each subsequent high temperature process. The grain size, and the relative amount and morphology of (Zr, Nb)C were found to be affected by the number of extrusions and to some extent by C-content. However, the microstructures of all the crept samples were similar with (Zr, Nb)C distributed throughout the matrix indicating that prolonged exposure to 1350 K gave rise to complete transformation of Nb2C to (Zr, Nb)C regardless of the processing history. These and other observations are presented with the emphasis on the correlation between processing, microstructure, and creep properties.

  11. Processing and microstructure of Nb-1 percent Zr-0.1 percent C alloy sheet

    NASA Technical Reports Server (NTRS)

    Uz, Mehmet; Titran, Robert H.

    1992-01-01

    A systematic study was carried out to evaluate the effects of processing on the microstructure of Nb-1 wt. pct. Zr-0.1 wt. pct. C alloy sheet. The samples were fabricated by cold rolling different sheet bars that were single-, double- or triple-extruded at 1900 K. Heat treatment consisted on one- or two-step annealing of different samples at temperatures ranging from 1350 to 1850 K. The assessment of the effects of processing on microstructure involved characterization of the precipitates including the type, crystal structure, chemistry and distribution within the material as well as an examination of the grain structure. A combination of various analytical and metallographic techniques were used on both the sheet samples and the residue extracted from them. The results show that the relatively coarse orthorhombic Nb2C carbides in the as-rolled samples transformed to rather fine cubic monocarbides of Nb and Zr with varying Zr/Nb ratios upon subsequent heat treatment. The relative amount of the cubic carbides and the Zr/Nb ratio increased with increasing number of extrusions prior to cold rolling. Furthermore, the size and the aspect ratio of the grains appear to be strong functions of the processing history of the material. These and other results obtained will be presented with the emphasis on a possible relationship between processing and microstructure.

  12. ac impedance analysis of a Ni-Nb-Zr-H glassy alloy with femtofarad capacitance tunnels

    NASA Astrophysics Data System (ADS)

    Fukuhara, M.; Seto, M.; Inoue, A.

    2010-01-01

    A Nyquist diagram of a (Ni0.36Nb0.24Zr0.40)90H10 glassy alloy shows a semitrue circle, indicating that it is a conducting material with a total capacitance of 17.8 μF. The Bode plots showing the dependencies of its real and imaginary impedances, and phase on frequency suggest a simpler equivalent circuit having a resistor in parallel with a capacitor. Dividing the total capacitance (17.8 μF) by the capacitance of a single tunnel (0.9 fF), we deduced that this material has a high number of dielectric tunnels, which can be regarded as regular prisms separated from the electric-conducting distorted icosahedral Zr5Ni5Nb3 clusters by an average of 0.225 nm.

  13. Study on Ultra-Long Life,Small U-Zr Metallic Fuelled Core With Burnable Poison

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kenji Tsuji; Hiromitsu Inagaki; Akira Nishikawa

    2002-07-01

    A conceptual design for a 50 MWe sodium cooled, U-Pu-Zr metallic fuelled, fast reactor core, which aims at a core lifetime of 30 years, has been performed [1]. As for the compensation for a large burn-up reactivity through 30 years, an axially movable reflector, which is located around the core, carries the major part of it and a burnable poison does the rest. This concept has achieved not only a long core lifetime but also a high discharged burn-up. On this study, a conceptual design for a small fast reactor loading U-Zr metallic fuelled core instead of U-Pu-Zr fuelled coremore » has been conducted, based on the original core arrangement of 4S reactor [2]. Within the range of this study including safety requirements, adopting the burnable poison would be effective to construct a core concept that achieves both a long lifetime and a high discharged burn-up. (authors)« less

  14. Pressure-induced positive electrical resistivity coefficient in Ni-Nb-Zr-H glassy alloy

    NASA Astrophysics Data System (ADS)

    Fukuhara, M.; Gangli, C.; Matsubayashi, K.; Uwatoko, Y.

    2012-06-01

    Measurements under hydrostatic pressure of the electrical resistivity of (Ni0.36Nb0.24Zr0.40)100-xHx (x = 9.8, 11.5, and 14) glassy alloys have been made in the range of 0-8 GPa and 0.5-300 K. The resistivity of the (Ni0.36Nb0.24Zr0.40)86H14 alloy changed its sign from negative to positive under application of 2-8 GPa in the temperature range of 300-22 K, coming from electron-phonon interaction in the cluster structure under pressure, accompanied by deformation of the clusters. In temperature region below 22 K, the resistivity showed negative thermal coefficient resistance by Debye-Waller factor contribution, and superconductivity was observed at 1.5 K.

  15. Electronic Transport Behaviors due to Charge Density Waves in Ni-Nb-Zr-H Glassy Alloys

    NASA Astrophysics Data System (ADS)

    Fukuhara, Mikio; Umemori, Yoshimasa

    2013-11-01

    The amorphous Ni-Nb-Zr-H glassy alloy containing subnanometer-sized icosahedral Zr5 Nb5Ni3 clusters exhibited four types of electronic phenomena: a metal/insulator transition, an electric current-induced voltage oscillation (Coulomb oscillation), giant capacitor behavior and an electron avalanche with superior resistivity. These findings could be excluded by charge density waves that the low-dimensional component of clusters, in which the atoms are lined up in chains along the [130] direction, plays important roles in various electron transport phenomena.

  16. Purification of nuclear grade Zr scrap as the high purity dense Zr deposits from Zirlo scrap by electrorefining in LiF-KF-ZrF4 molten fluorides

    NASA Astrophysics Data System (ADS)

    Park, Kyoung Tae; Lee, Tae Hyuk; Jo, Nam Chan; Nersisyan, Hayk H.; Chun, Byong Sun; Lee, Hyuk Hee; Lee, Jong Hyeon

    2013-05-01

    Zirconium (Zr) has commonly been used as a cladding material of nuclear fuel. Moreover, it is regarded as the only material that can be used for nuclear fuel cladding because it has the lowest neutron capture cross section of any metal element and because it has high corrosion resistance and size stability. In this study, Hf-free Zr tubes (Zr-1Nb-1Sn-0.1Fe) were used as anode materials and electrorefining was performed in a LiF-KF eutectic 6 wt.% ZrF4 molten fluoride salt system. As a result of electrolysis, Zr scrap metal was recycled into pure Zr with low levels of impurities, and the size and density of the Zr deposit was controlled using applied current density.

  17. Development of multilayer perceptron networks for isothermal time temperature transformation prediction of U-Mo-X alloys

    NASA Astrophysics Data System (ADS)

    Johns, Jesse M.; Burkes, Douglas

    2017-07-01

    In this work, a multilayered perceptron (MLP) network is used to develop predictive isothermal time-temperature-transformation (TTT) models covering a range of U-Mo binary and ternary alloys. The selected ternary alloys for model development are U-Mo-Ru, U-Mo-Nb, U-Mo-Zr, U-Mo-Cr, and U-Mo-Re. These model's ability to predict 'novel' U-Mo alloys is shown quite well despite the discrepancies between literature sources for similar alloys which likely arise from different thermal-mechanical processing conditions. These models are developed with the primary purpose of informing experimental decisions. Additional experimental insight is necessary in order to reduce the number of experiments required to isolate ideal alloys. These models allow test planners to evaluate areas of experimental interest; once initial tests are conducted, the model can be updated and further improve follow-on testing decisions. The model also improves analysis capabilities by reducing the number of data points necessary from any particular test. For example, if one or two isotherms are measured during a test, the model can construct the rest of the TTT curve over a wide range of temperature and time. This modeling capability reduces the cost of experiments while also improving the value of the results from the tests. The reduced costs could result in improved material characterization and therefore improved fundamental understanding of TTT dynamics. As additional understanding of phenomena driving TTTs is acquired, this type of MLP model can be used to populate unknowns (such as material impurity and other thermal mechanical properties) from past literature sources.

  18. Development of AlN and TiB2 Composites with Nb2O5, Y2O3 and ZrO2 as Sintering Aids

    PubMed Central

    González, José C.; Rodríguez, Miguel Á.; Figueroa, Ignacio A.; Villafuerte-Castrejón, María-Elena; Díaz, Gerardo C.

    2017-01-01

    The synthesis of AlN and TiB2 by spark plasma sintering (SPS) and the effect of Nb2O5, Y2O3 and ZrO2 additions on the mechanical properties and densification of the produced composites is reported and discussed. After the SPS process, dense AlN and TiB2 composites with Nb2O5, Y2O3 and ZrO2 were successfully prepared. X-ray diffraction analysis showed that in the AlN composites, the addition of Nb2O5 gives rise to Nb4N3 during sintering. The compound Y3Al5O12 (YAG) was observed as precipitate in the sample with Y2O3. X-ray diffraction analysis of the TiB2 composites showed TiB2 as a single phase in these materials. The maximum Vickers and toughness values were 14.19 ± 1.43 GPa and 27.52 ± 1.75 GPa for the AlN and TiB2 composites, respectively. PMID:28772681

  19. Effects of shot-peening and atmospheric-pressure plasma on aesthetic improvement of Ti-Nb-Ta-Zr alloy for dental applications

    NASA Astrophysics Data System (ADS)

    Miura-Fujiwara, Eri; Suzuki, Yuu; Ito, Michiko; Yamada, Motoko; Matsutake, Sinpei; Takashima, Seigo; Sato, Hisashi; Watanabe, Yoshimi

    2018-01-01

    Ti and Ti alloys are widely used for biomedical applications such as artificial joints and dental devices because of their good mechanical properties and biochemical compatibility. However, dental devices made of Ti and Ti alloys do not have the same color as teeth, so they are inferior to ceramics and polymers in terms of aesthetic properties. In a previous study, Ti-29Nb-13Ta-4.6Zr was coated with a white Ti oxide layer by heat treatment to improve its aesthetic properties. Shot-peening is a severe plastic deformation process and can introduce a large shear strain on the peened surface. In this study, the effects of shot-peening and atmospheric-pressure plasma on Ti-29Nb-13Ta-4.6Zr were investigated to form a white layer on the surface for dental applications.

  20. The effect of hydrogen content on ballistic transport behaviors in the Ni-Nb-Zr-H glassy alloys.

    PubMed

    Fukuhara, Mikio; Umemori, Yoshimasa

    2012-01-01

    The electronic transport behaviors of (Ni(0.39)Nb(0.25)Zr(0.35))(100-) (x)H(x) (0 ≤ x < 23.5) glassy alloys with subnanostructural icosahedral Zr(5)Nb(5)Ni(3) clusters have been studied as a function of hydrogen content. These alloys show semiconducting, electric current-induced voltage (Coulomb) oscillation and ballistic transport behaviors. Coulomb oscillation and ballistic transport occur at hydrogen contents between 6.7 and 13.5 at% and between 13.5 and 21.2 at%, respectively. These results suggest that the localization effect of hydrogen in the clusters plays an important role in various electron transport phenomena.

  1. The Effect of Hydrogen Content on Ballistic Transport Behaviors in the Ni-Nb-Zr-H Glassy Alloys

    PubMed Central

    Fukuhara, Mikio; Umemori, Yoshimasa

    2012-01-01

    The electronic transport behaviors of (Ni0.39Nb0.25Zr0.35)100−xHx (0 ≤ x < 23.5) glassy alloys with subnanostructural icosahedral Zr5Nb5Ni3 clusters have been studied as a function of hydrogen content. These alloys show semiconducting, electric current-induced voltage (Coulomb) oscillation and ballistic transport behaviors. Coulomb oscillation and ballistic transport occur at hydrogen contents between 6.7 and 13.5 at% and between 13.5 and 21.2 at%, respectively. These results suggest that the localization effect of hydrogen in the clusters plays an important role in various electron transport phenomena. PMID:22312246

  2. Improving tribological properties of Ti-5Zr-3Sn-5Mo-15Nb alloy by double glow plasma surface alloying

    NASA Astrophysics Data System (ADS)

    Guo, Lili; Qin, Lin; Kong, Fanyou; Yi, Hong; Tang, Bin

    2016-12-01

    Molybdenum, an alloying element, was deposited and diffused on Ti-5Zr-3Sn-5Mo-15Nb (TLM) substrate by double glow plasma surface alloying technology at 900, 950 and 1000 °C. The microstructure, composition distribution and micro-hardness of the Mo modified layers were analyzed. Contact angles on deionized water and wear behaviors of the samples against corundum balls in simulated human body fluids were investigated. Results show that the surface microhardness is significantly enhanced after alloying and increases with treated temperature rising, and the contact angles are lowered to some extent. More importantly, compared to as-received TLM alloy, the Mo modified samples, especially the one treated at 1000 °C, exhibit the significant improvement of tribological properties in reciprocating wear tests, with lower specific wear rate and friction coefficient. To conclude, Mo alloying treatment is an effective approach to obtain excellent comprehensive properties including optimal wear resistance and improved wettability, which ensure the lasting and safety application for titanium alloys as the biomedical implants.

  3. Fuel swelling and interaction layer formation in the SELENIUM Si and ZrN coated U(Mo) dispersion fuel plates irradiated at high power in BR2

    NASA Astrophysics Data System (ADS)

    Leenaers, A.; Van den Berghe, S.; Koonen, E.; Kuzminov, V.; Detavernier, C.

    2015-03-01

    In the framework of the SELENIUM project two full size flat fuel plates were produced with respectively Si and ZrN coated U(Mo) particles and irradiated in the BR2 reactor at SCK•CEN. Non-destructive analysis of the plates showed that the fuel swelling profiles of both SELENIUM plates were very similar to each other and none of the plates showed signs of pillowing or excessive swelling at the end of irradiation at the highest power position (local maximum 70% 235U). The microstructural analysis showed that the Si coated fuel has less interaction phase formation at low burn-up but at the highest burn-ups, defects start to develop on the IL-matrix interface. The ZrN coated fuel, shows a virtual absence of reaction between the U(Mo) and the Al, up to high fission densities after which the interaction layer formation starts and defects develop in the matrix near the U(Mo) particles. It was found and is confirmed by the SELENIUM (Surface Engineering of Low ENrIched Uranium-Molybdenum) experiment that there are two phenomena at play that need to be controlled: the formation of an interaction layer and swelling of the fuel. As the interaction layer formation occurs at the U(Mo)-matrix interface, applying a diffusion barrier (coating) at that interface should prevent the interaction between U(Mo) and the matrix. The U(Mo) swelling, observed to proceed at an accelerating rate with respect to fission density accumulation, is governed by linear solid state swelling and fission gas bubble swelling due to recrystallization of the fuel. The examination of the SELENIUM fuel plates clearly show that for the U(Mo) dispersion fuel to be qualified, the swelling rate at high burn-up needs to be reduced.

  4. TEM study on a new Zr-(Fe, Cu) phase in furnace-cooled Zr-1.0Sn-0.3Nb-0.3Fe-0.1Cu alloy

    NASA Astrophysics Data System (ADS)

    Liu, Yushun; Qiu, Risheng; Luan, Baifeng; Hao, Longlong; Tan, Xinu; Tao, Boran; Zhao, Yifan; Li, Feitao; Liu, Qing

    2018-06-01

    A new Zr-(Fe, Cu) phase was found in furnace-cooled Zr-1.0Sn-0.3Nb-0.3Fe- 0.1Cu alloy and alloys aged at 580 °C for 10min, 2 h and 10 h. Electron diffraction experiment shows the crystal structure of this phase to be body-centered tetragonal with unit cell dimensions determined to be a = b = 6.49 Å, c = 5.37 Å. Its possible space groups have been discussed and the reason accounting for its formation is believed to be the addition of Cu according to the atom-level images. In addition, no crystal structural or chemical composition changes were observed throughout the aging process.

  5. Mechanical Properties of TiTaHfNbZr High-Entropy Alloy Coatings Deposited on NiTi Shape Memory Alloy Substrates

    NASA Astrophysics Data System (ADS)

    Motallebzadeh, A.; Yagci, M. B.; Bedir, E.; Aksoy, C. B.; Canadinc, D.

    2018-04-01

    TiTaHfNbZr high-entropy alloy (HEA) thin films with thicknesses of about 750 and 1500 nm were deposited on NiTi substrates by RF magnetron sputtering using TiTaHfNbZr equimolar targets. The thorough experimental analysis on microstructure and mechanical properties of deposited films revealed that the TiTaHfNbZr films exhibited amorphous and cauliflower-like structure, where grain size and surface roughness increased concomitant with film thickness. More importantly, the current findings demonstrate that the TiTaHfNbZr HEA films with mechanical properties of the same order as those of the NiTi substrate constitute promising biomedical coatings effective in preventing Ni release.

  6. Mechanical Properties of TiTaHfNbZr High-Entropy Alloy Coatings Deposited on NiTi Shape Memory Alloy Substrates

    NASA Astrophysics Data System (ADS)

    Motallebzadeh, A.; Yagci, M. B.; Bedir, E.; Aksoy, C. B.; Canadinc, D.

    2018-06-01

    TiTaHfNbZr high-entropy alloy (HEA) thin films with thicknesses of about 750 and 1500 nm were deposited on NiTi substrates by RF magnetron sputtering using TiTaHfNbZr equimolar targets. The thorough experimental analysis on microstructure and mechanical properties of deposited films revealed that the TiTaHfNbZr films exhibited amorphous and cauliflower-like structure, where grain size and surface roughness increased concomitant with film thickness. More importantly, the current findings demonstrate that the TiTaHfNbZr HEA films with mechanical properties of the same order as those of the NiTi substrate constitute promising biomedical coatings effective in preventing Ni release.

  7. Constituent Redistribution in U-Zr Metallic Fuel Using the Advanced Fuel Performance Code BISON

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Galloway, Jack D.; Unal, Cetin; Matthews, Christopher

    2016-09-30

    Previous work done by Galloway, et. al. on EBR-II ternary (U-Pu-Zr) fuel constituent redistribution yielded accurate simulation data for the limited data sets of Zr redistribution. The data sets included EPMA scans of two different irradiated rods. First, T179, which was irradiated to 1.9 at% burnup, was analyzed. Second, DP16, which was irradiated to 11 at% burnup, was analyzed. One set of parameters that most accurately represented the zirconium profiles for both experiments was determined. Since the binary fuel (U-Zr) has previously been used as the driver fuel for sodium fast reactors (SFR) as well as being the likely drivermore » fuel if a new SFR is constructed, this same process has been initiated on the binary fuel form. From limited binary EPMA scans as well as other fuel characterization techniques, it has been observed that zirconium redistribution also occurs in the binary fuel, albeit at a reduced rate compared to observation in the ternary fuel, as noted by Kim et. al. While the rate of redistribution has been observed to be slower, numerous metallographs of U-Zr fuel show distinct zone formations.« less

  8. Bone bonding bioactivity of Ti metal and Ti-Zr-Nb-Ta alloys with Ca ions incorporated on their surfaces by simple chemical and heat treatments.

    PubMed

    Fukuda, A; Takemoto, M; Saito, T; Fujibayashi, S; Neo, M; Yamaguchi, S; Kizuki, T; Matsushita, T; Niinomi, M; Kokubo, T; Nakamura, T

    2011-03-01

    Ti15Zr4Nb4Ta and Ti29Nb13Ta4.6Zr, which do not contain the potentially cytotoxic elements V and Al, represent a new generation of alloys with improved corrosion resistance, mechanical properties, and cytocompatibility. Recently it has become possible for the apatite forming ability of these alloys to be ascertained by treatment with alkali, CaCl2, heat, and water (ACaHW). In order to confirm the actual in vivo bioactivity of commercially pure titanium (cp-Ti) and these alloys after subjecting them to ACaHW treatment at different temperatures, the bone bonding strength of implants made from these materials was evaluated. The failure load between implant and bone was measured for treated and untreated plates at 4, 8, 16, and 26 weeks after implantation in rabbit tibia. The untreated implants showed almost no bonding, whereas all treated implants showed successful bonding by 4 weeks, and the failure load subsequently increased with time. This suggests that a simple and economical ACaHW treatment could successfully be used to impart bone bonding bioactivity to Ti metal and Ti-Zr-Nb-Ta alloys in vivo. In particular, implants heat treated at 700 °C exhibited significantly greater bone bonding strength, as well as augmented in vitro apatite formation, in comparison with those treated at 600 °C. Thus, with this improved bioactive treatment process these advantageous Ti-Zr-Nb-Ta alloys can serve as useful candidates for orthopedic devices. Copyright © 2010 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  9. Development of multilayer perceptron networks for isothermal time temperature transformation prediction of U-Mo-X alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johns, Jesse M.; Burkes, Douglas

    In this work, a multilayered perceptron (MLP) network is used to develop predictive isothermal time-temperature-transformation (TTT) models covering a range of U-Mo binary and ternary alloys. The selected ternary alloys for model development are U-Mo-Ru, U-Mo-Nb, U-Mo-Zr, U-Mo-Cr, and U-Mo-Re. These model’s ability to predict 'novel' U-Mo alloys is shown quite well despite the discrepancies between literature sources for similar alloys which likely arise from different thermal-mechanical processing conditions. These models are developed with the primary purpose of informing experimental decisions. Additional experimental insight is necessary in order to reduce the number of experiments required to isolate ideal alloys. Thesemore » models allow test planners to evaluate areas of experimental interest; once initial tests are conducted, the model can be updated and further improve follow-on testing decisions. The model also improves analysis capabilities by reducing the number of data points necessary from any particular test. For example, if one or two isotherms are measured during a test, the model can construct the rest of the TTT curve over a wide range of temperature and time. This modeling capability reduces the cost of experiments while also improving the value of the results from the tests. The reduced costs could result in improved material characterization and therefore improved fundamental understanding of TTT dynamics. As additional understanding of phenomena driving TTTs is acquired, this type of MLP model can be used to populate unknowns (such as material impurity and other thermal mechanical properties) from past literature sources.« less

  10. Effects of Dopant on the Dielectric Properties of CaZrO3 Ceramic Sintered in a Reducing Atmosphere

    NASA Astrophysics Data System (ADS)

    Lee, W. S.; Su, C. Y.; Lee, Y. C.; Lin, S. P.; Yang, Tony

    2006-07-01

    In this study, the influence of CaZrO3 doped with three dopants, SiO2, MnO, and Nb2O5, and then sintered in a reducing atmosphere on microstructure, phase formation, and electrical properties is investigated. SiO2 plays the role of sintering aid to enhance the density of CaZrO3 leading to better performance of electrical properties as a function of SiO2 content. MnO, and Nb2O5 were incorporated into the Zr-site of CaZrO3 to make stoichometric CaZrO3 into non-stoichiometric CaZrO3 with Zr excess resulting in the formation of a second phase, CaZr4O9, which has a lower dielectric constant (13) in comparison with that of the main phase of CaZrO3 (32). Thus, the dielectric constant of CaZrO3 doped with Nb2O5, or MnO is decreased markedly. In addition, Mn+2 incorporated into Zr-sites of CaZrO3 plays the role of acceptor, which compensates for the number of conduction electrons and contributes to better performance of electrical properties such as insulation resistance and \\tanδ. Conversely, Nb+5 incorporated into Zr-sites of CaZrO3 plays the role of donor and provides more conduction electrons, leading to poor performance of electrical properties.

  11. Bio-Diesel Production from Deoxygenation Reaction Over Ce0.6Zr0.4O2 Supported Transition Metal (Ni, Cu, Co, and Mo) Catalysts.

    PubMed

    Shim, Jae-Oh; Jeong, Dae-Woon; Jang, Won-Jun; Jeon, Kyung-Won; Jeon, Byong-Hun; Kim, Seong-Heon; Roh, Hyun-Seog; Na, Jeong-Geol; Han, Sang Sup; Ko, Chang Hyun

    2016-05-01

    Ce0.6Zr0.4O2 supported transition metal (Me = Ni, Cu, Co, and Mo) catalysts have been investigated to screen for the catalytic activity and selectivity for deoxygenation reaction of oleic acid. Me-Ce0.6Zr0.4O2 catalysts were prepared by a co-precipitation method. Ni-Ce0.6Zr0.4O2 catalyst exhibited much higher oleic acid conversion, selectivity for C9 to C17 compounds, and oxygen removal efficiency than the others. This is mainly ascribed to the presence of free Ni species, synergy effects between Ni and Ce0.6Zr0.4O2, and the highest BET surface area.

  12. Primary radiation damage of Zr-0.5%Nb binary alloy: atomistic simulation by molecular dynamics method

    NASA Astrophysics Data System (ADS)

    Tikhonchev, M.; Svetukhin, V.; Kapustin, P.

    2017-09-01

    Ab initio calculations predict high positive binding energy (˜1 eV) between niobium atoms and self-interstitial configurations in hcp zirconium. It allows the expectation of increased niobium fraction in self-interstitials formed under neutron irradiation in atomic displacement cascades. In this paper, we report the results of molecular dynamics simulation of atomic displacement cascades in Zr-0.5%Nb binary alloy and pure Zr at the temperature of 300 K. Two sets of n-body interatomic potentials have been used for the Zr-Nb system. We consider a cascade energy range of 2-20 keV. Calculations show close estimations of the average number of produced Frenkel pairs in the alloy and pure Zr. A high fraction of Nb is observed in the self-interstitial configurations. Nb is mainly detected in single self-interstitial configurations, where its fraction reaches tens of percent, i.e. more than its tenfold concentration in the matrix. The basic mechanism of this phenomenon is the trapping of mobile self-interstitial configurations by niobium. The diffusion of pure zirconium and mixed zirconium-niobium self-interstitial configurations in the zirconium matrix at 300 K has been simulated. We observe a strong dependence of the estimated diffusion coefficients and fractions of Nb in self-interstitials produced in displacement cascades on the potential.

  13. Interference-free determination of sub ng kg-1 levels of long-lived 93Zr in the presence of high concentrations (μg kg-1) of 93Mo and 93Nb using ICP-MS/MS.

    PubMed

    Petrov, Panayot; Russell, Ben; Douglas, David N; Goenaga-Infante, Heidi

    2018-01-01

    Long-lived high abundance radionuclides are of increasing interest with regard to decommissioning of nuclear sites and longer term nuclear waste storage and disposal. In many cases, no routine technique is available for their measurement in nuclear waste and low-level (ng kg -1 ) environmental samples. Recent advances in ICP-MS technology offer attractive features for the selective and sensitive determination of a wide range of long-lived radionuclides. In this work, inductively coupled plasma-tandem mass spectrometry (ICP-MS/MS)-based methodology, suitable for accurate routine determinations of 93 Zr at very low (ng kg -1 ) levels in the presence of high levels (μg kg -1 ) of the isobaric interferents 93 Nb and 93 Mo (often present in nuclear waste samples), is reported for the first time. Additionally, a novel and systematic strategy for method development based on the use of non-radioactive isotopes is proposed. It relies on gas-phase chemical reactions for different molecular ion formation to achieve isobaric interference removal. Using cell gas mixtures of NH 3 /He/H 2 or H 2 /O 2 , and suitable mass shifts, the signal from the 93 Nb and 93 Mo isobaric interferences on 93 Zr were suppressed by up to 5 orders of magnitude. The achieved limit of detection for 93 Zr was 1.3 × 10 -5  Bq g -1 (equivalent to 0.14 ng kg -1 ). The sample analysis time is 2 min, which represents a significant improvement in terms of sample throughput, compared to liquid scintillation counting methods. The method described here can be used for routine measurements of 93 Zr at environmentally relevant levels. It can also be combined with radiometric techniques for use towards the standardisation of 93 Zr measurements. Graphical abstract Interference-free determination of 93 Zr in the presence of high concentrations of isobaric 93 Mo and 93 Nb by ICP-MS/MS.

  14. Simulation of Zr content in TiZrCuNi brazing filler metal for Ti6Al4V alloy

    NASA Astrophysics Data System (ADS)

    Yue, Xishan; Xie, Zonghong; Jing, Yongjuan

    2017-07-01

    To optimize the Zr content in Ti-based filler metal, the covalent electron on the nearest atoms bond in unit cell ( n A u-v ) with Ti-based BCC structure was calculated, in which the brazing temperature was considered due to its influence on the lattice parameter. Based on EET theory (The Empirical Electron Theory for solid and molecules), n_{{A}}^{{u - v}} represents the strength of the unit cell with defined element composition and structure, which reflects the effect from solid solution strengthening on the strength of the unit cell. For Ti-Zr-15Cu-10Ni wt% filler metal, it kept constant as 0.3476 with Zr as 37.5˜45 wt% and decreased to 0.333 with Zr decreasing from 37.5 to 25 wt%. Finally, it increased up to 0.3406 with Zr as 2˜10 wt%. Thus, Ti-based filler metal with Zr content being 2˜10 wt% is suggested based on the simulation results. Moreover, the calculated covalent electron of n A u-v showed good agreement with the hardness of the joint by filler 37.5Zr and 10Zr. The composition of Ti-10Zr-15Cu-10Ni wt% was verified in this study with higher tensile strength of the brazing joint and uniform microstructure of the interface.

  15. In vitro bio-functional performances of the novel superelastic beta-type Ti-23Nb-0.7Ta-2Zr-0.5N alloy.

    PubMed

    Ion, Raluca; Gordin, Doina-Margareta; Mitran, Valentina; Osiceanu, Petre; Dinescu, Sorina; Gloriant, Thierry; Cimpean, Anisoara

    2014-02-01

    The materials used for internal fracture fixations and joint replacements are mainly made of metals which still face problems ranging from higher rigidity than that of natural bone to leaching cytotoxic metallic ions. Beta (β)-type titanium alloys with low elastic modulus made from non-toxic and non-allergenic elements are desirable to reduce stress shielding effect and enhance bone remodeling. In this work, a new β-type Ti-23Nb-0.7Ta-2Zr-0.5N alloy with a Young's modulus of approximately 50 GPa was designed and characterized. The behavior of MC3T3-E1 pre-osteoblasts on the new alloy, including adhesion, proliferation and differentiation, was evaluated by examining the cytoskeleton, focal adhesion formation, metabolic activity and extracellular matrix mineralization. Results indicated that the pre-osteoblast cells exhibited a similar degree of attachment and growth on Ti-23Nb-0.7Ta-2Zr-0.5N and Ti-6Al-4V. However, the novel alloy proved to be significantly more efficient in sustaining mineralized matrix deposition upon osteogenic induction of the cells than Ti-6Al-4V control. Further, the analysis of RAW 264.7 macrophages cytokine gene and protein expression indicated no significant inflammatory response. Collectively, these findings suggest that the Ti-23Nb-0.7Ta-2Zr-0.5N alloy, which has an increased mechanical biocompatibility with bone, allows a better osteogenic differentiation of osteoblast precursor cells than Ti-6Al-4V and holds great potential for future clinical prosthetic applications. Copyright © 2013 Elsevier B.V. All rights reserved.

  16. Sintering behavior of U 80 at.%Zr powder compacts in a vacuum environment

    NASA Astrophysics Data System (ADS)

    Kim, Tae-Kyu; Lee, Chong-Tak; Sohn, Dong-Seong

    2008-01-01

    Sintering behavior of U-80 at.%Zr powder compacts in a temperature range from 1100 to 1500 °C in a vacuum of 1 × 10 -4 Pa was evaluated. The sintered density depended more on the sintering temperature than on the sintering time. The sintered specimens consisted of the δ-UZr 2 matrix with acicular α-Zr precipitates, but it still had un-reacted zirconium when the sintering temperature was 1100 °C. The uranium depletion near the surface of the specimens sintered at temperatures above 1300 °C was detected. Massive Zr(O) grains in the sintered specimen were found, and their formation was restrained when the cooling rate from the sintering temperature was increased.

  17. Structural transformation in antiferroelectric PbZrO3-relaxor ferroelectric Pb(Ni1/3Nb2/3)O3 solid solution system

    NASA Astrophysics Data System (ADS)

    Wirunchit, S.; Vittayakorn, N.

    2008-07-01

    The solid solution between the antiferroelectric (AFE) PbZrO3 (PZ) and the relaxor ferroelectric (FE) Pb(Ni1/3Nb2/3)O3 (PNN) was synthesized by the columbite precursor method. The crystal structure, phase transformations, and dielectric and thermal properties of (1-x )PZ-xPNN where x =0.00-0.30 were investigated. With these data, the FE phase diagram between PZ and PNN has been established. The crystal structure data obtained from X-ray diffraction indicate that the solid solution PZ-PNN, where x =0.00-0.30, successively transforms from orthorhombic to rhombohedral symmetry with an increase in the PNN concentration. The AFE phase→FE phase transition occurs in compositions of 0.00⩽x⩽0.08. The AFE →FE phase transition shifts to lower temperatures with higher compositions of x. The FE phase temperature range width increases with increased PNN. Apparently the replacement of the Zr4+ ion by Ni2+/Nb5+ ions decreases the driving force for an antiparallel shift of Pb2+ ions because they interrupt the translational symmetry and facilitates the appearance of a rhombohedral FE phase when the amount of PNN is higher than 8mol%.

  18. Adsorption and diffusion of Au atoms on the (001) surface of Ti, Zr, Hf, V, Nb, Ta, and Mo carbides.

    PubMed

    Florez, Elizabeth; Viñes, Francesc; Rodriguez, Jose A; Illas, Francesc

    2009-06-28

    The adsorption of atomic Au on the (001) surface of TiC, ZrC, HfC, VC, NbC, TaC, and delta-MoC and the mechanism of diffusion of this adatom through the surface have been studied in terms of a periodic density functional theory based approach. In all the cases, the Au adsorption energies are in the range of 1.90-2.35 eV. The moderately large adsorption energies allow the Au diffusion before desorption could take place. For TiC(001), ZrC(001), and HfC(001), atomic Au is adsorbed directly on top of C atoms and diffusion takes place along the diagonal of the squares formed by M-C-M-C atoms with the transition state located above the hollow sites. For the rest of transition metal carbides the situation is less simple with the appearance of more than one stable adsorption site, as for NbC and TaC, of a small energy barrier for diffusion around the most stable adsorption site and of a more complex diffusion pathway. The small energy barrier for diffusion around the most stable site will result in a highly mobile Au species which could be observed in scanning tunnel microscope experiments. After depositing Au on metal-carbide surfaces, there is a noticeable charge transfer from the substrate to the adsorbed Au atom. The electronic perturbations on Au increase when going from TiC to ZrC or TaC. Our results indicate that metal carbides should be better supports for the chemical activation of Au than metal oxides.

  19. Contribution to the thermodynamic description of the corium - The U-Zr-O system

    NASA Astrophysics Data System (ADS)

    Quaini, A.; Guéneau, C.; Gossé, S.; Dupin, N.; Sundman, B.; Brackx, E.; Domenger, R.; Kurata, M.; Hodaj, F.

    2018-04-01

    In order to understand the stratification process that may occur in the late phase of the fuel degradation during a severe accident in a PWR, the thermodynamic knowledge of the U-Zr-O system is crucial. The presence of a miscibility gap in the U-Zr-O liquid phase may lead to a stratified configuration, which will impact the accidental scenario management. The aim of this work was to obtain new experimental data in the U-Zr-O liquid miscibility gap. New tie-line data were provided at 2567 ± 25 K. The related thermodynamic models were reassessed using present data and literature values. The reassessed model will be implemented in the TAF-ID international database. The composition and density of phases potentially formed during stratification will be predicted by coupling current thermodynamic model with thermal-hydraulics codes.

  20. Electron correlation and relativity of the 5f electrons in the U-Zr alloy system

    NASA Astrophysics Data System (ADS)

    Söderlind, P.; Sadigh, B.; Lordi, V.; Landa, A.; Turchi, P. E. A.

    2014-01-01

    ] and VASP [4] codes. The Wien2K computations are set up with an APW + lo basis for the expansion of the wave functions within the muffin-tin spheres (with radius RMT = 2.5 a.u.) in partial waves with angular momenta up to l = 3, and an LAPW basis for all higher angular momenta up to l = 10. The plane-wave cutoff (Kmax) for the expansion of the wave functions in the interstitial region is chosen such that RMT × Kmax = 10. We apply the LSDA + U scheme proposed by Anisimov et al. [5] (Wien2K) and Dudarev et al. [6] (VASP) to the uranium f orbitals, which approximately corrects for their electron self interaction. An effective Ueff = U - J is chosen to be 2 eV (J = 0), which appears to be realistic for uranium systems [7]. The spin-orbit interaction is included using the second-variation method with scalar-relativistic orbitals as basis. This basis includes all Eigen states with energy less than 70 eV. For reason to improve the description of the relativistic orbitals, the p1/2 local orbitals are added to the basis set. For actinide metals, this technique for the spin-orbit coupling equals, with good approximation, that of the complete four-spinor Dirac formalism [8-10]. All calculations use a 12 × 12 × 12 Monkhorst-Pack k-point grid and a plane-wave cutoff of 23 Ry.In Table 1 we show our calculated equilibrium volumes (V) and bulk moduli (B) obtained with and without spin-orbit coupling (SOC) for bcc (γ) uranium metal using the Wien2K (VASP) codes. (The other component, Zr, is a light metal where relativistic effects are not important). The changes in V and B due to SOC are indeed quite small, consistent with results from previous studies [9,11], and within the scatter of the experimental data. The reason why the volume expands slightly is that the separation of the 5f5/2 and 5f7/2 states, due to spin-orbit coupling, weakens the cohesion of the bonding electrons. The separation is very small, as seen in Fig. 1[11] where we plot the total electronic density

  1. Phase decomposition of γ-U (bcc) in U-10 wt% Mo fuel alloy during hot isostatic pressing of monolithic fuel plate

    NASA Astrophysics Data System (ADS)

    Park, Y.; Eriksson, N.; Newell, R.; Keiser, D. D.; Sohn, Y. H.

    2016-11-01

    Eutectoid decomposition of γ-phase (cI2) into α-phase (oC4) and γ‧-phase (tI6) during the hot isostatic pressing (HIP) of the U-10 wt% Mo (U10Mo) alloy was investigated using monolithic fuel plate samples consisting of U10Mo fuel alloy, Zr diffusion barrier and AA6061 cladding. The decomposition of the γ-phase was observed because the HIP process is carried out near the eutectoid temperature, 555 °C. Initially, a cellular structure, consisting of γ‧-phase surrounded by α-phase, developed from the destabilization of the γ-phase. The cellular structure further developed into an alternating lamellar structure of α- and γ‧-phases. Using scanning electron microscopy and transmission electron microscopy, qualitative and quantitative microstructural analyses were carried out to identify the phase constituents, and elucidate the microstructural development based on time-temperature-transformation diagram of the U10Mo alloy. The destabilization of γ -phase into α- and γ‧-phases would be minimized when HIP process was carried out with rapid ramping/cooling rate and dwell temperature higher than 560 °C.

  2. Creep Strength of Nb-1Zr for SP-100 Applications

    NASA Astrophysics Data System (ADS)

    Horak, James A.; Egner, Larry K.

    1994-07-01

    Power systems that are used to provide electrical power in space are designed to optimize conversion of thermal energy to electrical energy and to minimize the mass and volume that must be launched. Only refractory metals and their alloys have sufficient long-term strength for several years of uninterrupted operation at the required temperatures of 1200 K and above. The high power densities and temperatures at which these reactors must operate require the use of liquid-metal coolants. The alloy Nb-1 wt % Zr (Nb-lZr), which exhibits excellent corrosion resistance to alkali liquid-metals at high temperatures, is being considered for the fuel cladding, reactor structural, and heat-transport systems for the SP-100 reactor system. Useful lifetime of this system is limited by creep deformation in the reactor core. Nb-lZr sheet procured to American Society for Testing and Materials (ASTM) specifications for reactor grade and commercial grade has been processed by several different cold work and annealing treatments to attempt to produce the grain structure (size, shape, and distribution of sizes) that provides the maximum creep strength of this alloy at temperatures from 1250 to 1450 K. The effects of grain size, differences in oxygen concentrations, tungsten concentrations, and electron beam and gas tungsten arc weldments on creep strength were studied. Grain size has a large effect on creep strength at 1450 K but only material with a very large grain size (150 μm) exhibits significantly higher creep strength at 1350 K. Differences in oxygen or tungsten concentrations did not affect creep strength, and the creep strengths of weldments were equal to, or greater than, those for base metal.

  3. Cellular response of osteoblasts to low modulus Ti-24Nb-4Zr-8Sn alloy mesh structure.

    PubMed

    Nune, K C; Misra, R D K; Li, S J; Hao, Y L; Yang, R

    2017-03-01

    Titanium alloys (Ti-6Al-4V and Ti-6Al-7Nb) are widely used for implants, which are characterized by high elastic modulus (∼110 GPa) with (α + β) structure and that may induce undesirable stress shielding effect and immune responses associated with the presence of toxic elements. In this regard, we have combined the attributes of a new alloy design and the concept of additive manufacturing to fabricate 3D scaffolds with an interconnected porous structure. The new alloy is a β-type Ti-24Nb-4Zr-8Sn (Ti2448) alloy with significantly reduced modulus. In the present study, we explore the biological response of electron beam melted low modulus Ti2448 alloy porous mesh structure through the elucidation of bioactivity and osteoblast functions. The cellular activity was explored in terms of cell-to-cell communication involving proliferation, spreading, synthesis of extracellular and intracellular proteins, differentiation, and mineralization. The formation of fine apatite-like crystals on the surface during immersion test in simulated body fluid confirmed the bioactivity of the scaffold surface, which provided the favorable osteogenic microenvironment for cell-material interaction. The combination of unique surface chemistry and interconnected porous architecture provided the desired pathway for supply of nutrients and oxygen to cells and a favorable osteogenic micro-environment for incorporation (on-growth and in-growth) of osteoblasts. The proliferation and differentiation of pre-osteoblasts and their ability to form a well mineralized bone-like extracellular matrix (ECM) by secreting bone markers (ALP, calcium, etc.) over the struts of the scaffold point toward the determining role of unique surface chemistry and 3D architecture of the Ti2448 alloy mesh structure in modulating osteoblasts functions. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 859-870, 2017. © 2016 Wiley Periodicals, Inc.

  4. Thermal expansion of phosphates with the NaZr2(PO4)3 structure containing lanthanides and zirconium: R 0.33Zr2(PO4)3 ( R = Nd, Eu, Er) and Er0.33(1- x) Zr0.25 x Zr2(PO4)3

    NASA Astrophysics Data System (ADS)

    Volgutov, V. Yu.; Orlova, A. I.

    2015-09-01

    Phosphates R 0.33Zr2(PO4)3 ( R = Nd, Eu, or Er) and Er0.33(1- х)Zr0.25Zr2(PO4)3 ( х = 0, 0.25, 0.5, 0.75, 1.0) of the NaZr2(PO4)3 family have been synthesized and investigated by high-temperature X-ray diffraction. The crystallochemical approach is used to obtain compounds with expected small and controllable thermal-expansion parameters. Phosphates with close-to-zero thermal-expansion parameters, including those with low thermal-expansion anisotropy, have been obtained: Nd0.33Zr2(PO4)3 with α a =-2.21 × 10-6 °С-1, α c = 0.81 × 10-6 °С-1, and Δα = 3.02 × 10-6 °С-1 and Er0.08Zr0.19Zr2(PO4)3 with α a =-1.86 × 10-6 °С-1, α c = 1.73 × 10-6 °С-1, and Δα = 3.58 × 10-6 °С-1.

  5. Irradiation induced structural change in Mo 2Zr intermetallic phase

    DOE PAGES

    Gan, J.; Keiser, Jr., D. D.; Miller, B. D.; ...

    2016-05-14

    The Mo 2Zr phase has been identified as a major interaction product at the interface of U-10Mo and Zr. Transmission electron microscopy in-situ irradiation with Kr ions at 200 °C with doses up to 2.0E+16 ions/cm 2 was carried out to investigate the radiation stability of the Mo 2Zr. The Mo 2Zr undergoes a radiation-induced structural change, from a large cubic (cF24) to a small cubic (cI2), along with an estimated 11.2% volume contraction without changing its composition. The structural change begins at irradiation dose below 1.0E+14 ions/cm 2. Furthermore, the transformed Mo 2Zr phase demonstrates exceptional radiation tolerance withmore » the development of dislocations without bubble formation.« less

  6. Incorporating Small Fatigue Crack Growth in Probabilistic Life Prediction: Effect of Stress Ratio in Ti-6Al-2Sn-4Zr-6-Mo (Preprint)

    DTIC Science & Technology

    2012-08-01

    growth rates as well as the variability in the same, in the + titanium alloy, Ti-6Al-2Sn-4Zr-6Mo (Ti- 6 -2- 4 - 6 ) was studied at 260°C. A probabilistic...were obtained in a separate study on the effect of R on the small-crack growth regime in another + titanium alloy, Ti- 6 - 4 [32]. Given that crack...microstructure of Ti-6Al-2Sn-4Zr-6Mo (Ti- 6 -2- 4 - 6 ) at 260°C with particular emphasis on incorporating small-crack data into probabilistic life prediction

  7. Micro-arc oxidation treatment to improve the hard-tissue compatibility of Ti-29Nb-13Ta-4.6Zr alloy

    NASA Astrophysics Data System (ADS)

    Tsutsumi, Yusuke; Niinomi, Mitsuo; Nakai, Masaaki; Tsutsumi, Harumi; Doi, Hisashi; Nomura, Naoyuki; Hanawa, Takao

    2012-12-01

    Micro-arc oxidation (MAO) was performed on a β-type Ti-29Nb-13Ta-4.6Zr alloy (TNTZ) in this study to improve its bioactivity in a body fluid and its hard-tissue compatibility. The surface oxide layer formed on TNTZ by MAO treatment in a mixture of calcium glycerophosphate and magnesium acetate was characterized using various surface analyses. The oxide layer was mainly composed of two types of TiO2 (rutile and anatase), and it also contained Ca, P, and Mg, which were incorporated from the electrolyte during the treatment. The calcium phosphate formation on the surface of the specimens after immersion in Hanks' solution was evaluated to determine the bioactivity of TNTZ with and without MAO treatment. As a result, thick calcium phosphate layers formed on the TNTZ specimen that underwent MAO treatment, whereas only a small amount of precipitate was observed on TNTZ without treatment. Thus, the MAO treatment is a promising method to improve the bioactivity and hard-tissue compatibility of TNTZ.

  8. Electrochemical Characteristics of Cell Cultured Ti-Nb-Zr Alloys After Nano-Crystallized Si-HA Coating.

    PubMed

    Jeong, Yong-Hoon; Choe, Han-Cheol

    2015-01-01

    The aim of this study was to investigate the electrochemical characteristics of nano crystallized Si-HA coating on Ti-Nb-Zr alloy after human osteoblast like (HOB) cell attachment. The Ti-Nb-Zr alloy was manufactured with 35 wt.% of Nb and 10 wt.% of Zr by arc melting furnace to appropriate physical properties as biomaterials. The HA and Si-substituted coatings were prepared by electron-beam physical vapor deposition method with 0.5, 0.8 and 1.2 wt.% of Si contents, and nano aging treatment was performed 500 degrees C for 1 h. The characteristics of coating surface were analyzed by field emission scanning electron microscopy, energy dispersive X-ray spectroscopy, and X-ray diffraction, respectively. To evaluate of cell attachment on cell cultured surface, the potentiodynamic test was performed on the surface using HOB cells. The results showed that the Si-HA coating surface showed higher tendency of cell attachment than that of single HA coating, corrosion resistance value was increased by dense of cell attachment.

  9. Preparation of Zr(Mo,W)2O8 with a larger negative thermal expansion by controlling the thermal decomposition of Zr(Mo,W)2(OH,Cl)2∙2H2O.

    PubMed

    Petrushina, Mariya Yu; Dedova, Elena S; Filatov, Eugeny Yu; Plyusnin, Pavel E; Korenev, Sergei V; Kulkov, Sergei N; Derevyannikova, Elizaveta A; Sharafutdinov, Marat R; Gubanov, Alexander I

    2018-03-28

    Solid solutions of Zr(Mo,W) 2 O 7 (OH,Cl) 2 ∙2H 2 O with a preset ratio of components were prepared by a hydrothermal method. The chemical composition of the solutions was determined by energy dispersive X-ray spectroscopy (EDX). For all the samples of ZrMo x W 2-x O 7 (OH,Cl) 2 ∙2H 2 O (x = 0.0, 0.2, 0.4, 0.6, 0.8, 1.0, 1.2, 1.4, 1.6, 1.8, and 2.0), TGA and in situ powder X-ray diffraction (PXRD) studies (300-1100 K) were conducted. For each case, the boundaries of the transformations were determined: Zr(Mo,W) 2 O 7 (OH,Cl) 2 ∙2H 2 O → orthorhombic-ZrMo x W 2-x O 8 (425-525 K), orthorhombic-ZrMo x W 2-x O 8  → cubic-ZrMo x W 2-x O 8 (700-850 K), cubic-ZrMo x W 2-x O 8  → trigonal-ZrMo x W 2-x O 8 (800-1050 K for x > 1) and cubic-ZrMo x W 2-x O 8  → oxides (1000-1075 K for x ≤ 1). The cell parameters of the disordered cubic-ZrMo x W 2-x O 8 (space group Pa-3) were measured within 300-900 K, and the thermal expansion coefficients were calculated: -3.5∙10 -6  - -4.5∙10 -6  K -1 . For the ordered ZrMo 1.8 W 0.2 O 8 (space group P2 1 3), a negative thermal expansion (NTE) coefficient -9.6∙10 -6  K -1 (300-400 K) was calculated. Orthorhombic-ZrW2O 8 is formed upon the decomposition of ZrW 2 O 7 (OH,Cl) 2 ∙2H 2 O within 500-800 K.

  10. High- and low-Am RE inclusion phases in a U-Np-Pu-Am-Zr alloy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Janney, Dawn E.; Madden, James W.; O'Holleran, Thomas P.

    2015-03-01

    Structural, microstructural, and microchemical data were collected from rare-earth inclusions in an as-cast U-Pu-Zr alloy with ~3 at% Am, 2% Np, and 9% rare-earth elements (La, Ce, Pr, and Nd). Two RE phases with different concentrations of Am were identified. The composition of high-Am RE inclusions is ~2-5 at% La, 15-20 % Ce, 5-10% Pr, 25-45% Nd, 1% Np, 5-10% Pu, and 10-20% Am. Some areas also have O, although this does not appear to be an essential part of the high-Am RE phase. The inclusions have a face-centered cubic structure with a lattice parameter a ~ 0.54 nm. Themore » composition of the only low-Am RE inclusion studied in detail is ~~35-40 at% O, 40-45 % Nd, 1-2% Zr, 4-5% La, 9-10% Ce, and 6-7% Pr. This inclusion is an oxide with a crystal structure similar to the room-temperature structure of Nd 2O 3. Microstructural features suggest that oxidation occurred during casting, and that early crystallization of high-temperature oxides led to formation of two distinct RE phases.« less

  11. Charge transport, interfacial interactions and synergistic mechanisms in BiNbO4/MWO4 (M = Zn and Cd) heterostructures for hydrogen production: insights from a DFT+U study.

    PubMed

    Opoku, Francis; Kuben Govender, Krishna; van Sittert, Cornelia Gertina Catharina Elizabeth; Poomani Govender, Penny

    2017-10-25

    In the 21st century, the growing demand of global energy is one of the key challenges. The photocatalytic generation of hydrogen has attracted extensive attention to discuss the increasing global demand for sustainable and clean energy. However, hydrogen evolution reactions normally use the economically expensive rare noble metals and the processes remain a challenge. Herein, low-cost BiNbO 4 /MWO 4 (010) heterostructures are studied for the first time to check their suitability towards photocatalytic hydrogen production. A theoretical study with the aid of density functional theory (DFT) is used to investigate the synergistic effect, ionisation energy, electron affinities, charge transfer, electronic properties and the underlying mechanism for hydrogen generation of BiNbO 4 /MWO 4 (010) heterostructures. The experimental band gaps of bulk ZnWO 4 , CdWO 4 and BiNbO 4 are well reproduced using the DFT+U method. The calculated band edge position shows a type-II staggered band alignment and the charge transfer between BiNbO 4 and MWO 4 monolayers results in a large interfacial built-in potential, which will favour the separation of charge carriers in the heterostructures. The effective mass of the photoinduced holes is higher compared to the electrons, making the heterostructures useful in hydrogen production. The relatively low ionisation energy and electron affinity for the heterostructures compared to the monolayers make them ideal for photocatalysis applications due to their small energy barrier for the injection of electrons and creation of holes. The BiNbO 4 /MWO 4 (010) heterostructures are more suitable for photocatalytic hydrogen production due to their strong reducing power relative to the H + /H 2 O potential. This study sheds light on the less known BiNbO 4 /ZnWO 4 (010) heterostructures and the fully explored electronic and optical properties will pave way for future photocatalytic water splitting applications.

  12. Oxidation of U-20 at% Zr alloy in air at 423 1063 K

    NASA Astrophysics Data System (ADS)

    Matsui, Tsuneo; Yamada, Takanobu; Ikai, Yasushi; Naito, Keiji

    1993-01-01

    The oxidation behavior of U 0.80Zr 0.20 alloy (two-phase mixture of U and UZr 2 below 878 K and single solid solution above 1008 K) was studied by thermogravimetry in the temperature range from 423 to 1063 K in air. During oxidation in the low temperature region (423-503 K), the sample kept its initial shape (a rectangular rod) and the surface of the sample was covered by a black thin adherent UO2 + x oxide layer. On the other hand, by oxidation in the middle temperature region, the sample broke to several pieces of thin plates and blocks, and fine powder at 643-723 K and entirely to fine powder at 775-878 K, all of which were analyzed to be a mixture of U 3O 8 and ZrO 2. By oxidation in the high temperature region (1008-1063 K) the sample broke to very fine powder, which consisted of U 3O 8 and ZrO 2. Based on the sample shape, the oxide phase identified after oxidation and the slope value of the bilogarithmic plots of the weight gain against time, the oxidation kinetics was analyzed with a paralinear equation in the low temperature region below 503 K and a linear equation in the middle and high temperature regions above 643 K. Oxidation rates of U 0.80Zr 0.20 (two-phase mixture) in the low and middle temperature regions were smaller than those of uranium metal. A discontinuity in the plot of the linear oxidation rate constant versus reciprocal temperature was found to be present between 723 and 838 K, similarly to the case of uranium metal previously reported. The linear rate constants of single-phase solid solution in the high temperature region above 1008 K seemed to be a little smaller than those estimated by the extrapolation of the values in the middle temperature region.

  13. TEM analysis of irradiation-induced interaction layers in coated UMo/X/Al trilayer systems (X= Ti, Nb, Zr, and Mo)

    NASA Astrophysics Data System (ADS)

    Chiang, H.-Y.; Wiss, T.; Park, S.-H.; Dieste-Blanco, O.; Petry, W.

    2018-02-01

    Uranium-molybdenum (UMo) alloy powder embedded in an Al matrix is considered as a promising candidate for fuel conversion of research reactors. A modified system with a diffusion barrier X as coating, UMo/X/Al trilayer (X = Ti, Zr, Nb, and Mo), has been investigated to suppress interdiffusion between UMo and the Al matrix. The trilayer systems were tested by swift heavy ion irradiation, the thereby created interaction zone has been analyzed by scanning transmission electron microscopy (STEM) and energy-dispersive X-ray spectroscopy (EDX). Detailed structural characterization are presented and compared to earlier μ-XRD analysis.

  14. Cu-Cr-Nb-Zr Alloy for Rocket Engines and Other High-Heat- Flux Applications

    NASA Technical Reports Server (NTRS)

    Ellis, David L.

    2013-01-01

    Rocket-engine main combustion chamber liners are used to contain the burning of fuel and oxidizer and provide a stream of high-velocity gas for propulsion. The liners in engines such as the Space Shuttle Main Engine are regeneratively cooled by flowing fuel, e.g., cryogenic hydrogen, through cooling channels in the back side of the liner. The heat gained by the liner from the flame and compression of the gas in the throat section is transferred to the fuel by the liner. As a result, the liner must either have a very high thermal conductivity or a very high operating temperature. In addition to the large heat flux (>10 MW/sq m), the liners experience a very large thermal gradient, typically more than 500 C over 1 mm. The gradient produces thermally induced stresses and strains that cause low cycle fatigue (LCF). Typically, a liner will experience a strain differential in excess of 1% between the cooling channel and the hot wall. Each time the engine is fired, the liner undergoes an LCF cycle. The number of cycles can be as few as one for an expendable booster engine, to as many as several thousand for a reusable launch vehicle or reaction control system. Finally, the liners undergo creep and a form of mechanical degradation called thermal ratcheting that results in the bowing out of the cooling channel into the combustion chamber, and eventual failure of the liner. GRCop-84, a Cu-Cr-Nb alloy, is generally recognized as the best liner material available at the time of this reporting. The alloy consists of 14% Cr2Nb precipitates in a pure copper matrix. Through experimental work, it has been established that the Zr will not participate in the formation of Laves phase precipitates with Cr and Nb, but will instead react with Cu to form the desired Cu-Zr compounds. It is believed that significant improvements in the mechanical properties of GRCop-84 will be realized by adding Zr. The innovation is a Cu-Cr-Nb-Zr alloy covering the composition range of 0.8 to 8.1 weight

  15. Effect of Nb Content on Mechanical Behavior and Structural Properties of W/(Zr55Cu30Al10Ni5)100- x Nb x Composite

    NASA Astrophysics Data System (ADS)

    Mahmoodan, Morteza; Gholamipour, Reza; Mirdamadi, Shamseddin; Nategh, Said

    2017-05-01

    In the present study, (Zr55Cu30Al10Ni5)100- x Nb( x=0,1,2,3) bulk metallic glass matrix/tungsten wire composites were fabricated by infiltration process. Structural studies were investigated by scanning electron microscopy and X-ray diffraction method. Also, mechanical behaviors of the materials were analyzed using quasi-static compressive tests. Results indicated that the best mechanical properties i.e., 2105 MPa compressive ultimate strength and 28 pct plastic strain before failure, were achieved in the composite sample with X = 2. It was also found that adding Nb to the matrix modified interface structure in W fiber/(Zr55Cu30Al10Ni5)98Nb2 since the stable diffusion band formation acts as a functionally graded layer. Finally, the observation of multiple shear bands formation in the matrix could confirm the excellent plastic deformation behavior of the composite.

  16. Impact of Nb vacancies and p-type doping of the NbCoSn-NbCoSb half-Heusler thermoelectrics.

    PubMed

    Ferluccio, Daniella A; Smith, Ronald I; Buckman, Jim; Bos, Jan-Willem G

    2018-02-07

    The half-Heuslers NbCoSn and NbCoSb have promising thermoelectric properties. Here, an investigation of the NbCo 1+y Sn 1-z Sb z (y = 0, 0.05; 0 ≤ z ≤ 1) solid-solution is presented. In addition, the p-type doping of NbCoSn using Ti and Zr substitution is investigated. Rietveld analysis reveals the gradual creation of Nb vacancies to compensate for the n-type doping caused by the substitution of Sb in NbCoSn. This leads to a similar valence electron count (∼18.25) for the NbCo 1+y Sn 1-z Sb z samples (z > 0). Mass fluctuation disorder due to the Nb vacancies strongly decreases the lattice thermal conductivity from 10 W m -1 K -1 (z = 0) to 4.5 W m -1 K -1 (z = 0.5, 1). This is accompanied by a transition to degenerate semiconducting behaviour leading to large power factors, S 2 /ρ = 2.5-3 mW m -1 K -2 and figures of merit, ZT = 0.25-0.33 at 773 K. Ti and Zr can be used to achieve positive Seebeck values, e.g. S = +150 μV K -1 for 20% Zr at 773 K. However, the electrical resistivity, ρ 323K = 27-35 mΩ cm, remains too large for these materials to be considered useful p-type materials.

  17. Characterization of a High Strength, Refractory High Entropy Alloy, AlMo0.5NbTa0.5TiZr

    NASA Astrophysics Data System (ADS)

    Jensen, Jacob

    nanoscale interpenetrating microstructure was discovered to form via a conditional spinodal reaction pathway involving a congruent ordering transformation preceding spinodal decomposition. In order to gain a comprehensive understanding of the true morphology of these phases and obtain a novel perspective of 3D elemental segregation in the HEA, STEM-high angle annular darkfield (HAADF) micrographs and XEDS spectral images were utilized in the tomographic reconstruction of the microstructure, which was inherently difficult to observe through conventional characterization techniques. The microstructure of the alloy was ultimately refined by incremental variations to the base alloy composition in an effort to remove deleterious intermetallic phases adversely affecting ductility. Despite the excellent compressive strength across a wide range of temperatures and the ability to tailor the microstructure by compositional modifications, microstructural and phase transformations in the desired operating temperature range indicate that the AlMo0.5NbTa0.5TiZr alloy may not be a suitable material for high temperature aerospace structural components.

  18. Micro-scale abrasive wear behavior of medical implant material Ti-25Nb-3Mo-3Zr-2Sn alloy on various friction pairs.

    PubMed

    Wang, Zhenguo; Huang, Weijiu; Ma, Yanlong

    2014-09-01

    The micro-scale abrasion behaviors of surgical implant materials have often been reported in the literature. However, little work has been reported on the micro-scale abrasive wear behavior of Ti-25Nb-3Mo-3Zr-2Sn (TLM) titanium alloy in simulated body fluids, especially with respect to friction pairs. Therefore, a TE66 Micro-Scale Abrasion Tester was used to study the micro-scale abrasive wear behavior of the TLM alloy. This study covers the friction coefficient and wear loss of the TLM alloy induced by various friction pairs. Different friction pairs comprised of ZrO2, Si3N4 and Al2O3 ceramic balls with 25.4mm diameters were employed. The micro-scale abrasive wear mechanisms and synergistic effect between corrosion and micro-abrasion of the TLM alloy were investigated under various wear-corrosion conditions employing an abrasive, comprised of SiC (3.5 ± 0.5 μm), in two test solutions, Hanks' solution and distilled water. Before the test, the specimens were heat treated at 760°C/1.0/AC+550°C/6.0/AC. It was discovered that the friction coefficient values of the TLM alloy are larger than those in distilled water regardless of friction pairs used, because of the corrosive Hanks' solution. It was also found that the value of the friction coefficient was volatile at the beginning of wear testing, and it became more stable with further experiments. Because the ceramic balls have different properties, especially with respect to the Vickers hardness (Hv), the wear loss of the TLM alloy increased as the ball hardness increased. In addition, the wear loss of the TLM alloy in Hanks' solution was greater than that in distilled water, and this was due to the synergistic effect of micro-abrasion and corrosion, and this micro-abrasion played a leading role in the wear process. The micro-scale abrasive wear mechanism of the TLM alloy gradually changed from two-body to mixed abrasion and then to three-body abrasion as the Vickers hardness of the balls increased. Copyright

  19. Enhancement of High Temperature Strength of 2219 Alloys Through Small Additions of Nb and Zr and a Novel Heat Treatment

    NASA Astrophysics Data System (ADS)

    Mondol, S.; Makineni, S. K.; Kumar, S.; Chattopadhyay, K.

    2018-07-01

    This paper presents a detailed investigation on the effect of small amount of Nb and Zr additions to 2219 Al alloy coupled with a novel three-stage heat treatment process. The main aim of the work is to increase the high temperature strength of 2219 alloy by introducing thermally stable L12 type ordered precipitates in the matrix as well as by reducing the coarsening of metastable strengthening θ″ and θ' precipitates. To achieve this, small amounts of Nb and Zr are added to 2219 alloy melt and retained in solid solution by suction casting in a water-cooled copper mould having a cooling rate of 102 to 103 K/s. The suction cast alloy is directly aged at 673 K (400 °C) to form L12 type ordered coherent Al3Zr precipitates. Subsequently, the alloy is solution treated at 808 K (535 °C) for 30 minutes to get supersaturation of Cu in the matrix without significantly affecting the Al3Zr precipitates. Finally, the alloy is aged at 473 K (200 °C), which results in the precipitation of θ″ and θ'. Microstructural characterization reveals that θ″ and θ' are heterogeneously precipitated on pre-existing uniformly distributed Al3Zr precipitates, which leads to a higher number density of these precipitates. This results in a significant increase in strength at room temperature as well as at 473 K (200 °C) as compared to the 2219 alloy. Furthermore, the alloy remains thermally stable after prolonged exposure at 473 K (200 °C), which is attributed to the elastic strain energy minimization by the conjoint Al3Zr/ θ' or Al3Zr/ θ″ precipitates, and the high Zr and Nb solute-vacancy binding energy, retarding the growth and coarsening of θ″ and θ' precipitates.

  20. Enhancement of High Temperature Strength of 2219 Alloys Through Small Additions of Nb and Zr and a Novel Heat Treatment

    NASA Astrophysics Data System (ADS)

    Mondol, S.; Makineni, S. K.; Kumar, S.; Chattopadhyay, K.

    2018-05-01

    This paper presents a detailed investigation on the effect of small amount of Nb and Zr additions to 2219 Al alloy coupled with a novel three-stage heat treatment process. The main aim of the work is to increase the high temperature strength of 2219 alloy by introducing thermally stable L12 type ordered precipitates in the matrix as well as by reducing the coarsening of metastable strengthening θ″ and θ' precipitates. To achieve this, small amounts of Nb and Zr are added to 2219 alloy melt and retained in solid solution by suction casting in a water-cooled copper mould having a cooling rate of 102 to 103 K/s. The suction cast alloy is directly aged at 673 K (400 °C) to form L12 type ordered coherent Al3Zr precipitates. Subsequently, the alloy is solution treated at 808 K (535 °C) for 30 minutes to get supersaturation of Cu in the matrix without significantly affecting the Al3Zr precipitates. Finally, the alloy is aged at 473 K (200 °C), which results in the precipitation of θ″ and θ'. Microstructural characterization reveals that θ″ and θ' are heterogeneously precipitated on pre-existing uniformly distributed Al3Zr precipitates, which leads to a higher number density of these precipitates. This results in a significant increase in strength at room temperature as well as at 473 K (200 °C) as compared to the 2219 alloy. Furthermore, the alloy remains thermally stable after prolonged exposure at 473 K (200 °C), which is attributed to the elastic strain energy minimization by the conjoint Al3Zr/θ' or Al3Zr/θ″ precipitates, and the high Zr and Nb solute-vacancy binding energy, retarding the growth and coarsening of θ″ and θ' precipitates.

  1. Titanite chronology, thermometry, and speedometry of ultrahigh-temperature (UHT) calc-silicates from south Madagascar: U-Pb dates, Zr temperatures, and lengthscales of trace-element diffusion

    NASA Astrophysics Data System (ADS)

    Holder, R. M.; Hacker, B. R.

    2017-12-01

    Calc-silicate rocks are often overlooked as sources of pressure-temperature-time data in granulite-UHT metamorphic terranes due to the strong dependence of calc-silicate mineral assemblages on complex fluid compositions and a lack of thermodynamic data on common high-temperature calc-silicate minerals such as scapolite. In the Ediacaran-Cambrian UHT rocks of southern Madagascar, clinopyroxene-scapolite-feldspar-quartz-zircon-titanite calc-silicate rocks are wide-spread. U-Pb dates of 540-520 Ma from unaltered portions of titanite correspond to cooling of the rocks through upper-amphibolite facies and indicate UHT metamorphism occurred before 540 Ma. Zr concentrations in these domains preserve growth temperatures of 900-950 °C, consistent with peak temperatures calculated by pseudosection modeling of nearby osumilite-bearing gneisses. Younger U-Pb dates (510-490 Ma) correspond to fluid-mediated Pb loss from titanite grains, which occurred below their diffusive Pb-closure temperature, along fractures. The extent of fluid alteration is seen clearly in back-scattered electron images and Zr-, Al-, Fe-, Ce-, and Nb-concentration maps. Laser-ablation depth profiling of idioblastic titanite grains shows preserved Pb diffusion profiles at grain rims, but there is no evidence for Zr diffusion, indicating that it was effectively immobile even at UHT.

  2. Multiple deformation mechanisms of Ti-22.4Nb-0.73Ta-2.0Zr-1.34O alloy

    NASA Astrophysics Data System (ADS)

    Yang, Y.; Li, G. P.; Cheng, G. M.; Li, Y. L.; Yang, K.

    2009-02-01

    Ti-22.4Nb-0.73Ta-2.0Zr-1.34O (at. %) alloy after cold compression to ˜5.2% strain was investigated. The alloy exhibited multiple plastic deformation mechanisms, including the stress-induced α″ martensitic (SIM α″) and ω phase transformations, 1/2⟨111⟩ dislocations slipping on the {112}β planes as well as {332}⟨113⟩β and {112}⟨111⟩β twinning, which have not previously been reported to coexist in a titanium alloy. It was also found that β phase with the {200} planes vertical to the compression direction was almost completely consumed away by a β →SIM α″ transformation, and a (100) texture of SIM α″ formed.

  3. Observations of a Cast Cu-Cr-Zr Alloy

    NASA Technical Reports Server (NTRS)

    Ellis, David L.

    2006-01-01

    Prior work has demonstrated that Cu-Cr-Nb alloys have considerable advantages over the copper alloys currently used in regeneratively cooled rocket engine liners. Observations indicated that Zr and Nb have similar chemical properties and form very similar compounds. Glazov and Zakharov et al. reported the presence of Cr2Zr in Cu-Cr-Zr alloys with up to 3.5 wt% Cr and Zr though Zeng et al. calculated that Cr2Zr could not exist in a ternary Cu-Cr-Zr alloy. A cast Cu-6.15 wt% Cr-5.25 wt% Zr alloy was examined to determine if the microstructure developed would be similar to GRCop-84 (Cu-6.65 wt% Cr-5.85 wt% Nb). It was observed that the Cu-Cr-Zr system did not form any Cr2Zr even after a thermal exposure at 875 C for 176.5 h. Instead the alloy consisted of three phases: Cu, Cu5Zr, and Cr.

  4. Vibrational micro-energy harvesters utilizing Nb-doped Pb(Zr,Ti)O3 films on stainless steel substrates

    NASA Astrophysics Data System (ADS)

    Van Minh, L.; Sano, T.; Fujii, T.; Kuwano, H.

    2016-11-01

    This work presents the micromachined energy harvesters using Nb-doped Pb(Zr,Ti)O3 (PNZT) films grown directly on the stainless steel substrates (SUS430). Piezoelectric materials on metallic substrates have been attracted to practical and robust energy harvesters. Nb-doped PZT films with (001)-preferred orientation grown on SUS substrates provided excellent properties for energy harvesting - high piezoelectric coefficient (e 31 = -10.6 C/m2) and low dielectric permittivity (ɛr = 373). The PNZT-based micro-energy harvester comprising a cantilever of 1.7 mm× 5 mm × 0.05 mm and a proof mass of 3 mm× 5 mm × 47 mm achieved the normalized power density (NPD) of 2.87 mW.g-2.cm-3. It is the highest performance among the published SUS-based energy harvesters, being closer to the best Si- based energy harvesters.

  5. Multifunctional Beta Ti Alloy with Improved Specific Strength

    NASA Astrophysics Data System (ADS)

    Park, Chan Hee; Hong, Jae-Keun; Lee, Sang Won; Yeom, Jong-Taek

    2017-12-01

    Gum metals feature properties such as ultrahigh strength, ultralow elastic modulus, superelasticity, and superplasticity. They are composed of elements from Groups 4 and 5 of the periodic table and exist when the valance electron concentration (\\overline{e/a}) is 4.24; the bond order (\\overline{Bo}) is 2.87; and the "d" electron-orbital energy level (\\overline{Md}) is 2.45 eV. Typical compositions include Ti-23Nb-2Zr-0.7Ta-O and Ti-12Ta-9Nb-6Zr-3 V-O, which contain large amounts of heavy Group-5 elements such as Nb and Ta. In the present study, to improve the specific strength of a multifunctional beta Ti alloy, three alloys (Ti-20Nb-5Zr-1Fe-O, Ti-12Zr-10Mo-4Nb-O, and Ti-24Zr-9Cr-3Mo-O) were designed by satisfying the above three requirements while adding Fe, Mo, and Cr, which are not only lightweight but also have strong hardening effects. Microstructural and mechanical property analyses revealed that Ti-20Nb-5Zr-1Fe-O has a 25% higher specific strength than gum metal while maintaining an ultralow elastic modulus.

  6. Local environments and transport properties of heavily doped strontium barium niobates Sr0.5Ba0.5Nb2O6

    NASA Astrophysics Data System (ADS)

    Ottini, Riccardo; Tealdi, Cristina; Tomasi, Corrado; Tredici, Ilenia G.; Soffientini, Alessandro; Burriel, Ramón; Palacios, Elías; Castro, Miguel; Anselmi-Tamburini, Umberto; Ghigna, Paolo; Spinolo, Giorgio

    2018-02-01

    Undoped as well as K-doped (40%), Y-doped (40%), Zr-doped (10%), and Mo-doped (12.5%) strontium barium niobate Sr0.5Ba0.5Nb2O6 (SBN50) materials have been investigated to explore the effect of heavy doping on the structural and functional properties (thermo-power, thermal and electrical conductivities) both in the as prepared (oxidized) and reduced states. For all materials, the EXAFS spectra at the Nb - K edge can be consistently analyzed with the same model of six shells around the Nb sites. Doping mostly gives a simple size effect on the structural parameters, but doping on the Nb sites weakens the Nb-O bond regardless of dopant size and charge. Shell sizes and Debye-Waller factors are almost unaffected by temperature and oxidation state, and the disorder is of static nature. The functional effects of heavy doping do not agree with a simple model of hole or electron injection by aliovalent substitutions on a large band gap semiconductor. With respect to the undoped samples, doping with Mo depresses the thermal conductivity by 30%, Y doping enhances the electrical conductivity by an order of magnitude, while Zr doping increases the Seebeck coefficient by a factor of 2-3. Globally, the ZT efficiency factor of the K-, Y-, and Zr-doped samples is enhanced at least by one order of magnitude with respect to the undoped or Mo-doped materials.

  7. Calculation and synthesis of ZrC by CVD from ZrCl4-C3H6-H2-Ar system with high H2 percentage

    NASA Astrophysics Data System (ADS)

    Zhu, Yan; Cheng, Laifei; Ma, Baisheng; Gao, Shuang; Feng, Wei; Liu, Yongsheng; Zhang, Litong

    2015-03-01

    A thermodynamic calculation about the synthesis of ZrC from the ZrCl4-C3H6-H2-Ar system with high percentage of H2 was performed using the FactSage thermochemical software. According to the calculation, ZrC coating was synthesized on graphite substrates and carbon fibers by a low pressure chemical vapor deposition (LPCVD) process, and growth rate of the ZrC coating as a function of temperature was investigated. The surface diagrams of condensed-phases in this system were expressed as the functions of the deposition temperature, total pressure and reactant ratios of ZrCl4/(ZrCl4 + C3H6), H2/(ZrCl4 + C3H6), and the yield of the products was determined by the diagrams. A smooth and dense ZrC coating could be synthesized under the instruction of the calculated parameters. The morphologies of the ZrC coatings were significantly affected by temperature and gases flux. The deposition temperature is much lower than that from the ZrCl4-CH4-H2-Ar system.

  8. Analyses of Nb-1Zr/C-103, vapor anode, multi-tube AMTEC cells

    NASA Astrophysics Data System (ADS)

    King, Jeffrey C.; El-Genk, Mohamed S.

    2000-01-01

    A high performance, Nb-1Zr/C-103, vapor anode, multi-tube AMTEC cell design is presented. The cell measures 41.27 mm in diameter, is 125.3 mm high, and has eight BASE tubes connected electrically in series. The hot structure of the cell (hot plate, BASE tubes support plate, hot plenum wall, evaporator standoff, evaporator wick, and side wall facing the BASE tubes) is made of Nb-1Zr. The cold structure of the cell (condenser, interior cylindrical thermal radiation shield, the casing and the wick of the liquid sodium return artery, and side wall above the BASE tubes) is made of the stronger, lower thermal conductivity niobium alloy C-103. This cell, which weighs 163.4 g, could deliver 7.0 We at 17% efficiency and load voltage of 3.3 V, when using TiN BASE electrodes characterized by B=75 A.K1/2/m2.Pa and G=50 and assuming BASE/electrode contact resistance of 0.06 Ω-cm2 and leakage resistance of the BASE braze structure of 3 Ω. For these performance parameters and when the interior cylindrical C-103 thermal radiation shield is covered with low emissivity rhodium, the projected specific mass of the cell is 23.4 g/We. The BASE brazes and the evaporator temperatures were below the recommended limits of 1123 K and 1023 K, respectively. In addition, the temperature margin in the cell was at least + 20 K. When electrodes characterized by B=120 A.K1/2/m2.Pa and G=10 were used, the cell power increased to 8.38 We at 3.5 V and efficiency of 18.8%, for a cell specific mass of 19.7 g/We. Issues related to structure strength of the cell and the performance degradation of the BASE and electrodes are not addressed in this paper. .

  9. Dynamic recrystallization behavior of a biomedical Ti-13Nb-13Zr alloy.

    PubMed

    Bobbili, Ravindranadh; Madhu, V

    2016-06-01

    The dynamic recrystallization (DRX) behavior of a biomedical titanium Ti-13Nb-13Zr alloy has been investigated using the high temperature compression tests under wide range of strain rates (0.001-1/s) and temperatures 900-1050°C. A constitutive equation represented as a function of temperature, strain rate and true strain is developed and the hot deformation apparent activation energy is calculated about 534kJ/mol. By considering the exponential relationship between work-hardening rate (θ) and stress, a new mathematical model was proposed for predicting flow stress up to the critical strain during hot deformation. The mathematical model for predicting flow stress up to the critical strain exhibits better consistency and accuracy. The DRX kinetic equation of Ti-13Nb-13Zr alloy is described as XDRX=1-exp[-0.32(Ɛ-ƐcƐ(*))(2.3)] . The DRX kinetic model was validated by microstructure observation. It was also found that the process of DRX was promoted by decreasing strain rate and increasing deformation temperature. Eventually, the continuous dynamic recrystallization (CDRX) was identified to be the DRX mechanism using transmission electron microscope (TEM). Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Correlation between the oxide impedance and corrosion behavior of Zr-Nb-Sn-Fe-Cu alloys

    NASA Astrophysics Data System (ADS)

    Park, Sang-Yoon; Lee, Myung-Ho; Jeong, Yong-Hwan; Jung, Youn-Ho

    2004-12-01

    The correlation between the oxide impedance and corrosion behavior of two series of Zr-Nb-Sn-Fe-Cu alloys was evaluated. Corrosion tests were performed in a 70 ppm LiOH aqueous solution at 360°C for 300 days. The results of the corrosion tests revealed that the corrosion behavior of the alloys depended on the Nb and Sn content. The impedance characteristics for the pre- and post-transition oxide layers formed on the surface of the alloys were investigated in sulfuric acid at room temperature. From the results, a pertinent equivalent circuit model was preferably established, explaining the properties of double oxide layers. The impedance of the oxide layers correlated with the corrosion behavior; better corrosion resistance always showed higher electric resistance for the inner layers. It is thus concluded that a pertinent equivalent circuit model would be useful for evaluating the long-term corrosion behavior of Zr-Nb-Sn-Fe-Cu alloys.

  11. Transitions of the type 2s-2p in oxygenlike Y, Zr, and Nb

    NASA Technical Reports Server (NTRS)

    Behring, W. E.; Brown, C. M.; Feldman, U.; Seely, J. F.; Reader, J.

    1986-01-01

    Transitions of the type 2s-2p in the oxygenlike ions Y XXXII, Zr XXXIII, and Nb XXXIV were identified in spectra recorded at the University of Rochester's Omega laser facility. Solid targets were spherically irradiated by 24 beams of frequency-tripled (351-nm) Nd-glass laser radiation. The spectra were photographed with a 3-m grazing-incidence spectrograph. The identified transitions of the oxygenlike ions are in the range 30 to 73 A. The wavelengths for the magnetic-dipole transitions within the 2s2p4 ground configurations of these ions are predicted from the experimental energy levels.

  12. Density functional theory calculations of UO2 oxidation: evolution of UO(2+x), U4O(9-y), U3O7, and U3O8.

    PubMed

    Andersson, D A; Baldinozzi, G; Desgranges, L; Conradson, D R; Conradson, S D

    2013-03-04

    Formation of hyperstoichiometric uranium dioxide, UO2+x, derived from the fluorite structure was investigated by means of density functional theory (DFT) calculations. Oxidation was modeled by adding oxygen atoms to UO2 fluorite supercells. For each compound ab initio molecular dynamics simulations were performed to allow the ions to optimize their local geometry. A similar approach was used for studying the reduction of U3O8. In agreement with the experimental phase diagram we identify stable line compounds at the U4O9-y and U3O7 stoichiometries. Although the transition from fluorite to the layered U3O8 structure occurs at U3O7 (UO2.333) or U3O7.333 (UO2.444), our calculated low temperature phase diagram indicates that the fluorite derived compounds are favored up to UO2.5, that is, as long as the charge-compensation for adding oxygen atoms occurs via formation of U(5+) ions, after which the U3O8-y phase becomes more stable. The most stable fluorite UO2+x phases at low temperature (0 K) are based on ordering of split quad-interstitial oxygen clusters. Most existing crystallographic models of U4O9 and U3O7, however, apply the cuboctahedral cluster. To better understand these discrepancies, the new structural models are analyzed in terms of existing neutron diffraction data. DFT calculations were also performed on the experimental cuboctahedral based U4O9-y structure, which enable comparisons between the properties of this phase with the quad-interstitial ones in detail.

  13. Experimental partitioning of Zr, Ti, and Nb between silicate liquid and a complex noble metal alloy and the partitioning of Ti between perovskite and platinum metal

    NASA Technical Reports Server (NTRS)

    Jurewicz, Stephen R.; Jones, John H.

    1993-01-01

    El Goresy et al.'s observation of Nb, Zr, and Ta in refractory platinum metal nuggets (RPMN's) from Ca-Al-rich inclusions (CAI's) in the Allende meteorite led them to propose that these lithophile elements alloyed in the metallic state with noble metals in the early solar nebula. However, Grossman pointed out that the thermodynamic stability of Zr in the oxide phase is vastly greater than metallic Zr at estimated solar nebula conditions. Jones and Burnett suggested this discrepancy may be explained by the very non-ideal behavior of some lithophile transition elements in noble metal solutions and/or intermetallic compounds. Subsequently, Fegley and Kornacki used thermodynamic data taken from the literature to predict the stability of several of these intermetallic compounds at estimated solar nebula conditions. Palme and Schmitt and Treiman et al. conducted experiments to quantify the partitioning behavior of certain lithophile elements between silicate liquid and Pt-metal. Although their results were somewhat variable, they did suggest that Zr partition coefficients were too small to explain the observed 'percent' levels in some RPMN's. Palme and Schmitt also observed large partition coefficients for Nb and Ta. No intermetallic phases were identified. Following the work of Treiman et al., Jurewicz and Jones performed experiments to examine Zr, Nb, and Ti partitioning near solar nebula conditions. Their results showed that Zr, Nb, and Ti all have an affinity for the platinum metal, with Nb and Ti having a very strong preference for the metal. The intermetallic phases (Zr,Fe)Pt3, (Nb,Fe)Pt3, and (Ti,Fe)Pt3 were identified. Curiously, although both experiments and calculations indicate that Ti should partition strongly into Pt-metal (possibly as TiPt3), no Ti has ever been observed in any RPMN's. Fegley and Kornacki also noticed this discrepancy and hypothesized that the Ti was stabilized in perovskite which is a common phase in Allende CAI's.

  14. Experimental Determination of Impurity and Interdiffusion Coefficients in Seven Ti and Zr Binary Systems Using Diffusion Multiples

    NASA Astrophysics Data System (ADS)

    Chen, Zhangqi; Liu, Zi-Kui; Zhao, Ji-Cheng

    2018-05-01

    Diffusion coefficients of seven binary systems (Ti-Mo, Ti-Nb, Ti-Ta, Ti-Zr, Zr-Mo, Zr-Nb, and Zr-Ta) at 1200 °C, 1000 °C, and 800 °C were experimentally determined using three Ti-Mo-Nb-Ta-Zr diffusion multiples. Electron probe microanalysis (EPMA) was performed to collect concentration profiles at the binary diffusion regions. Forward simulation analysis (FSA) was then applied to extract both impurity and interdiffusion coefficients in Ti-rich and Zr-rich part of the bcc phase. Excellent agreements between our results and most of the literature data validate the high-throughput approach combining FSA with diffusion multiples to obtain a large amount of systematic diffusion data, which will help establish the diffusion (mobility) databases for the design and development of biomedical and structural Ti alloys.

  15. Experimental Determination of Impurity and Interdiffusion Coefficients in Seven Ti and Zr Binary Systems Using Diffusion Multiples

    NASA Astrophysics Data System (ADS)

    Chen, Zhangqi; Liu, Zi-Kui; Zhao, Ji-Cheng

    2018-07-01

    Diffusion coefficients of seven binary systems (Ti-Mo, Ti-Nb, Ti-Ta, Ti-Zr, Zr-Mo, Zr-Nb, and Zr-Ta) at 1200 °C, 1000 °C, and 800 °C were experimentally determined using three Ti-Mo-Nb-Ta-Zr diffusion multiples. Electron probe microanalysis (EPMA) was performed to collect concentration profiles at the binary diffusion regions. Forward simulation analysis (FSA) was then applied to extract both impurity and interdiffusion coefficients in Ti-rich and Zr-rich part of the bcc phase. Excellent agreements between our results and most of the literature data validate the high-throughput approach combining FSA with diffusion multiples to obtain a large amount of systematic diffusion data, which will help establish the diffusion (mobility) databases for the design and development of biomedical and structural Ti alloys.

  16. All Small Nuclear RNAs (snRNAs) of the [U4/U6.U5] Tri-snRNP Localize to Nucleoli; Identification of the Nucleolar Localization Element of U6 snRNA

    PubMed Central

    Gerbi, Susan A.; Lange, Thilo Sascha

    2002-01-01

    Previously, we showed that spliceosomal U6 small nuclear RNA (snRNA) transiently passes through the nucleolus. Herein, we report that all individual snRNAs of the [U4/U6.U5] tri-snRNP localize to nucleoli, demonstrated by fluorescence microscopy of nucleolar preparations after injection of fluorescein-labeled snRNA into Xenopus oocyte nuclei. Nucleolar localization of U6 is independent from [U4/U6] snRNP formation since sites of direct interaction of U6 snRNA with U4 snRNA are not nucleolar localization elements. Among all regions in U6, the only one required for nucleolar localization is its 3′ end, which associates with the La protein and subsequently during maturation of U6 is bound by Lsm proteins. This 3′-nucleolar localization element of U6 is both essential and sufficient for nucleolar localization and also required for localization to Cajal bodies. Conversion of the 3′ hydroxyl of U6 snRNA to a 3′ phosphate prevents association with the La protein but does not affect U6 localization to nucleoli or Cajal bodies. PMID:12221120

  17. Chemical separation of Mo and W from terrestrial and extraterrestrial samples via anion exchange chromatography.

    PubMed

    Nagai, Yuichiro; Yokoyama, Tetsuya

    2014-05-20

    A new two-stage chemical separation method was established using an anion exchange resin, Eichrom 1 × 8, to separate Mo and W from four natural rock samples. First, the distribution coefficients of nine elements (Ti, Fe, Zn, Zr, Nb, Mo, Hf, Ta, and W) under various chemical conditions were determined using HCl, HNO3, and HF. On the basis of the obtained distribution coefficients, a new technique for the two-stage chemical separation of Mo and W, along with the group separation of Ti-Zr-Hf, was developed as follows: 0.4 M HCl-0.5 M HF (major elements), 9 M HCl-0.05 M HF (Ti-Zr-Hf), 9 M HCl-1 M HF (W), and 6 M HNO3-3 M HF (Mo). After the chemical procedure, Nb remaining in the W fraction was separated using 9 M HCl-3 M HF. On the other hand, Nb and Zn remaining in the Mo fraction were removed using 2 M HF and 6 M HCl-0.1 M HF. The performance of this technique was evaluated by separating these elements from two terrestrial and two extraterrestrial samples. The recovery yields for Mo, W, Zr, and Hf were nearly 100% for all of the examined samples. The total contents of the Zr, Hf, W, and Mo in the blanks used for the chemical separation procedure were 582, 9, 29, and 396 pg, respectively. Therefore, our new separation technique can be widely used in various fields of geochemistry, cosmochemistry, and environmental sciences and particularly for multi-isotope analysis of these elements from a single sample with significant internal isotope heterogeneities.

  18. Siudaite, Na8(Mn2+ 2Na)Ca6Fe3+ 3Zr3NbSi25O74(OH)2Cl·5H2O: a new eudialyte-group mineral from the Khibiny alkaline massif, Kola Peninsula

    NASA Astrophysics Data System (ADS)

    Chukanov, Nikita V.; Rastsvetaeva, Ramiza K.; Kruszewski, Łukasz; Aksenov, Sergey M.; Rusakov, Vyacheslav S.; Britvin, Sergey N.; Vozchikova, Svetlana A.

    2018-03-01

    The new eudialyte-group mineral siudaite, ideally Na8(Mn2+ 2Na)Ca6Fe3+ 3Zr3NbSi25O74(OH)2Cl·5H2O, was discovered in a peralkaline pegmatite situated at the Eveslogchorr Mt., Khibiny alkaline massif, Kola Peninsula, Russia. The associated minerals are aegirine, albite, microcline, nepheline, astrophyllite, and loparite-(Ce). Siudaite forms yellow to brownish-yellow equant anhedral grains up to 1.5 cm across. Its lustre is vitreous, and the streak is white. Cleavage is none observed. The Mohs' hardness is 4½. Density measured by hydrostatic weighing is 2.96(1) g/cm3. Density calculated using the empirical formula is equal to 2.973 g/cm3. Siudaite is nonpleochroic, optically uniaxial, negative, with ω = 1.635(1) and ɛ = 1.626(1) (λ = 589 nm). The IR spectrum is given. The chemical composition of siudaite is (wt%; electron microprobe, H2O determined by HCN analysis): Na2O 8.40, K2O 0.62, CaO 9.81, La2O3 1.03, Ce2O3 1.62, Pr2O3 0.21, Nd2O3 0.29, MnO 6.45, Fe2O3 4.51. TiO2 0.54, ZrO2 11.67, HfO2 0.29, Nb2O5 2.76, SiO2 47.20, Cl 0.54, H2O 3.5, -O = Cl - 0.12, total 99.32. According to Mössbauer spectroscopy data, all iron is trivalent. The empirical formula (based on 24.5 Si atoms pfu, in accordance with structural data) is [Na7.57(H2O)1.43]Σ9(Mn1.11Na0.88Ce0.31La0.20Nd0.05Pr0.04K0.41)Σ3(H2O)1.8(Ca5.46Mn0.54)Σ6(Fe3+ 1.76Mn2+ 1.19)Σ2.95Nb0.65(Ti0.20Si0.50)Σ0.71(Zr2.95Hf0.04Ti0.01)Σ3Si24.00Cl0.47O70(OH)2Cl0.47·1.82H2O. The crystal structure was determined using single-crystal X-ray diffraction data. The new mineral is trigonal, space group R3m, with a = 14.1885(26) Å, c = 29.831(7) Å, V = 5200.8(23) Å3 and Z = 3. Siudaite is chemically related to georgbarsanovite and is its analogue with Fe3+-dominant M2 site. The strongest lines of the powder X-ray diffraction pattern [d, Å (I, %) (hkl)] are: 6.38 (60) (-114), 4.29 (55) (-225), 3.389 (47) (131), 3.191 (63) (-228). 2.963 (100) (4-15), 2.843 (99) (-444), 2.577 (49) (3-39). Siudaite is named after the Polish

  19. Effects of the accumulated annealing parameter on the corrosion characteristics of a Zr-0.5Nb-1.0Sn-0.5Fe-0.25Cr alloy

    NASA Astrophysics Data System (ADS)

    Baek, Jong Hyuk; Jeong, Yong Hwan; Kim, In Sup

    2000-07-01

    Corrosion behavior, hydrogen pickup, oxide microstructure, and precipitate characterization have been studied in order to investigate the effect of the accumulated annealing parameter on the corrosion characteristics in a Zr-Nb-Sn-Fe-Cr alloy. An autoclave corrosion test was carried out in 400°C steam for 300 days on the Zr-0.5Nb-1.0Sn-0.5Fe-0.25Cr alloy, which had been given 18 different accumulated annealing parameters. The corrosion rate increased with increasing the accumulated annealing parameter. To investigate the crystal structure of oxide layer, the corroded specimens were prepared to have an equal oxide thickness (˜1.6 μm) by controlling exposure time. The relative fraction of tetragonal ZrO 2 also decreased gradually with increasing accumulated annealing parameter. From the hydrogen analysis of the corroded samples for 300 days, it was observed that, with increasing the size of precipitates, the hydrogen pickup was enhanced. It was revealed from transmission electron microscope (TEM) observation of the oxide that the larger precipitates still remained to be oxidized in the oxide layer and had undergone a reduction of Fe/Cr ratio from 2.1 to 1.5. The oxidation of the precipitates in the oxide gave rise to a volume expansion at the precipitate-oxide interface. This volume change could lead to the transformation in the oxide phase from tetragonal ZrO 2 to monoclinic ZrO 2 and in oxide structure from columnar grain to equiaxed grain. The precipitate in a Zr-0.5Nb-1.0Sn-0.5Fe-0.25Cr alloy is composed of Nb, Fe, and Cr and the Nb content in the precipitate increase with increasing accumulated annealing parameter. Thus, it can be thought that Nb within precipitates plays a key role in the microstructural change of oxide.

  20. Radiative rates for E1, E2, M1, and M2 transitions in the Br-like ions Sr IV, Y V, Zr VI, Nb VII, and Mo VIII

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aggarwal, Kanti M., E-mail: K.Aggarwal@qub.ac.uk; Keenan, Francis P.

    Energies and lifetimes are reported for the lowest 375 levels of five Br-like ions, namely Sr IV, Y V, Zr VI, Nb VII, and Mo VIII, mostly belonging to the 4s{sup 2}4p{sup 5}, 4s{sup 2}4p{sup 4}4ℓ, 4s4p{sup 6}, 4s{sup 2}4p{sup 4}5ℓ, 4s{sup 2}4p{sup 3}4d{sup 2}, 4s4p{sup 5}4ℓ, and 4s4p{sup 5}5ℓ configurations. Extensive configuration interaction has been included and the general-purpose relativistic atomic structure package (GRASP) has been adopted for the calculations. Additionally, radiative rates are listed among these levels for all E1, E2, M1, and M2 transitions. From a comparison with the measurements, the majority of our energy levels are assessed to be accurate tomore » better than 2%, although discrepancies between theory and experiment for a few are up to 6%. An accuracy assessment of the calculated radiative rates (and lifetimes) is more difficult, because no prior results exist for these ions.« less

  1. Electrochemical Corrosion and In Vitro Bioactivity of Nano-Grained Biomedical Ti-20Nb-13Zr Alloy in a Simulated Body Fluid

    PubMed Central

    Kumar, Madhan; Drew, Robin; Al-Aqeeli, Nasser

    2017-01-01

    The bioactivity and the corrosion protection for a novel nano-grained Ti-20Nb-13Zr at % alloy were examined in a simulated body fluid (SBF). The effect of the SPS’s temperature on the corrosion performance was investigated. The phases and microstructural details of the developed alloy were analyzed by XRD (X-ray Diffraction), SEM (Scanning Electron Microscopy), and TEM (Transmission Electron Microscope). The electrochemical study was investigated using linear potentiodynamic polarization and electrochemical impedance spectroscopy in a SBF, and the bioactivity was examined by immersing the developed alloy in a SBF for 3, 7, and 14 days. The morphology of the depositions after immersion was examined using SEM. Alloy surface analysis after immersion in the SBF was characterized by XPS (X-ray Photoelectron Spectroscopy). The results of the bioactivity test in SBF revealed the growth of a hydroxyapatite layer on the surface of the alloy. The analysis of XPS showed the formation of protective oxides of TiO2, Ti2O3, ZrO2, Nb2O5, and a Ca3(PO4)2 compound (precursor of hydroxyapatite) deposited on the alloy surface, indicating that the presented alloy can stimulate bone formation. The corrosion resistance increased by increasing the sintering temperature and the highest corrosion resistance was obtained at 1200 °C. The improved corrosion protection was found to be related to the alloy densification. The bioactivity and the corrosion resistance of the developed nanostructured alloy in a SBF renders the nanostructured Ti-20Nb-13Zr alloy a promising candidate as an implant material. PMID:29280956

  2. Ab-initio study of high temperature lattice dynamics of BCC zirconium (β-Zr) and uranium (γ-U)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ghosh, Partha S., E-mail: parthasarathi13@gmail.com; Arya, A., E-mail: parthasarathi13@gmail.com; Dey, G. K., E-mail: parthasarathi13@gmail.com

    2014-04-24

    Using self consistent ab-initio lattice dynamics calculations, we show that bcc structures of Zr and U phases become stable at high temperature by phonon-phonon interactions. The calculated temperature dependent phonon dispersion curve (PDC) of β-Zr match excellently with experimental PDC. But the calculated PDC for γ-U shows negative phonon frequencies even at solid to liquid transition temperature. We show that this discrepancy is due to an overestimation of instability depth of bcc U phase which is removed by incorporation of spin-orbit coupling in the electronic structure calculations.

  3. Strength design of Zr(x)Ti(x)Hf(x)Nb(x)Mo(x) alloys based on empirical electron theory of solids and molecules

    NASA Astrophysics Data System (ADS)

    Li, Y. K.; Chen, Y. W.; Cheng, X. W.; Wu, C.; Cheng, B.

    2018-05-01

    In this paper, the valence electron structure parameters of Zr(x)Ti(x)Hf(x)Nb(x)Mo(x) alloys were calculated based on the empirical electron theory of solids and molecules (EET), and their performance through these parameters were predicted. Subsequently, the alloys with special valence electron structure parameters were prepared byarc melting. The hardness and high-temperature mechanical properties were analyzed to verify the prediction. Research shows that the influence of shared electron number nA on the strongest bond determines the strength of these alloys and the experiments are consistent with the theoretical prediction.

  4. From {sub {infinity}}{sup 1}[(UO{sub 2}){sub 2}O(MoO{sub 4}){sub 4}]{sup 6-} to {sub {infinity}}{sup 1}[(UO{sub 2}){sub 2}(MoO{sub 4}){sub 3}(MoO{sub 5})]{sup 6-} infinite chains in A{sub 6}U{sub 2}Mo{sub 4}O{sub 21} (A=Na, K, Rb, Cs) compounds: Synthesis and crystal structure of Cs{sub 6}[(UO{sub 2}){sub 2}(MoO{sub 4}){sub 3}(MoO{sub 5})

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yagoubi, S.; Groupe de Radiochimie, Institut de Physique Nucleaire d'Orsay, Universite Paris-Sud XI, 91406 Orsay Cedex; Obbade, S., E-mail: said.obbade@phelma.grenoble-inp.f

    2011-05-15

    A new caesium uranyl molybdate belonging to the M{sub 6}U{sub 2}Mo{sub 4}O{sub 21} family has been synthesized by solid-state reaction and its structure determined from single-crystal X-ray diffraction data. Contrary to the other alkali uranyl molybdates of this family (A=Na, K, Rb) where molybdenum atoms adopt only tetrahedral coordination and which can be formulated A{sub 6}[(UO{sub 2}){sub 2}O(MoO{sub 4}){sub 4}], the caesium compound Cs{sub 6}U{sub 2}Mo{sub 4}O{sub 21} should be written Cs{sub 6}[(UO{sub 2}){sub 2}(MoO{sub 4}){sub 3}(MoO{sub 5})] with molybdenum atoms in tetrahedral and square pyramidal environments. Cs{sub 6}[(UO{sub 2}){sub 2}(MoO{sub 4}){sub 3}(MoO{sub 5})] crystallizes in the triclinic symmetry withmore » space group P1-bar and a=10.4275(14) A, b=15.075(2) A, c=17.806(2) A, {alpha}=70.72(1){sup o}, {beta}=80.38(1){sup o} and {gamma}=86.39(1){sup o}, V=2604.7(6) A{sup 3}, Z=4, {rho}{sub mes}=5.02(2) g/cm{sup 3} and {rho}{sub cal}=5.08(3) g/cm{sup 3}. A full-matrix least-squares refinement on the basis of F{sup 2} yielded R{sub 1}=0.0464 and wR{sub 2}=0.0950 for 596 parameters with 6964 independent reflections with I{>=}2{sigma}(I) collected on a BRUKER AXS diffractometer with Mo(K{alpha}) radiation and a CCD detector. The crystal structure of Cs compound is characterized by {sub {infinity}}{sup 1}[(UO{sub 2}){sub 2}(MoO{sub 4}){sub 3}(MoO{sub 5})]{sup 6-} parallels chains built from U{sub 2}O{sub 13} dimeric units, MoO{sub 4} tetrahedra and MoO{sub 5} square pyramids, whereas, Na, K and Rb compounds are characterized by {sub {infinity}}{sup 1}[(UO{sub 2}){sub 2}O(MoO{sub 4}){sub 4}]{sup 6-} parallel chains formulated simply of U{sub 2}O{sub 13} units and MoO{sub 4} tetrahedra. Infrared spectroscopy measurements using powdered samples synthesized by solid-state reaction, confirm the structural results. The thermal stability and the electrical conductivity are also studied. The four compounds decompose at low temperature (between 540 and 610

  5. A DFT+U study of Pu immobilization in Gd2Zr2O7

    NASA Astrophysics Data System (ADS)

    Zhao, F. A.; Xiao, H. Y.; Jiang, M.; Liu, Z. J.; Zu, X. T.

    2015-12-01

    The solubility of Pu in Gd2Zr2O7 has been investigated by the density functional theory plus Hubbard U correction. It is found that the formation of PuGdZr2O7, Gd2PuZrO7 and Gd2Pu1.5Zr0.5O7 are exothermic, whereas Pu0.5Gd1.5Zr2O7, Pu1.5Gd0.5Zr2O7 and Gd2Pu0.5Zr1.5O7 are energetically less stable than their respective separated states. The calculations show that both the Gd and Zr lattice sites can be substituted by the Pu, which is consistent with the immobilization behavior of uranium in Gd2Zr2O7 observed experimentally. The site preference of Pu in Gd2Zr2O7 is found to be dependent on the chemical environment, i.e., Pu prefers to substitute for Gd-site under Gd-rich and O2-rich conditions and for Zr-site under Zr-rich and O2-rich conditions.

  6. Synthesis and characterisation of the uranium pyrochlore betafite [(Ca,U)₂(Ti,Nb,Ta)₂O₇].

    PubMed

    McMaster, Scott A; Ram, Rahul; Charalambous, Fiona; Pownceby, Mark I; Tardio, James; Bhargava, Suresh K

    2014-09-15

    Betafite of composition [(Ca,U)2(Ti,Nb,Ta)2O7] was prepared via a solid state synthesis route. The synthesis was shown to be sensitive to initial reactant ratios, the atmosphere used (oxidising, neutral, reducing) and time. The optimum conditions for the synthesis of betafite were found to be heating the reactants required at 1150°C for 48 h under an inert gas atmosphere. XRD characterisation revealed that the synthesised betafite contained minor impurities. EPMA analysis of a sectioned surface showed very small regions of Ca-free betafite on grain boundaries as well as minor rutile impurities. Some heterogeneity between the Nb:Ta ratio was observed by quantitative EPMA but was generally within the nomenclature requirements stated for betafite. SEM analysis revealed the synthesised betafite was comprised mostly of hexaoctohedral crystals of ∼ 3 μm in diameter. XPS analysis of the sample showed that the uranium in the synthesised betafite was predominately present in the U(5+) oxidation state. A minor amount of U(6+) was also detected which was possibly due to surface oxidation. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. Nb2OsB2, with a new twofold superstructure of the U3Si2 type: Synthesis, crystal chemistry and chemical bonding

    NASA Astrophysics Data System (ADS)

    Mbarki, Mohammed; Touzani, Rachid St.; Fokwa, Boniface P. T.

    2013-07-01

    The new ternary metal-rich boride, Nb2OsB2, was synthesized by arc-melting the elements in a water-cooled copper crucible under an argon atmosphere. The compound was characterized from single-crystal X-ray data and EDX measurements. It crystallizes as a new superstructure (space group P4/mnc, no. 128) of the tetragonal U3Si2-structure type with lattice parameters a=5.922(1) Å and c=6.879(2) Å. All of the B atoms are involved in B2 dumbbells with B-B distances of 1.89(4) Å. Structure relaxation using VASP (Vienna ab intio Simulation Package) has confirmed the space group and the lattice parameters. According to electronic structure calculations (TB-LMTO-ASA), the homoatomic B-B interactions are optimized and very strong, but relatively strong heteroatomic Os-B, Nb-B and Nb-Os bonds are also found: These interactions, which together build a three-dimensional network, are mainly responsible for the structural stability of this new phase. The density of state at the Fermi level predicts metallic behavior, as expected, from this metal-rich boride.

  8. Phase transition temperature in the Zr-rich corner of Zr-Nb-Sn-Fe alloys

    NASA Astrophysics Data System (ADS)

    Canay, M.; Danón, C. A.; Arias, D.

    2000-08-01

    The influence of small composition changes on the phase transformation temperature of Zr-1Nb-1Sn-0.2(0.7)Fe alloys was studied in the present work, by electrical resistivity measurements and metallographic techniques. For the alloy with 0.2 at.% Fe we have determined Tα↔α+β=741°C and Tα+β↔β=973°C, and for the 0.7 at.% Fe the transformation temperatures were T α↔α+β=712°C and T α+β↔β=961°C. We have verified that the addition of Sn stabilized the β phase.

  9. Investigating the Structural, Thermal, and Electronic Properties of the Zircon-Type ZrSiO4, ZrGeO4 and HfSiO4 Compounds

    NASA Astrophysics Data System (ADS)

    Chiker, Fafa; Boukabrine, Fatiha; Khachai, H.; Khenata, R.; Mathieu, C.; Bin Omran, S.; Syrotyuk, S. V.; Ahmed, W. K.; Murtaza, G.

    2016-11-01

    In the present study, the structural, thermal, and electronic properties of some important orthosilicate dielectrics, such as the ZrSiO4, ZrGeO4, and HfSiO4 compounds, have been investigated theoretically with the use of first-principle calculations. We attribute the application of the modified Becke-Johnson exchange potential, which is basically an improvement over the local density approximation and the Perdew-Burke-Ernzerhof exchange-correlation functional, for a better description of the band gaps of the compounds. This resulted in a good agreement with our estimated values in comparison with the reported experimental data, specifically for the ZrSiO4, and HfSiO4 compounds. Conversely, for the ZrGeO4 compound, the calculated electronic band structure shows a direct band gap at the Γ point with the value of 5.79 eV. Furthermore, our evaluated thermal properties that are calculated by using the quasi-harmonic Debye model indicated that the volume variation with temperature is higher in the ZrGeO4 compound as compared to both the ZrSiO4 and HfSiO4 compounds, which is ascribed to the difference between the electron shells of the Si and Ge atoms. Therefore, these results also indicate that while the entropy ( S) and enthalpy ( U) parameters increase monotonically, the free energy ( G), in contrast, decreases monotonically with increasing temperature, respectively. Moreover, the pressure and temperature dependencies of the Debye temperature Θ, thermal expansion coefficient, and heat capacities C V were also predicted in our study.

  10. Microstructural Characterization of Irradiated U0.7ZrH1.6 Using Ultrasonic Techniques

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ramuhalli, Pradeep; Jacob, Richard E.; MacFarlan, Paul J.

    In recent years, there has been an increased level of effort to understand the changes in microstructure that occur due to irradiation of nuclear fuel. The primary driver for this increased effort is the potential for designing new fuels that are safer and more reliable, in turn enabling new and improved reactor technologies. Much of the data on microstructural change in irradiated fuels is generated through a host of post irradiation examination techniques such as optical microscopy (OM), scanning electron microscopy (SEM), and transmission electron microscopy (TEM) to determine grain structure, porosity, crack geometry, etc. in irradiated fuels. Such “traditional”more » examination techniques were recently used to characterize a novel new fuel consisting of U0.17ZrH1.6 pellets bonded to zircaloy-2 cladded with lead-bismuth eutectic before and after irradiation. However, alternative methods such as ultrasonic inspection can provide an opportunity for nondestructively assessing microstructure in both in-pile and post-irradiation examinations. In this paper, we briefly describe initial results of ultrasonic examination of the U0.17ZrH1.6 pellets (unirradiated and irradiated), in a post-irradiation examination study. Data indicate some correlation with microstructural changes due to irradiation; however, it is not clear what the specific microstructural changes are that are influencing the ultrasonic measurements. Interestingly, specimens with nominally identical burnup show differences in ultrasonic signatures, indicating apparent microstructural differences between these specimens. A summary of the experimental study, preliminary data and findings are presented in this short paper. Additional details of the analysis will be included in the presentation.« less

  11. Structural requirements for protein-catalyzed annealing of U4 and U6 RNAs during di-snRNP assembly

    PubMed Central

    Didychuk, Allison L.; Montemayor, Eric J.; Brow, David A.; Butcher, Samuel E.

    2016-01-01

    Base-pairing of U4 and U6 snRNAs during di-snRNP assembly requires large-scale remodeling of RNA structure that is chaperoned by the U6 snRNP protein Prp24. We investigated the mechanism of U4/U6 annealing in vitro using an assay that enables visualization of ribonucleoprotein complexes and faithfully recapitulates known in vivo determinants for the process. We find that annealing, but not U6 RNA binding, is highly dependent on the electropositive character of a 20 Å-wide groove on the surface of Prp24. During annealing, we observe the formation of a stable ternary complex between U4 and U6 RNAs and Prp24, indicating that displacement of Prp24 in vivo requires additional factors. Mutations that stabilize the U6 ‘telestem’ helix increase annealing rates by up to 15-fold, suggesting that telestem formation is rate-limiting for U4/U6 pairing. The Lsm2–8 complex, which binds adjacent to the telestem at the 3′ end of U6, provides a comparable rate enhancement. Collectively, these data identify domains of the U6 snRNP that are critical for one of the first steps in assembly of the megaDalton U4/U6.U5 tri-snRNP complex, and lead to a dynamic model for U4/U6 pairing that involves a striking degree of evolved cooperativity between protein and RNA. PMID:26673715

  12. Optimization of stress relief heat treatment of PHWR pressure tubes (Zr 2.5Nb alloy)

    NASA Astrophysics Data System (ADS)

    Choudhuri, Gargi; Srivastava, D.; Gurumurthy, K. R.; Shah, B. K.

    2008-12-01

    The micro-structure of cold worked Zr-2.5%Nb pressure tube material consists of elongated grains of α-zirconium enclosed by a thin film of β-zirconium phase. This β-Zr phase is unstable and on heating, progressively decomposes to α-Zr phase and β-phase enriched with Nb and ultimately form β Nb. Meta-stable ω-phase precipitates as an intermediate step during decomposition depending on the heat treatment schedule, β→α+β→α+ω+β→α+β→α+β Morphological changes occur in the β-zirconium phase during the decomposition. The continuous ligaments of β Zr phase turn into a discontinuous array of particles followed by globulization of the β-phase. The morphological changes impose a significant effect on the creep rate and on the delayed hydride cracking velocity due to reduction in the hydrogen diffusion coefficient in α Zr. If the continuity of β-phase is disrupted by heat treatment, the effective diffusion coefficient decreases with a concomitant reduction in DHC velocity. The pressure tubes for the Indian PHWRs are made by a process of hot extrusion followed by cold pilgering in two stages and an intermediate annealing. Autoclaving at 400 °C for 36 h ensures stress relieving of the finished tubes. In the present studies, autoclaving duration at 400 °C was varied from 24 h to 96 h at 12 h-steps and the micro-structural changes in the β-phase were observed by TEM. Dislocation density, hardness and the micro-structural features such as thickness of β-phase, inter-particle spacing and volume fraction of the phases were measured at each stage. Autoclaving for a longer duration was found to change the morphology of β-phase and increase the inter-particle spacing. Progressive changes in the aspect ratio of the β-phase and their size and distribution are documented and reported. These micro-structural modifications are expected to decrease DHC velocity during reactor operation.

  13. Deformation Mechanisms in Tube Billets from Zr-1%Nb Alloy under Radial Forging

    NASA Astrophysics Data System (ADS)

    Perlovich, Yuriy; Isaenkova, Margarita; Fesenko, Vladimir; Krymskaya, Olga; Zavodchikov, Alexander

    2011-05-01

    Features of the deformation process by cold radial forging of tube billets from Zr-1%Nb alloy were reconstructed on the basis of X-ray data concerning their structure and texture. The cold radial forging intensifies grain fragmentation in the bulk of billet and increases significantly the latent hardening of potentially active slip systems, so that operation only of the single slip system becomes possible. As a result, in radially-forged billets unusual deformation and recrystallization textures arise. These textures differ from usual textures of α-Zr by the mutual inversion of crystallographic axes, aligned along the axis of tube.

  14. Effect of calcium pyrophosphate on microstructural evolution and in vitro biocompatibility of Ti-35Nb-7Zr composite by spark plasma sintering.

    PubMed

    Zhang, L; Tan, J; He, Z Y; Jiang, Y H

    2018-09-01

    β-type Ti-35Nb-7Zr alloy has attracted considerable attentions as a bone implant material. The alloy, however, has poor bioactivity, which difficult to form a strong osseointegration between the bone tissues. Combining Ti alloy with a bioactive and biodegradable ceramic has been of interest to researchers. But the large difference in physicochemical property of high-melting metal and ceramic elements would bring the manufacturing restriction. In this work, Ti-35Nb-7Zr-CPP composites were fabricated with mechanical alloy of Ti, Nb, Zr and Nano calcium pyrophosphate (CPP) powders mixture followed by spark plasma sintering (SPS) routes. The effect of CPP ceramic on microstructural evolution and in vitro biocompatibility were investigated. As the addition of CPP (10-30 wt%), ceramic elements spreading towards the matrix, the generated metal-ceramic bioactive phases CaTiO 3 are observed well consolidated with β-Ti matrix. With the CPP increasing, Ca and P atoms rapidly migrated to the β-Ti matrix to form granulated Ti 5 P 3 , which leads to the increasing porosity (10%-18%) in the composites. The results demonstrated that the favorable cell viability (the cell proliferation rates were higher than 100%) and growth inside the pores of the composites arise from the rough micro-porous surface and the release of bioactive metal-ceramic phase ions into the biological environment. The enhanced bioactivity and microstructural evolution behaviors of the Ti-35Nb-7Zr-CPP composites may provide a strategy for designing and fabricating multifunctional implants. Copyright © 2018 Elsevier B.V. All rights reserved.

  15. Ultrasonic investigation of the superconducting properties of the Nb-Mo system

    NASA Technical Reports Server (NTRS)

    Lacy, L. L.

    1972-01-01

    The superconducting properties of single crystals of Nb and two alloys of Nb with Mo were investigated by ultrasonic techniques. The results of measurements of the ultrasonic attenuation and velocities as a function of temperature, Mo composition, crystallographic direction, and ultrasonic frequency are reported. The attenuation and small velocity changes associated with the superconductivity of the samples are shown to be dependent on the sample resistivity ratio which varied from 4.3 for Nb-9% Mo to 6500 for pure Nb. The ultrasonic attenuation data are analyzed in terms of the superconducting energy gap term of the BCS theory. A new model is proposed for the analysis of ultrasonic attenuation in pure superconductors with two partially decoupled energy bands. To analyze the attenuation in pure superconducting Nb, the existence of two energy gaps was assumed to be associated with the two partially decoupled energy bands. One of the gaps was found to have the normal BCS value of 3.4 and the other gap was found to have the anomalously large value of 10. No experimental evidence was found to suggest that the second energy gap had a different transition temperature. The interpretation of the results for the Nb-Mo alloys is shown to be complicated by the possible existence of a second superconducting phase in Nb-Mo alloys with a transition temperature of 0.35 of the transition temperature of the first phase. The elastic constants of Nb and Nb-Mo alloys are shown to be approximately independent of Mo composition to nine atomic percent Mo. These results do not agree with the current microscopic theory of transition temperature for the transition elements.

  16. Influence of thermal and radiation effects on microstructural and mechanical properties of Nb-1Zr

    NASA Astrophysics Data System (ADS)

    Leonard, Keith J.; Busby, Jeremy T.; Zinkle, Steven J.

    2011-07-01

    The microstructural changes and corresponding effects on mechanical properties, electrical resistivity and density of Nb-1Zr were examined following neutron irradiation up to 1.8 dpa at temperatures of 1073, 1223 and 1373 K and compared with material thermally aged for similar exposure times of ˜1100 h. Thermally driven changes in the development of intragranular and grain boundary precipitate phases showed a greater influence on mechanical and physical properties compared to irradiation-induced defects for the examined conditions. Initial formation of the zirconium oxide precipitates was identified as cubic structured plates following a Baker-Nutting orientation relationship to the β-Nb matrix, with particles developing a monoclinic structure on further growth. Tensile properties of the Nb-1Zr samples showed increased strength and reduced elongation following aging and irradiation below 1373 K, with the largest tensile and hardness increases following aging at 1098 K. Tensile properties at 1373 K for the aged and irradiated samples were similar to that of the as-annealed material. Total elongation was lower in the aged material due to a strain hardening response, rather than a weak strain softening observed in the irradiated materials due in part to an irregular distribution of the precipitates in the irradiated materials. Though intergranular fracture surfaces were observed on the 1248 K aged tensile specimens, the aged and irradiated material showed uniform elongations >3% and total elongation >12% for all conditions tested. Cavity formation was observed in material irradiated to 0.9 dpa at 1073 and 1223 K. However, since void densities were estimated to be below 3 × 10 17 m -3 these voids contributed little to either mechanical strengthening of the material or measured density changes.

  17. New Pb(Mg1/3Nb2/3)O3-Pb(In1/2Nb1/2)O3-PbZrO3-PbTiO3 Quaternary Ceramics: Morphotropic Phase Boundary Design and Electrical Properties.

    PubMed

    Luo, Nengneng; Zhang, Shujun; Li, Qiang; Xu, Chao; Yang, Zhanlue; Yan, Qingfeng; Zhang, Yiling; Shrout, Thomas R

    2016-06-22

    Four series of Pb(Mg1/3Nb2/3)O3-Pb(In1/2Nb1/2)O3-PbZrO3-PbTiO3 (PMN-PIN-PZ-PT) quaternary ceramics with compositions located at the morphotropic phase boundary (MPB) regions were prepared. The MPBs of the multicomponent system were predicted using a linear combination rule and experimentally confirmed by X-ray powder diffraction and electrical measurement. The positions of MPBs in multicomponent systems were found in linear correlation with the tolerance factor and ionic radii of non-PT end-members. The phase structure, piezoelectric coefficient, electromechanical coupling coefficient, unipolar strains, and dielectric properties of as-prepared ceramics were systematically investigated. The largest d33s were obtained at S36.8, L37.4, M39.6, and N35.8, with the corresponding values of 580, 450, 420, and 530 pC/N, respectively, while the largest kps were found at S34.8, L37.4, M39.6, and N35.8, with the respective values of 0.54, 0.50, 0.47, and 0.53. The largest unipolar strain Smax and high-field piezoelectric strain coefficients d33* were also observed around the respective MPB regions. The rhombohedral-to-tetragonal phase transition temperature Trt increased with increasing PIN and PZ contents. Of particular importance is that high Trt of 140-197 °C was achieved in the M series with PZ and PIN contents being around 0.208 and 0.158, which will broaden the temperature usage range.

  18. Advancing Understanding of the +4 Metal Extractant Thenoyltrifluoroacetonate (TTA-); Synthesis and Structure of MIVTTA4 (MIV = Zr, Hf, Ce, Th, U, Np, Pu) and MIII(TTA)4- (MIII = Ce, Nd, Sm, Yb).

    PubMed

    Cary, Samantha K; Livshits, Maksim; Cross, Justin N; Ferrier, Maryline G; Mocko, Veronika; Stein, Benjamin W; Kozimor, Stosh A; Scott, Brian L; Rack, Jeffrey J

    2018-04-02

    Thenoyltrifluoroacetone (HTTA)-based extractions represent popular methods for separating microscopic amounts of transuranic actinides (i.e., Np and Pu) from macroscopic actinide matrixes (e.g. bulk uranium). It is well-established that this procedure enables +4 actinides to be selectively removed from +3, + 5, and +6 f-elements. However, even highly skilled and well-trained researchers find this process complicated and (at times) unpredictable. It is difficult to improve the HTTA extraction-or find alternatives-because little is understood about why this separation works. Even the identities of the extracted species are unknown. In addressing this knowledge gap, we report here advances in fundamental understanding of the HTTA-based extraction. This effort included comparatively evaluating HTTA complexation with +4 and +3 metals (M IV = Zr, Hf, Ce, Th, U, Np, and Pu vs M III = Ce, Nd, Sm, and Yb). We observed +4 metals formed neutral complexes of the general formula M IV (TTA) 4 . Meanwhile, +3 metals formed anionic M III (TTA) 4 - species. Characterization of these M(TTA) 4 x- ( x = 0, 1) compounds by UV-vis-NIR, IR, 1 H and 19 F NMR, single-crystal X-ray diffraction, and X-ray absorption spectroscopy (both near-edge and extended fine structure) was critical for determining that Np IV (TTA) 4 and Pu IV (TTA) 4 were the primary species extracted by HTTA. Furthermore, this information lays the foundation to begin developing and understanding of why the HTTA extraction works so well. The data suggest that the solubility differences between M IV (TTA) 4 and M III (TTA) 4 - are likely a major contributor to the selectivity of HTTA extractions for +4 cations over +3 metals. Moreover, these results will enable future studies focused on explaining HTTA extractions preference for +4 cations, which increases from Np IV to Pu IV , Hf IV , and Zr IV .

  19. Archean greenstone belt magmatism and the continental growth-mantle evolution connection: constraints from Th-U-Nb-LREE systematics of the 2.7 Ga Wawa subprovince, Superior Province, Canada

    NASA Astrophysics Data System (ADS)

    Polat, Ali; Kerrich, Robert

    2000-01-01

    An extensive database, including Th-;U-Nb-REE systematics, for diverse magmatic and sedimentary lithologies of 2.7 Ga Wawa greenstone belts provide new constraints on the mechanism of crustal growth in the southern Superior Province, and controls on its composition. The greenstone belts are characterized by collages of oceanic plateaus, oceanic island arcs, and trench turbidites; these lithotectonic fragments were tectonically assembled in a large subduction-accretion complex. Following juxtaposition, these diverse lithologies were collectively intruded by syn-kinematic TTG (tonalite-trondhjemite-granodiorite) plutons and ultramafic to felsic dykes and sills, with subduction zone geochemical signatures. Intra-oceanic basalts are characterized by near-flat REE patterns, and Nb/U and Nb/Th ratios generally greater than primitive mantle values, consistent with positive ɛNd values. They are associated with komatiites, the association being interpreted as an ocean plateau sequence erupted from a mantle plume. Bimodal arc volcanic sequences, trench turbidites, and contemporaneous TTG suites are characterized by fractionated REE, with Nb/U and Nb/Th ratios less than primitive mantle values. Mixing hyperbolae between oceanic plateau and magmatic arc sequences pass through the estimated composition of bulk continental crust, suggesting that crustal growth in the late Archean was by tectonic, sedimentary, and chemical mixing of oceanic plateau and arc sequences at convergent plate boundaries. Mixing calculations suggest that oceanic plateau and subduction zone components in the Wawa continental crust are represented by 6-12% and 88-94%, respectively. High Nb/U and Nb/Th ratios of plateau tholeiitic basalts are interpreted as a complementary reservoir to arc magmatism (low Nb/U and Nb/Th), hundreds of millions of years prior to recycling of oceanic lithosphere through a subduction zone (high Nb/U, Nb/Th), and its incorporation into a mantle plume from which 2.7 Ga plateau

  20. Thickness and Nb-doping effects on ferro- and piezoelectric properties of highly a-axis-oriented Nb-doped Pb(Zr0.3Ti0.7)O3 films

    NASA Astrophysics Data System (ADS)

    Zhu, Zhi-Xiang; Ruangchalermwong, C.; Li, Jing-Feng

    2008-09-01

    Tetragonal Nb-doped Pb(Zr0.3Ti0.7)O3 (PNZT) films with a lead oxide seeding layer were deposited on the Pt(111)/Ti/SiO2/Si(100) substrates by sol-gel processing. The as-grown PNZT films with thicknesses ranging from about 0.08 to 0.78 μm show highly a-axis preferential orientation, and their ferroelectric and piezoelectric properties improved with increasing film thickness. Due to the combined effects of Nb doping and a-axis texturing as well as reduced substrate constraint, a high d33 constant up to 196 pm/V was obtained for PNZT film at 0.78 μm in addition to a large remnant polarization of 69 μC/cm2. This well a-axis-oriented PNZT films on platinized Si with a high piezoresponse are suitable for the fabrication of microelectromechanical devices.

  1. Al(0.5)Nb(1.5)(PO(4))(3).

    PubMed

    Zhao, Dan; Liang, Peng; Su, Ling; Chang, Huan; Yan, Shi

    2011-02-12

    Single crystals of the title compound, aluminium niobium triphosphate, Al(0.5)Nb(1.5)(PO(4))(3), have been synthesized by a high-temperature reaction in a platinium crucible. The Al(III) and Nb(V) atoms occupy the same site on the axis, with disorder in the ratio of 1:3. The fundamental building units of the title structure are isolated Al/NbO(6) octa-hedra and PO(4) tetra-hedra (. 2 symmetry), which are further inter-locked by corner-sharing O atoms, leading to a three-dimensional framework structure with infinite channels along the a axis.

  2. Characterization of Ceramic Plasma-Sprayed Coatings, and Interaction Studies Between U-Zr Fuel and Ceramic Coated Interface at an Elevated Temperature

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ki Hwan Kim; Chong Tak Lee; R. S. Fielding

    2011-08-01

    Candidate coating materials for re-usable metallic nuclear fuel crucibles, HfN, TiC, ZrC, and Y2O3, were plasma-sprayed onto niobium substrates. The coating microstructure and the thermal cycling behavior were characterized, and U-Zr melt interaction studies carried out. The Y2O3 coating layer had a uniform thickness and was well consolidated with a few small pores scattered throughout. While the HfN coating was not well consolidated with a considerable amount of porosity, but showed somewhat uniform thickness. Thermal cycling tests on the HfN, TiC, ZrC, and Y2O3 coatings showed good cycling characteristics with no interconnected cracks forming even after 20 cycles. Interaction studiesmore » done on the coated samples by dipping into a U-20wt.%Zr melt indicated that HfN and Y2O3 did not form significant reaction layers between the melt and the coating while the TiC and the ZrC coatings were significantly degraded. Y2O3 exhibited the most promising performance among HfN, TiC, ZrC, and Y2O3 coatings.« less

  3. Functional fatigue behavior of superelastic beta Ti-22Nb-6Zr(at%) alloy for load-bearing biomedical applications.

    PubMed

    Sheremetyev, V; Brailovski, V; Prokoshkin, S; Inaekyan, K; Dubinskiy, S

    2016-01-01

    Ti-22Nb-6Zr (at.%) alloy with different processing-induced microstructures (highly-dislocated partially recovered substructure, polygonized nanosubgrained (NSS) dislocation substructure, and recrystallized structure) was subjected to strain-controlled tension-tension fatigue testing in the 0.2...1.5% strain range (run-out at 10^6 cycles). The NSS alloy obtained after cold-rolling with 0.3 true strain and post-deformation annealing at 600 °C showed the lowest Young's modulus and globally superior fatigue performance due to the involvement of reversible stress-induced martensitic transformation in the deformation process. This NSS structure appears to be suitable for biomedical applications with an extended variation range of loading conditions (orthopedic implants). Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Influence of alloying elements on the oxidation behavior of NbAl3

    NASA Technical Reports Server (NTRS)

    Hebsur, M. G.; Stephens, J. R.; Smialek, J. L.; Barrett, C. A.; Fox, D. S.

    1988-01-01

    NbAL3 is one candidate material for advanced aeropropulsion systems because of its high melting point, low density, and good oxidation resistance. Although NbAl3 has the lowest oxidation rate among the binary Nb-Al alloys, it does not form exclusive layers of protective Al2O3 scales. Recently Perkin et al., have shown the feasibility of forming alumina scales on Nb-Al alloys at greatly reduced Al contents. However, the objective was to maintain the high Al content, and hence low density, while achieving the capability of growing protective alumina scales. Alloy development followed approaches similar to those used successfully for superalloys and oxidation resistant MCrAlY coatings. Among the three elements examined (Ti, Si, and Cr) as ternary additions to Nb-Al3, Cr was the most effective in favoring the selective oxidation of Al. Nb-41Al-8Cr formed exclusive layers of alumina and had a k sub p value of 0.22 mg squared/cm (sup 4)/hr at 1200 C. The addition of 1 wt percent Y to this alloy was also beneficial, resulting in nearly an order of magnitude decrease in K sub p at 1200 C. Further improvements were achieved by adding about 1 wt percent Si to the quaternary alloy. The k sub p value of 0.012 mg squared/cm (sup 4)/hr for Nb-40Al-8Cr-1Y-1Si at 1200 C was identical to the best NiAl + Zr alloys. These NbAl3 alloys also exhibited excellent cyclic oxidation resistance for 100 hr at 1200 C, being nearly equivalent to NiAl + Zr.

  5. Nouvelle serie d'oxydes derives de la structure de α-U 3U 8: MIIUMo 4O 16

    NASA Astrophysics Data System (ADS)

    Lee, M. R.; Jaulmes, S.

    1987-04-01

    A new family of isotypical oxides MIIUMo 4O 16 ( MII = Mg,Mn,Cd,Ca,Hg,Sr,Pb) is identified. The structure of the compound with Ca was determined by X-ray diffraction. It is triclinic, space group P overline1 with a = 13.239(5) Å, b = 6.651(2) Å, c = 8.236(3) Å, α = 90°00(4), β = 90°38(4), γ = 120°16(3), Z = 2. The final index and the weighted Rw index are 0.049 and 0.040, respectively. The cell is related to the orthorhombic one of α-U 3O 8: a = 2 a0, b = -( a0 + b0)/2, c = 2 c0. The structure, reminiscent of that of α-U 3O 8, consists of chains of [Ca,U]O 7 pentagonal bipyramids and MoO 6 octahedra, running parallel to the c axis. The UO distances along the UOCaO chains are shortened to 1.77(1) Å. The uranyl ion was characterized by its IR spectrum.

  6. Influence of alloying elements on the oxidation behavior of NbAl3

    NASA Technical Reports Server (NTRS)

    Hebsur, M. G.; Stephens, J. R.; Smialek, J. L.; Barrett, C. A.; Fox, D. S.

    1989-01-01

    NbAl3 is one candidate material for advanced aeropropulsion systems because of its high melting point, low density, and good oxidation resistance. Although NbAl3 has the lowest oxidation rate among the binary Nb-Al alloys, it does not form exclusive layers of protective Al203 scales. Recently Perkin et al., have shown the feasibility of forming alumina scales on Nb-Al alloys at greatly reduced Al contents. However, the objective was to maintain the high Al content, and hence low density, while achieving the capability of growing protective alumina scales. Alloy development followed approaches similar to those used successfully for superalloys and oxidation resistant MCrAly coatings. Among the three elements examined (Ti, Si, and Cr) as ternary additions to Nb-Al3, Cr was the most effective in favoring the selective oxidation of Al. Nb-41Al-8Cr formed exclusive layers of alumina and had a k sub p value of 0.22 mg squared/cm (sup 4)/hr at 1200 C. The addition of 1 wt percent Y to this alloy was also beneficial, resulting in nearly an order of magnitude decrease in K sub p at 1200 C. Further improvements were achieved by adding about 1 wt percent Si to the quaternary alloy. The k sub p value of 0.012 mg squared/cm (sup 4)/hr for Nb-40Al-8Cr-1Y-1Si at 1200 C was identical to the best NiAl + Zr alloys. These NbAl3 alloys also exhibited excellent cyclic oxidation resistance for 100 hr at 1200 C, being nearly equivalent to NiAl + Zr.

  7. Hydrogen calibration of GD-spectrometer using Zr-1Nb alloy

    NASA Astrophysics Data System (ADS)

    Mikhaylov, Andrey A.; Priamushko, Tatiana S.; Babikhina, Maria N.; Kudiiarov, Victor N.; Heller, Rene; Laptev, Roman S.; Lider, Andrey M.

    2018-02-01

    To study the hydrogen distribution in Zr-1Nb alloy (Э110 alloy) GD-OES was applied in this work. Qualitative analysis needs the standard samples with hydrogen. However, the standard samples with high concentrations of hydrogen in the zirconium alloy which would meet the requirements of the shape, size are absent. In this work method of Zr + H calibration samples production was performed at the first time. Automated Complex Gas Reaction Controller was used for samples hydrogenation. To calculate the parameters of post-hydrogenation incubation of the samples in an inert gas atmosphere the diffusion equations were used. Absolute hydrogen concentrations in the samples were determined by melting in the inert gas atmosphere using RHEN602 analyzer (LECO Company). Hydrogen distribution was studied using nuclear reaction analysis (HZDR, Dresden, Germany). RF GD-OES was used for calibration. The depth of the craters was measured with the help of a Hommel-Etamic profilometer by Jenoptik, Germany.

  8. Heterometallic niobium complexes containing the {open_quotes}CpNb{close_quotes} unit. X-ray crystal structures of CpNbCl{sub 2}({mu}-SEt){sub 2}NiCp and CpNb(PhCCPh)({mu}-SPr{sup 1}){sub 2}Mo(CO){sub 4}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Woodward, S.; Curtis, M.D.; Rheingold, A.L.

    1992-06-01

    Cp{sub 2}Nb{sub 2}Cl{sub 2}({mu}-Cl{sub 2})(CO){sub 4} reacts with Cp{sub 2}Ni{sub 2}({mu}-SEt){sub 2} to yield paramagnetic CpNbCl{sub 2}({mu}-SEt){sub 2}NiCp: (g) = 2.004, A = 129 G; space group = P2{sub 1}/c,a = 7.466 (1) {Angstrom}, b = 28.427 (5) {Angstrom}, c = 8.620 (2) {Angstrom}, {beta} = 104.81 (1){degree}. CpNb(PhCCPh)({mu}-SPr{sup i}){sub 2}Mo(CO){sub 4} is synthesized by the addition of LiSPr{sup i} to CpNbCl{sub 2}PhCCPh resulting in formation of CpNb(SPr{sup i}){sub 2}(PhCCPh) followed by the reaction of the thiolate complex with Mo(MeCN){sub 3}(CO){sub 3} and CO (1 equiv). The crystal structure for CpNb(PhCCPh)({mu}-SPr{sup i}){sub 2}Mo(CO){sub 4} is reported and EHMO calculations ofmore » the bonding in CpNbCl{sub 2}({mu}-SEt{sub 2})NiCp were discussed. 27 refs., 5 figs., 5 tabs.« less

  9. Ferroelectricity-induced resistive switching in Pb(Zr0.52Ti0.48)O3/Pr0.7Ca0.3MnO3/Nb-doped SrTiO3 epitaxial heterostructure

    NASA Astrophysics Data System (ADS)

    Md. Sadaf, Sharif; Mostafa Bourim, El; Liu, Xinjun; Hasan Choudhury, Sakeb; Kim, Dong-Wook; Hwang, Hyunsang

    2012-03-01

    We investigated the effect of a ferroelectric Pb(Zr0.52Ti0.48)O3 (PZT) thin film on the generation of resistive switching in a stacked Pr0.7Ca0.3MnO3 (PCMO)/Nb-doped SrTiO3 (Nb:STO) heterostructure forming a p-n junction. To promote the ferroelectric effect, the thin PZT active layer was deposited on an epitaxially grown p-type PCMO film on a lattice-matched n-type Nb:STO single crystal. It was concluded that the observed resistive switching behavior in the all-perovskite Pt/PZT/PCMO/Nb:STO heterostructure was related to the modulation of PCMO/Nb:STO p-n junction's depletion width, which was caused either by the PZT ferroelectric polarization field effect, the electrochemical drift of oxygen ions under an electric field, or both simultaneously.

  10. Synthesis and structure determination of Sm{sub 3}NbSe{sub 3}O{sub 4}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meerschaut, A.; Boyer, C.; Lafond, A.

    1998-04-01

    Sm{sub 3}NbSe{sub 3}O{sub 4} has been synthesized and its structure determined. The following crystal data were obtained: M{sub r} = 844.84 g{center_dot}mol{sup {minus}1}, orthorhombic, Pnma, a = 6.8943(4) {angstrom}, b = 7.7529(7) {angstrom}, c = 14.7644(12) {angstrom}, V = 789.2(1) {angstrom}{sup 3}, Z = 4, D{sub x} = 7.111 g{center_dot}cm{sup {minus}3}, MoK{alpha}, {lambda} = 0.71073 {angstrom}, {mu} = 372 cm{sup {minus}1}, F(000) = 1444, T = 295 K, R = 0.035 for 1466 unique reflections with F{sub o} > 4{sigma}(F{sub o}), 62 variables, GoF = 0.818. The structure of Sm{sub 3}NbSe{sub 3}O{sub 4} was determined by single-crystal X-ray diffraction. Twomore » distinct types of polyhedra can be distinguished: a very distorted one with eight surrounding atoms (four O and four Se atoms) around Sm1 and Nb, and a bicapped trigonal prismatic one around Sm2. The crystal structure of this new compound can be described on the basis of corrugated planes perpendicular to the c axis. These planes are built up from edge-sharing trigonal prismatic polyhedra (Sm2); connection between successive planes is achieved through the distorted polyhedra which surround atoms Sm1 and Nb.« less

  11. High temperature reaction between sea salt deposit and (U,Zr)O2 simulated corium debris

    NASA Astrophysics Data System (ADS)

    Takano, Masahide; Nishi, Tsuyoshi

    2013-11-01

    In order to clarify the possible impacts of seawater injection on the chemical and physical state of the corium debris formed in the severe accident at Fukushima Daiichi Nuclear Power Plants, the high temperature reaction between sea salt deposit and (U,Zr)O2 simulated corium debris (sim-debris) was examined in the temperature range from 1088 to 1668 K. A dense layer of calcium and sodium uranate formed on the surface of a sim-debris pellet at 1275 K under airflow, with the thickness of over 50 μm. When the oxygen partial pressure is low, calcium is likely to dissolve into the cubic sim-debris phase to form solid solution (Ca,U,Zr)O2+x. The diffusion depth was 5-6 μm from the surface, subjected to 1275 K for 12 h. The crystalline MgO remains affixed on the surface as the main residue of salt components. A part of it can also dissolve into the sim-debris.

  12. Experimental determination of carbon partitioning between upper mantle minerals and silicate melts: initial results and comparison to trace element partitioning (Nb, Rb, Ba, U, Th, K)

    NASA Astrophysics Data System (ADS)

    Rosenthal, A.; Hauri, E. H.; Hirschmann, M. M.; Davis, F. A.; Withers, A. C.; Fogel, M. L.

    2012-12-01

    Inventories of C in the mantle and magmatic fluxes of C between the mantle and the Earth's outer envelopes are poorly constrained in part owing to challenges in determining undegassed C concentrations of pristine basalts. Saal et al. [1] proposed that the behavior of Nb could be used as a proxy for C, owing to apparently similar behavior of the two elements in Siqueiros Transform MORB, but higher C/Nb ratios in popping rocks [2] call into question the applicability of the C/Nb proxy. Here, we present experimentally determined carbon partition coefficients (D's) between nominally volatile-free mantle minerals (olivine, OL; orthopyroxene, OPX; clinopyroxene, CPX; garnet, GA) and melts at 0.8-3 GPa, and 1250-1500°C. We conducted piston-cylinder experiments using an olivine-tholeiite + 4 wt% CO2, doped with Nb, Rb, U, Th, and 13C to enhance detection limits. To promote growth of crystals big enough for SIMS analyses, experiments were either long (<6 days), or at an initial higher temperature (T) before cooling slowly to a target T. We also produced SIMS calibration glass standards with varying amounts of C, and subject to ongoing analyses. We analyzed carbon (12C, 13C), H, F, and trace elements (Nb, Rb, Ba, U, Th, K) of both mineral phases and quenched liquids in subsets of experimental runs (21 in graphite-lined Pt-capsules, 6 in Fe-doped Pt-lined capsules) using both Cameca IMS 6F and NanoSIMS instruments. D's measured for 12C and 13C are close to 5x10-4, in most cases D13C>D12C, but a few have the opposite. Continuous exchange of the liquid (initially rich in 13C) with the graphite capsules (rich in 12C) may yield D's with 13C>12C. D's with 12C>13C are likely owing to either low count rates or comparatively high analytical contamination. Concentrations in minerals vary from 0.20-3.46 ppm for C, 25-176 ppm for H2O, and 0.05-1.21 ppm for F, whereas liquids tend to much higher values (C≤0.9 wt%; H2O≤1.5 wt%; F≤34 ppm; P≤0.25 wt%; S≤43 ppm; Cl≤77 ppm

  13. Hydrogenation behavior of Ti-implanted Zr-1Nb alloy with TiN films deposited using filtered vacuum arc and magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Kashkarov, E. B.; Nikitenkov, N. N.; Sutygina, A. N.; Bezmaternykh, A. O.; Kudiiarov, V. N.; Syrtanov, M. S.; Pryamushko, T. S.

    2018-02-01

    More than 60 years of operation of water-cooled reactors have shown that local or general critical hydrogen concentration is one of the basic limiting criteria of zirconium-based fuel element claddings. During the coolant radiolysis, released hydrogen penetrates and accumulates in zirconium alloys. Hydrogenation of zirconium alloys leads to degradation of their mechanical properties, hydride cracking and stress corrosion cracking. In this research the effect of titanium nitride (TiN) deposition on hydrogenation behavior of Ti-implanted Zr-1Nb alloy was described. Ti-implanted interlayer was fabricated by plasma immersion ion implantation (PIII) at the pulsed bias voltage of 1500 V to improve the adhesion of TiN and reduce hydrogen penetration into Zr-1Nb alloy. We conducted the comparative analysis on hydrogenation behavior of the Ti-implanted alloy with sputtered and evaporated TiN films by reactive dc magnetron sputtering (dcMS) and filtered cathodic vacuum arc deposition (FVAD), respectively. The crystalline structure and surface morphology were investigated using X-ray diffraction (XRD) and scanning electron microscopy (SEM). The elemental distribution was analyzed using glow-discharge optical emission spectroscopy (GD-OES). Hydrogenation was performed from gas atmosphere at 350 °C and 2 atm hydrogen pressure. The results revealed that TiN films as well as Ti implantation significantly reduce hydrogen absorption rate of Zr-1Nb alloy. The best performance to reduce the rate of hydrogen absorption is Ti-implanted layer with evaporated TiN film. Morphology of the films impacted hydrogen permeation through TiN films: the denser film the lower hydrogen permeation. The Ti-implanted interface plays an important role of hydrogen accumulation layer for trapping the penetrated hydrogen. No deterioration of adhesive properties of TiN films on Zr-1Nb alloy with Ti-implanted interface occurs under high-temperature hydrogen exposure. Thus, the fabrication of Ti

  14. Dynamic Recrystallization Behavior of Zr-1Sn-0.3Nb Alloy During Hot Rolling Process

    NASA Astrophysics Data System (ADS)

    Zhao, Siyu; Liu, Huiqun; Lin, Gaoyong; Jiang, Yilan; Xun, Jian

    2017-11-01

    Zirconium alloys are advanced materials with properties that are greatly affected by their crystalline structure. To investigate this, sheets of Zr-1Sn-0.3Nb alloy were hot rolled with different reductions (10%, 30%, 50%, and 60%) at 1023 K and 1073 K to investigate the alloy's dynamic recrystallization behavior. Recrystallization kinetics was observed via electron backscattering diffraction and transmission electron microscopy, and the results were compared with estimates based on the Johnson-Mehl-Avrami-Kolmogorov (JMAK) equation. The values of the JMAK exponent n and k increased with the rolling temperature. The estimates and microstructural observations of dynamic recrystallization (DRX) kinetics were in good agreement.

  15. U enrichment and Th/U fractionation in Archean boninites: Implications for paleo-ocean oxygenation and U cycling at juvenile subduction zones

    NASA Astrophysics Data System (ADS)

    Manikyamba, C.; Said, Nuru; Santosh, M.; Saha, Abhishek; Ganguly, Sohini; Subramanyam, K. S. V.

    2018-05-01

    Phanerozoic boninites record enrichments of U over Th, giving Th/U: 0.5-1.6, relative to intraoceanic island arc tholeiites (IAT) where Th/U averages 2.6. Uranium enrichment is attributed to incorporation of shallow, oxidized fluids, U-rich but Th-poor, from the slab into the melt column of boninites which form in near-trench to forearc settings of suprasubduction zone ophiolites. Well preserved Archean komatiite-tholeiite, plume-derived, oceanic volcanic sequences have primary magmatic Th/U ratios of 4.4-3.6, and Archean convergent margin IAT volcanic sequences, having REE and HFSE compositions similar to Phanerozoic IAT equivalents, preserve primary Th/U of 4-3.6. The best preserved Archean boninites of the 3.0 Ga Olondo and 2.7 Ga Gadwal greenstone belts, hosted in convergent margin ophiolite sequences, also show relative enrichments of U over Th, with low average Th/U3 relative to coeval IAT, and Phanerozoic counterparts which are devoid of crustal contamination and therefore erupted in an intraoceanic setting, with minimal contemporaneous submarine hydrothermal alteration. Later enrichment of U is unlikely as Th-U-Nb-LREE patterns are coherent in these boninites whereas secondary effects induce dispersion of Th/U ratios. The variation in Th/U ratios from Archean to Phanerozoic boninites of greenstone belts to ophiolitic sequences reflect on genesis of boninitic lavas at different tectono-thermal regimes. Consequently, if the explanation for U enrichment in Phanerozoic boninites also applies to Archean examples, the implication is that U was soluble in oxygenated Archean marine water up to 600 Ma before the proposed great oxygenation event (GOE) at ∼2.4 Ga. This interpretation is consistent with large Ce anomalies in some hydrothermally altered Archean volcanic sequences aged 3.0-2.7 Ga.

  16. Enhanced magnetoelectric response in 2-2 bilayer 0.50Pb(Ni1/3Nb2/3)O3-0.35PbTiO3-0.15PbZrO3/NiFe2O4 thin films

    NASA Astrophysics Data System (ADS)

    Ade, Ramesh; Sambasiva, V.; Kolte, Jayant; Karthik, T.; Kulkarni, Ajit R.; Venkataramani, N.

    2018-03-01

    In this work, room temperature magnetoelectric (ME) properties of 0.50Pb(Ni1/3Nb2/3)O3-0.35PbTiO3-0.15PbZrO3 (PNNZT)/NiFe2O4 (NFO) 2-2 bilayer thin films grown on Pt/Ti/SiO2/Si substrate, using pulsed laser deposition technique, are reported. Structural studies confirm single phase PNNZT/NFO 2-2 bilayer structure formation. PNNZT/NFO 2-2 bilayer thin film shows a maximum ME voltage coefficient (α E ) of ~0.70 V cm-1. Oe-1 at a frequency of 1 kHz. The present study reveals that PNNZT/NFO bilayer thin film can be a potential candidate for technological applications.

  17. Demonstration of femtosecond laser ablation inductively coupled plasma mass spectrometry for uranium isotopic measurements in U-10Mo nuclear fuel foils

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Havrilla, George Joseph; Gonzalez, Jhanis

    2015-06-10

    The use of femtosecond laser ablation inductively coupled plasma mass spectrometry was used to demonstrate the feasibility of measuring the isotopic ratio of uranium directly in U-10Mo fuel foils. The measurements were done on both the flat surface and cross sections of bare and Zr clad U-10Mo fuel foil samples. The results for the depleted uranium content measurements were less than 10% of the accepted U235/238 ratio of 0.0020. Sampling was demonstrated for line scans and elemental mapping over large areas. In addition to the U isotopic ratio measurement, the Zr thickness could be measured as well as trace elementalmore » composition if required. A number of interesting features were observed during the feasibility measurements which could provide the basis for further investigation using this methodology. The results demonstrate the feasibility of using fs-LA-ICP-MS for measuring the U isotopic ratio in U-10Mo fuel foils.« less

  18. Nb sbnd Th sbnd Zr mineralization in microgranite—microsyenite at Jabal Tawlah, Midyan region, Kingdom of Saudi Arabia

    NASA Astrophysics Data System (ADS)

    Drysdall, Alan R.; Douch, Colin J.

    A composite sill of mineralized and highly radioactive microgranite—microsyenite caps Jabal Tawlah, a low ridge in the extreme NW of the Arabian Shield. The leucocratic composition, distribution of quartz and low K 2O:Na 2O ratios indicate that deuteric processes, including separation of a silica-rich phase and albitization, played a major role. Mineralization is in the form of a disseminated enrichment in Nb, Ta, Sn, Th, Y, heavy REE and Zr. Four Y- and heavy REE-bearing minerals, gagarinite [NaCaY(F,Cl) 6], fergusonite [(Y,Er,Ce,Fe)(Nb,Ta,Ti)O 4], xenotime and yttrian fluorite, as well as zircon, columbite, thorite, sphalerite, galena, pyrite, ilmenite, hematite, limonite, magnetite, goethite, siderite, possible chrysocolla and an MnO-bearing mineral have been identified. The geochemical signature of the mineralization is similar to that which distinguishes alkali granites from other granitic rocks. Jabal az Zuhd, a major plutonic complex consisting largely of alkali granite, crops out only 5 km NW of Jabal Tawlah. However, there is no other evidence of possible derivation from a parental alkali granite magma. Reserves indicated by outcrop dimensions and three drill-hole intersections are 6.4 million tonnes to an average depth of 65 m below wadi level, grading 0.34% Nb, 0.52% Y, 0.47% Zn and approximately 4% zircon (plus 175 ppm Ta, 380 ppm Sn, 700 ppm Th and heavy REE).

  19. Nominal vs Local Shot-Peening Effects on Fatigue Lifetime in Ti-6Al-2Sn-4Zr-6Mo at Elevated Temperature

    DTIC Science & Technology

    2009-11-01

    PROCEDURE A. Material The materia l in this study was tbe IX + /1 titanium aUoy. Ti- 6 -2- 4 - 6 . in the duplex microstructural condition. Two y,;riants of the...ress level and temperature in the turbine engine alloy Ti-6AI-2Sn-4Zr- 6Mo (Ti- 6 -2- 4 - 6 ). The experimental conditions were chosen to target a regime...defects. which are produced during SP by thermally activated pro- cesses.II~.~1J A detailed discussion of these relaxation elTects in Ti- 6 -2- 4 - 6 is

  20. Nominal Versus Local Shot-Peening Effects on Fatigue Lifetime in Ti-6Al-2Sn-4Zr-6Mo at Elevated Temperature (Preprint)

    DTIC Science & Technology

    2008-09-01

    this study was the α+β titanium alloy, Ti- 6 -2- 4 - 6 , in the duplex microstructural condition. Two variants of the microstructure, which differed...condition, at a given stress level and temperature in the turbine engine alloy, Ti-6Al-2Sn-4Zr-6Mo (Ti- 6 -2- 4 - 6 ). The experimental conditions were chosen to...LSG surface. Fig. 1: Microstructures of the Ti- 6 -2- 4 - 6 alloy considered in the study; (a) Microstructure A and (b) Microstructure

  1. Thermal expansion of phosphates with the NaZr{sub 2}(PO{sub 4}){sub 3} structure containing lanthanides and zirconium: R{sub 0.33}Zr{sub 2}(PO{sub 4}){sub 3} (R = Nd, Eu, Er) and Er{sub 0.33(1–x)} Zr{sub 0.25x}Zr{sub 2}(PO{sub 4}){sup 3}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Volgutov, V. Yu., E-mail: Valeriy.Volgutov@inbox.ru; Orlova, A. I.

    Phosphates R{sub 0.33}Zr{sub 2}(PO{sub 4}){sub 3} (R = Nd, Eu, or Er) and Er{sub 0.33(1–x)}Zr{sub 0.25}Zr{sub 2}(PO{sub 4}){sub 3} (x = 0, 0.25, 0.5, 0.75, 1.0) of the NaZr{sub 2}(PO{sub 4}){sub 3} family have been synthesized and investigated by high-temperature X-ray diffraction. The crystallochemical approach is used to obtain compounds with expected small and controllable thermal-expansion parameters. Phosphates with close-to-zero thermal-expansion parameters, including those with low thermal-expansion anisotropy, have been obtained: Nd{sub 0.33}Zr{sub 2}(PO{sub 4}){sub 3} with α{sub a} =–2.21 × 10{sup −6} °C{sup −1}, α{sub c} = 0.81 × 10{sup −6} °C{sup −1}, and Δα = 3.02 × 10{supmore » −6} °C{sup –1} and Er{sub 0.08}Zr{sub 0.19}Zr{sub 2}(PO{sub 4}){sub 3} with α{sub a} =–1.86 × 10{sup −6} °C{sup −1}, α{sub c} = 1.73 × 10{sup −6} °C{sup −1}, and Δα = 3.58 × 10{sup −6} °C{sup −1}.« less

  2. Efficient UV-emitting X-ray phosphors: octahedral Zr(PO 4) 6 luminescence centers in potassium hafnium-zirconium phosphates K 2Hf 1- xZr x(PO 4) 2 and KHf 2(1- x) Zr 2 x(PO 4) 3

    NASA Astrophysics Data System (ADS)

    Torardi, C. C.; Miao, C. R.; Li, J.

    2003-02-01

    Potassium hafnium-zirconium phosphates, K 2Hf 1- xZr x(PO 4) 2 and KHf 2(1- x) Zr 2 x(PO 4) 3, are broad-band UV-emitting phosphors. At room temperature, they have emission peak maxima at approximately 322 and 305 nm, respectively, under 30 kV peak molybdenum X-ray excitation. Both phosphors demonstrate luminescence efficiencies that make them up to ˜60% as bright as commercially available CaWO 4 Hi-Plus. The solid-state and flux synthesis conditions, and X-ray excited UV luminescence of these two phosphors are discussed. Even though the two compounds have different atomic structures, they contain zirconium in the same active luminescence environment as that found in highly efficient UV-emitting BaHf 1- xZr x(PO 4) 2. All the three materials have hafnium and zirconium in octahedral coordination via oxygen-atom corner sharing with six separate PO 4 tetrahedra. This octahedral Zr(PO 4) 6 moiety appears to be an important structural element for efficient X-ray excited luminescence, as are the edge-sharing octahedral TaO 6 chains for tantalate emission.

  3. Strategy for stabilization of the antiferroelectric phase (Pbma) over the metastable ferroelectric phase (P2{sub 1}ma) to establish double loop hysteresis in lead-free (1−x)NaNbO{sub 3}-xSrZrO{sub 3} solid solution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guo, Hanzheng, E-mail: hug17@psu.edu; Randall, Clive A.; Shimizu, Hiroyuki

    A new lead-free antiferroelectric solid solution system, (1−x)NaNbO{sub 3}-xSrZrO{sub 3}, was rationalized through noting the crystal chemistry trend, of decreasing the tolerance factor and an increase in the average electronegativity of the system. The SrZrO{sub 3} doping was found to effectively stabilize the antiferroelectric (P) phase in NaNbO{sub 3} without changing its crystal symmetry. Preliminary electron diffraction and polarization measurements were presented which verified the enhanced antiferroelectricity. In view of our recent report of another lead-free antiferroelectric system (1−x)NaNbO{sub 3}-xCaZrO{sub 3} [H. Shimizu et al. “Lead-free antiferroelectric: xCaZrO{sub 3} - (1−x)NaNbO{sub 3} system (0 ≤ x ≤ 0.10),” Dalton Trans.more » (published online)], the present results point to a general strategy of utilizing tolerance factor to develop a broad family of new lead-free antiferroelectrics with double polarization hysteresis loops. We also speculate on a broad family of possible solid solutions that could be identified and tested for this important type of dielectric.« less

  4. The Effect of 24c-site (A) Cation Substitution on the Tetragonal-Cubic Phase Transition in Li7-xLa3-xAxZr2O12 Garnet-Based Ceramic Electrolyte

    DTIC Science & Technology

    2012-12-27

    Another super-valent substitution scheme involves either Nb (5þ) or Ta (5þ) on the 16a site ( Zr 4þ), that reduces the Li content and/or increases Li...substitution for Zr are as follows [20,22,23]: Ta$ Zr ¼ V0Li (3) Nb $ Zr ¼ V0Li (4) Likewise, super-valent substitution on the 24c (La 3þ) is...Substitution of La with Ce stabilizes the cubic LLZO garnet phase. < CeO2 precipitation at grain boundaries increases grain boundary resistance . < Super

  5. Modified ring stretch tensile testing of Zr-1Nb cladding

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cohen, A.B.; Majumdar, S.; Ruther, W.E.

    1998-03-01

    In a round robin effort between the US Nuclear Regulatory Commission, Institut de Protection et de Surete Nucleaire in France, and the Russian Research Centre-Kurchatov Institute, Argonne National Laboratory conducted 16 modified ring stretch tensile tests on unirradiated samples of zr-1Nb cladding, which is used in Russian VVER reactors. Test were conducted at two temperatures (25 and 400 C) and two strain rates (0.001 and 1 s{sup {minus}1}). At 25 C and 0.001 s{sup {minus}1}, the yield strength (YS), ultimate tensile strength (UTS), uniform elongation (UE), and total elongation (TE) were 201 MPa, 331 MPa, 18.2%, and 57.6%, respectively. Atmore » 400 C and 0.001 s{sup {minus}1}, the YS, UTS, UE, and TE were 109 MPa, 185 MPa, 15.4%, and 67.7%, respectively. Finally, at 400 C and 1 s{sup {minus}1}, the YS, UTS, UE, and TE were 134 MPa, 189 MPa, 18.9%, and 53.4%, respectively. The high strain rate tests at room temperature were not successful. Test results proved to be very sensitive to the amount of lubrication used on the inserts; because of the large contact area between the inserts and specimen, too little lubrication leads to significantly higher strengths and lower elongations being reported. It is also important to note that only 70 to 80% of the elongation takes place in the gauge section, depending on specimen geometry. The appropriate percentage can be estimated from a simple model or can be calculated from finite-element analysis.« less

  6. Effect of zirconia morphology on sulfur-resistant methanation performance of MoO3/ZrO2 catalyst

    NASA Astrophysics Data System (ADS)

    Liu, Chen; Wang, Weihan; Xu, Yan; Li, Zhenhua; Wang, Baowei; Ma, Xinbin

    2018-05-01

    Two kinds of ZrO2 support with different morphologies were prepared by facile solvothermal method in different solvents. The obtained two supports showed monoclinic zirconia (m-ZrO2) and tetragonal zirconia (t-ZrO2) phase with similar crystalline size. Their supported Mo-based catalysts were prepared by impregnation method and the effect of zirconia morphology on the performance of sulfur-resistant methanation was examined. The results indicated that the MoO3/m-ZrO2 has higher CO conversion than the MoO3/t-ZrO2 catalyst. Characterizations by XRD, Raman, H2-TPR and IR confirmed that the m-ZrO2 is superior to t-ZrO2 for dispersing molybdenum species. In addition, the MoO3/m-ZrO2 catalyst has weaker interaction between support and active Mo speices than the MoO3/t-ZrO2 catalyst, which facilitates to forming active species of nanocrystalline MoS2 layers for sulfur-resistant methanation. The weaker interaction of molybdenum species with m-ZrO2 is related with the more covalent character of the Zrsbnd O bond and more oxygen defective structure of m-ZrO2. A larger number of Lewis acid centers appear on the surface of m-ZrO2, which verified the substantial vacancies on m-ZrO2 exposing coordinately unsaturated Zr3+ and Zr4+ cations. Meanwhile, the less Lewis acid of t-ZrO2 result in stronger interaction between support and molybdenum species and trigger crystalline phase MoO3 and Mosbnd Osbnd Zr linkages.

  7. Fatigue behaviour of boron free and boron containing heat treated Ti-13Zr-13Nb alloy for biomedical applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Majumdar, P., E-mail: m.pallab@gmail.com; Singh, S.B.; Chakraborty, M.

    2010-12-15

    Fatigue behaviour of heat treated Ti-13Zr-13Nb (TZN) and Ti-13Zr-13Nb-0.5B (TZNB) alloys for biomedical implants has been investigated by rotating bending test. It was found that fatigue strength of TZN and TZNB alloys is comparable with that of conventionally used biomedical titanium alloys. Addition of boron to TZN alloy deteriorates fatigue strength. - Research Highlights: {yields}The microstructure of the aged TZN consists of {alpha} phase in {beta} matrix. {yields}Addition of boron to TZN leads to the formation of dispersed acicular TiB. {yields}Presence of TiB deteriorates the fatigue strength of TZN alloy. {yields}Fatigue strength of aged TZN/TZNB alloys is comparable with biomedicalmore » Ti-alloys.« less

  8. Creep Testing of High-Temperature Cu-8 Cr-4 Nb Alloy Completed

    NASA Technical Reports Server (NTRS)

    1995-01-01

    A Cu-8 at.% Cr-4 at.% Nb (Cu-8 Cr-4 Nb) alloy is under development for high-temperature, high heatflux applications, such as actively cooled, hypersonic vehicle heat exchangers and rocket engine combustion chambers. Cu-8 Cr-4 Nb offers a superior combination of strength and conductivity. It has also shown exceptional low-cycle fatigue properties. Following preliminary testing to determine the best processing route, a more detailed testing program was initiated to determine the creep lives and creep rates of Cu-8 Cr-4 Nb alloy specimens produced by extrusion. Testing was conducted at the NASA Lewis Research Center with constant-load vacuum creep units. Considering expected operating temperatures and mission lives, we developed a test matrix to accurately determine the creep properties of Cu-8 Cr-4 Nb between 500 and 800 C. Six bars of Cu-8 Cr-4 Nb were extruded. From these bars, 54 creep samples were machined and tested. The figure on the left shows the steady-state, or second-stage, creep rates for the samples. Comparison data for NARloy-Z (Cu-3 wt % Ag-0.5 wt % Zr), the alloy currently used in combustion chamber liners, were not unavailable. Therefore the steady-state creep rates for Cu at similar temperatures are presented. As expected, in comparison to pure Cu, the creep rates for Cu-8 Cr-4 Nb are much lower. The lives of the samples are presented in the figure on the right. As shown, Cu-8 Cr-4 Nb at 800 C is comparable to NARloy-Z at 648 C. At equivalent temperatures, Cu-8 Cr-4 Nb enjoys a 20 to 50 percent advantage in stress for a given life and 1 to 3 orders of magnitude greater life at a given stress. The improved properties allow for design tradeoffs and improvements in new and existing heat exchangers such as the next generation of combustion chamber liners. Average creep rates for Cu-8 Cr-4 Nb and pure Cu are shown. Average creep lives for Cu-8 Cr- 4 Nb and NARloy-Z are also shown. Currently, two companies are interested in the commercial usage of the Cu

  9. Water vapor effect on high-temperature oxidation behavior of Fe3Al intermetallics

    PubMed Central

    Chevalier, Sebastian; Juzon, Pitor; Przybylski, Kazimierz; Larpin, Jean-Pierre

    2009-01-01

    Fe3Al intermetallics (Fe3Al, Fe3Al-Zr, Fe3Al-Zr,Mo and Fe3Al-Zr, Mo, Nb) were oxidized at 950 °C in dry and humid (11 vol% water) synthetic air. Thermogravimetric measurements showed that the oxidation rates of the tested intermetallics were lower in humid air than in dry air (especially for Fe3Al-Zr, Mo and Fe3Al-Zr, Mo, Nb). The addition of small amounts of Zr, Mo or Nb improved the kinetics compared with that of the undoped Fe3Al. Fe3Al showed massive spallation, whereas Fe3Al-Zr, Fe3Al-Zr, Mo and Fe3Al-Zr, Mo, Nb produced a flat, adherent oxide layer. The rapid transformation of transient alumina into alpha alumina may explain the decrease in the oxidation rate in humid air. PMID:27877306

  10. Metal-Borohydride-Modified Zr(BH4 )4 ⋅8 NH3 : Low-Temperature Dehydrogenation Yielding Highly Pure Hydrogen.

    PubMed

    Huang, Jianmei; Ouyang, Liuzhang; Gu, Qinfen; Yu, Xuebin; Zhu, Min

    2015-10-12

    Due to its high hydrogen density (14.8 wt %) and low dehydrogenation peak temperature (130 °C), Zr(BH4 )4 ⋅8 NH3 is considered to be one of the most promising hydrogen-storage materials. To further decrease its dehydrogenation temperature and suppress its ammonia release, a strategy of introducing LiBH4 and Mg(BH4 )2 was applied to this system. Zr(BH4 )4 ⋅8 NH3 -4 LiBH4 and Zr(BH4 )4 ⋅8 NH3 -2 Mg(BH4 )2 composites showed main dehydrogenation peaks centered at 81 and 106 °C as well as high hydrogen purities of 99.3 and 99.8 mol % H2 , respectively. Isothermal measurements showed that 6.6 wt % (within 60 min) and 5.5 wt % (within 360 min) of hydrogen were released at 100 °C from Zr(BH4 )4 ⋅8 NH3 -4 LiBH4 and Zr(BH4 )4 ⋅8 NH3 -2 Mg(BH4 )2 , respectively. The lower dehydrogenation temperatures and improved hydrogen purities could be attributed to the formation of the diammoniate of diborane for Zr(BH4 )4 ⋅8 NH3 -4 LiBH4 , and the partial transfer of NH3 groups from Zr(BH4 )4 ⋅8 NH3 to Mg(BH4 )2 for Zr(BH4 )4 ⋅8 NH3 -2 Mg(BH4 )2 , which result in balanced numbers of BH4 and NH3 groups and a more active H(δ+) ⋅⋅⋅(-δ) H interaction. These advanced dehydrogenation properties make these two composites promising candidates as hydrogen-storage materials. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Dielectric Studies of Samarium Modified (Pb)(Zr, Ti, Fe, Nb)O3 Ceramic System

    NASA Astrophysics Data System (ADS)

    Singh, Pratibha; Singh, Sangeeta; Juneja, J. K.; Prakash, Chandra; Raina, K. K.

    Here we report the investigations on Sm-substituted PZTFN (Pb1-xSmxZr0.588Ti0.392Fe0.01Nb0.01O3) (where x = 0, 0.02, 0.04, 0.06, 0.08, 0.10) polycrystalline solid solutions fabricated by solid-state reaction method. XRD analysis shows all the samples to be single phase with tetragonal structure. Dielectric measurements were carried out in the temperature range 30°C-400°C at different frequencies in the range 100 Hz to 100 kHz. From the temperature variation of dielectric constant (ɛ), Curie temperature (TC) was determined which was found to decrease with increasing x. The room temperature dielectric constant (ɛRT) initially increases with increasing x and then starts decreasing. Dielectric loss improves with Sm-doping.

  12. Effect of ambient oxygen on the photoluminescence of sol-gel-derived nanocrystalline ZrO2:Eu,Nb

    NASA Astrophysics Data System (ADS)

    Puust, Laurits; Kiisk, Valter; Eltermann, Marko; Mändar, Hugo; Saar, Rando; Lange, Sven; Sildos, Ilmo; Dolgov, Leonid; Matisen, Leonard; Jaaniso, Raivo

    2017-06-01

    The development of inorganic nanophosphors is an active research field due to many applications, including optical gas sensing materials. We found a systematic dependence of the photoluminescence (PL) of europium (Eu3+) impurity ions in zirconia (ZrO2) nanocrystals on the ambient oxygen concentration in a O2/N2 mixture at normal pressure. Europium-doped ZrO2 powders were synthesized via a sol-gel route. Heat-treatment at 1200 °C resulted in a well-developed monoclinic phase (XRD crystallite size of ~50 nm) and an intense PL of Eu3+ ions residing in the dominant phase (Eu3+ was excited directly at 395 or 464 nm). Co-doping with niobium resulted in a narrowing of the PL emission lines. Only Nb5+ was detected by XPS and is believed to charge-compensate Eu3+ activators throughout the material leading to a more regular crystal lattice. At room temperature, the exposure to oxygen suppressed the Eu3+ fluorescence, whereas, at elevated temperatures (300 °C), the effect was reversed. At 300 °C and under a focused continuous laser beam, a substantial PL response (>50%) was achieved when switching 100% of N2 for 100% of O2. PL decay kinetics clearly showed that at 300 °C fluorescence quenching centers were induced within the material by oxygen desorption. The relatively fast (<5 min) and sub-linear PL response to the changes of oxygen concentration shows that ZrO2:Eu,Nb is a promising PL-based oxygen sensing material over a wide-range of oxygen pressures.

  13. Identification of Excited States in the N=Z Nucleus 82Nb

    NASA Astrophysics Data System (ADS)

    Caceres, L. S.; Gorska, M.; Jungclaus, A.; Regan, P. H.; Garnsworthy, A. B.; Pietri, S.; Podolyak, Zs.; Rudolph, D.; Steer, S. J.; Grawe, H.; Balabanski, D. L.; Becker, F.; Bednarczyk, P.; Benzoni, G.; Blank, B.; Brandau, C.; Bruce, A. M.; Camera, F.; Catford, W. N.; Cullen, I. J.; Dombradi, Zs.; Doornenbal, P.; Estevez, E.; Geissel, H.; Gelletly, W.; Gerl, J.; Grebosz, J.; Heinz, A.; Hoischen, R.; Ilie, G.; Jolie, J.; Jones, G. A.; Kmiecik, M.; Kojouharov, I.; Kondev, F. G.; Kurtukian-Nieto, T.; Kurz, N.; Lalkowski, S.; Liu, L.; Maj, A.; Myalski, S.; Montes, F.; Pfuetzner, M.; Prokopowicz, W.; Saito, T.; Schaffner, H.; Schwertel, S.; Shizuma, T.; Simons, A. J.; Tashenov, S.; Walker, P. M.; Werner-Malento, E.; Wieland, O.; Wollersheim, H. J.

    2007-04-01

    Information on the first excited states in the N=Z=41 nucleus 82Nb sheds light on the competition of isospin T=0 and T=1 states in the A sim 80 region. The measurement was performed at the GSI laboratory using fragmentation of a 107Ag primary beam at 750 MeV/u on a 4 g/cm2 9Be target. The fragments were separated and identified unambiguously in the FRagment Separator. Three excited states were observed and the half-life estimate for the isomeric state was extracted. A tentative spin assignment based on the isobaric analogue states systematics in the Tz=1 nucleus 82Zr, and transition probabilities indicate T=1 character of the first two excited states, and T=0 for the isomeric state.

  14. Study on ( n,t) Reactions of Zr, Nb and Ta Nuclei

    NASA Astrophysics Data System (ADS)

    Tel, E.; Yiğit, M.; Tanır, G.

    2012-04-01

    The world faces serious energy shortages in the near future. To meet the world energy demand, the nuclear fusion with safety, environmentally acceptability and economic is the best suited. Fusion is attractive as an energy source because of the virtually inexhaustible supply of fuel, the promise of minimal adverse environmental impact, and its inherent safety. Fusion will not produce CO2 or SO2 and thus will not contribute to global warming or acid rain. Furthermore, there are not radioactive nuclear waste problems in the fusion reactors. Although there have been significant research and development studies on the inertial and magnetic fusion reactor technology, there is still a long way to go to penetrate commercial fusion reactors to the energy market. Because, tritium self-sufficiency must be maintained for a commercial power plant. For self-sustaining (D-T) fusion driver tritium breeding ratio should be greater than 1.05. And also, the success of fusion power system is dependent on performance of the first wall, blanket or divertor systems. So, the performance of structural materials for fusion power systems, understanding nuclear properties systematic and working out of ( n,t) reaction cross sections are very important. Zirconium (Zr), Niobium (Nb) and Tantal (Ta) containing alloys are important structural materials for fusion reactors, accelerator-driven systems, and many other fields. In this study, ( n,t) reactions for some structural fusion materials such as 88,90,92,94,96Zr, 93,94,95Nb and 179,181Ta have been investigated. The calculated results are discussed andcompared with the experimental data taken from the literature.

  15. Growth of Pb(Ti,Zr)O 3 thin films by metal-organic molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Avrutin, V.; Liu, H. Y.; Izyumskaya, N.; Xiao, B.; Özgür, Ü.; Morkoç, H.

    2009-02-01

    Single-crystal Pb(Zr xTi 1-x)O 3 thin films have been grown on (0 0 1) SrTiO 3 and SrTiO 3:Nb substrates by molecular beam epitaxy using metal-organic source of Zr and two different sources of reactive oxygen—RF plasma and hydrogen-peroxide sources. The same growth modes and comparable structural properties were observed for the films grown with both oxygen sources, while the plasma source allowed higher growth rates. The films with x up to 0.4 were single phase, while attempts to increase x beyond gave rise to the ZrO 2 second phase. The effects of growth conditions on growth modes, Zr incorporation, and phase composition of the Pb(Zr xTi 1-x)O 3 films are discussed. Electrical and ferroelectric properties of the Pb(Zr xTi 1-x)O 3 films of ~100 nm in thickness grown on SrTiO 3:Nb were studied using current-voltage, capacitance-voltage, and polarization-field measurements. The single-phase films show low leakage currents and large breakdown fields, while the values of remanent polarization are low (around 5 μC/cm 2). It was found that, at high sweep fields, the contribution of the leakage current to the apparent values of remanent polarization can be large, even for the films with large electrical resistivity (˜10 8-10 9 Ω cm at an electric filed of 1 MV/cm). The measured dielectric constant ranges from 410 to 260 for Pb(Zr 0.33Ti 0.67)O 3 and from 313 to 213 for Pb(Zr 0.2Ti 0.8)O 3 in the frequency range from 100 to 1 MHz.

  16. Effect of Laser Powder Bed Fusion Parameters on the Microstructure and Texture Development in Superelastic Ti-18Zr-14Nb Alloy

    NASA Astrophysics Data System (ADS)

    Kreitcberg, A.; Brailovski, V.; Sheremetyev, V.; Prokoshkin, S.

    2017-12-01

    The effect of different laser powder bed fusion (L-PBF) parameters on the phase composition, microstructure, and crystallographic texture of Ti-18Zr-14Nb alloy was studied. Two levels of laser power, scanning speed, and hatching space were used, while the layer thickness was kept constant. The resulting volume energy density was ranged from 20 to 60 J/mm3, and the build rate, from 12 to 36 cm3/h. The manufactured coupons were analyzed by X-ray diffractometry, transmission, and scanning electron microscopy. It was found that the greater influence observed on the microstructure and texture development was caused by the value of laser power, while the lowest, by that of hatching space. Based on the results obtained, the processing optimization strategy aimed at improving the density, superelastic, and fatigue properties of the L-PBF manufactured Ti-18Zr-14Nb alloy was proposed.

  17. The photoelectronic behaviors of MoO3-loaded ZrO2/carbon cluster nanocomposite materials

    NASA Astrophysics Data System (ADS)

    Matsui, H.; Ishiko, A.; Karuppuchamy, S.; Hassan, M. A.; Yoshihara, M.

    2012-03-01

    A novel nano-sized ZrO2/carbon cluster composite materials (Ic's) were successfully obtained by the calcination of ZrCl4/starch complexes I's under an argon atmosphere. Pt- and/or MoO3-loaded ZrO2/carbon clusters composite materials were also prepared by doping Pt and/or MoO3 particles on the surface of Ic's. The surface characterization of the composite materials was carried out using transmission electron microscopy (TEM). The TEM observation of the materials showed the presence of particles with the diameters of a few nanometers, possibly Pt particles, and of 50-100 nm, possibly MoO3 particles, in the matrix. Pt- and/or MoO3-loaded ZrO2/carbon cluster composite materials show the efficient photocatalytic activity under visible light irradiation.

  18. Thermodynamic modelling of the C-U and B-U binary systems

    NASA Astrophysics Data System (ADS)

    Chevalier, P. Y.; Fischer, E.

    2001-02-01

    The thermodynamic modelling of the carbon-uranium (C-U) and boron-uranium (B-U) binary systems is being performed in the framework of the development of a thermodynamic database for nuclear materials, for increasing the basic knowledge of key phenomena which may occur in the event of a severe accident in a nuclear power plant. Applications are foreseen in the nuclear safety field to the physico-chemical interaction modelling, on the one hand the in-vessel core degradation producing the corium (fuel, zircaloy, steel, control rods) and on the other hand the ex-vessel molten corium-concrete interaction (MCCI). The key O-U-Zr ternary system, previously modelled, allows us to describe the first interaction of the fuel with zircaloy cladding. Then, the three binary systems Fe-U, Cr-U and Ni-U were modelled as a preliminary work for modelling the O-U-Zr-Fe-Cr-Ni multicomponent system, allowing us to introduce the steel components in the corium. In the existing database (TDBCR, thermodynamic data base for corium), Ag and In were introduced for modelling AIC (silver-indium-cadmium) control rods which are used in French pressurized water reactors (PWR). Elsewhere, B 4C is also used for control rods. That is why it was agreed to extend in the next years the database with two new components, B and C. Such a work needs the thermodynamic modelling of all the binary and pseudo-binary sub-systems resulting from the combination of B, B 2O 3 and C with the major components of TDBCR, O-U-Zr-Fe-Cr-Ni-Ag-In-Ba-La-Ru-Sr-Al-Ca-Mg-Si + Ar-H. The critical assessment of the very numerous experimental information available for the C-U and B-U binary systems was performed by using a classical optimization procedure and the Scientific Group Thermodata Europe (SGTE). New optimized Gibbs energy parameters are given, and comparisons between calculated and experimental equilibrium phase diagrams or thermodynamic properties are presented. The self-consistency obtained is quite satisfactory.

  19. Effect of strain on evolution of dynamic recrystallization in Nb-1 wt%Zr-0.1 wt%C alloy at 1500 and 1600 °C

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Behera, A.N.

    Uniaxial compression tests were carried out on Nb-1 wt%Zr-0.1 wt%C alloy at temperature of 1500 and 1600 °C and strain rate of 0.1 s{sup −1} to study the evolution of dynamic recrystallization with strain. Electron back scatter diffraction was used to quantify the microstructural evolution. Nb-1Zr-0.1C alloy showed a necklace structure at a strain of 0.9 when deformed at 1500 °C and at strain of 0.6 when deformed at 1600 °C, both at strain rate of 0.1 s{sup −1}. This suggested the occurrence of dynamic recrystallization. At 1500 °C and strain of 0.9 the local average misorientation and the grainmore » orientation spread was low confirming the presence of dynamic recrystallization at this deformation condition. At both 1500 and 1600 °C and all measured strains the recrystallized grains had a strong fiber component of <001>. - Highlights: • Necklace formation of dynamically recrystallized grains occurred at strain of 0.6 and 0.9 for 1500 and 1600 °C, respectively. • Equiaxed microstructures were seen with increase in strain for both 1500 and 1600 °C. • At large strains the predominant recrystallized texture evolved to <001> pole.« less

  20. Microstructure and Mechanical Properties of Vacuum Plasma Sprayed Cu-8Cr-4Nb

    NASA Technical Reports Server (NTRS)

    Holmes, Richard; Ellis, David; McKechnie, Timothy; Hickman, Robert

    1997-01-01

    This paper compares the tensile properties of Cu-8Cr-4Nb material produced by VPS to material previously produced by extrusion. The microstructure of the VPS material is also presented. The combustion chamber liner of rocket motors represents an extreme materials application. The liner hot wall is exposed to a 2760 C (5000 F) flame while the cold side is exposed to cryogenic hydrogen liquid. Materials for use in the combustion chamber liner require a combination of high temperature strength, creep resistance, and low cycle fatigue resistance along with high thermal conductivity. The hot side is also subject to localized cycles between reducing and oxidizing environments that degrade the liner by a process called blanching. A new Cu-8 at.% Cr-4 at% Nb (Cu-8Cr-4Nb) alloy has been developed at NASA Lewis Research Center as a replacement for the currently used alloy, NARloy-z (Cu-3 wt.% Ag-0.5 wt.% Zr). The alloy is strengthened by a fine dispersion of Cr2Nb particles. The alloy has better mechanical properties than NARloy-Z while retaining most of the thermal conductivity of pure copper. The alloy has been successfully consolidated by extrusion and hot isostatic pressing (HIPing). However, vacuum plasma spraying (VPS) offers several advantages over prior consolidation methods. VPS can produce a near net shape piece with the profile of the liner. In addition, oxidation resistant and thermal barrier coatings can be incorporated as an integral part of the liner hot wall during the VPS deposition. The low oxygen VPS Cu-8Cr-4Nb exhibits a higher strength than Cu-8Cr-4Nb produced by extrusion at elevated temperatures and a comparable strength at room temperature. Moduli and ductility were not significantly different. However, the ability to produce parts to near-net shape and maintain the good elevated temperature tensile properties of the extruded Cu-8Cr-4Nb makes VPS an attractive processing method for fabricating rocket engine combustion liners.

  1. Luminescence properties of red-emission Mg4 Nb2 O9:Eu3+ phosphor.

    PubMed

    Cao, Renping; Cao, Chunyan; Yu, Xiaoguang; Qiu, Jianrong

    2015-03-01

    Red-emitting Mg4 Nb2 O9 :Eu(3+) phosphor is synthesized via a solid-state reaction method in air, and its crystal structure and luminescence are investigated. The phosphor can be excited efficiently by ~ 395 nm light, coupled well with a ~ 395 nm near-ultraviolet chip and emits red light at ~ 613 nm with sharp spectra due to (5) D0  → (7)  F2 transition of the Eu(3+) ion. Mg4 Nb2 O9 :Eu(3+) phosphor sintered at 1350 ºC shows Commission international de I'Eclairage (CIE) chromaticity coordinates of x = 0.6354, y = 0.3592, and is a potential red-emitting phosphor candidate for white light-emitting diodes (W-LEDs) under ~ 395 nm near-ultraviolet LED chip excitation. Copyright © 2014 John Wiley & Sons, Ltd.

  2. Fabrication of nano ZrO2 dispersed novel W79Ni10Ti5Nb5 alloy by mechanical alloying and pressureless sintering

    NASA Astrophysics Data System (ADS)

    Sahoo, R. R.; Patra, A.; Karak, S. K.

    2017-02-01

    A high energy planetary ball-mill was employed to synthesize tungsten (W) based alloy with nominal composition of W79Ni10Ti5Nb5(ZrO2)1 (in wt. %) for 20 h with chrome steel as grinding media, toluene as process control agent (PCA) along with compaction at 500 MPa pressure for 5 mins and sintering at 1500°C for 2 h using Ar atmosphere. X-ray diffraction (XRD), Scanning electron microscopy (SEM), Energy dispersive spectroscopy (EDS), elemental mapping and Transmission electron microscopy (TEM) was used to study the phase formation, microstructure of both milled powder and consolidated alloy. The crystallite size of W in W79Ni10Ti5Nb5(ZrO2)1 powder was 37 nm, 14.7 nm at 10 h and 20 h of milling respectively and lattice strain enhances to 0.54% at 20 h of milling. The crystallite size reduction is more at 10 h of milling and the rate drop beyond 10 to 20 h of milling. The intense improvement in dislocation density was evident upto 10 h of milling and the rate decreases between 10 to 20 h of milling. Increase in the lattice parameter of tungsten in W79Ni10Ti5Nb5(ZrO2)1 alloy upto 0.09% was observed at 10 h of milling owing to severe stress assisted deformation followed by contraction upto 0.07% at 20 h of milling due to formation of solid solution. The large spherical particles at 0 h of milling transformed to elongated shape at 10 h of milling and finer morphology at 20 h of milling. The average particle size reduced from 100 µm to 4.5 µm with the progress of milling from 0 to 20 h. Formation of fine polycrystallites of W was revealed by bright field TEM analysis and the observed crystallite size from TEM study was well supported by the evaluated crystallite size from XRD. XRD pattern and SEM micrograph of sintered alloy revealed the formation of NbNi, Ni3Ti intermetallic phases. Densification of 91.5% was attained in the 20 h milled and sintered alloy. Mechanical behaviour of the sintered product was evaluated by hardness and wear study. W79Ni10Ti5Nb5(ZrO2)1 alloy

  3. Effects of thermomechanical processing on tensile and long-time creep behavior of Nb-1 percent Zr-0.1 percent C sheet

    NASA Technical Reports Server (NTRS)

    Titran, Robert H.; Uz, Mehmet

    1994-01-01

    Effects of thermomechanical processing on the mechanical properties of Nb-1 wt. percent Zr-0.1 wt. percent C, a candidate alloy for use in advanced space power systems, were investigated. Sheet bars were cold rolled into 1-mm thick sheets following single, double, or triple extrusion operations at 1900 K. All the creep and tensile specimens were given a two-step heat treatment 1 hr at 1755 K + 2 hr 1475 K prior to testing. Tensile properties were determined at 300 as well as at 1350 K. Microhardness measurements were made on cold rolled, heat treated, and crept samples. Creep tests were carried out at 1350 K and 34.5 MPa for times of about 10,000 to 19,000 hr. The results show that the number of extrusions had some effects on both the microhardness and tensile properties. However, the long-time creep behavior of the samples were comparable, and all were found to have adequate properties to meet the design requirements of advanced power systems regardless of thermomechanical history. The results are discussed in correlation with processing and microstructure, and further compared to the results obtained from the testing of Nb-1 wt. percent Zr and Nb-1 wt. percent Zr-0.06 wt. percent C alloys.

  4. Type of Primary Nb₅Si₃ and Precipitation of Nbss in αNb₅Si₃ in a Nb-8.3Ti-21.1Si-5.4Mo-4W-0.7Hf (at.%) Near Eutectic Nb-Silicide-Based Alloy.

    PubMed

    McCaughey, Conor; Tsakiropoulos, Panos

    2018-06-07

    The Nb-silicide-based alloy of near eutectic composition (at.%) Nb-21.1Si-8.3Ti-5.4Mo-4W-0.7Hf (alloy CM1) was studied in the cast and heat-treated (1500 °C/100 h) conditions. The alloy was produced in the form of buttons and bars using three different methods, namely arc-melting, arc-melting and suction casting, and optical floating zone (OFZ) melting. In the former two cases the alloy solidified in water-cooled copper crucibles. Buttons and suction-cast bars of different size, respectively of 10 g and 600 g weight and 6 mm and 8 mm diameter, were produced. The OFZ bars were grown at three different growth rates of 12, 60 and 150 mm/h. It was confirmed that the type of Nb₅Si₃ formed in the cast microstructures depended on the solidification conditions. The primary phase in the alloy CM1 was the βNb₅Si₃. The transformation of βNb₅Si₃ to αNb₅Si₃ had occurred in the as cast large size button and the OFZ bars grown at the three different growth rates, and after the heat treatment of the small size button and the suction-cast bars of the alloy. This transformation was accompanied by subgrain formation in Nb₅Si₃ and the precipitation of Nb ss in the large size as cast button and only by the precipitation of Nb ss in the cast OFZ bars. Subgrains and precipitation of Nb ss in αNb₅Si₃ was observed in the small size button and suction-cast bars after the heat treatment. Subgrains formed in αNb₅Si₃ after the heat treatment of the OFZ bars. The partitioning of solutes and in particular of Mo and Ti was key to this phase transformation. Subgrain formation was not necessary for precipitation of Nb ss in αNb₅Si₃, but the partitioning of solutes was essential for this precipitation.

  5. Differentiating Metamorphic Events in a Polymetamorphic Terrane using Zr-in-Ttn thermometry and Titanite U-Pb Geochronology

    NASA Astrophysics Data System (ADS)

    Kenney, M.; Roeske, S.; Mulcahy, S. R.; Cottle, J. M.; Coble, M. A.

    2016-12-01

    In polymetamorphic terranes, it is problematic to link ages from geochronometers to metamorphic fabrics and, therefore, to a specific deformation event(s). It is necessary to analyze a mineral which may preserve multiple age domains. Titanite has been shown to retain multiple age and elemental domains in single grains through high-grade metamorphism. In this study, titanite U-Pb geochronology is used to examine whether ages are thermally reset along a sample transect towards a mylonitic shear zone in NW Argentina. This work also seeks to understand the conditions under which titanite resists resetting. A combination of petrographic and electron microprobe analyses reveal the textures and compositional domains in titanite, garnet, and hornblende. Titanite are elongate, wrapped by the mylonitic fabric, and have patchy elemental zoning. Garnet has distinct cores with prograde zoning and thin rims, which appear to be in equilibrium with the fabric defining minerals. Hornblende has inclusion rich cores and thin overgrowth rims in equilibrium with the fabric defining minerals. In-situ U-Pb and trace element data was collected in titanite from four samples, which all preserve lower-intercept ages between 900Ma and 1.0Ga. We observed no correlation between age and elemental domains; these domains correlate with Al and Nb variations. Zr-in-titanite temperatures preserve upper amphibolite facies conditions, 660ºC-710ºC. Given these results, we conclude that titanite U-Pb ages and temperatures reflect original Grenville metamorphism. 40Ar/39Ar hornblende cooling ages, of 515 Ma, suggested titanite may be reset near the shear zone but overprinting P-T of 560ºC and 0.8 GPa, fluid infiltration, and deformation did not cause significant Pb loss. Overprinting conditions and cooling ages suggest that rims of garnet and hornblende correlate to Paleozoic metamorphism, while textural evidence and titanite ages suggest garnet and hornblende cores grew during the Proterozoic.

  6. Sr- and Nb-co-doped Li7La3Zr2O12 solid electrolyte with Al2O3 addition towards high ionic conductivity

    NASA Astrophysics Data System (ADS)

    Lin, Changwei; Tang, Yu; Song, Jun; Han, Lei; Yu, Jingbo; Lu, Anxian

    2018-06-01

    In the present study, series of garnet-type Li6.75+ x La3- x Sr x Zr1.75Nb0.25O12 solid electrolytes [LLSZN with various Sr contents ( x = 0.05-0.25)] have been prepared via conventional solid-state method. The effects of Sr contents on their phase structure and ionic conductivity have been systematically investigated on the combined measurements of X-ray diffraction and scanning electron microscopy and alter current impedance spectroscopy. Our results reveal that a phase transition from tetragonal to cubic structure occurs when both Sr and Nb elements is introduced, and such a cubic structure can be stable over the whole Sr contents variation, which is suggested to provide a beneficial impact on the performance of LLSZN. Accordingly, both relative density and total ionic conductivity exhibit a favorable tendency of increasing first and then decreasing with increased Sr contents, wherein a peak value at 93.46% and 5.09 × 10-4 S cm-1, respectively, can be well achieved. Particularly, the maximum ionic conductivity is almost twice that of the compared sample (2.93 × 10-4 S cm-1), and possess the minimum activation energy 0.30 eV. Such a modification method, featured with higher efficiency and lower cost, is expected to be helpful for the development of solid electrolyte.

  7. Investigation of static properties of medical alloys Ti-(20-30)Nb-(10-13)Ta-5Zr

    NASA Astrophysics Data System (ADS)

    Sergienko, K. V.; Sevost’yanov, M. A.; Konushkin, S. V.; Nasakina, E. O.; Baikin, A. S.; Shatova, L. A.; Kolmakov, A. G.

    2018-04-01

    In the work, static properties of TiNbTaZr titanium alloy were carried out. The search for a NiTi alloy replacement is necessary for medical products to eliminate the negative effects of nickel on the body. Conclusions are drawn about the adequacy of the mechanical properties of the test alloy for use in stent implants.

  8. Four-point Bend Testing of Irradiated Monolithic U-10Mo Fuel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rabin, B. H.; Lloyd, W. R.; Schulthess, J. L.

    2015-03-01

    This paper presents results of recently completed studies aimed at characterizing the mechanical properties of irradiated U-10Mo fuel in support of monolithic base fuel qualification. Mechanical properties were evaluated in four-point bending. Specimens were taken from fuel plates irradiated in the RERTR-12 and AFIP-6 Mk. II irradiation campaigns, and tests were conducted in the Hot Fuel Examination Facility (HFEF) at Idaho National Laboratory (INL). The monolithic fuel plates consist of a U-10Mo fuel meat covered with a Zr diffusion barrier layer fabricated by co-rolling, clad in 6061 Al using a hot isostatic press (HIP) bonding process. Specimens exhibited nominal (fresh)more » fuel meat thickness ranging from 0.25 mm to 0.64 mm, and fuel plate average burnup ranged from approximately 0.4 x 1021 fissions/cm 3 to 6.0 x 1021 fissions/cm 3. After sectioning the fuel plates, the 6061 Al cladding was removed by dissolution in concentrated NaOH. Pre- and post-dissolution dimensional inspections were conducted on test specimens to facilitate accurate analysis of bend test results. Four-point bend testing was conducted on the HFEF Remote Load Frame at a crosshead speed of 0.1 mm/min using custom-designed test fixtures and calibrated load cells. All specimens exhibited substantially linear elastic behavior and failed in a brittle manner. The influence of burnup on the observed slope of the stress-strain curve and the calculated fracture strength is discussed.« less

  9. Effect of Ar9+ irradiation on Zr-1Nb-1Sn-0.1Fe alloy characterized by Grazing Incidence X-ray diffraction technique

    NASA Astrophysics Data System (ADS)

    Dutta, Argha; Das, Kalipada; Gayathri, N.; Menon, Ranjini; Nabhiraj, P. Y.; Mukherjee, Paramita

    2018-03-01

    The microstructural parameters such as domain size and microstrain have been estimated from Grazing Incidence X-ray Diffraction (GIXRD) data for Ar9+ irradiated Zr-1Nb-1Sn-0.1Fe sample as a function of dpa (dose). Detail studies using X-ray Diffraction Line Profile Analysis (XRDLPA) from GIXRD data has been carried out to characterize the microstructural parameters like domain size and microstrain. The reorientation of the grains due to effect of irradiation at high dpa (dose) has been qualitatively assessed by the texture parameter P(hkl).

  10. Calcium hydride synthesis of Ti-Nb-based alloy powders

    NASA Astrophysics Data System (ADS)

    Kasimtsev, A. V.; Shuitsev, A. V.; Yudin, S. N.; Levinskii, Yu. V.; Sviridova, T. A.; Alpatov, A. V.; Novosvetlova, E. E.

    2017-09-01

    The metallothermic (calcium hydride) synthesis of Ti-Nb alloy powders alloyed with tantalum and zirconium is experimentally studied under various conditions. Chemical, X-ray diffraction, and metallographic analyses of the synthesized products show that initial oxides are completely reduced and a homogeneous β-Ti-based alloy powder forms under the optimum synthesis conditions at a temperature of 1200°C. At a lower synthesis temperature, the end products have a high oxygen content. The experimental results are used to plot the thermokinetic dependences o formation of a bcc solid solution at various times of isothermal holding of Ti-22Nb-6Ta and Ti-22Nb-6Zr (at %) alloys. The physicochemical and technological properties of the Ti-22Nb-6Ta and Ti-22Nb-6Zr alloy powders synthesized by calcium hydride reduction under the optimum conditions are determined.

  11. Features of structure formation in the low modulus quasi-single crystal from Zr-25%Nb alloy at cold rolling

    NASA Astrophysics Data System (ADS)

    Isaenkova, M.; Perlovich, Yu.; Fesenko, V.; Babich, Y.; Zaripova, M.; Krapivka, N.

    2018-05-01

    The paper presents the results of investigation of the regularities of the structure and texture formation during rolling of single crystals of Zr-25%Nb alloy differing in their initial orientations relative to the external principal directions in the rolled plate: normal (ND) and rolling directions (RD). The features of rolled single crystals with initial orientations of planes {001}, {011} or {111} parallel to the rolling plane and different crystallographic directions along RD are considered. A comparison of the peculiarities of plastic deformation in a polycrystalline alloy of the same composition is made. For the samples studied, a decrease in the lattice parameter of the β-phase has been recorded, the minimum of the parameter being observed for different degrees of deformation, varying from 20 to 50%. Observed decrease in the unit cell parameter can be connected with the precipitation of the α(α')-Zr phase from the deformed nonequilibrium β-phase of the Zr-25%Nb alloy, i.e. change in the composition of the solid solution. Distributions of the increase in the dimensions of the deformed single crystal along RD and the transverse direction (TD) with its deformation up to 30% in thickness, which indicate the anisotropy of the plasticity of single crystals during their rolling, are constructed on stereographic projection. It is shown, that the deformation of single crystals occurs practically without increasing of their dimensions in the <110> direction with a total thickness deformation of up to 30%. Direction <110> is characterized by maximum hardening (microhardness) with indentation along it, which causes low plasticity of deformed and annealed foils from Zr-25%Nb alloy at the stretching along and across RD, that is connected with the features of their crystallographic texture.

  12. The influence of cladding on fission gas release from irradiated U-Mo monolithic fuel

    NASA Astrophysics Data System (ADS)

    Burkes, Douglas E.; Casella, Amanda J.; Casella, Andrew M.

    2017-04-01

    The monolithic uranium-molybdenum (U-Mo) alloy has been proposed as a fuel design capable of converting the world's highest power research reactors from use of high enriched uranium to low enriched uranium. However, a zirconium (Zr) diffusion barrier must be used to eliminate interactions that form between the U-Mo monolith and aluminum alloy 6061 (AA6061) cladding during fabrication and are enhanced during irradiation. One aspect of fuel development and qualification is to demonstrate an appropriate understanding of the extent of fission product release from the fuel under anticipated service environments. An exothermic reaction has previously been observed between the AA6061 cladding and Zr diffusion layer. In this paper, two fuel segments with different irradiation history were subjected to specified thermal profiles under a controlled atmosphere using a thermogravimetric/differential thermal analyzer coupled with a mass spectrometer inside a hot cell. Samples from each segment were tested with cladding and without cladding to investigate the effect, if any, that the exothermic reaction has on fission gas release mechanisms. Measurements revealed there is an instantaneous effect of the cladding/Zr exothermic reaction, but not necessarily a cumulative effect above approximately 973 K (700 °C). The mechanisms responsible for fission gas release events are discussed.

  13. The influence of cladding on fission gas release from irradiated U-Mo monolithic fuel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burkes, Douglas E.; Casella, Amanda J.; Casella, Andrew M.

    2017-04-01

    The monolithic uranium-molybdenum (U-Mo) alloy has been proposed as a fuel design capable of converting the world’s highest power research reactors from use of high enriched uranium to low enriched uranium. However, a zirconium (Zr) diffusion barrier must be used to eliminate interactions that form during fabrication and are enhanced during irradiation between the U-Mo monolith and aluminum alloy 6061 (AA6061) cladding. One aspect of fuel development and qualification is to demonstrate appropriate understanding of the extent of fission product release from the fuel under anticipated service environments. An exothermic reaction has previously been observed between the AA6061 cladding andmore » Zr diffusion layer. In this paper, two fuel segments with different irradiation history were subjected to specified thermal profiles under a controlled atmosphere using a thermogravimetric/differential thermal analyzer coupled with a mass spectrometer inside a hot cell. Samples from each segment were tested with cladding and without cladding to investigate the effect, if any, that the exothermic reaction has on fission gas release mechanisms. Measurements revealed there is an instantaneous effect of the cladding/Zr exothermic reaction, but not necessarily a cumulative effect above approximately 973 K (700 oC). The mechanisms responsible for fission gas release events are discussed.« less

  14. Utilization of thorium and U-ZrH1.6 fuels in various heterogeneous cores for TRIGA PUSPATI Reactor (RTP)

    NASA Astrophysics Data System (ADS)

    Damahuri, Abdul Hannan Bin; Mohamed, Hassan; Aziz Mohamed, Abdul; Idris, Faridah

    2018-01-01

    The use of thorium as nuclear fuel has been an appealing prospect for many years and will be great significance to nuclear power generation. There is an increasing need for more research on thorium as Malaysian government is currently active in the national Thorium Flagship Project, which was launched in 2014. The thorium project, which is still in phase 1, focuses on the research and development of the thorium extraction from mineral processing ore. Thus, the aim of the study is to investigate other alternative TRIGA PUSPATI Reactor (RTP) core designs that can fully utilize thorium. Currently, the RTP reactor has an average neutron flux of 2.797 x 1012 cm-2/s-1 and an effective multiplication factor, k eff, of 1.001. The RTP core has a circular array core configuration with six circular rings. Each ring consists of 6, 12, 18, 24, 30 or 36 U-ZrH1.6 fuel rods. There are three main type of uranium weight, namely 8.5, 12 and 20 wt.%. For this research, uranium zirconium hydride (U-ZrH1.6) fuel rods in the RTP core were replaced by thorium (ThO2) fuel rods. Seven core configurations with different thorium fuel rods placements were modelled in a 2D structure and simulated using Monte Carlo n-particle (MCNPX) code. Results show that the highest initial criticality obtained is around 1.35101. Additionally there is a significant discrepancy between results from previous study and the work because of the large estimated leakage probability of approximately 21.7% and 2D model simplification.

  15. Theoretical study of inverted sandwich type complexes of 4d transition metal elements: interesting similarities to and differences from 3d transition metal complexes.

    PubMed

    Kurokawa, Yusaku I; Nakao, Yoshihide; Sakaki, Shigeyoshi

    2012-03-08

    Inverted sandwich type complexes (ISTCs) of 4d metals, (μ-η(6):η(6)-C(6)H(6))[M(DDP)](2) (DDPH = 2-{(2,6-diisopropylphenyl)amino}-4-{(2,6-diisopropylphenyl)imino}pent-2-ene; M = Y, Zr, Nb, Mo, and Tc), were investigated with density functional theory (DFT) and MRMP2 methods, where a model ligand AIP (AIPH = (Z)-1-amino-3-imino-prop-1-ene) was mainly employed. When going to Nb (group V) from Y (group III) in the periodic table, the spin multiplicity of the ground state increases in the order singlet, triplet, and quintet for M = Y, Zr, and Nb, respectively, like 3d ISTCs reported recently. This is interpreted with orbital diagram and number of d electrons. However, the spin multiplicity decreases to either singlet or triplet in ISTC of Mo (group VI) and to triplet in ISTC of Tc (group VII), where MRMP2 method is employed because the DFT method is not useful here. These spin multiplicities are much lower than the septet of ISTC of Cr and the nonet of that of Mn. When going from 3d to 4d, the position providing the maximum spin multiplicity shifts to group V from group VII. These differences arise from the size of the 4d orbital. Because of the larger size of the 4d orbital, the energy splitting between two d(δ) orbitals of M(AIP) and that between the d(δ) and d(π) orbitals are larger in the 4d complex than in the 3d complex. Thus, when occupation on the d(δ) orbital starts, the low spin state becomes ground state, which occurs at group VI. Hence, the ISTC of Nb (group V) exhibits the maximum spin multiplicity.

  16. 9 CFR 102.4 - U.S. Veterinary Biologics Establishment License.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 9 Animals and Animal Products 1 2010-01-01 2010-01-01 false U.S. Veterinary Biologics... LICENSES FOR BIOLOGICAL PRODUCTS § 102.4 U.S. Veterinary Biologics Establishment License. (a) Before a U.S. Veterinary Biologics Establishment License will be issued by the Administrator for any establishment, an...

  17. 9 CFR 102.4 - U.S. Veterinary Biologics Establishment License.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 9 Animals and Animal Products 1 2011-01-01 2011-01-01 false U.S. Veterinary Biologics... LICENSES FOR BIOLOGICAL PRODUCTS § 102.4 U.S. Veterinary Biologics Establishment License. (a) Before a U.S. Veterinary Biologics Establishment License will be issued by the Administrator for any establishment, an...

  18. Single crystal structure and SHG of defect pyrochlores CsB{sup V}MoO{sub 6} (B{sup V}=Nb,Ta)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fukina, D.G., E-mail: dianafuk@yandex.ru; Suleimanov, E.V.; Yavetskiy, R.P.

    2016-09-15

    The crystal structure and non-linear optical properties of CsNbMoO{sub 6} and CsTaMoO{sub 6} defect pyrochlores have been studied. The single crystals of these compounds grown by the flux method possess an octahedral faceting and reach up to 50 µm in size. The crystal structures of CsB{sup V}MoO{sub 6} (B{sup V}=Nb, Ta) were investigated by X-ray diffraction method. Both compounds crystallize in the cubic symmetry with noncentrosymmetric space group F-43m. The second harmonic generation of CsNbMoO{sub 6} and CsTaMoO{sub 6}was found to be 1.6×10{sup −2} and 8.5×10{sup −4} of lithium niobate, correspondingly. It has been determined that distortions of [MO{sub 6}]more » polyhedra (M=Nb, Ta, Mo) as well as polarizability and covalency of Nb–O and Ta–O bonds have a great effect on the second harmonic generation. - Highlights: • CsNbMoO{sub 6} and CsTaMoO{sub 6} homogeneous single crystals have been grown. • The crystal structure of CsTaMoO{sub 6} has been studied. • Nonlinear optical properties of CsNbMoO{sub 6} and CsTaMoO{sub 6} have been found. • The microscopic origin of the second harmonic generation (SHG) response have been identified.« less

  19. Enhancements to BISON U-Zr Metallic Fuel X447 Example Problem

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Galloway, Jack D.; Matthews, Christopher; Unal, Cetin

    As development of a metallic fuel modeling capability in BISON has progressed, the need for an example problem used as a comparison basis was observed. Collaborative work between researchers at Los Alamos National Laboratory (LANL) and Idaho National Laboratory (INL) then proceeded to determine a viable rod to use as the basis and create a BISON input deck utilizing as many metallic fuel models as feasible. The basis chosen was what would be considered a generic rod from subassembly X447, an assembly irradiated in EBR-II towards the end of its operating life, heavily based on reported data for fuel pinmore » DP11. Thus, the approach was adopted to use flow characteristics from subassembly X447 as a basis for the convective heat transfer solution, power history and axial power profiles that are representative of rod DP11 from subassembly X447. The rod simulated is a U-10Zr wt% (U-22.5Zr at%) composition. A 2D-RZ mesh would be used to capture axial thermal hydraulic effects, axial swelling and stress-strain calculations over the full length of the rod. After initial work was invested, a refinement of the various models and input parameters was conducted to ensure consistency between operator-declared conditions, model input requirements and those represented in the example problem. This report serves as a synopsis of the enhancements and refinements to the example problem conducted throughout the 2016 fiscal year.« less

  20. Effect of Cold Deformation and Annealing on the Microstructure and Tensile Properties of a HfNbTaTiZr Refractory High Entropy Alloy

    NASA Astrophysics Data System (ADS)

    Senkov, O. N.; Pilchak, A. L.; Semiatin, S. L.

    2018-07-01

    The microstructure and tensile properties of HfNbTaTiZr after cold working and annealing were investigated. Cold work was introduced by axial compression followed by rolling resulting in a total thickness reduction of 89 pct without any evidence of cracking. The cold-worked material retained a single-phase microstructure and had a room temperature tensile yield stress σ 0.2 = 1438 MPa, peak true stress σ p = 1495 MPa, and true fracture strain ɛ f = 5 pct. Annealing at 800 °C for up to 256 hours resulted in the precipitation of Nb and Ta rich particles with a BCC crystal structure inside a Hf-and-Zr-enriched BCC matrix. The second phase particles nucleated heterogeneously inside deformation bands and slip lines and coarsened during annealing. Analysis of the coarsening behavior suggested that kinetics were controlled by the diffusion of Nb and Ta. In the two-phase material, σ 0.2 and σ p decreased from 1159 to 1071 MPa and from 1174 to 1074 MPa, respectively, with an increase in particle diameter from 0.18 to 0.72 μm, while ɛ f remained between 5 and 8 pct. Full recrystallization and normal grain growth, with the activation energy of 238 kJ/mol and activation volume of 5.3 to 9.6 m3/mol, occurred during annealing above 1000 °C. After heat treatment at this temperature, the alloy was characterized by a single-phase BCC structure with σ 0.2 = 1110 to 1115 MPa, σ p = 1160 to 1195 MPa, and ɛ f = 12 to 19 pct with the maximum values attained after annealing for 1 hour.

  1. Effect of Cold Deformation and Annealing on the Microstructure and Tensile Properties of a HfNbTaTiZr Refractory High Entropy Alloy

    NASA Astrophysics Data System (ADS)

    Senkov, O. N.; Pilchak, A. L.; Semiatin, S. L.

    2018-05-01

    The microstructure and tensile properties of HfNbTaTiZr after cold working and annealing were investigated. Cold work was introduced by axial compression followed by rolling resulting in a total thickness reduction of 89 pct without any evidence of cracking. The cold-worked material retained a single-phase microstructure and had a room temperature tensile yield stress σ 0.2 = 1438 MPa, peak true stress σ p = 1495 MPa, and true fracture strain ɛ f = 5 pct. Annealing at 800 °C for up to 256 hours resulted in the precipitation of Nb and Ta rich particles with a BCC crystal structure inside a Hf-and-Zr-enriched BCC matrix. The second phase particles nucleated heterogeneously inside deformation bands and slip lines and coarsened during annealing. Analysis of the coarsening behavior suggested that kinetics were controlled by the diffusion of Nb and Ta. In the two-phase material, σ 0.2 and σ p decreased from 1159 to 1071 MPa and from 1174 to 1074 MPa, respectively, with an increase in particle diameter from 0.18 to 0.72 μm, while ɛ f remained between 5 and 8 pct. Full recrystallization and normal grain growth, with the activation energy of 238 kJ/mol and activation volume of 5.3 to 9.6 m3/mol, occurred during annealing above 1000 °C. After heat treatment at this temperature, the alloy was characterized by a single-phase BCC structure with σ 0.2 = 1110 to 1115 MPa, σ p = 1160 to 1195 MPa, and ɛ f = 12 to 19 pct with the maximum values attained after annealing for 1 hour.

  2. A U-bearing composite waste form for electrochemical processing wastes

    NASA Astrophysics Data System (ADS)

    Chen, X.; Ebert, W. L.; Indacochea, J. E.

    2018-04-01

    Metallic/ceramic composite waste forms are being developed to immobilize combined metallic and oxide waste streams generated during electrochemical recycling of used nuclear fuel. Composites were made for corrosion testing by reacting HT9 steel to represent fuel cladding, Zr and Mo to simulate metallic fuel waste, and a mixture of ZrO2, Nd2O3, and UO2 to represent oxide wastes. More than half of the added UO2 was reduced to metal and formed Fe-Zr-U intermetallics and most of the remaining UO2 and all of the Nd2O3 reacted to form zirconates. Fe-Cr-Mo intermetallics were also formed. Microstructure characterization of the intermetallic and ceramic phases that were generated and tests conducted to evaluate their corrosion behaviors indicate composite waste forms can accommodate both metallic and oxidized waste streams in durable host phases.

  3. [Radioactive nuclides in the marine environment--distribution and behaviour of 95Zr, 95Nb originated from fallout].

    PubMed

    Yamato, A; Miyagawa, N; Miyanaga, N

    1984-07-01

    To investigate behaviour of 95Zr, 95Nb in the marine environment, various samples have been collected and measured by means of Ge(Li) gamma-ray spectrometry and/or radiochemical analysis during a period from 1974 to 1982 at coastal area of Tokai-mura, Ibaraki prefecture. Concentration of the nuclides in seaweeds increased remarkably after atmospheric nuclear detonation by P.R. of China, and the activity ratio between the nuclides changed by time was not fit well by the transient decay equation. Concentration variation in sea water was smaller than that in sea weeds, and the minimum change in sea sediment. Increase of concentration in these environmental samples was observed in chronological order of sea water, sea weeds then sediment after detonations, suggesting that the uptake of the nuclides by these sea weeds from sea water is faster than that via root. Observed concentration factors on the nuclides by sea weeds were calculated from the observed concentrations in sea water and sea weeds. Maximum values on 95Zr and 95Nb were 2110, 2150, respectively for Ecklonia cava and Eisenia bicyclis.

  4. Reprint of: Effects of cold deformation, electron irradiation and extrusion on deuterium desorption behavior in Zr-1%Nb alloy

    NASA Astrophysics Data System (ADS)

    Morozov, O.; Mats, O.; Mats, V.; Zhurba, V.; Khaimovich, P.

    2018-01-01

    The present article introduces the data of analysis of ranges of ion-implanted deuterium desorption from Zr-1% Nb alloy. The samples studied underwent plastic deformation, low temperature extrusion and electron irradiation. Plastic rolling of the samples at temperature ∼300 K resulted in plastic deformation with the degree of ε = 3.9 and the formation of nanostructural state with the average grain size of d = 61 nm. The high degree of defectiveness is shown in thermodesorption spectrum as an additional area of the deuterium desorption in the temperature ranges 650-850 K. The further processing of the sample (that had undergone plastic deformation by plastic rolling) with electron irradiation resulted in the reduction of the average grain size (58 nm) and an increase in borders concentration. As a result the amount of deuterium desorpted increased in the temperature ranges 650-900 K. In case of Zr-1% Nb samples deformed by extrusion the extension of desorption area is observed towards the temperature reduction down to 420 K. The formation of the phase state of deuterium solid solution in zirconium was not observed. The structural state behavior is a control factor in the process of deuterium thermodesorption spectrum structure formation with a fixed implanted deuterium dose (hydrogen diagnostics). It appears as additional temperature ranges of deuterium desorption depending on the type, character and defect content.

  5. Efficient Workflows for Curation of Heterogeneous Data Supporting Modeling of U-Nb Alloy Aging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ward, Logan Timothy; Hackenberg, Robert Errol

    These are slides from a presentation summarizing a graduate research associate's summer project. The following topics are covered in these slides: data challenges in materials, aging in U-Nb Alloys, Building an Aging Model, Different Phase Trans. in U-Nb, the Challenge, Storing Materials Data, Example Data Source, Organizing Data: What is a Schema?, What does a "XML Schema" look like?, Our Data Schema: Nice and Simple, Storing Data: Materials Data Curation System (MDCS), Problem with MDCS: Slow Data Entry, Getting Literature into MDCS, Staging Data in Excel Document, Final Result: MDCS Records, Analyzing Image Data, Process for Making TTT Diagram, Bottleneckmore » Number 1: Image Analysis, Fitting a TTP Boundary, Fitting a TTP Curve: Comparable Results, How Does it Compare to Our Data?, Image Analysis Workflow, Curating Hardness Records, Hardness Data: Two Key Decisions, Before Peak Age? - Automation, Interactive Viz, Which Transformation?, Microstructure-Informed Model, Tracking the Entire Process, General Problem with Property Models, Pinyon: Toolkit for Managing Model Creation, Tracking Individual Decisions, Jupyter: Docs and Code in One File, Hardness Analysis Workflow, Workflow for Aging Models, and conclusions.« less

  6. XAFS Study of Molten ZrCl4 in LiCl-KCl Eutectic

    NASA Astrophysics Data System (ADS)

    Okamoto, Yoshihiro; Motohashi, Haruhiko

    2002-05-01

    The local structure of motlen ZrCl4 in LiCl-KCl eutectic was investigated by using an X-ray absorption fine structure (XAFS) of the Zr K-absorption edge. The nearest Zr4+-Cl- distance and coordination number from the curve fitting analysis were (2.51±0.02) Å and 5.9±0.6, respectively. These suggest that a 6-fold coordination (ZrCl6)2- is predominant in the molten mixture.

  7. Selective generation of laser-induced periodic surface structures on Al2O3-ZrO2-Nb composites

    NASA Astrophysics Data System (ADS)

    Kunz, Clemens; Bartolomé, José F.; Gnecco, Enrico; Müller, Frank A.; Gräf, Stephan

    2018-03-01

    Laser-induced periodic surface structures (LIPSS) were selectively fabricated on the metal phase of Al2O3-nZrO2-Nb (78.3-1.7-20 vol.%) ceramic matrix composites. For this purpose, sample surfaces were irradiated with fs-laser pulses (τ = 300 fs, λ = 1025 nm) of different laser peak fluences ranging from 0.23 to 0.40 J/cm2. The structured surfaces were characterised by scanning electron microscopy (SEM), atomic force microscopy (AFM), attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR), and by measuring the water contact angle. Well-pronounced LIPSS with a period of Λ ≈ 750 nm and a height of h ≈ 263 nm were found solely on the metal phase of the composite when applying the highest fluence whereas no structural and chemical modifications were found on the surface of the ceramic matrix. This can be explained by the different light absorption behaviour of both phases, which results in different ablation thresholds. The water contact angle of composite surfaces was successfully reduced from 68.4° for untreated samples to 40.9° for structured samples. Selectively structured composites with adjustable wettability are of particular interest for biomedical and tribological applications.

  8. Biocompatible Materials Based on Self-Assembling Peptides on Ti25Nb10Zr Alloy: Molecular Structure and Organization Investigated by Synchrotron Radiation Induced Techniques.

    PubMed

    Secchi, Valeria; Franchi, Stefano; Santi, Marta; Vladescu, Alina; Braic, Mariana; Skála, Tomáš; Nováková, Jaroslava; Dettin, Monica; Zamuner, Annj; Iucci, Giovanna; Battocchio, Chiara

    2018-03-07

    In this work, we applied advanced Synchrotron Radiation (SR) induced techniques to the study of the chemisorption of the Self Assembling Peptide EAbuK16, i.e., H-Abu-Glu-Abu-Glu-Abu-Lys-Abu-Lys-Abu-Glu-Abu-Glu-Abu-Lys-Abu-Lys-NH₂ that is able to spontaneously aggregate in anti-parallel β-sheet conformation, onto annealed Ti25Nb10Zr alloy surfaces. This synthetic amphiphilic oligopeptide is a good candidate to mimic extracellular matrix for bone prosthesis, since its β-sheets stack onto each other in a multilayer oriented nanostructure with internal pores of 5-200 nm size. To prepare the biomimetic material, Ti25Nb10Zr discs were treated with aqueous solutions of EAbuK16 at different pH values. Here we present the results achieved by performing SR-induced X-ray Photoelectron Spectroscopy (SR-XPS), angle-dependent Near Edge X-ray Absorption Fine Structure (NEXAFS) spectroscopy, FESEM and AFM imaging on Ti25Nb10Zr discs after incubation with self-assembling peptide solution at five different pH values, selected deliberately to investigate the best conditions for peptide immobilization.

  9. Biocompatible Materials Based on Self-Assembling Peptides on Ti25Nb10Zr Alloy: Molecular Structure and Organization Investigated by Synchrotron Radiation Induced Techniques

    PubMed Central

    Franchi, Stefano; Braic, Mariana; Skála, Tomáš; Nováková, Jaroslava; Zamuner, Annj

    2018-01-01

    In this work, we applied advanced Synchrotron Radiation (SR) induced techniques to the study of the chemisorption of the Self Assembling Peptide EAbuK16, i.e., H-Abu-Glu-Abu-Glu-Abu-Lys-Abu-Lys-Abu-Glu-Abu-Glu-Abu-Lys-Abu-Lys-NH2 that is able to spontaneously aggregate in anti-parallel β-sheet conformation, onto annealed Ti25Nb10Zr alloy surfaces. This synthetic amphiphilic oligopeptide is a good candidate to mimic extracellular matrix for bone prosthesis, since its β-sheets stack onto each other in a multilayer oriented nanostructure with internal pores of 5–200 nm size. To prepare the biomimetic material, Ti25Nb10Zr discs were treated with aqueous solutions of EAbuK16 at different pH values. Here we present the results achieved by performing SR-induced X-ray Photoelectron Spectroscopy (SR-XPS), angle-dependent Near Edge X-ray Absorption Fine Structure (NEXAFS) spectroscopy, FESEM and AFM imaging on Ti25Nb10Zr discs after incubation with self-assembling peptide solution at five different pH values, selected deliberately to investigate the best conditions for peptide immobilization. PMID:29518968

  10. Stability and Degradation Mechanisms of Metal-Organic Frameworks Containing the Zr6O4(OH)4 Secondary Building Unit

    DTIC Science & Technology

    2013-03-18

    0188 3. DATES COVERED (From - To) - UU UU UU UU Approved for public release; distribution is unlimited. Stability and degradation mechanisms of metal ...Stability and degradation mechanisms of metal –organic frameworks containing the Zr6O4(OH)4 secondary building unit Report Title See publication. 3...Stability and degradation mechanisms of metal –organic frameworks containing the Zr6O4(OH)4 secondary building unit Approved for public release; distribution

  11. Investigation of compatible anode systems for LaNbO 4-based electrolyte in novel proton conducting solid oxide fuel cells

    NASA Astrophysics Data System (ADS)

    Magrasó, Anna; Fontaine, Marie-Laure

    In the current manufacturing process of novel LaNbO 4-based proton conducting fuel cells a thin layer of the electrolyte is deposited by wet ceramic coating on NiO-LaNbO 4 based anode and co-sintered at 1200-1300 °C. The chemical compatibility of NiO with acceptor doped LaNbO 4 material is crucial to ensure viability of the cell, so potential effects of other phases resulting from off-stoichiometry in acceptor doped LaNbO 4 should also be explored. Compatibility of NiO with Ca-doped LaNbO 4 and its typical off-set compositions (La 3NbO 7 and LaNb 3O 9) are investigated in this work. It is shown that while NiO does not react with Ca-doped LaNbO 4, fast reaction occurs with La 3NbO 7 or LaNb 3O 9. La 3NbO 7 and NiO form a mixed conducting perovskite phase LaNi 2/3Nb 1/3O 3, while LaNb 3O 9 and NiO form either NiNb 2O 6 or Ni 4Nb 2O 9 depending on the annealing temperature. This implies that manufacturing LaNbO 4-based proton conducting fuel cells requires a strict control of the stoichiometry of the electrolyte.

  12. Superconductivity in the Nb-Ru-Ge σ phase

    DOE PAGES

    Carnicom, Elizabeth M.; Xie, Weiwei; Sobczak, Zuzanna; ...

    2017-12-07

    Here, we show that the previously unreported ternary σ-phase material Nb 20.4Ru 5.7Ge 3.9 (Nb 0.68Ru 0.19Ge 0.13) is a superconductor with a critical temperature of 2.2 K. Temperature-dependent magnetic susceptibility, resistance, and specific heat measurements were used to characterize the superconducting transition. The Sommerfeld constant γ for Nb 20.4Ru 5.7Ge 3.9 is 91 mJ mol-f.u. -1K -2 (~3 mJ mol-atom -1K -2) and the specific heat anomaly at the superconducting transition, ΔC/γT c, is approximately 1.38. The zero-temperature upper critical field (µ 0Hc 2(0)) was estimated to be 2 T by resistance data. Field-dependent magnetization data analysis estimated µmore » 0Hc 1(0) to be 5.5 mT. Thus, the characterization shows Nb 20.4Ru 5.7Ge 3.9 to be a type II BCS superconductor. This material appears to be the first reported ternary phase in the Nb-Ru-Ge system, and the fact that there are no previously reported binary Nb-Ru, Nb-Ge, or Ru-Ge σ-phases shows that all three elements are necessary to stabilize the material. An analogous σ-phase in the Ta-Ru-Ge system did not display superconductivity above 1.7 K, which suggests that electron count cannot govern the superconductivity observed. Preliminary characterization of a possible superconducting σ-phase in the Nb-Ru-Ga system is also reported.« less

  13. Origin of high thermoelectric performance of FeNb1−xZr/HfxSb1−ySny alloys: A first-principles study

    PubMed Central

    Zhang, Xiwen; Wang, Yuanxu; Yan, Yuli; Wang, Chao; Zhang, Guangbiao; Cheng, Zhenxiang; Ren, Fengzhu; Deng, Hao; Zhang, Jihua

    2016-01-01

    The previous experimental work showed that Hf- or Zr-doping has remarkably improved the thermoelectric performance of FeNbSb. Here, the first-principles method was used to explore the possible reason for such phenomenon. The substitution of X (Zr/Hf) atoms at Nb sites increases effective hole-pockets, total density of states near the Fermi level (EF), and hole mobility to largely enhance electrical conductivity. It is mainly due to the shifting the EF to lower energy and the nearest Fe atoms around X atoms supplying more d-states to hybrid with X d-states at the vicinity of the EF. Moreover, we find that the X atoms indirectly affect the charge distribution around Nb atoms via their nearest Fe atoms, resulting in the reduced energy difference in the valence band edge, contributing to enhanced Seebeck coefficients. In addition, the further Bader charge analysis shows that the reason of more holes by Hf-doping than Zr in the experiment is most likely derived from Hf atoms losing less electrons and the stronger hybridization between Hf atoms and their nearest Fe atoms. Furthermore, we predict that Hf/Sn co-doping may be an effective strategy to further optimize the thermoelectric performance of half-Heusler (HH) compounds. PMID:27604826

  14. The effect of Nb addition on mechanical properties, corrosion behavior, and metal-ion release of ZrAlCuNi bulk metallic glasses in artificial body fluid.

    PubMed

    Qiu, C L; Liu, L; Sun, M; Zhang, S M

    2005-12-15

    Bulk metallic glasses (BMGs) of Zr(65 - x)Nb(x)- Cu(17.5)Ni(10)Al(7.5) with Nb = 0, 2, and 5 at % were prepared by copper mold casting. Compression tests reveal that the two BMGs containing Nb exhibited superior strength and plasticity to the base alloy. The corrosion behavior of the alloys obtained was investigated in artificial body fluid by electrochemical measurements. It was found that the addition of Nb significantly enhanced the corrosion resistance of the Zr-based BMG, as indicated by a remarkable increase in corrosion potential and pitting potential. XPS analysis revealed that the passive film formed after anodic polarization was enriched in aluminum oxide and depleted in phosphate ions for the BMGs containing Nb, which accounts for the improvement of corrosion resistance. On the other hand, metal-ion release of different BMGs were determined in PPb (ng/mL) level with inductively coupled plasma mass spectrometry (ICP-MS) after being immersed in artificial body fluid at 37 degrees C for 20 days. It was found that the addition of Nb considerably reduced the ion release of all kinds of metals of the base system. This is probably attributed to the promoting effect of Nb on a rapid formation of highly protective film.

  15. Characterization of the microstructure of Nb-1wt.%Zr-0.1wt.%C tubes as affected by thermomechanical processing

    NASA Technical Reports Server (NTRS)

    Uz, Mehmet; Titran, Robert H.

    1993-01-01

    Microstructure of Nb-1Zr-0.1C tubes were characterized as affected by extrusion temperature of the tube shell and its thermomechanical processing to tubing. Two tube shells of about 40-mm outside diameter (OD) and 25-mm inside diameter (ID) were extruded 8:1 from a vacuum arc-melted ingot at 1900 and 1550 K. Two different OD tubes of approximately 0.36-mm wall thickness were fabricated from each tube shell by a series of 26 cold drawing operations with two in process anneals. The microstructure of tube shells and the tubing before and after a 2-step heat treatment were characterized. Residue extracted chemically from each sample was also analyzed to identify the precipitates. The results concerning the effect of the initial extrusion temperature and subsequent processing on the microstructure of the tubes are presented together with a review of results from similar work on Nb-1Zr-0.1C sheet stock.

  16. ZrO2/MoS2 heterojunction photocatalysts for efficient photocatalytic degradation of methyl orange

    NASA Astrophysics Data System (ADS)

    Prabhakar Vattikuti, Surya Veerendra; Byon, Chan; Reddy, Chandragiri Venkata

    2016-10-01

    We report a simple solution-chemistry approach for the synthesis of ZrO2/MoS2 hybrid photocatalysts, which contain MoS2 as a cocatalyst. The material is usually obtained by a wet chemical method using ZrO(NO3)2 or (NH4)6Mo7O24·4H2O and C8H6S as precursors. The structural features of obtained materials were characterized by X-ray diffraction (XRD), highresolution transmission electron microscopy (HRTEM), X-ray photoelectron spectroscopy (XPS), thermal analysis (TG-DTA), N2 adsorption-desorption, and photoluminescence (PL). The influence on the photocatalytic activity of the MoS2 cocatalyst concentration with ZrO2 nanoparticles was studied. The MZr-2 hybrid sample had the highest photocatalytic activity for the degradation of methyl orange (MO), which was 8.45 times higher than that of pristine ZrO2 ascribed to high specific surface area and absorbance efficiency. Recycling experiments revealed that the reusability of the MZr-2 hybrid was due to the low photocorrosive effect and good catalytic stability. PL spectra confirmed the electronic interaction between ZrO2 and MoS2. The photoinduced electrons could be easily transferred from CB of ZrO2 to the MoS2 cocatalyst, which facilitate effective charge separation and enhanced the photocatalytic degradation in the UV region. A photocatalytic mechanism is proposed. It is believed that the ZrO2/MoS2 hybrid structure has promise as a photocatalyst with low cost and high efficiency for photoreactions.

  17. Comparison of Fatigue Properties and Fatigue Crack Growth Rates of Various Implantable Metals

    PubMed Central

    Okazaki, Yoshimitsu

    2012-01-01

    The fatigue strength, effects of a notch on the fatigue strength, and fatigue crack growth rate of Ti-15Zr-4Nb-4Ta alloy were compared with those of other implantable metals. Zr, Nb, and Ta are important alloying elements for Ti alloys for attaining superior long-term corrosion resistance and biocompatibility. The highly biocompatible Ti-15Zr-4Nb-4Ta alloy exhibited an excellent balance between strength and ductility. Its notched tensile strength was much higher than that of a smooth specimen. The strength of 20% cold-worked commercially pure (C.P.) grade 4 Ti was close to that of Ti alloy. The tension-to-tension fatigue strength of an annealed Ti-15Zr-4Nb-4Ta rod at 107 cycles was approximately 740 MPa. The fatigue strength of this alloy was much improved by aging treatment after solution treatment. The fatigue strengths of C.P. grade 4 Ti and stainless steel were markedly improved by 20% cold working. The fatigue strength of Co-Cr-Mo alloy was markedly increased by hot forging. The notch fatigue strengths of 20% cold-worked C.P. grade 4 Ti, and annealed and aged Ti-15Zr-4Nb-4Ta, and annealed Ti-6Al-4V alloys were less than those of the smooth specimens. The fatigue crack growth rate of Ti-15Zr-4Nb-4Ta was the same as that of Ti-6Al-4V. The fatigue crack growth rate in 0.9% NaCl was the same as that in air. Stainless steel and Co-Cr-Mo-Ni-Fe alloy had a larger stress-intensity factor range (ΔK) than Ti alloy.

  18. A U-bearing composite waste form for electrochemical processing wastes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, X.; Ebert, W. L.; Indacochea, J. E.

    Metallic/ceramic composite waste forms are being developed to immobilize combined metallic and oxide waste streams generated during electrochemical recycling of used nuclear fuel. Composites were made for corrosion testing by reacting HT9 steel to represent fuel cladding, Zr and Mo to simulate metallic fuel waste, and a mixture of ZrO2, Nd2O3, and UO2 to represent oxide wastes. More than half of the added UO2 was reduced to metal and formed Fe-Zr-U intermetallics and most of the remaining UO2 and all of the Nd2O3 reacted to form zirconates. Fe-Cr-Mo intermetallics were also formed. Microstructure characterization of the intermetallic and ceramic phasesmore » that were generated and tests conducted to evaluate their corrosion behaviors indicate composite waste forms can accommodate both metallic and oxidized waste streams in durable host phases. (c) 2018 Elsevier B.V. All rights reserved.« less

  19. Fluoride barriers in Nb/Pb Josephson junctions

    NASA Astrophysics Data System (ADS)

    Asano, H.; Tanabe, K.; Michikami, O.; Igarashi, M.; Beasley, M. R.

    1985-03-01

    Josephson tunnel junctions are fabricated using a new class of artificial barriers, metal fluorides (Al fluoride and Zr fluoride). These fluoride barriers are deposited on the surface of a Nb base electrode, which are previously cleaned using a CF4 cleaning process, and covered by a Pb counterelectrode. The junctions with both Al fluoride and Zr fluoride barriers exhibit good tunneling characteristics and have low specific capacitance. In the case of Zr fluoride, it is observed that reasonable resistances are obtained even at thickness greater than 100 A. This phenomenon might be explained by tunneling via localized states in Zr fluoride.

  20. Determination of diffusion coefficients of hydrogen and deuterium in Zr-2.5%Nb pressure tube material using hot vacuum extraction-quadrupole mass spectrometry

    NASA Astrophysics Data System (ADS)

    Shrivastava, Komal Chandra; Kulkarni, A. S.; Ramanjaneyulu, P. S.; Sunil, Saurav; Saxena, M. K.; Singh, R. N.; Tomar, B. S.; Ramakumar, K. L.

    2015-06-01

    The diffusion coefficients of hydrogen and deuterium in Zr-2.5%Nb alloy were measured in the temperature range 523 to 673 K, employing hot vacuum extraction-quadrupole mass spectrometry (HVE-QMS). One end of the Zr-2.5%Nb alloy specimens was charged electrolytically with the desired hydrogen isotope. After annealing at different temperatures for a predetermined time, the specimens were cut into thin slices, which were analyzed for their H2/D2 content using the HVE-QMS technique. The depth profile data were fitted into the equation representing the solution of Fick's second law of diffusion. The activation energy of hydrogen/deuterium diffusion was obtained from the Arrhenius relation between the diffusion coefficient and temperature. The temperature dependent diffusion coefficient can be represented as DH = 1.41 × 10-7 exp(-36,000/RT) and DD = 6.16 × 10-8 exp(-35,262/RT) for hydrogen and deuterium, respectively.

  1. “Ba{sub 6}Nb{sub 4}RuO{sub 18}” and “LaBa{sub 4}Nb{sub 3}RuO{sub 15}” – The structural consequences of substituting paramagnetic cations into A{sub n}B{sub n−1}O{sub 3n} cation-deficient perovskite oxides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kamil, Elynor L.; Morgan, Harry W.T.; Hayward, Michael A., E-mail: michael.hayward@chem.ox.ac.uk

    The B-cation deficient perovskite phases Ba{sub 6}Nb{sub 4}RuO{sub 18} and LaBa{sub 4}Nb{sub 3}RuO{sub 15} were prepared by ceramic synthesis. Neutron powder diffraction analysis indicates that rather than the 6-layer and 5-layer cation-deficient perovskite structures expected for these phases (by analogy to the known structures of Ba{sub 6}Nb{sub 4}TiO{sub 18} and LaBa{sub 4}Nb{sub 3}TiO{sub 15}) they adopt 5-layer and 4-layer B-cation deficient perovskite structures respectively, and are better described as Ba{sub 5}Nb{sub 3.33}Ru{sub 0.81}O{sub 15} and Ba{sub 3.16}La{sub 0.84}Nb{sub 2.36}Ru{sub 0.72}O{sub 12}. The factors that lead to the compositionally analogous Nb/Ru and Nb/Ti phases adopting different structures are discussed on themore » basis of the difference between d{sup 0} and non-d{sup 0} transition metal cations. - Graphical abstract: The ruthenium-containing B-cation deficient perovskite phases, Ba{sub 5}Nb{sub 3.33}Ru{sub 0.81}O{sub 15} and Ba{sub 3.16}La{sub 0.84}Nb{sub 2.36}Ru{sub 0.72}O{sub 12}, adopt 5-layer and 4-layer structures respectively, rather than the 6-layer and 5-layer cation-deficient structures adopted by the analogous titanium-containing phases Ba{sub 6}Nb{sub 4}TiO{sub 18} and LaBa{sub 4}Nb{sub 3}TiO{sub 15}. Display Omitted - Highlights: • B-cation deficient perovskite containing paramagnetic cations. • B-cation deficient structure determined by neutron powder diffraction. • Low ‘solubility’ of BaRuO{sub 3} in Ba{sub 5}Nb{sub 4}O{sub 15} leads to novel structure.« less

  2. On the Alloying and Properties of Tetragonal Nb5Si3 in Nb-Silicide Based Alloys

    PubMed Central

    Tsakiropoulos, Panos

    2018-01-01

    The alloying of Nb5Si3 modifies its properties. Actual compositions of (Nb,TM)5X3 silicides in developmental alloys, where X = Al + B + Ge + Si + Sn and TM is a transition and/or refractory metal, were used to calculate the composition weighted differences in electronegativity (Δχ) and an average valence electron concentration (VEC) and the solubility range of X to study the alloying and properties of the silicide. The calculations gave 4.11 < VEC < 4.45, 0.103 < Δχ < 0.415 and 33.6 < X < 41.6 at.%. In the silicide in Nb-24Ti-18Si-5Al-5Cr alloys with single addition of 5 at.% B, Ge, Hf, Mo, Sn and Ta, the solubility range of X decreased compared with the unalloyed Nb5Si3 or exceeded 40.5 at.% when B was with Hf or Mo or Sn and the Δχ decreased with increasing X. The Ge concentration increased with increasing Ti and the Hf concentration increased and decreased with increasing Ti or Nb respectively. The B and Sn concentrations respectively decreased and increased with increasing Ti and also depended on other additions in the silicide. The concentration of Sn was related to VEC and the concentrations of B and Ge were related to Δχ. The alloying of Nb5Si3 was demonstrated in Δχ versus VEC maps. Effects of alloying on the coefficient of thermal expansion (CTE) anisotropy, Young’s modulus, hardness and creep data were discussed. Compared with the hardness of binary Nb5Si3 (1360 HV), the hardness increased in silicides with Ge and dropped below 1360 HV when Al, B and Sn were present without Ge. The Al effect on hardness depended on other elements substituting Si. Sn reduced the hardness. Ti or Hf reduced the hardness more than Cr in Nb5Si3 without Ge. The (Nb,Hf)5(Si,Al)3 had the lowest hardness. VEC differentiated the effects of additions on the hardness of Nb5Si3 alloyed with Ge. Deterioration of the creep of alloyed Nb5Si3 was accompanied by decrease of VEC and increase or decrease of Δχ depending on alloying addition(s). PMID:29300327

  3. Investigations of systems ThO 2-MO 2-P 2O 5 (M=U, Ce, Zr, Pu). Solid solutions of thorium-uranium (IV) and thorium-plutonium (IV) phosphate-diphosphates

    NASA Astrophysics Data System (ADS)

    Dacheux, N.; Podor, R.; Brandel, V.; Genet, M.

    1998-02-01

    In the framework of nuclear waste management aiming at the research of a storage matrix, the chemistry of thorium phosphates has been completely re-examined. In the ThO 2-P 2O 5 system a new compound thorium phosphate-diphosphate Th 4(PO 4) 4P 2O 7 has been synthesized. The replacement of Th 4+ by a smaller cation like U 4+ and Pu 4+ in the thorium phosphate-diphosphate (TPD) lattice has been achieved. Th 4- xU x(PO 4) 4P 2O 7 and Th 4- xPu x(PO 4) 4P 2O 7 solid solutions have been synthesized through wet and dry processes with 0< x<3.0 for uranium and 0< x<1.0 for plutonium. From the variation of the unit cell parameters, an upper x value equal to 1.67 has been estimated for the thorium-plutonium (IV) phosphate-diphosphate solid solutions. Two other tetravalent cations, Ce 4+ and Zr 4+, cannot be incorporated in the TPD lattice: cerium (IV) because of its reduction into Ce (III) at high temperature, and zirconium probably because of its too small radius compared to thorium.

  4. The nuclear cap-binding complex interacts with the U4/U6·U5 tri-snRNP and promotes spliceosome assembly in mammalian cells

    PubMed Central

    Pabis, Marta; Neufeld, Noa; Steiner, Michaela C.; Bojic, Teodora; Shav-Tal, Yaron; Neugebauer, Karla M.

    2013-01-01

    The nuclear cap-binding complex (CBC) binds to the 7-methyl guanosine cap present on every RNA polymerase II transcript. CBC has been implicated in many aspects of RNA biogenesis; in addition to roles in miRNA biogenesis, nonsense-mediated decay, 3′-end formation, and snRNA export from the nucleus, CBC promotes pre-mRNA splicing. An unresolved question is how CBC participates in splicing. To investigate CBC’s role in splicing, we used mass spectrometry to identify proteins that copurify with mammalian CBC. Numerous components of spliceosomal snRNPs were specifically detected. Among these, three U4/U6·U5 snRNP proteins (hBrr2, hPrp4, and hPrp31) copurified with CBC in an RNA-independent fashion, suggesting that a significant fraction of CBC forms a complex with the U4/U6·U5 snRNP and that the activity of CBC might be associated with snRNP recruitment to pre-mRNA. To test this possibility, CBC was depleted from HeLa cells by RNAi. Chromatin immunoprecipitation and live-cell imaging assays revealed decreased cotranscriptional accumulation of U4/U6·U5 snRNPs on active transcription units, consistent with a requirement for CBC in cotranscriptional spliceosome assembly. Surprisingly, recruitment of U1 and U2 snRNPs was also affected, indicating that RNA-mediated interactions between CBC and snRNPs contribute to splicing. On the other hand, CBC depletion did not impair snRNP biogenesis, ruling out the possibility that decreased snRNP recruitment was due to changes in nuclear snRNP concentration. Taken together, the data support a model whereby CBC promotes pre-mRNA splicing through a network of interactions with and among spliceosomal snRNPs during cotranscriptional spliceosome assembly. PMID:23793891

  5. Effects of Zr alloying on the microstructure and magnetic properties of Alnico permanent magnets

    NASA Astrophysics Data System (ADS)

    Rehman, Sajjad Ur; Ahmad, Zubair; Haq, A. ul; Akhtar, Saleem

    2017-11-01

    Alnico-8 permanent magnets were produced through casting and subsequent thermal treatment process. Magnetic alloy of nominal composition 32.5 Fe-7.5 Al-1.0 Nb-35.0 Co-4.0 Cu-14.0 Ni-6.0 Ti were prepared by arc melting and casting technique. The Zr was added to 32.5 Fe-7.5 Al-1.0 Nb-35.0 Co-4.0 Cu-14.0 Ni-6.0 Ti alloy ranging from 0.3 to 0.9 wt%. The magnets were developed by employing two different heat treatment cycles known as conventional treatment and thermo-magnetic annealing treatment. The samples were characterized by X-ray diffraction method, Scanning electron microscope and magnetometer by plotting magnetic hysteresis demagnetization curves. The results indicate that magnetic properties are strongly depended upon alloy chemistry and process. The 0.6 wt% Zr added alloys yielded the best magnetic properties among the studied alloys. The magnetic properties obtained through conventional heat treatment are Hc = 1.35 kOe, Br = 5.2 kG and (BH)max = 2 MGOe. These magnetic properties were enhanced to Hc = 1.64 kOe, Br = 6.3 kG and (BH)max = 3.7 MGOe by thermo-magnetic annealing treatment.

  6. Giant permittivity and good thermal stability of LiCuNb3O9-Bi(Mg0.5Zr0.5)O3 solid solutions

    NASA Astrophysics Data System (ADS)

    Chen, Xiuli; Li, Xiaoxia; Huang, Guisheng; Liu, Gaofeng; Yan, Xiao; Zhou, Huanfu

    (1‑x)LiCuNb3O9-xBi(Mg0.5Zr0.5)O3 ceramics ((1‑x)LCN-xBMZ) with 0≤x≤0.08 were synthesized by a solid-state reaction method. The phase structure of (1‑x)LCN-xBMZ ceramics was characterized by X-ray diffraction (XRD), which revealed that the ceramics were distorted cubic perovskite structures. Apparent giant permittivity of 1.98×104-1.05×105 at 100kHz over the measured temperature range (25∘C-250∘C) was observed in the sintered (1‑x)LCN-xBMZ (0≤x≤0.08) ceramics. Especially for the sample of x=0.04, the temperature stability of permittivity was markedly increased (Δɛ/ɛ100∘C≤±15%), and high relative permittivity (>8.3×104) were obtained over a wide temperature range from 100∘C to 250∘C at 100kHz, which indicates that this ceramic is a promising dielectric material for elevated temperature dielectrics. The giant dielectric property of (1‑x)LCN-xBMZ ceramics are profoundly concerned with the Maxwell-Wagner effect.

  7. High-spin states in 103,105Mo, 103Nb, and the νh11/2 alignment

    NASA Astrophysics Data System (ADS)

    Hua, H.; Wu, C. Y.; Cline, D.; Hayes, A. B.; Teng, R.; Clark, R. M.; Fallon, P.; Macchiavelli, A. O.; Vetter, K.

    2002-06-01

    High-spin states in neutron-rich nuclei 103,105Mo,103Nb have been studied using the 238U(α,f) fusion-fission reaction. The deexcitation γ rays were detected by Gammasphere in coincidence with the detection of both fission fragments by the Rochester 4π heavy-ion detector array, CHICO. The measured fission kinematics were used to deduce the masses and velocity vectors for both fission fragments. This allowed Doppler-shift corrections to be applied to the observed γ rays on an event-by-event basis and the origin of γ rays from either fission fragment to be established. With such advantages, the yrast sequences for these nuclei have been extended to the band crossing region. This band crossing is ascribed to the alignment of a pair of h11/2 neutrons, which is supported by the observed blocking effect for the νh11/2 band in 105Mo while there is no evidence for blocking in the alignment measured for either the νd5/2 band in 103Mo or the πg9/2 band in 103Nb. The observed upbend, rather than the sharp backbend seen in the Ru-Pd region, indicates a strong interaction between the ground-state and the aligned h11/2 bands.

  8. Advancing Understanding of the +4 Metal Extractant Thenoyltrifluoroacetonate (TTA –); Synthesis and Structure of M IVTTA 4 (M IV = Zr, Hf, Ce, Th, U, Np, Pu) and M III(TTA) 4 – (M III = Ce, Nd, Sm, Yb)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cary, Samantha K.; Livshits, Maksim; Cross, Justin N.

    Thenoyltrifluoroacetone (HTTA)-based extractions represent popular methods for separating microscopic amounts of transuranic actinides (i.e., Np and Pu) from macroscopic actinide matrixes (e.g. bulk uranium). It is well-established that this procedure enables +4 actinides to be selectively removed from +3, + 5, and +6 f-elements. However, even highly skilled and well-trained researchers find this process complicated and (at times) unpredictable. It is difficult to improve the HTTA extraction—or find alternatives—because little is understood about why this separation works. Even the identities of the extracted species are unknown. In addressing this knowledge gap, we report in this paper advances in fundamental understandingmore » of the HTTA-based extraction. This effort included comparatively evaluating HTTA complexation with +4 and +3 metals (M IV = Zr, Hf, Ce, Th, U, Np, and Pu vs M III = Ce, Nd, Sm, and Yb). We observed +4 metals formed neutral complexes of the general formula M IV(TTA) 4. Meanwhile, +3 metals formed anionic M III(TTA) 4 – species. Characterization of these M(TTA) 4 x– (x = 0, 1) compounds by UV–vis–NIR, IR, 1H and 19F NMR, single-crystal X-ray diffraction, and X-ray absorption spectroscopy (both near-edge and extended fine structure) was critical for determining that Np IV(TTA) 4 and Pu IV(TTA) 4 were the primary species extracted by HTTA. Furthermore, this information lays the foundation to begin developing and understanding of why the HTTA extraction works so well. The data suggest that the solubility differences between M IV(TTA) 4 and M III(TTA) 4 – are likely a major contributor to the selectivity of HTTA extractions for +4 cations over +3 metals. Finally and moreover, these results will enable future studies focused on explaining HTTA extractions preference for +4 cations, which increases from Np IV to Pu IV, Hf IV, and Zr IV.« less

  9. Advancing Understanding of the +4 Metal Extractant Thenoyltrifluoroacetonate (TTA –); Synthesis and Structure of M IVTTA 4 (M IV = Zr, Hf, Ce, Th, U, Np, Pu) and M III(TTA) 4 – (M III = Ce, Nd, Sm, Yb)

    DOE PAGES

    Cary, Samantha K.; Livshits, Maksim; Cross, Justin N.; ...

    2018-03-21

    Thenoyltrifluoroacetone (HTTA)-based extractions represent popular methods for separating microscopic amounts of transuranic actinides (i.e., Np and Pu) from macroscopic actinide matrixes (e.g. bulk uranium). It is well-established that this procedure enables +4 actinides to be selectively removed from +3, + 5, and +6 f-elements. However, even highly skilled and well-trained researchers find this process complicated and (at times) unpredictable. It is difficult to improve the HTTA extraction—or find alternatives—because little is understood about why this separation works. Even the identities of the extracted species are unknown. In addressing this knowledge gap, we report in this paper advances in fundamental understandingmore » of the HTTA-based extraction. This effort included comparatively evaluating HTTA complexation with +4 and +3 metals (M IV = Zr, Hf, Ce, Th, U, Np, and Pu vs M III = Ce, Nd, Sm, and Yb). We observed +4 metals formed neutral complexes of the general formula M IV(TTA) 4. Meanwhile, +3 metals formed anionic M III(TTA) 4 – species. Characterization of these M(TTA) 4 x– (x = 0, 1) compounds by UV–vis–NIR, IR, 1H and 19F NMR, single-crystal X-ray diffraction, and X-ray absorption spectroscopy (both near-edge and extended fine structure) was critical for determining that Np IV(TTA) 4 and Pu IV(TTA) 4 were the primary species extracted by HTTA. Furthermore, this information lays the foundation to begin developing and understanding of why the HTTA extraction works so well. The data suggest that the solubility differences between M IV(TTA) 4 and M III(TTA) 4 – are likely a major contributor to the selectivity of HTTA extractions for +4 cations over +3 metals. Finally and moreover, these results will enable future studies focused on explaining HTTA extractions preference for +4 cations, which increases from Np IV to Pu IV, Hf IV, and Zr IV.« less

  10. Dimerization of A-[alpha]-[SiNb3W9O40]7- by pH-controlled formation of individual Nb−µ-O−Nb linkages

    Treesearch

    Gyu-Shik Kim; Huadong Zeng; Wade A. Neiwert; Jennifer J. Cowan; Donald VanDerveer; Craig L. Hill; Ira A. Weinstock

    2003-01-01

    The reversible, stepwise formation of individual Nb−µ-O−Nb linkages during acid condensation of 2 equiv of A-[alpha]-[SiNb3W9O40]7- (1) to the tri-µ-oxo-bridged structure A-[alpha]-[Si2Nb6W18O77]8- (4) is demonstrated by a combination of X-ray crystallography and variable-pD solution 183W and 29Si NMR spectroscopy. Addition of DCl to a pD 8.4...

  11. Progression through the spliceosome cycle requires Prp38p function for U4/U6 snRNA dissociation.

    PubMed Central

    Xie, J; Beickman, K; Otte, E; Rymond, B C

    1998-01-01

    The elaborate and energy-intensive spliceosome assembly pathway belies the seemingly simple chemistry of pre-mRNA splicing. Prp38p was previously identified as a protein required in vivo and in vitro for the first pre-mRNA cleavage reaction catalyzed by the spliceosome. Here we show that Prp38p is a unique component of the U4/U6.U5 tri-small nuclear ribonucleoprotein (snRNP) particle and is necessary for an essential step late in spliceosome maturation. Without Prp38p activity spliceosomes form, but arrest in a catalytically impaired state. Functional spliceosomes shed U4 snRNA before 5' splice-site cleavage. In contrast, Prp38p-defective spliceosomes retain U4 snRNA bound to its U6 snRNA base-pairing partner. Prp38p is the first tri-snRNP-specific protein shown to be dispensable for assembly, but required for conformational changes which lead to catalytic activation of the spliceosome. PMID:9582287

  12. Thermodynamics of superconducting Nb3Al, Nb3Ge, Nb3Sn, and V3Ga

    NASA Astrophysics Data System (ADS)

    Mitrović, B.; Schachinger, E.; Carbotte, J. P.

    1984-06-01

    We have calculated the superconducting thermodynamic properties for several high-transition-temperature A15 compounds: Nb-Al, Nb-Ge, Nb-Sn, and V-Ga. In our calculations we have used the tunneling electron-phonon-coupling spectra α2F for all four systems considered, and in the case of Nb-Al and Nb-Ge we have also used α2F=CG, where G is the measured generalized phonon density of states and C is a constant. We find that all Nb-based A15 compounds display similar thermodynamic properties, which do not depend explicitly on the band density of states: 2Δ0κBTc≅4.6, ΔCγTc≅2.5-2.6,-Tc[dHc(T)dT]TcHc(0)≅2.1, γ[TcHc(0)]2≅0.134, and positive D(t)'s with the maximum value around 0.02. For Nb3Sn we find good agreement between the calculated properties and the old specific-heat experimental results (γ≅52 mJ/mol K2). The same applies to V3Ga, where the theoretical results have been compared with the experiments of Junod et al. However, we do not find good agreement between calculated ΔCγTc, - Tc[dHc(T)dT]TcHc(0), γ[TcHc(0)]2, and experimental values for Nb3Al and Nb3Ge, presumably due to broadened transitions. It is argued that the tunneling experiments underestimate the value of the gap which should be associated with the inverted α2F.

  13. Exsolution lamellae as fast diffusion pathways in rutile: implications for U-Pb thermochronology and Zr thermometry

    NASA Astrophysics Data System (ADS)

    Smye, A.; Seman, S.; Roberts, N. M. W.; Condon, D. J.; Davis, B.

    2017-12-01

    Geophysical processes impart characteristic thermal signatures to the lithosphere. Near-continuous thermal histories can be obtained from inversion of intracrystalline U-Pb age profiles in rutile and apatite provided that it can be shown that profile formed in response to Fickian-type diffusion. Here, we present the results of a combined LA-ICPMS and ID-TIMS U-Pb study on rutile grains from two garnet-bearing granulite xenoliths from a kimberlite in the Archean Slave province. Interpreted using numerical models, we show that the rutile U-Pb isotope systematics are consistent with slow-cooling following crystallization at 1.2 Ga, contemporaneous with the Mackenzie dike swarm. However, inversion of rutile U-Pb age gradients is complicated by the ubiquitous presence of ilmenite exsolution lamellae. We show that these lamellae act as fast diffusion pathways for Pb and High Field Strength Elements, including Zr. This has important implications for the use of rutile as a U-Pb themochronometer and as a single-phase thermometer.

  14. Magnetic structure driven ferroelectricity and large magnetoelectric coupling in antiferromagnet Co4Nb2O9

    NASA Astrophysics Data System (ADS)

    Srivastava, P.; Chaudhary, S.; Maurya, V.; Saha, J.; Kaushik, S. D.; Siruguri, V.; Patnaik, S.

    2018-05-01

    Synthesis and extensive structural, pyroelectric, magnetic, dielectric and magneto-electric characterizations are reported for polycrystalline Co4Nb2O9 towards unraveling the multiferroic ground state. Magnetic measurements confirm that Co4Nb2O9 becomes an anti-ferromagnet at around 28 K. Associated with the magnetic phase transition, a sharp peak in pyroelectric current indicates the appearance of strong magneto-electric coupling below Neel temperature (TN) along with large coupling constant upto 17.8 μC/m2T. Using temperature oscillation technique, we establish Co4Nb2O9 to be a genuine multiferroic with spontaneous electric polarization in the anti-ferromagnetic state in the absence of magnetic field poling. This is in agreement with our low temperature neutron diffraction studies that show the magnetic structure of Co4Nb2O9 to be that of a non-collinear anti-ferromagnet with ferroelectric ground state.

  15. First-principles phase stability at high temperatures and pressure in Nb 90Zr 10 alloy

    DOE PAGES

    Landa, A.; Soderlind, P.

    2016-08-18

    The phase stability of Nb 90Zr 10 alloy at high temperatures and compression is explored by means of first-principles electronic-structure calculations. Utilizing the self-consistent ab initio lattice dynamics (SCAILD) approach in conjunction with density-functional theory, we show that pressure-induced mechanical instability of the body-centered cubic phase, which results in formation of a rhombohedral phase at around 50 GPa, will prevail significant heating. As a result, the body-centered cubic structure will recover before melting at ~1800 K.

  16. Surface Characterization of ZrO2/Zr Coating on Ti6Al4V and IN VITRO Evaluation of Corrosion Behavior and Biocompatibility

    NASA Astrophysics Data System (ADS)

    Wang, Ruoyun; Sun, Yonghua; He, Xiaojing; Gao, Yuee; Yao, Xiaohong

    Biocompatibility is crucial for implants. In recent years, numerous researches were conducted aiming to modify titanium alloys, which are the most extensively used materials in orthopedic fields. The application of zirconia in the biomedical field has recently been explored. In this study, the biological ZrO2 coating was synthesized on titaniumalloy (Ti6Al4V) substrates by a duplex-treatment technique combining magnetron sputtering with micro-arc oxidation (MAO) in order to further improve the corrosion resistance and biocompatibility of Ti6Al4V alloys. The microstructures and phase constituents of the coatings were characterized by scanning electron microscope (SEM) equipped with energy dispersive spectroscopy (EDS) and X-ray diffraction (XRD), the surface wettability was evaluated by contact angle measurements. The results show that ZrO2 coatings are porous with pore sizes less than 2μm and consist predominantly of the tetragonal ZrO2 (t-ZrO2) and cubic ZrO2(c-ZrO2) phase. Electrochemical tests indicate that the corrosion rate of Ti6Al4V substrates is appreciably reduced after surface treatment in the phosphate buffer saline (PBS). In addition, significantly improved cell adhesion and growth were observed from the ZrO2/Zr surface. Therefore, the hybrid approach of magnetron sputtering and MAO provides a surface modification for Ti6Al4V to achieve acceptable corrosion resistance and biocompatibility.

  17. Phase diagram, chemical stability and physical properties of the solid-solution Ba{sub 4}Nb{sub 2-x}Ta{sub x}O{sub 9}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dunstan, Matthew T., E-mail: m.dunstan@chem.usyd.edu.au; Southon, Peter D.; Kepert, Cameron J.

    Through the construction of the Ba{sub 4}Nb{sub 2-x}Ta{sub x}O{sub 9} phase diagram, it was discovered that the unique high-temperature {gamma} phase is a thermodynamic intermediate between the low-temperature {alpha} phase (Sr{sub 4}Ru{sub 2}O{sub 9}-type) and a 6H-perovskite. Refined site occupancies for the {gamma} phase across the Ba{sub 4}Nb{sub 2-x}Ta{sub x}O{sub 9} solid-solution indicate that Nb preferentially occupies the tetrahedral sites over the octahedral sites in the structure. When annealed in a CO{sub 2}-rich atmosphere, all of the phases studied absorb large amounts of CO{sub 2} at high temperatures between {approx}700 and 1300 K. In situ controlled-atmosphere diffraction studies show thatmore » this behaviour is linked to the formation of BaCO{sub 3} on the surface of the material, accompanied by a Ba{sub 5}(Nb,Ta){sub 4}O{sub 15} impurity phase. In situ diffraction in humid atmospheres also confirms that these materials hydrate below {approx}1273K, and that this plays a critical role in the various reconstructive phase transitions as well as giving rise to proton conduction. - Graphical abstract: Thermodynamic phase diagram of Ba{sub 4}Nb{sub 2-x}Ta{sub x}O{sub 9}. Highlights: > {gamma}-Ba{sub 4}Nb{sub 2}O{sub 9} phase is a structural intermediate between the {alpha} and 6H-perovskite phases. > Ba{sub 4}Nb{sub 2}O{sub 9} and Ba{sub 4}Ta{sub 2}O{sub 9} decompose at high temperatures in the presence of CO{sub 2}. > These materials all absorb between 5% and 6% of CO{sub 2} by mass between {approx}800 and 1200 K.« less

  18. Grain refinement of Al-Si9.8-Cu3.4 alloy by novel Al-3.5FeNb-1.5C master alloy and its effect on mechanical properties

    NASA Astrophysics Data System (ADS)

    Apparao, K. Ch; Birru, Anil Kumar

    2018-01-01

    A novel Al-3.5FeNb-1.5C master alloy with uniform microstructure was prepared using a melt reaction process for this study. In the master alloy, basic intermetallic particles such as NbAl3, NbC act as heterogeneous nucleation substrates during the solidification of aluminium. The grain refining performance of the novel master alloy on Al-Si9.8-Cu3.4 alloy has also been investigated. It is observed that the addition of 0.1 wt.% of Al-3.5FeNb-1.5C master alloy can induce very effective grain refinement of the Al-Si9.8-Cu3.4 alloy. The average grain size of α-Al is reduced to 22.90 μm from about 61.22 μm and most importantly, the inoculation of Al-Si9.8-Cu3.4 alloy with FeNb-C is not characterised by any visible poisoning effect, which is the drawback of using commercial Al-Ti-B master alloys on aluminium cast alloys. Therefore, the mechanical properties of the Al-Si9.8-Cu3.4 alloy have been improved obviously by the addition of the 0.1 wt.% of Al-3.5FeNb-1.5C master alloy, including the yield strength and elongation.

  19. Process for production of solution-derived (Pb,La)(Nb,Sn,Zr,Ti)O.sub.3 thin films and powders

    DOEpatents

    Boyle, Timothy J.

    1999-01-01

    A simple and rapid process for synthesizing (Pb,La)(Nb,Sn,Zr,Ti)O.sub.3 precursor solutions and subsequent ferroelectric thin films and powders of the perovskite phase of these materials has been developed. This process offers advantages over standard methods, including: rapid solution synthesis (<10 minutes), use of commercially available materials, film production under ambient conditions, ease of lanthanum dissolution at high concentrations, and no heating requirements during solution synthesis. For lanthanum-doped ferroelectric materials, the lanthanum source can be added with total synthesis time less than 10 minutes. Films and powders are crystallized at approximately 650.degree. C. and exhibit ferroelectric properties comparable to films and powders produced by other techniques which require higher crystallization temperatures.

  20. TEM Characterization of High Burn-up Microstructure of U-7Mo Alloy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jian Gan; Brandon Miller; Dennis Keiser

    2014-04-01

    As an essential part of global nuclear non-proliferation effort, the RERTR program is developing low enriched U-Mo fuels (< 20% U-235) for use in research and test reactors that currently employ highly enriched uranium fuels. One type of fuel being developed is a dispersion fuel plate comprised of U-7Mo particles dispersed in Al alloy matrix. Recent TEM characterizations of the ATR irradiated U-7Mo dispersion fuel plates include the samples with a local fission densities of 4.5, 5.2, 5.6 and 6.3 E+21 fissions/cm3 and irradiation temperatures of 101-136?C. The development of the irradiated microstructure of the U-7Mo fuel particles consists ofmore » fission gas bubble superlattice, large gas bubbles, solid fission product precipitates and their association to the large gas bubbles, grain subdivision to tens or hundreds of nanometer size, collapse of bubble superlattice, and amorphisation. This presentation will describe the observed microstructures specifically focusing on the U-7Mo fuel particles. The impact of the observed microstructure on the fuel performance and the comparison of the relevant features with that of the high burn-up UO2 fuels will be discussed.« less

  1. Electrical resistivity in Zr48Nb8Cu12Fe8Be24 glassy and crystallized alloys

    NASA Astrophysics Data System (ADS)

    Bai, H. Y.; Tong, C. Z.; Zheng, P.

    2004-02-01

    The electrical resistivity of Zr48Nb8Cu12Fe8Be24 bulk metallic glassy and crystallized alloys in the temperature range of 4.2-293 K is investigated. It is found that the resistivity in glassy and crystallized states shows opposite temperature coefficients. For the metallic glass, the resistivity shows a negative logarithmic dependence at temperatures below 16 K, whereas it has more normal behavior for the crystallized alloy. At higher temperatures, the resistivity in both glassy and crystallized alloys shows dependence upon both T and T2, but the signs of the T and T2 terms are opposite. The results are interpreted in terms of scattering from two-level tunneling states in glasses and the generalized Ziman diffraction model.

  2. Probable superbursts in 4U 0614+091 and 4U 1608-522

    NASA Astrophysics Data System (ADS)

    Kuulkers, E.

    2005-05-01

    Inspection of the RXTE/ASM database of 4U 0614+091 reveals a recent flare which occurred on March 12, 2005. The 1.5-12 keV flux increased by a factor of 5-6 up to 0.3 Crab within ~7.5 hours. About 1.5 hours later the flux had dropped to 0.17 Crab; ~9.5 hours later it had reached the pre-flare flux level again. The exponential decay time of the flare is about 2.2 hours. During the peak of the flare the X-ray emission significantly hardens with respect to the pre- and post-flare level.

  3. Decreased content of protein 4.2 in ankyrin-deficient normoblastosis (nb/nb) mouse red blood cells: evidence for ankyrin enhancement of protein 4.2 membrane binding.

    PubMed

    Rybicki, A C; Musto, S; Schwartz, R S

    1995-11-01

    Homozygous normoblastosis (nb/nb) mice, whose red blood cell (RBC) membranes are nearly completely deficient in full-length 210-kD ankyrin, were used to study interactions between ankyrin and protein 4.2 (P4.2). Although it is unclear whether or not these proteins interact in the membrane, both ankyrin and P4.2 bind to the cytoplasmic domain of band 3 (cdb3). In addition to the complete deficiency of full-length ankyrin, nb/nb RBC membranes are also partially spectrin deficient, resulting in morphologically spherocytic and mechanically fragile cells. A new finding was that nb/nb RBC membranes are severely (approximately 73%) P4.2 deficient compared with wild type (+/+) or high reticulocyte mouse RBC membranes. Metabolic labeling of nb/nb reticulocytes showed active P4.2 synthesis at levels comparable with high reticulocyte controls suggesting that the nb/nb P4.2 deficiency was not the result of defective P4.2 synthesis. Reconstitution of nb/nb inside-out vesicles (IOVs) with human RBC ankyrin restored ankyrin levels to approximately 80% of +/+ IOV levels and increased binding of exogenously added human RBC P4.2 by approximately 60%. These results suggest that ankyrin is required for normal associations of P4.2 with the RBC membrane.

  4. Novel approach to Zr powder production by smooth ZrCl4 bubbling through molten salt

    NASA Astrophysics Data System (ADS)

    Bae, Hyun-Na; Choi, Mi-Seon; Lee, Go-Gi; Kim, Seon-Hyo

    2016-01-01

    A reduction process using ZrCl4 bubbles as a reactant was investigated to produce zirconium metals. ZrCl4 vapor was bubbled through the lance in the bath, in which Mg melt and MgCl2 salt were separated. Zr powder was formed by a reduction of ZrCl4 bubbles in magnesium layer. However, the lance was clogged by the aggregate of zirconium occurred during ZrCl4 vapor injecting leading to interruption of ZrCl4 supply into the bath. This phenomenon could be caused by the presence of magnesium at the lance tip, which passes through MgCl2 salt during bubbling, and then zirconium was formed in the forms of intermetallic compounds with aluminum. In this study, the effect of molten salt on the troubled phenomena was investigated and it was verified that CaCl2 with relatively low Weber number meaning relatively high surface tension as molten salt is effective in inhibiting the lance clogging phenomena. Then, a few micrometer-sized Zr powder with the high purity of 91.6 wt% was obtained smoothly without the formation of intermetallic compound.

  5. Phase Transitions in Tetramethylammonium Hexachlorometalate Compounds (TMA) 2MCl 6 (M = U, Np, Pt, Sn, Hf, Zr)

    DOE PAGES

    Autillo, Matthieu; Wilson, Richard E.

    2017-09-22

    A study of the phase transitions occurring in tetramethylammonium hexachlorometalate compounds with M = U IV, Np IV, Zr IV, Sn IV, Hf IV and Pt IV were performed using single-crystal X-ray diffraction across the temperature range 120 - 400K. When the crystals were cooled, movement of the octahedral [MCl 6] 2- anions induces a phase transition from Fm3m to Fd3c with a doubling of the unit cell. For the actinide compounds, no correlation between the f-electron configuration and the transition temperature was observed, instead, a correlation between the transition temperatures and both the [MCl 6] 2- anion and themore » TMA cation size is highlighted. Two phase transitions were observed and characterized. The first phase transition occurs with the ordering of the TMA cation and the second from a rotation of the [MCl 6] 2- octahedra. A third phase transition was observed at lower temperatures and was ascribed to a tetragonal distortion of the [MCl 6] 2- anions. Synthesis and study of their deuterated compounds did not show a significant isotope effect. As a result, Raman spectra performed on the protonated and deuterated compounds indicate only weak hydrogen bonding interactions between the TMA cations and the [MCl 6] 2- octahedra.« less

  6. Particle Characteristics and Densification of W6Mo5Cr4V2Co5Nb Overspray Powder

    NASA Astrophysics Data System (ADS)

    Pi, Ziqiang; Lu, Xin; Yang, Fei; Liu, Bowen; Jia, Chengchang; Qu, Xuanhui; Zheng, Wei; Wu, Lizhi; Shao, Qingli

    2018-05-01

    W6Mo5Cr4V2Co5Nb (825 K) alloy was prepared by a two-step sintering process from overspray 825 K alloy powder. The overspray powder characteristics and the microstructure and mechanical properties of the as-sintered 825 K alloy were investigated. Results showed that two types of carbides formed a network structure in the overspray powder, which had spherical or quasispherical shape: one was MC carbide that was rich in vanadium (V), and the other was M2C carbide enriched with vanadium (V) and tungsten (W). The sintered 825 K alloy contained M6C and MC carbides, of which M6C was rich in tungsten (W) and molybdenum (Mo), and both of these two carbides were uniformly distributed in the alloy matrix. The alloy had relative density of 98.43%, hardness of HRC 51.8, and superior bending strength of 2042 MPa. These mechanical properties can meet the requirements of most engineering applications.

  7. Host-Sensitized and Tunable Luminescence of GdNbO4:Ln3+ (Ln3+ = Eu3+/Tb3+/Tm3+) Nanocrystalline Phosphors with Abundant Color.

    PubMed

    Liu, Xiaoming; Chen, Chen; Li, Shuailong; Dai, Yuhua; Guo, Huiqin; Tang, Xinghua; Xie, Yu; Yan, Liushui

    2016-10-17

    Up to now, GdNbO 4 has always been regarded as an essentially inert material in the visible region with excitation of UV light and electron beams. Nevertheless, here we demonstrate a new recreating blue emission of GdNbO 4 nanocrystalline phosphors with a quantum efficiency of 41.6% and host sensitized luminescence in GdNbO 4 :Ln 3+ (Ln 3+ = Eu 3+ /Tb 3+ /Tm 3+ ) nanocrystalline phosphors with abundant color in response to UV light and electron beams. The GdNbO 4 and GdNbO 4 :Ln 3+ (Ln 3+ = Eu 3+ /Tb 3+ /Tm 3+ ) nanocrystalline phosphors were synthesized by a Pechini-type sol-gel process. With excitation of UV light and low-voltage electron beams, the obtained GdNbO 4 nanocrystalline phosphor presents a strong blue luminescence from 280 to 650 nm centered around 440 nm, and the GdNbO 4 :Ln 3+ nanocrystalline phosphors show both host emission and respective emission lines derived from the characterize f-f transitions of the doping Eu 3+ , Tb 3+ , and Tm 3+ ions. The luminescence color of GdNbO 4 :Ln 3+ nanocrystalline phosphors can be tuned from blue to green, red, blue-green, orange, pinkish, white, etc. by varying the doping species, concentration, and relative ratio of the codoping rare earth ions in GdNbO 4 host lattice. A single-phase white-light-emission has been realized in Eu 3+ /Tb 3+ /Tm 3+ triply doped GdNbO 4 nanocrystalline phosphors. The luminescence properties and mechanisms of GdNbO 4 and GdNbO 4 :Ln 3+ (Ln 3+ = Eu 3+ /Tb 3+ /Tm 3+ ) are updated.

  8. Integrated Laser Ablation U/Pb and (U-Th)/He Dating of Detrital Accessory Minerals from the Naryani River, Central Nepal

    NASA Astrophysics Data System (ADS)

    Horne, A.; Hodges, K. V.; Van Soest, M. C.

    2015-12-01

    The newly developed 'laser ablation double dating' (LADD) technique, an integrated laser microprobe U/Pb and (U-Th)/He dating method, could be an exceptionally valuable tool in detrital thermochronology for identifying sedimentary provenance and evaluating the exhumation history of a source region. A recent proof-of-concept study has used LADD to successfully date both zircon and titanite crystals from the well-characterized Fish Canyon tuff, but we also believe that another accessory mineral, rutile, could be amenable to dating via the LADD technique. To continue the development of the method, we present an application of LADD to detrital zircon, titanite, and rutile from a sample collected on the lower Naryani River of central Nepal. Preliminary analyses of the sample have yielded zircon U/Pb dates ranging from 31.4 to 2405 Ma; zircon (U-Th)/He from 1.8 to 15.4 Ma; titanite U/Pb between 18 and 110 Ma; titanite (U-Th)/He between 1 and 16 Ma; rutile U/Pb from 6 to 45 Ma; and rutile (U-Th)/He from 2 to 25 Ma. In addition to the initial data, we can use Ti-in-zircon, Zr-in-titanite, and Zr-in-rutile thermometers to determine the range of possible long-term cooling rates from grains with U/Pb ages younger than collision. Thus far our results from zircon analyses imply a cooling rate of approximately 15°C/Myr; titanite analyses imply between 10 and 67°C/Myr; and rutile between 9 and 267°C/Myr. This spread in potential cooling rates, especially in the order of magnitude differences of cooling rates calculated from the rutile grains, suggests that the hinterland source regions of the Naryani river experienced dramatically different exhumation histories during Himalayan orogenisis. Ongoing analyses will expand the dataset such that we can more adequately characterize the range of possibilities represented in the sample.

  9. A model for Nb-Zr-REE-Ga enrichment in Lopingian altered alkaline volcanic ashes: Key evidence of H-O isotopes

    NASA Astrophysics Data System (ADS)

    Dai, Shifeng; Nechaev, Victor P.; Chekryzhov, Igor Yu.; Zhao, Lixin; Vysotskiy, Sergei V.; Graham, Ian; Ward, Colin R.; Ignatiev, Alexander V.; Velivetskaya, Tatyana A.; Zhao, Lei; French, David; Hower, James C.

    2018-03-01

    Clay-altered volcanic ash with highly-elevated concentrations of Nb(Ta), Zr(Hf), rare earth elements (REE), and Ga, is a new type of critical metal deposit with high commercial prospects that has been discovered in Yunnan Province, southwest China. Previous studies showed that the volcanic ashes had been subjected to hydrothermal fluids, the nature of which, however, is not clear. Here we show that the volcanic ashes were originated from alkaline magmatism, followed by a continuous hydrothermal-weathering process. Heated meteoric waters, which were sourced from acidic rains and mixed with CO2 from degassing of the Emeishan plume, have caused partial, but widespread, acidic leaching of Nb, Ta, Zr, Hf, REE, and Ga into ground water and residual enrichment of these elements, along with Al and Ti, in the deeply altered rocks. Subsequent alteration occurring under cooler, neutral or alkaline conditions, caused by water-rock interaction, resulted in precipitation of the leached critical metals in the deposit. Polymetallic mineralization of similar origin may be found in other continental regions subjected to explosive alkaline volcanism associated with deep weathering in humid conditions.

  10. Phosphotungstic acid binding in situ to K4Nb6O17 for the effective adsorption-photocatalytic removal of tetracycline

    NASA Astrophysics Data System (ADS)

    Gu, Huimin; Lang, Junyu; Ma, Yuli; Gu, Huayu; Song, Yanyong; Chai, Zhanli; Li, Guangshe; Wang, Xiaojing

    2018-05-01

    In this investigation, phosphotungstic acid (H3PW12O40) was successfully self-assembly implanted into the interspace of K4Nb6O17 nanosheet via an impregnation method to form an adsorption-photocatalytic composite, in which n-type semiconductor K4Nb6O17 was selected as photo-electron emitter and H3PW12O40 was particularly used as an electronic transmitter. By characterizing with X-ray diffraction (XRD), transmission (TEM), scan electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), and FT-IR spectrum (FT-IR), it confirmed that H3PW12O40 (HPW) was converted to the insoluble tiny particles of K3PW12O40 (KPW) with the remained primary Keggin group via an ion-exchanged H+ of HPW with K+ in K4Nb6O17 in the implanted process and was firmly bound to the surface of K4Nb6O17 to form well sandwich structure. UV-vis diffuse reflectance spectroscopy revealed that the band gap of K4Nb6O17-K3PW12O40 have a slight red shift compared with the single K4Nb6O17. Its adsorption-photocatalytic properties were evaluated with the removal of tetracycline as model reaction. Compared with pure K4Nb6O17, tetracycline removal rate can be significantly improved for the as-prepared sandwich. Importantly, the removal could still maintain 70% after five reuses in recycle tests at an acidic solution, inferring a good stability which was mainly ascribed to the formation of water-insoluble K3PW12O40. The separation and transfer process of photogenerated electrons were investigated by surface photovoltage spectroscopy (SPV). It proposed that the KPW anchored firmly on the interlayers of K4Nb6O17 through a O-K-O bridge plays a significantly role in promoting the separation of the photogenerated carriers and preventing the leakage and agglomeration of HPW. The present results showed that the strategy of the phosphotungstic acid binding in situ to K4Nb6O17 was favorable to promote the hetero-photocatalytic efficiency as well as reusability. [Figure not available: see fulltext.

  11. Intrinsic nanostructure in Zr2-xFe4Si16-y(x = 0.81, y = 6.06)

    NASA Astrophysics Data System (ADS)

    Smith, G. J.; Simonson, J. W.; Orvis, T.; Marques, C.; Grose, J. E.; Kistner-Morris, J. J.; Wu, L.; Cho, K.; Kim, H.; Tanatar, M. A.; Garlea, V. O.; Prozorov, R.; Zhu, Y.; Aronson, M. C.

    2014-09-01

    We present a study of the crystal structure and physical properties of single crystals of a new Fe-based ternary compound, Zr2-xFe4Si16-y(x = 0.81, y = 6.06). Zr1.19Fe4Si9.94 is a layered compound, where stoichiometric β-FeSi2-derived slabs are separated by Zr-Si planes with substantial numbers of vacancies. High resolution transmission electron microscopy (HRTEM) experiments show that these Zr-Si layers consist of 3.5 nm domains where the Zr and Si vacancies are ordered within a supercell sixteen times the volume of the stoichiometric cell. Within these domains, the occupancies of the Zr and Si sites obey symmetry rules that permit only certain compositions, none of which by themselves reproduce the average composition found in x-ray diffraction experiments. Magnetic susceptibility and magnetization measurements reveal a small but appreciable number of magnetic moments that remain freely fluctuating to 1.8 K, while neutron diffraction confirms the absence of bulk magnetic order with a moment of 0.2μB or larger down to 1.5 K. Electrical resistivity measurements find that Zr1.19Fe4Si9.94 is metallic, and the modest value of the Sommerfeld coefficient of the specific heat γ = C/T suggests that quasi-particle masses are not particularly strongly enhanced. The onset of superconductivity at Tc ≃ 6 K results in a partial resistive transition and a small Meissner signal, although a bulk-like transition is found in the specific heat. Sharp peaks in the ac susceptibility signal the interplay of the normal skin depth and the London penetration depth, typical of a system in which nano-sized superconducting grains are separated by a non-superconducting host. Ultra low field differential magnetic susceptibility measurements reveal the presence of a surprisingly large number of trace magnetic and superconducting phases, suggesting that the Zr-Fe-Si ternary system could be a potentially rich source of new bulk superconductors.

  12. Solution treatment-delayed zirconium-strengthening behavior in Ti-7.5Mo-xZr alloy system

    NASA Astrophysics Data System (ADS)

    Chern Lin, Jiin-Huey; Fu, Yen-Han; Chen, Yen-Chun; Peng, Yu-Po; Ju, Chien-Ping

    2018-01-01

    The present study was devoted to investigate and compare the Zr-strengthening behavior in as-cast (AC) and solution-treated (ST) Ti-7.5Mo-xZr alloys. The experimental results indicated that AC Ti-7.5Mo and AC Ti-7.5Mo-1Zr alloys substantially had an orthorhombic {α }\\prime\\prime phase with a fine, acicular morphology. The content of equi-axed β phase continued to increase with increased Zr content at the expense of {α }\\prime\\prime phase. The threshold Zr content for the formation of β phase in the ST Ti-7.5Mo-xZr alloys was apparently higher than that in the AC Ti-7.5Mo-xZr alloys. The β granular structure was revealed in ST Ti-7.5Mo-5Zr alloy, which increased with increased Zr content. Unlike AC Ti-7.5Mo-9Zr alloy, within each grain of ST Ti-7.5Mo-9Zr alloy were still observed a significant portion of {α }\\prime\\prime morphology. AC Ti-7.5Mo alloy had the lowest YS, lowest tensile modulus and highest elongation among all AC Ti-7.5Mo-xZr alloys. When Zr content increased, both YS and modulus significantly increased while the elongation significantly decreased. Compared to AC Ti-7.5Mo alloy, AC Ti-7.5Mo-9Zr alloy had almost double YS, indicating the effectiveness of Zr-induced strengthening in the AC Ti-7.5Mo-xZr alloys. Compared to AC Ti-7.5Mo, ST Ti-7.5Mo alloys had lower YS, UTS and tensile modulus with almost the same elongation. All the XRD, metallography and tensile test results consistently indicated that the presence of Zr could accelerate the formation of β phase and effectively strengthen the AC Ti-7.5Mo-xZr alloys. A phenomenon of delayed β formation and delayed strengthening was noted in the ST Ti-7.5Mo-xZr alloys, compared to the AC Ti-7.5Mo-xZr alloys.

  13. High Nb, Ta, and Al creep- and oxidation-resistant austenitic stainless steel

    DOEpatents

    Brady, Michael P [Oak Ridge, TN; Santella, Michael L [Knoxville, TN; Yamamoto, Yukinori [Oak Ridge, TN; Liu, Chain-tsuan [Oak Ridge, TN

    2010-07-13

    An austenitic stainless steel HTUPS alloy includes, in weight percent: 15 to 30 Ni; 10 to 15 Cr; 2 to 5 Al; 0.6 to 5 total of at least one of Nb and Ta; no more than 0.3 of combined Ti+V; up to 3 Mo; up to 3 Co; up to 1 W; up to 0.5 Cu; up to 4 Mn; up to 1 Si; 0.05 to 0.15 C; up to 0.15 B; up to 0.05 P; up to 1 total of at least one of Y, La, Ce, Hf, and Zr; less than 0.05 N; and base Fe, wherein the weight percent Fe is greater than the weight percent Ni wherein said alloy forms an external continuous scale comprising alumina, nanometer scale sized particles distributed throughout the microstructure, said particles comprising at least one composition selected from the group consisting of NbC and TaC, and a stable essentially single phase fcc austenitic matrix microstructure, said austenitic matrix being essentially delta-ferrite-free and essentially BCC-phase-free.

  14. Alternative Chelator for 89Zr Radiopharmaceuticals: Radiolabeling and Evaluation of 3,4,3-(LI-1,2-HOPO)

    PubMed Central

    2015-01-01

    Zirconium-89 is an effective radionuclide for antibody-based positron emission tomography (PET) imaging because its physical half-life (78.41 h) matches the biological half-life of IgG antibodies. Desferrioxamine (DFO) is currently the preferred chelator for 89Zr4+; however, accumulation of 89Zr in the bones of mice suggests that 89Zr4+ is released from DFO in vivo. An improved chelator for 89Zr4+ could eliminate the release of osteophilic 89Zr4+ and lead to a safer PET tracer with reduced background radiation dose. Herein, we present an octadentate chelator 3,4,3-(LI-1,2-HOPO) (or HOPO) as a potentially superior alternative to DFO. The HOPO ligand formed a 1:1 Zr-HOPO complex that was evaluated experimentally and theoretically. The stability of 89Zr-HOPO matched or surpassed that of 89Zr-DFO in every experiment. In healthy mice, 89Zr-HOPO cleared the body rapidly with no signs of demetalation. Ultimately, HOPO has the potential to replace DFO as the chelator of choice for 89Zr-based PET imaging agents. PMID:24814511

  15. Beneficial effect of Cu on Ti-Nb-Ta-Zr sputtered uniform/adhesive gum films accelerating bacterial inactivation under indoor visible light.

    PubMed

    Alhussein, Akram; Achache, Sofiane; Deturche, Regis; Sanchette, Frederic; Pulgarin, Cesar; Kiwi, John; Rtimi, Sami

    2017-04-01

    This article presents the evidence for the significant effect of copper accelerating the bacterial inactivation on Ti-Nb-Ta-Zr (TNTZ) sputtered films on glass up to a Cu content of 8.3 at.%. These films were deposited by dc magnetron co-sputtering of an alloy target Ti-23Nb-0.7Ta-2Zr (at.%) and a Cu target. The fastest bacterial inactivation of E. coli on this later TNTZ-Cu surface proceeded within ∼75min. The films deposited by magnetron sputtering are chemically homogenous. The film roughness evaluated by atomic force spectroscopy (AFM) on the TNTZ-Cu 8.3 at.% Cu sample presented an RMS-value of 20.1nm being the highest RMS of any Cu-sputtered TNTZ sample. The implication of the RMS value found for this sample leading to the fastest interfacial bacterial inactivation kinetics is also discussed. Values for the Young's modulus and hardness are reported for the TNTZ films in the presence of various Cu-contents. Evaluation of the bacterial inactivation kinetics of E. coli under low intensity actinic hospital light and in the dark was carried out. The stable repetitive bacterial inactivation was consistent with the extremely low Cu-ion release from the samples of 0.4 ppb. Evidence is presented by the bacterial inactivation dependence on the applied light intensity for the intervention of Cu as semiconductor CuO during the bacterial inactivation at the TNTZ-Cu interface. The mechanism of CuO-intervention under light is suggested based on the pH/and potential changes registered during bacterial disinfection. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Laser Nitriding of the Newly Developed Ti-20Nb-13Zr at.% Biomaterial Alloy to Enhance Its Mechanical and Corrosion Properties in Simulated Body Fluid

    NASA Astrophysics Data System (ADS)

    Hussein, M. A.; Kumar, A. Madhan; Yilbas, Bekir S.; Al-Aqeeli, N.

    2017-11-01

    Despite the widespread application of Ti alloy in the biomedical field, surface treatments are typically applied to improve its resistance to corrosion and wear. A newly developed biomedical Ti-20Nb-13Zr at.% alloy (TNZ) was laser-treated in nitrogen environment to improve its surface characteristics with corrosion protection performance. Surface modification of the alloy by laser was performed through a Nd:YAG laser. The structural and surface morphological alterations in the laser nitrided layer were investigated by XRD and a FE-SEM. The mechanical properties have been evaluated using nanoindentation for laser nitride and as-received samples. The corrosion protection behavior was estimated using electrochemical corrosion analysis in a physiological medium (SBF). The obtained results revealed the production of a dense and compact film of TiN fine grains (micro-/nanosize) with 9.1 µm below the surface. The mechanical assessment results indicated an improvement in the modulus of elasticity, hardness, and resistance of the formed TiN layer to plastic deformation. The electrochemical analysis exhibited that the surface protection performance of the laser nitrided TNZ substrates in the SBF could be considerably enhanced compared to that of the as-received alloy due to the presence of fine grains in the TiN layer resulting from laser nitriding. Furthermore, the untreated and treated Ti-20Nb-13Zr alloy exhibited higher corrosion resistance than the CpTi and Ti6Al4V commercial alloys. The improvements in the surface hardness and corrosion properties of Ti alloy in a simulated body obtained using laser nitriding make this approach a suitable candidate for enhancing the properties of biomaterials.

  17. Process for production of solution-derived (Pb,La)(Nb,Sn,Zr,Ti)O{sub 3} thin films and powders

    DOEpatents

    Boyle, T.J.

    1999-01-12

    A simple and rapid process for synthesizing (Pb,La)(Nb,Sn,Zr,Ti)O{sub 3} precursor solutions and subsequent ferroelectric thin films and powders of the perovskite phase of these materials has been developed. This process offers advantages over standard methods, including: rapid solution synthesis (<10 minutes), use of commercially available materials, film production under ambient conditions, ease of lanthanum dissolution at high concentrations, and no heating requirements during solution synthesis. For lanthanum-doped ferroelectric materials, the lanthanum source can be added with total synthesis time less than 10 minutes. Films and powders are crystallized at approximately 650 C and exhibit ferroelectric properties comparable to films and powders produced by other techniques which require higher crystallization temperatures. 2 figs.

  18. Electrical Conductivities of Low-Temperature KCl-ZrCl4 and CsCl-ZrCl4 Molten Mixtures

    NASA Astrophysics Data System (ADS)

    Salyulev, Alexander B.; Potapov, Alexei M.

    2018-02-01

    The electrical conductivities of molten KCl-ZrCl4 and CsCl-ZrCl4 mixtures, including their heterogeneous (melt+crystals) ranges, were measured for the first time. The concentration ranges were 65-72 and 66-75 mol.% of ZrCl4, and the temperature ranges were 482-711 and 548-735 K, respectively. The measurements were carried out in cells of an original design.

  19. Microstructure and Interfacial Shear Strength in W/(Zr55Cu30Al10Ni5)100- x Nb x Composites

    NASA Astrophysics Data System (ADS)

    Mahmoodan, M.; Gholamipour, R.; Mirdamadi, Sh.; Nategh, S.

    2017-11-01

    In the present study, (Zr55Cu30Al10Ni5)100- x Nb( x=0,1,2,3) bulk metallic glass matrix/tungsten wire composites were fabricated by a gas pressure infiltration process at temperature 950 °C for 5 min. Microstructural studies and mechanical behaviors of the materials have been investigated by scanning electron microscopy, transmission electron microscopy and pullout tests. The mechanical results showed that the interface shear strength in the composite sample with X = 2 increased more than twice compared to the composite sample with X = 0. Based on the microstructural results, the addition of two atomic percent Nb in the matrix composite causes an increase in the diffusion band thickness during the melt infiltration and change in the interface fracture mode as a result of pullout test.

  20. Preparation and Characteristics of Ultrasonic Transducers for High Temperature Using PbNb2O6

    NASA Astrophysics Data System (ADS)

    Soejima, Junichiro; Sato, Kokichi; Nagata, Kunihiro

    2000-05-01

    The substance PZT(Pb(Zr, Ti)O3) is chiefly used for piezoceramic transducers in many ultrasonic flow meters. It is difficult to use PZT transducers for flow meters for automobile exhaust gas at high temperatures over 350°C. Lead niobate (PbNb2O6) has a high Curie temperature of 540°C and a low mechanical quality factor, and is the most suitable as the sensor element in flow meters for automobile exhaust gas. However, it is difficult to fabricate dense PbNb2O6 ceramics that have good piezoelectric properties. In this study, ceramics with high density and a high piezoelectric effect were fabricated by adding various elements such as Mn and Ca to PbNb2O6 and by examining the sintering process. A Langevin transducer with a resonance frequency of 80 kHz was made for measuring automobile exhaust gas flow using PbNb2O6 ceramics.

  1. The Vitrification and Determination of the Crystallization Time Scales of a Zr58.5Nb2.8Cu15.6Ni12.8Al10.3 Bulk Metallic Glass Forming Liquid

    NASA Technical Reports Server (NTRS)

    Hays, C. C.; Schroers, J.; Johnson, W. L.; Rathz, T. J.; Hyers, R. W.; Rogers, J. R.; Robinson, M. B.; Whitaker, Ann F. (Technical Monitor)

    2001-01-01

    Zr58.5Nb2.8Cul5.6Nil2.8All0.3 is the first bulk glass forming liquid that does not contain beryllium to be vitrified by purely radiative cooling in the containerless electrostatic levitation process. The measured critical cooling rate is 1.75 K/s. The sluggish crystallization kinetics enable the determination of the time-temperature-transformation (TTT) diagram between the liquidus and the glass transition temperatures. At the nose of the TTT diagram, the shortest time to reach crystallization in an isothermal experiment is 32 seconds. In contrast to other bulk metallic glasses the scatter in the crystallization onset times are small at both high and low temperatures.

  2. The Effects of the Addition of Dy, Nb, and Ga on Microstructure and Magnetic Properties of Nd2Fe14B/α-Fe Nanocomposite Permanent Magnetic Alloys.

    PubMed

    Ren, Kezhi; Tan, Xiaohua; Li, Heyun; Xu, Hui; Han, Ke

    2017-04-01

    We study the effects of Dy, Nb, and Ga additions on the microstructure and magnetic properties of Nd2Fe14B/α-Fe nanocomposites. Dy, Nb, and Ga additions inhibit the growth of the soft magnetic α-Fe phase. Dy and Nb additions are able to refine the microstructure, whereas Ga addition plays only a minor role in prohibiting crystal growth. The magnetic properties are sensitive to Dy, Nb, and Ga additions. The Dy-containing alloy enhances the intrinsic coercivity of 872 kA/m because Dy partially replaces Nd, forming (Nd, Dy)2Fe14B. Nb addition refines the microstructure, and consequently increases the exchange coupling between magnetic grains. The Nd9.5Fe75.4Co5Zr3B6.5Ga0.6 alloy exhibits the highest remanence (0.92 T) due to Ga addition.

  3. Thermal conductivity of fresh and irradiated U-Mo fuels

    NASA Astrophysics Data System (ADS)

    Huber, Tanja K.; Breitkreutz, Harald; Burkes, Douglas E.; Casella, Amanda J.; Casella, Andrew M.; Elgeti, Stefan; Reiter, Christian; Robinson, Adam. B.; Smith, Frances. N.; Wachs, Daniel. M.; Petry, Winfried

    2018-05-01

    The thermal conductivity of fresh and irradiated U-Mo dispersion and monolithic fuel has been investigated experimentally and compared to theoretical models. During in-pile irradiation, thermal conductivity of fresh dispersion fuel at a temperature of 150 °C decreased from 59 W/m·K to 18 W/m·K at a burn-up of 4.9·1021 f/cc and further to 9 W/m·K at a burn-up of 6.1·1021 f/cc. Fresh monolithic fuel has a considerably lower thermal conductivity of 15 W/m·K at a temperature of 150 °C and consequently its decrease during in-pile irradiation is less steep than for dispersion fuel. For a burn-up of 3.5·1021 f/cc of monolithic fuel, a thermal conductivity of 11 W/m·K at a temperature of 150 °C has been measured by Burkes et al. (2015). The difference of decrease for both fuels originates from effects in the matrix that occur during irradiation, like for dispersion fuel the gradual disappearance of the Al matrix with increased burn-up and the subsequent growth of an interaction layer (IDL) between the U-Mo fuel particle and Al matrix and subsequent matrix hardening. The growth of fission gas bubbles and the decomposition of the U-Mo crystal lattice also affect both dispersion and monolithic fuel.

  4. Thermal conductivity of fresh and irradiated U-Mo fuels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huber, Tanja K.; Breitkreutz, Harald; Burkes, Douglas E.

    The thermal conductivity of fresh and irradiated U-Mo dispersion and monolithic fuel has been investigated experimentally and compared to theoretical models. During in-pile irradiation, the thermal conductivity of fresh dispersion fuel at a temperature of 150°C decreases from 59 W/m ·K down to 18  W/m ·K at a burn-up of 4.9 ·10 21 f/cc and further down to 9 W/m·K at a burn-up of 6.1·10 21 f/cc. Fresh monolithic fuel has a considerably lower thermal conductivity of 15 W/m·K at a temperature of 150 °C and consequently its decrease during in-pile irradiation is less steep as for the dispersion fuel. For a burn-up ofmore » 3.5·10 21 f /cc of monolithic fuel 11 W/m·K at a temperature of 150 °C has been measured by Burkes et al. The difference of the decrease of both fuels originates from effects in the matrix that occur during irradiation, like for dispersion fuel the gradual disappearance of the Al matrix with increasing burn-up and the subsequent growth of an interaction layer (IDL) between the U-Mo fuel particle and Al matrix and subsequent matrix hardening. The growth of fission gas bubbles and the decomposition of the U-Mo crystal lattice affects both dispersion and monolithic fuel.« less

  5. Spark plasma sintering and microstructural analysis of pure and Mo doped U3Si2 pellets

    NASA Astrophysics Data System (ADS)

    Lopes, Denise Adorno; Benarosch, Anna; Middleburgh, Simon; Johnson, Kyle D.

    2017-12-01

    U3Si2 has been considered as an alternative fuel for Light Water Reactors (LWRs) within the Accident Tolerant Fuels (ATF) initiative, begun after the Fukushima-Daiichi Nuclear accidents. Its main advantages are high thermal conductivity and high heavy metal density. Despite these benefits, U3Si2 presents an anisotropic crystallographic structure and low solubility of fission products, which can result in undesirable effects under irradiation conditions. In this paper, spark plasma sintering (SPS) of U3Si2 pellets is studied, with evaluation of the resulting microstructure. Additionally, exploiting the short sintering time in SPS, a molybdenum doped pellet was produced to investigate the early stages of the Mo-U3Si2 interaction, and analyze how this fission product is accommodated in the fuel matrix. The results show that pellets of U3Si2 with high density (>95% TD) can be obtained with SPS in the temperature range of 1200°C-1300 °C. Moreover, the short time employed in this technique was found to generate a unique microstructure for this fuel, composed mainly of closed nano-pores (<1 μm) and small average grain size (∼4.5 μm). The addition of Mo (1.5 at%) demonstrated no solubility of Mo in the U3Si2 matrix. The interaction of this fission product with the fuel matrix at 1200 °C formed, in the early stages, the stoichiometric U2Mo3Si4 ternary as well as precipitates of free uranium with small quantities of dissolved Si and Mo at the front of the reaction.

  6. Comparative investigation of the solution species [U(CO3)5]6- and the crystal structure of Na6[U(CO3)5].12H2O.

    PubMed

    Hennig, Christoph; Ikeda-Ohno, Atsushi; Emmerling, Fanziska; Kraus, Werner; Bernhard, Gert

    2010-04-21

    The limiting U(IV) carbonate species in aqueous solution was investigated by comparing its structure parameters with those of the complex preserved in a crystal structure. The solution species prevails in aqueous solution of 0.05 M U(IV) and 1 M NaHCO(3) at pH 8.3. Single crystals of Na(6)[U(CO(3))(5)].12H(2)O were obtained directly from this mother solution. The U(IV) carbonate complex in the crystal structure was identified as a monomeric [U(CO(3))(5)](6-) anionic complex. The interatomic distances around the U(IV) coordination polyhedron show average distances of U-O = 2.461(8) A, U-C = 2.912(4) A and U-O(dist) = 4.164(6) A. U L(3)-edge EXAFS spectra were collected from the solid Na(6)[U(CO(3))(5)].12H(2)O and the corresponding solution. The first shell of the Fourier transforms (FTs) revealed, in both samples, a coordination of ten oxygen atoms at an average U-O distance of 2.45 +/- 0.02 A, the second shell originates from five carbon atoms with a U-C distance of 2.91 +/- 0.02 A, and the third shell was fit with single and multiple scattering paths of the distal oxygen at 4.17 +/- 0.02 A. These data indicate the identity of the [U(CO(3))(5)](6-) complex in solid and solution state. The high negative charge of the [U(CO(3))(5)](6-) anion is compensated by Na(+) cations. In solid state the Na(+) cations form a bridging network between the [U(CO(3))(5)](6-) units, while in liquid state the Na(+) cations seem to be located close to the anionic complex. The average metal-oxygen distances of the coordination polyhedron show a linear correlation to the radius contraction of the neighbouring actinide(IV) ions and indicate the equivalence of the [An(CO(3))(5)](6-) coordination within the series of thorium, uranium, neptunium and plutonium.

  7. U-Pb zircon geochronology and Zr-in-rutile thermometry of eclogites from the Dulan area, North Qaidam ultra-high pressure (UHP) terrane, western China

    NASA Astrophysics Data System (ADS)

    Hernández Uribe, D.; Stubbs, K.; Lehman, M. R.; Gilmore, V.; Kylander-Clark, A. R.; Mattinson, C. G.

    2016-12-01

    The Dulan area, in the North Qaidam terrane, exposes UHP eclogites and gneisses that experienced a 20 Myr UHP event at P-T conditions of 30 kbar and 700 °C. Two eclogites were analyzed using Zr-in-rutile thermometry and zircon U-Pb + trace element analysis to constrain the metamorphic evolution of the area. A kyanite-phengite eclogite presents a mineral assemblage of grt + omp + ph + ky + rt + zo + qz. Rutile analyses show a Zr concentration of 173-250 ppm with a mean of 207 ± 19 ppm. The calculated temperatures yielded 685-716 °C with an average of 700 ± 7°C. Zircon U-Pb analyses gave an upper intercept age of 880 ± 89 Ma. These analyses from cathodoluminiscence (CL)-dark core zircons show a negative Eu anomaly and a steep HREE slope suggesting a magmatic origin for the protolith. Analyses from CL-bright rims gave a weighted mean age of 427 ± 2 Ma. These zircons show an eclogite facies trace elements pattern suggesting that the age represent the HP-UHP event. Titanium concentration in zircons gave a weighted mean of 4.41 ± 0.25 ppm. This Ti concentration yielded a calculated temperature of 674 °C A phengite eclogite shows a mineral assemblage of grt + omp + ph + rt + zo + qz. Rutile in matrix analyses show a Zr concentration of 123-161 ppm with a mean of 139 ± 9 ppm. Calculated temperatures for these rutiles ranges from 659-680 °C with a mean temperature of 668 ± 5 °C. U-Pb analyses from CL-dark zircon cores gave a weighted mean age of 844 ± 7 Ma. These zircons show a negative Eu anomaly and a steep HREE slope suggesting a magmatic origin for the protolith. Analyses from CL-grey rims gave a weighted mean age of 433 ± 4 Ma. These zircons show an eclogite facies trace elements pattern, representing the timing of the HP-UHP event. Titanium concentration in zircons gave a weighted mean of 3.13 ± 0.34 ppm. This concentration yielded calculated temperature 647 °C. The obtained ages are in the same range as the ones obtained for the northern and southern

  8. Transmission electron microscopy investigation of neutron irradiated Si and ZrN coated UMo particles prepared using FIB

    NASA Astrophysics Data System (ADS)

    Van Renterghem, W.; Miller, B. D.; Leenaers, A.; Van den Berghe, S.; Gan, J.; Madden, J. W.; Keiser, D. D.

    2018-01-01

    Two fuel plates, containing Si and ZrN coated U-Mo fuel particles dispersed in an Al matrix, were irradiated in the BR2 reactor of SCK•CEN to a burn-up of ∼70% 235U. Five samples were prepared by INL using focused ion beam milling and transported to SCK•CEN for transmission electron microscopy (TEM) investigation. Two samples were taken from the Si coated U-Mo fuel particles at a burn-up of ∼42% and ∼66% 235U and three samples from the ZrN coated U-Mo at a burn-up of ∼42%, ∼52% and ∼66% 235U. The evolution of the coating, fuel structure, fission products and the formation of interaction layers are discussed. Both coatings appear to be an effective barrier against fuel matrix interaction and only on the samples having received the highest burn-up and power, the formation of an interaction between Al and U(Mo) can be observed on those locations where breaches in the coatings were formed during plate fabrication.

  9. Microstructural and Mechanical Characterization of Ti-12Mo-6Zr Biomaterials Fabricated by Spark Plasma Sintering

    NASA Astrophysics Data System (ADS)

    Daoush, Walid Mohamed Rashad Mohamed; Park, Hee Sup; Inam, Fawad; Lim, Byung Kyu; Hong, Soon Hyung

    2015-03-01

    Ti-12Mo-6Zr/Al2O3 (titanium biomaterial) was prepared by a powder metallurgy route using Spark Plasma Sintering (SPS). Ti, Mo, and Zr powders were mixed by wet milling with different content of alumina nanoparticles (up to 5 wt pct) as an oxide dispersion strengthening phase. Composite powder mixtures were SPSed at 1273 K (1000 °C) followed by heat treatment and quenching. Composite powders, sintered materials, and heat-treated materials were examined using optical and high-resolution electronic microscopy (scanning and transmission) and X-ray diffraction to characterize particle size, surface morphology, and phase identifications for each composition. All sintered materials were evaluated by measuring density, Vickers hardness, and tensile properties. Fully dense sintered materials were produced by SPS and mechanical properties were found to be improved by subsequent heat treatment. The tensile properties as well as the hardness were increased by increasing the content of Al2O3 nanoparticles in the Ti-12Mo-6Zr matrix.

  10. 9 CFR 102.4 - U.S. Veterinary Biologics Establishment License.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 9 Animals and Animal Products 1 2012-01-01 2012-01-01 false U.S. Veterinary Biologics Establishment License. 102.4 Section 102.4 Animals and Animal Products ANIMAL AND PLANT HEALTH INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE VIRUSES, SERUMS, TOXINS, AND ANALOGOUS PRODUCTS; ORGANISMS AND VECTORS...

  11. 9 CFR 102.4 - U.S. Veterinary Biologics Establishment License.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 9 Animals and Animal Products 1 2014-01-01 2014-01-01 false U.S. Veterinary Biologics Establishment License. 102.4 Section 102.4 Animals and Animal Products ANIMAL AND PLANT HEALTH INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE VIRUSES, SERUMS, TOXINS, AND ANALOGOUS PRODUCTS; ORGANISMS AND VECTORS...

  12. Synthesis and characterisation of ionic liquids based on 1-butyl-3-methylimidazolium chloride and MCl(4), M = Hf and Zr.

    PubMed

    Campbell, Paul S; Santini, Catherine C; Bouchu, Denis; Fenet, Bernard; Rycerz, Leszek; Chauvin, Yves; Gaune-Escard, Marcelle; Bessada, Catherine; Rollet, Anne-Laure

    2010-02-07

    Dialkylimidazolium chlorometallate molten salts resulting from the combination of zirconium or hafnium tetrachloride and 1-butyl-3-methylimidazolium chloride, [C(1)C(4)Im][Cl], have been prepared with a molar fraction of MCl(4), R = n(MCl4)/n(MCl4) + n([C1C4IM][Cl]) equal to 0, 0.1, 0.2, 0.33, 0.5, 0.67. The structure and composition were studied by Differential Scanning Calorimetry (DSC), (35)Cl (263 to 333 K), (1)H and (13)C solid state and solution NMR spectroscopy, and electrospray ionisation (ESI) mass spectrometry. The primary anions of the MCl(4)-based ILs were [MCl(5)], [MCl(6)] and [M(2)Cl(9)], whose relative abundances varied with R. For R = 0.33, pure solid [C(1)C(4)Im](2)[MCl(6)], for both M = Zr and Hf are formed (m.p. = 366 and 385 K, respectively). For R = 0.67 pure ionic liquids [C(1)C(4)Im][M(2)Cl(9)] for both M = Zr and Hf are formed (T(g) = 224 and 220 K, respectively). The thermal dissociation has been attempted of [C(1)C(4)Im](2)[HfCl(6)], and [C(1)C(4)Im](2)[ZrCl(6)] monitored by (35)Cl and (91)Zr solid NMR (high temperature up to 551 K).

  13. Petrology, geochemistry and zircon U-Pb geochronology of a layered igneous complex from Akarui Point in the Lützow-Holm Complex, East Antarctica: Implications for Antarctica-Sri Lanka correlation

    NASA Astrophysics Data System (ADS)

    Kazami, Sou; Tsunogae, Toshiaki; Santosh, M.; Tsutsumi, Yukiyasu; Takamura, Yusuke

    2016-11-01

    The Lützow-Holm Complex (LHC) of East Antarctica forms part of a complex subduction-collision orogen related to the amalgamation of the Neoproterozoic supercontinent Gondwana. Here we report new petrological, geochemical, and geochronological data from a metamorphosed and disrupted layered igneous complex from Akarui Point in the LHC which provide new insights into the evolution of the complex. The complex is composed of mafic orthogneiss (edenite/pargasite + plagioclase ± clinopyroxene ± orthopyroxene ± spinel ± sapphirine ± K-feldspar), meta-ultramafic rock (pargasite + olivine + spinel + orthopyroxene), and felsic orthogneiss (plagioclase + quartz + pargasite + biotite ± garnet). The rocks show obvious compositional layering reflecting the chemical variation possibly through magmatic differentiation. The metamorphic conditions of the rocks were estimated using hornblende-plagioclase geothermometry which yielded temperatures of 720-840 °C. The geochemical data of the orthogneisses indicate fractional crystallization possibly related to differentiation within a magma chamber. Most of the mafic-ultramafic samples show enrichment of LILE, negative Nb, Ta, P and Ti anomalies, and constant HFSE contents in primitive-mantle normalized trace element plots suggesting volcanic arc affinity probably related to subduction. The enrichment of LREE and flat HREE patterns in chondrite-normalized REE plot, with the Nb-Zr-Y, Y-La-Nb, and Th/Yb-Nb/Yb plots also suggest volcanic arc affinity. The felsic orthogneiss plotted on Nb/Zr-Zr diagram (low Nb/Zr ratio) and spider diagrams (enrichment of LILE, negative Nb, Ta, P and Ti anomalies) also show magmatic arc origin. The morphology, internal structure, and high Th/U ratio of zircon grains in felsic orthogneiss are consistent with magmatic origin for most of these grains. Zircon U-Pb analyses suggest Early Neoproterozoic (847.4 ± 8.0 Ma) magmatism and protolith formation. Some older grains (1026-882 Ma) are regarded as

  14. The geochemical and genetic role of organic substances in postmagmatic derivatives of alkaline plutons

    NASA Astrophysics Data System (ADS)

    Ermolaeva, V. N.; Chukanov, N. V.; Pekov, I. V.; Kogarko, L. N.

    2009-12-01

    Solid bituminous substances (SBS) are common components of the late hydrothermal mineral assemblages of peralkaline pegmatites. SBS are formed in a reductive setting as a result of progressive sorption of minor carbon-bearing molecules (CO, CO2, CH4, C2H6, C2H4, etc.), their polymerization, transformation into aromatic compounds (reformation), and selective oxidation on microporous zeolite-like Ti-, Nb-, and Zrsilicates serving as sorbents and catalysts. The oxygen-bearing aromatic compounds with hydrophile functional groups (-OH, -C=O, -COOH, -COO) act as complexing agents with respect to Th, REE, U, Zr, Ti, Nb, Ba, Sr, Ca, resulting in transfer of these bitumenophile elements under low-temperature hydrothermal conditions in the form of water-soluble macroassociates of the micelle type. Th, REE, and to a lesser extent, U, Zr, Ti, and Nb concentrate at the late stage of the hydrothermal process as microphases impregnating SBS or macroscopic segregations of Th and REE minerals. At the final stage, homogeneous SBS break down into organic (partly together with Ca, Sr, Ba, and Pb) and mineral (with Th, Ln, Y, Ti, Nb, Ca, Na, K, Si) microphases.

  15. U-Pb geochronology of zircon and polygenetic titanite from the Glastonbury Complex, Connecticut, USA: An integrated SEM, EMPA, TIMS, and SHRIMP study

    USGS Publications Warehouse

    Aleinikoff, J.N.; Wintsch, R.P.; Fanning, C.M.; Dorais, M.J.

    2002-01-01

    U-Pb ages for zircon and titanite from a granodioritic gneiss in the Glastonbury Complex, Connecticut, have been determined using both isotope dilution thermal ionization mass spectrometry (TIMS) and the sensitive high resolution ion microprobe (SHRIMP). Zircons occur in three morphologic populations: (1) equant to stubby, multifaceted, colorless, (2) prismatic, dark brown, with numerous cracks, and (3) elongate, prismatic, light tan to colorless. Cathodoluminescence (CL) imaging of the three populations shows simple concentric oscillatory zoning. The zircon TIMS age [weighted average of 207Pb/206Pb ages from Group 3 grains-450.5 ?? 1.6 Ma (MSWD=1.11)] and SHRIMP age [composite of 206Pb/238 U age data from all three groups-448.2 ?? 2.7 Ma (MSWD = 1.3)], are interpreted to suggest a relatively simple crystallization history. Titanite from the granodioritic gneiss occurs as both brown and colorless varieties. Scanning electron microscope backscatter (BSE) images of brown grains show multiple cross-cutting oscillatory zones of variable brightness and dark overgrowths. Colorless grains are unzoned or contain subtle wispy or very faint oscillatory zoning. Electron microprobe analysis (EMPA) clearly distinguishes the two populations. Brown grains contain relatively high concentrations of Fe2O3, Ce2O3 (up to ~ 1.5 wt.%), Nb2O5, and Zr. Cerium concentration is positively correlated with total REE + Y concentration, which together can exceed 3.5 wt.%. Oscillatory zoning in brown titanite is correlated with variations in REE concentrations. In contrast, colorless titanite (both as discrete grains and overgrowths on brown titanite) contains lower concentrations of Y, REE, Fe2O3, and Zr, but somewhat higher Al2O3 and Nb2O5. Uranium concentrations and Th/U discriminate between brown grains (typically 200-400 ppm U; all analyses but one have Th/U between about 0.8 and 2) and colorless grains (10-60 ppm U; Th/U of 0-0.17). In contrast to the zircon U-Pb age results, SHRIMP U

  16. Start Up of a Nb-1%Zr Potassium Heat Pipe From the Frozen State

    NASA Technical Reports Server (NTRS)

    Glass, David E.; Merrigan, Michael A.; Sena, J. Tom

    1998-01-01

    The start up of a liquid metal heat pipe from the frozen state was evaluated experimentally with a Nb-1%Zr heat pipe with potassium as the working fluid. The heat pipe was fabricated and tested at Los Alamos National Laboratory. RF induction heating was used to heat 13 cm of the 1-m-long heat pipe. The heat pipe and test conditions are well characterized so that the test data may be used for comparison with numerical analyses. An attempt was made during steady state tests to calibrate the heat input so that the heat input would be known during the transient cases. The heat pipe was heated to 675 C with a throughput of 600 W and an input heat flux of 6 W/cm(exp 2). Steady state tests, start up from the frozen state, and transient variations from steady state were performed.

  17. High-temperature steam oxidation and oxide crack effects of Zr-1Nb-1Sn-0.1Fe fuel cladding

    NASA Astrophysics Data System (ADS)

    Lee, Cheol Min; Mok, Yong-Kyoon; Sohn, Dong-Seong

    2017-12-01

    In this study, high-temperature steam oxidation experiments were performed at 1012-1207 °C on Zr-1Nb-1Sn-0.1Fe fuel cladding tubes to study their weight gains and microstructural characteristics. Many specimens were tested at each test temperature, and the results were reproducible and reliable. It is often debated whether the Zr-1Nb-1Sn-0.1Fe alloy follows the weight gain correlation developed by Cathcart and Pawel (C-P correlation) at around 1000 °C. According to our results, the C-P correlation overpredicts the weight gain at around 1000 °C, and this observation agrees well with the data reported by Westinghouse. In addition, the microstructures of the specimens were analyzed using scanning electron microscopy, and it was found that circumferential cracks are formed at the oxide-metal interface only at around 1000 °C. In previous studies, it has been postulated that cracks in the oxide promote the oxidation process, but it appears that the circumferential cracks at the oxide-metal interface decrease the oxidation rate before the breakaway oxidation occurs by disturbing the diffusion of oxygen. The oxidation rate reduction due to the circumferential cracks appears to be the reason for the overprediction of the C-P correlation at around 1000 °C.

  18. Non-destructive Quantitative Phase Analysis and Microstructural Characterization of Zirconium Coated U-10Mo Fuel Foils via Neutron Diffraction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cummins, Dustin Ray; Vogel, Sven C.; Hollis, Kendall Jon

    2016-10-18

    This report uses neutron diffraction to investigate the crystal phase composition of uranium-molybdenum alloy foils (U-10Mo) for the CONVERT MP-1 Reactor Conversion Project, and determines the effect on alpha-uranium contamination following the deposition of a Zr metal diffusion layer by various methods: plasma spray deposition of Zr powders at LANL and hot co-rolling with Zr foils at BWXT. In summary, there is minimal decomposition of the gamma phase U-10Mo foil to alpha phase contamination following both plasma spraying and hot co-rolling. The average unit cell volume, i.e. lattice spacing, of the Zr layer can be mathematically extracted from the diffractionmore » data; co-rolled Zr matches well with literature values of bulk Zr, while plasma sprayed Zr shows a slight increase in the lattice spacing, indicative of interstitial oxygen in the lattice. Neutron diffraction is a beneficial alternative to conventional methods of phase composition, i.e. x ray diffraction (XRD) and destructive metallography. XRD has minimal penetration depth in high atomic number materials, particularly uranium, and can only probe the first few microns of the fuel plate; neutrons pass completely through the foil, allowing for bulk analysis of the foil composition and no issues with addition of cladding layers, as in the final, aluminum-clad reactor fuel plates. Destructive metallography requires skilled technicians, cutting of the foil into small sections, hazardous etching conditions, long polishing and microscopy times, etc.; the neutron diffraction system has an automated sample loader and can fit larger foils, so there is minimal analysis preparation; the total spectrum acquisition time is ~ 1 hour per sample. The neutron diffraction results are limited by spectra refinement/calculation times and the availability of the neutron beam source. In the case of LANSCE at Los Alamos, the beam operates ~50% of the year. Following the lessons learned from these preliminary results

  19. A-site- and/or B-site-modified PbZrTiO3 materials and (Pb, Sr, Ca, Ba, Mg) (Zr, Ti, Nb, Ta)O3 films having utility in ferroelectric random access memories and high performance thin film microactuators

    NASA Technical Reports Server (NTRS)

    Bilodeau, Steven (Inventor); Baum, Thomas H. (Inventor); Roeder, Jeffrey F. (Inventor); Chen, Ing-Shin (Inventor)

    2001-01-01

    A modified PbZrTiO.sub.3 perovskite crystal material thin film, wherein the PbZrTiO.sub.3 perovskite crystal material includes crystal lattice A-sites and B-sites at least one of which is modified by the presence of a substituent selected from the group consisting of (i) A-site substituents consisting of Sr, Ca, Ba and Mg, and (ii) B-site substituents selected from the group consisting of Nb and Ta. The perovskite crystal thin film material may be formed by liquid delivery MOCVD from metalorganic precursors of the metal components of the thin film, to form PZT and PSZT, and other piezoelectric and ferroelectric thin film materials. The thin films of the invention have utility in non-volatile ferroelectric memory devices (NV-FeRAMs), and in microelectromechanical systems (MEMS) as sensor and/or actuator elements, e.g., high speed digital system actuators requiring low input power levels.

  20. Chemical vapor deposited monolayer MoS2 top-gate MOSFET with atomic-layer-deposited ZrO2 as gate dielectric

    NASA Astrophysics Data System (ADS)

    Hu, Yaoqiao; Jiang, Huaxing; Lau, Kei May; Li, Qiang

    2018-04-01

    For the first time, ZrO2 dielectric deposition on pristine monolayer MoS2 by atomic layer deposition (ALD) is demonstrated and ZrO2/MoS2 top-gate MOSFETs have been fabricated. ALD ZrO2 overcoat, like other high-k oxides such as HfO2 and Al2O3, was shown to enhance the MoS2 channel mobility. As a result, an on/off current ratio of over 107, a subthreshold slope of 276 mV dec-1, and a field-effect electron mobility of 12.1 cm2 V-1 s-1 have been achieved. The maximum drain current of the MOSFET with a top-gate length of 4 μm and a source/drain spacing of 9 μm is measured to be 1.4 μA μm-1 at V DS = 5 V. The gate leakage current is below 10-2 A cm-2 under a gate bias of 10 V. A high dielectric breakdown field of 4.9 MV cm-1 is obtained. Gate hysteresis and frequency-dependent capacitance-voltage measurements were also performed to characterize the ZrO2/MoS2 interface quality, which yielded an interface state density of ˜3 × 1012 cm-2 eV-1.

  1. Comparison of metal release from various metallic biomaterials in vitro.

    PubMed

    Okazaki, Yoshimitsu; Gotoh, Emiko

    2005-01-01

    To investigate the metal release of each base and alloying elements in vitro, SUS316L stainless steel, Co-Cr-Mo casting alloy, commercially pure Ti grade 2, and Ti-6Al-4V, V-free Ti-6Al-7Nb and Ti-15Zr-4Nb-4Ta alloys were immersed in various solutions, namely, alpha-medium, PBS(-), calf serum, 0.9% NaCl, artificial saliva, 1.2 mass% L-cysteine, 1 mass% lactic acid and 0.01 mass% HCl for 7d. The difference in the quantity of Co released from the Co-Cr-Mo casting alloy was relatively small in all the solutions. The quantities of Ti released into alpha-medium, PBS(-), calf serum, 0.9% NaCl and artificial saliva were much lower than those released into 1.2% L-cysteine, 1% lactic acid and 0.01% HCl. The quantity of Fe released from SUS316L stainless steel decreased linearly with increasing pH. On the other hand, the quantity of Ti released from Ti materials increased with decreasing pH, and it markedly attenuated at pHs of approximately 4 and higher. The quantity of Ni released from stainless steel gradually decreased with increasing pH. The quantities of Al released from the Ti-6Al-4V and Ti-6Al-7Nb alloys gradually decreased with increasing pH. A small V release was observed in calf serum, PBS(-), artificial saliva, 1% lactic acid, 1.2% l-cysteine and 0.01% HCl. The quantity of Ti released from the Ti-15Zr-4Nb-4Ta alloy was smaller than those released from the Ti-6Al-4V and Ti-6Al-7Nb alloys in all the solutions. In particular, it was approximately 30% or smaller in 1% lactic acid, 1.2% L-cysteine and 0.01% HCl. The quantity of (Zr + Nb + Ta) released was also considerably lower than that of (Al + Nb) or (Al + V) released. Therefore, the Ti-15Zr-4Nb-4Ta alloy with its low metal release in vitro is considered advantageous for long-term implants. Copyright 2004 Elsevier Ltd.

  2. The crystal structure of ianthinite, [U 24+(UO 2) 4O 6(OH) 4(H 2O) 4](H 2O) 5: a possible phase for Pu 4+ incorporation during the oxidation of spent nuclear fuel

    NASA Astrophysics Data System (ADS)

    Burns, Peter C.; Finch, Robert J.; Hawthorne, Frank C.; Miller, Mark L.; Ewing, Rodney C.

    1997-10-01

    Ianthinite, [U 24+(UO 2) 4O 6(OH) 4(H 2O) 4](H 2O) 5, is the only known uranyl oxide hydrate mineral that contains U 4+, and it has been proposed that ianthinite may be an important Pu 4+-bearing phase during the oxidative dissolution of spent nuclear fuel. The crystal structure of ianthinite, orthorhombic, a = 0.7178(2), b = 1.1473(2), c = 3.039(1) nm, V = 2.5027 nm 3Z = 4, space group P2 1cn, has been solved by direct methods and refined by least-squares methods to an R index of 9.7% and a wR index of 12.6% using 888 unique observed [| F| ≥ 5 σ | F|] reflections. The structure contains both U 4+. The U 6+ cations are present as roughly linear (U 6+O 2) 2+ uranyl ion (Ur) that are in turn coordinated by five O 2- and OH - located at the equatorial positions of pentagonal bipyramids. The U 4+ cations are coordinated by O 2-, OH - and H 2O in a distorted octahedral arrangement. The Ur φ5and U 4+| 6 (φ: O 2-, OH -, H 2O) polyhedra l sharing edges to for two symmetrically distinct sheets at z ≈ 0.0 and z ≈ 0.25 that are parallel to (001). The sheets have the β-U 3O 8 sheet anion-topology. There are five symmetrically distinct H 2O groips located at z ≈ 0.125 between the sheets of U φn polyhedra, and the sheets of U φn polyhedra are linked together only by hydrogen bonding to the intersheet H 2O groups. The crystal-chemical requirements of U 4+ and Pu 4+ are very similar, suggesting that extensive Pu 4+ ↔ U 4+ substitution may occur within the sheets of U φn polyhedra in trh structure of ianthinine.

  3. Guidelines for sample collecting and analytical methods used in the U.S. Geological Survey for determining chemical composition of coal

    USGS Publications Warehouse

    Swanson, Vernon Emanuel; Huffman, Claude

    1976-01-01

    This report is intended to meet the many requests for information on current U.S. Geological Survey procedures in handling coal samples. In general, the exact type and number of samples of coal and associated rock to be collected are left to the best judgment of the geologist. Samples should be of unweathered coal or rock and representative of the bed or beds sampled; it is recommended that two channel samples, separated by 10 to 100 yards (10 to 100 metres) and weighing 4 to 5 pounds ( 1.8 to 2.3 kilograms) each, be collected of each 5 feet ( 1.5 metres) of vertical section. Care must be taken to avoid any sample contamination, and to record the exact locality, thickness, and stratigraphic information for each sample. Analytical methods are described for the determination of major, minor, and trace elements in coal. Hg, As, Sb, F, Se, U, and Th are determined in the raw coal, and the following 34 elements are determined after ashing the coal: Si, Al, Ca, Mg, Na, K, Fe (total), Cl, Ti, Mn, P, S (total), Cd, Li, Cu, Zn, Pb, B, Ba, Be, Co, Cr, Ga, La, Mo, Nb, Ni, Sc, Sr, Ti, V, Y, Yb, and Zr. The methods used to determine these elements include atomic absorption spectroscopy, X-ray fluorescence spectroscopy, optical emission spectroscopy, spectrophotometry, selective-ion electrode, and neutron activation analysis. A split of representative coal samples is submitted to the U.S. Bureau of Mines for proximate, ultimate, forms of sulfur, and Btu determinations.

  4. Y,REE,Nb,Ta,Ti-oxide (AB 2O 6) minerals from REL-REE euxenite-subtype pegmatites of the Třebíč Pluton, Czech Republic; substitutions and fractionation trends

    NASA Astrophysics Data System (ADS)

    Škoda, Radek; Novák, Milan

    2007-04-01

    Aeschynite-group minerals (AGM) and euxenite-group minerals (EGM) occur in REL-REE euxenite-subtype pegmatites from the Třebíč Pluton, Czech Republic. They form strongly metamictized, light brown to black, equigranular to needle-like, subhedral to anhedral grains enclosed in blocky K-feldspar and less commonly in albite, and blocky quartz, and in the graphic unit (quartz and K-feldspar). Both AGM and EGM are homogeneous to slightly heterogeneous in BSE images. They are not commonly associated with the other primary Y,REE,Ti,Nb-bearing minerals, i.e. allanite-(Ce), monazite-(Ce), titanite, and ilmenite, which occur within the same textural-paragenetic unit. Aeschynite-(Y), aeschynite-(Ce), aeschynite-(Nd), nioboaeschynite-(Ce), tantalaeschynite-(Ce), vigezzite and polycrase-(Y) were identified using EMP and canonical discrimination analysis [Ercit, T.S., 2005a. Identification and alteration trends of granitic-pegmatite-hosted (Y,REE,U,Th)-(Nb,Ta,Ti) oxide minerals: a statistical approach. Can. Mineral. 43, 4 1291-1303.]. The exchange vector ACa B(Nb,Ta) A(Y,REE) - 1 BTi - 1 or its combination with the exchange vector ACa 2B(Nb,Ta) 3A(U,Th) - 1 A(Y,REE) - 1 BTi - 3 have been elucidated for the AGM. The exchange vector ACa A(U,Th) A(Y,REE) - 2 is predominant in the EGM. The AGM are enriched in HREE, whereas LREE are concentrated in the EGM. Weak to none-existent geochemical fractionations, as expressed by the U/(U + Th), Y/(Y + REE), Ta/(Ta + Nb) and (Nb + Ta)/(Ti + Nb + Ta) ratios, were noted for single grains from both the AGM and EGM, as well as in grains of polycrase-(Y) from four different textural-paragenetic units located in the Vladislav pegmatite. Simultaneous increase of U/(U + Th) and Y/(Y + REE) in the AGM during fractionation is typical. The Ta/(Ta + Nb) fractionation is usually weak and contradicts the Y/(Y + REE) and U/(U + Th) fractionation trends. This unusual behavior of Nb and Ta may be controlled by associated Ti-rich minerals (titanite

  5. Effect of Zr, Nb and Ti addition on injection molded 316L stainless steel for bio-applications: Mechanical, electrochemical and biocompatibility properties.

    PubMed

    Gulsoy, H Ozkan; Pazarlioglu, Serdar; Gulsoy, Nagihan; Gundede, Busra; Mutlu, Ozal

    2015-11-01

    The research investigated the effect of Zr, Nb and Ti additions on mechanical, electrochemical properties and biocompatibility of injection molded 316L stainless steel. Addition of elemental powder is promoted to get high performance of sintered 316L stainless steels. The amount of additive powder plays a role in determining the sintered microstructure and all properties. In this study, 316L stainless steel powders used with the elemental Zr, Nb and Ti powders. A feedstock containing 62.5 wt% powders loading was molded at different injection molded temperature. The binders were completely removed from molded components by solvent and thermal debinding at different temperatures. The debinded samples were sintered at 1350°C for 60 min. Mechanical, electrochemical property and biocompatibility of the sintered samples were performed mechanical, electrochemical, SBF immersion tests and cell culture experiments. Results of study showed that sintered 316L and 316L with additives samples exhibited high corrosion properties and biocompatibility in a physiological environment. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. SYNTHESIS OF ZrI$sub 4$ AND HfI$sub 4$ BY HALOID EXCHANGE (in Russian)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nisel'son, L.A.; Teslitskaya, M.V.; Shvedova, T.A.

    1962-05-01

    Syntheses of ZrI/sub 4/ and Hfl/sub 4/ by reactions of ZrCl/sub 4/ with SiI/sub 4/, Al/sub 2/I/sub 6/, HI, and Al/sub 2/Br and HfCl/sub 4/ with Al/sub 2 / I/sub 6/ are analyzed. The highest exchange yield was reached with /sub 4/ from ZrCl/sub 4/ and other admixtures was achieved by distillation. (R.V.J.)

  7. Luminescence properties of long-lasting phosphor SrMg2(PO4)2:Eu2+, Ho3+, Zr4+

    NASA Astrophysics Data System (ADS)

    Tang, Wei; Wang, Mingwen; Lin, Wei; Ye, Yaping; Wu, Xue

    2016-12-01

    Novel long lasting phosphors SrMg2(PO4)2:Eu2+, SrMg2(PO4)2:Eu2+, Zr4+, SrMg2(PO4)2:Eu2+, Ho3+ and SrMg2(PO4)2:Eu2+, Ho3+, Zr4+ were synthesized by conventional solid-state reaction method. The luminescent properties were systematically characterized by X-ray diffraction, photoluminescent excitation and emission spectra, as well as thermoluminescence spectrum and decay curves. The XRD patterns indicated that the samples belonged to monoclinic phase and co-doping Eu2+, Ho3+ and Zr4+ ions had no effect on the basic crystal structure. These phosphors emitting purplish blue light is related to the characteristic emission of Eu2+. The afterglow time of Eu2+ activated SrMg2(PO4)2 can be greatly enhanced by the co-doping of Ho3+, Zr4+. After the 365 nm UV light excitation source switching off, the Sr0.92Mg1.95(PO4)2:Eu2+0.01, Zr4+0.05, Ho3+0.07 phosphorescence can be observed for more than 1013 s in the limit of light perception of dark-adapted human eyes (0.32 mcd/m2). Different kinds of TL peaks at 423, 448 and 473 K have appeared, and traps densities have increased compared with the Eu2+ single doped SrMg2(PO4)2 phosphor. By analyzing the TL curve the depths of traps were calculated to be 0.846, 0.896 and 0.946 eV, respectively, which suggested that the co-doping of Ho3+, Zr4+ improved the electron storage ability of material. Besides, the mechanism was discussed in this report.

  8. Discovery of ferromagnetism with large magnetic anisotropy in ZrMnP and HfMnP

    DOE PAGES

    Lamichhane, Tej N.; Taufour, Valentin; Masters, Morgan W.; ...

    2016-08-29

    Here, ZrMnP and HfMnP single crystals are grown by a self-flux growth technique, and structural as well as temperature dependent magnetic and transport properties are studied. Both compounds have an orthorhombic crystal structure. ZrMnP and HfMnP are ferromagnetic with Curie temperatures around 370 K and 320 K, respectively. The spontaneous magnetizations of ZrMnP and HfMnP are determined to be 1.9 μ B/f.u. and 2.1 μ B/f.u., respectively, at 50 K. The magnetocaloric effect of ZrMnP in terms of entropy change (Δ S) is estimated to be –6.7 kJ m –3 K –1 around 369 K. The easy axis of magnetizationmore » is [100] for both compounds, with a small anisotropy relative to the [010] axis. At 50 K, the anisotropy field along the [001] axis is ~4.6 T for ZrMnP and ~10 T for HfMnP. Such large magnetic anisotropy is remarkable considering the absence of rare-earth elements in these compounds. The first principle calculation correctly predicts the magnetization and hard axis orientation for both compounds, and predicts the experimental HfMnP anisotropy field within 25%. More importantly, our calculations suggest that the large magnetic anisotropy comes primarily from the Mn atoms, suggesting that similarly large anisotropies may be found in other 3d transition metal compounds.« less

  9. The stability of thermodynamically metastable phases in a Zr-Sn-Nb-Mo alloy: Effects of alloying elements, morphology and applied stress/strain

    NASA Astrophysics Data System (ADS)

    Yu, Hongbing; Yao, Zhongwen; Daymond, Mark R.

    2017-09-01

    In this paper, a dual phase Zr-Sn-Nb-Mb alloy was studied with TEM after thermal treatment and high-temperature tensile deformation. Plate and pressure tube material, manufactured through different processing routes, were used in this study. The overall average concentrations of Mo and Nb in the β phase are higher in the pressure tube than in the plate. It was revealed that these concentrations have significant effects on the subsequent stability of the β and ω phases as well as on the precipitation behavior of the α phase from the β phase. That is, the higher the concentrations, the more stable the β and ω phases are, and hence there is a reduced tendency for precipitation of α phase. Aging treatments cause the transformation of athermal ω to isothermal ω, as expected. The most striking finding is the product of the decomposition of the isothermal ω particles during aging treatment is determined as not being α phase, even though the structure of it is, as-yet, not fully determined. The non-uniform morphology of the β grains in the plate material provides us a unique opportunity to investigate the effects of morphology on the aging response of the β phase. It was found that thin β filaments suppress the precipitation of isothermal ω particles but enhance the precipitation of α phase at α/β interfaces. The effect of the Burgers orientation relationship between α and β grains on the precipitation of the α phase at the α/β interface is discussed. Applied high-temperature stress/strain has been found to enhance the decomposition of isothermal ω phase but suppress α precipitation inside the β grains. The suppression of α precipitation by applied stress/strain is discussed in terms of the ω assisted α precipitation. Implications of these findings for the in-service application of the alloy are discussed.

  10. Role of Si on the Diffusional Interactions Between U-Mo and Al-Si Alloys at 823 K (550 °C)

    NASA Astrophysics Data System (ADS)

    Perez, Emmanuel; Sohn, Yong-Ho; Keiser, Dennis D.

    2013-01-01

    U-Mo dispersions in Al-alloy matrix and monolithic fuels encased in Al-alloy are under development to fulfill the requirements for research and test reactors to use low-enriched molybdenum stabilized uranium alloy fuels. Significant interaction takes place between the U-Mo fuel and Al during manufacturing and in-reactor irradiation. The interaction products are Al-rich phases with physical and thermal characteristics that adversely affect fuel performance and result in premature failure. Detailed analysis of the interdiffusion and microstructural development of this system was carried through diffusion couples consisting of U-7 wt pct Mo, U-10 wt pct Mo and U-12 wt pct Mo in contact with pure Al, Al-2 wt pct Si, and Al-5 wt pct Si, annealed at 823 K (550 °C) for 1, 5 and 20 hours. Scanning electron microscopy and transmission electron microscopy were employed for the analysis. Diffusion couples consisting of U-Mo in contact with pure Al contained UAl3, UAl4, U6Mo4Al43, and UMo2Al20 phases. Additions of Si to the Al significantly reduced the thickness of the interdiffusion zone. The interdiffusion zones developed Al- and Si-enriched regions, whose locations and size depended on the Si and Mo concentrations in the terminal alloys. In these couples, the (U,Mo)(Al,Si)3 phase was observed throughout the interdiffusion zone, and the U6Mo4Al43 and UMo2Al20 phases were observed only where the Si concentrations were low.

  11. Wear Resistance Enhancement of Ti-6Al-4 V Alloy by Applying Zr-Modified Silicide Coatings

    NASA Astrophysics Data System (ADS)

    Li, Xuan; Hu, Guangzhong; Tian, Jin; Tian, Wei; Xie, Wenling; Li, Xiulan

    2018-03-01

    Zr-modified silicide coatings were prepared on Ti-6Al-4 V alloy by pack cementation process to enhance its wear resistance. The microstructure and wear properties of the substrate and the coatings were comparatively investigated using GCr15 and Al2O3 as the counterparts under different sliding loads. The obtained Zr-modified silicide coating had a multilayer structure, consisting of a thick (Ti, X)Si2 (X represents Al, Zr and V elements) outer layer, a TiSi middle layer and a Ti5Si4 + Ti5Si3 inner layer. The micro-hardness of the coating was much higher than the substrate and displayed a decrease tendency from the coating surface to the interior. Sliding against either GCr15 or Al2O3 balls, the coatings showed superior anti-friction property to the Ti-6Al-4 V alloy, as confirmed by its much lower wear rate under each employed sliding condition.

  12. Results of irradiation of (U0.55Pu0.45)N and (U0.4Pu0.6)N fuels in BOR-60 up to ˜12 at.% burn-up

    NASA Astrophysics Data System (ADS)

    Rogozkin, B. D.; Stepennova, N. M.; Fedorov, Yu. Ye.; Shishkov, M. G.; Kryukov, F. N.; Kuzmin, S. V.; Nikitin, O. N.; Belyaeva, A. V.; Zabudko, L. M.

    2013-09-01

    In the article presented are the results of post-irradiation tests of helium bonded fuel pins with mixed mononitride fuel (U0.55Pu0.45)N and (U0.4Pu0.6)N having 85% density irradiated in BOR-60 reactor. Achieved maximum burn-up was, respectively, equal to 9.4 and 12.1 at.% with max linear heat rates 41.9 and 54.5 kW/m. Maximum irradiation dose was 43 dpa. No damage of claddings made of ChS-68 steel (20% cold worked) was observed, and ductility margin existed. Maximum depth of cladding corrosion was within 15 μm. Swelling rates of (U0.4Pu0.6)N and (U0.55Pu0.45)N were, respectively, ˜1.1% and ˜0.68% per 1 at.%. Gas release rate did not exceed 19.3% and 19%. Pattern of porosity distribution in the fuel influenced fuel swelling and gas release rates. Plutonium and uranium are uniformly distributed in the fuel, local minimum values of their content being caused by pores and cracks in the pellets. The observable peaks in content distribution are probably connected with the local formation of isolated phases (e.g. Mo, Pd) while the minimum values refer to fuel pores and cracks. Xenon and cesium tend to migrate from the hot sections of fuel, and therefore their min content is observed in the central section of the fuel pellets. Phase composition of the fuel was determined with X-ray diffractometer. The X-ray patterns of metallographic specimens were obtained by the scanning method (the step was 0.02°, the step exposition was equal to 2 s). From the X-ray diffraction analysis data, it follows that the nitrides of both fuel types have the single-phase structure with an FCC lattice (see Table 6).

  13. Effect of Substitution (Ta, Al, Ga) on the Conductivity of Li7La3Zr2O12

    DTIC Science & Technology

    2012-01-30

    xTax012). Conductivity data was not included in their report. Similarly to Ta, Nb substitution for Zr should also lower the Li content of the LLZO and a...high Li ion conductivity (0.8 mS cm−1 at 298 K) cubic garnet sample has been reported with Nb substitution for Zr by Ohta et al. [15]. However, Ta is...substitution for Zr follows this approach and it is desirable for a couple rea- sons. First, Ta is stable relative to Li [13]. Second, Ta substitution

  14. The Effect of Microstructure on the Creep behavior of Ti-6Al-2Nb-1Ta-0.8Mo.

    DTIC Science & Technology

    1985-09-01

    SCIENCE WI H MILLER El AL . SEP 85 UNLSSFEM N 1 -21 U m|hh|hhh|h|hEI mmhhhhhhmhhmml mh/|mhEEE/mhh EigEggEElgllgE * -72 °o- ° - 112.5 .b L. L.- 1111 34...transus temperature ( Al and interstitials 02, N2 and C) and "alpha strengthening elements which have high alpha soluability (Sn, Si and Zr) but do not...Ti 3 A1 may also precipitate in the alpha phase 3 and cause embrittlement in some alloy systems during ageing at 773K ( l.4) The effect of Ti 3 Al

  15. Dopant occupancy and UV-VIS-NIR spectroscopy of Mg (0, 4, 5 and 6 mol.%):Dy:LiNbO3 crystal

    NASA Astrophysics Data System (ADS)

    Dai, Li; Liu, Chunrui; Han, Xianbo; Wang, Luping; Tan, Chao; Yan, Zhehua; Xu, Yuheng

    2017-09-01

    A series of Dy:LiNbO3 crystals with x mol.% Mg2+ ions (x =0, 4, 5 and 6 mol.%) were grown by the Czochralski method. The effective segregation coefficient of Mg2+ and Dy3+ ions was studied by the inductively coupled plasma-atomic emission spectrometry (ICP-AES). UV-VIS-NIR absorption spectra and Judd-Ofelt theory were used to investigate their spectroscopic properties. J-O intensity parameters (Ω2 = 7.53 × 10-20cm2, Ω4 = 6.98 × 10-20cm2, and Ω6 = 3.09 × 10-20cm2) and larger spectroscopic quality factor (X = 2.26) for Mg:(6 mol.%)Dy:LiNbO3 crystals were obtained.

  16. Manipulating the magnetoelectric effect: Essence learned from Co4Nb2O9

    NASA Astrophysics Data System (ADS)

    Yanagi, Yuki; Hayami, Satoru; Kusunose, Hiroaki

    2018-01-01

    Recent experiments for linear magnetoelectric (ME) response in honeycomb antiferromagnet Co4Nb2O9 revealed that the electric polarization can be manipulated by the in-plane rotating magnetic field in a systematic way. We propose the minimal model by extracting essential ingredients of Co4Nb2O9 to exhibit such ME response. It is the three-orbital model with x y -type atomic spin-orbit coupling (SOC) on the single-layer honeycomb structure, and it is shown to reproduce qualitatively the observed field-angle dependence of the electric polarization. The obtained results can be understood by the perturbative calculation with respect to the atomic SOC. These findings could be useful to explore further ME materials having similar manipulability of the electric polarization.

  17. Strong piezoelectric anisotropy d15/d33 in ⟨111⟩ textured Pb(Mg1/3Nb2/3)O3-Pb(Zr,Ti)O3 ceramics

    NASA Astrophysics Data System (ADS)

    Yan, Yongke; Priya, Shashank

    2015-08-01

    The shear mode piezoelectric properties of Pb(Mg1/3Nb2/3)O3-Pb(Zr,Ti)O3 (PMN-PZT) ceramic with 72% ⟨111⟩ texture were investigated. The piezoelectric anisotropic factor d15/d33 was as high as 8.5 in ⟨111⟩ textured ceramic as compared to 2.0 in random counterpart. The high d15/d33 indicates the "rotator" ferroelectric characteristics of PMN-PZT system and suggests that the large shear piezoelectric response contributes towards the high longitudinal piezoelectric response (d33) in non-polar direction (d33 = 1100 pC/N in ⟨001⟩ textured ceramic vs. d33 = 112 pC/N in ⟨111⟩ textured ceramic).

  18. Phase transition behavior of (K,Na)NbO3-based high-performance lead-free piezoelectric ceramic composite with different phase compositions depending on Na fraction

    NASA Astrophysics Data System (ADS)

    Yamada, Hideto; Matsuoka, Takayuki; Yamazaki, Masato; Ohbayashi, Kazushige; Ida, Takashi

    2018-01-01

    The structures of the main (K1- x Na x )NbO3 perovskite in a high-performance lead-free piezoelectric ceramic composite (K1- x Na x )0.86Ca0.04Li0.02Nb0.85O3-δ-K0.85Ti0.85Nb1.15O5-BaZrO3-MgO-Fe2O3 (x = 0.52 and 0.70) with trace amounts of LiMgFeTiO4 inverse spinel and (Li,K)2(Mg,Fe,Ti,Nb)6O13 layered structure have been investigated by transmission electron microscopy (TEM) and synchrotron powder X-ray diffractometry (XRD) with varying temperatures. The bright-field TEM images have shown tetragonal 90°-domain contrasts at 80 and 40 °C, and the XRD profile has been simulated by adding an average structure of two differently oriented tetragonal structures bound by a 90°-domain wall for the x = 0.52 sample. Aggregates of tilted NbO6 nanodomains have been observed in a high-resolution TEM image, and the crossover of P4mm-Amm2 features from 60 to 20 °C and diffuse 2 × 2 × 2 superlattice reflections of the tilted NbO6 Imm2 structure have been observed in XRD data for the x = 0.70 sample.

  19. In-pile test results of U-silicide or U-nitride coated U-7Mo particle dispersion fuel in Al

    NASA Astrophysics Data System (ADS)

    Kim, Yeon Soo; Park, J. M.; Lee, K. H.; Yoo, B. O.; Ryu, H. J.; Ye, B.

    2014-11-01

    U-silicide or U-nitride coated U-Mo particle dispersion fuel in Al (U-Mo/Al) was in-pile tested to examine the effectiveness of the coating as a diffusion barrier between the U-7Mo fuel kernels and Al matrix. This paper reports the PIE data and analyses focusing on the effectiveness of the coating in terms of interaction layer (IL) growth and general fuel performance. The U-silicide coating showed considerable success, but it also provided evidence for additional improvement for coating process. The U-nitride coated specimen showed largely inefficient results in reducing IL growth. From the test, important observations were also made that can be utilized to improve U-Mo/Al fuel performance. The heating process for coating turned out to be beneficial to suppress fuel swelling. The use of larger fuel particles confirmed favorable effects on fuel performance.

  20. The role of dispersed particles in strengthening and fracture mechanisms in a Mo-ZrC alloy processed by mechanical alloying

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Takida, T.; Mabuchi, M.; Nakamura, M.

    2000-03-01

    The tensile properties of a ZrC particle-dispersed Mo, which was processed by spark plasma sintering with mechanically alloyed powder, were investigated at room temperature and at elevated temperatures of 1,170 to 1,970 K. The Mo-ZrC alloy showed much higher strength at room temperature than a fully recrystallized pure Mo. The high strength of Mo-ZrC is mainly attributed to a very small grain size (about 3 {micro}m). The main role of the ZrC particle is not to increase strength due to the particle-dislocation interaction, but to limit grain growth during sintering and to attain the very small grain size. The elongationmore » at room temperature of No-ZrC was much lower than that of pure Mo. This is probably related to the higher interstitial contents. However, Mo-ZrC showed a large elongation of 180 pct at 1,970 K and 6.7 x 10{sup {minus}4} s{sup {minus}1}. It was suggested that the ZrC particles stabilized the fine-grained microstructure yet provided no cavitation sites at 1,970 K; as a result, the large elongation was attained.« less

  1. Growth and photo-response of NbSe2 and NbS2 crystals

    NASA Astrophysics Data System (ADS)

    Patel, Kunjal; Solanki, G. K.; Pataniya, Pratik; Patel, K. D.

    2018-05-01

    Transition metal dichalcogenides(TMDCs) have attracted intense research efforts due to their drastic properties change as we move towards ultra-thin crystalline layers from their bulk counterparts. Many well studied members of this family such as MoS2, WS2, WSe2, WS2 etc. have shown potential for flexible electronic devices including photovoltaic applications. The TMDCs like NbSe2 and NbS2 are relatively less studied layered compounds consisting of staked sandwiches of Se-Nb-Se/S-Nb-Se tri-layers with strong covalent/ionic intra layer bonds and weak Van der Waals interlayer interactions. In the present work, author have grown the crystals of NbSe2 and NbS2 by Direct Vapour Transport (DVT) technique and the material composition is confirmed using EDAX data. Photoelectrochemical (PEC) solar cell measurements are performed under monochromatic light illumination at different intensities and various solar cell parameters are calculated. These crystalline semiconductor electrodes were also analysed by photocurrent-voltage characteristics in a PEC solar cell structure (Cu/NbSe2/(0.1M K4Fe(CN)6 + 0.1M K3Fe(CN)6) and Cu/NbS2/(0.1M K4Fe(CN)6 +0.1M K3Fe(CN)6)). Blue coloured light gave the maximum efficiency. For further analysis of photodetection properties of the grown crystals, Ag painted broad low contact resistance electrical contacts were drawn from the crystals and its transient photoresponse was studied to evaluate different detector parameters.

  2. Observation of New Neutron-rich Isotopes among Fission Fragments from In-flight Fission of 345 MeV/nucleon 238U: Search for New Isotopes Conducted Concurrently with Decay Measurement Campaigns

    NASA Astrophysics Data System (ADS)

    Shimizu, Yohei; Kubo, Toshiyuki; Fukuda, Naoki; Inabe, Naohito; Kameda, Daisuke; Sato, Hiromi; Suzuki, Hiroshi; Takeda, Hiroyuki; Yoshida, Koichi; Lorusso, Giuseppe; Watanabe, Hiroshi; Simpson, Gary S.; Jungclaus, Andrea; Baba, Hidetada; Browne, Frank; Doornenbal, Pieter; Gey, Guillaunme; Isobe, Tadaaki; Li, Zhihuan; Nishimura, Shunji; Söderström, Pär-Anders; Sumikama, Toshiyuki; Taprogge, Jan; Vajta, Zsolt; Wu, Jin; Xu, Zhengyu; Odahara, Atsuko; Yagi, Ayumi; Nishibata, Hiroki; Lozeva, Radomira; Moon, Changbum; Jung, HyoSoon

    2018-01-01

    The search for new isotopes using the in-flight fission of a 238U beam has been conducted concurrently with decay measurements, during the so-called EURICA campaigns, at the RIKEN Nishina Center RI Beam Factory. Fission fragments were analyzed and identified in flight using the BigRIPS separator. We have identified the following 36 new neutron-rich isotopes: 104Rb, 113Zr, 116Nb, 118,119Mo, 121,122Tc, 125Ru, 127,128Rh, 129,130,131Pd, 132Ag, 134Cd, 136,137In, 139,140Sn, 141,142Sb, 144,145Te, 146,147I, 149,150Xe, 149,150,151Cs, 153,154Ba, and 154,155,156,157La.

  3. Increasing Ti-6Al-4V brazed joint strength equal to the base metal by Ti and Zr amorphous filler alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ganjeh, E., E-mail: navidganjehie@sina.kntu.ac.ir; Sarkhosh, H.; Bajgholi, M.E.

    Microstructural features developed along with mechanical properties in furnace brazing of Ti-6Al-4V alloy using STEMET 1228 (Ti-26.8Zr-13Ni-13.9Cu, wt.%) and STEMET 1406 (Zr-9.7Ti-12.4Ni-11.2Cu, wt.%) amorphous filler alloys. Brazing temperatures employed were 900-950 Degree-Sign C for the titanium-based filler and 900-990 Degree-Sign C for the zirconium-based filler alloys, respectively. The brazing time durations were 600, 1200 and 1800 s. The brazed joints were evaluated by ultrasonic test, and their microstructures and phase constitutions analyzed by metallography, scanning electron microscopy and X-ray diffraction analysis. Since microstructural evolution across the furnace brazed joints primarily depends on their alloying elements such as Cu, Ni andmore » Zr along the joint. Accordingly, existence of Zr{sub 2}Cu, Ti{sub 2}Cu and (Ti,Zr){sub 2}Ni intermetallic compounds was identified in the brazed joints. The chemical composition of segregation region in the center of brazed joints was identical to virgin filler alloy content which greatly deteriorated the shear strength of the joints. Adequate brazing time (1800 s) and/or temperature (950 Degree-Sign C for Ti-based and 990 Degree-Sign C for Zr-based) resulted in an acicular Widmanstaetten microstructure throughout the entire joint section due to eutectoid reaction. This microstructure increased the shear strength of the brazed joints up to the Ti-6Al-4V tensile strength level. Consequently, Ti-6Al-4V can be furnace brazed by Ti and Zr base foils produced excellent joint strengths. - Highlights: Black-Right-Pointing-Pointer Temperature or time was the main factors of controlling braze joint strength. Black-Right-Pointing-Pointer Developing a Widmanstaetten microstructure generates equal strength to base metal. Black-Right-Pointing-Pointer Brittle intermetallic compounds like (Ti,Zr){sub 2}Ni/Cu deteriorate shear strength. Black-Right-Pointing-Pointer Ti and Zr base filler alloys were the best choice for

  4. Some properties of low-vapor-pressure braze alloys for thermionic converters

    NASA Technical Reports Server (NTRS)

    Bair, V. L.

    1978-01-01

    Density, dc electrical resistivity, thermal conductivity, and linear thermal expansion are measured for arc-melted rod-shaped samples of binary eutectics of Zr, Hf, Ru, Nb, Ir, Mo, Ta, Os, Re, and W selected as very-low-pressure braze fillers for thermionic converters. The first two properties are measured at 296 K for Zr-21.7 at% Ru, Zr-13 wt% W, Zr-19 wt% W, Zr-22.3 at% Nb, Nb-66.9 at% Ru, Hf-25.3 wt% Re, Zr-25.7 at% Ta, Hf-22.5 at% W, and Nb-35 wt% Mo. The last property is measured from 293 K to 2/3 melting point for specified alloys of different compositions. Resistivities of 0.000055 to 0.000181 ohm-cm are observed with the alloys having resistivities about ten times that of the less resistive constituent metal and about three times that of the more resistive constituent metal, except for Zr-19 wt% W and Nb-35 wt% Mo (greater resistivities). Thermal expansion coefficients vary from 0.000006 to 0.0000105/K. All brazes exhibit linear thermal expansion near that of their constituent metals.

  5. Zr-Containing 4,4'-ODA/PMDA Polyimide Composites. Parts 1 & 2

    NASA Technical Reports Server (NTRS)

    Illingsworth, M. L.; Betancourt, J. A.; Chen, Y.; Terschak, J. A.; Banks, B. A.; Rutledge, S. K.; Cales, M.; He, L.

    2001-01-01

    The objective of this research is to improve the atomic oxygen resistance of Kapton(TM), a polyimide (PI) made from pyromellitic acid dianhydride (PMDA) and 4,4'-oxydianiline (ODA), while retaining or enhancing the desirable properties of the pure polymer. Toward this end, zirconium-containing complexes and polymers were used to make composites and blends. Tetra(acetylacetonato)zirconium(IV), Zr(acac)4, which is commercially available, was identified as the best zirconium-containing complex for enhancing the atomic oxygen resistance of polyimide composites of the 10 complexes screened. Films prepared from the commercially available polyamic acid (PAA) of PMDA-ODA (DuPont) have good uniformity, flexibility, and tensile strength. A 24-layer 10% (mol) Zr(acac)4/PI composite film showed significant improvement (ca. 20 fold) of atomic oxygen resistance over the pure polyimide. However, 10% (mol) Zr(acac)4 represents an upper concentration limit, above which films undergo cracking upon thermal imidization. In order to increase the Zr complex concentration in PMDA-ODA PI films, while retaining good film properties, [Zr(adsp)2-PMDA]n coordination polymer [bis(4-amino-N,N'-disalicylidene- 1,2-phenylenediamino)zirconium(IV)-pyromellitic dianhydride] and [Zr(adsp)2-PMDA-ODA-PMDA]n terpolymer were synthesized and blended with commercial PAA, respectively. Several techniques were used to characterize the films made from the polymer containing Zr(acac)4. Plasma studies of films having 2% (mol) incremental concentrations of Zr in the Kapton up to 10% (mol) show that the overall rate of erosion is reduced about 75 percent.

  6. Development and Validation of Capabilities to Measure Thermal Properties of Layered Monolithic U-Mo Alloy Plate-Type Fuel

    NASA Astrophysics Data System (ADS)

    Burkes, Douglas E.; Casella, Andrew M.; Buck, Edgar C.; Casella, Amanda J.; Edwards, Matthew K.; MacFarlan, Paul J.; Pool, Karl N.; Smith, Frances N.; Steen, Franciska H.

    2014-07-01

    The uranium-molybdenum (U-Mo) alloy in a monolithic form has been proposed as one fuel design capable of converting some of the world's highest power research reactors from the use of high enriched uranium to low enriched uranium. One aspect of the fuel development and qualification process is to demonstrate appropriate understanding of the thermal-conductivity behavior of the fuel system as a function of temperature and expected irradiation conditions. The purpose of this paper is to verify functionality of equipment installed in hot cells for eventual measurements on irradiated uranium-molybdenum (U-Mo) monolithic fuel specimens, refine procedures to operate the equipment, and validate models to extract the desired thermal properties. The results presented here demonstrate the adequacy of the equipment, procedures, and models that have been developed for this purpose based on measurements conducted on surrogate depleted uranium-molybdenum (DU-Mo) alloy samples containing a Zr diffusion barrier and clad in aluminum alloy 6061 (AA6061). The results are in excellent agreement with thermal property data reported in the literature for similar U-Mo alloys as a function of temperature.

  7. Influence of boron addition to Ti-13Zr-13Nb alloy on MG63 osteoblast cell viability and protein adsorption.

    PubMed

    Majumdar, P; Singh, S B; Dhara, S; Chakraborty, M

    2015-01-01

    Cell proliferation, cell morphology and protein adsorption on near β-type Ti-13Zr-13Nb (TZN) alloy and Ti-13Zr-13Nb-0.5B (TZNB) composite have been investigated and compared to evaluate the effect of boron addition which has been added to the Ti alloy to improve their poor tribological properties by forming in situ TiB precipitates. MG63 cell proliferation on substrates with different chemistry but the same topography was compared. The MTT assay test showed that the cell viability on the TZN alloy was higher than the boron containing TZNB composite after 36 h of incubation and the difference was pronounced after 7 days. However, both the materials showed substantially higher cell attachment than the control (polystyrene). For the same period of incubation in fetal bovine serum (FBS), the amount of protein adsorbed on the surface of boron free TZN samples was higher than that in the case of boron containing TZNB composite. The presence of boron in the TZN alloy influenced protein adsorption and cell response and they are lower in TZNB than in TZN as a result of the associated difference in chemical characteristics. Copyright © 2014. Published by Elsevier B.V.

  8. Isovector excitations in 100Nb and their decays by neutron emission studied via the Mo 100 ( t , He 3 + n ) reaction at 115 MeV/u

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miki, K.; Zegers, R. G. T.; Austin, Sam M.

    Here, spin–isospin excitations in 100Nb were studied via the charge-exchange reaction at 115 MeV/u with the goal to constrain theoretical models used to describe the isovector spin response of nuclei. The experiment was performed with a secondary beam of tritons, and 3He particles were analyzed in the S800 magnetic spectrometer. Decay by neutron emission from excited states in 100Nb was observed by using plastic and liquid scintillator arrays. Differential cross sections were analyzed and monopole excitations were revealed by using a multipole decomposition analysis. The Gamow–Teller transition strength observed at low excitation energies, which is important for estimating the electron-capturemore » rate in astrophysical scenarios, was strongly fragmented and reduced compared to single-particle and spherical mean-field models. The consideration of deformation in the theoretical estimates was found to be important to better describe the fragmentation and strengths. A strong excitation of the isovector spin giant monopole resonance was observed, and well reproduced by the mean-field models. Its presence makes the extraction of Gamow–Teller strengths at high excitation energies difficult. The branches for statistical and direct decay by neutron emission were identified in the spectra. The upper limit for the branching ratio by direct decay (integrated over all observed excitations) was determined to be 20 ± 6%. Even though the statistical uncertainties in the neutron-coincident data were too large to perform detailed studies of the decay by neutron emission from individual states and resonances, the experiment demonstrates the feasibility of the method.« less

  9. Isovector excitations in 100Nb and their decays by neutron emission studied via the Mo 100 ( t , He 3 + n ) reaction at 115 MeV/u

    DOE PAGES

    Miki, K.; Zegers, R. G. T.; Austin, Sam M.; ...

    2017-04-07

    Here, spin–isospin excitations in 100Nb were studied via the charge-exchange reaction at 115 MeV/u with the goal to constrain theoretical models used to describe the isovector spin response of nuclei. The experiment was performed with a secondary beam of tritons, and 3He particles were analyzed in the S800 magnetic spectrometer. Decay by neutron emission from excited states in 100Nb was observed by using plastic and liquid scintillator arrays. Differential cross sections were analyzed and monopole excitations were revealed by using a multipole decomposition analysis. The Gamow–Teller transition strength observed at low excitation energies, which is important for estimating the electron-capturemore » rate in astrophysical scenarios, was strongly fragmented and reduced compared to single-particle and spherical mean-field models. The consideration of deformation in the theoretical estimates was found to be important to better describe the fragmentation and strengths. A strong excitation of the isovector spin giant monopole resonance was observed, and well reproduced by the mean-field models. Its presence makes the extraction of Gamow–Teller strengths at high excitation energies difficult. The branches for statistical and direct decay by neutron emission were identified in the spectra. The upper limit for the branching ratio by direct decay (integrated over all observed excitations) was determined to be 20 ± 6%. Even though the statistical uncertainties in the neutron-coincident data were too large to perform detailed studies of the decay by neutron emission from individual states and resonances, the experiment demonstrates the feasibility of the method.« less

  10. Am phases in the matrix of a U–Pu–Zr alloy with Np, Am, and rare-earth elements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Janney, Dawn E.; Kennedy, J. Rory; Madden, James W.

    2015-01-01

    Phases and microstructures in the matrix of an as-cast U-Pu-Zr alloy with 3 wt% Am, 2% Np, and 8% rare-earth elements were characterized by scanning and transmission electron microscopy. The matrix consists primarily of two phases, both of which contain Am: ζ-(U, Np, Pu, Am) (~70 at% U, 5% Np, 14% Pu, 1% Am, and 10% Zr) and δ-(U, Np, Pu, Am)Zr 2 (~25% U, 2% Np, 10-15% Pu, 1-2% Am, and 55-60 at% Zr). These phases are similar to those in U-Pu-Zr alloys, although the Zr content in ζ-(U, Np, Pu, Am) is higher than that in ζ-(U, Pu)more » and the Zr content in δ-(U, Np, Pu, Am)Zr 2 is lower than that in δ-UZr 2. Nanocrystalline actinide oxides with structures similar to UO2 occurred in some areas, but may have formed by reactions with the atmosphere during sample handling. Planar features consisting of a central zone of ζ-(U, Np, Pu, Am) bracketed by zones of δ-(U, Np, Pu, Am)Zr 2 bound irregular polygons ranging in size from a few micrometers to a few tens of micrometers across. The rest of the matrix consists of elongated domains of ζ-(U, Np, Pu, Am) and δ-(U, Np, Pu, Am)Zr 2. Each of these domains is a few tens of nanometers across and a few hundred nanometers long. The domains display strong preferred orientations involving areas a few hundred nanometers to a few micrometers across.« less

  11. Fabrication of U-10 wt.%Zr Metallic Fuel Rodlets for Irradiation Test in BOR-60 Fast Reactor

    DOE PAGES

    Kim, Ki-Hwan; Kim, Jong-Hwan; Oh, Seok-Jin; ...

    2016-01-01

    The fabrication technology for metallic fuel has been developed to produce the driver fuel in a PGSFR in Korea since 2007. In order to evaluate the irradiation integrity and validate the in-reactor of the starting metallic fuel with FMS cladding for the loading of the metallic fuel, U-10 wt.%Zr fuel rodlets were fabricated and evaluated for a verification of the starting driver fuel through an irradiation test in the BOR-60 fast reactor. The injection casting method was applied to U-10 wt.%Zr fuel slugs with a diameter of 5.5 mm. Consequently, fuel slugs per melting batch without casting defects were fabricated through the developmentmore » of advanced casting technology and evaluation tests. The optimal GTAW welding conditions were also established through a number of experiments. In addition, a qualification test was carried out to prove the weld quality of the end plug welding of the metallic fuel rodlets. The wire wrapping of metallic fuel rodlets was successfully accomplished for the irradiation test. Thus, PGSFR fuel rodlets have been soundly fabricated for the irradiation test in a BOR-60 fast reactor.« less

  12. Physical properties of monolithic U8 wt.%-Mo

    NASA Astrophysics Data System (ADS)

    Hengstler, R. M.; Beck, L.; Breitkreutz, H.; Jarousse, C.; Jungwirth, R.; Petry, W.; Schmid, W.; Schneider, J.; Wieschalla, N.

    2010-07-01

    As a possible high density fuel for research reactors, monolithic U8 wt.%-Mo ("U8Mo") was examined with regard to its structural, thermal and electric properties. X-ray diffraction by the Bragg-Brentano method was used to reveal the tetragonal lattice structure of rolled U8Mo. The specific heat capacity of cast U8Mo was determined by differential scanning calorimetry, its thermal diffusivity was measured by the laser flash method and its mass density by Archimedes' principle. From these results, the thermal conductivity of U8Mo in the temperature range from 40 °C to 250 °C was calculated; in the measured temperature range, it is in good accordance with literature data for UMo with 8 and 9 wt.% Mo, is higher than for 10 wt.% Mo and lower than for 5 wt.% Mo. The electric conductivity of rolled and cast U8Mo was measured by a four-wire method and the electron based part of the thermal conductivity calculated by the Wiedemann-Frantz law. Rolled and cast U8Mo was irradiated at about 150 °C with 80 MeV 127I ions to receive the same iodine ion density in the damage peak region as the fission product density in the fuel of a typical high flux reactor after the targeted nuclear burn-up. XRD analysis of irradiated U8Mo showed a change of the lattice parameters as well as the creation of UO 2 in the superficial sample regions; however, a phase change by irradiation was not observed. The determination of the electron based part of the thermal conductivity of the irradiated samples failed due to high measurement errors which are caused by the low thickness of the damage region in the ion irradiated samples.

  13. Electrodeposition and characterization of Ni-Mo-ZrO2 composite coatings

    NASA Astrophysics Data System (ADS)

    Laszczyńska, A.; Winiarski, J.; Szczygieł, B.; Szczygieł, I.

    2016-04-01

    Ni-Mo-ZrO2 composite coatings were produced by electrodeposition technique from citrate electrolytes containing dispersed ZrO2 nanopowder. The influence of deposition parameters i.e. concentration of molybdate and ZrO2 nanoparticles in the electrolyte, bath pH and deposition current density on the composition and surface morphology of the coating has been investigated. The structure, microhardness and corrosion properties of Ni-Mo-ZrO2 composites with different molybdenum and ZrO2 content have been also examined. It was found that ZrO2 content in the deposit is increased by rising the nanoparticles concentration in the plating solution up to 20 g dm-3. An increase in molybdate concentration in the electrolyte affects negatively the amount of codeposited ZrO2 nanoparticles. The correlation between the deposition current efficiency and ZrO2 content in the composite coating has been also observed. A decrease in deposition current efficiency leads to deposition of Ni-Mo-ZrO2 composite with low nanoparticles content. This may be explained by formation of higher amounts of gas bubbles on the cathode surface, which prevent the adsorption of ZrO2 nanoparticles on the growing deposit. The XRD analysis revealed that all the studied Ni-Mo-ZrO2 coatings were composed of a single, nanocrystalline phase with FCC structure. It was found that the incorporation of ZrO2 nanoparticles into Ni-Mo alloy matrix affects positively the microhardness and also slightly improves the corrosion properties of Ni-Mo alloy coating.

  14. Ab initio study of phase stability of NaZr{sub 2}(PO{sub 4}){sub 3} under pressure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chinnappan, Ravi; Kaur, Gurpreet; Panigrahi, B. K.

    2016-05-23

    The elastic constants of NaZr{sub 2}(PO{sub 4}){sub 3} were computed as a function of pressure through Density Functional Theory calculations. The behavior of elastic constants show that the rhombohedral (R-3c) NaZr{sub 2}(PO{sub 4}){sub 3} becomes unstable above 8 GPa and is driven by softening of C{sub 44} through one of the Born stability criteria. High pressure equation of state and enthalpy show further that the ambient rhombohedral (R-3c)) NaZr{sub 2}(PO{sub 4}){sub 3} transforms first to another rhombohedral (R3) phase and subsequently to LiZr{sub 2}(PO{sub 4}){sub 3}-type orthorhombic phase at pressures above 6 and 8 GPa respectively which are in agreement with recentmore » X-ray diffraction study.« less

  15. Test results of a Nb 3Al/Nb 3Sn subscale magnet for accelerator application

    DOE PAGES

    Iio, Masami; Xu, Qingjin; Nakamoto, Tatsushi; ...

    2015-01-28

    The High Energy Accelerator Research Organization (KEK) has been developing a Nb 3Al and Nb 3Sn subscale magnet to establish the technology for a high-field accelerator magnet. The development goals are a feasibility demonstration for a Nb 3Al cable and the technology acquisition of magnet fabrication with Nb 3Al superconductors. KEK developed two double-pancake racetrack coils with Rutherford-type cables composed of 28 Nb 3Al wires processed by rapid heating, quenching, and transformation in collaboration with the National Institute for Materials Science and the Fermi National Accelerator Laboratory. The magnet was fabricated to efficiently generate a high magnetic field in amore » minimum-gap common-coil configuration with two Nb 3Al coils sandwiched between two Nb 3Sn coils produced by the Lawrence Berkeley National Laboratory. A shell-based structure and a “bladder and key” technique have been used for adjusting coil prestress during both the magnet assembly and the cool down. In the first excitation test of the magnet at 4.5 K performed in June 2014, the highest quench current of the Nb 3Sn coil, i.e., 9667 A, was reached at 40 A/s corresponding to 9.0 T in the Nb 3Sn coil and 8.2 T in the Nb 3Al coil. The quench characteristics of the magnet were studied.« less

  16. Note: Resonance magnetoelectric interactions in laminate of FeCuNbSiB and multilayer piezoelectric stack for magnetic sensor

    NASA Astrophysics Data System (ADS)

    Li, Jianqiang; Lu, Caijiang; Xu, Changbao; Zhong, Ming

    2015-09-01

    This paper develops a simple miniature magnetoelectric (ME) laminate FeCuNbSiB/PZT-stack made up of magnetostrictive Fe73.5Cu1Nb3Si13.5B9 (FeCuNbSiB) foils and piezoelectric Pb(Zr, Ti)O3 (PZT) multilayer stack vibrator. Resonant ME interactions of FeCuNbSiB/PZT-stack with different layers of FeCuNbSiB foil (L) are investigated in detail. The experimental results show that the ME voltage coefficient reaches maximum value of 141.5 (V/cm Oe) for FeCuNbSiB/PZT-stack with L = 6. The AC-magnetic sensitivities can reach 524.29 mV/Oe and 1.8 mV/Oe under resonance 91.6 kHz and off-resonance 1 kHz, respectively. The FeCuNbSiB/PZT-stack can distinguish small dc-magnetic field of ˜9 nT. The results indicate that the proposed ME composites are very promising for the cheap room-temperature magnetic field sensing technology.

  17. Preliminary study on pressure brazing and diffusion welding of Nb-1Zr to Inconel 718

    NASA Technical Reports Server (NTRS)

    Moore, T. J.

    1990-01-01

    Future space power systems may include Nb-1Zr/Inconel 718 dissimilar metal joints for operation at 1000 K for 60,000 h. The serviceability of pressure-brazed and diffusion-welded joints was investigated. Ni-based metallic glass foil filler metals were used for brazing. Ni and Fe foils were used as diffusion welding inter-layers. Joint soundness was determined by metallographic examination in the as-brazed and as-welded condition, after aging at 1000 K, and after thermal cycling. Brazed joints thermally cycled in the as-brazed condition and diffusion-welded joints were unsatisfactory because of cracking problems. Brazed joints may meet the service requirements if the joints are aged at 1000 K prior to thermal cycling.

  18. Luminescence properties of tunable white-light long-lasting phosphor YPO4: Eu3+, Tb3+, Sr2+, Zr4+

    NASA Astrophysics Data System (ADS)

    Tang, Wei; Wang, Mingwen; Meng, Xiangxue; Lin, Wei

    2016-04-01

    A series of novel YPO4: Eu3+, Tb3+, Sr2+, Zr4+ tunable white-light long lasting phosphors were synthesized by conventional solid-state reaction method. The luminescent properties were systematically characterized by X-ray diffraction, photoluminescent excitation and emission spectra, thermoluminescence spectrum and decay curves. The XRD patterns indicated that the samples belonged to tetragonal phase and co-doping Eu3+, Tb3+, Sr2+ and Zr4+ ions have no effect on the basic crystal structure. Under the excitation of 372 nm wavelength, it was first discovered that the specific concentration of Sr2+ can improve the emission intensity of Eu2+. The blue (Eu2+), green (Tb3+) and red (Eu3+) lights were emitted simultaneously and therefore produced white light in the same YPO4 matrix. Tunable color from the white to purple region was achieved not only by increasing the concentration of Zr4+ and Sr2+, but also by increasing the concentration of Eu3+. The CIE chromaticity coordinates of Y0.89PO4: Eu3+0.06, Tb3+0.05, Sr2+0.06, Zr4+0.06 (0.33, 0.31) were the closest to point (0.33, 0.33) which delegates the ideal white and trap depths for the two glow peaks are 0.88 eV and 0.85 eV. The fitting decay constant of τ2 corresponding to the slow exponentially decay components was 101.30 s.

  19. Mechanical and Thermal Properties of Two Cu-Cr-Nb Alloys and NARloy-Z

    NASA Technical Reports Server (NTRS)

    Ellis, David L.; Michal, Gary M.

    1996-01-01

    A series of creep tests were conducted on Cu-8 Cr-4 Nb (Cu-8 at.% Cr-4 at.% Nb), Cu-4 Cr-2 Nb (Cu-4 at.% Cr-2 at% Nb), and NARloy-Z (Cu-3 wt.% Ag-0.5 wt.% Zr) samples to determine their creep properties. In addition, a limited number of low cycle fatigue and thermal conductivity tests were conducted. The Cu-Cr-Nb alloys showed a clear advantage in creep life and sustainable load over the currently used NARloy-Z. Increases in life at a given stress were between 100% and 250% greater for the Cu-Cr-Nb alloys depending on the stress and temperature. For a given life, the Cu-Cr-Nb alloys could support a stress between 60% and 160% greater than NARloy-Z. Low cycle fatigue lives of the Cu-8 Cr-4 Nb alloy were equivalent to NARloy-Z at room temperature. At elevated temperatures (538 C and 650 C), the fatigue lives were 50% to 200% longer than NARloy-Z samples tested at 538 C. The thermal conductivities of the Cu-Cr-Nb alloys remained high, but were lower than NARloy-Z and pure Cu. The Cu-Cr-Nb thermal conductivities were between 72% and 96% that of pure Cu with the Cu-4 Cr-2 Nb alloy having a significant advantage in thermal conductivity over Cu-8 Cr4 Nb. In comparison, stainless steels with equivalent strengths would have thermal conductivities less than 25% the thermal conductivity of pure Cu. The combined results indicate that the Cu-Cr-Nb alloys offer an attractive alternative to current high temperature Cu-based alloys such as NARloy-Z.

  20. Effect of lattice distortion on uranium magnetic moments in U4Ru7Ge6 studied by polarized neutron diffraction

    NASA Astrophysics Data System (ADS)

    Vališka, Michal; Klicpera, Milan; Doležal, Petr; Fabelo, Oscar; Stunault, Anne; Diviš, Martin; Sechovský, Vladimír

    2018-03-01

    In a cubic ferromagnet, small spontaneous lattice distortions are expected below the Curie temperature, but the phenomenon is usually neglected. This study focuses on such an effect in the U4Ru7Ge6 compound. Based on DFT calculations, we propose a lattice distortion from the cubic I m -3 m space group to a lower, rhombohedral, symmetry described by the R -3 m space group. The strong spin-orbit coupling of the uranium ions plays an essential role in lowering the symmetry, giving rise to two different U sites (U1 and U2). Using polarized neutron diffraction in applied magnetic fields of 1 and 9 T in the ordered state (1.9 K ) and in the paramagnetic state (20 K ), we bring convincing experimental evidence of this splitting of the U sites, with different magnetic moments. The data have been analyzed both by maximum entropy calculations and by a direct fit in the dipolar approximation. In the ordered phase, the μL/μS ratio of the orbital and spin moments on the U2 site is remarkably lower than for the free U3 + or U4 + ion, which points to a strong hybridization of the U 5 f wave functions with the 4 d wave functions of the surrounding Ru. On the U1 site, the μL/μS ratio exhibits an unexpectedly low value: the orbital moment is almost quenched, like in metallic α -uranium. As a further evidence of the 5 f -4 d hybridization in the U4Ru7Ge6 system, we observe the absence of a magnetic moment on the Ru1 site, but a rather large induced moment on the Ru2 site, which is in closer coordination with both U positions. Very similar results are obtained at 20 K in the ferromagnetic regime induced by the magnetic field of 9 T . This shows that applying a strong magnetic field above the Curie temperature also leads to the splitting of the uranium sites, which further demonstrates the intimate coupling of the magnetic ordering and structural distortion. We propose that the difference between the magnetic moment on the U1 and U2 sites results from the strong spin

  1. Study of low-modulus biomedical β Ti-Nb-Zr alloys based on single-crystal elastic constants modeling.

    PubMed

    Wang, Xing; Zhang, Ligang; Guo, Ziyi; Jiang, Yun; Tao, Xiaoma; Liu, Libin

    2016-09-01

    CALPHAD-type modeling was used to describe the single-crystal elastic constants of the bcc solution phase in the ternary Ti-Nb-Zr system. The parameters in the model were evaluated based on the available experimental data and first-principle calculations. The composition-elastic properties of the full compositions were predicted and the results were in good agreement with the experimental data. It is found that the β phase can be divided into two regions which are separated by a critical dynamical stability composition line. The corresponding valence electron number per atom and the polycrystalline Young׳s modulus of the critical compositions are 4.04-4.17 and 30-40GPa respectively. Orientation dependencies of single-crystal Young׳s modulus show strong elastic anisotropy on the Ti-rich side. Alloys compositions with a Young׳s modulus along the <100> direction matching that of bone were found. The current results present an effective strategy for designing low modulus biomedical alloys using computational modeling. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Photoluminescence of rare-earth ion (Eu3+, Tm3+, and Er3+)-doped and co-doped ZnNb2O6 for solar cells

    NASA Astrophysics Data System (ADS)

    Gao, Sen-Pei; Qian, Yan-Nan; Wang, Biao

    2015-08-01

    Visible converted emissions produced at an excitation of 286 nm in ZnNb2O6 ceramics doped with rare-earth ions (RE = Eu3+, Tm3+, Er3+ or a combination of these ions) were investigated with the aim of increasing the photovoltaic efficiency of solar cells. The structure of RE:ZnNb2O6 ceramics was confirmed by x-ray diffraction patterns. The undoped ZnNb2O6 could emit a blue emission under 286-nm excitation, which is attributed to the self-trapped excitons’ recombination of the efficient luminescence centers of edge-shared NbO6 groups. Upon 286-nm excitation, Eu:ZnNb2O6, Tm:ZnNb2O6, and Er:ZnNb2O6 ceramics showed blue, green, and red emissions, which correspond to the transitions of 5D0 → 7FJ (J = 1-4) (Eu3+), 1G43H6 (Tm3+), and 2H11/2/4S3/2 → 4I15/2 (Er3+), respectively. The calculated CIE chromaticity coordinates of Eu:ZnNb2O6, Tm:ZnNb2O6, and Er:ZnNb2O6 are (0.50, 0.31), (0.14, 0.19), and (0.29, 0.56), respectively. RE ion-co-doped ZnNb2O6 showed a combination of characteristic emissions. The chromaticity coordinates of Eu/Tm:ZnNb2O6, Eu/Er:ZnNb2O6, and Tm/Er:ZnNb2O6 were calculated to be (0.29, 0.24), (0.45, 0.37), and (0.17, 0.25). Project supported by the National Natural Science Foundation of China (Grant Nos. 10572155 and 10732100) and the Research Fund for the Doctoral Program of Ministry of Education, China (Grant No. 20130171130003).

  3. Formation of an amorphous phase and its crystallization in the immiscible Nb-Zr system by mechanical alloying

    NASA Astrophysics Data System (ADS)

    Al-Aqeeli, N.; Suryanarayana, C.; Hussein, M. A.

    2013-10-01

    Mechanical alloying of binary Nb-Zr powder mixtures was carried out to evaluate the formation of metastable phases in this immiscible system. The milled powders were characterized for their constitution and structure by X-ray diffraction and transmission electron microscopy methods. It was shown that an amorphous phase had formed on milling the binary powder mixture for about 10 h and that it had crystallized on subsequent milling up to 50-70 h, referred to as mechanical crystallization. Thermodynamic and structural arguments have been presented to explain the formation of the amorphous phase and its subsequent crystallization.

  4. Development and fabrication of insulator seals for thermionic diodes

    NASA Technical Reports Server (NTRS)

    Poirier, V. L.

    1972-01-01

    Eight different types of cermet seals for thermionic diodes were investigated: (1) 1 micron Al2O3 with Nb spheres; (2) 200 A Al2O3 with Nb spheres; (3) 1 micron Al2O3 with Nb 1% Zr spheres; (4) 200 A Al2O3 with Nb 1% Zr spheres; (5) Pure Y2O3 with Nb 1% Zr spheres; (6) Y2O3 3% ZrO2 with Nb 1% Zr spheres; (7) Y2O3 10% ZrO2 with Nb 1% Zr spheres; and (8) ZrO2 12% Y2O3 with Nb 1% Zr spheres. Investigations were made to determine the most favorable fabrication techniques and the effect of the bonding cycle, (length of bonding time and shutdown sequences). The analysis of the seals included tensile test, vacuum test, electrical test and metallurgical examination. At the conclusion of the development phase, 36 seals were fabricated for delivery for evaluation.

  5. Alloying and Hardness of Eutectics with Nbss and Nb5Si3 in Nb-silicide Based Alloys

    PubMed Central

    Tsakiropoulos, Panos

    2018-01-01

    In Nb-silicide based alloys, eutectics can form that contain the Nbss and Nb5Si3 phases. The Nb5Si3 can be rich or poor in Ti, the Nb can be substituted with other transition and refractory metals, and the Si can be substituted with simple metal and metalloid elements. For the production of directionally solidified in situ composites of multi-element Nb-silicide based alloys, data about eutectics with Nbss and Nb5Si3 is essential. In this paper, the alloying behaviour of eutectics observed in Nb-silicide based alloys was studied using the parameters ΔHmix, ΔSmix, VEC (valence electron concentration), δ (related to atomic size), Δχ (related to electronegativity), and Ω (= Tm ΔSmix/|ΔHmix|). The values of these parameters were in the ranges −41.9 < ΔHmix <−25.5 kJ/mol, 4.7 < ΔSmix < 15 J/molK, 4.33 < VEC < 4.89, 6.23 < δ < 9.44, 0.38 < Ω < 1.35, and 0.118 < Δχ < 0.248, with a gap in Δχ values between 0.164 and 0.181. Correlations between ΔSmix, Ω, ΔSmix, and VEC were found for all of the eutectics. The correlation between ΔHmix and δ for the eutectics was the same as that of the Nbss, with more negative ΔHmix for the former. The δ versus Δχ map separated the Ti-rich eutectics from the Ti-poor eutectics, with a gap in Δχ values between 0.164 and 0.181, which is within the Δχ gap of the Nbss. Eutectics were separated according to alloying additions in the Δχ versus VEC, Δχ versus , δ versus , and VEC versus maps, where = Al + Ge + Si + Sn. Convergence of data in maps occurred at δ ≈ 9.25, VEC ≈ 4.35, Δχ in the range ≈ 0.155 to 0.162, and in the range ≈ 21.6 at.% to ≈ 24.3 at.%. The convergence of data also indicated that the minimum concentration of Ti and maximum concentrations of Al and Si in the eutectic were about 8.7 at.% Ti, 6.3 at.% Al, and 21.6 at.% Si, respectively, and that the minimum concentration of Si in the eutectic was in the range 8 < Si < 10 at.%. PMID:29641503

  6. Fullerene-like (IF) Nb(x)Mo(1-x)S2 nanoparticles.

    PubMed

    Deepak, Francis Leonard; Cohen, Hagai; Cohen, Sidney; Feldman, Yishay; Popovitz-Biro, Ronit; Azulay, Doron; Millo, Oded; Tenne, Reshef

    2007-10-17

    IF-Mo1-xNbxS2 nanoparticles have been synthesized by a vapor-phase reaction involving the respective metal halides with H2S. The IF-Mo1-xNbxS2 nanoparticles, containing up to 25% Nb, were characterized by a variety of experimental techniques. Analysis of the powder X-ray powder diffraction, X-ray photoelectron spectroscopy, and different electron microscopy techniques shows that the majority of the Nb atoms are organized as nanosheets of NbS2 within the MoS2 host lattice. Most of the remaining Nb atoms (3%) are interspersed individually and randomly in the MoS2 host lattice. Very few Nb atoms, if any, are intercalated between the MoS2 layers. A sub-nanometer film of niobium oxide seems to encoat the majority of the nanoparticles. X-ray photoelectron spectroscopy in the chemically resolved electrical measurement mode (CREM) and scanning probe microscopy measurements of individual nanoparticles show that the mixed IF nanoparticles are metallic independent of the substitution pattern of the Nb atoms in the lattice of MoS2 (whereas unsubstituted IF-MoS2 nanoparticles are semiconducting). Furthermore the IF-Mo1-xNbxS2 nanoparticles are found to exhibit interesting single electron tunneling effects at low temperatures.

  7. A novel ZrHIO64H2O catalyst for degradation of organic dyes at room temperature

    NASA Astrophysics Data System (ADS)

    Li, Jiayin; Ma, Xinping; Qian, Meifan; Liu, Haoran; Liu, Qiying; Zhao, Caixian; Tian, Li; Chen, Lijuan; Tang, Jianting

    It is interesting to obtain catalysts to degrade organic dye pollutants at room temperature for simultaneous purposes of environment-treating and energy-saving. In this work, a novel ZrHIO64H2O catalyst was synthesized by reacting ZrO(NO3)2 with H5IO6 in aqueous nitric acid. The catalyst was found effective in degradation of rhodamine B (RhB) or methylene blue (MB) dyes at room temperature without light illumination. We used the ultraviolet-visible (UV-Vis) absorption spectra of dye solution as well as X-ray photoelectron spectroscopy (XPS) of ZrHIO64H2O to confirm that the dye degradation was due to its catalytic role. Importantly, the ZrHIO64H2O catalyst can be recycled five times without obvious activity loss and it achieved higher mineralization efficiency than the previously reported analogue in the degradation experiments.

  8. Effect of LID (Registered) processing on the microstructure and mechanical properties of Ti-6Al-4V and Ti-6Al-2Sn-4Zr-2Mo titanium foil-gauge materials

    NASA Technical Reports Server (NTRS)

    Balckburn, Linda B.

    1987-01-01

    A study was undertaken to determine the mechanical properties and microstructures resulting from Liquid Interface Diffusion (LID -Registered) processing of foil-gauge specimens of Ti-6Al-4V and Ti-6Al-2Sn-4Zr-2Mo coated with varying amounts of LID material. In addition, the effects of various elevated temperature exposures on the concentration profiles of the LID alloying elements were investigated, using specimens with a narrow strip of LID material applied to the surface. Room and elevated temperature tensile properties were determined for both coated and uncoated specimens. Optical microscopy was used to examine alloy microstructures, and scanning electron microscopy to examine fracture surface morphologies. The chemical concentration profiles of the strip-coated specimens were determined with an electron microprobe.

  9. Cyclopentadienylniobium and -molybdenum phosphorodithioate complexes. X-ray crystal structures of CpNbCl sub 3 (S sub 2 P(OPr sup i ) sub 2 ), CpNbCl(. mu. -Cl) sub 2 Nb(S sub 2 P(OPr sup i ) sub 2 )Cp, and cis-Cp prime Mo(CO) sub 2 (S sub 2 P(OPr sup i ) sub 2 )

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Woodward, S.; Riaz, U.; Curtis, M.D.

    1990-10-01

    Reaction of CpNbCl{sub 4} (Cp = {eta}-C{sub 5}H{sub 5}) with (Pr{sup i}O){sub 2}P(S)(SH) in the presence of NEt{sub 3} yields CpNbCl{sub 3}(S{sub 2}P(S{sub 2}Pr{sup i}){sub 2}) (1). Reduction of 1 with Na/Hg affords the Nb-Nb-bonded complex CpNbCl({mu}-Cl){sub 2}Nb(S{sub 2}P(OR){sub 2})Cp (2). In refluxing toluene, (Pr{sup i}O){sub 2}P(S)(SH) with (Cp{prime}Mo(CO){sub 3}){sub 2} (Cp{prime} = {eta}-C{sub 5}H{sub 4}Me) gives cis-Cp{prime}Mo(CO){sub 2}(S{sub 2}P(OPr{sup i}){sub 2}) (3). Oxidation of 3 with I{sub 2} affords Cp{prime}MoI{sub 2}(CO)(S{sub 2}P(OPr{sup i}){sub 2}) (4). The crystal structures of 1-3 are compared. For 1, triclinic, P{bar 1}, a = 7.122 (3) {angstrom}, b = 11.365 (4) {angstrom}, c =more » 12.532 (4) {angstrom}, {alpha} = 77.38 (3){degree}, {beta} = 89.08 (3){degree}, {gamma} = 72.87 (3){degree}, V = 944.5 (8) {angstrom}{sup 3}. For 2, triclinic, P{bar 1}, a = 7.251 (3) {angstrom}, b = 12.386 (5) {angstrom}, c = 13.988 (5) {angstrom}, {alpha} = 102.66 (3){degree}, {beta} = 103.56 (3){degree}, {gamma} = 94.66 (3){degree}, V = 1180.0 (8) {angstrom}{sup 3}, Z = 2. For 3, orthorhombic, Pbca, a = 12.703 (3) {angstrom}, b = 16.707 (4) {angstrom}, c = 18.398 (4) {angstrom}, V = 3904.4 (17) {angstrom}{sup 3}, Z = 8.« less

  10. Structural and Magnetic Properties of {Eu}(3+) Eu 3 + -Doped {CdNb}_{2} {O}_{6} CdNb 2 O 6 Powders

    NASA Astrophysics Data System (ADS)

    Topkaya, Ramazan; Boyraz, Cihat; Ekmekçi, Mete Kaan

    2018-03-01

    Europium-doped CdNb2O6 powders with the molar concentration of Eu^{3+} (0.5, 3 and 6 mol%) were successfully prepared at 900°C by using molten salt synthesis method. The effect of europium (Eu) molar concentration on the structural and temperature-dependent magnetic properties of CdNb2O6 powders has been investigated by using X-ray diffraction (XRD), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), vibrating sample magnetometer (VSM) and ferromagnetic resonance (FMR) techniques in the temperature range of 10-300 K. XRD results confirm that all the powders have orthorhombic crystal structure. It has been confirmed from VSM and FMR measurements that Eu^{3+}-doped CdNb2O6 powders have ferromagnetic behaviour for each Eu^{3+} molar concentration between 10 and 300 K. XRD and EDX analyses indicate that there is no magnetic impurity in Eu^{3+}-doped CdNb_2O_6 powders, supporting that the ferromagnetic behaviour of the powders arises from Eu^{3+} ions. The observed ferromagnetism was elucidated with the intrinsic exchange interactions between the magnetic moments associated with the unpaired 4 f electrons in Eu^{3+} ions. The saturation magnetization decreases with increasing Eu^{3+} molar concentration. The temperature-dependent magnetization behaviour was observed not to agree with Curie-Weiss law because europium obeys Van Vleck paramagnetism. Broad FMR spectra and a g-value higher than 2 were observed from FMR measurements, indicating the ferromagnetic behaviour of the powders. It was found that while the resonance field of FMR spectra decreases, the linewidth increases as a function of Eu^{3+} molar concentration.

  11. Comparative study on cubic and tetragonal CexZr1-xO2 supported MoO3-catalysts for sulfur-resistant methanation

    NASA Astrophysics Data System (ADS)

    Liu, Zhaopeng; Xu, Yan; Cheng, Jiaming; Wang, Weihan; Wang, Baowei; Li, Zhenhua; Ma, Xinbin

    2018-03-01

    In this paper, two kinds of CexZr1-xO2 solid solution carriers with different Ce/Zr ratio were prepared by one-step co-precipitation method: the cubic Ce0.8Zr0.2O2 and the tetragonal Ce0.2Zr0.8O2 support. The MoO3/Ce0.8Zr0.2O2 and MoO3/Ce0.2Zr0.8O2 catalysts were prepared by incipient wetness impregnation method for comparative study on sulfur-resistant methanation reaction. The N2 adsorption/desorption, X-ray diffraction (XRD), Raman spectroscopy (RS), X-ray photoelectron (XPS), transmission electron microscopy (TEM), temperature-programmed reduction by hydrogen (H2-TPR) were undertaken to characterize the physico-chemical properties of the samples. The results indicated that the prepared MoO3/CexZr1-xO2 catalysts have a mesoporous structure with high surface area and uniform pore size distribution, achieving good MoO3 dispersion on CexZr1-xO2 supports. As for the catalytic performance of sulfur-resistant methanation, the cubic MoO3/Ce0.8Zr0.2O2 exhibited better than the tetragonal MoO3/Ce0.2Zr0.8O2 catalyst at reaction temperature 400 °C and 450 °C. CO conversion on the cubic MoO3/Ce0.8Zr0.2O2 catalyst was 50.1% at 400 °C and 75.5% at 450 °C, which is respectively 7% and 20% higher than that on the tetragonal MoO3/Ce0.2Zr0.8O2 catalyst. These were mainly attributed to higher content of active MoS2 on the surface of catalyst, the enhanced oxygen mobility, increased Mo-species dispersion as well as the excellent reducibility resulted from the increased amount of the reducible Ce3+ on the cubic MoO3/Ce0.8Zr0.2O2 catalyst.

  12. The irradiation behavior of atomized U-Mo alloy fuels at high temperature

    NASA Astrophysics Data System (ADS)

    Park, Jong-Man; Kim, Ki-Hwan; Kim, Chang-Kyu; Meyer, M. K.; Hofman, G. L.; Strain, R. V.

    2001-04-01

    Post-irradiation examinations of atomized U-10Mo, U-6Mo, and U-6Mo-1.7Os dispersion fuels from the RERTR-3 experiment irradiated in the Advanced Test Reactor (ATR) were carried out in order to investigate the fuel behavior of high uranium loading (8 gU/cc) at a high temperature (higher than 200°C). It was observed after about 40 at% BU that the U-Mo alloy fuels at a high temperature showed similar irradiation bubble morphologies compared to those at a lower temperature found in the RERTR-1 irradiation result, but there was a thick reaction layer with the aluminum matrix which was found to be greatly affected by the irradiation temperature and to a lesser degree by the fuel composition. In addition, the chemical analysis for the irradiated U-Mo fuels using the Electron Probe Micro Analysis (EPMA) method were conducted to investigate the compositional changes during the formation of the reaction product.

  13. A new titanium based alloy Ti-27Nb-13Zr produced by powder metallurgy with biomimetic coating for use as a biomaterial.

    PubMed

    Mendes, Marcio W D; Ágreda, Carola G; Bressiani, Ana H A; Bressiani, José C

    2016-06-01

    Titanium alloys are widely used in biomedical applications due to their excellent properties such as high strength, good corrosion resistance and biocompatibility. Titanium alloys with alloying elements such as Nb and Zr are biocompatible and have Young's modulus close to that of human bone. To increase the bioactivity of titanium alloy surfaces is used chemical treatment with NaOH followed by immersion in simulated body fluid (SBF). The purpose of this study was to produce the alloy Ti-27Nb-13Zr with low Young's modulus by powder metallurgy using powders produced by the HDH process. The formation of biomimetic coatings on samples immersed in SBF for 3, 7, 11 and 15 days was evaluated. Characterization of the coating was performed by diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) and scanning electron microscope. The microstructure and composition of the alloy were determined using SEM and XRD, while the mechanical properties were evaluated by determining the elastic modulus and the Vickers microhardness. The sintered alloys were composed of α and β phases, equiaxed grains and with density around 97.8% of its theoretical density. The Vickers microhardness and elasticity modulus of the alloy were determined and their values indicate that this alloy can be used as a biomaterial. Analysis of the coating revealed the presence of calcium phosphate layers on samples immersed for >3 days in the SBF solution. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Influence of hydroxyapatite on the corrosion resistance of the Ti-13Nb-13Zr alloy.

    PubMed

    Duarte, Laís T; Biaggio, Sonia R; Rocha-Filho, Romeu C; Bocchi, Nerilso

    2009-05-01

    Electrochemical analyses on the biocompatible alloy Ti-13Nb-13Zr wt% in an electrolyte simulating physiological medium (PBS solution) are reported. Hydroxyapatite (HA) films were obtained on the alloy by electrodeposition at constant cathodic current. Samples of the alloy covered with an anodic-oxide film or an anodic-oxide/HA film were analyzed by open circuit potential and electrochemical impedance spectroscopy measurements during 180 days in the PBS electrolyte. Analyses of the open-circuit potential (E (oc)) values indicated that the oxide/HA film presents better protection characteristics than the oxide only. This behavior was corroborated by the higher film resistances obtained from impedance data, indicating that, besides improving the alloy osteointegration, the hydroxyapatite film may also increase the corrosion protection of the biomaterial.

  15. The formation mechanisms of surface nanocrystallites in β-type biomedical TiNbZrFe alloy by surface mechanical attrition treatment

    NASA Astrophysics Data System (ADS)

    Jin, Lei; Cui, Wenfang; Song, Xiu; Zhou, Lian

    2015-08-01

    A nanostructured surface layer was successfully performed on a biomedical β-type TiNbZrFe alloy by surface mechanical attrition treatment (SMAT). The results reveal that the surface layer along the depth from treated surface to strain-free matrix could be divided into an outer nanocrystalline layer (0-30 μm), a high-density dislocation region (30-200 μm) and an inner region with low-density dislocations and twins (200-700 μm) when the surface was treated for 60 min. The microhardness of the surface layer is enhanced and increases with increasing treatment time. Although the {1 1 2} <1 1 1> twin coordinates the deformations with dislocations, this coordination only occurs in the low strain area and cannot affect the nanocrystalline formation. The self-nanocrystallization of TiNbZrFe alloy is mainly attributed to dislocation movements. First, the dislocations start to move and easily form dislocation bands along certain crystal directions; then, multiple slips of dislocations gradually form dislocation tangles; after that, high-density dislocation tangles increases, which divides primary grains into many small domain areas. As high strain energies accumulate on the interfaces among these areas, the lattice rotation can be driven between the adjacent small domain areas, finally resulting in a large number of nanocrystalline regions with low or large angle grain boundaries.

  16. The depolarization performances of 0.97PbZrO3-0.03Ba(Mg1/3Nb2/3)O3 ceramics under hydrostatic pressure

    NASA Astrophysics Data System (ADS)

    Su, Rigu; Nie, Hengchang; Liu, Zhen; Peng, Ping; Cao, Fei; Dong, Xianlin; Wang, Genshui

    2018-02-01

    Several 0.97PbZrO3-0.03Ba(Mg1/3Nb2/3)O3 (0.97PZ-0.03BMN) ceramics were prepared via the columbite precursor method. Their microstructures and pressure-dependent ferroelectric and depolarization performances were then studied. The X-ray diffraction patterns of ground and fresh samples indicate that a main rhombohedral symmetry crystal structure is present in the bulk and that it sits alongside a trace quantity of an orthorhombic antiferroelectric phase that results from the effect of grinding on the surface. The remanent polarization (Pr) of the 0.97PZ-0.03BMN reached 32.4 μC/cm2 at 4.5 kV/mm and ambient pressure. In an in situ pressure-induced current measurement, more than 91% of the retained Pr of the pre-poled sample was released when the pressure was increased from 194 MPa to 238 MPa. That this pressure-driven depolarization should be attributed to the pressure-induced ferroelectric-antiferroelectric phase transition is supported by the emergence of double P-E loops at high hydrostatic pressures. Moreover, the 0.97PZ-0.03BMN ceramics exhibit no temperature-induced phase transitions and little related polarization loss up to 125 °C, which suggests that Pr has excellent thermal stability. The sharp depolarization behavior at low pressures and excellent temperature stability reveal that our 0.97PZ-0.03BMN ceramics exhibit superior performances in mechanical-electrical energy conversion applications.

  17. First-principles molecular dynamics study of water dissociation on the γ-U(1 0 0) surface

    NASA Astrophysics Data System (ADS)

    Yang, Yu; Zhang, Ping

    2015-05-01

    Based on first-principles molecular dynamics simulations at finite temperatures, we systematically study the adsorption and dissociation of water molecules on the γ-U(1 0 0) surface. We predict that water molecules spontaneously dissociate upon approaching the native γ-U(1 0 0) surface. The dissociation results from electronic interactions between surface uranium 6d states and 1b2, 3a1, and 1b1 molecular orbitals of water. With segregated Nb atoms existing on the surface, adsorbing water molecules also dissociate spontaneously because Nb 3d electronic states can also interact with the molecular orbitals similarly. After dissociation, the isolated hydrogen atoms are found to diffuse fast on both the γ-U surface and that with a surface substitutional Nb atom, which is very similar to the ‘Hot-Atom’ dissociation of oxygen molecules on the Al(1 1 1) surface. From a series of consecutive molecular dynamics simulations, we further reveal that on both the γ-U surface and that with a surface substitutional Nb atom, one surface U atom will be pulled out to form the U-O-U structure after dissociative adsorption of 0.44 ML water molecules. This result indicates that oxide nucleus can form at low coverage of water adsorption on the two surfaces.

  18. Electrochemical Characterization of a Low Modulus Ti-35.5Nb-7.3Zr-5.7Ta Alloy in a Simulated Body Fluid Using Eis for Biomedical Applications

    NASA Astrophysics Data System (ADS)

    Bhola, R.; Bhola, S. M.; Mishra, B.; Ayers, R. A.; Olson, D. L.

    2011-06-01

    Electrochemical characterization of the low modulus Ti-35.5Nb-7.3Zr-5.7Ta beta alloy (TNZT) has been performed in phosphate buffer saline solution at 37 °C using the non destructive electrochemical impedance spectroscopy technique. Measurements were performed at various immersion intervals at the open circuit potential (OCP), which was also monitored with time. Results obtained for TNZT alloy have been compared with those for the commercially used Ti-6Al-4V mixed alloy (Ti64) and the commercially pure titanium (Ti2) alpha alloy. Potentiodynamic polarization was performed to supplement the data obtained from EIS analysis. The TNZT alloy exhibits a two time constant impedance response, whereas the Ti64 and Ti2 alloys display a one time constant behavior. Human fetal osteoblast cells show a better adhesion and a higher cell count for the TNZT alloy compared to the other two alloys. The present investigation is an effort to understand the correlation between the electrochemical, morphological and cellular characteristics of titanium alloys to qualify them for implant applications.

  19. 926 nm laser operation in Nd:GdNbO4 crystal based on 4F3/2 → 4I9/2 transition

    NASA Astrophysics Data System (ADS)

    Yan, Renpeng; Li, Xudong; Yao, Wenming; Shen, Yingjie; Zhou, Zhongxiang; Peng, Fang; Zhang, Qingli; Dou, Renqing; Gao, Jing

    2018-05-01

    926 nm laser operation in a Nd:GdNbO4 crystal based on quasi-three-level 4F3/2 → 4I9/2 transition is reported, for the first time to our best knowledge. An average output power of 393 mW at 926 nm under 879 nm LD pumping is obtained with a slope efficiency of 33.3% and an optical-to-optical efficiency of 26.0%. The slope efficiency with respect to absorbed pump power is estimated to be 47.7%. Comparison between output characters of 926 nm laser under direct and indirect pumping is conducted. The average output power at 926 nm under 808 nm LD pumping reaches 305 mW with an optical-to-optical efficiency of 16.1%.

  20. [Scanning electron microscopy observation of the growth of osteoblasts on Ti-24Nb-4Zr-8Sn modified by micro-arc oxidation and alkali-heat treatment and implant-bone interface].

    PubMed

    Han, Xue; Liu, Hong-Chen; Wang, Dong-Sheng; Li, Shu-Jun; Yang, Rui

    2011-01-01

    To observe the efficacy of micro-arc oxidation and alkali-heat treatment (MAH) on Ti-24Nb-4Zr-8Sn (Ti2448). Disks (diameter of 14.5 mm, thickness of 1 mm) and cylinders (diameter of 3 mm, height of 10 mm) were fabricated from Ti2448 alloy. Samples were divided into three groups: polished (Ti2448), micro-arc oxidation(MAO-Ti2448), micro-arc oxidation and alkali-heat treatment (MAH-Ti2448). MC3T3-E1 osteoblastic cells were cultured on the disks and cell morphology was observed with scanning electron microscopy (SEM) aftre 3 days. The cylinder samples were implanted in the tibia of dogs and implant-bone interface was observed with SEM after 3 months. A rough and porous structure was shown in both MAO and MAH group. The MC3T3-E1 cells on the MAH-Ti2448 discs spread fully in intimate contact with the underlying coarse surface through active cytoskeletal extentions. Osseointegration was formed in the implant-bone interface in MAH samples. MAH treatment can provide a more advantageous Ti2448 surface to osteoblastic cells than MAO treatment does, and the former can improve the implant-bone integration.

  1. {Nb288O768(OH)48(CO3)12}: A Macromolecular Polyoxometalate with Niobium Atoms Close to 300.

    PubMed

    Wu, Yan-Lan; Li, Xin-Xiong; Qi, Yan-Jie; Yu, Hao; Jin, Lu; Zheng, Shou-Tian

    2018-05-29

    A protein-sized (ca. 4.2 ᵡ 4.2 ᵡ 3.6 nm3) non-biologically derived molecule {Nb288O768(OH)48(CO3)12} (Nb288) containing up to 288 niobium atoms has been obtained, which is by far the largest and the highest nuclearity polyoxoniobate (PONb). Particularly, in terms of metal nuclearity number, Nb288 is the second largest cluster so far reported in classic polyoxometalate chemistry (V, Mo, W, Nb, and Ta). Nb288 can be described as a giant windmill-like cluster aggregate of six brand-new, nanoscale high-nuclearity PONb units {Nb47O128(OH)6(CO3)2} (Nb47) joined together by six additional Nb ions. Interestingly, the in situ generated 47-nuclearity Nb47 units can be isolated and bridged by copper complexes to form an inorganic-organic hybrid three-dimensional PONb framework, which exhibits effective catalytic activity for hydrolyzing nerve agent simulant of dimethyl methylphosphonate. The unique Nb47 cluster also provides a new type of topology to very limited family of Nb-O clusters. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. A modelling study of the inter-diffusion layer formation in U-Mo/Al dispersion fuel plates at high power

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ye, B.; Hofman, G. L.; Leenaers, A.

    Post irradiation examinations of full-size U-Mo/Al dispersion fuel plates fabricated with ZrN- or Sicoated U-Mo particles revealed that the reaction rate of irradiation-induced U-Mo-Al inter-diffusion, an important microstructural change impacting the performance of this type of fuel, is temperature and fission-rate dependent. In order to simulate the U-Mo/Al inter-diffusion layer (IL) growth behavior in full-size dispersion fuel plates, the existing IL growth correlation was modified with a temperaturedependent multiplication factor that transits around a threshold fission rate. In-pile irradiation data from four tests in the BR2 reactors, including FUTURE, E-FUTURE, SELEMIUM, and SELEMIUM-1a, were utilized to determine and validate themore » updated IL growth correlation. Irradiation behavior of the plates was simulated with the DART-2D computational code. The general agreement between the calculated and measured fuel meat swelling and constituent volume fractions as a function of fission density demonstrated the plausibility of the updated IL growth correlation. The simulation results also suggested the temperature dependence of the IL growth rate, similar to the temperature dependence of the intermixing rate in ion-irradiated bi-layer systems.« less

  3. Investigations on Zr incorporation into Li3V2(PO4)3/C cathode materials for lithium ion batteries.

    PubMed

    Sun, Hua-Bin; Zhou, Ying-Xian; Zhang, Lu-Lu; Yang, Xue-Lin; Cao, Xing-Zhong; Arave, Hanu; Fang, Hui; Liang, Gan

    2017-02-15

    Li 3 V 2 (PO 4 ) 3 /C (LVP/C) composites have been modified by different ways of Zr-incorporation via ultrasonic-assisted solid-state reaction. The difference in the effect on the physicochemical properties and the electrochemical performance of LVP between Zr-doping and ZrO 2 -coating has also been investigated. Compared with pristine LVP/C, Zr-incorporated LVP/C composites exhibit better rate capability and cycling stability. In particular, the LVP/C-Zr electrode delivers the highest initial capacity of 150.4 mA h g -1 at 10C with a capacity retention ratio of 88.4% after 100 cycles. The enhanced electrochemical performance of Zr-incorporated LVP/C samples (LVZrP/C and LVP/C-Zr) is attributed to the increased ionic conductivity and electronic conductivity, the improved stability of the LVP structure, and the decreased charge-transfer resistance.

  4. A First-Principles Study on the Vibrational and Electronic Properties of Zr-C MXenes

    NASA Astrophysics Data System (ADS)

    Wang, Chang-Ying; Guo, Yong-Liang; Zhao, Yuan-Yuan; Zeng, Guang-Li; Zhang, Wei; Ren, Cui-Lan; Han, Han; Huai, Ping

    2018-03-01

    Within the framework of density functional theory calculations, the structural, vibrational, and electronic properties of Zr n C n - 1 (n = 2, 3, and 4) and their functionalized MXenes have been investigated. We find that the most stable configurations for Zr-C MXene are the ones that the terminal groups F, O, and OH locate on the common hollow site of the superficial Zr layer and its adjacent C layer. F and OH-terminated Zr 3 C 2 and Zr 4 C 3 have small imaginary acoustic phonon branches around Γ point while the others have no negative phonon modes. The pristine MXenes (Zr 2 C, Zr 3 C 2 and Zr 4 C 3 ) are all metallic with large DOS contributed by the Zr atom at the Fermi energy. When functionalized by F, O and OH, new hybridization states appear and the DOS at the Fermi level are reduced. Moreover, we find that their metallic characteristic increases with an increase in n. For (Zr n C n - 1 )O 2, Zr 2 CO 2 is a semiconductor, Zr 3C2O2 is a semimetal, and Zr 4 C 3O2 becomes a metal. Supported by the National Natural Science Foundation of China under Grant Nos. 11605273, 21571185, U1404111, 11504089, 21501189, 21676291, the Shanghai Municipal Science and Technology Commission 16ZR1443100, the Strategic Priority Research Program of the Chinese Academy of Sciences (XDA02040104)

  5. Microstructure and Texture Evolutions of Biomedical Ti-13Nb-13Zr Alloy Processed by Hydrostatic Extrusion

    NASA Astrophysics Data System (ADS)

    Ozaltin, K.; Panigrahi, A.; Chrominski, W.; Bulutsuz, A. G.; Kulczyk, M.; Zehetbauer, M. J.; Lewandowska, M.

    2017-11-01

    A biomedical β-type Ti-13Nb-13Zr (TNZ) (wt pct) ternary alloy was subjected to severe plastic deformation by means of hydrostatic extrusion (HE) at room temperature without intermediate annealing. Its effect on microstructure, mechanical properties, phase transformations, and texture was investigated by light and electron microscopy, mechanical tests (Vickers microhardness and tensile tests), and XRD analysis. Microstructural investigations by light microscope and transmission electron microscope showed that, after HE, significant grain refinement took place, also reaching high dislocation densities. Increases in strength up to 50 pct occurred, although the elongation to fracture left after HE was almost 9 pct. Furthermore, Young's modulus of HE-processed samples showed slightly lower values than the initial state due to texture. Such mechanical properties combined with lower Young's modulus are favorable for medical applications. Phase transformation analyses demonstrated that both initial and extruded samples consist of α' and β phases but that the phase fraction of α' was slightly higher after two stages of HE.

  6. Local structure and charge distribution in the UO(2)-U(4)O(9) system.

    PubMed

    Conradson, Steven D; Manara, Dario; Wastin, Franck; Clark, David L; Lander, Gerard H; Morales, Luis A; Rebizant, Jean; Rondinella, Vincenzo V

    2004-11-01

    Analysis of X-ray absorption fine structure spectra of UO(2+x) for x = 0-0.20 (UO(2)--U(4)O(9)) reveals that the adventitious O atoms are incorporated as oxo groups with U--O distances of 1.74 A, most likely associated with U(VI), that occur in clusters so that the UO(2) fraction of the material largely remains intact. In addition to the formation of some additional longer U--O bonds, the U sublattice consists of an ordered portion that displays the original U--U distance and a spectroscopically silent, glassy part. This is very different from previous models derived from neutron diffraction that maintained long U--O distances and high U--O coordination numbers. UO(2+x) also differs from PuO(2+x) in its substantially shorter An-oxo distances and no sign of stable coordination with H(2)O and its hydrolysis products.

  7. Synthesis, crystal structure and spectroscopy properties of Na 3AZr(PO 4) 3 ( A=Mg, Ni) and Li 2.6Na 0.4NiZr(PO 4) 3 phosphates

    NASA Astrophysics Data System (ADS)

    Chakir, M.; El Jazouli, A.; de Waal, D.

    2006-06-01

    Na 3AZr(PO 4) 3 ( A=Mg, Ni) phosphates were prepared at 750 °C by coprecipitation route. Their crystal structures have been refined at room temperature from X-ray powder diffraction data using Rietveld method. Li 2.6Na 0.4NiZr(PO 4) 3 was synthesized through ion exchange from the sodium analog. These materials belong to the Nasicon-type structure. Raman spectra of Na 3AZr(PO 4) 3 ( A=Mg, Ni) phosphates present broad peaks in favor of the statistical distribution in the sites around PO 4 tetrahedra. Diffuse reflectance spectra indicate the presence of octahedrally coordinated Ni 2+ ions.

  8. 70. Photocopy of 4' 10 x 3'10 Propeller, U.S. Coast ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    70. Photocopy of 4' 10 x 3'10 Propeller, U.S. Coast Guard 133 Ft. Tender. Columbian Bronze Corporation, Freeport, Long Island, New York, Coast Guard Headquarters Drawing No. 540-WAGL-4400-4, dated July 1953. Original drawing property of the U.S. Coast Guard. - U.S. Coast Guard Cutter WHITE HEATH, USGS Integrated Support Command Boston, 427 Commercial Street, Boston, Suffolk County, MA

  9. Trace element composition of rutile and Zr-in-rutile thermometry in meta-ophiolitic rocks from the Kazdağ Massif, NW Turkey

    NASA Astrophysics Data System (ADS)

    Şengün, Fırat; Zack, Thomas

    2016-08-01

    In northwest Turkey, ophiolitic meta-gabbros are exposed on the Kazdağ Massif located in the southern part of the Biga Peninsula. Trace element composition of rutile and Zr-in-rutile temperatures were determined for meta-gabbros from the Kazdağ Massif. The Zr content of all rutiles range from 176 to 428 ppm and rutile grains usually have a homogeneous Zr distribution. The rutile grains from studied samples in the Kazdağ Massif are dominated by subchondritic Nb/Ta (11-19) and Zr/Hf ratios (20-33). Nb/Ta and Zr/Hf show positive correlation, which is probably produced by silicate fractionation. The Nb/Ta and Zr/Hf ratios increase with a decrease in Ta and Hf contents. The core of rutile grains are generally characterized by low Nb/Ta ratios of 17-18 whereas the rims exhibit relatively high Nb/Ta ratios of 19-23. Trace element analyses in rutile suggest that these rutile grains were grown from metamorphic fluids. The P-T conditions of meta-gabbros were estimated by both Fe-Mg exchange and Zr-in-rutile thermometers, as well as by the Grt-Hb-Plg-Q geothermobarometer. The temperature range of 639 to 662 °C calculated at 9 kbar using the Zr-in-rutile thermometer is comparable with temperature estimates of the Fe-Mg exchange thermometer, which records amphibolite-facies metamorphism of intermediate P-T conditions. The P-T conditions of meta-ophiolitic rocks suggest that they occur as a different separate higher-pressure tectonic slice in the Kazdağ metamorphic sequence. Amphibolite-facies metamorphism resulted from northward subduction of the İzmir-Ankara branch of the Neo-Tethyan Ocean under the Sakarya Zone. Metamorphism was followed by internal imbrication of the Kazdağ metamorphic sequence resulting from southerly directed compression during the collision.

  10. Energy for the interface system of (Nb, Mo)C/γ-Fe

    NASA Astrophysics Data System (ADS)

    Zhou, Yanyuan; Wang, Zhenqiang; Zhao, Jiaying; Leng, Zhe; Niu, Zhongyi; Guo, Chunhuan; Zhang, Zhengyan; Yang, Zhigang; Yao, Chunfa; Jiang, Fengchun

    2017-08-01

    The interfacial energies of MC/γ-Fe and formation energies of MC carbides have been investigated using first-principles calculations based on density functional theory (DFT). Results show that the replacement of Nb by Mo in the NbC lattice is unfavorable with respect to the formation energy. However, it reduces the lattice parameter of MC and decreases the σ_{{chemical}} (interfacial chemical energy) of MC/γ-Fe, thus favoring the formation of complex (Nb, Mo)C carbide. The substitution of Nb by Mo at the interface of MC/γ-Fe system promotes the hybridizations of Mo-1NNFe and C-1NNFe (or 2NNFe) (the first or second nearest neighboring Fe atoms), which leads to a decrease in σ_{{chemical}}. The influence of bond energy is estimated using the discrete lattice plane/nearest neighbor broken bond (DLP/NNBB) model. It is found that the reduced σ_{{chemical}} is attributed to the much smaller value of e_{{{{Fe-C}}}} - e_{{{{Mo-C}}}} (the difference between Fe-C and Mo-C interactions) compared to e_{{{{Fe-C}}}} - e_{{{{Nb-C}}}} (the difference between Fe-C and Nb-C interactions). The results obtained from the analysis of the precipitates in Nb- and Nb-Mo-bearing steels are in a good agreement with the calculations.

  11. Polyorganometallosiloxane-2- or -4-pyridine coatings

    DOEpatents

    Sugama, T.

    1997-12-30

    A new family of polyorganometallosiloxane-2- or -4-pyridine compounds are provided for corrosion resistant coatings on light metals such as aluminum, magnesium, zinc, steel and their alloys. The novel compounds contain backbones modified by metal alkoxides, metallocenes and metallophthalocyanates where the metal is Zr, Ti, Mo, V, Hf, Nb, Si, B and combinations thereof. Methods of making the new compounds are also provided. 13 figs.

  12. Polyorganometallosiloxane-2- or -4-pyridine coatings

    DOEpatents

    Sugama, Toshifumi

    1997-01-01

    A new family of polyorganometallosiloxane-2- or -4-pyridine compounds are provided for corrosion resistant coatings on light metals such as aluminum, magnesium, zinc, steel and their allows. The novel compounds contain backbones modified by metal alkoxides, metallocenes and metallophthalocyanates where the metal is Zr, Ti, Mo, V, Hf, Nb, Si, B and combinations thereof. Methods of making the new compounds are also provided.

  13. Tris(phosphinoamide)-supported uranium-cobalt heterobimetallic complexes featuring Co → U dative interactions.

    PubMed

    Napoline, J Wesley; Kraft, Steven J; Matson, Ellen M; Fanwick, Phillip E; Bart, Suzanne C; Thomas, Christine M

    2013-10-21

    A series of tris- and tetrakis(phosphinoamide) U/Co complexes has been synthesized. The uranium precursors, (η(2)-Ph2PN(i)Pr)4U (1), (η(2)-(i)Pr2PNMes)4U (2), (η(2)-Ph2PN(i)Pr)3UCl (3), and (η(2)-(i)Pr2PNMes)3UI (4), were easily accessed via addition of the appropriate stoichiometric equivalents of [Ph2PN(i)Pr]K or [(i)Pr2PNMes]K to UCl4 or UI4(dioxane)2. Although the phosphinoamide ligands in 1 and 4 have been shown to coordinate to U in an η(2)-fashion in the solid state, the phosphines are sufficiently labile in solution to coordinate cobalt upon addition of CoI2, generating the heterobimetallic Co/U complexes ICo(Ph2PN(i)Pr)3U[η(2)-Ph2PN(i)Pr] (5), ICo((i)Pr2PNMes)3U[η(2)-((i)Pr2PNMes)] (6), ICo(Ph2PN(i)Pr)3UI (7), and ICo((i)Pr2PNMes)3UI (8). Structural characterization of complexes 5 and 7 reveals reasonably short Co-U interatomic distances, with 7 exhibiting the shortest transition metal-uranium distance ever reported (2.874(3) Å). Complexes 7 and 8 were studied by cyclic voltammetry to examine the influence of the metal-metal interaction on the redox properties compared with both monometallic Co and heterobimetallic Co/Zr complexes. Theoretical studies are used to further elucidate the nature of the transition metal-actinide interaction.

  14. Structural phase transitions in the Ag{sub 2}Nb{sub 4}O{sub 11}-Na{sub 2}Nb{sub 4}O{sub 11} solid solution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Woodward, David I., E-mail: d.i.woodward@warwick.ac.uk; Lees, Martin R.; Thomas, Pam A.

    2012-08-15

    The phase transitions between various structural modifications of the natrotantite-structured system xAg{sub 2}Nb{sub 4}O{sub 11}-(1-x)Na{sub 2}Nb{sub 4}O{sub 11} have been investigated and a phase diagram constructed as a function of temperature and composition. This shows three separate phase transition types: (1) paraelectric-ferroelectric, (2) rhombohedral-monoclinic and (3) a phase transition within the ferroelectric rhombohedral zone between space groups R3c and R3. The parent structure for the entire series has space group R3{sup Macron }c. Compositions with x>0.75 are rhombohedral at all temperatures whereas compositions with x<0.75 are all monoclinic at room temperature and below. At x=0.75, rhombohedral and monoclinic phases coexistmore » with the phase boundary below room temperature being virtually temperature-independent. The ferroelectric phase boundary extends into the monoclinic phase field. No evidence was found for the R3-R3c phase boundary extending into the monoclinic phase field and it is concluded that a triple point is formed. - Graphical abstract: Phase diagram for xAg{sub 2}Nb{sub 4}O{sub 11}-(1-x)Na{sub 2}Nb{sub 4}O{sub 11} solid solution showing changes in crystal symmetry as a function of temperature and composition. The crystal structure is depicted. Highlights: Black-Right-Pointing-Triangle Ferroelectric, rhombohedral Ag{sub 2}Nb{sub 4}O{sub 11} in solid solution with monoclinic Na{sub 2}Nb{sub 4}O{sub 11}. Black-Right-Pointing-Triangle Three phase boundaries were studied as a function of composition and temperature. Black-Right-Pointing-Triangle Both rhombohedral and monoclinic variants exhibit ferroelectricity. The parent phase of the series has space group R3{sup Macron }c.« less

  15. Phase equilibria, crystal structures, and dielectric anomaly in the BaZrO 3-CaZrO 3 system

    NASA Astrophysics Data System (ADS)

    Levin, Igor; Amos, Tammy G.; Bell, Steven M.; Farber, Leon; Vanderah, Terrell A.; Roth, Robert S.; Toby, Brian H.

    2003-11-01

    Phase equilibria in the (1- x)BaZrO 3- xCaZrO 3 system were analyzed using a combination of X-ray and neutron powder diffraction, and transmission electron microscopy. The proposed phase diagram features two extended two-phase fields containing mixtures of a Ba-rich cubic phase and a tetragonal, or orthorhombic Ca-rich phase, all having perovskite-related structures. The symmetry differences in the Ca-rich phases are caused by different tilting patterns of the [ZrO 6] octahedra. In specimens quenched from 1650°C, CaZrO 3 dissolves only a few percent of Ba, whereas the solubility of Ca in BaZrO 3 is approximately 30 at% . The BaZrO 3-CaZrO 3 system features at least two tilting phase transitions, Pm3 m→ I4/ mcm and I4/ mcm→ Pbnm. Rietveld refinements of the Ba 0.8Ca 0.2ZrO 3 structure using variable-temperature neutron powder diffraction data confirmed that the Pm3 m→ I4/ mcm transition corresponds to a rotation of octahedra about one of the cubic axes; successive octahedra along this axis rotate in opposite directions. In situ variable-temperature electron diffraction studies indicated that the transition temperature increases with increasing Ca-substitution on the A-sites, from approximately -120°C at 5 at% Ca to 225°C at 20 at% Ca. Dielectric measurements revealed that the permittivity increases monotonically from 36 for BaZrO 3 to 53 for Ba 0.9Ca 0.1ZrO 3, and then decreases to 50 for Ba 0.8Ca 0.2ZrO 3. This later specimen was the Ca-richest composition for which pellets could be quenched from the single-phase cubic field with presently available equipment. Strongly non-monotonic behavior was also observed for the temperature coefficient of resonant frequency; however, in this case, the maximum occurred at a lower Ca concentration, 0.05⩽ x⩽0.1. The non-linear behavior of the dielectric properties was attributed to two competing structural effects: a positive effect associated with substitution of relatively small Ca cations on the A-sites, resulting

  16. Measurements of the electrical resistance and the hydrogen depth distribution for Ni 60Nb 20Zr 20 amorphous alloy before and after hydrogen charging

    NASA Astrophysics Data System (ADS)

    Nakano, Sumiaki; Ohtsu, Naofumi; Nagata, Shinji; Yamaura, Shin-ichi; Uchinashi, Sakae; Kimura, Hisamichi; Shikama, Tatsuo; Inoue, Akihisa

    2005-02-01

    A Ni 60Nb 20Zr 20 amorphous alloy was prepared by the single-roller melt-spinning technique. The change in the electrical resistance of the alloy after electrochemical hydrogen charging in 6 N KOH solution was investigated. The change in the hydrogen depth distribution in the alloy was also investigated by elastic recoil detection. As a result, we found that the electrical resistance of the alloy increases with increasing the hydrogen content in the alloy and that a large number of hydrogen atoms are remained in the surface area of the hydrogen-charged alloy.

  17. 9 CFR 102.4 - U.S. Veterinary Biologics Establishment License.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... LICENSES FOR BIOLOGICAL PRODUCTS § 102.4 U.S. Veterinary Biologics Establishment License. (a) Before a U.S... establishment, and the methods used to prepare biological products are in conformity with the requirements in... biological products are such as reasonably to assure that the products shall accomplish the purpose for which...

  18. Mechanical properties of a Gum-type Ti-Nb-Zr-Fe-O alloy

    NASA Astrophysics Data System (ADS)

    Nocivin, Anna; Cinca, Ion; Raducanu, Doina; Cojocaru, Vasile Danut; Popovici, Ion Alexandru

    2017-08-01

    A new Gum-type alloy (Ti-Nb-Zr-Fe-O) in which Fe is used instead of Ta was subjected to a particular thermomechanical processing scheme to assess whether its mechanical characteristics (fine β-grains with high strength and low modulus) render it suitable as a biomedical implant material. After a homogenization treatment followed by cold-rolling with 50% reduction, the specimens were subjected to one of three different recrystallization treatments at 1073, 1173, and 1273 K. The structural and mechanical properties of all of the treated specimens were analyzed. The mechanical characterization included tensile tests, microhardness determinations, and fractography by scanning electron microscopy. The possible deformation mechanisms were discussed using the \\overline {Bo} - \\overline {Md} diagram. By correlating all of the experimental results, we concluded that the most promising processing variant corresponds to recrystallization at 1073 K, which can provide suitable mechanical characteristics for this type of alloys: high yield and ultimate tensile strengths (1038 and 1083 MPa, respectively), a low modulus of elasticity (62 GPa), and fine crystalline grain size (approximately 50 μm).

  19. Determination of the direct double- β -decay Q value of Zr 96 and atomic masses of Zr 90 - 92 , 94 , 96 and Mo 92 , 94 - 98 , 100

    DOE PAGES

    Gulyuz, K.; Ariche, J.; Bollen, G.; ...

    2015-05-06

    Experimental searches for neutrinoless double-β decay offer one of the best opportunities to look for physics beyond the standard model. Detecting this decay would confirm the Majorana nature of the neutrino, and a measurement of its half-life can be used to determine the absolute neutrino mass scale. Important to both tasks is an accurate knowledge of the Q value of the double-β decay. The LEBIT Penning trap mass spectrometer was used for the first direct experimental determination of the ⁹⁶Zr double-β decay Q value: Q ββ=3355.85(15) keV. This value is nearly 7 keV larger than the 2012 Atomic Mass Evaluationmore » [M. Wang et al., Chin. Phys. C 36, 1603 (2012)] value and one order of magnitude more precise. The 3-σ shift is primarily due to a more accurate measurement of the ⁹⁶Zr atomic mass: m(⁹⁶Zr)=95.90827735(17) u. Using the new Q value, the 2νββ-decay matrix element, |M 2ν|, is calculated. Improved determinations of the atomic masses of all other zirconium ( 90-92,94,96Zr) and molybdenum ( 92,94-98,100Mo) isotopes using both ¹²C₈ and ⁸⁷Rb as references are also reported.« less

  20. Facile preparation of highly pure KF-ZrF4 molten salt

    NASA Astrophysics Data System (ADS)

    Zong, Guoqiang; Cui, Zhen-Hua; Zhang, Zhi-Bing; Zhang, Long; Xiao, Ji-Chang

    2018-03-01

    The preparation of highly pure KF-ZrF4 (FKZr) molten salt, a potential secondary coolant in molten salt reactors, was realized simply by heating a mixture of (NH4)2ZrF6 and KF. X-ray diffraction analysis indicated that the FKZr molten salt was mainly composed of KZrF5 and K2ZrF6. The melting point of the prepared FKZr molten salt was 420-422 °C under these conditions. The contents of all metal impurities were lower than 20 ppm, and the content of oxygen was lower than 400 ppm. This one-step protocol avoids the need for a tedious procedure to prepare ZrF4 and for an additional purification process to remove oxide impurities, and is therefore a convenient, efficient and economic preparation method for high-purity FKZr molten salt.

  1. Synthesis and photoluminescence properties of multicolor tunable GdNbO4: Tb3+, Eu3+ phosphors based on energy transfer

    NASA Astrophysics Data System (ADS)

    Zhang, Lu; Yi, Shuangping; Hu, Xiaoxue; Liang, Boxin; Zhao, Weiren; Wang, Yinhai

    2017-03-01

    A color-tunable phosphor based on Tb3+/Eu3+ co-doped GdNbO4 were synthesized by a traditional solid-state reaction method. X-ray powder diffraction (XRD), diffuse reflectance spectra, photoluminescence spectra and decay curves were utilized to characterize the as-prepared phosphors. XRD result indicated that various concentrations Tb3+/Eu3+ single-doped and co-doped phosphors were well indexed to the pure GdNbO4 phase. The GdNbO4 host was proved to be a self-activated phosphor with broad absorption range from 200 nm to 325 nm. When Tb3+ ions were added into the host lattice, the energy transferring from host to Tb3+ was identified. And the broad absorption in the UV region was changed and enhanced. Therefore, we selected Tb3+ as the sensitizer ion, and adjusted red component from Eu3+ to control the emission color. The energy transfer from Tb3+ to Eu3+ was confirmed based on the luminescence spectra and decay curves. Furthermore, the energy transmission mechanism was deduced to be the dipole-quadrupole interaction. On the whole, the obtained GdNbO4, GdNbO4:Tb3+, and GdNbO4:Tb3+, Eu3+ phosphors may have potential application in the UV white-light-emitting diodes (w-LEDs) and display devices.

  2. Solid state {sup 31}P MAS NMR spectroscopy and conductivity measurements on NbOPO{sub 4} and H{sub 3}PO{sub 4} composite materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Risskov Sørensen, Daniel; Nielsen, Ulla Gro; Skou, Eivind M., E-mail: ems@kbm.sdu.dk

    2014-11-15

    A systematic study of composite powders of niobium oxide phosphate (NbOPO{sub 4}) and phosphoric acid (H{sub 3}PO{sub 4}) has been performed in order to characterize the material's ability to perform as an electrolyte material in medium temperature fuel cells and electrolyzers. Powders of H{sub 3}PO{sub 4} contents between 13.1 and 74.2 M% were produced and characterized with powder X-ray diffraction, {sup 31}P MAS NMR and impedance spectroscopy. NMR revealed that a significant degree of dehydration and vaporization of H{sub 3}PO{sub 4} takes place above 200 °C, and increases with temperature. At 500 °C the NbOPO{sub 4} and H{sub 3}PO{sub 4}more » has reacted to form niobium pyrophosphate (Nb{sub 2}P{sub 4}O{sub 15}). Impedance spectroscopy showed an increase in conductivity with increasing acid concentration, whereas the conductivity decreased slightly with increasing temperature. The highest conductivity measured was 2.5·10{sup −3} S/cm for a sample containing 74.2 M% of H{sub 3}PO{sub 4}. Lastly, it was shown that NbOPO{sub 4} has no significant conductivity of its own. - Graphical abstract: Conductivity of NbOPO{sub 4}/H{sub 3}PO{sub 4} composites as a function of equivalent P{sub 2}O{sub 5} content. The conductivity is insignificant for pure NbOPO{sub 4}. - Highlights: • Composites have been made from NbOPO{sub 4} and H{sub 3}PO{sub 4}. • The composites composition has been investigated with solid state NMR. • The composites have shown clear signs of acid dehydration upon heating. • The conductivity of the composites increases for increasing acid content. • NbOPO{sub 4} has no significant conductivity of its own.« less

  3. Effect of the ZrCl4 concentration in the (NaCl-KCl)eqiv-UO2Cl2-ZrCl4 melt and the electrolysis current density on the quantitative composition of UO2-ZrO2 cathode deposits. Calculation and experiment

    NASA Astrophysics Data System (ADS)

    Krotov, V. E.; Filatov, E. C.

    2014-08-01

    A method is proposed for calculating the ZrO2 content in the (NaCl-KCl)eqiv-UO2Cl2-ZrCl4 melt. Based on the known composition of a UO2-ZrO2 cathode deposit, the content is calculated at current densities of 0.08-0.63 A/cm2 and ZrCl4 concentrations of 0-12.3 wt %. The calculated and experimental ZrO2 contents in UO2-ZrO2 cathode deposits are in qualitative and adequate quantitative agreement.

  4. Plasma electrolytic oxidation treatment mode influence on corrosion properties of coatings obtained on Zr-1Nb alloy in silicate-phosphate electrolyte

    NASA Astrophysics Data System (ADS)

    Farrakhov, R. G.; Mukaeva, V. R.; Fatkullin, A. R.; Gorbatkov, M. V.; Tarasov, P. V.; Lazarev, D. M.; Babu, N. Ramesh; Parfenov, E. V.

    2018-01-01

    This research is aimed at improvement of corrosion properties for Zr-1Nb alloy via plasma electrolytic oxidation (PEO). The coatings obtained in DC, pulsed unipolar and pulsed bipolar modes were assessed using SEM, XRD, PDP and EIS techniques. It was shown that pulsed unipolar mode provides the PEO coatings having promising combination of the coating thickness, surface roughness, porosity, corrosion potential and current density, and charge transfer resistance, all contributing to corrosion protection of the zirconium alloy for advanced fuel cladding applications.

  5. Giant increase in piezoelectric coefficient of AlN by Mg-Nb simultaneous addition and multiple chemical states of Nb

    NASA Astrophysics Data System (ADS)

    Uehara, Masato; Shigemoto, Hokuto; Fujio, Yuki; Nagase, Toshimi; Aida, Yasuhiro; Umeda, Keiichi; Akiyama, Morito

    2017-09-01

    Aluminum nitride (AlN) is one of piezoelectric materials, which are eagerly anticipated for use in microelectromechanical systems (MEMS) applications such as communication resonators, sensors, and energy harvesters. AlN is particularly excellent in generated voltage characteristics for the MEMS rather than oxide piezoelectric materials such as lead zirconium titanate Pb(Zr, Ti)O3. However, it is necessary to improve the piezoelectric properties of AlN in order to advance the performance of the MEMS. We dramatically increased the piezoelectric coefficient d33 of AlN films by simultaneously adding magnesium (Mg) and niobium (Nb). The d33 of Mg39.3Nb25.0Al35.7N is 22 pC/N, which is about four times that of AlN. The d33 is increased by Mg and Nb simultaneous addition, and is not increased by Mg or Nb single addition. Interestingly, the Nb has multiple chemical states, and which are influenced by the Mg concentration.

  6. Structure, age, and ore potential of the Burpala rare-metal alkaline massif, northern Baikal region

    NASA Astrophysics Data System (ADS)

    Vladykin, N. V.; Sotnikova, I. A.; Kotov, A. B.; Yarmolyuk, V. V.; Sal'nikova, E. B.; Yakovleva, S. Z.

    2014-07-01

    The Burpala alkaline massif is a unique geological object. More than 50 Zr, Nb, Ti, Th, Be, and REE minerals have been identified in rare-metal syenite of this massif. Their contents often reach tens of percent, and concentrations of rare elements in rocks are as high as 3.6% REE, 4% Zr, 0.5% Y, 0.5% Nb, 0.5% Th, and 0.1% U. Geological and geochemical data show that all rocks in the Burpala massif are derivatives of alkaline magma initially enriched in rare elements. These rocks vary in composition from shonkinite, melanocratic syenite, nepheline and alkali syenites to alaskite and alkali granite. The extreme products of magma fractionation are rare-metal pegmatites, apatite-fluorite rocks, and carbonatites. The primary melts were related to the enriched EM-2 mantle source. The U-Pb zircon ages of pulaskite (main intrusive phase) and rare-metal syenite (vein phase) are estimated at 294 ± 1 and 283 ± 8 Ma, respectively. The massif was formed as a result of impact of the mantle plume on the active continental margin of the Siberian paleocontinent.

  7. Photoelectron imaging spectroscopy of MoC{sup −} and NbN{sup −} diatomic anions: A comparative study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Qing-Yu; Li, Zi-Yu; He, Sheng-Gui, E-mail: shengguihe@iccas.ac.cn, E-mail: chenh@iccas.ac.cn

    2015-04-28

    The isoeletronic diatomic MoC{sup −} and NbN{sup −} anions have been prepared by laser ablation and studied by photoelectron imaging spectroscopy combined with quantum chemistry calculations. The photoelectron spectra of NbN{sup −} can be very well assigned on the basis of literature reported optical spectroscopy of NbN. In contrast, the photoelectron spectra of MoC{sup −} are rather complex and the assignments suffered from the presence of many electronically hot bands and limited information from the reported optical spectroscopy of MoC. The electron affinities of NbN and MoC have been determined to be 1.450 ± 0.003 eV and 1.360  ±  0.003more » eV, respectively. The good resolution of the imaging spectroscopy provided a chance to resolve the Ω splittings of the X{sup 3}Σ{sup −} (Ω = 0 and 1) state of MoC and the X{sup 4}Σ{sup −} (Ω = 1/2 and 3/2) state of MoC{sup −} for the first time. The spin-orbit splittings of the X{sup 2}Δ state of NbN{sup −} and the a{sup 2}Δ state of MoC{sup −} were also determined. The similarities and differences between the electronic structures of the NbN and MoC systems were discussed.« less

  8. Lithium Chloride Promotes Apoptosis in Human Leukemia NB4 Cells by Inhibiting Glycogen Synthase Kinase-3 Beta.

    PubMed

    Li, Liu; Song, Hao; Zhong, Liang; Yang, Rong; Yang, Xiao-Qun; Jiang, Kai-Ling; Liu, Bei-Zhong

    2015-01-01

    Acute promyelocytic leukemia (APL) is a subtype of acute myeloid leukemia (AML). With the application of all-trans retinoic acid (ATRA) and arsenic trioxide (ATO), APL becomes one of best prognosis of leukemia. However, ATRA and ATO are not effective against all APLs. Therefore, a new strategy for APL treatment is necessary. Here, we investigated whether lithium chloride (LiCl), a drug used for the treatment of mental illness, could promote apoptosis in human leukemia NB4 cells. We observed that treatment with LiCl significantly accelerated apoptosis in NB4 cells and led to cell cycle arrest at G2/M phase. Moreover, LiCl significantly increased the level of Ser9-phosphorylated glycogen synthase kinase 3β(p-GSK-3β), and decreased the level of Akt1 protein in a dose-dependent manner. In addition, LiCl inhibition of c-Myc also enhanced cell death with a concomitant increase in β-catnin. Taken together, these findings demonstrated that LiCl promoted apoptosis in NB4 cells through the Akt signaling pathway and that G2/M phase arrest was induced by increase of p-GSK-3β(S9).

  9. Influence of thermomechanical processing on biomechanical compatibility and electrochemical behavior of new near beta alloy, Ti-20.6Nb-13.6Zr-0.5V

    PubMed Central

    Mohammed, Mohsin Talib; Khan, Zahid A; Manivasagam, Geetha; Siddiquee, Arshad N

    2015-01-01

    This paper presents the results for the effect of different methods of thermomechanical processing on the mechanical properties and electrochemical behavior of metastable β alloy Ti-20.6Nb-13.6Zr-0.5V (TNZV). The thermomechanical processing included hot working, solution heat treatments at different temperatures, and cooling rates in addition to aging. The thermomechanical processing conditions used in the study resulted in attainment of a wide range of microstructures with varying spatial distributions and morphologies of elongated/equiaxed α, β phases, or martensite, as a result of which several tensile properties were achieved. Aging treatment led to an increase in hardness, elastic modulus, and tensile strength and a decrease in ductility (elongation). Electrochemical tests indicated that the TNZV alloy undergoes spontaneous passivation due to spontaneous formation of an oxide film in the environment of the human body. Because the air-cooled samples possessed high hardness and also a fine grain size, they showed a lower corrosion rate than the samples treated under other conditions. PMID:26491324

  10. Flow Behavior and Constitutive Equation of Ti-6.5Al-2Sn-4Zr-4Mo-1W-0.2Si Titanium Alloy

    NASA Astrophysics Data System (ADS)

    Yang, Xuemei; Guo, Hongzhen; Liang, Houquan; Yao, Zekun; Yuan, Shichong

    2016-04-01

    In order to get a reliable constitutive equation for the finite element simulation, flow behavior of Ti-6.5Al-2Sn-4Zr-4Mo-1W-0.2Si alloy under high temperature was investigated by carrying a series of isothermal compression tests at temperatures of 1153-1293 K and strain rates of 0.01-10.0 s-1 on the Gleeble-1500 simulator. Results showed that the true stress-strain curves exhibited peaks at small strains, after which the flow stress decreased monotonically. Ultimately, the flow curves reached steady state at the strain of 0.6, showing a dynamic flow softening phenomenon. The effects of strain rate, temperature, and strain on the flow behavior were researched by establishing a constitutive equation. The relations among stress exponent, deformation activation energy, and strain were preliminarily discussed by using strain rate sensitivity exponent and dynamic recrystallization kinetics curve. Stress values predicted by the modified constitutive equation showed a good agreement with the experimental ones. The correlation coefficient ( R) and average absolute relative error (AARE) were 98.2% and 4.88%, respectively, which confirmed that the modified constitutive equation could give an accurate estimation of the flow stress for BT25y titanium alloy.

  11. Theory of magnetoelectric response in Co4Nb2O9

    NASA Astrophysics Data System (ADS)

    Yanagi, Yuki; Hayami, Satoru; Kusunose, Hiroaki

    2018-05-01

    The mechanism of the observed novel magnetoelectric effects in Co4Nb2O9 is addressed by calculating the magnetoelectric tensor of the realistic effective model derived from the first principles calculation. The obtained magnetic-field angle dependence of the electric polarization qualitatively reproduces the experimental result. It is shown that the orbital contribution dominates the magnetoelectric response and the angle dependence can be understood by the first order perturbation with respect to the spin-orbit coupling.

  12. Piezoelectric properties and temperature stability of Mn-doped Pb(Mg1/3Nb2/3)-PbZrO3-PbTiO3 textured ceramics

    NASA Astrophysics Data System (ADS)

    Yan, Yongke; Cho, Kyung-Hoon; Priya, Shashank

    2012-03-01

    In this letter, we report the electromechanical properties of textured 0.4Pb(Mg1/3Nb2/3)O3-0.25PbZrO3-0.35PbTiO3 (PMN-PZT) composition which has relatively high rhombohedral to tetragonal (R-T) transition temperature (TR-T of 160 °C) and Curie temperature (TC of 234 °C) and explore the effect of Mn-doping on this composition. It was found that MnO2-doped textured PMN-PZT ceramics with 5 vol. % BaTiO3 template (T-5BT) exhibited inferior temperature stability. The coupling factor (k31) of T-5BT ceramic started to degrade from 75 °C while the random counterpart showed a very stable tendency up to 180 °C. This degradation was associated with the "interface region" formed in the vicinity of BT template. MnO2 doped PMN-PZT ceramics textured with 3 vol. % BT and subsequently poled at 140 °C (T-3BT140) exhibited very stable and high k31 (>0.53) in a wide temperature range from room temperature to 130 °C through reduction in the interface region volume. Further, the T-3BT140 ceramic exhibited excellent hard and soft combinatory piezoelectric properties of d33 = 720 pC/N, k31 = 0.53, Qm = 403, tan δ = 0.3% which are very promising for high power and magnetoelectric applications.

  13. The in vitro study of apoptosis in NB4 cell induced by citral.

    PubMed

    Xia, Hailong; Liang, Wei; Song, Qin; Chen, Xiaowen; Chen, Xin; Hong, Jian

    2013-01-01

    Citral, 3,7-dimethyl-2,6-octadienal, is a key component of the essential oils extracted from several lemon-scented herbal plants. Besides its antifungal activity, the anticancer effect of citral was studied in recent years. In this study, we investigated the effect of citral on the acute promyelocytic leukemia cell line NB4. Citral treatment had an antiproliferative effect in NB4 cells via the induction of apoptosis assessed by morphology, proliferation assay, DNA electrophoresis, Annexin V-FITC/PI staining and caspase-3 activation. And citral induced apoptosis of NB4 cells in a dose- and time-dependent manner. In addition, citral treatment induced decreased mitochondrial membrane potential, indicating that citral induced apoptosis via the mitochondrial pathway. Bax up-regulation and Bcl-2 down-regulation on mRNA level and NF-κB down-regulation on protein level was found in this study, suggesting that Bcl-2, Bax and NF-κB may be involved in the mechanism of the apoptotic effect of citral on NB4 cells. These data suggest that citral has a potential therapeutic effect on leukemia.

  14. Single-crystal growth of C u4(OH) 6BrF and universal behavior in quantum spin liquid candidates synthetic barlowite and herbertsmithite

    NASA Astrophysics Data System (ADS)

    Pasco, C. M.; Trump, B. A.; Tran, Thao T.; Kelly, Z. A.; Hoffmann, C.; Heinmaa, I.; Stern, R.; McQueen, T. M.

    2018-04-01

    Synthetic barlowite, C u4(OH) 6BrF , has emerged as a new quantum spin liquid (QSL) host, containing kagomé layers of S =1 /2 C u2 + ions separated by interlayer C u2 + ions. Similar to synthetic herbertsmithite, ZnC u3(OH) 6C l2 , it has been reported that Z n2 + substitution for the interlayer C u2 + induces a QSL ground state. Here we report a scalable synthesis of single crystals of C u4(OH) 6BrF . Through x-ray, neutron, and electron diffraction measurements coupled with magic angle spinning 19F and 1H NMR spectroscopy, we resolve the previously reported positional disorder of the interlayer C u2 + ions and find that the structure is best described in the orthorhombic space group, Cmcm, with lattice parameters a =6.665 (13 )Å ,b =11.521 (2 )Å ,c =9.256 (18 )Å , and an ordered arrangement of interlayer C u2 + ions. Infrared spectroscopy measurements of the O—H and F—H stretching frequencies demonstrate that the orthorhombic symmetry persists upon substitution of Z n2 + for C u2 + . Specific heat and magnetic susceptibility measurements of Zn-substituted barlowite, Z nxC u4 -x(OH) 6BrF , reveal striking similarities with the behavior of Z nxC u4 -x(OH) 6C l2 . These parallels imply universal behavior of copper kagomé lattices even in the presence of small symmetry-breaking distortions. Thus, synthetic barlowite demonstrates universality of the physics of synthetic C u2 + kagomé minerals and furthers the development of real QSL states.

  15. Conduction below 100 °C in nominal Li 6ZnNb 4O 14

    DOE PAGES

    Li, Yunchao; Paranthaman, Mariappan Parans; Gill, Lance W.; ...

    2015-09-15

    The increasing demand for a safe rechargeable battery with a high energy density per cell is driving a search for a novel solid electrolyte with a high Li + or Na + conductivity that is chemically stable in a working Li-ion or Na-ion battery. Li 6ZnNb 4O 14 has been reported to exhibit a σ Li > 10 -2 S cm -1 at 250 °C, but to disproportionate into multiple phases on cooling from 850 °C to room temperature. An investigation of the room-temperature Li-ion conductivity in a porous pellet of a multiphase product of a nominal Li 6ZnNb 4Omore » 14 composition is shown to have bulk σ Li 3.3 x 10 -5 S cm -1 at room temperature that increases to 1.4 x 10 -4 S cm -1 by 50 °C. 7Li MAS NMR spectra were fitted to two Lorentzian lines, one of which showed a dramatic increase with increasing temperature. As a result, a test for water stability indicates that Li + may move to the particle and grain surfaces to react with adsorbed water as occurs in the garnet Li + conductors.« less

  16. Research in LPE of Doped LiNbO3 and LiTaO3 Thin Films.

    DTIC Science & Technology

    1981-06-01

    garnet films grown on single crystal garnet substrates by the LPE technique for magnetic bubble applica- tions. The choice of substrate and film are...AD-Al07 686 ROCKWELL INTERNATIONAL THOUSAND OAKS CA ELECTRONICS -EUTC F/G 2RESEARCH IN LPE OF DOPED LINBO3 AND LITA03 THIN FILMS .(U JUN Al R R NEUR...Research in LPE of Doped LiNbO3 and LiTa03 Final Report Thin Films 04/01/77 through 03/31/81 6. PERFORMING ORG. REPORT NUM9ER ERC41004.11FR 7. AUTNOR

  17. Thermal properties of U-7Mo/Al dispersion fuel

    NASA Astrophysics Data System (ADS)

    Cho, Tae Won; Kim, Yeon Soo; Park, Jong Man; Lee, Kyu Hong; Kim, Sunghwan; Lee, Chong-Tak; Yang, Jae Ho; Oh, Jang Soo; Won, Ju-Jin; Sohn, Dong-Seong

    2017-12-01

    The thermal diffusivity and heat capacity of U-7Mo/Al and U-7Mo/Al-5Si as functions of U-Mo fuel volume fraction and temperature were measured. The density of the sample was measured at room temperature and estimated using thermal expansion data at elevated temperatures. Using the measured data, the thermal conductivity was obtained as a function of U-Mo volume fraction and temperature. The thermal conductivity of U-7Mo/Al-5Si was found to be lower than that of U-7Mo/Al because of the Si addition to the Al. Due to a lower porosity and reduced interaction between U-Mo and Al in the sample, the thermal conductivity data reported in the present study were higher than those in the literature. The present data were found to be in agreement with the predictions of theoretical models.

  18. Testing Room-Temperature Ionic Liquid Solutions for Depot Repair of Aluminum Coatings

    DTIC Science & Technology

    2011-05-01

    Ne 3 Na Mg IIIB IVB VB VIB VIIB ------ VIIIB ------ IB IIB Al Si P S Cl Ar 4 K Ca Sc Ti V Cr Mn Fe Co Ni Cu Zn Ga Ge As Se Br Kr 5 Rb Sr Y Zr Nb Mo Tc...Ru Rh Pd Ag Cd In Sn Sb Te I Xe 6 Cs Ba La Hf Ta W Re Os Ir Pt Au Hg Tl Pb Bi Po At Rn 7 Fr Ra Ac Ce Pr Nd Pm Sm Eu Gd Tb Dy Ho Er Tm Yb Lu Th Pa U Np...Electroplating Bath Lid Arrangement ;:::::::::::=== Thermometer Purge gas vent Anode lead Cathode lead (Extractable from the lid) Purge feed gas

  19. Biological Behaviour and Enhanced Anticorrosive Performance of the Nitrided Superelastic Ti-23Nb-0.7Ta-2Zr-0.5N Alloy

    PubMed Central

    Osiceanu, Petre; Gloriant, Thierry

    2015-01-01

    The influence of gas nitriding surface treatment on the superelastic Ti-23Nb-0.7Ta-2Zr-0.5N alloy was evaluated. A thorough characterization of bare and nitrided Ti-based alloy and pure Ti was performed in terms of surface film composition and morphology, electrochemical behaviour, and short term osteoblast response. XPS analysis showed that the nitriding treatment strongly influenced the composition (nitrides and oxynitrides) and surface properties both of the substrate and of the bulk alloy. SEM images revealed that the nitrided surface appears as a similar dotted pattern caused by the formation of N-rich domains coexisting with less nitrided domains, while before treatment only topographical features could be observed. All the electrochemical results confirmed the high chemical stability of the nitride and oxynitride coating and the superiority of the applied treatment. The values of the corrosion parameters ascertained the excellent corrosion resistance of the coated alloy in the real functional conditions from the human body. Cell culture experiments with MG63 osteoblasts demonstrated that the studied biomaterials do not elicit any toxic effects and support cell adhesion and enhanced cell proliferation. Altogether, these data indicate that the nitrided Ti-23Nb-0.7Ta-2Zr-0.5N alloy is the most suitable substrate for application in bone implantology. PMID:26583096

  20. Metal-metal bonding and aromaticity in [M2(NHCHNH)3]2 (μ-E)2 (E = O, S; M = Nb, Mo, Tc, Ru, Rh).

    PubMed

    Yan, Xiuli; Meng, Lingpeng; Sun, Zheng; Li, Xiaoyan

    2016-02-01

    The nature of M-M bonding and aromaticity of [M2(NHCHNH)3]2(μ-E)2 (E = O, S; M = Nb, Mo, Tc, Ru, Rh) was investigated using atoms in molecules (AIM) theory, electron localization function (ELF), natural bond orbital (NBO) and molecular orbital analysis. These analyses led to the following main conclusions: in [M2(NHCHNH)3]2(μ-E)2 (E = O, S; M = Nb, Mo, Tc, Ru, Rh), the Nb-Nb, Ru-Ru, and Rh-Rh bonds belong to "metallic" bonds, whereas Mo-Mo and Tc-Tc drifted toward the "dative" side; all these bonds are partially covalent in character. The Nb-Nb, Mo-Mo, and Tc-Tc bonds are stronger than Ru-Ru and Rh-Rh bonds. The M-M bonds in [M2(NHCHNH)3]2(μ-S)2 are stronger than those in [M2(NHCHNH)3]2(μ-O)2 for M = Nb, Mo, Tc, and Ru. The NICS(1)ZZ values show that all of the studied molecules, except [Ru2(NHCHNH)3]2(μ-O)2, are aromaticity molecules. O-bridged compounds have more aromaticity than S-bridged compounds. Graphical Abstract Left Molecular graph, and right electron localization function (ELF) isosurface of [M2(NHCHNH)3]2(μ-E)2(E = O, S; M = Nb, Mo, Tc, Ru, Rh).

  1. TEM characterization of irradiated U-7Mo/Mg dispersion fuel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gan, J.; Keiser, D. D.; Miller, B. D.

    This paper presents the results of transmission electron microscopy (TEM) characterization on neutron-irradiated samples taken from the low-flux and high-flux sides of the same fuel plate with U-7Mo fuel particles dispersed in Mg matrix with aluminum alloy Al6061 as cladding material that was irradiated edge-on to the core in the Advanced Test Reactor. The corresponding local fission density and fission rate of the fuel particles and the average fuel-plate centerline temperature for the low-flux and high-flux samples are estimated to be 3.7 × 10 21 f/cm 3, 7.4 × 10 14 f/cm 3/s and 123 °C, and 5.5 × 10more » 21 f/cm3, 11.0 × 10 14 f/cm 3/s and 158 °C, respectively. Complex interaction layers developed at the Al-Mg interface, consisting of Al 3Mg 2 and Al 12Mg 17 along with precipitates of MgO, Mg 2Si and FeAl 5.3. No interaction between Mg matrix and U-Mo fuel particle was identified. For the U-Mo fuel particles, at low fission density, small elongated bubbles wrapped around the clean areas with a fission gas bubble superlattice, which suggests that bubble coalescence is an important mechanism for converting the fission gas bubble superlattice to large bubbles. At high fission density, no bubbles or porosity were observed in the Mg matrix, and pockets of residual fission gas bubble superlattice were observed in the U-Mo fuel particle interior.« less

  2. TEM characterization of irradiated U-7Mo/Mg dispersion fuel

    DOE PAGES

    Gan, J.; Keiser, D. D.; Miller, B. D.; ...

    2017-07-15

    This paper presents the results of transmission electron microscopy (TEM) characterization on neutron-irradiated samples taken from the low-flux and high-flux sides of the same fuel plate with U-7Mo fuel particles dispersed in Mg matrix with aluminum alloy Al6061 as cladding material that was irradiated edge-on to the core in the Advanced Test Reactor. The corresponding local fission density and fission rate of the fuel particles and the average fuel-plate centerline temperature for the low-flux and high-flux samples are estimated to be 3.7 × 10 21 f/cm 3, 7.4 × 10 14 f/cm 3/s and 123 °C, and 5.5 × 10more » 21 f/cm3, 11.0 × 10 14 f/cm 3/s and 158 °C, respectively. Complex interaction layers developed at the Al-Mg interface, consisting of Al 3Mg 2 and Al 12Mg 17 along with precipitates of MgO, Mg 2Si and FeAl 5.3. No interaction between Mg matrix and U-Mo fuel particle was identified. For the U-Mo fuel particles, at low fission density, small elongated bubbles wrapped around the clean areas with a fission gas bubble superlattice, which suggests that bubble coalescence is an important mechanism for converting the fission gas bubble superlattice to large bubbles. At high fission density, no bubbles or porosity were observed in the Mg matrix, and pockets of residual fission gas bubble superlattice were observed in the U-Mo fuel particle interior.« less

  3. Cubic γ-phase U-Mo alloys synthesized by splat-cooling

    NASA Astrophysics Data System (ADS)

    Kim-Ngan, Nhu-T. H.; Tkach, I.; Mašková, S.; Havela, L.; Warren, A.; Scott, T.

    2013-09-01

    U-Mo alloys are the most promising materials fulfilling the requirements of using low enriched uranium (LEU) fuel in research reactors. From a fundamental standpoint, it is of interest to determine the basic thermodynamic properties of the cubic γ-phase U-Mo alloys. We focus our attention on the use of Mo doping together with ultrafast cooling (with high cooling rates ⩾106 K s-1), which helps to maintain the cubic γ-phase in U-Mo system to low temperatures and on determination of the low-temperature properties of these γ-U alloys. Using a splat cooling method it has been possible to maintain some fraction of the high-temperature γ-phase at room temperature in pure uranium. U-13 at.% Mo splat clearly exhibits the pure γ-phase structure. All the splats become superconducting with Tc in the range from 1.24 K (pure U splat) to 2.11 K (U-15 at.% Mo). The γ-phase in U-Mo alloys undergoes eutectoid decomposition to form equilibrium phases of orthorhombic α-uranium and tetragonal γ‧-phase upon annealing at 500 °C, while annealing at 800 °C has stabilized the initial γ phase. The α-U easily absorbs a large amount of hydrogen (UH3 hydride), while the cubic bcc phase does not absorb any detectable amount of hydrogen at pressures below 1 bar and at room temperature. At 80 bar, the U-15 at.% Mo splat becomes powder consisting of elongated particles of 1-2 mm, revealing amorphous state.

  4. Thermal phase separation of ZrSiO4 thin films and frequency- dependent electrical characteristics of the Al/ZrSiO4/p-Si/Al MOS capacitors

    NASA Astrophysics Data System (ADS)

    Lok, R.; Kaya, S.; Yilmaz, E.

    2018-05-01

    In this work, the thermal phase separation and annealing optimization of ZrSiO4 thin films have been carried out. Following annealing optimization, the frequency-dependent electrical characteristics of the Al/ZrSiO4/p-Si/Al MOS capacitors were investigated in detail. The chemical evolution of the films under various annealing temperatures was determined by Fourier transform infrared spectroscopy (FTIR) measurements. The phase separation was determined by x-ray diffraction (XRD) measurements. The electrical parameters were determined via the capacitance–voltage (C–V), conductance–voltage (G/ω) and leakage-current–voltage (Ig–Vg ). The results demonstrate that zirconium silicate formations are present at 1000 °C annealing with the SiO2 interfacial layer. The film was in amorphous form after annealing at 250 °C. The tetragonal phases of ZrO2 were obtained after annealing at 500 °C. When the temperature approaches 750 °C, transitions from the tetragonal phase to the monoclinic phase were observed. The obtained XRD peaks after 1000 °C annealing matched the crystalline peaks of ZrSiO4. This means that the crystalline zirconium dioxide in the structure has been converted into a crystalline silicate phase. The interface states increased to 5.71 × 1010 and the number of border traps decreased to 7.18 × 1010 cm‑2 with the increasing temperature. These results indicate that an excellent ZrSiO4/Si interface has been fabricated. The order of the leakage current varied from 10‑9 Acm‑2 to 10‑6 Acm‑2. The MOS capacitor fabricated with the films annealed at 1000 °C shows better behavior in terms of its structural, chemical and electrical properties. Hence, detailed frequency-dependent electrical characteristics were performed for the ZrSiO4 thin film annealed at 1000 °C. Very slight capacitance variations were observed under the frequency variations. This shows that the density of frequency-dependent charges is very low at the ZrSiO4/Si interface. The

  5. A modelling study of the inter-diffusion layer formation in U-Mo/Al dispersion fuel plates at high power

    NASA Astrophysics Data System (ADS)

    Ye, B.; Hofman, G. L.; Leenaers, A.; Bergeron, A.; Kuzminov, V.; Van den Berghe, S.; Kim, Y. S.; Wallin, H.

    2018-02-01

    Post irradiation examinations of full-size U-Mo/Al dispersion fuel plates fabricated with ZrN- or Si- coated U-Mo particles revealed that the reaction rate of irradiation-induced U-Mo-Al inter-diffusion, an important microstructural change impacting the performance of this type of fuel, transited at a threshold temperature/fission rate. The existing inter-diffusion layer (IL) growth correlation, which does not describe the transition behavior of IL growth, was modified by applying a temperature-dependent multiplication factor that transits around a threshold fission rate. In-pile irradiation data from four tests in the BR2 reactors, including FUTURE, E-FUTURE, SELEMIUM, and SELEMIUM-1a, were utilized to determine and validate the updated IL growth correlation. Irradiation behavior of the plates was simulated with the DART-2D computational code. The general agreement between the calculated and measured fuel meat swelling and constituent volume fractions as a function of fission density demonstrated the plausibility of the updated IL growth correlation. The simulation results also suggested the temperature dependence of the IL growth rate, similar to the temperature dependence of the inter-mixing rate in ion-irradiated bi-layer systems.

  6. Activation Cross-Sections for 14.2 MeV Neutrons on Molybdenum

    NASA Astrophysics Data System (ADS)

    Srinivasa Rao, C. V.; Lakshmana Das, N.; Thirumala Rao, B. V.; Rama Rao, J.

    1981-12-01

    Using the activation method, the cross-section for the following reactions on molybdenum were measured employing the mixed powder technique and Ge(Li) gamma-ray spectroscopy: 94Mo(n, 2n)93mMo, 3.5 ± 0.5 mbarn; 92Mo(n, 2n)91mMo, 19 ± 3 mbarn; 92Mo(n, 2n)91m+gMo, 226 ± 11 mbarn; 100Mo(n, p)100m2Nb, 9 ± 1 mbarn; 98Mo(n, p)98Nb, 10 ± 1 mbarn; 97Mo(n, p)97mNb, 5 ± 1 mbarn; 96Mo(n, p)96Nb, 12 ± 2 mbarn; 92Mo(n, α)89mZr, 2.1 ± 0.5 mbarn; and 92Mo(n, α)89m+gZr 24 ± 6 mbarn; the neutron energy was 14.2 ± 0.2 MeV. The experimental cross-sections were compared with the predictions of evaporation model and of different versions of pre-equilibrium model. The master equation approach appears to give satisfactory results.

  7. Re-refinement of the spliceosomal U4 snRNP core-domain structure

    PubMed Central

    Li, Jade; Leung, Adelaine K.; Kondo, Yasushi; Oubridge, Chris; Nagai, Kiyoshi

    2016-01-01

    The core domain of small nuclear ribonucleoprotein (snRNP), comprised of a ring of seven paralogous proteins bound around a single-stranded RNA sequence, functions as the assembly nucleus in the maturation of U1, U2, U4 and U5 spliceosomal snRNPs. The structure of the human U4 snRNP core domain was initially solved at 3.6 Å resolution by experimental phasing using data with tetartohedral twinning. Molecular replacement from this model followed by density modification using untwinned data recently led to a structure of the minimal U1 snRNP at 3.3 Å resolution. With the latter structure providing a search model for molecular replacement, the U4 core-domain structure has now been re-refined. The U4 Sm site-sequence AAUUUUU has been shown to bind to the seven Sm proteins SmF–SmE–SmG–SmD3–SmB–SmD1–SmD2 in an identical manner as the U1 Sm-site sequence AAUUUGU, except in SmD1 where the bound U replaces G. The progression from the initial to the re-refined structure exemplifies a tortuous route to accuracy: where well diffracting crystals of complex assemblies are initially unavailable, the early model errors are rectified by exploiting preliminary interpretations in further experiments involving homologous structures. New insights are obtained from the more accurate model. PMID:26894541

  8. MoNbTaV Medium-Entropy Alloy

    DOE PAGES

    Yao, Hongwei; Qiao, Jun -Wei; Gao, Michael; ...

    2016-05-19

    Guided by CALPHAD (Calculation of Phase Diagrams) modeling, the refractory medium-entropy alloy MoNbTaV was synthesized by vacuum arc melting under a high-purity argon atmosphere. A body-centered cubic solid solution phase was experimentally confirmed in the as-cast ingot using X-ray diffraction and scanning electron microscopy. The measured lattice parameter of the alloy (3.208 Å) obeys the rule of mixtures (ROM), but the Vickers microhardness (4.95 GPa) and the yield strength (1.5 GPa) are about 4.5 and 4.6 times those estimated from the ROM, respectively. Using a simple model on solid solution strengthening predicts a yield strength of approximately 1.5 GPa. Inmore » conclusion, thermodynamic analysis shows that the total entropy of the alloy is more than three times the configurational entropy at room temperature, and the entropy of mixing exhibits a small negative departure from ideal mixing.« less

  9. Gas Phase Chromatography of some Group 4, 5, and 6 Halides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sylwester, Eric Robert

    1998-10-01

    Gas phase chromatography using The Heavy Element Volatility Instrument (HEVI) and the On Line Gas Apparatus (OLGA III) was used to determine volatilities of ZrBr 4, HfBr 4, RfBr 4, NbBr 5, TaOBr 3, HaCl 5, WBr 6, FrBr, and BiBr 3. Short-lived isotopes of Zr, Hf, Rf, Nb, Ta, Ha, W, and Bi were produced via compound nucleus reactions at the 88-Inch Cyclotron at Lawrence Berkeley National Laboratory and transported to the experimental apparatus using a He gas transport system. The isotopes were halogenated, separated from the other reaction products, and their volatilities determined by isothermal gas phase chromatography.more » Adsorption Enthalpy (ΔH a) values for these compounds were calculated using a Monte Carlo simulation program modeling the gas phase chromatography column. All bromides showed lower volatility than molecules of similar molecular structures formed as chlorides, but followed similar trends by central element. Tantalum was observed to form the oxybromide, analogous to the formation of the oxychloride under the same conditions. For the group 4 elements, the following order in volatility and ΔH a was observed: RfBr 4 > ZrBr 4 > HfBr 4. The ΔH a values determined for the group 4, 5, and 6 halides are in general agreement with other experimental data and theoretical predictions. Preliminary experiments were performed on Me-bromides. A new measurement of the half-life of 261Rf was performed. 261Rf was produced via the 248Cm( 18O, 5n) reaction and observed with a half-life of 74 -6 +7 seconds, in excellent agreement with the previous measurement of 78 -6 +11 seconds. We recommend a new half-life of 75±7 seconds for 261Rf based on these two measurements. Preliminary studies in transforming HEVI from an isothermal (constant temperature) gas phase chromatography instrument to a thermochromatographic (variable temperature) instrument have been completed. Thermochromatography is a technique that can be used to study the volatility and ΔH a of longer

  10. Large Energy Density, Excellent Thermal Stability, and High Cycling Endurance of Lead-Free BaZr0.2Ti0.8O3 Film Capacitors.

    PubMed

    Sun, Zixiong; Ma, Chunrui; Wang, Xi; Liu, Ming; Lu, Lu; Wu, Ming; Lou, Xiaojie; Wang, Hong; Jia, Chun-Lin

    2017-05-24

    A large energy storage density (ESD) of 30.4 J/cm 3 and high energy efficiency of 81.7% under an electrical field of 3 MV/cm was achieved at room temperature by the fabrication of environmentally friendly lead-free BaZr 0.2 Ti 0.8 O 3 epitaxial thin films on Nb-doped SrTiO 3 (001) substrates by using a radio-frequency magnetron sputtering system. Moreover, the BZT film capacitors exhibit great thermal stability of the ESD from 16.8 J/cm 3 to 14.0 J/cm 3 with efficiency of beyond 67.4% and high fatigue endurance (up to 10 6 cycles) in a wide temperature range from room temperature to 125 °C. Compared to other BaTiO 3 -based energy storage capacitor materials and even Pb-based systems, BaZr 0.2 Ti 0.8 O 3 thin film capacitors show either high ESD or great energy efficiency. All of these excellent results revealed that the BaZr 0.2 Ti 0.8 O 3 film capacitors have huge potential in the application of modern electronics, such as locomotive and pulse power, in harsh working environments.

  11. AMS of 93Zr: Passive absorber versus gas-filled magnet

    NASA Astrophysics Data System (ADS)

    Hain, Karin; Deneva, Boyana; Faestermann, Thomas; Fimiani, Leticia; Gómez-Guzmán, José Manuel; Koll, Dominik; Korschinek, Gunther; Ludwig, Peter; Sergeyeva, Victoria; Thiollay, Nicolas

    2018-05-01

    Two different isobar separation techniques were tested for the detection of the long-lived fission product 93Zr (T1/2 = 1.64 · 106 a) using Accelerator Mass Spectrometry (AMS), i.e. a passive absorber and a gas-filled magnet, respectively. Both techniques were used in combination with a Time-of-Flight path for the identification of the stable neighboring isotopes 92Zr and 94Zr. The passive absorber was represented by a stack of silicon nitride foils for high flexibility regarding the thickness for optimal isobar separation. Ion beams with a large variety of energies, between 80 and 180 MeV, were provided for this experiment by the tandem accelerator at the Maier-Leibnitz Laboratory in Garching, Germany. With these beams, the stopping powers of 93Zr and 93Nb as a function of energy were determined experimentally and compared to the results obtained with the simulation program SRIM. Considerable discrepancies regarding the energy dependence of the two stopping power curves relative to each other were found. The lowest detection limit for 93Zr achieved with the passive absorber setup was 93Zr/Zr = 1 · 10-10. In comparison, by optimizing the gas-filled magnet set-up, 93Nb was suppressed by around six orders of magnitude and a detection limit of 93Zr/Zr = 5 · 10-11 was obtained. To our knowledge, these results represent the lowest detection limit achieved for 93Zr until now.

  12. Synthesis, spectral, DFT modeling, cytotoxicity and microbial studies of novel Zr(IV), Ce(IV) and U(VI) piroxicam complexes

    NASA Astrophysics Data System (ADS)

    El-Shwiniy, Walaa H.; Zordok, Wael A.

    2018-06-01

    The Zr(IV), Ce(IV) and U(VI) piroxicam anti-inflammatory drug complexes were prepared and characterized using elemental analyses, conductance, IR, UV-Vis, magnetic moment, IHNMR and thermal analysis. The ratio of metal: Pir is found to be 1:2 in all complexes estimated by using molar ratio method. The conductance data reveal that Zr(IV) and U(VI) chelates are non-electrolytes except Ce(IV) complex is electrolyte. Infrared spectroscopic confirm that the Pir behaves as a bidentate ligand co-ordinated to the metal ions via the oxygen and nitrogen atoms of ν(Cdbnd O)carbonyl and ν(Cdbnd N)pyridyl, respectively. The kinetic parameters of thermogravimetric and its differential, such as activation energy, entropy of activation, enthalpy of activation, and Gibbs free energy evaluated using Coats-Redfern and Horowitz-Metzger equations for Pir and complexes. The geometry of the piroxicam drug in the Free State differs significantly from that in the metal complex. In the time of metal ion-drug bond formation the drug switches-on from the closed structure (equilibrium geometry) to the open one. The antimicrobial tests were assessed towards some types of bacteria and fungi. The in vitro cell cytotoxicity of the complexes in comparison with Pir against colon carcinoma (HCT-116) cell line was measured. Optimized geometrical structure of piroxicam ligand by using DFT calculations.

  13. Davinciite, Na12K3Ca6Fe{3/2+}Zr3(Si26O73OH)Cl2, a New K,Na-Ordered mineral of the eudialyte group from the Khibiny Alkaline Pluton, Kola Peninsula, Russia

    NASA Astrophysics Data System (ADS)

    Khomyakov, A. P.; Nechelyustov, G. N.; Rastsvetaeva, R. K.; Rozenberg, K. A.

    2013-12-01

    This paper presents a description of a new zirconosilicate of the eudialyte group, which was named davinciite in honor of Leonardo da Vinci (1452-1519), a famous Italian scientist, painter, sculptor and architect. The new mineral has been found in hyperagpaitic pegmatite at the Rasvumchorr Mountain, Khibiny Pluton, Kola Peninsula, as relict inclusions, up to 1-2 mm in size in a rastsvetaevite matrix. It is associated with nepheline, sodalite, potassium feldspar, delhayelite, aegirine, shcherbakovite, villiaumite, nitrite, nacaphite, rasvumite, and djerfisherite. Davinciite is dark lavender and transparent, with a vitreous luster and white streak. The new mineral is brittle, with conchoidal fracture; the Mohs' hardness is 5. No indications of cleavage or parting were observed. The measured density is 2.82(2) g/cm3 (volumetric method); the calculated density is 2.848 g/cm3. Davinciite is optically uniaxial, positive; ω = 1.603(2), ɛ = 1.605(2). It is nonpleochroic and nonfluorescent in UV light. The new mineral slowly breaks down and gelates in 50% HCl and HNO3. It is trigonal, space group R3m. The unit-cell dimensions are a = 14.2956(2), c = 30.0228(5) Å, V=5313.6(2) Å3. The strongest reflections in the X-ray powder diffraction pattern [ d, Å ( I, %) ( hkl)] are as follows: 2.981(100)(315), 2.860(96)(404), 4.309(66)(205), 3.207(63)(208), 6.415(54)(104), 3.162(43)(217). The chemical composition (electron microprobe, H2O calculated from X-ray diffraction data) is as follows, wt %: 12.69 Na2O, 3.53 K2O, 11.02 CaO, 0.98 SrO, 0.15 BaO, 5.33 FeO, 0.37 MnO, 0.07 Al2O3, 51.20 SiO2, 0.39 TiO2, 11.33 ZrO2, 0.21HfO2, 0.09 Nb2O5, 1.89 Cl, 0.93H2O, -O = Cl2 0.43; total is 99.75. The empirical formula calculated on the basis of Si + Al + Zr + Hf + Ti + Nb = 29 ( Z = 3) is (Na1l.75Sr0.29Ba0.03)Σ12.07(K2.28Na0.72)Σ3Ca5.99(Fe2.26Mn0.16)Σ2.42(Zr2.80Ti0.15Hf0.03Nb0.02) Σ3(Si1.96Al0.04)Σ2[Si3O9]2 [Si9O27]2[(OH)1.42O0.58]Σ2[Cl1.62(H2O)0.38]Σ2 · 0.48H2O. The simplified

  14. Research Update: Enhancement of figure of merit for energy-harvesters based on free-standing epitaxial Pb(Zr0.52Ti0.48)0.99Nb0.01O3 thin-film cantilevers

    NASA Astrophysics Data System (ADS)

    Nguyen, Minh D.; Houwman, Evert; Dekkers, Matthijn; Schlom, Darrell; Rijnders, Guus

    2017-07-01

    All-oxide free-standing cantilevers were fabricated with epitaxial (001)-oriented Pb(Zr0.52Ti0.48)O3 (PZT) and Pb(Zr0.52Ti0.48)0.99Nb0.01O3 (PNZT) as piezoelectric layers and SrRuO3 electrodes. The ferroelectric and piezoelectric hysteresis loops were measured. From the zero-bias values, the figure-of-merits (FOMs) for piezoelectric energy harvesting systems were calculated. For the PNZT cantilever, an extremely large value FOM = 55 GPa was obtained. This very high value is due to the large shifts of the hysteresis loops such that the zero-bias piezoelectric coefficient e31f is maximum and the zero-bias dielectric constant is strongly reduced compared to the value in the undoped PZT device. The results show that by engineering the self-bias field the energy-harvesting properties of piezoelectric systems can be increased significantly.

  15. Ilyukhinite (H3O,Na)14Ca6Mn2Zr3Si26O72(OH)2 • 3H2O, a New Mineral of the Eudialyte Group

    NASA Astrophysics Data System (ADS)

    Chukanov, N. V.; Rastsvetaeva, R. K.; Rozenberg, K. A.; Aksenov, S. M.; Pekov, I. V.; Belakovsky, D. I.; Kristiansen, R.; Van, K. V.

    2017-12-01

    A new eudialyte-group mineral, ilyukhinite, ideally (H3O,Na)14Ca6Mn2Zr3Si26O72(OH)2 · 3H2O, has been found in peralkaline pegmatite at Mt. Kukisvumchorr, Khibiny alkaline pluton, Kola Peninsula, Russia. It occurs as brownish orange, with vitreous luster anhedral grains up to 1 mm across in hydrothermally altered peralkaline rock, in association with aegirine, murmanite, albite, microcline, rhabdophane-(Ce), fluorite, sphalerite and molybdenite. The Mohs hardness is 5; cleavage is not observed. D meas 2.67(2), D calc 2.703 g/cm3. Ilyukhinite is optically uniaxial (-): ω = 1.585(2), ɛ = 1.584(2). The IR spectrum is given. The average chemical composition of ilyukhinite (wt %; electron microprobe, ranges given in parentheses; H2O determined by gas chromatography) is as follows: 3.07 (3.63-4.43) Na2O, 0.32 (0.28-0.52) K2O, 10.63 (10.26-10.90) CaO, 3.06 (2.74-3.22) MnO, 1.15 (0.93-1.37) FeO, 0.79 (0.51-0.89) La2O3, 1.21 (0.97-1.44) Ce2O3, 0.41 (0.30-0.56) Nd2O3, 0.90 (0.77-1.12) TiO2, 10.94 (10.15-11.21) ZrO2, 1.40 (0.76-1.68) Nb2O5, 51.24 (49.98-52.28) SiO2, 1.14 (0.89-1.37) SO3, 0.27 (0.19—0.38) Cl, 10.9(5 )H2O,-0.06-O = C1, total is 98.27. The empirical formula is H36.04(Na3.82K0.20)(Ca5.65Ce0.22La0.14Nd0.07)(Mn1.285Fe0.48)(Zr2.645Ti0.34)Nb0.31Si25.41S0.42Cl0.23O86.82. The crystal structure has been solved ( R = 0.046). Ilyukhinite is trigonal, R3 m; a = 14.1695(6) Å, b = 31.026(1) Å, V = 5394.7(7) Å3, Z = 3. The strongest XRD reflections [ d, Å (I, %) ( hkl)] are 11.44 (82) (101), 7.09 (70) (110), 6.02 (44) (021), 4.371 (89) 205), 3.805 (47) (303, 033), 3.376 (41) (131), 2.985 (100) (315, 128), 2.852 (92) (404). Ilyukhinite was named in memory of Vladimir V. Ilyukhin (1934-1982), an outstanding Soviet crystallographer. The type specimen of ilyukhinite has been deposited in the collection of the Natural History Museum, University of Oslo, Norway.

  16. Crystal structure and optical property of complex perovskite oxynitrides ALi0.2Nb0.8O2.8N0.2, ANa0.2Nb0.8O2.8N0.2, and AMg0.2Nb0.8O2.6N0.4 (A = Sr, Ba)

    NASA Astrophysics Data System (ADS)

    Moon, Keon Ho; Avdeev, Maxim; Kim, Young-Il

    2017-10-01

    Oxynitride type complex perovskites AM0.2Nb0.8O3-xNx (A = Sr, Ba; M = Li, Na, Mg) were newly synthesized by the solid state diffusion of Li+, Na+, or Mg2+ into the layered oxide, A5Nb4O15, with concurrent O/N substitution. Neutron and synchrotron X-ray Rietveld refinement showed that SrLi0.2Nb0.8O2.8N0.2, SrNa0.2Nb0.8O2.8N0.2, and SrMg0.2Nb0.8O2.6N0.4 had body-centered tetragonal symmetry (I4/mcm), while those with A = Ba had simple cubic symmetry (Pm 3 ̅ m). In the tetragonal Sr-compounds, the nitrogen atoms were localized on the c-axial 4a site. However, the octahedral cations, M/Nb (M = Li, Na, Mg) were distributed randomly in all six compounds. The lattice volume of AM0.2Nb0.8O3-xNx was dependent on various factors including the type of A and the electronegativity of M. Compared to the simple perovskites, ANbO2N (A = Sr, Ba), AM0.2Nb0.8O3-xNx had wider band gaps (1.76-2.15 eV for A = Sr and 1.65-2.10 eV for A = Ba), but significantly lower sub-gap absorption.

  17. First-principles study of the surface properties of U-Mo system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mei, Zhi-Gang; Liang, Linyun; Yacout, Abdellatif M.

    U-Mo alloys are promising fuels for future high-performance research reactors with low enriched uranium. Surface properties, such as surface energy, are important inputs for mesoscale simulations (e.g., phase field method) of fission gas bubble behaviors in irradiated nuclear fuels. The lack of surface energies of U-Mo alloys prevents an accurate modeling of the morphology of gas bubbles and gas bubble-induced fuel swelling. To this end, we study the surface properties of U-Mo system, including bcc Mo, alpha-U, gamma-U, and gamma U-Mo alloys. All surfaces up to a maximum Miller index of three and two are calculated for cubic Mo andmore » gamma-U and non-cubic alpha-U, respectively. The equilibrium crystal shapes of bcc Mo, alpha-U and gamma-U are constructed using the calculated surface energies. The dominant surface orientations and the area fraction of each facet are determined from the constructed equilibrium crystal shape. The disordered gamma U-Mo alloys are simulated using the Special Quasirandom Structure method. The (1 1 0) and (1 0 0) surface energies of gamma U-7Mo and U-10Mo alloys are predicted to lie between those of gamma-U and bcc Mo, following a linear combination of the two constituents' surface energies. To better compare with future measurements of surface energies, the area fraction weighted surface energies of alpha-U, gamma-U and gamma U-7Mo and U-10Mo alloys are also predicted. (C) 2017 Published by Elsevier B.V.« less

  18. The Composition of Intermediate Products of the Thermal Decomposition of (NH4)2ZrF6 to ZrO2 from Vibrational-Spectroscopy Data

    NASA Astrophysics Data System (ADS)

    Voit, E. I.; Didenko, N. A.; Gaivoronskaya, K. A.

    2018-03-01

    Thermal decomposition of (NH4)2ZrF6 resulting in ZrO2 formation within the temperature range of 20°-750°C has been investigated by means of thermal and X-ray diffraction analysis and IR and Raman spectroscopy. It has been established that thermolysis proceeds in six stages. The vibrational-spectroscopy data for the intermediate products of thermal decomposition have been obtained, systematized, and summarized.

  19. Discovery of 3.6-s X-ray pulsations from 4U0115+63

    NASA Technical Reports Server (NTRS)

    Cominsky, L.; Clark, G. W.; Li, F.; Mayer, W.; Rappaport, S.

    1978-01-01

    SAS 3 observations reveal a pulsation period of 3.61 sec for the transient X-ray source 4U0115+63. Positional measurement is accurate to approximately 30 arc s, and has led to the likely identification of an optical counterpart. The intensity of the pulses, as reported on 5.9 January 1978, is given as approximately 1.7 times that of the Crab Nebula (1-27 keV). Spectral information was also obtained from the ratios of counting rates in the first three energy channels of the center slat collimator detector (1-27 keV). Two classes of models are proposed to explain the transient nature of the X-ray sources: (1) episodic mass transfer in a binary system, and (2) eccentric binary orbits.

  20. Discovery of carbon-vacancy ordering in Nb4AlC3–x under the guidance of first-principles calculations

    PubMed Central

    Zhang, Hui; Hu, Tao; Wang, Xiaohui; Li, Zhaojin; Hu, Minmin; Wu, Erdong; Zhou, Yanchun

    2015-01-01

    The conventional wisdom to tailor the properties of binary transition metal carbides by order-disorder phase transformation has been inapplicable for the machinable ternary carbides (MTCs) due to the absence of ordered phase in bulk sample. Here, the presence of an ordered phase with structural carbon vacancies in Nb4AlC3–x (x ≈ 0.3) ternary carbide is predicted by first-principles calculations, and experimentally identified for the first time by transmission electron microscopy and micro-Raman spectroscopy. Consistent with the first-principles prediction, the ordered phase, o-Nb4AlC3, crystalizes in P63/mcm with a = 5.423 Å, c = 24.146 Å. Coexistence of ordered (o-Nb4AlC3) and disordered (Nb4AlC3–x) phase brings about abundant domains with irregular shape in the bulk sample. Both heating and electron irradiation can induce the transformation from o-Nb4AlC3 to Nb4AlC3–x. Our findings may offer substantial insights into the roles of carbon vacancies in the structure stability and order-disorder phase transformation in MTCs. PMID:26388153

  1. Low-Temperature Sintering Li3Mg1.8Ca0.2NbO6 Microwave Dielectric Ceramics with LMZBS Glass

    NASA Astrophysics Data System (ADS)

    Wang, Gang; Zhang, Huaiwu; Liu, Cheng; Su, Hua; Jia, Lijun; Li, Jie; Huang, Xin; Gan, Gongwen

    2018-05-01

    Li3Mg1.8Ca0.2NbO6 ceramics doped with Li2O-MgO-ZnO-B2O3-SiO2 glass (LMZBS) were prepared via a solid-state route. The LMZBS glass effectively reduced the sintering temperature of Li3Mg1.8Ca0.2NbO6 ceramics to 950°C. The effects of the LMZBS glass on the sintering behavior, microstructures and microwave dielectric properties of Li3Mg1.8Ca0.2NbO6 ceramics are discussed in detail. Among all the LMZBS doped Li3Mg1.8Ca0.2NbO6 ceramics, the sample with 1 wt.% of LMZBS glass sintered at 950°C for 4 h exhibited good dielectric properties: ɛ r = 16.7, Q × f = 31,000 GHz (9.92 GHz), τ f = - 1.3 ppm/°C. The Li3Mg1.8Ca0.2NbO6 ceramics possessed excellent chemical compatibility with Ag electrodes, and could be applied in low temperature co-fired ceramics (LTCC) applications.

  2. Full-length U-xPu-10Zr (x = 0, 8, 19 wt.%) fast reactor fuel test in FFTF

    NASA Astrophysics Data System (ADS)

    Porter, D. L.; Tsai, Hanchung

    2012-08-01

    The Integral Fast Reactor-1 (IFR-1) experiment performed in the Fast Flux Test Facility (FFTF) was the only U-Pu-10Zr (Pu-0, 8 and 19 wt.%) metallic fast reactor test with commercial-length (91.4-cm active fuel-column length) conducted to date. With few remaining test reactors, there is little opportunity for performing another test with a long active fuel column. The assembly was irradiated to the goal burnup of 10 at.%. The beginning-of-life (BOL) peak cladding temperature of the hottest pin was 608 °C, cooling to 522 °C at end-of-life (EOL). Selected fuel pins were examined non-destructively using neutron radiography, precision axial gamma scanning, and both laser and spiral contact cladding profilometry. Destructive exams included plenum gas pressure, volume, and gas composition determinations on a number of pins followed by optical metallography, electron probe microanalysis (EPMA), and alpha and beta-gamma autoradiography on a single U-19Pu-10Zr pin. The post-irradiation examinations (PIEs) showed very few differences compared to the short-pin (34.3-cm fuel column) testing performed on fuels of similar composition in Experimental Breeder Reactor-II (EBR-II). The fuel column grew axially slightly less than observed in the short pins, but with the same pattern of decreasing growth with increasing Pu content. There was a difference in the fuel-cladding chemical interaction (FCCI) in that the maximum cladding penetration by interdiffusion with fuel/fission products did not occur at the top of the fuel column where the cladding temperature is highest, as observed in EBR-II tests. Instead, the more exaggerated fission-rate profile of the FFTF pins resulted in a peak FCCI at ˜0.7 X/L axial location along the fuel column. This resulted from a higher production of rare-earth fission products at this location and a higher ΔT between fuel center and cladding than at core center, together providing more rare earths at the cladding and more FCCI. This behavior could

  3. Performance evaluation and post-irradiation examination of a novel LWR fuel composed of U0.17ZrH1.6 fuel pellets bonded to Zircaloy-2 cladding by lead bismuth eutectic

    NASA Astrophysics Data System (ADS)

    Balooch, Mehdi; Olander, Donald R.; Terrani, Kurt A.; Hosemann, Peter; Casella, Andrew M.; Senor, David J.; Buck, Edgar C.

    2017-04-01

    A novel light water reactor fuel has been designed and fabricated at the University of California, Berkeley; irradiated at the Massachusetts Institute of Technology Reactor; and examined within the Radiochemical Processing Laboratory at the Pacific Northwest National Laboratory. This fuel consists of U0.17ZrH1.6 fuel pellets core-drilled from TRIGA reactor fuel elements that are clad in Zircaloy-2 and bonded with lead-bismuth eutectic. The performance evaluation and post irradiation examination of this fuel are presented here.

  4. Deformation Mechanisms and Biocompatibility of the Superelastic Ti-23Nb-0.7Ta-2Zr-0.5N Alloy

    NASA Astrophysics Data System (ADS)

    Castany, P.; Gordin, D. M.; Drob, S. I.; Vasilescu, C.; Mitran, V.; Cimpean, A.; Gloriant, T.

    2016-03-01

    In this study, we have synthesized a new Ti-23Nb-0.7Ta-2Zr-0.5N alloy composition with the aim to obtain useful mechanical properties to be used in medicine such as high strength, good superelastic property, low modulus, and large ductility. Thus, mechanical properties including superelasticity and plasticity were investigated in relation with the different deformation mechanisms observed (stress-induced martensitic transformation, twinning and dislocation slip). On the other hand, the corrosion resistance in simulated body fluid (Ringer solution) and the in vitro cell behavior (MG63 human osteoblasts) of such biomedical alloy were also evaluated in order to assess its biocompatibility.

  5. Broad Temperature Pinning Study of 15 mol.% Zr-Added (Gd, Y)-Ba-Cu-O MOCVD Coated Conductors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, AX; Khatri, N; Liu, YH

    BaZrO3 (BZO) nanocolumns have long been shown to be very effective for raising the pinning force F-p of REBa2Cu3Ox (REBCO, where RE = rare earth) films at high temperatures and recently at low temperatures too. We have successfully incorporated a high density of BZO nanorods into metal organic chemical vapor deposited (MOCVD) REBCO coated conductors via Zr addition. We found that, compared to the 7.5% Zr-added coated conductor, dense BZO nanorod arrays in the 15% Zr-added conductor are effective over the whole temperature range from 77 K down to 4.2 K. We attribute the substantially enhanced J(c) at 30 Kmore » to the weak uncorrelated pinning as well as the strong correlated pinning. Meanwhile, by tripling the REBCO layer thickness to similar to 2.8 mu m, the engineering critical current density J(e) at 30 K exceeds J(e) of optimized Nb-Ti wires at 4.2 K.« less

  6. First principles calculations of interactions of ZrCl4 precursors with the bare and hydroxylated ZrO2 surfaces

    NASA Astrophysics Data System (ADS)

    Iskandarova, I. M.; Knizhnik, A. A.; Bagatur'yants, A. A.; Potapkin, B. V.; Korkin, A. A.

    2004-05-01

    First-principles calculations have been performed to determine the structures and relative energies of different zirconium chloride groups chemisorbed on the tetragonal ZrO2(001) surface and to study the effects of the surface coverage with metal chloride groups and the degree of hydroxylation on the adsorption energies of metal precursors. It is shown that the molecular and dissociative adsorption energies of the ZrCl4 precursor on the bare t-ZrO2(001) surface are too small to hold ZrCl4 molecules on the surface during an atomic layer deposition (ALD) cycle at temperatures higher than 300°C. On the contrary, it has been found that molecular adsorption on the fully hydroxylated zirconia surface leads to the formation of a stable adsorbed complex. This strong adsorption of ZrCl4 molecules can lead to a decrease in the film growth rate of the ALD process at lower temperatures (<200°C). The energies of interaction between adsorbed ZrCl4 groups at a 50% surface coverage has been found to be relatively small, which explains the maximum film growth rate observed in the ZrCl4:H2O ALD process. Moreover, we found that the adsorbed ZrCl4 precursors after hydrolysis give rise to very stable hydroxyl groups, which can be responsible for film growth at high temperatures (up to 900°C).

  7. Pressure induced phase transformations in NaZr{sub 2}(PO{sub 4}){sub 3} studied by X-ray diffraction and Raman spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kamali, K.; Ravindran, T.R., E-mail: trr@igcar.gov.in; Chandra Shekar, N.V.

    2015-01-15

    Raman spectroscopic and x-ray diffraction measurements on NaZr{sub 2}(PO{sub 4}){sub 3} were carried out up to 30 GPa at close intervals of pressure, revealing two structural phase transformations around 5 and 6.6 GPa. The second phase at 5.4 GPa is indexed to R3 space group similar to that of RbTi{sub 2}(PO{sub 4}){sub 3}. Bulk modulus decreases abruptly from 53 GPa (B′=4) to 36 GPa (B′=4) in the second phase above 5 GPa. The structure of the phase III at 8.2 GPa is indexed as orthorhombic similar to the case of high temperature phase of monoclinic LiZr{sub 2}(PO{sub 4}){sub 3}. Bulkmore » modulus of this phase III is found to be 65 GPa (B′=4), which is higher than that of the ambient phase. In high pressure Raman studies, modes corresponding to 72 and 112 cm{sup −1} soften in the ambient phase whereas around 5 GPa, the ones at 60, 105, 125 and 190 cm{sup −1} soften with pressure contributing negatively to overall thermal expansion. - Graphical abstract: High pressure study of NaZr{sub 2}(PO{sub 4}){sub 3} shows a reversible phase transition from R-3c to R3 structure at 5 GPa accompanied by an increase in compressibility signaling a polyhedral tilt transition. - Highlights: • NaZr{sub 2}(PO{sub 4}){sub 3} undergoes two reversible phase transitions at 5 and 6.7 GPa. • The transition at 5 is from rhombohedral R-3c to R3 structure. • Bulk modulus of NaZr{sub 2}(PO{sub 4}){sub 3} is lower than that for the isostructural RbTi{sub 2}(PO{sub 4}){sub 3.} • Compressibility increases with substitution of a smaller cation (Na). • Zr-translational and PO{sub 4} librational modes contribute to phase transition.« less

  8. Effect of Silicon in U-10Mo Alloy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kautz, Elizabeth J.; Devaraj, Arun; Kovarik, Libor

    2017-08-31

    This document details a method for evaluating the effect of silicon impurity content on U-10Mo alloys. Silicon concentration in U-10Mo alloys has been shown to impact the following: volume fraction of precipitate phases, effective density of the final alloy, and 235-U enrichment in the gamma-UMo matrix. This report presents a model for calculating these quantities as a function of Silicon concentration, which along with fuel foil characterization data, will serve as a reference for quality control of the U-10Mo final alloy Si content. Additionally, detailed characterization using scanning electron microscope imaging, transmission electron microscope diffraction, and atom probe tomography showedmore » that Silicon impurities present in U-10Mo alloys form a Si-rich precipitate phase.« less

  9. Energy Harvesting Characteristics from Water Flow by Piezoelectric Energy Harvester Device Using Cr/Nb Doped Pb(Zr,Ti)O3 Bimorph Cantilever

    NASA Astrophysics Data System (ADS)

    Kim, Kyoung-Bum; Kim, Chang Il; Jeong, Young Hun; Cho, Jeong-Ho; Paik, Jong-Hoo; Nahm, Sahn; Lim, Jong Bong; Seong, Tae-Hyeon

    2013-10-01

    A water flow energy harvester, which can convert water flow energy to electric energy, was fabricated for its application to rivers. This harvester can generate power from the bending and releasing motion of piezoelectric bimorph cantilevers. A Pb(Zr0.54Ti0.46)O3 + 0.2 wt % Cr2O3 + 1.0 wt % Nb2O5 (PZT-CN) thick film and a 250-µm-thick stainless steel were used as a bimorph cantilever. The electrical impedance matching was achieved across a resistive load of 1 kΩ. Four bimorph cantilevers can generate power from 5 to 105 rpm. The output powers were steadily increased by increasing the rpm. The maximum output power was 68 mW by 105 rpm. It was found that the water flow energy harvester can generate 58 mW by a flow velocity of (2 m/s) from the stream with the four bimorph cantilevers.

  10. Early paleozoic granodioritic plutons in the Shedong W-Mo ore district, Guangxi, southern China: Products of re-melting of middle Proterozoic crust due to magma underplating

    NASA Astrophysics Data System (ADS)

    Jiang, Xingzhou; Kang, Zhiqiang; Xu, Jifeng; Feng, Zuohai; Pang, Chongjin; Fang, Guicong; Wu, Jiachang; Xiong, Songquan

    2017-06-01

    The Shedong W-Mo ore district in the south-central Dayaoshan Uplift of Guangxi, southern China hosts the Baoshan and Pingtoubei deposits, both of which occur in granodioritic plutons. Zircon U-Pb dating of granodiorites and its mafic microgranular enclaves (MMEs) in the Baoshan deposit yielded ages of 439.8 ± 3.2 and 441.1 ± 2.2 Ma, respectively. Granodiorites have moderate SiO2 (54.5-63.0 wt.%) and high Al2O3 (15.4-17.8 wt.%) contents, wide variations in major element ratios, significant rare earth element fractionation, and small negative Eu anomalies. They are rich in Th, U, Zr, and Hf, and depleted in Ba, Nb, and Ti. Their initial 87Sr/86Sr, εNd(t), and εHf(t) values are in the range of 0.7086-0.7091, -5.2 to -6.6 and -6.3 to +1.6, respectively. Rounded or lenticular MMEs have relatively low silica and high mafic components, depletion in Eu, Sr, and Zr, and marked negative Eu anomalies. Rb/Sr and Nb/Ta ratios, and εNd(t) and εHf(t) values of the MMEs are higher than those of host granodiorites, indicating a different magmatic source. Zircon U-Pb dating of the unexposed granodiorite porphyry in the Pingtoubei deposit yielded an age of 440.0 ± 1.7 Ma. The granodiorite porphyries have high SiO2 and low K2O, FeOT, and MgO contents, with similar trace element features to the granodiorites at the Baoshan deposit, although the former has small negative Eu anomalies. Its initial 87Sr/86Sr values range from 0.7162 to 0.7173, εNd(t) values from -8.7 to -12.3, and εHf(t) values from -7.8 to +1.3, indicative of a crustal source. Nd and Hf two-stage model ages of the granodiorites, MMEs, and granodiorite porphyries have a narrow range between 1.3 and 2.2 Ga. We propose that the granodiorites and MMEs at the Baoshan deposit were produced through re-melting of middle Proterozoic crust as a result of underplating of mantle-derived magmas in a transitional compression-to-extension tectonic setting. Mantle-derived magmas provided the heat and material for the formation

  11. Comparison of metal concentrations in rat tibia tissues with various metallic implants.

    PubMed

    Okazaki, Yoshimitsu; Gotoh, Emiko; Manabe, Takeshi; Kobayashi, Kihei

    2004-12-01

    To compare metal concentrations in tibia tissues with various metallic implants, SUS316L stainless steel, Co-Cr-Mo casting alloy, and Ti-6Al-4V and V-free Ti-15Zr-4Nb-4Ta alloys were implanted into the rat tibia for up to 48 weeks. After the implant was removed from the tibia by decalcification, the tibia tissues near the implant were lyophilized. Then the concentrations of metals in the tibia tissues by microwave acid digestion were determined by inductively coupled plasma-mass spectrometry. Fe concentrations were determined by graphite-furnace atomic absorption spectrometry. The Fe concentration in the tibia tissues with the SUS316L implant was relatively high, and it rapidly increased up to 12 weeks and then decreased thereafter. On the other hand, the Co concentration in the tibia tissues with the Co-Cr-Mo implant was lower, and it increased up to 24 weeks and slightly decreased at 48 weeks. The Ni concentration in the tibia tissues with the SUS316L implant increased up to 6 weeks and then gradually decreased thereafter. The Cr concentration tended to be higher than the Co concentration. This Cr concentration linearly increased up to 12 weeks and then decreased toward 48 weeks in the tibia tissues with the SUS316L or Co-Cr-Mo implant. Minute quantities of Ti, Al and V in the tibia tissues with the Ti-6Al-4V implant were found. The Ti concentration in the tibia tissues with the Ti-15Zr-4Nb-4Ta implant was lower than that in the tibia tissues with the Ti-6Al-4V implant. The Zr, Nb and Ta concentrations were also very low. The Ti-15Zr-4Nb-4Ta alloy with its low metal release in vivo is considered advantageous for long-term implants.

  12. Efficient removal of arsenite through photocatalytic oxidation and adsorption by ZrO2-Fe3O4 magnetic nanoparticles

    NASA Astrophysics Data System (ADS)

    Sun, Tianyi; Zhao, Zhiwei; Liang, Zhijie; Liu, Jie; Shi, Wenxin; Cui, Fuyi

    2017-09-01

    Bifunctional ZrO2-Fe3O4 magnetic nanoparticles were synthesized and characterized, to remove As(III) through photocatalyic oxidation and adsorption. With a saturation magnetization of 27.39 emu/g, ZrO2-Fe3O4 nanoparticles with size of 10-30 nm could be easily separated from solutions with a simple magnetic process. Under UV light, As(III) could be completely oxidized to less toxic As(V) by ZrO2-Fe3O4 nanoparticles within 40 min in the photocatalytic reaction. Simultaneously, As(V) could be adsorbed onto the surface of nanoparticles with high efficiency. The adsorption of As(V) was well fitted by the pseudo-second-order model and the Freundlich isotherm model, respectively, and the maximum adsorption capacities of the nanoparticles was 133.48 mg/g at pH 7.0. As(III) could be effectively removed by ZrO2-Fe3O4 nanoparticles at initial pH range from 4 to 8. Among all the common coexisting ions investigated, except for chloride and sulfate, carbonate, silicate and phosphate decreased the As(III) removal by competing with arsenic species for adsorption sites. The synthesized magnetic ZrO2-Fe3O4 combined the photocatalytic oxidation property of ZrO2 and the high adsorption capacity of both ZrO2 and Fe3O4, which make it have significant potential applications in the As(III)-contaminated water treatment.

  13. Oxygen ionic conductivity of NTE materials of cubic Zr 1- xLn xW 2- yMo yO 8- x/2 (Ln = Er, Yb)

    NASA Astrophysics Data System (ADS)

    Li, Hai-Hua; Xia, Hai-Ting; Jing, Xi-Ping; Zhao, Xin-Hua

    2008-08-01

    Cubic Zr 1- xLn xW 2- yMo yO 8- x/2 (Ln = Er: x = 0.01, 0.02, 0.03; y = 0; Ln = Yb: x = 0.02, 0.03; y = 0.4) solid solutions, well-known negative thermal expansion (NTE) materials were prepared by using conventional solid state reactions. The morphology and the composition of the fracture surfaces of the ceramic pellets were determined by SEM and EDX technology. The conductance properties of the pellets, such as conductivity and conductance activation energy, were studied by AC impedance spectroscopy and the materials perform clearly oxygen ionic conduction with the conductivity of about 10 -4 S cm -1 at 673 K, a comparable value to that of ceria based solid electrolytes. The substitution of Mo for W enhanced the thermal stability of ZrW 2O 8, so that the conductivity of Zr 0.98Yb 0.02W 1.6Mo 0.4O 7.99 ceramic can be measured up to 873 K, which is about 5.9 × 10 -4 S cm -1.

  14. Swift/BAT and RXTE Observations of the Peculiar X-ray Binary 4U 2206+54 - Disappearance of the 9.6 Day Modulation

    NASA Technical Reports Server (NTRS)

    Corbet, R. H. D.; Markwardt, C.; Tueller, J.

    2007-01-01

    Observations of the high-mass X-ray binary 4U 2206+54 with the Swift Burst Alert Telescope (BAT) do not show modulation at the previously reported period of 9.6 days found from observations made with the Rossi X-ray Timing Explorer (RXTE) All-Sky Monitor (ASM). Instead, the strongest peak in the power spectrum of the BAT light curve occurs at a period of 19.25+/-0.08 days, twice the period found with the RXTE ASM. The maximum of the folded BAT light curve is also delayed compared to the maximum of the folded ASM light curve. The most recent ASM data folded on twice the 9.6 day period show 'similar morphology to the folded BAT light curve. This suggests that the apparent period doubling is a recent secular change rather than an energy-dependent effect. The 9.6 day period is thus not a permanent strong feature of the light curve. We suggest that the orbital period of 4U 2206+54 may be twice the previously proposed value.

  15. Crystal structure and physical properties of a novel Kondo antiferromagnet: U3Ru4Al12

    NASA Astrophysics Data System (ADS)

    Pasturel, M; Tougait, O; Potel, M; Roisnel, T; Wochowski, K; Noël, H; Troć, R

    2009-03-01

    A novel ternary compound U3Ru4Al12 has been identified in the U-Ru-Al ternary diagram. Single-crystal x-ray diffraction indicates a hexagonal Gd3Ru4Al12-type structure for this uranium-based intermetallic. While this structure type usually induces geometrically a spin-glass behaviour, an antiferromagnetic ordering is observed at TN = 8.4 K in the present case. The reduced effective magnetic moment of U atoms (μeff = 2.6 µB) can be explained by Kondo-like interactions and crystal field effects that have been identified by a logarithmic temperature dependence of the electrical resistivity, negative values of the magnetoresistivity and particular shape of the Seebeck coefficient.

  16. Simultaneous multi-wavelength ultraviolet excited single-phase white light emitting phosphor Ba1-x(Zr,Ti)Si3O9:xEu

    NASA Astrophysics Data System (ADS)

    Zhou, Zhenzhen; Liu, Guanghui; Ni, Jia; Liu, Wanlu; Liu, Qian

    2018-05-01

    A kind of novel compound Ba1-x(Zr,Ti)Si3O9:xEu simultaneously activated by different-valence Eu2+ and Eu3+ ions has been successfully synthesized. The existence of Ti4+-O2- charge transfer (CT) transitions in Ba1-xZrSi3O9:xEu is proved by the photoluminescence spectra and first principle calculations, and the Ti4+ ions come from the impurities in commercial ZrO2 raw materials. Under the excitation of multi-wavelength ultraviolet radiation (λEX = 392, 260, 180 nm), Ba1-xZrSi3O9:xEu (x = 0.15) can directly emit nearly white light. The coexistence of multiple luminescent centers and the energy transfer among Zr4+-O2- CT state, Ti4+-O2- CT state, Eu2+ and Eu3+ ions play important roles in the white light emission. Ba1-xZrSi3O9:xEu (x = 0.15) has good thermal stability, in particular, the intensity of emission spectrum (λEX = 392 nm) at 150 °C is ∼96% of that at room temperature. In general, the multi-wavelength ultraviolet-excited single-phase white light emitting phosphor Ba1-x(Zr,Ti)Si3O9:xEu possesses a promise for applications in white light emitting diodes (WLEDs), agriculture, medicine and other photonic fields.

  17. High-Power Characteristics of Thickness Shear Mode for Textured SrBi2Nb2O9 Ceramics

    NASA Astrophysics Data System (ADS)

    Ogawa, Hirozumi; Kawada, Shinichiro; Kimura, Masahiko; Higuchi, Yukio; Takagi, Hiroshi

    2009-09-01

    The high-power piezoelectric characteristics of the thickness shear mode for <00l> oriented ceramics of bismuth layer structured ferroelectrics (BLSF), SrBi2Nb2O9 (SBN), were studied by the constant current driving method. These textured ceramics were fabricated by the templated grain growth (TGG) method, and the Lotgering factor was 95%. The vibration of the thickness shear mode in the textured SBN ceramics was stable at the vibration velocity of 2.0 m/s. The resonant frequency was almost constant with increasing vibration velocity in the textured SBN ceramics, however, it decreased with increasing vibration velocity in the randomly oriented SBN ceramics. In the case of Pb(Mn,Nb)O3-Pb(Zr,Ti)O3 ceramics, the vibration velocity of the thickness shear mode was saturated at more than 0.3 m/s, and the resonant frequency decreased at lower vibration velocity than in the case of SBN ceramics. The dissipation power density of the textured SBN ceramics was the lowest among those of the randomly oriented SBN and Pb(Mn,Nb)O3-PZT ceramics. The thickness shear mode of textured SBN ceramics is a good candidate for high-power piezoelectric applications.

  18. Nb3Sn SRF Cavities for Nuclear Physics Applications

    NASA Astrophysics Data System (ADS)

    Eremeev, Grigory

    2017-01-01

    Nuclear physics experiments rely increasingly on accelerators, which employ superconducting RF (SRF) technology. CEBAF, SNS, FRIB, ESS, among others exploit the low surface resistance of SRF cavities to efficiently accelerate particle beams towards experimental targets. Niobium is the cavity material of choice for all current or planned SRF accelerators, but it has been long recognized that other superconductors with high superconducting transition temperatures have the potential to surpass niobium for SRF applications. Among the alternatives, Nb3Sn coated cavities are the most advanced on the path to practical applications: Nb3Sn coatings on R&D cavities have Tc consistently close the optimal 18 K, very low RF surface resistances, and very recently were shown to reach above Hc1 without anomalous RF surface resistance increase. In my talk I will discuss the prospects of Nb3Sn SRF cavities, the research efforts to realize Nb3Sn coatings on practical multi-cell accelerating structures, and the path toward possible inclusion in CEBAF. This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Nuclear Physics.

  19. A pseudo-tetragonal tungsten bronze superstructure: a combined solution of the crystal structure of K6.4(Nb,Ta)(36.3)O94 with advanced transmission electron microscopy and neutron diffraction.

    PubMed

    Paria Sena, Robert; Babaryk, Artem A; Khainakov, Sergiy; Garcia-Granda, Santiago; Slobodyanik, Nikolay S; Van Tendeloo, Gustaaf; Abakumov, Artem M; Hadermann, Joke

    2016-01-21

    The crystal structure of the K6.4Nb28.2Ta8.1O94 pseudo-tetragonal tungsten bronze-type oxide was determined using a combination of X-ray powder diffraction, neutron diffraction and transmission electron microscopy techniques, including electron diffraction, high angle annular dark field scanning transmission electron microscopy (HAADF-STEM), annular bright field STEM (ABF-STEM) and energy-dispersive X-ray compositional mapping (STEM-EDX). The compound crystallizes in the space group Pbam with unit cell parameters a = 37.468(9) Å, b = 12.493(3) Å, c = 3.95333(15) Å. The structure consists of corner sharing (Nb,Ta)O6 octahedra forming trigonal, tetragonal and pentagonal tunnels. All tetragonal tunnels are occupied by K(+) ions, while 1/3 of the pentagonal tunnels are preferentially occupied by Nb(5+)/Ta(5+) and 2/3 are occupied by K(+) in a regular pattern. A fractional substitution of K(+) in the pentagonal tunnels by Nb(5+)/Ta(5+) is suggested by the analysis of the HAADF-STEM images. In contrast to similar structures, such as K2Nb8O21, also parts of the trigonal tunnels are fractionally occupied by K(+) cations.

  20. Electrical conductivity of KAlCl4-ZrCl4 molten mixtures

    NASA Astrophysics Data System (ADS)

    Salyulev, A. B.; Khokhlov, V. A.; Moskalenko, N. I.

    2017-02-01

    The electrical conductivity of commercially challenging KAlCl4-ZrCl4 molten mixtures has been studied as a function of temperature (in the range from 345°C to 500°C) and the ZrCl4 concentration (0‒32.5mol %) using cells of a unique design. It is found to vary in the range from 0.41 to 0.80 S cm-1, increasing with temperature or when the mole concentration of zirconium tetrachloride in molten mixtures decreases.

  1. Trace- and rare-earth element geochemistry and Pb-Pb dating of black shales and intercalated Ni-Mo-PGE-Au sulfide ores in Lower Cambrian strata, Yangtze Platform, South China

    NASA Astrophysics Data System (ADS)

    Jiang, Shao-Yong; Chen, Yong-Quan; Ling, Hong-Fei; Yang, Jing-Hong; Feng, Hong-Zhen; Ni, Pei

    2006-08-01

    The Lower Cambrian black shale sequence of the Niutitang Formation in the Yangtze Platform, South China, hosts an extreme metal-enriched sulfide ore bed that shows >10,000 times enrichment in Mo, Ni, Se, Re, Os, As, Hg, and Sb and >1,000 times enrichment in Ag, Au, Pt, and Pd, when compared to average upper continental crust. We report in this paper trace- and rare-earth-element concentrations and Pb-Pb isotope dating for the Ni-Mo-PGE-Au sulfide ores and their host black shales. Both the sulfide ores and their host black shales show similar trace-element distribution patterns with pronounced depletion in Th, Nb, Hf, Zr, and Ti, and extreme enrichment in U, Ni, Mo, and V compared to average upper crust. The high-field-strength elements, such as Zr, Hf, Nb, Ta, Sc, Th, rare-earth elements, Rb, and Ga, show significant inter-element correlations and may have been derived mainly from terrigenous sources. The redox sensitive elements, such as V, Ni, Mo, U, and Mn; base metals, such as Cu, Zn, and Pb; and Sr and Ba may have been derived from mixing of seawater and venting hydrothermal sources. The chondrite-normalized REE patterns, positive Eu and Y anomalies, and high Y/Ho ratios for the Ni-Mo-PGE-Au sulfide ores are also suggestive for their submarine hydrothermal-exhalative origin. A stepwise acid-leaching Pb-Pb isotope analytical technique has been employed for the Niutitang black shales and the Ni-Mo-PGE-Au sulfide ores, and two Pb-Pb isochron ages have been obtained for the black shales (531±24 Ma) and for the Ni-Mo-PGE-Au sulfide ores (521±54 Ma), respectively, which are identical and overlap within uncertainty, and are in good agreement with previously obtained ages for presumed age-equivalent strata.

  2. Crystal Structure, Piezoelectric and Dielectric Properties of (Li, Ce)4+, Nb5+ and Mn2+ Co-doped CaBi4Ti4O15 High-Temperature Ceramics

    NASA Astrophysics Data System (ADS)

    Xin, Deqiong; Chen, Qiang; Wu, Jiagang; Bao, Shaoming; Zhang, Wen; Xiao, Dingquan; Zhu, Jianguo

    2016-07-01

    Bismuth-layered structured ceramics Ca0.85(Li,Ce)0.075Bi4Ti4- x Nb x O15-0.01MnCO3 were prepared by the conventional solid-state reaction method. The evolution of microstructure and corresponding electrical properties were studied. All the samples presented a single bismuth layered-structural phase with m = 4, indicating that (Li, Ce)4+, Nb5+ and Mn2+ adequately enter into the pseudo-perovskite structure and form solid solutions. It was found that Ca0.85(Li,Ce)0.075Bi4Ti3.98Nb0.02O15-0.01MnCO3 (CBTLCM-0.02Nb) ceramics possess the optimum electrical properties. The piezoelectric coefficient d 33, dielectric constant ɛ r, loss tan δ, planar electromechanical coupling factor k p and Curie-temperature T C of CBTLCM-0.02Nb ceramics were found to be ˜19.6 pC/N, 160, 0.16%, 8.1% and 767°C, respectively. Furthermore, the thermal depoling behavior demonstrates that the d 33 value of x = 0.02 content remains at 16.8 pC/N after annealing at 500°C. These results suggest that the (Li, Ce)4+-, Nb5+- and Mn2+-doped CBT-based ceramics are promising candidates for high-temperature piezoelectric applications.

  3. Nb K-edge x-ray absorption investigation of the pressure induced amorphization in A-site deficient double perovskite La1/3NbO3.

    PubMed

    Marini, C; Noked, O; Kantor, I; Joseph, B; Mathon, O; Shuker, R; Kennedy, B J; Pascarelli, S; Sterer, E

    2016-02-03

    Nb K-edge x-ray absorption spectroscopy is utilized to investigate the changes in the local structure of the A-site deficient double perovskite La1/3NbO3 which undergoes a pressure induced irreversible amorphization. EXAFS results show that with increasing pressure up to 7.5 GPa, the average Nb-O bond distance decreases in agreement with the expected compression and tilting of the NbO6 octahedra. On the contrary, above 7.5 GPa, the average Nb-O bond distance show a tendency to increase. Significant changes in the Nb K-edge XANES spectrum with evident low energy shift of the pre-peak and the absorption edge is found to happen in La1/3NbO3 above 6.3 GPa. These changes evidence a gradual reduction of the Nb cations from Nb(5+) towards Nb(4+) above 6.3 GPa. Such a valence change accompanied by the elongation of the average Nb-O bond distances in the octahedra, introduces repulsion forces between non-bonding adjacent oxygen anions in the unoccupied A-sites. Above a critical pressure, the Nb reduction mechanism can no longer be sustained by the changing local structure and amorphization occurs, apparently due to the build-up of local strain. EXAFS and XANES results indicate two distinct pressure regimes having different local and electronic response in the La1/3NbO3 system before the occurence of the pressure induced amorphization at  ∼14.5 GPa.

  4. Neutron-induced reaction cross-sections of 93Nb with fast neutron based on 9Be(p,n) reaction

    NASA Astrophysics Data System (ADS)

    Naik, H.; Kim, G. N.; Kim, K.; Zaman, M.; Nadeem, M.; Sahid, M.

    2018-02-01

    The cross-sections of the 93Nb (n , 2 n)92mNb, 93Nb (n , 3 n)91mNb and 93Nb (n , 4 n)90Nb reactions with the average neutron energies of 14.4 to 34.0 MeV have been determined by using an activation and off-line γ-ray spectrometric technique. The fast neutrons were produced using the 9Be (p , n) reaction with the proton energies of 25-, 35- and 45-MeV from the MC-50 Cyclotron at the Korea Institute of Radiological and Medical Sciences (KIRAMS). The neutron flux-weighted average cross-sections of the 93Nb(n , xn ; x = 2- 4) reactions were also obtained from the mono-energetic neutron-induced reaction cross-sections of 93Nb calculated using the TALYS 1.8 code, and the neutron flux spectrum based on the MCNPX 2.6.0 code. The present results for the 93Nb(n , xn ; x = 2- 4) reactions are compared with the calculated neutron flux-weighted average values and found to be in good agreement.

  5. Search for the β decay of 96Zr

    NASA Astrophysics Data System (ADS)

    Finch, S. W.; Tornow, W.

    2016-01-01

    96Zr and 48Ca are unique among double-β decay candidate nuclides in that they may also undergo single-β decay. In the case of 96Zr, the single-β decay mode is dominated by the fourth-forbidden β decay with a 119 keV Q value. A search was conducted for the β decay of 96Zr by observing the decay of the daughter 96Nb nucleus. Two coaxial high-purity germanium detectors were used in coincidence to detect the γ-ray cascade produced by the daughter nucleus as it de-excited to the ground state. The experiment was carried out at the Kimballton Underground Research Facility and produced 685.7 days of data with a 17.91 g enriched sample. No counts were seen above background, producing a limit of T1/2 > 2.4 ×1019 year. This is the first experimental search that is able to discern between the β decay and the double-β decay to an excited state of 96Zr.

  6. Delta Niobium or Delta VICE?

    NASA Astrophysics Data System (ADS)

    Hofmann, A. W.

    2006-12-01

    Delta Niobium or Delta VICE? Niobium is one of a few chemical elements that can be used to discriminate between melts derived from upwelling mantle, represented by MORBs and OIBs, and those derived from subduction and continental crust environments. The Nb/U ratio was introduced because these two elements appear to partition nearly identically in upwelling environments, but very differently (from one another) in subduction and continental environments (Hofmann et al., 1986). Fitton et al. (1997, 2003) have taken a radically different approach, using log(Nb/Y)-log(Zr/Y) correlations that appear to discriminate between MORB and OIB (or plume) environments. MORB correlations are parallel to, and at lower Nb/Y ratios than, Iceland basalt correlations. This is expressed by a discrimination parameter defined as Delta Nb = 1.74 + log(Nb/Y) - 1.92 log(Zr/Y). N-MORB have negative Delta-Nb values, whereas Iceland and other OIBs have positive values. Fitton et al. interpret this in terms of a niobium deficiency in MORB that is balanced by a Nb excess in OIBs. This interpretation conflicts with evidence based on Nb/U ratios (Hofmann et al., 1986), that MORB and OIB are parts of a common reservoir, which is different from, and complementary to, the continental crust. Both parts of this MORB-OIB reservoir are characterized by higher-than-primitive Nb/U and Nb/Th ratios, whereas continental crust has dramatically lower Nb/U and Nb/Th ratios. The use of VICE/MICE (very-incompatible- element to moderately-incompatible-element) ratios, such as Nb/Y, obscures this. The significance of the VICE/MICE plot becomes clear if one replaces Nb by other VICEs in the log(Nb/Y)-log(Zr/Y) plot. This shows that any of these VICEs yield similar topologies as Nb/Y. Thus for a given Zr/Y ratio, depleted MORB have consistently lower Ba/Y, Th/Y, and La/Y ratios than do Iceland basalts, even the most incompatible-element- depleted Iceland picrites. This is caused by a less extreme depletion of

  7. Screening of advanced cladding materials and UN-U3Si5 fuel

    NASA Astrophysics Data System (ADS)

    Brown, Nicholas R.; Todosow, Michael; Cuadra, Arantxa

    2015-07-01

    In the aftermath of Fukushima, a focus of the DOE-NE Advanced Fuels Campaign has been the development of advanced nuclear fuel and cladding options with the potential for improved performance in an accident. Uranium dioxide (UO2) fuels with various advanced cladding materials were analyzed to provide a reference for cladding performance impacts. For advanced cladding options with UO2 fuel, most of the cladding materials have some reactivity and discharge burn-up penalty (in GWd/t). Silicon carbide is one exception in that the reactor physics performance is predicted to be very similar to zirconium alloy cladding. Most candidate claddings performed similar to UO2-Zr fuel-cladding in terms of safety coefficients. The clear exception is that Mo-based materials were identified as potentially challenging from a reactor physics perspective due to high resonance absorption. This paper also includes evaluation of UN-U3Si5 fuels with Kanthal AF or APMT cladding. The objective of the U3Si5 phase in the UN-U3Si5 fuel concept is to shield the nitride phase from water. It was shown that UN-U3Si5 fuels with Kanthal AF or APMT cladding have similar reactor physics and fuel management performance over a wide parameter space of phase fractions when compared to UO2-Zr fuel-cladding. There will be a marginal penalty in discharge burn-up (in GWd/t) and the sensitivity to 14N content in UN ceramic composites is high. Analysis of the rim effect due to self-shielding in the fuel shows that the UN-based ceramic fuels are not expected to have significantly different relative burn-up distributions at discharge relative to the UO2 reference fuel. However, the overall harder spectrum in the UN ceramic composite fuels increases transuranic build-up, which will increase long-term activity in a once-thru fuel cycle but is expected to be a significant advantage in a fuel cycle with continuous recycling of transuranic material. It is recognized that the fuel and cladding properties assumed in

  8. 4. Photocopy of plat (from U.S. Land Commission, U.S. District ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. Photocopy of plat (from U.S. Land Commission, U.S. District Court, Northern District of California, G. Black, Surveyor, 1854) SITE PLAN OF MISSION SAN FRANCISCO SOLANO DE SONOMA - Mission San Francisco Solano de Sonoma, First & Spain Streets, Sonoma, Sonoma County, CA

  9. On the Effects of Hot Forging and Hot Rolling on the Microstructural Development and Mechanical Response of a Biocompatible Ti Alloy

    PubMed Central

    Okazaki, Yoshimitsu

    2012-01-01

    Zr, Nb, and Ta as alloying elements for Ti alloys are important for attaining superior corrosion resistance and biocompatibility in the long term. However, note that the addition of excess Nb and Ta to Ti alloys leads to higher manufacturing cost. To develop low-cost manufacturing processes, the effects of hot-forging and continuous-hot-rolling conditions on the microstructure, mechanical properties, hot forgeability, and fatigue strength of Ti-15Zr-4Nb-4Ta alloy were investigated. The temperature dependences with a temperature difference (ΔT) from β-transus temperature (Tβ) for the volume fraction of the α- and β-phases were almost the same for both Ti-15Zr-4Nb-4Ta and Ti-6Al-4V alloys. In the α-β-forged Ti-15Zr-4Nb-4Ta alloy, a fine granular α-phase structure containing a fine granular β-phase at grain boundaries of an equiaxed α-phase was observed. The Ti-15Zr-4Nb-4Ta alloy billet forged at Tβ-(30 to 50) °C exhibited high strength and excellent ductility. The effects of forging ratio on mechanical strength and ductility were small at a forging ratio of more than 3. The maximum strength (σmax) markedly increased with decreasing testing temperature below Tβ. The reduction in area (R.A.) value slowly decreased with decreasing testing temperature below Tβ. The temperature dependences of σmax for the Ti-15Zr-4Nb-4Ta and Ti-6Al-4V alloys show the same tendency and might be caused by the temperature difference (ΔT) from Tβ. It was clarified that Ti-15Zr-4Nb-4Ta alloy could be manufactured using the same manufacturing process as for previously approved Ti-6Al-4V alloy, taking into account the difference (ΔT) between Tβ and heat treatment temperature. Also, the manufacturing equivalency of Ti-15Zr-4Nb-4Ta alloy to obtain marketing approval of implants was established. Thus, it was concluded that continuous hot rolling is useful for manufacturing α-β-type Ti alloy.

  10. Back-gated Nb-doped MoS2 junctionless field-effect-transistors

    NASA Astrophysics Data System (ADS)

    Mirabelli, Gioele; Schmidt, Michael; Sheehan, Brendan; Cherkaoui, Karim; Monaghan, Scott; Povey, Ian; McCarthy, Melissa; Bell, Alan P.; Nagle, Roger; Crupi, Felice; Hurley, Paul K.; Duffy, Ray

    2016-02-01

    Electrical measurements were carried out to measure the performance and evaluate the characteristics of MoS2 flakes doped with Niobium (Nb). The flakes were obtained by mechanical exfoliation and transferred onto 85 nm thick SiO2 oxide and a highly doped Si handle wafer. Ti/Au (5/45 nm) deposited on top of the flake allowed the realization of a back-gate structure, which was analyzed structurally through Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy (TEM). To best of our knowledge this is the first cross-sectional TEM study of exfoliated Nb-doped MoS2 flakes. In fact to date TEM of transition-metal-dichalcogenide flakes is extremely rare in the literature, considering the recent body of work. The devices were then electrically characterized by temperature dependent Ids versus Vds and Ids versus Vbg curves. The temperature dependency of the device shows a semiconductor behavior and, the doping effect by Nb atoms introduces acceptors in the structure, with a p-type concentration 4.3 × 1019 cm-3 measured by Hall effect. The p-type doping is confirmed by all the electrical measurements, making the structure a junctionless transistor. In addition, other parameters regarding the contact resistance between the top metal and MoS2 are extracted thanks to a simple Transfer Length Method (TLM) structure, showing a promising contact resistivity of 1.05 × 10-7 Ω/cm2 and a sheet resistance of 2.36 × 102 Ω/sq.

  11. SUPERNOVA NEUTRINO NUCLEOSYNTHESIS OF THE RADIOACTIVE {sup 92}Nb OBSERVED IN PRIMITIVE METEORITES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hayakawa, T.; Chiba, S.; Iwamoto, N.

    2013-12-10

    The isotope {sup 92}Nb decays to {sup 92}Zr with a half-life of 3.47 × 10{sup 7} yr. Although this isotope does not exist in the current solar system, initial abundance ratios for {sup 92}Nb/{sup 93}Nb at the time of solar system formation have been measured in primitive meteorites. The astrophysical origin of this material, however, has remained unknown. In this Letter, we present new calculations which demonstrate a novel origin for {sup 92}Nb via neutrino-induced reactions in core-collapse supernovae (ν-process). Our calculated result shows that the observed ratio of {sup 92}Nb/{sup 93}Nb ∼ 10{sup –5} can be explained by the ν-process.

  12. Nonequilibrium synthesis of NbAl3 and Nb-Al-V alloys by laser cladding. II - Oxidation behavior

    NASA Technical Reports Server (NTRS)

    Haasch, R. T.; Tewari, S. K.; Sircar, S.; Loxton, C. M.; Mazumder, J.

    1992-01-01

    Isothermal oxidation behaviors of NbAl3 alloy synthesized by laser cladding were investigated at temperatures between 800 and 1400 C, and the effect of vanadium microalloying on the oxidation of the laser-clad alloy was examined. The oxidation kinetics of the two alloys were monitored using thermal gravimetric weight gain data, and the bulk and surface chemistries were analyzed using XRD and XPS, respectively. It was found that NbAl3 did not form an exclusive layer of protective Al2O3. The oxidation products at 800 C were found to be a mixture of Nb2O5 and Al2O3. At 1200 C, a mixture of NbAlO4, Nb2O5, and Al2O3 formed; and at 1400 C, a mixture of NbAlO4, Al2O3, NbO2, NbO(2.432), and Nb2O5 formed. The addition of V led to a dramatic increase of the oxidation rate, which may be related to the formation of (Nb, V)2O5 and VO2, which grows in preference to protective Al2O3.

  13. Effect of electron count and chemical complexity in the Ta-Nb-Hf-Zr-Ti high-entropy alloy superconductor

    PubMed Central

    von Rohr, Fabian; Winiarski, Michał J.; Tao, Jing; Klimczuk, Tomasz; Cava, Robert Joseph

    2016-01-01

    High-entropy alloys are made from random mixtures of principal elements on simple lattices, stabilized by a high mixing entropy. The recently discovered body-centered cubic (BCC) Ta-Nb-Hf-Zr-Ti high-entropy alloy superconductor appears to display properties of both simple crystalline intermetallics and amorphous materials; e.g., it has a well-defined superconducting transition along with an exceptional robustness against disorder. Here we show that the valence electron count dependence of the superconducting transition temperature in the high-entropy alloy falls between those of analogous simple solid solutions and amorphous materials and test the effect of alloy complexity on the superconductivity. We propose high-entropy alloys as excellent intermediate systems for studying superconductivity as it evolves between crystalline and amorphous materials. PMID:27803330

  14. Effect of electron count and chemical complexity in the Ta-Nb-Hf-Zr-Ti high-entropy alloy superconductor.

    PubMed

    von Rohr, Fabian; Winiarski, Michał J; Tao, Jing; Klimczuk, Tomasz; Cava, Robert Joseph

    2016-11-15

    High-entropy alloys are made from random mixtures of principal elements on simple lattices, stabilized by a high mixing entropy. The recently discovered body-centered cubic (BCC) Ta-Nb-Hf-Zr-Ti high-entropy alloy superconductor appears to display properties of both simple crystalline intermetallics and amorphous materials; e.g., it has a well-defined superconducting transition along with an exceptional robustness against disorder. Here we show that the valence electron count dependence of the superconducting transition temperature in the high-entropy alloy falls between those of analogous simple solid solutions and amorphous materials and test the effect of alloy complexity on the superconductivity. We propose high-entropy alloys as excellent intermediate systems for studying superconductivity as it evolves between crystalline and amorphous materials.

  15. Exploring a new S U (4 ) symmetry of meson interpolators

    NASA Astrophysics Data System (ADS)

    Glozman, L. Ya.; Pak, M.

    2015-07-01

    In recent lattice calculations it has been discovered that mesons upon truncation of the quasizero modes of the Dirac operator obey a symmetry larger than the S U (2 )L×S U (2 )R×U (1 )A symmetry of the QCD Lagrangian. This symmetry has been suggested to be S U (4 )⊃S U (2 )L×S U (2 )R×U (1 )A that mixes not only the u- and d-quarks of a given chirality, but also the left- and right-handed components. Here it is demonstrated that bilinear q ¯q interpolating fields of a given spin J ≥1 transform into each other according to irreducible representations of S U (4 ) or, in general, S U (2 NF). This fact together with the coincidence of the correlation functions establishes S U (4 ) as a symmetry of the J ≥1 mesons upon quasizero mode reduction. It is shown that this symmetry is a symmetry of the confining instantaneous charge-charge interaction in QCD. Different subgroups of S U (4 ) as well as the S U (4 ) algebra are explored.

  16. Electronic, structural and magnetic studies of niobium borides of group 8 transition metals, Nb2MB2 (M=Fe, Ru, Os) from first principles calculations

    NASA Astrophysics Data System (ADS)

    Touzani, Rachid St.; Fokwa, Boniface P. T.

    2014-03-01

    The Nb2FeB2 phase (U3Si2-type, space group P4/mbm, no. 127) is known for almost 50 years, but until now its magnetic properties have not been investigated. While the synthesis of Nb2OsB2 (space group P4/mnc, no. 128, a twofold superstructure of U3Si2-type) with distorted Nb-layers and Os2-dumbbells was recently achieved, "Nb2RuB2" is still not synthesized and its crystal structure is yet to be revealed. Our first principles density functional theory (DFT) calculations have confirmed not only the experimental structures of Nb2FeB2 and Nb2OsB2, but also predict "Nb2RuB2" to crystalize with the Nb2OsB2 structure type. According to chemical bonding analysis, the homoatomic B-B interactions are optimized and very strong, but relatively strong heteroatomic M-B, B-Nb and M-Nb bonds (M=Fe, Ru, Os) are also found. These interactions, which together build a three-dimensional network, are mainly responsible for the structural stability of these ternary borides. The density-of-states at the Fermi level predicts metallic behavior, as expected, from metal-rich borides. Analysis of possible magnetic structures concluded preferred antiferromagnetic ordering for Nb2FeB2, originating from ferromagnetic interactions within iron chains and antiferromagnetic exchange interactions between them.

  17. Direct modulation of TRPM4 and TRPM3 channels by the phospholipase C inhibitor U73122

    PubMed Central

    Michel, Niklas; Behrendt, Marc; Dierich, Marlen; Dembla, Sandeep; Wilke, Bettina U; Konrad, Maik; Lindner, Moritz; Oberwinkler, Johannes; Oliver, Dominik

    2016-01-01

    Background and Purpose Signalling through phospholipase C (PLC) controls many cellular processes. Much information on the relevance of this important pathway has been derived from pharmacological inhibition of the enzymatic activity of PLC. We found that the most frequently employed PLC inhibitor, U73122, activates endogenous ionic currents in widely used cell lines. Given the extensive use of U73122 in research, we set out to identify these U73122‐sensitive ion channels. Experimental Approach We performed detailed biophysical analysis of the U73122‐induced currents in frequently used cell lines. Key Results At concentrations required to inhibit PLC, U73122 modulated the activity of transient receptor potential melastatin (TRPM) channels through covalent modification. U73122 was shown to be a potent agonist of ubiquitously expressed TRPM4 channels and activated endogenous TRPM4 channels in CHO cells independently of PLC and of the downstream second messengers PI(4,5)P2 and Ca2+. U73122 also potentiated Ca2 +‐dependent TRPM4 currents in human Jurkat T‐cells, endogenous TRPM4 in HEK293T cells and recombinant human TRPM4. In contrast to TRPM4, TRPM3 channels were inhibited whereas the closely related TRPM5 channels were insensitive to U73122, showing that U73122 exhibits high specificity within the TRPM channel family. Conclusions and Implications Given the widespread expression of TRPM4 and TRPM3 channels, these actions of U73122 must be considered when interpreting its effects on cell function. U73122 may also be useful for identifying and characterizing TRPM channels in native tissue, thus facilitating the analysis of their physiology. PMID:27328745

  18. Synthesis and characterization of Ag-doped TiO2 nanotubes on Ti-6Al-4V and Ti-6Al-7Nb alloy

    NASA Astrophysics Data System (ADS)

    Ulfah, Ika Maria; Bachtiar, Boy M.; Murnandityas, Arnita Rut; Slamet

    2018-05-01

    The present paper is focused on comparative behavior of nanotubes growth on Ti-6Al-4V and Ti-6Al-7Nb alloy using electrochemical anodization method. These alloys were anodized in electrolytes solution containing glycerol, water and 0.5wt.% of NH4F. Silver-doped TiO2 nanotubes were synthesized using photo-assisted deposition (PAD) at various Ag loading concentration in 0.05 M, 0.10 M, and 0.15 M. The phase composition and morphological characteristics were investigated by XRD and FESEM/EDX, respectively. The surface wettability was measured by contact angle meter. The results showed that TiO2 nanotubes can be grown on these surface alloys. XRD profiles revealed crystal formation of anatase, rutile and Ag on these surface alloys. According to FESEM images, the average nanotube diameter of Ti-6Al-4V alloy and Ti-6Al-7Nb alloy are 134 nm and 120 nm, respectively. EDX-Mapping analysis showed that Ag desposited over surface of TiO2 nanotubes. The surface wettability indicated hydrophilicity properties on Ti-4Al-4V alloy and Ti-6Al-7Nb alloy surface. This study may contribute to the development of silver-doped TiO2 nanotubes on Ti-6Al-4V alloy and Ti-6Al-7Nb alloy can be considered in various photocatalytic applications such as biomedical devicesdue to photocatalytic mechanism and antibacterial ability.

  19. Crystal structure and X-ray photoemission spectroscopic study of A{sub 2}LaMO{sub 6} [A=Ba, Ca; M=Nb, Ta

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dutta, Alo, E-mail: alo_dutta@yahoo.com; Saha, Sujoy; Kumari, Premlata

    2015-09-15

    The X-ray photoemission spectroscopic (XPS) study of the double perovskite oxides A{sub 2}LaMO{sub 6} [A=Ba, Ca; M=Nb, Ta] synthesized by the solid-state reaction technique has been carried out to investigate the nature of the chemical state of the constituent ions and the bonding between them. The Rietveld refinement of the X-ray diffraction patterns suggests the monoclinic crystal structure of all the materials at room temperature. The negative and positive chemical shifts of the core level XPS spectrum of O-1s and Nb-3d{sub 3/2}/Ta-4f{sub 5/2} respectively suggest the covalent bonding between Nb/Ta cations and O ion. The change of the bonding strengthmore » between the anion and the cations from one material to another has been analyzed. The vibrational property of the materials is investigated using the room temperature Raman spectra. A large covalency of Ta-based compound than Nb compound is confirmed from the relative shifting of the Raman modes of the materials. - Graphical abstract: Crystal structure of two perovskite oxides CLN and CLT is investigated. XPS study confirms the two different co-ordination environments of Ca and covalent bonding between B-site cations and O-ion. - Highlights: • Ordered perovskite structure obtained by Rietveld refinement of XRD patterns. • Study of nature of chemical bonding by X-ray photoemission spectroscopy. • Opposite chemical shift of d-states of Nb/Ta with respect to O. • Covalent bonding between d-states of Nb/Ta and O. • Relative Raman shifts of CLN and CLT substantiate the more covalent character of Ta than Nb.« less

  20. The General Isothermal Oxidation Behavior of Cu-8Cr-4Nb

    NASA Technical Reports Server (NTRS)

    Thomas-Ogbuji, L. U.; Gray, Hugh R. (Technical Monitor)

    2002-01-01

    Oxidation kinetics of Cu-8Cr-4Nb was investigated by TGA (thermogravimetric) exposures between 500 and 900-C (at 25-50 C intervals) and the oxide scale morphologies examined by microscopy and micro-analysis. Because Cu-8Cr-4Nb is comprised of fine Cr2Nb precipitates in a Cu matrix, the results were interpreted by comparison with the behavior of copper (OFHC) and 'NARloy-Z' (a rival candidate material for thrust cell liner applications in advanced rocket engines) under the same conditions. While NARloy-Z and Cu exhibited identical oxidation behavior, Cu-8Cr-4Nb differed markedly in several respects: below approx. 700 C its oxidation rates were significantly lower than those of Cu; At higher temperatures its oxidation rates fell into two categories: an initial rate exceeding that of Cu, and a terminal rate comparable to that of Cu. Differences in oxide morphologies paralleled the kinetic differences at higher temperature: While NARloy-Z and Cu produced a uniform oxide scale of Cu2O inner layer and CuO outer layer, the inner (Cu2O) layer on Cu-8Cr-4Nb was stratified, with a highly porous/spongy inner stratum (responsible for the fast initial kinetics) and a dense/blocky outer stratum (corresponding to the slow terminal kinetics). Single and spinel oxides of Nb and Cr were found at the interface between the oxide scale and Cu-8Cr-4Nb substrate and it appears that these oxides were responsible for its suppressed oxidation rates at the intermediate temperatures. No difference was found between Cu-8Cr-4Nb oxidation in air and in oxygen at 1.0 atm.