Sample records for u-th-pb monazite dating

  1. Prospects for dating monazite via single-collector HR-ICP-MS

    NASA Astrophysics Data System (ADS)

    Kohn, M. J.; Vervoort, J. D.

    2006-12-01

    ICP-MS analysis permits rapid and precise dating of minerals with high U and Th contents. Here we describe a new method for in situ determination of 206Pb/238U, 207Pb/^{235}U, ^{208}Pb/232Th, and 207Pb/206Pb ages in monazite via laser ablation (New Wave Research UP-213 laser system), single-collector, magnetic sector ICP-MS (ThermoFinnigan Element2), using spot sizes of 8-30 μm, a repetition rate of 5 Hz, and a fluence of 10 J/cm2. Based on analysis of 9 monazite samples of known ages ranging from 280 to 1800 Ma, analytical precision (single sample) is ±2-3% (2σ), and reproducibility (single sample) is ±2-4% (2σ), yielding age precisions of ±3- 5% (2σ) for single points, or ±1-2% (2 s.e.) for pooled multiple analyses (n > 4). Issues of accuracy are paramount. 207Pb/206Pb ages are consistently the most accurate and agree to ±2% with accepted TIMS ages. In contrast, 206Pb/238U, 207Pb/^{235}U, and ^{208}Pb/232Th ages can differ by as much as ±5% (2σ), a problem that has also been observed for SIMS Th-Pb dating. The sources of the interelement standardization disparities among monazites remain enigmatic, but do not result from molecular interferences on Pb, U, or Th peaks. Unresolvable mass interference between 204Pb and trace contaminant 204Hg in commercial Ar gas precludes precise common Pb corrections. Instead common Pb corrections are made assuming concordancy between 207Pb/^{235}U and either 206Pb/238U or ^{208}Pb/232Th ages. The new method offers rapid analysis (~1 minute), minimal sample preparation (polished thin section), and high sensitivity. Comparatively large errors on the 206Pb/238U, 207Pb/^{235}U, and ^{208}Pb/232Th ages will likely restrict analysis of younger monazite grains (<250 Ma) to applications where 5% accuracy is sufficient. Older grains (c. 500 Ma and older) can be dated more precisely and accurately using 207Pb/206Pb. One application to young materials involves dating a large vein monazite from the Llallagua tin district of Bolivia

  2. Provenance implications of Th U Pb electron microprobe ages from detrital monazite in the Carboniferous Upper Silesia Coal Basin, Poland

    NASA Astrophysics Data System (ADS)

    Kusiak, Monika Agnieszka; Kędzior, Artur; Paszkowski, Mariusz; Suzuki, Kazuhiro; González-Álvarez, Ignacio; Wajsprych, Bolesław; Doktor, Marek

    2006-05-01

    This paper reports the results of CHIME (chemical Th-U-Pb isochron method) dating of detrital monazites from Carboniferous sandstones in the Upper Silesia Coal Basin (USCB). A total of 4739 spots on 863 monazite grains were analyzed from samples of sandstone derived from six stratigraphic units in the sedimentary sequence. Age distributions were identified in detrital monazites from the USCB sequence and correlated with specific dated domains in potential source areas. Most monazites in all samples yielded ca. 300-320 Ma (Variscan) ages; however, eo-Variscan, Caledonian and Cadomian ages were also obtained. The predominant ages are comparable to reported ages of certain tectonostratigraphic domains in the polyorogenic Bohemian Massif (BM), which suggests that various crystalline lithologies in the BM were the dominant sources of USCB sediments.

  3. Late Permian volcanic dykes in the crystalline basement of the Považský Inovec Mts. (Western Carpathians): U-Th-Pb zircon SHRIMP and monazite chemical dating

    NASA Astrophysics Data System (ADS)

    Pelech, Ondrej; Vozárová, Anna; Uher, Pavel; Petrík, Igor; Plašienka, Dušan; Šarinová, Katarína; Rodionov, Nikolay

    2017-08-01

    This paper presents geochronological data for the volcanic dykes located in the northern Považský Inovec Mts. The dykes are up to 5 m thick and tens to hundreds of metres long. They comprise variously inclined and oriented lenses, composed of strongly altered grey-green alkali basalts. Their age was variously interpreted and discussed in the past. Dykes were emplaced into the Tatricum metamorphic rocks, mostly consisting of mica schists and gneisses of the Variscan (early Carboniferous) age. Two different methods, zircon SHRIMP and monazite chemical dating, were applied to determine the age of these dykes. U-Pb SHRIMP dating of magmatic zircons yielded the concordia age of 260.2 ± 1.4 Ma. The Th-U-Pb monazite dating of the same dyke gave the CHIME age of 259 ± 3Ma. Both ages confirm the magmatic crystallization at the boundary of the latest Middle Permian to the Late Permian. Dyke emplacement was coeval with development of the Late Paleozoic sedimentary basin known in the northern Považský Inovec Mts. and could be correlated with other pre-Mesozoic Tethyan regions especially in the Southern Alps.

  4. Monazite paragenesis and U-Pb systematics in rocks of the eastern Mojave Desert, California, U.S.A.: implications for thermochronometry

    USGS Publications Warehouse

    Kingsbury, J.A.; Miller, C.F.; Wooden, J.L.; Harrison, T.M.

    1993-01-01

    Studies of the paragenesis and U-Pb systematics of monazite in rocks from the eastern Mojave Desert, California, corroborate its potential usefulness as a prograde thermochronometer and in dating granite inheritance. Unmetamorphosed Latham Shale and its equivalents at grades ranging from greenschist to upper amphibolite facies are virtually identical in composition. Monazite is absent in the shale and low-grade schists, but it is abundant in schists at staurolite and higher grades. Lower-grade schists instead include minute Th- and Ce-oxides and unidentified Ce-poor LREE-phosphates that apparently are lower-temperature precursors to monazite. Thus monazite originates when the pelite passes through lower-amphibolite-facies conditions. Monazites from three Upper Cretaceous granites yield ages that are strongly discordant. Upper intercepts of 1.6-1.7 Ga are similar to those defined by U-Pb data for coexisting zircons and coincide with a period of copious magmatism in the Mojave crust. As the host Upper Cretaceous granitic magmas were all above 700??C, effective closure of the restitic monazites to Pb loss must be well in excess of this temperature. U-Pb compositions of monazite from Proterozoic granitoids and schist also indicate high Pb retentivity. Taken together, these studies support the suggestion that monazite can be an effective prograde thermochronometer. At least in pelites, it is not usually retained as a detrital mineral, but rather forms during moderate-temperature metamorphism. Its U-Pb system should not be reset by subsequent higher-grade metamorphism. ?? 1993.

  5. NanoSIMS U-Pb dating of hydrothermally altered monazite: Constraints on the Timing of LaoZaiWan Carlin-type gold deposit in the golden triangle region, SW China

    NASA Astrophysics Data System (ADS)

    PI, Q.

    2017-12-01

    Abstract: Direct dating of Carlin-type Au deposits was restricted due to the absence of a geochronometer. Back-scattered electron (BSE) imaging and X-ray element mapping of monazite in gold-rich ore samples from the LaoZaiWan Au deposit in SW China, reveal the presence of distinct, high-Th cores surrounded by low-Th, inclusion-rich rims. The monazite grain is considered to be the product of fluid-aided coupled dissolution-reprecipitation during Au mineralization via prograde metamorphic reactions. We present results of in situ NonSIMS U-Pb dating applied to the rims of monazite . NonSIMS U-Pb age of hydrothermal monazite gave ages of 228 ± 9 Ma(2σ) and 230 ± 16 Ma(2σ) for LaoZaiWan Au deposit. These ages are interpreted as Au mineralization ages, which consistent with the Re-Os age of arsenopyite for JinYa Au deposit, the U-Pb age of rutile for and 40Ar-39Ar age of sericite for Zhesang Au deposit. We postulate that the formation of the Carlin-type Au deposits in the Golden Triangle region was triggered by the Indosinian Orogen, related to collision of the Indochina Block with South China Block.

  6. Matrix effects for elemental fractionation within ICPMS: applications for U-Th-Pb geochronology

    NASA Astrophysics Data System (ADS)

    Chen, W.

    2016-12-01

    Recent development in instruments provides significant technical supports for daily, quick, money saving geochemical analyses. Laser ablation ICPMS stands out due to these reasons, especially for the U-Th-Pb isotopic dating. Matrix-matched external standardization is by far the most common approach used in U-Th-Pb dating via LA-ICPMS. However, matrix-effects between standard and sample for in-situ dating have shown to be both significant and insignificant. It remains mysterious whether a well matrix-matched standard is needed for U-Th-Pb dating by LA-ICPMS. This study provides an experimental framework for the understanding of matrix effects induced elemental fractionation for U-Th-Pb associated with ICPMS. A preliminary study on the influence of varied U, Th and Pb amounts on their fractionations has been carried out. Experimental data show that different U, Th and Pb contents result in varied 238U/206Pb and 232Th/208Pb ratios. The fractionations of U/Pb and Th/Pb increase with the increasing contents (1 ppb to 100 ppb) with a strong positive anomaly at 10 ppb. Matrixes representing minerals frequently used in dating have been investigated for the influences on U/Pb and Th/Pb fractionations, which suggest a complicated effect. Little fractionations observed between mineral pairs (e.g., monazite and apatite; zircon and perovskite; rutile and perovskite; xenotime and baddeleyite), whereas large fractionations identified for other minerals (e.g., zircon and baddeleyite; monazite and sphene; rutile and baddeleyite). Single element matrix (i.e., Si, P, Ca, Zr, Ti) has been studied to identify their effects on the fractionations. U/Pb ratio increases with the increasing Si and P contents, whereas it decreases for Zr, Ca and Ti. Th/Pb ratio increases with increasing Si contents, decreases for P and Zr, and increases first then decreases for Ca and Ti. Above all, different matrix and U, Th and Pb amounts show distinct U/Pb and Th/Pb fractionations within ICPMS. The

  7. Simultaneous in situ determination of both U-Th-Pb and Sm-Nd isotopes in monazite by laser ablation using a magnetic sector ICP-MS and a multicollector ICP-MS

    NASA Astrophysics Data System (ADS)

    Goudie, D. J.; Fisher, C. M.; Hanchar, J. M.; Davis, W. J.; Crowley, J. L.; Ayers, J. C.

    2012-12-01

    We present a method for the simultaneous in situ determination of U-Th-Pb and Sm-Nd isotopes in monazite, using a laser ablation (LA) system coupled to both a magnetic sector inductively coupled plasma mass spectrometer (HR) ICP-MS and a multicollector (MC) ICP-MS. The ablated material is split using a glass Y-connector and transported simultaneously to both mass spectrometers via helium carrier gas. The MC-ICP-MS is configured to provide relative Ce, Gd, and Eu contents, in addition to Sm and Nd. This approach obtains both age (U-Pb), tracer isotope (Sm-Nd), and REE element data (Ce, Gd, and Eu), in the same ablation volume, thus reducing sampling problems associated with fine-scale zoning and other internal structures. The accuracy and precision of the U-Pb data are demonstrated using six well characterized monazite reference materials from the Geological Survey of Canada (three of which are currently used as SHRIMP standards) and agree well with previously determined ID-TIMS ages. The accuracy of the Sm-Nd isotopic data was assessed by comparison to TIMS measurements on a well-characterized in-house monazite standard. The dual LA-ICP-MS method was applied to the Birch Creek Pluton (BCP) in the White Mountains, California in a case study to test the utility of U-Th-Pb dating coupled with Sm-Nd (and Ce, Gd, Eu) isotopic data for solving geologic problems. Previous work on the Cretaceous BCP [1] used Th-Pb ages coupled with O isotopic data to constrain hydrothermal fluid events, as recorded in monazite. The original study suggested that the high delta 18O monazite in Paleozoic country rocks adjacent to the BCP grew in response to fluid alternation associated with the intrusion of the BCP, based on overlapping age with the BCP. New monazite split-stream U-Pb and Sm-Nd data show that monazite from the BCP pluton and monazite from altered country rock have homogenous and overlapping initial Nd isotopic composition, further strengthening the proposal that monazite in

  8. CHIME monazite dating using FE-EPMA equipped with R=100 mm spectrometers

    NASA Astrophysics Data System (ADS)

    Shibata, K.; Shimizu, M.; Suzuki, K.; Sueoka, S.; Niwa, M.

    2015-12-01

    The age spectrum of detrital monazite grains is used to unravel the tectono-thermal history of the pre-Neogene terranes, which is required for geological disposal of high-level radioactive waste on tectonically active Japanese Islands. The CHIME (Chemical Th-U-total Pb isochron method, Suzuki and Adachi, 1991) is best suited for dating of detrital monazite whose grains are not chronologically uniform. In the previous studies (eg, Suzuki, 2011), EPMA equipped with conventional R=140 mm spectrometers was used for measurement of U, Th and Pb. However the spectrometers have low count rate of measurement of Pb. The JEOL JXA-8530F FE-EPMA equipped with R=100 mm spectrometers has been applied for the CHIME monazite dating. The intrinsic responses of each of the R=100 mm spectrometers for PbMβ are around ten times higher than that of the R=140 mm spectrometer. The R=100 mm spectrometers permits obtaining high count rate, which enables us to shorten measurement time than before. As these spectrometers have peculiar spectral interference, the method reported by Amli and Griffin (1978) is applied for correction of the interference. In order to verify the dating using the FE-EPMA and the interference correction method, two distinct age groups of monazite were measured. The ages were 425±25 Ma for monazite from Cooma granite in southeastern Australia, which had dated by SHRIMP as 432.8 ± 3.5 Ma (Williams, 2001) and 67 ± 7 Ma for monazite of the Kojaku granite in southwestern Japan, which is corresponding to the LA-ICP-MS U-Pb zircon ages of 68.5 ± 0.7 Ma. These results indicate that the FE-EPMA and the interference correction method are useful for the CHIME monazite dating and for revealing the tectono-thermal history of the terranes. This study was carried out under a contract with Agency of Natural Resources and Energy(ANRE), part of Ministry of Economy, Trade and Industry (METI) of Japan as part of its R&D supporting program for developing geological disposal technology.

  9. Ediacaran ( 620 Ma) high grade regional metamorphism in the northern Arabian Nubian Shield: U/Th-Pb monazite ages of the Elat schist

    NASA Astrophysics Data System (ADS)

    Elisha, Bar; Katzir, Yaron; Kylander-Clark, Andrew

    2017-04-01

    Ediacaran times witnessed a hemisphere-scale orogenesis forming the extensive Pan-African mountain ranges and resulting in the final assembly of Gondwana supercontinent. The Elat metamorphic basement (S Israel) located at the northernmost tip of a major Pan-African orogenic suture, the Arabian Nubian Shield (ANS), comprises amphibolite facies schists and gneisses and was most likely shaped by this major continental collision. However the timing, number and duration of metamorphic events in Elat and elsewhere in the ANS are non-conclusive and a major emphasis was given to pre-Ediacaran island-arc related tectonics. This is mostly because U-Pb dating of zircon, widely used in Elat and elsewhere, is very successful in constraining the ages of the igneous and sedimentary protoliths, but is 'blind' to metamorphism at grades lower than granulite. Here U/Th-Pb dating of monazite, a precise chronometer of metamorphic mineral growth, is systematically applied to the Elat schist and unveils the tectono-metamorphic evolution of the Elat basement. Previous U-Pb dating of detrital zircon has shown that the sedimentary protoliths of the Elat schist are the oldest basement components (≥800 Ma), and detailed structural observations of the schists portrayed a complex deformation history including four successive phases (Shimron, 1972). The earliest three phases were defined as ductile and penetrative, but some of the available geochronological data apparently contradict field relations. In-situ analysis of metamorphic monazites by LASS (Laser Ablation Split Stream) involves simultaneous measurement of U/Th-Pb isotope ratios and REE contents in a single 10 μm sized grain or domain, thus allowing determining the age of specific texture and metamorphic assemblage. Monazite dating of the Elat schist yielded two concordant age clusters at 712±6 and 613±5 Ma. The corresponding REE patterns of the dated monazite grains indicate that porphyroblast growth, either garnet or staurolite

  10. U-Pb zircon and CHIME monazite dating of granitoids and high-grade metamorphic rocks from the Eastern and Peninsular Thailand - A new report of Early Paleozoic granite

    NASA Astrophysics Data System (ADS)

    Kawakami, T.; Nakano, N.; Higashino, F.; Hokada, T.; Osanai, Y.; Yuhara, M.; Charusiri, P.; Kamikubo, H.; Yonemura, K.; Hirata, T.

    2014-07-01

    In order to understand the age and tectonic framework of Eastern to Peninsular Thailand from the viewpoint of basement (metamorphic and plutonic) geology, the LA-ICP-MS U-Pb zircon dating and the chemical Th-U-total Pb isochron method (CHIME) monazite dating were performed in the Khao Chao, Hub-Kapong to Pran Buri, and Khanom areas in Eastern to Peninsular Thailand. The LA-ICP-MS U-Pb zircon dating of the garnet-hornblende gneiss from the Khao Chao area gave 229 ± 3 Ma representing the crystallization age of the gabbro, and that of the garnet-biotite gneisses gave 193 ± 4 Ma representing the timing of an upper amphibolite facies metamorphism. The CHIME monazite dating of pelitic gneiss from the Khao Chao gneiss gave scattered result of 68 ± 22 Ma, due to low PbO content and rejuvenation of older monazite grains during another metamorphism in the Late Cretaceous to Tertiary time. The U-Pb ages of zircon from the Hua Hin gneissic granite in the Hub-Kapong to Pran Buri area scatter from 250 Ma to 170 Ma on the concordia. Granite crystallization was at 219 ± 2 Ma, followed by the sillimanite-grade regional metamorphism at 185 ± 2 Ma. Monazite in the pelitic gneiss from this area also preserves Early to Middle Jurassic metamorphism and rejuvenation by later contact metamorphism by non-foliated granite or by another fluid infiltration event in the Late Cretaceous to Tertiary time. The Khao Dat Fa granite from the Khanom area of Peninsular Thailand gave a U-Pb zircon age of 477 ± 7 Ma. This is the second oldest granite pluton ever reported from Thailand, and is a clear evidence for the Sibumasu block having a crystalline basement that was formed during the Pan-African Orogeny. The Khao Pret granite gives U-Pb zircon concordia age of 67.5 ± 1.3 Ma, which represents the timing of zircon crystallization from the granitic melt and accompanied sillimanite-grade contact metamorphism against surrounding metapelites and gneisses. Metamorphic rocks in the Doi Inthanon area

  11. Th-U-total Pb Geochronology of Authigenic Monazite Near the top of the Sturtian-Marinoan Interglacial, Adelaide Rift Complex, South Australia

    NASA Astrophysics Data System (ADS)

    Mahan, K. H.; Wernicke, B. P.; Jercinovic, M. J.

    2007-12-01

    The Adelaide Rift Complex in South Australia contains the type sections for Sturtian and Marinoan glacial deposits. The litho- and chemostratigraphy of these deposits play a central role in evaluating global Neoproterozoic ice age hypotheses ("snowball Earth") and Rodinia supercontinent reconstructions, but precise ages on igneous units do not yet exist. We report preliminary results of in situ Th-U-total Pb electron microprobe dating of monazite in sandstones within the Holowilena Ironstone ("older" Sturtian glacial at Enorama Creek) and at the top of the Enorama Shale (youngest pre-Marinoan, interglacial clastics at Elatina Creek). Several distinct populations are recognized. First, rounded cores with high Th, U, and Y + HREE abundances are interpreted as igneous or metamorphic detrital grains and yield ca. 1590 Ma, ca. 1280-1300 Ma, and ca. 1040 Ma dates related to well-known orogenic events in surrounding cratonic regions. A second group also occurs as "cores" but contains significantly lower U and Y + HREE, characteristics that may be indicative of an authigenic origin. Some rounded domains may represent "recycled" authigenic grains and yield dates of ca. 880 Ma and ca. 760 Ma. However, a subset observed in the Enorama sample occurs as very small (~2 x 10 microns), euhedral lathes that are unlikely to have survived a detrital history and yield a date of 680 +/-23 Ma. The youngest population forms very low Th and U, inclusion-rich overgrowths with ca. 500 Ma dates (Delamerian Orogeny) that probably grew hydrothermally. The recognition of "recycled" authigenic monazite further emphasizes the detail in textural and petrological documentation that is required for accurate geochronological interpretations. The date of 680 +/-23 Ma (1) provides an estimate for the age of the base of the Trezona carbon isotopic anomaly just beneath the Marinoan glacial deposits, (2) provides an absolute minimum age constraint on the underlying Sturtian glacial deposits, and (3) is

  12. Nd Isotope and U-Th-Pb Age Mapping of Single Monazite Grains by Laser Ablation Split Stream Analysis

    NASA Astrophysics Data System (ADS)

    Fisher, C. M.; Hanchar, J. M.; Miller, C. F.; Phillips, S.; Vervoort, J. D.; Martin, W.

    2015-12-01

    Monazite is a common accessory mineral that occurs in medium to high grade metamorphic and Ca-poor felsic igneous rocks, and often controls the LREE budget (including Sm and Nd) of the host rock in which it crystallizes. Moreover, it contains appreciable U and Th, making it an ideal mineral for determining U-Th-Pb ages and Sm-Nd isotopic compositions, both of which are readily determined using in situ techniques with very high spatial resolution like LA-MC-ICPMS. Here, we present the results of laser ablation split stream analyses (LASS), which allows for simultaneous determination of the age and initial Nd isotopic composition in a single analysis. Analyses were done using a 20mm laser spot that allowed for detailed Nd isotope mapping of monazite grains (~30 analyses per ~250mm sized grain). Combined with LREE ratios (e.g., Sm/Nd, Ce/Gd, and Eu anomalies) these results yield important petrogenetic constraints on the evolution of peraluminous granites from the Old Woman-Piute batholith in southeastern California. Our findings also allow an improved understanding of the causes of isotope heterogeneity in granitic rocks. U-Th-Pb age mapping across the crystals reveals a single Cretaceous age for all grains with precision and accuracy typical of laser ablation analyses (~2%). In contrast, the concurrent Nd isotope mapping yields homogeneous initial Nd isotope compositions for some grains and large initial intra-grain variations of up to 8 epsilon units in others. The grains that yield homogeneous Nd isotope compositions have REE ratios suggesting that they crystallized in a fractionally crystallizing magma. Conversely, other grains, which also record fractional crystallization of both feldspar and LREE rich minerals, demonstrate a change in the Nd isotope composition of the magma during crystallization of monazite. Comparison of inter- and intra-grain Nd isotope compositions reveals further details on the potential mechanisms responsible for isotope heterogeneity

  13. Conventional U-Pb dating versus SHRIMP of the Santa Barbara Granite Massif, Rondonia, Brazil

    USGS Publications Warehouse

    Sparrenberger, I.; Bettencourt, Jorge S.; Tosdal, R.M.; Wooden, J.L.

    2002-01-01

    The Santa Ba??rbara Granite Massif is part of the Younger Granites of Rondo??nia (998 - 974 Ma) and is included in the Rondo??nia Tin Province (SW Amazonian Craton). It comprises three highly fractionated metaluminous to peraluminous within-plate A-type granite units emplaced in older medium-grade metamorphic rocks. Sn-mineralization is closely associated with the late-stage unit. U-Pb monazite conventional dating of the early-stage Serra do Cicero facies and late-stage Serra Azul facies yielded ages of 993 ?? 5 Ma and 989 ?? 13 Ma, respectively. Conventional multigrain U-Pb isotope analyses of zircon demonstrate isotopic disturbance (discordance) and the preservation of inherited older zircons of several different ages and thus yield little about the ages of Sn-granite magmatism. SHRIMP U-Pb ages for the Santa Ba??rbara facies association yielded a 207Pb/206Pb weighted-mean age of 978 ?? 13 Ma. The textural complexity of the zircon crystals of the Santa Ba??rbara facies association, the variable concentrations of U, Th and Pb, as well as the mixed inheritance of zircon populations are major obstacles to using conventional multigrain U-Pb isotopic analyses. Sm-Nd model ages and ??Nd (T) values reveal anomalous isotopic data, attesting to the complex isotopic behaviour within these highly fractionated granites. Thus, SHRIMP U-Pb zircon and conventional U-Pb monazite dating methods are the most appropriate to constrain the crystallization age of the Sn-bearing granite systems in the Rondo??nia Tin Province.

  14. U-Pb-Th geochronology of monazite and zircon in albitite metasomatites of the Rožňava-Nadabula ore field (Western Carpathians, Slovakia): implications for the origin of hydrothermal polymetallic siderite veins

    NASA Astrophysics Data System (ADS)

    Hurai, V.; Paquette, J.-L.; Lexa, O.; Konečný, P.; Dianiška, I.

    2015-10-01

    Sodic metasomatites (albitites) occur around and within siderite veins in the southern part of the Gemeric tectonic unit of the Western Carpathians. Accessory minerals of the metasomatites represented by monazite, zircon, apatite, rutile, tourmaline and siderite are basically identical with the quartz-tourmaline stage of other siderite and stibnite veins of the tectonic unit. Statistical analysis of chemical Th-U(total)-Pb isochron method (CHIME) of monazite dating yielded Jurassic-Cretaceous ages subdivided into 3-4 modes, spreading over time interval between 78 and 185 Ma. In contrast, LA-ICPMS 206Pb/238U dating carried out on the same monazite grains revealed a narrow crystallization interval, showing ages of Th-poor cores with phengite inclusions identical within the error limit with Th-rich rims with cauliflower-like structure. The determined lower intercept at 139 ± 1 Ma overlapped the Vallanginian-Berriasian boundary, thus corroborating the model of formation of hydrothermal vein structures within an arcuate deformation front built up in the Variscan basement as a response to Early Cretaceous compression, folding and thrusting. In contrast, associated zircons are considerably older than the surrounding Early-Palaeozoic volcano-sedimentary rocks, showing Neoproterozoic ages. The zircon grains in albitite metasomatites are thus interpreted as fragments of Pan-African magmatic detritus incorporated in the vein structures by buoyant hydrothermal fluids.

  15. Kyanite-garnet gneisses of the Kåfjord Nappe - North Norwegian Caledonides: P-T conditions and monazite Th-U-Pb dating

    NASA Astrophysics Data System (ADS)

    Ziemniak, Grzegorz; Kośmińska, Karolina; Majka, Jarosław; Janák, Marian; Manecki, Maciej

    2016-04-01

    The Kåfjord Nappe is the part of the Skibotn Nappe Complex traditionally ascribed to the Upper Allochthon of the North Norwegian Caledonides. Pressure-temperature (P-T) conditions and metamorphic age of the Kåfjord Nappe are not well constrained, geochronological data are limited to a single Rb-Sr age of c. 440 Ma (Dangla et al. 1978). Metamorphic evolution of kyanite-garnet gneisses of the Kåfjord Nappe is presented here. The kyanite-garnet gneisses are associated with a few meters thick amphibolite lenses. The gneisses mainly consist of quartz, plagioclase, biotite, muscovite, garnet, kyanite, and rutile. Retrograde minerals are represented by sillimanite and chlorite. Garnet occurs as two textural types. Garnet-I forms euhedral porphyroblasts with multiple small inclusions. Profiles through garnet-I show chemical zonation in all components. The composition varies from Alm64-68Prp11-16Grs13-18Sps2-8 in the core to Alm68-70Prp17-18Grs10-13Sps1-3 in the rim. Garnet-II is subhedral to anhedral, its core is inclusion-rich, whereas rim contains only single inclusions. Chemical composition of garnet-II is similar to that of the garnet-I rim. P-T conditions have been estimated using the garnet-biotite-muscovite-plagioclase (GBPM) geothermobarometer (Holdaway, 2001; Wu, 2014). Calculated peak P-T metamorphic conditions are 610-625 °C and 7.6-8.2 kbar corresponding to the amphibolite facies conditions. Phase equilibrium modelling in the NCKFMMnASH system yields peak metamorphic conditions of c. 620 °C at 8 kbar. Growth conditions of garnet-I core modelled in the NCKFMMnASH system are c. 570 °C at 9.7 kbar. Chemical Th-U-total Pb monazite dating has been performed. Preliminary dating results from the kyanite-garnet gneiss of the Kåfjord Nappe yield an array of dates from 468 Ma to 404 Ma. There is a correlation between an increase of yttrium content and decrease of monazite single dates. Compositional maps confirm an increase of yttrium towards the rim of the

  16. Sulphate incorporation in monazite lattice and dating the cycle of sulphur in metamorphic belts

    NASA Astrophysics Data System (ADS)

    Laurent, Antonin T.; Seydoux-Guillaume, Anne-Magali; Duchene, Stéphanie; Bingen, Bernard; Bosse, Valérie; Datas, Lucien

    2016-11-01

    Microgeochemical data and transmission electron microscope (TEM) imaging of S-rich monazite crystals demonstrate that S has been incorporated in the lattice of monazite as a clino-anhydrite component via the following exchange Ca2+ + S6+ = REE3+ + P5+, and that it is now partly exsolved in nanoclusters (5-10 nm) of CaSO4. The sample, an osumilite-bearing ultra-high-temperature granulite from Rogaland, Norway, is characterized by complexly patchy zoned monazite crystals. Three chemical domains are distinguished as (1) a sulphate-rich core (0.45-0.72 wt% SO2, Th incorporated as cheralite component), (2) secondary sulphate-bearing domains (SO2 >0.05 wt%, partly clouded with solid inclusions), and (3) late S-free, Y-rich domains (0.8-2.5 wt% Y2O3, Th accommodated as the huttonite component). These three domains yield distinct isotopic U-Pb ages of 1034 ± 6, 1005 ± 7, and 935 ± 7 Ma, respectively. Uranium-Th-Pb EPMA dating independently confirms these ages. This study illustrates that it is possible to discriminate different generations of monazite based on their S contents. From the petrological context, we propose that sulphate-rich monazite reflects high-temperature Fe-sulphide breakdown under oxidizing conditions, coeval with biotite dehydration melting. Monazite may therefore reveal the presence of S in anatectic melts from high-grade terrains at a specific point in time and date S mobilization from a reduced to an oxidized state. This property can be used to investigate the mineralization potential of a given geological event within a larger orogenic framework.

  17. Reply to Comment on "Zircon U-Th-Pb dating using LA-ICP-MS: Simultaneous U-Pb and U-Th dating on the 0.1 Ma Toya Tephra, Japan"

    NASA Astrophysics Data System (ADS)

    Ito, Hisatoshi

    2015-04-01

    Guillong et al. (2015) mentioned that corrections for abundance sensitivity for 232Th and molecular zirconium sesquioxide ions (Zr2O3+) are critical for reliable determination of 230Th abundances in zircon for LA-ICP-MS analyses. There is no denying that more rigorous treatments are necessary to obtain more reliable ages than those in Ito (2014). However, as shown in Fig. 2 in Guillong et al. (2015), the uncorrected (230Th)/(238U) for reference zircons except for Mud Tank are only 5-20% higher than unity. Since U abundance of Toya Tephra zircons that have U-Pb ages < 1 Ma is in-between that of FCT and Plesovice, the overestimation of 230Th by both abundance sensitivity and molecular interferences is expected to be 5-20% for the Toya Tephra. Moreover Ito (2014) obtained U-Th ages of the Toya Tephra by comparison with Fish Canyon Tuff (FCT) data. Because both the FCT and the Toya Tephra have similar trends of overestimation of 230Th, the effect of overestimation of 230Th to cause overestimation of U-Th age should be cancelled out or negligible. Therefore the pivotal conclusion in Ito (2014) that simultaneous U-Pb and U-Th dating using LA-ICP-MS is possible and useful for Quaternary zircons holds true.

  18. Neoproterozoic transpression and granite magmatism in the Gavilgarh-Tan Shear Zone, central India: Tectonic significance of U-Pb zircon and U-Th-total Pb monazite ages

    NASA Astrophysics Data System (ADS)

    Chattopadhyay, Anupam; Chatterjee, Amitava; Das, Kaushik; Sarkar, Arindam

    2017-10-01

    The Gavilgarh-Tan Shear Zone (GTSZ) is a crustal-scale shear/fault zone that dissects the unclassified basement gneisses separating two major supracrustal belts, viz. the Paleo- to Mesoproterozoic (≥1.5 Ga) Betul Belt and the Neoproterozoic (∼1.0 Ga) Sausar Belt, of the Central Indian Tectonic Zone (CITZ). The GTSZ extends for more than 300 km strike length, partly covered by the Deccan Trap flows. Granitoid rocks ranging from syenogranite to granodiorite in composition, sheared at temperatures corresponding to the amphibolite facies metamorphic condition, define the GTSZ in the Kanhan River Valley. Earlier geological studies have suggested that the GTSZ underwent a sinistral-sense partitioned transpression in response to an oblique collision between two continental fragments, possibly related to crustal thickening and high-pressure granulite metamorphism (the Ramakona-Katangi granulite: RKG) in the northern part of the Sausar Belt. LA-ICP-MS U-Pb dating of zircon and EPMA U-Th-total Pb dating of monazite grains from four different types of syn-tectonic granitoids of the GTSZ carried out in the present study show that granitoids intruded the basement gneisses between 1.2 Ga and 0.95 Ga, given the error limit of the calculated ages. The age of transpression and mylonitization is more definitely bracketed between 1.0 Ga and 0.95 Ga, which correlates well with the published ages of deformation and metamorphism in the Sausar Belt. This age data strongly supports the suggested collisional tectonic model involving the GTSZ and the RKG granulites of the Sausar Belt and underlines a Grenvillian-age tectonic history for the southern part of the Central Indian Tectonic Zone (CITZ), which possibly culminated in the crustal assembly of the Neoproterozoic supercontinent Rodinia.

  19. Age mapping and dating of monazite on the electron microprobe: Deconvoluting multistage tectonic histories

    NASA Astrophysics Data System (ADS)

    Williams, Michael L.; Jercinovic, Michael J.; Terry, Michael P.

    1999-11-01

    High-resolution X-ray mapping and dating of monazite on the electron microprobe are powerful geochronological tools for structural, metamorphic, and tectonic analysis. X-ray maps commonly show complex Th, U, and Pb zoning that reflects monazite growth and overgrowth events. Age maps constructed from the X-ray maps simplify the zoning and highlight age domains. Microprobe dating offers a rapid, in situ method for estimating ages of mapped domains. Application of these techniques has placed new constraints on the tectonic history of three areas. In western Canada, age mapping has revealed multiphase monazite, with older cores and younger rims, included in syntectonic garnet. Microprobe ages show that tectonism occurred ca. 1.9 Ga, 700 m.y. later than mylonitization in the adjacent Snowbird tectonic zone. In New Mexico, age mapping and dating show that the dominant fabric and triple-point metamorphism occurred during a 1.4 Ga reactivation, not during the 1.7 Ga Yavapai-Mazatzal orogeny. In Norway, monazite inclusions in garnet constrain high-pressure metamorphism to ca. 405 Ma, and older cores indicate a previously unrecognized component of ca. 1.0 Ga monazite. In all three areas, microprobe dating and age mapping have provided a critical textural context for geochronologic data and a better understanding of the complex age spectra of these multistage orogenic belts.

  20. Coupled dissolution-precipitation in natural monazite: effect of irradiation damage or fluid mediation?

    NASA Astrophysics Data System (ADS)

    Seydoux-Guillaume, Anne-Magali; Montel, Jean-Marc; de Parseval, Philippe; Bingen, Bernard; Janots, Emilie

    2010-05-01

    discussion is the role and the chronology of each process, i.e. irradiation vs coupled dissolution-precipitation. U-Th-Pb ages obtained by chemical dating on electron microprobe from altered and unaltered monazites show no significant differences. Therefore U-Pb dating using SIMS and LA-ICP-MS are in progress to determine precise isotopic age that would refine the alteration chronology. Finally, these results will be compared with experimental work, which are currently investigating the role of structural defects on coupled dissolution-precipitation in monazite. Hetherington and Harlov (2008). Am. Mineral., 93, 806-820. Seydoux-Guillaume et al. (2007). Eur. J. Mineral., 19, 7-14.

  1. Connecting the U-Th and U-Pb Chronometers: New Algorithms and Applications

    NASA Astrophysics Data System (ADS)

    McLean, N. M.; Smith, C. J. M.; Roberts, N. M. W.; Richards, D. A.

    2016-12-01

    The U-Th and U-Pb geochronometers are important clocks for separate intervals of the geologic timescale. U-Th dates exploit disequilibrium in the 238U intermediate daughter isotopes 234U and 230Th, and are often used to date corals and speleothems that are zero age through 800 ka. The U-Pb system relies on secular equilibrium decay of 238U to 206Pb and 235U to 207Pb over longer timescales, and can be used to date samples from <1 Ma to 4.5 Ga. Disequilibrium plays a role in young U-Pb dates, but only as a nuisance correction. Both chronometers can produce dates with uncertainties <0.1% near the center of their applicable age ranges, but become less precise at their intersection, when the 238U decay chain approaches secular equilibrium and there has been little time for ingrowth of radiogenic Pb. However, if measurements or assumptions about both chronometers can be made, then they can be combined into a single, more informed date. Coupling the datasets can improve their precision and accuracy and help interrogate the assumptions that underpin each. Working with this data is difficult for two reasons. The Bateman equations are long and cumbersome for U decay chains that include 238U, 234U, 230Th, 226Ra, 206Pb and 235U, 231Pa, and 207Pb. Also, Pb measurements often comprise varying amounts of radiogenic Pb from locally heterogeneous U concentrations mixed with varying amounts of common Pb. At present there is no established, flexible computational framework to combine information from measurements and/or assumptions of these parameters, and no way to visualize and interpret the results. We present new algorithms to quickly and accurately solve the system of differential equations defined by both of the uranium decay chains and the linear regression through the U-Pb isochron. The results are illustrated on a new concordia diagram, where the concordia curve is determined by measured and/or assumed U-series disequilibrium and can have unfamiliar topologies. We

  2. Integrated Laser Ablation U/Pb and (U-Th)/He Dating of Detrital Accessory Minerals from the Naryani River, Central Nepal

    NASA Astrophysics Data System (ADS)

    Horne, A.; Hodges, K. V.; Van Soest, M. C.

    2015-12-01

    The newly developed 'laser ablation double dating' (LADD) technique, an integrated laser microprobe U/Pb and (U-Th)/He dating method, could be an exceptionally valuable tool in detrital thermochronology for identifying sedimentary provenance and evaluating the exhumation history of a source region. A recent proof-of-concept study has used LADD to successfully date both zircon and titanite crystals from the well-characterized Fish Canyon tuff, but we also believe that another accessory mineral, rutile, could be amenable to dating via the LADD technique. To continue the development of the method, we present an application of LADD to detrital zircon, titanite, and rutile from a sample collected on the lower Naryani River of central Nepal. Preliminary analyses of the sample have yielded zircon U/Pb dates ranging from 31.4 to 2405 Ma; zircon (U-Th)/He from 1.8 to 15.4 Ma; titanite U/Pb between 18 and 110 Ma; titanite (U-Th)/He between 1 and 16 Ma; rutile U/Pb from 6 to 45 Ma; and rutile (U-Th)/He from 2 to 25 Ma. In addition to the initial data, we can use Ti-in-zircon, Zr-in-titanite, and Zr-in-rutile thermometers to determine the range of possible long-term cooling rates from grains with U/Pb ages younger than collision. Thus far our results from zircon analyses imply a cooling rate of approximately 15°C/Myr; titanite analyses imply between 10 and 67°C/Myr; and rutile between 9 and 267°C/Myr. This spread in potential cooling rates, especially in the order of magnitude differences of cooling rates calculated from the rutile grains, suggests that the hinterland source regions of the Naryani river experienced dramatically different exhumation histories during Himalayan orogenisis. Ongoing analyses will expand the dataset such that we can more adequately characterize the range of possibilities represented in the sample.

  3. Precise and accurate in situ Pb-Pb dating of apatite, monazite, and sphene by laser ablation multiple-collector ICP-MS

    NASA Astrophysics Data System (ADS)

    Willigers, B. J. A.; Baker, J. A.; Krogstad, E. J.; Peate, D. W.

    2002-03-01

    To evaluate in situ Pb dating by laser ablation multiple-collector inductively coupled plasma mass spectrometry (LA-MC-ICP-MS), we analysed apatite, sphene, and monazite from Paleoproterozoic metamorphic rocks from West Greenland. Pb isotope ratios were also determined in the National Institute of Standards and Technology (NIST) 610 glass standard and were corrected for mass fractionation by reference to the measured thallium isotope ratio. The NIST 610 glass was used to monitor Pb isotope mass fractionation in the low Tl/Pb accessory minerals. Replicate analyses of the glass (1 to 2 min) yielded ratios with an external reproducibility comparable to conventional analyses of standard reference material 981 by thermal ionisation mass spectrometry (TIMS). Mineral grains were generally analysed with a 100-μm laser beam, although some monazite crystals were analysed at smaller spot sizes (10 and 25 μm). The common Pb isotope ratios required for age calculations were either measured on coexisting plagioclase by LA-MC-ICP-MS or could be ignored, as individual crystals exhibit sufficient Pb isotopic heterogeneity to perform isochron calculations on replicate analyses of single crystals. Mean mineral ages with the 204Pb ion beam measured in the multiplier were as follows: apatite, 1715 ± 23 m.y.; sphene, 1789 ± 11 m.y.; and monazite, 1783 to 1888 m.y., with relative uncertainties on individual monazite ages of <0.2% but highly reproducible age determinations on single monazite crystals (≪1%). Isochron ages calculated from several mineral analyses without assumption of common Pb also yield precise age determinations. Apatite and monazite Pb ages determined by in situ Pb isotope analysis are identical to those determined by conventional TIMS analysis of bulk mineral separates, and the analytical uncertainties of these short laser analyses with no prior mechanical or chemical separation are comparable to those obtained by TIMS. Detailed examination of the sphene in situ

  4. U-Th-PbT Monazite Gechronology in the South Carpathian Basement: Variscan Syn-Metamorphic Tectonic Stacking and Long-Lasting Post-Peak Decompressional Overprints

    NASA Astrophysics Data System (ADS)

    Săbău, G.; Negulescu, E.

    2012-12-01

    Dating metamorphic events appears to be unsatisfactorily addressed by most of the widely-employed and otherwise accurate and productive isotopic techniques, because the phases and systems investigated do not directly relate to the metamorphic events themselves. An adequate answer to this challenge is instead provided by microprobe-assisted chemical U-Th-PbT monazite geochronology, by its spatial resolution, truly in situ character and the possibility to reference analyses against well-defined textural environments and features, as well as a qualitative timeframe derived therefrom. Though chemical U-Th-PbT monazite geochronology is increasingly applied to seek answers ranging form a general characterization to fine details of the thermotectonic evolution of magmatic and metamorphic rocks, there are so far, unlike in the case of isotopic geochronological methods, no clearly defined standard analytical and data processing protocols. Two main reasons for this have to be mentioned, namely that chemical U-Th-PbT chronology is actually a proxy for isotopic geochronology, and the quantification of the errors and their propagation cannot be directly assessed because apparent ages are related to the measured element concentrations by an implicit function, the law of radioactive decay. Current approaches rely on treating calculated individual age values as primary data, a priori grouping of analyses supposed (and subsequently tested) to be coeval, and their statistical processing in order to obtain age values. An alternative approach we applied in basement units of the South Carpathians consists in an explicit approximation of the age formula and associated errors propagated from element concentrations to age values, and individual treatment of each age datum. The separation of the age clusters from the overall age spectrum of each sample was operated by tracing the variations of the normalized age gradient on the age spectrum sorted by increasing age values, and fine

  5. A precise 232Th-208Pb chronology of fine-grained monazite: Age of the Bayan Obo REE-Fe-Nb ore deposit, China

    USGS Publications Warehouse

    Wang, Jingyuan; Tatsumoto, M.; Li, X.; Premo, W.R.; Chao, E.C.T.

    1994-01-01

    We have obtained precise Th-Pb internal isochron ages on monazite and bastnaesite for the world's largest known rare earth elements (REE)-Fe-Nb ore deposit, the Bayan Obo of Inner Mongolia, China. The monazite samples, collected from the carbonate-hosted ore zone, contain extremely small amounts of uranium (less than 10 ppm) but up to 0.7% ThO2. Previous estimates of the age of mineralization ranged from 1.8 to 0.255 Ga. Magnetic fractions of monazite and bastnaesite samples (<60-??m size) showed large ranges in 232Th 204Pb values (900-400,000) and provided precise Th-Pb internal isochron ages for paragenetic monazite mineralization ranging from 555 to 398 Ma within a few percent error (0.8% for two samples). These results are the first indication that REE mineralization within the giant Bayan Obo ore deposit occurred over a long period of time. The initial lead isotopic compositions (low 206Pb 204Pb and high 208Pb 204Pb) and large negative ??{lunate}Nd values for Bayan Obo ore minerals indicate that the main source(s) for the ores was the lower crust which was depleted in uranium, but enriched in thorium and light rare earth elements for a long period of time. Zircon from a quartz monzonite, located 50 km south of the ore complex and thought to be related to Caledonian subduction, gave an age of 451 Ma, within the range of monazite ages. Textural relations together with the mineral ages favor an epigenetic rather than a syngenetic origin for the orebodies. REE mineralization started around 555 Ma (disseminated monazite in the West, the Main, and south of the East Orebody), but the main mineralization (banded ores) was related to the Caledonian subduction event ca. 474-400 Ma. ?? 1994.

  6. Shocked monazite chronometry: integrating microstructural and in situ isotopic age data for determining precise impact ages

    NASA Astrophysics Data System (ADS)

    Erickson, Timmons M.; Timms, Nicholas E.; Kirkland, Christopher L.; Tohver, Eric; Cavosie, Aaron J.; Pearce, Mark A.; Reddy, Steven M.

    2017-03-01

    situ U-Th-Pb analysis can date impact-related deformation. Monazite is, therefore, one of the few high-temperature geochronometers that can be used for accurate and precise dating of meteorite impacts.

  7. Prospects for Practical Laser Ablation U/Pb and (U-Th)/He Double-Dating (LADD) of Detrital Apatite

    NASA Astrophysics Data System (ADS)

    Horne, A.; Hodges, K. V.; Van Soest, M. C.

    2017-12-01

    A laser ablation micro-analytical technique for (U-Th)/He dating has been shown to be an effective approach to the thermochronologic study of detrital zircons (Tripathy-Lang et al., J. Geophys. Res., 2013), while Evans et al. (J. Anal. At. Spectrom., 2015) and Horne et al. (Geochim. Cosmochim. Acta, 2016) demonstrated how the technique could be modified to enable laser ablation U/Pb and (U-Th)/He double-dating (LADD) of detrital zircon and titanite. These successes beg the question of whether or not LADD is viable for another commonly encountered detrital mineral: apatite. Exploratory LADD studies in Arizona State University's Group 18 Laboratories - using Durango fluorapatite, apatite from the Fish Canyon tuff, and detrital apatite from modern fluvial sediments in the eastern Sierra Nevada of California - illustrate that the method is indeed viable for detrital apatite. However, the method may not be appropriate for all detrital samples. For example, many apatite grains encountered in detrital samples from young orogenic settings have low concentrations of U and Th and small crystal sizes. This can lead to imprecise laser ablation (U-Th)/He dates, especially for very young grains potentially obscuring or inhibiting relevant interpretations of the data set.

  8. Laser Ablation in situ (U-Th-Sm)/He and U-Pb Double-Dating of Apatite and Zircon: Techniques and Applications

    NASA Astrophysics Data System (ADS)

    McInnes, B.; Danišík, M.; Evans, N.; McDonald, B.; Becker, T.; Vermeesch, P.

    2015-12-01

    We present a new laser-based technique for rapid, quantitative and automated in situ microanalysis of U, Th, Sm, Pb and He for applications in geochronology, thermochronometry and geochemistry (Evans et al., 2015). This novel capability permits a detailed interrogation of the time-temperature history of rocks containing apatite, zircon and other accessory phases by providing both (U-Th-Sm)/He and U-Pb ages (+trace element analysis) on single crystals. In situ laser microanalysis offers several advantages over conventional bulk crystal methods in terms of safety, cost, productivity and spatial resolution. We developed and integrated a suite of analytical instruments including a 193 nm ArF excimer laser system (RESOlution M-50A-LR), a quadrupole ICP-MS (Agilent 7700s), an Alphachron helium mass spectrometry system and swappable flow-through and ultra-high vacuum analytical chambers. The analytical protocols include the following steps: mounting/polishing in PFA Teflon using methods similar to those adopted for fission track etching; laser He extraction and analysis using a 2 s ablation at 5 Hz and 2-3 J/cm2fluence; He pit volume measurement using atomic force microscopy, and U-Th-Sm-Pb (plus optional trace element) analysis using traditional laser ablation methods. The major analytical challenges for apatite include the low U, Th and He contents relative to zircon and the elevated common Pb content. On the other hand, apatite typically has less extreme and less complex zoning of parent isotopes (primarily U and Th). A freeware application has been developed for determining (U-Th-Sm)/He ages from the raw analytical data and Iolite software was used for U-Pb age and trace element determination. In situ double-dating has successfully replicated conventional U-Pb and (U-Th)/He age variations in xenocrystic zircon from the diamondiferous Ellendale lamproite pipe, Western Australia and increased zircon analytical throughput by a factor of 50 over conventional methods

  9. U-Pb geochronologic constraints on the origin of a unique monazite- xenotime gneiss, Hudson Highlands, New York

    USGS Publications Warehouse

    Aleinikoff, J.N.; Grauch, R.I.

    1990-01-01

    A unique rock composed almost entirely of equal proportions of monazite and xenotime occurs as a small, lenticular body (2 ?? 0.5 ?? 0.3 m) in association with paragneiss, migmatite, and Canada Hill Granite in an outcrop in the Hudson Highlands of southeastern New York. The paragneiss contains detrital zircon (207Pb/206Pb ages of 1150-1460 Ma), monazite, and xenotime (both dated at about 1000 Ma). Zircons from the monazite-xenotime gneiss contain dark, rounded cores and clear rims, a morphology suggestive of derivation from the paragneiss, with subsequent metamorphic overgrowth. We conclude, based on results from xenotime and zircon rims, that the monazite-xenotime gneiss formed at about 985 Ma. Based on zircon morphology and age relations within the outcrop, we prefer a metasomatic origin over other possibilities such as a paleo-placer or anatectic restite. -from Authors

  10. U-Pb geochronology of zircon and monazite from Mesoproterozoic granitic gneisses of the northern Blue Ridge, Virginia and Maryland, USA

    USGS Publications Warehouse

    Aleinikoff, J.N.; Burton, W.C.; Lyttle, P.T.; Nelson, A.E.; Southworth, C.S.

    2000-01-01

    Mesoproterozoic granitic gneisses comprise most of the basement of the northern Blue Ridge geologic province in Virginia and Maryland. Lithology, structure, and U-Pb geochronology have been used to subdivide the gneisses into three groups. The oldest rocks, Group 1, are layered granitic gneiss (1153 ?? 6 Ma), hornblende monzonite gneiss (1149 ?? 19 Ma), porphyroblastic granite gneiss (1144 ?? 2 Ma), coarse-grained metagranite (about 1140 Ma), and charnockite (>1145 Ma?). These gneisses contain three Proterozoic deformational fabrics. Because of complex U-Pb systematics due to extensive overgrowths on magmatic cores, zircons from hornblende monzonite gneiss were dated using the sensitive high-resolution ion microprobe (SHRIMP), whereas all other ages are based on conventional U-Pb geochronology. Group 2 rocks are leucocratic and biotic varieties of Marshall Metagranite, dated at 1112??3 Ma and 1111 ?? 2 Ma respectively. Group 3 rocks are subdivided into two age groups: (1) garnetiferous metagranite (1077 ?? 4 Ma) and quartz-plagioclase gneiss (1077 ?? 4 Ma); (2) white leucocratic metagranite (1060 ?? 2 Ma), pink leucocratic metagranite (1059 ?? 2), biotite granite gneiss (1055 ?? 4 Ma), and megacrystic metagranite (1055 ?? 2 Ma). Groups 2 and 3 gneisses contain only the two younger Proterozoic deformational fabrics. Ages of monazite, seprated from seven samples, indicate growth during both igneous and metamorphic (thermal) events. However, ages obtained from individual grains may be mixtures of different age components, as suggested by backscatter electron (BSE) imaging of complexly zoned grains. Analyses of unzoned monazite (imaged by BSE and thought to contain only one age component) from porphyroblastic granite gneiss yield ages of 1070, 1060, and 1050 Ma. The range of ages of monazite (not reset to a uniform date) indicates that the Grenville granulite event at about 1035 Ma did not exceed about 750??C. Lack of evidence for 1110 Ma growth of monazite in

  11. In situ U-Th-Pb ages of the Miaoya carbonatite complex in the South Qinling orogenic belt, central China

    NASA Astrophysics Data System (ADS)

    Ying, Yuancan; Chen, Wei; Lu, Jue; Jiang, Shao-Yong; Yang, Yueheng

    2017-10-01

    The Miaoya carbonatite complex in the South Qinling orogenic belt hosts one of the largest rare earth element (REE)-Nb deposits in China that is composed of carbonatite and syenite. The emplacement age of the complex and the geochronological relationship between the carbonatite and syenite have long been debated. In this study, in situ U-Th-Pb ages have been obtained for the constituent minerals zircon, monazite and columbite from carbonatite and syenite of the Miaoya complex, together with their chemical and isotopic compositions. In situ trace element compositions for zircon from carbonatite and syenite are highly variable. The zircon displays slightly heavy REE (HREE)-enriched chondrite-normalized patterns with no Eu anomaly and various light REE (LREE) contents. In situ Th-Pb dating for zircon from the Miaoya complex by laser ablation ICP-MS yields ages of 442.6 ± 4.0 Ma (n = 53) for syenite and 426.5 ± 8.0 Ma (n = 23) for carbonatite. Monazite from carbonatite and syenite shows similar chondrite-normalized REE patterns and yields a consistent Th-Pb age of 240 Ma. Based on petrographic and chemical composition, columbite from the carbonatite can be identified into two groups. The columbite dispersed within carbonatite is characterized by slightly LREE-enriched chondrite-normalized REE patterns, whereas columbite associated with apatite is characterized by LREE-depleted trends. Columbite has been further determined to have a weighted mean 206Pb/238U age of 232.8 ± 4.5 Ma (n = 9) using LA-ICP-MS. Detailed geochronological and chemical investigations suggest that there were two major episodes of magmatic/metasomatic activities in the formational history of the Miaoya carbonatite complex. The early alkaline magmatism emplaced in the Silurian was related to the opening of the Mianlue Ocean, whereas the late metasomatism or hydrothermal overprint occurred during the Triassic South Qinling orogeny. The latter serves as the major ore formation period for both REE (e

  12. Contrasted monazite hydrothermal alteration mechanisms and their geochemical implications

    NASA Astrophysics Data System (ADS)

    Poitrasson, Franck; Chenery, Simon; Bland, David J.

    1996-12-01

    conditions will also lead to various possible chemical exchanges between the crystalline phases and the hydrothermal fluids. The occurrence of common lead along penetrative cracks in the Carnmenellis monazite shows that only a leaching, prior to the U-Pb analyses of the whole-grain, will permit an accurate determination of the magmatic crystallization age. In contrast, for the Skiddaw case it may be possible to date the fluid-rock event by in situ 207Pb/ 206Pb geochronology. The observation that the altered parts of both monazite examples display Nd leaching and no significant Sm/Nd fractionation indicates that they should not affect the host whole-rock Nd isotopic signatures. Finally, it appears that monazite-like ceramics designed for the containment of high-level nuclear wastes will retain Th and the geochemically equivalent transuranic elements during fluid-rock events similar to those documented in this study but may release Nd, U and the corresponding radionuclides to the environment.

  13. New geochronological history of the Mbuji-Mayi Supergroup (Proterozoic, DRC) through U-Pb and Sm-Nd dating

    NASA Astrophysics Data System (ADS)

    François, Camille; Baludikay, Blaise K.; Storme, Jean-Yves; Baudet, Daniel; Paquette, Jean-Louis; Fialin, Michel; Debaille, Vinciane; Javaux, Emmanuelle J.

    2016-04-01

    The Mbuji-Mayi Supergroup, DRC is located between the Archean-Paleoproterozoic Kasai Craton and the Mesoproterozoic Kibaran Belt. This sedimentary sequence, unaffected by regional metamorphism, preserves a large diversity of well-preserved acritarchs (organic-walled microfossils), evidencing the diversification of complex life (early eukaryotes) for the first time in mid-Proterozoic redox stratified oceans of Central Africa (Baludikay et al., in review). This Supergroup is composed of two distinct lithostratigraphic successions (i) BI Group: a lower siliciclastic sequence (ca. 1175 Myr to ca. 882 Myr or ca. 1050 Myr (Cahen, 1954; Holmes & Cahen, 1955; Delpomdor et al., 2013) unconformably overlying the ca. 2.82-2.56 Gyr granitoid Dibaya Complex to the North (Cahen & Snelling; recent notice on DRC geological map); and (ii) BII Group: a poorly age-constrained upper carbonate sequence with sparse shales . Basaltic lavas (including pillow lavas) overlying the Mbuji-Mayi Supergroup were dated around 950 Myr (Cahen et al., 1974; Cahen et al., 1984). To better constraint the age of this Supergroup in the Meso-Neoproterozoic limit, we combine different geochronological methods, in particular on diagenetic minerals such as monazite (Montel et al., 1996; Rasmussen & Muhling, 2007) and xenotime (McNaughton et al., 1999) but also on detrital zircons. For the BI Group, results of in situ U-Pb dating with LA-ICP-MS on monazite, xenotime and zircon (Laboratoire Magmas et Volcans, Clermont-Ferrand) provide ages between 2.9 and 1.2 Gyr for zircons and between 1.4 and 1.03 Gyr for monazites and xenotimes. New results of in situ U-Th-Pb dating of well-crystallized monazites and xenotimes with Electron MicroProbe (Camparis, UPMC, Paris), highlight that some crystals display zonations with an inherited core older than 1125 Myr and diagenetic rims around 1050-1075 Myr. This suggests that the diagenesis of BI Group is younger than 1175 Myr (Delpomdor et al., 2013) and probably around

  14. 206Pb-230Th-234U-238U and 207Pb-235U geochronology of Quaternary opal, Yucca Mountain, Nevada

    USGS Publications Warehouse

    Neymark, Leonid A.; Amelin, Yuri V.; Paces, James B.

    2000-01-01

    -lived isotopes are nonlinearly biased by younger mineral additions. Use of the combined U–Th–Pb technique to date Yucca Mountain Quaternary opals significantly extends the age range beyond that of the 230Th/U dating method and shows that selected fracture pathways in the unsaturated zone felsic tuffs of Yucca Mountain have been active throughout the Quaternary.

  15. Origin of an unusual monazite-xenotime gneiss, Hudson Highlands, New York: SHRIMP U-Pb geochronology and trace element geochemistry

    USGS Publications Warehouse

    Aleinikoff, John N.; Grauch, Richard I.; Mazdab, Frank K.; Kwak, Loretta; Fanning, C. Mark; Kamo, Sandra L.

    2012-01-01

    A pod of monazite-xenotime gneiss (MXG) occurs within Mesoproterozoic paragneiss, Hudson Highlands, New York. This outcrop also contains granite of the Crystal Lake pluton, which migmatized the paragneiss. Previously, monazite, xenotime, and zircon from MXG, plus detrital zircon from the paragneiss, and igneous zircon from the granite, were dated using multi-grain thermal ionization mass spectrometry (TIMS). New SEM imagery of dated samples reveals that all minerals contain cores and rims. Thus TIMS analyses comprise mixtures of age components and are geologically meaningless. New spot analyses by sensitive high resolution ion microprobe (SHRIMP) of small homogeneous areas on individual grains allows deconvolution of ages within complexly zoned grains. Xenotime cores from MXG formed during two episodes (1034 ± 10 and 1014 ± 3 Ma), whereas three episodes of rim formation are recorded (999 ± 7, 961 ± 11, and 874 ± 11 Ma). Monazite cores from MXG mostly formed at 1004 ± 4 Ma; rims formed at 994 ± 4, 913 ± 7, and 890 ± 7 Ma. Zircon from MXG is composed of oscillatory-zoned detrital cores (2000-1170 Ma), plus metamorphic rims (1008 ± 7, 985 ± 5, and ∼950 Ma). In addition, MXG contains an unusual zircon population composed of irregularly-zoned elongate cores dated at 1036 ± 5 Ma, considered to be the time of formation of MXG. The time of granite emplacement is dated by oscillatory-zoned igneous cores at 1058 ± 4 Ma, which provides a minimum age constraint for the time of deposition of the paragneiss. Selected trace elements, including all REE plus U and Th, provide geochemical evidence for the origin of MXG. MREE-enriched xenotime from MXG are dissimilar from typical HREE-enriched patterns of igneous xenotime. The presence of large negative Eu anomalies and high U and Th in monazite and xenotime are uncharacteristic of typical ore-forming hydrothermal processes. We conclude that MXG is the result of unusual metasomatic processes during high grade

  16. Origin of an unusual monazite-xenotime gneiss, Hudson Highlands, New York: SHRIMP U-Pb geochronology and trace element geochemistry

    USGS Publications Warehouse

    Aleinikoff, John N.; Grauch, Richard I.; Mazdab, Frank K.; Kwak, Loretta; Fanning, C. Mark; Kamo, Sandra L.

    2012-01-01

    A pod of monazite-xenotime gneiss (MXG) occurs within Mesoproterozoic paragneiss, Hudson Highlands, New York. This outcrop also contains granite of the Crystal Lake pluton, which migmatized the paragneiss. Previously, monazite, xenotime, and zircon from MXG, plus detrital zircon from the paragneiss, and igneous zircon from the granite, were dated using multi-grain thermal ionization mass spectrometry (TIMS). New SEM imagery of dated samples reveals that all minerals contain cores and rims. Thus TIMS analyses comprise mixtures of age components and are geologically meaningless. New spot analyses by sensitive high resolution ion microprobe (SHRIMP) of small homogeneous areas on individual grains allows deconvolution of ages within complexly zoned grains.Xenotime cores from MXG formed during two episodes (1034 ± 10 and 1014 ± 3 Ma), whereas three episodes of rim formation are recorded (999 ± 7, 961 ± 11, and 874 ± 11 Ma). Monazite cores from MXG mostly formed at 1004 ± 4 Ma; rims formed at 994 ± 4, 913 ± 7, and 890 ± 7 Ma. Zircon from MXG is composed of oscillatory-zoned detrital cores (2000-1170 Ma), plus metamorphic rims (1008 ± 7, 985 ± 5, and ∼950 Ma). In addition, MXG contains an unusual zircon population composed of irregularly-zoned elongate cores dated at 1036 ± 5 Ma, considered to be the time of formation of MXG. The time of granite emplacement is dated by oscillatory-zoned igneous cores at 1058 ± 4 Ma, which provides a minimum age constraint for the time of deposition of the paragneiss.Selected trace elements, including all REE plus U and Th, provide geochemical evidence for the origin of MXG. MREE-enriched xenotime from MXG are dissimilar from typical HREE-enriched patterns of igneous xenotime. The presence of large negative Eu anomalies and high U and Th in monazite and xenotime are uncharacteristic of typical ore-forming hydrothermal processes. We conclude that MXG is the result of unusual metasomatic processes during high grade

  17. The Triassic reworking of the Yunkai massif (South China): EMP monazite and U-Pb zircon geochronologic evidence

    NASA Astrophysics Data System (ADS)

    Chen, Cheng-Hong; Liu, Yung-Hsin; Lee, Chi-Yu; Sano, Yuji; Zhou, Han-Wen; Xiang, Hua; Takahata, Naoto

    2017-01-01

    Geohistory of the Yunkai massif in South China Block is important in understanding the geodynamics for the build-up of this block during the Phanerozoic orogenies. To investigate this massif, we conduct EMP monazite and U-Pb zircon geochronological determinations on mineral inclusions and separate for seventeen samples in four groups, representing metamorphic rocks from core domain, the Gaozhou Complex (amphibolite facies, NE-striking) and the Yunkai Group (greenschist facies, NW-striking) of this massif and adjacent undeformed granites. Some EMP monazite ages are consistent with the NanoSIMS results. Monazite inclusions, mostly with long axis parallel to the cleavage of platy and elongated hosts, give distinguishable age results for NW- and NE-trending deformations at 244-236 Ma and 236-233 Ma, respectively. They also yield ages of 233-230 Ma for core domain gneissic granites and 232-229 Ma for undefomed granites. Combining U-Pb zircon ages of the same group, 245 Ma and 230 Ma are suggested to constrain the time of two phases of deformation. Aside from ubiquity of Triassic ages in studied rocks, ages of detrital monazite in the meta-sandstone match the major U-Pb zircon age clusters of the metamorphic rock that are largely concentrated at Neoproterozoic (1.0-0.9 Ga) and Early Paleozoic (444-431 Ma). Based on these geochronological data, Triassic is interpreted as representing the time for recrystallization of these host minerals on the Early Paleozoic protolith, and the also popular Neoproterozoic age is probably inherited. With this context, Yunkai massif is regarded as a strongly reactivated Triassic metamorphic terrain on an Early Paleozoic basement which had incorporated sediments with Neoproterozoic provenances. Triassic tectonic evolution of the Yunkai massif is suggested to have been controlled by converging geodynamics of the South China and Indochina Blocks as well as mafic magma emplacement related to the Emeishan large igneous province (E-LIP).

  18. Enhanced provenance interpretation using combined U-Pb and (U-Th)/He double dating of detrital zircon grains from lower Miocene strata, proximal Gulf of Mexico Basin, North America

    NASA Astrophysics Data System (ADS)

    Xu, Jie; Stockli, Daniel F.; Snedden, John W.

    2017-10-01

    Detrital zircon U-Pb analysis is an effective approach for investigating sediment provenance by relating crystallization age to potential crystalline source terranes. Studies of large passive margin basins, such as the Gulf of Mexico Basin, that have received sediment from multiple terranes with non-unique crystallization ages or sedimentary strata, benefit from additional constraints to better elucidate provenance interpretation. In this study, U-Pb and (U-Th)/He double dating analyses on single zircons from the lower Miocene sandstones in the northern Gulf of Mexico Basin reveal a detailed history of sediment source evolution. U-Pb age data indicate that most zircon originated from five major crystalline provinces, including the Western Cordillera Arc (<250 Ma), the Appalachian-Ouachita orogen (500-260 Ma), the Grenville (1300-950 Ma) orogen, the Mid-Continent Granite-Rhyolite (1500-1300 Ma), and the Yavapai-Mazatzal (1800-1600 Ma) terranes as well as sparse Pan-African (700-500 Ma) and Canadian Shield (>1800 Ma) terranes. Zircon (U-Th)/He ages record tectonic cooling and exhumation in the U.S. since the Mesoproterozoic related to the Grenville to Laramide Orogenies. The combined crystallization and cooling information from single zircon double dating can differentiate volcanic and plutonic zircons. Importantly, the U-Pb-He double dating approach allows for the differentiation between multiple possible crystallization-age sources on the basis of their subsequent tectonic evolution. In particular, for Grenville zircons that are present in all of lower Miocene samples, four distinct zircon U-Pb-He age combinations are recognizable that can be traced back to four different possible sources. The integrated U-Pb and (U-Th)/He data eliminate some ambiguities and improves the provenance interpretation for the lower Miocene strata in the northern Gulf of Mexico Basin and illustrate the applicability of this approach for other large-scale basins to reconstruct sediment

  19. U-Pb Dating of Calcite by LA-ICPMS

    NASA Astrophysics Data System (ADS)

    Hacker, B. R.; Kylander-Clark, A. R.; Holder, R. M.; Nuriel, P.

    2016-12-01

    An emerging frontier area in geochronology is U-Pb dating of carbonate minerals by laser-ablation inductively coupled plasma mass spectrometry (LA-ICPMS). The spate of papers over the last few years applying LA-ICPMS to carbonate dating stems from the capability of LA-ICPMS to deal with the variable, and often low, U/Pb ratios of carbonate. LA-ICPMS is an excellent tool for efficiently screening out samples with low U/Pb ratios and provides the ability to measure many spots with different U/Pb ratios and obtain dates free of assumptions about the composition of common Pb. Because this technique is in its infancy, important questions remain. What percentage of carbonate samples have high enough U/Pbc ratios that they can be dated? What percentage of samples yield isochronous datasets? What are the limits on precision and accuracy of carbonate U/Pb dates? What is the best analytical method in the absence of isotopically homogeneous reference materials? Through the generosity of our colleagues we have acquired 8 reference materials ranging in age from 3 to 250 Ma. We have analyzed 125 unknowns from a variety of locations using a 193 nm ns laser with an 80-100 μm spot and a Nu Plasma HR-ES. We measure 207Pb/206Pb using NIST 614 glass and then calculate a 206Pb/238U correction factor based on the measured vs. known ages of the reference materials. Sixty of these samples ( 50%) have high enough U/Pb ratios that they can be dated. There is great heterogeneity among the sample suites: some have no datable samples, whereas one suite of 68 samples yielded 53 datable rocks. Of the samples with high U/Pbc ratios, a majority yielded isochronous U-Pb data, indicating that the U-Pb system closed at a given time and was not subsequently disturbed.

  20. Natural radionuclide mobility and its influence on U-Th-Pb dating of secondary minerals from the unsaturated zone at Yucca Mountain, Nevada

    USGS Publications Warehouse

    Neymark, L.A.; Amelin, Y.V.

    2008-01-01

    Extreme U and Pb isotope variations produced by disequilibrium in decay chains of 238U and 232Th are found in calcite, opal/chalcedony, and Mn-oxides occurring as secondary mineral coatings in the unsaturated zone at Yucca Mountain, Nevada. These very slowly growing minerals (mm my-1) contain excess 206Pb and 208Pb formed from excesses of intermediate daughter isotopes and cannot be used as reliable 206Pb/238U geochronometers. The presence of excess intermediate daughter isotopes does not appreciably affect 207Pb/235U ages of U-enriched opal/chalcedony, which are interpreted as mineral formation ages. Opal and calcite from outer (younger) portions of coatings have 230Th/U ages from 94.6 ?? 3.7 to 361.3 ?? 9.8 ka and initial 234U/238U activity ratios (AR) from 4.351 ?? 0.070 to 7.02 ?? 0.12, which indicate 234U enrichment from percolating water. Present-day 234U/238U AR is ???1 in opal/chalcedony from older portions of the coatings. The 207Pb/235U ages of opal/chalcedony samples range from 0.1329 ?? 0.0080 to 9.10 ?? 0.21 Ma, increase with microstratigraphic depth, and define slow long-term average growth rates of about 1.2-2.0 mm my-1, in good agreement with previous results. Measured 234U/238U AR in Mn-oxides, which pre-date the oldest calcite and opal/chalcedony, range from 0.939 ?? 0.006 to 2.091 ?? 0.006 and are >1 in most samples. The range of 87Sr/86Sr ratios (0.71156-0.71280) in Mn-oxides overlaps that in the late calcite. These data indicate that Mn-oxides exchange U and Sr with percolating water and cannot be used as a reliable dating tool. In the U-poor calcite samples, measured 206Pb/207Pb ratios have a wide range, do not correlate with Ba concentration as would be expected if excess Ra was present, and reach a value of about 1400, the highest ever reported for natural Pb. Calcite intergrown with opal contains excesses of both 206Pb and 207Pb derived from Rn diffusion and from direct ??-recoil from U-rich opal. Calcite from coatings devoid of opal

  1. Late Proterozoic charnockites in Orissa, India: A U-Pb and Rb-Sr isotopic study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aftalion, M.; Bowes, D.R.; Dash, B.

    1988-11-01

    Charnockite formation in the Angul district of Orissa took place between 1088 + 26/ -17 Ma, the U-Pb zircon upper intercept crystallization age of a leptynite neosome, and 957 +8/ -4-956 {plus minus} 4 Ma, the U-Pb zircon-monazite upper intercept and U-Pb monazite crystallization ages of a granite. Confirmation of the Proterozoic age of the charnockites is given by (1) a U-Pb zircon upper intercept 1159 + 59/ -30 Ma age and a Rb-Sr whole-rock 1080 {plus minus} 65 Ma age for an augen gneiss which pre-dates the leptynite, and (2) U-Pb monazite ages of 973 {plus minus} 5,964 {plusmore » minus} 4, and 953 {plus minus} 4 Ma for a gray quartzofeldspathic gneiss, the augen gneiss, and the leptynite, respectively: these late Proterozoic dates are interpreted as representing ages recorded during charnockitization. The ca. 950-980 Ma charnockite- and granite-forming events are related to the evolution of mantle-derived, CO{sub 2}-bearing basic magma emplaced into the deeper levels of an extensional tectonic-transcurrent fault regime. The ca. 1100-1150 Ma tectonothermal and igneous events represent compressional tectonism in reactivated crystalline basement in the late mid-Proterozoic Eastern Ghats orogenic belt.« less

  2. Uranium-lead dating of hydrothermal zircon and monazite from the Sin Quyen Fe-Cu-REE-Au-(U) deposit, northwestern Vietnam

    NASA Astrophysics Data System (ADS)

    Li, Xiao-Chun; Zhou, Mei-Fu; Chen, Wei Terry; Zhao, Xin-Fu; Tran, MyDung

    2018-03-01

    The Sin Quyen deposit in northwestern Vietnam contains economic concentrations of Cu, Au and LREE, and sub-economic concentration of U. In this deposit, massive and banded replacement ores are hosted in Neoproterozoic metapelite. The paragenetic sequence includes sodic alteration (stage I), calcic-potassic alteration and associated Fe-REE-(U) mineralization (stage II), Cu-Au mineralization (stage III), and sulfide-(quartz-carbonate) veins (stage IV). The Sin Quyen deposit experienced an extensive post-ore metamorphic overprint, which makes it difficult to precisely determine the mineralization age. In this study, zircon and monazite U-Pb geochronometers and the Rb-Sr isochron method are used to constrain the timing of mineralization. Zircon grains in the ore are closely intergrown or texturally associated with hydrothermal minerals of stage II (e.g., garnet, allanite, and hedenbergite). They may contain primary fluid inclusions and display irregular zoning in cathodoluminescence (CL) images. Zircon grains are rich in U (688 to 2902 ppm) and poor in Th (0.2 to 2.9 ppm). Their δ18OV-SMOW values range from 11.9 to 14.0‰, higher than those of typical magmatic zircon. These textural and compositional features imply that zircon precipitated from 18O- and U-rich hydrothermal fluids, coeval with the minerals of stage II. Monazite occurs in close association with stage II magnetite and allanite and has low contents of Th (<2700 ppm), indicative of a hydrothermal origin. Hydrothermal zircon and monazite have indistinguishable U-Pb ages of 841 ± 12 and 836 ± 18 Ma, respectively, representing the timing of Fe-REE mineralization. There is no direct isotopic constraint on the timing of the Cu-Au mineralization, but geological observations suggest that the Cu-Au and Fe-REE ores most likely formed within a single evolved hydrothermal process. In the plot of 87Rb/86Sr vs. 87Sr/86Sr, the composition of bulk-ore and biotite separates from ore lie along a reference line for 30 Ma

  3. Linking monazite geochronology with fluid infiltration and metamorphic histories: Nature and experiment

    NASA Astrophysics Data System (ADS)

    Shazia, J. R.; Harlov, D. E.; Suzuki, K.; Kim, S. W.; Girish-Kumar, M.; Hayasaka, Y.; Ishwar-Kumar, C.; Windley, B. F.; Sajeev, K.

    2015-11-01

    Migmatised metapelites from the Kodaikanal region, central Madurai Block, southern India have undergone ultrahigh-temperature metamorphism (950-1000 °C; 7-8 kbar). In-situ electron microprobe Th-U-Pb isochron (CHIME) dating of monazites in a leucosome and surrounding silica-saturated and silica-poor restites from the same outcrop indicates three principal ages that can be linked to the evolutionary history of these rocks. Monazite grains from the silica-saturated restite have well-defined, inherited cores with thick rims that yield an age of ca. 1684 Ma. This either dates the metamorphism of the original metapelite or is a detrital age of inherited monazite. Monazite grains from the silica-poor restite, thick rims from the silica-saturated restite, and monazite cores from the leucosome have ages ranging from 520 to 540 Ma suggesting a mean age of 530 Ma within the error bars. In the leucosome the altered rim of the monazite gives an age of ca. 502 Ma. Alteration takes the form of Th-depleted lobes of monazite with sharp curvilinear boundaries extending from the monazite grain rim into the core. We have replicated experimentally these altered rims in a monazite-leucosome experiment at 800 °C and 2 kbar. This experiment, coupled with earlier published monazite-fluid experiments involving high pH alkali-bearing fluids at high P-T, helps to confirm the idea that alkali-bearing fluids, in the melt and along grain boundaries during crystallization, were responsible for the formation of the altered monazite grain rims via the process of coupled dissolution-reprecipitation.

  4. Constraining Metamorphic Timing and Processes by Dating Garnet, Zircon, Titanite and Monazite in UHP and HP Rocks from Weihai, Sulu UHP Terrane, Eastern China

    NASA Astrophysics Data System (ADS)

    Wang, D.; Vervoort, J. D.; Fisher, C. M.; Cao, H.

    2016-12-01

    The Sulu UHP terrane is the extension of the Dabie orogenic belt to the east, offset 500 km to the northeast by the Tanlu fault [1]. The focus of this study, the Weihai area, is located at the northernmost part of the Sulu UHP terrane, and consists mainly of gneisses overprinted by amphibolite-facies assemblages, in addition to minor eclogite, granulite, and some ultramafic rocks [1]. Time constrains are critical to our understanding of the processes of UHP metamorphism, as well as the tectonic evolution of the region. In the last decade, U-Pb dating of metamorphic domains of zircons has been widely applied to determine the history of the UHP metamorphism (240 - 220 Ma) [1]. Recent garnet Lu-Hf dating from the Dabie terrane (240 - 220Ma) suggests the initiation of prograde metamorphism to be prior to ca. 240 Ma [2]. In-situ U-Pb dating of accessary minerals using LA-ICPMS (i.e. monazite, titanite, rutile, etc.), can provide important information to augment and complement the zircon U-Pb metamorphic dates. In this study, we collected samples throughout the Weihai area. Protolith ages of these samples range from Paleoproterozoic to Neoproterozoic ( 1850 - 700 Ma) as indicated by U-Pb dating of zircon cores. Zircon metamorphic rims yield U-Pb ages of 240 - 220 Ma, likely indicating the UHP stage of the Sulu terrane [3]. Four eclogites yield Lu-Hf garnet isochrons with dates between 239 and 224 Ma, consistent with garnet Lu-Hf dates from Dabie UHP terrane [2]. Sm-Nd isochrons indicate systematic younger dates (220 - 210 Ma) interpreted as cooling ages. Titanites extracted from four samples give U-Pb ages ranging from 220 to 200 Ma, in agreement with the titanite dates from the southern Sulu terrane [4]. Monazites from three samples give precise dates between 214 and 211 Ma. Collectively, monazite and titanite U-Pb ages are broadly consistent with the garnet Sm-Nd isochrons, and thus we interpret these as cooling ages. Based on the dates of different systems

  5. New zircon (U-Th)/He and U/Pb eruption age for the Rockland tephra, western USA

    USGS Publications Warehouse

    Coble, Matthew A.; Burgess, Seth; Klemetti, Erik W.

    2017-01-01

    Eruption ages of a number of prominent Quaternary volcanic deposits remain inaccurately and/or imprecisely constrained, despite their importance as regional stratigraphic markers in paleo-environment reconstruction and as evidence of climate-altering eruptions. Accurately dating volcanic deposits presents challenging analytical considerations, including poor radiogenic yield, scarcity of datable minerals, and contamination of crystal populations by magma, eruption, and transport processes. One prominent example is the Rockland tephra, which erupted from the Lassen Volcanic Center in the southern Cascade arc. Despite a range in published eruption ages from 0.40 to 0.63 Ma, the Rockland tephra is extensively used as a marker bed across the western United States. To more accurately and precisely constrain the age of the Rockland tephra-producing eruption, we report U/Pb crystallization dates from the outermost ∼2 μm of zircon crystal faces (surfaces) using secondary ion mass spectrometry (SIMS). Our new weighted mean 238U/206Pb age for Rockland tephra zircon surfaces is 0.598 ± 0.013 Ma (2σ) and MSWD = 1.11 (mean square weighted deviation). As an independent test of the accuracy of this age, we obtained new (U-Th)/He dates from individual zircon grains from the Rockland tephra, which yielded a weighted mean age of 0.599 ± 0.012 Ma (2σ, MSWD = 5.13). We also obtained a (U-Th)/He age of 0.628 ± 0.014 Ma (MSWD = 1.19) for the Lava Creek Tuff member B, which was analyzed as a secondary standard to test the accuracy of the (U-Th)/He technique for Quaternary tephras, and to evaluate assumptions made in the model-age calculation. Concordance of new U/Pb and (U-Th)/He zircon ages reinforces the accuracy of our preferred Rockland tephra eruption age, and confirms that zircon surface dates sample zircon growth up to the time of eruption. We demonstrate the broad applicability of coupled U/Pb zircon-surface and single-grain zircon (U-Th)/He geochronology to

  6. New zircon (U-Th)/He and U/Pb eruption age for the Rockland tephra, western USA

    NASA Astrophysics Data System (ADS)

    Coble, Matthew A.; Burgess, Seth D.; Klemetti, Erik W.

    2017-09-01

    Eruption ages of a number of prominent Quaternary volcanic deposits remain inaccurately and/or imprecisely constrained, despite their importance as regional stratigraphic markers in paleo-environment reconstruction and as evidence of climate-altering eruptions. Accurately dating volcanic deposits presents challenging analytical considerations, including poor radiogenic yield, scarcity of datable minerals, and contamination of crystal populations by magma, eruption, and transport processes. One prominent example is the Rockland tephra, which erupted from the Lassen Volcanic Center in the southern Cascade arc. Despite a range in published eruption ages from 0.40 to 0.63 Ma, the Rockland tephra is extensively used as a marker bed across the western United States. To more accurately and precisely constrain the age of the Rockland tephra-producing eruption, we report U/Pb crystallization dates from the outermost ∼2 μm of zircon crystal faces (surfaces) using secondary ion mass spectrometry (SIMS). Our new weighted mean 238U/206Pb age for Rockland tephra zircon surfaces is 0.598 ± 0.013 Ma (2σ) and MSWD = 1.11 (mean square weighted deviation). As an independent test of the accuracy of this age, we obtained new (U-Th)/He dates from individual zircon grains from the Rockland tephra, which yielded a weighted mean age of 0.599 ± 0.012 Ma (2σ, MSWD = 5.13). We also obtained a (U-Th)/He age of 0.628 ± 0.014 Ma (MSWD = 1.19) for the Lava Creek Tuff member B, which was analyzed as a secondary standard to test the accuracy of the (U-Th)/He technique for Quaternary tephras, and to evaluate assumptions made in the model-age calculation. Concordance of new U/Pb and (U-Th)/He zircon ages reinforces the accuracy of our preferred Rockland tephra eruption age, and confirms that zircon surface dates sample zircon growth up to the time of eruption. We demonstrate the broad applicability of coupled U/Pb zircon-surface and single-grain zircon (U-Th)/He geochronology to accurate

  7. EBSD Imaging of Monazite: a Petrochronological Tool?

    NASA Astrophysics Data System (ADS)

    Mottram, C. M.; Cottle, J. M.

    2014-12-01

    Recent advances in in-situ U-Th/Pb monazite petrochronology allow ages obtained from micron-scale portions of texturally-constrained, individual crystals to be placed directly into a quantitative Pressure-Temperature framework. However, there remain major unresolved challenges in linking monazite ages to specific deformation events and discerning the effects of deformation on the isotopic and elemental tracers in these phases. Few studies have quantitatively investigated monazite microstructure, and these studies have largely focused only on crystals produced experimentally (e.g. Reddy et al., 2010). The dispersion in age data commonly yielded from monazite U-Th/Pb datasets suggest that monazite dynamically recrystallises during deformation. It remains unclear how this continual recrystallisation is reflected in the monazite crystal structure, and how this subsequently impacts the ages (or age ranges) yielded from single crystals. Here, combined laser ablation split-stream analysis of deformed monazite, EBSD imaging and Pressure-Temperature (P-T) phase equilibria modelling is used to quantify the influence of deformation on monazite (re)crystallisation mechanisms and its subsequent effect on the crystallographic structure, ages and trace-element distribution in individual grains. These data provide links between ages and specific deformation events, thus helping further our understanding of the role of dynamic recrystallisation in producing age variation within and between crystals in a deformed rock. These data provide a new dimension to the field of petrochronology, demonstrating the importance of fully integrating the Pressure-Temperature-time-deformation history of accessory phases to better interpret the meaningfulness of ages yielded from deformed rocks. Reddy, S. et al., 2010. Mineralogical Magazine 74: 493-506

  8. Testing ore deposit models using in situ U-Pb geochronology of hydrothermal monazite: Paleoproterozoic gold mineralization in northern Australia

    NASA Astrophysics Data System (ADS)

    Rasmussen, Birger; Sheppard, Stephen; Fletcher, Ian R.

    2006-02-01

    The inability to establish absolute ages for gold deposition in the Pine Creek orogen of northern Australia has led to conflicting ore deposit models, ranging from intrusion related, which predict that gold mineralization was synchronous with granite magmatism (ca. 1835 1820 Ma), to orogenic, which place ore deposition nearly 100 m.y. later. Here we present ion microprobe U-Pb geochronology for a mineralized quartz reef from Tom's Gully mine, Mount Bundey, Northern Territory, Australia, and nearby granitic rocks and associated contact aureoles. Isotopic dating of zircon and monazite indicates that intrusion and contact metamorphism occurred ca. 1825 Ma, whereas hydrothermal monazite from the auriferous quartz reef gives a mean 207Pb/206Pb age of 1780 ± 10 Ma, interpreted as the time of gold mineralization. Mineralization therefore postdated intrusion by ˜45 m.y. and preceded a postulated ca. 1740 1730 Ma cratonwide orogenic gold event by ˜50 m.y. Hence, neither the intrusion-related model nor the recently proposed orogenic model is applicable. Combined with a reevaluation of age data from the nearby Goodall gold deposit, our data suggest that mineralization coincides with, and may be related to, an episode of regional low-grade metamorphism, deformation, and fluid circulation (Shoobridge event). Our results demonstrate the importance of high-precision in situ geochronology and detailed petrography for deciphering age relationships in ore deposits, and of testing the veracity of models for ore formation.

  9. Intra-grain Common Pb Correction and Detrital Apatite U-Pb Dating via LA-ICPMS Depth Profiling

    NASA Astrophysics Data System (ADS)

    Boyd, P. D.; Galster, F.; Stockli, D. F.

    2017-12-01

    Apatite is a common accessory phase in igneous and sedimentary rocks. While apatite is widely employed as a low-temperature thermochronometric tool, it has been increasingly utilized to constrain moderate temperature cooling histories by U-Pb dating. Apatite U-Pb is characterized by a thermal sensitivity window of 375-550°C. This unique temperature window recorded by the apatite U-Pb system, and the near-ubiquitous presence of apatite in igneous and clastic sedimentary rocks makes it a powerful tool able to illuminate mid-crustal tectono-thermal processes. However, as apatite incorporates only modest amounts of U and Th (1-10s of ppm) the significant amounts of non-radiogenic "common" Pb incorporated during its formation presents a major hurdle for apatite U-Pb dating. In bedrock samples common Pb in apatite can be corrected for by the measurement of Pb in a cogenetic mineral phase, such as feldspar, that does not incorporate U or from determination of a common Pb composition from multiple analyses in Tera-Wasserburg space. While these methods for common Pb correction in apatite can work for igneous samples, they cannot be applied to detrital apatite in sedimentary rocks with variable common Pb compositions. The obstacle of common Pb in apatite has hindered the application of detrital apatite U-Pb dating in provenance studies, despite the fact that it would be a powerful tool. This study presents a new method for the in situ correction of common Pb in apatite through the utilization of novel LA-ICP-MS depth profiling, which can recover U-Pb ratios at micron-scale spatial resolution during ablation of a grain. Due to the intra-grain U variability in apatite, a mixing line for a single grain can be generated in Tera-Wasserburg Concordia space. As a case study, apatite from a Variscan alpine granite were analyzed using both the single and multi-grain method, with both methods giving identical results. As a second case study the intra-grain method was then performed

  10. Quantifying the timescales of Archean UHT metamorphism through U-Pb monazite and zircon petrochronology

    NASA Astrophysics Data System (ADS)

    Guevara, V.; MacLennan, S. A.; Schoene, B.; Dragovic, B.; Caddick, M. J.; Kylander-Clark, A. R.; Couëslan, C. G.

    2016-12-01

    Unraveling the timescales of metamorphism is crucial to understanding the mechanisms behind mass/heat transfer through Earth's crust. Though such mechanisms and their durations are becoming well constrained in modern (Phanerozoic) settings, the drivers of metamorphism in the ancient geologic record remain more enigmatic. The development of accessory phase petrochronology has allowed metamorphic evolution to be closely linked to isotopic dates, ultimately improving quantification of metamorphic durations. While in-situ petrochronological methods preserve textural and spatial context, they often lack the temporal resolution required to accurately quantify metamorphic duration in Archean terranes. Here we combine in-situ U-Pb monazite (mnz) and zircon (zrn) laser ablation split-stream (LASS) and high-precision ID-TIMS-TEA petrochronology of distinct grain domains to resolve the timescales of ultrahigh temperature (UHT) metamorphism in the Archean Pikwitonei granulite domain (PGD). The PGD encompasses >1.5x105 km2 of granulite-facies rocks on the NW edge of the Superior Province. Themodynamic modelling of a pelite from the western part of the PGD suggests peak P-T conditions of >8 kbar, 900-940 °C and UHT decompression to 8 kbar followed by cooling. LASS analysis of zrn inclusions in garnet (grt) yields a date of 2701 Ma, with Ti in zrn thermometry yielding T of 800-900 °C. LASS analysis of mnz yields dates of 2720-2680 Ma for low HREE domains with no to shallow negative Eu anomalies, suggestive of growth during plagioclase (plg) breakdown and grt stability. ID-TIMS analysis of a mnz fragment with a strong negative Eu anomaly, suggestive of growth during plg stability, gives a concordant 207Pb/206Pb date of 2666 Ma, consistent with LASS results of 2660-2640 Ma for chemically similar domains. ID-TIMS analyses of zrn rims yield a range of 207Pb/206Pb dates from 2671 to 2656 Ma (±<1 Ma). Ti in zrn yields 800 °C for these rims, indicating they grew at similar T

  11. U, Th, Pb and REE abundances and Pb 207/Pb 206 ages of individual minerals in returned lunar material by ion microprobe mass analysis.

    NASA Technical Reports Server (NTRS)

    Andersen, C. A.; Hinthorne, J. R.

    1972-01-01

    Results of ion microprobe analyses of Apollo 11, 12 and 14 material, showing that U, Th, Pb and REE are concentrated in accessory minerals such as apatite, whitlockite, zircon, baddeleyite, zirkelite, and tranquillityite. Th/U ratios are found to vary by over a factor of 40 in these minerals. K, Ba, Rb and Sr have been localized in a K rich, U and Th poor glass phase that is commonly associated with the U and Th bearing accessory minerals. Li is observed to be fairly evenly distributed between the various accessory phases. The phosphates have been found to have REE abundance patterns (normalized to the chondrite abundances) that are fairly flat, while the Zr bearing minerals have patterns that rise steeply, by factors of ten or more, from La to Gd. All the accessory minerals have large negative Eu anomalies. Radiometric age dates (Pb 207/Pb 206) of the individual U and Th bearing minerals compare favorably with the Pb 207/Pb 206 age of the bulk rocks.

  12. U-Th-Pb and Rb-Sr systematics of Allende and U-Th-Pb systematics of Orgueil

    USGS Publications Warehouse

    Tatsumoto, M.; Unruh, D.M.; Desborough, G.A.

    1976-01-01

    U-Th-Pb systematics study of Allende inclusions showed that U, Th and Sr concentrations in Ca, Al (pyroxene)-rich chondrules and white and pinkish-white aggregate separates of Allende are five to ten times higher than those of the matrix, whereas Mg (olivine)-rich chondrules have U and Th concentrations about twice as high as the matrix. Th concentrations are extremely high in white aggregates and in pinkish-white (spinel-rich) aggregates while U and Sr concentrations in white aggregates are more than twice as high as those in pinkish-white aggregates. Large enrichment of these refractory elements in the white aggregates indicates that they contain high-temperature condensates from the solar nebula. The Pb concentrations in the inclusions are less than half of those in the whole rock and matrix, indicating that the matrix is a lower-temperature condensate. The isotopic composition of lead in the matrix is less radiogenic than that of the whole meteorite, whereas lead in Ca- and Al-rich chondrules and aggregates is extremely radiogenic. The 206Pb/204Pb ratio reaches as high as 55.9 in a white aggregate separate. The lead of Mg-rich chondrules is moderately radiogenic and the 206Pb/204Pb ratio ranges from 18 to 26. A striking linear relationship exists among leads in the chondrules, aggregates and matrix on the 207Pb/204Pb vs 204Pb/204Pb plot. The slope of the best fit line is 0.6188 ?? 0.0016, yielding an isochron age of 4553 ?? 4 m.y. The regression line passes through primordial lead values obtained from Canyon Diablo troilite. The data, when corrected for Canyon Diablo troilite Pb and plotted on a U-Pb concordia diagram, show that the pink and white aggregates and the Ca-Al-rich and Mg-rich inclusions have excess Pb and define a chord which intersects the concordia curve at 4548 ?? 25 m.y. and 107 ?? 70 m.y. The intercepts might correspond to the agglomeration age of the meteorite and a time of probably later disturbance, respectively. The matrix and some

  13. U-Th Burial Dates on Ostrich Eggshell

    NASA Astrophysics Data System (ADS)

    Sharp, W. D.; Fylstra, N. D.; Tryon, C. A.; Faith, J. T.; Peppe, D. J.

    2015-12-01

    Obtaining precise and accurate dates at archaeological sites beyond the range of radiocarbon dating is challenging but essential for understanding human origins. Eggshells of ratites (large flightless birds including ostrich, emu and others) are common in many archaeological sequences in Africa, Australia and elsewhere. Ancient eggshells are geochemically suitable for the U-Th technique (1), which has about ten times the range of radiocarbon dating (>500 rather than 50 ka), making eggshells attractive dating targets. Moreover, C and N isotopic studies of eggshell provide insights into paleovegetation and paleoprecipitation central to assessing past human-environment interactions (2,3). But until now, U-Th dates on ratite eggshell have not accounted for the secondary origin of essentially all of their U. We report a novel approach to U-Th dating of eggshell that explicitly accounts for secondary U uptake that begins with burial. Using ostrich eggshell (OES) from Pleistocene-Holocene east African sites, we have measured U and 232Th concentration profiles across OES by laser ablation ICP-MS. U commonly peaks at 10s to 100s of ppb and varies 10-fold or more across the ~2 mm thickness of OES, with gradients modulated by the layered structure of the eggshell. Common Th is high near the shell surfaces, but low in the middle "pallisade" layer of OES, making it optimal for U-Th dating. We determine U-Th ages along the U concentration gradient by solution ICP-MS analyses of two or more fractions of the pallisade layer. We then estimate OES burial dates using a simple model for diffusive uptake of uranium. Comparing such "U-Th burial dates" with radiocarbon dates for OES calcite from the same shells, we find good agreement in 7 out of 9 cases, consistent with rapid burial and confirming the accuracy of the approach. The remaining 2 eggshells have anomalous patterns of apparent ages that reveal they are unsuitable for U-Th dating, thereby providing reliability criteria innate

  14. The 230Th correction is the 1st priority for accurate dates of young zircons: U/Th partitioning experiments and measurements

    NASA Astrophysics Data System (ADS)

    Krawczynski, M.; McLean, N.

    2017-12-01

    One of the most accurate and useful ways of determining the age of rocks that formed more than about 500,000 years ago is uranium-lead (U-Pb) geochronology. Earth scientists use U-Pb geochronology to put together the geologic history of entire regions and of specific events, like the mass extinction of all non-avian dinosaurs about 66 million years ago or the catastrophic eruptions of supervolcanoes like the one currently centered at Yellowstone. The mineral zircon is often utilized because it is abundant, durable, and readily incorporates uranium into its crystal structure. But it excludes thorium, whose isotope 230Th is part of the naturally occurring isotopic decay chain from 238U to 206Pb. Calculating a date from the relative abundances of 206Pb and 238U therefore requires a correction for the missing 230Th. Existing experimental and observational constraints on the way U and Th behave when zircon crystallizes from a melt are not known precisely enough, and thus currently the uncertainty in dates introduced by they `Th correction' is one of the largest sources of systematic error in determining dates. Here we present preliminary results on our study of actinide partitioning between zircon and melt. Experiments have been conducted to grow zircon from melts doped with U and Th that mimic natural magmas at a range of temperatures, and compositions. Synthetic zircons are separated from their coexisting glass and using high precision and high-spatial-resolution techniques, the abundance and distribution of U and Th in each phase is determined. These preliminary experiments are the beginning of a study that will result in precise determination of the zircon/melt uranium and thorium partition coefficients under a wide variety of naturally occurring conditions. This data will be fit to a multidimensional surface using maximum likelihood regression techniques, so that the ratio of partition coefficients can be calculated for any set of known parameters. The results of

  15. U-Pb SHRIMP dating of uraniferous opals

    USGS Publications Warehouse

    Nemchin, A.A.; Neymark, L.A.; Simons, S.L.

    2006-01-01

    U-Pb and U-series analyses of four U-rich opal samples using sensitive high-resolution ion microprobe (SHRIMP) demonstrate the potential of this technique for the dating of opals with ages ranging from several tens of thousand years to millions of years. The major advantages of the technique, compared to the conventional thermal ionisation mass spectrometry (TIMS), are the high spatial resolution (???20 ??m), the ability to analyse in situ all isotopes required to determine both U-Pb and U-series ages, and a relatively short analysis time which allows obtaining a growth rate of opal as a result of a single SHRIMP session. There are two major limitations to this method, determined by both current level of development of ion probes and understanding of ion sputtering processes. First, sufficient secondary ion beam intensities can only be obtained for opal samples with U concentrations in excess of ???20 ??g/g. However, this restriction still permits dating of a large variety of opals. Second, U-Pb ratios in all analyses drifted with time and were only weakly correlated with changes in other ratios (such as U/UO). This drift, which is difficult to correct for, remains the main factor currently limiting the precision and accuracy of the U-Pb SHRIMP opal ages. Nevertheless, an assumption of similar behaviour of standard and unknown opals under similar analytical conditions allowed successful determination of ages with precisions of ???10% for the samples investigated in this study. SHRIMP-based U-series and U-Pb ages are consistent with TIMS dating results of the same materials and known geological timeframes. ?? 2005 Elsevier B.V. All rights reserved.

  16. Community-based Approaches to Improving Accuracy, Precision, and Reproducibility in U-Pb and U-Th Geochronology

    NASA Astrophysics Data System (ADS)

    McLean, N. M.; Condon, D. J.; Bowring, S. A.; Schoene, B.; Dutton, A.; Rubin, K. H.

    2015-12-01

    The last two decades have seen a grassroots effort by the international geochronology community to "calibrate Earth history through teamwork and cooperation," both as part of the EARTHTIME initiative and though several daughter projects with similar goals. Its mission originally challenged laboratories "to produce temporal constraints with uncertainties approaching 0.1% of the radioisotopic ages," but EARTHTIME has since exceeded its charge in many ways. Both the U-Pb and Ar-Ar chronometers first considered for high-precision timescale calibration now regularly produce dates at the sub-per mil level thanks to instrumentation, laboratory, and software advances. At the same time new isotope systems, including U-Th dating of carbonates, have developed comparable precision. But the larger, inter-related scientific challenges envisioned at EARTHTIME's inception remain - for instance, precisely calibrating the global geologic timescale, estimating rates of change around major climatic perturbations, and understanding evolutionary rates through time - and increasingly require that data from multiple geochronometers be combined. To solve these problems, the next two decades of uranium-daughter geochronology will require further advances in accuracy, precision, and reproducibility. The U-Th system has much in common with U-Pb, in that both parent and daughter isotopes are solids that can easily be weighed and dissolved in acid, and have well-characterized reference materials certified for isotopic composition and/or purity. For U-Pb, improving lab-to-lab reproducibility has entailed dissolving precisely weighed U and Pb metals of known purity and isotopic composition together to make gravimetric solutions, then using these to calibrate widely distributed tracers composed of artificial U and Pb isotopes. To mimic laboratory measurements, naturally occurring U and Pb isotopes were also mixed in proportions to mimic samples of three different ages, to be run as internal

  17. Ion microprobe U-Pb dating and strontium isotope analysis of biogenic apatite

    NASA Astrophysics Data System (ADS)

    Sano, Y.; Toyoshima, K.; Takahata, N.; Shirai, K.

    2012-12-01

    Conodonts are micro-fossils chemically composed of apatite which occurred in the body of one animal. They are guide fossils to show formation ages of sedimentary sequences with the highest resolution [1] and good samples to verify the dating method. We developed the ion microprobe U-Pb dating of apatite [2] and applied the method to a Carboniferous conodont [3] by using a SHRIMP II installed at Department of Earth and Planetary Sciences, Hiroshima University. Recently we have developed the NanoSIMS U-Pb dating method and successfully measured the formation ages of monazite [4] and zircon [5] at Atmosphere and Ocean Research Institute, University of Tokyo. In this work we carried out the NanoSIMS U-Pb dating of biogenic apatite such as conodont. Since the spot size of NanoSIMS is smaller than SHRIMP II, it is easier to have multi-spots on the single fragment of biogenic apatite. Based on the isochron method of U-Pb system, we have calculated the formation ages. They are consistent with those in literature. In order to study the chemical evolution of ocean during the past 600 Million years, strontium isotopes (87Sr/86Sr) of fossil marine carbonate such as coral skeletons and foraminifera tests were measured and compiled [6]. However they are not robust when the age is older than 500Ma, partly due to post-depositional histories. Apatite is more stable and more resistant to the alteration than carbonate [7]. Recently we have developed the method of NanoSIMS strontium isotopic analysis of a fish otolith, which composed of aragonite [8]. In this work we carried out the strontium isotopic analysis of biogenic apatite. The advantage of the ion microprobe technique over the TIMS (thermal ionization mass spectrometer) and MC-ICP-MS (multi-collector inductively coupled argon plasma mass spectrometer) method is preservation of the important textural context and to provide an opportunity for other simultaneous analytical work with high spatial resolution. This is the case for

  18. U-Th-Pb zircon dating of the 13.8-Ma dacite volcanic dome at Cerro Rico de Potosi, Bolivia

    USGS Publications Warehouse

    Zartman, R.E.; Cunningham, C.G.

    1995-01-01

    The temporal relationship between the extrusion of the Miocene dacite volcanic dome at Cerro Rico de Potasi, Bolivia, and the associated Ag-Sn mineralization has an important bearing on the heat and metal sources for this world class mineral deposit. The present study uses U-Th-Pb dating of sparse zircon contained in the dacite to demonstrate that, at most, only several hundred thousand years separate dome emplacement from main stage mineralization. -from Authors

  19. Combined apatite fission track and U-Pb dating by LA-ICPMS

    NASA Astrophysics Data System (ADS)

    Chew, D. M.; Donelick, R. A.

    2012-04-01

    Apatite is a common accessory mineral in igneous, metamorphic and clastic sedimentary rocks. It is a nearly ubiquitous accessory phase in igneous rocks, is common in metamorphic rocks of pelitic, carbonate, basaltic, and ultramafic composition and is virtually ubiquitous in clastic sedimentary rocks. In contrast to the polycyclic behavior of the stable heavy mineral zircon, apatite is unstable in acidic groundwaters and has limited mechanical stability in sedimentary transport systems. Apatite has many potential applications in provenance studies, particularly as it likely represents first-cycle detritus. Fission track and U-Pb dating are very powerful techniques in apatite provenance studies. They yield complementary information, with the apatite fission-track system yielding low-temperature exhumation ages and the U-Pb system yielding high-temperature cooling ages which constrain the timing of apatite crystallization. This study focuses on integrating apatite fission track and U-Pb dating by the LA-ICPMS method. Our approach is intentionally broad in scope, and is applicable to any quadrupole or rapid-scanning magnetic-sector LA-ICPMS system. Calculating uranium concentrations in fission-track dating by LA-ICPMS increases the speed of analysis and sample throughput compared to the conventional external detector method and avoids the need for neutron irradiation (Hasebe et al., 2004). LA-ICPMS-based uranium measurements in apatite are measured relative to an internal concentration standard (typically 43Ca). Ca in apatite is not always stochiometric as minor cations (Mn2+, Sr2+, Ba2+ and Fe2+) and REE can substitute with Ca2+. These substitutions must be quantified by multi-elemental LA-ICPMS analyses. Such data are also useful for discriminating between different apatite populations in sedimentary or volcaniclastic rocks based on their trace-element chemistry. Low U, Th and radiogenic Pb concentrations, elevated common Pb / radiogenic Pb ratios and U-Pb elemental

  20. Constraining metamorphic rates through allanite and monazite petrochronology: a case study from the Miyar Valley (High Himalayan Crystalline of Zanskar, NW India)

    NASA Astrophysics Data System (ADS)

    Robyr, Martin; Goswami-Banerjee, Sriparna

    2014-05-01

    Dating metamorphic rocks raises specific issues because metamorphism comprises a complex sequence of structural changes and chemical reactions that can be extended over millions or tens of millions of years so that metamorphic rocks cannot in general be said to have "an age". Therefore, an accurate interpretation of radiometric age data from metamorphic rocks requires first to establish the behavior of the isotopic system used for dating relative to the pressure and temperature (P-T) conditions that a metamorphic rock experienced. As the U-Th-Pb system in LREE-accessory phases like monazite and allanite is not easily reset during subsequent temperature increase, allanite and monazite U-Th-Pb ages are collectively interpreted as reflecting crystallization ages. As a consequence, to correctly interpret allanite and monazite crystallization ages, it is essential to accurately determine the physical conditions of their crystallization. A meticulous account of the chemical and textural evolution of monazite and allanite along a well constrained prograde pelitic sequence of the High Himalayan Crystalline of Zanskar (Miyar Valley; e.g. Robyr et al., 2002; 2006; 2014) reveals that: (1) the occurrence of the first metamorphic allanite coincides with the biotite-in isograd and (2) the formation of the first metamorphic monazite occurs at the staurolite-in isograd. The finding of both monazite and allanite as inclusion in staurolite porphyroblasts indicates that the breakdown of allanite and the formation of monazite occurred during staurolite crystallization. Thermobarometry results show that the metamorphic allanites are appeared in the 400-420 °C, while the signature of the first metamorphic monazite is found at ~ 600 °C with staurolite-in isograd. Allanite and monazite U-Th-Pb ages thus constrain the timing when the rocks reached the ~ 420 °C and ~ 600 °C isotherms respectively. In situ LA-ICPMS dating of coexisting allanite and monazite inclusions in garnet

  1. The White Nile as a source for Nile sediments: Assessment using U-Pb geochronology of detrital rutile and monazite

    NASA Astrophysics Data System (ADS)

    Be'eri-Shlevin, Yaron; Avigad, Dov; Gerdes, Axel

    2018-04-01

    Basement terranes exposed at the headwaters of the White Nile include Archean-Paleoproterozoic rocks of the Congo Craton, whose northern sectors were severely reworked during Neoproterozoic orogeny. New U-Pb analyses of detrital rutile and monazite from early Quaternary to Recent coastal quartz sands of Israel, at the northeast extension of the Nile sedimentary system, yield mostly late Neoproterozoic ages, with a dominant peak at ca. 600 Ma. While derivation from the reworked sectors of the Craton cannot be negated, the absence of pre-Neoproterozoic rutile and monazite indicates that the detrital contribution from the Congo cratonic nuclei into the main Nile was insignificant. The near absence of White Nile basement-derived heavy minerals from the Nile sands arriving at the Eastern Mediterranean may be explained by a number of factors such as relatively minor erosion of the Cratonic basement nuclei during the Quaternary, late connection of the White Nile to the main Nile system with a possibility that northern segments connected prior to more southerly ones, and a long-term effective sediment blockage mechanism at the mouth of White Nile. Likewise, our previous study demonstrated that Nile sands display a detrital zircon U-Pb-Hf pattern consistent with significant recycling of NE African Paleozoic sediments. It is thus plausible that any detrital contribution from White Nile basement rocks was thoroughly diluted by eroded Paleozoic sediments, or their recycled products, which were likely the greatest sand reservoir in the region. This study adds to previous studies showing the advantage of a multi mineral U-Pb geochronology strategy in constraining sediment provenance patterns.

  2. The behaviour of monazite from greenschist facies phyllites to anatectic gneisses: An example from the Chugach Metamorphic Complex, southern Alaska

    PubMed Central

    Gasser, Deta; Bruand, Emilie; Rubatto, Daniela; Stüwe, Kurt

    2012-01-01

    Monazite is a common accessory mineral in various metamorphic and magmatic rocks, and is widely used for U–Pb geochronology. However, linking monazite U–Pb ages with the PT evolution of the rock is not always straightforward. We investigated the behaviour of monazite in a metasedimentary sequence ranging from greenschist facies phyllites into upper amphibolites facies anatectic gneisses, which is exposed in the Eocene Chugach Metamorphic Complex of southern Alaska. We investigated textures, chemical compositions and U–Pb dates of monazite grains in samples of differing bulk rock composition and metamorphic grade, with particular focus on the relationship between monazite and other REE-bearing minerals such as allanite and xenotime. In the greenschist facies phyllites, detrital and metamorphic allanite is present, whereas monazite is absent. In lower amphibolites facies schists (~ 550–650 °C and ≥ 3.4 kbar), small, medium-Y monazite is wide-spread (Mnz1), indicating monazite growth prior and/or simultaneous with growth of garnet and andalusite. In anatectic gneisses, new low-Y, high-Th monazite (Mnz2) crystallised from partial melts, and a third, high-Y, low-Th monazite generation (Mnz3) formed during initial cooling and garnet resorption. U–Pb SHRIMP analysis of the second and third monazite generations yields ages of ~ 55–50 Ma. Monazite became unstable and was overgrown by allanite and/or allanite/epidote/apatite coronas within retrograde muscovite- and/or chlorite-bearing shear zones. This study documents polyphase, complex monazite growth and dissolution during a single, relatively short-lived metamorphic cycle. PMID:26525358

  3. High spatial resolution U-Pb geochronology and Pb isotope geochemistry of magnetite-apatite ore from the Pea Ridge iron oxide-apatite deposit, St. Francois Mountains, southeast Missouri, USA

    USGS Publications Warehouse

    Neymark, Leonid; Holm-Denoma, Christopher S.; Pietruszka, Aaron; Aleinikoff, John N.; Fanning, C. Mark; Pillers, Renee M.; Moscati, Richard J.

    2016-01-01

    The Pea Ridge iron oxide-apatite (IOA) deposit is one of the major rhyolite-hosted magnetite deposits of the St. Francois Mountains terrane, which is located within the Mesoproterozoic (1.5–1.3 Ga) Granite-Rhyolite province in the U.S. Midcontinent. Precise and accurate determination of the timing and duration of oreforming processes in this deposit is crucial for understanding its origin and placing it within a deposit-scale and regional geologic context. Apatite and monazite, well-established U-Pb mineral geochronometers, are abundant in the Pea Ridge orebody. However, the potential presence of multiple generations of dateable minerals, processes of dissolution-reprecipitation, and occurrence of micrometer-sized intergrowths and inclusions complicate measurements and interpretations of the geochronological results. Here, we employ a combination of several techniques, including ID-TIMS and high spatial resolution geochronology of apatite and monazite using LA-SC-ICPMS and SHRIMP, and Pb isotope geochemistry of pyrite and magnetite to obtain the first direct age constraints on the formation and alteration history of the Pea Ridge IOA deposit. The oldest apatite TIMS 207Pb*/206Pb* dates are 1471 ± 1 and 1468 ± 1 Ma, slightly younger than (but within error of) the ~1474 to ~1473 Ma U-Pb zircon ages of the host rhyolites. Dating of apatite and monazite inclusions within apatite provides evidence for at least one younger metasomatic event at ~1.44 Ga, and possibly multiple superimposed metasomatic events between 1.47 and 1.44 Ga. Lead isotop analyses of pyrite show extremely radiogenic 206Pb/204Pb ratios up to ~80 unsupported by in situ U decay. This excess radiogenic Pb in pyrite may have been derived from the spatially associated apatite as apatite recrystallized several tens of million years after its formation. The low initial 206Pb/204Pb ratio of ~16.5 and 207Pb/204Pb ratio of ~15.4 for individual magnetite grains indicate closed U-Pb system behavior in

  4. Evolution of mare basalts - The complexity of the U-Th-Pb system

    NASA Technical Reports Server (NTRS)

    Unruh, D. M.; Tatsumoto, M.

    1977-01-01

    An attempt has been made to gain more insight into mare-basalt evolution by performing a very detailed leaching and mineral-separation U-Th-Pb systematics study on mare basalt 15085. It is found that about 20-50% of the U, Th, and Pb reside on the grain boundaries or in the mesostasis and that the Pb-207/Pb-206 ratios of the grain boundaries and crystal interiors are distinctly different. These distinct trends appear to represent either continuous or episodic postcrystallizational disturbances to the U-Th-Pb system of this rock. Using U and Pb partition coefficients, it is concluded that existing two- and three-stage U-Pb evolution models do not accurately describe mare-basalt genesis. An alternative two-stage + KREEP mixing model is proposed as a simple approximation to U-Pb evolution in lunar rocks. Most Rb-Sr and Sm-Nd data are compatible with this model.

  5. Finding the "true" age: ways to read high-precision U-Pb zircon dates

    NASA Astrophysics Data System (ADS)

    Schaltegger, U.; Schoene, B.; Ovtcharova, M.; Sell, B. K.; Broderick, C. A.; Wotzlaw, J.

    2011-12-01

    rheological lockup by the crystals. Last crystallizing zircons in the interstitial melt may therefore postdate emplacement of the magma. The range of 206Pb/238U ages may yield a time frame for the cooling of a given magma batch, which could be added to quantitative thermal models of magma emplacement and cooling. Hf isotopes and trace elements of the dated zircon are used to trace the nature of the dated grains [4], specifically for identification of crystals that form earlier at lower crustal levels (antecrysts). Autocrystic zircons typically show, e.g., distinctly different (higher or lower) Th/U ratios. Cautiously interpreted high-precision U-Pb data of chemically abraded zircons may resolve the evolution of a magmatic system from its roots to final emplacement or eruption, trace fractional crystallization of zircon and other accessory and major phases in a magma batch, and add quantitative temporal constraints to thermal models. The proposed interpretation scheme thus adds significant information compared to conventional statistics. [1] Mattinson J., 2005, Chem. Geol. 200, 47-66; ; [2] Slama et al., 2008, Chem. Geol. 249, 1-35; [3] Miller et al., 2007, J. Volc. Geotherm. Res. 167, 282-299; [4] Schoene et al., 2010, Geochim. Cosmochim. Acta 74, 7144-7159

  6. Exhumation rates in the Gran Paradiso Massif (Western Alps) constrained by in situ U-Th-Pb dating of accessory phases (monazite, allanite and xenotime)

    NASA Astrophysics Data System (ADS)

    Manzotti, Paola; Bosse, Valérie; Pitra, Pavel; Robyr, Martin; Schiavi, Federica; Ballèvre, Michel

    2018-03-01

    Exhumation rates for high-pressure metamorphic rocks need to be carefully estimated to decipher tectonic processes in subduction/collision belts. In the Gran Paradiso Massif (Western Alps), the Money Unit crops out as a tectonic window below the Gran Paradiso Unit. According to previous studies, the Gran Paradiso and Money Units reached peak pressure conditions at 18 to 20 kbar, 480-520 °C and 17 to 18 kbar, 500-550 °C, respectively. This yields a maximum difference of 9 to 10 km in the subduction depth reached by these two units during the Alpine history. Thrusting of the Gran Paradiso Unit over the Money Unit led to the simultaneous development of the main foliation under the same metamorphic conditions ( 12.5 to 14.5 kbar and 530-560 °C) in both units. The thrust contact was subsequently folded and then both units were exhumed together. The relative timing of the growth and dissolution of the accessory phases was assessed by combining thermodynamic modelling with inclusion, textural and chemical (major and trace element) data from both major and accessory phases. The age of monazite constrained the high-pressure metamorphism in both the Gran Paradiso Unit and the Money Unit at 41.5 ± 0.3 and 42.0 ± 0.6 Ma, respectively. Allanite replacing monazite in the matrix has been dated at 32.7 ± 4.2 Ma. The late growth of xenotime associated with the crystallization of biotite pseudomorphs at the expense of garnet (at about 10 kbar) was dated at 32.3 ± 1.0 Ma. Our petrochronological data indicate about 10 m.y. between the peak pressure conditions and the crystallization of xenotime leading to an exhumation rate of the order of 2.2-5 mm/year. The new ages allow to better constrain the timing of the displacement of the thrust defining the lower boundary of the extruding wedge of eclogite-facies rocks.

  7. In situ Pb-Pb dating of rutile from slowly cooled granulites by LA-MC-ICP-MS: confirmation of the high closure temperature (>=600°C) for Pb diffusion in rutile

    NASA Astrophysics Data System (ADS)

    Vry, J.; Baker, J.; Waight, T.

    2003-04-01

    We have analysed Pb isotopes in natural rutile crystals by laser ablation MC-ICP-MS to assess the potential of rapid Pb-Pb dating of rutile with this method. The rutile samples are from granulite-facies Mg- and Al-rich rocks from the Reynolds Range, Northern Territory, Australia. This metamorphic terrane has a well-constrained high-T cooling history (ca. 3^oC/Myr) defined by previous U-Pb dating of monazite and zircon (peak metamorphism at 1584 Ma), which we have supplemented with additional Rb-Sr dates of phlogopite, biotite and muscovite. The dated rutiles vary in size from 3 to 0.05 mm, have Pb concentrations of ca. 20 ppm, and were analysed with a 266 nm laser coupled to an AXIOM MC-ICP-MS (spot size of 200-50 μm). Individual larger crystals (>= 200 μm) exhibit sufficient Pb isotopic heterogeneity (206Pb/204Pb = 10000-80000) to perform isochron calculations on several short analyses of a single grain (30-60 s). The largest rutiles yielded Pb-Pb isochron ages of 1540-1555 Ma with typical uncertainties of ± 1 to 10 Ma. 207Pb/206Pb ages are typically within 1% of the Pb-Pb isochron ages testifying to the radiogenic nature of Pb in the rutile. A mean age for all the analysed rutiles was 1548.4 ± 9.1 Ma (n = 33). Comparable 207Pb/206Pb ages were also obtained from individual smaller crystals (50 μm) where the 204Pb ion beam could not be measured precisely. The results demonstrate that even small rutile crystals are extremely resistant to isotopic resetting, and that this mineral is a high-T chronometer. Phlogopite and muscovite Rb-Sr ages are <1454 and 1400-1480 Ma, respectively, with some of the phlogopite and biotite micas having been partially reset by later thermal events younger than 400 Ma. All the mica ages are considerably younger (100-70 My) than the rutile ages, which approach U-Pb ages for monazite and zircon overgrowths, even though the mica closure temperatures (350-500^oC) are comparable or slightly higher than earlier geological estimates [1] of

  8. Ar-40/Ar-39 and U-Th-Pb dating of separated clasts from the Abee E4 chondrite

    NASA Technical Reports Server (NTRS)

    Bogard, D. D.; Unruh, D. M.; Tatsumoto, M.

    1983-01-01

    Ar-40/Ar-39 and U-Th-Pb are investigated for three clasts from the Abee (E4) enstatite chondrite, yielding Ar-40/Ar-39 plateau ages (and/or maximum ages) of 4.5 Gy, while two of the clasts give average ages of 4.4 Gy. The 4.4-4.5 Gy range does not resolve possible age differences among the clasts. The U-Th-Pb data are consistent with the interpretation that initial clast formation occurred 4.58 Gy ago, and that the clasts have since remained closed systems which have been contaminated with terrestrial Pb. The thermal history of Abee deduced from Ar data seems consistent with that deduced from magnetic data, suggesting that various Abee components experienced separate histories until brecciation no later than 4.4 Gy ago, experiencing no significant subsequent heating.

  9. U-Th-Pb systematics of the Estherville mesosiderite

    NASA Technical Reports Server (NTRS)

    Brouxel, M.; Tatsumoto, M.

    1990-01-01

    Results are presented on a detailed U-Th-Pb systematics of the Estherville mososiderite, which was performed in a study involving stepwise leaching experiments. The Pb-Pb internal 'isochrons' for Estherville yielded ages of 4556 + or - 35 Ma, 4506 + or - 75 Ma, and 4422 + or - 50 Ma, indicating that the silicate fraction of the Estherville mesosiderite is very heterogeneous and was formed early in the solar system history. Results clearly identifies the Pb-Pb isochron as a mixing line. The U-Pb lower-intercept ages could be divided into two groups: (1) around 3 Ga, and likely related to the 3.6 Ga heating event, and (2) close to 0 Ma and to 62 Ma.

  10. Advantages of conducting in-situ U-Pb age dating of multiple U-bearing minerals from a single complex: Case in point - the Oka Carbonatite Complex

    NASA Astrophysics Data System (ADS)

    Chen, W.; Simonetti, A.

    2012-12-01

    A detailed radiometric investigation is currently underway focusing on U-bearing accessory minerals apatite, perovskite, and niocalite from the Oka Carbonatite Complex (Canada). One of the main objectives is to obtain a comparative chronology of melt crystallization for the complex. Unlike other commonly adopted U-bearing minerals (e.g., zircon, monazite) for in-situ dating investigations, apatite, perovskite, and niocalite contain relatively high contents of common Pb. Hence, careful assessment of the proportion and composition of the common Pb, and usage of appropriate matrix-matched external standards are imperative. The Madagascar apatite was utilized as the external standard for apatite dating, and the Emerald Lake and Durango apatites were adopted as secondary standards; the latter yield ages of 92.6 ±1.8 and 32.2 ±1.1 Ma, respectively, and these are identical to their accepted ages. Pb/U ages for apatite from Oka were obtained for different rock types, including 8 carbonatites, 4 okaites, 3 ijolites and 3 alnoites, and these define a range of ages between ~105 and ~135 Ma; this result suggests a protracted crystallization history. In total, 266 individual analyses define two peaks at ~115 and ~125Ma. For perovskite dating, the Ice River perovskite standard was utilized as the external standard. The perovskites from one okaite sample yield an age of 112.2 ±1.9 Ma, and is much younger than the previously reported U-Pb perovskite age of 131 ±7 Ma. Hence, the combined U-Pb perovskite ages also suggest a rather prolonged time of melt crystallization. Niocalite is a rare, accessory silicate mineral that occurs within the carbonatites at Oka. The international zircon standard BR266 was selected for use as the external standard and rastering was employed to minimize the Pb-U fractionation. Two niocalite samples give young ages at 110.6 ±1.2 and 115.0 ±1.9 Ma, and are identical to their respective apatite ages (given associated uncertainties) from the same

  11. Advances in Laser Microprobe (U-Th)/He Geochronology

    NASA Astrophysics Data System (ADS)

    van Soest, M. C.; Monteleone, B. D.; Boyce, J. W.; Hodges, K. V.

    2008-12-01

    The development of the laser microprobe (U-Th)/He dating method has the potential to overcome many of the limitations that affect conventional (U-Th)/He geochronology. Conventional single- or multi-crystal (U- Th)/He geochronology requires the use of pristine, inclusion-free, euhedral crystals. Furthermore, the ages that are obtained require corrections for the effects of zoning and alpha ejection based on an ensemble of assumptions before interpretation of their geological relevance is possible. With the utilization of microbeam techniques many of the limitations of conventional (U-Th)/He geochronology can either be eliminated by careful spot selection or accounted for by detailed depth profiling analyses of He, U and Th on the same crystal. Combined He, Th, and U depth profiling on the same crystal potentially even offers the ability to extract thermal histories from the analyzed grains. Boyce et al. (2006) first demonstrated the laser microprobe (U-Th)/He dating technique by successfully dating monazite crystals using UV laser ablation to liberate He and determined U and Th concentrations using a Cameca SX-Ultrachron microprobe. At Arizona State University, further development of the microprobe (U-Th)/He dating technique continues using an ArF Excimer laser connected to a GVI Helix Split Flight Tube noble gas mass spectrometer for He analysis and SIMS techniques for U and Th. The Durango apatite age standard has been successfully dated at 30.7 +/- 1.7 Ma (2SD). Work on dating zircons by laser ablation is currently underway, with initial results from Sri Lanka zircon at 437 +/- 14 Ma (2SD) confirmed by conventional (U-Th)/He analysis and in agreement with the published (U-Th)/He age of 443 +/- 9 Ma (2SD) for zircons from this region in Sri Lanka (Nasdala et al., 2004). The results presented here demonstrate the laser microprobe (U-Th)/He method as a powerful tool that allows application of (U- Th)/He dating to areas of research such as detrital apatite and zircon

  12. Air abrasion experiments in U-Pb dating of zircon

    USGS Publications Warehouse

    Goldich, S.S.; Fischer, L.B.

    1986-01-01

    Air abrasion of zircon grains can remove metamict material that has lost radiogenic Pb and zircon overgrowths that were added during younger events and thereby improve the precision of the age measurements and permit closer estimates of the original age. Age discordance that resulted from a single disturbance of the U-Pb isotopic decay systems, as had been demonstrated by T.E. Krogh, can be considerably reduced, and, under favorable conditions, the ages brought into concordancy. Two or more events complicate the U-Pb systematics, but a series of abrasion experiments can be helpful in deciphering the geologic history and in arriving at a useful interpretation of the probable times of origin and disturbances. In east-central Minnesota, U.S.A., Penokean tonalite gneiss is dated at 1869 ?? 5 Ma, and sheared granite gneiss is shown to have been a high-level granite intrusion at 1982 ?? 5 Ma in the McGrath Gneiss precursor. Tonalite gneiss and a mafic granodiorite in the Rainy Lake area, Ontario, Canada, are dated at 2736 ?? 16 and 2682 ?? 4 Ma, respectively. The tonalitic phase of the Morton Gneiss, southwestern Minnesota, is dated at 3662 ?? 42 Ma. ?? 1986.

  13. Chemical abrasion-SIMS (CA-SIMS) U-Pb dating of zircon from the late Eocene Caetano caldera, Nevada

    USGS Publications Warehouse

    Watts, Kathryn E.; Coble, Matthew A.; Vazquez, Jorge A.; Henry, Christopher D.; Colgan, Joseph P.; John, David A.

    2016-01-01

    Zircon geochronology is a critical tool for establishing geologic ages and time scales of processes in the Earth's crust. However, for zircons compromised by open system behavior, achieving robust dates can be difficult. Chemical abrasion (CA) is a routine step prior to thermal ionization mass spectrometry (TIMS) dating of zircon to remove radiation-damaged parts of grains that may have experienced open system behavior and loss of radiogenic Pb. While this technique has been shown to improve the accuracy and precision of TIMS dating, its application to high-spatial resolution dating methods, such as secondary ion mass spectrometry (SIMS), is relatively uncommon. In our efforts to U-Pb date zircons from the late Eocene Caetano caldera by SIMS (SHRIMP-RG: sensitive high resolution ion microprobe, reverse geometry), some grains yielded anomalously young U-Pb ages that implicated Pb-loss and motivated us to investigate with a comparative CA and non-CA dating study. We present CA and non-CA 206Pb/238U ages and trace elements determined by SHRIMP-RG for zircons from three Caetano samples (Caetano Tuff, Redrock Canyon porphyry, and a silicic ring-fracture intrusion) and for R33 and TEMORA-2 reference zircons. We find that non-CA Caetano zircons have weighted mean or bimodal U-Pb ages that are 2–4% younger than CA zircons for the same samples. CA Caetano zircons have mean U-Pb ages that are 0.4–0.6 Myr older than the 40Ar/39Ar sanidine eruption age (34.00 ± 0.03 Ma; error-weighted mean, 2σ), whereas non-CA zircons have ages that are 0.7–1.3 Myr younger. U-Pb ages do not correlate with U (~ 100–800 ppm), Th (~ 50–300 ppm) or any other measured zircon trace elements (Y, Hf, REE), and CA and non-CA Caetano zircons define identical trace element ranges. No statistically significant difference in U-Pb age is observed for CA versus non-CA R33 or TEMORA-2 zircons. Optical profiler measurements of ion microprobe pits demonstrate consistent depths of ~ 1.6

  14. Zircon and monazite response to prograde metamorphism in the Reynolds Range, central Australia

    NASA Astrophysics Data System (ADS)

    Rubatto, Daniela; Williams, Ian S.; Buick, Ian S.

    2001-01-01

    We report an extensive field-based study of zircon and monazite in the metamorphic sequence of the Reynolds Range (central Australia), where greenschist- to granulite-facies metamorphism is recorded over a continuous crustal section. Detailed cathodoluminescence and back-scattered electron imaging, supported by SHRIMP U-Pb dating, has revealed the different behaviours of zircon and monazite during metamorphism. Monazite first recorded regional metamorphic ages (1576 ± 5 Ma), at amphibolite-facies grade, at ˜600 °C. Abundant monazite yielding similar ages (1557 ± 2 to 1585 ± 3 Ma) is found at granulite-facies conditions in both partial melt segregations and restites. New zircon growth occurred between 1562 ± 4 and 1587 ± 4 Ma, but, in contrast to monazite, is only recorded in granulite-facies rocks where melt was present (≥700 °C). New zircon appears to form at the expense of pre-existing detrital and inherited cores, which are partly resorbed. The amount of metamorphic growth in both accessory minerals increases with temperature and metamorphic grade. However, new zircon growth is influenced by rock composition and driven by partial melting, factors that appear to have little effect on the formation of metamorphic monazite. The growth of these accessory phases in response to metamorphism extends over the 30 Ma period of melt crystallisation (1557-1587 Ma) in a stable high geothermal regime. Rare earth element patterns of zircon overgrowths in leucosome and restite indicate that, during the protracted metamorphism, melt-restite equilibrium was reached. Even in the extreme conditions of long-lasting high temperature (750-800 °C) metamorphism, Pb inheritance is widely preserved in the detrital zircon cores. A trace of inheritance is found in monazite, indicating that the closure temperature of the U-Pb system in relatively large monazite crystals can exceed 750-800 °C.

  15. Detrital zircon U-Pb and (U-Th)/He double-dating of Upper Cretaceous-Cenozoic Zagros foreland basin strata in the Kurdistan Region of northern Iraq

    NASA Astrophysics Data System (ADS)

    Barber, D. E.; Stockli, D. F.; Koshnaw, R. I.; Horton, B. K.; Tamar-Agha, M. Y.; Kendall, J. J.

    2014-12-01

    The NW Zagros orogen is the result of the multistage collisional history associated with Late Cretaceous-Cenozoic convergence of the Arabian and Eurasian continents and final closure of Neotethys. Siliciclastic strata preserved within a ~400 km segment of the NW Zagros fold-thrust belt and foreland basin in the Iraqi Kurdistan Region (IKR) provide a widespread record of exhumation and sedimentation. As a means of assessing NW Zagros foreland basin evolution and chronostratigraphy, we present coupled detrital zircon (DZ) U-Pb and (U-Th)/He geo-thermochronometric data of Upper Cretaceous to Pliocene siliciclastic strata from the Duhok, Erbil, and Suleimaniyah provinces of IKR. LA-ICP-MS U-Pb age analyses reveal that the foreland basin fill in IKR in general was dominantly derived from Pan-African/Arabian-Nubian, Peri-Gondwandan, Eurasian, and Cretaceous volcanic arc terrenes. However, the provenance of these strata varies systematically along strike and through time, with an overall increase in complexity upsection. DZ age distribution of Paleocene-Eocene strata is dominated by a ~95 Ma grain age population, likely sourced from the Late Cretaceous Hassanbag-Bitlis volcanic arc complex along the northern margin of Arabia. In contrast, DZ U-Pb age distributions of Neogene strata show a major contribution derived from various Eurasian (e.g., Iranian, Tauride, Pontide; ~45, 150, 300 Ma) and Pan-African (~550, 950 Ma) sources. The introduction of Eurasian DZ ages at the Paleogene-Neogene transition likely records the onset of Arabian-Eurasian collision. Along strike to the southeast, the DZ U-Pb spectra of Neogene strata show a decreased percentage of Pan-African, Peri-Gondwandan, Tauride, and Ordovician ages, coupled with a dramatic increase in 40-50 Ma DZ ages that correspond to Urumieh-Dokhtar magmatic rocks in Iran. Combined with paleocurrent data, this suggests that Neogene sediments were transported longitudinally southeastward through an unbroken foreland basin

  16. U-Pb Dating of Zircons and Phosphates in Lunar Meteorites, Acapulcoites and Angrites

    NASA Technical Reports Server (NTRS)

    Zhou, Q.; Zeigler, R. A.; Yin, Q. Z.; Korotev, R. L.; Joliff, B. L.; Amelin, Y.; Marti, K.; Wu, F. Y.; Li, X. H.; Li, Q. L.; hide

    2012-01-01

    Zircon U-Pb geochronology has made a great contribution to the timing of magmatism in the early Solar System [1-3]. Ca phosphates are another group of common accessory minerals in meteorites with great potential for U-Pb geochronology. Compared to zircons, the lower closure temperatures of the U-Pb system for apatite and merrillite (the most common phosphates in achondrites) makes them susceptible to resetting during thermal metamorphism. The different closure temperatures of the U-Pb system for zircon and apatite provide us an opportunity to discover the evolutionary history of meteoritic parent bodies, such as the crystallization ages of magmatism, as well as later impact events and thermal metamorphism. We have developed techniques using the Cameca IMS-1280 ion microprobe to date both zircon and phosphate grains in meteorites. Here we report U-Pb dating results for zircons and phosphates from lunar meteorites Dhofar 1442 and SaU 169. To test and verify the reliability of the newly developed phosphate dating technique, two additional meteorites, Acapulco, obtained from Acapulco consortium, and angrite NWA 4590 were also selected for this study as both have precisely known phosphate U-Pb ages by TIMS [4,5]. Both meteorites are from very fast cooled parent bodies with no sign of resetting [4,5], satisfying a necessity for precise dating.

  17. Combined Th/U, Pa/U and Ra/Th dating of fossil reef corals

    NASA Astrophysics Data System (ADS)

    Obert, J. C.; Scholz, D.; Lippold, J.; Felis, T.; Jochum, K. P.; Andreae, M. O.

    2016-12-01

    Fossil reef corals are often subject to post-depositional open-system behaviour, which is a major problem for accurate absolute dating. The commonly used 230Th/U-system can be disturbed by diagenetic alteration resulting in wrong apparent 230Th/U-ages. Since fossil reef corals are important palaeoenvironmental archives, precise absolute dating is essential for sea-level reconstruction and high-resolution climate reconstruction. We have developed a method for combined preparation and analysis of fossil reef corals by the 230Th/U-, 231Pa/U- and 226Ra/230Th-methods. Inconsistencies between ages determined by the different methods provide a means to identify diagenetically altered corals. In addition, the comparison of the 230Th/U and 231Pa/U data on concordia diagrams reveals further information about the alteration processes. (226Ra/230Th) and (226Ra/U) ratios in particular provide information about the more recent past (last 10 to approx. 50 ka) of the coral's diagenetic history. We compare these data with quantitative modelling of various diagenetic scenarios in order to identify the potential open-system processes. Here we present new data on the combined application of the three isotope systems to fossil Last Interglacial corals from the Gulf of Aqaba, northern Red Sea. Previous studies have shown that these corals were subject to substantial open-system behaviour, documented by very high initial (234U/238U) activity ratios. The process that was proposed to explain the activity ratios of these corals is U gain with subsequent U loss after a specific amount of time. The amount of U loss is assumed to be proportional to the amount of U previously gained. The application of our new method aims to test whether this diagenetic scenario can be verified.

  18. LA-ICP-MS and SIMS U-Pb and U-Th zircon geochronological data of Late Pleistocene lava domes of the Ciomadul Volcanic Dome Complex (Eastern Carpathians).

    PubMed

    Lukács, Réka; Guillong, Marcel; Schmitt, Axel K; Molnár, Kata; Bachmann, Olivier; Harangi, Szabolcs

    2018-06-01

    This article provides laser-ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) and secondary ionization mass spectrometry (SIMS) U-Pb and U-Th zircon dates for crystals separated from Late Pleistocene dacitic lava dome rocks of the Ciomadul Volcanic Dome Complex (Eastern Carpathians, Romania). The analyses were performed on unpolished zircon prism faces (termed rim analyses) and on crystal interiors exposed through mechanical grinding an polishing (interior analyses). 206 Pb/ 238 U ages are corrected for Th-disequilibrium based on published and calculated distribution coefficients for U and Th using average whole-rock and individually analyzed zircon compositions. The data presented in this article were used for the Th-disequilibrium correction of (U-Th)/He zircon geochronology data in the research article entitled "The onset of the volcanism in the Ciomadul Volcanic Dome Complex (Eastern Carpathians): eruption chronology and magma type variation" (Molnár et al., 2018) [1].

  19. Microprobe monazite geochronology: new techniques for dating deformation and metamorphism

    NASA Astrophysics Data System (ADS)

    Williams, M.; Jercinovic, M.; Goncalves, P.; Mahan, K.

    2003-04-01

    High-resolution compositional mapping, age mapping, and precise dating of monazite on the electron microprobe are powerful additions to microstructural and petrologic analysis and important tools for tectonic studies. The in-situ nature and high spatial resolution of the technique offer an entirely new level of structurally and texturally specific geochronologic data that can be used to put absolute time constraints on P-T-D paths, constrain the rates of sedimentary, metamorphic, and deformational processes, and provide new links between metamorphism and deformation. New analytical techniques (including background modeling, sample preparation, and interference analysis) have significantly improved the precision and accuracy of the technique and new mapping and image analysis techniques have increased the efficiency and strengthened the correlation with fabrics and textures. Microprobe geochronology is particularly applicable to three persistent microstructural-microtextural problem areas: (1) constraining the chronology of metamorphic assemblages; (2) constraining the timing of deformational fabrics; and (3) interpreting other geochronological results. In addition, authigenic monazite can be used to date sedimentary basins, and detrital monazite can fingerprint sedimentary source areas, both critical for tectonic analysis. Although some monazite generations can be directly tied to metamorphism or deformation, at present, the most common constraints rely on monazite inclusion relations in porphyroblasts that, in turn, can be tied to the deformation and/or metamorphic history. Examples will be presented from deep-crustal rocks of northern Saskatchewan and from mid-crustal rocks from the southwestern USA. Microprobe monazite geochronology has been used in both regions to deconvolute overprinting deformation and metamorphic events and to clarify the interpretation of other geochronologic data. Microprobe mapping and dating are powerful companions to mass spectroscopic

  20. U-Th-Pb systematics. [geochemical analysis on lunar rocks

    NASA Technical Reports Server (NTRS)

    Nunes, P. D.; Tatsumoto, M.

    1974-01-01

    The following boulder samples are analyzed for U, Th, and Pb concentrations and for Pb isotopic compositions: 72275,53/matrix; 72275,73/matrix; 72275,81/dark rind, clast #1; 72275,117/white interior, clast #1; 72255,49/Civet Cat clast; 72255,54/light gray matrix; and 72255,67/dark gray matrix.

  1. Why natural monazite never becomes amorphous: Experimental evidence for alpha self-healing

    DOE PAGES

    Seydoux-Guillaume, Anne -Magali; Deschanels, Xavier; Baumier, Cedric; ...

    2018-05-01

    Monazite, a common accessory rare-earth orthophosphate mineral in the continental crust widely used in U-Pb geochronology, holds promise for (U-Th)/He thermochronology and for the immobilization of Pu and minor actinides (MA) coming from spent nuclear fuel reprocessing. Previous results obtained on natural and plutonium-doped monazite have demonstrated the ability of this structure to maintain a crystalline state despite high radiation damage levels. However, the low critical temperature (180 °C), above which amorphization cannot be achieved in natural monazite under ion irradiation, does not explain this old and unsolved paradox: why do natural monazites, independent of their geological history, remain crystallinemore » even when they did not experience any thermal event that could heal the defects? This is what the present study aims to address. Synthetic polycrystals of LaPO 4-monazite were irradiated sequentially and simultaneously with α particles (He) and gold (Au) ions. Here, our results demonstrate experimentally for the first time in monazite, the existence of the defect recovery mechanism, called α-healing, acting in this structure due to electronic energy loss of α particles, which explains the absence of amorphization in natural monazite samples. This mechanism is critically important for monazite geo- and thermochronology and to design and predictively model the long-term behavior of ceramic matrices for nuclear waste conditioning.« less

  2. Why natural monazite never becomes amorphous: Experimental evidence for alpha self-healing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seydoux-Guillaume, Anne -Magali; Deschanels, Xavier; Baumier, Cedric

    Monazite, a common accessory rare-earth orthophosphate mineral in the continental crust widely used in U-Pb geochronology, holds promise for (U-Th)/He thermochronology and for the immobilization of Pu and minor actinides (MA) coming from spent nuclear fuel reprocessing. Previous results obtained on natural and plutonium-doped monazite have demonstrated the ability of this structure to maintain a crystalline state despite high radiation damage levels. However, the low critical temperature (180 °C), above which amorphization cannot be achieved in natural monazite under ion irradiation, does not explain this old and unsolved paradox: why do natural monazites, independent of their geological history, remain crystallinemore » even when they did not experience any thermal event that could heal the defects? This is what the present study aims to address. Synthetic polycrystals of LaPO 4-monazite were irradiated sequentially and simultaneously with α particles (He) and gold (Au) ions. Here, our results demonstrate experimentally for the first time in monazite, the existence of the defect recovery mechanism, called α-healing, acting in this structure due to electronic energy loss of α particles, which explains the absence of amorphization in natural monazite samples. This mechanism is critically important for monazite geo- and thermochronology and to design and predictively model the long-term behavior of ceramic matrices for nuclear waste conditioning.« less

  3. Monazite behaviours during high-temperature metamorphism: a case study from Dinggye region, Tibetan Himalaya

    NASA Astrophysics Data System (ADS)

    Wang, Jia-Min; Wu, Fu-Yuan; Rubatto, Daniela; Liu, Shi-Ran; Zhang, Jin-Jiang

    2017-04-01

    recrystallization to account for monazite growth during high-temperature metamorphism and related melting reactions that trigger monazite recrystallization. In a regional sense, our P-T-t data along with published data indicate that the pre-M1 eclogite-facies metamorphism occurred at 39-30 Ma in the Dinggye Himalaya. Our results are in favour of a steady exhumation of the GHC rocks since Oligocene that was contributed by partial melting. Key words: U-Th-Pb geochronology, Monazite, Recrystallization, Pelitic granulite, Himalaya

  4. Thermal and exhumation history of the central Tianshan (NW China): Constraints by U-Pb geochronology and Ar-Ar and (U-Th)/He thermochronology

    NASA Astrophysics Data System (ADS)

    Yin, J.; Chen, W.; Hodges, K. V.; Xiao, W.; Van Soest, M. C.; Cai, K.; Zhang, B.; Mercer, C. M.; Yuan, C.

    2015-12-01

    Geochronology and thermochronology using multiple mineral-isotopic chronometers reveals the thermo-tectonic history of the central Tianshan (NW China) from emplacement to exhumation. Granites from the central Tianshan, which are associated with the southward subduction of the northern Tianshan Ocean, have been dated at 362-354 Ma using the LA-ICP-MS Zircon U-Pb method. A younger diorite sample (282 ± 1 Ma, Zircon U-Pb method by LA-ICP-MS) from northern Tianshan formed during the final closure of the Northern Tianshan Ocean when the Junggar Block collided with the Yili-Central Tianshan Block. 40Ar/39Ar step-wise heating plateau dates (biotite Ar/Ar: 312-293 Ma; Plagioclase Ar/Ar: 270-229 Ma) from the Central Tianshan show rapid post-magmatic cooling during the Late Carboniferous-Early Permian followed by a more modest rate of cooling from the middle Permian to the middle Jurassic. The northern Tianshan diorite (biotite Ar/Ar: 240 ± 1 Ma) also reveals a middle Jurassic cooling. Apatite (U-Th )/He dates from the central Tianshan samples range from ca. 130 Ma to ca. 116 Ma. The Apatite (U-Th )/He date for the northern Tianshan sample is ca. 27 Ma. Previous studies also reported Apatite (U-Th)/He ages of ca. 44 Ma-11 Ma in the Baluntai area of the southern Central Tianshan[1]. Two episodes of cooling are distinguished by thermal history modelling: (1) Mesozoic cooling occurred as the result of the exhumation and tectonic reactivation of the central Tianshan; and (2) The Tianshan orogenic belt has been rapidly exhumed since the Middle Cenozoic. References [1] Lü, H.H., Chang, Y., Wang, W., Zhou, Z.Y., 2013. Rapid exhumation of the Tianshan Mountains since the early Miocene: Evidence from combined apatite fission track and (U-Th)/He thermochronology. Science China: Earth Sciences, 43(12): 1964-1974 (in Chinese).

  5. Correlating rates of magmatic arc unroofing and sedimentation using detrital zircon U/Pb and (U-Th)/He thermochronology

    NASA Astrophysics Data System (ADS)

    Fosdick, J. C.

    2017-12-01

    Double and triple dating of minerals using multiple geo-thermochronometers has revolutionized efforts to evaluate complex thermotectonic histories of orogens, isolate unique sedimentary sources, and quantify basin burial reheating. A persisting challenge is to distinguish volcanic sources from rapidly exhumed sources, with the simplistic premise that coincident cooling dates among high- to low-temperature thermochronometers are diagnostic of volcanic sources. Coupled zircon U/Pb and (U-Th)/He geo-thermochronometry from the Miocene Bermejo foreland basin in the southern Central Andes reveals a high temporal resolution of unroofing signatures of the Choiyoi Group, a Permian-Triassic silicic volcanic and plutonic complex, and the Pennsylvanian-Permian Colangüil batholith. Both units are important sediment sources within the High Andes for the Cenozoic east-flowing sediment routing systems. Results show fluvial sourcing of Colangüil detrital zircons with progressively greater partial loss of He (<8% to 12-23% fractional loss from 9.5 Ma to 6 Ma), as indicated by upsection younging of zircon He dates for a given U/Pb age cluster. These findings suggest erosion of increasingly deeper levels of the Colangüil arc during late Miocene development of the High Andes. This progression of higher He loss and thus younger He dates during sedimentation for a given U/Pb age cluster is analogous to the magmatic arc unroofing trend revealed by undissected to dissected arc provenance fields in sandstone petrography. Multi-method thermochronometry of detrital minerals may reveal an added level of information regarding rates of cooling, unroofing, and thermal evolution of magmatic systems as preserved in the detrital record.

  6. U-Th-Pb and Sm-Nd Isotopic Systematics of the Goalpara Ureilite

    NASA Astrophysics Data System (ADS)

    Torigoye, N.; Misawa, K.; Tatsumoto, M.

    1993-07-01

    One of the interesting features of ureilites is the light REE-enriched component that is dissolved by HNO3 leaching [1,2]. In this work, we performed acid-leaching of several mineral fractions from Goalpara ureilite for U-Th-Pb and Sm-Nd analyses. Olivine and pyroxene grains were hand-picked from 150-300- micrometer-sized fraction. Because they still contained carbon and metal sulfide they were further crushed to <63 micrometers and metal was removed with a hand magnet. These separates and whole-rock powders were washed by ethanol, and leached in 0.01N HBr, 1N HNO3, and in some cases, 7N HNO3. Concentrations of U, Th, and Pb in residues are 0.05-0.3 ppb, 0.1-0.7 ppb, and 5-100 ppb, respectively, corresponding to <=0.01X CI chondrites. Lead isotopic compositions of the residues are less radiogenic and close to Canon Diablo troilite (CDT) Pb [3] (Fig. 1). The U-Pb and Th-Pb ages of all the fractions are older than 4.5 Ga, indicating terrestrial Pb contamination (MT). Because of low concentration of U, Th, and Pb, a small amount of Pb can have a significant effect on the U-Pb and Th-Pb model ages. 238U/204Pb (mu) value of the least contaminated residue is 3, which is higher than mu (0.14-0.5) value of carbonaceous chondrites [3,4]. The higher mu value may be due to either volatile depletion by nebula fractionation or to depletion of Pb during segregation of sulfide that occurred prior to the formation of ureilite as an ultramafic cumulate. The Sm and Nd abundances in the residues are also extremely low; 0.4-2 ppb and 1-2.5 ppb, respectively, corresponding to 0.002-0.01X CI chondritic abundances. All the residues show high 147Sm/144Nd ratios (0.23 ~ 0.44), and the fraction with the highest Sm/Nd plots on the 4.55 Ga chondritic isochron (Fig. 2). The 1N HNO3 leachates do not contain light-REE-enriched components, except for the samples containing black metal-carbon phases, which also contain a large amount of terrestrial Pb in the residual fractions. Therefore

  7. U-Th-Pb systematics in three Apollo 14 basalts and the problem of initial Pb in lunar rocks.

    NASA Technical Reports Server (NTRS)

    Tera, F.; Wasserburg, G. J.

    1972-01-01

    The isotopic composition of Pb and the elemental concentration of U, Th and Pb were measured on 'total' rock samples 14053, 14073 and 14310 and on mineral separates of 14310 and 14053. These are the first Pb-U isochrons obtained for lunar basalts and indicate a reasonable solution to the previous discrepancy between the different methods of 'absolute' age determination. The resulting U-Pb isochron ages are compatible with the Rb-Sr and K-Ar ages on the same rocks. However, it is not possible to establish a precise time of 'crystallization' from the Pb-U data because of the small angle of intersection between the linear arrays and the concordia curve. These data show that total rock model ages do not in general yield crystallization ages. The data on 14310 and 14053 show that these rocks were formed containing a highly radiogenic initial lead which accounts for the excessively high total rock model ages by the U-Th-Pb method. The data prove that at the time of extrusion of some basalts, unsupported lead with extremely high Pb-207/Pb-206 ratios was added to the lunar surface.

  8. U, Th, and Pb isotopes in hot springs on the Juan de Fuca Ridge

    NASA Technical Reports Server (NTRS)

    Chen, J. H.

    1987-01-01

    Concentrations and isotopic compositions of U, Th, and Pb in three hydrothermal fluids from the Juan de Fuca Ridge were determined from samples obtained by the Alvin submersible. The samples were enriched in Pb and Th relative to deep-sea water, and were deficient in U. No clear relationship with Mg was found, suggesting nonideal mixing between the hot hydrothermal fluids and the cold ambient seawater. Values for U-234/U-238 have a seawater signature, and show a U-234 enrichment relative to the equilibrium value. The Pb isotopic composition has a uniform midocean ridge basalt signature, and it is suggested that Pb in these fluids may represent the best average value of the local oceanic crust.

  9. In-situ measurements of U-series nuclides by electron microprobe on zircons and monazites from Gandak river sediments

    NASA Astrophysics Data System (ADS)

    Bosia, C.; Deloule, E.; France-Lanord, C.; Chabaux, F.

    2015-12-01

    Determination of sediment transfer time during transport in the alluvial plains is a critical issue to correctly understand the relationship between climate, tectonics and Earth surface evolution. The residence time of river sediments may be constrained by analyzing the U series nuclides fractionations (e.g. [1] and [2]), which are created during water rock interactions by the ejection of the daughter nuclides of the grain (α-recoil) and the preferential mobilization of nuclides in decay damaged crystal structure. However, recent studies on sediments from the Gandak river, one of the main Ganga tributary, highlighted the difficulties to obtain reproducible data on bulk sediments, due to the nuggets distribution of U-Th enriched minor minerals in the samples (Bosia et al., unpublished data). We therefore decided to analyze the U and Th isotopic systematic at a grain-scale for Himalayan sediments from the Gandak river. This has been tested by performing in situ depth profiles of 238U-234U-230Th and 232Th on zircons and monazites (50-250 μm) by Secondary Ion Mass Spectrometry (SIMS) at the CRPG, Nancy, France. The first results point the occurrence of 238U-234U-230Th disequilibria in the outermost parts of both monazite and zircon minerals with a return to the equilibrium state in the core of the grains. The relative U and Th enrichment is however slightly different depending on considered minerals, suggesting possible adsorption processes of 230-Th. Coupled to a simple model of U and Th mobility during water-mineral interactions, these data should help to constrain the origin of 238U-234U-230Th disequilibria in these minerals. Moreover, the results of the study should be relevant to discuss the potential of this approach to constrain the residence time of zircons and monazites in the Gandak alluvial plain. [1] Chabaux et al., 2012, C. R. Geoscience, 344 (11-12): 688-703; [2] Granet et al., 2007, Earth and Planet. Sci. Lett., 261 (3-4): 389-406.

  10. Comment on "Zircon U-Th-Pb dating using LA-ICP-MS: Simultaneous U-Pb and U-Th dating on 0.1 Ma Toya Tephra, Japan" by Hisatoshi Ito

    NASA Astrophysics Data System (ADS)

    Guillong, M.; Schmitt, A. K.; Bachmann, O.

    2015-04-01

    Laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) of eight zircon reference materials and synthetic zircon-hafnon end-members indicate that corrections for abundance sensitivity and molecular zirconium sesquioxide ions (Zr2O3+) are critical for reliable determination of 230Th abundances in zircon. Other polyatomic interferences in the mass range 223-233 amu are insignificant. When corrected for abundance sensitivity and interferences, activity ratios of (230Th)/(238U) for the zircon reference materials we used average 1.001 ± 0.010 (1σ error; mean square of weighted deviates MSWD = 1.45; n = 8). This includes the 91500 and Plešovice zircons, which were deemed unsuitable for calibration of (230Th)/(238U) by Ito (2014). Uranium series zircon ages generated by LA-ICP-MS without mitigating (e.g., by high mass resolution) or correcting for abundance sensitivity and molecular interferences on 230Th such as those presented by Ito (2014) are potentially unreliable.

  11. Zircon and monazite petrochronologic record of prolonged amphibolite to granulite facies metamorphism in the Ivrea-Verbano and Strona-Ceneri Zones, NW Italy

    NASA Astrophysics Data System (ADS)

    Guergouz, Celia; Martin, Laure; Vanderhaeghe, Olivier; Thébaud, Nicolas; Fiorentini, Marco

    2018-05-01

    In order to improve the understanding of thermal-tectonic evolution of high-grade terranes, we conducted a systematic study of textures, REE content and U-Pb ages of zircon and monazite grains extracted from migmatitic metapelites across the amphibolite to granulite facies metamorphic gradient exposed in the Ivrea-Verbano and Strona-Ceneri Zones (Italy). This study documents the behaviour of these accessory minerals in the presence of melt. The absence of relict monazite grains in the metasediments and the gradual decrease in the size of inherited zircon grains from amphibolite to granulite facies cores indicate partial to total dissolution of accessory minerals during the prograde path and partial melting. The retrograde path is marked by (i) growth of new zircon rims (R1 and R2) around inherited cores in the mesosome, (ii) crystallisation of stubby zircon grains in the leucosome, especially at granulite facies, and (iii) crystallisation of new monazite in the mesosome. Stubby zircon grains have a distinctive fir-tree zoning and a constant Th/U ratio of 0.20. Together, these features reflect growth in the melt; conversely, the new zircon grains with R1 rims have dark prismatic habits and Th/U ratios < 0.1, pointing to growth in solid residues. U-Pb ages obtained on both types are similar, indicating contemporaneous growth of stubby zircon and rims around unresorbed zircon grains, reflecting the heterogeneous distribution of the melt at the grain scale. In the Ivrea-Verbano Zone the interquartile range (IQR) of U-Pb ages on zircon and monazite are interpreted to represent the length of zircon and monazite crystallisation in the presence of melt. Accordingly, they provide an indication on the minimum duration for high-temperature metamorphism and partial melting of the lower crust: 20 Ma and 30 Ma in amphibolite and granulite facies, respectively. In amphibolite facies, zircon crystallisation between 310 and 294 Ma (IQR) is interpreted to reflect metamorphic peak

  12. Zircon U-Pb dating of eclogite from the Qiangtang terrane, north-central Tibet: a case of metamorphic zircon with magmatic geochemical features

    NASA Astrophysics Data System (ADS)

    Zhai, Qing-guo; Jahn, Bor-ming; Li, Xian-hua; Zhang, Ru-yuan; Li, Qiu-li; Yang, Ya-nan; Wang, Jun; Liu, Tong; Hu, Pei-yuan; Tang, Suo-han

    2017-06-01

    Zircon is probably the most important mineral used in the dating formation of high-pressure (HP) and ultrahigh-pressure (UHP) metamorphic rocks. The origin of zircon, i.e., magmatic or metamorphic, is commonly assessed by its external morphology, internal structure, mineral inclusions, Th/U ratios and trace element composition. In this study, we present an unusual case of metamorphic zircon from the Qiangtang eclogite, north-central Tibet. The zircon grains contain numerous eclogite-facies mineral inclusions, including omphacite, phengite, garnet and rutile; hence, they are clearly of metamorphic origin. However, they display features similar to common magmatic zircon, including euhedral crystal habit, high Th/U ratios and enriched heavy rare earth elements pattern. We suggest that these zircon grains formed from a different reservoir from that for garnet where no trace elements was present and trace element equilibrium between zircon and garnet was achieved. U-Pb dating of zircon gave an age of 232-237 Ma for the eclogite, and that of rutile yielded a slightly younger age of ca. 217 Ma. These ages are consistent with the reported Lu-Hf mineral isochron and phengite Ar-Ar ages. The zircon U-Pb and mineral Lu-Hf isochron ages are interpreted as the time of the peak eclogite-facies metamorphism, whereas the rutile U-Pb and phengite Ar-Ar ages represent the time of exhumation to the middle crust. Thus, the distinction between metamorphic and magmatic zircons cannot be made using only Th/U ratios and heavy REE compositions for HP-UHP metamorphic rocks of oceanic derivation.

  13. Parent zonation in thermochronometers - resolving complexity revealed by ID-TIMS U-Pb dates and implications for the application of decay-based thermochronometers

    NASA Astrophysics Data System (ADS)

    Navin Paul, Andre; Spikings, Richard; Chew, David; Daly, J. Stephen; Ulyanov, Alexey

    2017-04-01

    diffusion length scale is observed and compare t-T-paths from single grain and in-situ modelling. Modelling of in-situ data will further show if all apatites from a single hand specimen record the same thermal history using Cherniak et al. (2010) diffusion data, or if the Pb-in-apatite diffusion parameters are a function of composition. U zonation is ubiquitous in the studied rocks (Triassic apatites extracted from peraluminous leucosomes), implying that these conclusions may also apply to lower temperature thermochronometers that are based on uranium decay, such as (U-Th)/He dating.

  14. Deciphering igneous and metamorphic events in high-grade rocks of the Wilmington complex, Delaware: Morphology, cathodoluminescence and backscattered electron zoning, and SHRIMP U-Pb geochronology of zircon and monazite

    USGS Publications Warehouse

    Aleinikoff, J.N.; Schenck, W.S.; Plank, M.O.; Srogi, L.A.; Fanning, C.M.; Kamo, S.L.; Bosbyshell, H.

    2006-01-01

    High-grade rocks of the Wilmington Complex, northern Delaware and adjacent Maryland and Pennsylvania, contain morphologically complex zircons that formed through both igneous and metamorphic processes during the development of an island-arc complex and suturing of the arc to Laurentia. The arc complex has been divided into several members, the protoliths of which include both intrusive and extrusive rocks. Metasedimentary rocks are interlayered with the complex and are believed to be the infrastructure upon which the arc was built. In the Wilmingto n Complex rocks, both igneous and metamorphic zircons occur as elongate and equant forms. Chemical zoning, shown by cathodoluminescence (CL), includes both concentric, oscillatory patterns, indicative of igneous origin, and patchwork and sector patterns, suggestive of metamorphic growth. Metamorphic monazites are chemically homogeneous, or show oscillatory or spotted chemical zoning in backscattered electron images. U-Pb geochronology by sensitive high resolution ion microprobe (SHRIMP) was used to date complexly zoned zircon and monazite. All but one member of the Wilmington Complex crystallized in the Ordovician between ca. 475 and 485 Ma; these rocks were intruded by a suite of gabbro-to-granite plutonic rocks at 434 ?? Ma. Detrital zircons in metavolcanic and metasedimentary units were derived predominantly from 0.9 to 1.4 Ga (Grenvillian) basement, presumably of Laurentian origin. Amphibolite to granulite facies metamorphism of the Wilmington Complex, recorded by ages of metamorphic zircon (428 ?? 4 and 432 ?? 6 Ma) and monazite (429 ?? 2 and 426 ?? 3 Ma), occurred contemporaneously with emplacement of the younger plutonic rocks. On the basis of varying CL zoning patterns and external morphologies, metamorphic zircons formed by different processes (presumably controlled by rock chemistry) at slightly different times and temperatures during prograde metamorphism. In addition, at least three other thermal episodes are

  15. Evaluating the utility of detrital thermochronometric studies: detrital laser ablation (U-Th)/He dating and conventional bedrock zircon (U-Th)/He analyses from the eastern Sierra Nevada, California

    NASA Astrophysics Data System (ADS)

    Horne, A.; Hodges, K. V.; Van Soest, M. C.

    2016-12-01

    Recent applications of the newly developed `laser ablation double dating' (LADD) technique, an integrated laser microprobe U/Pb and (U-Th)/He dating method, have showcased the potential utility of LADD for detrital thermochronologic studies. However, detrital thermochronologic techniques rely on confidence that detrital data adequately represent the full range of bedrock cooling ages within a catchment. To test this primary assumption, we compare (U-Th)/He zircon ages from age-elevation transects to LADD (U-Th)/He zircon ages from modern fluvial detritus collected at the range front in the eastern Sierra Nevada, California. Terminated by a normal fault escarpment, the small, steep catchments along the eastern side of the Sierra Nevada batholith are apropos locations for comparing the ability of detrital data to deduce the exhumation history of a source terrain with standard age-elevation transects. Additionally, the exhumation of the Sierra Nevada batholith is also intriguing, as past evaluations of the post-emplacement exhumation history of the range have yielded discrepant results. Thus far, analyses from the southern extent of the eastern Sierra Nevada show narrow ranges of cooling ages consistent with simple, relatively rapid exhumation. Ongoing analyses will expand the dataset such that we can fully compare bedrock and detrital age ranges as well as characterize the exhumation history of the range with a thermochronometer that has not been used to date the batholith.

  16. U-Pb dating of large zircons in low-temperature jadeitite from the Osayama serpentinite melange, southwest Japan: insights into the timing of serpentinization

    USGS Publications Warehouse

    Tsujimori, T.; Liou, J.G.; Wooden, J.; Miyamoto, T.

    2005-01-01

    Crystals of zircon up to 3 mm in length occur in jadeitite veins in the Osayama serpentinite mélange, Southwest Japan. The zircon porphyroblasts show pronounced zoning, and are characterized by both low Th/U ratios (0.2-0.8) and low Th and U abundances (Th = 1-81 ppm; U = 6-149 ppm). They contain inclusions of high-pressure minerals, including jadeite and rutile; such an occurrence indicates that the zircon crystallized during subduction-zone metamorphism. Phase equilibria and the existing fluid-inclusion data constrain P-T conditions to P > 1.2 GPa at T > 350°C for formation of the jadeitite. Most U/Pb ages obtained by SHRIMP-RG are concordant, with a weighted mean 206Pb/238U age of 472 ± 8.5 Ma (MSWD = 2.7, n = 25). Because zircon porphyroblasts contain inclusions of high-pressure minerals, the SHRIMP U-Pb age represents the timing of jadeitite formation, i.e., the timing of interaction between alkaline fluid and ultramafic rocks in a subduction zone. Although this dating does not provide a direct time constraint for serpentinization, U-Pb ages of zircon in jadeitite associated with serpentinite result in new insights into the timing of fluid-rock interaction of ultramafic rocks at a subduction zone and the minimum age for serpentinization.

  17. U-Th-Pb isotope data indicate phanerozoic age for oxidation of the 3.4 Ga Apex Basalt

    NASA Astrophysics Data System (ADS)

    Li, Weiqiang; Johnson, Clark M.; Beard, Brian L.

    2012-02-01

    The occurrence of ferric oxides in Archean rocks has played an important role in discussions on the amount of free oxygen in the atmosphere of the ancient Earth. Recognizing that post-Archean weathering may also produce oxide minerals, drill cores have been used to obtain samples beneath the depth of Phanerozoic weathering. The first core of the Archean Biosphere Drilling Project (ABDP-1) documented hematite as alteration products in 3.4 Ga basalts from the Marble Bar area of the Pilbara Craton, NW Australia, and this has been used to infer the presence of an O2-bearing atmosphere in the Archean. It is possible, however, that despite recovery of samples from > 100 m depth, oxidation of the basalts occurred much younger than the depositional age. In this study, the age of oxidation of the Apex Basalt from the ABDP-1 drill core at Marble Bar is constrained by U-Th-Pb geochronology. Lead and U concentrations of the basalts from the ABDP-1 drill core vary greatly, between < 1-58 ppm and 0.08-1.04 ppm, respectively, whereas Th contents are more restricted (0.24-0.71 ppm). 206Pb/204Pb ratios are non-radiogenic and vary from 12.44 to 14.69. The linear array in terms of 206Pb/204Pb-207Pb/204Pb variations does not reflect an age but reflects two-component mixing between a non-radiogenic "ore lead" end member and a radiogenic "basalt lead" end member. The samples do not form isochrons on 238U/204Pb-206Pb/204Pb, 235U/204Pb-207Pb/204Pb, or 232Th/204Pb-208Pb/204Pb diagrams, indicating post-formation U and Pb addition. Comparison of measured U/Th ratios with "model" U/Th ratios calculated based on 208Pb/204Pb-206Pb/204Pb variations indicates that U enrichment most likely occurred in the last 200 Ma. The degree of U enrichment in the samples is correlated with Fe(III)/FeTotal ratios, indicating that U addition and oxidation were related, most likely reflecting penetration of oxygenated surface waters in the Phanerozoic along bedding planes and shear zones. These results

  18. U-Th-Pb systematics of selected samples from Apollo 17, Boulder 1, Station 2

    USGS Publications Warehouse

    Nunes, P.D.; Tatsumoto, M.

    1975-01-01

    Nine U-Th-Pb whole-rock analyses of selected brecciated materials from sample 72215 and one analysis of a pigeonite basalt clast from 72275 are presented. Both samples are from Boulder 1, Apollo 17. These data supplement previous Boulder 1 U-Th-Pb analyses of samples 72275 and 72255. U and Th concentrations indicate that most of the samples contain a moderate to large KREEP component. Samples containing the least KREEP are a noritic clast (72255,49; Civet Cat clast) and an anorthositic clast (72275,117). Evidence for the migration of Pb from Pb-rich matrix material into relatively Pb-poor clasts is presented for two clasts. Most of the Boulder 1 data define a linear trend that intersects concordia at ??? 3.9 and 4.4 b.y. when plotted on a U-Pb concordia diagram. The presence of one anorthositic clast distinctly off this trend indicates that a simple two-stage U-Pb evolution history is inadequate to explain all the data. Accordingly physical significance is only attached to the lower concordia intercept age of 3.9-4.0 b.y. The older concordia intercept age of ??? 4.4 b.y. is interpreted to reflect an averaging of events both older and younger than 4.4 b.y. The data suggest that significant differentiation and/or metamorphism occurred ??? 4.2 b.y. ago. The age of this event, however, is not accurately defined by these data. ?? 1975 D. Reidel Publishing Company, Dordrecht-Holland.

  19. U-Th-Pb geochronology of the Massabesic Gneiss and the granite near Milford, South-Central New Hampshire: New evidence for avalonian basement and taconic and alleghenian disturbances in Eastern New England

    USGS Publications Warehouse

    Aleinikoff, J.N.; Zartman, R.E.; Lyons, J.B.

    1979-01-01

    U-Th-Pb systematics for zircon and monazite from Massabesic Gneiss (paragneiss and orthogneiss) and the granite near Milford, New Hampshire, were determined. Zircon morphology suggests that the paragneiss may be volcaniclastic (igneous) in origin, and thus the age data probably record the date (minimum of 646 m.y.) at which the rock was extruded. A two-stage lead-loss model is proposed to explain the present array of data points on a concordia diagram. Orthogneiss ages range only narrowly and are clustered around 475 m.y. Data for the granite of Milford, New Hampshire, are scattered, but may be interpreted in terms of inheritance and modern lead loss, yielding a crystallization age of 275 m.y. This is the only known occurrence of Avalonian-type basement in New Hampshire and as such provides evidence for the location of the paleo-Africa-paleo- North America suture. The geochronology also further documents the occurrence of disturbances during the Ordovician and Permian. ?? 1979 Springer-Verlag.

  20. Preliminary Report on U-Th-Pb Isotope Systematics of the Olivine-Phyric Shergottite Tissint

    NASA Technical Reports Server (NTRS)

    Moriwaki, R.; Usui, T.; Yokoyama, T.; Simon, J. I.; Jones, J. H.

    2014-01-01

    Geochemical studies of shergottites suggest that their parental magmas reflect mixtures between at least two distinct geochemical source reservoirs, producing correlations between radiogenic isotope compositions, and trace element abundances.. These correlations have been interpreted as indicating the presence of a reduced, incompatible-element- depleted reservoir and an oxidized, incompatible-element-rich reservoir. The former is clearly a depleted mantle source, but there has been a long debate regarding the origin of the enriched reservoir. Two contrasting models have been proposed regarding the location and mixing process of the two geochemical source reservoirs: (1) assimilation of oxidized crust by mantle derived, reduced magmas, or (2) mixing of two distinct mantle reservoirs during melting. The former clearly requires the ancient martian crust to be the enriched source (crustal assimilation), whereas the latter requires a long-lived enriched mantle domain that probably originated from residual melts formed during solidification of a magma ocean (heterogeneous mantle model). This study conducts Pb isotope and U-Th-Pb concentration analyses of the olivine-phyric shergottite Tissint because U-Th-Pb isotope systematics have been intensively used as a powerful radiogenic tracer to characterize old crust/sediment components in mantle- derived, terrestrial oceanic island basalts. The U-Th-Pb analyses are applied to sequential acid leaching fractions obtained from Tissint whole-rock powder in order to search for Pb isotopic source components in Tissint magma. Here we report preliminary results of the U-Th-Pb analyses of acid leachates and a residue, and propose the possibility that Tissint would have experienced minor assimilation of old martian crust.

  1. U-Th-Pb age of the Barwell chondrite - Anatomy of a 'discordant' meteorite

    NASA Technical Reports Server (NTRS)

    Unruh, D. M.; Tatsumoto, M.; Hutchison, R.

    1979-01-01

    A Pb-Pb internal isochron for the Barwell L5-6 chondrite yields an age of 4.530 plus or minus 0.005 billion years, using the measured U-238/U-235 ratio of 135.24 plus or minus .17. If the terrestrial U isotope composition is used, an age of 4.559 billion years is obtained. The Pb isotopic composition is distinctly different from that of a terrestrial contaminant found in the fusion crust of the Barwell stone. When the U-Th-Pb data are plotted on the concordia diagram, the data define a line that intersects the concordia curve at approximately 4.53 and 0 billion years, and nearly all of the data plot above the concordia curve, regardless of the initial Pb correction. This discordancy and the Pb isotopic composition of the triolite are attributed to a recent reequilibration of Pb and not to terrestrial contamination.

  2. Bioaccessibility of U, Th and Pb in particulate matter from an abandoned uranium mine

    NASA Astrophysics Data System (ADS)

    Millward, Geoffrey; Foulkes, Michael; Henderson, Sam; Blake, William

    2016-04-01

    Currently, there are approximately 150 uranium mines in Europe at various stages of either operation, development, decommissioning, restoration or abandonment (wise-uranium.com). The particulate matter comprising the mounds of waste rock and mill tailings poses a risk to human health through the inadvertent ingestion of particles contaminated with uranium and thorium, and their decay products, which exposes recipients to the dual toxicity of heavy elements and their radioactive emissions. We investigated the bioaccessibility of 238U, 232Th and 206,214,210Pb in particulate samples taken from a contaminated, abandoned uranium mine in South West England. Sampling included a mine shaft, dressing floor and waste heap, as well as soils from a field used for grazing. The contaminants were extracted using the in-vitro Unified Bioaccessibility Research Group of Europe Method (UBM) in order to mimic the digestion processes in the human stomach (STOM) and the combined stomach and gastrointestinal tract (STOM+INT). Analyses of concentrations of U, Th and Pb in the extracts were by ICP-MS and the activity concentrations of radionuclides were determined on the same particles, before and after extraction, using gamma spectroscopy. 'Total' concentrations of U, Th and Pb for all samples were in the range 57 to 16,200, 0.28 to 3.8 and 69 to 4750 mg kg-1, respectively. For U and Pb the concentrations in the STOM fraction were lower than the total and STOM+INT fractions were even lower. However, for Th the STOM+INT fractions were higher than the STOM due to the presence of Th carbonate species within the gastrointestinal fluid. Activity concentrations for 214Pb and 210Pb, including total, STOM and STOM+INT, were in the range 180 to <1 Bq g-1 for the dressing floor and waste heap and 18 to <1 Bq g-1 for the grazing land. Estimates of the bioaccessible fractions (BAFs) of 238U in the most contaminated samples were 39% and 8% in the STOM and STOM+INT, respectively, whereas the respective

  3. U-Th-Pb measurements of Luna 20 soil

    USGS Publications Warehouse

    Tatsumoto, M.

    1973-01-01

    The concentrations of uranium, thorium and lead and the lead isotopic composition of Luna 20 soil were determined. The data indicate that the Luna 20 soil is mainly a mixture of highland anorthosites and low-K basalt, but little KREEP basalt. The U-Th-Pb systematics are discussed in comparison with other lunar soils, especially with Apollo 16 soils which were collected from a 'typical' highland region. The data fit well in the Apollo 16 soil array on a U-Pb evolution diagram, and they exhibit excess lead relative to uranium. This relationship appears to be a characteristic of highland localities. Considering the previous observations of lunar samples, we infer that lead enrichment in the soil relative to uranium occurred between 3.2 and 3.9 b.y. ago and that the soil was disturbed by 'third events' about 2.0 b.y. ago. A lunar evolution model is discussed. ?? 1973.

  4. Sharpening the U-Th Chronometer: Progress and Outlook

    NASA Astrophysics Data System (ADS)

    McLean, N. M.; Condon, D. J.; Henderson, G. M.; Richards, D. A.; Noble, S.; Mason, A.

    2013-12-01

    Uranium is incorporated into a variety of natural materials when they form, including carbonates like speleothems and corals. The two most abundant naturally occurring uranium isotopes, 238U and 235U, decay to 206Pb and 207Pb over long timescales with half-lives of 4.5 and 0.7 billion years respectively, but transition through several intermediate daughter isotopes with shorter half-lives first. Fractionation between these daughter isotopes, including 234U, 230Th, and 231Pa, and their parent isotopes, followed by their time-dependent return to secular equilibrium over the course of up to ~800 kyr, forms the basis for U-series geochronology, and allows speleothems and corals to be precisely dated. These carbonates often additionally incorporate chemical and isotopic signatures (e.g., trace elements, δ18O and δ13C) from the environment in which they form, and thus are some of the best dated paleoclimate archives, offering clues about past and future conditions for life on Earth. Over the past decade, the analytical precision of U-series isotope measurements has improved dramatically, largely due to the steadily increasing sensitivity of multiple-collector inductively coupled plasma mass spectrometry (MC-ICP-MS). Analytical uncertainties in U-Th dates now approach or are better than 0.1% (2σ), for instance ×100 years for a speleothem or coral that is 130 kyr old (Cheng et al., 2013). However, the accuracy of U-series dates also depends on the accuracy of tracer calibrations, reference solutions and data reduction protocols, which has not kept pace in many laboratories. This means that dates measured in different labs, while impressively precise, may not be directly comparable. To address issues of inter-laboratory bias and improve the accuracy and inter-comparability of U-Th dates, we have instigated work in three related directions. First, we report on the mixing of three synthetic U-Th age solutions, created by combining high-purity mono-isotopic solutions to

  5. U-Th-Pb systematics of some Apollo 17 lunar samples and implications for a lunar basin excavation chronology

    NASA Technical Reports Server (NTRS)

    Nunes, P. D.; Tatsumoto, M.; Unruh, D. M.

    1974-01-01

    U, Th, and Pb concentrations and lead isotopic compositions of selected Apollo 17 soil and rock samples are presented. Concordia treatments of U-Pb whole samples of Apollo 17 mare basalts and highland rocks probably reflect several early thermal events about 4.5 b.y. old more consistently than do U-Pb ages of samples collected at other lunar sites. We propose that all lunar U-Th-Pb data reflect a multistate U-Pb evolution history most easily understood as being related to a complex planetesimal bombardment history of the moon which apparently dominated lunar events from about 4.5 to about 3.9 b.y. ago. Semi-distinct events at about 4.0, about 4.2, and 4.4-4.5 b.y. are evident on whole-rock frequency versus Pb-207/Pb-206 age histograms. Each of these events may reflect multiple cratering episodes. For mare basalts, complete resetting of the source rock U-Pb systems owing to Pb loss relative to U was apparently often approached after a major planetesimal impact.

  6. Pan-African metamorphic evolution in the southern Yaounde Group (Oubanguide Complex, Cameroon) as revealed by EMP-monazite dating and thermobarometry of garnet metapelites

    NASA Astrophysics Data System (ADS)

    Owona, Sebastien; Schulz, Bernhard; Ratschbacher, Lothar; Mvondo Ondoa, Joseph; Ekodeck, Georges E.; Tchoua, Félix M.; Affaton, Pascal

    2011-01-01

    Garnet-bearing micaschists and paragneisses of the Yaounde Group in the Pan-African Central African Orogenic Belt in Cameroon underwent a polyphase structural evolution with the deformation stages D 1-D 2, D 3 and D 4. The garnet-bearing assemblages crystallized in course of the deformation stage D 1-D 2 which led to the formation of the regional main foliation S 2. In XCa- XMg coordinates one can distinguish several zonation trends in the garnet porphyroblasts. Zonation trends with increasing XMg and variably decreasing XCa signalize a garnet growth during prograde metamorphism. Intermineral microstructures provided criteria for local equilibria and a structurally controlled application of geothermobarometers based on cation exchange and net transfer reactions. The syndeformational P- T path sections calculated from cores and rims of garnets in individual samples partly overlap and align along clockwise P- T trends. The P- T evolution started at ˜450 °C/7 kbar, passed high-pressure conditions at 11-12 kbar at variable temperatures (600-700 °C) and involved a marked decompression toward 6-7 kbar at high temperatures (700-750 °C). Th-U-Pb dating of metamorphic monazite by electron microprobe (EMP-CHIME method) in eight samples revealed a single period of crystallization between 613 ± 33 Ma and 586 ± 15 Ma. The EMP-monazite age populations between 613 ± 33 Ma enclosed in garnet and 605 ± 12 Ma in the matrix apparently bracket the high temperature-intermediate pressure stage at the end of the prograde P- T path. The younger monazites crystallized still at amphibolite-facies conditions during subsequent retrogression. The Pan-African overall clockwise P- T evolution in the Yaounde Group with its syndeformational high pressure stages and marked pressure variations is typical of the parts of orogens which underwent contractional crustal thickening by stacking of nappe units during continental collision and/or during subduction-related accretionary processes.

  7. In situ LA-ICPMS U–Pb dating of cassiterite without a known-age matrix-matched reference material: Examples from worldwide tin deposits spanning the Proterozoic to the Tertiary

    USGS Publications Warehouse

    Neymark, Leonid; Holm-Denoma, Christopher S.; Moscati, Richard J.

    2018-01-01

    Cassiterite (SnO2), a main ore mineral in tin deposits, is suitable for U–Pb isotopic dating because of its relatively high U/Pb ratios and typically low common Pb. We report a LA-ICPMS analytical procedure for U–Pb dating of this mineral with no need for an independently dated matrix-matched cassiterite standard. LA-ICPMS U-Th-Pb data were acquired while using NIST 612 glass as a primary non-matrix-matched standard. Raw data are reduced using a combination of Iolite™ and other off-line data reduction methods. Cassiterite is extremely difficult to digest, so traditional approaches in LA-ICPMS U-Pb geochronology that utilize well-characterized matrix-matched reference materials (e.g., age values determined by ID-TIMS) cannot be easily implemented. We propose a new approach for in situ LA-ICPMS dating of cassiterite, which benefits from the unique chemistry of cassiterite with extremely low Th concentrations (Th/U ratio of 10−4 or lower) in some cassiterite samples. Accordingly, it is assumed that 208Pb measured in cassiterite is mostly of non-radiogenic origin—it was initially incorporated in cassiterite during mineral formation, and can be used as a proxy for common Pb. Using 208Pb as a common Pb proxy instead of 204Pb is preferred as 204Pb is much less abundant and is also compromised by 204Hg interference during the LA-ICPMS analyses.Our procedure relies on 208Pb/206Pb vs 207Pb/206Pb (Pb-Pb) and Tera-Wasserburg 207Pb/206Pb vs 238U/206Pb (U-Pb) isochron dates that are calculated for a ~1.54 Ga low-Th cassiterite reference material with varying amounts of common Pb that we assume remained a closed U-Pb system. The difference between the NIST 612 glass normalized biased U-Pb date and the Pb-Pb age of the reference material is used to calculate a correction factor (F) for instrumental U-Pb fractionation. The correction factor (F) is then applied to measured U/Pb ratios and Tera-Wasserburg isochron dates are obtained for the unknown

  8. Re-appraisal of the stratigraphy and determination of new U-Pb dates for the Sterkfontein hominin site, South Africa.

    PubMed

    Pickering, Robyn; Kramers, Jan D

    2010-07-01

    Sterkfontein Caves is the single richest early hominin site in the world with deposits yielding one or more species of Australopithecus and possible early Homo, as well as an extensive faunal collection. The inability to date the southern African cave sites accurately or precisely has hindered attempts to integrate the hominin fossil evidence into pan-African scenarios about human evolutionary history, and especially hominin biogeography. We have used U-Pb and U-Th techniques to date sheets of calcium carbonate flowstone inter-bedded between the fossiliferous sediments. For the first time, absolute age ranges can be assigned to the fossil-bearing deposits: Member 2 is between 2.8 +/- 0.28 and 2.6 +/- 0.30 Ma and Member 4 between 2.65 +/- 0.30 and 2.01 +/- 0.05 Ma. The age of 2.01 +/- 0.05 Ma for the top of Member 4 constrains the last appearance of Australopithecus africanus to 2 Ma. In the Silberberg Grotto we have reproduced the U-Pb age of approximately 2.2 Ma of for the flowstones associated with StW573. We believe that these deposits, including the fossil and the flowstones, accumulated rapidly around 2.2 Ma. The stratigraphy of the site is complex as sediments are exposed both in the underground chambers and at surface. We present a new interpretation of the stratigraphy based on surface mapping, boreholes logs and U-Pb ages. Every effort was made to retain the Member system, however, only Members 2 and 4 are recognized in the boreholes. We propose that the deposits formally known as Member 3 are in fact the distal equivalents of Member 4. The sediments of Members 2 and 4 consisted of cone-like deposits and probably never filled up the cave. The U-Th ages show that there are substantial deposits younger than 400 ka in the underground cave, underlying the older deposits, highlighting again that these cave fills are not simple layer-cakes.

  9. Constraints on the timing of Co-Cu ± Au mineralization in the Blackbird district, Idaho, using SHRIMP U-Pb ages of monazite and xenotime plus zircon ages of related Mesoproterozoic orthogneisses and metasedimentary rocks

    USGS Publications Warehouse

    Aleinikoff, John N.; Slack, John F.; Lund, Karen; Evans, Karl V.; Fanning, C. Mark; Mazdab, Frank K.; Wooden, Joseph L.; Pillers, Renee M.

    2012-01-01

    observed in thin section, xeno-time and cobaltite formed during multiple episodes. The oldest age for xenotime (1370 ± 4 Ma), determined on oscillatory-zoned cores, may date the time of initial cobaltite formation, and provides a minimum age for the host metasedimentary rocks. Additional Proterozoic xenotime growth events occurred at 1315 to 1270 Ma and ca. 1050 Ma. Other xenotime grains and rims grew in conjunction with cobaltite during Cretaceous metamorphism. However, ages of these growth episodes cannot be precisely determined due to matrix effects on 206Pb/238U data for xenotime. Monazite, some of which encloses cobaltite, uniformly has Cretaceous ages that mainly are 110 ± 3 and 92 ± 5 Ma. These data indicate that xenotime, monazite, and cobaltite were extensively mobilized and precipitated during Middle to Late Cretaceous metamorphic events.

  10. Alteration and chemical U-Th-total Pb dating of heterogeneous high-uranium zircon from a pegmatite from the Aduiskii massif, middle Urals, Russia

    NASA Astrophysics Data System (ADS)

    Zamyatin, Dmitry A.; Shchapova, Yuliya V.; Votyakov, Sergey L.; Nasdala, Lutz; Lenz, Christoph

    2017-09-01

    The U-Th-Pb isotope system in the accessory mineral zircon may be disturbed, as for instance by the secondary loss of radiogenic lead. The recognition of such alteration is crucial for the sound interpretation of geochronology results, in particular for chemical dating by means of an electron probe micro-analyser (EPMA). Here we present the example of high-U zircon samples from a granite pegmatite from the Aduiskii Massif, Middle Urals, Russia. The structural and chemical heterogeneity of samples was characterised by EPMA, including joint probability distribution (JPD) analysis of back-scattered electrons (BSE), cathodoluminescence (CL) and U M β images, and by Raman and photoluminescence (PL) spectroscopy. We found a high-U interior region (U up to 11.4 wt%) without any obvious indication of alteration. This domain has stoichiometric composition, and its Raman spectrum is similar to that of amorphous ZrSiO4. In addition, altered lower-U regions are present that are non-stoichiometric and contain non-formula elements such as Ca, Al, Fe, and water up to several wt%. Their Raman spectra yielded a band near 760-810 cm-1 which is not related to any ZrSiO4 vibration; we assign it tentatively to the symmetric stretching of (UO2)2+ groups. This assignment is supported by the observation of a fairly intense PL phenomenon whose spectral position and vibrational-coupling structure strongly indicates a uranyl-related emission. Altered zones were formed by both fluid-driven diffusion reaction and coupled dissolution-reprecipitation processes. The variation of BSE and CL intensities in amorphous high-U zircon is controlled by its chemical composition and the presence of water and uranyl groups. We have determined a weighted mean EPMA age of 246 ± 2 Ma, which agrees reasonably well with previous dating results for the Aduiskii Massif.

  11. U-Th-Pb systematics of some Apollo 16 lunar samples

    NASA Technical Reports Server (NTRS)

    Nunes, P. D.; Tatsumoto, M.; Knight, R. J.; Unruh, D. M.; Doe, B. R.

    1973-01-01

    U, Th, and Pb concentrations and lead isotopic compositions of Apollo 16 samples are interpreted as follows: (1) an early period of lunar differentiation of either global or regional scale occurred about 4.47 b.y. ago; (2) the Imbrian impact event affected many Apollo 16 samples about 3.99 b.y. ago; (3) some Apollo 16 metaclastic rocks and breccias contain a large amount of KREEP-like material; (4) lead produced in the early history of the moon has been concentrated in lunar highland soils yielding high Pb-207/Pb-206 ratios corresponding to apparent ages of more than 4.8 b.y.; and (5) South Ray Crater soils reflect the approximately 2-b.y.-old event previously proposed for the Apollo 12 and 14 samples.

  12. Consequences of slow growth for 230Th/U dating of Quaternary opals, Yucca Mountain, NV, USA

    USGS Publications Warehouse

    Neymark, L.A.; Paces, J.B.

    2000-01-01

    Thermal ionization mass-spectrometry 234U/238U and 230Th/238U data are reported for uranium-rich opals coating fractures and cavities within the silicic tuffs forming Yucca Mountain, NV, the potential site of a high-level radioactive waste repository. High uranium concentrations (up to 207 ppm) and extremely high 230Th/232Th activity ratios (up to about 106) make microsamples of these opals suitable for precise 230Th/U dating. Conventional 230Th/U ages range from 40 to greater than 600 ka, and initial 234U/238U activity ratios between 1.03 and 8.2. Isotopic evidence indicates that the opals have not experienced uranium mobility; however, wide variations in apparent ages and initial 234U/238U ratios for separate subsamples of the same outermost mineral surfaces, positive correlation between ages and sample weights, and negative correlation between 230Th/U ages and calculated initial 234U/238U are inconsistent with the assumption that all minerals in a given subsample was deposited instantaneously. The data are more consistent with a conceptual model of continuous deposition where secondary mineral growth has occurred at a constant, slow rate up to the present. This model assumes that individual subsamples represent mixtures of older and younger material, and that calculations using the resulting isotope ratios reflect an average age. Ages calculated using the continuous-deposition model for opals imply average mineral growth rates of less than 5 mm/m.y. The model of continuous deposition also predicts discordance between ages obtained using different radiometric methods for the same subsample. Differences in half-lives will result in younger apparent ages for the shorter-lived isotope due to the greater influence of younger materials continuously added to mineral surfaces. Discordant 14C, 230Th/U and U-Pb ages obtained from outermost mineral surfaces at Yucca Mountain support this model. (C) 2000 Elsevier Science B.V. All rights reserved.

  13. Magmatic Longevity Constrained by ID-TIMS U-Pb Dating of Zircon and Titanite

    NASA Astrophysics Data System (ADS)

    Szymanowski, D.; Wotzlaw, J. F.; Ellis, B. S.; Bachmann, O.; Von Quadt, A.

    2016-12-01

    Clues about the timescales and thermal conditions associated with the growth and evacuation of large silicic magma reservoirs are frequently drawn from radiometric dating, diffusion modelling, or thermomechanical modelling. A growing amount of petrological and geochronological evidence, supported by thermal modelling, suggests that many silicic magma reservoirs may exist for some 104-106 years in the form of high-crystallinity mushes at relatively low temperatures ( 700-750°C; [1-3]). Geochronological studies addressing this issue typically utilise the U-Pb system in zircon capable of recording extended periods of crystallisation, particularly in evolved calc-alkaline systems that spend most of their lifetime zircon-saturated. In this study, we integrate U-Pb dating of zircon and titanite to investigate the longevity of the magma reservoir that produced the Kneeling Nun Tuff, a 35 Ma, >900 km3 crystal-rich rhyolitic super-eruption from the Mogollon-Datil volcanic field in New Mexico (USA). High-precision ID-TIMS U-Pb dates of single crystals of both zircon and titanite independently record a continuous crystallisation history over >400,000 years. We combine the dating of both accessory phases with textural, major, trace element and isotopic studies of single crystals, placing tight constraints on the thermal conditions of magma accumulation and storage while recording differentiation and rejuvenation processes within the magma reservoir. The results suggest a protracted `cool' upper-crustal storage of magma prior to the Kneeling Nun Tuff eruption followed by a melting event which reduced the magma crystallinity and conditioned it for eruption. [1] Bachmann & Bergantz (2004), J. Petrol. 45, 1565-1582. [2] Gelman et al. (2013), Geology 41, 759-762. [3] Cooper & Kent (2014), Nature 506, 480-483.

  14. Direct U-Pb dating of Cretaceous and Paleocene dinosaur bones, San Juan Basin, New Mexico: COMMENT

    USGS Publications Warehouse

    Koenig, Alan E.; Lucas, Spencer G.; Neymark, Leonid A.; Heckert, Andrew B.; Sullivan, Robert M.; Jasinski, Steven E.; Fowler, Denver W.

    2012-01-01

    Based on U-Pb dating of two dinosaur bones from the San Juan Basin of New Mexico (United States), Fassett et al. (2011) claim to provide the first successful direct dating of fossil bones and to establish the presence of Paleocene dinosaurs. Fassett et al. ignore previously published work that directly questions their stratigraphic interpretations (Lucas et al., 2009), and fail to provide sufficient descriptions of instrumental, geochronological, and statistical treatments of the data to allow evaluation of the potentially complex diagenetic and recrystallization history of bone. These shortcomings lead us to question the validity of the U-Pb dates published by Fassett et al. and their conclusions regarding the existence of Paleocene dinosaurs.

  15. U-Th-Pb and Rb-Sr systematics of Apollo 17 boulder 7 from the North Massif of the Taurus-Littrow Valley

    USGS Publications Warehouse

    Nunes, P.D.; Tatsumoto, M.; Unruh, D.M.

    1974-01-01

    Portions of highland breccia boulder 7 collected during the Apollo 17 mission were studied using UThPb and RbSr systematics. A RbSr internal isochron age of 3.89 ?? 0.08 b.y. with an initial 87Sr/86Sr of 0.69926 ?? 0.00008 was obtained for clast 1 (77135,57) (a troctolitic microbreccia). A troctolitic portion of microbreccia clast 77215,37 yielded a UPb internal isochron of 3.8 ?? 0.2 b.y. and an initial 206Pb/207Pb of 0.69. These internal isochron age are interpreted as reflecting metamorphic events, probably related to impacts, which reset RbSr and UPb mineral systems of older rocks. Six portions of boulder 7 were analyzed for U, Th, and Pb as whole rocks. Two chemical groups appear to be defined by the U, Th, and Pb concentration data. Chemical group A is characterized by U, Th, and Pb concentrations and 238U/204Pb values which are higher than those of group B. Group A rocks have typical 232Th/238U ratios of ??? 3.85, whereas-group B rocks have unusually high Th/U values of ??? 4.1. Whole-rock UPb and PbPb ages are nearly concordant. Two events appear to be reflected in these data - one at ??? 4.4 b.y. and one at ??? 4.5 b.y. The chemical groupings show no correlation with documented ages. The old ages of ??? 4.4 b.y. and ??? 4.5 b.y. may, like the younger ??? 4.0 b.y. ages, be related to basin excavation events. ?? 1974.

  16. Microstructural observation and chemical dating on monazite from the Shilu Group, Hainan Province of South China: Implications for origin and evolution of the Shilu Fe-Co-Cu ore district

    NASA Astrophysics Data System (ADS)

    Xu, Deru; Kusiak, Monika A.; Wang, Zhilin; Chen, Huayong; Bakun-Czubarow, Nonna; Wu, Chuanjun; Konečný, Patrik; Hollings, Peter

    2015-02-01

    New monazite chemical U-Th-total-Pb (CHIME) ages, combined with microstructural observations, mineral compositions, and whole-rock geochemistry, indicate that the large-scale, banded iron formation (BIF)-type Shilu Fe-Co-Cu ore district in Hainan Province, South China is a multistage product of sedimentation, metamorphism, and hydrothermal-metasomatic alteration associated with multiple orogenies. Two types of monazite, i.e. "polygenetic" and "metamorphic", were identified. The "polygenetic monazite" comprises a magmatic and/or metamorphic core surrounded by a metamorphic rim, and shows complex zoning. Breakdown corona structure, with a core of monazite surrounded by a mantle of fluorapatite, allanite, and/or epidote as concentric growth rings, is commonly observed. This type of monazite yielded three main CHIME-age peaks at ca. 980 Ma, ca. 880 Ma and ca. 450 Ma. The ages which range up to ca. 880 Ma for detrital cores, record a pre-deformational magmatic and/or metamorphic event(s), and is considered to be the depositional time-interval of the Shilu Group and interbedded BIFs in a marine, back-arc foreland basin likely due to the Grenvillian or South China Sibao orogeny. After deposition, the Shilu district was subjected to an orogenic event, which is recorded by the syndeformational metamorphic monazite with ca. 560-450 Ma population. Probably this event not only caused amphibolite facies metamorphism and associated regional foliation S1 but also enriched the original BIFs, and most likely corresponds to the "Pan-African" and/or the South China Caledonian orogeny. The post-deformational "metamorphic" monazite occurs mostly as inclusions in garnet and shows ca. 260 Ma age. It likely represents the Late Permian post-magmatic hydrothermal and related retrograde event(s) initiated by the Indosinian orogeny due to the closure of the Paleo-Tethys. The breakdown of monazite to secondary coronal mineral phases as well as the Fe-remobilization and associated skarnization

  17. Hydrothermal titanite from the Chengchao iron skarn deposit: temporal constraints on iron mineralization, and its potential as a reference material for titanite U-Pb dating

    NASA Astrophysics Data System (ADS)

    Hu, Hao; Li, Jian-Wei; McFarlane, Christopher R. M.

    2017-09-01

    Uranium-lead isotopes and trace elements of titanite from the Chengchao iron skarn deposit (Daye district, Eastern China), located along the contact zones between Triassic marine carbonates and an early Cretaceous intrusive complex consisting of granite and quartz diorite, were analyzed using laser ablation inductively coupled plasma mass spectrometry to provide temporal constraints on iron mineralization and to evaluate its potential as a reference material for titanite U-Pb geochronology. Titanite grains from mineralized endoskarn have simple growth zoning patterns, exhibit intergrowth with magnetite, diopside, K-feldspar, albite and actinolite, and typically contain abundant primary two-phase fluid inclusions. These paragenetic and textural features suggest that these titanite grains are of hydrothermal origin. Hydrothermal titanite is distinct from the magmatic variety from the ore-related granitic intrusion in that it contains unusually high concentrations of U (up to 2995 ppm), low levels of Th (12.5-453 ppm), and virtually no common Pb. The REE concentrations are much lower, as are the Th/U and Lu/Hf ratios. The hydrothermal titanite grains yield reproducible uncorrected U-Pb ages ranging from 129.7 ± 0.7 to 132.1 ± 2.7 Ma (2σ), with a weighted mean of 131.2 ± 0.2 Ma [mean standard weighted deviation (MSWD) = 1.7] that is interpreted as the timing of iron skarn mineralization. This age closely corresponds to the zircon U-Pb age of 130.9 ± 0.7 Ma (MSWD = 0.7) determined for the quartz diorite, and the U-Pb ages for zircon and titanite (130.1 ± 1.0 Ma and 131.3 ± 0.3 Ma) in the granite, confirming a close temporal and likely genetic relationship between granitic magmatism and iron mineralization. Different hydrothermal titanite grains have virtually identical uncorrected U-Pb ratios suggestive of negligible common Pb in the mineral. The homogeneous textures and U-Pb characteristics of Chengchao hydrothermal titanite suggest that the mineral might be a

  18. Did the Kiruna iron ores form as a result of a metasomatic or igneous process? New U-Pb and Nd data for the iron oxide apatite ores and their host rocks in the Norrbotten region of northern Sweden

    NASA Astrophysics Data System (ADS)

    Westhues, A.; Hanchar, J. M.; Whitehouse, M. J.; Fisher, C. M.

    2012-12-01

    dating of zircon from both host rock and ore samples confirms a previously documented event around 1880 - 1900 Ma in the Norrbotten region. However, U-Pb in monazite from an ore sample suggests a further event at ca. 1650 Ma, a period of known activity in Fennoscandia. Further investigation and more U-Pb data are needed to confirm those dates and how the iron mineralization is related to those two events. The combination of U-Th-Pb ages, tracer isotopes and trace element abundances at mineral scale (e.g., Lu-Hf in zircon, and Sm-Nd in monazite, apatite, titanite), along with the O isotopic composition of zircon, will be used to decipher whether the Kiruna iron ore deposits are of metasomatic or igneous origin. Overall, the study also intends to develop a predictive model for exploration of similar iron oxide apatite deposits worldwide.

  19. A 2000-yr High-resolution Stalagmite Record From Zhenzhu Cave in Hebei, North China: Interpretations of AMS 14C, 230Th/U, 210Pb Dating, and δ18O, δ13C Results

    NASA Astrophysics Data System (ADS)

    Li, H. C.; Yin, J.; Rao, Z.; Mii, H. S.; Shen, C. C.; Pillutla, R. K.; Li, Y. X.

    2016-12-01

    An 11.1-cm long stalagmite (ZZ12) collected from Zhenzhu cave (38°15'N, 113°42'E, 975m a.s.l.) located at Tiangui mountain of Hebei province, North China. The 230Th/U dates on 12 horizons exhibit large uncertainties with many reversed age sequences due to low U contents and low 230Th/232Th ratios. While the 230Th/U dating is not able to provide the chronology of this stalagmite, AMS 14C dating on 27 samples from various depths of the stalagmite yields a reliable age-depth relationship. Three AMS 14C dates from the top 5 mm appear nuclear bomb carbon indicating that this part was deposited after AD 1950. Seven samples for 210Pb dating were taken from the upper 14 mm with 2 mm intervals, showing exponential decay of excess 210Pb and supporting the AMS 14C dating results. At the base of the stalagmite, charcoal grains were included in the carbonate stalagmite. This charcoal sample has a Calibrated 14C age of 1865±20 a BP. The carbonates at adjacent depths show Calibrated 14C ages of 1900±15 and 2215±75 a BP respectively. The bomb carbon and similar ages between the charcoal and carbonates indicate that dead carbon influence on the 14C dates in some horizons may not be serious. From the 27 AMS 14C dates, we select 17 AMS 14C dates which have minimal influence of dead carbon fraction to construct the chronology. The established chronology shows that slow growth rates occurred prior to 1100 a BP and after 600 a BP. This time interval involves the Medieval Warm Period, while the fast growth rate during this interval may reflect warm and wet climatic conditions. A total of 835 samples were drilled from the stalagmite for δ18O and δ13C analyses. The current 900-year δ18O and δ13C records reveal climate and vegetation changes in the study area. Strong decadal oscillations in the δ18O record reflect variations of monsoonal rain, with relatively dry between AD 1350 and AD 1550 and after AD 1960. The δ13C record appears mainly multi-centennial variations with a 4

  20. Dating kimberlite emplacement with zircon and perovskite (U-Th)/He geochronology

    NASA Astrophysics Data System (ADS)

    Stanley, Jessica; Flowers, Rebecca

    2017-04-01

    Kimberlites provide rich information about the composition and evolution of cratonic lithosphere. They can entrain xenoliths and xenocrysts from the entire lithospheric column as they transit rapidly to the surface, providing information on the state of the deep lithosphere as well as any sedimentary units covering the craton at the time of eruption. Accurate geochronology of these eruptions is key for interpreting this information and discerning spatiotemporal trends in lithospheric evolution, but kimberlites can sometimes be difficult to date with available methods. Here we explore whether (U-Th)/He dating of zircon and perovskite can serve as reliable techniques for determining kimberlite emplacement ages by dating a suite of sixteen southern African kimberlites by zircon and/or perovskite (U-Th)/He (ZHe, PHe). Most samples with abundant zircon yielded ZHe dates reproducible to ≤15% dispersion that are in good agreement with published eruption ages, though there were several samples that were more scattered. Since the majority of dated zircon were xenocrystic, zircon with reproducible dates were fully reset during eruption or resided at temperatures above the ZHe closure temperature ( 180 °C) prior to entrainment in the kimberlite magma. We attribute scattered ZHe dates to shallowly sourced zircon that underwent incomplete damage annealing and/or partial He loss during the eruptive process. All seven kimberlites dated with PHe yielded dates reproducible to ≤15% dispersion and reasonable results. As perovskite has not previously been used as a (U-Th)/He chronometer, we conducted two preliminary perovskite 4He diffusion experiments to obtain initial estimates of its temperature sensitivity. These experiments suggest a PHe closure temperature of >300 °C. Perovskite in kimberlites is unlikely to be xenocrystic and its relatively high temperature sensitivity suggests that PHe dates will typically record emplacement rather than post-emplacement processes. ZHe

  1. Pre-Variscan evolution of the Western Tatra Mountains: new insights from U-Pb zircon dating.

    PubMed

    Burda, Jolanta; Klötzli, Urs

    In situ LA-MC-ICP-MS U-Pb zircon geochronology combined with cathodoluminescence imaging were carried out to determine protolith and metamorphic ages of orthogneisses from the Western Tatra Mountains (Central Western Carpathians). The metamorphic complex is subdivided into two units (the Lower Unit and the Upper Unit). Orthogneisses of the Lower Unit are mostly banded, fine- to medium-grained rocks while in the Upper Unit varieties with augen structures predominate. Orthogneisses show a dynamically recrystallised mineral assemblage of Qz + Pl + Bt ± Grt with accessory zircon and apatite. They are peraluminous (ASI = 1.20-1.27) and interpreted to belong to a high-K calc-alkaline suite of a VAG-type tectonic setting. LA-MC-ICP-MS U-Pb zircon data from samples from both units, from crystals with oscillatory zoning and Th/U > 0.1, yield similar concordia ages of ca. 534 Ma. This is interpreted to reflect the magmatic crystallization age of igneous precursors. These oldest meta-magmatics so far dated in the Western Tatra Mountains could be linked to the fragmentation of the northern margin of Gondwana. In zircons from a gneiss from the Upper Unit, cores with well-developed oscillatory zoning are surrounded by weakly luminescent, low contrast rims (Th/U < 0.1). These yield a concordia age of ca. 387 Ma corresponding to a subsequent, Eo-Variscan, high-grade metamorphic event, connected with the formation of crustal-scale nappe structures and collision-related magmatism.

  2. Zircon U-Th and U-Pb Ages From Quaternary Silicic Volcanic and Plutonic Rocks, and Their Bearing on Granitoid Batholiths

    NASA Astrophysics Data System (ADS)

    Bacon, C. R.

    2007-12-01

    In the ten years since publication of M. Reid et al.'s seminal paper on zircon ages from rhyolites (EPSL 150:2-39, 1997) >20 papers have appeared on SIMS 238U-230Th and 238U-206Pb geochronology of zircon from silicic volcanic rocks, plutonic xenoliths, and young intrusions. In some cases, as well as for U-Pb studies of Tertiary granitoids, plutonic samples are interpreted in the context of related volcanism. These geochronologic data have advanced conceptual models of silicic magma genesis and pluton construction. Of fundamental importance are discoveries that zircons in volcanic rocks typically pre-date eruption by 10's to 100's of kyr and that multiple zircon populations are common; these crystals are "antecrysts" recycled from intrusive rocks or crystal mush of the system that vented. Resolving such age differences is possible with U-Th at <300 ka but is challenging with U-Pb, where SIMS precision limits resolution of differences on the order of 100 kyr for Pleistocene-Miocene zircons. Cathodoluminescence (CL) imaging of polished crystals guides beam placement but leads to sampling bias that favors high-U regions. Thus, although model-age histograms and relative probability plots identify zircon age populations, they are unlikely to accurately define relative abundances of age groups. Microbeam analysis collects data for the entire volume sampled but only SIMS depth-profiling into crystal faces can spatially resolve fine zones. ID-TIMS analysis of CL-imaged zircon fragments can improve U-Pb precision. SIMS complements geochronology with trace element fingerprints of zircon growth environments and enables Ti-in-zircon thermometry. Literature examples illustrate recent findings: (1) rhyodacite lava at Crater Lake contains zircons derived from late Pleistocene granodiorite represented by blocks ejected in the caldera-forming eruption; (2) zircons in Mount St. Helens dacites grew at sub-eruption temperatures and pre-date eruptions by up to 250 kyr; (3) Miocene

  3. In detail monazite characterization in a carbonatite weathering profile - a new tool for landscape geochronology

    NASA Astrophysics Data System (ADS)

    Renno, A. D.; Le Bras, L.; Ziegenrücker, R.; Couffignal, F.; Wiedenbeck, M.; Haser, S.; Hlawacek, G.

    2016-12-01

    The Post-Gondwana geology of South Africa is marked by two prominent planation surfaces, the result of two distinct phases of uplift and erosion. The first of these took place during the mid- to late Cretaceous (the so-called "African planation"), whilst the second is tentatively placed into the Miocene or Oligocene (the "Post-African I planation"). Humid and warm climatic conditions are recorded by deep lateritic weathering columns of suitable lithologies. The present study tests the suitability of U-Th-Pb dating on supergene monazite as a geochronometer for landscape formation and the downward progression of the chemical weathering process. We investigated material from the Zandkopsdrift carbonatite, Namaqualand, South Africa, a pipe-shaped intrusion located in the Northern Cape Province of South Africa. The age of carbonatite intrusion has been determined to be Eocene (54-56 Ma). This carbonatite has a well-developed lateritic cap that is more than 80 m thick in places and that is highly enriched in REE's hosted mostly by very fine crystalline monazite of presumably supergene origin. Due to the fact that the age of intrusion postdates the African planation surface, the lateritic cap almost certainly marks the Post-African I erosion surface. Both the onset and duration of the Post-African I cycle of erosion remain uncertain. This study addresses the duration of the Post-African I event through the dating of supergene monazite from the Zandkopsdrift laterite cap. A detailed description of the petrographic and mineralogical properties has identified the most promising samples for dating using secondary ion mass spectrometry (SIMS). A detailed description of the internal structure, microporosity and inclusions as well as intergrowths and pseudomorphic mineral formations has helped greatly toward understand the origins of the Zandkopsdrift sequence and the genesis of the REE within this profile. These data establish important anchor points for the reconstruction of

  4. Linking microstructures, petrology and in situ U-(Th)-Pb geochronology to constrain P-T-t-D evolution of the Greather Himalyan Sequences in Western Nepal (Central Himalaya)

    NASA Astrophysics Data System (ADS)

    Iaccarino, Salvatore; Montomoli, Chiara; Carosi, Rodolfo; Langone, Antonio

    2013-04-01

    Last advances in forward modelling of metamorphic rocks and into the understanding of accessories minerals behaviour, suitable for geochronology (e.g. zircon and monazite), during metamorphism, bring new insights for understanding the evolution of metamorphic tectonites during orogenic cycles (Williams and Jercinovic, 2012 and reference therein). One of the best exposure of high- to medium grade- metamorphic rocks, is represented by the Greater Himalayan Sequence (GHS) in the Himalayan Belt, one of the most classic example of collisional orogen. Recent field work in Mugu Karnali valley, Western Nepal (Central Himalaya), identified a compressional top to the South ductile shear zone within the core of the GHS, named Magri Shear Zone (MSZ), developed in a high temperature regime as testified by quartz microstructures and syn-kinematic growth of sillimanite. In order to infer the tectono-metamorphic meaning of MSZ, a microstructural study coupled with pseudosection modelling and in situ U-(Th)-Pb monazite geochronology was performed on selected samples from different structural positions. Footwall sample constituted by (Grt + St ± Ky) micaschist shows a prograde garnet growth (cores to inner rims zoning), from ~500°C, ~0.60GPa (close to garnet-in curve) to ~580°C, ~1.2 GPa temporal constrained between 21-18 Ma, by medium Y cores to very low Y mantles monazite micro-chemical/ages domain . In this sample garnet was still growing during decompression and heating at ~640°C, ~0.75 GPa (rims), and later starts to be consumed, in conjunction with staurolite growth at 15-13 Ma, as revealed by high Y rims monazite micro-chemical/ages domain. Hanging-wall mylonitic samples have a porphyroclastic texture, with garnet preserve little memory of prograde path. Garnet near rim isoplets and matrix minerals intersect at ~700°C and ~0.70 GPa. A previous higher P stage, at ~1.10 GPa ~600°C, is testified by cores of larger white mica porhyroclasts. Prograde zoned allanite (Janots

  5. Data Reduction of Laser Ablation Split-Stream (LASS) Analyses Using Newly Developed Features Within Iolite: With Applications to Lu-Hf + U-Pb in Detrital Zircon and Sm-Nd +U-Pb in Igneous Monazite

    NASA Astrophysics Data System (ADS)

    Fisher, Christopher M.; Paton, Chad; Pearson, D. Graham; Sarkar, Chiranjeeb; Luo, Yan; Tersmette, Daniel B.; Chacko, Thomas

    2017-12-01

    A robust platform to view and integrate multiple data sets collected simultaneously is required to realize the utility and potential of the Laser Ablation Split-Stream (LASS) method. This capability, until now, has been unavailable and practitioners have had to laboriously process each data set separately, making it challenging to take full advantage of the benefits of LASS. We describe a new program for handling multiple mass spectrometric data sets collected simultaneously, designed specifically for the LASS technique, by which a laser aerosol is been split into two or more separate "streams" to be measured on separate mass spectrometers. New features within Iolite (https://iolite-software.com) enable the capability of loading, synchronizing, viewing, and reducing two or more data sets acquired simultaneously, as multiple DRSs (data reduction schemes) can be run concurrently. While this version of Iolite accommodates any combination of simultaneously collected mass spectrometer data, we demonstrate the utility using case studies where U-Pb and Lu-Hf isotope composition of zircon, and U-Pb and Sm-Nd isotope composition of monazite were analyzed simultaneously, in crystals showing complex isotopic zonation. These studies demonstrate the importance of being able to view and integrate simultaneously acquired data sets, especially for samples with complicated zoning and decoupled isotope systematics, in order to extract accurate and geologically meaningful isotopic and compositional data. This contribution provides instructions and examples for handling simultaneously collected laser ablation data. An instructional video is also provided. The updated Iolite software will help to fully develop the applications of both LASS and multi-instrument mass spectrometric measurement capabilities.

  6. Modern U-Pb chronometry of meteorites: advancing to higher time resolution reveals new problems

    USGS Publications Warehouse

    Amelin, Y.; Connelly, J.; Zartman, R.E.; Chen, J.-H.; Gopel, C.; Neymark, L.A.

    2009-01-01

    In this paper, we evaluate the factors that influence the accuracy of lead (Pb)-isotopic ages of meteorites, and may possibly be responsible for inconsistencies between Pb-isotopic and extinct nuclide timescales of the early Solar System: instrumental mass fractionation and other possible analytical sources of error, presence of more than one component of non-radiogenic Pb, migration of ancient radiogenic Pb by diffusion and other mechanisms, possible heterogeneity of the isotopic composition of uranium (U), uncertainties in the decay constants of uranium isotopes, possible presence of "freshly synthesized" actinides with short half-life (e.g. 234U) in the early Solar System, possible initial disequilibrium in the uranium decay chains, and potential fractionation of radiogenic Pb isotopes and U isotopes caused by alpha-recoil and subsequent laboratory treatment. We review the use of 232Th/238U values to assist in making accurate interpretations of the U-Pb ages of meteorite components. We discuss recently published U-Pb dates of calcium-aluminum-rich inclusions (CAIs), and their apparent disagreement with the extinct nuclide dates, in the context of capability and common pitfalls in modern meteorite chronology. Finally, we discuss the requirements of meteorites that are intended to be used as the reference points in building a consistent time scale of the early Solar System, based on the combined use of the U-Pb system and extinct nuclide chronometers.

  7. The U-Th-Pb, Sm-Nd, and Ar-Ar isotopic systematics of lunar meteorite Yamato-793169

    NASA Technical Reports Server (NTRS)

    Torigoye, Noriko; Misawa, Keji; Dalrymple, G. Brent; Tatsumoto, Mitsunobu

    1993-01-01

    U-Th-Pb, Sm-Nd, and (Ar-40)-(Ar-39) isotopic studies were performed on Yamato (Y)-793169, an unbrecciated diabasic lunar meteorite whose chemical composition is close to low Ti(LT) and very low-Ti (VLT) mare basalts. The isotopic data indicate that the meteorite was formed earlier than 3.9 Ga from a source with low U/Pb and high Sm/Nd and was distributed by a thermal event at 751 Ma. due to the small sample size (104 mg), a plagioclase crystal and glass grains were handpicked for Ar analysis, leaving four fractions for the U-Th-Pb and Sm-Nd studies; a fine-grained fraction (less than 63 microns; Fine) and three medium-grained fractions (63-150 microns). Medium-grained fractions were divided by density; a heavy fraction (rho greater than 3.3) consisting mainly of pyroxene (PX1), a lighter fraction (rho less than 2.8) consisting of plagioclase (PL), and a middle density fraction (predominantly pyroxene; PX2). The fractions were washed with acetone and alcohol, and then leached in 0.01 HBr and 0.1N HBr in order to remove any terrestrial Pb contamination. Analysis of the HBr leaches revealed that this meteorite was heavily contaminated with terrestrial Pb during its residence in Antarctic ice.

  8. Using U-Th-Pb petrochronology to determine rates of ductile thrusting: Time windows into the Main Central Thrust, Sikkim Himalaya

    NASA Astrophysics Data System (ADS)

    Mottram, Catherine M.; Parrish, Randall R.; Regis, Daniele; Warren, Clare J.; Argles, Tom W.; Harris, Nigel B. W.; Roberts, Nick M. W.

    2015-07-01

    Quantitative constraints on the rates of tectonic processes underpin our understanding of the mechanisms that form mountains. In the Sikkim Himalaya, late structural doming has revealed time-transgressive evidence of metamorphism and thrusting that permit calculation of the minimum rate of movement on a major ductile fault zone, the Main Central Thrust (MCT), by a novel methodology. U-Th-Pb monazite ages, compositions, and metamorphic pressure-temperature determinations from rocks directly beneath the MCT reveal that samples from 50 km along the transport direction of the thrust experienced similar prograde, peak, and retrograde metamorphic conditions at different times. In the southern, frontal edge of the thrust zone, the rocks were buried to conditions of 550°C and 0.8 GPa between 21 and 18 Ma along the prograde path. Peak metamorphic conditions of 650°C and 0.8-1.0 GPa were subsequently reached as this footwall material was underplated to the hanging wall at 17-14 Ma. This same process occurred at analogous metamorphic conditions between 18-16 Ma and 14.5-13 Ma in the midsection of the thrust zone and between 13 Ma and 12 Ma in the northern, rear edge of the thrust zone. Northward younging muscovite 40Ar/39Ar ages are consistently 4 Ma younger than the youngest monazite ages for equivalent samples. By combining the geochronological data with the >50 km minimum distance separating samples along the transport axis, a minimum average thrusting rate of 10 ± 3 mm yr-1 can be calculated. This provides a minimum constraint on the amount of Miocene India-Asia convergence that was accommodated along the MCT.

  9. The Wall-Rock Record of Incremental Emplacement in the Little Cottonwood-Alta Magmatic and Hydrothermal System, Wasatch Mountains, Utah, U.S.A.

    NASA Astrophysics Data System (ADS)

    Stearns, M.; Callis, S.; Beno, C.; Bowman, J. R.; Bartley, J. M.

    2017-12-01

    Contact aureoles record the cumulative effects on wall rocks of magma emplacement. Like the plutons they surround, contact aureoles have long been regarded to form geologically instantaneously. Protracted incremental emplacement of plutons must be reconciled with the wall-rock record of heat and mass transfer. Fundamental questions include how heat and material move from intrusions into their aureoles and how long that process takes. The Little Cottonwood stock is surrounded by a 2 km-wide contact aureole that contains prograde AFM mineral assemblages in the pelitic layers of the Proterozoic Big Cottonwood Formation. The Alta stock is surrounded by a well characterized 1 km-wide contact aureole containing both prograde AFM and CMS mineral assemblages in Ophir Shale and Mississippian dolostones, respectively. Understanding the petrogenesis of these aureoles requires the timing of magmatism and wall-rock metamorphism to be independently determined. Preliminary petrochronology (U/Th-Pb dates and trace element concentrations collected by LASS-ICP-MS) from the inner aureoles of both intrusions establishes a protracted history of monazite (re)crystallization from 35-25 Ma in the Little Cottonwood aureole and 35 Ma in the Alta aureole. Little Cottonwood aureole monazites are characterized by a positive age correlation with heavy rare earth elements (HREE) and a negative correlation with Eu/Eu*. Alta aureole monazites have a similar range of the HREE concentrations and Eu/Eu* variation. Zircon growth interpreted to record emplacement-level magmatic crystallization of the western Little Cottonwood stock ranges from 33-28 Ma near the contact. Multi-grain U-Pb zircon TIMS dates from the Alta stock range from 35-33 Ma and are interpreted to suggest the full range of emplacement-level magmatism in the Alta stock. Additionally, in situ U-Pb titanite dates from the Alta stock record intermittent high temperature hydrothermal activity in the stock margin from 35-24 Ma. These new

  10. Assessment of Alternative [U] and [Th] Zircon Standards for SIMS

    NASA Astrophysics Data System (ADS)

    Monteleone, B. D.; van Soest, M. C.; Hodges, K.; Moore, G. M.; Boyce, J. W.; Hervig, R. L.

    2009-12-01

    The quality of in situ (U-Th)/He zircon dates is dependent upon the accuracy and precision of spatially distributed [U] and [Th] measurements on often complexly zoned zircon crystals. Natural zircon standards for SIMS traditionally have been used to obtain precise U-Pb ages rather than precise U and Th concentration. [U] and [Th] distributions within even the most homogeneous U-Pb age standards are not sufficient to make good microbeam standards (i.e., yield good precision: 2σ < 5%) for (U-Th)/He dates. In the absence of sufficiently homogeneous natural zircon crystals, we evaluate the use of the NIST 610 glass standard and a synthetic polycrystalline solid “zircon synrock” made by powdering and pressing natural zircon crystals at 2 GPa and 1100°C within a 13 mm piston cylinder for 24 hours. SIMS energy spectra and multiple spot analyses help assess the matrix-dependence of secondary ion emission and [U] and [Th] homogeneity of these materials. Although spot analyses on NIST 610 glass yielded spatially consistent ratios of 238U/30Si and 232Th/30Si (2σ = 2%, n = 14), comparison of energy spectra collected on glass and zircon reveal significant differences in U, UO, Th, and ThO ion intensities over the range of initial kinetic energies commonly used for trace element analyses. Computing [U] and [Th] in zircon using NIST glass yields concentrations that vary by more than 10% for [U] and [Th], depending on the initial kinetic energy and ion mass (elemental, oxide, or sum of elemental and oxide) used for the analysis. The observed effect of chemistry on secondary ion energy spectra suggests that NIST glass cannot be used as a standard for trace [U] and [Th] in zircon without a correction factor (presently unknown). Energy spectra of the zircon synrock are similar to those of natural zircon, suggesting matrix compatibility and therefore potential for accurate standardization. Spot analyses on the zircon powder pellets, however, show that adequate homogeneity of [U

  11. The effect of weathering on U-Th-Pb and oxygen isotope systems of ancient zircons from the Jack Hills, Western Australia

    NASA Astrophysics Data System (ADS)

    Pidgeon, R. T.; Nemchin, A. A.; Whitehouse, M. J.

    2017-01-01

    We report the result of a SIMS U-Th-Pb and O-OH study of 44 ancient zircons from the Jack Hills in Western Australia with ages ranging from 4.3 Ga to 3.3 Ga. We have investigated the behaviour of oxygen isotopes and water in the grains by determining δ18O and OH values at a number of locations on the polished surfaces of each grain. We have divided the zircons into five groups on the basis of their U-Th-Pb and OH-oxygen isotopic behaviour. The first group has concordant U-Th-Pb ages, minimal common Pb, δ18O values consistent with zircons derived from mantle source rocks and no detectable OH content. U-Th-Pb systems in zircons from Groups 2, 3 and 4 vary from concordant to extremely discordant where influenced by cracks. Discordia intercepts with concordia at approximately zero Ma age are interpreted as disturbance of the zircon U-Th-Pb systems by weathering solutions during the extensive, deep weathering that has affected the Archean Yilgarn Craton of Western Australia since at least the Permian. Weathering solutions entering cracks have resulted in an influx of Th and U. δ18O values of Group 2 grains fall approximately within the "mantle" range and OH is within background levels or slightly elevated. δ18O values of Group 3 grains are characterised by an initial trend of decreasing δ18O with increasing OH content. With further increase in OH this trend reverses and δ18O becomes heavier with increasing OH. Group 4 grains have a distinct trend of increasing δ18O with increasing OH. These trends are explained in terms of the reaction of percolating water with the metamict zircon structure and appear to be independent of analytical overlap with cracks. Group five zircons are characterised by U-Pb systems that appear to consist of more than one age but show only minor U-Pb discordance. Nevertheless trends in δ18O versus OH in this group of grains resemble trends seen in the other groups. The observed trends of δ18O with OH in the Jack Hills zircons are similar

  12. U-Th-Pb isotopic systematics of lunar norite 78235

    NASA Technical Reports Server (NTRS)

    Premo, W. R.; Tatsumoto, M.

    1991-01-01

    A pristine high-Mg noritic cumulate thought to be relict deep-seated lunar crust is studied with an eye to obtaining evidence of initial Pb isotopic composition and U/Pb ratios of early lunar magma sources and possibly of a primary magma ocean. A leaching procedure was conducted on polymineralic separates to assure the removal of secondary Pb components. The Pb from leached separates do not form a linear trend on the Pb-Pb diagram, indicating open-system behavior either from mixtures of Pb or postcrystallization disturbances. Calculated initial Pb compositions and corresponding U-238/Pb-204 (mu) values are presented, with the assumption of reasonably precise radiometric ages from the literature for norite 78236. The results obtained support the contention that high-Mg suite rocks are coeval with the ferroan anorthosites, both being produced during the earliest stages of lunar evolution.

  13. Laser ablation U-Th-Sm/He dating of detrital apatite

    NASA Astrophysics Data System (ADS)

    Guest, B.; Pickering, J. E.; Matthews, W.; Hamilton, B.; Sykes, C.

    2016-12-01

    Detrital apatite U-Th-Sm/He thermochronology has the potential to be a powerful tool for conducting basin thermal history analyses as well as complementing the well-established detrital zircon U-Pb approach in source to sink studies. A critical roadblock that prevents the routine application of detrital apatite U-Th-Sm/He thermochronology to solving geological problems is the costly and difficult whole grain approach that is generally used to obtain apatite U-Th-Sm/He data. We present a new analytical method for laser ablation thermochronology on apatite. Samples are ablated using a Resonetics™ 193 nm excimer laser and liberated 4He is measured using an ASI (Australian Scientific Instruments) Alphachron™ quadrupole mass spectrometer system; collectively known as the Resochron™. The ablated sites are imaged using a Zygo ZescopeTM optical profilometer and ablated pit volume measured using PitVol, a custom MatLabTM algorithm. The accuracy and precision of the method presented here was confirmed using well-characterized Durango apatite and Fish Canyon Tuff (FCT) apatite reference materials, with Durango apatite used as a primary reference and FCT apatite used as a secondary reference. The weighted average of our laser ablation Durango ages (30.5±0.35 Ma) compare well with ages obtained using conventional whole grain degassing and dissolution U-Th-Sm/He methods (32.56±0.43 Ma) (Jonckheere et.al., 1 993; Farley, 2000; McDowell et.al., 2005) for chips of the same Durango crystal. These Durango ages were used to produce a K-value to correct the secondary references and unknown samples. After correction, FCT apatite has a weighted average age of 28.37 ± 0.96 Ma, which agrees well with published ages. As a further test of this new method we have conducted a case study on a set of samples from the British Mountains of the Yukon Territory in NW Canada. Sandstone samples collected across the British Mountains were analyzed using conventional U-Th-Sm/He whole grain

  14. Monazite, iron oxide and barite exsolutions in apatite aggregates from CCSD drillhole eclogites and their geological implications

    NASA Astrophysics Data System (ADS)

    Sun, Xiaoming; Tang, Qian; Sun, Weidong; Xu, Li; Zhai, Wei; Liang, Jinlong; Liang, Yeheng; Shen, Kun; Zhang, Zeming; Zhou, Bing; Wang, Fangyue

    2007-06-01

    We have identified abundant exsolutions in apatite aggregates from eclogitic drillhole samples of the Chinese Continental Scientific Drilling (CCSD) project. Electron microscope and laser Raman spectroscopy analyses show that the apatite is fluorapatite, whereas exsolutions that can be classified into four types: (A) platy to rhombic monazite exsolutions; (B) needle-like hematite exsolutions; (C) irregular magnetite and hematite intergrowths; and (D) needle-like strontian barite exsolutions. The widths and lengths of type A monazite exsolutions range from about 6-10 μm (mostly 6 μm) and about 50-75 μm, respectively. Type B exsolutions are parallel with the C axis of apatite, with widths ranging from 0.5 to 2 μm, with most around 1.5 μm, and lengths that vary dramatically from 6 to 50 μm. Type C exsolutions are also parallel with the C axis of apatite, with lengths of ˜30-150 μm and widths of ˜10 to 50 μm. Type D strontian barite exsolutions coexist mostly with type B hematite exsolutions, with widths of about 9 μm and lengths of about 60-70 μm. Exsolutions of types B, C and D have never been reported in apatites before. Most of the exsolutions are parallel with the C axis of apatite, implying that they were probably exsolved at roughly the same time. Dating by the chemical Th-U-total Pb isochron method (CHIME) yields an U-Pb isochron age of 202 ± 28 Ma for monazite exsolutions, suggesting that these exsolutions were formed during recrystallization and retrograde metamorphism of the exhumed ultrahigh pressure (UHP) rocks. Quartz veins hosting apatite aggregates were probably formed slightly earlier than 202 Ma. Abundant hematite exsolutions, as well as coexistence of magnetite/hematite and barite/hematite in the apatite, suggest that the oxygen fugacity of apatite aggregates is well above the sulfide-sulfur oxide buffer (SSO). Given that quartz veins host these apatite aggregates, they were probably deposited from SiO 2-rich hydrous fluids formed during

  15. The behaviour of monazite at high temperature and high stress in the lower crust

    NASA Astrophysics Data System (ADS)

    Clark, Chris; Taylor, Richard; Erickson, Timmons; Reddy, Steven; Fougerouse, Denis; Fitzsimons, Ian; Hand, Martin

    2017-04-01

    Monazite is fast becoming the go to geochronometer for establishing the timing of metamorphic, deformational and hydrothermal events in crustal rocks. This is principally due to monazite forming in rocks that are petrologically useful (e.g. metapelites), it's susceptibility to recrystallization (both fluid and deformation driven) and the suite of trace elements it incorporates during growth. In dry conditions (i.e. the melt-depleted lower crust) monazite has a high closure temperature. It therefore has the ability to record the timing of prograde to peak metamorphic conditions. The reactivity of monazite in the presence of fluid allows the timing of post-peak fluid and melt crystallisation events to be constrained. Under high-stress monazite will recrystallise, forming new crystals that can be used to constrain the age of deformational events - this feature is particularly useful as high-grade reworking of lower crustal rocks often leave no geochronological record within other accessory minerals (e.g. zircon). However, it has long been recognised that monazite can record a cryptic range and/or distribution of ages that are difficult reconcile with how we traditionally believe the lower crust responds to deformational events - e.g. the anhydrous nature of lower crustal rocks and the preservation of granulite facies mineral assemblages. Here we present datasets collected by a suite of microanalytical techniques on monazite grains from lower-crustal rocks that have experienced deformation, fluid-rock interaction and ultrahigh temperature metamorphism. To better understand how monazite behaves in these environments we integrate electron probe, electron backscatter diffraction, laser ablation split stream petrochronology, transmission electron microscopy and Atom Probe Tomography datasets to image and quantify behaviour of key elements from the micro- to the nanoscale. When used sequentially, these techniques provide a detailed view of the processes that re-distribute U-Th-REE-Y-Pb

  16. 238U-230Th dating of chevkinite in high-silica rhyolites from La Primavera and Yellowstone calderas

    USGS Publications Warehouse

    Vazquez, Jorge A.; Velasco, Noel O.; Schmitt, Axel K.; Bleick, Heather A.; Stelten, Mark E.

    2014-01-01

    Application of 238U-230Th disequilibrium dating of accessory minerals with contrasting stabilities and compositions can provide a unique perspective on magmatic evolution by placing the thermochemical evolution of magma within the framework of absolute time. Chevkinite, a Th-rich accessory mineral that occurs in peralkaline and metaluminous rhyolites, may be particularly useful as a chronometer of crystallization and differentiation because its composition may reflect the chemical changes of its host melt. Ion microprobe 128U-230Th dating of single chevkinite microphenocrysts from pre- and post-caldera La Primavera, Mexico, rhyolites yields model crystallization ages that are within 10's of k.y. of their corresponding K-Ar ages of ca. 125 ka to 85 ka, while chevkinite microphenocrysts from a post-caldera Yellowstone, USA, rhyolite yield a range of ages from ca. 110 ka to 250 ka, which is indistinguishable from the age distribution of coexisting zircon. Internal chevkinite-zircon isochrons from La Primavera yield Pleistocene ages with ~5% precision due to the nearly two order difference in Th/U between both minerals. Coupling chevkinite 238U-230Th ages and compositional analyses reveals a secular trend of Th/U and rare earth elements recorded in Yellowstone rhyolite, likely reflecting progressive compositional evolution of host magma. The relatively short timescale between chevkinite-zircon crystallization and eruption suggests that crystal-poor rhyolites at La Primavera were erupted shortly after differentiation and/or reheating. These results indicate that 238U-230Th dating of chevkinite via ion microprobe analysis may be used to date crystallization and chemical evolution of silicic magmas.

  17. Differing responses of zircon, chevkinite-(Ce), monazite-(Ce) and fergusonite-(Y) to hydrothermal alteration: Evidence from the Keivy alkaline province, Kola Peninsula, Russia

    NASA Astrophysics Data System (ADS)

    Macdonald, Ray; Bagiński, Bogusław; Zozulya, Dmitry

    2017-09-01

    A quartzolite from the Rova occurrence, Keivy alkali granite province, Kola Peninsula, Russia, is used to examine the differing responses of certain rare-metal minerals during interaction with hydrothermal fluids. The minerals are two silicates [chevkinite-(Ce) and zircon], a phosphate [monazite-(Ce)] and an oxide [fergusonite-(Y)]. Textural evidence is taken to show that the dominant alteration mechanism was interface-coupled dissolution-reprecipitation. Zircon was the most pervasively altered, possibly by broadening of cleavage planes or fractures; the other minerals were altered mainly on their rims and along cracks. The importance of cracks in promoting fluid access is stressed. The compositional effects of the alteration of each phase are documented. The hydrothermal fluids carried few ligands capable of transporting significant amounts of rare-earth elements (REE), high field strength elements (HFSE) and actinides; alteration is inferred to have been promoted by mildly alkaline, Ca-bearing fluids. Expansion cracks emanating from fergusonite-(Y) are filled with unidentified material containing up to 35 wt% UO2 and 25 wt% REE2O3, indicating late-stage, short-distance mobility of these elements. Electron microprobe chemical dating of monazite yielded an age of 1665 ± 22 Ma, much younger than the formation age of the Keivy province (2.65-2.67 Ga) but comparable to that of the Svecofennian metamorphic event which affected the area (1.9-1.7 Ga) or during fluid-thermal activation of the region during rapakivi granite magmatism (1.66-1.56 Ga). Dates for altered monazite range from 2592 ± 244 Ma to 773 ± 88 Ma and reflect disturbance of the U-Th-Pb system during alteration.

  18. AMS 14C and 230Th/U dating on stalagmites from North Altai Mountain, Siberia, Russia

    NASA Astrophysics Data System (ADS)

    Li, H. C.; Yin, J. J.; Blyakharchuk, T.; Shen, C. C.

    2017-12-01

    Three stalagmites, two from Lunnaya Cave (LUN-1 and LUN-2, 52º40.729'N, 88º43.854' E, 481 m a.s.l.), one from Nadezhda Cave (HOP-1, 52º38.872'N, 88º39.194'E, 550 m a.s.l.) located along Mrassy River in the northern Altai Mountains, Siberia, Russia were collected in the summer of 2016 for paleoclimate reconstruction. HOP-1 is a 21-cm long stalagmite which contains very low U content (238U = 70 ppb) and relatively high Th content (232Th = 2 9.3 ppb), resulting in unsuccessful 230Th/U dating (-262 ± 284 yr BP in the top and -19,935 ± 22,246 yr BP). Thirty one AMS 14C dates from 27 horizons of the stalagmite provide a detailed chronology, showing that the stalagmite grew from 6,350 ± 45 yr BP to 490 ± 10 Calib. yr BP. Both LUN-1 and LUN-2 are about 20-cm long. The growth feature of LUN-2 is similar to that of HOP-1 with continuous growth, clear bands of depositional cycles in white non-transparent calcite, whereas LUN-1 has light yellow transparent calcite in the center part with multiple growth hiatuses. The 230Th/U dates show that LUN-1 from 2725 ± 775 yr BP at 193 mm depth to 823 ± 28 yr BP at 12 mm depth with very fast growth rate during 900 1500 yr BP. The AMS 14C dates of LUN-1 provide similar growth pattern with very fast growth between the first hiatus at 12 mm depth and the second hiatus at 155 cm depth. Six 14C dates from this fast growth period are all around 1500 Calib. yr BP without a correct age sequence. Two 14C dates from the top 12 mm exhibit "nuclear bomb signal" (percentage of modern carbon >100%). Similar ages of AMS 14C and 230Th/U dating results in the lower part indicate that dead carbon influence in radiocarbon ages are negligible. 230Th/U dating is not successful for LUN-2. The preliminary AMS 14C dating on LUN-2 shows that the stalagmite continuously deposited from 13335 ± 150 Calib. yr BP. All three stalagmites do not have growth deposition during the Little Ice Age due to cold and dry climates. Further work on stable isotope

  19. In-Situ U-Pb Dating of Apatite by Hiroshima-SHRIMP: Contributions to Earth and Planetary Science.

    PubMed

    Terada, Kentaro; Sano, Yuji

    2012-01-01

    The Sensitive High Resolution Ion MicroProbe (SHRIMP) is the first ion microprobe dedicated to geological isotopic analyses, especially in-situ analyses related to the geochronology of zircon. Such a sophisticated ion probe, which can attain a high sensitivity at a high mass resolution, based on a double focusing high mass-resolution spectrometer, designed by Matsuda (1974), was constructed at the Australian National University. In 1996, such an instrument was installed at Hiroshima University and was the first SHRIMP to be installed in Japan. Since its installation, our focus has been on the in-situ U-Pb dating of the mineral apatite, as well as zircon, which is a more common U-bearing mineral. This provides the possibility for extending the use of in-situ U-Pb dating from determining the age of formation of volcanic, granitic, sedimentary and metamorphic minerals to the direct determination of the diagenetic age of fossils and/or the crystallization age of various meteorites, which can provide new insights into the thermal history on the Earth and/or the Solar System. In this paper, we review the methodology associated with in-situ apatite dating and our contribution to Earth and Planetary Science over the past 16 years.

  20. Assay Methods for 238U, 232Th, and 210Pb in Lead and Calibration of 210Bi Bremsstrahlung Emission from Lead

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Orrell, John L.; Aalseth, Craig E.; Arnquist, Isaac J.

    2016-02-13

    Assay methods for measuring 238U, 232Th, and 210Pb concentrations in refined lead are presented. The 238U and 232Th concentrations are assayed via inductively coupled plasma mass spectrometry (ICP-MS) after anion exchange column separation on dissolved lead samples. The 210Pb concentration is inferred through α-spectroscopy of a daughter isotope, 210Po, after chemical precipitation separation on dissolved lead samples. Subsequent to the 210Po α-spectroscopy assay, a method for evaluating 210Pb concentrations in solid lead samples was developed via measurement of bremsstrahlung radiation from β-decay of a daughter isotope, 210Bi, by employing a 14-crystal array of high purity germanium (HPGe) detectors. Ten sourcesmore » of refined lead were assayed. The 238U concentrations were <34 microBq/kg and the 232Th concentrations ranged <0.6 – 15 microBq/kg, as determined by the ICP-MS assay method. The 210Pb concentrations ranged from ~0.1 – 75 Bq/kg, as inferred by the 210Po α-spectroscopy assay method.« less

  1. U-Th-Pb zircon ages of some Keweenawan Supergroup rocks from the south shore of Lake Superior

    USGS Publications Warehouse

    Zartman, R.E.; Nicholson, S.W.; Cannon, W.F.; Morey, G.B.

    1997-01-01

    New single-crystal zircon U-Th-Pb ages for plutonic and rhyolitic Keweenawan Supergroup rocks from the south shore of Lake Superior provide geochronological constraints on magmatic evolution associated with the 1.1 Ga Midcontinent rift. Analyses of a granophyric phase of the Mineral Lake intrusion and the Meilen granite, both parts of the Meilen Intrusive Complex, and a laterally extensive rhyolite from the top of the Kallander Creek Volcanics have weighted average 207Pb/206Pb ages of 1102.0 ?? 2.8 Ma (N = 2), 1100.9 ?? 1.4 Ma (N = 5), and 1098.8 ?? 1.9 Ma (N = 4), respectively. Analyses of a pyroclastic rhyolite flow at the top of the Porcupine Volcanics result in variable 207Pb/206Pb ages that range from 1080 to 1137 Ma. This rhyolite exhibits a continuum between morphologically complex and simpler prismatic zircon crystals, the latter yielding concordant analyses having a weighted average 207Pb/206Pb age of 1093.6 ?? 1.8 Ma (N = 2). Four prismatic zircons from an aphyric rhyolite of the Chengwatana Volcanics in the Ashland syncline form a linear array intersecting concordia at 1094.6 ?? 2.1 Ma (MSWD = 1.3). Another presumed Chengwatana rhyolite recovered from drill core intersecting the Hudson-Afton horst in southeast Minnesota yielded only ???20 morphologically indistinguishable zircons. Six analyses give 207Pb/206Pb ages ranging from 1112 to 1136 Ma, including one analysis with a virtually concordant age of 1130 Ma. This age, however, is considerably older than that obtained for the Chengwatana Volcanics in the Ashland syncline or any other precisely dated rock from the Midcontinent rift.

  2. In-Situ Apatite Laser Ablation U-Th-Sm/He Dating, Methods and Challenges

    NASA Astrophysics Data System (ADS)

    Pickering, J. E.; Matthews, W.; Guest, B.; Hamilton, B.; Sykes, C.

    2015-12-01

    In-situ, laser ablation U-Th-Sm/He dating is an emerging technique in thermochronology that has been proven as a means to date zircon and monzonite1-5. In-situ U-Th-Sm/He thermochronology eliminates many of the problems and inconveniences associated with traditional, whole grain methods, including; reducing bias in grain selection based on size, shape and clarity; allowing for the use of broken grains and grains with inclusions; avoiding bad neighbour effects; and eliminating safety hazards associated with dissolution. In-situ apatite laser ablation is challenging due to low concentrations of U and Th and thus a low abundance of radiogenic He. For apatite laser ablation to be effective the ultra-high-vacuum (UHV) line must have very low and consistent background levels of He. To reduce He background, samples are mounted in a UHV stable medium. Our mounting process uses a MicroHePP (Microscope Mounted Heated Platen Press) to press samples into FEP (fluorinated ethylene propylene) bonded to an aluminum backing plate. Samples are ablated using a Resonetics 193 nm excimer laser and liberated He is measured using a quadrupole mass spectrometer on the ASI Alphachron noble gas line; collectively this system is known as the Resochron. The ablated sites are imaged using a Zygo Zescope optical profilometer and ablated pit volume measured using PitVol, a custom MatLab algorithm developed to enable precise and unbiased measurement of the ablated pit geometry. We use the well-characterized Durango apatite to demonstrate the accuracy and precision of the method. He liberated from forty-two pits, having volumes between 1700 and 9000 um3, were measured using the Resochron. The ablated sites were imaged using a Zygo Zescope optical profilometer and ablated pit volume measured using PitVol. U, Th and Sm concentrations were measured by laser ablation and the U-Th-Sm/He age calculated by standard age equation. An age of 33.8±0.31 Ma was determined and compares well with conventional

  3. Timing of anatexis and melt crystallization in the Socorro-Guaxupé Nappe, SE Brazil: Insights from trace element composition of zircon, monazite and garnet coupled to Usbnd Pb geochronology

    NASA Astrophysics Data System (ADS)

    Rocha, B. C.; Moraes, R.; Möller, A.; Cioffi, C. R.; Jercinovic, M. J.

    2017-04-01

    The timing of partial melting and melt crystallization in granulite facies rocks of the Socorro-Guaxupé Nappe (SGN), Brazil is constrained using a combination of imaging techniques, LA-ICP-MS and EPMA dating, trace element geochemistry and thermobarometry. (Orthopyroxene)-garnet-bearing migmatite that records extensive biotite dehydration melting shows evidence for a clockwise P-T-t path. UHT peak conditions were attained at 1030 ± 110 °C, 11.7 ± 1.4 kbar, with post-peak cooling to 865 ± 38 °C, 8.9 ± 0.8 kbar. Cryogenian igneous inheritance of ca. 720-640 Ma is identified in oscillatory zoned zircon cores (n = 167) with steep HREE patterns. Resorbed, Y-rich monazite cores preserve a prograde growth stage at 631 ± 4 Ma prior to the partial melting event, providing an upper age limit for the granulite facies metamorphism in the SGN. REE-rich, Th-depleted monazite related to apatite records the initial stages of decompression at 628 ± 4 Ma. Multiple monazite growth episodes record melt crystallization events at 624 ± 3 Ma, 612 ± 5 Ma and 608 ± 6 Ma. Stubby, equant "soccer ball" zircon provide evidence for melt crystallization at 613 ± 2 Ma and 607 ± 4 Ma. The excess scatter in zircon and monazite age populations between 629 ± 4 and 601 ± 3 Ma is interpreted as discontinuous and episodic growth within this age range, characterizing a prolonged metamorphic event in the SGN lasting ca. 30 m.y. The development of Y + HREE-rich monazite rims at ca. 600 Ma documents retrograde garnet breakdown, extensive biotite growth and the final stages of melt crystallization. Th-rich, Y + HREE-poor monazite rims at ca. 590 Ma record monazite recrystallization.

  4. Precise U/Pb zircons dates of bentonites in Upper Ordovician and Lower Silurian reference sections in North America and Britain.

    NASA Astrophysics Data System (ADS)

    Suarez, S. E.; Brookfield, M. E.; Catlos, E. J.; Stockli, D. F.; Batchelor, R. A.

    2016-12-01

    The end of the Ordovician marks one of the greatest of the Earth's mass extinctions. One hypothesis explains this mass extinction as the result of a short-lived, major glaciation preceded by episodes of increased volcanism brought on by the Taconic orogeny. K-bentonites, weathered volcanic ash, provide evidence for increased volcanism. However, there is a lack of modern precise U-Pb dating of these ashes and some confusion in the biostratigraphy. The aim of this study is to obtain more precise U-Pb zircon ages from biostratigraphically constrained bentonites which will lead to better correlation of the Upper Ordovician and Lower Silurian relative time scales, as well as time the pulses of eruption. Zircon grains were extracted from the samples by heavy mineral separation and U-Pb dated using the Laser Ablation-Inductively Coupled Plasma-Mass Spectrometer at the University of Texas-Austin. We report here 3 precise U-Pb zircon ages from the Trenton Group, Ontario, Canada, and Dob's Linn, Scotland. The youngest age from the top of the Kirkfield Formation in Ontario is 448.0 +/- 18 Ma, which fits with existing late Ordovician stratigraphic ages. At Dob's Linn, Scotland, the site of the Ordovician/Silurian Global Boundary Stratigraphic Section and Point (GSSP), the youngest age for DL7, a bentonite 5 meters below the GSSP is 402.0 +/- 12.0 Ma, and for DL24L, a bentonite 8 meters above the GSSP is 358.2 +/- 7.9 Ma. These are Devonian ages in current timescales - the current age for the GSSP is 443.8 +/- 1.8 Ma, based on an U/Pb dates from a bentonite 1.6 meters above the GSSP at Dob's Linn. We are confident that our techniques rule out contamination and the most likely explanation is that the small zircons we analyzed either suffered Pb loss, or grew overgrowths during low grade hydrothermal metamorphism of the sediments during the intrusion of the Southern Upland Devonian granites during the Caledonian orogeny. These Devonian ages suggest that the 443.8 +/- 1.8 Ma age

  5. (U-Th)/He dating and He diffusion in calcite from veins and breccia

    NASA Astrophysics Data System (ADS)

    Gautheron, C.; Cros, A.; Pagel, M.; Berthet, P.; Tassan-Got, L.; Douville, E.; Pinna-Jamme, R.; Sarda, P.

    2013-12-01

    Knowledge of He retention in crystalline calcite is mandatory to estimate the possibility of (U-Th)/He dating of calcite. To this aim, fault-filling calcite crystals from the Eocene/Oligocene Gondrecourt graben, Paris Basin, Eastern France, have been sampled, based on their relatively old, Eocene-Oligocene, precipitation age and cold thermal history (<40°C since precipitation). The samples were sorted into three main tectonic and morphological groups, including successively (1) micro-fracture calcites, (2) breccia and associated geodic calcites, and (3) vein and associated geodic calcites. (U-Th)/He dating of 63 calcite fragments yields ages dispersed from 0.2×0.02 to 35.8×2.7 Ma, as well as two older dates of 117×10 and 205×28 Ma (1s). These He ages correlate to grain chemistry, such as to Sr and ΣREE concentrations or (La/Yb)N ratios, and these correlations probably reflect the evolution of parent fluid. Only the oldest He ages are in agreement with the He-retentive character of calcite as determined by Copeland et al. (2007), and these ages were obtained for the most recently precipitated crystals. To better understand the large He-age scatter and why calcites precipitated earlier show younger ages, He diffusion experiments have been conducted on 10 Gondrecourt calcite fragments from 3 samples with He ages of 0.2 to 6 Ma. In addition, a crystallographic investigation by X-Ray Diffraction (XRD) performed on similar samples reveals that the crystal structure evolves with increasing temperature, showing with micro-cracks and cleavage opening. These XRD results indicate that, in fault-filling calcite, He retention is controlled by multiple diffusion domains (MDD, Lovera et al., 1991) with various sizes, and therefore, evolves through time with strong consequences on (U-Th)/He age. We thus interpret the Gondrecourt calcite (U-Th)/He age scatter of older samples as a consequence of cleavage opening due to a succession of calcite crystallization phases related to

  6. U Pb ages of angrites

    NASA Astrophysics Data System (ADS)

    Amelin, Yuri

    2008-01-01

    Precise U-Pb ages, determined with double spike ( 202Pb- 205Pb) thermal ionization m1ass spectrometry, are reported for angrites Angra dos Reis (AdoR), Lewis Cliff 86010 (LEW), and D'Orbigny. Nineteen of 23 acid-washed pyroxene fractions from these meteorites and whole rock fractions from D'Orbigny contain between 0.5 and 1.3 pg of total common Pb, indistinguishable from analytical blank. Measured 206Pb/ 204Pb ratios in these fractions are between 6300 and 14,100 for AdoR, 1160-4500 for LEW, and 608-8500 for D'Orbigny. Blank-corrected 206Pb/ 204Pb ratios for all three meteorites vary from 2160 to over 100,000. These fractions yielded precise and reproducible 207Pb ∗/ 206Pbdates with the average values of 4557.65 ± 0.13 Ma for AdoR, 4558.55 ± 0.15 Ma for LEW, and 4564.42 ± 0.12 Ma for D'Orbigny. Pb-Pb isochrons including data with slightly elevated common Pb, and U-Pb upper concordia intercepts, yield similar dates. The implications of these new Pb-isotopic ages of angrites are threefold. First, they demonstrate that AdoR and LEW are not coeval, and the group of "slowly cooled" angrites is therefore genetically diverse. Second, the new age of LEW suggests an upward revision of 53Mn- 53Cr "absolute" ages by 0.7 Ma. Third, a precise age of D'Orbigny allows consistent linking of the 53Mn- 53Cr and 26Al- 26Mg extinct nuclide chronometers to the absolute lime scale.

  7. Trans-Amazonian U-Th-Pb monazite ages and P-T-d exhumation paths of garnet-bearing leucogranite and migmatitic country rock of the southeastern Tandilia belt, Rio de la Plata craton in Argentina

    NASA Astrophysics Data System (ADS)

    Martínez, Juan Cruz; Massonne, Hans-Joachim; Frisicale, María Cristina; Dristas, Jorge A.

    2017-03-01

    A garnet-bearing leucogranite and two country rocks from the Transamazonian Tandilia belt of the Rio de la Plata craton were studied in detail. The leucogranite contains garnet with homogeneous composition of pyr6(gros + andr)2spes5alm87. In a garnet-biotite migmatite, the core and rim compositions of garnet are pyr1.7(gros + andr)5spes5.6alm87.7 and pyr1.2(gros + andr)5.5spes6.7alm86.6, respectively. These compositions in a sillimanite-garnet-muscovite migmatite are pyr4(gros + andr)2.7spes2.7alm90.6 and pyr2.7(gros + andr)4spes3.2alm90.1, respectively. We used this information to decipher the P-T evolution of the rocks applying P-T and T-H2O pseudosections with the PERPLE_X computer software package taking into consideration deformational microstructures. The leucogranite records an isothermal decompression from 5.3 to 3.8 kbar at 665 °C. The garnet-biotite migmatite was exhumed from 5.5 kbar at 630 °C to 4.3 kbar at 615 °C and the sillimanite-garnet-muscovite migmatite from supersolidus conditions of 670 °C and 3.6 kbar to 625 °C at 2.4 kbar. Late andalusite formed in this rock. Seventy four analyses of 28 monazite grains of the country rocks yielded three groups of U-Th-Pb ages which were related to a collisional event (I: ca. 2.13-2.14 Ga.), a postcollisional thermal overprint (II: ca. 2.01 Ga) and slow cooling of the orogen (III: 1.80-1.90 Ga). Inherited ages of 2.28 and 2.25 Ga could refer to an early accretionary stage of the orogen. An age of 2.41 Ga indicates the presence of recycled Siderian continental crust. Synkinematic crystallization of melts and the subsolidus development of an S2-foliation, demonstrated by deformational microstructures, occurred during the exhumation of the studied area from depths of 18 km to 8 km in the time interval 2.01-1.90 Ga.

  8. Cooling rates and the depth of detachment faulting at oceanic core complexes: Evidence from zircon Pb/U and (U-Th)/He ages

    USGS Publications Warehouse

    Grimes, Craig B.; Cheadle, Michael J.; John, Barbara E.; Reiners, P.W.; Wooden, J.L.

    2011-01-01

    Oceanic detachment faulting represents a distinct mode of seafloor spreading at slow spreading mid-ocean ridges, but many questions persist about the thermal evolution and depth of faulting. We present new Pb/U and (U-Th)/He zircon ages and combine them with magnetic anomaly ages to define the cooling histories of gabbroic crust exposed by oceanic detachment faults at three sites along the Mid-Atlantic Ridge (Ocean Drilling Program (ODP) holes 1270D and 1275D near the 15??20???N Transform, and Atlantis Massif at 30??N). Closure temperatures for the Pb/U (???800??C-850??C) and (U-Th)/He (???210??C) isotopic systems in zircon bracket acquisition of magnetic remanence, collectively providing a temperature-time history during faulting. Results indicate cooling to ???200??C in 0.3-0.5 Myr after zircon crystallization, recording time-averaged cooling rates of ???1000??C- 2000??C/Myr. Assuming the footwalls were denuded along single continuous faults, differences in Pb/U and (U-Th)/He zircon ages together with independently determined slip rates allow the distance between the ???850??C and ???200??C isotherms along the fault plane to be estimated. Calculated distances are 8.4 ?? 4.2 km and 5.0 2.1 km from holes 1275D and 1270D and 8.4 ?? 1.4 km at Atlantis Massif. Estimating an initial subsurface fault dip of 50 and a depth of 1.5 km to the 200??C isotherm leads to the prediction that the ???850??C isotherm lies ???5-7 km below seafloor at the time of faulting. These depth estimates for active fault systems are consistent with depths of microseismicity observed beneath the hypothesized detachment fault at the TAG hydrothermal field and high-temperature fault rocks recovered from many oceanic detachment faults. Copyright 2011 by the American Geophysical Union.

  9. Concordant ages for the Lava Creek Tuff from high-spatial-resolution U-Pb dating of zircon rim faces and single-crystal sanidine 40Ar/39Ar dating

    NASA Astrophysics Data System (ADS)

    Matthews, N. E.; Vazquez, J. A.; Calvert, A. T.

    2013-12-01

    The last great explosive supereruption from the Yellowstone Plateau formed present-day Yellowstone caldera and ejected the >1000 km3 of rhyolite that composes the Lava Creek Tuff (LCT). The LCT eruption blanketed much of the western United States in ash, and consequently is a key chronostratigraphic marker bed for delimiting Quaternary uplift rates, the age of middle Pleistocene glacial and pluvial deposits, and tephra correlation in North America. Previous 40Ar/39Ar dating of the two mineralogically distinct LCT members (A & B) yield ages ranging from ca. 600 ka (Gansecki et al., 1998) to ca. 640 ka (Lanphere et al., 2002). To resolve the timing of eruption and crystallization timescale for the LCT magma, we dated both LCT members using a dual-method approach as follows: (1) ion microprobe (SHRIMP-RG) U-Pb dating and trace-element characterization of the final few micrometers of zircon crystallization by analysis of unpolished rims on indium-mounted crystals, and dating of the onset of zircon crystallization by traditional analysis of sectioned crystal interiors, and (2) laser-fusion 40Ar/39Ar dating of single sanidine crystals from bulk LCT ignimbrite and pumice. The unpolished rims of zircon from LCT members A & B yield indistinguishable ages, with a mean age of 621.8 × 2.5 ka (1σ) after correction for initial 230Th disequilibrium as constrained by ion-probe analyses of LCT melt inclusions. Single sanidine crystals from LCT-B yield a mean age of 624.9 × 2.6 ka (FCT=28.17 Ma) that is indistinguishable from the zircon rim ages for both members. These results indicate that LCT members A & B erupted over a geologically brief interval, which is supported by the direct and gradational contact of their equivalent fallout in distal lacustrine deposits and a lack of field evidence for a significant time-break between the LCT A & B in proximal deposits (Christiansen, 2001), but contrasts with older Yellowstone ignimbrite (e.g., Huckleberry Ridge) that may have erupted

  10. Metamorphic conditions and CHIME monazite ages of Late Eocene to Late Oligocene high-temperature Mogok metamorphic rocks in central Myanmar

    NASA Astrophysics Data System (ADS)

    Maw Maw Win; Enami, Masaki; Kato, Takenori

    2016-03-01

    The high temperature (T)/pressure (P) regional Mogok metamorphic belt is situated in central Myanmar, and is mainly composed of pelitic gneisses, amphibolites, marbles, and calc-silicate rocks. The garnet-biotite-plagioclase-sillimanite-quartz assemblage and its partial system suggest equilibrium P/T conditions of 0.6-1.0 GPa/780-850 °C for the peak metamorphic stage, and 0.3-0.5 GPa/600-680 °C for the exhumation and hydration stage. Monazite grains show complex compositional zoning consisting of three segments-I, II, and III. Taking into consideration the monazite zoning and relative misfit curves, the calculated chemical Th-U-total Pb isochron method (CHIME) monazite age data (284 spot analyses) indicated four age components: 49.3 ± 2.6-49.9 ± 7.9, 37.8 ± 1.0-38.1 ± 1.7, 28.0 ± 0.8-28.8 ± 1.6, and 23.7 ± 1.3 Ma (2σ level). The ages of the Late Eocene and Late Oligocene epochs were interpreted as the peak metamorphic stage of upper-amphibolite and/or granulite facies and the postdated hydration stage, respectively.

  11. U-Th-Pb and Rb-Sr systematics of Apollo 17 boulder 7 from the North Massif of the Taurus-Littrow valley

    NASA Technical Reports Server (NTRS)

    Nunes, P. D.; Tatsumoto, M.; Unruh, D. M.

    1974-01-01

    Portions of highland breccia boulder 7 collected during the Apollo 17 mission were studied using U-Th-Pb and Rb-Sr systematics. A Rb-Sr internal isochron age of 3.89 plus or minus 0.08 b.y. with an initial Sr-87/Sr-86 of 0.69926 plus or minus 0.00008 was obtained for clast 1 (77135,57) (a troctolitic microbreccia). A troctolitic portion of microbreccia clast 77215,37 yielded a U-Pb internal isochron of 3.8 plus or minus 0.2 b.y. and an initial Pb-206/Pb-207 of 0.69. These internal isochron ages are interpreted as reflecting metamorphic events, probably related to impacts, which reset Rb-Sr and U-Pb mineral systems of older rocks.

  12. Combined oxygen-isotope and U-Pb zoning studies of titanite: New criteria for age preservation

    DOE PAGES

    Bonamici, Chloe E.; Fanning, C. Mark; Kozdon, Reinhard; ...

    2015-02-11

    Here, titanite is an important U-Pb chronometer for dating geologic events, but its high-temperature applicability depends upon its retention of radiogenic lead (Pb). Experimental data predict similar rates of diffusion for lead (Pb) and oxygen (O) in titanite at granulite-facies metamorphic conditions (T = 650-800°C). This study therefore investigates the utility of O-isotope zoning as an indicator for U-Pb zoning in natural titanite samples from the Carthage-Colton Mylonite Zone of the Adirondack Mountains, New York. Based on previous field, textural, and microanalytical work, there are four generations (types) of titanite in the study area, at least two of which preservemore » diffusion-related δ 18O zoning. U-Th-Pb was analyzed by SIMS along traverses across three grains of type-2 titanite, which show well-developed diffusional δ 18O zoning, and one representative grain from each of the other titanite generations.« less

  13. LA-ICP-MS Pb-U Dating of Young Zircons from the Kos-Nisyros Volcanic Centre, SE Aegean Arc (Greece)

    NASA Astrophysics Data System (ADS)

    Guillong, M.; Von Quadt, A.; Peytcheva, I.; Bachmann, O.

    2014-12-01

    Zircon Pb-U dating has become a key technique for answering many important questions in geosciences. This paper describes a new LA-ICP-MS approach. We show, using previously dated samples of a large quaternary rhyolitic eruption in the Kos-Nisyros volcanic centre (the 161 ka Kos Plateau Tuff), that the precision of our LA-ICP-MS method is as good as via SHRIMP, while ID-TIMS measurements confirm the accuracy. Gradational age distribution over >140 ka of the Kos zircons and the near-absence of inherited cores indicate near-continuous crystallisation in a growing magma reservoir with little input from wall rocks. Previously undated silicic eruptions from Nisyros volcano (Lower Pumice, Nikia Flow, Upper Pumice), which are stratigraphically constrained to have happened after the Kos Plateau Tuff, are dated to be younger than respectively 124 ± 35 ka, 111 ± 42 ka and 70 ± 24 ka. Samples younger than 1 Ma were corrected for initial thorium disequilibrium using a new formula that also accounts for disequilibrium in 230Th decay. Guillong, M. et al., 2014, JAAS, 29, p. 963-967; doi: 10.1039/c4ja00009a.

  14. Zircon Zoning, Trace Elements and U-Pb Dates Reveal Crustal Foundering Beneath the Pamir

    NASA Astrophysics Data System (ADS)

    Hacker, B. R.; Shaffer, M. E. F.; Ratschbacher, L.; Kylander-Clark, A. R.

    2017-12-01

    Xenoliths that erupted in the SE Pamir of Tajikistan at 11.2 Ma from 1000-1050°C and 90 km depth illuminate what happens when crust founders into the mantle. The xenoliths are a broad range of crustal rock types and contain abundant xenoliths whose U-Pb isotopic ratios and trace-element contents were examined by laser-ablation split stream inductively coupled plasma mass spectrometry. Cathodoluminescence imaging of the grains shows igneous cores with oscillatory zoning overprinted by substantial recrystallization. The bulk of the U-Pb dates are concordant and range from 160 Ma to 11 Ma. The range of dates suggest that the xenoliths were likely derived from the Jurassic-Cretaceous Andean-style magmatic arc and its Proterozoic-Mesozoic host rocks along the southern margin of Asia. The zircons show distinct changes in Eu anomaly, Lu/Gd ratio, and Ti concentrations that are interpreted to indicate garnet growth and minimal heating at 22-20 Ma, and then 200-300°C of heating, 25 km of burial, and alkali-carbonate melt injection at 14-11 Ma. These changes are interpreted to coincide with: i) heat input due to Indian slab breakoff at 22‒20 Ma; ii) rapid thickening and foundering of the Pamir lithosphere at 14‒11 Ma, prior to and synchronous with collision between deep Indian and Asian lithospheres beneath the Pamir.

  15. 238U/235U determinations of some commonly used reference materials and U-bearing accessory minerals (Invited)

    NASA Astrophysics Data System (ADS)

    Condon, D.; Noble, S.; McLean, N.; Bowring, S. A.

    2009-12-01

    We have determined 238U/235U ratios for a suite of commonly used natural (CRM 112a, SRM 950a, HU-1) and synthetic (IRMM 184 and CRM U500) uranium reference materials in addition to several U-bearing accessory phases (zircon and monazite) by thermal ionisation mass-spectrometry (TIMS) using the IRMM 3636 233U-236U double spike to accurately correct for mass fractionation. The 238U/235U values for the natural uranium reference materials differ, by up to 0.1%, from the widely used ‘consensus’ value (137.88) with all having 238U/235U values less than 137.88. Similarly, initial 238U/235U data from zircon and monazite yield 238U/235U values that are lower than the ‘consensus’ value. The data obtained from U-bearing minerals is used to assess how the uncertainty in the 238U/235U ratio contributes to the systematic discordance observed in 238U/206Pb and 235U/207Pb dates (Mattinson, 2000; Schoene et al., 2006) which has traditionally been wholly attributed to error in the U decay constants. The 238U/235U determinations made on the synthetic reference materials yield results that are considerably more precise and accurate than the certified values (0.02% vs. 0.1% for CRM U500). The calibration of isotopic tracers used for U-daughter geochronology that are partially based upon these reference materials, and the resultant age determinations, will benefit from increased accuracy and precision. Mattinson, J.M., 2000. Revising the “gold standard”—the uranium decay constants of Jaffey et al., 1971. Eos Trans. AGU, Spring Meet. Suppl., Abstract V61A-02. Schoene B., Crowley J.L., Condon D.C., Schmitz M.D., Bowring S.A., 2006, Reassessing the uranium decay constants for geochronology using ID-TIMS U-Pb data. Geochimica et Cosmochimica Acta 70: 426-445

  16. U-Pb Ages of Lunar Apatites

    NASA Technical Reports Server (NTRS)

    Vaughan, J.; Nemchin, A. A.; Pidgeon, R. T.; Meyer, Charles

    2006-01-01

    Apatite is one of the minerals that is rarely utilized in U-Pb geochronology, compared to some other U-rich accessory phases. Relatively low U concentration, commonly high proportion of common Pb and low closure temperature of U-Pb system of apatite inhibit its application as geochronological tool when other minerals such as zircon are widely available. However, zircon appear to be restricted to certain type of lunar rocks, carrying so called KREEP signature, whereas apatite (and whitlockite) is a common accessory mineral in the lunar samples. Therefore, utilizing apatite for lunar chronology may increase the pool of rocks that are available for U-Pb dating. The low stability of U-Pb systematics of apatite may also result in the resetting of the system during meteoritic bombardment, in which case apatite may provide an additional tool for the study of the impact history of the Moon. In order to investigate these possibilities, we have analysed apatites and zircons from two breccia samples collected during the Apollo 14 mission. Both samples were collected within the Fra Mauro formation, which is interpreted as a material ejected during the impact that formed the Imbrium Basin.

  17. Th-REE- and Nb-Ta-accessory minerals in post-collisional Ediacaran felsic rocks from the Katerina Ring Complex (S. Sinai, Egypt): An assessment for the fractionation of Y/Nb, Th/Nb, La/Nb and Ce/Pb in highly evolved A-type granites

    NASA Astrophysics Data System (ADS)

    Moreno, J. A.; Molina, J. F.; Bea, F.; Abu Anbar, M.; Montero, P.

    2016-08-01

    The relationships of Y/Nb, Th/Nb, La/Nb and Ce/Pb ratios in A-type felsic rocks from the Ediacaran Katerina Ring Complex, northernmost Arabian-Nubian Shield (ANS; S. Sinai, Egypt), are investigated in this work to understand their behavior during generation of highly evolved granitic magmas and to explore the nature of magma sources. Textural and compositional relationships of cognate Th-REE- and Nb-Ta-accessory minerals in Katerina felsic rocks show that chevkinite-group minerals (CGM), monazite, thorite, allanite and xenotime formed from residual liquids in quartz syenite porphyries, quartz monzonites and peralkaline granites, whereas in aluminous granites, allanite and monazite crystallized early, and thorite and columbite formed from residual liquids. Relationships of Y/Nb, Th/Nb, La/Nb and Ce/Pb ratios with Zr/Hf ratios in the aluminous granites and with Be abundances in the peralkaline granites suggest a decrease in La/Nb and Ce/Pb ratios in the former, and in Y/Nb and La/Nb ratios in the latter with crystallization progress. This contrasts with absence of systematic variations of Th/Nb and Ce/Pb ratios in the peralkaline compositions and of Y/Nb ratio in the aluminous ones. In this latter, Th/Nb ratio can present a significant decrease only in highly evolved compositions. An analysis of Y/Nb, Th/Nb, La/Nb and Ce/Pb relationships in worldwide OIB and subduction-related magmatic suites reveals that A-type felsic rocks with (Th/Nb)N < 1.3, (La/Nb)N < 1.3, and (Ce/Pb)N > 1 may have A1-type affinity, and those with (Th/Nb)N > 2, (La/Nb)N > 2, and (Ce/Pb)N < 1 tend to present A2-type affinity. The crystal fractionation of Th-LREE- and Nb-Ta-accessory minerals and mixing of components derived from the two granite groups may cause deviations from these compositional limits that can be evaluated using constraints imposed by Th/Nb-La/Nb, Ce/Pb-Th/Nb and Ce/Pb-La/Nb relationships in OIB and subduction-related magmatic suites. Three mantle sources might have been

  18. Capability of U-Pb dating of zircons from Quaternary tephra: Jemez Mountains, NM, and La Sal Mountains, UT, USA

    NASA Astrophysics Data System (ADS)

    Krautz, Jana; Hofmann, Mandy; Gärtner, Andreas; Linnemann, Ulf; Kleber, Arno

    2018-01-01

    Two Quaternary tephras derived from the Jemez Mountains, New Mexico - the Guaje and Tsankawi tephras - are difficult to distinguish due to their similar glass-shard chemical composition. Differences in bulk chemical composition are small as well. Here we examine the feasibility to assign an age to a distal tephra layer in the La Sal Mountains, Utah, by U-Pb dating of zircons and to correlate it with one of the two Jemez eruptions. We also dated original Jemez tephras for comparison. Even though the tephras are very young, we obtained reasonable age determinations using the youngest cluster of zircon grains overlapping in age at 2σ. Thereafter, the Guaje tephra is 1.513 ± 0.021 Myr old. The La Sal Mountains tephra is correlated with the Tsankawi tephra. Three samples yielded a common age range of 1.31-1.40 Myr. All ages are in slight disagreement with published age determinations obtained by 40Ar / 39Ar dating. These findings indicate that distal Jemez tephras can be distinguished by U-Pb dating. Furthermore, we encourage giving this method a try for age assignments even of Quaternary volcanic material.

  19. Using zircon (U-Th)/He damage-diffusivity patterns to quantify detachment-related basement exhumation in the Mecca Hills, CA

    NASA Astrophysics Data System (ADS)

    Moser, A. C.; Ault, A. K.; Evans, J. P.; Reiners, P. W.; Stearns, M.; Guenthner, W.

    2017-12-01

    Exposures of gneiss and Orocopia Schist (OS) in the Mecca Hills, California, adjacent to the southernmost San Andreas Fault system, preserve the exhumation history of Oligocene detachment faulting. We investigate the duration, magnitude, and mechanisms of exhumation of these units at regional and local scales using in situ U-Pb zircon dating (n = 248), (U-Th)/He (He) thermochronometry (n = 39), and He date-effective U (eU) patterns. Zircons with variable preserved visual metamictization were targeted for He analyses to purposefully build a dataset with a range in eU concentration and zircon He closure temperatures, as well as induce a He date-eU correlation. Analyzed zircon crystals range from clear and transparent to purple-brown and translucent in each sample. Zircon cathodoluminescence images reveal oscillatory and sector chemical zoning. Each sample contains a population of largely Proterozoic U-Pb dates implying some grains accumulated radiation damage since 1.9-1.1 Ga. Zircon (U-Th)/He dates from seven samples of OS and gneiss yield a mean date of 24 ± 3.5 Ma (n = 32) and uniform dates over an 90-2950 ppm eU range. One gneiss sample yields a mean date of 65 ± 5.6 Ma (n = 7) over a limited eU spread ( 500-950 ppm). Mean zircon He dates from these two units overlap, but dates are broadly younger in northeastern exposures dominated by OS. Preliminary thermal history simulations integrating zircon U-Pb data, He date-eU patterns, and independent geologic constraints require at least 200 °C of cooling through the zircon He partial retention zone 30-21 Ma and show that the pre-70 Ma thermal history does not affect the predicted date-eU correlation. This shared rapid cooling history documented in the OS and gneiss imply these units were juxtaposed prior to 30 Ma and exhumed as a coherent structural block within the footwall of the Orocopia Mountains Detachment Fault in the Mecca Hills. Spatio-temporal variation in mean zircon He dates may delineate time

  20. U-Pb, Re-Os, and Ar/Ar geochronology of rare earth element (REE)-rich breccia pipes and associated host rocks from the Mesoproterozoic Pea Ridge Fe-REE-Au deposit, St. Francois Mountains, Missouri

    USGS Publications Warehouse

    Aleinikoff, John N.; Selby, David; Slack, John F.; Day, Warren C.; Pillers, Renee M.; Cosca, Michael A.; Seeger, Cheryl; Fanning, C. Mark; Samson, Iain

    2016-01-01

    Rare earth element (REE)-rich breccia pipes (600,000 t @ 12% rare earth oxides) are preserved along the margins of the 136-million metric ton (Mt) Pea Ridge magnetite-apatite deposit, within Mesoproterozoic (~1.47 Ga) volcanic-plutonic rocks of the St. Francois Mountains terrane in southeastern Missouri, United States. The breccia pipes cut the rhyolite-hosted magnetite deposit and contain clasts of nearly all local bedrock and mineralized lithologies.Grains of monazite and xenotime were extracted from breccia pipe samples for SHRIMP U-Pb geochronology; both minerals were also dated in one polished thin section. Monazite forms two morphologies: (1) matrix granular grains composed of numerous small (<50 μm) crystallites intergrown with rare xenotime, thorite, apatite, and magnetite; and (2) coarse euhedral, glassy, bright-yellow grains similar to typical igneous or metamorphic monazite. Trace element abundances (including REE patterns) were determined on selected grains of monazite (both morphologies) and xenotime. Zircon grains from two samples of host rhyolite and two late felsic dikes collected underground at Pea Ridge were also dated. Additional geochronology done on breccia pipe minerals includes Re-Os on fine-grained molybdenite and 40Ar/39Ar on muscovite, biotite, and K-feldspar.Ages (±2σ errors) obtained by SHRIMP U-Pb analysis are as follows: (1) zircon from the two host rhyolite samples have ages of 1473.6 ± 8.0 and 1472.7 ± 5.6 Ma; most zircon in late felsic dikes is interpreted as xenocrystic (age range ca. 1522–1455 Ma); a population of rare spongy zircon is likely of igneous origin and yields an age of 1441 ± 9 Ma; (2) pale-yellow granular monazite—1464.9 ± 3.3 Ma (no dated xenotime); (3) reddish matrix granular monazite—1462.0 ± 3.5 Ma and associated xenotime—1453 ± 11 Ma; (4) coarse glassy-yellow monazite—1464.8 ± 2.1, 1461.7 ± 3.7 Ma, with rims at 1447.2 ± 4.7 Ma; and (5) matrix monazite (in situ)—1464.1 ± 3.6 and 1454

  1. Dating exhumed peridotite with spinel (U-Th)/He chronometry

    NASA Astrophysics Data System (ADS)

    Cooperdock, Emily H. G.; Stockli, Daniel F.

    2018-05-01

    The timing of cooling and exhumation of mantle peridotites in oceanic and continental settings has been challenging to determine using traditional geo- and thermochronometric techniques. Hence, the timing of the exhumation of mantle rocks to the Earth's surface at mid-ocean ridges, rifted and passive continental margins, and within continental volcanic and orogenic systems has remained largely elusive or only loosely constrained by relative age bracketing. Magmatic spinel [(Mg, Fe)(Al,Cr)2O4] is a ubiquitous primary mineral phase in mantle peridotites and is often the only primary mineral phase to survive surface weathering and serpentinization. This work explores spinel (U-Th)/He thermochronology as a novel tool to directly date the exhumation and cooling history of spinel-bearing mantle peridotite. Samples were chosen from a range of tectonic and petrologic settings, including a mid-ocean ridge abyssal peridotite (ODP Leg 209), an orogenic tectonic sliver of sub-continental mantle (Lherz massif, France), and a volcanic-rock hosted mantle xenolith (Green Knobs, NM). Spinel grains were selected based on grain size and morphology, screened for internal homogeneity using X-ray computed tomography, and air abraded to eliminate effects of alpha ejection/implantation. These case studies yield spinel He age results that are reproducible and generally in good agreement with independent age constraints. For ODP Leg 209, a spinel He age of 1.1 ± 0.3 Ma (2 SE) (n = 8) is consistent with independent U-Pb and magnetic anomaly ages for the exhumation of oceanic crust by detachment faulting along this segment of the slow-spreading ridge. Spinel from the Lherz massif yield He ages from 60-70 Ma (n = 3), which correspond well with independent thermochronometric constraints for cooling associated with Pyrenean collisional exhumation. Spinel from a mantle xenolith within a previously undated kimberlite diatreme at Green Knobs, New Mexico, generate a reproducible mean He age of 11

  2. Early history of the moon: Implications of U-Th-Pb and Rb-Sr systematics

    NASA Technical Reports Server (NTRS)

    Tatsumoto, M.; Nunes, P. D.; Unruh, D. M.

    1974-01-01

    Anorthosite 60015 contains the lowest initial Sr-87/Sr-86 ratio (0.69884 + or - 0.00004) yet reported for a lunar sample. The initial ratio is equal to that of the achondrite Angra dos Reis and slightly higher than the lowest measured Sr-87/Sr-86 ratio for an inclusion in the C3 carbonaceous chondrite Allende. The Pb-Pb ages of both Angra dos Reis and Allende are 4.62 x 10 to the 9th power years (4.62 billion years). Thus, the initial Sr-87/Sr-86 ratio found in lunar anorthosite 60015 strongly supports the hypothesis that the age of the moon is about 4.65 b.y. The U-238/Pb-204 value estimated for the source of the excess lead in orange soil 74220 is lower than the values estimated for the sources of KREEP (600-1000), high K (300-600) and low K (100-300) basalts.

  3. 230Th/U dating of Last Interglacial brain corals from Bonaire (southern Caribbean) using bulk and theca wall material

    NASA Astrophysics Data System (ADS)

    Obert, J. Christina; Scholz, Denis; Felis, Thomas; Brocas, William M.; Jochum, Klaus P.; Andreae, Meinrat O.

    2016-04-01

    We compared the suitability of two skeletal materials of the Atlantic brain coral Diploria strigosa for 230Th/U-dating: the commonly used bulk material comprising all skeletal elements and the denser theca wall material. Eight fossil corals of presumably Last Interglacial age from Bonaire, southern Caribbean Sea, were investigated, and several sub-samples were dated from each coral. For four corals, both the ages and the activity ratios of the bulk material and theca wall agree within uncertainty. Three corals show significantly older ages for their bulk material than for their theca wall material as well as substantially elevated 232Th content and (230Th/238U) ratios. The bulk material samples of another coral show younger ages and lower (230Th/238U) ratios than the corresponding theca wall samples. This coral also contains a considerable amount of 232Th. The application of the available open-system models developed to account for post-depositional diagenetic effects in corals shows that none of the models can successfully be applied to the Bonaire corals. The most likely explanation for this observation is that the assumptions of the models are not fulfilled by our data set. Comparison of the theca wall and bulk material data enables us to obtain information about the open-system processes that affected the corals. The corals showing apparently older ages for their bulk material were probably affected by contamination with a secondary (detrital) phase. The most likely source of the detrital material is carbonate sand. The higher (230Th/232Th) ratio of this material implies that detrital contamination would have a much stronger impact on the ages than a contaminant with a bulk Earth (230Th/232Th) ratio and that the threshold for the commonly applied 232Th reliability criterion would be much lower than the generally used value of 1 ng g-1. The coral showing apparently younger ages for its bulk material was probably influenced by more than one diagenetic process. A

  4. U-Th dating of carbonate crusts reveals Neandertal origin of Iberian cave art.

    PubMed

    Hoffmann, D L; Standish, C D; García-Diez, M; Pettitt, P B; Milton, J A; Zilhão, J; Alcolea-González, J J; Cantalejo-Duarte, P; Collado, H; de Balbín, R; Lorblanchet, M; Ramos-Muñoz, J; Weniger, G-Ch; Pike, A W G

    2018-02-23

    The extent and nature of symbolic behavior among Neandertals are obscure. Although evidence for Neandertal body ornamentation has been proposed, all cave painting has been attributed to modern humans. Here we present dating results for three sites in Spain that show that cave art emerged in Iberia substantially earlier than previously thought. Uranium-thorium (U-Th) dates on carbonate crusts overlying paintings provide minimum ages for a red linear motif in La Pasiega (Cantabria), a hand stencil in Maltravieso (Extremadura), and red-painted speleothems in Ardales (Andalucía). Collectively, these results show that cave art in Iberia is older than 64.8 thousand years (ka). This cave art is the earliest dated so far and predates, by at least 20 ka, the arrival of modern humans in Europe, which implies Neandertal authorship. Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  5. Variable microstructural response of baddeleyite to shock metamorphism in young basaltic shergottite NWA 5298 and improved U-Pb dating of Solar System events

    NASA Astrophysics Data System (ADS)

    Darling, James R.; Moser, Desmond E.; Barker, Ivan R.; Tait, Kim T.; Chamberlain, Kevin R.; Schmitt, Axel K.; Hyde, Brendt C.

    2016-06-01

    The accurate dating of igneous and impact events is vital for the understanding of Solar System evolution, but has been hampered by limited knowledge of how shock metamorphism affects mineral and whole-rock isotopic systems used for geochronology. Baddeleyite (monoclinic ZrO2) is a refractory mineral chronometer of great potential to date these processes due to its widespread occurrence in achondrites and robust U-Pb isotopic systematics, but there is little understanding of shock-effects on this phase. Here we present new nano-structural measurements of baddeleyite grains in a thin-section of the highly-shocked basaltic shergottite Northwest Africa (NWA) 5298, using high-resolution electron backscattered diffraction (EBSD) and scanning transmission electron microscopy (STEM) techniques, to investigate shock-effects and their linkage with U-Pb isotopic disturbance that has previously been documented by in-situ U-Pb isotopic analyses. The shock-altered state of originally igneous baddeleyite grains is highly variable across the thin-section and often within single grains. Analyzed grains range from those that preserve primary (magmatic) twinning and trace-element zonation (baddeleyite shock Group 1), to quasi-amorphous ZrO2 (Group 2) and to recrystallized micro-granular domains of baddeleyite (Group 3). These groups correlate closely with measured U-Pb isotope compositions. Primary igneous features in Group 1 baddeleyites (n = 5) are retained in high shock impedance grain environments, and an average of these grains yields a revised late-Amazonian magmatic crystallization age of 175 ± 30 Ma for this shergottite. The youngest U-Pb dates occur from Group 3 recrystallized nano- to micro-granular baddeleyite grains, indicating that it is post-shock heating and new mineral growth that drives much of the isotopic disturbance, rather than just shock deformation and phase transitions. Our data demonstrate that a systematic multi-stage microstructural evolution in

  6. High-Precision U-Pb Geochronology of Ice River Perovskite: A Possible Interlaboratory and Intertechnique EARTHTIME Standard

    NASA Astrophysics Data System (ADS)

    Burgess, S. D.; Bowring, S. A.; Heaman, L. M.

    2012-12-01

    Accurate and precise U-Pb geochronology of accessory phases other than zircon are required for dating some LIP basalts or determining the temporal patterns of kimberlite pipes, for example. Advances in precision and accuracy lead directly to an increase in the complexity of questions that can be posed. U-Pb geochronology of perovskite (CaTiO3) has been applied to silica-undersaturated basalts, carbonatites, alkaline igneous rocks, and kimberlites. Most published IDTIMS perovskite dates have 2-sigma precisions at the ~0.2% level for weighted mean 206Pb/238U dates, much less than possible with IDTIMS analyses of zircons, which limits the applicability of perovskite in high-precision applications. Precision on perovskite dates is lower than zircon because of common Pb, which in some cases can be up to 50% of the total Pb and must be corrected for and accurately partitioned between blank and initial. Relatively small changes in the composition of common Pb can result in inaccurate but precise dates. In many cases minerals with significant common Pb are corrected using Stacey and Kramers (1975) two stage Pb evolution model. This can be done without serious consequence to the final date for minerals with high U/Pb ratios. In the more common case where U/Pb ratios are relatively low and the proportion of common Pb is large, applying a model-derived Pb isotopic composition rather than measuring it directly can introduce percent-level inaccuracy to dates calculated with precisely known U/Pb ratios. Direct measurement of the common Pb composition can be done on a U-poor mineral that co-crystallized with perovskite; feldspar and clinopyroxene are commonly used. Clinopyroxene can contain significant in-grown radiogenic Pb and our experiments indicate that it is not eliminated by aggressive step-wise leaching. The U/Pb ratio in clinopyroxene is generally low (20 < mu < 50) but significant. Other workers (e.g. Kamo et al., 2003; Corfu and Dahlgren, 2008), have used two methods

  7. Internal morphology, habit and U-Th-Pb microanalysis of amphibolite-to-granulite facies zircons: geochronology of the Ivrea Zone (Southern Alps)

    NASA Astrophysics Data System (ADS)

    Vavra, Gerhard; Schmid, Rolf; Gebauer, Dieter

    Several types of growth morphologies and alteration mechanisms of zircon crystals in the high-grade metamorphic Ivrea Zone (IZ) are distinguished and attributed to magmatic, metamorphic and fluid-related events. Anatexis of pelitic metasediments in the IZ produced prograde zircon overgrowths on detrital cores in the restites and new crystallization of magmatic zircons in the associated leucosomes. The primary morphology and Th-U chemistry of the zircon overgrowth in the restites show a systematic variation apparently corresponding to the metamorphic grade: prismatic (prism-blocked) low-Th/U types in the upper amphibolite facies, stubby (fir-tree zoned) medium-Th/U types in the transitional facies and isometric (roundly zoned) high-Th/U types in the granulite facies. The primary crystallization ages of prograde zircons in the restites and magmatic zircons in the leucosomes cannot be resolved from each other, indicating that anatexis in large parts of the IZ was a single and short lived event at 299+/-5Ma (95% c. l.). Identical U/Pb ages of magmatic zircons from a metagabbro (293+/-6Ma) and a metaperidotite (300+/-6Ma) from the Mafic Formation confirm the genetic context of magmatic underplating and granulite facies anatexis in the IZ. The U-Pb age of 299+/-5Ma from prograde zircon overgrowths in the metasediments also shows that high-grade metamorphic (anatectic) conditions in the IZ did not start earlier than 20Ma after the Variscan amphibolite facies metamorphism in the adjacent Strona-Ceneri Zone (SCZ). This makes it clear that the SCZ cannot represent the middle to upper crustal continuation of the IZ. Most parts of zircon crystals that have grown during the granulite facies metamorphism became affected by alteration and Pb-loss. Two types of alteration and Pb-loss mechanisms can be distinguished by cathodoluminescence imaging: zoning-controlled alteration (ZCA) and surface-controlled alteration (SCA). The ZCA is attributed to thermal and/or decompression pulses

  8. Interpreting U-Pb data from primary and secondary features in lunar zircon

    NASA Astrophysics Data System (ADS)

    Grange, M. L.; Pidgeon, R. T.; Nemchin, A. A.; Timms, N. E.; Meyer, C.

    2013-01-01

    In this paper, we describe primary and secondary microstructures and textural characteristics found in lunar zircon and discuss the relationships between these features and the zircon U-Pb isotopic systems and the significance of these features for understanding lunar processes. Lunar zircons can be classified according to: (i) textural relationships between zircon and surrounding minerals in the host breccias, (ii) the internal microstructures of the zircon grains as identified by optical microscopy, cathodoluminescence (CL) imaging and electron backscattered diffraction (EBSD) mapping and (iii) results of in situ ion microprobe analyses of the Th-U-Pb isotopic systems. Primary zircon can occur as part of a cogenetic mineral assemblage (lithic clast) or as an individual mineral clast and is unzoned, or has sector and/or oscillatory zoning. The age of primary zircon is obtained when multiple ion microprobe analyses across the polished surface of the grain give reproducible and essentially concordant data. A secondary set of microstructures, superimposed on primary zircon, include localised recrystallised domains, localised amorphous domains, crystal-plastic deformation, planar deformation features and fractures, and are associated with impact processes. The first two secondary microstructures often yield internally consistent and close to concordant U-Pb ages that we interpret as dating impact events. Others secondary microstructures such as planar deformation features, crystal-plastic deformation and micro-fractures can provide channels for Pb diffusion and result in partial resetting of the U-Pb isotopic systems.

  9. 210Pb dating

    USGS Publications Warehouse

    Swarzenski, Peter W.

    2014-01-01

    Roughly fifty years ago, a small group of scientists from Belgium and the United States, trying to better constrain ice sheet accumulation rates, attempted to apply what was then know about environmental lead as a potential geochronometer. Thus Goldberg (1963) developed the first principles of the 210Pb dating method, which was soon followed by a paper by Crozaz et al. (1964), who examined accumulation history of Antarctic snow using 210Pb. Shortly thereafter, Koide et al. (1972, 1973) adapted this technique to unravel sediment deposition and accumulation records in deep-sea environments. Serendipitously, they chose to work in a deep basin off California, where an independent and robust age model had already been developed. Krishanswami et al. (1971) extended the use of this technique to lacustrine deposits to reconstruct depositional histories of lake sediment, and maybe more importantly, contaminant inputs and burial. Thus, the powerful tool for dating recent (up to about one century old) sediment deposits was established and soon widely adopted. Today almost all oceanographic or limnologic studies that address recent depositional reconstructions employ 210Pb as one of several possible geochronometers (Andrews et al., 2009; Gale, 2009; Baskaran, 2011; Persson and Helms, 2011). This paper presents a short overview of the principles of 210Pb dating and provides a few examples that illustrate the utility of this tracer in contrasting depositional systems. Potential caveats and uncertainties (Appleby et al., 1986; Binford, 1990; Binford et al., 1993; Smith, 2001; Hancock et al., 2002) inherent to the use and interpretation of 210Pb-derived age-models are also introduced. Recommendations as to best practices for most reliable uses and reporting are presented in the summary.

  10. CHRONOLOGICAL CONSTRAINTS ON FLUID CIRCULATION IN MESOZOIC FORMATIONS OF THE EASTERN PART OF THE PARIS BASIN INFERRED FROM U-Pb DATING OF SECONDARY INFILLING CARBONATES

    NASA Astrophysics Data System (ADS)

    Pisapia, C.; Deschamps, P.; Hamelin, B.; Buschaert, S.

    2009-12-01

    The French agency for nuclear waste management (ANDRA) developed an Underground Research Laboratory in the Mesozoic formations of Eastern part of the Paris Basin (France) to assess the feasibility of a high-level radioactive wastes repository in sedimentary formations. The target host formation is a low-porosity detrital argillite (Callovo-Oxfordian) embedded between two shelf limestones formations (of Bajocian-Bathonian and Oxfordian-Kimmeridgian ages). These formations are affected by fracture networks, likely inherited mainly from the Eocene-Oligocene extension tectonics, also responsible of the Rhine graben formation in the same region. The limestones have very low permeability, the primary and secondary porosity being infilled by secondary carbonated minerals. The inter-particle porosity is filled with euhedral calcite spar cements. Similarly, macro-cavities and connected micro-fractures are almost sealed by euhedral calcite. Geochemical evidences (δ18O) suggest that the secondary carbonates likely derived from a common parent fluid (Buschaert et al., 2004, Appl. Geochem. (19) 1201-1215p). This late carbonated precipitation phase is responsible for the intense cementation of the limestone formations and bears witness of a major phase of fluids circulation that marked the late diagenetic evolution of the system. Knowledge of the chronology of the different precipitation phases of secondary minerals is thus of critical importance in order to determine the past hydrological conditions of the geological site. The aim of this study is to provide chronological constraints on the secondary carbonate mineral precipitation using U/Th and U/Pb methods. Analyses are performed on millimeter to centimeter scale secondary calcites collected within fractures outcropping in the regional fault zone of Gondrecourt and in cores from the ANDRA exploration-drilling program. Preliminary U-Th analyses obtained on secondary carbonates from surface fractures infillings yield secular

  11. Late Pleistocene eruptive history of the Mono Craters rhyolites, eastern California, from U-Th dating of explosive and effusive products

    NASA Astrophysics Data System (ADS)

    Marcaida, M.; Vazquez, J. A.; Calvert, A. T.; Miller, J. S.

    2016-12-01

    During late Pleistocene-Holocene time, repeated explosive and effusive eruptions of high-silica rhyolite magma south of Mono Lake, California, have produced a chain of massive domes known as the Mono Craters and a time-series of tephra deposits preserved in sediments of the Wilson Creek formation of ancestral Mono Lake. The record of late Holocene volcanism at Mono Craters is relatively well constrained by tephrostratigraphy and 14C dating, and the timing of late Pleistocene eruptions is similarly well constrained by tephrochronology and magnetostratigraphy of the Wilson Creek formation. However, the chronology of eruptions for the Mono Craters chain, comprising at least 28 individual domes, has thus far been based on age estimates from hydration rind dating of obsidian that is highly dependent on local calibration. We constrain the timing of late Pleistocene dome emplacement by linking independently dated Wilson Creek tephras to their dome equivalents in the Mono Craters using combined titanomagnetite geochemistry and U-Th geochronology. Ion microprobe 238U-230Th dating of unpolished allanite and zircon rims gives isochron dates of ca. 42 ka, ca. 38 ka, ca. 26 ka, and ca. 20 ka for domes 19, 24, 31 (newly recognized), and 11 of the Mono Craters, respectively. These domes are biotite-bearing rhyolites with titanomagnetites that are compositionally identical to those from several Wilson Creek tephras. Specifically, we correlate Ash 15, Ash 7, and Ash 3 of the Wilson Creek formation to domes 19, 31, and 11 of the Mono Craters, respectively, based on matching titanomagnetite compositions and indistinguishable U-Th ages. 40Ar/39Ar dating of single sanidines from domes 19 and 31 yield mean dates that are 10 k.y. older than their corresponding U-Th dates, likely due to excess argon from melt inclusions and/or incompletely re-equilibrated antecrysts. Based on our new U-Th isochron date of ca. 34 ka for allanite-zircon from Ash 8 pumice and the ca. 26-27 ka age of Ash 7

  12. New uppermost Cambrian U-Pb date from Avalonian Wales and age of the Cambrian-Ordovician boundary

    USGS Publications Warehouse

    Davidek, K.; Landing, E.; Bowring, S.A.; Westrop, S.R.; Rushton, A.W.A.; Fortey, R.A.; Adrain, J.M.

    1998-01-01

    A crystal-rich volcaniclastic sandatone in the lower Peltura scarabaeoides Zone at Ogof-odi near Criccieth, North Wales, yields a U-Pb zircon age of 491 ?? 1 Ma. This late Late Cambrian date indicates a remarkably young age for the Cambrian-Ordovician boundary whose age must be less than 491 Ma. Hence the revised duration of the post-Placentian (trilobite-bearing) Cambrian indicates that local trilobite zonations allow a biostratigraphic resolution comparble to that provided by Ordovician graptolites and Mesozoic ammonites.

  13. The first case study of 230Th/U and 14C dating of mid-valdai organic deposits

    NASA Astrophysics Data System (ADS)

    Maksimov, F. E.; Kuznetsov, V. Yu.; Zaretskaya, N. E.; Subetto, D. A.; Shebotinov, V. V.; Zherebtsov, I. E.; Levchenko, S. B.; Kuznetsov, D. D.; Larsen, E.; Lysö, A.; Jensen, M.

    2011-05-01

    From the viewpoint of precision and reliability of radioisotopic dating, deposits whose quantitative age can be determined through several methods of geochronometry are of special interest. The mutually conforming finite 14C and 230Th/U dates of buried Neopleistocene organic deposits, taken from the Tolokonka section by the North Dvina River (100 km downstream from the city of Kotlas), have been obtained for the first time in Russia. The stratigraphical reference of these results to those obtained via the optically induced luminescence for upper and lower bedding layers has been established. The presented geochronometric data have allowed us to consider the age of oxbow lake organic deposits completely reliable and refer the time of their formation to the Tyrbei warming within the MIS-3. The applicability of the new version of the 230Th/U method for dating of interglacial and interstadial deposits, for the purpose of solving the Middle and Late Neopleistocene chronostratigraphy issues, is confirmed.

  14. Effective LA-ICP-MS dating of common-Pb bearing accessory minerals with new data reduction schemes in Iolite

    NASA Astrophysics Data System (ADS)

    Kamber, Balz S.; Chew, David M.; Petrus, Joseph A.

    2014-05-01

    Compared to non-destructive geochemical analyses, LA-ICP-MS consumes ca. 0.1 μm of material per ablation pulse. It is therefore to be expected that the combined analyses of ca. 200 pulses will encounter geochemical and isotopic complexities in all but the most perfect minerals. Experienced LA-ICP-MS analysts spot down-hole complexities and choose signal integration areas accordingly. In U-Pb geochronology, the task of signal integration choice is complex as the analyst wants to avoid areas of common Pb and Pb-loss and separate true (concordant) age complexity. Petrus and Kamber (2012) developed VizualAge as a tool for reducing and visualising, in real time, U-Pb geochronology data obtained by LA-ICP-MS as an add-on for the freely available U-Pb geochronology data reduction scheme of Paton et al. (2010) in Iolite. The most important feature of VizualAge is its ability to display a live concordia diagram, allowing users to inspect the data of a signal on a concordia diagram as the integration area it is being adjusted, thus providing immediate visual feedback regarding discordance, uncertainty, and common lead for different regions of the signal. It can also be used to construct histograms and probability distributions, standard and Tera-Wasserburg style concordia diagrams, as well as 3D U-Th-Pb and total U-Pb concordia diagrams. More recently, Chew et al. (2014) presented a new data reduction scheme (VizualAge_UcomPbine) with much improved common Pb correction functionality. Common Pb is a problem for many U-bearing accessory minerals and an under-appreciated difficulty is the potential presence of (possibly unevenly distributed) common Pb in calibration standards, introducing systematic inaccuracy into entire datasets. One key feature of the new method is that it can correct for variable amounts of common Pb in any U-Pb accessory mineral standard as long as the standard is concordant in the U/Pb (and Th/Pb) systems after common Pb correction. Common Pb correction

  15. The 238U/235U isotope ratio of the Earth and the solar system: Constrains from a gravimetrically calibrated U double spike and implications for absolute Pb-Pb ages

    NASA Astrophysics Data System (ADS)

    Weyer, Stefan; Noordmann, Janine; Brennecka, Greg; Richter, Stephan

    2010-05-01

    The ratio of 238U and 235U, the two primordial U isotopes, has been assumed to be constant on Earth and in the solar system. The commonly accepted value for the 238U/235U ratio, which has been used in Pb-Pb dating for the last ~ 30 years, was 137.88. Within the last few years, it has been shown that 1) there are considerable U isotope variations (~1.3‰) within terrestrial material produced by isotope fractionation during chemical reactions [1-3] and 2) there are even larger isotope variations (at least 3.5‰) in calcium-aluminum-rich inclusions (CAIs) in meoteorites that define the currently accepted age of the solar system [4]. These findings are dramatic for geochronology, as a known 238U/235U is a requirement for Pb-Pb dating, the most precise dating technique for absolute ages. As 238U/235U variations can greatly affect the reported absolute Pb-Pb age, understanding and accurately measuring variation of the 238U/235U ratio in various materials is critical, With these new findings, the questions also arises of "How well do we know the average U isotope composition of the Earth and the solar system?" and "How accurate can absolute Pb-Pb ages be?" Our results using a gravimetrically calibrated 233U/236U double spike IRMM 3636 [5] indicate that the U standard NBL 950a, which was commonly used to define the excepted "natural" 238U/235U isotope ratio, has a slightly lower 238U/235U of 137.836 ± 0.024. This value is indistinguishable from the U isotope compositions for NBL 960 and NBL112A, which have been determined by several laboratories, also using the newly calibrated U double spike IRMM 3636 [6]. These findings provide new implications about the average U isotope composition of the Earth and the solar system. Basalts display a very tight range of U isotope variations (~0.25-0.32‰ relative to SRM 950a). Their U isotope composition is also very similar to that of chondrites [4], which however appear to show a slightly larger spread. Accepting terrestrial

  16. Isotopic composition of Pb and Th in interplinian volcanics from Somma-Vesuvius volcano, Italy

    USGS Publications Warehouse

    Cortini, M.; Ayuso, R.A.; de Vivo, B.; Holden, P.; Somma, R.

    2004-01-01

    We present a detailed isotopic study of volcanic rocks emitted from Somma-Vesuvius volcano during three periods of interplinian activity: "Protohistoric" (3550 y B.P. to 79 A.D.), "Ancient Historic" (79 to 472 A.D.) and "Medieval" (472 to 1631 A.D.). Pb isotopic compositions of two acid leached fractions and whole rock residues of 37 whole rock samples (determined by Somma et al., 2001) show that each of the three interplinian periods is distinguished by small, systematic, and unique uranogenic and thorogenic Pb isotopic trends. This key and novel feature is compatible with the notion that the Pb isotopic data reflect small-scale source heterogeneity operating over relatively short periods of time. From this representative group of samples, a selected set of nine whole rocks were analysed for Th isotopes. 232Th/238U ratios in the source can be obtained independently from Pb and from Th isotopes. Those obtained from Pb isotopes represent source ratios, time-integrated over the whole age of the Earth; they range from 3.9 to 4.1. 232Th/238U obtained from Th isotopes are those of the present source. They are lower, and cluster around 3.5; this difference probably indicates recent U enrichment of the present source. The behaviour of Pb, as inferred by its isotopic ratios, is quite distinct from that of Sr and Nd isotopes: Pb isotope variations are not correlated to Sr or Nd isotope variations. The isotopic contrast is compatible with the idea that the isotopes were decoupled during magmatic production, evolution, and ascent through the crust. Thus, the Pb isotopes do not reflect the effects of the same processes as in the case of the Sr and Nd isotopes, or, as we also favor, they do not necessarily reflect the same source contributions into the magmas. Moreover, the Pb isotopic evolution of the interplinian rocks chiefly reflects mixing, driven by processes that are superimposed on, and independent of, other source contributions that determine the isotopic compositions

  17. In situ SIMS U-Pb dating of hydrothermal rutile: reliable age for the Zhesang Carlin-type gold deposit in the golden triangle region, SW China

    NASA Astrophysics Data System (ADS)

    Pi, Qiaohui; Hu, Ruizhong; Xiong, Bin; Li, Qiuli; Zhong, Richen

    2017-12-01

    The contiguous region between Guangxi, Guizhou, and Yunnan, commonly referred to as the Golden Triangle region in SW China, hosts many Carlin-type gold deposits. Previously, the ages of the gold mineralization in this region have not been well constrained due to the lack of suitable minerals for radiometric dating. This paper reports the first SIMS U-Pb age of hydrothermal rutile crystals for the Zhesang Carlin-type gold deposit in the region. The hydrothermal U-bearing rutile associated with gold-bearing sulfides in the deposit yields an U-Pb age of 213.6 ± 5.4 Ma, which is within the range of the previously reported arsenopyrite Re-Os isochron ages (204 ± 19 to 235 ± 33 Ma) for three other Carlin-type gold deposits in the region. Our new and more precise rutile U-Pb age confirms that the gold mineralization was contemporaneous with the Triassic W-Sn mineralization and associated granitic magmatism in the surrounding regions. Based on the temporal correlation, we postulate that coeval granitic plutons may be present at greater depths in the Golden Triangle region and that the formation of the Carlin-type gold deposits is probably linked to the coeval granitic magmatism in the region. This study clearly demonstrates that in situ rutile U-Pb dating is a robust tool for the geochronogical study of hydrothermal deposits that contain hydrothermal rutile.

  18. Isotope and chemical age of the Greater Caucasus basement metamorphic rocks

    NASA Astrophysics Data System (ADS)

    Konilov, A. N.; Somin, M. L.; Mukhanova, A. A.

    2009-04-01

    complexes independently of baric type seem to be formed roughly synchronously during Variscan epoch. References: Gamkrelidze I.P., Shengelia D.M. ( 2005).The Precambrian-Paleozoic Regional Metamorphism, Granitoid Magmatism, and Geodynamics of the Caucasus. M: Nauchnyi Mir [in Russian]. Pyle J.M., Frank S. Spear F.S. et al. (2001). Monazite-Xenotime-Garnet Equilibrium in Metapelites and a New Monazite-Garnet Thermometer. Journal of Petrology, , 42, 2083-2107. Slagstad T. (2006).Chemical (U-Th-Pb) dating of monazite: Analytical protocol for a LEO 1450VP scanning electron microscope and examples from Rogaland and Finnmark, Norway. Norges geologiske undersøkelse Bulletin, 446, 11-18. Somin M.L. (2007a). Pre-Alpine basement of the Greater Caucasus: main features. In: Alpine history of the Greater Caucasus (Yu.G. Leonovб Ed.). GEOS. Moscow. P.15-38. Somin M.L., Lepekhina E.N., Konilov A.N. ( 2007b). Age of the High-Temperature Gneiss Core of the Central Caucasus. Doklady Earth Sciences, 415, 690-694. Somin M.L., Levchenkov O.A., Kotov A.B. et al. (2007c). The Paleozoic Age of High-Pressure Metamorphic Rocks in the Dakhov Salient, North-Western Caucasus: Results of U-Pb Geochronological Investigations. Doklady Earth Sciences, 416, 1018-1021. Suzuki K., Adachi M. (1991). Precambrian provenance and Silurian metamorphism of the Tsunosava paragneiss in South Kitakami terrane, northeast Japan, revealed by the chemical Th-U-total Pb isochron ages of monazite, zircon and xenotime. Journal of Geochemistry, 25, 357-376.

  19. 230Th-U dating of surficial deposits using the ion microprobe (SHRIMP-RG): A microstratigraphic perspective

    USGS Publications Warehouse

    Maher, K.; Wooden, J.L.; Paces, J.B.; Miller, D.M.

    2007-01-01

    We used the sensitive high-resolution ion microprobe reverse-geometry (SHRIMP-RG) to date pedogenic opal using the 230Th-U system. Due to the high-spatial resolution of an ion microprobe (typically 30 ??m), regions of pure opal within a sample can be targeted and detrital material can be avoided. In addition, because the technique is non-destructive, the sample can be preserved for other types of analyses including electron microprobe or other stable isotope or trace element ion microprobe measurements. The technique is limited to material with U concentrations greater than ???50 ppm. However, the high spatial resolution, small sample requirements, and the ability to avoid detrital material make this technique a suitable technique for dating many Pleistocene deposits formed in semi-arid environments. To determine the versatility of the method, samples from several different deposits were analyzed, including silica-rich pebble coatings from pedogenic carbonate horizons, a siliceous sinter deposit, and opaline silica deposited as a spring mound. U concentrations for 30-??m-diameter spots ranged from 50 to 1000 ppm in these types of materials. The 230Th/232Th activity ratios also ranged from ???100 to 106, eliminating the need for detrital Th corrections that reduce the precision of traditional U-Th ages for many milligram- and larger-sized samples. In pedogenic material, layers of high-U opal (ca. 500 ppm) are commonly juxtaposed next to layers of calcite with much lower U concentrations (1-2 ppm). If these types of samples are not analyzed using a technique with the appropriate spatial resolution, the ages may be strongly biased towards the age of the opal. Comparison with standard TIMS (Thermal Ionization Mass Spectrometry) measurements from separate microdrilled samples suggests that although the analytical precision of the ion microprobe (SHRIMP-RG) measurements is less than TIMS, the high spatial resolution results in better accuracy in the age determination for

  20. Monazite chemical age and composition correlations, an insight in the Palaeozoic evolution of the Leaota Massif, South Carpathians

    NASA Astrophysics Data System (ADS)

    Săbău, Gavril; Negulescu, Elena

    2015-04-01

    Notwithstanding remarkable advantages of monazite microprobe U-Th-PbT geochronology of metamorphic formations, such as the direct investigation of a metamorphic mineral in a truly in situ setting, unequalled spatial resolution, and cost-effective analyses, it essentially remains affected by indeterminations as regards the accuracy and the representativity of the results. Besides the experimental hurdles related to trace element analyses with the microprobe (sensitivity, background and overlap effects) the method faces two main biases, firstly its inherently blind status emerging from the aprioric assumption of isotopic equilibrium, and secondly the marked susceptibility of monazite to fluid-stimulated chemical recrystallization and compositional resetting (e. g. Kelly et al. 2012). Age spectra obtained from individual sampled habitually display a significant scatter of calculated age data, in such a way that the separation of coherent and geologically relevant populations may often represent a substantial challenge. The interpretation of the results greatly benefits from the qualitative analysis of the textural and paragenetic setting or a trial-and error quantitative statistical assessment of distinct age clusters (Montel et al., 1996), though still maintaining a variable degree of subjectivity, as in any interpretative process not fully sustained by quantitative analysis. Additional dependable support can be gained from further qualitative parameters characterizing, besides the distribution of individual age data, also the global chemical composition of the analysed monazite grains, as well as the relationship to the corresponding metamorphic assemblages (Săbău & Negulescu, 2013). The quantitative assessment of the age patterns of individual samples can be achieved by plotting the normalized age gradient from the sorted age pattern, allowing distinction of quasi-gaussian distribution domains likely to correspond to coherent age clusters of geologic significance

  1. Status Report on the 40Ar/39Ar and U/Pb Dating of Tuffs in the Dewey Lake Formation of West Texas Towards Constraining the Permo-Triassic Magnetostratigraphic Time Scale

    NASA Astrophysics Data System (ADS)

    Chang, S.; Renne, P. R.; Mundil, R.

    2007-12-01

    A detailed magnetic polarity time scale for the Permo-Triassic Boundary interval, critical for correlating events in marine and terrestrial paleoenvironments, is not yet well-established. Recently, late Permian magnetostratigraphic studies have been reported for non-marine sections in Europe and South Africa (Szurlies et al., 2003; Nawrocki, 2004; Ward et al., 2005). However, these sections are devoid of index fossil suitable for correlation with marine successions and also lack age constraints from radioisotopic dating methods. In other words, it is dubious to correlate these magnetostratigraphic data with the GSSP Permo-Triassic boundary and mass extinction. The Dewey Lake red beds formation of West Texas, believed to be the youngest Permian formation in North America, has yielded high-quality paleomagnetic data (Molina-Garza et al., 1989; Steiner, 2001) and contains several silicic tuffs potentially enabling high-resolution calibration of the magnetic polarity time scale in this critical age range. The tuffs have yet to be placed into a regional stratigraphic or magnetostratigraphic framework, and it is unclear exactly how many distinct eruptive units are represented by the 7 distinct samples collected to date from widely separated (>160 km) localities. 40Ar/39Ar (sanidine and biotite) and U/Pb (zircon) studies reveal that all 7 sampled tuffs were probably erupted within several hundred ka of the Permo-Triassic boundary as dated at the Meishan GSSP section (Renne et al., 1995; Mundil et al., 2004) but results thus far are inadequate to convincingly resolve age differences between the various samples. U/Pb dating of some samples is severely challenged by Pb-loss from the zircons despite application of the Mattinson (2005) annealing/chemical abrasion technique. 40Ar/39Ar data have been obtained from as many as four different irradiations in order to reduce neutron fluence related error. We observe the familiar ~1% bias between U/Pb and 40Ar/39Ar ages. Biotite

  2. Rapid evolution of ritual architecture in central Polynesia indicated by precise 230Th/U coral dating.

    PubMed

    Sharp, Warren D; Kahn, Jennifer G; Polito, Christina M; Kirch, Patrick V

    2010-07-27

    In Polynesia, the complex Society Islands chiefdoms constructed elaborate temples (marae), some of which reached monumental proportions and were associated with human sacrifice in the 'Oro cult. We investigated the development of temples on Mo'orea Island by 230Th/U dating of corals used as architectural elements (facing veneers, cut-and-dressed blocks, and offerings). The three largest coastal marae (associated with the highest-ranked chiefly lineages) and 19 marae in the inland 'Opunohu Valley containing coral architectural elements were dated. Fifteen corals from the coastal temples meet geochemical criteria for accurate 230Th/U dating, yield reproducible ages for each marae, and have a mean uncertainty of 9 y (2sigma). Of 41 corals from wetter inland sites, 12 show some diagenesis and may yield unreliable ages; however, the majority (32) of inland dates are considered accurate. We also obtained six 14C dates on charcoal from four marae. The dates indicate that temple architecture on Mo'orea Island developed rapidly over a period of approximately 140 y (ca. AD 1620-1760), with the largest coastal temples constructed immediately before initial European contact (AD 1767). The result of a seriation of architectural features corresponds closely with this chronology. Acropora coral veneers were superceded by cut-and-dressed Porites coral blocks on altar platforms, followed by development of multitier stepped altar platforms and use of pecked basalt stones associated with the late 'Oro cult. This example demonstrates that elaboration of ritual architecture in complex societies may be surprisingly rapid.

  3. Rapid evolution of ritual architecture in central Polynesia indicated by precise 230Th/U coral dating

    PubMed Central

    Sharp, Warren D.; Kahn, Jennifer G.; Polito, Christina M.; Kirch, Patrick V.

    2010-01-01

    In Polynesia, the complex Society Islands chiefdoms constructed elaborate temples (marae), some of which reached monumental proportions and were associated with human sacrifice in the ‘Oro cult. We investigated the development of temples on Mo‘orea Island by 230Th/U dating of corals used as architectural elements (facing veneers, cut-and-dressed blocks, and offerings). The three largest coastal marae (associated with the highest-ranked chiefly lineages) and 19 marae in the inland ‘Opunohu Valley containing coral architectural elements were dated. Fifteen corals from the coastal temples meet geochemical criteria for accurate 230Th/U dating, yield reproducible ages for each marae, and have a mean uncertainty of 9 y (2σ). Of 41 corals from wetter inland sites, 12 show some diagenesis and may yield unreliable ages; however, the majority (32) of inland dates are considered accurate. We also obtained six 14C dates on charcoal from four marae. The dates indicate that temple architecture on Mo‘orea Island developed rapidly over a period of approximately 140 y (ca. AD 1620–1760), with the largest coastal temples constructed immediately before initial European contact (AD 1767). The result of a seriation of architectural features corresponds closely with this chronology. Acropora coral veneers were superceded by cut-and-dressed Porites coral blocks on altar platforms, followed by development of multitier stepped altar platforms and use of pecked basalt stones associated with the late ‘Oro cult. This example demonstrates that elaboration of ritual architecture in complex societies may be surprisingly rapid. PMID:20616079

  4. Cretaceous crust beneath SW Borneo: U-Pb dating of zircons from metamorphic and granitic rocks

    NASA Astrophysics Data System (ADS)

    Davies, L.; Hall, R.; Armstrong, R.

    2012-12-01

    Metamorphic basement rocks from SW Borneo are undated but have been suggested to be Palaeozoic. This study shows they record low pressure 'Buchan-type' metamorphism and U-Pb SHRIMP dating of zircons indicates a mid-Cretaceous (volcaniclastic) protolith. SW Borneo is the southeast promontory of Sundaland, the continental core of SE Asia. It has no sedimentary cover and the exposed basement has been widely assumed to be a crustal fragment from the Indochina-China margin. Metamorphic rocks of the Pinoh Group in Kalimantan (Indonesian Borneo) are intruded by granitoid rocks of Jurassic-Cretaceous age, based on K-Ar dating, suggesting emplacement mainly between 130 and 80 Ma. The Pinoh metamorphic rocks have been described as a suite of pelitic schists, slates, phyllites, and hornfelses, and have not been dated, although they have been correlated with rocks elsewhere in Borneo of supposed Palaeozoic age. Pelitic schists contain biotite, chlorite, cordierite, andalusite, quartz, plagioclase and in some cases high-Mn almandine-rich garnet. Many have a shear fabric associated with biotite and fibrolite intergrowth. Contact metamorphism due to intrusion of the granitoid rocks produced hornfelses with abundant andalusite and cordierite porphyroblasts. Granitoids range from alkali-granite to tonalite and contain abundant hornblende and biotite, with rare white mica. Zircons from granitoid rocks exhibit sector- and concentric- zoning; some have xenocrystic cores mantled by magmatic zircon. There are four important age populations at c. 112, 98, 84 and 84 Ma broadly confirming earlier dating studies. There is a single granite body with a Jurassic age (186 ± 2.3 Ma). Zircons from pelitic metamorphic rocks are typically euhedral, with no evidence of rounding or resorbing of grains; a few preserve volcanic textures. They record older ages than those from igneous rocks; U-Pb ages are Cretaceous with a major population between 134 and 110 Ma. A single sample contains Proterozoic

  5. Detrital zircon and apatite (U-Th)/He geochronology of intercalated baked sediments: A new approach to dating young basalt flows

    NASA Astrophysics Data System (ADS)

    Cooper, Frances J.; van Soest, Matthijs C.; Hodges, Kip V.

    2011-07-01

    Simple numerical models suggest that many basaltic lava flows should sufficiently heat the sediments beneath them to reset (U-Th)/He systematics in detrital zircon and apatite. This result suggests a useful way to date such flows when more conventional geochronological approaches are either impractical or yield specious results. We present here a test of this method on sediments interstratified with basalt flows of the Taos Plateau Volcanic Field of New Mexico. Nineteen zircons and apatites from two samples of baked sand collected from the uppermost 2 cm of a fluvial channel beneath a flow of the Upper Member of the Servilleta Basalt yielded an apparent age of 3.487 ± 0.047 Ma (2 SE confidence level), within the range of all published 40Ar/39Ar dates for other flows in the Upper Member (2.81-3.72 Ma) and statistically indistinguishable from the 40Ar/39Ar dates for basal flows of the Upper Member with which the studied flow is broadly correlative (3.61 ± 0.13 Ma). Given the high yield of 4He from U and Th decay, this technique may be especially useful for dating Pleistocene basalt flows. Detailed studies of the variation of (U-Th)/He detrital mineral dates in sedimentary substrates, combined with thermal modeling, may be a valuable tool for physical volcanologists who wish to explore the temporal and spatial evolution of individual flows and lava fields.

  6. From opening to subduction of an oceanic domain constrained by LA-ICP-MS U-Pb zircon dating (Variscan belt, Southern Armorican Massif, France)

    NASA Astrophysics Data System (ADS)

    Paquette, J.-L.; Ballèvre, M.; Peucat, J.-J.; Cornen, G.

    2017-12-01

    In the Variscan belt of Western Europe, the lifetime and evolution of the oceanic domain is poorly constrained by sparse, outdated and unreliable multigrain ID-TIMS U-Pb zircon dating. In this article, we present a complete in situ LA-ICP-MS dataset of about 300 U-Pb zircon analyses obtained on most of the ophiolitic and eclogitic outcrops of Southern Brittany, comprising new dating of previously published zircon populations and newly discovered rock samples. In situ dating and cathodo-luminescence imaging of each zircon grain yields new absolute time-constraints on the evolution of the Galicia-Moldanubian Ocean. The new results confirm that the opening of this oceanic domain is well defined at about 490 Ma. In contrast, the generally-quoted 400-410 Ma-age for the high-pressure event related to the subduction of the oceanic crust is definitely not recorded in the zircons of the eclogites. In light of these new data, we propose that the obduction of oceanic rocks occurred at about 370-380 Ma while the high-pressure event is recorded at 355 Ma in only a few zircon grains of some eclogite samples. Additionally, this large scale dating project demonstrates that the zircons from eclogites do not systematically recrystallise during the high pressure event and consequently their U-Pb systems do not record that metamorphism systematically. These zircons rather preserve the isotopic memory of the magmatic crystallization of their igneous protolith. Another example of an eclogite sample from the French Massif Central illustrates the frequent mistake in the interpretation of the ages of the early hydrothermal alteration of zircons in the oceanic crust versus partial or complete recrystallization during eclogite facies metamorphism.

  7. Exploring the U-Pb systematics of titanite from the Archean Stillwater Complex

    NASA Astrophysics Data System (ADS)

    Friedman, R. M.; Wall, C. J.; Scoates, J. S.; Weis, D. A.; Meurer, W. P.

    2011-12-01

    The Stillwater Complex is a large mafic-ultramafic layered intrusion in the Beartooth Mountains of Montana (USA) and host to the world-class J-M Reef platinum group element deposit. The size and geologic/economic importance of this igneous complex make it an important target for high-precision U-Pb dating. As a part of a comprehensive U-Pb study of the Stillwater Complex, we present ID-TIMS U-Pb titanite data, including new single grain results produced using the EARTHTIME ET535 spike, for very low-volume, relatively felsic granophyric and pegmatitic rocks associated with Stillwater layered rocks. Four samples studied include a pegmatitic ksp-qtz core to a gabbroic pegmatoid in the Lower Banded Series (N1), an alaskite (quartz diorite) and an amphibole-rich reaction zone between the alaskite and anorthosite (AN1) in the Middle Banded Series, and an amphibole-bearing granophyre from the Upper Banded Series (GN3). CA-TIMS U-Pb dating of zircon from these samples yielded concordant results only for the pegmatitic rock (weighted 207Pb/206Pb: 2709.65 ± 0.80 Ma, n = 5), which agrees with new zircon ages from Stillwater layered rocks. Results for high-U (up to 1438 ppm) metamict zircon that occurs in the other three rocks were highly discordant and did not yield precise ages. Titanite U-Pb results for the pegmatite are about -1% to +1% discordant with two groupings of 207Pb/206Pb dates: one with a weighted average of 2708.1 ± 2.0 Ma (n = 2), which overlaps in age with zircon from the same sample and the crystallization age of the Stillwater Complex, and a second, younger grouping of 2701.1 ± 1.3 Ma (n = 5). Younger dates record an early Pb-loss event, possibly related to intrusion of cross-cutting quartz monzonites. The alaskite data also shows two groupings of 207Pb/206Pb dates, although more subtle: a weighted average of 2709.3 ± 1.8 Ma (n = 3) and a single result of 2706.5 ± 1.7 Ma. Titanite from the other two samples has undergone significant Pb-loss. Results for

  8. Trace- and rare-earth element geochemistry and Pb-Pb dating of black shales and intercalated Ni-Mo-PGE-Au sulfide ores in Lower Cambrian strata, Yangtze Platform, South China

    NASA Astrophysics Data System (ADS)

    Jiang, Shao-Yong; Chen, Yong-Quan; Ling, Hong-Fei; Yang, Jing-Hong; Feng, Hong-Zhen; Ni, Pei

    2006-08-01

    The Lower Cambrian black shale sequence of the Niutitang Formation in the Yangtze Platform, South China, hosts an extreme metal-enriched sulfide ore bed that shows >10,000 times enrichment in Mo, Ni, Se, Re, Os, As, Hg, and Sb and >1,000 times enrichment in Ag, Au, Pt, and Pd, when compared to average upper continental crust. We report in this paper trace- and rare-earth-element concentrations and Pb-Pb isotope dating for the Ni-Mo-PGE-Au sulfide ores and their host black shales. Both the sulfide ores and their host black shales show similar trace-element distribution patterns with pronounced depletion in Th, Nb, Hf, Zr, and Ti, and extreme enrichment in U, Ni, Mo, and V compared to average upper crust. The high-field-strength elements, such as Zr, Hf, Nb, Ta, Sc, Th, rare-earth elements, Rb, and Ga, show significant inter-element correlations and may have been derived mainly from terrigenous sources. The redox sensitive elements, such as V, Ni, Mo, U, and Mn; base metals, such as Cu, Zn, and Pb; and Sr and Ba may have been derived from mixing of seawater and venting hydrothermal sources. The chondrite-normalized REE patterns, positive Eu and Y anomalies, and high Y/Ho ratios for the Ni-Mo-PGE-Au sulfide ores are also suggestive for their submarine hydrothermal-exhalative origin. A stepwise acid-leaching Pb-Pb isotope analytical technique has been employed for the Niutitang black shales and the Ni-Mo-PGE-Au sulfide ores, and two Pb-Pb isochron ages have been obtained for the black shales (531±24 Ma) and for the Ni-Mo-PGE-Au sulfide ores (521±54 Ma), respectively, which are identical and overlap within uncertainty, and are in good agreement with previously obtained ages for presumed age-equivalent strata.

  9. 210Pb-dating of a lake sediment core from Lough Carra (Co. Mayo, western Ireland): use of paleolimnological data for chronology validation below the 210Pb dating horizon.

    PubMed

    O'Reilly, J; Vintró, L León; Mitchell, P I; Donohue, I; Leira, M; Hobbs, W; Irvine, K

    2011-05-01

    The chronologies and sediment accumulation rates for a lake sediment sequence from Lough Carra (Co. Mayo, western Ireland) were established by applying the constant initial concentration (CIC) and constant rate of supply (CRS) hypotheses to the measured (210)Pb(excess) profile. The resulting chronologies were validated using the artificial fallout radionuclides (137)Cs and (241)Am, which provide independent chronostratigraphic markers for the second half of the 20th century. The validity of extrapolating the derived CIC and CRS dates below the (210)Pb dating horizon using average sedimentation rates was investigated using supplementary paleolimnological information and historical data. Our data confirm that such an extrapolation is well justified at sites characterised by relatively stable sedimentation conditions. Copyright © 2010 Elsevier Ltd. All rights reserved.

  10. Results from the (U-Th)/He dating systems in Japan Atomic Energy Agency

    NASA Astrophysics Data System (ADS)

    Yamada, K.; Hanamuro, T.; Tagami, T.; Yamada, R.; Umeda, K.

    2007-12-01

    Japan Atomic Energy Agency (JAEA) has jointly set up the lab of the (U-Th)/He dating in cooperation with Kyoto University and National Research Institute for Earth Science and Disaster Prevention. We use the MM5400 rare gas mass spectrometer and the SPQ9000 ICP quadrupole mass spectrometer, belonging to JAEA, and built a new vacuum heater using infrared laser to extract helium. HF decomposes zircon after the alkali-fusion method using XRF bead sampler and LiBO3 in the preparation of ICP solution. Helium is quantified using sensitivity method. Uranium and thorium are using standard addition method. Quantifications of uranium-238 and thorium-232 are only need for parent isotopes to date samples because they are expected that the state of secular equilibrium becomes established and samarium does not compose the samples. At the present stage, we calibrate our systems by dating some standards, such as zircon from the Fish Canyon Tuff and apatite from the Durango, those are the international age standard, and apatite and zircon from the Tanzawa Tonalite Complex, that was dated in Yamada's PhD thesis, as a working standard. We report the results and detailed views of the dating systems.

  11. Dating Kimberlite Eruption and Erosion Phases Using Perovskite, Zircon, and Apatite (U-Th)/He Geochronology to Link Cratonic Lithosphere Evolution and Surface Processes

    NASA Astrophysics Data System (ADS)

    Stanley, J. R.; Flowers, R. M.

    2015-12-01

    In many cases it is difficult to evaluate the synchronicity and thus potential connections between disparate geologic events, such as the links between processes in the mantle lithosphere and at the surface. Developing new geochronologic tools and strategies for integrating existing chronologic data with other information is essential for addressing these problems. Here we use (U-Th)/He dating of multiple kimberlitic minerals to date kimberlite eruption and cratonic erosion phases. This approach permits us to more directly assess the link between unroofing and thermomodification of the lithosphere by tying our results to information obtained from mantle-derived clasts in the same pipes. Kimberlites are rich sources of information about the composition of the cratonic lithosphere and its evolution over time. Their xenoliths and xenocrysts can preserve a snapshot of the entire lithosphere and its sedimentary cover at the time of eruption. Accurate geochronology of these eruptions is crucial for interpreting spatiotemporal trends, but kimberlites can be difficult to date using standard techniques. Here we show that the mid-temperature thermochonometers of the zircon and perovskite (U-Th)/He (ZHe, PHe) systems can be viable tools for dating kimberlite eruption. When combined with the low temperature sensitivity of (U-Th)/He in apatite (AHe), the (U-Th)/He system can be used to date both the emplacement and the erosional cooling history of kimberlites. The southern African shield is an ideal location to test the utility of this approach because the region was repeatedly intruded by kimberlites in the Cretaceous, with two major pulses at ~200-110 Ma and ~100-80 Ma. These kimberlites contain a well-studied suite of mantle xenoliths and xenocrysts that document lithospheric heating and metasomatism over this interval. Our ZHe and PHe dates overlap with published eruption ages and add new ages for undated pipes. Our AHe dates constrain the spatial patterns of Cretaceous

  12. Multi-stage evolution of xenotime-(Y) from Písek pegmatites, Czech Republic: an electron probe micro-analysis and Raman spectroscopy study

    NASA Astrophysics Data System (ADS)

    Švecová, E.; Čopjaková, R.; Losos, Z.; Škoda, R.; Nasdala, L.; Cícha, J.

    2016-12-01

    The chemical variability, degree of radiation damage, and alteration of xenotime from the Písek granitic pegmatites (Czech Republic) were investigated by micro-chemical analysis and Raman spectroscopy. Dominant large xenotime-(Y) grains enriched in U, Th and Zr crystallized from a melt almost simultaneously with zircon, monazite and tourmaline. Xenotime is well to poorly crystalline depending on its U and Th contents. It shows complex secondary textures cutting magmatic growth zones as a result of its interaction with F,Ca,alkali-rich fluids during the hydrothermal stage of the pegmatite evolution. The magmatic xenotime underwent intense secondary alteration, from rims inwards, resulting in the formation of inclusion-rich well crystalline xenotime domains of near end-member composition. Two types of recrystallization were distinguished in relation to the type of inclusions: i) xenotime with coffinite-thorite, cheralite and monazite inclusions and ii) xenotime with zirconcheralite and zircon inclusions. Additionally, inner poorly crystalline U,Th-rich xenotime domains were locally altered, hydrated, depleted in P, Y, HREE, U, Si and radiogenic Pb, and enriched in fluid-borne cations (mainly Ca, F, Th, Zr, Fe). Interaction of radiation-damaged xenotime with hydrothermal fluids resulted in the disturbance of the U-Th-Pb system. Alteration of radiation-damaged xenotime was followed by intensive recrystallization indicating the presence of fluids >200 °C. Subsequently other types of xenotime formed as a consequence of fluid-driven alteration of magmatic monazite, and Y,REE,Ti,Nb-oxides or crystallized from hydrothermal fluids along cracks in magmatic monazite and xenotime.

  13. In situ location and U-Pb dating of small zircon grains in igneous rocks using laser ablation-inductively coupled plasma-quadrupole mass spectrometry

    NASA Astrophysics Data System (ADS)

    Sack, Patrick J.; Berry, Ron F.; Meffre, Sebastien; Falloon, Trevor J.; Gemmell, J. Bruce; Friedman, Richard M.

    2011-05-01

    A new U-Pb zircon dating protocol for small (10-50 μm) zircons has been developed using an automated searching method to locate zircon grains in a polished rock mount. The scanning electron microscope-energy-dispersive X ray spectrum-based automated searching method can routinely find in situ zircon grains larger than 5 μm across. A selection of these grains was ablated using a 10 μm laser spot and analyzed in an inductively coupled plasma-quadrupole mass spectrometer (ICP-QMS). The technique has lower precision (˜6% uncertainty at 95% confidence on individual spot analyses) than typical laser ablation ICP-MS (˜2%), secondary ion mass spectrometry (<1%), and isotope dilution-thermal ionization mass spectrometry (˜0.4%) methods. However, it is accurate and has been used successfully on fine-grained lithologies, including mafic rocks from island arcs, ocean basins, and ophiolites, which have traditionally been considered devoid of dateable zircons. This technique is particularly well suited for medium- to fine-grained mafic volcanic rocks where zircon separation is challenging and can also be used to date rocks where only small amounts of sample are available (clasts, xenoliths, dredge rocks). The most significant problem with dating small in situ zircon grains is Pb loss. In our study, many of the small zircons analyzed have high U contents, and the isotopic compositions of these grains are consistent with Pb loss resulting from internal α radiation damage. This problem is not significant in very young rocks and can be minimized in older rocks by avoiding high-U zircon grains.

  14. Titanite chronology, thermometry, and speedometry of ultrahigh-temperature (UHT) calc-silicates from south Madagascar: U-Pb dates, Zr temperatures, and lengthscales of trace-element diffusion

    NASA Astrophysics Data System (ADS)

    Holder, R. M.; Hacker, B. R.

    2017-12-01

    Calc-silicate rocks are often overlooked as sources of pressure-temperature-time data in granulite-UHT metamorphic terranes due to the strong dependence of calc-silicate mineral assemblages on complex fluid compositions and a lack of thermodynamic data on common high-temperature calc-silicate minerals such as scapolite. In the Ediacaran-Cambrian UHT rocks of southern Madagascar, clinopyroxene-scapolite-feldspar-quartz-zircon-titanite calc-silicate rocks are wide-spread. U-Pb dates of 540-520 Ma from unaltered portions of titanite correspond to cooling of the rocks through upper-amphibolite facies and indicate UHT metamorphism occurred before 540 Ma. Zr concentrations in these domains preserve growth temperatures of 900-950 °C, consistent with peak temperatures calculated by pseudosection modeling of nearby osumilite-bearing gneisses. Younger U-Pb dates (510-490 Ma) correspond to fluid-mediated Pb loss from titanite grains, which occurred below their diffusive Pb-closure temperature, along fractures. The extent of fluid alteration is seen clearly in back-scattered electron images and Zr-, Al-, Fe-, Ce-, and Nb-concentration maps. Laser-ablation depth profiling of idioblastic titanite grains shows preserved Pb diffusion profiles at grain rims, but there is no evidence for Zr diffusion, indicating that it was effectively immobile even at UHT.

  15. ESR dating of tooth enamel: comparison with {230Th }/{234U } speleothem dates at La Chaise-de-Vouthon (Charente), France

    NASA Astrophysics Data System (ADS)

    Blackwell, Bonnie; Porat, N.; Schwarcz, H. P.; Debénath, A.

    One way to assess a new dating method's reliability is by comparing its results with those from well established, independent techniques. A controlled test of the electron spin resonance (ESR) dating method as it is currently being applied to teeth was attempted for the time range 100-250 ka, beyond that of 14C, at the archaeological site of La Chaise-de-Vouthon (Charente, France). Although absent in modern enamel, a single ESR signal with g = 2.0018 in fossil tooth enamel hydroxyapatite increases in amplitude with increasing irradiation doses. ESR ages are derived from the ratio of the AD, the radiation dose needed to produce the observed ESR signal, relative to the natural, environmental dose rate (ED) experienced by the tooth after deposition. Since the age depends on the uranium (U) uptake history assumed, three ages are calculated assuming: (1) early U uptake (EU); (2) continuous (linear) uptake (LU); (3) recent uptake (RU). Generally, the LU age agrees best with known ages determined by other methods, although the RU model is better for some teeth. ESR dating assumes that the fossil has not suffered recrystallization or significant diagenetic alteration. In the preliminary test, three teeth were dated. In Bourgeois-Delaunay, a bovid molar associated with Palaeolithic artefacts was collected from layers dated at 101 ± 12 to 114 ± 7 ka by {230Th }/{234U } dating of the over- and underlying stalagmitic floors. From Suard, two Equus teeth were collected from beneath a stalagmitic floor dating 112 ± 12 ka. ESR dating teeth significantly underestimated the true age for the teeth: the mean ESR ages range from 37 to 94 ka with standard errors of 2-6 ka, and good replicability. Although more teeth at La Chaise need to be tested to ascertain that the underestimation does not result from random variation commonly seen among teeth within one unit, the consistent underestimation suggests a fault in one of the assumptions underlying the dating method. The most obvious

  16. Precise U-Pb Zircon Constraints on the Earliest Magmatic History of the Carolina Terrane.

    PubMed

    Wortman; Samson; Hibbard

    2000-05-01

    The early magmatic and tectonic history of the Carolina terrane and its possible affinities with other Neoproterozoic circum-Atlantic arc terranes have been poorly understood, in large part because of a lack of reliable geochronological data. Precise U-Pb zircon dates for the Virgilina sequence, the oldest exposed part, constrain the timing of the earliest known stage of magmatism in the terrane and of the Virgilina orogeny. A flow-banded rhyolite sampled from a metavolcanic sequence near Chapel Hill, North Carolina, yielded a U-Pb zircon date of 632.9 +2.6/-1.9 Ma. A granitic unit of the Chapel Hill pluton, which intrudes the metavolcanic sequence, yielded a nearly identical U-Pb zircon date of 633 +2/-1.5 Ma, interpreted as its crystallization age. A felsic gneiss and a dacitic tuff from the Hyco Formation yielded U-Pb zircon dates of 619.9 +4.5/-3 Ma and 615.7 +3.7/-1.9 Ma, respectively. Diorite and granite of the Flat River complex have indistinguishable U-Pb upper-intercept dates of 613.9 +1.6/-1.5 Ma and 613.4 +2.8/-2 Ma. The Osmond biotite-granite gneiss, which intruded the Hyco Formation before the Virgilina orogeny, crystallized at 612.4 +5.2/-1.7 Ma. Granite of the Roxboro pluton, an intrusion that postdated the Virgilina orogeny, yielded a U-Pb upper intercept date of 546.5 +3.0/-2.4 Ma, interpreted as the time of its crystallization. These new dates both provide the first reliable estimates of the age of the Virgilina sequence and document that the earliest known stage of magmatism in the Carolina terrane had begun by 633 +2/-1.5 Ma and continued at least until 612.4 +5.2/-1.7 Ma, an interval of approximately 25 m.yr. Timing of the Virgilina orogeny is bracketed between 612.4 +5.2/-1.7 Ma and 586+/-10 Ma (reported age of the upper Uwharrie Formation). The U-Pb systematics of all units studied in the Virgilina sequence are simple and lack any evidence of an older xenocrystic zircon component, which would indicate the presence of a continental

  17. Eruption Recurrence Rates and Compositional Variability of Discrete Lava Flows on the S-EPR from 238U-230Th-226Ra- 210Pb-232Th

    NASA Astrophysics Data System (ADS)

    Rubin, K. H.; Smith, M. C.; Sinton, J. M.; Sacks, L. F.; Bergmanis, E.

    2001-12-01

    Quantification of the absolute ages and geochemistry of individual seafloor lava flows provides important constraints on the magmatic processes responsible for building the oceanic crust. Here we present new 238U-230Th-226Ra-210Pb radioactive disequilibrium age constraints (decadal to millennial time scale) for 3 mid-ocean ridge lava flows at 17° 26'S on the East Pacific Rise (EPR): Aldo-Kihi, Rehu-Marka, and a neighboring unnamed flow. Our continuing study using high-resolution surveys and manned-submersible sampling (NAUDUR, 1993, and STOWA, 1991, expeditions) has previously shown that Aldo-Kihi is compositionally variable, is probably one of the youngest axial lavas in the 17° -19° S region, and was most likely erupted from a series of fissures extending >18 km along the ridge axis (Sinton et al., JGR, in revision). Rehu Marka has a more trace element enriched and evolved composition. The strongest age constraints in our U-series data set are from the 210Pb-226Ra (half-life = 22.3 yrs) and 226Ra-230Th (half life = 1600 yrs) systems. 210Pb-226Ra disequilibrium (as 5-7% Pb deficits) is common in lavas from our S-EPR study area and slightly lower than disequilibria we have measured in lavas erupted in 1991 and 1992 at 9° 50'N EPR. Although we are still developing our understanding of how this disequilibrium arises in MORB (e.g., how the radioactive "clock" is set for this isotope pair) a number of features of our preliminary data support the idea that these lavas are very young and that geologically observed contact relationships in the field separate the products of chronologically distinguishable eruptions. Also, the extent of 226Ra-210Pb disequilibrium in 3 Aldo-Kihi samples compared to that observed at 9° 50'N indicates that the Aldo-Kihi lava probably erupted within the last 10-20 yrs, and the higher but still <1 (210Pb/226Ra) activity ratio in a lava sampled near to but outside the boundaries of Aldo-Kihi indicates it is slightly older, but probably only

  18. Age of the Lava Creek supereruption and magma chamber assembly at Yellowstone based on 40Ar/39Ar and U-Pb dating of sanidine and zircon crystals

    NASA Astrophysics Data System (ADS)

    Vazquez, J. A.; Matthews, N. E.; Calvert, A. T.

    2015-12-01

    The last supereruption from the Yellowstone Plateau formed Yellowstone caldera and ejected the >1000 km3 of rhyolite that composes the Lava Creek Tuff (LCT). Tephra from the eruption blanketed much of the western United States, and is a key Quaternary chronostratigraphic marker, in particular for dating deposition of mid-Pleistocene glacial and pluvial deposits in western North America. We performed 40Ar/39Ar dating of single sanidines to delimit eruption age, and ion microprobe U-Pb and trace-element analyses of crystal faces on single zircons to characterize magmatic evolution and date near-eruption crystallization, as well as analyses of crystal interiors to date the interval of zircon crystallization. Sanidines from the two LCT members A and B yield an 40Ar/39Ar isochron date of 631 ± 4 ka (2σ). Crystal faces on zircons from both members yield a weighted mean 206Pb/238U date of 627 ± 6 ka (2σ) and have trace element concentrations that vary with eruptive stratigraphy. Zircon interiors yield a weighted mean 206Pb/238U date of 660 ± 6 ka, and reveal reverse and/or oscillatory zoning of trace element concentrations, with many crystals containing high-U concentrations and dark cathodoluminescence (CL) cores. These crystals with high-U cores are possibly sourced from 'defrosting' of melt-impregnated margins of the growing subvolcanic reservoir. LCT sanidines mirror the variation of zircon composition within the eruptive stratigraphy, with crystals from upper LCT-A and basal LCT-B having bright-CL rims with high Ba concentrations, suggesting late crystallization after addition of less evolved silicic magma. The occurrence of distal LCT in stratigraphic sequences marking the Marine Isotope Stage 16-15 transition supports the apparent eruption age of ca. 631 ka. These results reveal that Lava Creek zircons record episodic heating, renewed crystallization, and an overall up-temperature evolution for Yellowstone's subvolcanic reservoir in the 103-104 year interval

  19. U-Th-Pb, Sm-Nd, Rb-Sr, and Lu-Hf systematics of returned Mars samples

    NASA Technical Reports Server (NTRS)

    Tatsumoto, M.; Premo, W. R.

    1988-01-01

    The advantage of studying returned planetary samples cannot be overstated. A wider range of analytical techniques with higher sensitivities and accuracies can be applied to returned samples. Measurement of U-Th-Pb, Sm-Nd, Rb-Sr, and Lu-Hf isotopic systematics for chronology and isotopic tracer studies of planetary specimens cannot be done in situ with desirable precision. Returned Mars samples will be examined using all the physical, chemical, and geologic methods necessary to gain information on the origin and evolution of Mars. A returned Martian sample would provide ample information regarding the accretionary and evolutionary history of the Martian planetary body and possibly other planets of our solar system.

  20. Formation ages and evolution of Shergotty and its parent planet from U-Th-Pb systematics

    NASA Technical Reports Server (NTRS)

    Chen, J. H.; Wasserburg, G. J.

    1986-01-01

    The isotopic composition of Pb from Shergotty, Zagami, and EETA 79001 meteorites was determined for different phases. Using phases with low U-238/Pb-204 ratio, the initial leads of these meteorites were defined. Samples from all three meteorites were shown to have distinct initial leads, and, thus to have evolved from different reservoirs over most of solar system history in a low U-238/Pb-204 environment. It follows that the parent planet of the shergottites has a high Pb-204 concentration relative to U and must also be high in other volatiles. The possibility of the Martian origin of the SNC-type meteorites is discussed.

  1. SHRIMP-RG U-Pb ages of provenance and metamorphism from detrital zircon populations and Pb-Sr-Nd signatures of prebatholithic metasedimentary rocks at Searl Ridge, northern Peninsular Ranges batholith, southern California: Implications for their age, origin, and tectonic setting

    USGS Publications Warehouse

    Premo, Wayne R.; Morton, Douglas M.

    2014-01-01

    initial 206Pb/204Pb (18.65 to 18.9), 87Sr/86Sr (0.713 to 0.718), and εNd (−7 to −12) values for both the western and eastern units—values that also indicate the presence of significantly older crustal material in their provenance.Magmatic zircons from a diorite dike that crosscuts the foliation, but is itself subsequently metamorphosed, yielded a SHRIMP-RG concordia age of 103.3 ± 0.73 Ma, which is within agreement of an isotope dilution–thermal ionization mass spectrometry (ID-TIMS) U-Pb age of 103.37 ± 0.25 Ma. A postmetamorphic, cross-cutting pegmatite yielded discordant U-Pb zircon age data, but euhedral, glassy monazite from the pegmatite yielded a slightly discordant 207Pb/235U age of 101.85 ± 0.35 Ma and a Th-Pb age of 97.53 ± 0.18 Ma, suggesting that this pegmatite was injected during or just after deformation ceased. The age and initial Pb-Sr-Nd signature for the dioritic dike indicate it was produced during the transition zone plutonism elsewhere in the northern Peninsular Ranges batholith, whereas the pegmatitic dike was derived from crustal anatexis.Collectively, these results indicate that this sequence of metasedimentary rocks was derived from mainly a Late Permian to Early Triassic igneous provenance that probably intruded Proterozoic crust. The sequence was subsequently metamorphosed during deformation of the Cretaceous continental margin at ca. 105 to 97 Ma.

  2. The Sima de los Huesos hominids date to beyond U/Th equilibrium (>350 kyr) and perhaps to 400-500 kyr: New radiometric dates

    USGS Publications Warehouse

    Bischoff, J.L.; Shamp, D.D.; Aramburu, Arantza; Arsuaga, J.L.; Carbonell, E.; Bermudez de Castro, Jose Maria

    2003-01-01

    The Sima de los Huesos site of the Atapuerca complex near Burgos, Spain contains the skeletal remains of at least 28 individuals in a mud breccia underlying an accumulation of the Middle Pleistocene cave bear (U. deningeri). Earlier dating estimates of 200 to 320 kyr were based on U-series and ESR methods applied to bones, made inaccurate by unquantifiable uranium cycling. We report here on a new discovery within the Sima de los Huesos of human bones stratigraphically underlying an in situ speleothem. U-series analyses of the speleothem shows the lower part to be at isotopic U/Th equilibrium, translating to a firm lower limit of 350 kyr for the SH hominids. Finite dates on the upper part suggest a speleothem growth rate of c. 1 cm/32 kyr. This rate, along with paleontological constraints, place the likely age of the hominids in the interval of 400 to 600 kyr. ?? 2002 Elsevier Science Ltd. All rights reserved.

  3. Age of the Lava Creek supereruption and magma chamber assembly at Yellowstone based on 40Ar/39Ar and U-Pb dating of sanidine and zircon crystals

    USGS Publications Warehouse

    Matthews, Naomi E.; Vazquez, Jorge A.; Calvert, Andrew T.

    2015-01-01

    The last supereruption from the Yellowstone Plateau formed Yellowstone caldera and ejected the >1000 km3 of rhyolite that composes the Lava Creek Tuff. Tephra from the Lava Creek eruption is a key Quaternary chronostratigraphic marker, in particular for dating the deposition of mid Pleistocene glacial and pluvial deposits in western North America. To resolve the timing of eruption and crystallization history for the Lava Creek magma, we performed (1) 40Ar/39Ar dating of single sanidine crystals to delimit eruption age and (2) ion microprobe U-Pb and trace-element analyses of the crystal faces and interiors of single zircons to date the interval of zircon crystallization and characterize magmatic evolution. Sanidines from the two informal members composing Lava Creek Tuff yield a preferred 40Ar/39Ar isochron date of 631.3 ± 4.3 ka. Crystal faces on zircons from both members yield a weighted mean 206Pb/238U date of 626.5 ± 5.8 ka, and have trace element concentrations that vary with the eruptive stratigraphy. Zircon interiors yield a mean 206Pb/238U date of 659.8 ± 5.5 ka, and reveal reverse and/or oscillatory zoning of trace element concentrations, with many crystals containing high U concentration cores that likely grew from highly evolved melt. The occurrence of distal Lava Creek tephra in stratigraphic sequences marking the Marine Isotope Stage 16–15 transition supports the apparent eruption age of ∼631 ka. The combined results reveal that Lava Creek zircons record episodic heating, renewed crystallization, and an overall up-temperature evolution for Yellowstone's subvolcanic reservoir in the 103−104 year interval before eruption.

  4. CONCH: A Visual Basic program for interactive processing of ion-microprobe analytical data

    NASA Astrophysics Data System (ADS)

    Nelson, David R.

    2006-11-01

    A Visual Basic program for flexible, interactive processing of ion-microprobe data acquired for quantitative trace element, 26Al- 26Mg, 53Mn- 53Cr, 60Fe- 60Ni and U-Th-Pb geochronology applications is described. Default but editable run-tables enable software identification of secondary ion species analyzed and for characterization of the standard used. Counts obtained for each species may be displayed in plots against analysis time and edited interactively. Count outliers can be automatically identified via a set of editable count-rejection criteria and displayed for assessment. Standard analyses are distinguished from Unknowns by matching of the analysis label with a string specified in the Set-up dialog, and processed separately. A generalized routine writes background-corrected count rates, ratios and uncertainties, plus weighted means and uncertainties for Standards and Unknowns, to a spreadsheet that may be saved as a text-delimited file. Specialized routines process trace-element concentration, 26Al- 26Mg, 53Mn- 53Cr, 60Fe- 60Ni, and Th-U disequilibrium analysis types, and U-Th-Pb isotopic data obtained for zircon, titanite, perovskite, monazite, xenotime and baddeleyite. Correction to measured Pb-isotopic, Pb/U and Pb/Th ratios for the presence of common Pb may be made using measured 204Pb counts, or the 207Pb or 208Pb counts following subtraction from these of the radiogenic component. Common-Pb corrections may be made automatically, using a (user-specified) common-Pb isotopic composition appropriate for that on the sample surface, or for that incorporated within the mineral at the time of its crystallization, depending on whether the 204Pb count rate determined for the Unknown is substantially higher than the average 204Pb count rate for all session standards. Pb/U inter-element fractionation corrections are determined using an interactive log e-log e plot of common-Pb corrected 206Pb/ 238U ratios against any nominated fractionation-sensitive species pair

  5. Application of U-Th-Pb phosphate geochronology to young orogenic gold deposits: New age constraints on the formation of the Grass Valley gold district, Sierra Foothills province, California

    USGS Publications Warehouse

    Taylor, Ryan D.; Goldfarb, Richard J.; Monecke, Thomas; Fletcher, Ian R.; Cosca, Michael A.; Kelly, Nigel M.

    2015-01-01

    The Grass Valley orogenic gold district in the Sierra Nevada foothills province, central California, the largest historic gold producer of the North American Cordillera, comprises both steeply dipping east-west (E-W) veins located along lithologic contacts in accreted ca. 300 and 200 Ma oceanic rocks and shallowly dipping north-south (N-S) veins hosted by the Grass Valley granodiorite; the latter have yielded about 70 percent of the 13 million ounces of historic lode gold production in the district. The oceanic host rocks were accreted to the western margin of North America between 200 and 170 Ma, metamorphosed to greenschist and amphibolite facies, and uplifted between 175 and 160 Ma. Large-scale magmatism in the Sierra Nevada occurred between 170-140 Ma and 120-80 Ma, with the Grass Valley granodiorite being emplaced during the older episode of magmatism. Uranium-lead isotopic dating of hydrothermal xenotime yielded the first absolute age of 162±5 Ma for the economically more significant N-S veins. The vein-hosted xenotime, as well as associated monazite, are unequivocally of hydrothermal origin as indicated by textural and chemical characteristics, including grain shape, lack of truncated growth banding, lack of a Eu anomaly, and low U and Th concentrations. Furthermore, the crack-seal texture of the veins, with abundant wallrock slivers, suggests their formation as a result of episodic fluid flow possibly related to reoccurring seismic events, rather than a period of fluid exsolution from an evolving magma. The N-S veins are temporally distinct from a younger 153-151 Ma gold event that was previously reported for the E-W veins. Overlapping U-Pb zircon (159.9±2.2 Ma) and 40Ar/39Ar biotite and hornblende (159.7±0.6 to 161.9±1.4 Ma) ages and geothermobarometric calculations indicate that the Grass Valley granodiorite was emplaced at ca. 160 Ma at elevated temperatures (~800°C) within approximately 3 km of the paleosurface and rapidly cooled to the ambient

  6. 230Th/U dating of a late Pleistocene alluvial fan along the southern San Andreas fault

    USGS Publications Warehouse

    Fletcher, Kathryn E.K.; Sharp, Warren D.; Kendrick, Katherine J.; Behr, Whitney M.; Hudnut, Kenneth W.; Hanks, Thomas C.

    2010-01-01

    U-series dating of pedogenic carbonate-clast coatings provides a reliable, precise minimum age of 45.1 ± 0.6 ka (2σ) for the T2 geomorphic surface of the Biskra Palms alluvial fan, Coachella Valley, California. Concordant ages for multiple subsamples from individual carbonate coatings provide evidence that the 238U-234U-230Th system has remained closed since carbonate formation. The U-series minimum age is used to assess previously published 10Be exposure ages of cobbles and boulders. All but one cobble age and some boulder 10Be ages are younger than the U-series minimum age, indicating that surface cobbles and some boulders were partially shielded after deposition of the fan and have been subsequently exhumed by erosion of fine-grained matrix to expose them on the present fan surface. A comparison of U-series and 10Be ages indicates that the interval between final alluvial deposition on the T2 fan surface and accumulation of dateable carbonate is not well resolved at Biskra Palms; however, the “time lag” inherent to dating via U-series on pedogenic carbonate can be no larger than ∼10 k.y., the uncertainty of the 10Be-derived age of the T2 fan surface. Dating of the T2 fan surface via U-series on pedogenic carbonate (minimum age, 45.1 ± 0.6 ka) and 10Be on boulder-top samples using forward modeling (preferred age, 50 ± 5 ka) provides broadly consistent constraints on the age of the fan surface and helps to elucidate its postdepositional development.

  7. 230Th/U dating of a late pleistocene alluvial fan along the southern san andreas fault

    USGS Publications Warehouse

    Fletcher, K.E.K.; Sharp, W.D.; Kendrick, K.J.; Behr, W.M.; Hudnut, K.W.; Hanks, T.C.

    2010-01-01

    U-series dating of pedogenic carbonate-clast coatings provides a reliable, precise minimum age of 45.1 ?? 0.6 ka (2??) for the T2 geomorphic surface of the Biskra Palms alluvial fan, Coachella Valley, California. Concordant ages for multiple subsamples from individual carbonate coatings provide evidence that the 238U-234U-230Th system has remained closed since carbonate formation. The U-series minimum age is used to assess previously published 10Be exposure ages of cobbles and boulders. All but one cobble age and some boulder 10Be ages are younger than the U-series minimum age, indicating that surface cobbles and some boulders were partially shielded after deposition of the fan and have been subsequently exhumed by erosion of fine-grained matrix to expose them on the present fan surface. A comparison of U-series and 10Be ages indicates that the interval between final alluvial deposition on the T2 fan surface and accumulation of dateable carbonate is not well resolved at Biskra Palms; however, the "time lag" inherent to dating via U-series on pedogenic carbonate can be no larger than ~10 k.y., the uncertainty of the 10Be-derived age of the T2 fan surface. Dating of the T2 fan surface via U-series on pedogenic carbonate (minimum age, 45.1 ?? 0.6 ka) and 10Be on boulder-top samples using forward modeling (preferred age, 50 ?? 5 ka) provides broadly consistent constraints on the age of the fan surface and helps to elucidate its postdepositional development. ?? 2010 Geological Society of America.

  8. U-Pb Geochronology of Grandite Skarn Garnet: Case Studies From Jurassic Skarns of California

    NASA Astrophysics Data System (ADS)

    Gevedon, M. L.; Seman, S.; Barnes, J.; Stockli, D. F.; Lackey, J. S.

    2016-12-01

    We present 3 case studies using a new method for U-Pb dating grossular-andradite (grandite) skarn garnet via LA-ICP-MS (Seman et al., in prep). Grandite is commonly rich in U, with high Fe3+ contents generally correlating with higher U concentrations. Micron-scale non-radiogenic Pb heterogeneities allow for regression of age data using Tera-Wasserberg concordia. Although others have dated accessory skarn minerals, garnet U-Pb ages are powerful because garnet grows early and is nearly ubiquitous in skarns, resists alteration, and provides a formation age independent of that of the causative pluton. The Darwin stock (Argus range, eastern CA) was likely a short-lived, single pulse of magmatism, genetically related to the Darwin skarn. A robust skarn garnet U-Pb age of 176.8 ± 1.3 Ma agrees well with the pluton U-Pb zircon age of 175 Ma (Chen and Moore, 1982). Furthermore, zircon separated from, and in textural equilibrium with, exoskarn garnetite yields a U-Pb age of 176.8 ± 1 Ma. Such agreement between plutonic and skarn zircon ages with a skarn garnet age in a geologically simple field area is the ideal scenario for establishing grandite U-Pb as a viable tool for directly dating skarns. The Black Rock skarn (BRS; eastern CA) is more complex: multiple plutons and ambiguous field relations complicate determination of a causative pluton. A skarn garnet U-Pb age of 172.0 ± 3 Ma confirms a middle Jurassic BRS formation age. Investigation of 4 local plutons yield zircon U-Pb ages of 222 ± 3 Ma, 213 ± 4 Ma, 207 ± 4 Ma and 176.2 ± 2 Ma. Comparison of the skarn garnet U-Pb and pluton ages suggest the BRS is genetically related to the youngest pluton, providing basis for further field and geochemical investigation. The Whitehorse skarn (WS; Mojave Desert, CA) lies in an important region for studying the changing tectono-magmatic regime of the Jurassic North American Cordillera; basin fill suggests a tectonically-controlled oscillating regional shoreline (Busby, 2012

  9. Algorithms and software for U-Pb geochronology by LA-ICPMS

    NASA Astrophysics Data System (ADS)

    McLean, Noah M.; Bowring, James F.; Gehrels, George

    2016-07-01

    The past 15 years have produced numerous innovations in geochronology, including experimental methods, instrumentation, and software that are revolutionizing the acquisition and application of geochronological data. For example, exciting advances are being driven by Laser-Ablation ICP Mass Spectrometry (LA-ICPMS), which allows for rapid determination of U-Th-Pb ages with 10s of micrometer-scale spatial resolution. This method has become the most commonly applied tool for dating zircons, constraining a host of geological problems. The LA-ICPMS community is now faced with archiving these data with associated analytical results and, more importantly, ensuring that data meet the highest standards for precision and accuracy and that interlaboratory biases are minimized. However, there is little consensus with regard to analytical strategies and data reduction protocols for LA-ICPMS geochronology. The result is systematic interlaboratory bias and both underestimation and overestimation of uncertainties on calculated dates that, in turn, decrease the value of data in repositories such as EarthChem, which archives data and analytical results from participating laboratories. We present free open-source software that implements new algorithms for evaluating and resolving many of these discrepancies. This solution is the result of a collaborative effort to extend the U-Pb_Redux software for the ID-TIMS community to the LA-ICPMS community. Now named ET_Redux, our new software automates the analytical and scientific workflows of data acquisition, statistical filtering, data analysis and interpretation, publication, community-based archiving, and the compilation and comparison of data from different laboratories to support collaborative science.

  10. The timing of high-temperature retrogression in the Reynolds Range, central Australia: constraints from garnet and epidote Pb-Pb dating

    NASA Astrophysics Data System (ADS)

    Buick, Ian S.; Frei, Robert; Cartwright, Ian

    Lower Calcsilicate Unit metasediments and underlying migmatitic Napperby Gneiss metagranite at Conical Hill in the Reynolds Range, central Australia, underwent regional high-grade ( 680 to 720°C), low-pressure/high-temperature metamorphism at 1594+/- 6Ma. The Lower Calcsilicate Unit is extensively quartz veined and epidotised, and discordant grandite garnet+epidote quartz veins may be traced over tens of metres depth into pegmatites that pooled at the Lower Calcsilicate Unit-Napperby Gneiss contact. The quartz veins were probably precipitated by water-rich fluids that exsolved from partial melts derived from the Napperby Gneiss during cooling from the peak of regional metamorphism to the wet granite solidus. Pb stepwise leaching (PbSL) on garnet from three discordant quartz veins yielded comparable single mineral isochrons of 1566+/-32Ma, 1576+/-3Ma and 1577+/-5Ma, which are interpreted as the age of garnet growth in the veins. These dates are in good agreement with previous Sensitive High Resolution Ion Microprobe (SHRIMP) ages of zircon and monazite formed during high-temperature retrogression (1586+/-5 to 1568+/-4Ma) elsewhere in the Reynolds Range. The relatively small age difference between peak metamorphism and retrograde veining suggests that partial melting and melt crystallisation controlled fluid recycling in the high-grade rocks. However, PbSL experiments on epidote intergrown with, and partially replacing, garnet in two of the veins yielded isochrons of 1454+/-34 and 1469+/- 26Ma. The 100-120Ma age difference between intergrown garnet and late epidote from the same vein suggests that the vein systems may have experienced multiple episodes of fluid flow.

  11. U-Pb dating of uranium deposits in collapse breccia pipes of the Grand Canyon region

    USGS Publications Warehouse

    Ludwig, K. R.; Simmons, K.R.

    1992-01-01

    Two major periods of uranium mineralization are indicated by U-Pb isotope dating of uranium ores from collapse breccia pipes in the Grand Canyon region, northern Arizona. The Hack 2 and 3, Kanab North, and EZ 1 and 2 orebodies apparently formed in the interval of 200 ?? 20 Ma, similar to ages inferred for strata-bound, Late Triassic-hosted uranium deposits in southern Utah and northern Arizona. Samples from the Grand Canyon and Pine Nut pipes, however, indicate a distinctly older age of about 260 Ma. The clustering in ages for a variety of uranium deposits at about the age of the lower part of the Chinle Formation (Late Triassic) suggests that uranium in these deposits may have been derived by leaching from volcanic ash in the Chinle and mobilized by ground-water movement. Pb isotope ratios of galenas in mineralized pipes are more radiogenic than those of sulfides from either uranium-poor pipes or occurrences away from pipes. Fluids which passed through the pipes had interacted with the Proterozoic basement, possibly through the vertical fractures which influenced the location and evolution of the pipes themselves. -from Authors

  12. Crustal evolution at mantle depths constrained from Pamir xenoliths

    NASA Astrophysics Data System (ADS)

    Kooijman, E.; Hacker, B. R.; Smit, M. A.; Kylander-Clark, A. R.; Ratschbacher, L.

    2012-12-01

    Lower crustal xenoliths erupted in the Pamir at ~11 Ma provide an exclusive opportunity to study the evolution of crust at mantle depths during a continent-continent collision. To investigate, and constrain the timing of, the petrologic processes that occurred during burial to the peak conditions (2.5-2.8 GPa, 1000-1100 °C; [1]), we performed chemical- and isotope analyses of accessory minerals in 10 xenoliths, ranging from eclogites to grt-ky-qtz granulites. In situ laser ablation split-stream ICPMS yielded 1) U-Pb ages, Ti concentrations and REE in zircon, 2) U/Th-Pb ages and REE in monazite, and 3) U-Pb ages and trace elements in rutile. In addition, garnet, and biotite and K-feldspar were dated using Lu-Hf and 40Ar/39Ar geochronology, respectively. Zircon and monazite U-(Th-)Pb ages are 101.9±1.8, 53.7±1.0, 39.1±0.8, 21.7±0.4, 18.2±0.5, 16.9±0.8, 15.1±0.3 (2σ) and 12.5-11.1 Ma; most samples showed several or all of these populations. The 53.7 Ma and older ages are xenocrystic or detrital. For younger ages, zircon and monazite in individual samples recorded different ages-although zircon in one rock and monazite in another can be the same age. The 39.1 Ma zircon and monazite mostly occur as inclusions in minerals of the garnet-bearing assemblage that represents the early, low-P stages of burial. Garnet Lu-Hf ages of 37.8±0.3 Ma support garnet growth at this time. Spinifex-like textures containing 21.7-11.1 Ma zircon and monazite record short-lived partial melting events during burial. Aligned kyanite near these patches indicates associated deformation. Zircons yielding ≤12.5 Ma exhibit increased Eu/Eu* and markedly decreased HREE concentrations, interpreted to record feldspar breakdown and omphacite growth during increasing pressure. Rutile U-Pb cooling ages are 10.8±0.3 Ma in all samples. This agrees with the weighted mean 40Ar/39Ar age of eight biotite, K-feldspar and whole rock separates of 11.00+0.16/-0.09 Ma. Rutile in eclogites provides Zr

  13. U-Pb Isotope Systematic of SNC Meteorites

    NASA Astrophysics Data System (ADS)

    Jagoutz, E.; Jotter, R.; Kubny, A.; Zartman, R.

    2005-12-01

    A stepwise dissolution technique was applied to several nakhlite meteorites that were heavily contaminated by terrestrial Pb. Pulverized samples were subjected to three acid leaches of increasing strength followed by HF-HNO3 digestion of the remaining residue. Using this procedure the major portion of the terrestrial contamination was removed in Leaches 1 and 2, while essentially uncontaminated Pb was recovered in Leach 3 and the Residue. We give further details here about some of the insights gained from this improved ability to distinguish between the primary and terrestrial Pb components in meteorites. Firstly, we ran one sample of Nakhla as a test of the procedure. The result showed L1 and L2 to be mainly dominated by terrestrial Pb while L3 yielded Pb close to the initial Pb of other Nakhlites. The Pb in the Res, however, was very radiogenic and had a 206Pb/204Pb relative to 207Pb/204Pb indicating a drastic increase of the U/Pb at 1.3 Ga. Furthermore, the relatively unradiogenic 208Pb/204Pb suggested that there might be zircon or other high U/Th mineral in the Res. We made an in-depth study on a thin-section using an electron microscope and found indeed tiny 10 m grains of Baddeleyeite. The same dissolution technique was then applied to other Nakhlites from the Antarctic NIPR collection and NASA (MIL) with similar results, indicating that all Nakhlites may have the same age. In addition, an identical initial Pb isotopic composition indicates that all of these meteorites were derived from the same homogeneous source. Moreover, it is strongly suggested by their initial Pb that the "olivine Shergottites", like SAU, DAG, Que, and Y, likewise come from this Nakhla source. While "normal" Shergottites like Shergotty, LA are from sources having a more evolved Pb isotopic composition. "Olivine Shergottites" are clearly younger than Nakhlites. Their Sm Nd and Rb Sr isotopic systems are highly disturbed. Analyzing the existing data we favor an age of 800 my for the

  14. Provenance of the lower Miocene of the Gulf of Mexico from detrital zircon double dating

    NASA Astrophysics Data System (ADS)

    xu, J.

    2013-12-01

    The lower Miocene interval of the Gulf of Mexico (GOM) has recently gained increasing attention from oil and gas industry due to its hydrocarbon potential below the salt canopy. However, it has been less well studied than both the underlying Oligocene and overlying middle Miocene strata. The lower Miocene worldwide is a transitional period of tectonic, climatic, and oceanographic change. In particular, it is a period of major tectonic reorganization in the western interior of North America (Rocky Mountains), involving a shift from the Oligocene thermal phase, with abundant volcanic activity recorded in the thick Frio/Vicksburg succession of the GOM, to the Miocene Basin-Range extensional phase. Climatic conditions also changed from a relatively arid Oligocene to wetter Miocene, resulting in increased sediment yields from exhumed tectonic structures. Previous provenance studies used proportions of quartz, feldspar and lithic fragments and consideration of likely river courses through known paleogeomorphological elements. Only limited detrital zircon (DZ) U-Pb studies on Paleocene strata have been undertaken and there has been no previous U-Pb and (U-Th)/He double dating in the GOM. In this study we apply the latest analytical approaches, such as DZ U-Pb dating to gain robust source terranes ages and more fully elucidate the complex sediment provenance and dispersal history of GOM. We also employ DZ (U-Th)/He (ZHe) dating, combined with DZ U-Pb, to not only define sedimentary provenance but also the exhumation histories of detrital source regions. Samples of lower Miocene outcrop exposures in Texas and Louisiana have been collected to discriminate the varied tectonic and drainage system changes across the basin in lateral. In addition, samples from the Eocene, Oligocene and middle Miocene have been obtained to reveal vertical shift of source terranes contributions. Our initial age data show detrital zircons of lower Miocene sediments come from a wide range of source

  15. Monazite-type SrCr O 4 under compression

    DOE PAGES

    Gleissner, J.; Errandonea, Daniel; Segura, A.; ...

    2016-10-20

    We report a high-pressure study of monoclinic monazite-type SrCrO 4 up to 26 GPa. Therein we combined x-ray diffraction, Raman, and optical-absorption measurements with ab initio calculations, to find a pressure-induced structural phase transition of SrCrO 4 near 8-9 GPa. Evidence of a second phase transition was observed at 10-13 GPa. The crystal structures of the high-pressure phases were assigned to the tetragonal scheelite-type and monoclinic AgMnO 4-type structures. Both transitions produce drastic changes in the electronic band gap and phonon spectrum of SrCrO 4. We determined the pressure evolution of the band gap for the low- and high-pressure phasesmore » as well as the frequencies and pressure dependencies of the Raman-active modes. In all three phases most Raman modes harden under compression, however the presence of low-frequency modes which gradually soften is also detected. In monazite-type SrCrO 4, the band gap blueshifts under compression, but the transition to the scheelite phase causes an abrupt decrease of the band gap in SrCrO 4. Calculations showed good agreement with experiments and were used to better understand the experimental results. From x-ray-diffraction studies and calculations we determined the pressure dependence of the unit-cell parameters of the different phases and their ambient-temperature equations of state. The results are compared with the high-pressure behavior of other monazites, in particular PbCrO 4. A comparison of the high-pressure behavior of the electronic properties of SrCrO 4 (SrWO 4) and PbCrO 4 (PbWO 4) will also be made. Lastly, the possible occurrence of a third structural phase transition is discussed.« less

  16. Crustal melting and recycling: geochronology and sources of Variscan syn-kinematic anatectic granitoids of the Tormes Dome (Central Iberian Zone). A U-Pb LA-ICP-MS study

    NASA Astrophysics Data System (ADS)

    López-Moro, F. J.; López-Plaza, M.; Gutiérrez-Alonso, G.; Fernández-Suárez, J.; López-Carmona, A.; Hofmann, M.; Romer, R. L.

    2018-04-01

    In this study, we report U-Pb Laser Ablation ICP-MS zircon and ID-TIMS monazite ages for peraluminous granitoid plutons (biotite ± muscovite ± cordierite ± sillimanite) in the Tormes Dome, one of the gneiss-cored domes located in the Central Iberian Zone of the Variscan belt of northern Spain. Textural domains in zircon, interpreted to represent the magmatic crystallization of the granitoids (and one monazite fraction in the Ledesma pluton) yielded ages around 320 Ma, in agreement with other geochronological studies in the region. This age is interpreted to date the timing of decompression crustal melting driven by the extensional collapse of the orogenic belt in this domain of the Variscan chain of western Europe. In addition, there are several populations of inherited (xenocrystic) zircon: (1) Carboniferous zircon crystals (ca. 345 Ma) as well as one of the monazite fractions in the coarse-grained facies of the Ledesma pluton that also yielded an age of ca. 343 Ma. (2) Devonian-Silurian zircon xenocrysts with scattered ages between ca. 390 and 432 Ma. (3) Middle Cambrian-Ordovician (ca. 450-511 Ma). (4) Ediacaran-Cryogenian zircon ages (ca. 540-840 Ma). (5) Mesoproterozoic to Archaean zircon (900-2700 Ma). The abundance of Carboniferous-inherited zircon shows that crustal recycling/cannibalization may often happen at a fast pace in orogenic scenarios with only short lapses of quiescence. In our case study, it seems plausible that a "crustal layer" of ca. 340 Ma granitoids/migmatites was recycled, partially or totally, only 15-20 My after its emplacement.

  17. Dating human skeletal remains using 90Sr and 210Pb: case studies.

    PubMed

    Schrag, Bettina; Uldin, Tanya; Mangin, Patrice; Bochud, François; Froidevaux, Pascal

    2014-01-01

    In legal medicine, the post mortem interval (PMI) of interest covers the last 50 years. When only human skeletal remains are found, determining the PMI currently relies mostly on the experience of the forensic anthropologist, with few techniques available to help. Recently, several radiometric methods have been proposed to reveal PMI. For instance, (14)C and (90)Sr bomb pulse dating covers the last 60 years and give reliable PMI when teeth or bones are available. (232)Th series dating has also been proposed but requires a large amount of bones. In addition, (210)Pb dating is promising but is submitted to diagenesis and individual habits like smoking that must be handled carefully. Here we determine PMI on 29 cases of forensic interest using (90)Sr bomb pulse. In 12 cases, (210)Pb dating was added to narrow the PMI interval. In addition, anthropological investigations were carried out on 15 cases to confront anthropological expertise to the radiometric method. Results show that 10 of the 29 cases can be discarded as having no forensic interest (PMI>50 years) based only on the (90)Sr bomb pulse dating. For 10 other cases, the additional (210)Pb dating restricts the PMI uncertainty to a few years. In 15 cases, anthropological investigations corroborate the radiometric PMI. This study also shows that diagenesis and inter-individual difference in radionuclide uptake represent the main sources of uncertainty in the PMI determination using radiometric methods. Copyright © 2013 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.

  18. Investigating sources of ignimbrites in the Altiplano-Puna Volcanic Complex using U-Pb dating of zircons

    NASA Astrophysics Data System (ADS)

    Kern, J. M.; de Silva, S. L.; Schmitt, A. K.

    2011-12-01

    Large silicic volcanic fields (LSVFs) are thought to represent the surface expression of upper crustal batholith emplacement, with the spatiotemporal distribution of the vents and eruptions representing the development of the system. The Altiplano-Puna Volcanic Complex (APVC) in the Central Andes is a LSVF active from 11-1 Ma that erupted over 13,000 km3 of magma from large, multicyclic caldera centers and smaller ignimbrite shields during 3 distinct pulses of volcanism at 8.4, 5.5, and 4.0 Ma. Links to the magmatic system beneath are being pursued through U-Pb zircon dating of APVC ignimbrites. Initial results comprise 61 238U/206Pb zircon ages of mostly marginal crystal domains from five APVC ignimbrites-the 0.98 ± 0.03 Ma Purico, 3.96 ± 0.08 Ma Atana, 4.0 ± 0.9 Ma Toconao, 4.09 ± 0.02 Ma Puripicar, and 8.33 ± 0.06 Ma Sifon ignimbrites-dated by high-resolution secondary ionization mass spectrometry (SIMS). Each zircon analyzed was less than 350 μm in length and cathodoluminescence images reveal zonations within individual zircons, though significant core-rim age differences are rare. The ~1 Ma Purico ignimbrite displays multiple zircon age populations significantly predating the 40Ar/39Ar eruption age, but younger than ages from the nearby large-volume Atana ignimbrite erupted from La Pacana caldera. Some peaks do, however, coincide with later resurgent activity within La Pacana as expressed by the 2.7 Ma Cerro Bola dome. Zircon ages in the Atana ignimbrite are indistinguishable from its eruption, while those from the 4.0 Ma Toconao ignimbrite-the volatile-rich cap of the Atana magma chamber-contains three populations of xenocrystic zircons from the Proterozoic-Ordivician, ~13 Ma, and ~9 Ma. The ~9 Ma zircons correlate with K-Ar ages from an underlying ignimbrite, whereas the 13 Ma xenocrysts likely have a plutonic source. The Purico ignimbrite thus provides direct evidence of zircon inheritance from previous eruption cycles, while the Toconao records a

  19. An algorithm for U-Pb isotope dilution data reduction and uncertainty propagation

    NASA Astrophysics Data System (ADS)

    McLean, N. M.; Bowring, J. F.; Bowring, S. A.

    2011-06-01

    High-precision U-Pb geochronology by isotope dilution-thermal ionization mass spectrometry is integral to a variety of Earth science disciplines, but its ultimate resolving power is quantified by the uncertainties of calculated U-Pb dates. As analytical techniques have advanced, formerly small sources of uncertainty are increasingly important, and thus previous simplifications for data reduction and uncertainty propagation are no longer valid. Although notable previous efforts have treated propagation of correlated uncertainties for the U-Pb system, the equations, uncertainties, and correlations have been limited in number and subject to simplification during propagation through intermediary calculations. We derive and present a transparent U-Pb data reduction algorithm that transforms raw isotopic data and measured or assumed laboratory parameters into the isotopic ratios and dates geochronologists interpret without making assumptions about the relative size of sample components. To propagate uncertainties and their correlations, we describe, in detail, a linear algebraic algorithm that incorporates all input uncertainties and correlations without limiting or simplifying covariance terms to propagate them though intermediate calculations. Finally, a weighted mean algorithm is presented that utilizes matrix elements from the uncertainty propagation algorithm to propagate random and systematic uncertainties for data comparison between other U-Pb labs and other geochronometers. The linear uncertainty propagation algorithms are verified with Monte Carlo simulations of several typical analyses. We propose that our algorithms be considered by the community for implementation to improve the collaborative science envisioned by the EARTHTIME initiative.

  20. (U/Th)-He dating of Fe- and Mn-oxide minerals from the Buckskin-Rawhide detachment fault: a new method to determine timing of faulting and fluid flow

    NASA Astrophysics Data System (ADS)

    Evenson, N. S.; Reiners, P. W.; Spencer, J. E.

    2012-12-01

    The Buckskin-Rawhide-Harcuvar detachment fault is one of the largest and youngest extensional detachment faults on Earth. It is also associated with abundant deposits of specular hematite with less common Pb, Zn, Ag, Au, and Mn mineralization. Mineralization is thought to be the result of movement of basin brines along the active detachment and subsidiary normal faults, with circulation driven by the heat of the uplifted footwall rocks of the Harcuvar metamorphic core complex. (U/Th)-He dating of specular hematite from the Buckskin-Rawhide detachment system, and Mn oxide minerals from syn-extensional clastic sedimentary rocks directly above the detachment fault, yield ages primarily between 16-10 Ma. These ages are consistent with low-temperature apatite (U/Th)-He and fission track cooling ages from the Rawhide Mountains and other ranges along the detachment. This suggests that Fe and Mn mineralization occurred during a period of rapid footwall exhumation that was underway by ~16 Ma. Aliquots from four hematite samples from the eastern Rawhide Mountains yielded weighted mean ages of 12.1 ± 0.24 Ma, 12.8 ± 0.15 Ma, 13.1 ± 0.17 Ma, and 13.8 ± 0.20 Ma (all uncertainties as 2-sigma standard error). These ages are similar to apatite (U/Th)-He and fission track ages of nearby samples, and display a SW to NE-younging trend when projected parallel to the extension direction, consistent with findings from previous low-T thermochronology studies. Three hematite samples from the western Rawhide and Buckskin Mountains yield more dispersed ages than samples in the eastern part of the core complex. Published apatite fission-track and (U/Th)-He dates from the Rawhide and Buckskin Mountains fall between 16-10 Ma. These ages are interpreted to represent the timing of final tectonic exhumation and fault-driven fluid circulation along the detachment. Average ages for one hematite sample fall in this age range, but one other is younger (9.5 Ma) and another is substantially older

  1. Age of metamorphic events : petrochronology and hygrochronology

    NASA Astrophysics Data System (ADS)

    Bosse, Valerie; Villa, Igor M.

    2017-04-01

    Geodynamic models of the lithosphere require quantitative data from natural samples. Time is a key parameter: it allows to calculate rates and duration of geological processes and provides informations about the involved physical processes (Vance et al. 2003). Large-scale orogenic models require linking geochronological data with other parameters: structures, kinematics, magmatic and metamorphic petrology (P-T-A-X conditions), thermobarometric evolution of the lithosphere, chemical dynamics (Muller, 2003). This requires geochronometers that are both powerful chemical and petrological tracers. In-situ techniques allow dating a mineral in its petrological-microstructural environment. Getting a "date" has become quite easy... But what do we date in the end ? What is the link between the numbers obtained from the mass spectrometer and the age of the metamorphic event we are trying to date ? How can we transform the date into a geological meaningful age ? What do we learn about the behavior of the geochronometer minerals? Now that we can perform precise dating on very small samples directly in the studied rock, it is important to improve the way we interpret the ages to give them more pertinence in the geodynamic context. We propose to discuss the Th/U/Pb system isotopic closure in various metamorphic contexts using our published examples of in situ dating on monazite and zircon (Bosse et al. 2009; Didier et al. 2014, 2015). The studied examples show that (i) fluid assisted dissolution-precipitation processes rather than temperature-dependent solid diffusion predominantly govern the closure of the Th/U/Pb system (ii) monazite and zircon are sensitive to the interaction with fluids of specific composition (F, CO2, K ...), even at low temperature (iii) in the absence of fluids, monazite is able to record HT events and to retain this information in poly-orogenic contexts or during partial melting events (iv) complex chemical and isotopic zonations, well known in monazite

  2. Ion-probe U–Pb dating of authigenic and detrital opal from Neogene-Quaternary alluvium

    USGS Publications Warehouse

    Neymark, Leonid; Paces, James B.

    2013-01-01

    Knowing depositional ages of alluvial fans is essential for many tectonic, paleoclimatic, and geomorphic studies in arid environments. The use of U–Pb dating on secondary silica to establish the age of Neogene-Quaternary clastic sediments was tested on samples of authigenic and detrital opal and chalcedony from depths of ∼25 to 53 m in boreholes at Midway Valley, Nevada. Dating of authigenic opal present as rinds on rock clasts and in calcite/silica cements establishes minimum ages of alluvium deposition; dating of detrital opal or chalcedony derived from the source volcanic rocks gives the maximum age of sediment deposition.Materials analyzed included 12 samples of authigenic opal, one sample of fracture-coating opal from bedrock, one sample of detrital opal, and two samples of detrital chalcedony. Uranium–lead isotope data were obtained by both thermal ionization mass spectrometry and ion-microprobe. Uranium concentrations ranged from tens to hundreds of μg/g. Relatively large U/Pb allowed calculation of 206Pb/238U ages that ranged from 1.64±0.36 (2σ) to 6.16±0.50 Ma for authigenic opal and from 8.34±0.28 to 11.2±1.3 Ma for detrital opal/chalcedony. Three samples with the most radiogenic Pb isotope compositions also allowed calculation of 207Pb/235U ages, which were concordant with 206Pb/238U ages from the same samples.These results indicate that basin development at Midway Valley was initiated between about 8 and 6 Ma, and that the basin was filled at long-term average deposition rates of less than 1 cm/ka. Because alluvium in Midway Valley was derived from adjacent highlands at Yucca Mountain, the low rates of deposition determined in this study may imply a slow rate of erosion of Yucca Mountain. Volcanic strata underlying the basin are offset by a number of buried faults to a greater degree than the relatively smooth-sloping bedrock/alluvium contact. These geologic relations indicate that movement on most faults ceased prior to erosional

  3. 234Th, 210Pb, 210Po and stable Pb in the central equatorial Pacific: Tracers for particle cycling

    USGS Publications Warehouse

    Murray, J.W.; Paul, B.; Dunne, J.P.; Chapin, T.

    2005-01-01

    Samples were collected during the 1992 US JGOFS EqPac Survey I and II cruises from 12??N to 12??S at 140??W in the central equatorial Pacific for water column profiles of dissolved, particulate and total 234Th, 210Pb and 210Po and total acid soluble stable Pb and sediment trap fluxes of 234Th, 210Pb and 210Po. Survey I occurred in February/March with moderate El Nino conditions while Survey II was conducted in September/October when there was a well developed cold-tongue. 234Th, 210Pb and 210Po are all particle reactive yet they partition differently between dissolved and particulate phases. Fractionation factors (the ratios of the distribution coefficients) show that the selectivity for suspended and sediment trap particles follows Th>Po>Pb. Scavenging residence times (??) for 234Th, 210Pb and 210Po ranged from 25 to 100 d, 3 to 8 years and 100 to 500 d, respectively. These particle reactive tracers have very different distributions in the water column, which reflect differences in their sources and sinks. The deficiency of 234Th relative to 238U was fairly uniformly distributed meridionally, though deficiencies were higher during Survey II when there was higher new production. Excess 210Pb relative to 226Ra was very asymmetrical with much higher excess values north of the equator. The distributions were similar for Surveys I and II. The deficiency of 210Po relative to 210Pb had a symmetrical distribution about the equator for both Survey I and II but the deficiencies were larger during Survey I when upwelling was smaller. Stable Pb was generally higher at the surface than at 250 m and there was no meridional trend from 12??N to 12??S. A mass balance for 210Pb was used to determine the atmospheric input of 210Pb. The average values for Surveys I and II were 0.12 and 0.32 dpm cm-2 year-1, respectively. There was no general increase in atmospheric input of 210Pb north of the equator but there was a strong maximum at 2-3??N during Survey I coincident with the

  4. Thermochronological modeling of the age of Vologda crystalline basement of the Russian platform

    NASA Astrophysics Data System (ADS)

    Gerasimov, V. Yu.; Petrov, D. B.; Lebedev, V. A.

    2010-05-01

    The results of the complex petrological and isotope-geochronological study of the crystalline rock from the deep drilling hall of the south of Vologda segment are presented in this work. The crystalline basement of the platform in Vologda region lie in a depth 2.5 km and represented by high alumina mica schist. The thick sedimentary cover consists of vendian and phanerozoic sediments. Upper level covered by quaternary glacial deposits up to 50 m. A core sample from the borehole of Fedotovo village was obtained from the depth 2600 m. It is fine-medium grained metamorphic mica schist with sillimanite. The mineral assemblage represented by association: Pl-Bt-Ms-Sil-Qtz-Mag +Zrn +Mnz. The metamorphic schist of the crystalline basement contains several radio isotope sensors. There are two rock forming potassium reach mica, - biotite (Bt) and muscovite (Ms) and accessories monazite (Mnz), - the phosphate of REE enriched by Th and U. It was a reason why traditional K-Ar isotope dating method in the combination with electron microprobe U-Th-Pb dating method CHIME [Suzuki et al. 1991] was used for Vologda metapelite rocks dating. In addition to geochronology, the detailed petrological investigation using electron microprobe allowed also to determine thermodynamic parameters of metamorphic system with a help of the mineral thermobarometry and finally estimate the age of the metamorphic thermal event using experimental diffusion data of Ar and Pb in minerals [Gerasimov et al. 2004]. The temperature of the regional metamorphism was estimated using Bt+Mag+Qtz and Bt+Ms geothermometers [Glassley 1983, Hoisch 1989]. Taking into account the field of the sillimanite P-T stability it is possible to conclude that the peak of metamorphism was reached at temperature about ТоС=550+/-30° C and pressure Р=4+/-1 kbar. Isotope thermochronology of the sample demonstrate nearly Svecofenian age 1.7-1.8 Ga of Vologda crystalline basement. K-Ar isotope dating of black and white mica

  5. A weathering-related origin of widespread monazite in S-type granites

    NASA Astrophysics Data System (ADS)

    Sawka, Wayne N.; Banfield, Jillian F.; Chappell, Bruch W.

    1986-01-01

    The S-type granite suites comprising more than a quarter of the extensively developed granites in the Lachlan Fold Belt, Australia, contain monazite which may be related to the chemical weathering of the sedimentary source rocks. We report a process whereby chemical weathering fixes mobile rare-earth elements (REE) in hydrous phosphate phases such as florencite and rhabdophane. This material contains up to 50 wt% LREE and occurs as very small particles (~3μm). Dehydration of these hydrous REE phases during anatexis directly yields monazite. The low solubility of phosphorus in S-type granite melts inhibits dissolution of both monazite and apatite. Refractory monazite may be thus entrained and transported in S-type granites in a manner similar to processes resulting in inherited zircon. Since both Th and the light REE are major components in monazite, materials containing this minute phase may be of widespread geochemical significance in both granites and metamorphic rocks.

  6. Black monazite from Taiwan

    USGS Publications Warehouse

    Matzko, J.J.; Overstreet, W.C.

    1977-01-01

    Two forms of detrital monazite are known in offshore bars in southwestern Taiwan: a yellow-green to colorless form and an unusual but abundant pelletlike form, generally black but also colored gray or brown. These black pellets, which are about 160 by 200 microns in size, are composed of fine-grained monazite crystals from 2 to 20 microns in size. The pellets are associated with highly variable amounts of discrete grains of detrital quartz, rutile, amphibole, tourmaline, and other minerals. Intergrown with the monazite are quartz, a cerium oxide mineral, chlorite, sulfides, and other minerals. Opaqueness of the pelletlike monazite is due principally to the cryptocrystalline nature of part of the monazite; only a small part of the opaqueness can be attributed to opaque inclusions. The black pelletlike monazite lacks thorium and has a high content of europium. In this respect, as in color, shape, size, and inclusions, the pelletlike monazite differs from the yellow-green detrital monazite. Despite the fact that they occur together in the littoral placers, they appear to have had different origins. The yellow-green monazite originated as an accessory mineral in plutonic rocks and has accumulated at the coast through erosion and transport. The origin of the pelletlike monazite is as yet unknown, but it is here inferred that it originated in unconsolidated coastal plain sediments through migration of cerium from the detrital monazite during weathering, and of the intermediate weight mobile rare earths from clay minerals during diagenesis. Possibly these pelletlike grains are detrital particles formed through erosion and transport from originally larger aggregates cemented by diagenetic monazite.

  7. GHR1 - A new Eocene natural reference material for U-Pb and Hf isotopic measurements in zircon

    NASA Astrophysics Data System (ADS)

    Ibanez-Mejia, M.; Eddy, M. P.

    2017-12-01

    We present chemical abrasion-isotope dilution-thermal ionization (CA-ID-TIMS) U-Pb zircon geochronology and solution multicollector-inductively coupled plasma-mass spectrometry (MC-ICP-MS) Hf isotopic data from a proposed natural zircon reference material for use during in situ analyses of U-Pb and Hf isotopic ratios. The sample, GHR1, was collected from the rapakivi intrusive phase of the Eocene Golden Horn batholith in Washington, USA. Zircons separated from this sample range up to 250-300 μm in length and have moderate aspect ratios. A weighted mean of 15 Th-corrected 206Pb/238U zircon dates from GHR1 produced at the Massachusetts Institute of Technology is 48.132 ± 0.023 Ma (2σ analytical and tracer uncertainties only, MSWD=1.70) confirming that there is little or no inter-crystal age heterogeneity at the scale of a few 10 kyr. Solution MC-ICP-MS measurements of chemically purified aliquots give a 176Hf/177Hf weighted mean of 0.283050 ± 17 (2σ, n=10), corresponding to a ɛHf0 of ca. +9.3. The 2σ variability of these measurements is comparable to our reproducibility of the JMC-475 Hf isotopic standard 0.282160 ± 14 (n= 13), suggesting that GHR1 zircons are homogenous with respect to 176Hf/177Hf. In situ 206Pb/238U dates from collaborating secondary ion mass spectrometry (SIMS), sensitive high-resolution ion microprobe (SHRIMP), and laser ablation ICP-MS (LA-ICP-MS) laboratories are in excellent agreement with the CA-ID-TIMS date and illustrate the reproducibility and potential value of this reference zircon. The mean values of 176Hf/177Hf measurements from two LA-ICP-MS laboratories are in agreement with the solution MC-ICP-MS value, but show slightly greater dispersion and higher (Lu+Yb)/Hf values. We attribute this discrepancy to apatite inclusions that are high in REE and may lead to greater isobaric interferences on 176Hf. These inclusions and potential isobaric interferences from REE were removed during the chemical abrasion step prior to bulk

  8. The double-edged sword of high-precision U-Pb geochronology or be careful what you wish for. (Invited)

    NASA Astrophysics Data System (ADS)

    Bowring, S. A.

    2010-12-01

    Over the past two decades, U-Pb geochronology by ID-TIMS has been refined to achieve internal (analytical) uncertainties on a single grain analysis of ± ~ 0.1-0.2%, and 0.05% or better on weighted mean dates. This level of precision enables unprecedented evaluation of the rates and durations of geological processes, from magma chamber evolution to mass extinctions and recoveries. The increased precision, however, exposes complexity in magmatic/volcanic systems and highlights the importance of corrections related to disequilibrium partitioning of intermediate daughter products, and raises questions as to how best to interpret the complex spectrum of dates characteristic of many volcanic rocks. In addition, the increased precision requires renewed emphasis on the accuracy of U decay constants, the isotopic composition of U, the calibration of isotopic tracers, and the accurate propagation of uncertainties It is now commonplace in the high precision dating of volcanic ash-beds to analyze 5-20 single grains of zircon in an attempt to resolve the eruption/depositional age. Data sets with dispersion far in excess of analytical uncertainties are interpreted to reflect Pb-loss, inheritance, and protracted crystallization, often supported with zircon chemistry. In most cases, a weighted mean of the youngest reproducible dates is interpreted as the time of eruption/deposition. Crystallization histories of silicic magmatic systems recovered from plutonic rocks may also be protracted, though may not be directly applicable to silicic eruptions; each sample must be evaluated independently. A key to robust interpretations is the integration high-spatial resolution zircon trace element geochemistry with high-precision ID-TIMS analyses. The EARTHTIME initiative has focused on many of these issues, and the larger subject of constructing a timeline for earth history using both U-Pb and Ar-Ar chronometers. Despite continuing improvements in both, comparing dates for the same rock

  9. High-Resolution Zircon U-Pb CA-TIMS Dating of the Carboniferous—Permian Successions, Paraná Basin, Brazil

    NASA Astrophysics Data System (ADS)

    Griffis, N. P.; Mundil, R.; Montanez, I. P.; Isbell, J.; Fedorchuk, N.; Lopes, R.; Vesely, F.; Iannuzzi, R.

    2015-12-01

    The late Paleozoic Ice Age (LPIA) is Earth's only record of a CO2-forced climatic transition from an icehouse to greenhouse state in a vegetated world. Despite a refined framework of Gondwanan ice distribution, questions remain about the timing, volume, and synchronicity of high-latitude continental ice and the subsequent deglaciation. These questions ultimately preclude our understanding of linkages between ice volume, sea level, and high- and low-latitude climate. Poor constraints on the timing and synchronicity of glacial and interglacial transitions reflect a lack of high-resolution radioisotopic dates from high-latitude, ice-proximal Carboniferous-Permian successions. The Rio Bonito Fm in Rio Grande do Sul State of southern Brazil hosts the oldest non-glaciogenic Carboniferous- Permian deposits of the Paraná Basin, thus recording the icehouse-to-greenhouse transition. Despite a widespread effort over the last two decades to constrain these deposits in time by means of U-Pb zircon geochronology, published data sets of the Candiota and Faxinal coals of the Rio Bonito Fm host discrepancies that may reflect post- eruptive open system behavior of zircon and analytical artifacts. These discrepancies have hindered the correlation of the Candiota and Faxinal sediments within the larger Gondwanan framework. Here we present the first U-Pb ages on closed system single zircons using CA-TIMS techniques on Permo-Carboniferous ash deposits of the Paraná Basin. Preliminary results indicate two major and distinct coal-forming periods that are separated by ca 10 Ma. Our results and conclusions are not in agreement with multi- crystal U-Pb TIMS and SIMS ages that suggest coeval deposition of the Candiota and Faxinal coals. CA-TIMS analyses applied to zircons from additional ash deposits are aimed at constructing a robust chronostratigraphic framework for the Carboniferous- Permian succession of the Paraná Basin, which will facilitate a better understanding of the timing and

  10. Early history of the moon: Implications of U-Th-Pb and Rb-Sr systematics

    NASA Technical Reports Server (NTRS)

    Tatsumoto, M.; Numes, P. D.; Unruh, D. M.

    1977-01-01

    Anorthosite 60015 contains the lowest initial Sr-87/Sr-86 ratio yet reported for a lunar sample. The initial ratio is equal to that of the achondrite Angra dos Reis and slightly higher than the lowest measured Sr-87/Sr-86 ratio for an inclusion in the C3 carbonaceous chondrite Allende. The Pb-Pb ages of both Angra does Reis and Allende are 4.62 X 10 to the ninth power yr. Thus, the initial Sr/87/Sr-86 ratio found in lunar anorthosite 60015 strongly supports the hypothesis that the age of the Moon is about 4.65 b.y. The U-238/Pb-204 value estimated for the source of the excess lead in "orange soil" 74220 is approximately 35 and lower than the values estimated for the sources of KREEP (600-1000), high-K (300-600), and low-K (100-300) basalts. From these and other physical, chemical and petrographic results it was hypothesized that (1) the moon formed approximately 4.65 b.y. ago; (2) a global-scale gravitational differentiation occurred at the beginning of lunar history; and (3) the differentiation resulted in a radical chemical and mineralogical zoning in which the U-238/Pb-204 ratios increased toward the surface, with the exception of the low U-238/Pb-204 surficial anorthositic layer which "floated" at the beginning of the differentiation relative to the denser pyroxene-rich material.

  11. Apatite U-Pb thermochronolgy applied to complex geological settings - insights from geo/thermochronology and geochemistry

    NASA Astrophysics Data System (ADS)

    Paul, Andre; Spikings, Richard; Ulyanov, Alexey; Chew, David

    2016-04-01

    Application of high temperature (>350oC) thermochronology is limited to the U-Pb system of accessory minerals, such as apatite, under the assumption that radiogenic lead is lost to thermally activated volume diffusion into an infinite reservoir. Cochrane et al. (2015) have demonstrated a working example from the northern Andes of South America. Predictions from volume diffusion theory were compared with measured single grain U-Pb date correlated to shortest diffusion radius and in-situ profiles measured by LA-ICP-MS. Results from both techniques were found to be in agreement with predictions from thermally activated, volume diffusion. However, outliers from the ID-TIMS data suggested some complexity, as grains were found to be too young relative to their diffusion radius. Interaction of multiple processes can be responsible for the alteration of apatite U-Pb dates such as: (1) metamorphic (over)growth, (2) fluid aided alteration/recrystallization and (3) metamictization and fracturing of the grain. Further, predictions from volume diffusion rely on the input parameters: (a) diffusivity, (b) activation energy and (c) shortest diffusion radius. Diffusivity and activation energy are potentially influenced by the chemical composition and subsequent changes in crystal structure. Currently there is one value for diffusion parameter and activation energy established for (Durango) apatite (Cherniak et al., 1991). Correlation between diffusivity/activation energy and composition has not been established. We investigate if correlations exist between diffusivity/activation energy and composition by obtaining single grain apatite U-Pb date and chemical compostion and correlating these to their diffusion radius. We test the consistency of apatite closure temperature, by comparing the apatite U-Pb dates with lower temperature thermochronometers such as white mica and K-feldspar Ar/Ar and by petrographic observations. We test if chemical information can be a proxy to identify

  12. Constraints on a Late Cretaceous uplift, denudation, and incision of the Grand Canyon region, southwestern Colorado Plateau, USA, from U-Pb dating of lacustrine limestone

    NASA Astrophysics Data System (ADS)

    Hill, Carol A.; Polyak, Victor J.; Asmerom, Yemane; P. Provencio, Paula

    2016-04-01

    The uplift and denudation of the Colorado Plateau is important in reconstructing the geomorphic and tectonic evolution of western North America. A Late Cretaceous (64 ± 2 Ma) U-Pb age for the Long Point limestone on the Coconino Plateau, which overlies a regional erosional surface developed on Permo-Triassic formations, supports unroofing of the Coconino Plateau part of Grand Canyon by that time. U-Pb analyses of three separate outcrops of this limestone gave ages of 64.0 ± 0.7, 60.5 ± 4.6, and 66.3 ± 3.9 Ma, which dates are older than a fossil-based, early Eocene age. Samples of the Long Point limestone were dated using the isotope dilution isochron method on well-preserved carbonates having high-uranium and low-lead concentrations. Our U-Pb ages on the Long Point limestone place important constraints on the (1) time of tectonic uplift of the southwestern Colorado Plateau and Kaibab arch, (2) time of denudation of the Coconino Plateau, and (3) Late Cretaceous models of paleocanyon incision west of, or across, the Kaibab arch. We propose that the age of the Long Point limestone, interbedded within the Music Mountain Formation in the Long Point area, represents a period of regional aggradation and a time of drainage blockage northward and eastward across the Kaibab arch, with possible diversion of northward drainage on the Coconino Plateau westward around the arch via a Laramide paleo-Grand Canyon.

  13. Experimental constraints on the relative stabilities of the two systems monazite-(Ce) - allanite-(Ce) - fluorapatite and xenotime-(Y) - (Y,HREE)-rich epidote - (Y,HREE)-rich fluorapatite, in high Ca and Na-Ca environments under P-T conditions of 200-1000 MPa and 450-750 °C

    NASA Astrophysics Data System (ADS)

    Budzyń, Bartosz; Harlov, Daniel E.; Kozub-Budzyń, Gabriela A.; Majka, Jarosław

    2017-04-01

    -aided coupled dissolution-reprecipitation, which affects the Th-U-Pb system in runs at 450 °C, 200-1000 MPa, and 550 °C, 200-600 MPa. A lack of compositional alteration in the Th, U, and Pb in monazite-(Ce) at 550 °C, 800-1000 MPa, and in experiments at 650-750 °C, 200-1000 MPa indicates the limited influence of fluid-mediated alteration on volume diffusion under high P-T conditions. Experimental sets (3) and (4) resulted in xenotime-(Y) breakdown and partial replacement by (Y,REE)-rich fluorapatite to Y-rich fluorcalciobritholite. Additionally, (Y,HREE)-rich epidote formed at the expense of xenotime-(Y) in three runs with 2 M Ca(OH)2 fluid, at 550 °C, 800 MPa; 650 °C, 800 MPa; and 650 °C, 1000 MPa similar to the experiments involving monazite-(Ce). These results confirm that replacement of xenotime-(Y) by (Y,HREE)-rich epidote is induced by a high Ca bulk content with a high CaO/Na2O ratio. These experiments demonstrate also that the relative stabilities of xenotime-(Y) and (Y,HREE)-rich epidote are strongly controlled by pressure.

  14. U-Pb thermochronology of the lower crust: producing a long-term record of craton thermal evolution

    NASA Astrophysics Data System (ADS)

    Blackburn, T.; Bowring, S. A.; Mahan, K. H.; Perron, T.; Schoene, B.; Dudas, F. O.

    2010-12-01

    The EarthScope initiative is focused on providing an enhanced view of the North American lithosphere and the present day stress field of the North American continent. Of key interest is the interaction between convecting asthenosphere and the conducting lithospheric mantle that underlie the continents, especially the cold ‘keels’ that underlie Archean domains. Cratonic regions are in general characterized by minimal erosion and or sediment accumulation. The Integration of seismic tomography, and mantle xenolith studies reveal a keel of seismically fast and relatively buoyant and viscous mantle; physical properties that are intimately linked with the long-term stability and topographic expression of the region. Missing from this model of the continental lithosphere is the 4th dimension--time--and along with it our understanding of the long-term evolution of these stable continental interiors. Here we present a thermal record from the North American craton using U-Pb thermochronology of lower crustal xenoliths. The use of temperature sensitive dates on lower crustal samples can produce a unique time-temperature record for a well-insulated and slowly cooling lithosphere. The base of the crust is insulated enough to remain unperturbed by any plausible changes to surface topography, yet unlike the subadjacent lithospheric mantle, contains accessory phases amenable to U-Pb dating (rutile, apatite, titanite). With near steady state temperatures in the lower crust between 400-600 °C, U-Pb thermochronometers with similar average closure temperatures for Pb are perfectly suited to record the long-term cooling of the lithosphere. Xenoliths from multiple depths, and across the craton yield time-temperature paths produced from U-Pb thermochronometers that record extremely slow cooling (<0.25 °C/Ma) over time scales of billions of years. Combining these data with numerical thermal modeling allow constraints to be placed on the dominant heat transfer mechanisms operating

  15. How U-Th series radionuclides have come to trace estuarine processes

    NASA Astrophysics Data System (ADS)

    Church, T. M.

    2014-12-01

    Some forty years ago, the essence of estuarine processes was pioneered in terms of property-property (salinity) parameterization and end member mixing experiments. The result revealed how scavenging via "flocculation" of organic material such as humic acids affect primary nutrients and trace elements, many of pollutant interest. Defined in the Delaware are estuarine reaction zones, including one more "geochemical" in upper turbid areas and another more" biochemical" in more productive photic zones of lower areas. Since then, the natural U-Th radionuclide series have been employed to quantify estuarine transport and scavenging processes. Parent U appears negatively non-conserved during summer in estuarine and coastal waters, while that of Ra isotopes positively non-conservative dominated by a ground water end member. For both U and Ra, the biogeochemical influence of marginal salt marshes is significant. Indeed in the marsh atmospheric 210-Pb has become the metric of choice for the chronology of estuarine pollutant records. Using the more particle reactive isotopes in quantifying estuarine mixing processes (e.g. Th or Pb) proves to be fruitful in the Delaware and upper Chesapeake. While Th simply tracks that of particle abundance, both 210-Pb and 210-Po show differential scavenging with residence times of weeks to a month according to lithogenic and biogenic cycling processes, respectively.

  16. In situ detrital zircon (U-Th)/He thermochronology

    NASA Astrophysics Data System (ADS)

    Tripathy, A.; Monteleone, B. D.; van Soest, M. C.; Hodges, K.; Hourigan, J. K.

    2010-12-01

    Detrital studies of both sand and rock are relevant to many problems, ranging from the climate and tectonics feedback debate to the long-term record of orogenic evolution. When applying the conventional (U-Th)/He technique to such studies, two important issues arise. Often, only euhedral grains are permissible for analysis in order to make simple geometric corrections for α-recoil. In detrital samples, this is problematic because euhedral grains can be scarce due to mechanical abrasion during transport, and potentially introduce bias in favour of more proximally sourced grains. Second, inherent to detrital studies is the need to date many grains (>100) per sample to ensure a representative sampling of the sediment source region, thus making robust conventional detrital studies both expensive and time-consuming. UV laser microprobes can improve this by permitting careful targeting of the grain interior away from the α-ejection zone, rendering the α-recoil correction unnecessary, thus eliminating bias toward euhedral grains. In the Noble Gas, Geochemistry, and Geochronology Laboratory at ASU, apatite and zircon have been successfully dated using in situ methods. For this study, the conventional and in situ techniques are compared by dating zircons from a modern river sand that drains a small catchment in the Mesozoic-Cenozoic Ladakh Batholith in NW India. This sample has a simple provenance, which allows us to demonstrate the robustness of the in situ method. Moreover, different microbeam techniques will be explored to establish the most efficient approach to obtain accurate and precise U-Th concentrations using synrock, which is our powdered, homogenized, and reconstituted zircon-rock standard. Without this, such in situ U-Th data would be difficult to obtain. 117 zircons were dated using the conventional (U-Th)/He method, revealing dates ranging from 9.70±0.35 to 106.6±3.5 Ma (2σ) with the major mode at 26 Ma. For comparison, 44 grains were dated using the in

  17. Application of U-Pb ID-TIMS dating to the end-Triassic global crisis: testing the limits on precision and accuracy in a multidisciplinary whodunnit (Invited)

    NASA Astrophysics Data System (ADS)

    Schoene, B.; Schaltegger, U.; Guex, J.; Bartolini, A.

    2010-12-01

    The ca. 201.4 Ma Triassic-Jurassic boundary is characterized by one of the most devastating mass-extinctions in Earth history, subsequent biologic radiation, rapid carbon cycle disturbances and enormous flood basalt volcanism (Central Atlantic Magmatic Province - CAMP). Considerable uncertainty remains regarding the temporal and causal relationship between these events though this link is important for understanding global environmental change under extreme stresses. We present ID-TIMS U-Pb zircon geochronology on volcanic ash beds from two marine sections that span the Triassic-Jurassic boundary and from the CAMP in North America. To compare the timing of the extinction with the onset of the CAMP, we assess the precision and accuracy of ID-TIMS U-Pb zircon geochronology by exploring random and systematic uncertainties, reproducibility, open-system behavior, and pre-eruptive crystallization of zircon. We find that U-Pb ID-TIMS dates on single zircons can be internally and externally reproducible at 0.05% of the age, consistent with recent experiments coordinated through the EARTHTIME network. Increased precision combined with methods alleviating Pb-loss in zircon reveals that these ash beds contain zircon that crystallized between 10^5 and 10^6 years prior to eruption. Mineral dates older than eruption ages are prone to affect all geochronologic methods and therefore new tools exploring this form of “geologic uncertainty” will lead to better time constraints for ash bed deposition. In an effort to understand zircon dates within the framework of a magmatic system, we analyzed zircon trace elements by solution ICPMS for the same volume of zircon dated by ID-TIMS. In one example we argue that zircon trace element patterns as a function of time result from a mix of xeno-, ante-, and autocrystic zircons in the ash bed, and approximate eruption age with the youngest zircon date. In a contrasting example from a suite of Cretaceous andesites, zircon trace elements

  18. Laser-Ablation (U-Th)/He Geochronology

    NASA Astrophysics Data System (ADS)

    Hodges, K.; Boyce, J.

    2003-12-01

    Over the past decade, ultraviolet laser microprobes have revolutionized the field of 40Ar/39Ar geochronology. They provide unprecedented information about Ar isotopic zoning in natural crystals, permit high-resolution characterization of Ar diffusion profiles produced during laboratory experiments, and enable targeted dating of multiple generations of minerals in thin section. We have modified the analytical protocols used for 40Ar/39Ar laser microanalysis for use in (U-Th)/He geochronologic studies. Part of the success of the 40Ar/39Ar laser microprobe stems from fact that measurements of Ar isotopic ratios alone are sufficient for the calculation of a date. In contrast, the (U-Th)/He method requires separate analysis of U+Th and 4He. Our method employs two separate laser microprobes for this process. A target mineral grain is placed in an ultrahigh vacuum chamber fitted with a window of appropriate composition to transmit ultraviolet radiation. A focused ArF (193 nm) excimer laser is used to ablate tapered cylindrical pits on the surface of the target. The liberated material is scrubbed with a series of getters in a fashion similar to that used for 40Ar/39Ar geochronology, and the 4He abundance is determined using a quadrupole mass spectrometer with well-calibrated sensitivity. A key requirement for calculation of the 4He abundance in the target is a precise knowledge of the volume of the ablation pit. This is the principal reason why we employ the ArF excimer for 4He analysis rather than a less-expensive frequency-multiplied Nd-YAG laser; the excimer creates tapered cylindrical pits with extremely reproducible and easily characterized geometry. After 4He analysis, U and Th are measured on the same sample surface using the more familiar technique of laser-ablation inductively coupled plasma mass spectrometry (LA-ICPMS). Our early experiments have been done using a frequency-quintupled Nd-YAG microprobe (213nm), While the need to analyze U+Th and He in separate

  19. Hadean Crustal Processes Revealed from Oxygen Isotopes and U-Th-Pb Depth Profiling of Pre-4.0 Ga Detrital Zircons from Western Australia

    NASA Technical Reports Server (NTRS)

    Trail, D.; Mojzsis, S. J.; Harrison, T. M.

    2005-01-01

    Because physical and chemical processes of the past are determined from analysis of a preserved geologic record, little is known about terrestrial crustal processes of the first 500 Ma during the so-called Hadean Eon. What is known from direct measurements has been derived almost exclusively from the study of greater than 4.0 Ga detrital zircons from the Jack Hills, Western Australia. The geochemistry of these zircons has direct application to understanding the origin and evolution of the rocks during the Hadean because: (i) U-Th-Pb age determinations by ion microprobe suggests the presence of crust as early as 4.37 Ga, or shortly after lunar formation; (ii) high-resolution U-Th-Pb zircon depth profiles reported here reveal several episodes of zircon growth in the Hadean previously unrecognized; (iii) core regions of pre-4.0 Ga zircons with igneous compositions are enriched in O-18 and contain metaluminous and peraluminous mineral inclusions, both features indicative of S-type grainitod protoliths. Study of these ancient zircons provides a unique window into the first half billion years that permits assessment of the potential of the Hadean Earth to host an emergent biosphere.

  20. U-Pb Dating of Calcite to Constrain Basinal Brine Flux Events: An Example from the Upper Midwest USA

    NASA Astrophysics Data System (ADS)

    Rasbury, T.; Luczaj, J.

    2017-12-01

    Calcite forms in a variety of settings and can be the product of surface to deep basinal fluids. As such, this mineral can uniquely record details of the fluids responsible for its formation. The forms of calcium carbonates and their stratigraphic relationships from the thin section to the regional scale give important insights on pulses of fluids. A fundamental question is the age of such fluid pulses. While calcite excludes uranium (U) from its crystal structure, some is incorporated and depending on the U/Pb ratio, this provides an opportunity for radiometric dating. Calcite crystals of various sizes and crystal habits are found in Paleozoic carbonate rocks throughout the region from the western Michigan basin to the upper Mississippi valley. These are typically associated with Mississippi Valley-type (MVT) mineralization, including galena, sphalerite, and iron sulfides, but typically post-date the main MVT event. We have analyzed a variety of these calcites and find multiple generations of calcite, separated by tens of millions of years. The initial Pb isotope ratios are similar to the isotope ratios of nearby galena, strongly suggesting a genetic relationship. Our oldest ages are 200 Ma, and we find ages ranging into the Cenozoic. Based on the Paleozoic-hosted galena Pb-isotope isoscapes from the region, the fluids may have been sourced from both the Michigan and Illinois basins. An important and unanswered question is what would cause significant fluid movement out of the basins substantially after Appalachian orogenesis. Noble gas data from brines in the Michigan Basin have a mantle component and have been suggested to be responsible for recognized elevated temperatures across the basin (Ma et al., 2009). Multiple thermal events during the Paleozoic and Mesozoic eras may have an internal heat source related to reactivation of faults of the Keweenawan Rift system below the Michigan Basin. Perhaps a mantle heat source from below episodically fluxes into the

  1. Assessment of the U-Th-Pb system in two Archean metabasalts - Deciphering the complex histories of sulfides and silicates using acid leaching methods

    NASA Astrophysics Data System (ADS)

    Smith, Patrick E.; Farquhar, Ronald M.; Tatsumoto, Mitsunobo

    1989-08-01

    A detailed U-Th-Pb isotopic study of two Archean basalts from two greenstone belts in the eastern Wawa Subprovince of the Canadian shield was carried out on samples that were either dissolved at once or leached in either 1N HNO3, 2N HCl, or 6N HCl. The abundances and isotopic compositions from these samples suggest that variable disturbances had occurred in both rock systems, which can be attributed to Pb mobility, particularly in the form of sulphide addition at various times, and, in one case, by recent Pb loss. The Pb isotopic compositions of the sulphides record late events which affected the greenstone terrains. The results also indicate that the sulphides and silicate rocks could have originated from a common source. The isotopic compositions of the basalt suggest that, in the Archean, both depleted and enriched mantle sources existed beneath the Wawa Subprovince.

  2. Levels in 223Th populated by α decay of 227U

    NASA Astrophysics Data System (ADS)

    Kalaninová, Z.; Antalic, S.; Heßberger, F. P.; Ackermann, D.; Andel, B.; Kindler, B.; Laatiaoui, M.; Lommel, B.; Maurer, J.

    2015-07-01

    Levels in 223Th populated by the α decay of 227U were investigated using α -γ decay spectroscopy. The 227U isotope was produced in the fusion-evaporation reaction 22Ne +208Pb at the velocity filter separator for heavy-ion reaction products at Gesellschaft für Schwerionenforschung in Darmstadt (Germany). Several new excited levels and γ transitions were identified in 223Th . An improved α -decay scheme of 227U was suggested. The experimental α -decay energy spectrum of 227U was compared with the Monte Carlo simulation performed using the toolkit geant4.

  3. 210Pb-226Ra and Other U-Series Disequilibria in Very Young MORB and Loihi Tholeiites

    NASA Astrophysics Data System (ADS)

    van der Zander, I.; Rubin, K. H.; Smith, M.; Perfit, M.; Bergmanis, E. C.

    2003-12-01

    Direct observations of submarine volcanic eruptions are very sparse. Radiometric age constraints on submarine lava flows are thus an essential component for understanding even the most recent histories of oceanic crust formation. Chronometers in the decadal to century time frame have heretofore been lacking. This study focuses on the development and application of 210Pb-226Ra disequilibria as a geochronometer to provide quantitative eruption age constraints over the past 100 years, using submersible-collected samples from the North Cleft segment of the Juan de Fuca Ridge (JDFR) and adjacent Axial seamount, 9° 50'N East Pacific Rise (EPR) and Loihi (Hawaii), areas with known stratigraphic field relations between mapped lava flows. The data set provides a unique opportunity to calibrate the 210Pb-226Ra geochronometer because it represents a broad selection of "zero age" (210Po-210Pb dated) and near-zero-age submarine lavas (glasses). 238U-230Th-226Ra-210Pb radioactive disequilibria in these samples will be discussed to rationalize the range of conditions responsible for producing 210Pb-226Ra disequilibria (effective half life = 22 yrs) as an initial step towards using this signature to constrain eruption ages and petrogenetic time scales. We will also investigate the temporal aspects of petrogenetic conditions responsible for producing the other disequilibria in these rocks, without the uncertainty imposed by decay corrections for rocks of unknown age. These data augment those we previously reported from the Aldo-Kihi and neighboring lava flows at 17° 26'S EPR (Rubin et al., EOS, 82, F1279, 2001). Systematic differences between and within study areas exist: most normal zero age MORB display modest 210Pb deficits (3-10%); older MORB (the N-cleft sheet flow) have smaller deficits (0-3%); rocks erupted in 1998 from Axial seamount have 8-15% 210Pb excesses; and, rocks erupted in 1996 at Loihi are in equilibrium within error. Disequilibria amongst other nuclides are all

  4. Developing an inverted Barrovian sequence; insights from monazite petrochronology

    NASA Astrophysics Data System (ADS)

    Mottram, Catherine M.; Warren, Clare J.; Regis, Daniele; Roberts, Nick M. W.; Harris, Nigel B. W.; Argles, Tom W.; Parrish, Randall R.

    2014-10-01

    In the Himalayan region of Sikkim, the well-developed inverted metamorphic sequence of the Main Central Thrust (MCT) zone is folded, thus exposing several transects through the structure that reached similar metamorphic grades at different times. In-situ LA-ICP-MS U-Th-Pb monazite ages, linked to pressure-temperature conditions via trace-element reaction fingerprints, allow key aspects of the evolution of the thrust zone to be understood for the first time. The ages show that peak metamorphic conditions were reached earliest in the structurally highest part of the inverted metamorphic sequence, in the Greater Himalayan Sequence (GHS) in the hanging wall of the MCT. Monazite in this unit grew over a prolonged period between ∼37 and 16 Ma in the southerly leading-edge of the thrust zone and between ∼37 and 14.5 Ma in the northern rear-edge of the thrust zone, at peak metamorphic conditions of ∼790 °C and 10 kbar. Monazite ages in Lesser Himalayan Sequence (LHS) footwall rocks show that identical metamorphic conditions were reached ∼4-6 Ma apart along the ∼60 km separating samples along the MCT transport direction. Upper LHS footwall rocks reached peak metamorphic conditions of ∼655 °C and 9 kbar between ∼21 and 16 Ma in the more southerly-exposed transect and ∼14.5-12 Ma in the northern transect. Similarly, lower LHS footwall rocks reached peak metamorphic conditions of ∼580 °C and 8.5 kbar at ∼16 Ma in the south, and 9-10 Ma in the north. In the southern transect, the timing of partial melting in the GHS hanging wall (∼23-19.5 Ma) overlaps with the timing of prograde metamorphism (∼21 Ma) in the LHS footwall, confirming that the hanging wall may have provided the heat necessary for the metamorphism of the footwall. Overall, the data provide robust evidence for progressively downwards-penetrating deformation and accretion of original LHS footwall material to the GHS hanging wall over a period of ∼5 Ma. These processes appear to have

  5. Plant uptake of 238U, 235U, 232Th, 226Ra, 210Pb and 40K from a coal ash and slag disposal site and control soil under field conditions: A preliminary study.

    PubMed

    Skoko, Božena; Marović, Gordana; Babić, Dinko; Šoštarić, Marko; Jukić, Mirela

    2017-06-01

    The aim of this study was to investigate the uptake of 238 U, 235 U, 232 Th, 226 Ra, 210 Pb and 40 K by plants that grow on a coal ash and slag disposal site known for its higher content of naturally occurring radionuclides. Plant species that were sampled are common for the Mediterranean flora and can be divided as follows: grasses & herbs, shrubs and trees. To compare the activity concentrations and the resultant concentration ratios of the disposal site with those in natural conditions, we used control data specific for the research area, obtained for plants growing on untreated natural soil. Radionuclide activity concentrations were determined by high resolution gamma-ray spectrometry. Media parameters (pH, electrical conductivity and organic matter content) were also analysed. We confirmed significantly higher activity concentrations of 238 U, 235 U, 226 Ra and 210 Pb in ash and slag compared to control soil. However, a significant increase in the radionuclide activity concentration in the disposal site's vegetation was observed only for 226 Ra. On the contrary, a significantly smaller activity concentration of 40 K in ash and slag had no impact on its activity concentration in plant samples. The calculated plant uptake of 238 U, 235 U, 226 Ra and 210 Pb is significantly smaller in comparison with the uptake at the control site, while it is vice versa for 40 K. No significant difference was observed between the disposal site and the control site's plant uptake of 232 Th. These results can be the foundation for further radioecological assessment of this disposal site but also, globally, they can contribute to a better understanding of nature and long-term management of such disposal sites. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Time scales of intra-oceanic arc magmatism from combined U-Th and (U-Th)/He zircon geochronology of Dominica, Lesser Antilles

    NASA Astrophysics Data System (ADS)

    Howe, T. M.; Schmitt, A. K.; Lindsay, J. M.; Shane, P.; Stockli, D. F.

    2015-02-01

    The island of Dominica, located in the intra-oceanic Lesser Antilles arc, has produced a series of intermediate (mostly andesitic) lava domes and ignimbrites since the early Pleistocene. (U-Th)/He eruption ages from centers across the island range from ˜3 to ˜770 ka, with at least 10 eruptions occurring in the last 80 ka. Three eruptions occurred near the southern tip of Dominica (Plat Pays Volcanic Complex) in the past 15 ka alone. Zircon U-Th ages from individual centers range from near-eruption to secular equilibrium implicating protracted storage and recycling of zircons within the crust. Overlapping zircon crystallization peaks within deposits from geographically separated vents (up to 40 km apart) indicate that magma associated with separate volcanic edifices crystallized zircon contemporaneously. Two lava domes from the southern sector of the island display exclusively young zircon rim ages (<50 ka) with narrow crystallization peaks consistent with the construction of a new magma reservoir. The younging of eruption and crystallization ages implies that the magmatic foci leading to the construction of this reservoir have migrated southward, arc-parallel over time. Overall, our data support geochemical models for the ongoing construction of a silicic intrusive complex, consisting of varying amounts of crystal mush, beneath the island. U-Pb zircon ages <1-2 Ma indicate that accumulation of this complex is entirely Quaternary in age. Together zircon U-Th and U-Pb ages for Dominica suggest that the magmatic processes and time scales operating in intra-oceanic arcs are similar to those documented for continental arcs. This article was corrected on 18 MAR 2015. See the end of the full text for details.

  7. U-Pb age constraints for the La Tuna Granite and Montevideo Formation (Paleoproterozoic, Uruguay): Unravelling the structure of the Río de la Plata Craton

    NASA Astrophysics Data System (ADS)

    Pamoukaghlián, Karina; Gaucher, Claudio; Frei, Robert; Poiré, Daniel G.; Chemale, Farid; Frei, Dirk; Will, Thomas M.

    2017-11-01

    The Río de la Plata Craton is a continental block that crops out in Uruguay, eastern Argentina, southernmost Brazil and Paraguay. It comprises in Uruguay the Piedra Alta, Tandilia and Nico Pérez terranes, separated by the Colonia and the Sarandí del Yí megashears. The La Tuna Granite, which intrudes the Araminda metasandstones in the Tandilia Terrane, was considered Cambrian in age and the intruded sandstones were assigned to the Neoproterozoic Piedras de Afilar Formation. We show that the granite is Paleoproterozoic in age and that the host metasandstones do not belong to the Piedras de Afilar Formation, but to the Paleoproterozoic Montevideo Formation. U-Pb LA ICP-MS of zircon ages for the La Tuna Granite yielded a concordant crystallization age of 2156 ± 26 Ma. Furthermore a metamorphic event at 2010 ± 9 Ma is revealed by Pb stepwise leaching dating of monazites. U-Pb detrital zircon ages of the host Araminda metasandstone yield an upper intercept discordia age of 2152 ± 29 Ma, which marks the intrusion of the La Tuna pluton, and which is in accordance with the zircon U-Pb LA ICP MS constraints. A concordant U-Pb detrital zircon age of 2465 ± 40 Ma provides a maximum depositional age constraint for the metapsammites. Comparing quartz arenites of the Ediacaran Piedras de Afilar Formation with the Araminda metaquartzites, we conclude that they are very similar regarding petrology but they differ in age and metamorphic overprint. Detrital zircons in quartz arenites of the Piedras de Afilar Formation show youngest ages of 1.0 Ga. On the other hand, detrital zircons recovered from the Araminda metasandstones and the age of the intruding granite allow interpreting a depositional age between 2465 and 2150 Ma. Nd model ages show crustal residence times in average more than 200 myr older for the Tandilia Terrane both in Uruguay and Argentina, with a significant Neoarchean component, which is lacking in the Piedra Alta Terrane. Whereas the Piedra Alta Terrane was

  8. Mineral chemistry and shrimp U-Pb Geochronology of mesoproterozoic polycrase-titanite veins in the sullivan Pb-Zn-Ag Deposit, British Columbia

    USGS Publications Warehouse

    Slack, J.F.; Aleinikoff, J.N.; Belkin, H.E.; Fanning, C.M.; Ransom, P.W.

    2008-01-01

    Small polycrase-titanite veins 0.1-2 mm thick cut the tourmalinite feeder zone in the deep footwall of the Sullivan Pb-Zn-Ag deposit, southeastern British Columbia. Unaltered, euhedral crystals of polycrase and titanite 50-100 ??m in diameter are variably replaced by a finer-grained alteration-induced assemblage composed of anhedral polycrase and titanite with local calcite, albite, epidote, allanite, and thorite or uranothorite (or both). Average compositions of the unaltered and altered polycrase, as determined by electron-microprobe analysis, are (Y0.38 REE0.49 Th0.10 Ca0.04 Pb0.03 Fe0.01U0.01) (Ti1.48 Nb0.54 W0.04 Ta0.02)O6 and (Y0.42 REE0.32 Th0.15 U0.06 Ca0.04 Pb0.01 Fe0.01) (Ti1.57 Nb0.44 W0.04 Ta0.02)O6, respectively. The unaltered titanite has, in some areas, appreciable F (to 0.15 apfu), Y (to 0.40 apfu), and Nb (to 0.13 apfu). SHRIMP U-Pb geochronology of eight grains of unaltered polycrase yields a weighted 207Pb/206Pb age of 1413 ?? 4 Ma (2??) that is interpreted to be the age of vein formation. This age is 50-60 m.y. younger than the ca. 1470 Ma age of synsedimentary Pb-Zn-Ag mineralization in the Sullivan deposit, which is based on combined geological and geochronological data. SHRIMP ages for altered polycrase and titanite suggest later growth of minerals during the ???1370-1320 Ma East Kootenay and ???1150-1050 Ma Grenvillian orogenies. The 1413 ?? 4 Ma age for the unaltered polycrase in the veins records a previously unrecognized post-ore (1370 Ma) mineralizing event in the Sullivan deposit and vicinity. The SHRIMP U-Pb age of the polycrase and high concentrations of REE, Y, Ti, Nb, and Th in the veins, together with elevated F in titanite and the absence of associated sulfides, suggest transport of these high-field-strength elements (HFSE) by F-rich and S-poor hydrothermal fluids unrelated to the fluids that formed the older Fe-Pb-Zn-Ag sulfide ores of the Sullivan deposit. Fluids containing abundant REE, HFSE, and F may have been derived from a

  9. Application of U/Th and 40Ar/39Ar Dating to Orgnac 3, a Late Acheulean and Early Middle Palaeolithic Site in Ardèche, France

    PubMed Central

    Michel, Véronique; Shen, Guanjun; Shen, Chuan-Chou; Wu, Chung-Che; Vérati, Chrystèle; Gallet, Sylvain; Moncel, Marie-Hélène; Combier, Jean; Khatib, Samir; Manetti, Michel

    2013-01-01

    Refined radio-isotopic dating techniques have been applied to Orgnac 3, a Late Acheulean and Early Middle Palaeolithic site in France. Evidence of Levallois core technology appeared in level 4b in the middle of the sequence, became predominant in the upper horizons, and was best represented in uppermost level 1, making the site one of the oldest examples of Levallois technology. In our dating study, fourteen speleothem samples from levels 7, 6 and 5b, were U/Th-dated. Four pure calcite samples from the speleothem PL1 (levels 5b, 6) yield ages between 265 ± 4 (PL1-3) and 312 ± 15 (PL1-6) thousand years ago (ka). Three samples from the top of a second stalagmite, PL2, yield dates ranging from 288 ± 10 ka (PL2-1) to 298 ± 17 ka (PL2-3). Three samples from the base of PL2 (level 7) yield much younger U/Th dates between 267 and 283 ka. These dates show that the speleothems PL1 and PL2 are contemporaneous and formed during marine isotope stage (MIS) 9 and MIS 8. Volcanic minerals in level 2, the upper sequence, were dated by the 40Ar/39Ar method, giving a weighted mean of 302.9 ± 2.5 ka (2σ) and an inverse isochron age of 302.9 ± 5.9 ka (2σ). Both 40Ar/39Ar dating of volcanic sanidines and U/Th dating of relatively pure and dense cave calcites are known to be well established. The first parallel application of the two geochronometers to Orgnac 3 yields generally consistent results, which point to the reliability of the two methods. The difference between their age results is discussed. PMID:24349273

  10. Application of U/Th and 40Ar/39Ar dating to Orgnac 3, a Late Acheulean and Early Middle Palaeolithic site in Ardèche, France.

    PubMed

    Michel, Véronique; Shen, Guanjun; Shen, Chuan-Chou; Wu, Chung-Che; Vérati, Chrystèle; Gallet, Sylvain; Moncel, Marie-Hélène; Combier, Jean; Khatib, Samir; Manetti, Michel

    2013-01-01

    Refined radio-isotopic dating techniques have been applied to Orgnac 3, a Late Acheulean and Early Middle Palaeolithic site in France. Evidence of Levallois core technology appeared in level 4b in the middle of the sequence, became predominant in the upper horizons, and was best represented in uppermost level 1, making the site one of the oldest examples of Levallois technology. In our dating study, fourteen speleothem samples from levels 7, 6 and 5b, were U/Th-dated. Four pure calcite samples from the speleothem PL1 (levels 5b, 6) yield ages between 265 ± 4 (PL1-3) and 312 ± 15 (PL1-6) thousand years ago (ka). Three samples from the top of a second stalagmite, PL2, yield dates ranging from 288 ± 10 ka (PL2-1) to 298 ± 17 ka (PL2-3). Three samples from the base of PL2 (level 7) yield much younger U/Th dates between 267 and 283 ka. These dates show that the speleothems PL1 and PL2 are contemporaneous and formed during marine isotope stage (MIS) 9 and MIS 8. Volcanic minerals in level 2, the upper sequence, were dated by the (40)Ar/(39)Ar method, giving a weighted mean of 302.9 ± 2.5 ka (2σ) and an inverse isochron age of 302.9 ± 5.9 ka (2σ). Both (40)Ar/(39)Ar dating of volcanic sanidines and U/Th dating of relatively pure and dense cave calcites are known to be well established. The first parallel application of the two geochronometers to Orgnac 3 yields generally consistent results, which point to the reliability of the two methods. The difference between their age results is discussed.

  11. Coupling of Uranium and Thorium Series Isotope Systematics for Age Determination of Late Pleistocene Zircons using LA-ICP-MS

    NASA Astrophysics Data System (ADS)

    Sakata, S.; Hirakawa, S.; Iwano, H.; Danhara, T.; Hirata, T.

    2014-12-01

    Zircon U-Th-Pb dating method is one of the most important tools for estimating the duration of magmatism by means of coupling of uranium, actinium and thorium decay series. Using U-Pb dating method, its reliability is principally guaranteed by the concordance between 238U-206Pb and 235U-207Pb ages. In case of dating Quaternary zircons, however, the initial disequilibrium effect on 230Th and 231Pa should be considered. On the other hands, 232Th-208Pb dating method can be a simple but powerful approach for investigating the age of crystallization because of negligible influence from initial disequilibrium effect. We have developed a new correction model for accurate U-Pb dating of the young zircon samples by taking into consideration of initial disequilibrium and a U-Pb vs Th-Pb concordia diagram for reliable age calibration was successfully established. Hence, the U-Th-Pb dating method can be applied to various zircons ranging from Hadean (4,600 Ma) to Quaternary (~50 ka) ages, and this suggests that further detailed information concerning the thermal history of the geological sequences can be made by the coupling of U-Th-Pb, fission track and Ar-Ar ages. In this presentation, we will show an example of U-Th-Pb dating for zircon samples from Sambe Volcano (3 to 100 ka), southwest Japan and the present dating technique using LA-ICP-MS.

  12. Apatite (U-Th)/He thermochronometry using a radiation damage accumulation and annealing model

    NASA Astrophysics Data System (ADS)

    Flowers, Rebecca M.; Ketcham, Richard A.; Shuster, David L.; Farley, Kenneth A.

    2009-04-01

    Helium diffusion from apatite is a sensitive function of the volume fraction of radiation damage to the crystal, a quantity that varies over the lifetime of the apatite. Using recently published laboratory data we develop and investigate a new kinetic model, the radiation damage accumulation and annealing model (RDAAM), that adopts the effective fission-track density as a proxy for accumulated radiation damage. This proxy incorporates creation of crystal damage proportional to α-production from U and Th decay, and the elimination of that damage governed by the kinetics of fission-track annealing. The RDAAM is a version of the helium trapping model (HeTM; Shuster D. L., Flowers R. M. and Farley K. A. (2006) The influence of natural radiation damage on helium diffusion kinetics in apatite. Earth Planet. Sci. Lett.249, 148-161), calibrated by helium diffusion data in natural and partially annealed apatites. The chief limitation of the HeTM, now addressed by RDAAM, is its use of He concentration as the radiation damage proxy for circumstances in which radiation damage and He are not accumulated and lost proportionately from the crystal. By incorporating the RDAAM into the HeFTy computer program, we explore its implications for apatite (U-Th)/He thermochronometry. We show how (U-Th)/He dates predicted from the model are sensitive to both effective U concentration (eU) and details of the temperature history. The RDAAM predicts an effective He closure temperature of 62 °C for a 28 ppm eU apatite of 60 μm radius that experienced a 10 °C/Ma monotonic cooling rate; this is 8 °C lower than the 70 °C effective closure temperature predicted using commonly assumed Durango diffusion kinetics. Use of the RDAAM is most important for accurate interpretation of (U-Th)/He data for apatite suites that experienced moderate to slow monotonic cooling (1-0.1 °C/Ma), prolonged residence in the helium partial retention zone, or a duration at temperatures appropriate for radiation

  13. U-Th-Pb systematics of some granitoids from the northeastern Yilgarn Block, Western Australia and implications for uranium source rock potential.

    USGS Publications Warehouse

    Stuckless, J.S.; Bunting, J.A.; Nkomo, I.T.

    1981-01-01

    The Mount Boreas-type granite and spatially associated syenitic granitoid of Western Australia yield Pb/Pb ages of 2370+ or -100Ma and 2760+ or -210Ma, respectively. Th/Pb ages, although less precise, are concordant with these ages, and therefore the apparent ages are interpreted to be the crystallisation ages for these two units. U/Pb ages are variable and for the most part anomalously old, which suggests a Cainozoic uranium loss. However, this loss is generally small (<3mu g/g); therefore, neither granitoid in its fresh state provides a good source for nearby calcrete-hosted uranium deposits. The possibility remains that the Mount Boreas- type granite that has been completely weathered during the Tertiary could have been a source for the calcrete-type uranium deposits in W.A. Although the Mount Boreas-type granite is highly fractionated, it does not bear a strong geochemical imprint of a sedimentary precursor. This feature contrasts it with apparently fresh granitoids from other parts of the world that have lost large amounts of uranium (approx 20mu g/g) and are associated with large roll-type and other low temperature-type uranium deposits.-Authors

  14. Laser-produced spectra and QED effects for Fe-, Co-, Cu-, and Zn-like ions of Au, Pb, Bi, Th, and U

    NASA Technical Reports Server (NTRS)

    Seely, J. F.; Ekberg, J. O.; Brown, C. M.; Feldman, U.; Behring, W. E.

    1986-01-01

    Spectra of very highly charged ions of Au, Pb, Bi, Th, and U have been observed in laser-produced plasmas generated by the OMEGA laser. Line identifications in the region 9-110 A were made for ions in the Fe, Co, Cu, and Zn isoelectronic sequences. Comparison of the measured wavelengths of the Cu-like ions with values calculated with and without QED corrections shows that the inclusion of QED corrections greatly improves the accuracy of the calculated 4s-4p wavelengths. However, significant differences between the observed and calculated values remain.

  15. Complex Histories of Two Lunar Zircons as Evidenced by their Internal Structures and U-Pb Ages

    NASA Technical Reports Server (NTRS)

    Pidgeon, R. T.; Nemchin, A. A.; Meyer, Charles

    2006-01-01

    The U-Pb dating of lunar zircon by ion-microprobe provides a robust technique for investigating the timing of lunar events [1,2]. However, we have now identified two cases where the U-Pb systems in a single zircon show more than one age. These complex zircons provide new opportunities for extending our knowledge on the timing of events in the early history of the Moon.

  16. Paleo- and Neoproterozoic magmatic and tectonometamorphic evolution of the Isla Cristalina de Rivera (Nico Pérez Terrane, Uruguay)

    NASA Astrophysics Data System (ADS)

    Oyhantçabal, Pedro; Wagner-Eimer, Martin; Wemmer, Klaus; Schulz, Bernhard; Frei, Robert; Siegesmund, Siegfried

    2012-10-01

    The Isla Cristalina de Rivera crystalline complex in northeastern Uruguay underwent a multistage magmatic and metamorphic evolution. Based on SHRIMP U-Pb zircon, Th-U-Pb monazite (CHIME-EPMA method) and K-Ar age data from key units several events can be recognized: (1) multistage magmatism at 2,171-2,114 Ma, recorded on zircon of the granulitic orthogneisses and their 2,093-2,077 Ma overgrowths; (2) a distinct amphibolite facies metamorphism at ~1,980 Ma, recorded by monazite; (3) greenschist facies reworking and shearing at ca. 606 Ma (monazite and K-Ar on muscovite) along the Rivera Shear Zone, and finally (4) intrusion of the post-tectonic Sobresaliente and Las Flores granites at around 585 Ma. Lithological similarities, geographic proximity and coeval magmatic and metamorphic events indicate a similar tectonometamorphic evolution for the Isla Cristalina de Rivera, the Valentines Block in Uruguay and the Santa María Chico Granulitic Complex in southern Brazil, since at least 2.1 Ga.

  17. SHRIMP U-Pb detrital zircon dating to check subdivisions in metamorphic complexes: a case of study in the Nevado-Filábride complex (Betic Cordillera, Spain)

    NASA Astrophysics Data System (ADS)

    Santamaría-López, Ángel; Sanz de Galdeano, Carlos

    2018-04-01

    U-Pb dating on inherited detrital zircons has been applied to obtain the probable maximum age of deposition of the detrital protolith of the Nevado-Filábride complex (Betic Cordillera, Spain). Five of eight samples correspond to the lower part of the lithologic sequence of this complex, where radiometric dating of metasediments has not been presented till the present. The youngest age populations in the majority of samples are Carboniferous. The estimation of the maximum age of deposition in the lower and upper units is 349.1 ± 1.6 and 334.6 ± 2.9 Ma, respectively. In addition, samples show common age populations at ca. 490-630 and ca. 910-1010 Ma. Observations agree with the Carboniferous to early Permian U-Pb ages previously obtained in orthogneisses levels which are situated in the upper part of the complex. Combination of the minimum age of deposition deducible from the orthogneisses studies and the maximum ages of deposition obtained from the detrital zircons of this work, allow establishing the deposition of de studied lithological succession comprised between ca. 282 and 349 Ma or a shorter period.

  18. Sm-Nd and U-Pb isotopic constraints for crustal evolution during Late Neoproterozic from rocks of the Schirmacher Oasis, East Antarctica: geodynamic development coeval with the East African Orogeny

    USGS Publications Warehouse

    Ravikant, V.; Laux, J.H.; Pimentel, M.M.

    2007-01-01

    Recent post-750 Ma continental reconstructions constrain models for East African Orogeny formation and also the scattered remnants of ~640 Ma granulites, whose genesis is controversial. One such Neoproterozoic granulite belt is the Schirmacher Oasis in East Antarctica, isolated from the distinctly younger Pan-African orogen to the south in the central Droning Maud Land. To ascertain the duration of granulite-facies events in these remnants, garnet Sm-Nd and monazite and titanite U-Pb IDTIMS geochronology was carried out on a range of metamorphic rocks. Garnet formation ages from a websterite enclave and gabbro were 660±48 Ma and 587±9 Ma respectively, and those from Stype granites were 598±4 Ma and 577±4 Ma. Monazites from metapelite and metaquartzite yielded lower intercept UPb ages of 629±3 Ma and 639±5 Ma, respectively. U-Pb titanite age from calcsilicate gneiss was 580±5 Ma. These indicate peak metamorphism to have occurred between 640 and 630 Ma, followed by near isobaric cooling to ~580 Ma. Though an origin as an exotic terrane from the East African Orogen cannot be discounted, from the present data there is a greater likelihood that Mesoproterozoic microplate collision between Maud orogen and a northerly Lurio-Nampula block resulted in formation of these granulite belt(s).

  19. Lifetime of an ocean island volcano feeder zone: constraints from U-Pb dating on coexisting zircon and baddeleyite, and 40/39Ar age determinations, Fuerteventura, Canary Islands

    USGS Publications Warehouse

    Allibon, James; Ovtcharova, Maria; Bussy, Francois; Cosca, Michael; Schaltegger, Urs; Bussien, Denise; Lewin, Eric

    2011-01-01

    High-precision isotope dilution - thermal ionization mass spectrometry (ID-TIMS) U-Pb zircon and baddeleyite ages from the PX1 vertically layered mafic intrusion Fuerteventura, Canary Islands, indicate initiation of magma crystallization at 22.10 ± 0.07 Ma. The magmatic activity lasted a minimum of 0.52 Ma. 40Ar/39Ar amphibole dating yielded ages from 21.9 ± 0.6 to 21.8 ± 0.3, identical within errors to the U-Pb ages, despite the expected 1% theoretical bias between 40Ar/39Ar and U-Pb dates. This overlap could result from (i) rapid cooling of the intrusion (i.e., less than the 0.3 to 0.6 Ma 40Ar/39Ar age uncertainties) from closure temperatures (Tc) of zircon (699-988 °C) to amphibole (500-600 °C); (ii) lead loss affecting the youngest zircons; or (iii) excess argon shifting the plateau ages towards older values. The combination of the 40Ar/39Ar and U/Pb datasets implies that the maximum amount of time PX1 intrusion took to cool below amphibole Tc is 0.8 Ma, suggesting PX1 lifetime of 520,000 to 800,000 Ma. Age disparities among coexisting baddeleyite and zircon (22.10 ± 0.07/0.08/0.15 Ma and 21.58 ± 0.15/0.16/0.31 Ma) in a gabbro sample from the pluton margin suggest complex genetic relationships between phases. Baddeleyite is found preserved in plagioclase cores and crystallized early from low silica activity magma. Zircon crystallized later in a higher silica activity environment and is found in secondary scapolite and is found close to calcite veins, in secondary scapolite that recrystallised from plagioclase. close to calcite veins. Oxygen isotope δ18O values of altered plagioclase are high (+7.7), indicating interaction with fluids derived from host-rock carbonatites. The coexistence of baddeleyite and zircon is ascribed to interaction of the PX1 gabbro with CO2-rich carbonatite-derived fluids released during contact metamorphism.

  20. Assessing the origin of old apparent ages derived by Pb stepwise leaching of vein-hosted epidote from Mount Isa, northwest Queensland, Australia

    NASA Astrophysics Data System (ADS)

    Duncan, Robert J.; Maas, Roland

    2014-12-01

    Epidote metasomatism affected large areas of tholeiitic metabasalts of the ~1,780 Ma Eastern Creek Volcanics in the Western Fold Belt of the Proterozoic Mount Isa inlier. Hydrothermal epidote generally occurs in quartz veins parallel to or boudinaged within the dominant S2 fabrics which formed during the regional metamorphic peak at ~1,570 Ma associated with the Isan orogeny. Previously published stable isotopic and halogen data suggest that the fluids responsible for epidote formation are metamorphic in origin (with an evaporitic component). Application of the Pb stepwise leaching technique to the epidote does not separate radiogenic Pb4+ and common Pb2+, generating little spread in 206Pb/204Pb (between 16.0 and 30.5). The causes for this relatively low range are twofold: There is little radiogenic Pb in the epidotes (the most radiogenic steps account for <1 % of Pb released) and both Pb2+ and uranogenic Pb4+ substitute into the same site in the epidote crystal lattice. Consequently, age regressions using the Pb stepwise leaching data give ages between 150 and 1,500 myrs older than the host rocks and over 450 myrs older than the thermal metamorphic peak. These old ages are attributed to chemical inheritance from the host metabasalts, via radiogenic Pb release by breakdown of phases such as zircon, monazite, titanomagnetite, and ilmenite during metamorphism. This idea is supported by trace element data and chrondrite-normalized rare earth element patterns that are similar to both the metabasalts and epidotes (except for a variable Eu anomaly in the latter). Relatively high fO2 during vein formation (Fe3+ dominates in the epidote crystal lattice) would allow the incorporation of Th4+ and exclusion of U6+ and would explain elevated Th/U ratios (up to 12) in epidote compared with the host metabasalts. Non-incorporation of U would explain the relatively low U/Pb ratios and non-radiogenic character of the epidote. This process may provide a source of metal for the small

  1. Zircon U-Pb age and Hf-O isotopes of felsic rocks from the Atlantis Bank, Southwest Indian Ridge

    NASA Astrophysics Data System (ADS)

    Liu, C. Z.; Zhang, W. Q.

    2017-12-01

    Hole U1473A was drilled to 790 meters below seafloor on the Atlantis Bank, an oceanic core complex in the Southwest Indian Ridge, where the upper crust has been removed by detachment faulting. The recovered core consists dominantly of olivine gabbro, with subordinate gabbro, gabbro with varying Fe-Ti oxide concentrations. Felsic veins intermittently occur throughout the whole core section. Zircons separated from twenty-four felsic samples have been conducted for U-Pb dating and O isotope analyses on the Cameca 1280 and Lu-Hf isotopes by laser ablation coupled with a MC-ICPMS. The zircons have highly variable contents of U (12-2078 ppm) and Th (5-801 ppm), yielding Th/U ratios of 0.33-0.81. They are typical oceanic zircons as defined by the trace element discrimination plots of Grimes et al. (2015). The weighted mean 206Pb/238U ages of the analyzed zircons vary from 11.29 to 12.57 Ma. Age differences between felsic veins throughout the whole core are not resolved within analytical uncertainty of the SIMS measurements. All felsic samples have similar zircon Hf isotope compositions, with initial 176Hf/177Hf ratios of 0.283126-0.283197 and ɛHf values of 12.76-15.27. Zircons from all felsic samples but one have mantle-like δ18O values of 5.14-5.50‰. Zircons from one sample show partial resorption or total recrystallization; in comparison, they have lower δ18O values of 4.81±0.21‰. Such characteristics provide clear evidence for hydrothermal alteration after magmatic intrusion.

  2. Noble Gases in Alpine Gold: U/Th-He Dating and Excesses of Radiogenic He and AR

    NASA Astrophysics Data System (ADS)

    Eugster, O.; Hofmann, B.; Krahenbuhl, U.; Neuenschwander, J.

    1992-07-01

    Gold precipitates in hydrothermal fluids along with other heavy elements, such as Ag and Pt. In order to explore the possibility of dating the formation of gold we determined the concentrations of U, Th, and their decay product ^4He, as well as the K and ^40Ar concentrations in vein-type gold and in placer gold samples. The gold-quartz veins at Brusson in the south-western alps were formed approximately 32 Ma ago during an episode of tectonic uplift (Diamond, 1990). Alpine material was deposited as sediment layers in the region of central Switzerland and placer gold is thus relatively abundant in the rivers of the Napf area. We washed placer gold from the river Grosse Fontanne in 1990 and 1991. Placer gold that had been collected from the river Kruempelgraben in 1933 and a sample of vein-type free gold grown on quartz rock from the Brusson area (Val d'Ayas) have been obtained from the Museum of Natural History in Bern. Table 1 gives the results. Most of the ^4He is released above 1050 degrees C, that is when gold melts, indicating that gold is extremely well retentive for He. From the ^4He concentration of (269 +- 20) x 10^-8 cm^3 STP/g, (0.4 +- 0.1) ppm U, and (0.9 +- 0.3) ppm Th for vein-type gold we calculate a U/Th-He age of (36 +- 8)Ma. This age agrees within errors with the proposed age of 32 Ma. The data given in Table 1 show that all placer gold samples contain excesses of radiogenic ^4He and ^40Ar relative to the concentrations expected from the U/Th and K decay, respectively, if we assume a formation age of 32 Ma. The quartz sample is depleted in ^4He but strongly enriched in radiogenic ^40Ar. The excess of ^40Ar(sub)rad is easier to explain than that of ^4He. Vein-type gold and placer gold contain quartz inclusions (Schmid, 1973). The high ^40Ar(sub)rad content of quartz (Table 1) indicates that the ^40Ar(sub)rad excess of gold originates from quartz inclusions. Excess ^4He in gold must be of radiogenic origin. Taking ^20Ne and ^36Ar as a measure for the

  3. U-Pb geochronology of zircon and polygenetic titanite from the Glastonbury Complex, Connecticut, USA: An integrated SEM, EMPA, TIMS, and SHRIMP study

    USGS Publications Warehouse

    Aleinikoff, J.N.; Wintsch, R.P.; Fanning, C.M.; Dorais, M.J.

    2002-01-01

    U-Pb ages for zircon and titanite from a granodioritic gneiss in the Glastonbury Complex, Connecticut, have been determined using both isotope dilution thermal ionization mass spectrometry (TIMS) and the sensitive high resolution ion microprobe (SHRIMP). Zircons occur in three morphologic populations: (1) equant to stubby, multifaceted, colorless, (2) prismatic, dark brown, with numerous cracks, and (3) elongate, prismatic, light tan to colorless. Cathodoluminescence (CL) imaging of the three populations shows simple concentric oscillatory zoning. The zircon TIMS age [weighted average of 207Pb/206Pb ages from Group 3 grains-450.5 ?? 1.6 Ma (MSWD=1.11)] and SHRIMP age [composite of 206Pb/238 U age data from all three groups-448.2 ?? 2.7 Ma (MSWD = 1.3)], are interpreted to suggest a relatively simple crystallization history. Titanite from the granodioritic gneiss occurs as both brown and colorless varieties. Scanning electron microscope backscatter (BSE) images of brown grains show multiple cross-cutting oscillatory zones of variable brightness and dark overgrowths. Colorless grains are unzoned or contain subtle wispy or very faint oscillatory zoning. Electron microprobe analysis (EMPA) clearly distinguishes the two populations. Brown grains contain relatively high concentrations of Fe2O3, Ce2O3 (up to ~ 1.5 wt.%), Nb2O5, and Zr. Cerium concentration is positively correlated with total REE + Y concentration, which together can exceed 3.5 wt.%. Oscillatory zoning in brown titanite is correlated with variations in REE concentrations. In contrast, colorless titanite (both as discrete grains and overgrowths on brown titanite) contains lower concentrations of Y, REE, Fe2O3, and Zr, but somewhat higher Al2O3 and Nb2O5. Uranium concentrations and Th/U discriminate between brown grains (typically 200-400 ppm U; all analyses but one have Th/U between about 0.8 and 2) and colorless grains (10-60 ppm U; Th/U of 0-0.17). In contrast to the zircon U-Pb age results, SHRIMP U-Pb

  4. Late Pleistocene granodiorite beneath Crater Lake caldera, Oregon, dated by ion microprobe

    USGS Publications Warehouse

    Bacon, C.R.; Persing, H.M.; Wooden, J.L.; Ireland, T.R.

    2000-01-01

    Variably melted granodiorite blocks ejected during the Holocene caldera-forming eruption of Mount Mazama were plucked from the walls of the climactic magma chamber ~15 km depth. Ion-microprobe U-Pb dating of zircons from two unmelted granodiorite blocks with SHRIMP RG (sensitive high-resolution ion microprobe-reverse geometry) gives a nominal 238U/206Pb age of 101+78-80 ka, or 174+89-115 ka when adjusted for an initial 230Th deficit. SHRIMP RG U-Th measurements on a subset of the zircons yield a 230Th/238U isochron age of 112 ?? 24 ka, considered to be the best estimate of the time of solidification of the pluton. These results suggest that the granodiorite is related to andesite and dacite of Mount Mazama and not to magmas of the climactic eruption. The unexposed granodiorite has an area of at least 28 km2. This young, shallow pluton was emplaced in virtually the same location where a similarly large magma body accumulated and powered violent explosive eruptions ~7700 yr ago, resulting in collapse of Crater Lake caldera.

  5. ESR and 230Th/234U dating of speleothems from Aladağlar Mountain Range (AMR) in Turkey

    NASA Astrophysics Data System (ADS)

    Ulusoy, Ülkü; Anbar, Gül; Bayarı, Serdar; Uysal, Tonguç

    2014-03-01

    Electron spin resonance (ESR) and 230Th/234U ages of speleothem samples collected from karstic caves located around 3000 m elevation in the Aladağlar Mountain Range (AMR), south-central Turkey, were determined in order to provide new insight and information regarding late Pleistocene climate. ESR ages were validated with the 230Th/234U ages of test samples. The ESR ages of 21 different layers of six speleothem samples were found to range mostly between about 59 and 4 ka, which cover the Marine Oxygen Isotope Stages (MIS) MIS 3 to MIS 1. Among all, only six layers appear to have deposited during MIS 8 and 5. Most of the samples dated were deposited during the late glacial stage (MIS 2). It appears that a cooler climate with a perennial and steady recharge was more conducive to speleothem development rather than a warmer climate with seasonal recharge in the AMR during the late Quaternary. This argument supports previous findings that suggest a two -fold increase in last glacial maximum mean precipitation in Turkey with respect to the present value.

  6. Systematic variation of rare earths in monazite

    USGS Publications Warehouse

    Murata, K.J.; Rose, H.J.; Carron, M.K.

    1953-01-01

    Ten monazites from widely scattered localities have been analyzed for La, Ce, Pr, Nd, Sm, Gd, Y and Th by means of a combined chemical and emission spectrographic method. The analytical results, calculated to atomic percent of total rare earths (thorium excluded), show a considerable variation in the proportions of every element except praseodymium, which is relatively constant. The general variation trends of the elements may be calculated by assuming that the monazites represent different stages in a fractional precipitation process, and by assuming that there is a gradational increase in the precipitability of rare earth elements with decreasing ionic radius. Fractional precipitation brings about an increase in lanthanum and cerium, little change in praseodymium, and a decrease in neodymium, samarium, gadolinium, and yttrium. Deviations from the calculated lines of variation consist of a simultaneous, abnormal increase or decrease in the proportions of cerium, praseodymium, and neodymium with antipathetic decrease or increase in the proportions of the other elements. These deviations are ascribed to abnormally high or low temperatures that affect the precipitability of the central trio of elements (Ce, Pr, Nd) relatively more than that of the other elements. The following semiquantitative rules have been found useful in describing the composition of rare earths from monazite: 1. 1. The sum of lanthanum and neodymium is very nearly a constant at 42 ?? 2 atomic percent. 2. 2. Praseodymium is very nearly constant at 5 ?? 1 atomic percent. 3. 3. The sum of Ce, Sm, Gd, and Y is very nearly a constant at 53 ?? 3 atomic percent. No correlation could be established between the content of Th and that of any of the rare earth elements. ?? 1953.

  7. Textural and U-Pb systematics (CA-TIMS) of stepwise leaching in zircon from granophyres in the Archean Stillwater Complex

    NASA Astrophysics Data System (ADS)

    Wall, C. J.; Scoates, J. S.; Friedman, R. M.; Meurer, W. P.

    2011-12-01

    The chemical abrasion-TIMS method or CA-TIMS uses a high-temperature annealing treatment to remove the effects of Pb-loss from radiation damaged parts of the zircon lattice and allows for highly precise and accurate U-Pb dating [1]. Zircon with high U-Th concentrations can be strongly metamict and it is not yet clear how effective the chemical abrasion treatment is when applied to these types of grains. In this study, we evaluate the link between the textural response and U-Pb systematics of zircon during chemical leaching for a granophyric rock from the Archean Stillwater Complex in Montana. The sample was selected based on the high abundance of zircon and the high degree of metamictization of the grains. Untreated and leached zircon grains were analyzed by scanning electron microscopy (SEM) and isotope dilution thermal ionization mass spectrometry (ID-TIMS). In thin section, zircon grains are euhedral in morphology and tend to be associated with amphibole-rich zones. Under the SEM, zircon grains typically have two distinct zones, a Ca-rich amorphous zone in the core and a more intact outer shell. Five acid-leaching steps were carried out on grains with each step increasing in temperature and acid strength until the zircon residue completely dissolved (starting at a 50% strength HF/HNO3 mixture at 100°C for 4 hours and finishing at full strength acid at 170°C for 4 hours). SEM imaging was conducted on grains after each step with a noticeable change in the morphology of the grains. As the leaching progressed, the acid leach created large pathways through the crystal lattice until only grain fragments remained, in some cases even boring large holes into the centre of the zircon grain. The acid preferentially dissolved the more soluble Ca-rich zones leaving behind fragile zircon "shells". U-Pb results of untreated grains are highly discordant (37-80%) and yield a chord with an upper intercept age of 1981 ± 140 Ma, whereas leached grains are slightly less

  8. Neodymium Isotopic Compositions of the Titanite Reference Materials Used in U-Pb Geochronology

    NASA Astrophysics Data System (ADS)

    Ma, Q.; Yang, Y.; Zhao, Z.

    2017-12-01

    Titanite (CaTiSiO5) is a widespread mineral and preferentially incorporates considerable uranium and significant light rare earth elements (LREEs) in its structure. Geochronology based upon U-Pb and Pb-Pb analyses of titanite has proven to be useful for understanding the P-T-t evolution of many igneous, metamorphic and hydrothermally altered rock samples (Scott and St-Onge, 1995). In the meantime, Sm-Nd isotopic composition in single titanite can be used to obtain initial Nd isotope composition at the time of titanite crystallization when combined with its U-Pb age, making titanite the most versatile mineral for dating metamorphism and tracing hydrothermal source (Amelin et al., 2009). The widely utilized in situ analyses by SIMS and LA-(MC)-ICP-MS have emphasized the significance for uniform and homogeneous reference materials for external correction (Liu et al., 2012, Sun et al., 2012, Yang et al., 2014). Here, we present U-Pb ages and Sm-Nd isotope analyses of twelve natural titanite crystals (12YQ82, T004, Ontario, BLR-1, OLT1, Khan, Qinghu, TLS-36, NW-IOA, C253, Pakistan and MKED1) acquired by Agilent 7500a Q-ICP-MS and Neptune MC-ICP-MS, respectively, combined a 193 nm ArF excimer laser ablation system. For U-Pb dating, elemental fractionation and instrumental drift were externally corrected using MKED1 titanite standard, showing results of U-Pb analyses all within error of those recommended values. With respect to Sm-Nd isotopes, we employed the interference-free 147Sm/149Sm to deduct 144Sm isobaric interference on 144Nd, and the fractionation between 147Sm and 144Nd was calibrated using BLR-1 titanite, which is proved homogenous in Sm-Nd isotopic system. The obtained Sm-Nd isotopic compositions for natural titanite samples are all consistent with those values determined by isotope dilution (ID) MC-ICP-MS, demonstrating the precision and accuracy currently available for in situ Sm-Nd analyses. Our results demonstrate that BLR-1, OLT1 and Ontario titanites

  9. Testing the age calibration of the Newark-Hartford APTS by magnetostratigraphic correlation of U-Pb zircon-dated tuffaceous beds in the Late Traissic Chinle Formation in core PFNP-1A from the Petrified Forest National Park (Arizona, USA)

    NASA Astrophysics Data System (ADS)

    Kent, D. V.; Olsen, P. E.; Mundil, R.; Lepre, C. J.

    2017-12-01

    The Newark-Hartford APTS extends over 27 Myr according to cycle stratigraphy of the Norian and Rhaetian of the Late Triassic and Hettangian and Sinemurian of the Early Jurassic and an additional 6 Myr by extrapolation into the Carnian; the entire sequence is anchored by U-Pb zircon dating of CAMP activity that provides a calibration date of 201.6 Ma for Chron E23r just below the end-Triassic extinction and the earliest CAMP basalts in the Newark basin (Blackburn+2013 Science; Kent+2017 ESR). The developing APTS has been successfully used for global correlations in marine and non-marine facies but there have been ongoing suggestions that millions of years of Rhaetian time are missing in a cryptic unconformity that supposedly occurs just above E23r in the Newark Supergroup basins. Testing the continuity of the APTS by magnetostratigraphic correlation of U-Pb zircon-dated tuffaceous beds in the Chinle Formation was a prime scientific objective for core PFNP-1A. Paleomagnetic results were obtained using stepwise thermal demagnetization to 680°C from >150 samples of finer-grained red lithologies from the upper 250 m of the cored section of the Chinle (upper Sonsela, Petrified Forest including the Black Forest Bed, and lower Owl Rock Members). Characteristic directions isolated in 2/3 of the samples showed antipodal directions that were shallow with respect to reference directions (flattening factor 0.5), consistent with early acquisition of remanence. Seven polarity magnetozones produce a distinctive pattern correlated to Chrons E17r to E14r of the APTS. The Black Forest Bed at 209.93±0.26 Ma (Ramezani+2011 GSAB), confirmed by our new U-Pb dates from core PFNP-1A, occurs in a reverse polarity magnetozone correlated to E16r (209.95-210.25 Ma), which puts the U-Pb zircon date(s) in excellent agreement with the inferred APTS age. Rather than a 'missing Rhaetian', the apparent regional differences in appearances and disappearances of palynoflora, conchostracans, and other

  10. First 226Ra- 210Pb dating of a young speleothem

    NASA Astrophysics Data System (ADS)

    Condomines, M.; Rihs, S.

    2006-10-01

    Whereas the method based on the decrease of excess 210Pb has already been used to date young (< 120 yr) speleothems (e.g. [M. Baskaran, T. M. Iliffe, Age determination of recent cave deposits using excess 210Pb — A new technique, Geophys. Res. Lett. 20 (1993) 603-606.]), this paper presents the first dating of a speleothem through the 226Ra- 210Pb method. Dating of a young hydrothermal stalagmite from the Mt Cornadore cave (St Nectaire, French Massif Central) was made possible by the high 226Ra and negligible 210Pb contents of such carbonates, formed by precipitation from CO 2-rich thermal waters. ( 210Pb/ 226Ra) ratios regularly increase with depth along the axis of the 33 cm long stalagmite. The age-depth relationship can be interpreted by two main phases of growth, with high but variable axial growth rates of 5.3 mm/yr from 1909 to 1967, and 2.6 mm/yr from 1967 to 1989 (alternatively, the oldest phase can be subdivided in three episodes with growth rates varying from 2 to 7 mm/yr). Thin-section examination reveals the presence of numerous laminae, indicating infra-annual variations. We suggest that this fine layered structure might reflect short-term fluctuations in drip waters, possibly induced by near-surface mixing between thermal and ground waters, and ultimately linked to the pluviometry. A detailed examination of this laminated structure combined with 226Ra- 210Pb dating could thus provide a high-resolution record of local paleohydrological fluctuations.

  11. Generation and Evolution of Quaternary Magmas Beneath Tengchong: Sr-Nd-Pb-Hf Isotope and Zircon U-series Age Constraints

    NASA Astrophysics Data System (ADS)

    Zou, H.; Ma, M.; Fan, Q.; Xu, B.; Li, S. Q.; Zhao, Y.; King, D. T., Jr.

    2017-12-01

    The Tengchong volcanic field on the southeastern margin of the Tibetan Plateau represents rare Quaternary volcanic eruptions on the plateau. The Quaternary Tengchong volcanic field formed high-potassium calc-alkaline volcanic rocks that include trachybasalts, basaltic trachyandesites, trachyandesites, and dacites. Herein, we present comprehensive Nd-Sr-Pb-Hf isotopic and elemental data for trachybasalts, basaltic trachyandesites, and trachyandesites from four young Tengchong volcanoes at Maanshan, Dayingshan, Heikongshan, and Laoguipo, in order to understand their magma genesis and evolution. Nd-Sr-Pb-Hf isotopes for the primitive Tengchong magma (trachybasalts with SiO2 <52.5 wt. % and MgO >5.5% wt. %) reflect a heterogeneous enriched mantle source. High Th/U, Th/Ta, and Rb/Nb ratios and Nd-Sr-Pb-Hf isotope characteristics of the primitive magmas suggest that the enriched mantle beneath Tengchong formed as a result of subduction of clay-rich sediments, which probably came from the Indian continental plate. Partial melting of the enriched mantle was generated by deep continental subduction coupled with recent regional extension in the Tengchong area. With regard to the evolved magmas (basaltic trachyandesites and trachyandesites), good correlations between SiO2 content and the ratios 87Sr/86Sr, 143Nd/144Nd, 206Pb/204Pb, and 177Hf/176Hf strongly suggest that the combined assimilation and fractional crystallization (AFC) was an important process during magma evolution to form these basaltic trachyandesites and trachyandesites. Uranium-series zircon dating on these evolved lavas from Tengchong is used to constrain their magma evolution and residence timescales.

  12. Interactions of phosphate solubilising microorganisms with natural rare-earth phosphate minerals: a study utilizing Western Australian monazite.

    PubMed

    Corbett, Melissa K; Eksteen, Jacques J; Niu, Xi-Zhi; Croue, Jean-Philippe; Watkin, Elizabeth L J

    2017-06-01

    Many microbial species are capable of solubilising insoluble forms of phosphate and are used in agriculture to improve plant growth. In this study, we apply the use of known phosphate solubilising microbes (PSM) to the release of rare-earth elements (REE) from the rare-earth phosphate mineral, monazite. Two sources of monazite were used, a weathered monazite and mineral sand monazite, both from Western Australia. When incubated with PSM, the REE were preferentially released into the leachate. Penicillum sp. released a total concentration of 12.32 mg L -1 rare-earth elements (Ce, La, Nd, and Pr) from the weathered monazite after 192 h with little release of thorium and iron into solution. However, cultivation on the mineral sands monazite resulted in the preferential release of Fe and Th. Analysis of the leachate detected the production of numerous low-molecular weight organic acids. Gluconic acid was produced by all microorganisms; however, other organic acids produced differed between microbes and the monazite source provided. Abiotic leaching with equivalent combinations of organic acids resulted in the lower release of REE implying that other microbial processes are playing a role in solubilisation of the monazite ore. This study demonstrates that microbial solubilisation of monazite is promising; however, the extent of the reaction is highly dependent on the monazite matrix structure and elemental composition.

  13. New Robust Reference Materials for In Situ Single Grain Rutile U-Pb Geochronology and Method Refinements for Detrital Rutile Analysis by LA-MC-ICP-MS

    NASA Astrophysics Data System (ADS)

    Parrish, R. R.; Bracciali, L.; Condon, D. J.; Horstwood, M. S.; Najman, Y.

    2012-12-01

    While rutile (TiO2) occurs in the heavy mineral suite of detrital sediments and originates mainly in medium- to high-grade metamorphic and some igneous rocks, there are very few applications of U-Pb dating of rutile to provenance studies; this is due to an overreliance on zircon, low U content of rutile limiting measurement quality by in situ methods, a higher proportion of common Pb relative to zircon, and a lack of widely available good quality reference materials. We have addressed these issues and characterized two ~ 1.8 Ga rutile reference materials by SEM, trace elements, U-Pb ID-TIMS, and intra-grain and inter-grain U-Pb LA-MC-ICP-MS analysis using mixed faraday and multiple ion counting detectors with high sensitivity. We have assessed U-Pb discordance and in situ variations in relative common Pb and age and their bearing on the quality of the reference materials for in situ U-Pb dating. The rutiles (Sugluk-4 and PCA-S207) come from granulite facies belts of the Canadian Shield, namely the northern Cape Smith Belt of Quebec and the Snowbird Tectonic Zone (Sasatchewan). The ID-TIMS data are slightly discordant due to variable common Pb and limited Pb loss; the variation in 6 single grains of Sugluk-4, that we use as the primary reference material, is <1% in 206Pb/238U, and <2% for 207Pb/206Pb (95 % conf.); after common Pb correction these variations are <1%. The measured variations are smaller than in existing reference materials (i.e. R10) in current use. LA-ICP-MC-MS data (n ~ 500 for each) have a reproducibility of 206Pb/238U and 207Pb/206Pb of ~2-4% (at the 2S level), which is only modestly worse than long-term data for multiple zircon standards, this being due to the real variation in measured values arising from limited Pb loss, age variation, and common Pb variability [1]. We have applied our refined method to the provenance of rutile from drainages from British Columbia, Bhutan, and the Brahmaputra River of NE India (predominant rutile ages ~ 50, 15

  14. U-Th-Pb, Rb-Sr, and Sm-Nd isotopic systematics of lunar troctolitic cumulate 76535 - Implications on the age and origin of this early lunar, deep-seated cumulate

    NASA Technical Reports Server (NTRS)

    Premo, Wayne R.; Tatsumoto, M.

    1992-01-01

    The U-Th-Pb, Rb-Sr, and Sm-Nd isotopic systematics of four lightly leached residues of pristine, high-Mg, troctolitic cumulate 76535 were analyzed in order to determine their ages and magma sources. The data indicate that the cumulate was in isotopic equilibrium with a fluid or magma characterized by a high U-238/Pb-204 (mu) value of 600 at 4.236 Ga. Two and three stage Pb evolution calculations define even greater source mu values of about 1000, assuming low lunar initial mu values between 5 and 40 prior to about 4.43 Ga. These results are similar to mu values for KREEP sources and are also consistent with values from 78235, suggesting that at least some high-Mg suite rocks were derived from magma sources with high-mu values similar to KREEP, and support that idea that these rocks postdate primary lunar differentiation and formation of ferroan anorthosites.

  15. Dating of barite and anhydrite in sea-floor hydrothermal deposits in the Okinawa Trough

    NASA Astrophysics Data System (ADS)

    Taisei, F.; Toyoda, S.; Uchida, A.; Ishibashi, J. I.; Totsuka, S.; Shimada, K.; Nakai, S.

    2016-12-01

    Dating of submarine hydrothermal activities has been an important issue in the aspect of the ore formation (Urabe, 1995) and biological systems sustained by the chemical species arising from hydrothermal activities (Macdonald et al., 1980). For this purpose, dating methods using radioactive disequilibrium such as U-Th method (e.g. You and Bickle, 1998) for sulfide, 226Ra-210Pb and 228Ra-228Th (e.g. Noguchi et al., 2011), Ra/Ba, and ESR (Electron Spin Resonance) methods for barite (Okumura et al., 2010) have been employed. In this study, firstly, we will report the first successful dating results on anhydrite using 226Ra-210Pb and 228Ra-228Th methods. The anhydrite samples were taken from the Daiyon-Yonaguni knoll field and the Hatoma knoll field and the Iheya North Knoll field of the Okinawa Trough by research cruises operated by JAMSTEC. The anhydrite crystals were physically scratched out of the samples. 226Ra, 228Ra and daughter nuclei were measured in the same samples for the ESR method by the low background gamma ray spectrometry. From the activity ratios, disequilibrium ages were obtained to be about 7.3 years by 226Ra-210Pb method, and to be 0.6-2.5 years by 228Ra-228Th method. Secondly, the ESR ages of barite taken from hydrothermal areas in the Okinawa trough range from 4.1 to 16000 years, filling the age gap of the maximum age, 150 years, of 226Ra-210Pb method and the minimum age, several thousand years of U-Th method, being the most appropriate age range to discuss the evolution of the hydrothermal systems. Interestingly, the 226Ra-210Pb and 228Ra-228Th ages for the same samples are the same or younger than the ESR ages. As for the latter samples, the reason has already been discussed (Uchida et al., 2015) as the deposits had been formed by two or more hydrothermal events. In the present paper, the disequilibrium and ESR ages will be simulated with these multiple hydrothermal events so that the differences in the ages are explained.

  16. U-Th dating of calcite corals from the Gulf of Aqaba

    NASA Astrophysics Data System (ADS)

    Yehudai, Maayan; Lazar, Boaz; Bar, Neta; Kiro, Yael; Agnon, Amotz; Shaked, Yonathan; Stein, Mordechai

    2017-02-01

    Most of the fossil corals in the elevated reef terraces along the Gulf of Aqaba (GOA) were extensively altered to calcite. This observation indicates extensive interaction with freshwater, possibly when the terraces passed through a coastal aquifer that existed along the shores of the GOA, implying a wetter climate during the time of recrystallization from aragonite to calcite. Thus, dating of the recrystallization events should yield the timing of past wetter conditions in the current hyper-arid area of the GOA. In the present study, 18 aragonite and calcite corals were collected from several elevated coral reef terraces off the coast, south of the city of Aqaba. While aragonite corals were dated with the conventional closed system age equation (assuming zero initial Th), the dating of the calcite corals required the development of adequate equations to allow the calculation of both the initial formation age of the aragonite corals and the time of recrystallization to calcite. The two age calculations were based on the assumptions that each reef terrace went through a single and rapid recrystallization event and that the pristine aragonite corals were characterized by a rather uniform initial U concentration, typical for pristine modern corals. Two recrystallization events were identified at 104 ± 6 ka and 124 ± 8 ka. The ages coincide with the timing of sapropel events S4 and S5, respectively, when the African monsoon induced enhanced wetness in the desert area. Considering the age uncertainties, the times of formation of the two major reef terraces are estimated to be ∼124 ka (reef terrace R2) and ∼130 ka (reef terrace R3), matching the peaks in the global sea level during the last interglacial MIS 5e stage. Apparently, sea level of the GOA did not fluctuate a lot during the period between ∼130 ka and ∼104 ka and remained close to the Marine Isotopic stage (MIS) 5e highstand. The availability of freshwater (during the sapropel periods) and limited sea

  17. The importance of intracrustal magmatic heat advection in large hot orogens: the Ediacaran-Cambrian ultrahigh-temperature domain of southern Madagascar.

    NASA Astrophysics Data System (ADS)

    Holder, R. M.; Hacker, B. R.

    2016-12-01

    Ultrahigh temperature metamorphism (UHTM) represents the thermal extremes of crustal metamorphism and is integral to our understanding of orogenic systems and continental evolution. The relative importance of advective and radiogenic heating in UHTM is often unclear, however, due to retrogression of UHT mineral assemblages and lack of robust chronology. We report the first observation of osumilite, pseudosections, feldspar thermometry, and monazite LASS U-Th-Pb chronology from the Ediacaran-Cambrian Anosyen domain of southern Madagascar to evaluate P-T-time paths and assess the relative importance of advective and radiogenic heating. Pseudosections of an osumilite-bearing assemblage, a garnet-orthopyroxene gneiss, and a garnet-spinel leucogneiss indicate peak conditions of 930-1010 C, 4-6 kbar; 900-950 C, 6-7 kbar; and 970-1000 C, 4.5-5.5 kbar, respectively. Feldspar thermometry indicates T > 915 ± 30 C. These conditions were reached along a low-P prograde path, as implied by cordierite and sillimanite inclusions in garnet. Monazite and zircon U/Th-Pb dating indicates that prograde metamorphism began 625 Ma and lasted 60 Myr. The timing of peak metamorphism is constrained to a 16 ± 2.5 Myr period between 566 ± 2 and 550 ± 1.5 Ma, by monazite inclusions in pseudomorphs after osumilite and monazite from a leucosome in the same outcrop. Peak T was achieved immediately following emplacement of voluminous charnockites (emplaced 1000-1100 C) and related magmas of the Anosyen Batholith. Crystallization of pegmatite dikes, leucosomes, and smaller plutons during cooling lasted from 550 to 510 Ma. This broad thermal history is also recorded by metamorphic monazite Eu/Eu*, which indicate progressive melt generation and extraction prior to 550 Ma followed by melt accumulation and crystallization after 550 Ma. Although the duration of prograde metamorphism is consistent with radiogenic heating models of large hot orogens, peak T was 100-200 C higher in southern Madagascar

  18. U-Pb isotope systematics and age of uranium mineralization, Midnite mine, Washington.

    USGS Publications Warehouse

    Ludwig, K. R.; Nash, J.T.; Naeser, C.W.

    1981-01-01

    Uranium ores at the Midnite mine, near Spokane, Washington, occur in phyllites and calcsilicates of the Proterozoic Togo Formation, near the margins of an anomalously uraniferous, porphyritic quartz monzonite of Late Cretaceous age. The present geometry of the ore zones is tabular, with the thickest zones above depressions in the pluton-country rock contact. Analyses of high-grade ores from the mine define a 207 Pb/ 204 Pb- 235 U/ 204 Pb isochron indicating an age of mineralization of 51.0 + or - 0.5 m.y. This age coincides with a time of regional volcanic activity (Sanpoil Volcanics), shallow intrusive activity, erosion, and faulting. U-Th-Pb isotopic ages of zircons from the porphyritic quartz monzonite in the mine indicate an age of about 75 m.y., hence the present orebodies were formed about 24 m.y. after its intrusion. The 51-m.y. time of mineralization probably represents a period of mobilization and redeposition of uranium by supergene ground waters, perhaps aided by mild heating and ground preparation and preserved by a capping of newly accumulated, impermeable volcanic rocks. It seems most likely that the initial concentration of uranium occurred about 75 m.y. ago, probably from relatively mild hydrothermal fluids in the contact-metamorphic aureole of the U-rich porphyritic quartz monzonite.Pitchblende, coffinitc, pyrite, marcasite, and hisingerite are the most common minerals in the uranium-bearing veinlets, with minor sphalerite and chalcopyrite. Coffinitc with associated marcasite is paragenetically later than pitchblende, though textural and isotopic evidence suggests no large difference in the times of pitchblende and colfinite formation.The U-Pb isotope systematics of total ores and of pitchblende-coffinite and pyrite-marcasite separates show that whereas open system behavior for U and Pb is essentially negligible for large (200-500 g) ore samples, Pb migration has occurred on a scale of 1 to 10 mm (out of pitchblende and coffinite and into pyrite

  19. Fingerprinting the K/T impact site and determining the time of impact by U-Pb dating of single shocked zircons from distal ejecta

    NASA Technical Reports Server (NTRS)

    Krogh, T. E.; Kamo, S. L.; Bohor, B. F.

    1993-01-01

    U-Pb isotopic dating of single 1 - 3 micrograms zircons from K/T distal ejecta from a site in the Raton Basin, Colorado provides a powerful new tool with which to determine both the time of the impact event and the age of the basement at the impact site. Data for the least shocked zircons are slightly displaced from the 544 +/- 5 Ma primary age for a component of the target site, while those for highly shocked and granular grains are strongly displaced towards the time of impact at 65.5 +/- 3.0 Ma. Such shocked and granular zircons have never been reported from any source, including explosive volcanic rocks. Zircon is refractory and has one of the highest thermal blocking temperatures; hence, it can record both shock features and primary and secondary ages without modification by post-crystallization processes. Unlike shocked quartz, which can come from almost anywhere on the Earth's crust, shocked zircons can be shown to come from a specific site because basement ages vary on the scale of meters to kilometers. With U-Pb zircon dating, it is now possible to correlate ejecta layers derived from the same target site, test the single versus multiple impact hypothesis, and identify the target source of impact ejecta. The ages obtained in this study indicate that the Manson impact site, Iowa, which has basement rocks that are mid-Proterozoic in age, cannot be the source of K/T distal ejecta. The K/T distal ejecta probably originated from a single impact site because most grains have the same primary age.

  20. TEMORA 1: A new zircon standard for Phanerozoic U-Pb geochronology

    USGS Publications Warehouse

    Black, L.P.; Kamo, S.L.; Allen, C.M.; Aleinikoff, J.N.; Davis, D.W.; Korsch, R.J.; Foudoulis, C.

    2003-01-01

    The role of the standard is critical to the derivation of reliable U-Pb zircon ages by micro-beam analysis. For maximum reliability, it is critically important that the utilised standard be homogeneous at all scales of analysis. It is equally important that the standard has been precisely and accurately dated by an independent technique. This study reports the emergence of a new zircon standard that meets those criteria, as demonstrated by Sensitive High Resolution Ion MicroProbe (SHRIMP), isotope dilution thermal ionisation mass-spectrometry (IDTIMS) and excimer laser ablation- inductively coupled plasma-mass-spectrometry (ELA-ICP-MS) documentation. The TEMORA 1 zircon standard derives from the Middledale Gabbroic Diorite, a high-level mafic stock within the Palaeozoic Lachlan Orogen of eastern Australia. Its 206Pb/238U IDTIMS age has been determined to be 416.75??0.24 Ma (95% confidence limits), based on measurement errors alone. Spike-calibration uncertainty limits the accuracy to 416.8??1.1 Ma for U-Pb intercomparisons between different laboratories that do not use a common spike. ?? 2003 Published by Elsevier Science B.V. All rights reserved.

  1. U-Pb ages of uraniferous opals and implications for the history of beryllium, fluorine, and uranium mineralization at Spor Mountain, Utah

    USGS Publications Warehouse

    Ludwig, K. R.; Lindsey, D.A.; Zielinski, R.A.; Simmons, K.R.

    1980-01-01

    The U-Pb isotope systematics of uraniferous opals from Spor Mountain, Utah, were investigated to determine the suitability of such material for geochronologic purposes, and to estimate the timing of uranium and associated beryllium and fluorine mineralization. The results indicate that uraniferous opals can approximate a closed system for uranium and uranium daughters, so that dating samples as young as ???1 m.y. should be possible. In addition, the expected lack of initial 230Th and 231Pa in opals permits valuable information on the initial 234U/238U to be obtained on suitable samples of ???10 m.y. age. The oldest 207Pb/235U apparent age observed, 20.8 ?? 1 m.y., was that of the opal-fluorite core of a nodule from a beryllium deposit in the Spor Mountain Formation. This age is indistinguishable from that of fission-track and K-Ar ages from the host rhyolite, and links the mineralization to the first episode of alkali rhyolite magmatism and related hydrothermal activity at Spor Mountain. Successively younger ages of 13 m.y. and 8-9 m.y. on concentric outer zones of the same nodule indicate that opal formed either episodically or continuously for over 10 m.y. Several samples of both fracture-filling and massive-nodule opal associated with beryllium deposits gave 207Pb/235U apparent ages of 13-16 m.y., which may reflect a restricted period of mineralization or perhaps an averaging of 21- and <13-m.y. periods of opal growth. Several samples of fracture-filling opal in volcanic rocks as young as 6 m.y. gave 207Pb/235U ages of 3.4-4.8 m.y. These ages may reflect hot-spring activity after the last major eruption of alkali rhyolite. ?? 1980.

  2. Rates of carbonate soil evolution from carbon, U- and Th-series isotope studies: Example of the Astian sands (SE France)

    NASA Astrophysics Data System (ADS)

    Barbecot, Florent; Ghaleb, Bassam; Hillaire-Marcel, Claude

    2015-04-01

    In carbonate rich soils, C-isotopes (14C, 13C) and carbonate mass budget may inform on centennial to millennial time scale dissolution/precipitation processes and weathering rates, whereas disequilibria between in the U- and Th-decay series provide tools to document high- (228Ra-228Th-210Pb) to low- (234U, 230Th, 231Pa, 226Ra) geochemical processes rate, covering annual to ~ 1Ma time scales, governing both carbonate and silicate soil fractions. Because lithology constitutes a boundary condition, we intend to illustrate the behavior of such isotopes in soils developed over Astian sands formation (up to ~ 30% carbonate) from the Béziers area (SE France). A >20 m thick unsaturated zone was sampled firstly along a naturally exposed section, then in a cored sequence. Geochemical and mineralogical analyses, including stable isotopes and 14C-measurements, were complemented with 228U, 234U, 230Th, 226Ra, 210Pb and 228Th, 232Th measurements. Whereas the upper 7 m depict geochemical and isotopic features forced by dissolution/precipitation processes leading to variable radioactive disequilibria, but overall deficits in more soluble elements of the decay series, the lower part of the sequence shows strong excesses in 234U and 230Th over parent isotopes (i.e., 238U and 234U, respectively). These features might have been interpreted as the result of successive phases of U-loss and gains. However, 226Ra and 230Th are in near-equilibrium, thus leading to conclude at a more likely slow enrichment process in both 234Th(234U) and 230Th, which we link to dissolved U-decay during groundwater recharge events. In addition, 210Pb deficits (vs parent 226Ra) are observed down to 12 m along the natural outcropping section and below the top-soil 210Pb-excess in the cored sequence, due to gaseous 222Rn-diffusion over the cliff outcrop. Based on C-isotope and chemical analysis, reaction rates at 14C-time scale are distinct from those estimates at the short- or long-lived U-series isotopes

  3. Seasonal variations on the residence times and partitioning of short-lived radionuclides (234Th, 7Be and 210Pb) and depositional fluxes of 7Be and 210Pb in Tampa Bay, Florida

    USGS Publications Warehouse

    Baskaran, M.; Swarzenski, P.W.

    2007-01-01

    Historically, Tampa Bay has been impacted heavily by a wide range of anthropogenic perturbations that may include, agricultural-, shipping-, phosphate mining/distribution-related activities, as well as a burgeoning coastal population. Due to the presence of U-rich underlying sediments, elevated activities of U- and Th-series daughter products may be naturally released into this system. This region is also known for summer thunderstorms and corresponding increases in precipitation and surface water runoff. Only limited work has been conducted on the partitioning of particle-reactive radionuclides (such as 7Be, 210Pb, and 234Th) in such a dynamic coastal system. We investigated both the removal residence time and partitioning of these radionuclides between filter-retained particulate matter (≥ 0.5 μm) and the filtrate ( Our results indicate that the partitioning of 7Be, 210Pb, and 234Th between filtrate and filter-retained phase is controlled foremost by enhanced bottom resuspension events during summer thunderstorms. As a consequence, no significant relationship exists between the distribution coefficients (Kd values) of these isotopes and the concentration of suspended particulate matter (SPM). Relatively faster recycling rates of atmospheric water vapor derived from the ocean results in lower atmospheric depositional fluxes of 210Pb to the study site than predicted. The relationship between 7Be and 210Pb in bulk (wet + dry) deposition is compared to their respective water column activities. The residence times of particulate and dissolved 234Th, 7Be and 210Pb, as well the distribution coefficients of these radionuclides, are then compared to values reported in other coastal systems.

  4. Molybdenite Re-Os, zircon U-Pb dating and Lu-Hf isotopic analysis of the Xiaerchulu Au deposit, Inner Mongolia Province, China

    NASA Astrophysics Data System (ADS)

    Wang, Jia-xin; Nie, Feng-Jun; Zhang, Xue-ni; Jiang, Si-hong

    2016-09-01

    The Xiaerchulu Au deposit, located in the Southern Orogenic Belt (SOB) of Western Inner Mongolia (WIM), is hosted in an Early Permian (271-261 Ma) volcanic-plutonic sequence. Mineralization took place in silicified biotite granites or along the contact zone between the Neoproterozoic Baiyinbaolage Group and the biotite granite. In order to constrain the timing of the Xiaerchulu mineralization and discuss the petrogenesis of the hosting granites, molybdenite Re-Os, and zircon U-Pb and, Lu-Hf, and REE, geochemical, and Sr-Nd isotopic studies were completed in this study. We measured Re-Os isotopes of six molybdenite samples from the main ore body, which yielded a weighted average model age of 261.7 ± 1.5 Ma with a MSWD of 0.55, indicating that the time of mineralization was at ca. 262 Ma. High precision U-Pb dating for the studied granites yields Permian 206Pb/238U ages ranging from 271 to 269 Ma. These age data confirm that both the intrusion and related mineralization were initiated in Early Permian period. These granites are strongly peraluminous with A/CNK = 1.11-1.12, high SiO2-K2O contents, as well as containing biotite and muscovite, indicating a petrogenesis of typical S-type granites, the above consideration is also consistent with the result of discrimination diagrams. The Re contents of molybdenite, εNd(t), and zircon εHf(t), as well as the 176Hf/177Hf values of the granites, fall into the ranges from 1.153 to 2.740 μg/g, - 11.1 to - 9.3, - 8.8 to - 0.9, and 0.282358 to 0.282688, respectively. All of this evidence suggests that the metals were derived from a predominantly crustal source, the granites originated from crust in an extensional setting, and the rejuvenation of the continent may have play an important role during the ore-forming processes of the Early Permian epoch.

  5. 210Pb sediment dating in coastal transition zones: tropical saltmarshes.

    NASA Astrophysics Data System (ADS)

    Ruiz-Fernandez, A. C.; Sanchez-Cabeza, J. A.; Carnero-Bravo, V.; Perez-Bernal, L. H.

    2016-12-01

    Sea level rise (SLR) is one of the climate change effects expected to have the largest impact on coastal environments. SLR rates are not uniform around the planet and, therefore, local and regional data and trends are needed for proper adaptation plans. As long term monitoring stations of SLR are very scarce in most of the world, SLR trends obtained from 210Pb-dated sediment cores from tropical saltmarshes have become a practical alternative to obtain SLR trends within the past century, under the assumption that these ecosystems accrete at a similar rate to SLR. However, tropical saltmarshes are challenging environments for 210Pb dating: they are regularly dry, intermittently covered by seawater only during the highest tides, and sedimentary records often reflect the transition between terrestrial and marine environments (e.g. changes in grain size distribution, organic matter content and elemental composition) with all these factors contributing for atypical 210Pb depth profiles. In addition, 137Cs, the chronostratigraphic marker most commonly used to corroborate 210Pb dating, fails to be preserved in the sedimentary record in tropical areas, owing to its solubility in marine waters, if at all detectable. The present study describes the challenges and proposed solutions for 210Pb dating saltmarsh sediment cores from two saltmarsh areas (southern Gulf of California and Yucatan Peninsula) including the use of plutonium isotopes for corroboration purposes. Acknowledgements: projects CONACYT CB2010/153492 and PDCPN201301/214349; UNAM PAPIIT-IN203313 and the PRODEP network "Aquatic contamination: levels and effects" (year 3).

  6. U-Pb Geochronology of Hydrous Silica (Siebengebirge, Germany)

    NASA Astrophysics Data System (ADS)

    Tomaschek, Frank; Nemchin, Alexander; Geisler, Thorsten; Heuser, Alexander; Merle, Renaud

    2015-04-01

    Low-temperature, hydrous weathering eventually leads to characteristic products such as silica indurations. Elevated U concentrations and the ability of silica to maintain a closed system permits silica to be dated by the U-Pb method, which, in turn, will potentially allow constraining the timing of near-surface processes. To test the feasibility of silica U-Pb geochronology, we sampled opal and chalcedony from the Siebengebirge, Germany. This study area is situated at the terminus of the Cenozoic Lower Rhine Basin on the Rhenish Massif. The investigated samples include silicified gravels from the Mittelbachtal locality, renowned for the embedded wood opal. Structural characterization of the silica phases (Raman spectroscopy) was combined with in situ isotopic analyses, using ion microprobe and LA-ICPMS techniques. In the Siebengebirge area fluviatile sediments of Upper Oligocene age were covered by an extended trachyte tuff at around 25 Ma. Silica is known to indurate some domains within the tuff and, in particular, certain horizons within the subjacent fluviatile sediments ('Tertiärquarzite'). Cementation of the gravels occurred during at least three successive growth stages: early paracrystalline silica (opal-CT), fibrous chalcedony, and late microcrystalline quartz. It has traditionally been assumed that this silica induration reflects intense weathering, more or less synchronous with the deposition of the volcanic ashes. Results from U-Pb geochronology returned a range of discrete 206Pb-238U ages, recording a protracted silicification history. For instance, we obtained 22 ± 1 Ma for opal-CT cement from a silicified tuff, 16.6 ± 0.5 Ma for silicified wood and opal-CT cement in the fluviatile gravels, as well as 11 ± 1 Ma for texturally late chalcedony. While silicification of the sampled tuff might be contemporaneous with late-stage basalts, opaline silicification of the subjacent sediments and their wood in the Mittelbachtal clearly postdates active

  7. Early diagenesis of travertine deposits from the Tibetan Plateau - implications for 230Th/234U dating and palaeoenvironmental reconstruction

    NASA Astrophysics Data System (ADS)

    Wang, Zhijun; Meyer, Michael; Hoffmann, Dirk; Spötl, Christoph; Aldenderfer, Mark; Sanders, Diethard

    2014-05-01

    Travertine is calcium carbonate precipitated from hydrothermal springs. These terrestrial carbonate deposits can be used as high-resolution archives for reconstructing palaeoclimatic and palaeoenvironmental change and are also suitable for uranium-series disequilibrium (230Th/234U) dating. In many instances such spring deposits are associated with archaeological remains (e.g. stone artifacts and other traces of prehistoric human activity) and are therefore of interest for palaeoclimatologists and archaeologists alike. However, travertines are often affected by early diagenesis that can impact on the closed-system U-series behavior and on their geochemical signature. Hence, careful evaluation of the travertine microfabrics is required before these types of hot spring deposits can be accurately dated and used for paleoenviromental reconstruction. The Tibetan plateau hosts numerous hydrothermal spring deposits that occur along neotectonic faults. In this study, samples were collected from two archaeological travertine sites, i.e. Chusang and Tirthapuri, located in southern and western Tibet, respectively. Microscopic analysis of thin sections reveals a wide variety of crystal fabrics, including micrite, microspar and sparite, the latter can be composed of columnar or mosaic crystals, respectively. Areas where dendritic crystals are preserved are identified in our micrographs as well. Many of the Chusang and Tirthapuri travertine samples are porous. Drusy sparite is rimming most of the pore walls and a complex succession of secondary calcite phases precipitated in these pore spaces as well. The different generations of pore cement comprise micrite and sparite that can be laminated or fibrous in character and show sometimes evidence of an aragonite precursor. Detrital material like quartz, feldspar and other grains as well as humic and fulvic acids have been washed into the travertine pores too. Based on our microscopic analysis a complex growth history can be

  8. Constraining the Flux of Impactors Postdating Heavy Bombardment Using U-Pb Ages of Impact Glasses

    NASA Technical Reports Server (NTRS)

    Nemchin, A. A.; Norman, M. L.; Ziegler, R. A.; Grange, M. L.

    2013-01-01

    Spherules of glass varying in size from a few micrometres to a few millimetres are common in the lunar regolith. While some of these glass beads are products of pyroclastic fire fountains others originate as impact melt ejected from the target that breaks into small droplets and solidifies as spherical particles while raining back to the lunar surface. These glasses preserve information about the chemical composition of the target and often contain sufficient amount of radioactive nuclides such as 40K to enable Ar-40-Ar-39 dating of individual beads. Studies measuring the age of glass beads have been used in attempts to establish variations in the flux of impactors hitting the Moon, particularly during the period that postdates the formation of major impact basins [1,2]. These studies proposed a possibility of spike in the impact flux about 800 Ma [2] and over the last 400 Ma [1]. More recently U-Th-Pb isotopic systems have been also utilized to determine the age of impact glasses from the Apollo 17 regolith [3]. Our aim is to extend the application of the U-Pb system in impact glasses to spherules isolated from Apollo 14 soil 14163 in an attempt to further investigate the applicability of this isotopic system to the chronology of impact glass beads and gain additional information on the impact flux in the inner Solar system.

  9. High-precision U-Pb geochronology in the Minnesota River Valley subprovince and its bearing on the Neoarchean to Paleoproterozoic evolution of the southern Superior Province

    USGS Publications Warehouse

    Schmitz, M.D.; Bowring, S.A.; Southwick, D.L.; Boerboom, Terrence; Wirth, K.R.

    2006-01-01

    High-precision U-Pb ages have been obtained for high-grade gneisses, late-kinematic to postkinematic granitic plutons, and a crosscutting mafic dike of the Archean Minnesota River Valley tectonic subprovince, at the southern ramparts of the Superior craton of North America. The antiquity of the Minnesota River Valley terranes is confirmed by a high-precision U-Pb zircon age of 3422 ?? 2 Ma for a tonalitic phase of the Morton Gneiss. Voluminous, late-kinematic monzogranites of the Benson (Ortonville granite) and Morton (Sacred Heart granite) blocks yield identical crystallization ages of 2603 ?? 1 Ma, illustrating the synchrony and rapidity of deep crustal melting and plutonism throughout the Minnesota River Valley terranes. Postkinematic, 2591 ?? 2 Ma syenogranites and aplitic dikes in both blocks effectively constrain the final penetrative deformation of the Minnesota River Valley subprovince. Monazite growth from 2609 to 2595 Ma in granulitic paragneisses of the Benson and Montevideo blocks is interpreted to record prograde to peak granulite facies metamorphic conditions associated with crustal thickening and magmatism. Neoarchean metamorphism and plutonism are interpreted to record the timing of collisional accretion and terminal suturing of the Mesoarchean continental Minnesota River Valley terranes to the southern margin of the Superior Province, along the western Great Lakes tectonic zone. Subsequent Paleoproterozoic rifting of this margin is recorded by voluminous basaltic dike intrusion, expressed in the Minnesota River Valley by major WNW-trending tholeiitic diabase dikes dated at 2067 ?? 1 Ma, only slightly younger than the structurally and geochemically similar 2077 ?? 4 Ma Fort Frances (Kenora-Kabetogama) dike swarm of northern Minnesota and adjoining Canada. ?? 2006 Geological Society of America.

  10. Assessment of the Pb-Pb and U-Pb chronometry of the early solar system

    NASA Astrophysics Data System (ADS)

    Tera, Fouad; Carlson, Richard W.

    1999-06-01

    An evaluation of early solar system chronometry by the Pb-Pb and U-Pb methods is provided. Specifically, three consequential factors are examined: procedure of age calculation, extent of terrestrial Pb contamination, and initial Pb isotopic composition. On a Pb-Pb diagram, high temperature inclusions of the Allende meteorite are tightly organized into a well-defined line (inside a potentially dispersive mixing field), which is consistent with the inclusions containing initial Pb that is more primitive than that of Cañon Diablo troilite (PAT). Consequences of the possible existence of a pre-PAT Pb to the evolution history of the solar nebula are discussed. Phosphates from the ordinary chondrite St. Séverin appear to be contaminated by terrestrial Pb, a condition that renders age calculation based on subtraction of PAT inaccurate. The Pb-Pb mixing line of these phosphates indicates an age of 4.558 Ga. Interestingly, Angra dos Reis phosphate and pyroxene, as well as pyroxene of the other angrite Lewis Cliff 86010 fall precisely on the line defined by St. Séverin phosphates. Whole rocks of ordinary chondrites are pictorially and explicitly shown to be seriously contaminated with terrestrial Pb, thus their single-stage U-Pb ages may not be suitable markers of time. Because their true crystallization ages are often younger than the whole rocks, and because of the possibility of multistage evolution, phosphates of ordinary chondrites may yield single-stage ages older than their true crystallization ages. A hypothetical numerical demonstration is provided. On the basis of revised ages and new observations we provide an ;updated; chronometry for the early solar system.

  11. U-Pb dating and emplacement history of granitoid plutons in the northern Sanandaj-Sirjan Zone, Iran

    NASA Astrophysics Data System (ADS)

    Mahmoudi, Shahryar; Corfu, Fernando; Masoudi, Fariborz; Mehrabi, Behzad; Mohajjel, Mohammad

    2011-05-01

    The Sanandaj-Sirjan Zone (SSZ), which runs parallel to the Zagros fold and thrust belt of Iran, underwent a multistage evolution starting with Neotethys initiation, its subsequent subduction below the Iranian continental crust, and eventual closure during convergence of Arabia towards central Iran. Plutonic complexes are well developed in the northern part of the SSZ and we have dated a number of them by ID-TIMS U-Pb on zircon. The new data record the following events: a Mid Jurassic period that formed the Boroujerd Plutonic Complex (169 Ma), the Astaneh Pluton (168 Ma) and the Alvand Pluton (165 Ma); Late Jurassic emplacement of the Gorveh Pluton (157-149 Ma); Mid Cretaceous (109 Ma) formation of a I-type phase in the Hasan Salary Pluton near Saqqez, followed by Early Paleocene (60 Ma) intrusion of A-type granite in the same pluton; and the youngest intrusive event recorded so far in the SSZ with the intrusion of granite in the Gosheh-Tavandasht Complex near Boroujerd at 34.9 Ma. These different events reflect specific stages of subduction-related magmatism prior to the eventual Miocene collision between the two continental blocks.

  12. Prolonged episodic Paleoproterozoic metamorphism in the Thelon Tectonic Zone, Canada: an in-situ SHRIMP/EPMA monazite geochronology study

    NASA Astrophysics Data System (ADS)

    Mitchell, Rhea; William, Davis; Robert, Berman; Sharon, Carr; Michael, Jercinovic

    2017-04-01

    The Thelon Tectonic zone (TTZ), Nunavut, Canada, is a >500km long geophysically, lithologically and structurally distinct N-NNE striking Paleoproterozoic boundary zone between the Slave and Rae Archean provinces. The TTZ has been interpreted as a ca. 2.0 Ga continental arc on the western edge of the Rae craton, that was deformed during collision with the Slave craton ca. 1.97 Ga. Alternatively, the Slave-Rae collision is interpreted as occurring during the 2.35 Ga Arrowsmith orogeny while the 1.9-2.0 Ga TTZ represents an intra-continental orogenic belt formed in previously thinned continental crust, postdating the Slave-Rae collision. The central part of the TTZ comprises three >100 km long, 10-20 km wide belts of ca. 2.0 Ga, mainly charnockitic plutonic rocks, and a ca. 1910 Ma garnet-leucogranite belt. Metamorphism throughout these domains is upper-amphibolite to granulite-facies, with metasedimentary rocks occurring as volumetrically minor enclaves and strands of migmatites. The Ellice River domain occurs between the western and central plutonic belts. It contains ca. 1950 Ma ultramafic to dacitic volcanic rocks and foliated Paleoproterozoic psammitic metasedimentary rocks at relatively lower grade with lower to middle amphibolite-facies metamorphic assemblages. In-situ U-Pb analyses of monazite using a combination of Sensitive High-Resolution Ion Microprobe (SHRIMP) and Electron Probe Microanalyzer (EPMA) were carried out on high-grade metasedimentary rocks from seventeen samples representing the eastern margin of the Slave Province and all major lithological domains of the TTZ. 207Pb/206Pb monazite ages from SHRIMP analysis form the foundation of this dataset, while EPMA ages are supplementary. The smaller <6µm spot size of EPMA allowed for further constraint on ages of micro-scale intra-crystalline domains in some samples. Monazite ages define four distinct Paleoproterozoic metamorphic events and one Archean metamorphic event at ca. 2580 Ma. The latter is

  13. U-Pb Geochronology of Devonian Granites in the Meguma Terrane of Nova Scotia, Canada: Evidence for Hotspot Melting of a Neoproterozoic Source.

    PubMed

    Keppie; Krogh

    1999-09-01

    U-Pb isotopic analyses of monazite and zircon from six granitic plutons in the Meguma Terrane yield nearly concordant ages of 373+/-3 Ma, interpreted as the time of intrusion. U-Pb analyses of euhedral zircons with thick rims overgrowing cores, which were abraded to remove all or most of the rim, plot on chords between 370+/-3 and 628+/-33 Ma (Larrys River and Halfway Cove plutons), 372+/-3 and approximately 660 Ma (Shelburne pluton), and 373+/-2 and approximately 732 Ma (Barrington Passage pluton). The upper intercepts are interpreted as the age of magma source, correlatives of which are present in the Avalon Composite Terrane to the north. This basement may be either in depositional or tectonic contact with the overlying Cambro-Ordovician Meguma Group. Other zircons in the granites are generally irregular-euhedral with thin rims, and most U-Pb isotopic analyses fall between two chords from 373-2040 and 373-2300 Ma, with a few lying outside this field. These zircons are probably derived from the country rock (Goldenville Formation), which a previous study has shown contains detrital zircons with concordant U-Pb ages of 3000, 2000, and 600 Ma, and numerous intermediate discordant ages. These new ages, along with published data, document a relatively short (5-10 m.yr.) but voluminous period of magmatism. This age is approximately synchronous with intrusion of mafic rocks and lamprophyre dikes and regional low-pressure metamorphism and was followed by rapid denudation of 5-12 km. These observations may be interpreted in terms of shallowly dipping subduction and overriding of a mantle plume that eventually penetrates through the subducting plate to melt the overriding continental plate. Subsequent northward migration of the plume could explain both the approximately 360 Ma magmatism in the Cobequid Highlands (Avalon Composite Terrane) and the mid-Carboniferous plume-related intrusions around the Magdalen Basin.

  14. Subduction and melting processes inferred from U-Series, Sr Nd Pb isotope, and trace element data, Bicol and Bataan arcs, Philippines

    NASA Astrophysics Data System (ADS)

    DuFrane, S. Andrew; Asmerom, Yemane; Mukasa, Samuel B.; Morris, Julie D.; Dreyer, Brian M.

    2006-07-01

    We present U-series, Sr-Nd-Pb isotope, and trace element data from the two principal volcanic chains on Luzon Island, developed over oppositely dipping subduction zones, to explore melting and mass transfer processes beneath arcs. The Bataan (western) and Bicol (eastern) arcs are currently subducting terrigenous and pelagic sediments, respectively, which have different trace element and isotopic compositions. The range of ( 230Th/ 238U) disequilibria for both arcs is 0.85-1.15; only lavas from Mt. Mayon (Bicol arc) have 230Th activity excesses. Bataan lavas have higher 87Sr/ 86Sr and lower 143Nd/ 144Nd than Bicol lavas ( 87Sr/ 86Sr = 0.7042-0.7046, 143Nd/ 144Nd = 0.51281-0.51290 vs. 87Sr/ 86Sr = 0.70371-0.70391, 143Nd/ 144Nd = 0.51295-0.51301) and both arcs show steep linear arrays towards sediment values on 207Pb/ 204Pb vs. 206Pb/ 204Pb diagrams. Analysis of incompatible element and isotopic data allows identification of a sediment component that, at least in part, was transferred as a partial melt to the mantle wedge peridotite. Between 1% and 5% sediment melt addition can explain the isotopic and trace element variability in the rocks from both arcs despite the differences in sediment supply. We therefore propose that sediment transfer to the mantle wedge is likely mechanically or thermally limited. It follows that most sediments are either accreted, reside in the sub-arc lithosphere, or are recycled into the convecting mantle. However, whole-sale sediment recycling into the upper mantle is unlikely in light of the global mid-ocean ridge basalt data. Fluid involvement is more difficult to characterize, but overall the Bicol arc appears to have more fluid influence than the Bataan arc. Rock suites from each arc can be related by a dynamic melting process that allows for 230Th ingrowth, either by dynamic or continuous flux melting, provided the initial ( 230Th/ 232Th) of the source is ˜0.6-0.7. The implication of either model is that inclined arrays on the U-Th

  15. Time-scale calibration by U-Pb geochronology: Examples from the Triassic Period

    NASA Astrophysics Data System (ADS)

    Mundil, R.

    2009-05-01

    U-Pb zircon geochronology, pioneered by Tom Krogh, is a cornerstone for the calibration of the time scale. Before Krogh's innovations, U-Pb geochronology was essentially limited by laboratory blank Pb (typically hundreds of nanograms) inherent in the then existing zircon dissolution and purification methods. The introduction of high pressure HF dissolution combined with miniature ion exchange columns (1) reduced the blank by orders of magnitude and allowed mass-spectrometric analyses of minute amounts of material (picograms of Pb and U). Krogh also recognized the need for minimizing the effects of Pb loss, and the introduction of the air-abrasion technique was the method of choice for two decades (2), until the development of the combined annealing and chemical abrasion technique resulted in essentially closed system zircons (3). These are the prerequisite for obtaining precise (permil-level) and accurate radio-isotopic ages of individual zircons contained in primary volcanic ash deposits, which are primary targets for the calibration of the time scale if they occur within fossil bearing sediments. A prime example is the calibration of the Triassic time scale which improved significantly using these techniques. The ages for the base and the top of the Triassic are constrained by U-Pb ages to 252.3 (4) and 201.5 Ma (5), respectively. These dates also constrain the ages of major extinction events at the Permian-Triassic and Triassic-Jurassic boundaries, and are statistically indistinguishable from ages obtained for the Siberian Traps and volcanic products from the Central Atlantic Magmatic Province, respectively, suggesting a causal link. Ages for these continental volcanics, however, are mostly from the K-Ar (40Ar/39Ar) system which requires accounting and correcting for a systematic bias of ca 1 % between U-Pb and 40Ar/39Ar isotopic ages (the 40Ar/39Ar ages being younger) (6). Robust U-Pb age constraints also exist for the Induan- Olenekian boundary (251.2 Ma, (7

  16. Devonian to Carboniferous collision in the Greenland Caledonides: U-Pb zircon and Sm-Nd ages of high-pressure and ultrahigh-pressure metamorphism

    NASA Astrophysics Data System (ADS)

    Gilotti, Jane A.; Nutman, Allen P.; Brueckner, Hannes K.

    2004-10-01

    A variety of eclogites from an east-west transect across the North-East Greenland eclogite province have been studied to establish the timing of high pressure (HP) and ultrahigh-pressure (UHP) metamorphism in this northern segment of the Laurentian margin. Garnet + omphacite ± amphibole + whole rock Sm-Nd isochrons from a quartz eclogite, a garnet + omphacite + rutile eclogite and a partially melted zoisite eclogite in the western HP belt are 401±2, 402±9 and 414±18 Ma, respectively. Corresponding sensitive high-resolution ion microprobe (SHRIMP) 206Pb/238U ages of metamorphic zircon in the same samples are 401±7, 414±13, and 393 ±10 Ma. Metamorphic zircon domains were identified using morphology, cathodoluminescence (CL) imaging, U, Th, Th/U and trace element contents. Zircon from the quartz eclogite and the garnet + omphacite + rutile eclogite are typical of eclogite facies zircon with rounded to subhedral shapes, patchy to homogenous CL domains, low U, and very low Th and Th/U. The partially melted eclogite contains euhedral zircons with dark, sector-zoned, higher U, Th and Th/U inherited cores. Three cores give a Paleoproterozoic 207Pb/206Pb age of 1,962±27 Ma, interpreted as the age of the leucogabbroic protolith. CL images of the bright overgrowths show faint oscillatory zoning next to homogenous areas that indicate zircon growth in the presence of a HP melt and later recrystallization. Additional evidence that zircon grew during eclogite facies conditions is the lack of a Eu anomaly in the trace element data for all the samples. These results, combined with additional less precise Sm-Nd ages and our earlier work, point to a Devonian age of HP metamorphism in the western and central portions of the eclogite province. An UHP kyanite eclogite from the eastern part of the transect contains equant metamorphic zircon with homogeneous to patchy zoning in CL and HP inclusions of garnet, omphacite and kyanite. These zircons have slightly higher U, Th and Th/U

  17. Detrital U-Pb zircon dating of lower Ordovician syn-arc-continent collision conglomerates in the Irish Caledonides

    USGS Publications Warehouse

    Clift, P.D.; Carter, A.; Draut, A.E.; Long, H.V.; Chew, D.M.; Schouten, H.A.

    2009-01-01

    The Early Ordovician Grampian Orogeny in the British Isles represents a classic example of collision between an oceanic island arc and a passive continental margin, starting around 480??Ma. The South Mayo Trough in western Ireland preserves a complete and well-dated sedimentary record of arc collision. We sampled sandstones and conglomerates from the Rosroe, Maumtrasna and Derryveeny Formations in order to assess erosion rates and patterns during and after arc collision. U-Pb dating of zircons reveals a provenance dominated by erosion from the upper levels of the Dalradian Supergroup (Southern Highland and Argyll Groups), with up to 20% influx from the colliding arc into the Rosroe Formation, but only 6% in the Maumtrasna Formation (~ 465??Ma). The dominant source regions lay to the northeast (e.g. in the vicinity of the Ox Mountains, 50??km distant, along strike). The older portions of the North Mayo Dalradian and its depositional basement (the Annagh Gneiss Complex) do not appear to have been important sources, while the Connemara Dalradian only plays a part after 460??Ma, when it supplies the Derryveeny Formation. By this time all erosion from the arc had effectively ceased and exhumation rates had slowed greatly. The Irish Grampian Orogeny parallels the modern Taiwan collision in showing little role for the colliding arc in the production of sediment. Negligible volumes of arc crust are lost because of erosion during accretion to the continental margin. ?? 2008 Elsevier B.V.

  18. Spectrochemical determination of thorium in monazite by the powder-d.c. arc technique

    USGS Publications Warehouse

    Dutra, C.V.; Murata, K.J.

    1954-01-01

    Thorium in monazite is determined by a d.c. carbon-arc technique using zirconium as the internal standard. The analytical curve for Th II 2870.413 A??/Zr II 2844-579 A?? is established by means of synthetic standards containing graduated amounts of thoria and 0.500 per cent zirconia in pegmatite base (60 parts quartz, 40 parts microchne, and 1 part ferric oxide). Monazite samples are diluted 14-fold with pegmatite base that contains 0.538 per cent ZrO2, so that the zirconia content of the resulting mixture is also 0.500 per cent. In addition, both the standards and the diluted monazites are mixed with one-half their weight of powdered graphite. Approximately 25 mg of the prepared samples are arced to completion at 15.5 to 17.5 amperes. With the 14-fold dilution employed, the accurate range of the method is 3 to 20 per cent thoria in the original monazite. The coefficient of variation for a single determination is 4 per cent at the 7 per cent thoria level. Tests with synthetic unknowns and chemically analyzed monazites show a maximum error of ??10 per cent of the thoria content. If niobium is substituted for zirconium as the internal standard, there is a loss of precision. Platinum as the internal standard gives results of good precision but introduces a marked sensitivity to matrix effects. ?? 1954.

  19. Progress report of southeastern monazite exploration, 1952

    USGS Publications Warehouse

    Overstreet, W.C.; Theobald, P.K.; White, A.M.; Cuppels, N.P.; Caldwell, D.W.; Whitlow, J.W.

    1953-01-01

    Reconnaissance of placer monazite during the field season of 1952 covered 6,600 square miles drained by streams in the western Piedmont of Virginia 5 North Carolina, South Carolina,, and Georgia. Emphasis during this investigation was placed on the area between the Savannah River at the border of South Carolina and Georgia and the Catawba River in North Carolina because it contains most of the placers formerly mined for monaziteo Four other areas along the strike of the monazite-bearing crystalline rocks were also studied, They center around Mt. Airy, N.C., Athens, Ga. Griffin, Ga. and LaGrange, Ga. In the Savannah River Catawba River district, studies indicate that even the highest grade stream deposits of more than 10 million cubic yards of alluvium contain less than 1 pound of monazite per cubic yard. The average grade of the better deposits is about 0 0 5 pound of monazite per cubic yard. Only trace amounts of niobium, tantalum, and tin have been detected in the placers. Tungsten is absent. Locally gold adds a few cents per cubic yard to the value of placer ground. The best deposits range in size from 1 to 5 million cubic yards and contain 1 to 2 pounds of monazite to the cubic yard. Hundreds of placers smaller than 1 million cubic yards exceed 2 pounds of monazite to the cubic yard and locally attain an average of 10 pounds Monazite deposits around Athens, Ga., are similar to the smaller deposits in the central part of the Savannah River - Catawba River district. A few small very low-grade monazite placers were found near Mt. Airy, N.C., Griffin, Ga., and LaGrange Ga., but they are of no economic value. The larger the flood plain and the farther it lies from the source of the stream, the lower is the monazite content of the sediment. Monazite cannot be profitably mined .from the crystalline rocks in the five areas. The alluvial placers are in stream sediments of post-Wisconsin age. Some pre-Wisconsin terrace gravel of small areal extent is exposed but it

  20. 77 FR 56208 - Filing Dates for the Kentucky Special Election in the 4th Congressional District

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-12

    ... FEDERAL ELECTION COMMISSION [Notice 2012-06] Filing Dates for the Kentucky Special Election in the 4th Congressional District AGENCY: Federal Election Commission. ACTION: Notice of filing dates for special election. SUMMARY: Kentucky has scheduled a general election on November 6, 2012, to fill the U.S...

  1. Métamorphisme miocène de granites panafricains dans le massif de l'Edough (Nord-Est de l'Algérie)

    NASA Astrophysics Data System (ADS)

    Hammor, Dalila; Lancelot, Joël

    1998-09-01

    The Edough Massif is the easternmost crystalline core of the Maghrebides that represents the African segment of the west Mediterranean Alpine belt. U-Pb zircon dating provides upper intercept ages of 595 ± 51 My and 606 ± 55 My for an orthogneiss of the lower unit and a deformed leucogranite of the upper pelitic unit, respectively. These ages suggest emplacement of the two granitoids during the Pan-African orogeny. Monazites from a paragneiss sample gave a 18 ± 5 My U-Pb age that points to a Miocene age of the high-temperature metamorphism.

  2. U-Th systematics and 230Th ages of carbonate chimneys at the Lost City Hydrothermal Field

    NASA Astrophysics Data System (ADS)

    Ludwig, Kristin A.; Shen, Chuan-Chou; Kelley, Deborah S.; Cheng, Hai; Edwards, R. Lawrence

    2011-04-01

    The Lost City Hydrothermal Field (LCHF) is a serpentinite-hosted vent field located 15 km west of the spreading axis of the Mid-Atlantic Ridge. In this study, uranium-thorium (U-Th) geochronological techniques have been used to examine the U-Th systematics of hydrothermal fluids and the 230Th ages of hydrothermally-precipitated carbonate chimneys at the LCHF. Fluid sample analyses indicate that endmember fluids likely contain only 0.0073 ng/g U or less compared to 3.28 ± 0.03 ng/g of U in ambient seawater. For fluid samples containing only 2-21% ambient seawater (1.1-11 mmol/kg Mg), Th concentration is 0.11-0.13 pg/g and surrounding seawater concentrations average 0.133 ± 0.016 pg/g. The 230Th/ 232Th atomic ratios of the vent fluids range from 1 (±10) × 10 -6 to 11 (±5) × 10 -6, are less than those of seawater, and indicate that the vent fluids may contribute a minor amount of non-radiogenic 230Th to the LCHF carbonate chimney deposits. Chimney 238U concentrations range from 1 to 10 μg/g and the average chimney corrected initial δ 234U is 147.2 ± 0.8, which is not significantly different from the ambient seawater value of 146.5 ± 0.6. Carbonate 232Th concentrations range broadly from 0.0038 ± 0.0003 to 125 ± 16 ng/g and 230Th/ 232Th atomic ratios vary from near seawater values of 43 (±8) × 10 -6 up to 530 (±25) × 10 -3. Chimney ages, corrected for initial 230Th, range from 17 ± 6 yrs to 120 ± 13 kyrs. The youngest chimneys are at the intersection of two active, steeply-dipping normal faults that cut the Atlantis Massif; the oldest chimneys are located in the southwest portion of the field. Vent deposits on a steep, fault-bounded wall on the east side of the field are all <4 kyrs old, indicating that mass wasting in this region is relatively recent. Comparison of results to prior age-dating investigations of submarine hydrothermal systems shows that the LCHF is the most long-lived hydrothermal system known to date. It is likely that seismic

  3. U-Pb ages of secondary silica at Yucca Mountain, Nevada: Implications for the paleohydrology of the unsaturated zone

    USGS Publications Warehouse

    Neymark, L.A.; Amelin, Y.; Paces, J.B.; Peterman, Z.E.

    2002-01-01

    Uranium, Th and Pb isotopes were analyzed in layers of opal and chalcedony from individual mm- to cm-thick calcite and silica coatings at Yucca Mountain, Nevada, USA, a site that is being evaluated for a potential high-level nuclear waste repository. These calcite and silica coatings on fractures and in lithophysal cavities in Miocene-age tuffs in the unsaturated zone (UZ) precipitated from descending water and record a long history of percolation through the UZ. Opal and chalcedony have high concentrations of U (10 to 780 ppm) and low concentrations of common Pb as indicated by large values of 206Pb/204Pb (up to 53,806), thus making them suitable for U-Pb age determinations. Interpretations of U-Pb isotope systems in opal samples at Yucca Mountain are complicated by the incorporation of excess 234U at the time of mineral formation, resulting in reverse discordance of U-Pb ages. However, the 207PB/235U ages are much less affected by deviation from initial secular equilibrium and provide reliable ages of most silica deposits between 0.6 and 9.8 Ma. For chalcedony subsamples showing normal age discordance, these ages may represent minimum times of deposition. Typically, 207Pb/235U ages are consistent with the microstratigraphy in the mineral coating samples, such that the youngest ages are for subsamples from outer layers, intermediate ages are from inner layers, and oldest ages are from innermost layers. 234U and 230Th in most silica layers deeper in the coatings are in secular equilibrium with 238U, which is consistent with their old age and closed system behavior during the past -0.5 Ma. The ages for subsamples of silica layers from different microstratigraphic positions in individual calcite and silica coating samples collected from lithophysal cavities in the welded part of the Topopah Spring Tuff yield slow long-term average growth rates of 1 to 5 mm/Ma. These data imply that the deeper parts of the UZ at Yucca Mountain maintained long-term hydrologic stability

  4. High-precision Temporal Calibration of the Early Cambrian Biotic and Paleoenvironmental Records: New U-Pb Geochronology from Eastern Yunnan, China.

    NASA Astrophysics Data System (ADS)

    Tsukui, K.; Ramezani, J.; Zhu, M.; Maloof, A. C.; Porter, S.; Moore, J.; Eddy, M. P.; Bowring, S. A.

    2016-12-01

    The Terreneuvian Epoch of the early Cambrian marks the global diversification of early animal life, as well as major perturbations to Earth's geochemical cycles. Understanding possible links between biotic evolution (e.g., emergence of skeletal animals) and the recognized changes in ocean chemistry requires a high fidelity chronostratigraphic framework for the early Cambrian records. One such chronostratigraphy was built by mapping local early Cambrian carbon isotope profiles onto a U-Pb age-calibrated marine carbonate δ13C record from Morocco, assuming global synchroneity of the observed δ13C trends. Here we present a direct test of this assumption using high-precision U-Pb geochronology (CA-ID-TIMS method) of ash beds from key lower Cambrian horizons throughout eastern Yunnan Province in South China. Preliminary age results from ash beds near the top of the Dengying Formation (Fm.) and the basal Daibu Member (Mb.) of the Zhujiaqing Fm. in multiple sections place the basal Cambrian negative δ13C excursion (BACE) in China at ca. 540.7-539.6 Ma. Our new U-Pb dates from the overlying Zhongyicun Mb. at the Meishucun and nearby sections improve significantly upon previous in situ U-Pb geochronology and constrain the onset of high-frequency δ13C oscillations in some sections to between 533.5 and 532.9 Ma. Most importantly, a new U-Pb date of ca. 526 Ma from the basal Shiyantou Fm. in the Xiaotan Section marks the termination of a >1 million year-long period of consistently positive (≥+4‰) δ13C values (ZHUCE) that is characteristic of many early Cambrian records worldwide. This date establishes a robust time correlation between ZHUCE in South China and its equivalent 5p excursion in Morocco and Siberia, and constrains the timing and duration of the largest positive δ13C anomalies in the Cambrian.

  5. Precise Th/U-dating of small and heavily coated samples of deep sea corals

    NASA Astrophysics Data System (ADS)

    Lomitschka, Michael; Mangini, Augusto

    1999-07-01

    Marine carbonate skeletons like deep-sea corals are frequently coated with iron and manganese oxides/hydroxides which adsorb additional thorium and uranium out of the sea water. A new cleaning procedure has been developed to reduce this contamination. In this further cleaning step a solution of Na 2EDTA (Na 2H 2T B) and ascorbic acid is used which composition is optimised especially for samples of 20 mg of weight. It was first tested on aliquots of a reef-building coral which had been artificially contaminated with powdered ferromanganese nodule. Applied on heavily contaminated deep-sea corals (scleractinia), it reduced excess 230Th by another order of magnitude in addition to usual cleaning procedures. The measurement of at least three fractions of different contamination, together with an additional standard correction for contaminated carbonates results in Th/U-ages corrected for the authigenic component. A good agreement between Th/U- and 14C-ages can be achieved even for extremely coated corals.

  6. Dating sub-20 micron zircons in granulite-facies mafic dikes from SW Montana: a new approach using automated mineralogy and SIMS U-Pb geochronology

    NASA Astrophysics Data System (ADS)

    Ault, A. K.; Mahan, K. H.; Flowers, R. M.; Chamberlain, K.; Appleby, S. K.; Schmitt, A. K.

    2010-12-01

    Geochronological data is fundamental to all tectonic studies, but a major limitation for many lithologies is a paucity of sizeable zircons suitable for conventional U-Pb techniques. In particular, mafic dike swarms provide important time markers for tectonometamorphic activity in Precambrian terranes, but commonly yield little or no zircon or baddeleyite sufficient for TIMS or standard ion-probe analysis of crystal separates. We apply a new approach involving in-situ automated mineralogy and high spatial resolution Secondary Ion Mass Spectrometry (SIMS) geochronology to a mafic dike swarm exposed in the Northern Madison Range of SW Montana. The dikes cross-cut early fabrics but are also variably deformed and metamorphosed to P-T conditions as high as 1.2 GPa and 850 C. The swarm emplacement age is inferred to be ca. 2.1 Ga based on similarities to dated dikes in the adjacent Tobacco Root Mountains. Resolving the timing of dike emplacement and high-grade metamorphism in the study area is important for understanding the extent of post-Archean modification to the northwest margin of the Wyoming craton. Identification and textural characterization of zircons were facilitated by in-situ automated mineralogical analysis, in contrast to a standard elemental X-ray mapping approach. Our technique uses an SEM-based platform coupling calibrated BSE data with X-ray data collected by multiple energy dispersive spectrometers to rapidly identify target accessory phases at high spatial resolution. Whole thin section search maps were generated in ~30 minutes at 4 µm pixel resolution. Our dike thin sections commonly contained >300 zircons in a variety of textural settings, with 80% having a short dimension <10 µm. Zircons were dated in-situ by adjusting the field aperture of the CAMECA ims1270 to preferentially collect secondary ions emitted from within the inner few microns of the ~15 µm diameter analysis pit. This allows us to analyze zircon grains with a minimum dimension as

  7. Implications of Bishop Tuff zircon U-Pb ages for rates of zircon growth and magma accumulation

    NASA Astrophysics Data System (ADS)

    Reid, M. R.; Schmitt, A. K.

    2012-12-01

    Rates of geologic processes obtained from natural studies rely on accurate geochronologic information. An important benchmark in geochronology as well as a valuable source of insights into the evolution of voluminous explosive eruptions is the >600 km3 Bishop Tuff (BT). A recently determined weighted mean 206Pb/238U date of 767.1±0.9 ka for a BT zircon population [1] is indistinguishable from the recalibrated 40Ar/39Ar sanidine date of 767.4±2.2 ka [2], potentially providing a key intercalibration point between astronomical and radio-isotopic dating approaches. Consequences of these results are linear zircon growth rates of >1×10-14 cm/sec and magma accumulation rates of >200 km3/ka. In contrast, spatially selective SIMS U-Pb dating of BT zircons yielded mean pre-eruption ages of 850 ka [3], a difference that raises questions about the validity of intercalibration between U-Pb and K-Ar dating methods and the history of magma accumulation. We obtained new SIMS analyses of the BT zircons using more spatially and analytically sensitive methods and verifying our accuracy against the TIMS dated Quaternary zircon 61.308A (2.488±0.002 Ma). Analyses were performed on zircon rims and on oriented cross-sections exposed during optical interferometry-calibrated serial sectioning removing the outermost ~31 μm. Sputtering by a 100 nA ion beam versus the normally employed 10-12 nA beam resulted in enhanced radiogenic Pb yields and analytical uncertainties for Quaternary zircon approaching the U-Pb age reproducibility of the primary zircon standard (~1-2 % for AS3). Ages obtained at ~31 μm depth (representing <5% of crystal growth in most cases) average 892±26ka (MSWD=0.29), corroborating previous evidence for residence times of several tens of ka. Rim ages average 781±22 ka (MSWD=0.61), overlapping Ar/Ar determinations of eruption age and corroborating the importance of near-eruption aged zircon growth. Our results confirm the presence of BT zircon domains that predate

  8. High Pb/Ce reservoir in depleted, altered mantle peridotites

    NASA Astrophysics Data System (ADS)

    Godard, M.; Kelemen, P.; Hart, S.; Jackson, M.; Hanghoj, K.

    2005-12-01

    We find consistent, high Pb/Ce in ICP-MS data for residual peridotites from the Mid-Atlantic Ridge (MAR, from ODP Leg 209), mid-ocean ridges (MOR) worldwide [1], Oman, Josephine and Trinity ophiolites, and the Jurassic Talkeetna arc. (MAR and Oman data from Montpellier; Josephine, Trinity and Talkeetna from WSU; some Pb concentrations checked by ID at WHOI). These samples have average Pb/Ce 10x primitive mantle (PM), with only 3 of 180 samples < PM. REE patterns and Ce concentration < PM in 165 of 180 samples are consistent with depletion via melt extraction, plus some magmatic refertilization. High Pb (average 3x PM, median 0.5x PM), could be due to (a) retention of Pb in residual sulfide, (b) addition of Pb in sulfide and plagioclase during `impregnation' by crystallizing melt, and/or (c) addition of Pb in sulfide and carbonate during alteration. Pb/Ce is correlated negatively with Ce concentration, suggesting a role for (a). Pb concentration is strongly correlated with Th and Nb. These elements are considered immobile during hydrothermal alteration, their correlations with Pb are positive, and Pb is > PM in many samples, all suggesting a complementary role for (b) and a limited role for (c). All samples except Talkeetna have Th/Pb < PM. All samples except some MOR peridotites also have U/Pb < PM. DRILLED MAR peridotites show U/Pb > PM in shallow, oxidized samples and < PM in downhole, reduced samples. Thus, high U/Pb in DREDGED MOR peridotites [1] is attributed to seafloor weathering. Given that oxidized weathering only extends tens of meters below the seafloor, we infer that most MOR peridotites have Th/Pb and U/Pb < PM. If they form with Pb isotope ratios similar to MORB, these rocks will evolve to values less radiogenic than the geochron. The effect of subduction modification on Th/Pb and U/Pb is unclear. For example, if elevated Pb is common in unaltered residual peridotites, subduction modification is likely to be minor. The size of the high Pb/Ce, low Th/Pb

  9. 40 Ma of hydrothermal W mineralization during the Variscan orogenic evolution of the French Massif Central revealed by U-Pb dating of wolframite

    NASA Astrophysics Data System (ADS)

    Harlaux, Matthieu; Romer, Rolf L.; Mercadier, Julien; Morlot, Christophe; Marignac, Christian; Cuney, Michel

    2018-01-01

    We present U-Pb thermal ionization mass spectrometer (TIMS) ages of wolframite from several granite-related hydrothermal W±Sn deposits in the French Massif Central (FMC) located in the internal zone of the Variscan belt. The studied wolframite samples are characterized by variable U and Pb contents (typically <10 ppm) and show significant variations in their radiogenic Pb isotopic compositions. The obtained U-Pb ages define three distinct geochronological groups related to three contrasting geodynamic settings: (i) Visean to Namurian mineralization (333-327 Ma) coeval with syn-orogenic compression and emplacement of large peraluminous leucogranites (ca. 335-325 Ma), (ii) Namurian to Westphalian mineralization (317-315 Ma) synchronous with the onset of late-orogenic extension and emplacement of syn-tectonic granites (ca. 315-310 Ma) and (iii) Stephanian to Permian mineralization (298-274 Ma) formed during post-orogenic extension contemporaneous with the Permian volcanism in the entire Variscan belt. The youngest ages (276-274 Ma) likely reflect the reopening of the U-Pb isotopic system after wolframite crystallization and may correspond to late hydrothermal alteration (e.g. ferberitization). Our results demonstrate that W(±Sn) mineralization in the FMC formed during at least three distinct hydrothermal events in different tectono-metamorphic settings over a time range of 40 Ma.

  10. Progress integrating ID-TIMS U-Pb geochronology with accessory mineral geochemistry: towards better accuracy and higher precision time

    NASA Astrophysics Data System (ADS)

    Schoene, B.; Samperton, K. M.; Crowley, J. L.; Cottle, J. M.

    2012-12-01

    It is increasingly common that hand samples of plutonic and volcanic rocks contain zircon with dates that span between zero and >100 ka. This recognition comes from the increased application of U-series geochronology on young volcanic rocks and the increased precision to better than 0.1% on single zircons by the U-Pb ID-TIMS method. It has thus become more difficult to interpret such complicated datasets in terms of ashbed eruption or magma emplacement, which are critical constraints for geochronologic applications ranging from biotic evolution and the stratigraphic record to magmatic and metamorphic processes in orogenic belts. It is important, therefore, to develop methods that aid in interpreting which minerals, if any, date the targeted process. One promising tactic is to better integrate accessory mineral geochemistry with high-precision ID-TIMS U-Pb geochronology. These dual constraints can 1) identify cogenetic populations of minerals, and 2) record magmatic or metamorphic fluid evolution through time. Goal (1) has been widely sought with in situ geochronology and geochemical analysis but is limited by low-precision dates. Recent work has attempted to bridge this gap by retrieving the typically discarded elution from ion exchange chemistry that precedes ID-TIMS U-Pb geochronology and analyzing it by ICP-MS (U-Pb TIMS-TEA). The result integrates geochemistry and high-precision geochronology from the exact same volume of material. The limitation of this method is the relatively coarse spatial resolution compared to in situ techniques, and thus averages potentially complicated trace element profiles through single minerals or mineral fragments. In continued work, we test the effect of this on zircon by beginning with CL imaging to reveal internal zonation and growth histories. This is followed by in situ LA-ICPMS trace element transects of imaged grains to reveal internal geochemical zonation. The same grains are then removed from grain-mount, fragmented, and

  11. U-Pb detrital zircon geochronology from the basement of the Central Qilian Terrane: implications for tectonic evolution of northeastern Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    Liu, Changfeng; Wu, Chen; Zhou, Zhiguang; Yan, Zhu; Jiang, Tian; Song, Zhijie; Liu, Wencan; Yang, Xin; Zhang, Hongyuan

    2018-03-01

    The Tuolai Group dominates the Central Qilian Terrane, and there are different opinions on the age and tectonic attribute of the Tuolai Group. Based on large-scale geologic mapping and zircon dating, the Tuolai Group is divided into four parts: metamorphic supracrustal rocks, Neoproterozoic acid intrusive rocks, early-middle Ordovician acid intrusive rocks and middle Ordovician basic intrusive rocks. The metamorphic supracrustal rocks are the redefined Tuolai complex-group and include gneiss and schist assemblage by faulting contact. Zircon U-Pb LA-MC-ICP-MS dating was conducted on these samples of gneiss and migmatite from the gneiss assemblage, quartzite, two-mica schist and slate from the schist assemblage. The five detrital samples possess similar age spectra; have detrital zircon U-Pb main peak ages of 1.7 Ga with youngest U-Pb ages of 1150 Ma. They are intruded by Neoproterozoic acid intrusive rocks. Therefore, the Tuolai Group belonging to late Mesoproterozoic and early Neoproterozoic. With this caveat in mind, we believe that U-Pb detrital zircon dating, together with the geologic constraints obtained from this study and early work in the neighboring regions. We suggest that the formation age of the entire crystalline basement rocks of metasedimentary sequence from the Central Qilian Terrane should be constrained between the Late Mesoproterozoic and the Late Neoproterozoic, but not the previous Paleoproterozoic. The basement of the Central Qilian Terrane contains the typical Grenville ages, which indicates the Centre Qilian Terrane have been experienced the Grenville orogeny event.

  12. Petrogenesis of the Yaochong granite and Mo deposit, Western Dabie orogen, eastern-central China: Constraints from zircon U-Pb and molybdenite Re-Os ages, whole-rock geochemistry and Sr-Nd-Pb-Hf isotopes

    NASA Astrophysics Data System (ADS)

    Chen, Wei; Xu, Zhaowen; Qiu, Wenhong; Li, Chao; Yu, Yang; Wang, Hao; Su, Yang

    2015-05-01

    The Dabie orogen is among the most famous continent-continent collisional orogenic belts in the world, and is characterized by intensive post-collisional extension, magmatism and Mo mineralization. However, the genetic links between the mineralization and the geodynamic evolution of the orogen remain unresolved. In this paper, the Yaochong Mo deposit and its associated granitic stocks were investigated to elucidate this issue. Our new zircon U-Pb ages yielded an Early Cretaceous age (133.3 ± 1.3 Ma) for the Yaochong granite, and our molybdenite Re-Os dating gave a similar age (135 ± 1 Ma) for the Mo deposit. The Yaochong stock is characterized by high silica and alkali but low Mg, Fe and Ca. It is enriched in light rare earth elements (LREEs) and large ion lithophile elements (LILEs: Rb, K, Th and U), but strongly depleted in heavy REEs, and high field strength elements (HFSEs: Nb, Ta, Ti and Y). The Yaochong granite has initial 87Sr/86Sr ratios of 0.7087-0.7096, and Pb isotopic ratios of (206Pb/204Pb)i = 16.599-16.704, (207Pb/204Pb)i = 15.170-15.618 and (208Pb/204Pb)i = 36.376-38.248. The granite has εNd(t) of -18.0 to -16.3 and εHf(t) values of -26.5 to -20.0. All these data indicate that the Yaochong granite is a high-K calc-alkaline fractionated I-type granite, and may have originated from partial melting of the thickened Yangtze continental crust. The Mo ores also show low radiogenic Pb isotopes similar to the Yaochong stock. Medium Re content in molybdenite (21.8-74.8 ppm) also suggests that the ore-forming materials were derived from the thickened lower crust with possibly minor mixing with the mantle. Similar to the Eastern Dabie orogen, the thickened crust beneath the Western Dabie orogen may also have experienced tectonic collapse, which may have exerted fundamental geodynamic controls on the two-stage Mo mineralization in the region.

  13. Electron Backscatter Diffraction (EBSD) Analysis and U-Pb Geochronology of the Oldest Lunar Zircon: Constraining Early Lunar Differentiation and Dating Impact-Related Deformation

    NASA Technical Reports Server (NTRS)

    Timms, Nick; Nemchin, Alexander; Grange, Marion; Reddy, Steve; Pidgeon, Bob; Geisler, Thorsten; Meyer, Chuck

    2009-01-01

    The evolution of the early moon was dominated by two processes (i) crystallization of the Lunar Magma Ocean (LMO) and differentiation of potassium-rare earth element-phosphorous-rich residual magma reservoir referred to as KREEP, and (ii) an intense meteorite bombardment referred to as lunar cataclysm . The exact timing of these processes is disputed, and resolution relies on collection and interpretation of precise age data. This study examines the microstructure and geochronology of zircon from lunar impact breccias collected during the Apollo 17 mission. A large zircon clast within lunar breccia 72215,195 shows sector zoning in optical microscopy, cathodoluminescence (CL) imaging and Raman mapping, and indicates that it was a relict fragment of a much larger magmatic grain. Sensitive high resolution ion microprobe (SHRIMP) U-Pb analysis of the zircon shows that U and Th concentration correlate with sector zoning, with darkest CL domains corresponding with high-U and Th (approx.150 and approx.100 ppm respectively), and the brightest-CL sectors containing approx.30-50 ppm U and approx.10-20 ppm Th. This indicates that variations in optical CL and Raman properties correspond to differential accumulation of alpha-radiation damage in each sector. Electron backscatter diffraction (EBSD) mapping shows that the quality of electron backscatter patterns (band contrast) varies with sector zoning, with the poorest quality patterns obtained from high-U and Th, dark-CL zones. EBSD mapping also reveals a deformation microstructure that is cryptic in optical, CL and Raman imaging. Two orthogonal sets of straight discrete and gradational low-angle boundaries accommodate approx.12 misorientation across the grain. The deformation bands are parallel to the crystallographic {a}-planes of the zircon, have misorientation axes parallel to the c-axis, and are geometrically consistent with formation by dislocation creep associated with <100>{010} slip. The deformation bands are unlike

  14. Multiple dating approach (14C, U/Th and 36Cl) of tsunami-transported reef-top megaclasts on Bonaire (Leeward Antilles) - potential and current limitations

    NASA Astrophysics Data System (ADS)

    Rixhon, Gilles; May, Simon Matthias; Engel, Max; Mechernich, Silke; Keulertz, Rebecca; Schroeder-Ritzrau, Andrea; Fohlmeister, Jens; Frank, Norbert; Dunai, Tibor; Brueckner, Helmut

    2016-04-01

    Coastal hazard assessment depends on reliable information on the magnitude and frequency of past high-energy wave events (EWE: tsunamis, storms). For this purpose onshore sedimentary records represent promising geo-archives for the mid- and late-Holocene EWE history. In comparison to fine-grained sediments which have been extensively studied in the recent past, supralittoral megaclasts are less investigated, essentially due to the difficulties related to the dating of corresponding depositional events, and thus their limited value for inferring the timing of major events. On Bonaire (Leeward Antilles, Caribbean), supratidal coarse-clast deposits form prominent landforms all around the island. Fields of large boulders (up to 150 t) are among the best-studied reef-top megaclasts worldwide. Transport by Holocene tsunamis is assumed at least for the largest boulders (Engel and May, 2012). Although a large dataset of 14C and electron spin resonance (ESR) ages is available for major coral rubble ridges and ramparts, showing some age clusters during the Late Holocene, it is still debated whether these data reflect the timing of major depositional/transport event(s), and how these data sets are biased by reworking of coral fragments. In addition, different processes may be responsible for the deposition of the coral rubble ridges and ramparts (storm) and the solitary megaclasts (tsunami). As an attempt to overcome the current challenges for dating the dislocation of the megaclasts, three distinct dating methods were implemented: (i) 14C dating of boring bivalves (Lithophaga) attached to the boulders; (ii) uranium-series (U/Th) dating of post-depositional, secondary calcitic flowstone at the underside of the boulders; and (iii) surface exposure dating of overturned boulders via 36Cl concentration measurements in corals. The three 14C datings yield age estimates >37 ka, i.e. most probably beyond the applicability of the method, which sheds doubt on the usefulness of this

  15. Cretaceous joints in southeastern Canada: dating calcite-filled fractures

    NASA Astrophysics Data System (ADS)

    Schneider, David; Spalding, Jennifer; Gautheron, Cécile; Sarda, Philippe; Davis, Donald; Petts, Duane

    2017-04-01

    To resolve the timing of brittle tectonism is a challenge since the classical chronometers required for analyses are not often in equilibrium with the surrounding material or simply absent. In this study, we propose to couple LA-ICP-MS U-Pb and (U-Th)/He dating with geochemical proxies in vein calcite to tackle this dilemma. We examined intracratonic Middle Ordovician limestone bedrock that overlies Mesoproterozoic crystalline basement, which are cut by NE-trending fault zones that have historic M4-5 earthquakes along their trace. E-W to NE-SW vertical joint sets, the relatively youngest stress recorded in the bedrock, possess 1-7 mm thick calcite veins that seal fractures or coat fracture surfaces. The veins possess intragranular calcite that are lined with fine-grained calcite along the vein margin and can exhibit µm- to mm-scale offset (e.g. displaced fossil fragments in host rock). Calcite d18O and d13C values are analogous to the bulk composition of Middle to Late Ordovician limestones, and suggest vein formation from a source dominated by connate fluids. The calcite contain trails of fluid inclusions commonly along fractures, and 3He/4He analyses indicate a primitive, deep fluid signature (R/Ra: 0.5-2.7). Trace element geochemistry of the calcite is highly variable, generally following the elevated HREE and lower LREE of continental crust trends but individual crystals from a single vein may vary by three orders of magnitude. LA-ICP-MS geochemical traverse across veins show elevated concentrations along (sub)grain boundaries and the vein-host rock contact. Despite abundant helium concentrations, (U-Th)/He dating was unsuccessful yielding highly dispersed dates likely from excess helium derived from the fluid inclusions. However, LA-ICP-MS U-Pb dating on calcite separated from the veins yielded model ages of 110.7 ± 6.8 Ma (MSWD: 0.53; n: 16) to 81.4 ± 8.3 Ma (MSWD: 2.6; n: 17). Since all veins are from the same ENE-trend, we regressed all the calcite dates

  16. U-Pb ID-TIMS zircon ages of TTG gneisses of the Aravalli Craton of India

    NASA Astrophysics Data System (ADS)

    Chauhan, Hiredya; Saikia, Ashima; Kaulina, Tatiana; Bayanova, Tamara; Ahmad, Talat

    2015-04-01

    zircon types from UD-16 sample yield a U-Pb discordant age of 2680±30 Ma. Two zircon fractions from UD-17 sample show discordant 207Pb/206Pb ages of 2506 and 2577 Ma. Zircons in our samples have moderate to high U contents (180-770 ppm) with low Th/U ratios (0.2-0.5) in the sample UD-16, characteristic for magmatic zircons from TTG rocks. Thus the obtained age of 2680±30 Ma is interpreted as an age of magmatic crystallization of tonalites. Gopalan, K. et al., (1990): Precambrian Res., 48, 287-297. Ludwig, K.R. (1991): PBDAT program. US. Geol. Surv. Open-file report 88-542, 38 p. Ludwig, K. R. (2008): Isoplot/Ex, version 3.6, Berkeley Geochronology Center, Special Publication no. 4. Upadhyaya, R. et al., (1992): Current Sci., 62(2): 87-92. Wiedenbeck, M. et al., (1996): Chem Geol. 129: 325-340.

  17. Selected fluvial monazite deposits in the southeastern United States

    USGS Publications Warehouse

    Overstreet, William C.; White, A.M.; Theobald, P.K.; Caldwell, D.W.

    1971-01-01

    Farther southwest in Georgia, around Griffin and Zebullon, along streams tributary to the Flint River in the monazite belt the flood plains are generally small and discontinuous, and only about 1 percent of the sediment is gravel. The area between Griffin, Zebullon, and the Flint River is underlain by biotite schist and biotite gneiss into which biotite granite has been intruded. Only along one stream, Flat Creek, which drains monazite-bearing granite near Zetella, Ga., are the tenors in monazite even moderately high, but a combination of thick, clayey overburden and discontinuous flood plains make the stream unsuitable for placer mining. Elsewhere in the Flint River area the heavy-mineral concentrates contain less than 1 percent monazite. The southwesternmost area in which reconnaissance of the monazite belt was conducted includes a groups of southwest-flowing tributaries to the Chattahoochee River north of Pine Mountain and near La Grange, Ga. A combination of three characteristics of the alluvium make the area unfavorable for mining: (1) the upper half of the sedimentary sequence is clay and silt, (2) there is scant gravel, and (3) much of the sand is fine grained. Monazite is associated with the Snelson Granite, schists, and gneisses north of the Towaliga fault, but even in this area the tenor of most riffle sediments is only 0.1 to 0.5 pound of monazite per cubic yard, and the average tenor of the alluvium is about 0.2 pound per cubic Yard. Rocks south of the Towaliga fault contain scant monazite. The monazite-bearing area in the drainage basin of the Chattahoochee River has no monazite placers. Evidence from the areas on the Flint and Chattahoochee Rivers shows that streams in western Georgia are a much poorer source of monazite than streams farther to the northeast in Georgia, South Carolina, and North Carolina. Also, the northeastern part of the belt in the drainage basins of the Yadkin and Dan Rivers is a poorer source for monazite than the area between

  18. M sub shell X-ray emission cross section measurements for Pt, Au, Hg, Pb, Th and U at 8 and 10 keV synchrotron photons

    NASA Astrophysics Data System (ADS)

    Kaur, Gurpreet; Gupta, Sheenu; Tiwari, M. K.; Mittal, Raj

    2014-02-01

    M sub shell X-ray emission cross sections of Pt, Au, Hg, Pb, Th and U at 8 and 10 keV photon energies have been determined with linearly polarized photon beam from Indus-2 synchrotron source. The measured cross sections have been reported for the first time and were used to check the available theoretical Dirac-Hartree-Slater (DHS) and Dirac-Fock (DF) values reported in literature and also the presently derived Non Relativistic Hartree-Slater (NRHS), DF and DHS values for Mξ, Mδ, Mα, Mβ, Mγ, Mm1 and Mm2 group of X-rays.

  19. Zircon U-Pb dating, Hf analysis from the Horoman perdiotite -age constraint for lithospheric process, and tectonic juxtaposition of collision root zone-

    NASA Astrophysics Data System (ADS)

    Okamoto, K.; Yi, K.; Wang, K. L.; Chung, S. L.

    2017-12-01

    Hidaka metamorphic belt, Hokkaido, Japan is known as youngest arc-arc collision in the world. It ncludes the youngest granulite and the Horoman peridotite complex in the highest grade zone. Age of these rocks have been determined by various methods (K-Ar, U-Pb, Rb-Sr). However, the age of Horoman peridotite complex has not been determined yet. Only Yoshikawa et al 1993) reported the cooling age of the complex as 23 Ma according to whole rock Rb-Sr isochron. This study has performed U-Pb dating of zircons from the Horoman peridotite, and from the paragneiss surrounding the peridotite complex in order to determine the intrusive age of the Horoman peridotite complex into the lower crustal conditions. Several zircon grains were separated from the peridotite. All zircons are homogeneous exhibiting different age group; 267-278 Ma, 33-40 Ma and 18-20 Ma. Hf isotope analysis indicates that the 267-278 Ma is juvenile age and other two are recycled. As a result of this measurement, rims of the zircons from the gneisses show that 238U-206Pb ages are 20 Ma and detrital cores are ranging from 580-510 Ma, 60-50 Ma, 46-40 Ma and 27 Ma. The rim ages are from the gneiss suffered amphibolite facies and granulite faices, and there is a consistancy with zircon rim ages (19 Ma) from the granulite (Kemp et al 2007, Usuki et al 2006 and so on). That is, granulite faices metamorphism was coeval to regional metamorphism in the lower crust at 20 Ma. The zircon ages from the peridotite was probably related to local hydration related to precipitation of phlogopite at 20 Ma, I type magma infiltration at 40 Ma and lithosphere formation at 270 Ma. It is considered that the Horoman peridotite complex was part of the lithosphere at 270 Ma, and the joined as subarc mantle prior to I type magma activity at 40 Ma, aud suffered local hydration and regional metamorphism at 20 Ma. Ref. Kemp, A.I.S., et al., 2007, Geology, 35, 807-810; Usuki, T. et al, 2006, Island Arc, 14, 503-516.

  20. High-precision ID-TIMS zircon U-Pb geochronology using new 1013 Ohm resistors

    NASA Astrophysics Data System (ADS)

    Von Quadt, A.; Buret, Y.; Large, S.; Peytcheva, I.; Trinquier, A.; Wotzlaw, J. F.

    2015-12-01

    Faraday cups equipped with high gain amplifiers provide a means to measure small ion beams in static mode without the limited linear range of ion counting systems. We tested the application of newly available 1013 Ohm resistors to ID-TIMS zircon U-Pb geochronology using a range of natural and synthetic reference materials. The TritonPlus-RPQ at the Institute of Geochemistry and Petrology, ETH Zurich, is equipped with five new 1013 Ohm resistors and one MasCom secondary electron multiplier, allowing to measure the 202-204-205-206-207-208Pb masses in static mode. U is measured subsequently as U-oxide (265-267-270UO2) during a second step, also in static Faraday mode. The gain calibration of the 1013 Ohm resistors was performed using the procedure of Trinquier (2014), with 144Nd-146Nd being measured using 1011 Ohm resistor and 142-143-145-148-150Nd being measured using 1013 Ohm resitors (Trinquier, 2014; Koornneef et al., 2014). Standard deviations of the noise in all five new 1013 Ohm resistors are lower than 5.0 x 10-6 over a 6 month period, with no shift occurring over this time interval. This new detector set-up was tested by analyzing natural zircon standard materials and synthetic U/Pb solutions (www.earthime.org), ranging in age from ~2 Ma to ~600 Ma. All natural zircon standards were chemically abraded (Mattinson, 2005) and all samples were spiked with the ET2535 tracer solution. U-Pb dates obtained using the static measurement routine are compared to measurements employing dynamic peak jumping routines on the MasCom multiplier. This study illustrates the benefits and current limitations of using high gain amplifiers to measure small ion beams for zircon U-Pb geochronology compared to conventional dynamic ion counting techniques. Mattinson, J.M. (2005) Chemical Geology 220:47-66; Trinquier, A. (2014) Application Note 30281; Koornneef, J. et al (2014) Analytica Chimica Acta 819:49-55.

  1. Ancient Pb and Ti mobilization revealed by Scanning Ion Imaging

    NASA Astrophysics Data System (ADS)

    Kusiak, Monika A.; Whitehouse, Martin J.; Wilde, Simon A.

    2014-05-01

    Zircons from strongly layered early Archean ortho- and paragneisses in ultra-high temperature (UHT) metamorphic rocks of the Napier Complex, Enderby Land, East Antarctica are characterized by complex U-Th-Pb systematics [1,2,3]. A large number of zircons from three samples, Gage Ridge, Mount Sones and Dallwitz Nunatak, are reversely discordant (U/Pb ages older than 207Pb/206Pb ages) with the oldest date of 3.9 Ga [4] (for the grain from Gage Ridge orthogneiss). To further investigate this process, we utilized a novel high spatial resolution Scanning Ion Imaging technique on the CAMECA IMS 1280 at the Natural History Museum in Stockholm. Areas of 70 μm x 70 μm were selected for imaging in mono- and multicollection modes using a ~2 μm rastered primary beam to map out the distribution of 48Ti, 89Y, 180Hf, 232Th, 238U, 204Pb, 206Pb and 207Pb. The ion maps reveal variable distribution of certain elements within analysed grains that can be compared to their CL response. Yttrium, together with U and Th, exhibits zonation visible on the CL images, Hf shows expected minimal variation. Unusual patchiness is visible in the map for Ti and Pb distribution. The bright patches with enhanced signal do not correspond to any zones or to crystal imperfections (e.g. cracks). The presence of patchy titanium is likely to affect Ti-in-zircon thermometry, and patchy Pb affecting 207Pb/206Pb ages, usually considered as more robust for Archean zircons. Using the WinImage program, we produced 207Pb/206Pb ratio maps that allow calculation of 207Pb/206Pb ages for spots of any size within the frame of the picture and at any time after data collection. This provides a new and unique method for obtaining age information from zircon. These maps show areas of enhanced brightness where the 207Pb/206Pb ratio is higher and demonstrate that within these small areas (μm scale) the apparent 207Pb/206Pb age is older, in some of these patches even > 4 Ga. These data are a result of ancient Pb

  2. Experience from a (U-Th)/He thermochronology CAREER grant

    NASA Astrophysics Data System (ADS)

    Reiners, P. W.

    2011-12-01

    incorporate outreach is simply to open one's lab to the community to provide basic but valuable analyses. In my case this was routine (U-Th)/He dating for tectonic and geomorphic studies. This requires significant commitment to training and analytical reliability, but also provides broad scientific enrichment to the lab. In addition to a huge number of rocks-in-the-mailbox users, during the grant our lab hosted >50 visiting users from >35 institutions, generating thousands of analyses for outside users alone. But simply opening one's lab is not particularly distinctive outreach. A more important and consuming initiative was our summer workshops on thermochronology. These featured teaching and a fieldtrip but, most importantly, the chance for 8 or 9 visiting students to analyze as many (U-Th)/He (and recently, with help from colleagues, U/Pb and FT) dates as they could cram into a two-week period, interpret them, and present their results. The high-intensity workshops generated large amounts of data, many meeting abstracts, a few papers, valuable collaborations with advisors, and rewarding experiences with diverse students. They require a lot of time and effort, including stress of insuring continuous smooth analytical performance. One nugget of experience from these is that they are more rewarding when centered on a theme (e.g., Antarctichron 2011).

  3. Oxygen diffusion in monazite

    NASA Astrophysics Data System (ADS)

    Cherniak, D. J.; Zhang, X. Y.; Nakamura, M.; Watson, E. B.

    2004-09-01

    We report measurements of oxygen diffusion in natural monazites under both dry, 1-atm conditions and hydrothermal conditions. For dry experiments, 18O-enriched CePO4 powder and monazite crystals were sealed in Ag-Pd capsules with a solid buffer (to buffer at NNO) and annealed in 1-atm furnaces. Hydrothermal runs were conducted in cold-seal pressure vessels, where monazite grains were encapsulated with 18O-enriched water. Following the diffusion anneals, oxygen concentration profiles were measured with Nuclear Reaction Analysis (NRA) using the reaction 18O(p,α)15N. Over the temperature range 850-1100 °C, the Arrhenius relation determined for dry diffusion experiments on monazite is given by: Under wet conditions at 100 MPa water pressure, over the temperature range 700-880 °C, oxygen diffusion can be described by the Arrhenius relationship: Oxygen diffusion under hydrothermal conditions has a significantly lower activation energy for diffusion than under dry conditions, as has been found the case for many other minerals, both silicate and nonsilicate. Given these differences in activation energies, the differences between dry and wet diffusion rates increase with lower temperatures; for example, at 600 °C, dry diffusion will be more than 4 orders of magnitude slower than diffusion under hydrothermal conditions. These disparate diffusivities will result in pronounced differences in the degree of retentivity of oxygen isotope signatures. For instance, under dry conditions (presumably rare in the crust) and high lower-crustal temperatures (∼800 °C), monazite cores of 70-μm radii will preserve O isotope ratios for about 500,000 years; by comparison, they would be retained at this temperature under wet conditions for about 15,000 years.

  4. Heterogeneity in the 238U/235U Ratios of Angrites.

    NASA Astrophysics Data System (ADS)

    Tissot, F.; Dauphas, N.; Grove, T. L.

    2016-12-01

    Angrites are differentiated meteorites of basaltic composition, of either volcanic or plutonic origin, that display minimal post-crystallization alteration, metamorphism, shock or impact brecciation. Because quenched angrites cooled very rapidly, all radiochronometric systems closed simultaneously in these samples. Quenched angrites are thus often used as anchors for cross-calibrating short-lived dating methods (e.g., 26Al-26Mg) and the absolute dating techniques (e.g, Pb-Pb). Due to the constancy of the 238U/235U ratio in natural samples, Pb-Pb ages have long been calculated using a "consensus" 238U/235U ratio, but the discovery of resolvable variations in the 238U/235U ratio of natural samples, means that the U isotopic composition of the material to date also has to be determined in order to obtain high-precision Pb-Pb ages. We set out (a) to measure at high-precision the 238U/235U ratio of a large array of angrites to correct their Pb-Pb ages, and (b) to identify whether all angrites have a similar U isotopic composition, and, if not, what were the processes responsible for this variability. Recently, Brennecka & Wadhwa (2012) suggested that the angrite-parent body had a homogeneous 238U/235U ratio. They reached this conclusion partly because they propagated the uncertainties of the U isotopic composition of the various U double spikes that they used onto the final 238U/235U ratio the sample. Because this error is systematic (i.e., it affects all samples similarly), differences in the δ238U values of samples corrected by the same double spike are better known than one would be led to believe if uncertainties on the spike composition are propagated. At the conference, we will present the results of the high-precision U isotope analyses for six angrite samples: NWA 4590, NWA 4801, NWA 6291, Angra dos Reis, D'Orbigny, and Sahara 99555. We will show that there is some heterogeneity in the δ238U values of the angrites and will discuss the possible processes by

  5. Standard Materials for Microbeam Analysis of Lanthanides and Actinides

    NASA Astrophysics Data System (ADS)

    Ellis, I.; Gorton, M.; Rucklidge, J. C.

    2010-12-01

    Traces of Th and U in naturally-occuring minerals monazite, xenotime and zircon are used for dating host rocks. Natural variations of actinide concentrations in some rock formations are well documented. Microbeam techniques perform dating in-situ where grains of indicator minerals are left intact in thin sections. Separated individual grains of these minerals are also routinely dated by Pb-isotope mass spectrometry. Ideal calibration materials will be compatible with multiple techniques. Quantitative analysis of low levels of lanthanides (REE), U, Th and Pb found in natural minerals requires standards containing similar concentrations of these elements. The ideal low-level standard suite will have materials with each REE cation present below 5%, similar to natural rare-earth phosphate minerals. In contrast, REE orthophosphates LnPO4 have cation concentrations from 59 to 64%, and ultraphosphates LnP5O14 from 27% to 32%. The concentrations of U and Pb must also be in the 1% range in the host REE phosphate. There are two competing limits to the synthesis of crystals with multiple cations in the REE sites. The crystal structure limits potential cation mixtures to selections within groups (La,Ce, Pr, Nd, Sm, Eu), (Gd, Tb, Dy, Ho), and (Er, Tm,Yb, Lu, Y). Complex L X-ray spectra limit the use of contiguous REE in a single material. There are two general synthetic routes for the preparation of lanthanide/actinide standard materials for beam analysis and dating. Lanthanide orthophosphates (LnPO4) are crystallized from lead-free heterogeneous fluxes; oligomers (metaphosphates LnP3O9 and ultraphosphates LnP5O14) are formed by condensation of phosphoric acid in the presence of cations. All of these trivalent lanthanide phosphate crystal structures are hosts for Th+4 and U+4, and in synthetic materals, Ca+2 is used for charge compensation. Our work focuses on the preparation of mixed-cation lanthanide metaphosphates and ultraphosphates. The solvent (essentially P2O5) provides

  6. U-Pb Data On Apatites With Common Lead Correction : Exemples From The Scottish Caledonides

    NASA Astrophysics Data System (ADS)

    Jewison, E.; Deloule, E.; Villeneuve, J.; Bellahsen, N.; Labrousse, L.; Rosenberg, C.; Pik, R.; Chew, D.

    2017-12-01

    Apatite is a widely used mineral in low-temperature thermochronology (U-Th/He and AFT). The use of apatite in U-Pb geochronology has a great potential, given its closure temperature around 450°C, for orogen thermostructural evolution studies. However, since apatite can accumulate significant amount of initial Pb in its structure, its use can be hindered by the lack of 204 Pb estimations. To work around this, two options are commonly used : either use a ploting sytem that does not require corrected ratios, or use a proxy to estimate 204Pb and use it to correct the ratios. In this study we use a SIMS to mesure 204Pb in order to compare Tera-Wasserburg diagram and corrected ages to examine the cooling pattern in the northern Highlands of Scotland. The Highlands is an extensively studied caledonian collision wedge which results from the closure of the Iapétus Ocean during the Orodivician-Silurian. Two orogenic events are related to this closing, the grampian event (480-460Ma) and the scandian event (435-415 Ma) that culminated in the stacking of major ductile thrusts. The thermal history of thoses nappes are hence complex and the cooling pattern poorly constrained. Corrected apatite U-Pb ages provide new constrains on ductile wedge building and improve our understanding of mid to lower-crustal deformation and orogenic exhumation. Thoses corrected ages yield equivalent errors and mean ages from the classic method. Those data suggest a global cooling younger than previously thought and a sequence departing from a simple forward sequence. We thus present a refined thermal evolution and conceptualize a model of ductile wedge evolution.

  7. Mass-spectrometric mining of Hadean zircons by automated SHRIMP multi-collector and single-collector U/Pb zircon age dating: The first 100,000 grains

    NASA Astrophysics Data System (ADS)

    Holden, Peter; Lanc, Peter; Ireland, Trevor R.; Harrison, T. Mark; Foster, John J.; Bruce, Zane

    2009-09-01

    The identification and retrieval of a large population of ancient zircons (>4 Ga; Hadean) is of utmost priority if models of the early evolution of Earth are to be rigorously tested. We have developed a rapid and accurate U-Pb zircon age determination protocol utilizing a fully automated multi-collector ion microprobe, the ANU SHRIMP II, to screen and date these zircons. Unattended data acquisition relies on the calibration of a digitized sample map to the Sensitive High Resolution Ion MicroProbe (SHRIMP) sample-stage co-ordinate system. High precision positioning of individual grains can be produced through optical image processing of a specified mount location. The focal position of the mount can be optimized through a correlation between secondary-ion steering and the spot position on the target. For the Hadean zircon project, sample mounts are photographed and sample locations (normally grain centers) are determined off-line. The sample is loaded, reference points calibrated, and the target positions are then visited sequentially. In SHRIMP II multiple-collector mode, zircons are initially screened (ca. 5 s data acquisition) through their 204Pb corrected 207Pb/206Pb ratio; suitable candidates are then analyzed in a longer routine to obtain better measurement statistics, U/Pb, and concentration data. In SHRIMP I and SHRIMP RG, we have incorporated the automated analysis protocol to single-collector measurements. These routines have been used to analyze over 100,000 zircons from the Jack Hills quartzite. Of these, ca. 7%, have an age greater than 3.8 Ga, the oldest grain being 4372 +/- 6 Ma (2[sigma]), and this age is part of a group of analyses around 4350 Ma which we interpret as the age when continental crust first began to coalesce in this region. In multi-collector mode, the analytical time taken for a single mount with 400 zircons is approximately 6 h; whereas in single-collector mode, the analytical time is ca. 17 h. With this productivity, we can produce

  8. Inverted Apatite (U-Th)/He and Fission-track Dates from the Rae craton, Baffin Island, Canada and Implications for Apatite Radiation Damage-He Diffusivity Models

    NASA Astrophysics Data System (ADS)

    Ault, A. K.; Reiners, P. W.; Thomson, S. N.; Miller, G. H.

    2015-12-01

    Coupled apatite (U-Th)/He and fission-track (AFT) thermochronology data from the same sample can be used to decipher complex low temperature thermal histories and evaluate compatibility between these two methods. Existing apatite He damage-diffusivity models parameterize radiation damage annealing as fission-track annealing and yield inverted apatite He and AFT dates for samples with prolonged residence in the He partial retention zone. Apatite chemistry also impacts radiation damage and fission-track annealing, temperature sensitivity, and dates in both systems. We present inverted apatite He and AFT dates from the Rae craton, Baffin Island, Canada, that cannot be explained by apatite chemistry or existing damage-diffusivity and fission track models. Apatite He dates from 34 individual analyses from 6 samples range from 237 ± 44 Ma to 511 ± 25 Ma and collectively define a positive date-eU relationship. AFT dates from these same samples are 238 ± 15 Ma to 350 ± 20 Ma. These dates and associated track length data are inversely correlated and define the left segment of a boomerang diagram. Three of the six samples with 20-90 ppm eU apatite grains yield apatite He and AFT dates inverted by 300 million years. These samples have average apatite Cl chemistry of ≤0.02 wt.%, with no correlation between Cl content and Dpar. Thermal history simulations using geologic constraints, an apatite He radiation damage accumulation and annealing model, apatite He dates with the range of eU values, and AFT date and track length data, do not yield any viable time-temperature paths. Apatite He and AFT data modeled separately predict thermal histories with Paleozoic-Mesozoic peaks reheating temperatures differing by ≥15 °C. By modifying the parameter controlling damage annealing (Rmr0) from the canonical 0.83 to 0.5-0.6, forward models reproduce the apatite He date-eU correlation and AFT dates with a common thermal history. Results imply apatite radiation damage anneals at

  9. Feldspar palaeo-isochrons from early Archaean TTGs: Pb-isotope evidence for a high U/Pb terrestrial Hadean crust

    NASA Astrophysics Data System (ADS)

    Kamber, B. S.; Whitehouse, M. J.; Moorbath, S.; Collerson, K. D.

    2001-12-01

    Feldspar lead-isotope data for 22 early Archaean (3.80-3.82 Ga) tonalitic gneisses from an area south of the Isua greenstone belt (IGB),West Greenland, define a steep linear trend in common Pb-isotope space with an apparent age of 4480+/-77 Ma. Feldspars from interleaved amphibolites yield a similar array corresponding to a date of 4455+/-540 Ma. These regression lines are palaeo-isochrons that formed during feldspar-whole rock Pb-isotope homogenisation a long time (1.8 Ga) after rock formation but confirm the extreme antiquity (3.81 Ga) of the gneissic protoliths [1; this study]. Unlike their whole-rock counterparts, feldspar palaeo-isochrons are immune to rotational effects caused by the vagaries of U/Pb fractionation. Hence, comparison of their intercept with mantle Pb-isotope evolution models yields meaningful information regarding the source history of the magmatic precursors. The locus of intersection between the palaeo-isochrons and terrestrial mantle Pb-isotope evolution lines shows that the gneissic precursors of these 3.81 Ga gneisses were derived from a source with a substantially higher time-integrated U/Pb ratio than the mantle. Similar requirements for a high U/Pb source have been found for IGB BIF [2], IGB carbonate [3], and particularly IGB galenas [4]. Significantly, a single high U/Pb source that separated from the MORB-source mantle at ca. 4.3 Ga with a 238U/204Pb of ca. 10.5 provides a good fit to all these observations. In contrast to many previous models based on Nd and Hf-isotope evidence we propose that this reservoir was not a mantle source but the Hadean basaltic crust which, in the absence of an operating subduction process, encased the early Earth. Differentiation of the early high U/Pb basaltic crust could have occurred in response to gravitational sinking of cold mantle material or meteorite impact, and produced zircon-bearing magmatic rocks. The subchondritic Hf-isotope ratios of ca. 3.8 Ga zircons support this model [5] provided that

  10. Pan-Africa/Pan-Brazilian detrital zircons in Lower Palaeozoic schists of SW Norway - enigmatic detrital zircon U-Pb ages

    NASA Astrophysics Data System (ADS)

    Zimmermann, Udo; Bjørheim, Maren; Clark, Chris

    2013-04-01

    We present Sensitive High Resolution Ion Microprobe (SHRIMP) U-Pb zircon age data from metasedimentary rocks (schists and quartzites) located in the town of Stavanger (SW Norway). The metasedimentary sequence is composed of schists, medium grained quartz-rich metawackes and quartzites. Quartzites and meta-quartz-wackes exhibit a mylonitic fabric with newly grown fine-grained muscovite defining the fabric. Accessory minerals are zircon, allanite, detrital apatite, monazite, ilmenite, rutile and zircon. The schists are dark and dominated by quartz and feldspar in a fine chloritic and silica-rich matrix and represent the dominant lithology of the region. While quartzites and metawackes show typical geochemical characteristics for strongly reworked rocks, the schists have very low Zr/Sc and Th/Sc ratios below 0.9 and point together with other trace element ratios (La/Sc, Ti/Zr) to the strong influence of less fractionated, mafic, sources in the detritus, possibly arc derived. U-Pb ages of detrital zircon from quartzites range between 740 to 1800 Ma. There is a defined population at 1135 and 1010 Ma tentatively correlated with the Sveconorwegian orogeny. A second population at ~1450 Ma that can be related to a tectono-magmatic event during the Earliest Mesoproterozoic, also recorded in Oslo, southern Sweden and Bornholm, mapped along the proposed southern margin of Baltica. Other detrital zircons record ages between 1586 - 1664 Ma that are not related to the latter event. The oldest U-Pb detrital zircon grain age was 1796 Ma and is potentially associated with the terminal phase of the Svecofennian orogeny. Detrital zircons from the associated schists do show a similar abundance of main age clusters but the oldest found zircons dates to 2013 Ma while the maximum depositional age could be determined by grains of Cambrian to even Ordovician ages with a large 1 sigma error, as such that we rather propose a Cambrian maximum depositional age. It is possible to speculate that

  11. A search for thermal excursions from ancient extraterrestrial impacts using Hadean zircon Ti-U-Th-Pb depth profiles.

    PubMed

    Abbott, Sunshine S; Harrison, T Mark; Schmitt, Axel K; Mojzsis, Stephen J

    2012-08-21

    Few terrestrial localities preserve more than a trace lithic record prior to ca. 3.8 Ga greatly limiting our understanding of the first 700 Ma of Earth history, a period inferred to have included a spike in the bolide flux to the inner solar system at ca. 3.85-3.95 Ga (the Late Heavy Bombardment, LHB). An accessible record of this era may be found in Hadean detrital zircons from the Jack Hills, Western Australia, in the form of μm-scale epitaxial overgrowths. By comparing crystallization temperatures of pre-3.8 Ga zircon overgrowths to the archive of zircon temperature spectra, it should, in principle, be possible to identify a distinctive impact signature. We have developed Ti-U-Th-Pb ion microprobe depth profiling to obtain age and temperature information within these zircon overgrowths and undertaken a feasibility study of its possible use in identifying impact events. Of eight grains profiled in this fashion, four have overgrowths of LHB-era age. Age vs. temperature profiles reveal a period between ca. 3.85-3.95 Ga (i.e., LHB era) characterized by significantly higher temperatures (approximately 840-875 °C) than do older or younger zircons or zircon domains (approximately 630-750 °C). However, temperatures approaching 900 °C can result in Pb isotopic exchange rendering interpretation of these profiles nonunique. Coupled age-temperature depth profiling shows promise in this role, and the preliminary data we report could represent the first terrestrial evidence for impact-related heating during the LHB.

  12. Contemporaneous migmitization and granite emplacement during regional metamorphism: Evidence for mid-crustal contribution to the batholiths of the Arabian-Nubian Shield

    NASA Astrophysics Data System (ADS)

    Elisha, B.; Katzir, Y.; Kylander-Clark, A. R.

    2017-12-01

    Collision-related granitoid batholiths, like those of the Hercynian and Himalayan orogens, are mostly fed by magma derived from meta-sedimentary sources. However, in the late Neoproterozoic calc-alkaline batholiths of the Arabian Nubian Shield (ANS), which constitutes the northern half of the East African orogen, sedimentary contribution is obscured by the juvenile character of the crust and the scarcity of migmatites. Here we use paired in-situ measurements of U-Th-Pb isotope ratios and REE contents of monazite and xenotime by LASS to demonstrate direct linkage between granites and migmatites in the northernmost ANS. Our results indicate a single prolonged period of monazite growth, 640-600 Ma, in metapelites, migmatites and peraluminous granites of the Abu-Barqa (SW Jordan), Roded (S Israel) and Taba-Nuweiba (Sinai, Egypt) metamorphic suites. Distribution of monazite dates and age zoning in single monazite grains in migmatites suggest that peak thermal conditions and partial melting prevailed for 10 Myr, from 620 to 610 Ma. REE patterns of monazite are well correlated with age, recording garnet growth and garnet breakdown in association with the prograde and retrograde stages of the melting reactions, respectively. Xenotime dates (n=40) cluster at 600-580 Ma recording retrogression to greenschist-facies conditions as garnet continues to destabilize. Phase equilibrium modelling and mineral thermobarometry illustrate that melting occurred either by dehydration of muscovite or by water-fluxed melting at 650-680° and 5-7 kbar. The expected melt production is 8-14%, allowing melt connectivity network to form and eventually melt extraction and segregation. The crystallization time of peritectic melt retained in dia- and metataxites overlaps the emplacement time of a vast calc-alkaline granitic flux throughout the northern ANS, which was previously considered post-collisional. Similar monazite ages ( 620 Ma) of the amphilolite-facies non-anatectic Elat schist indicate

  13. Enrichment of Thorium (Th) and Lead (Pb) in the early Galaxy

    NASA Astrophysics Data System (ADS)

    Aoki, Wako; Honda, Satoshi

    2010-03-01

    We have been determining abundances of Th, Pb and other neutron-capture elements in metal-deficient cool giant stars to constrain the enrichment of heavy elements by the r- and s-processes. Our current sample covers the metallicity range between [Fe/H] = -2.5 and -1.0. (1) The abundance ratios of Pb/Fe and Pb/Eu of most of our stars are approximately constant, and no increase of these ratios with increasing metallicity is found. This result suggests that the Pb abundances of our sample are determined by the r-process with no or little contribution of the s-process. (2) The Th/Eu abundance ratios of our sample show no significant scatter, and the average is lower by 0.2 dex in the logarithmic scale than the solar-system value. This result indicates that the actinides production by the r-process does not show large dispersion, even though r-process models suggest high sensitivity of the actinides production to the nucleosynthesis environment.

  14. The timing of tertiary metamorphism and deformation in the Albion-Raft River-Grouse Creek metamorphic core complex, Utah and Idaho

    USGS Publications Warehouse

    Strickland, A.; Miller, E.L.; Wooden, J.L.

    2011-01-01

    The Albion-Raft River-Grouse Creek metamorphic core complex of southern Idaho and northern Utah exposes 2.56-Ga orthogneisses and Neoproterozoic metasedimentary rocks that were intruded by 32-25-Ma granitic plutons. Pluton emplacement was contemporaneous with peak metamorphism, ductile thinning of the country rocks, and top-to-thewest, normal-sense shear along the Middle Mountain shear zone. Monazite and zircon from an attenuated stratigraphic section in the Middle Mountain were dated with U-Pb, using a SHRIMP-RG (reverse geometry) ion microprobe. Zircons from the deformed Archean gneiss preserve a crystallization age of 2532 ?? 33 Ma, while monazites range from 32.6 ?? 0.6 to 27.1 ?? 0.6 Ma. In the schist of the Upper Narrows, detrital zircons lack metamorphic overgrowths, and monazites produced discordant U-Pb ages that range from 52.8 ?? 0.6 to 37.5 ?? 0.3 Ma. From the structurally and stratigraphically highest unit sampled, the schist of Stevens Spring, narrow metamorphic rims on detrital zircons yield ages from 140-110 Ma, and monazite grains contained cores that yield an age of 141 ??2 Ma, whereas rims and some whole grains ranged from 35.5 ?? 0.5 to 30.0 ?? 0.4 Ma. A boudinaged pegmatite exposed in Basin Creek is deformed by the Middle Mountains shear zone and yields a monazite age of 27.6 ?? 0.2 Ma. We interpret these data to indicate two periods of monazite and metamorphic zircon growth: a poorly preserved Early Cretaceous period (???140 Ma) that is strongly overprinted by Oligocene metamorphism (???32-27 Ma) related to regional plutonism and extension. ?? 2011 by The University of Chicago.

  15. A comparison of lead pollution record in Sphagnum peat with known historical Pb emission rates in the British Isles and the Czech Republic

    NASA Astrophysics Data System (ADS)

    Novak, Martin; Erel, Yigal; Zemanova, Leona; Bottrell, Simon H.; Adamova, Marie

    Vertical Pb concentration gradients and isotope ratios ( 206Pb/ 207Pb, 208Pb/ 207Pb) are reported for five 210Pb-dated Sphagnum peat profiles. The studied peat bogs are in the British Isles (Thorne Moors, England; Mull, Scotland; and Connemara, Eire) and central Europe (Ocean, northern Czech Republic; Rybarenska slat, southern Czech Republic). Both the U.K. and the Czech Republic experienced maximum Pb emissions from Ag-Pb smelting around 1880. Pb emissions from coal burning peaked in 1955 in the U.K. and in the 1980s in the Czech Republic. In both countries, use of alkyl-lead additives to gasoline resulted in large Pb emissions between 1950 and 2000. We hypothesized that peaks in Pb emissions from smelting, coal burning and gasoline burning, respectively, should be mirrored in the peat profiles. However, a more complicated pattern emerged. Maximum annual Pb accumulation rates occurred in 1870 at Ocean, 1940 at Thorne Moors, 1988 at Rybarenska slat, and 1990 at Mull and Connemara. Atmospheric Pb inputs decreased in the order Thorne Moors ≥ Ocean > Rybarenska slat > Mull > Connemara. The Ocean bog was unique in the central European region in that its maximum Pb pollution dated back to the 19th century and coincided with maximum Pb smelting at Freiberg and Pribram. In contrast, numerous previously studied sites showed no Pb accumulation maximum in the 19th century, but increasing pollution until the 1980s. It remains unclear why Ocean did not record the regional peak in Pb emissions caused by high coal and gasoline burning around 1980, while an array of nearby bogs studied previously did record the 1980 coal/gasoline peak, but no 1880 smelting peak. Mean 206Pb/ 207Pb ratios of potential pollution sources were 1.07 and 1.11 for gasoline, 1.17 and 1.17 for local ores, and 1.18 and 1.19 for coal in the U.K. and the Czech Republic, respectively. The calculated percentages of gasoline-derived Pb in peat (≤55% for the British Isles and ≤63% for the Czech Republic

  16. In-Situ U–Pb Dating of Apatite by Hiroshima-SHRIMP: Contributions to Earth and Planetary Science

    PubMed Central

    Terada, Kentaro; Sano, Yuji

    2012-01-01

    The Sensitive High Resolution Ion MicroProbe (SHRIMP) is the first ion microprobe dedicated to geological isotopic analyses, especially in-situ analyses related to the geochronology of zircon. Such a sophisticated ion probe, which can attain a high sensitivity at a high mass resolution, based on a double focusing high mass-resolution spectrometer, designed by Matsuda (1974), was constructed at the Australian National University. In 1996, such an instrument was installed at Hiroshima University and was the first SHRIMP to be installed in Japan. Since its installation, our focus has been on the in-situ U–Pb dating of the mineral apatite, as well as zircon, which is a more common U-bearing mineral. This provides the possibility for extending the use of in-situ U–Pb dating from determining the age of formation of volcanic, granitic, sedimentary and metamorphic minerals to the direct determination of the diagenetic age of fossils and/or the crystallization age of various meteorites, which can provide new insights into the thermal history on the Earth and/or the Solar System. In this paper, we review the methodology associated with in-situ apatite dating and our contribution to Earth and Planetary Science over the past 16 years. PMID:24349912

  17. A century long sedimentary record of anthropogenic lead (Pb), Pb isotopes and other trace metals in Singapore.

    PubMed

    Chen, Mengli; Boyle, Edward A; Switzer, Adam D; Gouramanis, Chris

    2016-06-01

    Reconstructing the history of metal deposition in Singapore lake sediments contributes to understanding the anthropogenic and natural metal deposition in the data-sparse Southeast Asia. To this end, we present a sedimentary record of Pb, Pb isotopes and eleven other metals (Ag, As, Ba, Cd, Co, Cr, Cu, Ni, Tl, U and Zn) from a well-dated sediment core collected near the depocenter of MacRitchie Reservoir in central Singapore. Before the 1900s, the sedimentary Pb concentration was less than 2 mg/kg for both soil and sediment, with a corresponding (206)Pb/(207)Pb of ∼1.20. The Pb concentration increased to 55 mg/kg in the 1990s, and correspondingly the (206)Pb/(207)Pb decreased to less than 1.14. The (206)Pb/(207)Pb in the core top sediment is concordant with the (206)Pb/(207)Pb signal of aerosols in Singapore and other Southeast Asian cities, suggesting that Pb in the reservoir sediment was mainly from atmospheric deposition. Using the Pb concentration in the topmost layer of sediment, the estimated atmospheric Pb flux in Singapore today is ∼1.6 × 10(-2) g/m(2) yr. The concentrations of eleven other metals preserved in the sediment were also determined. A principal component analysis showed that most of the metals exhibit an increasing trend towards 1990s with a local concentration peak in the mid-20(th) century. Copyright © 2016. Published by Elsevier Ltd.

  18. Current achievements and challenges of a multiple dating approach (14C, 230Th/U and 36Cl) to infer tsunami transport age(s) of reef-top boulders on Bonaire (Leeward Antilles)

    NASA Astrophysics Data System (ADS)

    Rixhon, Gilles; May, Simon Matthias; Engel, Max; Mechernich, Silke; Schroeder-Ritzrau, Andrea; Frank, Norbert; Fohlmeister, Jens; Boulvain, Frédéric; Dunai, Tibor; Brückner, Helmut

    2017-04-01

    The deposition of supratidal coarse-clast deposits is difficult to date, limiting their value for inferring frequency-magnitude patterns of high-energy wave events. On Bonaire (Leeward Antilles, Caribbean), these deposits form prominent landforms, and transport by one or several Holocene tsunamis is assumed at least for the largest clasts. Although a large dataset of 14C and electron spin resonance (ESR) ages is available for major coral rubble ridges and ramparts, it is still debated whether these data reflect the timing of major events, and how these datasets are biased by the reworking of coral fragments. As an attempt to overcome the current challenges for dating the dislocation of singular boulders, three distinct dating methods are implemented and compared: (i) 14C dating of boring bivalves attached to the boulders; (ii) 230Th/U dating of post-depositional, secondary calcite flowstone and subaerial microbialites at the underside of the boulders; and (iii) surface exposure dating of overturned boulders via 36Cl concentration measurements in corals. Approaches (ii) and (iii) have never been applied to coastal boulder deposits so far. The three 14C age estimates are older than 37 ka, i.e. most probably beyond the applicability of the method, which is attributed to post-depositional diagenetic processes, shedding doubt on the usefulness of this method in the local context. The remarkably convergent 230Th/U ages, all pointing to the Late Holocene period (1.0-1.6 ka), are minimum ages for the transport event(s). The microbialite sample yields an age of 1.23±0.23 ka and both flowstone samples are in stratigraphic order: the older (onset of carbonate precipitation) and younger flowstone layers yield ages of 1.59±0.03 and 1.23±0.03 ka, respectively. Four coral samples collected from the topside of overturned boulders yielded similar 36Cl concentration measurements. However, the computed ages are affected by large uncertainties, mostly due to the high natural

  19. Origin and evolution of multi-stage felsic melts in eastern Gangdese belt: Constraints from U-Pb zircon dating and Hf isotopic composition

    NASA Astrophysics Data System (ADS)

    Guo, Liang; Zhang, Hong-Fei; Harris, Nigel; Pan, Fa-Bin; Xu, Wang-Chun

    2011-11-01

    This integrated study of whole rock geochemistry, zircon U-Pb dating and Hf isotope composition for seven felsic rocks from the Nyingchi Complex in eastern Himalayan syntaxis has revealed a complex magmatic history for the eastern Gangdese belt. This involves multiple melt sources and mechanisms that uniquely identify the tectonic evolution of this part of the Himalayan orogen. Our U-Pb zircon dating reveals five stages of magmatic or anatectic events: 165, 81, 61, 50 and 25 Ma. The Jurassic granitic gneiss (165 Ma) exhibits εHf(t) values of + 1.4 to + 3.5. The late Cretaceous granite (81 Ma) shows variable εHf(t) values from - 0.9 to + 6.2, indicating a binary mixing between juvenile and old crustal materials. The Paleocene granodioritic gneiss (61 Ma) has εHf(t) values of + 5.4 to + 8.0, suggesting that it originated from partial melting of a juvenile crustal material. The Eocene anatexis is recorded in the leucosome, which has Hf isotopic composition similar to that of the Jurassic granite, indicating that the leucosome could be derived from partial melting of the Jurassic granite. The late Oligocene biotite granite (25 Ma) shows adakitic geochemical characteristics, with Sr/Y = 49.3-56.6. The presence of a large number of inherited zircons and negative εHf(t) values suggest that it sourced from anatexis of crustal materials. In contrast to the Gangdese batholiths that are mainly derived from juvenile crustal source in central Tibet, the old crustal materials play an important role for the magma generation of the felsic rocks, suggesting the existence of a crustal basement in the eastern Gangdese belt. These correspond to specific magmatic evolution stages during the convergence between India and Asia. The middle Jurassic granitic gneiss resulted from the northward subduction of the Neo-Tethyan oceanic slab. The late Cretaceous magmatism is probably related to the ocean ridge subduction. The Paleocene-Eocene magmatism, metamorphism and anatexis are

  20. Automating U-Pb IDTIMS data reduction and reporting: Cyberinfrastructure meets geochronology

    NASA Astrophysics Data System (ADS)

    Bowring, J. F.; McLean, N.; Walker, J. D.; Ash, J. M.

    2009-12-01

    We demonstrate the efficacy of an interdisciplinary effort between software engineers and geochemists to produce working cyberinfrastructure for geochronology. This collaboration between CIRDLES, EARTHTIME and EarthChem has produced the software programs Tripoli and U-Pb_Redux as the cyber-backbone for the ID-TIMS community. This initiative incorporates shared isotopic tracers, data-reduction algorithms and the archiving and retrieval of data and results. The resulting system facilitates detailed inter-laboratory comparison and a new generation of cooperative science. The resolving power of geochronological data in the earth sciences is dependent on the precision and accuracy of many isotopic measurements and corrections. Recent advances in U-Pb geochronology have reinvigorated its application to problems such as precise timescale calibration, processes of crustal evolution, and early solar system dynamics. This project provides a heretofore missing common data reduction protocol, thus promoting the interpretation of precise geochronology and enabling inter-laboratory comparison. U-Pb_Redux is an open-source software program that provides end-to-end support for the analysis of uranium-lead geochronological data. The system reduces raw mass spectrometer data to U-Pb dates, allows users to interpret ages from these data, and then provides for the seamless federation of the results, coming from many labs, into a community web-accessible database using standard and open techniques. This EarthChem GeoChron database depends also on keyed references to the SESAR sample database. U-Pb_Redux currently provides interactive concordia and weighted mean plots and uncertainty contribution visualizations; it produces publication-quality concordia and weighted mean plots and customizable data tables. This initiative has achieved the goal of standardizing the data elements of a complete reduction and analysis of uranium-lead data, which are expressed using extensible markup

  1. 187Re - 187Os nuclear geochronometry: age dating with permil precision

    NASA Astrophysics Data System (ADS)

    Roller, Goetz

    2016-04-01

    Recently, 187Re - 187Os nuclear geochronometry, a new dating method combining ideas of nuclear astrophysics with geochronology, has successfully been used to calculate two-point-isochron (TPI) ages for Devonian black gas shales using the isotopic signature of an r-process geochronometer as one data point in a TPI diagram [1]. Based upon a nuclear production ratio 187Re/188Os = 5.873, TPI ages were calculated for 12 SDO-1 (Devonian Ohio Shale, Appalachian Basin) aliquants, for which repeated Re-Os measurements are reported in the literature [2]. TPI ages range from 384.5 ± 2.7 Ma (187Os/188Osi = 0.29413 ± 0.00023) to 387.7 ± 2.1 Ma (187Os/188Osi = 0.29407 ± 0.00019) with a mean of 386.67 ± 1.79 Ma). The result is consistent with the isochronous age from the 12 aliquants alone (386 ± 16 Ma, 187Os/188Osi = 0.31±0.31), which is bracketed by U-Pb ages for the Belpre Ash (381.1 ± 3.3 Ma) and the Tioga Ash bed (390.0 ± 2.5 Ma) [3] from the Appalachian Basin. Hence, SDO-1 can be assigned to the Givetian stage (varcus-zone) of the Middle Devonian, close to the Eifelian/Givetian boundary (using the time-scale of [3] or [4]). If an age is calculated from an isochron diagram for the 12 aliquants including the nuclear geochronometer, a permil precision can be achieved, an interesting feature with respect to any effort towards calibrating the Geologic Timescale. Additionally, a Th/U evolution (or: Th/U-time) diagram can be plotted using U-Pb zircon age data and Th/U ratios from volcanic rocks and ashes reported in the literature [3] for specific Devonian samples from the Appalachian Basin. Since the Re-Os age obtained for SDO-1 can also be connected to its Th/U ratio, it turns out, that Th/U ratios might be helpful age indicators, as demonstrated for the Devonian using the U-Pb and Re-Os datasets. [1] Roller (2015), GSA Abstr. with Programs 47, #248-14. [2] Du Vivier et al. (2014), Earth Planet. Sci. Lett. 389, 23 - 33. [3] Tucker et al. (1998), Earth Planet. Sci. Lett

  2. P-T-t metamorphic evolution of highly deformed metapelites from the Pinkie unit of western Svalbard using quartz-in-garnet barometry, trace element thermometry, P-T-X-M diagrams and monazite in-situ dating

    NASA Astrophysics Data System (ADS)

    Kośmińska, Karolina; Spear, Frank; Majka, Jarosław

    2017-04-01

    follows: ca. 590 C at 7.5 kbar for St-bearing metapelites, 570C at 8.5 kbar for St-Ky-bearing rocks, and 630 C at 10 kbar for Ky-bearing samples. The P-T-X-M diagrams calculated using the Fortran program GIBBS were used to examine how the garnet composition varies as a function of pressure and temperature. These diagrams suggest that a decrease in temperature and increase in pressure after garnet-I growth is needed to produce garnet-II. These results together with the QuiG results for garnet-II are consistent with late garnet nucleating and growing during mylonitization at 450-500 C and 10-12 kbar; thus an anti-clockwise P-T path is proposed for the Pinkie metapelites. Three monazite populations have been distinguished based on the textural observations and chemical investigations. The first population (high Th) gives an age of 373 Ma, which represents initial monazite growth during diagenesis or under low grade conditions. The second population (highest Y) yields an age of 359 Ma, and the third population (lower Y) gives an age of 355Ma. Monazite dating results coupled with the above P-T data provide constrain the amphibolite facies metamorphism to have occurred between 359-355 Ma. This study is supported by the Fulbright Junior Advanced Research Award (to KK), NCN project No 2013/11/N/ST10/00357 and AGH grant No 11.11.140.319.

  3. Tracking the multiple-stage exhumation history and magmatic-hydrothermal events of the West Junggar region, NW China: Evidence from 40Ar/39Ar and (U-Th)/He thermochronology

    NASA Astrophysics Data System (ADS)

    Yin, Jiyuan; Chen, Wen; Xiao, Wenjiao; Long, Xiaoping; Tao, Ni; Liu, Li-Ping; Yuan, Chao; Sun, Min

    2018-06-01

    To decipher cooling events in the West Junggar region, biotite and K-feldspar 40Ar/39Ar, and zircon and apatite (U-Th)/He isotopic analyses of intrusive rocks were carried out. Previous U-Pb data showed that intrusive bodies in the Baogutu area were emplaced at 315-310 Ma. U-Pb and zircon (U-Th)/He dating results (313-241 Ma) suggest that a magmatic-hydrothermal event lasted for 72 Ma in the Baogutu area of the West Junggar region. Early-stage high temperature alteration (900-300 °C) lasted for 6-2 Ma and was followed by prolonged phyllic and argillic alteration lasting 67-63 Ma between 350 and 200 °C. Finally, slower cooling occurred between 200 and 70 °C, accompanied by post-mineralization uplift and erosion. In this study, three main episodes of relatively rapid cooling were distinguished in the West Junggar region, i.e. late Carboniferous-early Permian (307-277 Ma), middle Triassic (241-232 Ma) and early Cretaceous (145-120 Ma). The first rapid cooling during the late Carboniferous-early Permian was possibly associated with the release of magmatic heat. The middle Triassic and early Cretaceous cooling and exhumation are interpreted as a response to collision(s) between the Qiangtang and Kunlun-Qaidam or Lhasa blocks. The Cenozoic India-Eurasia collision, however, may have had little or no effect on modern tectonic reactivation of the West Junggar region.

  4. Investigation of Natural Radioactivity in a Monazite Processing Plant in Japan.

    PubMed

    Iwaoka, Kazuki; Yajima, Kazuaki; Suzuki, Toshikazu; Yonehara, Hidenori; Hosoda, Masahiro; Tokonami, Shinji; Kanda, Reiko

    2017-09-01

    Monazite is a naturally occurring radioactive material that is processed for use in a variety of domestic applications. At present, there is little information available on potential radiation doses experienced by people working with monazite. The ambient dose rate and activity concentration of natural radionuclides in raw materials, products, and dust in work sites as well as the Rn and Rn concentrations in work sites were measured in a monazite processing plant in Japan. Dose estimations for plant workers were also conducted. The activity concentration of the U series in raw materials and products for the monazite processing plant was found to be higher than the relevant values described in the International Atomic Energy Agency Safety Standards. The ambient dose rates in the raw material yard were higher than those in other work sites. Moreover, the activity concentrations of dust in the milling site were higher than those in other work sites. The Rn concentrations in all work sites were almost the same as those in regular indoor environments in Japan. The Rn concentrations in all work sites were much higher than those in regular indoor environments in Japan. The maximum value of the effective dose for workers was 0.62 mSv y, which is lower than the reference level range (1-20 mSv y) for abnormally high levels of natural background radiation published in the International Commission of Radiological Protection Publication 103.

  5. A search for thermal excursions from ancient extraterrestrial impacts using Hadean zircon Ti-U-Th-Pb depth profiles

    PubMed Central

    Abbott, Sunshine S.; Harrison, T. Mark; Schmitt, Axel K.; Mojzsis, Stephen J.

    2012-01-01

    Few terrestrial localities preserve more than a trace lithic record prior to ca. 3.8 Ga greatly limiting our understanding of the first 700 Ma of Earth history, a period inferred to have included a spike in the bolide flux to the inner solar system at ca. 3.85–3.95 Ga (the Late Heavy Bombardment, LHB). An accessible record of this era may be found in Hadean detrital zircons from the Jack Hills, Western Australia, in the form of μm-scale epitaxial overgrowths. By comparing crystallization temperatures of pre-3.8 Ga zircon overgrowths to the archive of zircon temperature spectra, it should, in principle, be possible to identify a distinctive impact signature. We have developed Ti-U-Th-Pb ion microprobe depth profiling to obtain age and temperature information within these zircon overgrowths and undertaken a feasibility study of its possible use in identifying impact events. Of eight grains profiled in this fashion, four have overgrowths of LHB-era age. Age vs. temperature profiles reveal a period between ca. 3.85–3.95 Ga (i.e., LHB era) characterized by significantly higher temperatures (approximately 840–875 °C) than do older or younger zircons or zircon domains (approximately 630–750 °C). However, temperatures approaching 900 °C can result in Pb isotopic exchange rendering interpretation of these profiles nonunique. Coupled age-temperature depth profiling shows promise in this role, and the preliminary data we report could represent the first terrestrial evidence for impact-related heating during the LHB. PMID:22869711

  6. Combined dendrochronological and radiocarbon dating of six Russian icons from the 15th-17th centuries

    NASA Astrophysics Data System (ADS)

    Dolgikh, A. V.; Matskovsky, V. V.; Voronin, K. V.; Solomina, O. N.

    2017-06-01

    The results of dendrochronological and radiocarbon dating by means of accelerator mass spectrometry (AMS) of six medieval icons, originating from northern European Russia and painted on wooden panels made from Scots pine, dated to the 15th to 17th centuries are presented. The panels of each icon were studied using dendrochronology. Five to six AMS dates were obtained for four icons. Although five icons were dendro-dated successfully, one failed to be reliably cross-dated with the existing master tree-ring chronologies and it was dated by radiocarbon wiggle-matching. Dendrochronological dating and wiggle-matching of radiocarbon dates allowed us to determine the narrow chronological intervals of icon creation.

  7. METHOD OF PROCESSING MONAZITE SAND

    DOEpatents

    Welt, M.A.; Smutz, M.

    1958-08-26

    A process is described for recovering thorium, uranium, and rare earth values from monazite sand. The monazite sand is first digested with sulfuric acid and the resulting "monazite sulfate" solution is adjusted to a pH of between 0.4 and 3.0, and oxalate anions are added causing precipitation of the thorium and the rare earths as the oxalates. The oxalate precipitate is separated from the uranium containing supernatant solution, and is dried and calcined to the oxides. The thorium and rare earth oxides are then dissolved in nitric acid and the solution is contacted with tribntyl phosphate whereby an organic extract phase containing the cerium and thorium values is obtained, together with an aqueous raffinate containing the other rare earth values. The organic phase is then separated from the aqueous raffinate and the cerium and thorium are back extracted with an aqueous medium.

  8. U-Pb systematics of zircon and titanite from the Gardnos impact structure, Norway: Evidence for impact at 546 Ma?

    NASA Astrophysics Data System (ADS)

    Kalleson, E.; Corfu, F.; Dypvik, H.

    2009-05-01

    Zircon and titanite were investigated in impactites of the Gardnos structure, a crater formed in Sveconorwegian (ca. 1 Ga) crust, which was then overridden in the Devonian by Caledonian nappes. Observed deformation features in zircons are granular texture, planar microstructures, and likely the incorporation of organic carbon during impact causing black staining of the zircon grains. The grains were studied by scanning electron microscopy (SEM) and cathode luminescence (CL) and dated by U-Pb isotope dilution - thermo-ionization mass spectrometry (ID-TIMS). Zircon grains without impact related features have U-Pb data showing moderate discordance (5-13%) and indicating formation ages mostly in the range of 1600-1000 Ma, except detrital zircon ages as old as >2481 Ma, reflecting the diversity of target rocks in the area. Titanite with concordant ages of 995-999 Ma dates metamorphism during final juxtaposition of the Telemarkia on the Idefjorden terrane to the east. Zircon grains with demonstrated or presumed shock features yield highly discordant (14-40%) U-Pb data, with a majority of them plotting along an array with a lower intercept of about 340 Ma reflecting the influence of the Caledonian orogeny and recent Pb-loss. One zircon grain was totally reset at 379 Ma during late Caledonian metamorphism, which also caused local growth of new titanite. A specific group of zircon grains yields data with relatively high discordance for moderate U contents, and five of these analyses, including that of a grain with proven granular or aggregate texture, fit a discordia line with an upper intercept of 546 ± 5 Ma. These features are interpreted as indicating zircon break-down to an amorphous state during impact, with subsequent recrystallization into microcrystalline aggregates causing extensive to complete Pb loss. We further suggest that their crystallinity prevented Pb loss during the Caledonian orogeny, while the small subgrain size and increasing metamictisation allowed

  9. SHRIMP U-Pb ages of xenotime and monazite from the Spar Lake red bed-associated Cu-Ag deposit, western Montana: Implications for ore genesis

    USGS Publications Warehouse

    Aleinikoff, John N.; Hayes, Timothy S.; Evans, Karl V.; Mazdab, Frank K.; Pillers, Renee M.; Fanning, C. Mark

    2012-01-01

    Xenotime occurs as epitaxial overgrowths on detrital zircons in the Mesoproterozoic Revett Formation (Belt Supergroup) at the Spar Lake red bed-associated Cu-Ag deposit, western Montana. The deposit formed during diagenesis of Revett strata, where oxidizing metal-bearing hydrothermal fluids encountered a reducing zone. Samples for geochronology were collected from several mineral zones. Xenotime overgrowths (1–30 μm wide) were found in polished thin sections from five ore and near-ore zones (chalcocite-chlorite, bornite-calcite, galena-calcite, chalcopyrite-ankerite, and pyrite-calcite), but not in more distant zones across the region. Thirty-two in situ SHRIMP U-Pb analyses on xenotime overgrowths yield a weighted average of 207Pb/206Pb ages of 1409 ± 8 Ma, interpreted as the time of mineralization. This age is about 40 to 60 m.y. after deposition of the Revett Formation. Six other xenotime overgrowths formed during a younger event at 1304 ± 19 Ma. Several isolated grains of xenotime have 207Pb/206Pb ages in the range of 1.67 to 1.51 Ga, and thus are considered detrital in origin. Trace element data can distinguish Spar Lake xenotimes of different origins. Based on in situ SHRIMP analysis, detrital xenotime has heavy rare earth elements-enriched patterns similar to those of igneous xenotime, whereas xenotime overgrowths of inferred hydrothermal origin have hump-shaped (i.e., middle rare earth elements-enriched) patterns. The two ages of hydrothermal xenotime can be distinguished by slightly different rare earth elements patterns. In addition, 1409 Ma xenotime overgrowths have higher Eu and Gd contents than the 1304 Ma overgrowths. Most xenotime overgrowths from the Spar Lake deposit have elevated As concentrations, further suggesting a genetic relationship between the xenotime formation and Cu-Ag mineralization.

  10. Integrated multi-site U-Th chronology of the last glacial Lake Lisan

    NASA Astrophysics Data System (ADS)

    Torfstein, Adi; Goldstein, Steven L.; Kagan, Elisa J.; Stein, Mordechai

    2013-03-01

    We present a new integrated multi-site chronology for Lake Lisan, which occupied the Dead Sea basin and Jordan Valley during the last glacial period (70-14 kka, Marine Isotope Stages 4, 3, 2). The Dead Sea basin lacustrine deposits are unique among closed basin sediments in that they formed in a deep, hypersaline water body that precipitated primary aragonite which is amenable to radiometric dating by U-series, providing a solid basis for studies of the relationship of Middle East climate to other changes in the high latitudes or the tropics. The application of U-Th dating for lacustrine carbonates requires corrections for detrital U and Th and hydrogenous ("initial") 230Th. Here we followed an iterative approach, in which we evaluate the composition of the detrital contamination independently for every set of coeval samples to determine the corrected ages. These were further filtered and combined with lithological-limnological considerations, which were used to construct age-height models for all studied stratigraphic sections. Finally, the ages of stratigraphic tie-points were used to integrate the individual age-height models into a unified chronology. The resulting chronological framework indicates that the ages of several primary gypsum units associated with catastrophic lake level drops correspond with the timing of Heinrich events in the North Atlantic. Thus, a final iterative step involves refining the ages of "Lisan-gypsum events" based on the ages of Heinrich events 6, 5, 5a, 4, and 1. This approach yields an unprecedented basin-wide, unified, event-anchored chronology for the Lisan Formation, with typical age uncertainties ca. 1000-2000 years (95% confidence limit) across the entire last glacial, well below those typically related to individual U-Th and radiocarbon dating of "dirty" carbonates from similar time intervals. The results can be further extrapolated to new sites and serve as a geochronometric reference for the reconstruction of the

  11. CONSTRAINTS ON EXHUMATION AND SEDIMENTS PROVENANCE DURING PALEOGENE IN THE NORTHERN PYRENEES (FRANCE) USING DETRITAL AFT, ZHe AND Z(U/Pb) THERMOCHRONOLOGY

    NASA Astrophysics Data System (ADS)

    Filleaudeau, P.; Mouthereau, F.; Fellin, M.; Pik, R.; Lacombe, O.

    2009-12-01

    The Pyrenees are a doubly vergent orogenic wedge built by the convergence between the subducting Iberian microplate and the European plate lasting from late Cretaceous to early Miocene. The backbone of the Pyrenean belt (Axial Zone) consists in a stack of thrusts units composed of Paleozoic series intruded by late-Variscan granitoids. Both pro- and retro-wedge sides of the Pyrenees are fold-and-thrust belts made of Meso-Cenozoic sediments thrusted onto the Ebro and Aquitaine foreland basins. The deep structure, highlighted by the ECORS profile, shows a strong asymmetry caused by the southward migration of deformation associated with the development of a Paleogene antiformal stack emplaced during wedge growth in the Iberian plate. The present study focuses on the synorogenic deposits of the retro-foreland basin in the northern part of the belt. To examine the source rocks and quantify the exhumation rates, we combine fission track thermochronometry on detrital apatites with Helium diffusion and U/Pb thermochronometry on zircons. Due to the very high closure temperature of the U/Pb system and the wide range of age distribution, the U/Pb method, that provides zircon crystallisation ages, is a powerful tool to distinguish the various eroded sources feeding the North Pyrenean basin. Thus, we can separate grains coming from Variscan intrusive basement with ages around 310 Ma from younger grains coming from Permian or Triassic to lower Jurassic volcanics. Zircon ages of 220 Ma found in the Paleocene sandstones point to the Triassic volcanic rocks (the so-called “ophites”) as the main source of detrital grains. We infer that Paleozoic units of the Axial Zone were not outcropping in the Paleocene catchments. Exhumation rates are estimated through apatite fission track grain-age distributions and (U-Th)/He dating for two Lutetian and Bartonian synorogenic sandstone samples of the North Pyenean foreland basin. The first results obtained with AFT dating show two main grain

  12. Quantifying time in sedimentary successions by radio-isotopic dating of ash beds

    NASA Astrophysics Data System (ADS)

    Schaltegger, Urs

    2014-05-01

    global environmental and biotic disturbance (from ash bed analysis in biostratigraphically or cyclostratigraphically well constrained marine sections) with volcanic activity; examples are the Triassic-Jurassic boundary and the Central Atlantic Magmatic Province (Schoene et al. 2010), or the lower Toarcian oceanic anoxic event and the Karoo Province volcanism (Sell et al. in prep.). High-precision temporal correlations may also be obtained by combining high-precision U-Pb dating with biochronology in the Middle Triassic (Ovtcharova et al., in prep.), or by comparing U-Pb dates with astronomical timescales in the Upper Miocene (Wotzlaw et al., in prep.). References Guex, J., Schoene, B., Bartolini, A., Spangenberg, J., Schaltegger, U., O'Dogherty, L., et al. (2012). Geochronological constraints on post-extinction recovery of the ammonoids and carbon cycle perturbations during the Early Jurassic. Palaeogeography, Palaeoclimatology, Palaeoecology, 346-347(C), 1-11. Ovtcharova, M., Bucher, H., Schaltegger, U., Galfetti, T., Brayard, A., & Guex, J. (2006). New Early to Middle Triassic U-Pb ages from South China: Calibration with ammonoid biochronozones and implications for the timing of the Triassic biotic recovery. Earth and Planetary Science Letters, 243(3-4), 463-475. Ovtcharova, M., Goudemand, N., Galfetti, Th., Guodun, K., Hammer, O., Schaltegger, U., Bucher, H. Improving accuracy and precision of radio-isotopic and biochronological approaches in dating geological boundaries: The Early-Middle Triassic boundary case. In preparation. Schoene, B., Schaltegger, U., Brack, P., Latkoczy, C., Stracke, A., & Günther, D. (2012). Rates of magma differentiation and emplacement in a ballooning pluton recorded by U-Pb TIMS-TEA, Adamello batholith, Italy. Earth and Planetary Science Letters, 355-356, 162-173. Schoene, B., Latkoczy, C., Schaltegger, U., & Günther, D. (2010). A new method integrating high-precision U-Pb geochronology with zircon trace element analysis (U-Pb TIMS

  13. The use of lichen (Canoparmelia texana) as biomonitor of atmospheric deposition of natural radionuclides from U-238 and Th-232 series

    NASA Astrophysics Data System (ADS)

    Leonardo, Lucio; Damatto, Sandra Regina; Mazzilli, Barbara Paci; Saiki, Mitiko

    2008-08-01

    Lichens have been used in studies of environmental pollution monitoring of various air pollutants, especially heavy metals. This paper aims to study the possibility of using this specimen for the assessment of radionuclides deposition in the vicinity of a nuclear research institute, Instituto de Pesquisas Energéticas e Nucleares (IPEN) located in São Paulo, Brazil. This Institute has as major activity to perform research in the field of the nuclear fuel cycle, and therefore deals with considerable amounts of natural radionuclides of the U and Th series. The activity of the naturally occurring radionuclides U-238, Ra-226, Ra-226 and Pb-210 was determined in samples of lichen (Canoparmelia texana) and soil collected at IPEN campus. The concentrations of Ra-228, Ra-226 and Pb-210 were determined by measuring alpha and beta gross counting in a gas flow proportional detector; U and Th were determined by neutron activation analysis. The values obtained varied from 164 Bq/kg to 864 Bq/kg, 13 Bq/kg to 50 Bq/kg, and from 287 Bq/kg to 730 Bq/kg for Ra-228, Ra-226 and Pb-210 respectively. For natural U and Th the values obtained varied from 1.2 Bq/kg to 162 Bq/kg and 1.84 Bq/kg to 5.17 Bq/kg respectively. The results obtained so far suggest that the Canoparmelia texana can be used as radionuclide monitor in the vicinity of nuclear installations.

  14. The use of lichen (Canoparmelia texana) as biomonitor of atmospheric deposition of natural radionuclides from U-238 and Th-232 series

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leonardo, Lucio; Damatto, Sandra Regina; Mazzilli, Barbara Paci

    2008-08-07

    Lichens have been used in studies of environmental pollution monitoring of various air pollutants, especially heavy metals. This paper aims to study the possibility of using this specimen for the assessment of radionuclides deposition in the vicinity of a nuclear research institute, Instituto de Pesquisas Energeticas e Nucleares (IPEN) located in Sao Paulo, Brazil. This Institute has as major activity to perform research in the field of the nuclear fuel cycle, and therefore deals with considerable amounts of natural radionuclides of the U and Th series. The activity of the naturally occurring radionuclides U-238, Ra-226, Ra-226 and Pb-210 was determinedmore » in samples of lichen (Canoparmelia texana) and soil collected at IPEN campus. The concentrations of Ra-228, Ra-226 and Pb-210 were determined by measuring alpha and beta gross counting in a gas flow proportional detector; U and Th were determined by neutron activation analysis. The values obtained varied from 164 Bq/kg to 864 Bq/kg, 13 Bq/kg to 50 Bq/kg, and from 287 Bq/kg to 730 Bq/kg for Ra-228, Ra-226 and Pb-210 respectively. For natural U and Th the values obtained varied from 1.2 Bq/kg to 162 Bq/kg and 1.84 Bq/kg to 5.17 Bq/kg respectively. The results obtained so far suggest that the Canoparmelia texana can be used as radionuclide monitor in the vicinity of nuclear installations.« less

  15. Oxygen isotopic composition and U-Pb discordance in zircon

    USGS Publications Warehouse

    Booth, A.L.; Kolodny, Y.; Chamberlain, C.P.; McWilliams, M.; Schmitt, A.K.; Wooden, J.

    2005-01-01

    We have investigated U-Pb discordance and oxygen isotopic composition of zircon using high-spatial resolution ??18O measurement by ion microprobe. ??18O in both concordant and discordant zircon grains provides an indication of the relationship between fluid interaction and discordance. Our results suggest that three characteristics of zircon are interrelated: (1) U-Pb systematics and concomitant age discordance, (2) ??18O and the water-rock interactions implied therein, and (3) zircon texture, as revealed by cathodoluminescence and BSE imaging. A key observation is that U-Pb-disturbed zircons are often also variably depleted in 18O, but the relationship between discordance and ??18O is not systematic. ??18O values of discordant zircons are generally lighter but irregular in their distribution. Textural differences between zircon grains can be correlated with both U-Pb discordance and ??18O. Discordant grains exhibit either a recrystallized, fractured, or strongly zoned CL texture, and are characteristic of 18O depletion. We interpret this to be a result of metamictization, leading to destruction of the zircon lattice and an increased susceptibility to lead loss. Conversely, grains that are concordant have less-expressed zoning and a smoother CL texture and are enriched in 18O. From this it is apparent that various stages of water-rock interaction, as evidenced by systematic variations in ??18O, leave their imprint on both the texture and U-Pb systematics of zircon. Copyright ?? 2005 Elsevier Ltd.

  16. Th-230 - U-238 series disequilibrium of the Olkaria rhyolites Gregory Rift Valley, Kenya: Residence times

    NASA Technical Reports Server (NTRS)

    Black, S.; Macdonald, R.; Kelly, M.

    1993-01-01

    U-series disequilibrium analyses have been conducted on samples from Olkaria rhyolite centers with ages being available for all but one center using both internal and whole rock isochrons. 67 percent of the rhyolites analyzed show U-Th disequilibrium, ranging from 27 percent excess thorium to 36 percent excess uranium. Internal and whole rock isochrons give crystallization/formation ages between 65 ka and 9 ka, in every case these are substantially older than the eruptive dates. The residence times of the rhyolites (U-Th age minus the eruption date) have decreased almost linearly with time, from 45 ka to 7 Ka suggesting a possible increase of activity within the system related to increased basaltic input. The long residence times are mirrored by large Rn-222 fluxes from the centers which cannot be explained by larger U contents.

  17. ECCO: Th/U/Pu/Cm Dating of Galactic Cosmic Ray Nuclei

    NASA Technical Reports Server (NTRS)

    Westphal, A. J.; Weaver, B. A.; Solarz, M.; Dominquez, G.; Craig, N.; Adams, J. H.; Barbier, L. M.; Christian, E. R.; Mitchell, J. W.; Binns, W. R.; hide

    2001-01-01

    The ECCO (Extremely-heavy Cosmic-ray Composition Observer) instrument is one of two instruments which comprise the HNX (Heavy Nuclei Explorer) mission. The principal goal of ECCO is to measure the age of galactic cosmic ray nuclei using the actinides (Th, U, Pu, Cm) as clocks. As a bonus, ECCO will search with unprecedented sensitivity for long-lived elements in the superheavy island of stability. ECCO is an enormous array (23 sq. m) of BP-1 glass track-etch detectors, and is based on the successful flight heritage of the Trek detector which was deployed externally on Mir. We present a description of the instrument, estimates of expected performance, and recent calibrations which demonstrate that the actinides can be resolved from each other with good charge resolution.

  18. The mesoproterozoic Beaverhead impact structure and its tectonic setting, Montana-Idaho: 40Ar/39 and U-Pb isotopic constraints

    USGS Publications Warehouse

    Kellogg, K.S.; Snee, L.W.; Unruh, D.M.

    2003-01-01

    New 40Ar/39Ar and uranium-lead (U-Pb) zircon data from the Beaverhead impact structure, first identified by extensive shatter coning of Proterozoic quartzite and gneiss from the Beaverhead Mountains near the Montana-Idaho border, indicate that the structure formed at or after 900 Ma. The 40Ar/39Ar age spectra from fine-grained muscovite and biotite from a breccia zone in high-grade gneiss show significant argon loss but yield dates for highest-temperature steps that cluster between 899 and 908 Ma. The dated minerals probably formed by recrystallization of impact glass, so on both geologic and isotopic grounds, the dates probably represent the minimum age of impact. U-Pb data for zircons from the same breccia are strongly discordant and yield an upper intercept apparent age of 2464 ?? 56 Ma and a lower intercept apparent age of 779 ?? 69 Ma. Another brecciated gneiss about 7 km to the northeast that does not contain secondary mica does contain zircons that yield a concordant apparent age of 2455 ?? 9 Ma. Nearby gneiss that neither is brecciated nor contains shatter cones yields an apparent age of 2451 ?? 46 Ma. The 40Ar/39Ar results constrain the age of the shatter-coned quartzite and indicate that it is >900 Ma and possibly correlative with the Gunsight Formation of the Mesoproterozoic Lemhi Group. The upper intercept U-Pb age of ???2450 Ma from all three dated samples also shows that the Paleoproterozoic basement rocks of the area are among the youngest in the mostly Archean Wyoming province of North America. The impact site lies near the margin of the province, along the northeast-trending Great Falls tectonic zone, and the relatively young crustal age may reflect Early Proterozoic marginal accretion.

  19. Partitioning of Nb, Mo, Ba, Ce, Pb, Th and U between immiscible carbonate and silicate liquids: Evaluating the effects of P2O5,F, and carbonate composition

    NASA Technical Reports Server (NTRS)

    Jones, J. H.; Walker, D.

    1993-01-01

    Previously we have reported carbonate liq./silicate liq. partition coefficients (D) for a standard suite of trace elements (Nb, Mo, Ba, Ce, Pb, Th, and U) and Ra and Pa as well. In brief, we have found that immiscible liquid partitioning is a strong function of temperature. As the critical temperature of the carbonate-silicate solvus is approached, all partition coefficients approach unity. Additionally, for the overwhelming majority of the partitioning elements, InD is a linear function of 'ionic field strength,' z/r, where z is the charge of the partitioned cation and r is its ionic radius.

  20. A simple-rapid method to separate uranium, thorium, and protactinium for U-series age-dating of materials

    PubMed Central

    Knight, Andrew W.; Eitrheim, Eric S.; Nelson, Andrew W.; Nelson, Steven; Schultz, Michael K.

    2017-01-01

    Uranium-series dating techniques require the isolation of radionuclides in high yields and in fractions free of impurities. Within this context, we describe a novel-rapid method for the separation and purification of U, Th, and Pa. The method takes advantage of differences in the chemistry of U, Th, and Pa, utilizing a commercially-available extraction chromatographic resin (TEVA) and standard reagents. The elution behavior of U, Th, and Pa were optimized using liquid scintillation counting techniques and fractional purity was evaluated by alpha-spectrometry. The overall method was further assessed by isotope dilution alpha-spectrometry for the preliminary age determination of an ancient carbonate sample obtained from the Lake Bonneville site in western Utah (United States). Preliminary evaluations of the method produced elemental purity of greater than 99.99% and radiochemical recoveries exceeding 90% for U and Th and 85% for Pa. Excellent purity and yields (76% for U, 96% for Th and 55% for Pa) were also obtained for the analysis of the carbonate samples and the preliminary Pa and Th ages of about 39,000 years before present are consistent with 14C-derived age of the material. PMID:24681438

  1. A simple-rapid method to separate uranium, thorium, and protactinium for U-series age-dating of materials.

    PubMed

    Knight, Andrew W; Eitrheim, Eric S; Nelson, Andrew W; Nelson, Steven; Schultz, Michael K

    2014-08-01

    Uranium-series dating techniques require the isolation of radionuclides in high yields and in fractions free of impurities. Within this context, we describe a novel-rapid method for the separation and purification of U, Th, and Pa. The method takes advantage of differences in the chemistry of U, Th, and Pa, utilizing a commercially-available extraction chromatographic resin (TEVA) and standard reagents. The elution behavior of U, Th, and Pa were optimized using liquid scintillation counting techniques and fractional purity was evaluated by alpha-spectrometry. The overall method was further assessed by isotope dilution alpha-spectrometry for the preliminary age determination of an ancient carbonate sample obtained from the Lake Bonneville site in western Utah (United States). Preliminary evaluations of the method produced elemental purity of greater than 99.99% and radiochemical recoveries exceeding 90% for U and Th and 85% for Pa. Excellent purity and yields (76% for U, 96% for Th and 55% for Pa) were also obtained for the analysis of the carbonate samples and the preliminary Pa and Th ages of about 39,000 years before present are consistent with (14)C-derived age of the material. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Monazite in Atlantic shore-line features

    USGS Publications Warehouse

    Dryden, Lincoln; Miller, Glen A.

    1954-01-01

    This report is a survey of present and potential production of monazite from part of the Maryland-Florida section of the Atlantic Coastal Plain. The part of the Coastal Plain covered here is the outer (shore-ward) half. In this area, all the large heavy-mineral placers so far discovered occur in sand bodies that, by their shape, size, orientation, and lithology, appear to be ancient beaches, spits, bars, or dunes. Smaller placers have produced from recent shore-line features. The inner part of the Coastal Plain, to be treated in another report, is underlain generally by older rocks, ranging in age from Cretaceous to older Pleistocene. Only two large heavy-mineral placers are now in production at Trail Ridge, and near Jacksonville, both in Florida. Production is planned for the near future near Yulee, Fla.: in Folkston, Ga.: and at one or two localities in eastern North Carolina. Each of these three will produce monazite as a byproduct; the total new reserve for the three placers is about 33,000 tons of monazite. In large heavy-mineral placers of this type, monazite has not been found to run more than about 1 percent of total heavy minerals. In some large placers, notably Trail Ridge, it is almost or completely lacking. No reason for its sporadic occurrence has been found in this investigation. Two placers of potential economic value have been found by this project in Virginia, one west and one east of Chesapeake Bay. Neither is of promise for monazite production, but if they serve to open up exploration or production in the area, there is a chance for monazite as a byproduct from other placers. A discovery of considerable scientific interest has to do with the occurrence of two different suites of heavy minerals in the Coastal Plain, at least south of Virginia. One, an “older” suite, lacks epidote, hornblende, and garnet; this suite occurs in all older formations and in Pleistocene deposits lying above about 50 or 60 feet above sea level. The other,

  3. Episodic Holocene eruption of the Salton Buttes rhyolites, California, from paleomagnetic, U-Th, and Ar/Ar dating

    USGS Publications Warehouse

    Wright, Heather M.; Vazquez, Jorge A.; Champion, Duane E.; Calvert, Andrew T.; Mangan, Margaret T.; Stelten, Mark E.; Cooper, Kari M.; Herzig, Charles; Schriener Jr., Alexander

    2015-01-01

    In the Salton Trough, CA, five rhyolite domes form the Salton Buttes: Mullet Island, Obsidian Butte, Rock Hill, North and South Red Hill, from oldest to youngest. Results presented here include 40Ar/39Ar anorthoclase ages, 238U-230Th zircon crystallization ages, and comparison of remanent paleomagnetic directions with the secular variation curve, which indicate that all domes are Holocene. 238U-230Th zircon crystallization ages are more precise than but within uncertainty of 40Ar/39Ar anorthoclase ages, suggesting that zircon crystallization proceeded until shortly before eruption in all cases except one. Remanent paleomagnetic directions require three eruption periods: (1) Mullet Island, (2) Obsidian Butte, and (3) Rock Hill, North Red Hill, and South Red Hill. Borehole cuttings logs document up to two shallow tephra layers. North and South Red Hills likely erupted within 100 years of each other, with a combined 238U-230Th zircon isochron age of: 2.83 ± 0.60 ka (2 sigma); paleomagnetic evidence suggests this age predates eruption by hundreds of years (1800 cal BP). Rock Hill erupted closely in time to these eruptions. The Obsidian Butte 238U-230Th isochron age (2.86 ± 0.96 ka) is nearly identical to the combined Red Hill age, but its Virtual Geomagnetic Pole position suggests a slightly older age. The age of aphyric Mullet Island dome is the least well constrained: zircon crystals are resorbed and the paleomagnetic direction is most distinct; possible Mullet Island ages include ca. 2300, 5900, 6900, and 7700 cal BP. Our results constrain the duration of Salton Buttes volcanism to between ca. 5900 and 500 years.

  4. Integrated Extraction Chromatographic Separation of the Lithophile Elements Involved in Long-Lived Radiogenic Isotope Systems (Rb-Sr, U-Th-Pb, Sm-Nd, La-Ce, and Lu-Hf) Useful in Geochemical and Environmental Sciences.

    PubMed

    Pin, Christian; Gannoun, Abdelmouhcine

    2017-02-21

    A fast and efficient sample preparation method in view of isotope ratio measurements is described, allowing the separation of 11 elements involved, either as "parent" or as "daughter" isotopes, in six radiogenic isotope systems used as chronometers and tracers in earth, planetary, and environmental sciences. The protocol is based on small extraction chromatographic columns, used either alone or in tandem, through which a single nitric acid solution is passed, without any intervening evaporation step. The columns use commercially available extraction resins (Sr resin, TRU resin, Ln resin, RE resin, and again Ln resin for isolating Sr and Pb, LREE then La-Ce-Nd-Sm, Lu(Yb), and Hf, Th, and U, respectively) along with an additional, in-house prepared resin for separating Rb. A simplified scheme is proposed for samples requiring the separation of Sr, Pb, Nd, and Hf only. Adverse effects of troublesome major elements (Fe 3+ , Ti) are circumvented by masking with ascorbic acid and hydrofluoric acid, respectively. Typical recoveries in the 85-95% range are achieved, with procedural blanks of 10-100 pg, negligible with regard to the amounts of analytes processed. The fractions separated are suitable for high precision isotope ratio measurements by TIMS or MC-ICP-MS, as demonstrated by the repeat analyses of several international reference materials of basaltic composition for 87 Sr/ 86 Sr, 208,207,206 Pb/ 204 Pb, 143 Nd/ 144 Nd, 176 Hf/ 177 Hf, and 230 Th/ 232 Th. Concentration data could be obtained by spiking and equilibrating the sample with appropriate isotopic tracers before the onset of the separation process and, finally, measuring the isotope ratios modified by the isotope dilution process.

  5. Late accretion to the Moon recorded in zircon (U-Th)/He thermochronometry

    NASA Astrophysics Data System (ADS)

    Kelly, Nigel M.; Flowers, Rebecca M.; Metcalf, James R.; Mojzsis, Stephen J.

    2018-01-01

    We conducted zircon (U-Th)/He (ZHe) analysis of lunar impact-melt breccia 14311 with the aim of leveraging radiation damage accumulated in zircon over extended intervals to detect low-temperature or short-lived impact events that have previously eluded traditional isotopic dating techniques. Our ZHe data record a coherent date vs. effective Uranium concentration (eU) trend characterized by >3500 Ma dates from low (≤75 ppm) eU zircon grains, and ca. 110 Ma dates for high (≥100 ppm) eU grains. A progression between these date populations is apparent for intermediate (75-100 ppm) eU grains. Thermal history modeling constrains permissible temperatures and cooling rates during and following impacts. Modeling shows that the data are most simply explained by impact events at ca. 3950 Ma and ca. 110 Ma, and limits allowable temperatures of heating events between 3950-110 Ma. Modeling of solar cycling thermal effects at the lunar surface precludes this as the explanation for the ca. 110 Ma ZHe dates. We propose a sample history characterized by zircon resetting during the ca. 3950 Ma Imbrium impact event, with subsequent heating during an impact at ca. 110 Ma that ejected the sample to the vicinity of its collection site. Our data show that zircon has the potential to retain 4He over immense timescales (≥3950 Myrs), thus providing a valuable new thermochronometer for probing the impact histories of lunar samples, and martian or asteroidal meteorites.

  6. Contemporaneous alkaline and tholeiitic magmatism in the Ponta Grossa Arch, Paraná-Etendeka Magmatic Province: Constraints from U-Pb zircon/baddeleyite and 40Ar/39Ar phlogopite dating of the José Fernandes Gabbro and mafic dykes

    NASA Astrophysics Data System (ADS)

    Almeida, Vidyã V.; Janasi, Valdecir A.; Heaman, Larry M.; Shaulis, Barry J.; Hollanda, Maria Helena B. M.; Renne, Paul R.

    2018-04-01

    We report the first high-precision ID-TIMS U-Pb baddeleyite/zircon and 40Ar/39Ar step-heating phlogopite age data for diabase and lamprophyre dykes and a mafic intrusion (José Fernandes Gabbro) located within the Ponta Grossa Arch, Brazil, in order to constrain the temporal evolution between Early Cretaceous tholeiitic and alkaline magmatism of the Paraná-Etendeka Magmatic Province. U-Pb dates from chemically abraded zircon data yielded the best estimate for the emplacement ages of a high Ti-P-Sr basaltic dyke (133.9 ± 0.2 Ma), a dyke with basaltic andesite composition (133.4 ± 0.2 Ma) and the José Fernandes Gabbro (134.5 ± 0.1 Ma). A 40Ar/39Ar phlogopite step-heating age of 133.7 ± 0.1 Ma from a lamprophyre dyke is identical within error to the U-Pb age of the diabase dykes, indicating that tholeiitic and alkaline magmatism were coeval in the Ponta Grossa Arch. Although nearly all analysed fractions are concordant and show low analytical uncertainties (± 0.3-0.9 Ma for baddeleyite; 0.1-0.4 Ma for zircon; 2σ), Pb loss is observed in all baddeleyite fractions and in some initial zircon fractions not submitted to the most extreme chemical abrasion treatment. The resulting age spread may reflect intense and continued magmatic activity in the Ponta Grossa Arch.

  7. 75 FR 17742 - Filing Dates for the Georgia Special Election in the 9th Congressional District

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-07

    ... 9th Congressional District AGENCY: Federal Election Commission. ACTION: Notice of filing dates for special election. SUMMARY: Georgia has scheduled a special general election on May 11, 2010, to fill the U... participate in the Georgia Special General and Special Runoff Elections shall file a 12-day Pre-General Report...

  8. (U-Th-Sm)/He thermochronological age distribution in a slowly cooled plutonic complex (Ploumanac'h intrusion, France): insights into helium diffusion processes.

    NASA Astrophysics Data System (ADS)

    Recanati, A. C.; Gautheron, C.; Barbarand, J.; Tassan-Got, L.; Missenard, Y.; Pinna-Jamme, R.

    2015-12-01

    (U-Th-Sm)/He thermochronology is widely used to determine the thermal histories of mountain ranges and sedimentary basins. Apatite crystals retain helium at low temperatures, thus giving an insight into upper crustal evolution (e.g. exhumation, subsidence, erosion). Advanced models predict He production and diffusion rates in apatite crystals, thereby allowing determination of helium dates by integration over time/temperature paths (e.g. Gautheron et al., 2009). However, scattered dates and discordance between predicted and measured dates suggest that other parameters than time or temperature may also influence helium contents in apatite. The present study determines the variables that affect He diffusion in apatite over long timescales. We report the (U-Th-Sm)/He date distribution within a slowly cooled intrusion, along with AFT data, as well as extensive petrological and chemical characterization. The Ploumanac'h site (Brittany, France) was chosen because it includes small-scale spatial variations in petrology and chemistry (U-Th-Sm)/He dates, ranging from 80±8 to 250±25 Myrs, whereas AFT ages range from 120 to 160 ±10 Myrs. The old and scattered (U-Th-Sm)/He ages cannot be explained with current models. We investigate the influence of monograin chemistry, crystal defect, and sample petrology on (U-Th-Sm)/He dates. Data confirm that He can be stored at defect sites, but also support a decrease in He retentivity for high equivalent damage fraction (>6-9106 tracks/cm2). GAUTHERON C., TASSAN-GOT L., BARBARAND J., PAGEL M., 2009. Effect of alpha-damage annealing on apatite (U-Th)/He thermochronology. Chem. Geol. 266, 166-179.

  9. U-Pb systematics in iron meteorites - Uniformity of primordial lead

    NASA Astrophysics Data System (ADS)

    Gopel, C.; Manhes, G.; Allegre, C. J.

    1985-08-01

    Pb isotopic compositions and U-Pb abundances were determined in the metal phase of six iron meteorites: Canyon Diablo IA, Toluca IA, Odessa IA, Youndegin IA, Deport IA, and Mundrabilla An. Prior to complete dissolution, samples were subjected to a series of leachings and partial dissolutions. Isotopic compositions and abundances of the etched Pb indicate a contamination by terrestrial Pb which is attributable to previous cutting of the meteorite. Pb isotopic compositions measured in the decontaminated samples are identical within 0.2 percent and essentially confirm the primordial Pb value defined by Tatsumoto et al. (1973). These data invalidate more radiogenic Pb isotopic compositions published for iron meteorites, which are the result of terrestrial Pb contamination introduced mainly by analytical procedure. The results of this study support the idea of a solar nebula which was isotopically homogeneous for Pb 4.55 Ga ago. The new upper limit for U-abundance in iron meteorites, 0.001 ppb, is in agreement with its expected thermodynamic solubility in the metal phase.

  10. Timing of fluid seepage on summits of Quaker and Conical serpentine mud volcanoes, Mariana forearc: Evidence from U/Th dating of carbonate chimneys

    NASA Astrophysics Data System (ADS)

    Tong, Hongpeng; Fryer, Patricia; Feng, Dong; Chen, Duofu

    2017-04-01

    Serpetinization of forearc mantle along deep faults in the Mariana convergent plate margin permits formation of large active serpentinite mud volcanoes on the overiding plate within 90 km of the trench. Fluid seepage on summits of the mud volcanoes lead to the formation of authigenic carbonate chimneys close to the seafloor. Such carbonate chimneys are unique archives of past fluid seepage and assciated envrionemtnal parameters. Here, we report U/Th dating and stable carbon and oxygen isotopes of the chimneys from Quaker and Conical serpentine mud volcanoes. The resulting U/Th ages of samples from Quaker Seamount show three time intervals of 11,081 to10,542 yBP, 5,857 to 5,583 yBP, and 781 to 164 yBP, respectively. By comparison, carbonates from Conical Seamount have U/Th ages between 3,070 yBP and 1,623 yBP. Our results suggest that fluid seepage on the summits of serpentine mud volcanoes are episodic and probably locally controlled. Samples from Quaker seamount show depletion of 13C (δ13C=-7.0-0.4‰ V-PDB), indicating contribution of carbon from anoxic oxidation of abiogenic methane. By contrast, samples from Conical seamount have positive δ18O values (0.6-6.3), suggesting enrichment of 18O in the seepage fluid. The data obtained provide time integrated variation of seepage fluids and seepage dynamics that are archived in authigenic carbonates. This finding adds to the ongoing multidisciplinary effort to better constrain the environment in the Mariana forearc region and to determine the locally dominant biogeochemical processes. Acknowlegment: This study was funded by the CAS (Grant No. XDB06030102).

  11. Ore genesis and geodynamic setting of the Lianhuashan porphyry tungsten deposit, eastern Guangdong Province, SE China: constraints from muscovite 40Ar-39Ar and zircon U-Pb dating and Hf isotopes

    NASA Astrophysics Data System (ADS)

    Liu, Peng; Mao, Jingwen; Pirajno, Franco; Jia, Lihui; Zhang, Feng; Li, Yang

    2017-12-01

    The Lianhuashan deposit has long been regarded as a typical tungsten porphyry deposit, located in the eastern Guangdong Province, in the Southeastern Coastal Metallogenic Belt (SCMB). LA-MC-ICP-MS zircon U-Pb dating of the quartz porphyry yielded a weighted mean 206Pb/238U age of 137.3 ± 2.0 Ma, which is interpreted as the emplacement age of the quartz porphyry. Hydrothermal muscovite yielded a plateau 40Ar/39Ar age of 133.2 ± 0.9 Ma, which is consistent with the zircon U-Pb age, suggesting that the tungsten mineralization is genetically related to the quartz porphyry. Combined with previous studies, we suggest that there is a 145-135 Ma episode linking the granitic magmas with W-Sn ore systems in the SCMB. Zircon ɛHf (t) values of the quartz porphyry are in range of - 3.8 to 0.9, and the two-stage Hf model ages (TDM2) are 1.1-1.4 Ga, which is younger than the basement rocks in the Cathaysia Block (1.8-2.2 Ga), signifying that the quartz porphyry was predominantly derived from melting of Mesoproterozoic crust containing variable amounts of mantle components. In combination with the newly recognized coeval alkaline/bimodal magmatism and A-type granites in eastern Guangdong, we suggest that the 145-135 Ma W-Sn metallogenic event of the SCMB is related to a geodynamic setting of large-scale lithospheric extension and thinning, which can be ascribed to melting of the crust caused by mantle upwelling, triggered by the oblique subduction of the Izanagi plate.

  12. ESR dating of barite in sulphide deposits formed by the sea-floor hydrothermal activities.

    PubMed

    Toyoda, Shin; Fujiwara, Taisei; Uchida, Ai; Ishibashi, Jun-ichiro; Nakai, Shun'ichi; Takamasa, Asako

    2014-06-01

    Barite is a mineral newly found to be practically useful for electron spin resonance (ESR) dating of sulphide deposits formed by the sea-floor hydrothermal activities. The recent studies for the properties of the ESR dating signal in barite are summarised in the present paper as well as the formulas for corrections for accurate dose-rate estimation are developed including the dose-rate conversion factors, shape correction for gamma-ray dose and decay of (226)Ra. Although development of the techniques for ESR dating of barite has been completed, further comparative studies with other dating techniques such as U-Th and (226)Ra-(210)Pb dating are necessary for the technique to be widely used. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  13. U-Pb, Re-Os and Ar-Ar dating of the Linghou polymetallic deposit, Southeastern China: Implications for metallogenesis of the Qingzhou-Hangzhou metallogenic belt

    NASA Astrophysics Data System (ADS)

    Tang, Yanwen; Xie, Yuling; Liu, Liang; Lan, Tingguan; Yang, Jianling; Sebastien, Meffre; Yin, Rongchao; Liang, Songsong; Zhou, Limin

    2017-04-01

    The Qingzhou-Hangzhou metallogenic belt (QHMB) in Southeastern China has gained increasingly attention in recent years. However, due to the lack of reliable ages on intrusions and associated deposits in this belt, the tectonic setting and metallogenesis of the QHMB have not been well understood. The Linghou polymetallic deposit in northwestern Zhejiang Province is one of the typical deposits of the QHMB. According to the field relationships, this deposit consists of the early Cu-Au-Ag and the late Pb-Zn-Cu mineralization stages. Molybdenite samples with a mineral assemblage of molybdenite-chalcopyrite-pyrite ± quartz are collected from the copper mining tunnel near the Cu-Au-Ag ore bodies. Six molybdenite samples give the Re-Os model ages varying from 160.3 to 164.1 Ma and yield a mean age of 162.2 ± 1.4 Ma for the Cu-Au-Ag mineralization. Hydrothermal muscovite gives a well-defined Ar-Ar isochron age of 160.2 ± 1.1 Ma for the Pb-Zn-Cu mineralization. Three phases of granodioritic porphyry have been distinguished in this deposit, and LA-ICP-MS zircon U-Pb dating shows that they have formed at 158.8 ± 2.4 Ma, 158.3 ± 1.9 Ma and 160.6 ± 2.1 Ma, comparable to the obtained ages of the Cu-Au-Ag and Pb-Zn-Cu mineralization. Therefore, these intrusive rocks have a close temporal and spatial relationship with the Cu-Au-Ag and Pb-Zn-Cu ore bodies. The presences of skarn minerals (e.g., garnet) and vein-type ores, together with the previous fluid inclusion and H-O-C-S-Pb isotopic data, clearly indicate that the Cu-Au-Ag and Pb-Zn-Cu mineralization are genetically related to these granodiorite porphyries. This conclusion excludes the possibility that this deposit is of ;SEDEX; type and formed in a sag basin of continental rifts setting as previously proposed. Instead, it is proposed that the Linghou polymetallic and other similar deposits in the QHMB, such as the 150-160 Ma Yongping porphyry-skarn Cu-Mo, Dongxiang porphyry? Cu, Shuikoushan/Kangjiawang skarn Pb

  14. Allanite age-dating: Non-matrix-matched standardization in quadrupole LA-ICP-MS

    NASA Astrophysics Data System (ADS)

    Burn, M.; Lanari, P.; Pettke, T.; Engi, M.

    2014-12-01

    Allanite Th-U-Pb age-dating has recently been found to be powerful in unraveling the timing of geological processes such as the metamorphic dynamics in subduction zones and crystallization velocity of magmas. However, inconsistencies among analytical techniques have raised doubts about the accuracy of allanite age data. Spot analysis techniques such as LA-ICP-MS are claimed to be crucially dependent on matrix-matched standards, the quality of which is variable. We present a new approach in LA-ICP-MS data reduction that allows non-matrix-matched standardization via well constrained zircon reference materials as primary standards. Our data were obtained using a GeoLas Pro 193 nm ArF excimer laser ablation system coupled to an ELAN DRC-e quadrupole ICP-MS. We use 32 μm and 24 μm spot sizes; laser operating conditions of 9 Hz repetition rate and 2.5 J/cm2 fluence have proven advantageous. Matrix dependent downhole fractionation evolution is empirically determined by analyzing 208Pb/232Th and 206Pb/238U and applied prior to standardization. The new data reduction technique was tested on three magmatic allanite reference materials (SISSb, CAPb, TARA); within error these show the same downhole fractionation evolution for all allanite types and in different analytical sessions, provided measurement conditions remain the same. Although the downhole evolution of allanite and zircon differs significantly, a link between zircon and allanite matrix is established by assuming CAPb and TARA to be fixed at the corresponding reference ages. Our weighted mean 208Pb/232Th ages are 30.06 ± 0.22 (2σ) for SISSb, 275.4 ± 1.3 (2σ) for CAPb, and 409.9 ± 1.8 (2σ) for TARA. Precision of single spot age data varies between 1.5 and 8 % (2σ), dependent on spot size and common lead concentrations. Quadrupole LA-ICP-MS allanite age-dating has thus similar uncertainties as do other spot analysis techniques. The new data reduction technique is much less dependent on quality and homogeneity

  15. SHRIMP U-Pb dating, trace elements and the Lu-Hf isotope system of coesite-bearing zircon from amphibolite in the SW Sulu UHP terrane, eastern China

    NASA Astrophysics Data System (ADS)

    Liu, Fulai; Gerdes, Axel; Zeng, Lingsen; Xue, Huaimin

    2008-06-01

    In this study, we link mineral inclusion data, trace element analyses, U-Pb age and Hf isotope composition obtained from distinct zircon domains of complex zircon to unravel the origin and multi-stage metamorphic evolution of amphibolites from the Sulu ultrahigh-pressure (UHP) terrane, eastern China. Zircon grains separated from amphibolites from the CCSD-MH drill hole (G12) and Niushan outcrop (G13) were subdivided into two main types based on cathodoluminescence (CL) and Laser Raman spectroscopy: big dusty zircons with inherited cores and UHP metamorphic rims and small clear zircons. Weakly zoned, grey-white luminescent inherited cores preserve mineral inclusions of Cpx + Pl + Ap ± Qtz indicative of a mafic igneous protolith. Dark grey luminescent overgrowth rims contain the coesite eclogite-facies mineral inclusion assemblage Coe + Grt + Omp + Phe + Ap, and formed at T = 732-839 °C and P = 3.0-4.0 GPa. In contrast, white luminescent small clear zircons preserve mineral inclusions formed during retrograde HP quartz eclogite to LP amphibolite-facies metamorphism (T = 612-698 °C and P = 0.70-1.05 GPa). Inherited zircons from both samples yield SHRIMP 206Pb/238U ages of 695-520 Ma with an upper intercept age of 800 ± 31 Ma. The UHP rims yield consistent Triassic ages around 236-225 and 239-225 Ma for G12 and G13 with weighted means of 229 ± 3 and 231 ± 3 Ma, respectively. Small clear zircons from both samples give 206Pb/238U ages around 219-210 Ma with a weighted mean of 214 ± 3 Ma, interpreted as the age of retrograde quartz eclogite-facies metamorphism. Matrix amphibole from both samples indicate Ar-Ar ages of 209 ± 0.7 and 207 ± 0.7 Ma, respectively, probably dating late amphibolite-facies retrogression. The data suggest subduction of Neoproterozoic mafic igneous rocks to UHP conditions in Middle Triassic (∼230 Ma) times and subsequent exhumation to an early HP (∼214 Ma) and a late LP stage (∼208 Ma) over a period of ∼16 and 6 Myr, respectively

  16. Geochemical, isotopic (Sr-Nd-Pb) and geochronological (Ar-Ar and U-Pb) constraints on Quaternary bimodal volcanism of the Nigde Volcanic Complex (Central Anatolia, Turkey)

    NASA Astrophysics Data System (ADS)

    Aydin, F.; Siebel, W.; Uysal, I.; Ersoy, E. Y.; Schmitt, A. K.; Sönmez, M.; Duncan, R.

    2012-04-01

    The Nigde Volcanic Complex (NVC) is a major Late Neogene-Quaternary volcanic centre within the Cappadocian Volcanic Province of Central Anatolia. The Late Neogene evolution of the NVC generally initiated with the eruption of extensive andesitic-dacitic lavas and pyroclastic flow deposits, and minor basaltic lavas. This stage was followed by a Quaternary bimodal magma suite which forms Na-alkaline/transitional basaltic and high-K calc-alkaline to alkaline silicic volcanic rocks. In this study, we present new geochemical, isotopic (Sr-Nd-Pb) and geochronological (Ar-Ar and U-Pb) data for the bimodal volcanic suite within the NVC. Recent data suggest that the eruption of this suite took place ranges between ~650 and ~220 ka (Middle-Late Pleistocene). Silicic rocks consisting of rhyolite and associated pumice-rich pyroclastic fall out and surge deposits define a narrow range of 143Nd/144Nd isotope ratios (0.5126-0.5127), and show virtually no difference in Pb isotope composition (206Pb/204Pb = 18.84-18.87, 207Pb/204Pb = 15.64-15.67 and 208Pb/204Pb = 38.93-38.99). 87Sr/86Sr isotopic compositions of the silicic (0.704-0.705) and basaltic rocks (0.703-0.705) are rather similar reflecting a common source. The most mafic sample from basaltic rocks related to monogenetic cones is characterized by 87Sr/86Sr = 0.704, 143Nd/144Nd = 0.5127, 206Pb/204Pb = 18.80, 207Pb/204Pb = 15.60 and 208Pb/204Pb = 38.68. These values suggest a moderately depleted signature of the mantle source. The geochronological and geochemical data suggest that NVC silicic and basaltic rocks are genetically closely related to each other. Mantle derived differentiated basaltic melts which experienced low degree of crustal assimilation are suggested to be the parent melt of the rhyolites. Further investigations will focus on the spatial and temporal evolution of Quaternary bimodal magma suite in the NVC and the genetic relation between silicic and basaltic rocks through detailed oxygen isotope analysis and (U-Th

  17. Vanishing Act: Experiments on Fission Track Annealing in Monazite

    NASA Astrophysics Data System (ADS)

    Shipley, N. K.; Fayon, A. K.

    2006-12-01

    To determine the viability of monazite as a low temperature thermochronometer, we conducted fission track annealing experiments under isothermal conditions. These experiments evaluated the effects of uranium concentration and zoning on annealing rates. Fission track annealing rates in monazite were also compared to those in Durango apatite. Preliminary results indicate that monazite grains with higher initial track densities anneal at faster rates than those with low initial densities and that fission tracks in monazite anneal at a faster rate than those in apatite. Monazite sand grains were selected from a placer sand deposit, mounted in teflon, and polished. Grains were imaged with electron backscattering to characterize zoning patterns and variations in uranium concentration. Monazite grain mounts were etched in boiling 37% HCl for 50 minutes and fission track densities were determined using standard fission track counting techniques. Durango apatite was etched in 5N HNO3 at room temperature for 20 seconds. After the initial track densities were determined, mounts in one group were annealed at 150 ° C for 1to 6 h. The mounts in a second group were annealed at 200 ° C for 2 hour periods along with mounts of Durango apatite grains. All grains were re-polished prior to each anneal. Upon completion of the experiment, backscatter images were taken of grains from which fission track counts were obtained to verify continuance of concentric zoning. Results of these experiments indicate that annealing rates of fission tracks in monazite vary as a function of uranium concentration. Uranium concentration was constrained on the basis of zoning patterns obtained from electron backscatter images. Fission track densities in grains with initial track densities of approximately 2.4 × 106 tracks/cm2 were reduced at average rate of 16% every two hours. In contrast, track densities in grains with initial track densities of approximately 1.6 × 106 tracks/cm2 average 4.6% density

  18. A combined Sm-Nd, Rb-Sr, and U-Pb isotopic study of Mg-suite norite 78238: Further evidence for early differentiation of the Moon

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Edmunson, J; E.Borg, L; Nyquist, L E

    2008-11-17

    Lunar Mg-suite norite 78238 was dated using the Sm-Nd, Rb-Sr, and U-Pb isotopic systems in order to constrain the age of lunar magma ocean solidification and the beginning of Mg-suite magmatism, as well as to provide a direct comparison between the three isotopic systems. The Sm-Nd isotopic system yields a crystallization age for 78238 of 4334 {+-} 37 Ma and an initial {var_epsilon}{sub Nd}{sup 143} value of -0.27 {+-} 0.74. The age-initial {var_epsilon}{sub Nd}{sup 143} (T-I) systematics of a variety of KREEP-rich samples, including 78238 and other Mg-suite rocks, KREEP basalts, and olivine cumulate NWA 773, suggest that lunar differentiationmore » was completed by 4492 {+-} 61 Ma assuming a Chondritic Uniform Reservoir bulk composition for the Moon. The Rb-Sr isotopic systematics of 78238 were disturbed by post-crystallization processes. Nevertheless, selected data points yield two Rb-Sr isochrons. One is concordant with the Sm-Nd crystallization age, 4366 {+-} 53 Ma. The other is 4003 {+-} 95 Ma and is concordant with an Ar-Ar age for 78236. The {sup 207}Pb-{sup 206}Pb age of 4333 {+-} 59 Ma is concordant with the Sm-Nd age. The U-Pb isotopic systematics of 78238 yield linear arrays equivalent to younger ages than the Pb-Pb system, and may reflect fractionation of U and Pb during sample handling. Despite the disturbed nature of the U-Pb systems, a time-averaged {mu} ({sup 238}U/{sup 204}Pb) value of the source can be estimated at 27 {+-} 30 from the Pb-Pb isotopic systematics. Because KREEP-rich samples are likely to be derived from source regions with the highest U/Pb ratios, the relatively low {mu} value calculated for the 78238 source suggests the bulk Moon does not have an exceedingly high {mu} value.« less

  19. A new insight into Pan-African tectonics in the East-West Gondwana collision zone by U-Pb zircon dating of granites from central Madagascar

    NASA Astrophysics Data System (ADS)

    Nédélec, A.; Paquette, J.-L.

    1998-02-01

    The assembly of Gondwana was the result of a major collision orogen, the East African Orogen, between East and West Gondwana during Neoproterozoic times. Madagascar, which represents a fragment of East Gondwana, is located in a key area of this Pan-African orogen. Granites of unambiguous tectonic setting have been dated using the U-Pb zircon method in order to constrain the timing of orogenic events. The central part of Madagascar is characterized by syntectonic alkaline granitic sheets, referred to as ``stratoid'' granites. These are of both mantle and crustal derivation. Their U-Pb zircon ages are well defined between 627 and 633 Ma for both plutonic suites, regardless of either mainly mantle or crustally origin. It is not surprising that the crustally-derived suite contains inherited zircons in the 2.2-2.4 Ga range attesting to the existence of Lower Proterozoic crust in northern central Madagascar. The generation of huge amounts of granitic magma is regarded as the result of post-collision extension under a high heat flow regime. Therefore, an age between 700 and 650 Ma is inferred for the beginning of Gondwana assembly along the collision zone between central Madagascar and Kenya, i.e., in the central part of the East African Orogen. Following this, brittle fracturing of the stratoid granite series permitted the emplacement of the Ambatomiranty granitic dyke swarm at a minimum age of 560 Ma, in possible connection with a nearby shear belt. The strike-slip tectonic regime at ~570-560 Ma is well known in southern Madagascar and in its Gondwana connections. This stage corresponds to intracontinental reworking and the final suturing of Gondwana.

  20. A new insight into Pan-African tectonics in the East-West Gondwana collision zone by U-Pb zircon dating of granites from central Madagascar

    NASA Astrophysics Data System (ADS)

    Paquette, Jean-Louis; Nédélec, Anne

    1998-02-01

    The assembly of Gondwana was the result of a major collision orogen, the East African Orogen, between East and West Gondwana during Neoproterozoic times. Madagascar, which represents a fragment of East Gondwana, is located in a key area of this Pan-African orogen. Granites of unambiguous tectonic setting have been dated using the U-Pb zircon method in order to constrain the timing of orogenic events. The central part of Madagascar is characterized by syntectonic alkaline granitic sheets, referred to as "stratoid" granites. These are of both mantle and crustal derivation. Their U-Pb zircon ages are well defined between 627 and 633 Ma for both plutonic suites, regardless of either mainly mantle or crustally origin. It is not surprising that the crustally-derived suite contains inherited zircons in the 2.2-2.4 Ga range attesting to the existence of Lower Proterozoic crust in northern central Madagascar. The generation of huge amounts of granitic magma is regarded as the result of post-collision extension under a high heat flow regime. Therefore, an age between 700 and 650 Ma is inferred for the beginning of Gondwana assembly along the collision zone between central Madagascar and Kenya, i.e., in the central part of the East African Orogen. Following this, brittle fracturing of the stratoid granite series permitted the emplacement of the Ambatomiranty granitic dyke swarm at a minimum age of 560 Ma, in possible connection with a nearby shear belt. The strike-slip tectonic regime at ˜570-560 Ma is well known in southern Madagascar and in its Gondwana connections. This stage corresponds to intracontinental reworking and the final suturing of Gondwana.

  1. 2.9, 2.36, and 1.96 Ga zircons in orthogneiss south of the Red River shear zone in Viet Nam: evidence from SHRIMP U-Pb dating and tectonothermal implications

    NASA Astrophysics Data System (ADS)

    Nam, Tran Ngoc; Toriumi, Mitsuhiro; Sano, Yuji; Terada, Kentaro; Thang, Ta Trong

    2003-05-01

    Orthogneissic rocks coexisting with migmatites and containing small amphibolite lenses are exposed in the center of the metamorphic belt which runs parallel to the Day Nui Con Voi-Red River shear zone in northern Viet Nam. The orthogneiss complex has given some radiogenic dates of Early Proterozoic and Late Archean, which are the oldest ages ever registered for the Southeast Asian continent. Zircon grains separated from three samples of the orthogneiss complex have been dated to establish the protolith age and the timing of high-grade tectonothermal events in the complex. Sixty-five SHRIMP U-Th-Pb analyses of these zircons define three age groups of 2.84-2.91, 2.36, and 1.96 Ga. The age groups correspond to three periods of zircon generation. The oldest ˜2.9 Ga cores indicate a minimum age for the protolith of the orthogneiss complex. Two younger generations (including ˜2.36 Ga outer-cores and ˜1.96 Ga rims) probably grew during later high-grade tectono-metamorphic events, which were previously suggested by K-Ar and 40Ar/ 39Ar cooling ages of ˜2.0 Ga for synkinematic hornblendes. An early thermal history of the orthogneiss complex has been constrained, including a primary magma-crystallization stage starting at ˜2.9 Ga, followed by two Early Proterozoic (˜2.36 and ˜1.96 Ga) high-grade tectonothermal events. The ca. 2.9 Ga protolith age of the orthogneiss complex documented in this study provides new convincing evidence for the presence of Archean rocks in Indochina, and clearly indicates that the crustal evolution of northern Viet Nam started as early as Late Archean time.

  2. Metallogeny of precious and base metal mineralization in the Murchison Greenstone Belt, South Africa: indications from U-Pb and Pb-Pb geochronology

    NASA Astrophysics Data System (ADS)

    Jaguin, J.; Poujol, M.; Boulvais, P.; Robb, L. J.; Paquette, J. L.

    2012-10-01

    The 3.09 to 2.97 Ga Murchison Greenstone Belt is an important metallotect in the northern Kaapvaal Craton (South Africa), hosting several precious and base metal deposits. Central to the metallotect is the Antimony Line, striking ENE for over 35 km, which hosts a series of structurally controlled Sb-Au deposits. To the north of the Antimony Line, hosted within felsic volcanic rocks, is the Copper-Zinc Line where a series of small, ca. 2.97 Ga Cu-Zn volcanogenic massive sulfide (VMS)-type deposits occur. New data are provided for the Malati Pump gold mine, located at the eastern end of the Antimony Line. Crystallizations of a granodiorite in the Malati Pump Mine and of the Baderoukwe granodiorite are dated at 2,964 ± 7 and 2,970 ± 7 Ma, respectively (zircon U-Pb), while pyrite associated with gold mineralization yielded a Pb-Pb age of 2,967 ± 48 Ma. Therefore, granodiorite emplacement, sulfide mineral deposition and gold mineralization all happened at ca. 2.97 Ga. It is, thus, suggested that the major styles of orogenic Au-Sb and the Cu-Zn VMS mineralization in the Murchison Greenstone Belt are contemporaneous and that the formation of meso- to epithermal Au-Sb mineralization at fairly shallow levels was accompanied by submarine extrusion of felsic volcanic rocks to form associated Cu-Zn VMS mineralization.

  3. Mesozoic fault reactivation along the St. Lawrence Rift System as constrained by (U-Th/He) thermochronology

    NASA Astrophysics Data System (ADS)

    Bouvier, L.; Pinti, D. L.; Tremblay, A.; Minarik, W. G.; Roden-Tice, M. K.; Pik, R.

    2011-12-01

    The Saint Lawrence Rift System (SLRS) is a half-graben, extending for 1000 km along St. Lawrence River valley. Late Proterozoic-Early Paleozoic faults of the graben form the contact with the metamorphic Grenvillian basement to the northwest and extend under the Paleozoic sedimentary sequences of the St. Lawrence Lowlands to the southeast. The SLRS is the second most seismically active area in Canada, but the causes of this activity remain unclear. Reactivation of the SLRS is believed to have occurred along Late Proterozoic to Early Paleozoic normal faults related to the opening of the Iapetus Ocean. The absence of strata younger than the Ordovician makes difficult to determine when the faults reactivated after the Ordovician. Field relations between the normal faults bordering the SLRS and those produced by the Charlevoix impact crater suggest a reactivation of the rift younger than the Devonian, the estimated age of the impact. Apatite (U-Th)/He thermochronology is an adequate tool to recognize thermal events related to fault movements. A thermochronology study was then started along three transects across the SLRS, from Québec up to Charlevoix. Apatites were extracted and separated from five granitic to charnockitic gneisses and an amphibolite of Grenvillian age. The samples were exposed on hanging wall and footwall of the Montmorency and Saint-Laurent faults at three different locations along the SLRS. For precision and accuracy, each of the six samples was analyzed for radiogenic 4He and U-Th contents at least twice. Apatite grains were isolated by heavy liquids and magnetic separation. For each sample, ten apatite grains were selected under optical microscope and inserted into Pt capsules. Particular care was taken to isolate apatite free of mineral and fluid inclusions. Indeed, SEM investigations showed that some inclusions are U-rich monazite, which is a supplementary source of 4He to be avoided. The 4He content was determined by using a static noble gas

  4. Measurements of rare isotopes of U and Th by MC-ICP-MS using a 1013 ohm resistor

    NASA Astrophysics Data System (ADS)

    Pythoud, M.; Edwards, R. L.; Cheng, H.; Lu, Y.; Zhang, P.; Nissen, J.; Berry, A. E.

    2016-12-01

    We have tested a 1013 ohm resistor on a Thermo-Scientific Neptune Plus, a multi-collector inductively-coupled plasma mass spectrometer (MC-ICP-MS), for the measurement of rare isotopes of uranium (U) and thorium (Th). In nature, the isotopic disequilibrium among U-series nuclides provides the potential to date materials and time processes over the last 700,000 years. Using gravimetric standards and a Minnesota stalagmite, we demonstrate the reproducibility of δ234U and 230Th dates with uncertainties at the 1-‰ to sub-‰ level (2σ), with relatively small samples. Compared to traditional secondary electron multiplier (SEM) techniques, measurement times decrease from > 1 hour to < 5 min for U and from tens of min to < 2 min for Th, with comparable or better precision. The characteristics of the new amplifier design and typical instrumental conditions allow for 234U and 230Th sample loads as small as 1-2 pg, a reduction in sample size close to an order of magnitude over cup measurements with 1011 ohm resistors. The main sources of error include the amplifier noise, uncertainty in the characterization of the tailing effect, and in some cases, counting statistics. Importantly, our overall characterization suggests that this new method forms the basis for future and further improvements on instrumental precision.

  5. Reappraisal of Los Humeros Volcanic Complex by New U/Th Zircon and 40Ar/39Ar Dating: Implications for Greater Geothermal Potential

    NASA Astrophysics Data System (ADS)

    Carrasco-Núñez, G.; Bernal, J. P.; Dávila, P.; Jicha, B.; Giordano, G.; Hernández, J.

    2018-01-01

    Longevity and size of magmatic systems are fundamental factors for assessing the potential of a geothermal field. At Los Humeros volcanic complex (LHVC), the first caldera-forming event was reported at 460 ± 40 ka. New zircon U/Th and plagioclase 40Ar/39Ar dates of pre-, syn- and postcaldera volcanics allow a reappraisal of the evolution of the geothermally active LHVC. The age of the voluminous Xaltipan ignimbrite (115 km3 dense rock equivalent [DRE]) associated with the formation of the Los Humeros caldera is now constrained by two geochronometers (zircon U/Th and plagioclase 40Ar/39Ar dating) to 164 ± 4.2 ka, which postdates a long episode of precaldera volcanism (rhyolitic domes), the oldest age of which is 693.0 ± 1.9 ka (40Ar/39Ar). The inferred short residence time (around 5 ka) for the paroxysmal Xaltipan ignimbrite is indicative of rapid assembly of a large magma body and rejuvenation of the system due to recurrent recharge magmas, as it has been occurred in some other large magmatic systems. Younger ages than previously believed have been obtained also for the other voluminous explosive phases of the Faby fall tuff at ˜70 ka and the second caldera-forming Zaragoza ignimbrite with 15 km3 DRE, which erupted immediately after. Thus, the time interval that separates the two caldera-forming episodes at Los Humeros is only 94 kyr, which is a much shorter interval than suggested by previous K-Ar dates (410 kyr). This temporal proximity allows us to propose a caldera stage encompassing the Xaltipan and the Zaragoza ignimbrites, followed by emplacement at 44.8 ± 1.7 ka of rhyolitic magmas interpreted to represent a postcaldera, resurgent stage. Rhyolitic eruptions have also occurred during the Holocene (<7.3 ± 0.1 ka) along with olivine-rich basalts that suggest recharge of the system. The estimated large volume magmatic reservoir for Los Humeros (>˜1,200 km3) and these new ages indicating much younger caldera-forming volcanism than previously believed are

  6. Some Pb and Sr isotopic measurements on eclogites from the Roberts Victor mine, South Africa

    USGS Publications Warehouse

    Manton, W.I.; Tatsumoto, M.

    1971-01-01

    Five nodules of eclogite, one nodule of garnet peridotite and one sample of kimberlite from the Roberts Victor mine were analyzed for concentrations of U, Th, Pb, Rb and Sr and isotopic compositions of Pb and Sr. In the eclogites, U content ranges from 0.09 to 0.26 ppm, Th from 0.35 to 1.1 ppm, Pb from 0.79 to 5.5 ppm, Rb from 2.1 to 28 ppm and Sr from 133 to 346 ppm; 206Pb/204Pb ratios range from 14.8 to 18.5, 207Pb/204Pb from 14.9 to 15.7, 208Pb/204Pb from 35.2 to 38.5. The garnet peridotite contains 0.22 ppm U, 0.97 ppm Th, 1.05 ppm Pb, 6.9 ppm Rb and 108 ppm Sr and the kimberlite contains 2.5 ppm U, 30 ppm Th, 37 ppm Pb, 113 ppm Rb and 2040 ppm Sr. The lead in the eclogites has two components, a lead pyroextractable at 1100-1200?? and a non-pyroextractable residual lead. In three of the eclogites, which are to some extent altered, a proportion of the pyroextractable lead may be contaminating lead from the kimberlite, but an altered kyanite eclogite does not appear to be contaminated by this same kimberlite. The pyroextractable lead from a less altered eclogite contains a much larger proportion of 206Pb. Compositions calculated for the residual leads vary greatly. In many of the pyroextraction runs the primary eclogitic phases disappeared and the new phases plagioclase, clinopyroxene and a magnetic iron compound were formed. Why part of the lead should have been retained by these new phases is not understood. ?? 1971.

  7. New high precision U-Pb calibration of the late Early-Triassic (Smithian-Spathian Boundary, South China)

    NASA Astrophysics Data System (ADS)

    Widmann, Philipp; Leu, Marc; Goudemand, Nicolas; Schaltegger, Urs; Bucher, Hugo

    2017-04-01

    Following the Permian-Triassic mass extinction (PTME), the Early Triassic is characterized by large short-lived perturbations of the global carbon cycle associated with radiation and extinction pulses of the biota. More stable conditions resumed in the Middle Triassic (Anisian). The exact ages and duration of these short-lived but intense radiation-extinction events as well as carbon cycle perturbations are poorly constrained and a robust intercalibration of U-Pb dates, biochronozones and carbon isotope fluctuations is still lacking. An accurate and precise time frame is essential in order to quantify the dynamics of the underlying mechanistic processes and to assess the validity of the various explanatory scenarios. The most drastic Early Triassic extinction occurred at the Smithian-Spathian boundary (SSB) and is associated with a globally recognized sharp positive excursion of the marine d13C signal. Based on the most recently published ages for the Permian-Triassic boundary (251.938 ± 0.029 Ma, Baresel et al., 2016) and for the Early-Middle Triassic boundary (247.05 ± 0.16 Ma, Ovtcharova et al., 2015), we know the Early Triassic lasted 4.9 myr. However, neither the position of the SSB nor the durations of the major biotic and abiotic events around the SSB are constrained by radiometric dates. Here, we will present new high precision, chemical abrasion, isotope dilution, thermal ionization mass spectrometry (CA-ID-TIMS) U-Pb ages from single zircon crystals, sampled from closely spaced volcanic ash layers that bracket the SSB in the Nanpanjiang Basin (Guizhou province, South China). These ash layers are found in a mixed carbonate-siliciclastic, conodont-rich sedimentary succession (Luolou Formation) that is well calibrated biochronologically. We obtained best estimates of the ages of the SSB and associated events by applying Bayesian age modelling. References: Baresel, B., Bucher, H., Brosse, M., Cordey, F., Guodun, K., and Schaltegger, U., 2016. Precise age

  8. Correlated microanalysis of zircon: Trace element, δ 18O, and U-Th-Pb isotopic constraints on the igneous origin of complex >3900 Ma detrital grains

    NASA Astrophysics Data System (ADS)

    Cavosie, Aaron J.; Valley, John W.; Wilde, Simon A.; E. I. M. F.

    2006-11-01

    The origins of >3900 Ma detrital zircons from Western Australia are controversial, in part due to their complexity and long geologic histories. Conflicting interpretations for the genesis of these zircons propose magmatic, hydrothermal, or metamorphic origins. To test the hypothesis that these zircons preserve magmatic compositions, trace elements [rare earth elements (REE), Y, P, Th, U] were analyzed by ion microprobe from a suite of >3900 Ma zircons from Jack Hills, Western Australia, and include some of the oldest detrital zircons known (4400-4300 Ma). The same ˜20 μm domains previously characterized for U/Pb age, oxygen isotope composition (δ 18O), and cathodoluminescence (CL) zoning were specifically targeted for analysis. The zircons are classified into two types based on the light-REE (LREE) composition of the domain analyzed. Zircons with Type 1 domains form the largest group (37 of 42), consisting of grains that preserve evolved REE compositions typical of igneous zircon from crustal rocks. Grains with Type 1 domains display a wide range of CL zoning patterns, yield nearly concordant U/Pb ages from 4400 to 3900 Ma, and preserve a narrow range of δ 18O values from 4.7‰ to 7.3‰ that overlap or are slightly elevated relative to mantle oxygen isotope composition. Type 1 domains are interpreted to preserve magmatic compositions. Type 2 domains occur in six zircons that contain spots with enriched light-REE (LREE) compositions, here defined as having chondrite normalized values of La N > 1 and Pr N > 10. A subset of analyses in Type 2 domains appear to result from incorporation of sub-surface mineral inclusions in the analysis volume, as evidenced by positively correlated secondary ion beam intensities for LREE, P, and Y, which are anti-correlated to Si, although not all Type 2 analyses show these features. The LREE enrichment also occurs in areas with discordant U/Pb ages and/or high Th/U ratios, and is apparently associated with past or present

  9. The r-Process in the Neutrino Winds of Core-Collapse Supernovae and U-Th Cosmochronology

    NASA Astrophysics Data System (ADS)

    Wanajo, Shinya; Itoh, Naoki; Ishimaru, Yuhri; Nozawa, Satoshi; Beers, Timothy C.

    2002-10-01

    , obtained by assuming a simple time evolution of the neutrino luminosity, are compared to the available spectroscopic elemental abundance data of CS 31082-001. As a result, the ``age'' of this star is determined to be 14.1+/-2.5 Gyr, in excellent agreement with lower limits on the age of the universe estimated by other dating techniques, as well as with other stellar radioactive age estimates. Future measurements of Pt and Pb in this star, as well as expansion of searches for additional r-process-enhanced, metal-poor stars (especially those in which both U and Th are measurable), are of special importance to constrain the current astrophysical models for the r-process.

  10. An extremely low U Pb source in the Moon: UThPb, SmNd, RbSr, and 40Ar 39Ar isotopic systematics and age of lunar meteorite Asuka 881757

    USGS Publications Warehouse

    Misawa, K.; Tatsumoto, M.; Dalrymple, G.B.; Yanai, K.

    1993-01-01

    We have undertaken UThPb, SmNd, RbSr, and 40Ar 39Ar isotopic studies on Asuka 881757, a coarse-grained basaltic lunar meteorite whose chemical composition is close to low-Ti and very low-Ti (VLT) mare basalts. The PbPb internal isochron obtained for acid leached residues of separated mineral fractions yields an age of 3940 ?? 28 Ma, which is similar to the U-Pb (3850 ?? 150 Ma) and Th-Pb (3820 ?? 290 Ma) internal isochron ages. The Sm-Nd data for the mineral separates yield an internal isochron age of 3871 ?? 57 Ma and an initial 143Nd 144Nd value of 0.50797 ?? 10. The Rb-Sr data yield an internal isochron age of 3840 ?? 32 Ma (??(87Rb) = 1.42 ?? 10-11 yr-1) and a low initial 87Sr 86Sr ratio of 0.69910 ?? 2. The 40Ar 39Ar age spectra for a glass fragment and a maskelynitized plagioclase are relatively flat and give a weighted mean plateau age of 3798 ?? 12 Ma. We interpret these ages to indicate that the basalt crystallized from a melt 3.87 Ga ago (the Sm-Nd age) and an impact event disturbed the Rb-Sr system and completely reset the K-Ar system at 3.80 Ga. The slightly higher Pb-Pb age compared to the Sm-Nd age could be due to the secondary Pb (from terrestrial and/or lunar surface Pb contamination) that remained in the residues after acid leaching. Alternatively, the following interpretation is also possible; the meteorite crystallized at 3.94 Ga (the Pb-Pb age) and the Sm-Nd, Rb-Sr, and K-Ar systems were disturbed by an impact event at 3.80 Ga. The crystallization age obtained here is older than those reported for low-Ti basalts (3.2-3.5 Ga) and for VLT basalts (3.4 Ga), but similar to ages of some mare basalts, indicating that the basalt may have formed from a magma related to a basin-forming event (Imbrium?). The age span for VLT basalts from different sampling sites suggest that they were erupted over a wide area during an interval of at least ~500 million years. The impact event that thermally reset the K-Ar system of Asuka 881757 must have been post

  11. Tectono-magmatic evolution of the Chihuahua-Sinaloa border region in northern Mexico: Insights from zircon-apatite U-Pb geochronology, zircon Hf isotope composition and geochemistry of granodiorite intrusions

    NASA Astrophysics Data System (ADS)

    Mahar, Munazzam Ali; Goodell, Philip C.; Feinstein, Michael Nicholas

    2016-11-01

    We present the whole-rock geochemistry, LA-ICP-MS zircon-apatite U-Pb ages and zircon Hf isotope composition of the granodioritic plutons at the southwestern boundary of Chihuahua with the states of Sinaloa and Sonora. These granodiorites are exposed in the north and south of the Rio El Fuerte in southwest Chihuahua and northern Sinaloa. The magmatism spans over a time period of 37 Ma from 90 to 53 Ma. Zircons are exclusively magmatic with strong oscillatory zoning. No inheritance of any age has been observed. Our new U-Pb dating ( 250 analyses) does not support the involvement of older basement lithologies in the generation of the granitic magmas. The U-Pb apatite ages from granodiorites in southwest Chihuahua vary from 52 to 70 Ma. These apatite ages are 1 to 20 Ma younger than the corresponding zircon U-Pb crystallization ages, suggesting variable cooling rates from very fast to 15 °C/Ma ( 800 °C to 500 °C) and shallow to moderate emplacement depths. In contrast, U-Pb apatite ages from the Sinaloa batholith are restricted from 64 to 61 Ma and are indistinguishable from the zircon U-Pb ages range from 67 to 60 Ma within the error, indicating rapid cooling and very shallow emplacement. However, one sample from El Realito showed a larger difference of 20 Ma in zircon-apatite age pair: zircon 80 ± 0.8 Ma and apatite 60.6 ± 4 Ma, suggesting a slower cooling rate of 15 °C/Ma. The weighted mean initial εHf (t) isotope composition (2σ) of granodiorites varies from + 1.8 to + 5.2. The radiogenic Hf isotope composition coupled with previous Sr-Nd isotope data demonstrates a significant shift from multiple crustal sources in the Sonoran batholithic belt to the predominant contribution of the mantle-derived magmas in the southwest Chihuahua and northern Sinaloa. Based on U-Pb ages, the absence of inheritance, typical high Th/U ratio and radiogenic Hf isotope composition, we suggest that the Late Cretaceous-Paleogene magmatic rocks in this region are not derived from

  12. U-Th-He dating of diamond-forming C-O-H fluids and mantle metasomatic events

    NASA Astrophysics Data System (ADS)

    Weiss, Y.; Class, C.; Goldstein, S. L.; Winckler, G.; Kiro, Y.

    2017-12-01

    Carbon- and water-rich (C-O-H) fluids play important roles in the global material circulation, deep Earth processes, and have major impacts on the sub-continental lithospheric mantle (SCLM). Yet the origin and composition of C-O-H fluids, and the timing of fluid-rock interaction, are poorly constrained. `Fibrous' diamonds encapsulate C-O-H mantle fluids as μm-scale high-density fluid (HDF) inclusions. They can be directly sampled, and offer unique opportunities to investigate metasomatic events involving C-O-H fluids and the SCLM through Earth history. Until now no technique has provided reliable age constraints on HDFs. We applied a new in-vacuum crushing technique to determine the He abundances and 3He/4He ratios of HDFs in diamonds from the Kaapvaal lithosphere, South Africa. Three diamonds with saline HDFs have 3He/4He=3-4Ra. In 4He/3He vs 238U/3He space they define an `isochron' age of 96±45Ma, representing the first radiometric age reported for HDFs, and thus for C-O-H mantle fluids. In addition, a diamond with silicic HDFs and two that carry carbonatitic HDFs have low 3He/4He=0.07-0.6Ra. Using the measured U, Th, 4He and 3He contents of these diamonds, and the equation for 4He production from U-Th decay, we calculate 3He/4He as a function of time. Metasomatic fluids are derived from MORB, SCLM or subducted components with R/Ra=3-10, and this is assumed as the HDFs initial composition. The silicic and carbonatitic HDFs signify two older metasomatic events at 350 and 850 Ma, respectively. Thus, our new data reveal 3 metasomatic episodes in the Kaapvaal SCLM during the last 1 Ga, each by a different metasomatic agent. These 3 episodes correspond to late-Mesozoic kimberlite eruptions at 85 Ma, and the regional Namaqua-Natal and Damara Orogenies at 1 Ga and 500 Ma. We propose that the radioactive U-Th-He system in HDF-bearing diamonds can be used as a tool to provide meaningful radiometric ages of deep C-O-H fluids, and the timing of SCLM metasomatic events.

  13. U-Th-He dating of diamond-forming C-O-H fluids and mantle metasomatic events

    NASA Astrophysics Data System (ADS)

    Wasilewski, B.; O'Neil, J.; Rizo Garza, H. L.; Jean-Louis, P.; Gannoun, A.; Boyet, M.

    2016-12-01

    Carbon- and water-rich (C-O-H) fluids play important roles in the global material circulation, deep Earth processes, and have major impacts on the sub-continental lithospheric mantle (SCLM). Yet the origin and composition of C-O-H fluids, and the timing of fluid-rock interaction, are poorly constrained. `Fibrous' diamonds encapsulate C-O-H mantle fluids as μm-scale high-density fluid (HDF) inclusions. They can be directly sampled, and offer unique opportunities to investigate metasomatic events involving C-O-H fluids and the SCLM through Earth history. Until now no technique has provided reliable age constraints on HDFs. We applied a new in-vacuum crushing technique to determine the He abundances and 3He/4He ratios of HDFs in diamonds from the Kaapvaal lithosphere, South Africa. Three diamonds with saline HDFs have 3He/4He=3-4Ra. In 4He/3He vs 238U/3He space they define an `isochron' age of 96±45Ma, representing the first radiometric age reported for HDFs, and thus for C-O-H mantle fluids. In addition, a diamond with silicic HDFs and two that carry carbonatitic HDFs have low 3He/4He=0.07-0.6Ra. Using the measured U, Th, 4He and 3He contents of these diamonds, and the equation for 4He production from U-Th decay, we calculate 3He/4He as a function of time. Metasomatic fluids are derived from MORB, SCLM or subducted components with R/Ra=3-10, and this is assumed as the HDFs initial composition. The silicic and carbonatitic HDFs signify two older metasomatic events at 350 and 850 Ma, respectively. Thus, our new data reveal 3 metasomatic episodes in the Kaapvaal SCLM during the last 1 Ga, each by a different metasomatic agent. These 3 episodes correspond to late-Mesozoic kimberlite eruptions at 85 Ma, and the regional Namaqua-Natal and Damara Orogenies at 1 Ga and 500 Ma. We propose that the radioactive U-Th-He system in HDF-bearing diamonds can be used as a tool to provide meaningful radiometric ages of deep C-O-H fluids, and the timing of SCLM metasomatic events.

  14. Source, evolution and emplacement of Permian Tarim Basalts: Evidence from U-Pb dating, Sr-Nd-Pb-Hf isotope systematics and whole rock geochemistry of basalts from the Keping area, Xinjiang Uygur Autonomous region, northwest China

    NASA Astrophysics Data System (ADS)

    Zhang, Dayu; Zhou, Taofa; Yuan, Feng; Jowitt, Simon M.; Fan, Yu; Liu, Shuai

    2012-04-01

    Permian basalts distribute at least 250,000 km2, and underlie the southwest Tarim Basin in Xinjiang Uygur Autonomous region, northwest China. This vast accumulation of basalt is the main part of the Tarim Large Igneous Province (LIP). The basaltic units in the Lower Permian Kupukuziman and Kaipaizileike Formations in the Keping area, Tarim Basin; were the best exposure of the Permian basalt sequence in the basin. LA-ICP-MS U-Pb dating of zircon from the basal basaltic unit in the section gives an age of 291.9 ± 2.2 Ma (MSWD = 0.30, n = 17); this age, combined with previously published geochronological data, indicates that the basalts in the Tarim Basin were emplaced between 292 Ma and 272 Ma, with about 90% of the basalts being emplaced between 292 and 287 Ma. Basalts from the Keping area have high FeOT (10.8-18.6 wt.%), low Mg#s (0.26-0.60), and exhibit primitive mantle normalized patterns with positive Pb, P and Ti but negative Zr, Y and Ta anomalies. The basalts from both formations have similar 206Pb/204Pb (18.192-18.934), 207Pb/204Pb (15.555-15.598) and 208Pb/204Pb (38.643-38.793) ratios. The basalts also have high ɛSr(t) (45.7-62.1), low ɛNd(t) (-3.6 to -2.2) and low zircon ɛHf(t) (-4.84 to -0.65) values. These characteristics are typical of alkali basalts and suggest that the basalts within the Tarim Basin were derived from an OIB-type mantle source and interacted with enriched mantle (EMI-type) before emplacement. Rare earth element systematics indicate that the parental melts for the basalts were high-degree partial melts derived from garnet lherzolite mantle at the base of the lithosphere. Prior to emplacement, the Tarim Permian Basalts (TPB) underwent fractional crystallization and assimilated crustal material; the basalts were finally emplaced during crustal extension in an intra-plate setting. The wide distribution, deep source and high degree partial melting of the TPB was consistent with a mantle plume origin. The TPB and other coeval igneous

  15. Bioleaching of rare earth elements from monazite sand.

    PubMed

    Brisson, Vanessa L; Zhuang, Wei-Qin; Alvarez-Cohen, Lisa

    2016-02-01

    Three fungal strains were found to be capable of bioleaching rare earth elements from monazite, a rare earth phosphate mineral, utilizing the monazite as a phosphate source and releasing rare earth cations into solution. These organisms include one known phosphate solubilizing fungus, Aspergillus niger ATCC 1015, as well as two newly isolated fungi: an Aspergillus terreus strain ML3-1 and a Paecilomyces spp. strain WE3-F. Although monazite also contains the radioactive element Thorium, bioleaching by these fungi preferentially solubilized rare earth elements over Thorium, leaving the Thorium in the solid residual. Adjustments in growth media composition improved bioleaching performance measured as rare earth release. Cell-free spent medium generated during growth of A. terreus strain ML3-1 and Paecilomyces spp. strain WE3-F in the presence of monazite leached rare earths to concentrations 1.7-3.8 times those of HCl solutions of comparable pH, indicating that compounds exogenously released by these organisms contribute substantially to leaching. Organic acids released by the organisms included acetic, citric, gluconic, itaconic, oxalic, and succinic acids. Abiotic leaching with laboratory prepared solutions of these acids was not as effective as bioleaching or leaching with cell-free spent medium at releasing rare earths from monazite, indicating that compounds other than the identified organic acids contribute to leaching performance. © 2015 Wiley Periodicals, Inc.

  16. U-Th isotopic systematics and ages of carbonate chimneys at the Lost City Hydrothermal Field

    NASA Astrophysics Data System (ADS)

    Ludwig, K. A.; Shen, C.; Kelley, D. S.; Cheng, H.; Edwards, R.

    2009-12-01

    The Lost City Hydrothermal Field (LCHF) is a serpentinite-hosted vent field located 15 km west of the spreading axis of the Mid-Atlantic Ridge. In this study, uranium-thorium (U-Th) geochronological techniques have been used to examine the U-Th isotopic systematics of hydrothermal fluids and the 230Th ages of hydrothermally-precipitated carbonate chimneys at the LCHF. Fluid sample analyses indicate that endmember fluids likely contain only 0.0073 ng/g U or less compared to 3.28 ± 0.03 ng/g of U in ambient seawater. For fluid samples with <15 mmol/kg Mg, 232Th concentration is 0.11 to 0.13 pg/g and surrounding seawater concentration average is 0.133 ± 0.016 pg/g. The 230Th/232Th atomic ratios of the vent fluids range from 1 ± 10 to 26 ± 4 ×10-6 and are less than those of seawater. Chimney U is seawater-derived and 238U concentrations range from 1-10 μg/g and the mean chimney corrected initial δ234U is 146.9 ± 0.5, which is not significantly different from the ambient seawater value of 146.5 ± 0.6. Carbonate thorium concentrations range broadly from 0.035-125 ng/g and 230Th/232Th atomic ratios vary from near seawater values of 43 ± 8 × 10-6 up to 530 ± 25 × 10-3. Chimney ages range from 18 ± 6 yrs to 122 ± 12 kyrs. The youngest chimneys are at the intersection of two active, steeply-dipping normal faults that cut the Atlantis Massif; the oldest chimneys are located in the southwest portion of the field. Vent deposits on a steep, fault-bounded wall on the east side of the field are all <4 kyrs old, indicating that mass wasting in this region is relatively recent. Comparison of results to prior age-dating investigations of submarine hydrothermal systems shows that the LCHF is the most long-lived hydrothermal system known to date. It is likely that seismic activity and active faulting within the Atlantis Massif and the Atlantis Fracture Zone, coupled with volumetric expansion of the underlying serpentinized host rocks play major roles in sustaining

  17. Interaction between U and Th on their uptake, distribution, and toxicity in V S. alfredii based on the phytoremediation of U and Th.

    PubMed

    Huang, Zhenling; Tang, Siqun; Zhang, Lu; Ma, Lijian; Ding, Songdong; Du, Liang; Zhang, Dong; Jin, Yongdong; Wang, Ruibing; Huang, Chao; Xia, Chuanqin

    2017-01-01

    Variant Sedum alfredii Hance (V S. alfredii) could simultaneously take up U and Th from water with the highest concentrations recorded as 1.84 × 10 4 and 6.72 × 10 3  mg/kg in the roots, respectively. Th stimulated U uptake by V S. alfredii roots at Th 10 (10 μM of Th), however, the opposite was observed at Th 100 (100 μM of Th). A similar result was found in the effect of U on the uptake of Th by V S. alfredii. Subcellular fractionation studies of V S. alfredii indicated that U and Th were mainly stored in cell wall fraction, and much less was found in organelle and soluble fractions. Chemical form examination results showed that water-soluble U and Th were the predominant chemical forms in this plant. Addition of the other radionuclide in aqueous solutions altered the concentration and percentage of U or Th in cell wall fraction and in water-soluble form, resulting in the change of the uptake capacity of U or Th by V S. alfredii roots. Comparing with single U or Th treatment, the plant cells revealed more swollen chloroplasts and enhanced thickening in cell walls under the U 100  + Th 100 treatment, as observed by TEM. Those results collectively displayed that V S. alfredii may be utilized as a potential plant to simultaneously remove U and Th from aqueous solutions (rhizofiltration).

  18. New data for paleoprotherozoic PGE-bearing anorthosite of Kandalaksha massif (Baltic shield): U-Pb and Sm-Nd ages

    NASA Astrophysics Data System (ADS)

    Steshenko, Ekaterina; Bayanova, Tamara; Serov, Pavel

    2015-04-01

    The aims of this researches were to study the isotope U-Pb age of zircon and rutile and Sm-Nd (rock forming and sulphide minerals) on Kandalaksha anorthosite massif due to study of polimetamorphic history. In marginal zone firstly have been obtained the presence of sulphide mineralization with PGE (Chashchin, Petrov , 2013). Kandalaksha massif is located in the N-E part of Baltic shield and consists of three parts. Marginal zone (mesocratic metanorite) lies at the base of the massif. Main zone is composed of leucocratic metagabbro. The upper zone is alteration of mataanorthosite and leucocratic metagabbro. All rocks were subjected to granulate polymetamorphism. Two fractions of single grains from anorthosite of the massif gave precise U-Pb age, which is equal to 2450± 3 Ma. Leucocratic gabbro-norite were dated by U-Pb method, with age up to 2230 ± 10 Ma. This age reflects the time of granulite metamorphism according to data of (Mitrofanov, Nirovich, 2003). Two fractions of rutile have been analyzed by U-Pb method and reflect age of 1700 ± 10 Ma. It is known that the closure temperature of U-Pb system rutile is 400-450 ° C (Mezger et.al., 1989), thus cooling processes of massif rocks to these temperatures was about 1.7 Ga. These data reflect one of the stages of metamorphic alteration of the massif. Three stages of metamorphism are distinguished by Sm-Nd method. Isotope Sm-Nd dating on Cpx-WR line gives the age of 2311 Ma which suggested of high pressure granulite metamorphism. Moreover Cpx-Pl line reflect the age 1908 Ma of low pressure granulite metamorphism. Also two-points (Grt-Rt) Sm-Nd isochrone yield the age 1687 Ma of the last metamorphic alterations in Kandalaksha anorthosite massif. Model Sm-Nd age of the leucocratic gabbro-norite is 2796 Ma with positive ɛNd (+0.32). It means that the source of gabbro-norite was mantle reservoir. All investigations are devoted to memory of academician PAS F. MItrofanov which was a leader of scientific school for

  19. U/Th dating by SHRIMP RG ion-microprobe mass spectrometry using single ion-exchange beads

    NASA Astrophysics Data System (ADS)

    Bischoff, James L.; Wooden, Joe; Murphy, Fred; Williams, Ross W.

    2005-04-01

    We present a new analytical method for U-series isotopes using the SHRIMP RG (Sensitive High mass Resolution Ion MicroProbe) mass spectrometer that utilizes the preconcentration of the U-series isotopes from a sample onto a single ion-exchange bead. Ion-microprobe mass spectrometry is capable of producing Th ionization efficiencies in excess of 2%. Analytical precision is typically better than alpha spectroscopy, but not as good as thermal ionization mass spectroscopy (TIMS) and inductively coupled plasma multicollector mass spectrometry (ICP-MS). Like TIMS and ICP-MS the method allows analysis of small samples sizes, but also adds the advantage of rapidity of analysis. A major advantage of ion-microprobe analysis is that U and Th isotopes are analyzed in the same bead, simplifying the process of chemical separation. Analytical time on the instrument is ˜60 min per sample, and a single instrument-loading can accommodate 15-20 samples to be analyzed in a 24-h day. An additional advantage is that the method allows multiple reanalyses of the same bead and that samples can be archived for reanalysis at a later time. Because the ion beam excavates a pit only a few μm deep, the mount can later be repolished and reanalyzed numerous times. The method described of preconcentrating a low concentration sample onto a small conductive substrate to allow ion-microprobe mass spectrometry is potentially applicable to many other systems.

  20. U/Th dating by SHRIMP RG ion-microprobe mass spectrometry using single ion-exchange beads

    USGS Publications Warehouse

    Bischoff, J.L.; Wooden, J.; Murphy, F.; Williams, Ross W.

    2005-01-01

    We present a new analytical method for U-series isotopes using the SHRIMP RG (Sensitive High mass Resolution Ion MicroProbe) mass spectrometer that utilizes the preconcentration of the U-series isotopes from a sample onto a single ion-exchange bead. Ion-microprobe mass spectrometry is capable of producing Th ionization efficiencies in excess of 2%. Analytical precision is typically better than alpha spectroscopy, but not as good as thermal ionization mass spectroscopy (TIMS) and inductively coupled plasma multicollector mass spectrometry (ICP-MS). Like TIMS and ICP-MS the method allows analysis of small samples sizes, but also adds the advantage of rapidity of analysis. A major advantage of ion-microprobe analysis is that U and Th isotopes are analyzed in the same bead, simplifying the process of chemical separation. Analytical time on the instrument is ???60 min per sample, and a single instrument-loading can accommodate 15-20 samples to be analyzed in a 24-h day. An additional advantage is that the method allows multiple reanalyses of the same bead and that samples can be archived for reanalysis at a later time. Because the ion beam excavates a pit only a few ??m deep, the mount can later be repolished and reanalyzed numerous times. The method described of preconcentrating a low concentration sample onto a small conductive substrate to allow ion-microprobe mass spectrometry is potentially applicable to many other systems. Copyright ?? 2005 Elsevier Ltd.

  1. High-resolution tephrochronology of the Wilson Creek Formation (Mono Lake, California) and Laschamp event using 238U-230Th SIMS dating of accessory mineral rims

    NASA Astrophysics Data System (ADS)

    Vazquez, Jorge A.; Lidzbarski, Marsha I.

    2012-12-01

    Sediments of the Wilson Creek Formation surrounding Mono Lake preserve a high-resolution archive of glacial and pluvial responses along the eastern Sierra Nevada due to late Pleistocene climate change. An absolute chronology for the Wilson Creek stratigraphy is critical for correlating the paleoclimate record to other archives in the western U.S. and the North Atlantic region. However, multiple attempts to date the Wilson Creek stratigraphy using carbonates and tephras yield discordant results due to open-system effects and radiocarbon reservoir uncertainties as well as abundant xenocrysts. New ion microprobe 238U-230Th dating of the final increments of crystallization recorded by allanite and zircon autocrysts from juvenile pyroclasts yield ages that effectively date eruption of key tephra beds and delimit the timing of basal Wilson Creek sedimentation to the interval between 26.8±2.1 and 61.7±1.9 ka. Tephra (Ash 15) erupted during the geomagnetic excursion originally designated the Mono Lake excursion yields an age of 40.8±1.9 ka, indicating that the event is instead the Laschamp excursion. The new ages support a depositional chronology from magnetostratigraphy that indicates quasi-synchronous glacial and hydrologic responses in the Sierra Nevada and Mono Basin to regional climate change, with intervals of lake filling and glacial-snowpack melting that are in phase with peaks in spring insolation.

  2. High-resolution tephrochronology of the Wilson Creek Formation (Mono Lake, California) and Laschamp event using 238U-230Th SIMS dating of accessory mineral rims

    USGS Publications Warehouse

    Vazquez, Jorge A.; Lidzbarski, Marsha I.

    2012-01-01

    Sediments of the Wilson Creek Formation surrounding Mono Lake preserve a high-resolution archive of glacial and pluvial responses along the eastern Sierra Nevada due to late Pleistocene climate change. An absolute chronology for the Wilson Creek stratigraphy is critical for correlating the paleoclimate record to other archives in the western U.S. and the North Atlantic region. However, multiple attempts to date the Wilson Creek stratigraphy using carbonates and tephras yield discordant results due to open-system effects and radiocarbon reservoir uncertainties as well as abundant xenocrysts. New ion microprobe 238U-230Th dating of the final increments of crystallization recorded by allanite and zircon autocrysts from juvenile pyroclasts yield ages that effectively date eruption of key tephra beds and delimit the timing of basal Wilson Creek sedimentation to the interval between 26.8±2.1 and 61.7±1.9 ka. Tephra (Ash 15) erupted during the geomagnetic excursion originally designated the Mono Lake excursion yields an age of 40.8±1.9 ka, indicating that the event is instead the Laschamp excursion. The new ages support a depositional chronology from magnetostratigraphy that indicates quasi-synchronous glacial and hydrologic responses in the Sierra Nevada and Mono Basin to regional climate change, with intervals of lake filling and glacial-snowpack melting that are in phase with peaks in spring insolation.

  3. Characterization of Minerals of Geochronological Interest by EPMA and Atom Probe Tomography

    NASA Astrophysics Data System (ADS)

    Snoeyenbos, D.; Jercinovic, M. J.; Reinhard, D. A.; Hombourger, C.

    2012-12-01

    Isotopic and chemical dating techniques for zircon and monazite rely on several assumptions: that initial common Pb is low to nonexistent, that the analyzed domain is chronologically homogeneous, and that any relative migration of radiogenic Pb and its parent isotopes has not exceeded the analyzed domain. Yet, both zircon and monazite commonly contain significant submicron heterogeneities that may challenge these assumptions and can complicate the interpretation of chemical and isotopic data. Compositional mapping and submicron quantitative analysis by EPMA and FE-EPMA have been found to be useful techniques both for the characterization of these heterogeneities, and for quantitative geochronological determinations within the analytical limits of these techniques and the statistics of submicron sampling. Complementary to high-resolution EPMA techniques is Atom Probe Tomography (APT), wherein a specimen with dimensions of a few hundreds of nanometers is field evaporated atom by atom. The original position of each atom is identified, along with its atomic species and isotope. The result is a reconstruction allowing quantitative three-dimensional study of the specimen at the atomic scale, with low detection limits and high mass resolution. With the introduction of laser-induced thermal pulsing to achieve field evaporation, the technique is no longer limited to conductive specimens. There exists the capability to explore the compositional and isotopic structure of insulating materials at sub-nanometer resolution. Minerals of geochronological interest have been studied by an analytical method involving first compositional mapping and submicron quantitative analysis by EPMA and FE-EPMA, and subsequent use of these data to select specific sites for APT specimen extraction by FIB. Examples presented include 1) zircon from the Taconian of New England, USA, containing a fossil resorption front included between an unmodified igneous core, and a subsequent metamorphic

  4. Apollo 12 breccia 12013: Impact-induced partial Pb loss in zircon and its implications for lunar geochronology

    NASA Astrophysics Data System (ADS)

    Thiessen, F.; Nemchin, A. A.; Snape, J. F.; Bellucci, J. J.; Whitehouse, M. J.

    2018-06-01

    Apollo 12 breccia 12013 is composed of two portions, one grey in colour, the other black. The grey portion of the breccia consists mainly of felsite thought to have formed during a single crystallisation event, while the black part is characterized by presence of lithic fragments of noritic rocks and individual plagioclase crystals. In this study, U-Pb analyses of Ca-phosphate and zircon grains were conducted in both portions of the breccia. The zircon grains within the grey portion yielded a large range of ages (4154 ± 7 to 4308 ± 6 Ma, 2σ) and show decreasing U and Th concentrations within the younger grains. Moreover, some grains exhibit recrystallisation features and potentially formation of neoblasts. The latter process requires high temperatures above 1600-1700 °C leading to the decomposition of the primary zircon grain and subsequent formation of new zircon occurring as neoblasts. As a result of the high temperatures, the U-Pb system of the remaining original zircon grains was most likely open for Pb diffusion causing partial resetting and the observed range of 207Pb/206Pb ages. The event that led to the Pb loss in zircon could potentially be dated by the U-Pb system in Ca-phosphates, which have a weighted average 207Pb/206Pb age across both lithologies of 3924 ± 3 Ma (95% conf.). This age is identical within error to the combined average 207Pb/206Pb age of 3926 ± 2 Ma that was previously obtained from Ca-phosphates within Apollo 14 breccias, zircon grains in Apollo 12 impact melt breccias, and the lunar meteorite SaU 169. This age was interpreted to date the Imbrium impact. The zircon grains located within the black portion of the breccia yielded a similar range of ages (4123 ± 13 to 4328 ± 14 Ma, 2σ) to those in the grey portion. Given the brecciated nature of this part of the sample, the interpretation of these ages as representing igneous crystallisation or resetting by impact events remains ambiguous since there is no direct link to their

  5. 230Th/238U dating of hydrothermal sulfides from Duanqiao hydrothermal field, Southwest Indian Ridge

    NASA Astrophysics Data System (ADS)

    Yang, Weifang; Tao, Chunhui; Li, Huaiming; Liang, Jin; Liao, Shili; Long, Jiangping; Ma, Zhibang; Wang, Lisheng

    2017-06-01

    Duanqiao hydrothermal field is located between the Indomed and Gallieni fracture zones at the central volcano, at 50°28'E in the ultraslow-spreading Southwest Indian Ridge (SWIR). Twenty-eight subsamples from a relict chimney and massive sulfides were dated using the 230Th/238U method. Four main episodes of hydrothermal activity were determined according to the restricted results: 68.9-84.3, 43.9-48.4, 25.3-34.8, and 0.7-17.3 kyrs. Hydrothermal activity of Duanqiao probably started about 84.3 (±0.5) kyrs ago and ceased about 0.737 (±0.023) kyrs ago. The periodic character of hydrothermal activity may be related to the heat source provided by the interaction of local magmatism and tectonism. The estimated mean growth rate of the sulfide chimney is <0.02 mm/yr. This study is the first to estimate the growth rate of chimneys in the SWIR. The maximum age of the relict chimney in Duanqiao hydrothermal filed is close to that of the chimneys from Mt. Jourdanne (70 kyrs). The hydrothermal activity in Dragon Flag field is much more recent than that of Duanqiao or Mt. Jourdanne fields. The massive sulfides are younger than the sulfides from other hydrothermal fields such as Rainbow, Sonne and Ashadze-2. The preliminarily estimated reserves of sulfide ores of Duanqiao are approximately 0.5-2.9 million tons.

  6. Analysis of U.S. soil lead (Pb) studies from 1970 to 2012.

    PubMed

    Datko-Williams, Laura; Wilkie, Adrien; Richmond-Bryant, Jennifer

    2014-01-15

    Although lead (Pb) emissions to the air have substantially decreased in the United States since the phase-out of leaded gasoline by 1995, amounts of lead in some soils remain elevated. Lead concentrations in residential and recreational soils are of concern because health effects have been associated with Pb exposure. Elevated soil Pb is especially harmful to young children due to their higher likelihood of soil ingestion. The purpose of this study is to create a comprehensive compilation of U.S. soil Pb data published from 1970 through 2012 as well as to analyze the collected data to reveal spatial and/or temporal soil Pb trends in the U.S. over the past 40 years. A total of 84 soil Pb studies across 62 U.S. cities were evaluated. Median soil Pb values from the studies were analyzed with respect to year of sampling, residential location type (e.g., urban, suburban), and population density. In aggregate, there was no statistically significant correlation between year and median soil Pb; however, within single cities, soil Pb generally declined over time. Our analysis shows that soil Pb quantities in city centers were generally highest and declined towards the suburbs and exurbs of the city. In addition, there was a statistically significant, positive relationship between median soil Pb and population density. In general, the trends examined here align with previously reported conclusions that soil Pb levels are higher in larger urban areas and Pb tends to remain in soil for long periods of time. © 2013.

  7. METHOD OF PROCESSING MONAZITE SAND

    DOEpatents

    Calkins, G.D.

    1957-10-29

    A method is given for the pretreatment of monazite sand with sodium hydroxide. When momazite sand is reacted with sodium hydroxide, the thorium, uranium, and rare earths are converted to water-insoluble hydrous oxides; but in the case of uranium, the precipitate compound may at least partly consist of a slightly soluble uranate. According to the patent, monazite sand is treated with an excess of aqueous sodium hydroxide solution, and the insoluble compounds of thorium, uranium, and the rare earths are separated from the aqueous solution. This solution is then concentrated causing sodium phosphate to crystallize out. The crystals are removed from the remaining solution, and the solution is recycled for reaction with a mew supply of momazite sand.

  8. Assessing the 40K decay constant by intercalibration with U-Pb, Rb-Sr and K-Ca chronometers

    NASA Astrophysics Data System (ADS)

    Naumenko-Dèzes, M. O.; Nagler, T. F.; Mezger, K.; Villa, I. M.

    2016-12-01

    Ar-Ar is one of the most used dating systems and its accuracy plays an important role in constraining the age of planets, durations of processes and their sequence of occurrence. This system has been reported to give ages that are ca. 1% younger than U-Pb ages. The discrepancies between the two mostly used and precise geochronometers, U-Pb and K-Ar, have been a subject of critical reviewing (e.g. Renne et al. [1] and ref. therein) and were attributed to a systematic offset of the 40K decay constant. Multiple attempts to recalibrate it did not achieve consistency.We attempted to intercalibrate three dating systems: U-Pb (the main reference), Rb-Sr (the consistency check) and K-Ca (the unknown). We examined 11 natural samples, but only a phlogopite from the Phalaborwa carbonatite complex met all requirements of a geological "point-like" event [2]. The Rb-Sr age of this sample is 2058.9±5.2 Ma and agrees with the age determined by Nebel et al [3] and with published U-Pb ages. The K-Ca age for the same sample calculated with constants of Steiger&Jäger [4] is 2040±13 Ma, ca.1% younger age than U-Pb reference age of the complex. Since we improved the Ca measurements [5] the K-Ca age has a low uncertainty of 0.6%. This age constrains the decay constant of the Ca branch of the 40K decay. However, the total decay constant is given by one equation with two unknowns, the branching ratio B and the decay constant of the Ar branch.Within the range of published branching ratios (B = 0.892 to 0.896 [6]) the best total 40K decay constant lies mid-way between the values proposed by Renne et al [7] and Min et al [8] (fig. 1).Figure 1. K-Ca age of Phalaborwa phlogopite changes along sloping lines as a function of assumed branching ratio B, calculated with the total 40K decay constant of [3]. [5], [6].[1] Renne et al. (2010) Geochim. Cosmochim Acta 74, 5349-5367; [2] Begemann et al. (2001) Geochim. Cosmochim Acta 65, 111-121; [3] Nebel et al (2010) GCA 74, 5349; [4] Steiger

  9. Age of the moon: An isotopic study of uranium-thorium-lead systematics of lunar samples

    USGS Publications Warehouse

    Tatsumoto, M.; Rosholt, J.N.

    1970-01-01

    Concentrations of U, Th, and Pb in Apollo 11 samples studied are low (U. 0.16 to 0.87; Th, 0.53 to 3.4; Pb, 0.29 to 1.7, in ppm) but the extremely radiogenic lead in samples allows radiometric dating. The fine dust and the breccia have a concordant age of 4.66 billion years on the basis of 207Pb/206Pb, 206Pb/238U, 207Pb/235U, and 208Pb/232Th ratios. This age is comparable with the age of meteorites and with the age generally accepted for the earth. Six crystalline and vesicular samples are distinctly younger than the dust and breccia. The 238U/235U ratio is the same as that in earth rocks, and 234U is in radioactive equilibrium with parent 238U.

  10. Can Single Crystal (U-Th)/He Zircon Ages from Nördlinger Ries Suevite be Linked to Impact-Related Shock Effects?

    NASA Astrophysics Data System (ADS)

    van Soest, M. C.; Cooper, F. J.; Wartho, J.; Hodges, K.; Buchner, E.; Schmieder, M.; Koeberl, C.

    2010-12-01

    Dating of impact-related material is difficult especially when pristine impact melt is unavailable. In the absence of such melts, most geochronometers in shocked basement or melt-poor impact rocks yield only partially reset or non-reset ages. In such cases, application of the low closure temperature apatite and zircon (U-Th)/He geochronometers can be successful, since impact-related physical and thermal shock should reset the He systematics in both minerals in most materials affected by the impact. For a proof of concept study on the well-studied Ries impact structure, we (U-Th)/He dated apatites (14.08 ± 0.26 Ma 2σ, n = 5) and zircons (14.26 ± 0.31 Ma 2σ, n = 10) from two Aumühle quarry suevite samples and one Polsingen quarry impact melt rock, which was dated at 14.37 ± 0.30 Ma (2σ) using Ar-Ar stepwise heating of recrystallized K-feldspar melt (Buchner et al., 2010). The (U-Th)/He ages agree well with the 14.37 Ma age, but are slightly younger than the suggested age of 14.59 ± 0.20 Ma (2σ - based on recent, post 1995, Ar-Ar data, Buchner et al., 2010) for the impact structure. However, among the 27 zircons dated, 6 were partially reset (>16Ma), and 11 zircons yielded younger dates (<13.5 Ma).The younger dates are problematic for successful (U-Th)/He dating of impact structures of unknown age, as they would be identified incorrectly as the age of the impact event. The cause for these younger dates may be: a) partial He loss due to a post-impact thermal event, which at Ries is unlikely as there is no geological evidence for such an event; b) compromised He retention due to metamictization by progressive radiation damage; or c) compromised He retention due to impact shock-related effects. The latter two causes can produce similar visual effects on zircon and the He loss mechanism is also similar, i.e. changes in the zircon crystal structure on a micro scale. However, the effects of these processes on zircon have been documented extensively by non

  11. A brief review of 210Pb sediment dating models and uncertainties in a world of global change

    NASA Astrophysics Data System (ADS)

    Sanchez-Cabeza, J. A.; Ruiz-Fernandez, A. C.

    2016-12-01

    Irrespective of the model names used, assumptions and (usually forgotten) uncertainties, the fact is that 210Pb sediment dating is an increasingly relevant tool in our world of global change. 210Pb dating results are needed to assess historical trends of sea level rise, quantify blue carbon fluxes and reconstruct environmental records of biogeochemical proxies for diverse processes in the aquatic ecosystems (such as ocean acidification, hypoxia and pollution). Although in the past 210Pb profiles departing from "ideal" decay trends were usually discarded, all profiles have useful information. In this work we review the principles and assumptions of the most common 210Pb dating models, and propose a logical formulation and classification of the models. 210Pb dating models provide two kinds of results: chronologies (i.e. age models) and accumulation rates. In many cases, the use of sediment and/or mass accumulation rates (SAR and MAR) is needed to assess environmental fluxes or, simply, to describe changes, such as catchment erosion or saltmarsh accretion. Although uncertainty quadratic propagation is a well-known technique, it requires that all variables are fully independent and requires demanding mathematical expressions which might lead to wrong results. We present here a Monte Carlo method that makes calculation easier and, likely, error-free. Not unexpectedly, the most important uncertainty sources are measurement uncertainties, which impose limitations on common techniques such as gamma spectrometry. 210Pb chronology does not cover all anthropogenic impacts, such as those caused by ancient civilizations, so radiocarbon also plays an important role in this kind of work. We also conceptually revise the limitations of both techniques and encourage scientists to link both dating techniques with a symmetrically open mind. Acknowledgements: projects CONACYT PDCPN2013-01/214349 and CB2010/153492, UNAM PAPIIT-IN203313, PRODEP network "Aquatic contamination: levels and

  12. Comparative use of TIMS and SHRIMP for U Pb zircon dating of A-type granites and mafic tholeiitic layered complexes and dykes from the Corsican Batholith (France)

    NASA Astrophysics Data System (ADS)

    Cocherie, A.; Rossi, Ph.; Fanning, C. M.; Guerrot, C.

    2005-05-01

    The Corsica-Sardinia batholith in the southern realm of the Hercynian belt of Europe shows evidence for gravitational collapse of this part of the mountain belt, causing major felsic and mafic magmatism. The latest intrusions are composed of leucomonzogranite and late metaluminous and alkaline granite, associated with tholeiitic layered complexes and dykes. Three dating methods on zircon (Pb-evaporation, ID-TIMS and SHRIMP) were used to unravel the chronology of these felsic and mafic rocks. Dating of zircons by the conventional U-Pb method, using TIMS after zircon dissolution, achieved an analytical uncertainty of 1 Ma for favourable cases. The TIMS Pb-evaporation technique resulted in ages with an uncertainty range of 4 to 8 Ma. After 15 to 20 analyses with the SHRIMP method, a precision ranging from 2 to 5 Ma was obtained (all at 2 σ). The three methods applied to the same zircon population extracted from four A-type granites, show that the uncertainty ranges within 2-5 Ma according to the sample. This error seems to correspond to the real geochronological uncertainty that can be achieved. The results obtained show that all six tested alkaline granites were emplaced during a very short interval of about 3-5 Ma at about 288 Ma, almost contemporaneous with the leucomonzogranite emplacement (291-287 Ma) that ended the batholith formation. In addition, there is no significant gap with the age of emplacement of the mafic tholeiitic magmatism (around 286 Ma) crosscutting the "A-type" granites. The late alkaline granites definitely do not show up here as precursors of the Tethyan rifting that began at about 170 Ma, i.e. some 100 Ma after their emplacement. It is thus necessary to examine if alternative hypotheses to the anorogenic model of the A-type Younger Granite province better fit the new geochronological data. A model involving depleted continental-crust derived magma should be compatible with the timing and geodynamical constraints as far as isotopic data are

  13. Bayesian integration of radioisotope dating (210Pb, 137Cs, 241Am, 14C) and an 18-20th century mining history of Brotherswater, English Lake District

    NASA Astrophysics Data System (ADS)

    Schillereff, Daniel; Chiverrell, Richard; Macdonald, Neil; Hooke, Janet; Welsh, Katharine; Piliposyan, Gayane; Appleby, Peter

    2014-05-01

    Lake sediment records are often a useful tool for investigating landscape evolution as geomorphic changes in the catchment are reflected by altered sediment properties in the material transported through the watershed and deposited at the lake bed. Recent research at Brotherswater, an upland waterbody in the Lake District, northwest England, has focused on reconstructing historical floods from their sedimentary signatures and calculating long-term sediment and carbon budgets from fourteen sediment cores extracted from across the basin. Developing accurate chronological control is essential for these tasks. One sediment core (BW11-2; 3.5 m length) from the central basin has been dated using artificial radionuclide measurements (210Pb, 137Cs, 241Am) for the uppermost sediments and radiocarbon (14C) for lower sediments. The core appears to span the past 1500 years, however a number of problems have arisen. We present our explanations for these errors, the independent chronological techniques used to generate an accurate age-depth model for this core and methods for its transferral to the other 13 cores extracted from the basin. Two distinct 137Cs markers, corresponding to the 1986 Chernobyl disaster and 1960s weapons testing, confirm the 210Pb profile for sediment deposition since ~1950, but calculations prior to this appear erroneous, possibly due to a hiatus in the sediment record. We used high-resolution geochemical profiles (measured by XRF) to cross-correlate with a second 210Pb-dated chronology from a more distal location, which returned more sensible results. Unfortunately, the longer 14C sequence exhibits two age-reversals (radiocarbon dates that are too old). We believe the uppermost two dates are erroneous, due to a shift in inflow location as a flood prevention method ~1900 A.D., dated using information from historical maps. The lower age-reversal coincides with greater supply of terrigenous material to the lake (increased Zr, K, Ti concentrations

  14. Improved spatial resolution for U-series dating of opal at Yucca Mountain, Nevada, USA, using ion-microprobe and microdigestion methods

    USGS Publications Warehouse

    Paces, J.B.; Neymark, L.A.; Wooden, J.L.; Persing, H.M.

    2004-01-01

    Two novel methods of in situ isotope analysis, ion microprobe and microdigestion, were used for 230Th/U and 234U/238U dating of finely laminated opal hemispheres formed in unsaturated felsic tuff at Yucca Mountain, Nevada, proposed site for a high-level radioactive waste repository. Both methods allow analysis of layers as many as several orders of magnitude thinner than standard methods using total hemisphere digestion that were reported previously. Average growth rates calculated from data at this improved spatial resolution verified that opal grew at extremely slow rates over the last million years. Growth rates of 0.58 and 0.69 mm/m.y. were obtained for the outer 305 and 740 ??m of two opal hemispheres analyzed by ion microprobe, and 0.68 mm/m.y. for the outer 22 ??m of one of these same hemispheres analyzed by sequential microdigestion. These Pleistocene growth rates are 2 to 10 times slower than those calculated for older secondary calcite and silica mineral coatings deposited over the last 5 to 10 m.y. dated by the U-Pb method and may reflect differences between Miocene and Pleistocene seepage flux. The microdigestion data also imply that opal growth rates may have varied over the last 40 k.y. These data are the first indication that growth rates and associated seepage in the proposed repository horizon may correlate with changes in late Pleistocene climate, involving faster growth during wetter, cooler climates (glacial maximum), slower growth during transition climates, and no growth during the most arid climate (modern). Data collected at this refined spatial scale may lead to a better understanding of the hydrologic variability expected within the thick unsaturated zone at Yucca Mountain over the time scale of interest for radioactive waste isolation. ?? 2004 Elsevier Ltd.

  15. Dating High Temperature Mineral Fabrics in Lower Crustal Granulite Facies Rocks

    NASA Astrophysics Data System (ADS)

    Stowell, H. H.; Schwartz, J. J.; Tulloch, A. J.; Klepeis, K. A.; Odom Parker, K.; Palin, M.; Ramezani, J.

    2015-12-01

    Granulite facies rocks may record strain that provides a record of compressional and/or extensional crustal events in hot orogenic cores and the roots of magmatic arcs. Although the precise timing of these events is important for constructing tectonic histories, it is often difficult to determine due to uncertain relationships between isotopic signatures, mineral growth, and textural features that record strain. In addition, there may be large uncertainties in isotope data due to intracrystalline diffusion and multiple crystallization events. L-S tectonites in lower crustal rocks from Fiordland, NZ record the early stages of extensional collapse of thickened magmatic arc crust. The precise age of these fabrics is important for constraining the timing of extension that led to opening of the Tasman Sea. High temperature granulite facies L-S fabrics in garnet reaction zones (GRZ) border syn- to post-deformational leucosomes. U-Pb zircon, Lu-Hf garnet, and Sm-Nd garnet ages, and trace elements in these phases indicate the complexity of assigning precise and useful ages. Zircon have soccer ball morphology with patchy and sector zoned CL. Zircon dates for igneous host and adjacent GRZ range over ca. 17 Ma. 236U-208Pb LA-ICP-MS are 108-125 Ma, N=124 (host & GRZ); however, chemical abrasion (CA) shifts GRZ dates ca. 2 Ma older. 236U-208Pb SHRIMP-RG dates cluster in 2 groups: 118.5±0.8 Ma, N=23 and 111.0±0.8 Ma, N=6. CA single crystal TIMS dates also fall into 2 groups: 117.6±0.1 Ma, N=4 and 116.6±0.2 Ma N=4. Garnet isochron ages determined from coarse garnet selvages adjacent to leucosomes range from 112.8±2.2 (147Sm-143Nd, 10 pts.) to 114.8±3.5 (177Lu-176Hf, 6 pts.) Ma. Zircon dates from all methods show ranges (>10 Ma) and 2 distinct populations. Host and GRZ zircon cannot be readily distinguished by age, lack younger rims, but have distinct Th/U trends and Eu/Eu* vs. Hf ratios. Difference in zircon trace element composition indicates either early leucosome

  16. Atmospheric dust contribution to budget of U-series nuclides in weathering profiles. The Mount Cameroon volcano

    NASA Astrophysics Data System (ADS)

    Pelt, E.; Chabaux, F. J.; Innocent, C.; Ghaleb, B.

    2009-12-01

    Analysis of U-series nuclides in weathering profiles is developed today for constraining time scale of soil and weathering profile formation (e.g., Chabaux et al., 2008). These studies require the understanding of U-series nuclides sources and fractionation in weathering systems. For most of these studies the impact of aeolian inputs on U-series nuclides in soils is usually neglected. Here, we propose to discuss such an assumption, i.e., to evaluate the impact of dust deposition on U-series nuclides in soils, by working on present and paleo-soils collected on the Mount Cameroon volcano. Recent Sr, Nd, Pb isotopic analyses performed on these samples have indeed documented significant inputs of Saharan dusts in these soils (Dia et al., 2006). We have therefore analyzed 238U-234U-230Th nuclides in the same samples. Comparison of U-Th isotopic data with Sr-Nd-Pb isotopic data indicates a significant impact of the dust input on the U and Th budget of the soils, around 10% for both U and Th. Using Sr-Nd-Pb isotopic data of Saharan dusts given by Dia et al. (2006) we estimate U-Th concentrations and U-Th isotope ratios of dusts compatible with U-Th data obtained on Saharan dusts collected in Barbados (Rydell H.S. and Prospero J.M., 1972). However, the variations of U/Th ratios along the weathering profiles cannot be explained by a simple mixing scenario between material from basalt and from the defined atmospheric dust pool. A secondary uranium migration associated with chemical weathering has affected the weathering profiles. Mass balance calculation suggests that U in soils from Mount Cameroon is affected at the same order of magnitude by both chemical migration and dust accretion. Nevertheless, the Mount Cameroon is a limit case were large dust inputs from continental crust of Sahara contaminate basaltic terrain from Mount Cameroon volcano. Therefore, this study suggests that in other contexts were dust inputs are lower, or the bedrocks more concentrated in U and Th

  17. Dating faults by quantifying shear heating

    NASA Astrophysics Data System (ADS)

    Maino, Matteo; Casini, Leonardo; Langone, Antonio; Oggiano, Giacomo; Seno, Silvio; Stuart, Finlay

    2017-04-01

    Dating brittle and brittle-ductile faults is crucial for developing seismic models and for understanding the geological evolution of a region. Improvement the geochronological approaches for absolute fault dating and its accuracy is, therefore, a key objective for the geological community. Direct dating of ancient faults may be attained by exploiting the thermal effects associated with deformation. Heat generated during faulting - i.e. the shear heating - is perhaps the best signal that provides a link between time and activity of a fault. However, other mechanisms not instantaneously related to fault motion can generate heating (advection, upwelling of hot fluids), resulting in a difficulty to determine if the thermal signal corresponds to the timing of fault movement. Recognizing the contribution of shear heating is a fundamental pre-requisite for dating the fault motion through thermochronometric techniques; therefore, a comprehensive thermal characterization of the fault zone is needed. Several methods have been proposed to assess radiometric ages of faulting from either newly grown crystals on fault gouges or surfaces (e.g. Ar/Ar dating), or thermochronometric reset of existing minerals (e.g. zircon and apatite fission tracks). In this contribution we show two cases of brittle and brittle-ductile faulting, one shallow thrust from the SW Alps and one HT, pseudotachylite-bearing fault zone in Sardinia. We applied, in both examples, a multidisciplinary approach that integrates field and micro-structural observations, petrographical characterization, geochemical and mineralogical analyses, fluid inclusion microthermometry and numerical modeling with thermochronometric dating of the two fault zones. We used the zircon (U-Th)/He thermochronometry to estimate the temperatures experienced by the shallow Alpine thrust. The ZHe thermochronometer has a closure temperature (Tc) of 180°C. Consequently, it is ideally suited to dating large heat-producing faults that were

  18. Age of the North Anatolian Fault Segments in the Yalova with U/Th Dating Method by Travertine Data

    NASA Astrophysics Data System (ADS)

    Selim, Haluk; Ömer Taş, K.

    2016-04-01

    Travertine occurrences developed along the segments of the North Anatolian Fault (NAF) in the south of Yalova. Travertines outcrop approximately 1 km2 area. These are middle-thick bedded approximately 20-40 m and back-tilted southward or horizontally. Lithology of travertines deposited such as physolite, stalactites-stalagmites, cave pearls, sharp pebble carbonate nodules, spherical-roller-intricate shapes or laminated banded travertine. Geochemical analyses were performed on the six samples of the travertines. X-ray analysis indicates that all samples are entirely composed of low-Mg calcite. Banded travertines with some tubular structures formed by precipitation from rising hot water are best developed near the toes of the large, hanging-wall-derived alluvial fans, whereas phreatic cement preferentially exists in footwall-derived, alluvial-fan conglomerates. The unit developed clarity which is controlled by normal fault as the structural and morphological, relationship with active tectonics. The travertines are a range-front type. U/Th series age dating results indicate that the travertine deposition extends back to 155 ka and yields ages of 60.000 (± 3, 091) to 153.149 (±13,466) from the range-front type travertines.

  19. Contrasting accessory mineral behavior in minimum-temperature melts: Empirical constraints from the Himalayan metamorphic core

    NASA Astrophysics Data System (ADS)

    Cottle, John M.; Larson, Kyle P.; Yakymchuk, Chris

    2018-07-01

    Medium-grained leucogranite in the Tama Kosi region of the Nepalese Himalayan Metamorphic Core yields a relatively narrow range of monazite 208Pb/232Th dates with a dominant population at 21.0 Ma inferred to represent crystallization of an early plutonic phase. In contrast, the pegmatitic portion of the same intrusive complex, that cross-cuts the medium-grained leucogranite, contains zircon, monazite and xenotime that each display near-identical age spectra, recording semi-continuous (re-)crystallization from 27.5 Ma to 21.0 Ma, followed by a 2 m.y. hiatus then further (re-)crystallization between 19.4 and 18.6 Ma. The "gap" in pegmatite dates corresponds well to the crystallization age of the older leucogranite, whereas the end of accessory phase growth in the pegmatite coincides with the onset of regional-scale cooling. Detailed textural, trace element and thermochronologic data indicate that the range of zircon, monazite and xenotime dates recorded in the pegmatite reflect inherited components that underwent semi-continuous (re-)crystallization during metamorphism and/or anatexis in the source region(s), whereas dates younger than the hiatus indicate accessory phase recrystallization, related to both fluid influx and a concomitant increase in temperature. In contrast, the lack of an inherited component(s) in the medium-grained leucogranite phase is inferred to be a result of complete dissolution during partial melting. A model is proposed in which influx of heat and H2O-rich fluids associated with early leucogranite emplacement temporarily delayed zircon and monazite and xenotime crystallization, respectively. These data highlight the importance of measuring spatially resolved dates, trace elements and textural patterns from multiple accessory minerals combined with model constraints to better understand the often-complex crystallization history of anatectic melts in collisional orogens.

  20. Analytical and sampling constraints in ²¹⁰Pb dating.

    PubMed

    MacKenzie, A B; Hardie, S M L; Farmer, J G; Eades, L J; Pulford, I D

    2011-03-01

    ²¹⁰Pb dating provides a valuable, widely used means of establishing recent chronologies for sediments and other accumulating natural deposits. The Constant Rate of Supply (CRS) model is the most versatile and widely used method for establishing ²¹⁰Pb chronologies but, when using this model, care must be taken to account for limitations imposed by sampling and analytical factors. In particular, incompatibility of finite values for empirical data, which are constrained by detection limit and core length, with terms in the age calculation, which represent integrations to infinity, can generate erroneously old ages for deeper sections of cores. The bias in calculated ages increases with poorer limit of detection and the magnitude of the disparity increases with age. The origin and magnitude of this effect are considered below, firstly for an idealized, theoretical ²¹⁰Pb profile and secondly for a freshwater lake sediment core. A brief consideration is presented of the implications of this potential artefact for sampling and analysis. Copyright © 2011 Elsevier B.V. All rights reserved.

  1. Laser depth profiling of diffusion and alpha ejection profiles in Durango apatite: testing the fundamental parameters of apatite (U-Th)/He dating

    NASA Astrophysics Data System (ADS)

    van Soest, M. C.; Monteleone, B. D.; Boyce, J. W.; Hodges, K.

    2009-12-01

    Since its development (e.g. Zeitler et al., 1987, Lippolt et al., 1994, Farley et al., 1996, Wolf et al., 1996) as a viable low temperature thermochronological method (U-Th)/He dating of apatite has become a popular and widely applied low temperature thermochronometer. The method has been applied with success to a great variety of geological problems, and the fundamental parameters of the method: the bulk diffusion parameters of helium in apatite, and the calculated theoretical helium stopping distance in apatite used to correct the ages for the effects of alpha ejection appear sound. However, the development of the UV laser microprobe technique for the (U-Th)/He method (Boyce et al., 2006) allows for in-situ testing of the helium bulk diffusion parameters (Farley, 2000) and can provide a direct measurement of the alpha ejection distance in apatite. So, with the ultimate goal of further developing the in-situ (U-Th)/He dating method and micro-analytical depth profiling techniques to constrain cooling histories in natural grains, we conducted a helium depth profiling study of induced diffusion and natural alpha ejection profiles in Durango apatite. For the diffusion depth profiling, a Durango crystal was cut in slabs oriented parallel and perpendicular to the crystal c-axis. The slabs were polished and heated using different temperature and time schedules to induce predictable diffusion profiles based on the bulk helium diffusion parameters in apatite. Depth profiling of the 4He diffusion profiles was done using an ArF excimer laser. The measured diffusion depth profiles at 350°, 400°, and 450° C coincide well with the predicted bulk diffusion curves, independent of slab orientation, but the 300° C profiles consistently deviate significantly. The possible cause for this deviation is currently being investigated. Alpha ejection profiling was carried out on crystal margins from two different Durango apatite crystals, several faces from each crystal were analyzed

  2. A Modern Analog to the Depositional Age Problem: Zircon and Apatite Fission Track and U-Pb Age Distributions by LA-ICP-MS

    NASA Astrophysics Data System (ADS)

    Donelick, H. M.; Donelick, M. B.; Donelick, R. A.

    2012-12-01

    Sand from three river systems in North Idaho (Snake River near Lewiston, Clearwater River near Lewiston and the Salmon River near White Bird) and two regional ash fall events (Mt. Mazama and Mt. St. Helens) were collected for zircon U-Pb detrital age analysis. Up to 120 grains of zircon per sample were ablated using a Resonetics M-50 193 nm ArF Excimer laser ablation (LA) system and the Pb, Th, and U isotopic signals were quantified using an Agilent 7700x quadrupole inductively coupled plasma-mass spectrometer (ICP-MS). Isotopic signals for major, minor, and trace elements, including all REEs, were also monitored. The youngest zircon U-Pb ages from the river samples were approximately 44 Ma; Cenozoic Idaho Batholith and Precambrian Belt Supergroup ages were well represented. Significant common Pb contamination of the Clearwater River sample (e.g., placer native Cu was observed in the sample) precluded detailed analysis of the zircon U-Pb ages but no interpretable ages <44 Ma were observed. Interestingly, not one of the river samples yielded zircon U-Pb ages near 0 Ma, despite all three catchment areas having received significant ash from Mt. St. Helens in 1980, and Mount Mazama 7,700 years ago, and no doubt other events during the Quaternary. Work currently in progress seeks to address bias against near 0 Ma ages in the catchment areas due to: a) small, local ash fall grain sizes and b) overwhelming number of older grains relative to the ash fall grains. Data from Mt. St. Helens ash from several localities near the mountain (Toutle River and Maple Flats, WA) and several far from the mountain (Spokane, WA; Princeton, ID; Kalispell, MT) and Mt. Mazama ash fall deposits near Lewiston, ID and Spokane, WA will be presented to address these possibilities. Additionally, fission track and U-Pb ages from apatites collected from these river and ash fall samples will also be shown to help constrain the problem.

  3. Radiation damage-He diffusivity models applied to deep-time thermochronology: Zircon and titanite (U-Th)/He datasets from cratonic settings

    NASA Astrophysics Data System (ADS)

    Guenthner, W.; DeLucia, M. S.; Marshak, S.; Reiners, P. W.; Drake, H.; Thomson, S.; Ault, A. K.; Tillberg, M.

    2017-12-01

    Advances in understanding the effects of radiation damage on He diffusion in uranium-bearing accessory minerals have shown the utility of damage-diffusivity models for interpreting datasets from geologic settings with long-term, low-temperature thermal histories. Craton interiors preserve a billion-year record of long-term, long-wavelength vertical motions of the lithosphere. Prior thermochronologic work in these settings has focused on radiation damage models used in conjunction with apatite (U-Th)/He dates to constrain Phanerozoic thermal histories. Owing to the more complex damage-diffusivity relationship in zircon, the zircon (U-Th)/He system yields both higher and, in some cases, lower temperature sensitivities than the apatite system, and this greater range in turn allows researchers to access deeper time (i.e., Proterozoic) segments of craton time-temperature histories. Here, we show two examples of this approach by focusing on zircon (U-Th)/He datasets from 1.8 Ga granitoids of the Fennoscandian Shield in southeastern Sweden, and 1.4 Ga granites and rhyolites of the Ozark Plateau in southeastern Missouri. In the Ozark dataset, the zircon (U-Th)/He data, combined with a damage-diffusivity model, predict negative correlations between date and effective uranium (eU) concentration (a measurement proportional to radiation damage) from thermal histories that include an episode of Proterozoic cooling (interpreted as exhumation) following reheating (interpreted as burial) to temperature of 260°C at 850-680 Ma. In the Fennoscandian Shield, a similar damage model-based approach yields time-temperature constraints with burial to 217°C between 944 Ma and 851 Ma, followed by exhumation from 850 to 500 Ma, and burial to 154°C between 366 Ma and 224 Ma. Our Fennoscandian Shield samples also include titanite (U-Th)/He dates that span a wide range (945-160 Ma) and are negatively correlated with eU concentration, analogous to our zircon He dataset. These results support

  4. Advances and limitations on interpreting the erosional record from isotopic analysis of single detrital mineral grains

    NASA Astrophysics Data System (ADS)

    Parrish, Randall

    2010-05-01

    The analysis of provenance of clastic sediments is useful for reconstructing the characteristics and rates of exhumation of source areas, and sometimes placing minimum age constraints on depositional age. Due largely to increased availability and ease of access to LA-ICP-MS instrumentation, the analysis of provenance using single detrital accessory minerals has grown very rapidly over recent years. With this however is a culture of casual users who may not fully appreciate subtleties of measurement and isotope interpretation. The isotopic provenance literature is dominated by zircon-centric studies that use U-Pb dating and Hf isotope measurements of single zircons, but unfortunately an increasing number of these studies appear to lack sufficient understanding of U-Pb and Hf systematics; misleading interpretations are increasingly common. The inherent information contained in detrital accessory minerals is potentially immense, scientifically, but comprehensive interpretations attempting to reconstruct the geological make-up and evolution of sources require dating of multiple types of accessory minerals (i.e. zircon, titanite, monazite, garnet inclusions, micas, allanite, rutile, apatite) by various methods (U-Pb, fission track, Ar-Ar…) at times accompanied by isotope geochemical data (Lu-Hf, Sm-Nd, Rb-Sr) of phases where Sr, Hf, or REE comprise a major element (≥0.5%). Many approaches have been demonstrated but the mix of methodologies needs to be tailored to the problem, in view of the variable effort and expense needed to acquire good datasets. To date there are few comprehensive multi-mineral, multi-isotope system applications, and too many studies that follow a prescriptive cookbook that lacks innovation and fails to address a problem. The field needs to focus effort on the approaches that can solve a problem well rather than doing either just the easy methods or too many methods only moderately well. Zircon studies require strategies that reduce or

  5. Composition of monazites from pegmatites in eastern Minas Gerais, Brazil

    USGS Publications Warehouse

    Murata, K.J.; Dutra, C.V.; da Costa, M.T.; Branco, J.J.R.

    1959-01-01

    Two zoned pegmatites in south-eastern Minas Gerais were sampled in detail for their content of monazite and xenotime and the monazite was analysed for certain of the rare-earth elements and thorium. The ratio of xenotime to monazite increases in both pegmatites from the wall toward the quartz core. The content of the less basic rare-earth elements and of thorium in monazite rises in the same direction. These variation trends suggest that during the crystallization of these pegmatites there was a fractionation of the elements leading to a more or less steady enrichment of the less basic rare-earth elements and of thorium in the residual fluids. One mode of explaining these observed effects postulates that the rare-earth elements and thorium were present in pegmatitic fluids as co-ordination complexes rather than as simple cations. ?? 1959.

  6. Evidence for prolonged mid-Paleozoic plutonism and ages of crustal sources in east-central Alaska from SHRIMP U-Pb dating of syn-magmatic, inherited, and detrital zircon

    USGS Publications Warehouse

    Dusel-Bacon, C.; Williams, I.S.

    2009-01-01

    Sensitive high-resolution ion microprobe (SHRIMP) U-Pb analyses of igneous zircons from the Lake George assemblage in the eastern Yukon-Tanana Upland (Tanacross quadrangle) indicate both Late Devonian (???370 Ma) and Early Mississippian (???350 Ma) magmatic pulses. The zircons occur in four textural variants of granitic orthogneiss from a large area of muscovite-biotite augen gneiss. Granitic orthogneiss from the nearby Fiftymile batholith, which straddles the Alaska-Yukon border, yielded a similar range in zircon U-Pb ages, suggesting that both the Fiftymile batholith and the Tanacross orthogneiss body consist of multiple intrusions. We interpret the overall tectonic setting for the Late Devonian and Early Mississippian magmatism as an extending continental margin (broad back-arc region) inboard of a northeast-dipping (present coordinates) subduction zone. New SHRIMP U-Pb ages of inherited zircon cores in the Tanacross orthogneisses and of detrital zircons from quartzite from the Jarvis belt in the Alaska Range (Mount Hayes quadrangle) include major 2.0-1.7 Ga clusters and lesser 2.7-2.3 Ga clusters, with subordinate 3.2, 1.4, and 1.1 Ga clusters in some orthogneiss samples. For the most part, these inherited and core U-Pb ages match those of basement provinces of the western Canadian Shield and indicate widespread potential sources within western Laurentia for most grain populations; these ages also match the detrital zircon reference for the northern North American miogeocline and support a correlation between the two areas.

  7. Subcutaneous packing in royal Egyptian mummies dated from 18th to 20th dynasties.

    PubMed

    Saleem, Sahar N; Hawass, Zahi

    2015-01-01

    It has been widely disseminated in the literature that subcutaneous packing, as part of mummification, was not usually done until the 21st dynasty. We aimed to study by computed tomography (CT) if subcutaneous packing was part of mummification of royal Egyptians dated to 18th to 20th dynasties. We analyzed the 2- and 3-dimensional CT images of 13 royal mummies dated to circa 1550 to 1153 BC for presence of subcutaneous embalming materials. Among the studied mummies were Amenhotep III, Tutankhamun, Seti I, and Ramesses II. We reported the CT characters of any detected subcutaneous embalming materials and noted their impact on the morphology of the involved body part. We correlated the CT findings with the archeological literature. Computed tomographic images showed subcutaneous packing in 12 (92.3%) mummies; whereas the mummy that was previously known as "Thutmose I" showed no such evidence. Subcutaneous packing involved the faces (n = 11), necks (n = 4), torsos (n = 5), and/or extremities (n = 4) of the mummies. Subcutaneous filling materials showed variation in homogeneity and CT densities and they were likely composed of resin, bits of linen with resin, or other substances. Subcutaneous packing procedure succeeded in providing uniform full contour of the involved body regions without causing significant tissue damages. Subcutaneous packing procedure was used as part of mummification of royal Ancient Egyptians dated to 18th to 20th dynasties earlier than what was believed in archaeology. The Ancient Egyptian embalmers must have been skilled in dissection and possessed surgical tools that enabled them to perform this fine procedure.

  8. U-Pb systematics in coexisting zircon, rutile and titanite from granophyres in the Archean Stillwater Complex: metamictization and the fate of radiogenic Pb

    NASA Astrophysics Data System (ADS)

    Friedman, R. M.; Wall, C. J.; Scoates, J. S.; Meurer, W. P.

    2009-12-01

    Self-irradiation of zircon causes structural damage (metamictization) that can result in the loss of radiogenic Pb during interaction with aqueous solutions. To evaluate this behavior in metamict zircon, and in other U-bearing accessory phases like titanite and rutile, we are examining the U-Pb systematics of granophyric rocks from the ca. 2.7 Ga Stillwater layered intrusion, Montana. Four samples were studied in detail, including a pegmatitic ksp-qtz core to a gabbroic pegmatoid in the Lower Banded Series (N1), an alaskite and an amphibole-rich reaction zone between the alaskite and anorthosite (AN1) in the Middle Banded Series, and an amphibole-bearing granophyre from the Upper Banded Series (GN3). Except in the pegmatite, zircon is variably metamict with amorphous zones characterized by distinctive Ca-enrichment. Single zircon grains were analyzed by ID-TIMS following annealing and chemical abrasion, and multi-grain (n=4-5) fractions of titanite and rutile were analyzed by conventional ID-TIMS; the UBC 233-235U-205Pb isotopic tracer is calibrated against mixed U-Pb gravimetric reference solutions made available through the EarthTime initiative. The U-Pb systematics are coherent only for the pegmatite yielding both a Concordia age of 2709.60 ± 0.80 Ma (2σ, including tracer calibration, decay-constant errors not included) for low-U zircon (76-237 ppm) and concordant titanite results with 207Pb/206Pb ages from 2701-2710 Ma. The results for high-U zircon (up to 1438 ppm) for the other three samples are strongly discordant (9-43%, 85-89%, 28-71%, respectively) with a wide range of 207Pb/206Pb ages (2583-2647 Ma, 2210-2357 Ma, 2345-2499 Ma). Given the extreme incompatibility of Pb2+ in zircon and the highly metamict state of zircon in these granophyres, we are investigating the extent to which radiogenic lead is selectively removed during the chemical abrasion and annealing process from step-wise leaching experiments and image analysis (CL, SEM). In contrast

  9. Zircon U-Pb geochronology and Sr-Nd-Pb-Hf isotopic constraints on the timing and origin of Mesozoic granitoids hosting the Mo deposits in northern Xilamulun district, NE China

    NASA Astrophysics Data System (ADS)

    Shu, Qihai; Lai, Yong; Zhou, Yitao; Xu, Jiajia; Wu, Huaying

    2015-12-01

    Located in the east section of the Central Asian orogen in northeastern China, the Xilamulun district comprises several newly discovered molybdenum deposits, primarily of porphyry type and Mesozoic ages. This district is divided by the Xilamulun fault into the southern and the northern parts. In this paper, we present new zircon U-Pb dating, trace elements and Hf isotope, and/or whole rock Sr-Nd-Pb isotopic results for the host granitoids from three Mo deposits (Yangchang, Haisugou and Shabutai) in northern Xilamulun. Our aim is to constrain the age and petrogenesis of these intrusions and their implications for Mo mineralization. Zircon U-Pb LA-ICP-MS dating shows that the monzogranites from the Shabutai and Yangchang deposits formed at 138.4 ± 1.5 and 137.4 ± 2.1 Ma, respectively, which is identical to the molybdenite Re-Os ages and coeval well with the other Mo deposits in this region, thereby indicating an Early Cretaceous magmatism and Mo mineralization event. Zircon Ce/Nd ratios from the mineralized intrusions are significantly higher than the barren granites, implying that the mineralization-related magmas are characterized by higher oxygen fugacity. These mineralized intrusions share similar zircon in-situ Hf and whole rock Sr-Nd isotopic compositions, with slightly negative to positive εHf(t) ranging from - 0.8 to + 10.0, restricted εNd(t) values from - 3.7 to + 1.6 but a little variable (87Sr/86Sr)i ratios between 0.7021 and 0.7074, indicative of formation from primary magmas generated from a dominantly juvenile lower crust source derived from depleted mantle, despite diverse consequent processes (e.g., magma mixing, fractional crystallization and crustal contamination) during their evolution. The Pb isotopes (whole rock) also show a narrow range of initial compositions, with (206Pb/204Pb)i = 18.03-18.88, (207Pb/204Pb)i = 15.48-15.58 and (208Pb/204Pb)i = 37.72-38.28, in agreement with Sr-Nd-Hf isotopes reflecting the dominance of a mantle component

  10. The Grand St Bernard-Briançonnais Nappe System and the Paleozoic Inheritance of the Western Alps Unraveled by Zircon U-Pb Dating

    NASA Astrophysics Data System (ADS)

    Bergomi, M. A.; Dal Piaz, G. V.; Malusà, M. G.; Monopoli, B.; Tunesi, A.

    2017-12-01

    The continental crust involved in the Alpine orogeny was largely shaped by Paleozoic tectono-metamorphic and igneous events during oblique collision between Gondwana and Laurussia. In order to shed light on the pre-Alpine basement puzzle disrupted and reamalgamated during the Tethyan rifting and the Alpine orogeny, we provide sensitive high-resolution ion microprobe U-Pb zircon and geochemical whole rock data from selected basement units of the Grand St Bernard-Briançonnais nappe system in the Western Alps and from the Penninic and Lower Austroalpine units in the Central Alps. Zircon U-Pb ages, ranging from 459.0 ± 2.3 Ma to 279.1 ± 1.1 Ma, provide evidence of a complex evolution along the northern margin of Gondwana including Ordovician transtension, Devonian subduction, and Carboniferous-to-Permian tectonic reorganization. Original zircon U-Pb ages of 371 ± 0.9 Ma and 369.3 ± 1.5 Ma, from calc-alkaline granitoids of the Grand Nomenon and Gneiss del Monte Canale units, provide the first compelling evidence of Late Devonian orogenic magmatism in the Alps. We propose that rocks belonging to these units were originally part of the Moldanubian domain and were displaced toward the SW by Late Carboniferous strike-slip faulting. The resulting assemblage of basement units was disrupted by Permian tectonics and by Mesozoic opening of the Alpine Tethys. Remnants of the Moldanubian domain became either part of the European paleomargin (Grand Nomenon unit) or part of the Adriatic paleomargin (Gneiss del Monte Canale unit), to be finally accreted into the Alpine orogenic wedge during the Cenozoic.

  11. Effects of heating on the emanation rates of radon-222 from a suite of natural minerals.

    PubMed

    Garver, E; Baskaran, M

    2004-12-01

    The emanating power of radon provides information on the internal structure of a mineral and the radiation damage caused by the decay of 238U, 235U and 232Th (and their daughters) that are present in the mineral. The concentration of 222Rn in groundwater is primarily controlled by the concentration of U and Th in the underlying rocks, as well as the emanation coefficient for that particular rock. The variations in the emanation coefficient for 222Rn caused when subsurface rocks are subjected to tectonic forces results in changes in 222Rn in groundwater. Increased emanation rates of radon from a mineral grain can potentially alter the 238U-206Pb, 235U-207Pb and 232Th-208Pb chronological clocks. We have measured radon emanation coefficients on a suite of minerals comprised of one oxide (uraninite), three silicates (thorite, zircon, and cerite) and one phosphate (monazite) at room temperature and after heating at 200 degrees C and 600 degrees C. Annealing of some of the nuclear tracks within a mineral significantly reduces the emanation rates of radon in these minerals, suggesting that the tracks created by decay events serve as conduit pathways for the release of 222Rn. Higher emanation rates of 222Rn from mineral grains that are surrounded by liquid as compared to air indicate that a major portion of the escaping 222Rn in air gets embedded into adjacent mineral grains and/or opposite walls of a pore.

  12. K, U, and Th behavior in Martian environmental conditions

    NASA Technical Reports Server (NTRS)

    Zolotov, M. YU.; Krot, T. V.; Moroz, L. V.

    1993-01-01

    The possibility of K, U, and Th content determination from orbit and in situ allows consideration of those elements as geochemical indicators in the planetary studies. In the case of Mars the unambiguous interpretations of such data in terms of igneous rocks are remarkably constrained by the widespread rock alteration and the existence of exogenic deposits. Besides, the terrestrial experience indicates that K, U, and Th contents could be used as indicators of environmental geochemical processes. Thus the determination of K, U, and Th contents in the Martian surface materials could provide the indirect data on the conditions of some exogenic geological processes. The speculations on the K, U, and Th behavior in the Martian environments show that aeolian and aqueous processes leads to the preferential accumulation of K, U, and Th in fine dust material. The separation of K, U, and Th on Mars is smaller in scale to that on Earth.

  13. Multiple Basinal Fluid Events in the Lower Belt Supergroup, Montana: Constraints From CHIME Ages and REE Patterns of Monazites

    NASA Astrophysics Data System (ADS)

    Gonzalez-Alvarez, I.; Kusiak, M. A.

    2004-05-01

    Chemical dates (CHIME) on 105 spots and REE patterns of monazites were obtained from coarse sandstones and siltstones in the Mesoproterozoic siliciclastic Appekunny and Grinnell formations, lower Belt Supergroup, Montana, by EMPA. At least three post-depositional events induced by basinal fluids can be recognized: (a) red coloration accompanied by a major K-addition; (b) a green overprint of red siltstones; and (c) dolomitization. Fluid advection in the unmineralized lower Belt is pervasive and may have been alkaline and oxidizing. These three events progressively modified the primary geochemical characteristics of the siliciclastic rocks. Calculated ages show similar ranges in the fine and coarse-grained facies. For siltstones there are two age clusters: (1) at 1,801 ± 21 to 1,968 ± 26 Ma, as well as (2) at 854 ± 7 to 962 ± 13 Ma. Coarse sandstones show similar age clusters (3) at 1,831 ± 14 to 1,982 ± 12 Ma, and (4) at 803 ± 6 to 944 ± 9 Ma. A wide range of dates plots between the clusters for both facies. Clusters (1) and (3) are interpreted as the result of detrital monazites from a source area ~1.8 to 1.9 Ga old. Mineralogical variations and trace element systematic reveal basinal brines, which mobilized MREE and HREE, locally generating secondary monazites, influencing large domains of the lower Belt. The lower Belt Supergroup is estimated to have been deposited between 1.47 Ga and 1.45 Ga; consequently, the second age cluster for sandstones and siltstones is viewed as constraining the timeframe of a major basinal fluid event at ~0.80 to 0.96 Ga. That event is clearly distinct from the hydrothermal system associated with the Sullivan sedex base metal deposit at the base of the Belt. Ages between the clusters are interpreted either as secondary, formed during additional basinal fluid events or as reset of detrital monazites. Accordingly, the Belt basin was intermittently an open system to fluids from ~1.47 to ~0.80 Ga. Chondrite-normalized REE patterns

  14. Single-Grain (U-Th)/He Ages of Phosphates from St. Severin Chondrite

    NASA Astrophysics Data System (ADS)

    Min, K. K.; Reiners, P. W.; Shuster, D. L.

    2010-12-01

    Thermal evolution of chondrites provides valuable information on the heat budget, internal structure and dimensions of their parent bodies once existed before disruption. St. Severin LL6 ordinary chondrite is known to have experienced relatively slow cooling compared to H chondrites. The timings of primary cooling and subsequent thermal metamorphism were constrained by U/Pb (4.55 Ga), Sm/Nd (4.55 Ga), Rb/Sr (4.51 Ga) and K/Ar (4.4 Ga) systems. However, cooling history after the thermal metamorphism in a low temperature range (<200 °C) is poorly understood. In order to constrain the low-T thermal history of this meteorite, we performed (1) single-grain (U-Th)/He dating for five chlorapatite and fourteen merrillite aggregates from St. Severin, (2) examination of textural and chemical features of the phosphate aggregates using a scanning electron microscope (SEM), and (3) proton-irradiation followed by 4He and 3He diffusion experiments for single grains of chlorapatite and merrillite from Guarena meteorite, for general characterization of He diffusivity in these major U-Th reservoirs in meteorites. The α-recoil-uncorrected ages from St. Severin are distributed in a wide range of 333 ± 6 Ma and 4620 ± 1307 Ma. The probability density plot of these data shows a typical younging-skewed age distribution with a prominent peak at ~ 4.3 Ga. The weighted mean of the nine oldest samples is 4.284 ± 0.130 Ga, which is consistent with the peak of the probability plot. The linear dimensions of the phosphates are generally in the range of ~50 µm to 200 µm. The α recoil correction factor (FT) based on the morphology of the phosphate yields improbably old ages (>4.6 Ga), suggesting that within the sample aggregates, significant amounts of the α particles ejected from phosphates were implanted into the adjacent phases and therefore that this correction may not be appropriate in this case. The minimum FT value of 0.95 is calculated based on the peak (U-Th)/He age and 40Ar/39Ar

  15. U-Pb detrital zircon dates and provenance data from the Beaufort Group (Karoo Supergroup) reflect sedimentary recycling and air-fall tuff deposition in the Permo-Triassic Karoo foreland basin

    NASA Astrophysics Data System (ADS)

    Viglietti, Pia A.; Frei, Dirk; Rubidge, Bruce S.; Smith, Roger M. H.

    2018-07-01

    Detrital zircon U-Pb age dating was used for provenance determination and maximum age of deposition for the Upper Permian (upper Teekloof and Balfour formations) and Lower Triassic (Katberg Formation) lithostratigraphic subdivisions of the Beaufort Group of South Africa's Karoo Basin. Ten samples were analysed using laser ablation - single collector - magnetic sectorfield - inductively coupled plasma - mass spectrometry (LA-SF-ICP-MS). The results reveal a dominant Late Carboniferous-Late Permian population (250 ± 5 Ma - 339 ± 5 Ma), a secondary Cambrian-Neoproterozoic (489 ± 5 Ma to 878 ± 24 Ma) population, a minor Mesoproterozoic (908 ± 24 Ma to 1308 ± 23) population, and minor occurrences of Devonian, Ordovician, Proterozoic and Archean zircon grains. Multiple lines of evidence (e.g. roundness and fragmentary nature of zircons, palaeo-current directions, and previous work), suggest the older zircon populations are related to sedimentary recycling in the Gondwanide Orogeny. The youngest and dominant population contain elongate euhedral grains interpreted to be directly derived from their protolith. Since zircons form in felsic igneous rocks, and no igneous rocks of Late Permian age occur in the Karoo Basin, these findings suggest significant input of volcanic material by ash falls. These results support sedimentological and palaeontological data for a Lopingian (Late Permian) age for the upper Beaufort Group, but contradict previous workers who retrieved Early Triassic dates from zircons in ashes for the Beaufort and Ecca Groups. Pb-loss not revealed by resolvable discordance on the concordia diagram, and metamictization of natural zircons are not factored into the conclusions of earlier workers.

  16. Oligo-Miocene thinning of the Beni Bousera peridotites and their Variscan crustal host rocks, Internal Rif, Morocco

    NASA Astrophysics Data System (ADS)

    Gueydan, Frédéric; Pitra, Pavel; Afiri, Abdelkhaleq; Poujol, Marc; Essaifi, Abderrahim; Paquette, Jean-Louis

    2015-06-01

    Deciphering Variscan versus Alpine history in the Internal Rif system is a key to constrain the tectonic evolution of the Alboran domain and hence the geodynamics of the western Mediterranean system during the Cenozoic. This study focuses on the evolution of the metamorphic envelope of the Beni Bousera massif and its relation to the underlying peridotites. Combining structural geology, metamorphic petrology, and laser ablation inductively coupled plasma mass spectrometry U-Th-Pb dating of monazite, this study contributes to the understanding of the tectonic history of the western Internal Rif. The regional foliation (S2) is characterized by low pressure-high temperature (LP-HT) mineral assemblages and obliterates a former foliation (S1) developed along a Barrovian (medium pressure-medium temperature, MP-MT) metamorphic gradient. The dating of some metamorphic monazite grains from a micaschist and a migmatitic gneiss demonstrates that the crustal envelope of the peridotite recorded two distinct tectonometamorphic episodes. Data from monazite inclusions in S1 garnet suggest that the first event, D1, is older than 250-170 Ma and likely related to the Variscan collision, in agreement with the Barrovian type of the metamorphic gradient. The second event, D2, is Alpine in age (at circa 21 Ma) and corresponds to a strong lithosphere thinning allowing subsequent subcontinental mantle exhumation. Such a tectonic context provides an explanation for the LP-HT metamorphic gradient that is recorded in the regional foliation of the western Betic-Rif system. This extension is probably related to a subduction slab rollback in the western end of the Mediterranean realm during the Oligo-Miocene times. No evidence for a Tertiary high pressure/low temperature metamorphism has been identified in the studied area.

  17. Inheritance, Variscan tectonometamorphic evolution and Permian to Mesozoic rejuvenations in the metamorphic basement complexes of the Romanian Carpathians revealed by monazite microprobe geochronology

    NASA Astrophysics Data System (ADS)

    Săbău, Gavril; Negulescu, Elena

    2014-05-01

    Monazite U-Th-Pb chemical dating reaches an acceptable compromise between precision and accuracy on one side, and spatial resolution and textural constraints on the other side. Thus it has a powerful potential in testing the coherence of individual metamorphic basement units, and enabling correlations among them. Yet, sensitivity and specificity issues in monazite response to thermotectonic events, especially in the case of superposed effects, remain still unclear. Monazite dating at informative to detailed scale in the main metamorphic basement units of the Carpathians resulted in complex age spectra. In the main, the spectra are dominated by the most pervasive thermal and structural overprint, as checked against independent geochronological data. Post-peak age resetting is mostly present, but statistically subordinate. Resetting in case of superposed events is correlated with the degree of textural and paragenetic overprinting, inheritances being always indicated by more or less well-defined age clusters. The lack of relict ages correlating with prograde structural and porphyroblast zonation patterns is indicative for juvenile formations. Age data distribution in the Carpathians allowed distinction of pre-Variscan events, syn-metamorphic Variscan tectonic stacking of juvenile and reworked basement, post-Variscan differential tectonic uplift, as well as prograde metamorphic units ranging down to Upper Cretaceous ages. In the South Carpathians, the Alpine Danubian domain consists of several Variscan and Alpine thrust sheets containing a metamorphic complex dominated by Upper Proterozoic to Lower Cambrian metamorphic and magmatic ages (Lainici-Păiuş), and several complexes with metamorphic overprints ranging from Carboniferous to Lower Permian. Any correlation among these units, as well as geotectonic models placing a Lower Paleozoic oceanic domain between pre-existing Lainici-Păiuş and Drăgşan terranes are precluded by the age data. Other basement of the

  18. Zircon U-Pb and molybdenite Re-Os geochronology and Sr-Nd-Pb-Hf isotopic constraints on the genesis of the Xuejiping porphyry copper deposit in Zhongdian, Northwest Yunnan, China

    NASA Astrophysics Data System (ADS)

    Leng, Cheng-Biao; Zhang, Xing-Chun; Hu, Rui-Zhong; Wang, Shou-Xu; Zhong, Hong; Wang, Wai-Quan; Bi, Xian-Wu

    2012-10-01

    The Xuejiping porphyry copper deposit is located in northwestern Yunnan Province, China. Tectonically, it lies in the southern part of the Triassic Yidun island arc. The copper mineralization is mainly hosted in quartz-dioritic and quartz-monzonitic porphyries which intruded into clastic-volcanic rocks of the Late Triassic Tumugou Formation. There are several alteration zones including potassic, strong silicific and phyllic, argillic, and propylitic alteration zones from inner to outer of the mineralized porphyry bodies. The ages of ore-bearing quartz-monzonitic porphyry and its host andesite are obtained by using the zircon SIMS U-Pb dating method, with results of 218.3 ± 1.6 Ma (MSWD = 0.31, N = 15) and 218.5 ± 1.6 Ma (MSWD = 0.91, N = 16), respectively. Meanwhile, the molybdenite Re-Os dating yields a Re-Os isochronal age of 221.4 ± 2.3 Ma (MSWD = 0.54, N = 5) and a weighted mean age of 219.9 ± 0.7 Ma (MSWD = 0.88). They are quite in accordance with the zircon U-Pb ages within errors. Furthermore, all of them are contemporary with the timing of the Garzê-Litang oceanic crust subduction in the Yidun arc. Therefore, the Xuejiping deposit could be formed in a continental margin setting. There are negative ɛNd(t) values ranging from -3.8 to -2.1 and relatively high initial 87Sr/86Sr ratios from 0.7051 to 0.7059 for the Xuejiping porphyries and host andesites. The (206Pb/204Pb)t, (207Pb/204Pb)t and (208Pb/204Pb)t values of the Xuejiping porphyries and host andesites vary from 17.899 to 18.654, from 15.529 to 15.626, and from 37.864 to 38.52, respectively, indicative of high radiogenic Pb isotopic features. In situ Hf isotopic analyses on zircons by using LA-MC-ICP-MS exhibit that there are quite uniform and slightly positive ɛHf(t) values ranging from -0.2 to +3.2 (mostly between 0 and +2), corresponding to relatively young single-stage Hf model ages from 735 Ma to 871 Ma. These isotopic features suggest that the primary magmas of the Xuejiping porphyries and

  19. Metamorphic P-T path and zircon U-Pb dating of HP mafic granulites in the Yushugou granulite-peridotite complex, Chinese South Tianshan, NW China

    NASA Astrophysics Data System (ADS)

    Zhang, Lu; Zhang, Lifei; Xia, Bin; Lü, Zeng

    2018-03-01

    Co-existing granulite and peridotite may represent relics of the paleo-suture zone and provides an optimal opportunity for better understanding of orogeny between two blocks. In this study, we carried out petrological and U-Pb zircon dating investigation on the HP mafic granulites associated with peridotite complex at Yushugou in Chinese South Tianshan. The studied samples include garnet-bearing high-pressure mafic granulites which can be subdivided into two types: Type I orthopyroxene-free and Type II orthopyroxene-bearing granulites and amphibolite. Type I granulite (Y21-2) has a mineral assemblage of garnet (33 vol.%), clinopyroxene (32 vol.%) and plagioclase (30 vol.%); and Type II granulite (Y18-8) has a mineral assemblage of garnet (22 vol.%), clinopyroxene (10 vol.%), orthopyroxene (14 vol.%), plagioclase (45 vol.%) and quartz. Garnet in both granulites exhibits core-rim structure characterized by increasing grossular and decreasing pyrope from core to rim. Petrographic observations and phase equilibrium modeling using THERMOCALC in the NCFMASHTO system for the mafic granulites (Y21-2 and Y18-8) show three stages of metamorphism: Stage I (granulite facies) was recognized by the large porphyroblastic garnet core, with P-T conditions of 9.8-10.4 Kbar and 860-900 °C (Y21-2) and 9.9-10.6 Kbar and 875-890 °C (Y18-8), respectively; Stage II (HP granulite facies) has peak P-T conditions of 12.1 Kbar at 755 °C (Y21-2) and 13.8 Kbar at 815 °C (Y18-8) using mineral assemblages combining with garnet rim compositions with maximum grossular and minimum pyrope contents; Stage III (amphibolite facies) was characterized by the development of calcic amphibole in granulites with temperature of 446-563 °C. Therefore, an anticlockwise P-T path characterized by simultaneous temperature-decreasing and pressure-increasing was inferred for the Yushugou HP mafic granulite. Studies of zircon morphology and inclusions, combined with zircon U-Pb dating and REE geochemistry

  20. Pb isotope constaints on the extent of crustal recycling into a steady state mantle

    NASA Technical Reports Server (NTRS)

    Galer, S. J. G.; Goldstein, S. L.; Onions, R. K.

    1988-01-01

    Isotopic and geochemical evidence was discussed against recycling of continental crust into the mantle. Element ratios such as Sm/Nd, Th/Sc, and U/Pb in sedimentary masses have remained relatively constant throughout Earth history, and this can only be reconciled with steady state recycling models if new crustal materials added from the mantle have had similar ratios. Such recycling models would also require shorter processing times for U, Th, and Pb through the mantle than are geodynamically reasonable. Models favoring subduction of pelagic sediments as the only recycling mechanism fail to account for the Pb isotopic signature of the mantle. Recycling of bulk crust with Pb isotopic compositions similar to those expected for primitive mantle would be permissable with available data, but there appear to be no plausible tectonic mechanisms to carry this out.

  1. 210Pb as a tool for establishing sediment chronologies: examples of potentials and limitations of conventional dating models.

    PubMed

    Kirchner, Gerald

    2011-05-01

    For aquatic sediments, the use of (210)Pb originating from the decay of atmospheric (222)Rn is a well-established methodology to estimate sediment ages and sedimentation rates. Traditionally, the measurement of (210)Pb in soils and sediments involved laborious and time-consuming radiochemical separation procedures. Due to the recent development of advanced planar ('n-type') semi-conductors with high efficiencies in the low-energy range which enable the gamma-spectrometric analysis of the 46.5 keV decay line of (210)Pb, sediment dating using this radionuclide has gained renewed interest. In this contribution, potentials and limitations of the (210)Pb methodology and of the models used for estimating sediment ages and sedimentation rates are discussed and illustrated by examples of freshwater and marine sediments. Comparison with the use of (137)Cs shows that the information which may be gained by these two tracers is complementary. As a consequence, both radionuclides should be used in combination for dating of recent sediments. It is shown that for various sedimentation regimes additional information from other sources (e.g. sediment lithology) may be needed to establish a reliable chronology. A strategy for sediment dating using (210)Pb is recommended. Copyright © 2010 Elsevier Ltd. All rights reserved.

  2. Timing of porphyry (Cu-Mo) and base metal (Zn-Pb-Ag-Cu) mineralisation in a magmatic-hydrothermal system—Morococha district, Peru

    NASA Astrophysics Data System (ADS)

    Catchpole, Honza; Kouzmanov, Kalin; Bendezú, Aldo; Ovtcharova, Maria; Spikings, Richard; Stein, Holly; Fontboté, Lluís

    2015-12-01

    by more than 0.5 Ma. Polymetallic veins (5.78 ± 0.10 and 5.72 ± 0.18 Ma; 40Ar/39Ar ages) and the Manto Italia polymetallic replacement bodies (6.23 ± 0.12 and 6.0 ± 0.2 Ma; 40Ar/39Ar ages) are interpreted to have been formed by a single hydrothermal pulse. Hydrothermal activity ceased after the formation of the base metal vein and replacement bodies. Overlapping monazite U-Pb (8.26 ± 0.18 Ma) and muscovite 40Ar/39Ar ages (8.1 ± 0.5 Ma) from the early base metal stage of one Cordilleran vein sample in the Sulfurosa area provide evidence that a discrete hydrothermal pulse was responsible for polymetallic vein formation 2.6 Ma prior to the district-wide polymetallic veins. These ages pre-date those of Toromocho porphyry Cu-Mo formation and show that Zn-Pb-Ag-Cu mineralisation formed during several discrete magmatic-hydrothermal pulses in the same district.

  3. Exsolution lamellae as fast diffusion pathways in rutile: implications for U-Pb thermochronology and Zr thermometry

    NASA Astrophysics Data System (ADS)

    Smye, A.; Seman, S.; Roberts, N. M. W.; Condon, D. J.; Davis, B.

    2017-12-01

    Geophysical processes impart characteristic thermal signatures to the lithosphere. Near-continuous thermal histories can be obtained from inversion of intracrystalline U-Pb age profiles in rutile and apatite provided that it can be shown that profile formed in response to Fickian-type diffusion. Here, we present the results of a combined LA-ICPMS and ID-TIMS U-Pb study on rutile grains from two garnet-bearing granulite xenoliths from a kimberlite in the Archean Slave province. Interpreted using numerical models, we show that the rutile U-Pb isotope systematics are consistent with slow-cooling following crystallization at 1.2 Ga, contemporaneous with the Mackenzie dike swarm. However, inversion of rutile U-Pb age gradients is complicated by the ubiquitous presence of ilmenite exsolution lamellae. We show that these lamellae act as fast diffusion pathways for Pb and High Field Strength Elements, including Zr. This has important implications for the use of rutile as a U-Pb themochronometer and as a single-phase thermometer.

  4. Potential effects of alpha-recoil on uranium-series dating of calcrete

    USGS Publications Warehouse

    Neymark, L.A.

    2011-01-01

    Evaluation of paleosol ages in the vicinity of Yucca Mountain, Nevada, at the time the site of a proposed high-level nuclear waste repository, is important for fault-displacement hazard assessment. Uranium-series isotope data were obtained for surface and subsurface calcrete samples from trenches and boreholes in Midway Valley, Nevada, adjacent to Yucca Mountain. 230Th/U ages of 33 surface samples range from 1.3 to 423 thousand years (ka) and the back-calculated 234U/238U initial activity ratios (AR) are relatively constant with a mean value of 1.54 ± 0.15 (1σ), which is consistent with the closed-system behavior. Subsurface calcrete samples are too old to be dated by the 230Th/U method. U-Pb data for post-pedogenic botryoidal opal from a subsurface calcrete sample show that these subsurface calcrete samples are older than ~ 1.65 million years (Ma), old enough to have attained secular equilibrium had their U-Th systems remained closed. However, subsurface calcrete samples show U-series disequilibrium indicating open-system behavior of 238U daughter isotopes, in contrast with the surface calcrete, where open-system behavior is not evident. Data for 21 subsurface calcrete samples yielded calculable 234U/238U model ages ranging from 130 to 1875 ka (assuming an initial AR of 1.54 ± 0.15, the mean value calculated for the surface calcrete samples). A simple model describing continuous α-recoil loss predicts that the 234U/238U and 230Th/238U ARs reach steady-state values ~ 2 Ma after calcrete formation. Potential effects of open-system behavior on 230Th/U ages and initial 234U/238U ARs for younger surface calcrete were estimated using data for old subsurface calcrete samples with the 234U loss and assuming that the total time of water-rock interaction is the only difference between these soils. The difference between the conventional closed-system and open-system ages may exceed errors of the calculated conventional ages for samples older than ~ 250 ka, but is

  5. Pb isotope compositions of modern deep sea turbidites

    NASA Astrophysics Data System (ADS)

    Hemming, S. R.; McLennan, S. M.

    2001-01-01

    Modern deep sea turbidite muds and sands collected from Lamont piston cores represent a large range in age of detrital sources as well as a spectrum of tectonic settings. Pb isotope compositions of all but three of the 66 samples lie to the right of the 4.56 Ga Geochron, and most also lie along a slope consistent with a time-integrated κ ( 232Th/ 238U) between 3.8 and 4.2. Modern deep sea turbidites show a predictable negative correlation between both Pb and Sr isotope ratios and ɛNd and ɛHf, clearly related to the age of continental sources. However, the consistency between Pb and Nd isotopes breaks down for samples with very old provenance ( ɛNd<-20) that are far less radiogenic than predicted by the negative correlation. The correlations among Sr, Nd and Hf isotopes also become more scattered in samples with very old provenance. The unradiogenic Pb isotopic character of modern sediments with Archean Nd model ages is consistent with a model where Th and U abundances of the Archean upper crust are significantly lower than the post-Archean upper crust.

  6. 230Th-234U Model-Ages of Some Uranium Standard Reference Materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Williams, R W; Gaffney, A M; Kristo, M J

    The 'age' of a sample of uranium is an important aspect of a nuclear forensic investigation and of the attribution of the material to its source. To the extent that the sample obeys the standard rules of radiochronometry, then the production ages of even very recent material can be determined using the {sup 230}Th-{sup 234}U chronometer. These standard rules may be summarized as (a) the daughter/parent ratio at time=zero must be known, and (b) there has been no daughter/parent fractionation since production. For most samples of uranium, the 'ages' determined using this chronometer are semantically 'model-ages' because (a) some assumptionmore » of the initial {sup 230}Th content in the sample is required and (b) closed-system behavior is assumed. The uranium standard reference materials originally prepared and distributed by the former US National Bureau of Standards and now distributed by New Brunswick Laboratory as certified reference materials (NBS SRM = NBL CRM) are good candidates for samples where both rules are met. The U isotopic standards have known purification and production dates, and closed-system behavior in the solid form (U{sub 3}O{sub 8}) may be assumed with confidence. We present here {sup 230}Th-{sup 234}U model-ages for several of these standards, determined by isotope dilution mass spectrometry using a multicollector ICP-MS, and compare these ages with their known production history.« less

  7. Datation U_Pb : âge de mise en place du magmatisme bimodal des Jebilet centrales (chaîne Varisque, Maroc). Implications géodynamiquesU_Pb dating: emplacement age of the bimodal magmatism of central Jebilet (Variscan Belt, Morocco). Geodynamic implications

    NASA Astrophysics Data System (ADS)

    Essaifi, Abderrahim; Potrel, Alain; Capdevila, Ramon; Lagarde, Jean-Louis

    2003-01-01

    The bimodal magmatism of central Jebilet is dated to 330.5 +0.68-0.83 Ma by UPb dating on zircons. This age, similar to that of the syntectonic Jebilet cordierite-bearing granitoids, corresponds to the age of the local major tectonometamorphic event. The syntectonic plutonism of the Jebilet massif, composed of tholeiitic, alkaline, and peraluminous calc-alkaline series, is variegated. Magmas emplacement was favoured by the local extension induced by the motion along the western boundary of the Carboniferous basins of the Moroccan Meseta. The Jebilet massif exemplifies the activation of various magmas sources during an episode of continental convergence and crustal wrenching.

  8. Recalibration of the Palaeocene-Eocene boundary (P-E) using high precision U-Pb and Ar-Ar isotopic dating

    NASA Astrophysics Data System (ADS)

    Chambers, L.; Pringle, M.; Fitton, G.; Larsen, L. M.; Pedersen, A. K.; Parrish, R.

    2003-04-01

    In the current time scales (Cande and Kent, 95; Berggren et al, 95) the P-E Boundary is positioned at 55 Ma based primarily on the age of the -17 ash layer in Denmark. In the absence of a global stratigraphic section and point the boundary is an interval of 1 m.y. from 55.5 to 54.5 Ma that includes all of the different means of calibrating the boundary tie point, including the NP9/NP10 calcareous nannofossil zonal boundary, the planktonic foraminiferal P5/P6a zonal boundary, preliminary ages for the -17 and +19 ash layers (unpub.), the base of the London Clay Formation, and the δ13C spike. Here we present new Ar-Ar ages for the -17 and +19 ash layers in Denmark and combine this study with a calibration of the Ar-Ar with the U-Pb method. As Ar-Ar ages are relative to the known age of a standard or monitor, U-Pb ages on zircons from the same rocks from the British Tertiary Igneous Province provide an absolute age calibration for all of our Ar-Ar ages (including the monitors). An additional complication arises because the time scale is currently being revised (J. Ogg, Pers. Comm.). In the new time scale the P-E boundary will stay at 55 Ma and the K-T boundary will move by 0.5 m.y. to 65.5 Ma. Our results have a direct impact on the positioning of the P-E Boundary relative to the K-T boundary as definitive K-T tektite is used as one of our Ar-Ar standards. Ar-Ar ages and U-Pb ages for the same sample from the BTIP are indistinguishable when the ages used for the Ar-Ar monitor minerals are those recommended in Renne et al (98). This means that the K-T tektite is 65.78 ± 0.03 Ma, the -17 ash is 54.52 ± 0.05Ma, and the +19 ash is 54.04 ± 0.14 Ma. If the P-E boundary is taken to be between the -17 and +19 ash layers, as in DSDP Hole 550 (the ashes bracket the planktonic foraminiferal P5/P6a zonal boundary) then the current position at 55 Ma is too old. We therefore suggest that if the K-T boundary moves to 65.5 Ma, then the P-E boundary should not stay at 55 Ma, but

  9. U-Pb geochronology and Hf-Nd isotope compositions of the oldest Neoproterozoic crust within the Cadomian orogen: new evidence for a unique juvenile terrane

    NASA Astrophysics Data System (ADS)

    Samson, S. D.; D'Lemos, R. S.; Blichert-Toft, J.; Vervoort, J.

    2003-03-01

    New U-Pb dates, combined with Nd and Hf isotopic data, from rocks within the Port Morvan area of the Baie de St Brieuc region of Brittany identify a unique portion of the Neoproterozoic Cadomia terrane. Two gneisses near Port Morvan yielded U-Pb dates of 754.6±0.8 Ma and 746.0±0.9 Ma, ages that are more than 130 Myr older than the oldest units formed during the main phase of early Cadomian magmatism. Two trondhjemite boulders from the monogenetic facies of the Cesson conglomerate yielded identical ages of 665.2±0.5 Ma and 665.5±0.7 Ma, and a cobble from the polygenetic facies yields a 207Pb- 206Pb date of 637±2 Ma. Individual detrital zircons from a sandstone associated with the Cesson conglomerates yield concordant U-Pb dates ranging from 650±3 Ma to 624.1±0.6 Ma. Initial ɛNd values for the rocks in this region range from +5.0 to +6.6, indicative of a substantial input from depleted mantle. Initial ɛHf values determined on zircons from these Neoproterozoic rocks, including the detrital zircons, range from +6.7 to +14.5, consistent with the Nd isotopic results. Maximum initial ɛHf values for two 2 Ga Icartian gneisses, considered basement to Cadomia, average +8.4 and +8.7. In contrast to the results of the Port Morvan rocks, 616-608 Ma syn-tectonic intrusions from Normandy and the British Channel Islands all have negative initial ɛNd values (-10.4 to -8.3) consistent with significant contamination by ancient crust such as the 2 Ga gneisses. The oldest arc-related magmas should have interacted most extensively with Cadomian basement, buffering younger mantle-derived magmas that were generated in subsequent magmatic episodes. The rocks within the Port Morvan region are thus inconsistent as examples of the earliest Cadomian intrusions as they show no evidence of interaction with 2 Ga basement. Instead, the older ages and mantle-like isotopic composition of these rocks suggest they are part of an independent terrane that formed prior to, and independently

  10. U-series dating of impure carbonates: An isochron technique using total-sample dissolution

    USGS Publications Warehouse

    Bischoff, J.L.; Fitzpatrick, J.A.

    1991-01-01

    U-series dating is a well-established technique for age determination of Late Quaternary carbonates. Materials of sufficient purity for nominal dating, however, are not as common as materials with mechanically inseparable aluminosilicate detritus. Detritus contaminates the sample with extraneous Th. We propose that correction for contamination is best accomplished with the isochron technique using total sample dissolution (TSD). Experiments were conducted on artificial mixtures of natural detritus and carbonate and on an impure carbonate of known age. Results show that significant and unpredictable transfer of radionuclides occur from the detritus to the leachate in commonly used selective leaching procedures. The effects of correcting via leachate-residue pairs and isochron plots were assessed. Isochrons using TSD gave best results, followed by isochron plots of leachates only. ?? 1991.

  11. U enrichment and Th/U fractionation in Archean boninites: Implications for paleo-ocean oxygenation and U cycling at juvenile subduction zones

    NASA Astrophysics Data System (ADS)

    Manikyamba, C.; Said, Nuru; Santosh, M.; Saha, Abhishek; Ganguly, Sohini; Subramanyam, K. S. V.

    2018-05-01

    Phanerozoic boninites record enrichments of U over Th, giving Th/U: 0.5-1.6, relative to intraoceanic island arc tholeiites (IAT) where Th/U averages 2.6. Uranium enrichment is attributed to incorporation of shallow, oxidized fluids, U-rich but Th-poor, from the slab into the melt column of boninites which form in near-trench to forearc settings of suprasubduction zone ophiolites. Well preserved Archean komatiite-tholeiite, plume-derived, oceanic volcanic sequences have primary magmatic Th/U ratios of 4.4-3.6, and Archean convergent margin IAT volcanic sequences, having REE and HFSE compositions similar to Phanerozoic IAT equivalents, preserve primary Th/U of 4-3.6. The best preserved Archean boninites of the 3.0 Ga Olondo and 2.7 Ga Gadwal greenstone belts, hosted in convergent margin ophiolite sequences, also show relative enrichments of U over Th, with low average Th/U ∼3 relative to coeval IAT, and Phanerozoic counterparts which are devoid of crustal contamination and therefore erupted in an intraoceanic setting, with minimal contemporaneous submarine hydrothermal alteration. Later enrichment of U is unlikely as Th-U-Nb-LREE patterns are coherent in these boninites whereas secondary effects induce dispersion of Th/U ratios. The variation in Th/U ratios from Archean to Phanerozoic boninites of greenstone belts to ophiolitic sequences reflect on genesis of boninitic lavas at different tectono-thermal regimes. Consequently, if the explanation for U enrichment in Phanerozoic boninites also applies to Archean examples, the implication is that U was soluble in oxygenated Archean marine water up to 600 Ma before the proposed great oxygenation event (GOE) at ∼2.4 Ga. This interpretation is consistent with large Ce anomalies in some hydrothermally altered Archean volcanic sequences aged 3.0-2.7 Ga.

  12. In situ rutile petrochronology: texture-related T, Paleoproterozoic inheritance and a Pan-African overprint in the oldest subduction-related eclogites, Usagaran Orogen, Tanzania

    NASA Astrophysics Data System (ADS)

    Moeller, A.; Kraus, K.; Herms, P.; Appel, P.; Raase, P.

    2014-12-01

    Rutile U-Pb thermochronology is applied successfully by both TIMS and beam methods to date cooling events in mafic and metapelitic rocks, as well as in detrital studies. The Zr-in-rutile thermometer is very robust to thermal diffusion, and generally requires complete recrystallization to change recorded crystallization temperatures. Evidence for diffusion of HFSE elements in rutile is sparse; whereas U-Pb chronology generally records diffusion controlled cooling from the last event. This study follows conventional thermobarometry and U-Pb TIMS results on monazite, sphene and rutile of Möller et al. (1995) establishing a 2 Ga eclogite facies event from MORB-like metabasic, and metapelitic rocks in the Usagaran Orogen of Tanzania, interpreted to be the oldest outcrops of subduction-related eclogites. Rutile from both rock types were discordant near a ca. 500 Ma lower intercept, confirming a thermal overprint postulated on the basis of K-Ar and Rb-Sr mica ages by e.g. Wendt et al. (1972). The age of the eclogite-facies event was confirmed by U-Pb zircon dating of a 1991±2 Ma crosscutting pegmatite (Collins et al., 1999). We present in situ LA-ICP-MS rutile petrochronology on five metabasic and metapelitic eclogite facies samples with variable retrograde amphibolite-facies recrystallization. Thermometry confirms conventional Fe-Mg results, including higher peak temperatures in metabasites. Traverses on rutile inclusions in large garnet prophyroblasts in metapelites show increasing temperatures from cores outwards and a slight decrease towards outermost rims, with peak T coinciding with highest Mg# and highest grossular content, hence consistent with preservation of prograde zoning in the garnets and a brief eclogite facies event. Large rutiles (800μm) in recrystallized samples record temperature zoning profiles. U-Pb results show inheritance of near concordant 2 Ga domains, but dominantly confirm the ca. 490 Ma amphibolite facies overprint. The study is an excellent

  13. U-series constraints on the Holocene human presence in the Cuatro Cienegas basin, Mexico

    NASA Astrophysics Data System (ADS)

    Noble, S. R.; Felstead, N.; Gonzalez, S.; Leng, M. J.; Metcalfe, S. E.; Patchett, P. J.

    2010-12-01

    U-series tufa ages dating a human trackway have been obtained, part of a larger Late Pleistocene - Recent palaeoclimate and human occupation study of the Cuatro Cienegas basin, NE Mexico. Our analytical approach, including tracer calibration, couples aspects of what we consider best practice in the U-series community with our U-Pb experiences which includes the EarthTime U-Pb tracer calibration exercise. The recently discovered trackway is near a small hydrothermal pool within the basin [1], an ecologically highly significant oasis in the Chihuahuan desert. The oasis comprises >200 freshwater hydrothermal pools and a river system, and the related ecosystem hosts >70 endemic species[2]. Pools are fed by waters that circulate a deep karstic system and that originate in the surrounding upper Jurassic-lower Cretaceous Sierra Madre Oriental mountains (>3000m) [3]. The area hosted nomadic hunter-gatherers during the Holocene, and possibly as early as Late Pleistocene (~12 ka BP). Despite the basin's ecological significance, only three palaeoenvironmental studies have been published to date, and limited geochronological constraints are available. A pollen study of drill core through peats and tufas proximal to the pools suggested a long period of climatic stability and biogeographic isolation[4], a notion supported by the large number of endemic species, but other palynological and plant macrofossil data suggest that large climatic changes occurred post Late Pleistocene [5]. The 10 m long in situ trackway is preserved in tufa and five samples from the uppermost surfaces were analysed to date the footprints. The tufas comprise clean carbonate with no petrographic evidence of replacement and little contaminant detrital material (on some exposed upper surfaces). Powdered tufa was processed following [6-8], and analysed by TIMS (Triton, U) and MC-ICP-MS (Th, Nu HR), although our future analyses will primarily be obtained on a Neptune. Samples were spiked with a 229Th/236U

  14. Geochemistry, zircon U-Pb dating and Hf isotopies composition of Paleozoic granitoids in Jinchuan, NW China: Constraints on their petrogenesis, source characteristics and tectonic implication

    NASA Astrophysics Data System (ADS)

    Zeng, Renyu; Lai, Jianqing; Mao, Xiancheng; Li, Bin; Ju, Peijiao; Tao, Shilong

    2016-05-01

    Granitoids are widely distributed in Jinchuan at the southwestern margin of the North China plate, which is also an important area of mineral deposits. The research subject of this article are two Paleozoic granitoids, a cataclastic syenogranite and a granodiorite porphyry. This study presents whole rock geochemistry and zircon U-Pb-Hf isotope data for the two granitoids to determine their petrogenesis, source characteristics and tectonic significance. The cataclastic syenogranite is characterized by metaluminous composition with high potassium, and LaN/YbN from 39 to 48. The composition with strong negative Eu anomalies and Zircon saturation temperatures (TZr) from 947 to 1072 °C classify this intrusion as an A-type granite. The granodiorite porphyry is metaluminous with high sodium, sub-alkaline, LaN/YbN ratios from 27 to 32. These I-type intrusions have no Eu anomalies and TZr ranges from 818 to 845 °C. Both the cataclastic syenogranite and granodiorite porphyry show enrichment of LREE and LILE and depletion of HREE and HFSE, except Hf and Zr. Using single zircon LA-ICP-MS U-Pb dating, the emplacement age of the cataclastic syenogranite and granodiorite porphyry are determined at 433.4 ± 3.7 Ma and 361.7 ± 4.6 Ma, respectively. Zircons from the cataclastic syenogranits have uniform negative εHf(t) values (-11 ± 0.5 to -9 ± 0.5), implying the involvement of an old Palaeoproterozoic crustal source in magma genesis. The zircons from the granodiorite porphyry have εHf(t) values that range from -8 ± 1.0 to +10 ± 0.6, suggesting heterogeneous source materials involving both juvenile and ancient crust reworked crustal components. Based on the geological significance of granites at the southwestern margin of the North China plate, the closure of the North Qilian Ocean occurred at ∼444 Ma. Geochemical features suggest that the cataclastic syenogranite and granodiorite porphyry formed in an intraplate extensional and compressional setting, respectively. Hence

  15. Direct dating and characterization of the Pope's Hill REE Deposit, Labrador

    NASA Astrophysics Data System (ADS)

    Chafe, A. N.; Hanchar, J. M.; Fisher, C.; Piccoli, P. M.; Crowley, J. L.; Dimmell, P. M.

    2012-12-01

    The Pope's Hill rare earth element (REE) trend (PHT) is located approximately 100 km southwest of Happy Valley-Goose Bay, along the Trans Labrador Highway, in central Labrador. Whole-rock geochemical analyses of the main REE-bearing unit indicate total rare earth element contents ranging from 1 to 22 weight percent (wt%) REE3+. The REE-enriched unit is hosted within a hydrothermally altered syenite, trending northeast and traceable for approximately 2.8km. Samples of ore, host rock, and country rock, were collected from throughout the trend in order to: 1) quantify which phases concentrate the REE and their abundances and distribution in the ore; and 2) use in situ LA-ICPMS and ID-TIMS U-Pb geochronology and in situ Sm-Nd isotopes using LA-MC-ICPMS in monazite from the ore and host rock to constrain the timing of mineralization and determine the source of the REE. These data will help develop predictive models for this type of mineral deposit elsewhere. The PHT is defined as the host syenite and REE-enriched segregations; two contrasting lithologies. The rare earth element minerals (REE) occur in millimeter- to centimeter-scale pods that are locally discontinuous. The REE are hosted in a variety of silicate, phosphate, carbonate, and niobate phases; with a majority hosted in allanite(-Ce), titanite(-Ce), monazite(-Ce), britholite(-Ce); and a minor percentage in REE-carbonates and fergusonite(-Nd). Both apatite and titanite occur in two different compositional forms that range in chemistry from end-member stoichiometric apatite and titanite to highly REE-enriched - apatite-britholite and titanite(-Ce), where chemical substitutions, such as Si4+ + REE3+ substitute for Ca2+ + P5+ in apatite and REE3+ + Fe3+ substitute for Ca2+ + Ti4+ in titanite in order to incorporate up to ~40 wt% REE2O3 in both minerals. The U-Pb geochronology indicate that allanite, titanite(-Ce), monazite and fergusonite crystallized from ~1060 to ~940 Ma, a period spanning ~120 Ma. Sm-Nd tracer

  16. Pb-Pb systematics of lunar rocks: differentiation, magmatic and impact history of the Moon

    NASA Astrophysics Data System (ADS)

    Nemchin, A.; Martin, W.; Norman, M. D.; Snape, J.; Bellucci, J. J.; Grange, M.

    2016-12-01

    clasts from several Apollo 14 breccias, where they are likely to date Pb homogenization during the Imbrium impact. Combined with U-Pb data obtained previously using U-bearing minerals such as zircon and phosphates, the new Pb-Pb data sets open an opportunity for a detailed chronological and isotopic investigation of lunar differentiation, magmatic evolution and impact history.

  17. Two mineralization events in the Baiyinnuoer Zn-Pb deposit in Inner Mongolia, China: Evidence from field observations, S-Pb isotopic compositions and U-Pb zircon ages

    NASA Astrophysics Data System (ADS)

    Jiang, Si-Hong; Chen, Chun-Liang; Bagas, Leon; Liu, Yuan; Han, Ning; Kang, Huan; Wang, Ze-Hai

    2017-08-01

    The Xing-Mong Orogenic Belt (XMOB) is located in the eastern part of the Central Asian Orogenic Belt (CAOB) and has experienced multiple tectonic events. The Baiyinnuoer Pb-Zn deposit may be a rare case that documents two periods of mineralization in the tectonically complex XMOB. There are two types of Pb-Zn mineralization in the deposit: (1) skarn-type ore, hosted by the skarn in the contact zone between marble and granodiorite and within the marble and (2) vein-type ore, hosted by crystal tuff and feldspar porphyry. This study revealed that the host rocks, mineral assemblages, mineralization occurrences, S-Pb isotopes, and ages between the two types of ore are notably different. Zircon U-Pb dating indicates that the granodiorite was emplaced in the Early Triassic (244 ± 1 to 242 ± 1 Ma), the crystal tuff was deposited in the Early Cretaceous (140 ± 1 to 136 ± 1 Ma), and the feldspar porphyry was intruded in the Early Cretaceous (138 ± 2 to 136 ± 2 Ma). The first skarn mineralization occurred at ∼240 Ma and the second vein-type Pb-Zn mineralization took place between 136 and 129 Ma. Thus the Triassic orebodies were overprinted by Early Cretaceous mineralization. The sphalerite and galena from the skarn mineralization have higher δ34S values (-4.7 to +0.3‰) than the sphalerite, galena and aresenopyrite from the vein-type mineralization (-7.5 to -4.2‰), indicating different sulfur sources or ore-forming processes for the two types of mineralization. The Pb isotopic compositions of the two types of ore are very similar, suggesting similar lead sources. Geochemistry and Nd-Pb-Hf isotopic systematics of the igneous rocks in the region show that the Triassic granodiorite was generated from hybridization of mafic and felsic magmas due to strong crust-mantle interaction under the collisional setting that resulted following the closure of the Paleo-Asian Ocean and the collision of North China and Siberian cratons at the end of the Permian; while the

  18. U-Pb geochronology documents out-of-sequence emplacement of ultramafic layers in the Bushveld Igneous Complex of South Africa.

    PubMed

    Mungall, James E; Kamo, Sandra L; McQuade, Stewart

    2016-11-14

    Layered intrusions represent part of the plumbing systems that deliver vast quantities of magma through the Earth's crust during the formation of large igneous provinces, which disrupt global ecosystems and host most of the Earth's endowment of Pt, Ni and Cr deposits. The Rustenburg Layered Suite of the enormous Bushveld Igneous Complex of South Africa has been presumed to have formed by deposition of crystals at the floor of a subterranean sea of magma several km deep and hundreds of km wide called a magma chamber. Here we show, using U-Pb isotopic dating of zircon and baddeleyite, that individual chromitite layers of the Rustenburg Layered Suite formed within a stack of discrete sheet-like intrusions emplaced and solidified as separate bodies beneath older layers. Our U-Pb ages and modelling necessitate reassessment of the genesis of layered intrusions and their ore deposits, and challenge even the venerable concept of the magma chamber itself.

  19. Anorogenic nature of magmatism in the Northern Baikal volcanic belt: Evidence from geochemical, geochronological (U-Pb), and isotopic (Pb, Nd) data

    USGS Publications Warehouse

    Neymark, L.A.; Larin, A.M.; Nemchin, A.A.; Ovchinnikova, G.V.; Rytsk, E. Yu

    1998-01-01

    The Northern Baikal volcanic belt has an age of 1.82-1.87 Ga and extends along the boundary between the Siberian Platform and the Baikal foldbelt. The volcanic belt is composed of volcanics of the Akitkan Group and granitic rocks of the Irel and Primorsk complexes. The geochemistry of the rocks points to the intraplate anorogenic nature of the belt. U-Pb zircon dating of the Chuya granitoids revealed that they are older (2020-2060 Ma) than the Northern Baikal volcanic belt and, thus, cannot be regarded as its component. Data on the Pb isotopic system of feldspars from the granitoids confirm the contemporaneity of all volcanic rocks of the belt except the volcanics of the upper portion of the Akitkan Group (Chaya Formation). Our data suggest its possibly younger (???1.3 Ga) age. The isotopic Nd and Pb compositions of the acid volcanic rocks provide evidence of the heterogeneity of their crustal protoliths. The volcanics of the Malaya Kosa Formation have ??Nd(T) = -6.1, ??2 = 9.36, and were most probably produced with the participation of the U-depleted lower continental crust of Archean age. Other rocks of the complex show ??Nd(T) from -0.1 to -2.4, ??2 = 9.78, and could have been formed by the recycling of the juvenile crust. The depletion of the Malaya Kosa volcanics in most LILEs and HFSEs compared with other acid igneous rocks of the belt possibly reflects compositional differences between the Late Archean and Early Proterozoic crustal sources. The basaltic rocks of the Malaya Kosa Formation (??Nd varies from -4.6 to -5.4) were produced by either the melting of the enriched lithospheric mantle or the contamination of derivatives of the depleted mantle by Early Archean lower crustal rocks, which are not exposed within the area. Copyright ?? 1998 by MAEe Cyrillic signK Hay??a/Interperiodica Publishing.

  20. Possibility of wine dating using the natural Pb-210 radioactive isotope.

    PubMed

    Hubert, Ph; Pravikoff, M S; Gaye, J

    2015-04-01

    To control the authenticity of an old wine without opening the bottle, we developed a few years ago a method based on the measurement of the (137)Cs activity. However, for recent vintages, the (137)Cs activity drops to far too low values (most of the time less than 10 mBq/L for a 10-year-old wine) for this method to perform correctly. In this paper we examine the possibility to date wines using the natural radio-element (210)Pb which has a 22-year period. This new method we propose implies the opening of the bottle and the follow-on destruction of the wine itself, which means that it can only be used for investigating non-expensive bottles or wine lots where there are multiple bottles of the same provenance. Uncertainties on the resulting (210)Pb radioactivity values are large, up to more than 50%, mainly due to local atmospheric variations, which prevents us to carry out precise dating. However it can be used to discriminate between an old wine (pre-1952) and a young wine (past-1990), an information that cannot be obtained with the other techniques based on other isotopes ((137)Cs, (14)C or tritium). Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Adsorptive features of polyacrylamide-apatite composite for Pb2+, UO(2)2+ and Th4+.

    PubMed

    Ulusoy, Ulvi; Akkaya, Recep

    2009-04-15

    Micro-composite of polyacrylamide (PAA) and apatite (Apt) was prepared by direct polymerization of acrylamide in a suspension of Apt and characterized by means of FT-IR, XRD, SEM and BET analysis. The adsorptive features of PAA-Apt and Apt were then investigated for Pb(2+), UO(2)(2+) and Th(4+) in view of dependency on ion concentration, temperature, kinetics, ion selectivity and reusability. Experimentally obtained isotherms were evaluated with reference to Langmuir, Freundlich and Dubinin-Radushkevich (DR) models. Apt in PAA-Apt had higher adsorption capacity (0.81, 1.27 and 0.69 mol kg(-1)) than bare Apt (0.28, 0.41 and 1.33 mol kg(-1)) for Pb(2+) and Th(4+), but not for UO(2)(2+). The affinity to PAA-Apt increased for Pb(2+) and UO(2)(2+) but not changed for Th(4+). The values of enthalpy and entropy changed were positive for all ions for both Apt and PAA-Apt. Free enthalpy change was DeltaG<0. Well compatibility of adsorption kinetics to the pseudo-second-order model predicated that the rate-controlling step was a chemical sorption. This was consistent with the free energy values derived from DR model. The reusability tests for Pb(2+) for five uses proved that the composite was reusable to provide a mean adsorption of 53.2+/-0.7% from 4x10(-3)M Pb(2+) solution and complete recovery of the adsorbed ion was possible (98+/-1%). The results of this investigation suggested that the use of Apt in the micro-composite form with PAA significantly enhanced the adsorptive features of Apt.

  2. Teneur en uranium et datation U-Th des tissus osseux et dentaires fossiles de la grotte du Lazaret

    NASA Astrophysics Data System (ADS)

    Michel, Véronique; Falguères, Christophe; Yokoyama, Yuji

    1997-09-01

    Fossil bone and dental tissues from Lazaret cave and modern ones are here the subject of a comparative microscopical study. Porous tissues such as dentine and bone have retained their Haversian and Tomes canals respectively. However, cracked areas with calcite were detected, indicating a water percolation within porous tissues and an alteration of tissue in places. In addition, compact fossil enamel is particularly well preserved. These results are essential for U-Th and ESR dating application. Uranium contents, U-Th ages of two fossil mandibular tissues, two tibias and of six burnt fossil bones are presented and discussed.

  3. Dating of sediments from four Swiss prealpine lakes with (210)Pb determined by gamma-spectrometry: progress and problems.

    PubMed

    Putyrskaya, V; Klemt, E; Röllin, S; Astner, M; Sahli, H

    2015-07-01

    In this paper the most important problems in dating lake sediments with unsupported (210)Pb are summarized and the progress in gamma-spectrometry of the unsupported (210)Pb is discussed. The main topics of these studies concern sediment samples preparation for gamma-spectrometry, measurement techniques and data analysis, as well as understanding of accumulation and sedimentation processes in lakes. The vertical distributions of artificial ((137)Cs, (241)Am, (239)Pu) and natural radionuclides ((40)K, (210,214)Pb, (214)Bi) as well as stable trace elements (Fe, Mn, Pb) in sediment cores from four Swiss lakes were used as examples for the interpretation, inter-comparison and validation of depth-age relations established by three (210)Pb-based models (CF-CSR, CRS and SIT). The identification of turbidite layers and the influence of the turbidity flows on the accuracy of sediment dating is demonstrated. Time-dependent mass sedimentation rates in lakes Brienz, Thun, Biel and Lucerne are discussed and compared with published data. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Ar-Ar and U-Pb ages of marble-hosted ruby deposits from Central and South-east Asia

    NASA Astrophysics Data System (ADS)

    Garnier, V.; Giuliani, G.; Maluski, H.; Ohnenstetter, D.; Deloule, E.

    2003-04-01

    Marble-hosted ruby deposits represent the first source of gemstones in Asia. The deposits from Jegdalek (Afghanistan), Hunza Valley (Pakistan), Nangimali (Azad-Kashmir), Chumar, Ruyil (Nepal), Mogok (Myanmar), Luc Yen, Yen Bai and Quy Chau (Vietnam) were dated using the 40Ar-39Ar laser stepwise heating technique on syngenetic micas. The following ages were obtained : 24.7 ± 0.3 Ma at Jegdalek ; 10.8 ± 0.3 to 5.4 ± 0.3 Ma at Hunza ; 17.2 ± 0.2 to 15.3 ± 0.1 Ma at Nangimali ; 4.6 ± 0.1 Ma at Ruyil ; 5.6 ± 0.4 Ma at Chumar ; 18.7 ± 0.2 to 17.1 ± 0.2 Ma at Mogok ; 33.8 ± 0.4 to 30.8 ± 0.8 Ma at Luc Yen ; 24.4 ± 0.4 to 23.2 ± 0.6 Ma at Yen Bai, 22.1 ± 0.6 to 21.6 ± 0.7 Ma at Quy Chau. These ages represent cooling ages and thus minimum ages for ruby formation. The ages obtained for Nangimali are close to the Ar-Ar cooling age of 19 Ma recorded in the Chichi granite, North to the ruby deposit. However, (C,O)-isotopic studies of the ruby-bearing marbles show no genetic relation between granite emplacement and ruby deposition in this area. The age found at Jegdalek is similar to the K-Ar ages obtained on the Sairobi pegmatitic dykes (20-26 Ma) and of the Jalalabad pluton (25 Ma), located close to the ruby deposit. At Mogok, the ruby deposits yield ages close to those obtained on high grade metamorphic and foliated intrusive regional rocks (15.8 ± 0.7 - 19.5 ± 1.0 Ma). The ages obtained at Chumar and Ruyil agree with those of the Lesser Himalaya Formation (12 - 6 Ma). Those found at Quy Chau agree with those found for the shear zone activity. Furthermore, U-Pb dating was done on zircons included in a ruby from Luc Yen and spinels in marble from Luc Yen and Hunza. The wide range of 238U-206Pb ages obtained for Luc Yen (266 - 45 Ma) evidences a complex metamorphic history. Ruby crystallised at 45 Ma during ductile activity of the Red River shear zone. At Hunza, an 238U-206Pb age of 94.0 ± 2.1 Ma obtained on inherited zircons confirms the U-Pb age obtained on

  5. Weight perceptions, misperceptions, and dating violence victimization among U.S. adolescents.

    PubMed

    Farhat, Tilda; Haynie, Denise; Summersett-Ringgold, Faith; Brooks-Russell, Ashley; Iannotti, Ronald J

    2015-05-01

    Dating violence is a major public health issue among youth. Overweight/obese adolescents experience peer victimization and discrimination and may be at increased risk of dating violence victimization. Furthermore, given the stigma associated with overweight/obesity, perceptions and misperceptions of overweight may be more important than actual weight status for dating violence victimization. This study examines the association of three weight indices (weight status, perceived weight, and weight perception accuracy) with psychological and physical dating violence victimization. The 2010 baseline survey of the 7-year NEXT Generation Health Study used a three-stage stratified clustered sampling design to select a nationally representative sample of U.S. 10th-grade students (n = 1,983). Participants who have had a boyfriend/girlfriend reported dating violence victimization and perceived weight. Weight status was computed from measured height/weight. Weight perception accuracy (accurate/underestimate/overestimate) was calculated by comparing weight status and perceived weight. Gender-stratified regressions examined the association of weight indices and dating violence victimization. Racial/ethnic differences were also examined. The association of weight indices with dating violence victimization significantly differed by gender. Overall, among boys, no associations were observed. Among girls, weight status was not associated with dating violence victimization, nor with number of dating violence victimization acts; however, perceived weight and weight perception accuracy were significantly associated with dating violence victimization, type of victimization, and number of victimization acts. Post hoc analyses revealed significant racial/ethnic differences. White girls who perceive themselves (accurately or not) to be overweight, and Hispanic girls who are overweight, may be at increased risk of dating violence victimization. These findings suggest a targeted approach to

  6. Zircon Trace Element Contents and Refined U-Pb Crystallization Ages for the Tatoosh Pluton, Mount Rainier National Park, Washington Cascades

    NASA Astrophysics Data System (ADS)

    Bacon, C. R.; Du Bray, E. A.; John, D. A.; Mazdab, F. K.; Wooden, J. L.

    2008-12-01

    The 7x12 km Tatoosh pluton south of Mount Rainier consists of 4 petrographic/compositional phases, here termed Nisqually, Reflection, Pyramid, and Stevens, that intrude Tertiary volcanic and sedimentary wall and roof rocks; contacts between the 4 intrusive units are rarely exposed. We used the USGS-Stanford SHRIMP- RG to analyze, in a continuous session, zircons from each of 6 quartz monzodiorite (qmd), quartz monzonite (qm), or granodiorite (grd) samples for 206Pb/238U ages and, concurrently, U, Th, Hf, and REE concentrations. A round-robin procedure yielded statistically robust geochronological results. Ages that we reported previously (FM07) were compromised by instrument instability and by calibration differences between analytical sessions. Between 11 and 31 new analyses of zircons from each sample were evaluated using the TuffZirc and Umix Ages routines of Isoplot 3.41 (Ludwig, 2003). TuffZirc solidification ages for the intrusions are: Nisqually grd (Paradise Valley; 65.4% SiO2) 17.29 +0.37/-0.24 Ma, Nisqually grd (Christine Falls; 66.4%) 17.70 +0.30/-0.16 Ma, Reflection qm (Pinnacle Peak trail; 66.6%) 18.38 +0.45/-0.28 Ma, Pyramid qmd (58.5%) 18.58 +0.20/-0.15 Ma, Stevens grd (Stevens Canyon; 67.8%) 19.15 +0.15/-0.12 Ma, and Stevens grd (south of Louise Lake; 69.3%) 19.20 +0.31/-0.26 Ma (U-Th initial-disequilibrium corrected, ±2σ). Precision of the U-Pb data limits rigorous identification of antecrysts to those with ages ~1 Myr > solidification ages. Antecryst ages that produce subsidiary modes in relative probability diagrams for the two Stevens samples give weighted mean values of 20.18 ±0.26 Ma and 20.07 ±0.18 Ma. Wide ranges in trace element concentrations and ratios indicate that many analyzed zircons grew in highly fractionated residual liquids in high-crystallinity environments. Concentrations of Th and U in Tatoosh zircons vary by two orders of magnitude, cores tend to have higher Th, U, and Th/U than rims, and overgrowths that fill reentrants

  7. Listwaenite in the Sartohay ophiolitic mélange (Xinjiang, China): A genetic model based on petrology, U-Pb chronology and trace element geochemistry

    NASA Astrophysics Data System (ADS)

    Qiu, Tian; Zhu, Yongfeng

    2018-03-01

    Listwaenite lenses in the Sartohay ophiolitic mélange (Xinjiang, China) were formed via reactions between serpentinite and metasomatic fluids. First, serpentinite changed into talc schist via the reaction of serpentine + CO2 → talc + magnesite + H2O. Second, talc schist changed into listwaenite via the reaction of talc + CO2 → magnesite + quartz + H2O. Magnetite was progressively destroyed during transformation from serpentinite to talc schist, and completely consumed in listwaenite. Zircon crystals 30-100 μm long, disseminating in talc schist, undeformed listwaenite and mylonitized listwaenite, coexist with talc, quartz and magnesite, while micron-sized zircon grains (<5 μm in length) occur along the shearing foliation in the weakly deformed listwaenite and mylonitized listwaenite. We postulate that these micron-sized zircon crystals may have grown in-situ from medium-temperature hydrothermal fluids. Concentrations of most trace elements including high field strength elements (HFSE) increase from the undeformed, through the weakly deformed, to the mylonitized listwaenite, showing a positive correlation with the degrees of deformation and proportions of micron-size zircon, apatite, rutile and monazite. The large zircon crystals recovered from talc schist, undeformed listwaenite and mylonitized listwaenite yield similar weighted mean U-Pb ages (302.9 ± 6.8 Ma, 299.7 ± 5.5 Ma and 296.5 ± 3.5 Ma), and are thought to represent the age of formation of the talc schist and listwaenite. These ages are indistinguishable within errors and suggest a rapid transformation from talc schist to listwaenite. Some zircon rims in samples of the undeformed listwaenite and mylonitized listwaenite give much younger apparent U-Pb ages (280-277 Ma), which could be interpreted as a recrystallization age reflecting late-stage shearing in the Sartohay ophiolitic mélange.

  8. Temporal evolution of the giant Salobo IOCG deposit, Carajás Province (Brazil): constraints from paragenesis of hydrothermal alteration and U-Pb geochronology

    NASA Astrophysics Data System (ADS)

    deMelo, Gustavo H. C.; Monteiro, Lena V. S.; Xavier, Roberto P.; Moreto, Carolina P. N.; Santiago, Erika S. B.; Dufrane, S. Andrew; Aires, Benevides; Santos, Antonio F. F.

    2017-06-01

    The giant Salobo copper-gold deposit is located in the Carajás Province, Amazon Craton. Detailed drill core description, petrographical studies, and U-Pb SHRIMP IIe and LA-ICP-MS geochronology unravel its evolution regarding the host rocks, hydrothermal alteration and mineralization. Within the Cinzento Shear Zone, the deposit is hosted by orthogneisses of the Mesoarchean Xingu Complex (2950 ± 25 and 2857 ± 6.7 Ma) and of the Neoarchean Igarapé Gelado suite (2763 ± 4.4 Ma), which are crosscut by the Old Salobo granite. Remnants of the Igarapé Salobo metavolcanic-sedimentary sequence are represented by a quartz mylonite with detrital zircon populations (ca. 3.1-3.0, 2.95, 2.86, and 2.74 Ga). High-temperature calcic-sodic hydrothermal alteration (hastingsite-actinolite) was followed by silicification, iron-enrichment (almandine-grunerite-magnetite), tourmaline formation, potassic alteration with biotite, copper-gold ore formation, and later Fe-rich hydrated silicate alteration. Myrmekitic bornite-chalcocite and magnetite comprise the bulk of copper-gold ore. All these alteration assemblages have been overprinted by post-ore hematite-bearing potassic and propylitic alteration, which is also recognized in the Old Salobo granite. In the central zone of the deposit the mylonitized Igarapé Gelado suite rocks yield an age of 2701 ± 30 Ma. Zircon ages of 2547 ± 5.3 and 2535 ± 8.4 Ma were obtained for the Old Salobo granite and for the high-grade copper ore, respectively. A U-Pb LA-ICP-MS monazite age (2452 ± 14 Ma) from the copper-gold ore indicates hydrothermal activity and overprinting in the Siderian. Therefore, a protracted tectono-thermal event due to the reactivation of the Cinzento Shear Zone is proposed for the evolution of the Salobo deposit.

  9. The origin of the 1.73-1.70 Ga anorogenic Ulkan volcano-plutonic complex, Siberian platform, Russia: inferences from geochronological, geochemical and Nd-Sr-Pb isotopic data

    USGS Publications Warehouse

    Larin, A.M.; Amelin, Yu. V.; Neymark, L.A.; Krymsky, R. Sh

    1997-01-01

    The Ulkan volcano-plutonic complex, a part of a 750 km Bilyakchian-Ulkan anorogenic belt, is located in the eastern part of the Archean-Paleoproterozoic Aldan shield. The tectonic position and geochemistry indicate that the Ulkan Complex is a typical A-type or intraplate magmatic association. The felsic volcanics of the Uian Group and granitoids of the North Uchur Massif, the major igneous components of the Ulkan Complex, have U-Pb zircon and monazite ages between 1721±1 Ma and 1703±18 Ma. Together with the spatially associated 1736±6 Ma Dzhugdzhur anorthosite massif, the Ulkan Complex forms a typical Proterozoic anorthosite-granite-volcanic association with the minimum duration of formation of 12 m.y. Initial εNd values between 0 and 1.1, similar for the Uian felsic volcanics, early granitoid phases of the North Uchur Massif and high-grade metamorphic basement rocks, indicate, along with geochemical data, that the crustal source of the Ulkan parental magmas may be similar to the basement rocks. The higher εNd(T) values of -0.3 to +1.9 in the later North Uchur granitoids and associated ore-bearing metasomatites, and relatively low time-integrated Rb/Sr, U/Pb, and Th/U estimated for their sources, may demonstrate involvement of variable amounts of a depleted mantle-derived component in the generation of later phases of the North Uchur Massif. The preferred model of formation of magmas parental to the Ulkan Complex involves thermal interaction of an uprising mantle diapir with Paleoproterozoic lower crust, which was accompanied by chemical interaction between a fluid derived from the diapir, with the lower crustal rocks.

  10. Anthropogenic contributions to atmospheric Hg, Pb and As accumulation recorded by peat cores from southern Greenland and Denmark dated using the 14C "bomb pulse curve"

    NASA Astrophysics Data System (ADS)

    Shotyk, W.; Goodsite, M. E.; Roos-Barraclough, F.; Frei, R.; Heinemeier, J.; Asmund, G.; Lohse, C.; Hansen, T. S.

    2003-11-01

    = 1.1481 ± 0.0002 in the leached fraction and 1.1505 ± 0.0002 in the residual fraction) which is too radiogenic to be explained in terms of gasoline lead alone, but compares well with values for U.K. coals. In contrast, the lowest values for 206Pb/ 207Pb in the DK profile (1.1370 ± 0.0003 in the leached fraction and 1.1408 ± 0.0003 in the residual fraction) are found in the sample dating from AD 1979: this shows that the maximum contribution of leaded gasoline occurred approximately 25 yr after the zenith in total anthropogenic Pb deposition.

  11. Magmatic tempo of Earth's youngest exposed plutons as revealed by detrital zircon U-Pb geochronology.

    PubMed

    Ito, Hisatoshi; Spencer, Christopher J; Danišík, Martin; Hoiland, Carl W

    2017-09-29

    Plutons are formed by protracted crystallization of magma bodies several kilometers deep within the crust. The temporal frequency (i.e. episodicity or 'tempo') of pluton formation is often poorly constrained as timescales of pluton formation are largely variable and may be difficult to resolve by traditional dating methods. The Hida Mountain Range of central Japan hosts the youngest exposed plutons on Earth and provides a unique opportunity to assess the temporal and spatial characteristics of pluton emplacement at high temporal resolution. Here we apply U-Pb geochronology to zircon from the Quaternary Kurobegawa Granite and Takidani Granodiorite in the Hida Mountain Range, and from modern river sediments whose fluvial catchments include these plutons in order to reconstruct their formation. The U-Pb data demonstrate that the Kurobegawa pluton experienced two magmatic pulses at ~2.3 Ma and ~0.9 Ma; whereas, to the south, the Takidani pluton experienced only one magmatic pulse at ~1.6 Ma. These data imply that each of these magmatic systems were both spatially and temporally distinct. The apparent ~0.7 Myr age gap between each of the three magmatic pulses potentially constrains the recharge duration of a single pluton within a larger arc plutonic complex.

  12. The North Patagonian orogenic front and related foreland evolution during the Miocene, analyzed from synorogenic sedimentation and U/Pb dating (˜42°S)

    NASA Astrophysics Data System (ADS)

    Ramos, Miguel E.; Tobal, Jonathan E.; Sagripanti, Lucía; Folguera, Andrés; Orts, Darío L.; Giménez, Mario; Ramos, Victor A.

    2015-12-01

    Miocene sedimentary successions of the Ñirihuau and Collón Cura formations east of the El Maitén Belt constitute a partial record of the Andean exhumation, defining a synorogenic infill of the Ñirihuau Basin in the foothills of the North Patagonian fold and thrust belt. Gravimetric and seismic data allow recognizing the internal arrangement and geometry of these depocenters that host both units, separating a synextensional section previous to the Andean development at these latitudes, from a series of syncontractional units above. A series of progressive unconformities in the upper terms shows the synorogenic character of these units corresponding to the different pulses of deformation that occurred during the middle Miocene. New U-Pb ages constrain these pulses to the ˜13.5-12.9 Ma interval and allow reconstructing the tectonic history of this region based on the detrital zircon source populations. The U-Pb maximum ages of sedimentation give to the Ñirihuau Formation in particular a younger age than previously assumed. Additionally, synsedimentary deformation in strata of the upper exposures of the Collón Cura Formation associated with contractional structures and U-Pb ages allow identifying a younger paleoseismogenic pulse in ˜11.3 Ma. Thus, based on these data and a compilation of previous datasets, a tectonic evolution is proposed characterized by a contractional episode that migrated eastwardly since ˜19 to 15 Ma producing the Gastre broken foreland and then retracted to the eastern North Patagonian Precordillera, where out-of-sequence thrusts cannibalized the wedge top zone in the El Maitén belt at ˜13.5-11.3 Ma.

  13. U-Th dating reveals regional-scale decline of branching Acropora corals on the Great Barrier Reef over the past century

    NASA Astrophysics Data System (ADS)

    Clark, Tara R.; Roff, George; Zhao, Jian-xin; Feng, Yue-xing; Done, Terence J.; McCook, Laurence J.; Pandolfi, John M.

    2017-09-01

    Hard coral cover on the Great Barrier Reef (GBR) is on a trajectory of decline. However, little is known about past coral mortality before the advent of long-term monitoring (circa 1980s). Using paleoecological analysis and high-precision uranium-thorium (U-Th) dating, we reveal an extensive loss of branching Acropora corals and changes in coral community structure in the Palm Islands region of the central GBR over the past century. In 2008, dead coral assemblages were dominated by large, branching Acropora and living coral assemblages by genera typically found in turbid inshore environments. The timing of Acropora mortality was found to be occasionally synchronous among reefs and frequently linked to discrete disturbance events, occurring in the 1920s to 1960s and again in the 1980s to 1990s. Surveys conducted in 2014 revealed low Acropora cover (<5%) across all sites, with very little evidence of change for up to 60 y at some sites. Collectively, our results suggest a loss of resilience of this formerly dominant key framework builder at a regional scale, with recovery severely lagging behind predictions. Our study implies that the management of these reefs may be predicated on a shifted baseline.

  14. U-Th dating reveals regional-scale decline of branching Acropora corals on the Great Barrier Reef over the past century.

    PubMed

    Clark, Tara R; Roff, George; Zhao, Jian-Xin; Feng, Yue-Xing; Done, Terence J; McCook, Laurence J; Pandolfi, John M

    2017-09-26

    Hard coral cover on the Great Barrier Reef (GBR) is on a trajectory of decline. However, little is known about past coral mortality before the advent of long-term monitoring (circa 1980s). Using paleoecological analysis and high-precision uranium-thorium (U-Th) dating, we reveal an extensive loss of branching Acropora corals and changes in coral community structure in the Palm Islands region of the central GBR over the past century. In 2008, dead coral assemblages were dominated by large, branching Acropora and living coral assemblages by genera typically found in turbid inshore environments. The timing of Acropora mortality was found to be occasionally synchronous among reefs and frequently linked to discrete disturbance events, occurring in the 1920s to 1960s and again in the 1980s to 1990s. Surveys conducted in 2014 revealed low Acropora cover (<5%) across all sites, with very little evidence of change for up to 60 y at some sites. Collectively, our results suggest a loss of resilience of this formerly dominant key framework builder at a regional scale, with recovery severely lagging behind predictions. Our study implies that the management of these reefs may be predicated on a shifted baseline.

  15. Petrography, geochemistry, and U-Pb geochronology of pegmatites and aplites associated with the Alvand intrusive complex in the Hamedan region, Sanandaj-Sirjan zone, Zagros orogen (Iran)

    NASA Astrophysics Data System (ADS)

    Sepahi, Ali Asghar; Salami, Sedigheh; Lentz, David; McFarlane, Christopher; Maanijou, Mohammad

    2018-04-01

    The Alvand intrusive complex in the Hamedan area in Iran is in the Sanandaj-Sirjan zone of the Zagros orogen. It consists of a wide range of plutonic rocks, mainly gabbro, diorite, granodiorite, granite, and leucogranites that were intruded by aplitic and pegmatitic dykes. At least three successive magmatic episodes generated an older gabbro-diorite-tonalite assemblage, followed by a voluminous granodiorite-granite association, which was then followed by minor leucocratic granitoids. Aplitic and pegmatitic dykes and bodies have truncated both plutonic rocks of the Alvand intrusive complex and its metamorphic aureole. Chemically they belong to peraluminous LCT (Li-, Cs-, and Ta-bearing) family of pegmatites. Mineralogically, they resemble Muscovite (MS) and Muscovite Rare Element (MSREL) classes of pegmatites. High amounts of some elements, such as Sn (up to 10,000 ppm), Rb (up to 936 ppm), Ba (up to 706 ppm), and LREE (up to 404 ppm) indicate the highly fractionated nature of some of these aplites and pegmatites. U-Pb dating of monazite, zircon, and allanite by LA-ICPMS indicate the following ages: monazite-bearing aplites of Heydareh-e-Poshteshahr and Barfejin areas, southwest of Hamedan, give an age range of 162-172 Ma; zircon in Heydareh-e-Poshteshar gives an average age of 165 Ma and for allanite-bearing pegmatites of Artiman area, north of Tuyserkan, an age of 154.1 ± 3.7 Ma was determined. These overlap with previously reported ages (ca. 167-153 Ma) for the plutonic rocks of the Alvand complex. Therefore, these data reveal that the Jurassic was a period of magmatism in the Hamedan region and adjacent areas in the Sanandaj-Sirjan zone, which was situated at the southern edge of the central Iranian micro-plate (southern Eurasian plate) at this time. Our results also suggest that advective heating in a continental arc setting has caused melting of fertile supracrustal lithologies, such as meta-pelites. These partial melts were then emplaced at much higher

  16. Rare-earth-element minerals in martian breccia meteorites NWA 7034 and 7533: Implications for fluid-rock interaction in the martian crust

    NASA Astrophysics Data System (ADS)

    Liu, Yang; Ma, Chi; Beckett, John R.; Chen, Yang; Guan, Yunbin

    2016-10-01

    Paired martian breccia meteorites, Northwest Africa (NWA) 7034 and 7533, are the first martian rocks found to contain rare-earth-element (REE) phosphates and silicates. The most common occurrence is as clusters of anhedral monazite-(Ce) inclusions in apatite. Occasionally, zoned, irregular merrillite inclusions are also present in apatite. Monazite-bearing apatite is sometimes associated with alkali-feldspar and Fe-oxide. Apatite near merrillite and monazite generally contains more F and OH (F-rich region) than the main chlorapatite host and forms irregular boundaries with the main host. Locally, the composition of F-rich regions can reach pure fluorapatite. The chlorapatite hosts are similar in composition to isolated apatite without monazite inclusions, and to euhedral apatite in lithic clasts. The U-Th-total Pb ages of monazite in three apatite are 1.0 ± 0.4Ga (2σ), 1.1 ± 0.5Ga (2σ), and 2.8 ± 0.7Ga (2σ), confirming a martian origin. The texture and composition of monazite inclusions are mostly consistent with their formation by the dissolution of apatite and/or merrillite by fluid at elevated temperatures (>100 °C). In NWA 7034, we observed a monazite-chevkinite-perrierite-bearing benmoreite or trachyandesite clast. Anhedral monazite and chevkinite-perrierite grains occur in a matrix of sub-micrometer REE-phases and silicates inside the clast. Monazite-(Ce) and -(Nd) and chevkinite-perrierite-(Ce) and -(Nd) display unusual La and Ce depletion relative to Sm and Nd. In addition, one xenotime-(Y)-bearing pyrite-ilmenite-zircon clast with small amounts of feldspar and augite occurs in NWA 7034. One xenotime crystal was observed at the edge of an altered zircon grain, and a cluster of xenotime crystals resides in a mixture of alteration materials. Pyrite, ilmenite, and zircon in this clast are all highly altered, zircon being the most likely source of Y and HREE now present in xenotime. The association of xenotime with zircon, low U and Th contents, and the

  17. On the Quality of ENSDF {gamma}-Ray Intensity Data for {gamma}-Ray Spectrometric Determination of Th and U and Their Decay Series Disequilibria, in the Assessment of the Radiation Dose Rate in Luminescence Dating of Sediments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Corte, Frans de; Vandenberghe, Dimitri; Wispelaere, Antoine de

    In luminescence dating of sediments, one of the most interesting tools for the determination of the annual radiation dose is Ge {gamma}-ray spectrometry. Indeed, it yields information on both the content of the radioelements K, Th, and U, and on the occurrence - in geological times - of disequilibria in the Th and U decay series. In the present work, two methodological variants of the {gamma}-spectrometric analysis were tested, which largely depend on the quality of the nuclear decay data involved: (1) a parametric calibration of the sediment measurements, and (2) the correction for the heavy spectral interference of themore » 226Ra 186.2 keV peak by 235U at 185.7 keV. The performance of these methods was examined via the analysis of three Certified Reference Materials, with the introduction of {gamma}-ray intensity data originating from ENSDF. Relevant conclusions were drawn as to the accuracy of the data and their uncertainties quoted.« less

  18. Control of the U and Th behaviour in forest soils

    NASA Astrophysics Data System (ADS)

    Rihs, Sophie; Gontier, Adrien; Chabaux, François; Pelt, Eric; Turpault, Marie-Pierre

    2015-04-01

    U- and Th-series disequilibria and U, Th, Fe and Al speciation, were measured in several soil profiles from the experimental forest site of Breuil (Morvan, France) in order to address the impact of the vegetation on U and Th nuclides behaviour in soils. Thirty-five years after an experimental clear-felling of the native forest, the soil developed under two replacing mono-specific plantations (Oak and Douglas fir) were therefore compared to the undisturbed native forest soil. The analogous physical and chemical properties of these soils before the replacement were formerly demonstrated. Our results suggest that a shift in the Iron distribution seems to occur under the stand replaced by Oaks, with a significant replacement of Fe-bearing silicates by well crystallized Fe oxides. In contrast, such evolution was not demonstrated in the soils under Douglas fir. The concurrent loss of U and Th from the soils under Oak was tentatively related to the dissolution of Fe-bearing minerals. A mass balance calculation demonstrates that the observed increase in U oxalate-extracted fractions can quantitatively be explained through the entire profiles by a mere dissolution of up to 20% of U-Fe-bearing silicated minerals, without significant re-adsorption onto the amorphous Fe-Al oxides for U. Beside this primary release from Fe-bearing silicate minerals, the mobility of U and Th seems more likely controlled by Al phases rather than Fe oxides in surface layers during further pedogenic processes. Indeed, some of the U- and Th series disequilibria seem to be strongly related to Al dynamic in these layers. This relationship can be seen in the native forest profiles as well as in the replaced profiles, suggesting that this feature is not linked to the cover change. The redistribution of U and Th isotopes through these pedogenic processes therefore rule out the use of U-series for weathering rate determination in shallowest soils layers. In contrast, below 25 cm, the release of U and Th

  19. Geodynamic Setting of Proterozoic Dyke Swarms of the Leo-Man Craton, West Africa, Based on New U-Pb Dating and Geochemistry

    NASA Astrophysics Data System (ADS)

    Baratoux, L.; Jessell, M.; Söderlund, U.; Ernst, R. E.; Benoit, M.; Naba, S.; Cournede, C.; Perrouty, S.; Metelka, V.; Yatte, D.; Diallo, D. P.; Ndiaye, P. M.; Dioh, E.; Baratoux, D.

    2016-12-01

    Over 20 sets of dolerite dykes crosscutting Paleoproterozoic basement in West Africa were distinguished via the interpretation of regional and high-resolution airborne magnetic data available over the West African Craton. Some of the dykes reach over 300 km in length and are considered parts of much larger systems of mafic dyke swarms which form the plumbing system of Large Igneous Provinces (LIPs). Five different dyke swarms in Burkina Faso, Niger, Ghana and Senegal were investigated. In terms of petrography and composition, the mafic dykes correspond to tholeiitic basalts and are typically composed of plagioclase + clinopyroxene ± orthopyroxene ± olivine. They display a doleritic texture of variable grain size. Eleven ID-TIMS U-Pb ages obtained on baddeleyite define five generations of Proterozoic age. The N10 Libiri dyke swarm, found in western Niger, yielded an age of ca. 1790 Ma. The N40 Bassari swarm in Senegal was dated at ca. 1764 Ma, and is potentially linked to the 1790 Ma Libiri swarm, 1400 km away. The 300 by 400 km Korsimoro N100 dyke swarm transects central Burkina Faso and was dated at ca. 1575 Ma. Five ca. 1520 Ma ages were obtained for dykes of the Essakane swarm, three in Burkina Faso, one from Ghana (N130 orientation) and one from Senegal (E-W orientation), and document a large extent (600 km wide and 1500 km long) and short duration of dyke emplacement. The Manso N350 dyke swarm in southern Ghana, which is about 400 km long and about 200 km wide, yields a preliminary age of ca 870 Ma. A mantle plume origin is suggested for these swarms, especially the 1790-1765 Ma Libiri-Bassari swarm and the 1520 Ma Essakane swarms (which have lithosphere-contaminated E-MORB chemistry), whose scale is similar to largest giant radiating swarms (e.g. CAMP and Mackenzie). The 870 Ma Manso swarm has composition closer to OIB, consistent with a plume/hotspot origin. The 1575 Ma Korsimoro swarm has composition between EMORB and NMORB, which suggests a rift setting.

  20. Equilibrium and Disequilibrium of 230Th-238U in Zircon from the Minoan Eruption, Santorini, Aegean Sea, Greece

    NASA Astrophysics Data System (ADS)

    Schmitt, A. K.; Stockli, D. F.; Song, E. J.; Storm, S.

    2016-12-01

    The Minoan eruption (ca. 1600 BCE; 40-80 km3 dense rock equivalent) occurred after a ca. 18 ka period of dormancy followed by rapid reinvigoration through arrival of new magma from deep reservoirs colliding with evolved magmas in shallow storage. Although zoned phenocrysts indicate brief timescales ranging between years to decades for final pre-eruptive magma recharge and mixing, it remains unclear how magma accumulation vs. crystallization were balanced in the subvolcanic reservoir during the preceding inter-eruptive cycle. To directly probe magma presence over the repose interval prior to the Minoan eruption and further back in time, we reconnoitered the potential of U-Th zircon geochronology to date the crystallization of individual zircon crystals from pumice from the Minoan eruption. Zircon crystals were extracted from composite pumice samples (several kg each) from basal fall out deposits using gravity and magnetic separation. Etching in cold HF removed adherent glass and revealed the shape of crystals, which were pressed into indium metal to expose unpolished rims to the ion beam of a CAMECA IMS 1270 secondary ionization mass spectrometer. Adherent glass was ubiquitous, indicating that crystals were in contact with melt at the time of eruption. Six of 18 crystals were in 230Th/238U secular equilibrium, two crystals yielded ages of ca. 160 ka, and the remaining rims dated between eruption age and ca. 20 ka. Low Th/U of some secular equilibrium zircon suggests recycling of metamorphic basement zircon, which is also indicated by the presence of rutile in heavy mineral separates. U-Th dates also reveal recycling of zircon from Pleistocene intrusions that likely represent left-over magma from antecedent eruption cycles. We tentatively interpret the dominant zircon population with near-eruption to ca. 20 ka ages to indicate continuous melt presence underneath Santorini during the last repose interval. Distinguishing a hiatus in zircon crystallization between 20 ka

  1. Multiple age components in individual molybdenite grains

    USGS Publications Warehouse

    Aleinikoff, John N.; Creaser, Robert A.; Lowers, Heather; Magee, Charles W.; Grauch, Richard I.

    2012-01-01

    Re–Os geochronology of fractions composed of unsized, coarse, and fine molybdenite from a pod of unusual monazite–xenotime gneiss within a granulite facies paragneiss, Hudson Highlands, NY, yielded dates of 950.5 ± 2.5, 953.8 ± 2.6, and 941.2 ± 2.6 Ma, respectively. These dates are not recorded by co-existing zircon, monazite, or xenotime. SEM–BSE imagery of thin sections and separated grains reveals that most molybdenite grains are composed of core and rim plates that are approximately perpendicular. Rim material invaded cores, forming irregular contacts, probably reflecting dissolution/reprecipitation. EPMA and LA-ICP-MS analyses show that cores and rims have different trace element concentrations (for example, cores are relatively enriched in W). On the basis of inclusions of zircon with metamorphic overgrowths, we conclude that molybdenite cores and rims formed after high-grade regional metamorphism. The discovery of cores and rims in individual molybdenite grains is analogous to multi-component U-Pb geochronometers such as zircon, monazite, and titanite; thus, molybdenite should be carefully examined before dating to ensure that the requirement of age homogeneity is fulfilled.

  2. Rb-Sr, Sm-Nd, and U-Pb geochronology of the rocks within the Khlong Marui shear zone, southern Thailand

    NASA Astrophysics Data System (ADS)

    Kanjanapayont, Pitsanupong; Klötzli, Urs; Thöni, Martin; Grasemann, Bernhard; Edwards, Michael A.

    2012-08-01

    In southern Thailand, the Khlong Marui shear zone is dominated by a NNE-SSW striking high topographic lozenge shaped area of ca. 40 km long and 6 km wide between the Khlong Marui Fault and the Bang Kram Fault. The geology within this strike-slip zone consists of strongly deformed layers of mylonitic meta-sedimentary rocks associated with orthogneisses, mylonitic granites, and pegmatitic veins with a steeply dipping foliation. The strike-slip deformation is characterized by dextral ductile deformation under amphibolite facies and low to medium greenschist facies. In situ U-Pb ages of inherited zircon cores from all zircons in the Khlong Marui shear zone indicate that they have the same material from the Archean. Late Triassic to Late Cretaceous ages obtained for zircon outer cores of the mylonitic granite are probably related to a period of magmatic activity that was significantly influenced by the West Burma and Shan-Thai collision and the subduction along the Sunda Trench. The early dextral ductile deformation phase of the Khlong Marui shear zone in the Early Eocene suggested by U-Pb ages of zircon rims, and the later dextral transpressional deformation in the Late Eocene indicated by mica Rb-Sr ages. Rb-Sr, Sm-Nd, and U-Pb dating correlation implies that the major exhumation period of the ductile lens was in the Eocene. This period was tectonically influenced in the SE Asia region by the early India-Asia collision.

  3. Uranium-series dating of pedogenic silica and carbonate, Crater Flat, Nevada

    NASA Astrophysics Data System (ADS)

    Ludwig, K. R.; Paces, J. B.

    2002-02-01

    A 230Th-234U-238U dating study on pedogenic silica-carbonate clast rinds and matrix laminae from alluvium in Crater Flat, Nevada was conducted using small-sample thermal-ionization mass spectrometry (TIMS) analyses on a large suite of samples. Though the 232Th content of these soils is not particularly low (mostly 0.1-9 ppm), the high U content of the silica component (mostly 4-26 ppm) makes them particularly suitable for 230Th/U dating on single, 10 to 200 mg totally-digested samples using TIMS. We observed that (1) both micro- (within-rind) and macro-stratigraphic (mappable deposit) order of the 230Th/U ages were preserved in all cases; (2) back-calculated initial 234U/238U fall in a restricted range (typically 1.67±0.19), so that 234U/238U ages with errors of about 100 kyr (2σ) could be reliably determined for the oldest, 400 to 1000 ka rinds; and (3) though 13 of the samples were >350 ka, only three showed evidence for an open-system history, even though the sensitivity of such old samples to isotopic disruption is very high. An attempt to use leach-residue techniques to separate pedogenic from detrital U and Th failed, yielding corrupt 230Th/U ages. We conclude that 230Th/U ages determined from totally dissolved, multiple sub-mm size subsamples provide more reliable estimates of soil chronology than methods employing larger samples, chemical enhancement of 238U/232Th, or isochrons.

  4. Isotopic (U-Pb, Nd) and geochemical constraints on the origins of the Aileu and Gondwana sequences of Timor

    NASA Astrophysics Data System (ADS)

    Boger, S. D.; Spelbrink, L. G.; Lee, R. I.; Sandiford, M.; Maas, R.; Woodhead, J. D.

    2017-02-01

    Detrital zircon U-Pb age data collected from the argillitic sedimentary rocks of the Timorese Aileu Complex and Gondwana Sequence indicate that both units were derived from a common source containing 200-600 Ma, 900-1250 Ma and 1450-1900 Ma zircon. The modally most significant age population within this range of ages dates to c. 260 Ma. The observed spectrum of ages can be traced to the eastern active margin of Pangaea and its immediate foreland, which today is best exposed along the northeast coast of Australia. Compared to the relative homogeneity of the detrital zircon age data, geochemical and Nd isotopic data show that the mudstones of the Aileu Complex are on average more siliceous, have higher K2O/Na2O, Rb/Sr, Th/Sc and yield notably older Nd TDM model ages when compared to those from the Gondwana Sequence. These data are interpreted to suggest that, although both sequences share a common east Pangaea provenance, they were eroded from different sections of this active margin and deposited in spatially separated basins. The present proximity of these units is a result of their tectonic juxtaposition during the Pliocene to Recent collision between the northern edge of the Indo-Australia plate and the Banda Arc.

  5. 238U-234U-230Th disequilibrium in hydrogenous oceanic Fe-Mn crusts: Palaeoceanographic record or diagenetic alteration?

    USGS Publications Warehouse

    Chabaux, F.; O'Nions, R. K.; Cohen, A.S.; Hein, J.R.

    1997-01-01

    A detailed TIMS study of (234Uexc/238U), (230Th/232Th), and Th/U ratios have been performed on the outermost margin of ten hydrogenous Fe-Mn crusts from the equatorial Pacific Ocean and west-central Indian Ocean. Th/U concentration ratios generally decrease from the crust's surface down to 0.5-1 mm depth and growth rates estimated by uranium and thorium isotope ratios are significantly different in Fe-Mn crusts from the Peru Basin and the west-central Indian Ocean. Fe-Mn crusts from the same geographical area define a single trend in plots of Ln (234Uexc/238U) vs. Ln(230Th/232Th) and Th/U ratios vs. age of the analysed fractions. Results suggest that (1) hydrogenous Fe-Mn crusts remain closed-systems after formation, and consequently (2) the discrepancy observed between the 230Th and 234U chronometers in Fe-Mn crusts, and the variations of the Th/U ratios through the margin of Fe-Mn crusts, are not due to redistribution of uranium and thorium isotopes after oxyhydroxide precipitation, but rather to temporal variations of both Th/U and initial thorium activity ratios recorded by the Fe-Mn layers. Implications of these observations for determination of Fe-Mn crust growth-rates are discussed. Variations of both Th/U and initial Th activity ratios in Fe-Mn crusts might be related to changes in particle input to seawater and/or changes in ocean circulation during the last 150 ka. Copyright ?? 1997 Elsevier Science Ltd.

  6. Dissolution behaviour of 238U, 234U and 230Th deposited on filters from personal dosemeters.

    PubMed

    Becková, Vera; Malátová, Irena

    2008-01-01

    Kinetics of dissolution of (238)U, (234)U and (230)Th dust deposited on filters from personal alpha dosemeters was studied by means of a 26-d in vitro dissolution test with a serum ultrafiltrate simulant. Dosemeters had been used by miners at the uranium mine 'Dolní Rozínka' at Rozná, Czech Republic. The sampling flow-rate as declared by the producer is 4 l h(-1) and the sampling period is typically 1 month. Studied filters contained 125 +/- 6 mBq (238)U in equilibrium with (234)U and (230)Th; no (232)Th series nuclides were found. Half-time of rapid dissolution of 1.4 d for (238)U and (234)U and slow dissolution half-times of 173 and 116 d were found for (238)U and (234)U, respectively. No detectable dissolution of (230)Th was found.

  7. The Mesozoic metamorphic-magmatic events in the Medog area, the Eastern Himalayan Syntaxis: constraints from zircon U-Pb geochronology, trace elements and Hf isotope compositions in granitoids

    NASA Astrophysics Data System (ADS)

    Dong, Hanwen; Xu, Zhiqin; Li, Yuan; Liu, Zhao; Li, Huaqi

    2015-01-01

    Based on the regional geological mapping, several granitoid intrusions had been discovered in the Eastern Himalayan Syntaxis (EHS). In order to constrain their petrogenesis and discuss their relations with the regional tectonics, we carried out U-Pb dating, trace elements and Hf isotope geochemistry studies on zircons separated from the granitoid rocks, in the area of the EHS. In this contribution, the granitoid rocks are mainly composed of diorites (X20-1-6) and granitic gneissic rocks (X2-15-1). The U-Pb zircon dating of diorites yields a crystallization age of 193.8 ± 2.0 Ma. These zircon have ɛ Hf( t) values ranging from -6.48 to -0.05, indicating an involvement of ancient crustal materials in the generation of these igneous rocks. The zircons from the Medog granitic gneissic rock commonly show zoning structures. The REE patterns and abundances of the inherited cores are different from those of the oscillatory rims. The LA-ICP-MS U-Pb zircon in situ analyses indicate that: (1) the zircon cores give multi-stage magmatic event ages ranging from 516 to 1,826 Ma, of which six ages are converged on 1,330-911 Ma, it is considered that the migmatitic gneiss has been formed in this time, and (2) while the zircon rims yield 206Pb/238U weighted mean ages of 217.4 ± 3.0 Ma (MSWD = 3.2), which was interpreted to represent the ages of the Triassic anatexis. Their ɛ Hf( t) values range from -18.98 to -8.36 and -14.22 to 8.72, respectively. The timing of the anatexis in the Medog area is coeval with the widespread metamorphism in Lhasa terrane.

  8. SHRIMP-RG U-Pb isotopic systematics of zircon from the Angel Lake orthogneiss, East Humboldt Range, Nevada: Is this really archean crust?

    USGS Publications Warehouse

    Premo, Wayne R.; Castineiras, Pedro; Wooden, Joseph L.

    2008-01-01

    New SHRIMP-RG (sensitive high-resolution ion microprobe-reverse geometry) data confirm the existence of Archean components within zircon grains of a sample from the orthogneiss of Angel Lake, Nevada, United States, previously interpreted as a nappe of Archean crust. However, the combined evidence strongly suggests that this orthogneiss is a highly deformed, Late Cretaceous monzogranite derived from melting of a sedimentary source dominated by Archean detritus. Zircon grains from the same sample used previously for isotope dilution-thermal ionization mass spectrometry (ID-TIMS) isotopic work were analyzed using the SHRIMP-RG to better define the age and origin of the orthogneiss. Prior to analysis, imaging revealed a morphological variability and intragrain, polyphase nature of the zircon population. The SHRIMP-RG yielded 207Pb/206Pb ages between ca. 2430 and 2580 Ma (a best-fit mean 207Pb/206Pb age of 2531 ± 19 Ma; 95% confidence) from mostly rounded to subrounded zircons and zircon components (cores). In addition, several analyses from rounded to subrounded cores or grains yielded discordant 207Pb/206Pb ages between ca. 1460 and ca. 2170 Ma, consistent with known regional magmatic events. All cores of Proterozoic to latest Archean age were encased within clear, typically low Th/U (206Pb/238U ages between 72 and 91 Ma, consistent with magmatic ages from Lamoille Canyon to the south. An age of ca. 90 Ma is suggested, the younger 206Pb/238U ages resulting from Pb loss. The Cretaceous and Precambrian zircon components also have distinct trace element characteristics, indicating that these age groups are not related to the same igneous source. These results support recent geophysical interpretations and negate the contention that the Archean-Proterozoic boundary extends into the central Great Basin area. They further suggest that the world-class gold deposits along the Carlin Trend are not underlain by Archean cratonal crust, but rather by the Proterozoic Mojave

  9. The sediment budget of an urban coastal lagoon (Jamaica Bay, NY) determined using 234Th and 210Pb

    NASA Astrophysics Data System (ADS)

    Renfro, Alisha A.; Cochran, J. Kirk; Hirschberg, David J.; Bokuniewicz, Henry J.; Goodbred, Steven L.

    2016-10-01

    The sediment budget of Jamaica Bay (New York, USA) has been determined using the natural particle-reactive radionuclides 234Th and 210Pb. Inventories of excess thorium-234 (234Thxs, half-life = 24.1 d) were measured in bottom sediments of the Bay during four cruises from September 2004 to July 2006. The mean bay-wide inventory for the four sampling periods ranged from 3.5 to 5.0 dpm cm-2, four to six times that expected from 234Th production in the overlying water column. The presence of dissolved 234Th and a high specific activity of 234Thxs on particles at the bay inlet (∼30 dpm g-1) indicated that both dissolved and particulate 234Th could be imported into the bay from the ocean. Based on these observations, a mass balance of 234Th yields an annual input of ∼39 ± 14 × 1010 g sediment into the bay. Mass accumulation rates determined from profiles of excess 210Pb (half-life = 22.3 y) in sediment cores require annual sediment import of 7.4 ± 4.5 × 1010 g. Both radionuclides indicate that there is considerable marine-derived sediment import to Jamaica Bay, consistent with earlier work using 210Pb. Such sediment input may be important in sustaining longer-term accretion rates of salt marshes in the bay.

  10. U-Th dating reveals regional-scale decline of branching Acropora corals on the Great Barrier Reef over the past century

    PubMed Central

    Clark, Tara R.; Roff, George; Zhao, Jian-xin; Feng, Yue-xing; Done, Terence J.; McCook, Laurence J.; Pandolfi, John M.

    2017-01-01

    Hard coral cover on the Great Barrier Reef (GBR) is on a trajectory of decline. However, little is known about past coral mortality before the advent of long-term monitoring (circa 1980s). Using paleoecological analysis and high-precision uranium-thorium (U-Th) dating, we reveal an extensive loss of branching Acropora corals and changes in coral community structure in the Palm Islands region of the central GBR over the past century. In 2008, dead coral assemblages were dominated by large, branching Acropora and living coral assemblages by genera typically found in turbid inshore environments. The timing of Acropora mortality was found to be occasionally synchronous among reefs and frequently linked to discrete disturbance events, occurring in the 1920s to 1960s and again in the 1980s to 1990s. Surveys conducted in 2014 revealed low Acropora cover (<5%) across all sites, with very little evidence of change for up to 60 y at some sites. Collectively, our results suggest a loss of resilience of this formerly dominant key framework builder at a regional scale, with recovery severely lagging behind predictions. Our study implies that the management of these reefs may be predicated on a shifted baseline. PMID:28893981

  11. Leaching behavior of U, Mn, Sr, and Pb from different particle-size fractions of uranium mill tailings.

    PubMed

    Liu, Bo; Peng, Tongjiang; Sun, Hongjuan

    2017-06-01

    Pollution by the release of heavy metals from tailings constitutes a potential threat to the environment. To characterize the processes governing the release of Mn, Sr, Pb, and U from the uranium mill tailings, a dynamic leaching test was applied for different size of uranium mill tailings samples. Inductively coupled plasma atomic emission spectroscopy (ICP-AES) and inductively coupled plasma mass spectrometry (ICP-MS) were performed to determine the content of Mn, Sr, Pb, and U in the leachates. The release of mobile Mn, Sr, Pb, and U fraction was slow, being faster in the initial stage and then attained a near steady-state condition. The experimental results demonstrate that the release of Mn, Sr, Pb, and U from uranium mill tailings with different size fractions is controlled by a variety of mechanisms. Surface wash-off is the release mechanism for Mn. The main release mechanism of Sr and Pb is the dissolution in the initial leaching stage. For U, a mixed process of wash-off and diffusion is the controlling mechanism.

  12. Helium diffusion in apatite assessed by ERDA and implications for (U-Th)/He dating

    NASA Astrophysics Data System (ADS)

    Stuebner, K.; Jonckheere, R.; Ratschbacher, L.

    2006-12-01

    The strength of a low-temperature geochronometer, like (U-Th)/He(apatite), lies in the low activation energy of He-diffusion, which makes the system sensitive to temperatures <100°C. A thorough understanding of the diffusion kinetics of He in apatite is crucial for the interpretation of (U-Th)/He ages. Diffusion parameters derived from high temperature step heating experiments and reported in the literature span a broad range: E_a=30-40 kcal/mol (1σ-error ~2 kcal/mol); ln(D0/a2)=8-26 s^-^1 or ln(D0)=8- 130 cm2/s and with the standard experimental setup it is not possible to determine the grain size independent parameter D0. We employ a new approach using Elastic Recoil Detection Analysis (ERDA) to characterise He diffusion at low temperatures. ERDA allows to measure element-concentration profiles across the upper 2 μm of 1x1cm plane surface samples. Implantation of high-dose (5E+15 ions cm2), low- energy Helium ions (50-250 keV) in polished thin sections of a large Durango apatite crystal produces narrow, near-Gaussian distribution of Helium at a depth <1 μm beneath the crystal surface. Diffusion results in normally distributed concentration-profiles across the initial layer. The He-profile is approximated by a Gaussian curve with variance σ2 = 2 D t = D0 exp(-E_a/RT) t. Dt increases exponentially with T and linearly with t, so that knowledge of the t-T conditions of a set of samples allows to calculate the diffusion parameters from the fitted Gauss-distributions. With this approach Helium diffusion is observed on a sub-μm scale, which allows not only a precise determination of E_a and D0, but also circumvents assumptions that are necessary for the step-heating approach (spherical diffusion geometry, dimension of the diffusion domain) and is independent of grain size or shape. It facilitates investigation of the dependence of diffusion on the crystallographic direction, on the anion composition (OH, F, Cl) of apatite and on the degree of radiogenic lattice

  13. 26Al- 26Mg and 207Pb- 206Pb systematics of Allende CAIs: Canonical solar initial 26Al/ 27Al ratio reinstated

    NASA Astrophysics Data System (ADS)

    Jacobsen, Benjamin; Yin, Qing-zhu; Moynier, Frederic; Amelin, Yuri; Krot, Alexander N.; Nagashima, Kazuhide; Hutcheon, Ian D.; Palme, Herbert

    2008-07-01

    -crystallization inter-mineral redistribution of Mg isotopes within an individual inclusion. This redistribution must be volumetrically minor in order to satisfy the mass balance of the precisely defined bulk CAI and bulk mineral data obtained by MC-ICP-MS. The radiogenic 208Pb*/ 206Pb* ratio obtained as a by-product from the Pb-Pb age dating is used to estimate time-integrated 232Th/ 238U ratio ( κ value) of CAIs. Limited κ variations among the minerals within a single CAI, contrasted by much larger variations among the bulk CAIs, suggest Th/U fractionation occurred prior to crystallization of igneous CAIs. If interpreted as primordial heterogeneity, the κ value can be used to calculate the mean age of the interstellar dust from which the CAIs condensed.

  14. Resolution, the key to unlocking granite petrogenesis using zircon U-Pb - Lu-Hf studies

    NASA Astrophysics Data System (ADS)

    Tapster, Simon; Horstwood, Matthew; Roberts, Nick M. W.; Deady, Eimear; Shail, Robin

    2017-04-01

    Coarse-scale understanding of crustal evolution and source contributions to igneous systems has been drastically enhanced by coupled zircon U-Pb and Lu-Hf data sets. These are now common place and potentially offer advantages over whole-rock analyses by resolving heterogeneous source components in the complex crystal cargos of single hand-samples. However, the application of coupled zircon U-Pb and Lu-Hf studies to address detailed petrogenetic questions faces a crisis of resolution - On the one hand, micro-beam analytical techniques have high spatial resolution, capable of interrogating crystals with complex growth histories. Yet, the >1-2% temporal resolution of these techniques places a fundamental limitation on their utility for developing petrogenetic models. This limitation in data interpretation arises from timescales of crystal recycling or changes in source evolution that are often shorter than the U-Pb analytical precision. Conversely, high-precision CA-ID-TIMS U-Pb analysis of single whole zircons and solution MC-ICP-MS Lu-Hf isotopes of column washes (Hf masses equating to ca. 10-50 ng) have much greater temporal resolution (<0.1%), yet lack the spatial resolution to deal with complex crystal growth. Analyses homogenize any heterogeneity within the zircon and convolute the petrogenetic model. A balance must be struck between spatial and temporal resolution to address petrogenetic issues. Here, we demonstrate that micro-sampling of complex xenocryst-rich zircon crystals (e.g. <40 µm zircon tips) from the granitic post-Variscan Cornubian Batholith (SW England), in tandem with low-common Pb blank CA-ID-TIMS U-Pb chemistry, permits the analysis of zircon volumes that approach those of LA-ICPMS analyses, whilst simultaneously retaining the majority of the temporal resolution associated with the CA-ID-TIMS U-Pb technique. The low volume of zircon within these analyses may only provide <5 ng Hf, and therefore gaining useful precision from Lu-Hf isotopes is

  15. Sm-Nd dating of the giant Sullivan Pb-Zn-Ag deposit, British Columbia

    USGS Publications Warehouse

    Jiang, Shao-Yong; Slack, John F.; Palmer, Martin R.

    2000-01-01

    We report here Sm and Nd isotope data for hydrothermal tourmalinites and sulfide ores from the giant Sullivan Pb-Zn-Ag deposit, which occurs in the lower part of the Mesoproterozoic Purcell (Belt) Supergroup. Whole-rock samples of quartz-tourmaline tourmalinite from the footwall alteration pipe yield a Sm-Nd isochron age of 1470 ± 59 Ma, recording synsedimentary B metasomatism of clastic sediments during early evolution of the Sullivan hydrothermal system. Data for variably altered (chloritized and/or albitized) tourmalinites from the hanging wall of the deposit, which are believed to have formed originally ca. 1470 Ma, define a younger 1076 ± 77 Ma isochron because of resetting of Sm and Nd isotopes during Grenvillian metamorphism. HCl leachates of bedded Pb-Zn ore yield a Sm-Nd isochron age of 1451 ± 46 Ma, which is consistent with syngenetic-exhalative mineralization ca. 1470 Ma; this age could also reflect a slightly younger, epigenetic hydrothermal event. Results obtained for the Sullivan deposit indicate that the Sm-Nd geochronometer has the potential to directly date mineralization and alteration in stratabound sulfide deposits that are not amenable to dating by other isotope methods.

  16. New U-Pb zircon ages and the duration and division of Devonian time

    USGS Publications Warehouse

    Tucker, R.D.; Bradley, D.C.; Ver Straeten, C.A.; Harris, A.G.; Ebert, J.R.; McCutcheon, S.R.

    1998-01-01

    Newly determined U-Pb zircon ages of volcanic ashes closely tied to biostratigraphic zones are used to revise the Devonian time-scale. They are: 1) 417.6 ?? 1.0 Ma for an ash within the conodont zone of Icriodus woschmidti/I. w. hesperius Lochkovian); 2) 408.3 ?? 1.9 Ma for an ash of early Emsian age correlated with the conodont zones of Po. dehiscens--Lower Po. inversus; 3) 391.4 ?? 1.8 Ma for an ash within the Po. c. costatus Zone and probably within the upper half of the zone (Eifelian); and 4) 381.1 ?? 1.3 Ma for an ash within the range of the Frasnian conodont Palmatolepis punctata (Pa. punctata Zone to Upper Pa. hassi Zone). U-Pb zircon ages for two rhyolites bracketing a palyniferous bed of the pusillites-lepidophyta spore zone, are dated at 363.8 ?? 2.2 Ma and 363 ?? 2.2 Ma and 363.4 ?? 1.8 Ma, respectively, suggesting an age of ~363 Ma for a level within the late Famennian Pa. g. expansa Zone. These data, together with other published zircon ages, suggest that the base and top of the Devonian lie close to 418 Ma and 362 Ma, respectively, thus lengthening the period of ~20% over current estimates. We suggest that the duration of the Middle Devonian (Eifelian and Givitian) is rather brief, perhaps no longer than 11.5 Myr (394 Ma-382.5 Ma), and that the Emsian and Famennian are the longest stages in the period with estimated durations of ~15.5 Myr and 14.5 Myr, respectively.

  17. SHRIMP U-Pb evidence for a Late Silurian age of metasedimentary rocks in the Merrimack and Putnam-Nashoba terranes, eastern New England

    USGS Publications Warehouse

    Wintsch, R.P.; Aleinikoff, J.N.; Walsh, G.J.; Bothner, Wallace A.; Hussey, A.M.; Fanning, C.M.

    2007-01-01

    U-Pb ages of detrital, metamorphic, and magmatic zircon and metamorphic monazite and titanite provide evidence for the ages of deposition and metamorphism of metasedimentary rocks from the Merrimack and Putnam-Nashoba terranes of eastern New England. Rocks from these terranes are interpreted here as having been deposited in the middle Paleozoic above Neoproterozoic basement of the Gander terrane and juxtaposed by Late Paleozoic thrusting in thin, fault-bounded slices. The correlative Hebron and Berwick formations (Merrimack terrane) and Tatnic Hill Formation (Putnam-Nashoba terrane), contain detrital zircons with Mesoproterozoic, Ordovician, and Silurian age populations. On the basis of the age of the youngest detrital zircon population (???425 Ma), the Hebron, Berwick and Tatnic Hill formations are no older than Late Silurian (Wenlockian). The minimum deposition ages of the Hebron and Berwick are constrained by ages of cross-cutting plutons (414 ?? 3 and 418 ?? 2 Ma, respectively). The Tatnic Hill Formation must be older than the oldest metamorphic monazite and zircon (???407 Ma). Thus, all three of these units were deposited between ???425 and 418 Ma, probably in the Ludlovian. Age populations of detrital zircons suggest Laurentian and Ordovician arc provenance to the west. High grade metamorphism of the Tatnic Hill Formation soon after deposition probably requires that sedimentation and burial occurred in a fore-arc environment, whereas time-equivalent calcareous sediments of the Hebron and Berwick formations probably originated in a back-arc setting. In contrast to age data from the Berwick Formation, the Kittery Formation contains primarily Mesoproterozoic detrital zircons; only 2 younger grains were identified. The absence of a significant Ordovician population, in addition to paleocurrent directions from the east and structural data indicating thrusting, suggest that the Kittery was derived from peri-Gondwanan sources and deposited in the Fredericton Sea

  18. A tale of two cores: Evaluation of 210Pb dating methods of salt marsh sediments for two cores collected 30 years apart

    NASA Astrophysics Data System (ADS)

    Fuller, C.; Drexler, J. Z.

    2016-12-01

    210Pb dating of wetland sediments is commonly used to constrain recent C accumulation rates and contaminant input histories. However, uncertainties in 210Pb-derived rates and validation of accumulation and accretion rates using an independent tracer are often not reported. We describe here 210Pb and 137Cs profiles in two cores from a salt marsh in south San Francisco Bay, California, collected in 1981 and 2011 within 5 m of each other, to compare and evaluate 210Pb dating methods. In the 1981 core, unsupported 210Pb (210PbXS) was detected to 12 cm and yielded mass accumulation rates (MAR) of 0.043 and 0.036 g/cm2/y using the Constant Flux-Constant Sedimentation method (CF:CS) and Constant Rate of Supply (CRS) methods, respectively. Accretion rates (S) of 0.17 (CF:CS) and 0.12 cm/y (CRS) were calculated from these MARs. The distinct 137Cs peak at 4-6 cm in the 1981 core is in good agreement with the210Pb-based 1963 depth (3.4 and 4 cm, CF:CS and CRS, respectively). 210PbXS was detectable to 18 cm in the 2011 core, and yielded a CF:CS MAR (0.077 g/cm2/y; S = 0.35 cm/y) that is about two times greater than the mass-weighted average CRS MAR (0.044 g/cm2/y; S = 0.16 cm/y). Broad subsurface maxima in 137Cs and 239Pu were observed between 16 and 24 cm in the 2011 core, which are 5 to 11 cm deeper than the 1963 depth calculated by the 2011 and 1981 210Pb-derived MARs. The apparent migration and broadening of bomb-fallout radionuclide peaks over 30 years negates their use in validating 210Pb dating. Because of low 210PbXS activities in both cores, the base of the 210PbXS profile and integrated activity used in CRS are underestimated, resulting in the lower CRS MARs that decrease with increasing depth. The range of MARs determined for two cores within 5 m but separated by 30 years will be used as an example to evaluate the uncertainties that need to be reported with C accumulation rates and contaminant histories derived from 210Pb dating of sediment archives.

  19. A Uranium-Lead Chronology of Speleothem Deposition in the Canadian Arctic

    NASA Astrophysics Data System (ADS)

    Gambino, C.; Shakun, J. D.; McGee, D.; Ramezani, J.; Khadivi, S.; Wong, C. I.

    2017-12-01

    The Artic is one of the fastest warming regions on the planet. Currently much of the Arctic is covered by permafrost, which contains approximately 1,700 gigatons of organic carbon. Permafrost thaw could release a substantial amount of this carbon as greenhouse gases into the atmosphere through microbial decomposition, potentially dramatically amplifying anthropogenic warming. However, the risk of permafrost thaw is uncertain, with models exhibiting a wide range of possibilities. Assessing the stability of permafrost during past interglacial periods enables evaluation of the sensitivity of permafrost to warming. Cave mineral deposits (speleothems) in areas currently covered with permafrost can act as a proxy for past permafrost thaw, as liquid water is one criteria of speleothem growth and thus implies thawed ground conditions. Previous uranium-thorium (U-Th) dating of speleothems (n=67) from a wide range of latitudes and permafrost zones across the southern Canadian Rockies, Northwest Territories, and the northern Yukon suggest deposition during Marine Isotope Stage (MIS) 11 and 13. The majority of U-Th dates of these speleothems, however, exceed the U-Th dating limit of 600 ka. In this study, we apply uranium-lead (U-Pb) geochronology to several of these speleothems to extend the records of speleothem growth further back in time. Initial results include a U-Pb age of 428 ± 14 ka that replicates a previous U-Th age of 416.8 ± 7.9 ka, and U-Pb ages on two other speleothems of 870 ± 100 ka and 1502 ± 30 ka. The results of currently in progress U-Pb analyses and a comparison of results with paleo-temperature and ice volume reconstructions will also be presented.

  20. First evidence of the Ellesmerian metamorphism on Svalbard

    NASA Astrophysics Data System (ADS)

    Kośmińska, Karolina; Majka, Jarosław; Manecki, Maciej; Schneider, David A.

    2016-04-01

    The Ellesmerian fold-and-thrust belt is exposed in the High Arctic from Ellesmere Island in the east, through North Greenland, to Svalbard in the west (e.g. Piepjohn et al., 2015). It developed during Late Devonian - Early Carboniferous, and overprinted older (mainly Caledonian) structures. It is thought that this fold-and-thrust belt was formed due to collision of the Pearya Terrane and Svalbard with the Franklinian Basin of Laurentia. Traditionally, the Ellesmerian fold-and-thrust belt comprises a passive continental margin affected by foreland deformation processes, but the exact larger scale tectonic context of this belt is disputable. It is partly because the Eocene Eurekan deformation superimposed significantly the Ellesmerian structures, thus making the reconstruction of the pre-Eurekan history very difficult. Here we present for the first time evidence for Ellesmerian metamorphism within the crystalline basement of Svalbard. These rocks are exposed in the Pinkie unit on Prins Karls Forland (W-Svalbard), which exhibits tectonic contacts with the overlying sequences. The Pinkie unit is mainly composed of strongly deformed lithologies such as laminated quartzites, siliciclastic rocks and garnet-bearing mica schists. Detrital zircon dating yielded ages as young as Neoproterozoic (0.95-1.05 Ga), thus the Pinkie unit is considered to be Neoproterozoic (Kośmińska et al., 2015a). The M1 assemblages and D1 structures are affected by D2 mylonitization (cf. Faehnrich et al., 2016, this meeting). Petrological characterization and Th-U-total Pb chemical monazite dating have been performed on the Pinkie metapelites. These rocks exhibit an apparent inverted Barrovian metamorphic sequence, within which three metamorphic zones have been distinguished: garnet+staurolite+muscovite+biotite, garnet+staurolite+kyanite+muscovite+biotite, garnet+kyanite+muscovite+biotite. The P-T estimates using the QuiG barometry coupled with thermodynamic modelling revealed that the