Sample records for u2 gauge theory

  1. Gauged U(1) clockwork theory

    NASA Astrophysics Data System (ADS)

    Lee, Hyun Min

    2018-03-01

    We consider the gauged U (1) clockwork theory with a product of multiple gauge groups and discuss the continuum limit of the theory to a massless gauged U (1) with linear dilaton background in five dimensions. The localization of the lightest state of gauge fields on a site in the theory space naturally leads to exponentially small effective couplings of external matter fields localized away from the site. We discuss the implications of our general discussion with some examples, such as mediators of dark matter interactions, flavor-changing B-meson decays as well as D-term SUSY breaking.

  2. Higgs mechanism in higher-rank symmetric U(1) gauge theories

    NASA Astrophysics Data System (ADS)

    Bulmash, Daniel; Barkeshli, Maissam

    2018-06-01

    We use the Higgs mechanism to investigate connections between higher-rank symmetric U(1 ) gauge theories and gapped fracton phases. We define two classes of rank-2 symmetric U(1 ) gauge theories: the (m ,n ) scalar and vector charge theories, for integer m and n , which respect the symmetry of the square (cubic) lattice in two (three) spatial dimensions. We further provide local lattice rotor models whose low-energy dynamics are described by these theories. We then describe in detail the Higgs phases obtained when the U(1 ) gauge symmetry is spontaneously broken to a discrete subgroup. A subset of the scalar charge theories indeed have X-cube fracton order as their Higgs phase, although we find that this can only occur if the continuum higher-rank gauge theory breaks continuous spatial rotational symmetry. However, not all higher-rank gauge theories have fractonic Higgs phases; other Higgs phases possess conventional topological order. Nevertheless, they yield interesting novel exactly solvable models of conventional topological order, somewhat reminiscent of the color code models in both two and three spatial dimensions. We also investigate phase transitions in these models and find a possible direct phase transition between four copies of Z2 gauge theory in three spatial dimensions and X-cube fracton order.

  3. Holism and structuralism in U(1) gauge theory

    NASA Astrophysics Data System (ADS)

    Lyre, Holger

    After decades of neglect philosophers of physics have discovered gauge theories-arguably the paradigm of modern field physics-as a genuine topic for foundational and philosophical research. Incidentally, in the last couple of years interest from the philosophy of physics in structural realism-in the eyes of its proponents the best suited realist position towards modern physics-has also raised. This paper tries to connect both topics and aims to show that structural realism gains further credence from an ontological analysis of gauge theories-in particular U (1) gauge theory. In the first part of the paper the framework of fiber bundle gauge theories is briefly presented and the interpretation of local gauge symmetry will be examined. In the second part, an ontological underdetermination of gauge theories is carved out by considering the various kinds of non-locality involved in such typical effects as the Aharonov-Bohm effect. The analysis shows that the peculiar form of non-separability figuring in gauge theories is a variant of spatiotemporal holism and can be distinguished from quantum theoretic holism. In the last part of the paper the arguments for a gauge theoretic support of structural realism are laid out and discussed.

  4. Abelian gauge symmetries in F-theory and dual theories

    NASA Astrophysics Data System (ADS)

    Song, Peng

    In this dissertation, we focus on important physical and mathematical aspects, especially abelian gauge symmetries, of F-theory compactifications and its dual formulations within type IIB and heterotic string theory. F-theory is a non-perturbative formulation of type IIB string theory which enjoys important dualities with other string theories such as M-theory and E8 x E8 heterotic string theory. One of the main strengths of F-theory is its geometrization of many physical problems in the dual string theories. In particular, its study requires a lot of mathematical tools such as advanced techniques in algebraic geometry. Thus, it has also received a lot of interests among mathematicians, and is a vivid area of research within both the physics and the mathematics community. Although F-theory has been a long-standing theory, abelian gauge symmetry in Ftheory has been rarely studied, until recently. Within the mathematics community, in 2009, Grassi and Perduca first discovered the possibility of constructing elliptically fibered varieties with non-trivial toric Mordell-Weil group. In the physics community, in 2012, Morrison and Park first made a major advancement by constructing general F-theory compactifications with U(1) abelian gauge symmetry. They found that in such cases, the elliptically-fibered Calabi-Yau manifold that F-theory needs to be compactified on has its fiber being a generic elliptic curve in the blow-up of the weighted projective space P(1;1;2) at one point. Subsequent developments have been made by Cvetic, Klevers and Piragua extended the works of Morrison and Park and constructed general F-theory compactifications with U(1) x U(1) abelian gauge symmetry. They found that in the U(1) x U(1) abelian gauge symmetry case, the elliptically-fibered Calabi-Yau manifold that F-theory needs to be compactified on has its fiber being a generic elliptic curve in the del Pezzo surface dP2. In chapter 2 of this dissertation, I bring this a step further by

  5. U(1) Wilson lattice gauge theories in digital quantum simulators

    NASA Astrophysics Data System (ADS)

    Muschik, Christine; Heyl, Markus; Martinez, Esteban; Monz, Thomas; Schindler, Philipp; Vogell, Berit; Dalmonte, Marcello; Hauke, Philipp; Blatt, Rainer; Zoller, Peter

    2017-10-01

    Lattice gauge theories describe fundamental phenomena in nature, but calculating their real-time dynamics on classical computers is notoriously difficult. In a recent publication (Martinez et al 2016 Nature 534 516), we proposed and experimentally demonstrated a digital quantum simulation of the paradigmatic Schwinger model, a U(1)-Wilson lattice gauge theory describing the interplay between fermionic matter and gauge bosons. Here, we provide a detailed theoretical analysis of the performance and the potential of this protocol. Our strategy is based on analytically integrating out the gauge bosons, which preserves exact gauge invariance but results in complicated long-range interactions between the matter fields. Trapped-ion platforms are naturally suited to implementing these interactions, allowing for an efficient quantum simulation of the model, with a number of gate operations that scales polynomially with system size. Employing numerical simulations, we illustrate that relevant phenomena can be observed in larger experimental systems, using as an example the production of particle-antiparticle pairs after a quantum quench. We investigate theoretically the robustness of the scheme towards generic error sources, and show that near-future experiments can reach regimes where finite-size effects are insignificant. We also discuss the challenges in quantum simulating the continuum limit of the theory. Using our scheme, fundamental phenomena of lattice gauge theories can be probed using a broad set of experimentally accessible observables, including the entanglement entropy and the vacuum persistence amplitude.

  6. Individual eigenvalue distributions of crossover chiral random matrices and low-energy constants of SU(2) × U(1) lattice gauge theory

    NASA Astrophysics Data System (ADS)

    Yamamoto, Takuya; Nishigaki, Shinsuke M.

    2018-02-01

    We compute individual distributions of low-lying eigenvalues of a chiral random matrix ensemble interpolating symplectic and unitary symmetry classes by the Nyström-type method of evaluating the Fredholm Pfaffian and resolvents of the quaternion kernel. The one-parameter family of these distributions is shown to fit excellently the Dirac spectra of SU(2) lattice gauge theory with a constant U(1) background or dynamically fluctuating U(1) gauge field, which weakly breaks the pseudoreality of the unperturbed SU(2) Dirac operator. The observed linear dependence of the crossover parameter with the strength of the U(1) perturbations leads to precise determination of the pseudo-scalar decay constant, as well as the chiral condensate in the effective chiral Lagrangian of the AI class.

  7. Entanglement entropy for 2D gauge theories with matters

    NASA Astrophysics Data System (ADS)

    Aoki, Sinya; Iizuka, Norihiro; Tamaoka, Kotaro; Yokoya, Tsuyoshi

    2017-08-01

    We investigate the entanglement entropy in 1 +1 -dimensional S U (N ) gauge theories with various matter fields using the lattice regularization. Here we use extended Hilbert space definition for entanglement entropy, which contains three contributions; (1) classical Shannon entropy associated with superselection sector distribution, where sectors are labeled by irreducible representations of boundary penetrating fluxes, (2) logarithm of the dimensions of their representations, which is associated with "color entanglement," and (3) EPR Bell pairs, which give "genuine" entanglement. We explicitly show that entanglement entropies (1) and (2) above indeed appear for various multiple "meson" states in gauge theories with matter fields. Furthermore, we employ transfer matrix formalism for gauge theory with fundamental matter field and analyze its ground state using hopping parameter expansion (HPE), where the hopping parameter K is roughly the inverse square of the mass for the matter. We evaluate the entanglement entropy for the ground state and show that all (1), (2), (3) above appear in the HPE, though the Bell pair part (3) appears in higher order than (1) and (2) do. With these results, we discuss how the ground state entanglement entropy in the continuum limit can be understood from the lattice ground state obtained in the HPE.

  8. 3 d printing of 2 d N=(0,2) gauge theories

    NASA Astrophysics Data System (ADS)

    Franco, Sebastián; Hasan, Azeem

    2018-05-01

    We introduce 3 d printing, a new algorithm for generating 2 d N=(0,2) gauge theories on D1-branes probing singular toric Calabi-Yau 4-folds using 4 d N=1 gauge theories on D3-branes probing toric Calabi-Yau 3-folds as starting points. Equivalently, this method produces brane brick models starting from brane tilings. 3 d printing represents a significant improvement with respect to previously available tools, allowing a straightforward determination of gauge theories for geometries that until now could only be tackled using partial resolution. We investigate the interplay between triality, an IR equivalence between different 2 d N=(0,2) gauge theories, and the freedom in 3 d printing given an underlying Calabi-Yau 4-fold. Finally, we present the first discussion of the consistency and reduction of brane brick models.

  9. Magnetic expansion of Nekrasov theory: The SU(2) pure gauge theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    He Wei; Miao Yangang

    It is recently claimed by Nekrasov and Shatashvili that the N=2 gauge theories in the {Omega} background with {epsilon}{sub 1}=({h_bar}/2{pi}), {epsilon}{sub 2}=0 are related to the quantization of certain algebraic integrable systems. We study the special case of SU(2) pure gauge theory; the corresponding integrable model is the A{sub 1} Toda model, which reduces to the sine-Gordon quantum mechanics problem. The quantum effects can be expressed as the WKB series written analytically in terms of hypergeometric functions. We obtain the magnetic and dyonic expansions of the Nekrasov theory by studying the property of hypergeometric functions in the magnetic and dyonicmore » regions on the moduli space. We also discuss the relation between the electric-magnetic duality of gauge theory and the action-action duality of the integrable system.« less

  10. Gauge Theory on a Space with Linear Lie Type Fuzziness

    NASA Astrophysics Data System (ADS)

    Khorrami, Mohammad; Fatollahi, Amir H.; Shariati, Ahmad

    2013-03-01

    The U(1) gauge theory on a space with Lie type noncommutativity is constructed. The construction is based on the group of translations in Fourier space, which in contrast to space itself is commutative. In analogy with lattice gauge theory, the object playing the role of flux of field strength per plaquette, as well as the action, is constructed. It is observed that the theory, in comparison with ordinary U(1) gauge theory, has an extra gauge field component. This phenomena is reminiscent of similar ones in formulation of SU(N) gauge theory in space with canonical noncommutativity, and also appearance of gauge field component in discrete direction of Connes' construction of the Standard Model.

  11. Ambitwistor formulations of R 2 gravity and ( DF)2 gauge theories

    NASA Astrophysics Data System (ADS)

    Azevedo, Thales; Engelund, Oluf Tang

    2017-11-01

    We consider D-dimensional amplitudes in R 2 gravities (conformal gravity in D = 4) and in the recently introduced ( DF)2 gauge theory, from the perspective of the CHY formulae and ambitwistor string theory. These theories are related through the BCJ double-copy construction, and the ( DF)2 gauge theory obeys color-kinematics duality. We work out the worldsheet details of these theories and show that they admit a formulation as integrals on the support of the scattering equations, or alternatively, as ambitwistor string theories. For gravity, this generalizes the work done by Berkovits and Witten on conformal gravity to D dimensions. The ambitwistor is also interpreted as a D-dimensional generalization of Witten's twistor string (SYM + conformal supergravity). As part of our ambitwistor investigation, we discover another ( DF)2 gauge theory containing a photon that couples to Einstein gravity. This theory can provide an alternative KLT description of Einstein gravity compared to the usual Yang-Mills squared.

  12. An /N=2 gauge theory and its supergravity dual

    NASA Astrophysics Data System (ADS)

    Brandhuber, A.; Sfetsos, K.

    2000-09-01

    We study flows on the scalar manifold of /N=8 gauged supergravity in five dimensions which are dual to certain mass deformations of /N=4 super Yang-Mills theory. In particular, we consider a perturbation of the gauge theory by a mass term for the adjoint hyper-multiplet, giving rise to an /N=2 theory. The exact solution of the 5-dim gauged supergravity equations of motion is found and the metric is uplifted to a ten-dimensional background of type-IIB supergravity. Using these geometric data and the AdS/CFT correspondence we analyze the spectra of certain operators as well as Wilson loops on the dual gauge theory side. The physical flows are parametrized by a single non-positive constant and describe part of the Coulomb branch of the /N=2 theory at strong coupling. We also propose a general criterion to distinguish between `physical' and `unphysical' curvature singularities. Applying it in many backgrounds arising within the AdS/CFT correspondence we find results that are in complete agreement with field theory expectations.

  13. Topological resolution of gauge theory singularities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saracco, Fabio; Tomasiello, Alessandro; Torroba, Gonzalo

    2013-08-21

    Some gauge theories with Coulomb branches exhibit singularities in perturbation theory, which are usually resolved by nonperturbative physics. In string theory this corresponds to the resolution of timelike singularities near the core of orientifold planes by effects from F or M theory. We propose a new mechanism for resolving Coulomb branch singularities in three-dimensional gauge theories, based on Chern-Simons interactions. This is illustrated in a supersymmetric S U ( 2 ) Yang-Mills-Chern-Simons theory. We calculate the one-loop corrections to the Coulomb branch of this theory and find a result that interpolates smoothly between the high-energy metric (that would exhibit themore » singularity) and a regular singularity-free low-energy result. We suggest possible applications to singularity resolution in string theory and speculate a relationship to a similar phenomenon for the orientifold six-plane in massive IIA supergravity.« less

  14. 4d $$ \\mathcal{N} $$=2 theories with disconnected gauge groups

    DOE PAGES

    Argyres, Philip C.; Martone, Mario

    2017-03-28

    In this paper we present a beautifully consistent web of evidence for the existence of interacting 4d rank-1more » $$ \\mathcal{N} $$ = 2 SCFTs obtained from gauging discrete subgroups of global symmetries of other existing 4d rank-1 $$ \\mathcal{N} $$ = 2 SCFTs. The global symmetries that can be gauged involve a non-trivial combination of discrete subgroups of the U(1) R, low-energy EM duality group SL(2,Z), and the outer automorphism group of the flavor symmetry algebra, Out(F ). The theories that we construct are remarkable in many ways: (i) two of them have exceptional F 4 and G 2 flavor groups; (ii) they substantially complete the picture of the landscape of rank-1 $$ \\mathcal{N} $$ = 2 SCFTs as they realize all but one of the remaining consistent rank-1 Seiberg-Witten geometries that we previously constructed but were not associated to known SCFTs; and (iii) some of them have enlarged $$ \\mathcal{N} $$ = 3 SUSY, and have not been previously constructed. They are also examples of SCFTs which violate the ShapereTachikawa relation between the conformal central charges and the scaling dimension of the Coulomb branch vev. Here, we propose a modification of the formulas computing these central charges from the topologically twisted Coulomb branch partition function which correctly compute them for discretely gauged theories.« less

  15. N=2 gauge theories and degenerate fields of Toda theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kanno, Shoichi; Matsuo, Yutaka; Shiba, Shotaro

    We discuss the correspondence between degenerate fields of the W{sub N} algebra and punctures of Gaiotto's description of the Seiberg-Witten curve of N=2 superconformal gauge theories. Namely, we find that the type of degenerate fields of the W{sub N} algebra, with null states at level one, is classified by Young diagrams with N boxes, and that the singular behavior of the Seiberg-Witten curve near the puncture agrees with that of W{sub N} generators. We also find how to translate mass parameters of the gauge theory to the momenta of the Toda theory.

  16. 5-brane webs for 5d N = 1 G 2 gauge theories

    NASA Astrophysics Data System (ADS)

    Hayashi, Hirotaka; Kim, Sung-Soo; Lee, Kimyeong; Yagi, Futoshi

    2018-03-01

    We propose 5-brane webs for 5d N = 1 G 2 gauge theories. From a Higgsing of the SO(7) gauge theory with a hypermultiplet in the spinor representation, we construct two types of 5-brane web configurations for the pure G 2 gauge theory using an O5-plane or an \\tilde{O5} -plane. Adding flavors to the 5-brane web for the pure G 2 gauge theory is also discussed. Based on the obtained 5-brane webs, we compute the partition functions for the 5d G 2 gauge theories using the recently suggested topological vertex formulation with an O5-plane, and we find agreement with known results.

  17. Electroweak theory based on S U (4 )L⊗U (1 )X gauge group

    NASA Astrophysics Data System (ADS)

    Long, H. N.; Hue, L. T.; Loi, D. V.

    2016-07-01

    This paper includes two main parts. In the first part, we present generalized gauge models based on the S U (3 )C⊗S U (4 )L⊗U (1 )X (3-4-1) gauge group with arbitrary electric charges of exotic leptons. The mixing matrix of neutral gauge bosons is analyzed, and the eigenmasses and eigenstates are obtained. The anomaly-free as well as matching conditions are discussed precisely. In the second part, we present a new development of the original 3-4-1 model [R. Foot, H. N. Long, and T. A. Tran, Phys. Rev. D 50, R34 (1994), F. Pisano and V. Pleitez, Phys. Rev. D 51, 3865 (1995).]. Different from previous works, in this paper the neutrinos, with the help of the scalar decuplet H , get the Dirac masses at the tree level. The vacuum expectation value (VEV) of the Higgs boson field in the decuplet H acquiring the VEV responsible for neutrino Dirac mass leads to mixing in separated pairs of singly charged gauge bosons, namely the Standard Model (SM) W boson and K , the new gauge boson acting in the right-handed lepton sector, as well as the singly charged bileptons X and Y . Due to the mixing, there occurs a right-handed current carried by the W boson. From the expression of the electromagnetic coupling constant, ones get the limit of the sine-squared of the Weinberg angle, sin2θW<0.25 , and a constraint on electric charges of extra leptons. In the limit of lepton number conservation, the Higgs sector contains all massless Goldstone bosons for massive gauge bosons and the SM-like Higgs boson. Some phenomenology is discussed.

  18. Weak interactions and gauge theories

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gaillard, M.K.

    1979-12-01

    The status of the electroweak gauge theory, also known as quantum asthenodynamics (QAD), is examined. The major result is that the standard WS-GIM model describes the data well, although one should still look for signs of further complexity and better tests of its gauge theory aspect. A second important result is that the measured values of the three basic coupling constants of present-energy physics, g/sub s/, g, and ..sqrt..(5/3)g' of SU(3)/sub c/ x SU(2)/sub 2/ x U(1), are compatible with the idea that these interactions are unified at high energies. Much of the paper deals with open questions, and itmore » takes up the following topics: the status of QAD, the scalar meson spectrum, the fermion spectrum, CP violation, and decay dynamics. 118 references, 20 figures. (RWR)« less

  19. Electric-magnetic dualities in non-abelian and non-commutative gauge theories

    NASA Astrophysics Data System (ADS)

    Ho, Jun-Kai; Ma, Chen-Te

    2016-08-01

    Electric-magnetic dualities are equivalence between strong and weak coupling constants. A standard example is the exchange of electric and magnetic fields in an abelian gauge theory. We show three methods to perform electric-magnetic dualities in the case of the non-commutative U (1) gauge theory. The first method is to use covariant field strengths to be the electric and magnetic fields. We find an invariant form of an equation of motion after performing the electric-magnetic duality. The second method is to use the Seiberg-Witten map to rewrite the non-commutative U (1) gauge theory in terms of abelian field strength. The third method is to use the large Neveu Schwarz-Neveu Schwarz (NS-NS) background limit (non-commutativity parameter only has one degree of freedom) to consider the non-commutative U (1) gauge theory or D3-brane. In this limit, we introduce or dualize a new one-form gauge potential to get a D3-brane in a large Ramond-Ramond (R-R) background via field redefinition. We also use perturbation to study the equivalence between two D3-brane theories. Comparison of these methods in the non-commutative U (1) gauge theory gives different physical implications. The comparison reflects the differences between the non-abelian and non-commutative gauge theories in the electric-magnetic dualities. For a complete study, we also extend our studies to the simplest abelian and non-abelian p-form gauge theories, and a non-commutative theory with the non-abelian structure.

  20. Extended gauge theory and gauged free differential algebras

    NASA Astrophysics Data System (ADS)

    Salgado, P.; Salgado, S.

    2018-01-01

    Recently, Antoniadis, Konitopoulos and Savvidy introduced, in the context of the so-called extended gauge theory, a procedure to construct background-free gauge invariants, using non-abelian gauge potentials described by higher degree forms. In this article it is shown that the extended invariants found by Antoniadis, Konitopoulos and Savvidy can be constructed from an algebraic structure known as free differential algebra. In other words, we show that the above mentioned non-abelian gauge theory, where the gauge fields are described by p-forms with p ≥ 2, can be obtained by gauging free differential algebras.

  1. Discrete symmetry breaking and baryon currents in U(N) and SU(N) gauge theories

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lucini, B.; Patella, A.

    2009-06-15

    In SU(N) gauge theories with fermions in the fundamental or in a two-index (either symmetric or antisymmetric) representation formulated on a manifold with at least one compact dimension with nontrivial holonomy the discrete symmetries C, P, and T are broken at small enough size of the compact direction(s) for certain values of N. We show that for those N in the broken phase a nonzero baryon current wrapping in the compact direction exists, which provides a measurable observable for the breaking of C, P, and T. We prove that in all cases where the current is absent there is nomore » breaking of those discrete symmetries. This includes the limit N{yields}{infinity} of the SU(N) gauge theory with symmetric or antisymmetric fermions and U(N) gauge theory at any value of N. We then argue that the component of the baryon current in the compact direction is the physical order parameter for C, P, and T breaking due to the breaking of Lorentz invariance.« less

  2. An A{sub r} threesome: Matrix models, 2d conformal field theories, and 4dN=2 gauge theories

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schiappa, Ricardo; Wyllard, Niclas

    We explore the connections between three classes of theories: A{sub r} quiver matrix models, d=2 conformal A{sub r} Toda field theories, and d=4N=2 supersymmetric conformal A{sub r} quiver gauge theories. In particular, we analyze the quiver matrix models recently introduced by Dijkgraaf and Vafa (unpublished) and make detailed comparisons with the corresponding quantities in the Toda field theories and the N=2 quiver gauge theories. We also make a speculative proposal for how the matrix models should be modified in order for them to reproduce the instanton partition functions in quiver gauge theories in five dimensions.

  3. Simple Z2 lattice gauge theories at finite fermion density

    NASA Astrophysics Data System (ADS)

    Prosko, Christian; Lee, Shu-Ping; Maciejko, Joseph

    2017-11-01

    Lattice gauge theories are a powerful language to theoretically describe a variety of strongly correlated systems, including frustrated magnets, high-Tc superconductors, and topological phases. However, in many cases gauge fields couple to gapless matter degrees of freedom, and such theories become notoriously difficult to analyze quantitatively. In this paper we study several examples of Z2 lattice gauge theories with gapless fermions at finite density, in one and two spatial dimensions, that are either exactly soluble or whose solution reduces to that of a known problem. We consider complex fermions (spinless and spinful) as well as Majorana fermions and study both theories where Gauss' law is strictly imposed and those where all background charge sectors are kept in the physical Hilbert space. We use a combination of duality mappings and the Z2 slave-spin representation to map our gauge theories to models of gauge-invariant fermions that are either free, or with on-site interactions of the Hubbard or Falicov-Kimball type that are amenable to further analysis. In 1D, the phase diagrams of these theories include free-fermion metals, insulators, and superconductors, Luttinger liquids, and correlated insulators. In 2D, we find a variety of gapped and gapless phases, the latter including uniform and spatially modulated flux phases featuring emergent Dirac fermions, some violating Luttinger's theorem.

  4. Time evolution of complexity in Abelian gauge theories

    NASA Astrophysics Data System (ADS)

    Hashimoto, Koji; Iizuka, Norihiro; Sugishita, Sotaro

    2017-12-01

    Quantum complexity is conjectured to probe inside of black hole horizons (or wormholes) via gauge gravity correspondence. In order to have a better understanding of this correspondence, we study time evolutions of complexities for Abelian pure gauge theories. For this purpose, we discretize the U (1 ) gauge group as ZN and also the continuum spacetime as lattice spacetime, and this enables us to define a universal gate set for these gauge theories and to evaluate time evolutions of the complexities explicitly. We find that to achieve a large complexity ˜exp (entropy), which is one of the conjectured criteria necessary to have a dual black hole, the Abelian gauge theory needs to be maximally nonlocal.

  5. Democratic superstring field theory: gauge fixing

    NASA Astrophysics Data System (ADS)

    Kroyter, Michael

    2011-03-01

    We show that a partial gauge fixing of the NS sector of the democratic-picture superstring field theory leads to the non-polynomial theory. Moreover, by partially gauge fixing the Ramond sector we obtain a non-polynomial fully RNS theory at pictures 0 and 1/2 . Within the democratic theory and in the partially gauge fixed theory the equations of motion of both sectors are derived from an action. We also discuss a representation of the non-polynomial theory analogous to a manifestly two-dimensional representation of WZW theory and the action of bosonic pure-gauge solutions. We further demonstrate that one can consistently gauge fix the NS sector of the democratic theory at picture number -1. The resulting theory is new. It is a {mathbb{Z}_2} dual of the modified cubic theory. We construct analytical solutions of this theory and show that they possess the desired properties.

  6. The massive fermion phase for the U(N) Chern-Simons gauge theory in D=3 at large N

    DOE PAGES

    Bardeen, William A.

    2014-10-07

    We explore the phase structure of fermions in the U(N) Chern-Simons Gauge theory in three dimensions using the large N limit where N is the number of colors and the fermions are taken to be in the fundamental representation of the U(N) gauge group. In the large N limit, the theory retains its classical conformal behavior and considerable attention has been paid to possible AdS/CFT dualities of the theory in the conformal phase. In this paper we present a solution for the massive phase of the fermion theory that is exact to the leading order of ‘t Hooft’s large Nmore » expansion. We present evidence for the spontaneous breaking of the exact scale symmetry and analyze the properties of the dilaton that appears as the Goldstone boson of scale symmetry breaking.« less

  7. Methods of Contemporary Gauge Theory

    NASA Astrophysics Data System (ADS)

    Makeenko, Yuri

    2002-08-01

    Preface; Part I. Path Integrals: 1. Operator calculus; 2. Second quantization; 3. Quantum anomalies from path integral; 4. Instantons in quantum mechanics; Part II. Lattice Gauge Theories: 5. Observables in gauge theories; 6. Gauge fields on a lattice; 7. Lattice methods; 8. Fermions on a lattice; 9. Finite temperatures; Part III. 1/N Expansion: 10. O(N) vector models; 11. Multicolor QCD; 12. QCD in loop space; 13. Matrix models; Part IV. Reduced Models: 14. Eguchi-Kawai model; 15. Twisted reduced models; 16. Non-commutative gauge theories.

  8. Methods of Contemporary Gauge Theory

    NASA Astrophysics Data System (ADS)

    Makeenko, Yuri

    2005-11-01

    Preface; Part I. Path Integrals: 1. Operator calculus; 2. Second quantization; 3. Quantum anomalies from path integral; 4. Instantons in quantum mechanics; Part II. Lattice Gauge Theories: 5. Observables in gauge theories; 6. Gauge fields on a lattice; 7. Lattice methods; 8. Fermions on a lattice; 9. Finite temperatures; Part III. 1/N Expansion: 10. O(N) vector models; 11. Multicolor QCD; 12. QCD in loop space; 13. Matrix models; Part IV. Reduced Models: 14. Eguchi-Kawai model; 15. Twisted reduced models; 16. Non-commutative gauge theories.

  9. Program package for multicanonical simulations of U(1) lattice gauge theory-Second version

    NASA Astrophysics Data System (ADS)

    Bazavov, Alexei; Berg, Bernd A.

    2013-03-01

    A new version STMCMUCA_V1_1 of our program package is available. It eliminates compatibility problems of our Fortran 77 code, originally developed for the g77 compiler, with Fortran 90 and 95 compilers. New version program summaryProgram title: STMC_U1MUCA_v1_1 Catalogue identifier: AEET_v1_1 Licensing provisions: Standard CPC license, http://cpc.cs.qub.ac.uk/licence/licence.html Programming language: Fortran 77 compatible with Fortran 90 and 95 Computers: Any capable of compiling and executing Fortran code Operating systems: Any capable of compiling and executing Fortran code RAM: 10 MB and up depending on lattice size used No. of lines in distributed program, including test data, etc.: 15059 No. of bytes in distributed program, including test data, etc.: 215733 Keywords: Markov chain Monte Carlo, multicanonical, Wang-Landau recursion, Fortran, lattice gauge theory, U(1) gauge group, phase transitions of continuous systems Classification: 11.5 Catalogue identifier of previous version: AEET_v1_0 Journal Reference of previous version: Computer Physics Communications 180 (2009) 2339-2347 Does the new version supersede the previous version?: Yes Nature of problem: Efficient Markov chain Monte Carlo simulation of U(1) lattice gauge theory (or other continuous systems) close to its phase transition. Measurements and analysis of the action per plaquette, the specific heat, Polyakov loops and their structure factors. Solution method: Multicanonical simulations with an initial Wang-Landau recursion to determine suitable weight factors. Reweighting to physical values using logarithmic coding and calculating jackknife error bars. Reasons for the new version: The previous version was developed for the g77 compiler Fortran 77 version. Compiler errors were encountered with Fortran 90 and Fortran 95 compilers (specified below). Summary of revisions: epsilon=one/10**10 is replaced by epsilon/10.0D10 in the parameter statements of the subroutines u1_bmha.f, u1_mucabmha.f, u1wl

  10. Six-dimensional regularization of chiral gauge theories

    NASA Astrophysics Data System (ADS)

    Fukaya, Hidenori; Onogi, Tetsuya; Yamamoto, Shota; Yamamura, Ryo

    2017-03-01

    We propose a regularization of four-dimensional chiral gauge theories using six-dimensional Dirac fermions. In our formulation, we consider two different mass terms having domain-wall profiles in the fifth and the sixth directions, respectively. A Weyl fermion appears as a localized mode at the junction of two different domain walls. One domain wall naturally exhibits the Stora-Zumino chain of the anomaly descent equations, starting from the axial U(1) anomaly in six dimensions to the gauge anomaly in four dimensions. Another domain wall implies a similar inflow of the global anomalies. The anomaly-free condition is equivalent to requiring that the axial U(1) anomaly and the parity anomaly are canceled among the six-dimensional Dirac fermions. Since our formulation is based on a massive vector-like fermion determinant, a nonperturbative regularization will be possible on a lattice. Putting the gauge field at the four-dimensional junction and extending it to the bulk using the Yang-Mills gradient flow, as recently proposed by Grabowska and Kaplan, we define the four-dimensional path integral of the target chiral gauge theory.

  11. Hairy black hole solutions in U(1) gauge-invariant scalar-vector-tensor theories

    NASA Astrophysics Data System (ADS)

    Heisenberg, Lavinia; Tsujikawa, Shinji

    2018-05-01

    In U (1) gauge-invariant scalar-vector-tensor theories with second-order equations of motion, we study the properties of black holes (BH) on a static and spherically symmetric background. In shift-symmetric theories invariant under the shift of scalar ϕ → ϕ + c, we show the existence of new hairy BH solutions where a cubic-order scalar-vector interaction gives rise to a scalar hair manifesting itself around the event horizon. In the presence of a quartic-order interaction besides the cubic coupling, there are also regular BH solutions endowed with scalar and vector hairs.

  12. Entanglement entropy in (3 + 1)-d free U(1) gauge theory

    NASA Astrophysics Data System (ADS)

    Soni, Ronak M.; Trivedi, Sandip P.

    2017-02-01

    We consider the entanglement entropy for a free U(1) theory in 3+1 dimensions in the extended Hilbert space definition. By taking the continuum limit carefully we obtain a replica trick path integral which calculates this entanglement entropy. The path integral is gauge invariant, with a gauge fixing delta function accompanied by a Faddeev -Popov determinant. For a spherical region it follows that the result for the logarithmic term in the entanglement, which is universal, is given by the a anomaly coefficient. We also consider the extractable part of the entanglement, which corresponds to the number of Bell pairs which can be obtained from entanglement distillation or dilution. For a spherical region we show that the coefficient of the logarithmic term for the extractable part is different from the extended Hilbert space result. We argue that the two results will differ in general, and this difference is accounted for by a massless scalar living on the boundary of the region of interest.

  13. Local U(2,2) symmetry in relativistic quantum mechanics

    NASA Astrophysics Data System (ADS)

    Finster, Felix

    1998-12-01

    Local gauge freedom in relativistic quantum mechanics is derived from a measurement principle for space and time. For the Dirac equation, one obtains local U(2,2) gauge transformations acting on the spinor index of the wave functions. This local U(2,2) symmetry allows a unified description of electrodynamics and general relativity as a classical gauge theory.

  14. Gauge-free gyrokinetic theory

    NASA Astrophysics Data System (ADS)

    Burby, Joshua; Brizard, Alain

    2017-10-01

    Test-particle gyrocenter equations of motion play an essential role in the diagnosis of turbulent strongly-magnetized plasmas, and are playing an increasingly-important role in the formulation of kinetic-gyrokinetic hybrid models. Previous gyrocenter models required the knowledge of the perturbed electromagnetic potentials, which are not directly observable quantities (since they are gauge-dependent). A new gauge-free formulation of gyrocenter motion is presented, which enables gyrocenter trajectories to be determined using only measured values of the directly-observable electromagnetic field. Our gauge-free gyrokinetic theory is general enough to allow for gyroradius-scale fluctuations in both the electric and magnetic field. In addition, we provide gauge-free expressions for the charge and current densities produced by a distribution of gyrocenters, which explicitly include guiding-center and gyrocenter polarization and magnetization effects. This research was supported by the U.S. DOE Contract Nos. DE-SC0014032 (AB) and DE-AC05-06OR23100 (JB).

  15. Nambu-Poisson gauge theory

    NASA Astrophysics Data System (ADS)

    Jurčo, Branislav; Schupp, Peter; Vysoký, Jan

    2014-06-01

    We generalize noncommutative gauge theory using Nambu-Poisson structures to obtain a new type of gauge theory with higher brackets and gauge fields. The approach is based on covariant coordinates and higher versions of the Seiberg-Witten map. We construct a covariant Nambu-Poisson gauge theory action, give its first order expansion in the Nambu-Poisson tensor and relate it to a Nambu-Poisson matrix model.

  16. Digital lattice gauge theories

    NASA Astrophysics Data System (ADS)

    Zohar, Erez; Farace, Alessandro; Reznik, Benni; Cirac, J. Ignacio

    2017-02-01

    We propose a general scheme for a digital construction of lattice gauge theories with dynamical fermions. In this method, the four-body interactions arising in models with 2 +1 dimensions and higher are obtained stroboscopically, through a sequence of two-body interactions with ancillary degrees of freedom. This yields stronger interactions than the ones obtained through perturbative methods, as typically done in previous proposals, and removes an important bottleneck in the road towards experimental realizations. The scheme applies to generic gauge theories with Lie or finite symmetry groups, both Abelian and non-Abelian. As a concrete example, we present the construction of a digital quantum simulator for a Z3 lattice gauge theory with dynamical fermionic matter in 2 +1 dimensions, using ultracold atoms in optical lattices, involving three atomic species, representing the matter, gauge, and auxiliary degrees of freedom, that are separated in three different layers. By moving the ancilla atoms with a proper sequence of steps, we show how we can obtain the desired evolution in a clean, controlled way.

  17. Towards gauge coupling unification in left-right symmetric SU (3 )c×SU (3 )L×SU (3 )R×U (1 )X theories

    NASA Astrophysics Data System (ADS)

    Hati, Chandan; Patra, Sudhanwa; Reig, Mario; Valle, José W. F.; Vaquera-Araujo, C. A.

    2017-07-01

    We consider the possibility of gauge coupling unification within the simplest realizations of the SU (3 )c×SU (3 )L×SU (3 )R×U (1 )X gauge theory. We present a first exploration of the renormalization group equations governing the "bottom-up" evolution of the gauge couplings in a generic model with free normalization for the generators. Interestingly, we find that for a SU (3 )c×SU (3 )L×SU (3 )R×U (1 )X symmetry breaking scale MX as low as a few TeV one can achieve unification in the presence of leptonic octets. We briefly comment on possible grand unified theory frameworks which can embed the SU (3 )c×SU (3 )L×SU (3 )R×U (1 )X model as well as possible implications, such as lepton flavor violating physics at the LHC.

  18. Infrared fixed point of SU(2) gauge theory with six flavors

    NASA Astrophysics Data System (ADS)

    Leino, Viljami; Rummukainen, Kari; Suorsa, Joni; Tuominen, Kimmo; Tähtinen, Sara

    2018-06-01

    We compute the running of the coupling in SU(2) gauge theory with six fermions in the fundamental representation of the gauge group. We find strong evidence that this theory has an infrared stable fixed point at strong coupling and measure also the anomalous dimension of the fermion mass operator at the fixed point. This theory therefore likely lies close to the boundary of the conformal window and will display novel infrared dynamics if coupled with the electroweak sector of the Standard Model.

  19. 2d affine XY-spin model/4d gauge theory duality and deconfinement

    NASA Astrophysics Data System (ADS)

    Anber, Mohamed M.; Poppitz, Erich; Ünsal, Mithat

    2012-04-01

    We introduce a duality between two-dimensional XY-spin models with symmetry-breaking perturbations and certain four-dimensional SU(2) and SU(2)/ {{Z}_2} gauge theories, compactified on a small spatial circle {{R}^{{^{{{1},{2}}}}}} × {{S}^{{^{{1}}}}} , and considered at temperatures near the deconfinement transition. In a Euclidean set up, the theory is defined on {{R}^{{^{{2}}}}} × {{T}^{{^{{2}}}}} . Similarly, thermal gauge theories of higher rank are dual to new families of "affine" XY-spin models with perturbations. For rank two, these are related to models used to describe the melting of a 2d crystal with a triangular lattice. The connection is made through a multi-component electric-magnetic Coulomb gas representation for both systems. Perturbations in the spin system map to topological defects in the gauge theory, such as monopole-instantons or magnetic bions, and the vortices in the spin system map to the electrically charged W-bosons in field theory (or vice versa, depending on the duality frame). The duality permits one to use the two-dimensional technology of spin systems to study the thermal deconfinement and discrete chiral transitions in four-dimensional SU( N c ) gauge theories with n f ≥1 adjoint Weyl fermions.

  20. BFV-BRST analysis of equivalence between noncommutative and ordinary gauge theories

    NASA Astrophysics Data System (ADS)

    Dayi, O. F.

    2000-05-01

    Constrained hamiltonian structure of noncommutative gauge theory for the gauge group /U(1) is discussed. Constraints are shown to be first class, although, they do not give an Abelian algebra in terms of Poisson brackets. The related BFV-BRST charge gives a vanishing generalized Poisson bracket by itself due to the associativity of /*-product. Equivalence of noncommutative and ordinary gauge theories is formulated in generalized phase space by using BFV-BRST charge and a solution is obtained. Gauge fixing is discussed.

  1. Moyal deformations of Clifford gauge theories of gravity

    NASA Astrophysics Data System (ADS)

    Castro, Carlos

    2016-12-01

    A Moyal deformation of a Clifford Cl(3, 1) Gauge Theory of (Conformal) Gravity is performed for canonical noncommutativity (constant Θμν parameters). In the very special case when one imposes certain constraints on the fields, there are no first-order contributions in the Θμν parameters to the Moyal deformations of Clifford gauge theories of gravity. However, when one does not impose constraints on the fields, there are first-order contributions in Θμν to the Moyal deformations in variance with the previous results obtained by other authors and based on different gauge groups. Despite that the generators of U(2, 2),SO(4, 2),SO(2, 3) can be expressed in terms of the Clifford algebra generators this does not imply that these algebras are isomorphic to the Clifford algebra. Therefore one should not expect identical results to those obtained by other authors. In particular, there are Moyal deformations of the Einstein-Hilbert gravitational action with a cosmological constant to first-order in Θμν. Finally, we provide a mechanism which furnishes a plausible cancellation of the huge vacuum energy density.

  2. Black hole attractors and gauge theories

    NASA Astrophysics Data System (ADS)

    Huang, Lisa Li Fang

    2007-12-01

    This thesis is devoted to the study of supersymmetric black holes that arise from string compactifications. We begin by studying the R 2 corrections to the entropy of two solutions of five dimensional supergravity, the supersymmetric black ring and the spinning black hole. Using Wald's formula we compute the R2 corrections to the entropy of the black ring and BMPV black hole. We study N D4-branes wrapping a 4 cycle and M DO-branes on the quintic. For N D4-branes, we resolve the naive mismatch between the moduli space of the Higgs branch of the gauge theory and the moduli of a degree N hypersurface which the D4-brane wraps. The degree N surface must admit a holomorphic divisor and is a determinantal variety. Adding a single DO brane to probe the deformed geometry, we recover the determinant equation from F and D flatness condition which was previously discovered from a classical geometry approach. We next generalize the qunitic story for Calabi-Yau manifolds arising from complete intersections in toric varieties. We recover the moduli space of N D4-branes in terms of the moduli space of a U( N) x U(N) gauge theory with bi-fundamentals com ing from a D6 - D6 system. We also recast the tachyon condensation of the D6 - D6 system in the language of open string gauged linear sigma model. We obtain the determinant equation from F-term constraints arising from a boundary coupling. We set out to understand the Ooguri-Strominger-Vafa conjecture directly in the D4-DO black hole attractor geometry. We show that the lift to the euclidean IIA attractor geometry gives a complexified M-theory geometry whose asymptotic boundary is a torus. Employing AdS3/CFT 2 duality, we argue that the string partition function computes the elliptic genus of the Maldacena-Strominger-Witten conformal field theory. We evaluate the IIA partition function using the Green-Schwarz formalism and show that it gives ZtopZ top, coming from instantons and anti-instantons respectively. Finally, we determine

  3. Wilson loops in supersymmetric gauge theories

    NASA Astrophysics Data System (ADS)

    Pestun, Vasily

    This thesis is devoted to several exact computations in four-dimensional supersymmetric gauge field theories. In the first part of the thesis we prove conjecture due to Erickson-Semenoff-Zarembo and Drukker-Gross which relates supersymmetric circular Wilson loop operators in the N = 4 supersymmetric Yang-Mills theory with a Gaussian matrix model. We also compute the partition function and give a new matrix model formula for the expectation value of a supersymmetric circular Wilson loop operator for the pure N = 2 and the N* = 2 supersymmetric Yang-Mills theory on a four-sphere. Circular supersymmetric Wilson loops in four-dimensional N = 2 superconformal gauge theory are treated similarly. In the second part we consider supersymmetric Wilson loops of arbitrary shape restricted to a two-dimensional sphere in the four-dimensional N = 4 supersymmetric Yang-Mills theory. We show that expectation value for these Wilson loops can be exactly computed using a two-dimensional theory closely related to the topological two-dimensional Higgs-Yang-Mills theory, or two-dimensional Yang-Mills theory for the complexified gauge group.

  4. Spontaneous Breaking of Scale Invariance in U(N) Chern-Simons Gauge Theories in Three Dimensions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bardeen, William A.

    2015-09-24

    I explore the existence of a massive phase in a conformally invariant U(N) Chern-Simons gauge theories in D = 3 with matter fields in the fundamental representation. These models have attracted recent attention as being dual, in the conformal phase, to theories of higher spin gravity on AdS 4. Using the 0t Hooft large N expansion, exact solutions are obtained for scalar current correlators in the massive phase where the conformal symmetry is spontaneously broken. A massless dilaton appears as a composite state, and its properties are discussed. Solutions exist for matters field that are either bosons or fermions.

  5. Spontaneous Breaking of Scale Invariance in U(N) Chern-Simons Gauge Theories in Three Dimensions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bardeen, William

    2014-10-24

    I explore the existence of a massive phase in a conformally invariant U(N) Chern-Simons gauge theories in D = 3 with matter fields in the fundamental representation. These models have attracted recent attention as being dual, in the conformal phase, to theories of higher spin gravity on AdS 4. Using the 1t Hooft large N expansion, exact solutions are obtained for scalar current correlators in the massive phase where the conformal symmetry is spontaneously broken. A massless dilaton appears as a composite state, and its properties are discussed. Solutions exist for matters field that are either bosons or fermions.

  6. M2-brane surface operators and gauge theory dualities in Toda

    NASA Astrophysics Data System (ADS)

    Gomis, Jaume; Le Floch, Bruno

    2016-04-01

    We give a microscopic two dimensional {N} = (2, 2) gauge theory description of arbitrary M2-branes ending on N f M5-branes wrapping a punctured Riemann surface. These realize surface operators in four dimensional {N} = 2 field theories. We show that the expectation value of these surface operators on the sphere is captured by a Toda CFT correlation function in the presence of an additional degenerate vertex operator labelled by a representation {R} of SU( N f ), which also labels M2-branes ending on M5-branes. We prove that symmetries of Toda CFT correlators provide a geometric realization of dualities between two dimensional gauge theories, including {N} = (2, 2) analogues of Seiberg and Kutasov-Schwimmer dualities. As a bonus, we find new explicit conformal blocks, braiding matrices, and fusion rules in Toda CFT.

  7. Torsion in gauge theory

    NASA Astrophysics Data System (ADS)

    Nieh, H. T.

    2018-02-01

    The potential conflict between torsion and gauge symmetry in the Riemann-Cartan curved spacetime was noted by Kibble in his 1961 pioneering paper and has since been discussed by many authors. Kibble suggested that, to preserve gauge symmetry, one should forgo the covariant derivative in favor of the ordinary derivative in the definition of the field strength Fμ ν for massless gauge theories, while for massive vector fields, covariant derivatives should be adopted. This view was further emphasized by Hehl et al. in their influential 1976 review paper. We address the question of whether this deviation from normal procedure by forgoing covariant derivatives in curved spacetime with torsion could give rise to inconsistencies in the theory, such as the quantum renormalizability of a realistic interacting theory. We demonstrate in this paper the one-loop renormalizability of a realistic gauge theory of gauge bosons interacting with Dirac spinors, such as the SU(3) chromodynamics, for the case of a curved Riemann-Cartan spacetime with totally antisymmetric torsion. This affirmative confirmation is one step toward providing justification for the assertion that the flat-space definition of the gauge-field strength should be adopted as the proper definition.

  8. A Deconstruction Lattice Description of the D1/D5 Brane World-Volume Gauge Theory

    DOE PAGES

    Giedt, Joel

    2011-01-01

    I genermore » alize the deconstruction lattice formulation of Endres and Kaplan to two-dimensional super-QCD with eight supercharges, denoted by (4,4), and bifundamental matter. I specialize to a particularly interesting (4,4) gauge theory, with gauge group U ( N c ) × U ( N f ) , and U ( N f ) being weakly gauged. It describes the infrared limit of the D1/D5 brane system, which has been studied extensively as an example of the AdS 3 /CFT 2 correspondence. The construction here preserves two supercharges exactly and has a lattice structure quite similar to that which has previously appeared in the deconstruction approach, that is, site, link, and diagonal fields with both the Bose and Fermi statistics. I remark on possible applications of the lattice theory that would test the AdS 3 /CFT 2 correspondence, particularly one that would exploit the recent worldsheet instanton analysis of Chen and Tong.« less

  9. Noncommutative gauge theory for Poisson manifolds

    NASA Astrophysics Data System (ADS)

    Jurčo, Branislav; Schupp, Peter; Wess, Julius

    2000-09-01

    A noncommutative gauge theory is associated to every Abelian gauge theory on a Poisson manifold. The semi-classical and full quantum version of the map from the ordinary gauge theory to the noncommutative gauge theory (Seiberg-Witten map) is given explicitly to all orders for any Poisson manifold in the Abelian case. In the quantum case the construction is based on Kontsevich's formality theorem.

  10. Tadpole-improved SU(2) lattice gauge theory

    NASA Astrophysics Data System (ADS)

    Shakespeare, Norman H.; Trottier, Howard D.

    1999-01-01

    A comprehensive analysis of tadpole-improved SU(2) lattice gauge theory is made. Simulations are done on isotropic and anisotropic lattices, with and without improvement. Two tadpole renormalization schemes are employed, one using average plaquettes, the other using mean links in the Landau gauge. Simulations are done with spatial lattice spacings as in the range of about 0.1-0.4 fm. Results are presented for the static quark potential, the renormalized lattice anisotropy at/as (where at is the ``temporal'' lattice spacing), and for the scalar and tensor glueball masses. Tadpole improvement significantly reduces discretization errors in the static quark potential and in the scalar glueball mass, and results in very little renormalization of the bare anisotropy that is input to the action. We also find that tadpole improvement using mean links in the Landau gauge results in smaller discretization errors in the scalar glueball mass (as well as in the static quark potential), compared to when average plaquettes are used. The possibility is also raised that further improvement in the scalar glueball mass may result when the coefficients of the operators which correct for discretization errors in the action are computed beyond the tree level.

  11. Mass gap in the weak coupling limit of (2 +1 )-dimensional SU(2) lattice gauge theory

    NASA Astrophysics Data System (ADS)

    Anishetty, Ramesh; Sreeraj, T. P.

    2018-04-01

    We develop the dual description of (2 +1 )-dimensional SU(2) lattice gauge theory as interacting "Abelian-like" electric loops by using Schwinger bosons. "Point splitting" of the lattice enables us to construct explicit Hilbert space for the gauge invariant theory which in turn makes dynamics more transparent. Using path integral representation in phase space, the interacting closed loop dynamics is analyzed in the weak coupling limit to get the mass gap.

  12. General U(1)×U(1) F-theory compactifications and beyond: geometry of unHiggsings and novel matter structure

    DOE PAGES

    Cvetic, Mirjam; Klevers, Denis; Piragua, Hernan; ...

    2015-11-30

    We construct the general form of an F-theory compactification with two U(1) factors based on a general elliptically fibered Calabi-Yau manifold with Mordell-Weil group of rank two. This construction produces broad classes of models with diverse matter spectra, including many that are not realized in earlier F-theory constructions with U(1)×U(1) gauge symmetry. Generic U(1)×U(1) models can be related to a Higgsed non-Abelian model with gauge group SU(2)×SU(2)×SU(3), SU(2) 3×SU(3), or a subgroup thereof. The nonlocal horizontal divisors of the Mordell-Weil group are replaced with local vertical divisors associated with the Cartan generators of non-Abelian gauge groups from Kodaira singularities. Wemore » give a global resolution of codimension two singularities of the Abelian model; we identify the full anomaly free matter content, and match it to the unHiggsed non-Abelian model. The non-Abelian Weierstrass model exhibits a new algebraic description of the singularities in the fibration that results in the first explicit construction of matter in the symmetric representation of SU(3). This matter is realized on double point singularities of the discriminant locus. In conclusion, the construction suggests a generalization to U(1) k factors with k > 2, which can be studied by Higgsing theories with larger non-Abelian gauge groups.« less

  13. Higgs compositeness in Sp(2N) gauge theories — The pure gauge model

    NASA Astrophysics Data System (ADS)

    Bennett, Ed; Ki Hong, Deog; Lee, Jong-Wan; David Lin, C.-J.; Lucini, Biagio; Piai, Maurizio; Vadacchino, Davide

    2018-03-01

    As a first step in the study of Sp(2N) composite Higgs models, we obtained a set of novel numerical results for the pure gauge Sp(4) lattice theory in 3+1 space-time dimensions. Results for the continuum extrapolations of the string tension and the glueball mass spectrum are presented and their values are compared with the same quantities in neighbouring SU(N) models.

  14. Magnetic catalysis and inverse magnetic catalysis in (2 +1 )-dimensional gauge theories from holographic models

    NASA Astrophysics Data System (ADS)

    Rodrigues, Diego M.; Capossoli, Eduardo Folco; Boschi-Filho, Henrique

    2018-06-01

    We study the deconfinement phase transition in (2 +1 )-dimensional holographic S U (N ) gauge theories in the presence of an external magnetic field from the holographic hard and soft wall models. We obtain exact solutions for the critical temperature of the deconfinement transition for any range of magnetic field. As a consequence, we find a critical magnetic field (Bc), in which the critical temperature (Tc) vanishes; for B Bc we have a magnetic catalysis.

  15. Canonical field anticommutators in the extended gauged Rarita-Schwinger theory

    NASA Astrophysics Data System (ADS)

    Adler, Stephen L.; Henneaux, Marc; Pais, Pablo

    2017-10-01

    We reexamine canonical quantization of the gauged Rarita-Schwinger theory using the extended theory, incorporating a dimension 1/2 auxiliary spin-1/2 field Λ , in which there is an exact off-shell gauge invariance. In Λ =0 gauge, which reduces to the original unextended theory, our results agree with those found by Johnson and Sudarshan, and later verified by Velo and Zwanziger, which give a canonical Rarita-Schwinger field Dirac bracket that is singular for small gauge fields. In gauge covariant radiation gauge, the Dirac bracket of the Rarita-Schwinger fields is nonsingular, but does not correspond to a positive semidefinite anticommutator, and the Dirac bracket of the auxiliary fields has a singularity of the same form as found in the unextended theory. These results indicate that gauged Rarita-Schwinger theory is somewhat pathological, and cannot be canonically quantized within a conventional positive semidefinite metric Hilbert space. We leave open the questions of whether consistent quantizations can be achieved by using an indefinite metric Hilbert space, by path integral methods, or by appropriate couplings to conventional dimension 3/2 spin-1/2 fields.

  16. AGT relations for abelian quiver gauge theories on ALE spaces

    NASA Astrophysics Data System (ADS)

    Pedrini, Mattia; Sala, Francesco; Szabo, Richard J.

    2016-05-01

    We construct level one dominant representations of the affine Kac-Moody algebra gl̂k on the equivariant cohomology groups of moduli spaces of rank one framed sheaves on the orbifold compactification of the minimal resolution Xk of the Ak-1 toric singularity C2 /Zk. We show that the direct sum of the fundamental classes of these moduli spaces is a Whittaker vector for gl̂k, which proves the AGT correspondence for pure N = 2 U(1) gauge theory on Xk. We consider Carlsson-Okounkov type Ext-bundles over products of the moduli spaces and use their Euler classes to define vertex operators. Under the decomposition gl̂k ≃ h ⊕sl̂k, these vertex operators decompose as products of bosonic exponentials associated to the Heisenberg algebra h and primary fields of sl̂k. We use these operators to prove the AGT correspondence for N = 2 superconformal abelian quiver gauge theories on Xk.

  17. Doubled lattice Chern-Simons-Yang-Mills theories with discrete gauge group

    NASA Astrophysics Data System (ADS)

    Caspar, S.; Mesterházy, D.; Olesen, T. Z.; Vlasii, N. D.; Wiese, U.-J.

    2016-11-01

    We construct doubled lattice Chern-Simons-Yang-Mills theories with discrete gauge group G in the Hamiltonian formulation. Here, these theories are considered on a square spatial lattice and the fundamental degrees of freedom are defined on pairs of links from the direct lattice and its dual, respectively. This provides a natural lattice construction for topologically-massive gauge theories, which are invariant under parity and time-reversal symmetry. After defining the building blocks of the doubled theories, paying special attention to the realization of gauge transformations on quantum states, we examine the dynamics in the group space of a single cross, which is spanned by a single link and its dual. The dynamics is governed by the single-cross electric Hamiltonian and admits a simple quantum mechanical analogy to the problem of a charged particle moving on a discrete space affected by an abstract electromagnetic potential. Such a particle might accumulate a phase shift equivalent to an Aharonov-Bohm phase, which is manifested in the doubled theory in terms of a nontrivial ground-state degeneracy on a single cross. We discuss several examples of these doubled theories with different gauge groups including the cyclic group Z(k) ⊂ U(1) , the symmetric group S3 ⊂ O(2) , the binary dihedral (or quaternion) group D¯2 ⊂ SU(2) , and the finite group Δ(27) ⊂ SU(3) . In each case the spectrum of the single-cross electric Hamiltonian is determined exactly. We examine the nature of the low-lying excited states in the full Hilbert space, and emphasize the role of the center symmetry for the confinement of charges. Whether the investigated doubled models admit a non-Abelian topological state which allows for fault-tolerant quantum computation will be addressed in a future publication.

  18. Update on SU(2) gauge theory with NF = 2 fundamental flavours.

    NASA Astrophysics Data System (ADS)

    Drach, Vincent; Janowski, Tadeusz; Pica, Claudio

    2018-03-01

    We present a non perturbative study of SU(2) gauge theory with two fundamental Dirac flavours. This theory provides a minimal template which is ideal for a wide class of Standard Model extensions featuring novel strong dynamics, such as a minimal realization of composite Higgs models. We present an update on the status of the meson spectrum and decay constants based on increased statistics on our existing ensembles and the inclusion of new ensembles with lighter pion masses, resulting in a more reliable chiral extrapolation. Preprint: CP3-Origins-2017-048 DNRF90

  19. Supersymmetric solutions of the cosmological, gauged, ℂ magic model

    NASA Astrophysics Data System (ADS)

    Chimento, Samuele; Ortín, Tomás; Ruipérez, Alejandro

    2018-05-01

    We construct supersymmetric solutions of theories of gauged N = 1 , d = 5 supergravity coupled to vector multiplets with a U(1)R Abelian (Fayet-Iliopoulos) gauging and an independent SU(2) gauging associated to an SU(2) isometry group of the Real Special scalar manifold. These theories provide minimal supersymmetrizations of 5-dimensional SU(2) Einstein-Yang-Mills theories with negative cosmological constant. We consider a minimal model with these gauge groups and the "magic model" based on the Jordan algebra J 3 ℂ with gauge group SU(3) × U(1)R, which is a consistent truncation of maximal SO(6)-gauged supergravity in d = 5 and whose solutions can be embedded in Type IIB Superstring Theory. We find several solutions containing selfdual SU(2) instantons, some of which asymptote to AdS5 and some of which are very small, supersymmetric, deformations of AdS5. We also show how some of those solutions can be embedded in Romans' SU(2) × U(1)-gauged half-maximal supergravity, which was obtained by Lu, Pope and Tran by compactification of the Type IIB Superstring effective action. This provides another way of uplifting those solutions to 10 dimensions.

  20. Topological resolution of gauge theory singularities

    NASA Astrophysics Data System (ADS)

    Saracco, Fabio; Tomasiello, Alessandro; Torroba, Gonzalo

    2013-08-01

    Some gauge theories with Coulomb branches exhibit singularities in perturbation theory, which are usually resolved by nonperturbative physics. In string theory this corresponds to the resolution of timelike singularities near the core of orientifold planes by effects from F or M theory. We propose a new mechanism for resolving Coulomb branch singularities in three-dimensional gauge theories, based on Chern-Simons interactions. This is illustrated in a supersymmetric SU(2) Yang-Mills-Chern-Simons theory. We calculate the one-loop corrections to the Coulomb branch of this theory and find a result that interpolates smoothly between the high-energy metric (that would exhibit the singularity) and a regular singularity-free low-energy result. We suggest possible applications to singularity resolution in string theory and speculate a relationship to a similar phenomenon for the orientifold six-plane in massive IIA supergravity.

  1. Semistrict higher gauge theory

    NASA Astrophysics Data System (ADS)

    Jurčo, Branislav; Sämann, Christian; Wolf, Martin

    2015-04-01

    We develop semistrict higher gauge theory from first principles. In particular, we describe the differential Deligne cohomology underlying semistrict principal 2-bundles with connective structures. Principal 2-bundles are obtained in terms of weak 2-functors from the Čech groupoid to weak Lie 2-groups. As is demonstrated, some of these Lie 2-groups can be differentiated to semistrict Lie 2-algebras by a method due to Ševera. We further derive the full description of connective structures on semistrict principal 2-bundles including the non-linear gauge transformations. As an application, we use a twistor construction to derive superconformal constraint equations in six dimensions for a non-Abelian tensor multiplet taking values in a semistrict Lie 2-algebra.

  2. An almost trivial gauge theory in the limit of infinite gauge coupling constant.

    NASA Astrophysics Data System (ADS)

    Kaptanoglu, S.

    A local SU(2) gauge theory with one multiplet of scalars in the adjoint representation is considered. In the limit of infinite gauge coupling constant Yang-Mills fields become auxiliary and the action possesses a larger invariance than the usual gauge invariance; hence, the system develops a richer structure of constraints. The constraint analysis is carried out.

  3. Ultrastrong coupling in supersymmetric gauge theories

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Buchel, Alex

    1999-10-04

    We study 'ultrastrong' coupling points in scale-invariant N=2 gauge theories. These are theories where, naively, the coupling becomes infinite, and is not related by S-duality to a weak coupling point. These theories have been somewhat of a mystery, since in the M-theory description they correspond to points where parallel M 5-branes coincide. Using the low-energy effective field theory arguments we relate these theories to other known N=2 CFT.

  4. Exact partition functions for gauge theories on Rλ3

    NASA Astrophysics Data System (ADS)

    Wallet, Jean-Christophe

    2016-11-01

    The noncommutative space Rλ3, a deformation of R3, supports a 3-parameter family of gauge theory models with gauge-invariant harmonic term, stable vacuum and which are perturbatively finite to all orders. Properties of this family are discussed. The partition function factorizes as an infinite product of reduced partition functions, each one corresponding to the reduced gauge theory on one of the fuzzy spheres entering the decomposition of Rλ3. For a particular sub-family of gauge theories, each reduced partition function is exactly expressible as a ratio of determinants. A relation with integrable 2-D Toda lattice hierarchy is indicated.

  5. Noncommutative gauge theories and Kontsevich's formality theorem

    NASA Astrophysics Data System (ADS)

    Jurčo, B.; Schupp, P.; Wess, J.

    2001-09-01

    The equivalence of star products that arise from the background field with and without fluctuations and Kontsevich's formality theorem allow an explicitly construction of a map that relates ordinary gauge theory and noncommutative gauge theory (Seiberg-Witten map.) Using noncommutative extra dimensions the construction is extended to noncommutative nonabelian gauge theory for arbitrary gauge groups; as a byproduct we obtain a "Mini Seiberg-Witten map" that explicitly relates ordinary abelian and nonabelian gauge fields. All constructions are also valid for non-constant B-field, and even more generally for any Poisson tensor.

  6. Gauge Theories of Vector Particles

    DOE R&D Accomplishments Database

    Glashow, S. L.; Gell-Mann, M.

    1961-04-24

    The possibility of generalizing the Yang-Mills trick is examined. Thus we seek theories of vector bosons invariant under continuous groups of coordinate-dependent linear transformations. All such theories may be expressed as superpositions of certain "simple" theories; we show that each "simple theory is associated with a simple Lie algebra. We may introduce mass terms for the vector bosons at the price of destroying the gauge-invariance for coordinate-dependent gauge functions. The theories corresponding to three particular simple Lie algebras - those which admit precisely two commuting quantum numbers - are examined in some detail as examples. One of them might play a role in the physics of the strong interactions if there is an underlying super-symmetry, transcending charge independence, that is badly broken. The intermediate vector boson theory of weak interactions is discussed also. The so-called "schizon" model cannot be made to conform to the requirements of partial gauge-invariance.

  7. Surface operators, chiral rings and localization in N =2 gauge theories

    NASA Astrophysics Data System (ADS)

    Ashok, S. K.; Billò, M.; Dell'Aquila, E.; Frau, M.; Gupta, V.; John, R. R.; Lerda, A.

    2017-11-01

    We study half-BPS surface operators in supersymmetric gauge theories in four and five dimensions following two different approaches. In the first approach we analyze the chiral ring equations for certain quiver theories in two and three dimensions, coupled respectively to four- and five-dimensional gauge theories. The chiral ring equations, which arise from extremizing a twisted chiral superpotential, are solved as power series in the infrared scales of the quiver theories. In the second approach we use equivariant localization and obtain the twisted chiral superpotential as a function of the Coulomb moduli of the four- and five-dimensional gauge theories, and find a perfect match with the results obtained from the chiral ring equations. In the five-dimensional case this match is achieved after solving a number of subtleties in the localization formulas which amounts to choosing a particular residue prescription in the integrals that yield the Nekrasov-like partition functions for ramified instantons. We also comment on the necessity of including Chern-Simons terms in order to match the superpotentials obtained from dual quiver descriptions of a given surface operator.

  8. RIKEN BNL RESEARCH CENTER WORKSHOP ON GAUGE-INVARIANT VARIABLES IN GAUGE THEORIES, VOLUME 20

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    VAN BAAL,P.; ORLAND,P.; PISARSKI,R.

    2000-06-01

    This four-day workshop focused on the wide variety of approaches to the non-perturbative physics of QCD. The main topic was the formulation of non-Abelian gauge theory in orbit space, but some other ideas were discussed, in particular the possible extension of the Maldacena conjecture to nonsupersymmetric gauge theories. The idea was to involve most of the participants in general discussions on the problem. Panel discussions were organized to further encourage debate and understanding. Most of the talks roughly fell into three categories: (1) Variational methods in field theory; (2) Anti-de Sitter space ideas; (3) The fundamental domain, gauge fixing, Gribovmore » copies and topological objects (both in the continuum and on a lattice). In particular some remarkable progress in three-dimensional gauge theories was presented, from the analytic side by V.P. Nair and mostly from the numerical side by O. Philipsen. This work may ultimately have important implications for RHIC experiments on the high-temperature quark-gluon plasma.« less

  9. Two-dimensional lattice gauge theories with superconducting quantum circuits

    PubMed Central

    Marcos, D.; Widmer, P.; Rico, E.; Hafezi, M.; Rabl, P.; Wiese, U.-J.; Zoller, P.

    2014-01-01

    A quantum simulator of U(1) lattice gauge theories can be implemented with superconducting circuits. This allows the investigation of confined and deconfined phases in quantum link models, and of valence bond solid and spin liquid phases in quantum dimer models. Fractionalized confining strings and the real-time dynamics of quantum phase transitions are accessible as well. Here we show how state-of-the-art superconducting technology allows us to simulate these phenomena in relatively small circuit lattices. By exploiting the strong non-linear couplings between quantized excitations emerging when superconducting qubits are coupled, we show how to engineer gauge invariant Hamiltonians, including ring-exchange and four-body Ising interactions. We demonstrate that, despite decoherence and disorder effects, minimal circuit instances allow us to investigate properties such as the dynamics of electric flux strings, signaling confinement in gauge invariant field theories. The experimental realization of these models in larger superconducting circuits could address open questions beyond current computational capability. PMID:25512676

  10. Gauge theory for finite-dimensional dynamical systems.

    PubMed

    Gurfil, Pini

    2007-06-01

    Gauge theory is a well-established concept in quantum physics, electrodynamics, and cosmology. This concept has recently proliferated into new areas, such as mechanics and astrodynamics. In this paper, we discuss a few applications of gauge theory in finite-dimensional dynamical systems. We focus on the concept of rescriptive gauge symmetry, which is, in essence, rescaling of an independent variable. We show that a simple gauge transformation of multiple harmonic oscillators driven by chaotic processes can render an apparently "disordered" flow into a regular dynamical process, and that there exists a strong connection between gauge transformations and reduction theory of ordinary differential equations. Throughout the discussion, we demonstrate the main ideas by considering examples from diverse fields, including quantum mechanics, chemistry, rigid-body dynamics, and information theory.

  11. Nonabelian noncommutative gauge theory via noncommutative extra dimensions

    NASA Astrophysics Data System (ADS)

    Jurčo, Branislav; Schupp, Peter; Wess, Julius

    2001-06-01

    The concept of covariant coordinates on noncommutative spaces leads directly to gauge theories with generalized noncommutative gauge fields of the type that arises in string theory with background B-fields. The theory is naturally expressed in terms of cochains in an appropriate cohomology; we discuss how it fits into the framework of projective modules. The equivalence of star products that arise from the background field with and without fluctuations and Kontsevich's formality theorem allow an explicitly construction of a map that relates ordinary gauge theory and noncommutative gauge theory (Seiberg-Witten map). As application we show the exact equality of the Dirac-Born-Infeld action with B-field in the commutative setting and its semi-noncommutative cousin in the intermediate picture. Using noncommutative extra dimensions the construction is extended to noncommutative nonabelian gauge theory for arbitrary gauge groups; an explicit map between abelian and nonabelian gauge fields is given. All constructions are also valid for non-constant B-field, Poisson structure and metric.

  12. Specific heat in the pure gauge SU(2) theory

    NASA Astrophysics Data System (ADS)

    Mitrjushkin, V. K.; Zadorozhny, A. M.

    1989-12-01

    We calculated the specific heat Cv in pure gauge SU(2) theory. Calculations were done on the 3·8 3 lattice in the vicinity of the phase transition temperature. It is shown that the dependence of its electric ( CEv) and magnetic ( CMV) compone nts differ drastically near the phase transition point. Their behaviour is in full agreement with our previous calculations of the electric and magnetic components of the internal energy density and pressure.

  13. Antisymplectic gauge theories

    NASA Astrophysics Data System (ADS)

    Batalin, Igor; Marnelius, Robert

    1998-02-01

    A general field-antifield BV formalism for antisymplectic first class constraints is proposed. It is as general as the corresponding symplectic BFV-BRST formulation and it is demonstrated to be consistent with a previously proposed formalism for antisymplectic second class constraints through a generalized conversion to corresponding first class constraints. Thereby the basic concept of gauge symmetry is extended to apply to quite a new class of gauge theories potentially possible to exist.

  14. Gauge theory for finite-dimensional dynamical systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gurfil, Pini

    2007-06-15

    Gauge theory is a well-established concept in quantum physics, electrodynamics, and cosmology. This concept has recently proliferated into new areas, such as mechanics and astrodynamics. In this paper, we discuss a few applications of gauge theory in finite-dimensional dynamical systems. We focus on the concept of rescriptive gauge symmetry, which is, in essence, rescaling of an independent variable. We show that a simple gauge transformation of multiple harmonic oscillators driven by chaotic processes can render an apparently ''disordered'' flow into a regular dynamical process, and that there exists a strong connection between gauge transformations and reduction theory of ordinary differentialmore » equations. Throughout the discussion, we demonstrate the main ideas by considering examples from diverse fields, including quantum mechanics, chemistry, rigid-body dynamics, and information theory.« less

  15. String theory, gauge theory and quantum gravity. Proceedings. Trieste Spring School and Workshop on String Theory, Gauge Theory and Quantum Gravity, Trieste (Italy), 11 - 22 Apr 1994.

    NASA Astrophysics Data System (ADS)

    1995-04-01

    The following topics were dealt with: string theory, gauge theory, quantum gravity, quantum geometry, black hole physics and information loss, second quantisation of the Wilson loop, 2D Yang-Mills theory, topological field theories, equivariant cohomology, superstring theory and fermion masses, supergravity, topological gravity, waves in string cosmology, superstring theories, 4D space-time.

  16. Gauge and integrable theories in loop spaces

    NASA Astrophysics Data System (ADS)

    Ferreira, L. A.; Luchini, G.

    2012-05-01

    We propose an integral formulation of the equations of motion of a large class of field theories which leads in a quite natural and direct way to the construction of conservation laws. The approach is based on generalized non-abelian Stokes theorems for p-form connections, and its appropriate mathematical language is that of loop spaces. The equations of motion are written as the equality of a hyper-volume ordered integral to a hyper-surface ordered integral on the border of that hyper-volume. The approach applies to integrable field theories in (1+1) dimensions, Chern-Simons theories in (2+1) dimensions, and non-abelian gauge theories in (2+1) and (3+1) dimensions. The results presented in this paper are relevant for the understanding of global properties of those theories. As a special byproduct we solve a long standing problem in (3+1)-dimensional Yang-Mills theory, namely the construction of conserved charges, valid for any solution, which are invariant under arbitrary gauge transformations.

  17. Spinor matter fields in SL(2,C) gauge theories of gravity: Lagrangian and Hamiltonian approaches

    NASA Astrophysics Data System (ADS)

    Antonowicz, Marek; Szczyrba, Wiktor

    1985-06-01

    We consider the SL(2,C)-covariant Lagrangian formulation of gravitational theories with the presence of spinor matter fields. The invariance properties of such theories give rise to the conservation laws (the contracted Bianchi identities) having in the presence of matter fields a more complicated form than those known in the literature previously. A general SL(2,C) gauge theory of gravity is cast into an SL(2,C)-covariant Hamiltonian formulation. Breaking the SL(2,C) symmetry of the system to the SU(2) symmetry, by introducing a spacelike slicing of spacetime, we get an SU(2)-covariant Hamiltonian picture. The qualitative analysis of SL(2,C) gauge theories of gravity in the SU(2)-covariant formulation enables us to define the dynamical symplectic variables and the gauge variables of the theory under consideration as well as to divide the set of field equations into the dynamical equations and the constraints. In the SU(2)-covariant Hamiltonian formulation the primary constraints, which are generic for first-order matter Lagrangians (Dirac, Weyl, Fierz-Pauli), can be reduced. The effective matter symplectic variables are given by SU(2)-spinor-valued half-forms on three-dimensional slices of spacetime. The coupled Einstein-Cartan-Dirac (Weyl, Fierz-Pauli) system is analyzed from the (3+1) point of view. This analysis is complete; the field equations of the Einstein-Cartan-Dirac theory split into 18 gravitational dynamical equations, 8 dynamical Dirac equations, and 7 first-class constraints. The system has 4+8=12 independent degrees of freedom in the phase space.

  18. Supersymmetric Gauge Theories with Decoupled Operators and Chiral Ring Stability

    NASA Astrophysics Data System (ADS)

    Benvenuti, Sergio; Giacomelli, Simone

    2017-12-01

    We propose a general way to complete supersymmetric theories with operators below the unitarity bound, adding gauge-singlet fields that enforce the decoupling of such operators. This makes it possible to perform all usual computations, and to compactify on a circle. We concentrate on a duality between an N =1 SU(2) gauge theory and the N =2 A3 Argyres-Douglas theory, mapping the moduli space and chiral ring of the completed N =1 theory to those of the A3 model. We reduce the completed gauge theory to 3D, finding a 3D duality with N =4 supersymmetric QED (SQED) with two flavors. The naive dimensional reduction is instead N =2 SQED. Crucial is a concept of chiral ring stability, which modifies the superpotential and allows for a 3D emergent global symmetry.

  19. Three-dimensional gauge theories and gravitational instantons from string theory

    NASA Astrophysics Data System (ADS)

    Cherkis, Sergey Alexander

    Various realizations of gauge theories in string theory allow an identification of their spaces of vacua with gravitational instantons. Also, they provide a correspondence of vacua of gauge theories with nonabelian monopole configurations and solutions of a system of integrable equations called Nahm equations. These identifications make it possible to apply powerful techniques of differential and algebraic geometry to solve the gauge theories in question. In other words, it becomes possible to find the exact metrics on their moduli spaces of vacua with all quantum corrections included. As another outcome we obtain for the first time the description of a series of all Dk-type gravitational instantons.

  20. Local existence of N=1 supersymmetric gauge theory in four Dimensions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Akbar, Fiki T.; Gunara, Bobby E.; Zen, Freddy P.

    2015-04-16

    In this paper, we shall prove the local existence of N=1 supersymmetry gauge theory in 4 dimension. We start from the Lagrangian for coupling chiral and vector multiplets with constant gauge kinetic function and only considering a bosonic part by setting all fermionic field to be zero at level equation of motion. We consider a U(n) model as isometry for scalar field internal geometry. And we use a nonlinear semigroup method to prove the local existence.

  1. Entanglement of Distillation for Lattice Gauge Theories.

    PubMed

    Van Acoleyen, Karel; Bultinck, Nick; Haegeman, Jutho; Marien, Michael; Scholz, Volkher B; Verstraete, Frank

    2016-09-23

    We study the entanglement structure of lattice gauge theories from the local operational point of view, and, similar to Soni and Trivedi [J. High Energy Phys. 1 (2016) 1], we show that the usual entanglement entropy for a spatial bipartition can be written as the sum of an undistillable gauge part and of another part corresponding to the local operations and classical communication distillable entanglement, which is obtained by depolarizing the local superselection sectors. We demonstrate that the distillable entanglement is zero for pure Abelian gauge theories at zero gauge coupling, while it is in general nonzero for the non-Abelian case. We also consider gauge theories with matter, and show in a perturbative approach how area laws-including a topological correction-emerge for the distillable entanglement. Finally, we also discuss the entanglement entropy of gauge fixed states and show that it has no relation to the physical distillable entropy.

  2. Phenomenology of strongly coupled chiral gauge theories

    DOE PAGES

    Bai, Yang; Berger, Joshua; Osborne, James; ...

    2016-11-25

    A sector with QCD-like strong dynamics is common in models of non-standard physics. Such a model could be accessible in LHC searches if both confinement and big-quarks charged under the confining group are at the TeV scale. Big-quark masses at this scale can be explained if the new fermions are chiral under a new U(1)' gauge symmetry such that their bare masses are related to the U(1)'-breaking and new confinement scales. Here we present a study of a minimal GUT-motivated and gauge anomaly-free model with implications for the LHC Run 2 searches. We find that the first signatures of suchmore » models could appear as two gauge boson resonances. The chiral nature of the model could be confirmed by observation of a Z'γ resonance, where the Z' naturally has a large leptonic branching ratio because of its kinetic mixing with the hypercharge gauge boson.« less

  3. Exact Correlation Functions in S U (2 ) N =2 Superconformal QCD

    NASA Astrophysics Data System (ADS)

    Baggio, Marco; Niarchos, Vasilis; Papadodimas, Kyriakos

    2014-12-01

    We report an exact solution of 2- and 3-point functions of chiral primary fields in S U (2 ) N =2 super-Yang-Mills theory coupled to four hypermultiplets. It is shown that these correlation functions are nontrivial functions of the gauge coupling, obeying differential equations which take the form of the semi-infinite Toda chain. We solve these equations recursively in terms of the Zamolodchikov metric that can be determined exactly from supersymmetric localization on the four-sphere. Our results are verified independently in perturbation theory with a Feynman diagram computation up to 2 loops. This is a short version of a companion paper that contains detailed technical remarks, additional material, and aspects of an extension to the S U (N ) gauge group.

  4. Cluster-enriched Yang-Baxter equation from SUSY gauge theories

    NASA Astrophysics Data System (ADS)

    Yamazaki, Masahito

    2018-04-01

    We propose a new generalization of the Yang-Baxter equation, where the R-matrix depends on cluster y-variables in addition to the spectral parameters. We point out that we can construct solutions to this new equation from the recently found correspondence between Yang-Baxter equations and supersymmetric gauge theories. The S^2 partition function of a certain 2d N=(2,2) quiver gauge theory gives an R-matrix, whereas its FI parameters can be identified with the cluster y-variables.

  5. Lattice implementation of Abelian gauge theories with Chern-Simons number and an axion field

    NASA Astrophysics Data System (ADS)

    Figueroa, Daniel G.; Shaposhnikov, Mikhail

    2018-01-01

    Real time evolution of classical gauge fields is relevant for a number of applications in particle physics and cosmology, ranging from the early Universe to dynamics of quark-gluon plasma. We present an explicit non-compact lattice formulation of the interaction between a shift-symmetric field and some U (1) gauge sector, a (x)FμνF˜μν, reproducing the continuum limit to order O (dxμ2) and obeying the following properties: (i) the system is gauge invariant and (ii) shift symmetry is exact on the lattice. For this end we construct a definition of the topological number density K =FμνF˜μν that admits a lattice total derivative representation K = Δμ+ Kμ, reproducing to order O (dxμ2) the continuum expression K =∂μKμ ∝ E → ṡ B → . If we consider a homogeneous field a (x) = a (t), the system can be mapped into an Abelian gauge theory with Hamiltonian containing a Chern-Simons term for the gauge fields. This allow us to study in an accompanying paper the real time dynamics of fermion number non-conservation (or chirality breaking) in Abelian gauge theories at finite temperature. When a (x) = a (x → , t) is inhomogeneous, the set of lattice equations of motion do not admit however a simple explicit local solution (while preserving an O (dxμ2) accuracy). We discuss an iterative scheme allowing to overcome this difficulty.

  6. Democratic Superstring Field Theory and Its Gauge Fixing

    NASA Astrophysics Data System (ADS)

    Kroyter, M.

    This work is my contribution to the proceedings of the conference``SFT2010 -- the third international conference on string field theory and related topics'' and it reflects my talk there, which described the democratic string field theory and its gauge fixing. The democratic string field theory is the only fully RNS string field theory to date. It lives in the large Hilbert space and includes all picture numbers. Picture changing amounts in this formalism to a gauge transformation. We describe the theory and its properties and show that when partially gauge fixed it can be reduced to the modified theory and to the non-polynomial theory. In the latter case we can even include the Ramond sector in the picture-fixed action. We also show that another partial gauge-fixing leads to a new consistent string field theory at picture number -1.

  7. Canonical transformation path to gauge theories of gravity

    NASA Astrophysics Data System (ADS)

    Struckmeier, J.; Muench, J.; Vasak, D.; Kirsch, J.; Hanauske, M.; Stoecker, H.

    2017-06-01

    In this paper, the generic part of the gauge theory of gravity is derived, based merely on the action principle and on the general principle of relativity. We apply the canonical transformation framework to formulate geometrodynamics as a gauge theory. The starting point of our paper is constituted by the general De Donder-Weyl Hamiltonian of a system of scalar and vector fields, which is supposed to be form-invariant under (global) Lorentz transformations. Following the reasoning of gauge theories, the corresponding locally form-invariant system is worked out by means of canonical transformations. The canonical transformation approach ensures by construction that the form of the action functional is maintained. We thus encounter amended Hamiltonian systems which are form-invariant under arbitrary spacetime transformations. This amended system complies with the general principle of relativity and describes both, the dynamics of the given physical system's fields and their coupling to those quantities which describe the dynamics of the spacetime geometry. In this way, it is unambiguously determined how spin-0 and spin-1 fields couple to the dynamics of spacetime. A term that describes the dynamics of the "free" gauge fields must finally be added to the amended Hamiltonian, as common to all gauge theories, to allow for a dynamic spacetime geometry. The choice of this "dynamics" Hamiltonian is outside of the scope of gauge theory as presented in this paper. It accounts for the remaining indefiniteness of any gauge theory of gravity and must be chosen "by hand" on the basis of physical reasoning. The final Hamiltonian of the gauge theory of gravity is shown to be at least quadratic in the conjugate momenta of the gauge fields—this is beyond the Einstein-Hilbert theory of general relativity.

  8. Perturbative Quantum Gravity from Gauge Theory

    NASA Astrophysics Data System (ADS)

    Carrasco, John Joseph

    In this dissertation we present the graphical techniques recently developed in the construction of multi-loop scattering amplitudes using the method of generalized unitarity. We construct the three-loop and four-loop four-point amplitudes of N = 8 supergravity using these methods and the Kawaii, Lewellen and Tye tree-level relations which map tree-level gauge theory amplitudes to tree-level gravity theory amplitudes. We conclude by extending a tree-level duality between color and kinematics, generic to gauge theories, to a loop level conjecture, allowing the easy relation between loop-level gauge and gravity kinematics. We provide non-trivial evidence for this conjecture at three-loops in the particular case of maximal supersymmetry.

  9. Gauged Q-balls

    NASA Technical Reports Server (NTRS)

    Lee, Kimyeong; Stein-Schabes, Jaime A.; Watkins, Richard; Widrow, Lawrence M.

    1988-01-01

    Classical non-topological soliton configurations are considered within the theory of a complex scalar field with a gauged U symmetry. Their existence and stability against dispersion are demonstrated and some of their properties are investigated analytically and numerically. The soliton configuration is such that inside the soliton the local U symmetry is broken, the gauge field becomes massive and for a range of values of the coupling constants the soliton becomes a superconductor pushing the charge to the surface. Furthermore, because of the repulsive Coulomb force, there is a maximum size for these objects, making impossible the existence of Q-matter in bulk form. Also briefly discussed are solitons with fermions in a U gauge theory.

  10. Various Forms of BRST Symmetry in Abelian 2-FORM Gauge Theory

    NASA Astrophysics Data System (ADS)

    Rai, Sumit Kumar; Mandal, Bhabani Prasad

    We derive the various forms of BRST symmetry using Batalin-Fradkin-Vilkovisky approach in the case of Abelian 2-form gauge theory. We show that the so-called dual BRST symmetry is not an independent symmetry but the generalization of BRST symmetry obtained from the canonical transformation in the bosonic and ghost sector. We further obtain the new forms of both BRST and dual-BRST symmetry by making a general transformation in the Lagrange multipliers of the bosonic and ghost sector of the theory.

  11. Nonquadratic gauge fixing and ghosts for gauge theories on the hypersphere

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brandt, F. T.; McKeon, D. G. C.; Department of Mathematics and Computer Science, Algoma University, Sault St. Marie, Ontario P6A 2G4

    2011-10-15

    It has been suggested that using a gauge fixing Lagrangian that is not quadratic in a gauge fixing condition is most appropriate for gauge theories formulated on a hypersphere. We reexamine the appropriate ghost action that is to be associated with gauge fixing, applying a technique that has been used for ensuring that the propagator for a massless spin-two field is transverse and traceless. It is shown that this nonquadratic gauge fixing Lagrangian leads to two pair of complex Fermionic ghosts and two Bosonic real ghosts.

  12. Adding gauge fields to Kaplan's fermions

    NASA Astrophysics Data System (ADS)

    Blum, T.; Kärkkäinen, Leo

    1994-04-01

    We experiment with adding dynamical gauge field to Kaplan (defect) fermions. In the case of U (1) gauge theory we use an inhomogenous Higgs mechanism to restrict the 3d gauge dynamics to a planar 2d defect. In our simulations the 3d theory produce the correct 2d gauge dynamics. We measure fermion propagators with dynamical gauge fields. They posses the correct chiral structure. The fermions at the boundary of the support of the gauge field (waveguide) are non-chiral, and have a mass two times heavier than the chiral modes. Moreover, these modes cannot be excited by a source at the defect; implying that they are dynamically decoupled. We have also checked that the anomaly relation is fullfilled for the case of a smooth external gauge field.

  13. Nonabelian Bundle Gerbes, Their Differential Geometry and Gauge Theory

    NASA Astrophysics Data System (ADS)

    Aschieri, Paolo; Cantini, Luigi; Jurčo, Branislav

    2005-03-01

    Bundle gerbes are a higher version of line bundles, we present nonabelian bundle gerbes as a higher version of principal bundles. Connection, curving, curvature and gauge transformations are studied both in a global coordinate independent formalism and in local coordinates. These are the gauge fields needed for the construction of Yang-Mills theories with 2-form gauge potential.

  14. Area-Preserving Diffeomorphisms, W∞ and { U}q [sl(2)] in Chern-Simons Theory and the Quantum Hall System

    NASA Astrophysics Data System (ADS)

    Kogan, Ian I.

    We discuss a quantum { U}q [sl(2)] symmetry in the Landau problem, which naturally arises due to the relation between { U}q [sl(2)] and the group of magnetic translations. The latter is connected with W∞ and area-preserving (symplectic) diffeomorphisms which are the canonical transformations in the two-dimensional phase space. We shall discuss the hidden quantum symmetry in a 2 + 1 gauge theory with the Chern-Simons term and in a quantum Hall system, which are both connected with the Landau problem.

  15. Strong Coupling Gauge Theories in LHC ERA

    NASA Astrophysics Data System (ADS)

    Fukaya, H.; Harada, M.; Tanabashi, M.; Yamawaki, K.

    2011-01-01

    AdS/QCD, light-front holography, and the nonperturbative running coupling / Stanley J. Brodsky, Guy de Teramond and Alexandre Deur -- New results on non-abelian vortices - Further insights into monopole, vortex and confinement / K. Konishi -- Study on exotic hadrons at B-factories / Toru Iijima -- Cold compressed baryonic matter with hidden local symmetry and holography / Mannque Rho -- Aspects of baryons in holographic QCD / T. Sakai -- Nuclear force from string theory / K. Hashimoto -- Integrating out holographic QCD back to hidden local symmetry / Masayasu Harada, Shinya Matsuzaki and Koichi Yamawaki -- Holographic heavy quarks and the giant Polyakov loop / Gianluca Grignani, Joanna Karczmarek and Gordon W. Semenoff -- Effect of vector-axial-vector mixing to dilepton spectrum in hot and/or dense matter / Masayasu Harada and Chihiro Sasaki -- Infrared behavior of ghost and gluon propagators compatible with color confinement in Yang-Mills theory with the Gribov horizon / Kei-Ichi Kondo -- Chiral symmetry breaking on the lattice / Hidenori Fukaya [for JLQCD and TWQCD collaborations] -- Gauge-Higgs unification: Stable Higgs bosons as cold dark matter / Yutaka Hosotani -- The limits of custodial symmetry / R. Sekhar Chivukula ... [et al.] -- Higgs searches at the tevatron / Kazuhiro Yamamoto [for the CDF and D[symbol] collaborations] -- The top triangle moose / R. S. Chivukula ... [et al.] -- Conformal phase transition in QCD like theories and beyond / V. A. Miransky -- Gauge-Higgs unification at LHC / Nobuhito Maru and Nobuchika Okada -- W[symbol]W[symbol] scattering in Higgsless models: Identifying better effective theories / Alexander S. Belyaev ... [et al.] -- Holographic estimate of Muon g - 2 / Deog Ki Hong -- Gauge-Higgs dark matter / T. Yamashita -- Topological and curvature effects in a multi-fermion interaction model / T. Inagaki and M. Hayashi -- A model of soft mass generation / J. Hosek -- TeV physics and conformality / Thomas Appelquist -- Conformal

  16. Augmented superfield approach to gauge-invariant massive 2-form theory

    NASA Astrophysics Data System (ADS)

    Kumar, R.; Krishna, S.

    2017-06-01

    We discuss the complete sets of the off-shell nilpotent (i.e. s^2_{(a)b} = 0) and absolutely anticommuting (i.e. s_b s_{ab} + s_{ab} s_b = 0) Becchi-Rouet-Stora-Tyutin (BRST) (s_b) and anti-BRST (s_{ab}) symmetries for the (3+1)-dimensional (4D) gauge-invariant massive 2-form theory within the framework of an augmented superfield approach to the BRST formalism. In this formalism, we obtain the coupled (but equivalent) Lagrangian densities which respect both BRST and anti-BRST symmetries on the constrained hypersurface defined by the Curci-Ferrari type conditions. The absolute anticommutativity property of the (anti-) BRST transformations (and corresponding generators) is ensured by the existence of the Curci-Ferrari type conditions which emerge very naturally in this formalism. Furthermore, the gauge-invariant restriction plays a decisive role in deriving the proper (anti-) BRST transformations for the Stückelberg-like vector field.

  17. Hidden simplicity of gauge theory amplitudes

    NASA Astrophysics Data System (ADS)

    Drummond, J. M.

    2010-11-01

    These notes were given as lectures at the CERN Winter School on Supergravity, Strings and Gauge Theory 2010. We describe the structure of scattering amplitudes in gauge theories, focussing on the maximally supersymmetric theory to highlight the hidden symmetries which appear. Using the Britto, Cachzo, Feng and Witten (BCFW) recursion relations we solve the tree-level S-matrix in \\ {N}=4 super Yang-Mills theory and describe how it produces a sum of invariants of a large symmetry algebra. We review amplitudes in the planar theory beyond tree level, describing the connection between amplitudes and Wilson loops, and discuss the implications of the hidden symmetries.

  18. Gauge supergravity in D = 2 + 2

    NASA Astrophysics Data System (ADS)

    Castellani, Leonardo

    2017-10-01

    We present an action for chiral N = (1 , 0) supergravity in 2 + 2 dimensions. The fields of the theory are organized into an OSp(1|4) connection supermatrix, and are given by the usual vierbein V a , spin connection ω ab , and Majorana gravitino ψ. In analogy with a construction used for D = 10 + 2 gauge supergravity, the action is given by ∫STr( R 2 Γ), where R is the OSp(1|4) curvature supermatrix two-form, and Γ a constant supermatrix containing γ 5. It is similar, but not identical to the MacDowell-Mansouri action for D = 2 + 2 supergravity. The constant supermatrix breaks OSp(1|4) gauge invariance to a subalgebra OSp(1|2) ⊕ Sp(2), including a Majorana-Weyl supercharge. Thus half of the OSp(1|4) gauge supersymmetry survives. The gauge fields are the selfdual part of ω ab and the Weyl projection of ψ for OSp(1|2), and the antiselfdual part of ω ab for Sp(2). Supersymmetry transformations, being part of a gauge superalgebra, close off-shell. The selfduality condition on the spin connection can be consistently imposed, and the resulting "projected" action is OSp(1|2) gauge invariant.

  19. Digital Quantum Simulation of Z2 Lattice Gauge Theories with Dynamical Fermionic Matter

    NASA Astrophysics Data System (ADS)

    Zohar, Erez; Farace, Alessandro; Reznik, Benni; Cirac, J. Ignacio

    2017-02-01

    We propose a scheme for digital quantum simulation of lattice gauge theories with dynamical fermions. Using a layered optical lattice with ancilla atoms that can move and interact with the other atoms (simulating the physical degrees of freedom), we obtain a stroboscopic dynamics which yields the four-body plaquette interactions, arising in models with (2 +1 ) and higher dimensions, without the use of perturbation theory. As an example we show how to simulate a Z2 model in (2 +1 ) dimensions.

  20. Digital Quantum Simulation of Z_{2} Lattice Gauge Theories with Dynamical Fermionic Matter.

    PubMed

    Zohar, Erez; Farace, Alessandro; Reznik, Benni; Cirac, J Ignacio

    2017-02-17

    We propose a scheme for digital quantum simulation of lattice gauge theories with dynamical fermions. Using a layered optical lattice with ancilla atoms that can move and interact with the other atoms (simulating the physical degrees of freedom), we obtain a stroboscopic dynamics which yields the four-body plaquette interactions, arising in models with (2+1) and higher dimensions, without the use of perturbation theory. As an example we show how to simulate a Z_{2} model in (2+1) dimensions.

  1. One-loop renormalization of Lee-Wick gauge theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grinstein, Benjamin; O'Connell, Donal

    2008-11-15

    We examine the renormalization of Lee-Wick gauge theory to one-loop order. We show that only knowledge of the wave function renormalization is necessary to determine the running couplings, anomalous dimensions, and vector boson masses. In particular, the logarithmic running of the Lee-Wick vector boson mass is exactly related to the running of the coupling. In the case of an asymptotically free theory, the vector boson mass runs to infinity in the ultraviolet. Thus, the UV fixed point of the pure gauge theory is an ordinary quantum field theory. We find that the coupling runs more quickly in Lee-Wick gauge theorymore » than in ordinary gauge theory, so the Lee-Wick standard model does not naturally unify at any scale. Finally, we present results on the beta function of more general theories containing dimension six operators which differ from previous results in the literature.« less

  2. Progress in lattice gauge theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Creutz, M.

    1983-01-01

    These lectures first provide an overview of the current status of lattice gauge theory calculations. They then review some technical points on group integration, gauge fixing, and order parameters. Various Monte Carlo algorithms are discussed. Finally, alternatives to the Wilson action are considered in the context of universality for the continuum limit. 41 references.

  3. Bootstrapping non-commutative gauge theories from L∞ algebras

    NASA Astrophysics Data System (ADS)

    Blumenhagen, Ralph; Brunner, Ilka; Kupriyanov, Vladislav; Lüst, Dieter

    2018-05-01

    Non-commutative gauge theories with a non-constant NC-parameter are investigated. As a novel approach, we propose that such theories should admit an underlying L∞ algebra, that governs not only the action of the symmetries but also the dynamics of the theory. Our approach is well motivated from string theory. We recall that such field theories arise in the context of branes in WZW models and briefly comment on its appearance for integrable deformations of AdS5 sigma models. For the SU(2) WZW model, we show that the earlier proposed matrix valued gauge theory on the fuzzy 2-sphere can be bootstrapped via an L∞ algebra. We then apply this approach to the construction of non-commutative Chern-Simons and Yang-Mills theories on flat and curved backgrounds with non-constant NC-structure. More concretely, up to the second order, we demonstrate how derivative and curvature corrections to the equations of motion can be bootstrapped in an algebraic way from the L∞ algebra. The appearance of a non-trivial A∞ algebra is discussed, as well.

  4. An infinite swampland of U(1) charge spectra in 6D supergravity theories

    NASA Astrophysics Data System (ADS)

    Taylor, Washington; Turner, Andrew P.

    2018-06-01

    We analyze the anomaly constraints on 6D supergravity theories with a single abelian U(1) gauge factor. For theories with charges restricted to q = ±1 , ±2 and no tensor multiplets, anomaly-free models match those models that can be realized from F-theory compactifications almost perfectly. For theories with tensor multiplets or with larger charges, the F-theory constraints are less well understood. We show, however, that there is an infinite class of distinct massless charge spectra in the "swampland" of theories that satisfy all known quantum consistency conditions but do not admit a realization through F-theory or any other known approach to string compactification. We also compare the spectra of charged matter in abelian theories with those that can be realized from breaking nonabelian SU(2) and higher rank gauge symmetries.

  5. On lattice chiral gauge theories

    NASA Technical Reports Server (NTRS)

    Maiani, L.; Rossi, G. C.; Testa, M.

    1991-01-01

    The Smit-Swift-Aoki formulation of a lattice chiral gauge theory is presented. In this formulation the Wilson and other non invariant terms in the action are made gauge invariant by the coupling with a nonlinear auxilary scalar field, omega. It is shown that omega decouples from the physical states only if appropriate parameters are tuned so as to satisfy a set of BRST identities. In addition, explicit ghost fields are necessary to ensure decoupling. These theories can give rise to the correct continuum limit. Similar considerations apply to schemes with mirror fermions. Simpler cases with a global chiral symmetry are discussed and it is shown that the theory becomes free at decoupling. Recent numerical simulations agree with those considerations.

  6. Non-Abelian Gauge Theory in the Lorentz Violating Background

    NASA Astrophysics Data System (ADS)

    Ganai, Prince A.; Shah, Mushtaq B.; Syed, Masood; Ahmad, Owais

    2018-03-01

    In this paper, we will discuss a simple non-Abelian gauge theory in the broken Lorentz spacetime background. We will study the partial breaking of Lorentz symmetry down to its sub-group. We will use the formalism of very special relativity for analysing this non-Abelian gauge theory. Moreover, we will discuss the quantisation of this theory using the BRST symmetry. Also, we will analyse this theory in the maximal Abelian gauge.

  7. Milne boost from Galilean gauge theory

    NASA Astrophysics Data System (ADS)

    Banerjee, Rabin; Mukherjee, Pradip

    2018-03-01

    Physical origin of Milne boost invariance of the Newton Cartan spacetime is traced to the effect of local Galilean boosts in its metric structure, using Galilean gauge theory. Specifically, we do not require any gauge field to understand Milne boost invariance.

  8. Asymptotically Free Gauge Theories. I

    DOE R&D Accomplishments Database

    Wilczek, Frank; Gross, David J.

    1973-07-01

    Asymptotically free gauge theories of the strong interactions are constructed and analyzed. The reasons for doing this are recounted, including a review of renormalization group techniques and their application to scaling phenomena. The renormalization group equations are derived for Yang-Mills theories. The parameters that enter into the equations are calculated to lowest order and it is shown that these theories are asymptotically free. More specifically the effective coupling constant, which determines the ultraviolet behavior of the theory, vanishes for large space-like momenta. Fermions are incorporated and the construction of realistic models is discussed. We propose that the strong interactions be mediated by a "color" gauge group which commutes with SU(3)xSU(3). The problem of symmetry breaking is discussed. It appears likely that this would have a dynamical origin. It is suggested that the gauge symmetry might not be broken, and that the severe infrared singularities prevent the occurrence of non-color singlet physical states. The deep inelastic structure functions, as well as the electron position total annihilation cross section are analyzed. Scaling obtains up to calculable logarithmic corrections, and the naive lightcone or parton model results follow. The problems of incorporating scalar mesons and breaking the symmetry by the Higgs mechanism are explained in detail.

  9. On Painlevé/gauge theory correspondence

    NASA Astrophysics Data System (ADS)

    Bonelli, Giulio; Lisovyy, Oleg; Maruyoshi, Kazunobu; Sciarappa, Antonio; Tanzini, Alessandro

    2017-12-01

    We elucidate the relation between Painlevé equations and four-dimensional rank one N = 2 theories by identifying the connection associated with Painlevé isomonodromic problems with the oper limit of the flat connection of the Hitchin system associated with gauge theories and by studying the corresponding renormalization group flow. Based on this correspondence, we provide long-distance expansions at various canonical rays for all Painlevé τ -functions in terms of magnetic and dyonic Nekrasov partition functions for N = 2 SQCD and Argyres-Douglas theories at self-dual Omega background ɛ _1 + ɛ _2 = 0 or equivalently in terms of c=1 irregular conformal blocks.

  10. Search at the Mainz Microtron for Light Massive Gauge Bosons Relevant for the Muon g-2 Anomaly

    NASA Astrophysics Data System (ADS)

    Merkel, H.; Achenbach, P.; Ayerbe Gayoso, C.; Beranek, T.; Beričič, J.; Bernauer, J. C.; Böhm, R.; Bosnar, D.; Correa, L.; Debenjak, L.; Denig, A.; Distler, M. O.; Esser, A.; Fonvieille, H.; Friščić, I.; Gómez Rodríguez de la Paz, M.; Hoek, M.; Kegel, S.; Kohl, Y.; Middleton, D. G.; Mihovilovič, M.; Müller, U.; Nungesser, L.; Pochodzalla, J.; Rohrbeck, M.; Ron, G.; Sánchez Majos, S.; Schlimme, B. S.; Schoth, M.; Schulz, F.; Sfienti, C.; Širca, S.; Thiel, M.; Tyukin, A.; Weber, A.; Weinriefer, M.; A1 Collaboration

    2014-06-01

    A massive, but light, Abelian U(1) gauge boson is a well-motivated possible signature of physics beyond the standard model of particle physics. In this Letter, the search for the signal of such a U(1) gauge boson in electron-positron pair production at the spectrometer setup of the A1 Collaboration at the Mainz Microtron is described. Exclusion limits in the mass range of 40 MeV/c2 to 300 MeV/c2, with a sensitivity in the squared mixing parameter of as little as ɛ2=8×10-7 are presented. A large fraction of the parameter space has been excluded where the discrepancy of the measured anomalous magnetic moment of the muon with theory might be explained by an additional U(1) gauge boson.

  11. Unified gauge theories with right-handed currents and heavy fermions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mohapatra, R.N.

    Gauge models with heavy fermions and right-handed currents are discussed based on the gauge groups SU(2)/subA/ x U(1) x SU(4) ', SU(2)/subA/ x SU(2)/subB/ x SU(4) ', and SU(4) x SU(4) ' and are constructed so as to lead to the $delta$I = 1/2 rule. SU(4) x SU(4) ' is advocated as the ultimate unifying gauge group of nature, and it is shown how at various stages of spontaneous breakdown both the SU(2)/subA/ x SU(2)/subB/ x SU(4) ' and SU(2)/subA/ x U(1) x SU(4) ' groups manifest themselves. It is also shown that CP violation takes an interesting complexion inmore » these models and leads to exactly the relations eta/sub +//sub -/ approx. = eta$sub 00$ in K/subL/ $Yields$ 2$pi$ decays. Furthermore, it is shown that the magnitude of CP violation is related to gauge interactions that violate the heavy quark degeneracy. (AIP)« less

  12. Field-theory representation of gauge-gravity symmetry-protected topological invariants, group cohomology, and beyond.

    PubMed

    Wang, Juven C; Gu, Zheng-Cheng; Wen, Xiao-Gang

    2015-01-23

    The challenge of identifying symmetry-protected topological states (SPTs) is due to their lack of symmetry-breaking order parameters and intrinsic topological orders. For this reason, it is impossible to formulate SPTs under Ginzburg-Landau theory or probe SPTs via fractionalized bulk excitations and topology-dependent ground state degeneracy. However, the partition functions from path integrals with various symmetry twists are universal SPT invariants, fully characterizing SPTs. In this work, we use gauge fields to represent those symmetry twists in closed spacetimes of any dimensionality and arbitrary topology. This allows us to express the SPT invariants in terms of continuum field theory. We show that SPT invariants of pure gauge actions describe the SPTs predicted by group cohomology, while the mixed gauge-gravity actions describe the beyond-group-cohomology SPTs. We find new examples of mixed gauge-gravity actions for U(1) SPTs in (4+1)D via the gravitational Chern-Simons term. Field theory representations of SPT invariants not only serve as tools for classifying SPTs, but also guide us in designing physical probes for them. In addition, our field theory representations are independently powerful for studying group cohomology within the mathematical context.

  13. Condition for confinement in non-Abelian gauge theories

    NASA Astrophysics Data System (ADS)

    Chaichian, Masud; Frasca, Marco

    2018-06-01

    We show that a criterion for confinement, based on the BRST invariance, holds in four dimensions, by solving a non-Abelian gauge theory with a set of exact solutions. The confinement condition we consider was obtained by Kugo and Ojima some decades ago. The current understanding of gauge theories permits us to apply the techniques straightforwardly for checking the validity of this criterion. In this way, we are able to show that the non-Abelian gauge theory is confining and that confinement is rooted in the BRST invariance and asymptotic freedom.

  14. Construction of non-Abelian gauge theories on noncommutative spaces

    NASA Astrophysics Data System (ADS)

    Jurčo, B.; Möller, L.; Schraml, S.; Schupp, P.; Wess, J.

    We present a formalism to explicitly construct non-Abelian gauge theories on noncommutative spaces (induced via a star product with a constant Poisson tensor) from a consistency relation. This results in an expansion of the gauge parameter, the noncommutative gauge potential and fields in the fundamental representation, in powers of a parameter of the noncommutativity. This allows the explicit construction of actions for these gauge theories.

  15. S-duality in SU(3) Yang-Mills theory with non-abelian unbroken gauge group

    NASA Astrophysics Data System (ADS)

    Schroers, B. J.; Bais, F. A.

    1998-12-01

    It is observed that the magnetic charges of classical monopole solutions in Yang-Mills-Higgs theory with non-abelian unbroken gauge group H are in one-to-one correspondence with coherent states of a dual or magnetic group H˜. In the spirit of the Goddard-Nuyts-Olive conjecture this observation is interpreted as evidence for a hidden magnetic symmetry of Yang-Mills theory. SU(3) Yang-Mills-Higgs theory with unbroken gauge group U(2) is studied in detail. The action of the magnetic group on semi-classical states is given explicitly. Investigations of dyonic excitations show that electric and magnetic symmetry are never manifest at the same time: Non-abelian magnetic charge obstructs the realisation of electric symmetry and vice-versa. On the basis of this fact the charge sectors in the theory are classified and their fusion rules are discussed. Non-abelian electric-magnetic duality is formulated as a map between charge sectors. Coherent states obey particularly simple fusion rules, and in the set of coherent states S-duality can be formulated as an SL(2, Z) mapping between sectors which leaves the fusion rules invariant.

  16. Origin of Abelian gauge symmetries in heterotic/F-theory duality

    DOE PAGES

    Cvetič, Mirjam; Grassi, Antonella; Klevers, Denis; ...

    2016-04-07

    Here, we study aspects of heterotic/F-theory duality for compactifications with Abelian gauge symmetries. We consider F-theory on general Calabi-Yau manifolds with a rank one Mordell-Weil group of rational sections. By rigorously performing the stable degeneration limit in a class of toric models, and also derive both the Calabi-Yau geometry and the spectral cover describing the vector bundle in the heterotic dual theory. We carefully investigate the spectral cover employing the group law on the elliptic curve in the heterotic theory. We find in explicit examples that there are three different classes of heterotic duals that have U(1) factors in theirmore » low energy effective theories: split spectral covers describing bundles with S(U(m) x U(1)) structure group, spectral covers containing torsional sections that seem to give rise to bundles with SU(m) x Z_k structure group and bundles with purely non-Abelian structure groups having a centralizer in E_8 containing a U(1) factor. In the former two cases, it is required that the elliptic fibration on the heterotic side has a non-trivial Mordell-Weil group. And while the number of geometrically massless U(1)'s is determined entirely by geometry on the F-theory side, on the heterotic side the correct number of U(1)'s is found by taking into account a Stuckelberg mechanism in the lower-dimensional effective theory. Finally, in geometry, this corresponds to the condition that sections in the two half K3 surfaces that arise in the stable degeneration limit of F-theory can be glued together globally.« less

  17. Strong dynamics and lattice gauge theory

    NASA Astrophysics Data System (ADS)

    Schaich, David

    In this dissertation I use lattice gauge theory to study models of electroweak symmetry breaking that involve new strong dynamics. Electroweak symmetry breaking (EWSB) is the process by which elementary particles acquire mass. First proposed in the 1960s, this process has been clearly established by experiments, and can now be considered a law of nature. However, the physics underlying EWSB is still unknown, and understanding it remains a central challenge in particle physics today. A natural possibility is that EWSB is driven by the dynamics of some new, strongly-interacting force. Strong interactions invalidate the standard analytical approach of perturbation theory, making these models difficult to study. Lattice gauge theory is the premier method for obtaining quantitatively-reliable, nonperturbative predictions from strongly-interacting theories. In this approach, we replace spacetime by a regular, finite grid of discrete sites connected by links. The fields and interactions described by the theory are likewise discretized, and defined on the lattice so that we recover the original theory in continuous spacetime on an infinitely large lattice with sites infinitesimally close together. The finite number of degrees of freedom in the discretized system lets us simulate the lattice theory using high-performance computing. Lattice gauge theory has long been applied to quantum chromodynamics, the theory of strong nuclear interactions. Using lattice gauge theory to study dynamical EWSB, as I do in this dissertation, is a new and exciting application of these methods. Of particular interest is non-perturbative lattice calculation of the electroweak S parameter. Experimentally S ≈ -0.15(10), which tightly constrains dynamical EWSB. On the lattice, I extract S from the momentum-dependence of vector and axial-vector current correlators. I created and applied computer programs to calculate these correlators and analyze them to determine S. I also calculated the masses

  18. Nonlattice simulation for supersymmetric gauge theories in one dimension.

    PubMed

    Hanada, Masanori; Nishimura, Jun; Takeuchi, Shingo

    2007-10-19

    Lattice simulation of supersymmetric gauge theories is not straightforward. In some cases the lack of manifest supersymmetry just necessitates cumbersome fine-tuning, but in the worse cases the chiral and/or Majorana nature of fermions makes it difficult to even formulate an appropriate lattice theory. We propose circumventing all these problems inherent in the lattice approach by adopting a nonlattice approach for one-dimensional supersymmetric gauge theories, which are important in the string or M theory context. In particular, our method can be used to investigate the gauge-gravity duality from first principles, and to simulate M theory based on the matrix theory conjecture.

  19. Chern-Simons gauge theory on orbifolds: Open strings from three dimensions

    NASA Astrophysics Data System (ADS)

    Hořava, Petr

    1996-12-01

    Chern-Simons gauge theory is formulated on three-dimensional Z2 orbifolds. The locus of singular points on a given orbifold is equivalent to a link of Wilson lines. This allows one to reduce any correlation function on orbifolds to a sum of more complicated correlation functions in the simpler theory on manifolds. Chern-Simons theory on manifolds is known to be related to two-dimensional (2D) conformal field theory (CFT) on closed-string surfaces; here it is shown that the theory on orbifolds is related to 2D CFT of unoriented closed- and open-string models, i.e. to worldsheet orbifold models. In particular, the boundary components of the worldsheet correspond to the components of the singular locus in the 3D orbifold. This correspondence leads to a simple identification of the open-string spectra, including their Chan-Paton degeneration, in terms of fusing Wilson lines in the corresponding Chern-Simons theory. The correspondence is studied in detail, and some exactly solvable examples are presented. Some of these examples indicate that it is natural to think of the orbifold group Z2 as a part of the gauge group of the Chern-Simons theory, thus generalizing the standard definition of gauge theories.

  20. Medium generated gap in gravity and a 3D gauge theory

    NASA Astrophysics Data System (ADS)

    Gabadadze, Gregory; Older, Daniel

    2018-05-01

    It is well known that a physical medium that sets a Lorentz frame generates a Lorentz-breaking gap for a graviton. We examine such generated "mass" terms in the presence of a fluid medium whose ground state spontaneously breaks spatial translation invariance in d =D +1 spacetime dimensions, and for a solid in D =2 spatial dimensions. By requiring energy positivity and subluminal propagation, certain constraints are placed on the equation of state of the medium. In the case of D =2 spatial dimensions, classical gravity can be recast as a Chern-Simons gauge theory, and motivated by this we recast the massive theory of gravity in AdS3 as a massive Chern-Simons gauge theory with an unusual mass term. We find that in the flat space limit the Chern-Simons theory has a novel gauge invariance that mixes the kinetic and mass terms, and enables the massive theory with a noncompact internal group to be free of ghosts and tachyons.

  1. Nilpotent symmetries and Curci-Ferrari-type restrictions in 2D non-Abelian gauge theory: Superfield approach

    NASA Astrophysics Data System (ADS)

    Srinivas, N.; Malik, R. P.

    2017-11-01

    We derive the off-shell nilpotent symmetries of the two (1 + 1)-dimensional (2D) non-Abelian 1-form gauge theory by using the theoretical techniques of the geometrical superfield approach to Becchi-Rouet-Stora-Tyutin (BRST) formalism. For this purpose, we exploit the augmented version of superfield approach (AVSA) and derive theoretically useful nilpotent (anti-)BRST, (anti-)co-BRST symmetries and Curci-Ferrari (CF)-type restrictions for the self-interacting 2D non-Abelian 1-form gauge theory (where there is no interaction with matter fields). The derivation of the (anti-)co-BRST symmetries and all possible CF-type restrictions are completely novel results within the framework of AVSA to BRST formalism where the ordinary 2D non-Abelian theory is generalized onto an appropriately chosen (2, 2)-dimensional supermanifold. The latter is parametrized by the superspace coordinates ZM = (xμ,𝜃,𝜃¯) where xμ (with μ = 0, 1) are the bosonic coordinates and a pair of Grassmannian variables (𝜃,𝜃¯) obey the relationships: 𝜃2 = 𝜃¯2 = 0, 𝜃𝜃¯ + 𝜃¯𝜃 = 0. The topological nature of our 2D theory allows the existence of a tower of CF-type restrictions.

  2. Gauge Gravity and Electroweak Theory

    NASA Astrophysics Data System (ADS)

    Hestenes, David

    2008-09-01

    Reformulation of the Dirac equation in terms of the real Spacetime Algebra (STA) reveals hidden geometric structure, including a geometric role for the unit imaginary as generator of rotations in a spacelike plane. The STA and the real Dirac equation play essential roles in a new Gauge Theory Gravity (GTG) version of General Relativity (GR). Besides clarifying the conceptual foundations of GR and facilitating complex computations, GTG opens up new possibilities for a unified gauge theory of gravity and quantum mechanics, including spacetime geometry of electroweak interactions. The Weinberg-Salam model fits perfectly into this geometric framework, and a promising variant that replaces chiral states with Majorana states is formulated to incorporate zitterbewegung in electron states.

  3. Yang-Mills gauge conditions from Witten's open string field theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feng Haidong; Siegel, Warren

    2007-02-15

    We construct the Zinn-Justin-Batalin-Vilkovisky action for tachyons and gauge bosons from Witten's 3-string vertex of the bosonic open string without gauge fixing. Through canonical transformations, we find the off-shell, local, gauge-covariant action up to 3-point terms, satisfying the usual field theory gauge transformations. Perturbatively, it can be extended to higher-point terms. It also gives a new gauge condition in field theory which corresponds to the Feynman-Siegel gauge on the world-sheet.

  4. Connection dynamics of a gauge theory of gravity coupled with matter

    NASA Astrophysics Data System (ADS)

    Yang, Jian; Banerjee, Kinjal; Ma, Yongge

    2013-10-01

    We study the coupling of the gravitational action, which is a linear combination of the Hilbert-Palatini term and the quadratic torsion term, to the action of Dirac fermions. The system possesses local Poincare invariance and hence belongs to Poincare gauge theory (PGT) with matter. The complete Hamiltonian analysis of the theory is carried out without gauge fixing but under certain ansatz on the coupling parameters, which leads to a consistent connection dynamics with second-class constraints and torsion. After performing a partial gauge fixing, all second-class constraints can be solved, and a SU(2)-connection dynamical formalism of the theory can be obtained. Hence, the techniques of loop quantum gravity (LQG) can be employed to quantize this PGT with non-zero torsion. Moreover, the Barbero-Immirzi parameter in LQG acquires its physical meaning as the coupling parameter between the Hilbert-Palatini term and the quadratic torsion term in this gauge theory of gravity.

  5. Marginal deformations of gauge theories and their dual description

    NASA Astrophysics Data System (ADS)

    Kulaxizi, Manuela

    Holography and its realization in string theory as the AdS/CFT correspondence, offers an equivalence between gauge theories and gravity that provides a means to explore the otherwise inaccessible large N and strong coupling region of SU(N) gauge theories. While considerable progress has been made in this area, a concrete method for specifying the gravitational background dual to a given gauge theory is still lacking. This is the question addressed in this thesis in the context of exactly marginal deformations of N = 4 SYM. First, a precise relation between the deformation of the superpotential and transverse space noncommutativity is established. In particular, the appropriate noncommutativity matrix theta is determined, relying solely on data from the gauge theory lagrangian and basic notions of the AdS/CFT correspondence. The set ( G , theta) of open string parameters, with G the metric of the transverse space, is then understood as a way to encode information pertaining to the moduli space of the gauge theory. It seems thus natural to expect that it may be possible to obtain the corresponding gravitational solution by mapping the open string fields ( G , theta) to the closed string ones (g, B). This hints at a purely algebraic method for constructing gravity duals to given conformal gauge theories. The idea is tested within the context of the beta-deformed theory where the dual gravity description is known and then used to construct the background for the rho-deformed theory up to third order in the deformation parameter rho. Discrepancy of the higher order in rho terms in the latter case is traced to the nonassociativity of the noncommutative matrix theta.

  6. Cascading gauge theory on dS4 and String Theory landscape

    NASA Astrophysics Data System (ADS)

    Buchel, Alex; Galante, Damián A.

    2014-06-01

    charge at the tip of the conifold is always positive, as long as ln H2Λ2/P2g0 ⩾-0.4. When M4=dS4 and the chiral symmetry is broken, the D3 brane charge at the tip of the conifold is always zero; we managed to construct geometries of this type for ln H2Λ2/P2g0⩾-0.03. Comparing effective potential of the gauge theory in broken Veffb and unbroken Veffs phases we establish that in all cases, when we can construct the phase with spontaneously broken chiral symmetry, Veffb>Veffs, when ln H2Λ2/P2g0⩾-0.03, i.e., spontaneous symmetry breaking does not happen for given values of the gauge theory parameters. To put these parameters in perspective, note that the (first-order) confinement/deconfinement and chiral symmetry breaking phase transition in cascading gauge theory plasma occurs at temperature T such that [16] ln Tdeconfinement,χSB2Λ2/P2g0=0.2571(2), and the (first-order) chiral symmetry breaking in cascading gauge theory on S3 occurs for compactification scale μ3≡ℓ3-1 such that [21] ln μ3,χSB2Λ2/P2g0=0.4309(8). When M4=R×S3 and the chiral symmetry is unbroken, the D3 brane charge at the tip of the conifold is negative when ln μ32Λ2/P2g0 2/P2g0 =0.0318(3). However, since cascading gauge theory undergoes a first order phase transition with spontaneous breaking of the chiral symmetry at μ>μ, and the D3 brane charge at the tip of the conifold in broken phase is zero, the charge in the ground state is in fact zero whenever μ3⩽μ. Furthermore, chirally symmetric states of cascading gauge theory on S3 develop symmetry breaking tachyonic instabilities at μ (below the first order chiral symmetry breaking scale μ) ln μ3,tachyon2Λ2/P2g0=0.3297(3) which is again above μ.Our results represented here, together with those reported in [10], point that the singularity of smeared anti-D3 branes at the tip of the conifold is unphysical: had it been otherwise, we should have been able to implement an infrared cutoff in the geometry with a D3

  7. Fusion basis for lattice gauge theory and loop quantum gravity

    NASA Astrophysics Data System (ADS)

    Delcamp, Clement; Dittrich, Bianca; Riello, Aldo

    2017-02-01

    We introduce a new basis for the gauge-invariant Hilbert space of lattice gauge theory and loop quantum gravity in (2 + 1) dimensions, the fusion basis. In doing so, we shift the focus from the original lattice (or spin-network) structure directly to that of the magnetic (curvature) and electric (torsion) excitations themselves. These excitations are classified by the irreducible representations of the Drinfel'd double of the gauge group, and can be readily "fused" together by studying the tensor product of such representations. We will also describe in detail the ribbon operators that create and measure these excitations and make the quasi-local structure of the observable algebra explicit. Since the fusion basis allows for both magnetic and electric excitations from the onset, it turns out to be a precious tool for studying the large scale structure and coarse-graining flow of lattice gauge theories and loop quantum gravity. This is in neat contrast with the widely used spin-network basis, in which it is much more complicated to account for electric excitations, i.e. for Gauß constraint violations, emerging at larger scales. Moreover, since the fusion basis comes equipped with a hierarchical structure, it readily provides the language to design states with sophisticated multi-scale structures. Another way to employ this hierarchical structure is to encode a notion of subsystems for lattice gauge theories and (2 + 1) gravity coupled to point particles. In a follow-up work, we have exploited this notion to provide a new definition of entanglement entropy for these theories.

  8. Instanton operators and symmetry enhancement in 5d supersymmetric quiver gauge theories

    NASA Astrophysics Data System (ADS)

    Yonekura, Kazuya

    2015-07-01

    We consider general 5d SU( N ) quiver gauge theories whose nodes form an ADE Dynkin diagram of type G. Each node has SU( N i ) gauge group of general rank, Chern-Simons level κ i and additional w i fundamentals. When the total flavor number at each node is less than or equal to 2 N i - 2| κ i |, we give general rules under which the symmetries associated to instanton currents are enhanced to G × G or a subgroup of it in the UV 5d superconformal theory. When the total flavor number violates that condition at some of the nodes, further enhancement of flavor symmetries occurs. In particular we find a large class of gauge theories interpreted as S 1 compactification of 6d superconformal theories which are waiting for string/F-theory realization. We also consider hypermultiplets in (anti-)symmetric representation.

  9. Local subsystems in gauge theory and gravity

    DOE PAGES

    Donnelly, William; Freidel, Laurent

    2016-09-16

    We consider the problem of defining localized subsystems in gauge theory and gravity. Such systems are associated to spacelike hypersurfaces with boundaries and provide the natural setting for studying entanglement entropy of regions of space. We present a general formalism to associate a gauge-invariant classical phase space to a spatial slice with boundary by introducing new degrees of freedom on the boundary. In Yang-Mills theory the new degrees of freedom are a choice of gauge on the boundary, transformations of which are generated by the normal component of the nonabelian electric field. In general relativity the new degrees of freedommore » are the location of a codimension-2 surface and a choice of conformal normal frame. These degrees of freedom transform under a group of surface symmetries, consisting of diffeomorphisms of the codimension-2 boundary, and position-dependent linear deformations of its normal plane. We find the observables which generate these symmetries, consisting of the conformal normal metric and curvature of the normal connection. We discuss the implications for the problem of defining entanglement entropy in quantum gravity. Finally, our work suggests that the Bekenstein-Hawking entropy may arise from the different ways of gluing together two partial Cauchy surfaces at a cross-section of the horizon.« less

  10. Efficient Basis Formulation for (1 +1 )-Dimensional SU(2) Lattice Gauge Theory: Spectral Calculations with Matrix Product States

    NASA Astrophysics Data System (ADS)

    Bañuls, Mari Carmen; Cichy, Krzysztof; Cirac, J. Ignacio; Jansen, Karl; Kühn, Stefan

    2017-10-01

    We propose an explicit formulation of the physical subspace for a (1 +1 )-dimensional SU(2) lattice gauge theory, where the gauge degrees of freedom are integrated out. Our formulation is completely general, and might be potentially suited for the design of future quantum simulators. Additionally, it allows for addressing the theory numerically with matrix product states. We apply this technique to explore the spectral properties of the model and the effect of truncating the gauge degrees of freedom to a small finite dimension. In particular, we determine the scaling exponents for the vector mass. Furthermore, we also compute the entanglement entropy in the ground state and study its scaling towards the continuum limit.

  11. Ward identity and basis tensor gauge theory at one loop

    NASA Astrophysics Data System (ADS)

    Chung, Daniel J. H.

    2018-06-01

    Basis tensor gauge theory (BTGT) is a reformulation of ordinary gauge theory that is an analog of the vierbein formulation of gravity and is related to the Wilson line formulation. To match ordinary gauge theories coupled to matter, the BTGT formalism requires a continuous symmetry that we call the BTGT symmetry in addition to the ordinary gauge symmetry. After classically interpreting the BTGT symmetry, we construct using the BTGT formalism the Ward identities associated with the BTGT symmetry and the ordinary gauge symmetry. For a way of testing the quantum stability and the consistency of the Ward identities with a known regularization method, we explicitly renormalize the scalar QED at one loop using dimensional regularization using the BTGT formalism.

  12. Thermalization and confinement in strongly coupled gauge theories

    NASA Astrophysics Data System (ADS)

    Ishii, Takaaki; Kiritsis, Elias; Rosen, Christopher

    2016-11-01

    Quantum field theories of strongly interacting matter sometimes have a useful holographic description in terms of the variables of a gravitational theory in higher dimensions. This duality maps time dependent physics in the gauge theory to time dependent solutions of the Einstein equations in the gravity theory. In order to better understand the process by which "real world" theories such as QCD behave out of thermodynamic equilibrium, we study time dependent perturbations to states in a model of a confining, strongly coupled gauge theory via holography. Operationally, this involves solving a set of non-linear Einstein equations supplemented with specific time dependent boundary conditions. The resulting solutions allow one to comment on the timescale by which the perturbed states thermalize, as well as to quantify the properties of the final state as a function of the perturbation parameters. We comment on the influence of the dual gauge theory's confinement scale on these results, as well as the appearance of a previously anticipated universal scaling regime in the "abrupt quench" limit.

  13. String Scale Gauge Coupling Unification with Vector-Like Exotics and Noncanonical U(1)Y Normalization

    NASA Astrophysics Data System (ADS)

    Barger, V.; Jiang, Jing; Langacker, Paul; Li, Tianjun

    We use a new approach to study string scale gauge coupling unification systematically, allowing both the possibility of noncanonical U(1)Y normalization and the existence of vector-like particles whose quantum numbers are the same as those of the Standard Model (SM) fermions and their Hermitian conjugates and the SM adjoint particles. We first give all the independent sets (Yi) of particles that can be employed to achieve SU(3)C and SU(2)L string scale gauge coupling unification and calculate their masses. Second, for a noncanonical U(1)Y normalization, we obtain string scale SU(3)C ×SU(2)L ×U(1)Y gauge coupling unification by choosing suitable U(1)Y normalizations for each of the Yi sets. Alternatively, for the canonical U(1)Y normalization, we achieve string scale gauge coupling unification by considering suitable combinations of the Yi sets or by introducing additional independent sets (Zi), that do not affect the SU(3)C ×SU(2)L unification at tree level, and then choosing suitable combinations, one from the Yi sets and one from the Zi sets. We also briefly discuss string scale gauge coupling unification in models with higher Kac-Moody levels for SU(2)L or SU(3)C.

  14. Planar zeros in gauge theories and gravity

    NASA Astrophysics Data System (ADS)

    Jiménez, Diego Medrano; Vera, Agustín Sabio; Vázquez-Mozo, Miguel Á.

    2016-09-01

    Planar zeros are studied in the context of the five-point scattering amplitude for gauge bosons and gravitons. In the case of gauge theories, it is found that planar zeros are determined by an algebraic curve in the projective plane spanned by the three stereographic coordinates labelling the direction of the outgoing momenta. This curve depends on the values of six independent color structures. Considering the gauge group SU( N) with N = 2 , 3 , 5 and fixed color indices, the class of curves obtained gets broader by increasing the rank of the group. For the five-graviton scattering, on the other hand, we show that the amplitude vanishes whenever the process is planar, without imposing further kinematic conditions. A rationale for this result is provided using color-kinematics duality.

  15. Causal hydrodynamics of gauge theory plasmas from AdS/CFT duality

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Natsuume, Makoto; Okamura, Takashi; Department of Physics, Kwansei Gakuin University, Sanda, Hyogo, 669-1337

    2008-03-15

    We study causal hydrodynamics (Israel-Stewart theory) of gauge theory plasmas from the AdS/CFT duality. Causal hydrodynamics requires new transport coefficients (relaxation times) and we compute them for a number of supersymmetric gauge theories including the N=4 super Yang-Mills theory. However, the relaxation times obtained from the 'shear mode' do not agree with the ones from the 'sound mode', which implies that the Israel-Stewart theory is not a sufficient framework to describe the gauge theory plasmas.

  16. Phenomenology with F-theory S U (5 )

    NASA Astrophysics Data System (ADS)

    Leontaris, George K.; Shafi, Qaisar

    2017-09-01

    We explore the low-energy phenomenology of an F-theory-based S U (5 ) model which, in addition to the known quarks and leptons, contains Standard Model (SM) singlets and vectorlike color triplets and S U (2 ) doublets. Depending on their masses and couplings, some of these new particles may be observed at the LHC and future colliders. We discuss the restrictions by Cabibbo-Kobayashi-Maskawa matrix constraints on their mixing with the ordinary down quarks of the three chiral families. The model is consistent with gauge coupling unification at the usual supersymmetric GUT scale; dimension-five proton decay is adequately suppressed, while dimension-six decay mediated by the superheavy gauge bosons is enhanced by a factor of 5-7. The third generation charged fermion Yukawa couplings yield the corresponding low-energy masses in reasonable agreement with observations. The hierarchical nature of the masses of lighter generations is accounted for via nonrenormalizable interactions, with the perturbative vacuum expectation values (VEVs) of the SM singlet fields playing an essential role.

  17. A model with isospin doublet U(1)D gauge symmetry

    NASA Astrophysics Data System (ADS)

    Nomura, Takaaki; Okada, Hiroshi

    2018-05-01

    We propose a model with an extra isospin doublet U(1)D gauge symmetry, in which we introduce several extra fermions with odd parity under a discrete Z2 symmetry in order to cancel the gauge anomalies out. A remarkable issue is that we impose nonzero U(1)D charge to the Standard Model Higgs, and it gives the most stringent constraint to the vacuum expectation value of a scalar field breaking the U(1)D symmetry that is severer than the LEP bound. We then explore relic density of a Majorana dark matter candidate without conflict of constraints from lepton flavor violating processes. A global analysis is carried out to search for parameters which can accommodate with the observed data.

  18. Quantum vacua of 2d maximally supersymmetric Yang-Mills theory

    NASA Astrophysics Data System (ADS)

    Koloğlu, Murat

    2017-11-01

    We analyze the classical and quantum vacua of 2d N=(8,8) supersymmetric Yang-Mills theory with SU( N) and U( N) gauge group, describing the worldvolume interactions of N parallel D1-branes with flat transverse directions {R}^8 . We claim that the IR limit of the SU( N) theory in the superselection sector labeled M (mod N) — identified with the internal dynamics of ( M, N)-string bound states of the Type IIB string theory — is described by the symmetric orbifold N=(8,8) sigma model into ({R}^8)^{D-1}/S_D when D = gcd( M, N) > 1, and by a single massive vacuum when D = 1, generalizing the conjectures of E. Witten and others. The full worldvolume theory of the D1-branes is the U( N) theory with an additional U(1) 2-form gauge field B coming from the string theory Kalb-Ramond field. This U( N) + B theory has generalized field configurations, labeled by the Z-valued generalized electric flux and an independent {Z}_N -valued 't Hooft flux. We argue that in the quantum mechanical theory, the ( M, N)-string sector with M units of electric flux has a {Z}_N -valued discrete θ angle specified by M (mod N) dual to the 't Hooft flux. Adding the brane center-of-mass degrees of freedom to the SU( N) theory, we claim that the IR limit of the U( N) + B theory in the sector with M bound F-strings is described by the N=(8,8) sigma model into {Sym}^D({R}^8) . We provide strong evidence for these claims by computing an N=(8,8) analog of the elliptic genus of the UV gauge theories and of their conjectured IR limit sigma models, and showing they agree. Agreement is established by noting that the elliptic genera are modular-invariant Abelian (multi-periodic and meromorphic) functions, which turns out to be very restrictive.

  19. Going Beyond QCD in Lattice Gauge Theory

    NASA Astrophysics Data System (ADS)

    Fleming, G. T.

    2011-01-01

    Strongly coupled gauge theories (SCGT's) have been studied theoretically for many decades using numerous techniques. The obvious motivation for these efforts stemmed from a desire to understand the source of the strong nuclear force: Quantum Chromo-dynamics (QCD). Guided by experimental results, theorists generally consider QCD to be a well-understood SCGT. Unfortunately, it is not clear how to extend the lessons learned from QCD to other SCGT's. Particularly urgent motivators for new studies of other SCGT's are the ongoing searches for physics beyond the standard model (BSM) at the Large Hadron Collider (LHC) and the Tevatron. Lattice gauge theory (LGT) is a technique for systematically-improvable calculations in many SCGT's. It has become the standard for non-perturbative calculations in QCD and it is widely believed that it may be useful for study of other SCGT's in the realm of BSM physics. We will discuss the prospects and potential pitfalls for these LGT studies, focusing primarily on the flavor dependence of SU(3) gauge theory.

  20. Hyperunified field theory and gravitational gauge-geometry duality

    NASA Astrophysics Data System (ADS)

    Wu, Yue-Liang

    2018-01-01

    A hyperunified field theory is built in detail based on the postulates of gauge invariance and coordinate independence along with the conformal scaling symmetry. All elementary particles are merged into a single hyper-spinor field and all basic forces are unified into a fundamental interaction governed by the hyper-spin gauge symmetry SP(1, D_h-1). The dimension D_h of hyper-spacetime is conjectured to have a physical origin in correlation with the hyper-spin charge of elementary particles. The hyper-gravifield fiber bundle structure of biframe hyper-spacetime appears naturally with the globally flat Minkowski hyper-spacetime as a base spacetime and the locally flat hyper-gravifield spacetime as a fiber that is viewed as a dynamically emerged hyper-spacetime characterized by a non-commutative geometry. The gravitational origin of gauge symmetry is revealed with the hyper-gravifield that plays an essential role as a Goldstone-like field. The gauge-gravity and gravity-geometry correspondences bring about the gravitational gauge-geometry duality. The basic properties of hyperunified field theory and the issue on the fundamental scale are analyzed within the framework of quantum field theory, which allows us to describe the laws of nature in deriving the gauge gravitational equation with the conserved current and the geometric gravitational equations of Einstein-like type and beyond.

  1. Gauged Supergravities and Spontaneous Supersymmetry Breaking from the Double Copy Construction

    NASA Astrophysics Data System (ADS)

    Chiodaroli, M.; Günaydin, M.; Johansson, H.; Roiban, R.

    2018-04-01

    Supergravities with gauged R symmetry and Minkowski vacua allow for spontaneous supersymmetry breaking and, as such, provide a framework for building supergravity models of phenomenological relevance. In this Letter, we initiate the study of double copy constructions for these supergravities. We argue that, on general grounds, we expect their scattering amplitudes to be described by a double copy of the type (spontaneously broken gauge theory)⊗ (gauge theory with broken supersymmetry). We present a simple realization in which the resulting supergravity has U (1 )R gauge symmetry, spontaneously broken N =2 supersymmetry, and massive gravitini. This is the first instance of a double copy construction of a gauged supergravity and of a theory with spontaneously broken supersymmetry. The construction extends in a straightforward manner to a large family of gauged Yang-Mills-Einstein supergravity theories with or without spontaneous gauge-symmetry breaking.

  2. Isometries, gaugings and {N} = 2 supergravity decoupling

    NASA Astrophysics Data System (ADS)

    Antoniadis, Ignatios; Derendinger, Jean-Pierre; Petropoulos, P. Marios; Siampos, Konstantinos

    2016-11-01

    We study off-shell rigid limits for the kinetic and scalar-potential terms of a single {N} = 2 hypermultiplet. In the kinetic term, these rigid limits establish relations between four-dimensional quaternion-Kähler and hyper-Kähler target spaces with symmetry. The scalar potential is obtained by gauging the graviphoton along an isometry of the quaternion-Kähler space. The rigid limits unveil two distinct cases. A rigid {N} = 2 theory on Minkowski or on AdS4 spacetime, depending on whether the isometry is translational or rotational respectively. We apply these results to the quaternion-Kähler space with Heisenberg ⋉ U(1) isometry, which describes the universal hypermultiplet at type-II string one-loop.

  3. Gauge Theories and Spontaneous Symmetry Breaking.

    DTIC Science & Technology

    1980-11-01

    This report summarizes attempts to understand in what way spontaneous symmetry breaking arose in the context of guage field theories of elementary...gauge field theories. It was felt that the symmetry breaking used by the physicists (a procedure known as the Higgs mechanism) is not precisely a

  4. Perturbative Quantum Gravity and its Relation to Gauge Theory.

    PubMed

    Bern, Zvi

    2002-01-01

    In this review we describe a non-trivial relationship between perturbative gauge theory and gravity scattering amplitudes. At the semi-classical or tree-level, the scattering amplitudes of gravity theories in flat space can be expressed as a sum of products of well defined pieces of gauge theory amplitudes. These relationships were first discovered by Kawai, Lewellen, and Tye in the context of string theory, but hold more generally. In particular, they hold for standard Einstein gravity. A method based on D -dimensional unitarity can then be used to systematically construct all quantum loop corrections order-by-order in perturbation theory using as input the gravity tree amplitudes expressed in terms of gauge theory ones. More generally, the unitarity method provides a means for perturbatively quantizing massless gravity theories without the usual formal apparatus associated with the quantization of constrained systems. As one application, this method was used to demonstrate that maximally supersymmetric gravity is less divergent in the ultraviolet than previously thought.

  5. Strolling along gauge theory vacua

    NASA Astrophysics Data System (ADS)

    Seraj, Ali; Van den Bleeken, Dieter

    2017-08-01

    We consider classical, pure Yang-Mills theory in a box. We show how a set of static electric fields that solve the theory in an adiabatic limit correspond to geodesic motion on the space of vacua, equipped with a particular Riemannian metric that we identify. The vacua are generated by spontaneously broken global gauge symmetries, leading to an infinite number of conserved momenta of the geodesic motion. We show that these correspond to the soft multipole charges of Yang-Mills theory.

  6. Topological charge and cooling scales in pure SU(2) lattice gauge theory

    NASA Astrophysics Data System (ADS)

    Berg, Bernd A.; Clarke, David A.

    2018-03-01

    Using Monte Carlo simulations with overrelaxation, we have equilibrated lattices up to β =2.928 , size 6 04, for pure SU(2) lattice gauge theory with the Wilson action. We calculate topological charges with the standard cooling method and find that they become more reliable with increasing β values and lattice sizes. Continuum limit estimates of the topological susceptibility χ are obtained of which we favor χ1 /4/Tc=0.643 (12 ) , where Tc is the SU(2) deconfinement temperature. Differences between cooling length scales in different topological sectors turn out to be too small to be detectable within our statistical errors.

  7. Scalar formalism for non-Abelian gauge theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hostler, L.C.

    1986-09-01

    The gauge field theory of an N-italic-dimensional multiplet of spin- 1/2 particles is investigated using the Klein--Gordon-type wave equation )Pi x (1+i-italicsigma) x Pi+m-italic/sup 2/)Phi = 0, Pi/sub ..mu../equivalentpartial/partiali-italicx-italic/sub ..mu../-e-italicA-italic/sub ..mu../, investigated before by a number of authors, to describe the fermions. Here Phi is a 2 x 1 Pauli spinor, and sigma repesents a Lorentz spin tensor whose components sigma/sub ..mu..//sub ..nu../ are ordinary 2 x 2 Pauli spin matrices. Feynman rules for the scalar formalism for non-Abelian gauge theory are derived starting from the conventional field theory of the multiplet and converting it to the new description. Themore » equivalence of the new and the old formalism for arbitrary radiative processes is thereby established. The conversion to the scalar formalism is accomplished in a novel way by working in terms of the path integral representation of the generating functional of the vacuum tau-functions, tau(2,1, xxx 3 xxx)equivalent<0-chemically bondT-italic(Psi/sub in/(2) Psi-bar/sub in/(1) xxx A-italic/sub ..mu../(3)/sub in/ xxx S-italic)chemically bond0->, where Psi/sub in/ is a Heisenberg operator belonging to a 4N-italic x 1 Dirac wave function of the multiplet. The Feynman rules obtained generalize earlier results for the Abelian case of quantum electrodynamics.« less

  8. Foreign exchange market as a lattice gauge theory

    NASA Astrophysics Data System (ADS)

    Young, K.

    1999-10-01

    A simple model of the foreign exchange market is exactly a lattice gauge theory. Exchange rates are the exponentials of gauge potentials defined on spatial links while interest rates are related to gauge potentials on temporal links. Arbitrage opportunities are given by nonzero values of the gauge-invariant field tensor or curvature defined on closed loops. Arbitrage opportunities involving cross-rates at one time are "magnetic fields," while arbitrage opportunities involving future contracts are "electric fields."

  9. Tuned and non-Higgsable U(1)s in F-theory

    DOE PAGES

    Wang, Yi-Nan

    2017-03-01

    We study the tuning of U(1) gauge fields in F-theory models on a base of general dimension. We construct a formula that computes the change in Weierstrass moduli when such a U(1) is tuned, based on the Morrison-Park form of a Weierstrass model with an additional rational section. Using this formula, we propose the form of “minimal tuning” on any base, which corresponds to the case where the decrease in the number of Weierstrass moduli is minimal. Applying this result, we discover some universal features of bases with non-Higgsable U(1)s. Mathematically, a generic elliptic fibration over such a base hasmore » additional rational sections. Physically, this condition implies the existence of U(1) gauge group in the low-energy supergravity theory after compactification that cannot be Higgsed away. In particular, we show that the elliptic Calabi-Yau manifold over such a base has a small number of complex structure moduli. We also suggest that non-Higgsable U(1)s can never appear on any toric bases. Finally, we construct the first example of a threefold base with non-Higgsable U(1)s.« less

  10. Toward a gauge field theory of gravity.

    NASA Astrophysics Data System (ADS)

    Yilmaz, H.

    Joint use of two differential identities (Bianchi and Freud) permits a gauge field theory of gravity in which the gravitational energy is localizable. The theory is compatible with quantum mechanics and is experimentally viable.

  11. Instantons on a non-commutative T4 from twisted (2,0) and little string theories

    NASA Astrophysics Data System (ADS)

    Cheung, Yeuk-Kwan E.; Ganor, Ori J.; Krogh, Morten; Mikhailov, Andrei Yu.

    We show that the moduli space of the (2,0) and little-string theories compactified on T3 with R-symmetry twists is equal to the moduli space of U(1) instantons on a non-commutative T4. The moduli space of U( q) instantons on a non-commutative T4 is obtained from little-string theories of NS5-branes at Aq-1 singularities with twists. A large class of gauge theories with N=4 SUSY in 2+1D and N=2 SUSY in 3+1D are limiting cases of these theories. Hence, the moduli spaces of these gauge theories can be read off from the moduli spaces of instantons on non-commutative tori. We study the phase transitions in these theories and the action of T-duality. On the purely mathematical side, we give a prediction for the moduli space of two U(1) instantons on a non-commutative T4.

  12. Non-Abelian gauge preheating

    NASA Astrophysics Data System (ADS)

    Adshead, Peter; Giblin, John T.; Weiner, Zachary J.

    2017-12-01

    We study preheating in models where a scalar inflaton is directly coupled to a non-Abelian S U (2 ) gauge field. In particular, we examine m2ϕ2 inflation with a conformal, dilatonlike coupling to the non-Abelian sector. We describe a numerical scheme that combines lattice gauge theory with standard finite difference methods applied to the scalar field. We show that a significant tachyonic instability allows for efficient preheating, which is parametrically suppressed by increasing the non-Abelian self-coupling. Additionally, we comment on the technical implementation of the evolution scheme and setting initial conditions.

  13. Origin of gauge invariance in string theory

    NASA Technical Reports Server (NTRS)

    Horowitz, G. T.; Strominger, A.

    1986-01-01

    A first quantization of the space-time embedding Chi exp mu and the world-sheet metric rho of the open bosonic string. The world-sheet metric rho decouples from S-matrix elements in 26 dimensions. This formulation of the theory naturally includes 26-dimensional gauge transformations. The gauge invariance of S-matrix elements is a direct consequence of the decoupling of rho. Second quantization leads to a string field Phi(Chi exp mu, rho) with a gauge-covariant equation of motion.

  14. Left-handed and right-handed U(1) gauge symmetry

    NASA Astrophysics Data System (ADS)

    Nomura, Takaaki; Okada, Hiroshi

    2018-01-01

    We propose a model with the left-handed and right-handed continuous Abelian gauge symmetry; U(1) L × U(1) R . Then three right-handed neutrinos are naturally required to achieve U(1) R anomaly cancellations, while several mirror fermions are also needed to do U(1) L anomaly cancellations. Then we formulate the model, and discuss its testability of the new gauge interactions at collider physics such as the large hadron collider (LHC) and the international linear collider (ILC). In particular, we can investigate chiral structure of the interactions by the analysis of forward-backward asymmetry based on polarized beam at the ILC.

  15. Exact results in 3d N = 2 Spin(7) gauge theories with vector and spinor matters

    NASA Astrophysics Data System (ADS)

    Nii, Keita

    2018-05-01

    We study three-dimensional N = 2 Spin(7) gauge theories with N S spinorial matters and with N f vectorial matters. The quantum Coulomb branch on the moduli space of vacua is one- or two-dimensional depending on the matter contents. For particular values of ( N f , N S ), we find s-confinement phases and derive exact superpotentials. The 3d dynamics of Spin(7) is connected to the 4d dynamics via KK-monopoles. Along the Higgs branch of the Spin(7) theories, we obtain 3d N = 2 G 2 or SU(4) theories and some of them lead to new s-confinement phases. As a check of our analysis we compute superconformal indices for these theories.

  16. Renormalization of a tensorial field theory on the homogeneous space SU(2)/U(1)

    NASA Astrophysics Data System (ADS)

    Lahoche, Vincent; Oriti, Daniele

    2017-01-01

    We study the renormalization of a general field theory on the homogeneous space (SU(2)/ ≤ft. U(1)\\right){{}× d} with tensorial interaction and gauge invariance under the diagonal action of SU(2). We derive the power counting for arbitrary d. For the case d  =  4, we prove perturbative renormalizability to all orders via multi-scale analysis, study both the renormalized and effective perturbation series, and establish the asymptotic freedom of the model. We also outline a general power counting for the homogeneous space {{≤ft(SO(D)/SO(D-1)\\right)}× d} , of direct interest for quantum gravity models in arbitrary dimension, and point out the obstructions to the direct generalization of our results to these cases.

  17. Statistical effects in large N supersymmetric gauge theories

    NASA Astrophysics Data System (ADS)

    Czech, Bartlomiej Stanislaw

    This thesis discusses statistical simplifications arising in supersymmetric gauge theories in the limit of large rank. Applications involve the physics of black holes and the problem of predicting the low energy effective theory from a landscape of string vacua. The first part of this work uses the AdS/CFT correspondence to explain properties of black holes. We establish that in the large charge sector of toric quiver gauge theories there exists a typical state whose structure is closely mimicked by almost all other states. Then, working in the settings of the half-BPS sector of N = 4 super-Yang-Mills theory, we show that in the dual gravity theory semiclassical observations cannot distinguish a pair of geometries corresponding to two generic heavy states. Finally, we argue on general grounds that these conclusions are exponentially enhanced in quantum cosmological settings. The results establish that one may consistently account for the entropy of a black hole with heavy states in the dual field theory and suggest that the usual properties of black holes arise as artifacts of imposing a semiclassical description on a quantum system. In the second half we develop new tools to determine the infrared behavior of quiver gauge theories in a certain class. We apply the dynamical results to a toy model of the landscape of effective field theories defined at some high energy scale, and derive firm statistical predictions for the low energy effective theory.

  18. Monopole operators and Hilbert series of Coulomb branches of 3 d = 4 gauge theories

    NASA Astrophysics Data System (ADS)

    Cremonesi, Stefano; Hanany, Amihay; Zaffaroni, Alberto

    2014-01-01

    This paper addresses a long standing problem - to identify the chiral ring and moduli space (i.e. as an algebraic variety) on the Coulomb branch of an = 4 superconformal field theory in 2+1 dimensions. Previous techniques involved a computation of the metric on the moduli space and/or mirror symmetry. These methods are limited to sufficiently small moduli spaces, with enough symmetry, or to Higgs branches of sufficiently small gauge theories. We introduce a simple formula for the Hilbert series of the Coulomb branch, which applies to any good or ugly three-dimensional = 4 gauge theory. The formula counts monopole operators which are dressed by classical operators, the Casimir invariants of the residual gauge group that is left unbroken by the magnetic flux. We apply our formula to several classes of gauge theories. Along the way we make various tests of mirror symmetry, successfully comparing the Hilbert series of the Coulomb branch with the Hilbert series of the Higgs branch of the mirror theory.

  19. Remarks on a New Possible Discretization Scheme for Gauge Theories

    NASA Astrophysics Data System (ADS)

    Magnot, Jean-Pierre

    2018-03-01

    We propose here a new discretization method for a class of continuum gauge theories which action functionals are polynomials of the curvature. Based on the notion of holonomy, this discretization procedure appears gauge-invariant for discretized analogs of Yang-Mills theories, and hence gauge-fixing is fully rigorous for these discretized action functionals. Heuristic parts are forwarded to the quantization procedure via Feynman integrals and the meaning of the heuristic infinite dimensional Lebesgue integral is questioned.

  20. Remarks on a New Possible Discretization Scheme for Gauge Theories

    NASA Astrophysics Data System (ADS)

    Magnot, Jean-Pierre

    2018-07-01

    We propose here a new discretization method for a class of continuum gauge theories which action functionals are polynomials of the curvature. Based on the notion of holonomy, this discretization procedure appears gauge-invariant for discretized analogs of Yang-Mills theories, and hence gauge-fixing is fully rigorous for these discretized action functionals. Heuristic parts are forwarded to the quantization procedure via Feynman integrals and the meaning of the heuristic infinite dimensional Lebesgue integral is questioned.

  1. Poisson sigma models, reduction and nonlinear gauge theories

    NASA Astrophysics Data System (ADS)

    Signori, Daniele

    This dissertation comprises two main lines of research. Firstly, we study non-linear gauge theories for principal bundles, where the structure group is replaced by a Lie groupoid. We follow the approach of Moerdijk-Mrcun and establish its relation with the existing physics literature. In particular, we derive a new formula for the gauge transformation which closely resembles and generalizes the classical formulas found in Yang Mills gauge theories. Secondly, we give a field theoretic interpretation of the of the BRST (Becchi-Rouet-Stora-Tyutin) and BFV (Batalin-Fradkin-Vilkovisky) methods for the reduction of coisotropic submanifolds of Poisson manifolds. The generalized Poisson sigma models that we define are related to the quantization deformation problems of coisotropic submanifolds using homotopical algebras.

  2. BRST detour quantization: Generating gauge theories from constraints

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cherney, D.; Waldron, A.; Latini, E.

    2010-06-15

    We present the Becchi-Rouet-Stora-Tyutin (BRST) cohomologies of a class of constraint (super) Lie algebras as detour complexes. By interpreting the components of detour complexes as gauge invariances, Bianchi identities, and equations of motion, we obtain a large class of new gauge theories. The pivotal new machinery is a treatment of the ghost Hilbert space designed to manifest the detour structure. Along with general results, we give details for three of these theories which correspond to gauge invariant spinning particle models of totally symmetric, antisymmetric, and Kaehler antisymmetric forms. In particular, we give details of our recent announcement of a (p,q)-formmore » Kaehler electromagnetism. We also discuss how our results generalize to other special geometries.« less

  3. Dark Gauge U(1) symmetry for an alternative left-right model

    NASA Astrophysics Data System (ADS)

    Kownacki, Corey; Ma, Ernest; Pollard, Nicholas; Popov, Oleg; Zakeri, Mohammadreza

    2018-02-01

    An alternative left-right model of quarks and leptons, where the SU(2)_R lepton doublet (ν ,l)_R is replaced with (n,l)_R so that n_R is not the Dirac mass partner of ν _L, has been known since 1987. Previous versions assumed a global U(1)_S symmetry to allow n to be identified as a dark-matter fermion. We propose here a gauge extension by the addition of extra fermions to render the model free of gauge anomalies, and just one singlet scalar to break U(1)_S. This results in two layers of dark matter, one hidden behind the other.

  4. Perturbative quantum gravity as a double copy of gauge theory.

    PubMed

    Bern, Zvi; Carrasco, John Joseph M; Johansson, Henrik

    2010-08-06

    In a previous paper we observed that (classical) tree-level gauge-theory amplitudes can be rearranged to display a duality between color and kinematics. Once this is imposed, gravity amplitudes are obtained using two copies of gauge-theory diagram numerators. Here we conjecture that this duality persists to all quantum loop orders and can thus be used to obtain multiloop gravity amplitudes easily from gauge-theory ones. As a nontrivial test, we show that the three-loop four-point amplitude of N=4 super-Yang-Mills theory can be arranged into a form satisfying the duality, and by taking double copies of the diagram numerators we obtain the corresponding amplitude of N=8 supergravity. We also remark on a nonsupersymmetric two-loop test based on pure Yang-Mills theory resulting in gravity coupled to an antisymmetric tensor and dilaton.

  5. A study of how the particle spectra of SU(N) gauge theories with a fundamental Higgs emerge

    NASA Astrophysics Data System (ADS)

    Törek, Pascal; Maas, Axel; Sondenheimer, René

    2018-03-01

    In gauge theories, the physical, experimentally observable spectrum consists only of gauge-invariant states. In the standard model the Fröhlich-Morchio-Strocchi mechanism shows that these states can be adequately mapped to the gauge-dependent elementary W, Z, Higgs, and fermions. In theories with a more general gauge group and Higgs sector, appearing in various extensions of the standard model, this has not to be the case. In this work we determine analytically the physical spectrum of SU(N > 2) gauge theories with a Higgs field in the fundamental representation. We show that discrepancies between the spectrum predicted by perturbation theory and the observable physical spectrum arise. We confirm these analytic findings with lattice simulations for N = 3.

  6. Masslessness of ghosts in equivariantly gauge-fixed Yang-Mills theories

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Golterman, Maarten; Zimmerman, Leah

    2005-06-01

    We show that the one-loop ghost self-energy in an equivariantly gauge-fixed Yang-Mills theory vanishes at zero momentum. A ghost mass is forbidden by equivariant BRST symmetry, and our calculation confirms this explicitly. The four-ghost self interaction which appears in the equivariantly gauge-fixed Yang-Mills theory is needed in order to obtain this result.

  7. Triality in little string theories

    NASA Astrophysics Data System (ADS)

    Bastian, Brice; Hohenegger, Stefan; Iqbal, Amer; Rey, Soo-Jong

    2018-02-01

    We study a class of eight-supercharge little string theories (LSTs) on the world volume of N M5-branes with transverse space S1×(C2/ZM). These M-brane configurations compactified on a circle are dual to M D5-branes intersecting N NS5-branes on T2×R7 ,1 as well as to F-theory compactified on a toric Calabi-Yau threefold XN ,M. We argue that the Kähler cone of XN ,M admits three regions associated with weakly coupled quiver gauge theories of gauge groups [U (N )]M,[U (M )]N, and [U (N/M k )]k where k =gcd (N ,M ). These provide low-energy descriptions of different LSTs. The duality between the first two gauge theories is well known and is a consequence of the S-duality between D5- and NS5-branes or the T-duality of the LSTs. The triality involving the third gauge theory is new, and we demonstrate it using several examples. We also discuss implications of this triality for the W-algebras associated with the Alday-Gaiotto-Tachikawa dual theories.

  8. Boundaries, mirror symmetry, and symplectic duality in 3d N = 4 gauge theory

    DOE PAGES

    Bullimore, Mathew; Dimofte, Tudor; Gaiotto, Davide; ...

    2016-10-20

    We introduce several families of N = (2, 2) UV boundary conditions in 3d N=4 gauge theories and study their IR images in sigma-models to the Higgs and Coulomb branches. In the presence of Omega deformations, a UV boundary condition defines a pair of modules for quantized algebras of chiral Higgs- and Coulomb-branch operators, respectively, whose structure we derive. In the case of abelian theories, we use the formalism of hyperplane arrangements to make our constructions very explicit, and construct a half-BPS interface that implements the action of 3d mirror symmetry on gauge theories and boundary conditions. Finally, by studyingmore » two-dimensional compactifications of 3d N = 4 gauge theories and their boundary conditions, we propose a physical origin for symplectic duality $-$ an equivalence of categories of modules associated to families of Higgs and Coulomb branches that has recently appeared in the mathematics literature, and generalizes classic results on Koszul duality in geometric representation theory. We make several predictions about the structure of symplectic duality, and identify Koszul duality as a special case of wall crossing.« less

  9. Scalar field collapse in gauge theory gravity

    NASA Astrophysics Data System (ADS)

    Harke, Richard Eugene

    A brief introduction to gravitational collapse in General Relativity is given. Then critical phenomena in the collapse of a massless scalar field as discovered by Choptuik are described. My own work in this area is described and some results are presented. Gauge Theory Gravity and its mathematical formalism, geometric algebra are introduced. Because geometric algebra is not widely known, a detailed and rigorous introduction to it is provided. The basic principles of Gauge Theory Gravity (GTG) are described and a derivation of the field equations is presented. An appropriate Lagrangian for the scalar field in GTG is introduced and the energy tensor is derived by the usual variational process. The equations of motion for the scalar field are derived for a spherically symmetric space. Finite difference approximations to these equations are constructed and simulations of gravitational collapse are run on a computer. Graphical results are presented. An unexpected phenomenon is found in which the passage of the scalar field leaves a persistent change in the gravitational gauge field.

  10. Spontaneous parity violation and SUSY strong gauge theory

    NASA Astrophysics Data System (ADS)

    Haba, Naoyuki; Ohki, Hiroshi

    2012-07-01

    We suggest simple models of spontaneous parity violation in supersymmetric strong gauge theory. We focus on left-right symmetric model and investigate vacuum with spontaneous parity violation. Non-perturbative effects are calculable in supersymmetric gauge theory, and we suggest new models. Our models show confinement, so that we try to understand them by using a dual description of the theory. The left-right symmetry breaking and electroweak symmetry breaking are simultaneously occurred with the suitable energy scale hierarchy. This structure has several advantages compared to the MSSM. The scale of the Higgs mass (left-right breaking scale) and that of VEVs are different, so the SUSY little hierarchy problems are absent. The second model also induces spontaneous supersymmetry breaking [1].

  11. Gauge symmetries of the free bosonic string field theory

    NASA Astrophysics Data System (ADS)

    Neveu, A.; Schwarz, J.; West, P. C.

    1985-12-01

    The gauge covariant local formulations of free bosonic string theories that contained a finite number of supplementary fields are extended to include an infinite number of supplementary fields. These new formulations allow the generators of the Virasoro algebra to appear on a more equal footing. Permanent address: King's College, Physics Department, London WC2R 2LS, UK.

  12. The energy-momentum tensor(s) in classical gauge theories

    DOE PAGES

    Blaschke, Daniel N.; Gieres, François; Reboud, Méril; ...

    2016-07-12

    We give an introduction to, and review of, the energy-momentum tensors in classical gauge field theories in Minkowski space, and to some extent also in curved space-time. For the canonical energy-momentum tensor of non-Abelian gauge fields and of matter fields coupled to such fields, we present a new and simple improvement procedure based on gauge invariance for constructing a gauge invariant, symmetric energy-momentum tensor. In conclusion, the relationship with the Einstein-Hilbert tensor following from the coupling to a gravitational field is also discussed.

  13. Perturbative Quantum Gauge Theories on Manifolds with Boundary

    NASA Astrophysics Data System (ADS)

    Cattaneo, Alberto S.; Mnev, Pavel; Reshetikhin, Nicolai

    2018-01-01

    This paper introduces a general perturbative quantization scheme for gauge theories on manifolds with boundary, compatible with cutting and gluing, in the cohomological symplectic (BV-BFV) formalism. Explicit examples, like abelian BF theory and its perturbations, including nontopological ones, are presented.

  14. Gauge theories with time dependent couplings and their cosmological duals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Awad, Adel; Center for Theoretical Physics, British University of Egypt, Sherouk City 11837, P.O. Box 43; Das, Sumit R.

    2009-02-15

    We consider the N=4 super Yang-Mills theory in flat 3+1-dimensional space-time with a time dependent coupling constant which vanishes at t=0, like g{sub YM}{sup 2}=t{sup p}. In an analogous quantum mechanics toy model we find that the response is singular. The energy diverges at t=0, for a generic state. In addition, if p>1 the phase of the wave function has a wildly oscillating behavior, which does not allow it to be continued past t=0. A similar effect would make the gauge theory singular as well, though nontrivial effects of renormalization could tame this singularity and allow a smooth continuation beyondmore » t=0. The gravity dual in some cases is known to be a time dependent cosmology which exhibits a spacelike singularity at t=0. Our results, if applicable in the gauge theory for the case of the vanishing coupling, imply that the singularity is a genuine sickness and does not admit a meaningful continuation. When the coupling remains nonzero and becomes small at t=0, the curvature in the bulk becomes of order string scale. The gauge theory now admits a time evolution beyond this point. In this case, a finite amount of energy is produced which possibly thermalizes and leads to a black hole in the bulk.« less

  15. Heavy-lifting of gauge theories by cosmic inflation

    NASA Astrophysics Data System (ADS)

    Kumar, Soubhik; Sundrum, Raman

    2018-05-01

    Future measurements of primordial non-Gaussianity can reveal cosmologically produced particles with masses of order the inflationary Hubble scale and their interactions with the inflaton, giving us crucial insights into the structure of fundamental physics at extremely high energies. We study gauge-Higgs theories that may be accessible in this regime, carefully imposing the constraints of gauge symmetry and its (partial) Higgsing. We distinguish two types of Higgs mechanisms: (i) a standard one in which the Higgs scale is constant before and after inflation, where the particles observable in non-Gaussianities are far heavier than can be accessed by laboratory experiments, perhaps associated with gauge unification, and (ii) a "heavy-lifting" mechanism in which couplings to curvature can result in Higgs scales of order the Hubble scale during inflation while reducing to far lower scales in the current era, where they may now be accessible to collider and other laboratory experiments. In the heavy-lifting option, renormalization-group running of terrestrial measurements yield predictions for cosmological non-Gaussianities. If the heavy-lifted gauge theory suffers a hierarchy problem, such as does the Standard Model, confirming such predictions would demonstrate a striking violation of the Naturalness Principle. While observing gauge-Higgs sectors in non-Gaussianities will be challenging given the constraints of cosmic variance, we show that it may be possible with reasonable precision given favorable couplings to the inflationary dynamics.

  16. A BRST gauge-fixing procedure for Yang Mills theory on sphere

    NASA Astrophysics Data System (ADS)

    Banerjee, Rabin; Deguchi, Shinichi

    2006-01-01

    A gauge-fixing procedure for the Yang-Mills theory on an n-dimensional sphere (or a hypersphere) is discussed in a systematic manner. We claim that Adler's gauge-fixing condition used in massless Euclidean QED on a hypersphere is not conventional because of the presence of an extra free index, and hence is unfavorable for the gauge-fixing procedure based on the BRST invariance principle (or simply BRST gauge-fixing procedure). Choosing a suitable gauge condition, which is proved to be equivalent to a generalization of Adler's condition, we apply the BRST gauge-fixing procedure to the Yang-Mills theory on a hypersphere to obtain consistent results. Field equations for the Yang-Mills field and associated fields are derived in manifestly O (n + 1) covariant or invariant forms. In the large radius limit, these equations reproduce the corresponding field equations defined on the n-dimensional flat space.

  17. Running coupling from gluon and ghost propagators in the Landau gauge: Yang-Mills theories with adjoint fermions

    NASA Astrophysics Data System (ADS)

    Bergner, Georg; Piemonte, Stefano

    2018-04-01

    Non-Abelian gauge theories with fermions transforming in the adjoint representation of the gauge group (AdjQCD) are a fundamental ingredient of many models that describe the physics beyond the Standard Model. Two relevant examples are N =1 supersymmetric Yang-Mills (SYM) theory and minimal walking technicolor, which are gauge theories coupled to one adjoint Majorana and two adjoint Dirac fermions, respectively. While confinement is a property of N =1 SYM, minimal walking technicolor is expected to be infrared conformal. We study the propagators of ghost and gluon fields in the Landau gauge to compute the running coupling in the MiniMom scheme. We analyze several different ensembles of lattice Monte Carlo simulations for the SU(2) adjoint QCD with Nf=1 /2 ,1 ,3 /2 , and 2 Dirac fermions. We show how the running of the coupling changes as the number of interacting fermions is increased towards the conformal window.

  18. Hidden gauged U (1 ) model: Unifying scotogenic neutrino and flavor dark matter

    NASA Astrophysics Data System (ADS)

    Yu, Jiang-Hao

    2016-06-01

    In both scotogenic neutrino and flavor dark matter models, the dark sector communicates with the standard model fermions via Yukawa portal couplings. We propose an economic scenario where the scotogenic neutrino and a flavored mediator share the same inert Higgs doublet and all are charged under a hidden gauged U (1 ) symmetry. The dark Z2 symmetry in the dark sector is regarded as the remnant of this hidden U (1 ) symmetry breaking. In particular, we investigate a dark U (1 )D [and also U (1 )B-L] model which unifies the scotogenic neutrino and top-flavored mediator. Thus dark tops and dark neutrinos are the standard model fermion partners, and the dark matter could be the inert Higgs or the lightest dark neutrino. We note that this model has rich collider signatures on dark tops, the inert Higgs and the Z' gauge boson. Moreover, the scalar associated to the U (1 )D [and also U (1 )B -L ] symmetry breaking could explain the 750 GeV diphoton excess reported by ATLAS and CMS recently.

  19. Holographic studies of thermal gauge theories with flavour

    NASA Astrophysics Data System (ADS)

    Thomson, Rowan F. M.

    The AdS/CFT correspondence and its extensions to more general gauge/gravity dualities have provided a powerful framework for the study of strongly coupled gauge theories. This thesis explores properties of a large class of thermal strongly coupled gauge theories using the gravity dual. In order to bring the holographic framework closer to Quantum Chromodynamics (QCD), we study theories with matter in the fundamental representation. In particular, we focus on the holographic dual of SU ( N c ) supersymmetric Yang-Mills theory coupled to N f = N c flavours of fundamental matter at finite temperature, which is realised as N f Dq-brane probes in the near horizon (black hole) geometry of N c black Dp-branes. We explore many aspects of these Dp/Dq brane systems, often focussing on the D3/D7 brane system which is dual to a four dimensional gauge theory. We study the thermodynamics of the Dq-brane probes in the black hole geometry. At low temperature, the branes sit outside the black hole and the meson spectrum is discrete and possesses a mass gap. As the temperature increases, the branes approach a critical solution. Eventually, they fall into the horizon and a phase transition occurs. At large N c and large 't Hooft coupling, we show that this phase transition is always first order. We calculate the free energy, entropy and energy densities, as well as the speed of sound in these systems. We compute the meson spectrum for brane embeddings outside the horizon and find that tachyonic modes appear where this phase is expected to be unstable from thermodynamic considerations. We study the system at non-zero baryon density n b and find that there is a line of phase transitions for small n b , terminating at a critical point with finite n b . We demonstrate that, to leading order in N f / N c , the viscosity to entropy density ratio in these theories saturates the conjectured universal bound e/ S >= 1/4p. Finally, we compute spectral functions and diffusion constants for

  20. Including gauge-group parameters into the theory of interactions: an alternative mass-generating mechanism for gauge fields

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aldaya, V.; Lopez-Ruiz, F. F.; Sanchez-Sastre, E.

    2006-11-03

    We reformulate the gauge theory of interactions by introducing the gauge group parameters into the model. The dynamics of the new 'Goldstone-like' bosons is accomplished through a non-linear {sigma}-model Lagrangian. They are minimally coupled according to a proper prescription which provides mass terms to the intermediate vector bosons without spoiling gauge invariance. The present formalism is explicitly applied to the Standard Model of electroweak interactions.

  1. Highly effective action from large N gauge fields

    NASA Astrophysics Data System (ADS)

    Yang, Hyun Seok

    2014-10-01

    Recently Schwarz put forward a conjecture that the world-volume action of a probe D3-brane in an AdS5×S5 background of type IIB superstring theory can be reinterpreted as the highly effective action (HEA) of four-dimensional N =4 superconformal field theory on the Coulomb branch. We argue that the HEA can be derived from the noncommutative (NC) field theory representation of the AdS/CFT correspondence and the Seiberg-Witten (SW) map defining a spacetime field redefinition between ordinary and NC gauge fields. It is based only on the well-known facts that the master fields of large N matrices are higher-dimensional NC U(1) gauge fields and the SW map is a local coordinate transformation eliminating U(1) gauge fields known as the Darboux theorem in symplectic geometry.

  2. Gauge U (1) dark symmetry and radiative light fermion masses

    DOE PAGES

    Kownacki, Corey; Ma, Ernest

    2016-06-22

    A gauge U (1) family symmetry is proposed, spanning the quarks and leptons as well as particles of the dark sector. The breaking of U (1) to Z(2) divides the two sectors and generates one-loop radiative masses for the first two families of quarks and leptons, as well as all three neutrinos. We study the phenomenological implications of this new connection between family symmetry and dark matter. In particular, a scalar or pseudoscalar particle associated with this U (1) breaking may be identified with the 750 GeV diphoton resonance recently observed at the Large Hadron Collider (LHC).

  3. Comment on 'Noncommutative gauge theories and Lorentz symmetry'

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Iorio, Alfredo

    2008-02-15

    We show that Lorentz symmetry is generally absent for noncommutative (Abelian) gauge theories and obtain a compact formula for the divergence of the Noether currents that allows a thorough study of this instance of symmetry violation. We use that formula to explain why the results of ''Noncommutative gauge theories and Lorentz symmetry'', Phys. Rev. D 70, 125004 (2004) by R. Banerjee, B. Chakraborty, and K. Kumar, interpreted there as new criteria for Lorentz invariance, are in fact just a particular case of the general expression for Lorentz violation obtained here. Finally, it is suggested that the divergence formula should holdmore » in a vast class of cases, such as, for instance, the standard model extension.« less

  4. New U(1) gauge model of radiative lepton masses with sterile neutrino and dark matter

    DOE PAGES

    Adhikari, Rathin; Borah, Debasish; Ma, Ernest

    2016-02-23

    Here, an anomaly-free U(1) gauge extension of the standard model (SM) is presented. Only one Higgs doublet with a nonzero vacuum expectation is required as in the SM. New fermions and scalars as well as all SM particles transform nontrivially under this U(1), resulting in a model of three active neutrinos and one sterile neutrino, all acquiring radiative masses. Charged-lepton masses are also radiative as well as the mixing between active and sterile neutrinos. At the same time, a residual Z 2 symmetry of the U(1) gauge symmetry remains exact, allowing for the existence of dark matter.

  5. Gerbes, M5-Brane Anomalies and E8 Gauge Theory

    NASA Astrophysics Data System (ADS)

    Aschieri, Paolo; Jurco, Branislav

    2004-10-01

    Abelian gerbes and twisted bundles describe the topology of the NS 3-form gauge field strength H. We review how they have been usefully applied to study and resolve global anomalies in open string theory. Abelian 2-gerbes and twisted nonabelian gerbes describe the topology of the 4-form field strength G of M-theory. We show that twisted nonabelian gerbes are relevant in the study and resolution of global anomalies of multiple coinciding M5-branes. Global anomalies for one M5-brane have been studied by Witten and by Diaconescu, Freed and Moore. The structure and the differential geometry of twisted nonabelian gerbes (i.e. modules for 2-gerbes) is defined and studied. The nonabelian 2-form gauge potential living on multiple coinciding M5-branes arises as curving (curvature) of twisted nonabelian gerbes. The nonabelian group is in general tilde OmegaE8, the central extension of the E8 loop group. The twist is in general necessary to cancel global anomalies due to the nontriviality of the 11-dimensional 4-form field strength G and due to the possible torsion present in the cycles the M5-branes wrap. Our description of M5-branes global anomalies leads to the D4-branes one upon compactification of M-theory to Type IIA theory.

  6. Pair production processes and flavor in gauge-invariant perturbation theory

    NASA Astrophysics Data System (ADS)

    Egger, Larissa; Maas, Axel; Sondenheimer, René

    2017-12-01

    Gauge-invariant perturbation theory is an extension of ordinary perturbation theory which describes strictly gauge-invariant states in theories with a Brout-Englert-Higgs effect. Such gauge-invariant states are composite operators which have necessarily only global quantum numbers. As a consequence, flavor is exchanged for custodial quantum numbers in the Standard Model, recreating the fermion spectrum in the process. Here, we study the implications of such a description, possibly also for the generation structure of the Standard Model. In particular, this implies that scattering processes are essentially bound-state-bound-state interactions, and require a suitable description. We analyze the implications for the pair-production process e+e-→f¯f at a linear collider to leading order. We show how ordinary perturbation theory is recovered as the leading contribution. Using a PDF-type language, we also assess the impact of sub-leading contributions. To lowest order, we find that the result is mainly influenced by how large the contribution of the Higgs at large x is. This gives an interesting, possibly experimentally testable, scenario for the formal field theory underlying the electroweak sector of the Standard Model.

  7. Localization of Gauge Theory on a Four-Sphere and Supersymmetric Wilson Loops

    NASA Astrophysics Data System (ADS)

    Pestun, Vasily

    2012-07-01

    We prove conjecture due to Erickson-Semenoff-Zarembo and Drukker-Gross which relates supersymmetric circular Wilson loop operators in the {N=4} supersymmetric Yang-Mills theory with a Gaussian matrix model. We also compute the partition function and give a new matrix model formula for the expectation value of a supersymmetric circular Wilson loop operator for the pure {N=2} and the {N=2^*} supersymmetric Yang-Mills theory on a four-sphere. A four-dimensional {N=2} superconformal gauge theory is treated similarly.

  8. An exact elliptic superpotential for N=1 ∗ deformations of finite N=2 gauge theories

    NASA Astrophysics Data System (ADS)

    Dorey, Nick; Hollowood, Timothy J.; Kumar, S. Prem

    2002-03-01

    We study relevant deformations of the N=2 superconformal theory on the world-volume of N D3-branes at an Ak-1 singularity. In particular, we determine the vacuum structure of the mass-deformed theory with N=1 supersymmetry and show how the different vacua are permuted by an extended duality symmetry. We then obtain exact, modular covariant formulae (for all k, N and arbitrary gauge couplings) for the holomorphic observables in the massive vacua in two different ways: by lifting to M-theory, and by compactification to three dimensions and subsequent use of mirror symmetry. In the latter case, we find an exact superpotential for the model which coincides with a certain combination of the quadratic Hamiltonians of the spin generalization of the elliptic Calogero-Moser integrable system.

  9. Real-time dynamics of lattice gauge theories with a few-qubit quantum computer

    NASA Astrophysics Data System (ADS)

    Martinez, Esteban A.; Muschik, Christine A.; Schindler, Philipp; Nigg, Daniel; Erhard, Alexander; Heyl, Markus; Hauke, Philipp; Dalmonte, Marcello; Monz, Thomas; Zoller, Peter; Blatt, Rainer

    2016-06-01

    Gauge theories are fundamental to our understanding of interactions between the elementary constituents of matter as mediated by gauge bosons. However, computing the real-time dynamics in gauge theories is a notorious challenge for classical computational methods. This has recently stimulated theoretical effort, using Feynman’s idea of a quantum simulator, to devise schemes for simulating such theories on engineered quantum-mechanical devices, with the difficulty that gauge invariance and the associated local conservation laws (Gauss laws) need to be implemented. Here we report the experimental demonstration of a digital quantum simulation of a lattice gauge theory, by realizing (1 + 1)-dimensional quantum electrodynamics (the Schwinger model) on a few-qubit trapped-ion quantum computer. We are interested in the real-time evolution of the Schwinger mechanism, describing the instability of the bare vacuum due to quantum fluctuations, which manifests itself in the spontaneous creation of electron-positron pairs. To make efficient use of our quantum resources, we map the original problem to a spin model by eliminating the gauge fields in favour of exotic long-range interactions, which can be directly and efficiently implemented on an ion trap architecture. We explore the Schwinger mechanism of particle-antiparticle generation by monitoring the mass production and the vacuum persistence amplitude. Moreover, we track the real-time evolution of entanglement in the system, which illustrates how particle creation and entanglement generation are directly related. Our work represents a first step towards quantum simulation of high-energy theories using atomic physics experiments—the long-term intention is to extend this approach to real-time quantum simulations of non-Abelian lattice gauge theories.

  10. Dynamical gauge effects in an open quantum network

    NASA Astrophysics Data System (ADS)

    Zhao, Jianshi; Price, Craig; Liu, Qi; Gemelke, Nathan

    2016-05-01

    We describe new experimental techniques for simulation of high-energy field theories based on an analogy between open thermodynamic systems and effective dynamical gauge-fields following SU(2) × U(1) Yang-Mills models. By coupling near-resonant laser-modes to atoms moving in a disordered optical environment, we create an open system which exhibits a non-equilibrium phase transition between two steady-state behaviors, exhibiting scale-invariant behavior near the transition. By measuring transport of atoms through the disordered network, we observe two distinct scaling behaviors, corresponding to the classical and quantum limits for the dynamical gauge field. This behavior is loosely analogous to dynamical gauge effects in quantum chromodynamics, and can mapped onto generalized open problems in theoretical understanding of quantized non-Abelian gauge theories. Additional, the scaling behavior can be understood from the geometric structure of the gauge potential and linked to the measure of information in the local disordered potential, reflecting an underlying holographic principle. We acknowledge support from NSF Award No.1068570, and the Charles E. Kaufman Foundation.

  11. Hadron masses in a gauge theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    De Rujula, A.; Georgi, H.; Glashow, S.L.

    1975-07-01

    We explore the implications for hadron spectroscopy of the ''standard'' gauge model of weak, electromagnetic, and strong interactions. The model involves four types of fractionally charged quarks, each in three colors, coupling to massless gauge gluons. The quarks are confined within colorless hadrons by a long-range spin-independent force realizing infrared slavery. We use the asymptotic freedom of the model to argue that for the calculation of hadron masses, the short-range quark-quark interaction may be taken to be Coulomb- like. We rederive many successful quark-model mass relations for the low-lying hadrons. Because a specific interaction and symmetry-breaking mechanism are forced onmore » us by the underlying renormalizable gauge field theory, we also obtain new mass relations. They are well satisfied. We develop a qualitative understanding of many features of the hadron mass spectrum, such as the origin and sign of the $Sigma$-$lambda$ mass splitting. Interpreting the newly discovered narrow boson resonances as states of charmonium, we use the model to predict the masses of charmed mesons and baryons.« less

  12. Classical probes of string/gauge theory duality

    NASA Astrophysics Data System (ADS)

    Ishizeki, Riei

    The AdS/CFT correspondence has played an important role in the recent development of string theory. The reason is that it proposes a description of certain gauge theories in terms of string theory. It is such that simple string theory computations give information about the strong coupling regime of the gauge theory. Vice versa, gauge theory computations give information about string theory and quantum gravity. Although much is known about AdS/CFT, the precise map between the two sides of the correspondence is not completely understood. In the unraveling of such map classical string solutions play a vital role. In this thesis, several classical string solutions are proposed to help understand the AdS/CFT duality. First, rigidly rotating strings on a two-sphere are studied. Taking special limits of such solutions leads to two cases: the already known giant magnon solution, and a new solution which we call the single spike solution. Next, we compute the scattering phase shift of the single spike solutions and compare the result with the giant magnon solutions. Intriguingly, the results are the same up to non-logarithmic terms, indicating that the single spike solution should have the same rich spin chain structure as the giant magnon solution. Afterward, we consider open string solutions ending on the boundary of AdS5. The lines traced by the ends of such open strings can be viewed as Wilson loops in N = 4 SYM theory. After applying an inversion transformation, the open Wilson loops become closed Wilson loops whose expectation value is consistent with previously conjectured results. Next, several Wilson loops for N = 4 SYM in an AdS5 pp-wave background are considered and translated to the pure AdS 5 background and their interpretation as forward quark-gluon scattering is suggested. In the last part of this thesis, a class of classical solutions for closed strings moving in AdS3 x S 1 ⊂ AdS5 x S5 with energy E and spin S in AdS3 and angular momentum J and winding m

  13. From 6D superconformal field theories to dynamic gauged linear sigma models

    NASA Astrophysics Data System (ADS)

    Apruzzi, Fabio; Hassler, Falk; Heckman, Jonathan J.; Melnikov, Ilarion V.

    2017-09-01

    Compactifications of six-dimensional (6D) superconformal field theories (SCFTs) on four- manifolds generate a large class of novel two-dimensional (2D) quantum field theories. We consider in detail the case of the rank-one simple non-Higgsable cluster 6D SCFTs. On the tensor branch of these theories, the gauge group is simple and there are no matter fields. For compactifications on suitably chosen Kähler surfaces, we present evidence that this provides a method to realize 2D SCFTs with N =(0 ,2 ) supersymmetry. In particular, we find that reduction on the tensor branch of the 6D SCFT yields a description of the same 2D fixed point that is described in the UV by a gauged linear sigma model (GLSM) in which the parameters are promoted to dynamical fields, that is, a "dynamic GLSM" (DGLSM). Consistency of the model requires the DGLSM to be coupled to additional non-Lagrangian sectors obtained from reduction of the antichiral two-form of the 6D theory. These extra sectors include both chiral and antichiral currents, as well as spacetime filling noncritical strings of the 6D theory. For each candidate 2D SCFT, we also extract the left- and right-moving central charges in terms of data of the 6D SCFT and the compactification manifold.

  14. Quantization of higher abelian gauge theory in generalized differential cohomology

    NASA Astrophysics Data System (ADS)

    Szabo, R.

    We review and elaborate on some aspects of the quantization of certain classes of higher abelian gauge theories using techniques of generalized differential cohomology. Particular emphasis is placed on the examples of generalized Maxwell theory and Cheeger-Simons cohomology, and of Ramond-Ramond fields in Type II superstring theory and differential K-theory.

  15. Gauge choices and entanglement entropy of two dimensional lattice gauge fields

    NASA Astrophysics Data System (ADS)

    Yang, Zhi; Hung, Ling-Yan

    2018-03-01

    In this paper, we explore the question of how different gauge choices in a gauge theory affect the tensor product structure of the Hilbert space in configuration space. In particular, we study the Coulomb gauge and observe that the naive gauge potential degrees of freedom cease to be local operators as soon as we impose the Dirac brackets. We construct new local set of operators and compute the entanglement entropy according to this algebra in 2 + 1 dimensions. We find that our proposal would lead to an entanglement entropy that behave very similar to a single scalar degree of freedom if we do not include further centers, but approaches that of a gauge field if we include non-trivial centers. We explore also the situation where the gauge field is Higgsed, and construct a local operator algebra that again requires some deformation. This should give us some insight into interpreting the entanglement entropy in generic gauge theories and perhaps also in gravitational theories.

  16. Gauge backgrounds and zero-mode counting in F-theory

    NASA Astrophysics Data System (ADS)

    Bies, Martin; Mayrhofer, Christoph; Weigand, Timo

    2017-11-01

    Computing the exact spectrum of charged massless matter is a crucial step towards understanding the effective field theory describing F-theory vacua in four dimensions. In this work we further develop a coherent framework to determine the charged massless matter in F-theory compactified on elliptic fourfolds, and demonstrate its application in a concrete example. The gauge background is represented, via duality with M-theory, by algebraic cycles modulo rational equivalence. Intersection theory within the Chow ring allows us to extract coherent sheaves on the base of the elliptic fibration whose cohomology groups encode the charged zero-mode spectrum. The dimensions of these cohomology groups are computed with the help of modern techniques from algebraic geometry, which we implement in the software gap. We exemplify this approach in models with an Abelian and non-Abelian gauge group and observe jumps in the exact massless spectrum as the complex structure moduli are varied. An extended mathematical appendix gives a self-contained introduction to the algebro-geometric concepts underlying our framework.

  17. Confinement, holonomy, and correlated instanton-dyon ensemble: SU(2) Yang-Mills theory

    NASA Astrophysics Data System (ADS)

    Lopez-Ruiz, Miguel Angel; Jiang, Yin; Liao, Jinfeng

    2018-03-01

    The mechanism of confinement in Yang-Mills theories remains a challenge to our understanding of nonperturbative gauge dynamics. While it is widely perceived that confinement may arise from chromomagnetically charged gauge configurations with nontrivial topology, it is not clear what types of configurations could do that and how, in pure Yang-Mills and QCD-like (nonsupersymmetric) theories. Recently, a promising approach has emerged, based on statistical ensembles of dyons/anti-dyons that are constituents of instanton/anti-instanton solutions with nontrivial holonomy where the holonomy plays a vital role as an effective "Higgsing" mechanism. We report a thorough numerical investigation of the confinement dynamics in S U (2 ) Yang-Mills theory by constructing such a statistical ensemble of correlated instanton-dyons.

  18. Five-dimensional gauge theory and compactification on a torus

    NASA Astrophysics Data System (ADS)

    Haghighat, Babak; Vandoren, Stefan

    2011-09-01

    We study five-dimensional minimally supersymmetric gauge theory compactified on a torus down to three dimensions, and its embedding into string/M-theory using geometric engineering. The moduli space on the Coulomb branch is hyperkähler equipped with a metric with modular transformation properties. We determine the one-loop corrections to the metric and show that they can be interpreted as worldsheet and D1-brane instantons in type IIB string theory. Furthermore, we analyze instanton corrections coming from the solitonic BPS magnetic string wrapped over the torus. In particular, we show how to compute the path-integral for the zero-modes from the partition function of the M5 brane, or, using a 2d/4d correspondence, from the partition function of N=4 SYM theory on a Hirzebruch surface.

  19. Non Abelian T-duality in Gauged Linear Sigma Models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bizet, Nana Cabo; Martínez-Merino, Aldo; Zayas, Leopoldo A. Pando

    Abelian T-duality in Gauged Linear Sigma Models (GLSM) forms the basis of the physical understanding of Mirror Symmetry as presented by Hori and Vafa. We consider an alternative formulation of Abelian T-duality on GLSM’s as a gauging of a global U(1) symmetry with the addition of appropriate Lagrange multipliers. For GLSMs with Abelian gauge groups and without superpotential we reproduce the dual models introduced by Hori and Vafa. We extend the construction to formulate non-Abelian T-duality on GLSMs with global non-Abelian symmetries. The equations of motion that lead to the dual model are obtained for a general group, they dependmore » in general on semi-chiral superfields; for cases such as SU(2) they depend on twisted chiral superfields. We solve the equations of motion for an SU(2) gauged group with a choice of a particular Lie algebra direction of the vector superfield. This direction covers a non-Abelian sector that can be described by a family of Abelian dualities. The dual model Lagrangian depends on twisted chiral superfields and a twisted superpotential is generated. We explore some non-perturbative aspects by making an Ansatz for the instanton corrections in the dual theories. We verify that the effective potential for the U(1) field strength in a fixed configuration on the original theory matches the one of the dual theory. Imposing restrictions on the vector superfield, more general non-Abelian dual models are obtained. We analyze the dual models via the geometry of their susy vacua.« less

  20. Non Abelian T-duality in Gauged Linear Sigma Models

    NASA Astrophysics Data System (ADS)

    Bizet, Nana Cabo; Martínez-Merino, Aldo; Zayas, Leopoldo A. Pando; Santos-Silva, Roberto

    2018-04-01

    Abelian T-duality in Gauged Linear Sigma Models (GLSM) forms the basis of the physical understanding of Mirror Symmetry as presented by Hori and Vafa. We consider an alternative formulation of Abelian T-duality on GLSM's as a gauging of a global U(1) symmetry with the addition of appropriate Lagrange multipliers. For GLSMs with Abelian gauge groups and without superpotential we reproduce the dual models introduced by Hori and Vafa. We extend the construction to formulate non-Abelian T-duality on GLSMs with global non-Abelian symmetries. The equations of motion that lead to the dual model are obtained for a general group, they depend in general on semi-chiral superfields; for cases such as SU(2) they depend on twisted chiral superfields. We solve the equations of motion for an SU(2) gauged group with a choice of a particular Lie algebra direction of the vector superfield. This direction covers a non-Abelian sector that can be described by a family of Abelian dualities. The dual model Lagrangian depends on twisted chiral superfields and a twisted superpotential is generated. We explore some non-perturbative aspects by making an Ansatz for the instanton corrections in the dual theories. We verify that the effective potential for the U(1) field strength in a fixed configuration on the original theory matches the one of the dual theory. Imposing restrictions on the vector superfield, more general non-Abelian dual models are obtained. We analyze the dual models via the geometry of their susy vacua.

  1. Non Abelian T-duality in Gauged Linear Sigma Models

    DOE PAGES

    Bizet, Nana Cabo; Martínez-Merino, Aldo; Zayas, Leopoldo A. Pando; ...

    2018-04-01

    Abelian T-duality in Gauged Linear Sigma Models (GLSM) forms the basis of the physical understanding of Mirror Symmetry as presented by Hori and Vafa. We consider an alternative formulation of Abelian T-duality on GLSM’s as a gauging of a global U(1) symmetry with the addition of appropriate Lagrange multipliers. For GLSMs with Abelian gauge groups and without superpotential we reproduce the dual models introduced by Hori and Vafa. We extend the construction to formulate non-Abelian T-duality on GLSMs with global non-Abelian symmetries. The equations of motion that lead to the dual model are obtained for a general group, they dependmore » in general on semi-chiral superfields; for cases such as SU(2) they depend on twisted chiral superfields. We solve the equations of motion for an SU(2) gauged group with a choice of a particular Lie algebra direction of the vector superfield. This direction covers a non-Abelian sector that can be described by a family of Abelian dualities. The dual model Lagrangian depends on twisted chiral superfields and a twisted superpotential is generated. We explore some non-perturbative aspects by making an Ansatz for the instanton corrections in the dual theories. We verify that the effective potential for the U(1) field strength in a fixed configuration on the original theory matches the one of the dual theory. Imposing restrictions on the vector superfield, more general non-Abelian dual models are obtained. We analyze the dual models via the geometry of their susy vacua.« less

  2. (3+1)-Dimensional topologically massive 2-form gauge theory: geometrical superfield approach

    NASA Astrophysics Data System (ADS)

    Kumar, R.; Mukhopadhyay, Debmalya

    2018-06-01

    We derive the complete set of off-shell nilpotent and absolutely anticommuting Becchi-Rouet-Stora-Tyutin (BRST) and anti-BRST symmetry transformations corresponding to the combined "scalar" and "vector" gauge symmetry transformations for the (3+1)-dimensional (4D) topologically massive non-Abelian (B \\wedge F) theory with the help of geometrical superfield formalism. For this purpose, we use three horizontality conditions (HCs). The first HC produces the (anti-)BRST transformations for the 1-form gauge field and corresponding (anti-)ghost fields whereas the second HC yields the (anti-)BRST transformations for 2-form field and associated (anti-)ghost fields. The integrability of second HC produces third HC. The latter HC produces the (anti-)BRST symmetry transformations for the compensating auxiliary vector field and corresponding ghosts. We obtain five (anti-)BRST invariant Curci-Ferrari (CF)-type conditions which emerge very naturally as the off-shoots of superfield formalism. Out of five CF-type conditions, two are fermionic in nature. These CF-type conditions play a decisive role in providing the absolute anticommutativity of the (anti-)BRST transformations and also responsible for the derivation of coupled but equivalent (anti-)BRST invariant Lagrangian densities. Furthermore, we capture the (anti-)BRST invariance of the coupled Lagrangian densities in terms of the superfields and translation generators along the Grassmannian directions θ and \\bar{θ }.

  3. Heavy quark free energy in QCD and in gauge theories with gravity duals

    NASA Astrophysics Data System (ADS)

    Noronha, Jorge

    2010-09-01

    Recent lattice results in pure glue SU(3) theory at high temperatures have shown that the expectation value of the renormalized Polyakov loop approaches its asymptotic limit at high temperatures from above. We show that this implies that the “heavy quark free energy” obtained from the renormalized loop computed on the lattice does not behave like a true thermodynamic free energy. While this should be expected to occur in asymptotically free gauge theories such as QCD, we use the gauge/string duality to show that in a large class of strongly coupled gauge theories with nontrivial UV fixed points the Polyakov loop reaches its asymptotic value from above only if the dimension of the relevant operator used to deform the conformal field theory is greater than or equal to 3.

  4. Can a Linear Sigma Model Describe Walking Gauge Theories at Low Energies?

    NASA Astrophysics Data System (ADS)

    Gasbarro, Andrew

    2018-03-01

    In recent years, many investigations of confining Yang Mills gauge theories near the edge of the conformal window have been carried out using lattice techniques. These studies have revealed that the spectrum of hadrons in nearly conformal ("walking") gauge theories differs significantly from the QCD spectrum. In particular, a light singlet scalar appears in the spectrum which is nearly degenerate with the PNGBs at the lightest currently accessible quark masses. This state is a viable candidate for a composite Higgs boson. Presently, an acceptable effective field theory (EFT) description of the light states in walking theories has not been established. Such an EFT would be useful for performing chiral extrapolations of lattice data and for serving as a bridge between lattice calculations and phenomenology. It has been shown that the chiral Lagrangian fails to describe the IR dynamics of a theory near the edge of the conformal window. Here we assess a linear sigma model as an alternate EFT description by performing explicit chiral fits to lattice data. In a combined fit to the Goldstone (pion) mass and decay constant, a tree level linear sigma model has a Χ2/d.o.f. = 0.5 compared to Χ2/d.o.f. = 29.6 from fitting nextto-leading order chiral perturbation theory. When the 0++ (σ) mass is included in the fit, Χ2/d.o.f. = 4.9. We remark on future directions for providing better fits to the σ mass.

  5. Strongly coupled gauge theories: What can lattice calculations teach us?

    NASA Astrophysics Data System (ADS)

    Hasenfratz, A.; Brower, R. C.; Rebbi, C.; Weinberg, E.; Witzel, O.

    2017-12-01

    The dynamical origin of electroweak symmetry breaking is an open question with many possible theoretical explanations. Strongly coupled systems predicting the Higgs boson as a bound state of a new gauge-fermion interaction form one class of candidate models. Due to increased statistics, LHC run II will further constrain the phenomenologically viable models in the near future. In the meanwhile it is important to understand the general properties and specific features of the different competing models. In this work we discuss many-flavor gauge-fermion systems that contain both massless (light) and massive fermions. The former provide Goldstone bosons and trigger electroweak symmetry breaking, while the latter indirectly influence the infrared dynamics. Numerical results reveal that such systems can exhibit a light 0++ isosinglet scalar, well separated from the rest of the spectrum. Further, when we set the scale via the vev of electroweak symmetry breaking, we predict a 2 TeV vector resonance which could be a generic feature of SU(3) gauge theories.

  6. Surface operators in 5d gauge theories and duality relations

    NASA Astrophysics Data System (ADS)

    Ashok, S. K.; Billò, M.; Dell'Aquila, E.; Frau, M.; Gupta, V.; John, R. R.; Lerda, A.

    2018-05-01

    We study half-BPS surface operators in 5d N = 1 gauge theories compactified on a circle. Using localization methods and the twisted chiral ring relations of coupled 3d/5d quiver gauge theories, we calculate the twisted chiral superpotential that governs the infrared properties of these surface operators. We make a detailed analysis of the localization integrand, and by comparing with the results from the twisted chiral ring equations, we obtain constraints on the 3d and 5d Chern-Simons levels so that the instanton partition function does not depend on the choice of integration contour. For these values of the Chern-Simons couplings, we comment on how the distinct quiver theories that realize the same surface operator are related to each other by Aharony-Seiberg dualities.

  7. Composite particle theory of three-dimensional gapped fermionic phases: Fractional topological insulators and charge-loop excitation symmetry

    NASA Astrophysics Data System (ADS)

    Ye, Peng; Hughes, Taylor L.; Maciejko, Joseph; Fradkin, Eduardo

    2016-09-01

    Topological phases of matter are usually realized in deconfined phases of gauge theories. In this context, confined phases with strongly fluctuating gauge fields seem to be irrelevant to the physics of topological phases. For example, the low-energy theory of the two-dimensional (2D) toric code model (i.e., the deconfined phase of Z2 gauge theory) is a U(1 )×U(1 ) Chern-Simons theory in which gauge charges (i.e., e and m particles) are deconfined and the gauge fields are gapped, while the confined phase is topologically trivial. In this paper, we point out a route to constructing exotic three-dimensional (3D) gapped fermionic phases in a confining phase of a gauge theory. Starting from a parton construction with strongly fluctuating compact U(1 )×U(1 ) gauge fields, we construct gapped phases of interacting fermions by condensing two linearly independent bosonic composite particles consisting of partons and U(1 )×U(1 ) magnetic monopoles. This can be regarded as a 3D generalization of the 2D Bais-Slingerland condensation mechanism. Charge fractionalization results from a Debye-Hückel-type screening cloud formed by the condensed composite particles. Within our general framework, we explore two aspects of symmetry-enriched 3D Abelian topological phases. First, we construct a new fermionic state of matter with time-reversal symmetry and Θ ≠π , the fractional topological insulator. Second, we generalize the notion of anyonic symmetry of 2D Abelian topological phases to the charge-loop excitation symmetry (Charles ) of 3D Abelian topological phases. We show that line twist defects, which realize Charles transformations, exhibit non-Abelian fusion properties.

  8. Low-energy effective worldsheet theory of a non-Abelian vortex in high-density QCD revisited: A regular gauge construction

    NASA Astrophysics Data System (ADS)

    Chatterjee, Chandrasekhar; Nitta, Muneto

    2017-04-01

    Color symmetry is spontaneously broken in quark matter at high density as a consequence of di-quark condensations with exhibiting color superconductivity. Non-Abelian vortices or color magnetic flux tubes stably exist in the color-flavor locked phase at asymptotically high density. The effective worldsheet theory of a single non-Abelian vortex was previously calculated in the singular gauge to obtain the C P2 model 2">[1,2]. Here, we reconstruct the effective theory in a regular gauge without taking a singular gauge, confirming the previous results in the singular gauge. As a byproduct of our analysis, we find that non-Abelian vortices in high-density QCD do not suffer from any obstruction for the global definition of a symmetry breaking.

  9. F-theory on all toric hypersurface fibrations and its Higgs branches

    DOE PAGES

    Klevers, Denis; Mayorga Pena, Damian Kaloni; Oehlmann, Paul-Konstantin; ...

    2015-01-27

    We consider F-theory compactifications on genus-one fibered Calabi-Yau manifolds with their fibers realized as hypersurfaces in the toric varieties associated to the 16 reflexive 2D polyhedra. We present a base-independent analysis of the codimension one, two and three singularities of these fibrations. We use these geometric results to determine the gauge groups, matter representations, 6D matter multiplicities and 4D Yukawa couplings of the corresponding effective theories. All these theories have a non-trivial gauge group and matter content. We explore the network of Higgsings relating these theories. Such Higgsings geometrically correspond to extremal transitions induced by blow-ups in the 2D toric varieties. We recover the 6D effective theories of all 16 toric hypersurface fibrations by repeatedly Higgsing the theories that exhibit Mordell-Weil torsion. We find that the three Calabi-Yau manifolds without section, whose fibers are given by the toric hypersurfaces inmore » $$\\mathbb P^{2}$$, $$\\mathbb P^{1}$$ × $$\\mathbb P^{1}$$ and the recently studied $$\\mathbb P^{2}$$ (1,1, 2) , yield F-theory realizations of SUGRA theories with discrete gauge groups $$\\mathbb Z$$ 3, $$\\mathbb Z$$ 2 and $$\\mathbb Z$$ 4.This opens up a whole new arena for model building with discrete global symmetries in F-theory. In these three manifolds, we also find codimension two I 2-fibers supporting matter charged only under these discrete gauge groups. Their 6D matter multiplicities are computed employing ideal techniques and the associated Jacobian fibrations. Here, we also show that the Jacobian of the biquadric fibration has one rational section, yielding one U(1)-gauge field in F-theory. Furthermore, the elliptically fibered Calabi-Yau manifold based on dP 1 has a U(1)-gauge field induced by a non-toric rational section. In this model, we find the first F-theory realization of matter with U(1)-charge q = 3.« less

  10. Renormalized Polyakov loop in the deconfined phase of SU(N) gauge theory and gauge-string duality.

    PubMed

    Andreev, Oleg

    2009-05-29

    We use gauge-string duality to analytically evaluate the renormalized Polyakov loop in pure Yang-Mills theories. For SU(3), the result is in quite good agreement with lattice simulations for a broad temperature range.

  11. On the generalized geometry origin of noncommutative gauge theory

    NASA Astrophysics Data System (ADS)

    Jurčo, Branislav; Schupp, Peter; Vysoký, Jan

    2013-07-01

    We discuss noncommutative gauge theory from the generalized geometry point of view. We argue that the equivalence between the commutative and semiclassically noncommutative DBI actions is naturally encoded in the generalized geometry of D-branes.

  12. The semi-classical expansion and resurgence in gauge theories: new perturbative, instanton, bion, and renormalon effects

    DOE PAGES

    Argyres, Philip C.; Uensal, Mithat

    2012-08-10

    We study the dynamics of four dimensional gauge theories with adjoint fermions for all gauge groups, both in perturbation theory and non-perturbatively, by using circle compactification with periodic boundary conditions for the fermions. There are new gauge phenomena. We show that, to all orders in perturbation theory, many gauge groups are Higgsed by the gauge holonomy around the circle to a product of both abelian and nonabelian gauge group factors. Non-perturbatively there are monopole-instantons with fermion zero modes and two types of monopole-anti-monopole molecules, called bions. One type are magnetic bions which carry net magnetic charge and induce a massmore » gap for gauge fluctuations. Another type are neutral bions which are magnetically neutral, and their understanding requires a generalization of multi-instanton techniques in quantum mechanics — which we refer to as the Bogomolny-Zinn-Justin (BZJ) prescription — to compactified field theory. The BZJ prescription applied to bion-anti-bion topological molecules predicts a singularity on the positive real axis of the Borel plane (i.e., a divergence from summing large orders in peturbation theory) which is of order N times closer to the origin than the leading 4-d BPST instanton-anti-instanton singularity, where N is the rank of the gauge group. The position of the bion-anti-bion singularity is thus qualitatively similar to that of the 4-d IR renormalon singularity, and we conjecture that they are continuously related as the compactification radius is changed. By making use of transseries and Écalle’s resurgence theory we argue that a non-perturbative continuum definition of a class of field theories which admit semi-classical expansions may be possible.« less

  13. Gravitational Scattering Amplitudes and Closed String Field Theory in the Proper-Time Gauge

    NASA Astrophysics Data System (ADS)

    Lee, Taejin

    2018-01-01

    We construct a covariant closed string field theory by extending recent works on the covariant open string field theory in the proper-time gauge. Rewriting the string scattering amplitudes generated by the closed string field theory in terms of the Polyakov string path integrals, we identify the Fock space representations of the closed string vertices. We show that the Fock space representations of the closed string field theory may be completely factorized into those of the open string field theory. It implies that the well known Kawai-Lewellen-Tye (KLT) relations of the first quantized string theory may be promoted to the second quantized closed string theory. We explicitly calculate the scattering amplitudes of three gravitons by using the closed string field theory in the proper-time gauge.

  14. National Computational Infrastructure for Lattice Gauge Theory SciDAC-2 Closeout Report Indiana University Component

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gottlieb, Steven Arthur; DeTar, Carleton; Tousaint, Doug

    This is the closeout report for the Indiana University portion of the National Computational Infrastructure for Lattice Gauge Theory project supported by the United States Department of Energy under the SciDAC program. It includes information about activities at Indian University, the University of Arizona, and the University of Utah, as those three universities coordinated their activities.

  15. Description of the heterotic string solutions in U(N) supersymmetric QCD

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bolokhov, P. A.; Theoretical Physics Department, St. Petersburg State University, Ulyanovskaya 1, Peterhof, St. Petersburg, 198504; Shifman, M.

    2009-04-15

    We continue the study of heterotic non-Abelian Bogomol'nyi-Prasad-Sommerfield-saturated flux tubes (strings). Previously, such solutions were obtained [M. Shifman and A. Yung, Phys. Rev. D 77, 125016 (2008).] in a particular U(2) gauge theory: N=2 supersymmetric QCD deformed by superpotential terms of a special type breaking N=2 supersymmetry down to N=1. Here we generalize the previous results to U(N) gauge theories. As was suggested by Edalati and Tong [M. Edalati and D. Tong, J. High Energy Phys. 05 (2007) 005.], the string world-sheet theory is a heterotic N=(0,2) sigma model, with the CP(N-1) target space for bosonic fields and an extramore » right-handed fermion which couples to the fermion fields of the N=(2,2) CP(N-1) model. We derive the heterotic N=(0,2) world-sheet model directly from the U(N) bulk theory. Parameters of the bulk theory are related to those of the world-sheet theory. Qualitatively this relation turns out to be the same as in the U(2) case.« less

  16. On the existence of topological dyons and dyonic black holes in anti-de Sitter Einstein-Yang-Mills theories with compact semisimple gauge groups

    NASA Astrophysics Data System (ADS)

    Baxter, J. Erik

    2018-05-01

    Here we study the global existence of "hairy" dyonic black hole and dyon solutions to four-dimensional, anti-de Sitter Einstein-Yang-Mills theories for a general simply connected and semisimple gauge group G, for the so-called topologically symmetric systems, concentrating here on the regular case. We generalise here cases in the literature which considered purely magnetic spherically symmetric solutions for a general gauge group and topological dyonic solutions for s u (N ) . We are able to establish the global existence of non-trivial solutions to all such systems, both near existing embedded solutions and as |Λ| → ∞. In particular, we can identify non-trivial solutions where the gauge field functions have no zeroes, which in the s u (N ) case proved important to stability. We believe that these are the most general analytically proven solutions in 4D anti-de Sitter Einstein-Yang-Mills systems to date.

  17. Dual gauge field theory of quantum liquid crystals in two dimensions

    NASA Astrophysics Data System (ADS)

    Beekman, Aron J.; Nissinen, Jaakko; Wu, Kai; Liu, Ke; Slager, Robert-Jan; Nussinov, Zohar; Cvetkovic, Vladimir; Zaanen, Jan

    2017-04-01

    We present a self-contained review of the theory of dislocation-mediated quantum melting at zero temperature in two spatial dimensions. The theory describes the liquid-crystalline phases with spatial symmetries in between a quantum crystalline solid and an isotropic superfluid: quantum nematics and smectics. It is based on an Abelian-Higgs-type duality mapping of phonons onto gauge bosons (;stress photons;), which encode for the capacity of the crystal to propagate stresses. Dislocations and disclinations, the topological defects of the crystal, are sources for the gauge fields and the melting of the crystal can be understood as the proliferation (condensation) of these defects, giving rise to the Anderson-Higgs mechanism on the dual side. For the liquid crystal phases, the shear sector of the gauge bosons becomes massive signaling that shear rigidity is lost. After providing the necessary background knowledge, including the order parameter theory of two-dimensional quantum liquid crystals and the dual theory of stress gauge bosons in bosonic crystals, the theory of melting is developed step-by-step via the disorder theory of dislocation-mediated melting. Resting on symmetry principles, we derive the phenomenological imaginary time actions of quantum nematics and smectics and analyze the full spectrum of collective modes. The quantum nematic is a superfluid having a true rotational Goldstone mode due to rotational symmetry breaking, and the origin of this 'deconfined' mode is traced back to the crystalline phase. The two-dimensional quantum smectic turns out to be a dizzyingly anisotropic phase with the collective modes interpolating between the solid and nematic in a non-trivial way. We also consider electrically charged bosonic crystals and liquid crystals, and carefully analyze the electromagnetic response of the quantum liquid crystal phases. In particular, the quantum nematic is a real superconductor and shows the Meissner effect. Their special properties

  18. Dual gauge field theory of quantum liquid crystals in two dimensions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beekman, Aron J.; Nissinen, Jaakko; Wu, Kai

    We present a self-contained review of the theory of dislocation-mediated quantum melting at zero temperature in two spatial dimensions. The theory describes the liquid-crystalline phases with spatial symmetries in between a quantum crystalline solid and an isotropic superfluid: quantum nematics and smectics. It is based on an Abelian-Higgs-type duality mapping of phonons onto gauge bosons (“stress photons”), which encode for the capacity of the crystal to propagate stresses. Dislocations and disclinations, the topological defects of the crystal, are sources for the gauge fields and the melting of the crystal can be understood as the proliferation (condensation) of these defects, givingmore » rise to the Anderson–Higgs mechanism on the dual side. For the liquid crystal phases, the shear sector of the gauge bosons becomes massive signaling that shear rigidity is lost. After providing the necessary background knowledge, including the order parameter theory of two-dimensional quantum liquid crystals and the dual theory of stress gauge bosons in bosonic crystals, the theory of melting is developed step-by-step via the disorder theory of dislocation-mediated melting. Resting on symmetry principles, we derive the phenomenological imaginary time actions of quantum nematics and smectics and analyze the full spectrum of collective modes. The quantum nematic is a superfluid having a true rotational Goldstone mode due to rotational symmetry breaking, and the origin of this ‘deconfined’ mode is traced back to the crystalline phase. The two-dimensional quantum smectic turns out to be a dizzyingly anisotropic phase with the collective modes interpolating between the solid and nematic in a non-trivial way. We also consider electrically charged bosonic crystals and liquid crystals, and carefully analyze the electromagnetic response of the quantum liquid crystal phases. In particular, the quantum nematic is a real superconductor and shows the Meissner effect. Furthermore

  19. Dual gauge field theory of quantum liquid crystals in two dimensions

    DOE PAGES

    Beekman, Aron J.; Nissinen, Jaakko; Wu, Kai; ...

    2017-04-18

    We present a self-contained review of the theory of dislocation-mediated quantum melting at zero temperature in two spatial dimensions. The theory describes the liquid-crystalline phases with spatial symmetries in between a quantum crystalline solid and an isotropic superfluid: quantum nematics and smectics. It is based on an Abelian-Higgs-type duality mapping of phonons onto gauge bosons (“stress photons”), which encode for the capacity of the crystal to propagate stresses. Dislocations and disclinations, the topological defects of the crystal, are sources for the gauge fields and the melting of the crystal can be understood as the proliferation (condensation) of these defects, givingmore » rise to the Anderson–Higgs mechanism on the dual side. For the liquid crystal phases, the shear sector of the gauge bosons becomes massive signaling that shear rigidity is lost. After providing the necessary background knowledge, including the order parameter theory of two-dimensional quantum liquid crystals and the dual theory of stress gauge bosons in bosonic crystals, the theory of melting is developed step-by-step via the disorder theory of dislocation-mediated melting. Resting on symmetry principles, we derive the phenomenological imaginary time actions of quantum nematics and smectics and analyze the full spectrum of collective modes. The quantum nematic is a superfluid having a true rotational Goldstone mode due to rotational symmetry breaking, and the origin of this ‘deconfined’ mode is traced back to the crystalline phase. The two-dimensional quantum smectic turns out to be a dizzyingly anisotropic phase with the collective modes interpolating between the solid and nematic in a non-trivial way. We also consider electrically charged bosonic crystals and liquid crystals, and carefully analyze the electromagnetic response of the quantum liquid crystal phases. In particular, the quantum nematic is a real superconductor and shows the Meissner effect. Furthermore

  20. Gravitationally induced zero modes of the Faddeev-Popov operator in the Coulomb gauge for Abelian gauge theories

    NASA Astrophysics Data System (ADS)

    Canfora, Fabrizio; Giacomini, Alex; Oliva, Julio

    2010-08-01

    It is shown that on curved backgrounds, the Coulomb gauge Faddeev-Popov operator can have zero modes even in the Abelian case. These zero modes cannot be eliminated by restricting the path integral over a certain region in the space of gauge potentials. The conditions for the existence of these zero modes are studied for static spherically symmetric spacetimes in arbitrary dimensions. For this class of metrics, the general analytic expression of the metric components in terms of the zero modes is constructed. Such expression allows one to find the asymptotic behavior of background metrics, which induce zero modes in the Coulomb gauge, an interesting example being the three-dimensional anti-de Sitter spacetime. Some of the implications for quantum field theory on curved spacetimes are discussed.

  1. Decorated tensor network renormalization for lattice gauge theories and spin foam models

    NASA Astrophysics Data System (ADS)

    Dittrich, Bianca; Mizera, Sebastian; Steinhaus, Sebastian

    2016-05-01

    Tensor network techniques have proved to be powerful tools that can be employed to explore the large scale dynamics of lattice systems. Nonetheless, the redundancy of degrees of freedom in lattice gauge theories (and related models) poses a challenge for standard tensor network algorithms. We accommodate for such systems by introducing an additional structure decorating the tensor network. This allows to explicitly preserve the gauge symmetry of the system under coarse graining and straightforwardly interpret the fixed point tensors. We propose and test (for models with finite Abelian groups) a coarse graining algorithm for lattice gauge theories based on decorated tensor networks. We also point out that decorated tensor networks are applicable to other models as well, where they provide the advantage to give immediate access to certain expectation values and correlation functions.

  2. Bv and Bfv Formulation of a Gauge Theory of Quadratic Lie Algebras in 2d and a Construction of W3 Topological Gravity

    NASA Astrophysics Data System (ADS)

    Dayi, Ömer F.

    The recently proposed generalized field method for solving the master equation of Batalin and Vilkovisky is applied to a gauge theory of quadratic Lie algebras in two dimensions. The charge corresponding to BRST symmetry derived from this solution in terms of the phase space variables by using the Noether procedure, and the one found due to the BFV-method are compared and found to coincide. W3-algebra, formulated in terms of a continuous variable is exploit in the mentioned gauge theory to construct a W3 topological gravity. Moreover, its gauge fixing is briefly discussed.

  3. Confinement Driven by Scalar Field in 4d Non Abelian Gauge Theories

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chabab, Mohamed

    2007-01-12

    We review some of the most recent work on confinement in 4d gauge theories with a massive scalar field (dilaton). Emphasis is put on the derivation of confining analytical solutions to the Coulomb problem versus dilaton effective couplings to gauge terms. It is shown that these effective theories can be relevant to model quark confinement and may shed some light on confinement mechanism. Moreover, the study of interquark potential, derived from Dick Model, in the heavy meson sector proves that phenomenological investigation of tmechanism is more than justified and deserves more efforts.

  4. A Strain Gauge Manual.

    DTIC Science & Technology

    1984-04-01

    Applied Science Publications Ltd. (U.K.) "Strain Gauges, Kinds and Uses", H.K.P. Neubert . McMillan, London (U.K.) "A Strain Gauge Primer", Perry and...G.R. Paul (Materials) A.A. Baker (Materials) I.G. Powlesland G. Wright ." P. Ferrerotto J. Madej B. Ashcroft E.S. Moody M.T. Adams M. Cameron (GAF) (2

  5. Exact partition functions for the Ω-deformed {N}={2}^{ast } SU(2) gauge theory

    NASA Astrophysics Data System (ADS)

    Beccaria, Matteo; Macorini, Guido

    2016-07-01

    We study the low energy effective action of the Ω-deformed {N}={2}^{ast } SU(2) gauge theory. It depends on the deformation parameters ɛ 1, ɛ 2, the scalar field expectation value a, and the hypermultiplet mass m. We explore the plane (m/ɛ_1,ɛ_2/ɛ_1) looking for special features in the multi-instanton contributions to the prepotential, motivated by what happens in the Nekrasov-Shatashvili limit ɛ 2 → 0. We propose a simple condition on the structure of poles of the k-instanton prepotential and show that it is admissible at a finite set of points in the above plane. At these special points, the prepotential has poles at fixed positions independent on the instanton number. Besides and remarkably, both the instanton partition function and the full prepotential, including the perturbative contribution, may be given in closed form as functions of the scalar expectation value a and the modular parameter q appearing in special combinations of Eisenstein series and Dedekind η function. As a byproduct, the modular anomaly equation can be tested at all orders at these points. We discuss these special features from the point of view of the AGT correspondence and provide explicit toroidal 1-blocks in non-trivial closed form. The full list of solutions with 1, 2, 3, and 4 poles is determined and described in details.

  6. Exact Solution of a Strongly Coupled Gauge Theory in 0 +1 Dimensions

    NASA Astrophysics Data System (ADS)

    Krishnan, Chethan; Kumar, K. V. Pavan

    2018-05-01

    Gauged tensor models are a class of strongly coupled quantum mechanical theories. We present the exact analytic solution of a specific example of such a theory: namely, the smallest colored tensor model due to Gurau and Witten that exhibits nonlinearities. We find explicit analytic expressions for the eigenvalues and eigenstates, and the former agree precisely with previous numerical results on (a subset of) eigenvalues of the ungauged theory. The physics of the spectrum, despite the smallness of N , exhibits rudimentary signatures of chaos. This Letter is a summary of our main results: the technical details will appear in companion paper [C. Krishnan and K. V. Pavan Kumar, Complete solution of a gauged tensor model, arXiv:1804.10103].

  7. Multiple normalized solutions for a planar gauged nonlinear Schrödinger equation

    NASA Astrophysics Data System (ADS)

    Luo, Xiao

    2018-06-01

    We study the existence, multiplicity, quantitative property and asymptotic behavior of normalized solutions for a gauged nonlinear Schrödinger equation arising from the Chern-Simons theory Δ u + ω u +|x|^2u+ λ ( {{h^2}(| x | )}/{{{| x | ^2}}} + \\int \\limits _{| x | }^{ + ∞} {{h(s)}/s} {u^2}(s)ds) u = {| u | ^{p - 2}}u,\\quad x\\in R^2, where ω \\in R, λ >0, p>4 and h(s) = 1/2\\int \\limits _0^s {r{u^2}(r)dr} . Combining constraint minimization method and minimax principle, we prove that the problem possesses at least two normalized solutions: One is a ground state and the other is an excited state. Furthermore, the asymptotic behavior and quantitative property of the ground state are analyzed.

  8. Infinite Set of Soft Theorems in Gauge-Gravity Theories as Ward-Takahashi Identities

    NASA Astrophysics Data System (ADS)

    Hamada, Yuta; Shiu, Gary

    2018-05-01

    We show that the soft photon, gluon, and graviton theorems can be understood as the Ward-Takahashi identities of large gauge transformation, i.e., diffeomorphism that does not fall off at spatial infinity. We found infinitely many new identities which constrain the higher order soft behavior of the gauge bosons and gravitons in scattering amplitudes of gauge and gravity theories. Diagrammatic representations of these soft theorems are presented.

  9. Existence of topological multi-string solutions in Abelian gauge field theories

    NASA Astrophysics Data System (ADS)

    Han, Jongmin; Sohn, Juhee

    2017-11-01

    In this paper, we consider a general form of self-dual equations arising from Abelian gauge field theories coupled with the Einstein equations. By applying the super/subsolution method, we prove that topological multi-string solutions exist for any coupling constant, which improves previously known results. We provide two examples for application: the self-dual Einstein-Maxwell-Higgs model and the gravitational Maxwell gauged O(3) sigma model.

  10. Expanding the Bethe/Gauge dictionary

    NASA Astrophysics Data System (ADS)

    Bullimore, Mathew; Kim, Hee-Cheol; Lukowski, Tomasz

    2017-11-01

    We expand the Bethe/Gauge dictionary between the XXX Heisenberg spin chain and 2d N = (2, 2) supersymmetric gauge theories to include aspects of the algebraic Bethe ansatz. We construct the wave functions of off-shell Bethe states as orbifold defects in the A-twisted supersymmetric gauge theory and study their correlation functions. We also present an alternative description of off-shell Bethe states as boundary conditions in an effective N = 4 supersymmetric quantum mechanics. Finally, we interpret spin chain R-matrices as correlation functions of Janus interfaces for mass parameters in the supersymmetric quantum mechanics.

  11. Scalar dark matter interpretation of the DAMPE data with U(1) gauge interactions

    NASA Astrophysics Data System (ADS)

    Cao, Junjie; Feng, Lei; Guo, Xiaofei; Shang, Liangliang; Wang, Fei; Wu, Peiwen

    2018-05-01

    Recently, the Dark Matter Particle Explorer (DAMPE) experiment released the new measurement of the total cosmic e+e- flux between 25 GeV and 4.6 TeV, which indicates a spectral softening at around 0.9 TeV and a tentative peak at around 1.4 TeV. We utilize a scalar dark matter (DM) model to explain the DAMPE peak by χ χ →Z'Z'→ℓℓ ¯ ℓ'ℓ' ¯ with an additional anomaly-free gauged U (1 ) family symmetry, in which χ , Z', and ℓ(') denote, respectively, the scalar DM, the new gauge boson, and ℓ(')=e , μ , τ with mχ˜mZ'˜2 ×1.5 (TeV ) . We first illustrate that the minimal framework GSM×U (1 )Y' with the above mass choices can explain the DAMPE excess, which, however, be excluded by LHC constraints from the Z' searches. Then, we study a nonminimal framework GSM×U (1 )Y'×U (1 )Y'' in which U (1 )Y'' mixes with U (1)Y'. We show that such a framework can interpret the DAMPE data and at the same time survive all other constraints including the DM relic abundance, DM direct detection, and collider bounds. We also investigate the predicted e+e- spectrum in this framework and find that the mass splitting Δ m =mχ-mZ'' should be less than about 17 GeV to produce the peaklike structure.

  12. Optimization of pressure gauge locations for water distribution systems using entropy theory.

    PubMed

    Yoo, Do Guen; Chang, Dong Eil; Jun, Hwandon; Kim, Joong Hoon

    2012-12-01

    It is essential to select the optimal pressure gauge location for effective management and maintenance of water distribution systems. This study proposes an objective and quantified standard for selecting the optimal pressure gauge location by defining the pressure change at other nodes as a result of demand change at a specific node using entropy theory. Two cases are considered in terms of demand change: that in which demand at all nodes shows peak load by using a peak factor and that comprising the demand change of the normal distribution whose average is the base demand. The actual pressure change pattern is determined by using the emitter function of EPANET to reflect the pressure that changes practically at each node. The optimal pressure gauge location is determined by prioritizing the node that processes the largest amount of information it gives to (giving entropy) and receives from (receiving entropy) the whole system according to the entropy standard. The suggested model is applied to one virtual and one real pipe network, and the optimal pressure gauge location combination is calculated by implementing the sensitivity analysis based on the study results. These analysis results support the following two conclusions. Firstly, the installation priority of the pressure gauge in water distribution networks can be determined with a more objective standard through the entropy theory. Secondly, the model can be used as an efficient decision-making guide for gauge installation in water distribution systems.

  13. One-loop β-function for an infinite-parameter family of gauge theories

    NASA Astrophysics Data System (ADS)

    Krasnov, Kirill

    2015-03-01

    We continue to study an infinite-parametric family of gauge theories with an arbitrary function of the self-dual part of the field strength as the Lagrangian. The arising one-loop divergences are computed using the background field method. We show that they can all be absorbed by a local redefinition of the gauge field, as well as multiplicative renormalisations of the couplings. Thus, this family of theories is one-loop renormalisable. The infinite set of β-functions for the couplings is compactly stored in a renormalisation group flow for a single function of the curvature. The flow is obtained explicitly.

  14. Exact relativistic Toda chain eigenfunctions from Separation of Variables and gauge theory

    NASA Astrophysics Data System (ADS)

    Sciarappa, Antonio

    2017-10-01

    We provide a proposal, motivated by Separation of Variables and gauge theory arguments, for constructing exact solutions to the quantum Baxter equation associated to the N-particle relativistic Toda chain and test our proposal against numerical results. Quantum Mechanical non-perturbative corrections, essential in order to obtain a sensible solution, are taken into account in our gauge theory approach by considering codimension two defects on curved backgrounds (squashed S 5 and degenerate limits) rather than flat space; this setting also naturally incorporates exact quantization conditions and energy spectrum of the relativistic Toda chain as well as its modular dual structure.

  15. Covariant open bosonic string field theory on multiple D-branes in the proper-time gauge

    NASA Astrophysics Data System (ADS)

    Lee, Taejin

    2017-12-01

    We construct a covariant open bosonic string field theory on multiple D-branes, which reduces to a non-Abelian group Yang-Mills gauge theory in the zero-slope limit. Making use of the first quantized open bosonic string in the proper time gauge, we convert the string amplitudes given by the Polyakov path integrals on string world sheets into those of the second quantized theory. The world sheet diagrams generated by the constructed open string field theory are planar in contrast to those of the Witten's cubic string field theory. However, the constructed string field theory is yet equivalent to the Witten's cubic string field theory. Having obtained planar diagrams, we may adopt the light-cone string field theory technique to calculate the multi-string scattering amplitudes with an arbitrary number of external strings. We examine in detail the three-string vertex diagram and the effective four-string vertex diagrams generated perturbatively by the three-string vertex at tree level. In the zero-slope limit, the string scattering amplitudes are identified precisely as those of non-Abelian Yang-Mills gauge theory if the external states are chosen to be massless vector particles.

  16. Entanglement on linked boundaries in Chern-Simons theory with generic gauge groups

    NASA Astrophysics Data System (ADS)

    Dwivedi, Siddharth; Singh, Vivek Kumar; Dhara, Saswati; Ramadevi, P.; Zhou, Yang; Joshi, Lata Kh

    2018-02-01

    We study the entanglement for a state on linked torus boundaries in 3 d Chern-Simons theory with a generic gauge group and present the asymptotic bounds of Rényi entropy at two different limits: (i) large Chern-Simons coupling k, and (ii) large rank r of the gauge group. These results show that the Rényi entropies cannot diverge faster than ln k and ln r, respectively. We focus on torus links T (2 , 2 n) with topological linking number n. The Rényi entropy for these links shows a periodic structure in n and vanishes whenever n = 0 (mod p), where the integer p is a function of coupling k and rank r. We highlight that the refined Chern-Simons link invariants can remove such a periodic structure in n.

  17. Analytic topologically nontrivial solutions of the (3 +1 )-dimensional U (1 ) gauged Skyrme model and extended duality

    NASA Astrophysics Data System (ADS)

    Avilés, L.; Canfora, F.; Dimakis, N.; Hidalgo, D.

    2017-12-01

    We construct the first analytic examples of topologically nontrivial solutions of the (3 +1 )-dimensional U (1 ) gauged Skyrme model within a finite box in (3 +1 )-dimensional flat space-time. There are two types of gauged solitons. The first type corresponds to gauged Skyrmions living within a finite volume. The second corresponds to gauged time crystals (smooth solutions of the U (1 ) gauged Skyrme model whose periodic time dependence is protected by a winding number). The notion of electromagnetic duality can be extended for these two types of configurations in the sense that the electric and one of the magnetic components can be interchanged. These analytic solutions show very explicitly the Callan-Witten mechanism (according to which magnetic monopoles may "swallow" part of the topological charge of the Skyrmion) since the electromagnetic field contributes directly to the conserved topological charge of the gauged Skyrmions. As it happens in superconductors, the magnetic field is suppressed in the core of the gauged Skyrmions. On the other hand, the electric field is strongly suppresed in the core of gauged time crystals.

  18. On gauge independence for gauge models with soft breaking of BRST symmetry

    NASA Astrophysics Data System (ADS)

    Reshetnyak, Alexander

    2014-12-01

    A consistent quantum treatment of general gauge theories with an arbitrary gauge-fixing in the presence of soft breaking of the BRST symmetry in the field-antifield formalism is developed. It is based on a gauged (involving a field-dependent parameter) version of finite BRST transformations. The prescription allows one to restore the gauge-independence of the effective action at its extremals and therefore also that of the conventional S-matrix for a theory with BRST-breaking terms being additively introduced into a BRST-invariant action in order to achieve a consistency of the functional integral. We demonstrate the applicability of this prescription within the approach of functional renormalization group to the Yang-Mills and gravity theories. The Gribov-Zwanziger action and the refined Gribov-Zwanziger action for a many-parameter family of gauges, including the Coulomb, axial and covariant gauges, are derived perturbatively on the basis of finite gauged BRST transformations starting from Landau gauge. It is proved that gauge theories with soft breaking of BRST symmetry can be made consistent if the transformed BRST-breaking terms satisfy the same soft BRST symmetry breaking condition in the resulting gauge as the untransformed ones in the initial gauge, and also without this requirement.

  19. Gauged supergravities from M-theory reductions

    NASA Astrophysics Data System (ADS)

    Katmadas, Stefanos; Tomasiello, Alessandro

    2018-04-01

    In supergravity compactifications, there is in general no clear prescription on how to select a finite-dimensional family of metrics on the internal space, and a family of forms on which to expand the various potentials, such that the lower-dimensional effective theory is supersymmetric. We propose a finite-dimensional family of deformations for regular Sasaki-Einstein seven-manifolds M 7, relevant for M-theory compactifications down to four dimensions. It consists of integrable Cauchy-Riemann structures, corresponding to complex deformations of the Calabi-Yau cone M 8 over M 7. The non-harmonic forms we propose are the ones contained in one of the Kohn-Rossi cohomology groups, which is finite-dimensional and naturally controls the deformations of Cauchy-Riemann structures. The same family of deformations can be also described in terms of twisted cohomology of the base M 6, or in terms of Milnor cycles arising in deformations of M 8. Using existing results on SU(3) structure compactifications, we briefly discuss the reduction of M-theory on our class of deformed Sasaki-Einstein manifolds to four-dimensional gauged supergravity.

  20. Gauge engineering and propagators

    NASA Astrophysics Data System (ADS)

    Maas, Axel

    2017-03-01

    Beyond perturbation theory gauge-fixing becomes more involved due to the Gribov-Singer ambiguity: The appearance of additional gauge copies requires to define a procedure how to handle them. For the case of Landau gauge the structure and properties of these additional gauge copies will be investigated. Based on these properties gauge conditions are constructed to account for these gauge copies. The dependence of the propagators on the choice of these complete gauge-fixings will then be investigated using lattice gauge theory for Yang-Mills theory. It is found that the implications for the infrared, and to some extent mid-momentum behavior, can be substantial. In going beyond the Yang-Mills case it turns out that the influence of matter can generally not be neglected. This will be briefly discussed for various types of matter.

  1. Nonperturbative β function of eight-flavor SU(3) gauge theory

    NASA Astrophysics Data System (ADS)

    Hasenfratz, Anna; Schaich, David; Veernala, Aarti

    2015-06-01

    We present a new lattice study of the discrete β function for SU(3) gauge theory with N f = 8 massless flavors of fermions in the fundamental representation. Using the gradient flow running coupling, and comparing two different nHYP-smeared staggered lattice actions, we calculate the 8-flavor step-scaling function at significantly stronger couplings than were previously accessible. Our continuum-extrapolated results for the discrete β function show no sign of an IR fixed point up to couplings of g 2 ≈ 14. At the same time, we find that the gradient flow coupling runs much more slowly than predicted by two-loop perturbation theory, reinforcing previous indications that the 8-flavor system possesses nontrivial strongly coupled IR dynamics with relevance to BSM phenomenology.

  2. The Green-Schwarz mechanism and geometric anomaly relations in 2d (0,2) F-theory vacua

    NASA Astrophysics Data System (ADS)

    Weigand, Timo; Xu, Fengjun

    2018-04-01

    We study the structure of gauge and gravitational anomalies in 2d N = (0 , 2) theories obtained by compactification of F-theory on elliptically fibered Calabi-Yau 5-folds. Abelian gauge anomalies, induced at 1-loop in perturbation theory, are cancelled by a generalized Green-Schwarz mechanism operating at the level of chiral scalar fields in the 2d supergravity theory. We derive closed expressions for the gravitational and the non-abelian and abelian gauge anomalies including the Green-Schwarz counterterms. These expressions involve topological invariants of the underlying elliptic fibration and the gauge background thereon. Cancellation of anomalies in the effective theory predicts intricate topological identities which must hold on every elliptically fibered Calabi-Yau 5-fold. We verify these relations in a non-trivial example, but their proof from a purely mathematical perspective remains as an interesting open problem. Some of the identities we find on elliptic 5-folds are related in an intriguing way to previously studied topological identities governing the structure of anomalies in 6d N = (1 , 0) and 4d N = 1 theories obtained from F-theory.

  3. Einstein Equations Under Polarized U (1) Symmetry in an Elliptic Gauge

    NASA Astrophysics Data System (ADS)

    Huneau, Cécile; Luk, Jonathan

    2018-06-01

    We prove local existence of solutions to the Einstein-null dust system under polarized U (1) symmetry in an elliptic gauge. Using in particular the previous work of the first author on the constraint equations, we show that one can identify freely prescribable data, solve the constraints equations, and construct a unique local in time solution in an elliptic gauge. Our main motivation for this work, in addition to merely constructing solutions in an elliptic gauge, is to provide a setup for our companion paper in which we study high frequency backreaction for the Einstein equations. In that work, the elliptic gauge we consider here plays a crucial role to handle high frequency terms in the equations. The main technical difficulty in the present paper, in view of the application in our companion paper, is that we need to build a framework consistent with the solution being high frequency, and therefore having large higher order norms. This difficulty is handled by exploiting a reductive structure in the system of equations.

  4. Non-Abelian string and particle braiding in topological order: Modular SL (3 ,Z ) representation and (3 +1 ) -dimensional twisted gauge theory

    NASA Astrophysics Data System (ADS)

    Wang, Juven C.; Wen, Xiao-Gang

    2015-01-01

    String and particle braiding statistics are examined in a class of topological orders described by discrete gauge theories with a gauge group G and a 4-cocycle twist ω4 of G 's cohomology group H4(G ,R /Z ) in three-dimensional space and one-dimensional time (3 +1 D ) . We establish the topological spin and the spin-statistics relation for the closed strings and their multistring braiding statistics. The 3 +1 D twisted gauge theory can be characterized by a representation of a modular transformation group, SL (3 ,Z ) . We express the SL (3 ,Z ) generators Sx y z and Tx y in terms of the gauge group G and the 4-cocycle ω4. As we compactify one of the spatial directions z into a compact circle with a gauge flux b inserted, we can use the generators Sx y and Tx y of an SL (2 ,Z ) subgroup to study the dimensional reduction of the 3D topological order C3 D to a direct sum of degenerate states of 2D topological orders Cb2 D in different flux b sectors: C3 D=⊕bCb2 D . The 2D topological orders Cb2 D are described by 2D gauge theories of the group G twisted by the 3-cocycle ω3 (b ), dimensionally reduced from the 4-cocycle ω4. We show that the SL (2 ,Z ) generators, Sx y and Tx y, fully encode a particular type of three-string braiding statistics with a pattern that is the connected sum of two Hopf links. With certain 4-cocycle twists, we discover that, by threading a third string through two-string unlink into a three-string Hopf-link configuration, Abelian two-string braiding statistics is promoted to non-Abelian three-string braiding statistics.

  5. Fermionic minimal dark matter in 5D gauge-Higgs unification

    NASA Astrophysics Data System (ADS)

    Maru, Nobuhito; Okada, Nobuchika; Okada, Satomi

    2017-12-01

    We propose a minimal dark matter (MDM) scenario in the context of a simple gauge-Higgs unification (GHU) model based on the gauge group S U (3 )×U (1 )' in five-dimensional Minkowski space with a compactification of the fifth dimension on the 1S/Z2 orbifold. A pair of vectorlike S U (3 ) multiplet fermions in a higher-dimensional representation is introduced in the bulk, and the DM particle is identified with the lightest mass eigenstate among the components in the multiplets. In the original model description, the DM particle communicates with the Standard Model (SM) particles only through the bulk gauge interaction, and hence our model is the GHU version of the MDM scenario. There are two typical realizations of the DM particle in four-dimensional effective theory: (i) the DM particle is mostly composed of the SM S U (2 )L multiplets, or (ii) the DM is mostly composed of the SM S U (2 )L singlets. Since the case (i) is very similar to the original MDM scenario, we focus on the case (ii), which is a realization of the Higgs-portal DM scenario in the context of the GHU model. We identify an allowed parameter region to be consistent with the current experimental constraints, which will be fully covered by the direct dark matter detection experiments in the near future. In the presence of the bulk multiplet fermions in higher-dimensional S U (3 ) representations, we reproduce the 125 GeV Higgs boson mass through the renormalization group evolution of Higgs quartic coupling with the compactification scale of 10-100 TeV.

  6. A gauge-theoretic approach to gravity.

    PubMed

    Krasnov, Kirill

    2012-08-08

    Einstein's general relativity (GR) is a dynamical theory of the space-time metric. We describe an approach in which GR becomes an SU(2) gauge theory. We start at the linearized level and show how a gauge-theoretic Lagrangian for non-interacting massless spin two particles (gravitons) takes a much more simple and compact form than in the standard metric description. Moreover, in contrast to the GR situation, the gauge theory Lagrangian is convex. We then proceed with a formulation of the full nonlinear theory. The equivalence to the metric-based GR holds only at the level of solutions of the field equations, that is, on-shell. The gauge-theoretic approach also makes it clear that GR is not the only interacting theory of massless spin two particles, in spite of the GR uniqueness theorems available in the metric description. Thus, there is an infinite-parameter class of gravity theories all describing just two propagating polarizations of the graviton. We describe how matter can be coupled to gravity in this formulation and, in particular, how both the gravity and Yang-Mills arise as sectors of a general diffeomorphism-invariant gauge theory. We finish by outlining a possible scenario of the ultraviolet completion of quantum gravity within this approach.

  7. A gauge-theoretic approach to gravity

    PubMed Central

    Krasnov, Kirill

    2012-01-01

    Einstein's general relativity (GR) is a dynamical theory of the space–time metric. We describe an approach in which GR becomes an SU(2) gauge theory. We start at the linearized level and show how a gauge-theoretic Lagrangian for non-interacting massless spin two particles (gravitons) takes a much more simple and compact form than in the standard metric description. Moreover, in contrast to the GR situation, the gauge theory Lagrangian is convex. We then proceed with a formulation of the full nonlinear theory. The equivalence to the metric-based GR holds only at the level of solutions of the field equations, that is, on-shell. The gauge-theoretic approach also makes it clear that GR is not the only interacting theory of massless spin two particles, in spite of the GR uniqueness theorems available in the metric description. Thus, there is an infinite-parameter class of gravity theories all describing just two propagating polarizations of the graviton. We describe how matter can be coupled to gravity in this formulation and, in particular, how both the gravity and Yang–Mills arise as sectors of a general diffeomorphism-invariant gauge theory. We finish by outlining a possible scenario of the ultraviolet completion of quantum gravity within this approach. PMID:22792040

  8. Higgs compositeness in Sp(2N) gauge theories - Determining the low-energy constants with lattice calculations

    NASA Astrophysics Data System (ADS)

    Bennett, Ed; Ki Hong, Deog; Lee, Jong-Wan; David Lin, C.-J.; Lucini, Biagio; Piai, Maurizio; Vadacchino, Davide

    2018-03-01

    As a first step towards a quantitative understanding of the SU(4)/Sp(4) composite Higgs model through lattice calculations, we discuss the low energy effective field theory resulting from the SU(4) → Sp(4) global symmetry breaking pattern. We then consider an Sp(4) gauge theory with two Dirac fermion flavours in the fundamental representation on a lattice, which provides a concrete example of the microscopic realisation of the SU(4)/Sp(4) composite Higgs model. For this system, we outline a programme of numerical simulations aiming at the determination of the low-energy constants of the effective field theory and we test the method on the quenched theory. We also report early results from dynamical simulations, focussing on the phase structure of the lattice theory and a calculation of the lowest-lying meson spectrum at coarse lattice spacing. Combined contributions of B. Lucini (e-mail: b.lucini@swansea.ac.uk) and J.-W. Lee (e-mail: wlee823@pusan.ac.kr).

  9. Two-dimensional N = 2 Super-Yang-Mills Theory

    NASA Astrophysics Data System (ADS)

    August, Daniel; Wellegehausen, Björn; Wipf, Andreas

    2018-03-01

    Supersymmetry is one of the possible scenarios for physics beyond the standard model. The building blocks of this scenario are supersymmetric gauge theories. In our work we study the N = 1 Super-Yang-Mills (SYM) theory with gauge group SU(2) dimensionally reduced to two-dimensional N = 2 SYM theory. In our lattice formulation we break supersymmetry and chiral symmetry explicitly while preserving R symmetry. By fine tuning the bar-mass of the fermions in the Lagrangian we construct a supersymmetric continuum theory. To this aim we carefully investigate mass spectra and Ward identities, which both show a clear signal of supersymmetry restoration in the continuum limit.

  10. Symplectic Quantization of a Vector-Tensor Gauge Theory with Topological Coupling

    NASA Astrophysics Data System (ADS)

    Barcelos-Neto, J.; Silva, M. B. D.

    We use the symplectic formalism to quantize a gauge theory where vectors and tensors fields are coupled in a topological way. This is an example of reducible theory and a procedure like of ghosts-of-ghosts of the BFV method is applied but in terms of Lagrange multipliers. Our final results are in agreement with the ones found in the literature by using the Dirac method.

  11. Dyonic AdS black holes in maximal gauged supergravity

    NASA Astrophysics Data System (ADS)

    Chow, David D. K.; Compère, Geoffrey

    2014-03-01

    We present two new classes of dyonic anti-de Sitter black hole solutions of four-dimensional maximal N =8, SO(8) gauged supergravity. They are (1) static black holes of N=2, U(1)4 gauged supergravity with four electric and four magnetic charges, with spherical, planar or hyperbolic horizons; and (2) rotating black holes of N =2, U(1)2 gauged supergravity with two electric and two magnetic charges. We study their thermodynamics, and point out that the formulation of a consistent thermodynamics for dyonic anti-de Sitter black holes is dependent on the existence of boundary conditions for the gauge fields. We identify several distinct classes of boundary conditions for gauge fields in U(1)4 supergravity. We study a general family of metrics containing the rotating solutions, and find Killing-Yano tensors with torsion in two conformal frames, which underlie separability.

  12. Kaluza-Klein theories as a tool to find new gauge symmetries

    NASA Astrophysics Data System (ADS)

    Dolan, L.

    Non-abelian Kaluza-Klein theories are studied with respect to using the invariances of multi-dimensional general relativity to investigate hidden symmetry, such as Kac-Mody Lie algebras, of the four-dimensional Yang-Mills theory. Several properties of the affine transformations on the self-dual set are identified and are used to motivate the Kaluza-Klein analysis. In this context, a system of differential equations is derived for new symmetry transformations which may be extendable to the full gauge theory.

  13. The QCD matter; perturbation and lattice gauge theory

    NASA Astrophysics Data System (ADS)

    Saini, Abhilasha; Bhardwaj, Sudhir; Keswani, Bright

    2018-05-01

    In this review we are watching towards the probes of quark gluon plasma which provides the unique option to create such nuclear stuff at controlled laboratory conditions. The observables from hadronic and leptonic residues provide the required information. The other tool is the detailed rapidity and momentum spectra of hadrons. Here the information regarding the de-confined phase transition and chiral symmetry restoration is mentioned; also the perturbation and lattice gauge theory is described in short.

  14. Towards deconstruction of the Type D (2,0) theory

    NASA Astrophysics Data System (ADS)

    Bourget, Antoine; Pini, Alessandro; Rodriguez-Gomez, Diego

    2017-12-01

    We propose a four-dimensional supersymmetric theory that deconstructs, in a particular limit, the six-dimensional (2, 0) theory of type D k . This 4d theory is defined by a necklace quiver with alternating gauge nodes O(2 k) and Sp( k). We test this proposal by comparing the 6d half-BPS index to the Higgs branch Hilbert series of the 4d theory. In the process, we overcome several technical difficulties, such as Hilbert series calculations for non-complete intersections, and the choice of O versus SO gauge groups. Consistently, the result matches the Coulomb branch formula for the mirror theory upon reduction to 3d.

  15. Cosmology and unified gauge theory

    NASA Astrophysics Data System (ADS)

    Oraifeartaigh, L.

    1981-09-01

    Theoretical points in common between cosmology and unified gauge theory (UGT) are reviewed, with attention given to areas of one which have proven useful for the other. The underlying principles for both theoretical frameworks are described, noting the differences in scale, i.e., 10 to the 25th cm in cosmology and 10 to the -15th cm for UGT. Cosmology has produced bounds on the number of existing neutrino species, and also on the mass of neutrinos, two factors of interest in particle physics. Electrons, protons, and neutrinos, having been spawned from the same massive leptons, each composed of three quarks, have been predicted to be present in equal numbers in the Universe by UGT, in line with necessities of cosmology. The Grand UGT also suggests specific time scales for proton decay, thus accounting for the observed baryon assymmetry.

  16. Quantization of a U(1) gauged chiral boson in the Batalin-Fradkin-Vilkovisky scheme

    NASA Astrophysics Data System (ADS)

    Ghosh, Subir

    1994-03-01

    The scheme developed by Batalin, Fradkin, and Vilkovisky (BFV) to convert a second-class constrained system to a first-class one (having gauge invariance) is used in the Floreanini-Jackiw formulation of the chiral boson interacting with a U(1) gauge field. Explicit expressions of the BRST charge, the unitarizing Hamiltonian, and the BRST invariant effective action are provided and the full quantization is carried through. The spectra in both cases have been analyzed to show the presence of the proper chiral components explicitly. In the gauged model, Wess-Zumino terms in terms of the Batalin-Fradkin fields are identified.

  17. Quantization of a U(1) gauged chiral boson in the Batalin-Fradkin-Vilkovisky scheme

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ghosh, S.

    1994-03-15

    The scheme developed by Batalin, Fradkin, and Vilkovisky (BFV) to convert a second-class constrained system to a first-class one (having gauge invariance) is used in the Floreanini-Jackiw formulation of the chiral boson interacting with a U(1) gauge field. Explicit expressions of the BRST charge, the unitarizing Hamiltonian, and the BRST invariant effective action are provided and the full quantization is carried through. The spectra in both cases have been analyzed to show the presence of the proper chiral components explicitly. In the gauged model, Wess-Zumino terms in terms of the Batalin-Fradkin fields are identified.

  18. Fermionic Spinon Theory of Square Lattice Spin Liquids near the Néel State

    NASA Astrophysics Data System (ADS)

    Thomson, Alex; Sachdev, Subir

    2018-01-01

    Quantum fluctuations of the Néel state of the square lattice antiferromagnet are usually described by a CP1 theory of bosonic spinons coupled to a U(1) gauge field, and with a global SU(2) spin rotation symmetry. Such a theory also has a confining phase with valence bond solid (VBS) order, and upon including spin-singlet charge-2 Higgs fields, deconfined phases with Z2 topological order possibly intertwined with discrete broken global symmetries. We present dual theories of the same phases starting from a mean-field theory of fermionic spinons moving in π flux in each square lattice plaquette. Fluctuations about this π -flux state are described by (2 +1 )-dimensional quantum chromodynamics (QCD3 ) with a SU(2) gauge group and Nf=2 flavors of massless Dirac fermions. It has recently been argued by Wang et al. [Deconfined Quantum Critical Points: Symmetries and Dualities, Phys. Rev. X 7, 031051 (2017)., 10.1103/PhysRevX.7.031051] that this QCD3 theory describes the Néel-VBS quantum phase transition. We introduce adjoint Higgs fields in QCD3 and obtain fermionic dual descriptions of the phases with Z2 topological order obtained earlier using the bosonic CP1 theory. We also present a fermionic spinon derivation of the monopole Berry phases in the U(1) gauge theory of the VBS state. The global phase diagram of these phases contains multicritical points, and our results imply new boson-fermion dualities between critical gauge theories of these points.

  19. Classification of compactified su( N c ) gauge theories with fermions in all representations

    NASA Astrophysics Data System (ADS)

    Anber, Mohamed M.; Vincent-Genod, Loïc

    2017-12-01

    We classify su( N c ) gauge theories on R^3× S^1 with massless fermions in higher representations obeying periodic boundary conditions along S^1 . In particular, we single out the class of theories that is asymptotically free and weakly coupled in the infrared, and therefore, is amenable to semi-classical treatment. Our study is conducted by carefully identifying the vacua inside the affine Weyl chamber using Verma bases and Frobenius formula techniques. Theories with fermions in pure representations are generally strongly coupled. The only exceptions are the four-index symmetric representation of su(2) and adjoint representation of su( N c ). However, we find a plethora of admissible theories with fermions in mixed representations. A sub-class of these theories have degenerate perturbative vacua separated by domain walls. In particular, su( N c ) theories with fermions in the mixed representations adjoint⊕fundamental and adjoint⊕two-index symmetric admit degenerate vacua that spontaneously break the parity P , charge conjugation C , and time reversal T symmetries. These are the first examples of strictly weakly coupled gauge theories on R^3× S^1 with spontaneously broken C , P , and T symmetries. We also compute the fermion zero modes in the background of monopole-instantons. The monopoles and their composites (topological molecules) proliferate in the vacuum leading to the confinement of electric charges. Interestingly enough, some theories have also accidental degenerate vacua, which are not related by any symmetry. These vacua admit different numbers of fermionic zero modes, and hence, different kinds of topological molecules. The lack of symmetry, however, indicates that such degeneracy might be lifted by higher order corrections. Finally, we study the general phase structure of adjoint⊕fundamental theories in the small circle and decompactification limits.

  20. Spontaneously broken topological SL(5,R) gauge theory with standard gravity emerging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mielke, Eckehard W.

    2011-02-15

    A completely metric-free sl(5,R) gauge framework is developed in four dimensions. After spontaneous symmetry breaking of the corresponding topological BF scheme, Einstein spaces with a tiny cosmological constant emerge, similarly as in (anti-)de Sitter gauge theories of gravity. The induced {Lambda} is related to the scale of the symmetry breaking. A ''background'' metric surfaces from a Higgs-like mechanism. The finiteness of such a topological scheme converts into asymptotic safeness after quantization of the spontaneously broken model.

  1. Model with a gauged lepton flavor SU(2) symmetry

    NASA Astrophysics Data System (ADS)

    Chiang, Cheng-Wei; Tsumura, Koji

    2018-05-01

    We propose a model having a gauged SU(2) symmetry associated with the second and third generations of leptons, dubbed SU(2) μτ , of which U{(1)}_{L_{μ }-L_{τ }} is an Abelian subgroup. In addition to the Standard Model fields, we introduce two types of scalar fields. One exotic scalar field is an SU(2) μτ doublet and SM singlet that develops a nonzero vacuum expectation value at presumably multi-TeV scale to completely break the SU(2) μτ symmetry, rendering three massive gauge bosons. At the same time, the other exotic scalar field, carrying electroweak as well as SU(2) μτ charges, is induced to have a nonzero vacuum expectation value as well and breaks mass degeneracy between the muon and tau. We examine how the new particles in the model contribute to the muon anomalous magnetic moment in the parameter space compliant with the Michel decays of tau.

  2. A note on large gauge transformations in double field theory

    DOE PAGES

    Naseer, Usman

    2015-06-03

    Here, we give a detailed proof of the conjecture by Hohm and Zwiebach in double field theory. Our result implies that their proposal for large gauge transformations in terms of the Jacobian matrix for coordinate transformations is, as required, equivalent to the standard exponential map associated with the generalized Lie derivative along a suitable parameter.

  3. Gauge invariance for a whole Abelian model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chauca, J.; Doria, R.; Soares, W.

    Light invariance is a fundamental principle for physics be done. It generates Maxwell equations, relativity, Lorentz group. However there is still space for a fourth picture be developed which is to include fields with same Lorentz nature. It brings a new room for field theory. It says that light invariance does not work just to connect space and time but it also associates different fields with same nature. Thus for the ((1/2),(1/2)) representation there is a fields family {l_brace}A{sub {mu}I}{r_brace} to be studied. This means that given such fields association one should derive its corresponding gauge theory. This is themore » effort at this work. Show that there is a whole gauge theory to cover these fields relationships. Considering the abelian case, prove its gauge invariance. It yields the kinetic, massive, trilinear and quadrilinear gauge invariant terms.« less

  4. The SU(3)/Z3 QCD(adj) deconfinement transition via the gauge theory/"affine" XY-model duality

    NASA Astrophysics Data System (ADS)

    Anber, Mohamed M.; Collier, Scott; Poppitz, Erich

    2013-01-01

    Earlier, two of us and M. Ünsal [1] showed that a class of 4d gauge theories, when compactified on a small spatial circle of size L and considered at temperatures β-1 near the deconfinement transition, are dual to 2d "affine" XY-spin models. We exploit this duality to study the deconfinement phase transition in SU(3)/{{{Z}}_3} gauge theories with n f > 1 massless adjoint Weyl fermions, QCD(adj) on {{{R}}^2}× {S}_{β}^1× {S}_L^1 . The dual "affine" XY-model describes two "spins" — compact scalars taking values in the SU(3) root lattice. The spins couple via nearest-neighbor interactions and are subject to an "external field" perturbation preserving the topological {Z}_3^t and a discrete {Z}_3^{{{d_{\\upchi}}}} subgroup of the anomaly-free chiral symmetry of the 4d gauge theory. The equivalent Coulomb gas representation of the theory exhibits electric-magnetic duality, which is also a high-/low-temperature duality. A renormalization group analysis suggests — but is not convincing, due to the onset of strong coupling — that the self-dual point is a fixed point, implying a continuous deconfinement transition. Here, we study the nature of the transition via Monte Carlo simulations. The {Z}_3^t× {Z}_3^{{{d_{\\upchi}}}} order parameter, its susceptibility, the vortex density, the energy per spin, and the specific heat are measured over a range of volumes, temperatures, and "external field" strengths (in the gauge theory, these correspond to magnetic bion fugacities). The finite-size scaling of the susceptibility and specific heat we find is characteristic of a first-order transition. Furthermore, for sufficiently large but still smaller than unity bion fugacity (as can be achieved upon an increase of the {S}_L^1 size), at the critical temperature we find two distinct peaks of the energy probability distribution, indicative of a first-order transition, as has been seen in earlier simulations of the full 4d QCD(adj) theory. We end with discussions of the global

  5. Topological string, supersymmetric gauge theory and bps counting

    NASA Astrophysics Data System (ADS)

    Pan, Guang

    In this thesis we study the Donaldson-Thomas theory on the local curve geometry, which arises in the context of geometric engineering of supersymmetric gauge theory from type IIA string compactification. The topological A-model amplitude gives the F-term interaction of the compactified theory. In particular, it is related to the instanton partition function via Nekrasov conjecture. We will introduce ADHM sheaves on curve, as an alternative description of local Donaldson-Thomas theory. We derive the wallcrossing of ADHM invariants and their refinements. We show that it is equivalent to the semi-primitive wallcrossing from supergravity, and the Kontsevich-Soibelman wallcrossing formula. As an application, we discuss the connection between ADHM moduli space with Hitchin system. In particular we give a recursive formula for the Poincare polynomial of Hitchin system in terms of instanton partition function, from refined wallcrossing. We also introduce higher rank generalization of Donaldson-Thomas invariant in the context of ADHM sheaves. We study their wallcrossing and discuss their physical interpretation via string duality.

  6. Origin of the U(1) field mass in superconductors

    NASA Astrophysics Data System (ADS)

    Koizumi, Hiroyasu

    2017-05-01

    Recently, a new theory for superconductivity has been put forward, in which the persistent current generation is attributed to the emergent singularities of the electronic wave function that are created by the spin-twisting itinerant circular motion of electrons. The persistent current generated by this mechanism behaves in every respect like supercurrent in superconductors, yielding the flux quantum h/2e and the Josephson frequency 2eV/h, where h is Planck’s constant, -e is the electron charge, and V is the voltage across the Josephson junction. The mass generation of the U(1) gauge field (or the Meissner effect) in the new theory is due to the emergence of topological objects, ‘instantons’ generated by the single-valued requirement of the wave function in the presence of the emergent singularities. The current standard theory of superconductivity is based on the BCS theory, and explains the emergence of superconductivity as due to the global U(1) gauge symmetry breaking realized by the Cooper pair formation. The U(1) field mass generation is believed to be due to this global U(1) gauge symmetry breaking. However, the feasibility of this mechanism has been questioned since no known interaction can prepare the global U(1) symmetry broken state from the normal state. We argue here that the U(1) mass generation in the BCS superconductor can be attributed to the one by the instanton mentioned above if the Rashba spin-orbit interaction is added. Then, the occurrence of persistent current generation becomes due to the instanton formation, and the role of the Cooper pair formation is to stabilize the instanton by providing an energy gap for perturbative excitations. Upon forming the Cooper pair, the instanton is stabilized and persistent current generation becomes possible. Thus, the superconducting transition temperature coincides with the Cooper pair formation temperature.

  7. Projected Entangled Pair States with non-Abelian gauge symmetries: An SU(2) study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zohar, Erez, E-mail: erez.zohar@mpq.mpg.de; Wahl, Thorsten B.; Burrello, Michele, E-mail: michele.burrello@mpq.mpg.de

    Over the last years, Projected Entangled Pair States have demonstrated great power for the study of many body systems, as they naturally describe ground states of gapped many body Hamiltonians, and suggest a constructive way to encode and classify their symmetries. The PEPS study is not only limited to global symmetries, but has also been extended and applied for local symmetries, allowing to use them for the description of states in lattice gauge theories. In this paper we discuss PEPS with a local, SU(2) gauge symmetry, and demonstrate the use of PEPS features and techniques for the study of amore » simple family of many body states with a non-Abelian gauge symmetry. We present, in particular, the construction of fermionic PEPS able to describe both two-color fermionic matter and the degrees of freedom of an SU(2) gauge field with a suitable truncation.« less

  8. Radiation-like scalar field and gauge fields in cosmology for a theory with dynamical time

    NASA Astrophysics Data System (ADS)

    Benisty, David; Guendelman, E. I.

    2016-09-01

    Cosmological solutions with a scalar field behaving as radiation are obtained, in the context of gravitational theory with dynamical time. The solution requires the spacial curvature of the universe k, to be zero, unlike the standard radiation solutions, which do not impose any constraint on the spatial curvature of the universe. This is because only such k = 0 radiation solutions pose a homothetic Killing vector. This kind of theory can be used to generalize electromagnetism and other gauge theories, in curved spacetime, and there are no deviations from standard gauge field equation (like Maxwell equations) in the case there exist a conformal Killing vector. But there could be departures from Maxwell and Yang-Mills equations, for more general spacetimes.

  9. Gauge interaction as periodicity modulation

    NASA Astrophysics Data System (ADS)

    Dolce, Donatello

    2012-06-01

    The paper is devoted to a geometrical interpretation of gauge invariance in terms of the formalism of field theory in compact space-time dimensions (Dolce, 2011) [8]. In this formalism, the kinematic information of an interacting elementary particle is encoded on the relativistic geometrodynamics of the boundary of the theory through local transformations of the underlying space-time coordinates. Therefore gauge interactions are described as invariance of the theory under local deformations of the boundary. The resulting local variations of the field solution are interpreted as internal transformations. The internal symmetries of the gauge theory turn out to be related to corresponding space-time local symmetries. In the approximation of local infinitesimal isometric transformations, Maxwell's kinematics and gauge invariance are inferred directly from the variational principle. Furthermore we explicitly impose periodic conditions at the boundary of the theory as semi-classical quantization condition in order to investigate the quantum behavior of gauge interaction. In the abelian case the result is a remarkable formal correspondence with scalar QED.

  10. Solving general gauge theories on inner product spaces

    NASA Astrophysics Data System (ADS)

    Batalin, Igor; Marnelius, Robert

    1995-02-01

    By means of a generalized quartet mechanism we show in a model independent way that a BRST quantization on an inner product space leads to physical states of the form ph> = exp [ Q, ψ]ph> 0 where Q is the nilpotent BRST operator, ψ a hermitian fermionic gauge-fixing operator, and ph> o BRST invariant states determined by a hermitian set of BRST doublets in involution. ph> 0 does not belong to an inner product space although ph> does. Since the BRST quartets are split into two sets of hermitian BRST doublets there are two choices for ph> 0 and the corresponding ψ. When applied to general, both irreducible and reducible, gauge theories of arbitrary rank within the BFV formulation we find that ph> 0 are trivial BRST invariant states which only depend on the matter variables for one set of solutions, and for the other set ph> 0 are solutions of a Dirac quantization. This generalizes previous Lie group solutions obtained by means of a bigrading.

  11. Infrared singularities in Landau gauge Yang-Mills theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alkofer, Reinhard; Huber, Markus Q.; Schwenzer, Kai

    2010-05-15

    We present a more detailed picture of the infrared regime of Landau-gauge Yang-Mills theory. This is done within a novel framework that allows one to take into account the influence of finite scales within an infrared power counting analysis. We find that there are two qualitatively different infrared fixed points of the full system of Dyson-Schwinger equations. The first extends the known scaling solution, where the ghost dynamics is dominant and gluon propagation is strongly suppressed. It features in addition to the strong divergences of gluonic vertex functions in the previously considered uniform scaling limit, when all external momenta tendmore » to zero, also weaker kinematic divergences, when only some of the external momenta vanish. The second solution represents the recently proposed decoupling scenario where the gluons become massive and the ghosts remain bare. In this case we find that none of the vertex functions is enhanced, so that the infrared dynamics is entirely suppressed. Our analysis also provides a strict argument why the Landau-gauge gluon dressing function cannot be infrared divergent.« less

  12. A limit for large R-charge correlators in N = 2 theories

    NASA Astrophysics Data System (ADS)

    Bourget, Antoine; Rodriguez-Gomez, Diego; Russo, Jorge G.

    2018-05-01

    Using supersymmetric localization, we study the sector of chiral primary operators (Tr ϕ 2) n with large R-charge 4 n in N = 2 four-dimensional superconformal theories in the weak coupling regime g → 0, where λ ≡ g 2 n is kept fixed as n → ∞, g representing the gauge theory coupling(s). In this limit, correlation functions G 2 n of these operators behave in a simple way, with an asymptotic behavior of the form {G}_{2n}≈ {F}_{∞}(λ){(λ/2π e)}^{2n} n α , modulo O(1 /n) corrections, with α =1/2 \\dim (g) for a gauge algebra g and a universal function F ∞(λ). As a by-product we find several new formulas both for the partition function as well as for perturbative correlators in N=2 su(N) gauge theory with 2 N fundamental hypermultiplets.

  13. Remarks on the BRST quantized gauged WZNW models and the Toda field theories

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hayashi, N.

    In this paper it is shown that the quantum Hamiltonian reduction proposed by Bershadsky and Ooguri enables us to connect the gauged WZNW models with fractional levels to the quantum Toda field theories, and the coupling constants of the Toda field theories with the fractional levels. The BRST framework is applied to the SL ({ital n},R)-WZNW models.

  14. The edge of supersymmetry: Stability walls in heterotic theory

    DOE PAGES

    Anderson, Lara B.; Gray, James; Lukas, Andre; ...

    2009-05-15

    We explicitly describe, in the language of four-dimensional N = 1 supersymmetric field theory, what happens when the moduli of a heterotic Calabi-Yau compactification change so as to make the internal non-Abelian gauge fields non-supersymmetric. At the edge of the region in Kähler moduli space where supersymmetry can be preserved, an additional anomalous U(1) gauge symmetry appears in the four-dimensional theory. The D-term contribution to the scalar potential associated to this U(1) attempts to force the system back into a supersymmetric configuration and provides a consistent low-energy description of gauge bundle stability.

  15. Algorithmic universality in F-theory compactifications

    NASA Astrophysics Data System (ADS)

    Halverson, James; Long, Cody; Sung, Benjamin

    2017-12-01

    We study universality of geometric gauge sectors in the string landscape in the context of F-theory compactifications. A finite time construction algorithm is presented for 4/3 ×2.96 ×10755 F-theory geometries that are connected by a network of topological transitions in a connected moduli space. High probability geometric assumptions uncover universal structures in the ensemble without explicitly constructing it. For example, non-Higgsable clusters of seven-branes with intricate gauge sectors occur with a probability above 1 - 1.01 ×10-755 , and the geometric gauge group rank is above 160 with probability 0.999995. In the latter case there are at least 10 E8 factors, the structure of which fixes the gauge groups on certain nearby seven-branes. Visible sectors may arise from E6 or S U (3 ) seven-branes, which occur in certain random samples with probability ≃1 /200 .

  16. 6d $$ \\mathcal{N}=\\left(1,\\;0\\right) $$ theories on S 1/T 2 and class S theories: part II

    DOE PAGES

    Ohmori, Kantaro; Shimizu, Hiroyuki; Tachikawa, Yuji; ...

    2015-12-21

    Here, we study the T 2 compactification of a class of 6dmore » $$ \\mathcal{N}=\\left(1,\\;0\\right) $$ theories that is Higgsable to $$ \\mathcal{N}=\\left(2,\\;0\\right) $$ theories. We show that the resulting 4d N=2 theory at the origin of the Coulomb branch and the parameter space is generically given by two superconformal matter sectors coupled by an infrared-free gauge multiplet and another conformal gauge multiplet. Our analysis utilizes the 5d theories obtained by putting the same class of 6d theories on S 1. Our class includes, among others, the 6d theories describing multiple M 5 branes on an ALE singularity, and we analyze them in detail. The resulting 4d theory has manifestly both the SL(2,Z) and the full flavor symmetry. We also discuss in detail the special cases of 6d theories where the infrared-free gauge multiplet is absent. In an appendix, we give a field-theoretical argument for an F-theoretic constraint that forbids a particular 6d anomaly-free matter content, as an application of our analysis.« less

  17. 6d $$ \\mathcal{N}=\\left(1,\\;0\\right) $$ theories on S 1/T 2 and class S theories: part II

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ohmori, Kantaro; Shimizu, Hiroyuki; Tachikawa, Yuji

    Here, we study the T 2 compactification of a class of 6dmore » $$ \\mathcal{N}=\\left(1,\\;0\\right) $$ theories that is Higgsable to $$ \\mathcal{N}=\\left(2,\\;0\\right) $$ theories. We show that the resulting 4d N=2 theory at the origin of the Coulomb branch and the parameter space is generically given by two superconformal matter sectors coupled by an infrared-free gauge multiplet and another conformal gauge multiplet. Our analysis utilizes the 5d theories obtained by putting the same class of 6d theories on S 1. Our class includes, among others, the 6d theories describing multiple M 5 branes on an ALE singularity, and we analyze them in detail. The resulting 4d theory has manifestly both the SL(2,Z) and the full flavor symmetry. We also discuss in detail the special cases of 6d theories where the infrared-free gauge multiplet is absent. In an appendix, we give a field-theoretical argument for an F-theoretic constraint that forbids a particular 6d anomaly-free matter content, as an application of our analysis.« less

  18. The ϱ-ππ coupling constant in lattice gauge theory

    NASA Astrophysics Data System (ADS)

    Gottlieb, Steven; MacKenzie, Paul B.; Thacker, H. B.; Weingarten, Don

    1984-01-01

    We present a method for studying hadronic transitions in lattice gauge theory which requires computer time comparable to that required by recent hadron spectrum calculations. This method is applied to a calculation of the decay ϱ-->ππ. On leave from the Department of Physics, Indiana University, Bloomington, IN 47405, USA. Address after September 1, 1983: IBM, T.J. Watson Research Center, Yorktown Heights, NY 10598, USA.

  19. 4d N = 1 quiver gauge theories and the An Bailey lemma

    NASA Astrophysics Data System (ADS)

    Brünner, Frederic; Spiridonov, Vyacheslav P.

    2018-03-01

    We study the integral Bailey lemma associated with the An-root system and identities for elliptic hypergeometric integrals generated thereby. Interpreting integrals as superconformal indices of four-dimensional N = 1 quiver gauge theories with the gauge groups being products of SU(n + 1), we provide evidence for various new dualities. Further confirmation is achieved by explicitly checking that the `t Hooft anomaly matching conditions holds. We discuss a flavour symmetry breaking phenomenon for supersymmetric quantum chromodynamics (SQCD), and by making use of the Bailey lemma we indicate its manifestation in a web of linear quivers dual to SQCD that exhibits full s-confinement.

  20. Remarks on worldsheet theories dual to free large N gauge theories

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aharony, Ofer; SITP, Department of Physics and SLAC, Stanford University, Stanford, California 94305; David, Justin R.

    2007-05-15

    We continue to investigate properties of the worldsheet conformal field theories (CFTs) which are conjectured to be dual to free large N gauge theories, using the mapping of Feynman diagrams to the worldsheet suggested in [R. Gopakumar, Phys. Rev. D 70, 025009 (2004); ibid.70, 025010 (2004); C. R. Physique 5, 1111 (2004); Phys. Rev. D 72, 066008 (2005)]. The modular invariance of these CFTs is shown to be built into the formalism. We show that correlation functions in these CFTs which are localized on subspaces of the moduli space may be interpreted as delta-function distributions, and that this can bemore » consistent with a local worldsheet description given some constraints on the operator product expansion coefficients. We illustrate these features by a detailed analysis of a specific four-point function diagram. To reliably compute this correlator, we use a novel perturbation scheme which involves an expansion in the large dimension of some operators.« less

  1. Holographic repulsion and confinement in gauge theory

    NASA Astrophysics Data System (ADS)

    Husain, Viqar; Kothawala, Dawood

    2013-02-01

    We show that for asymptotically anti-de Sitter (AdS) backgrounds with negative energy, such as the AdS soliton and regulated negative-mass AdS-Schwarzshild metrics, the Wilson loop expectation value in the AdS/CFT conjecture exhibits a Coulomb to confinement transition. We also show that the quark-antiquark (q \\bar{q}) potential can be interpreted as affine time along null geodesics on the minimal string worldsheet and that its intrinsic curvature provides a signature of transition to confinement phase. Our results suggest a generic (holographic) relationship between confinement in gauge theory and repulsive gravity, which in turn is connected with singularity avoidance in quantum gravity. Communicated by P R L V Moniz

  2. Gauge interactions theory and experiment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zichichi, A.

    This volume brings together physicists from around the world to report and discuss the exciting advances made recently in theoretical and experimental aspects of gauge interactions. Following a presentation of the theoretical foundations of and recent developments in gauge fields, the contrib utors fogus on supersymmetry, the derivation of Higgs particles from gauge fields, and heavy leptons. Other chapters discuss the use of quantum chromodynamics in describing basic interactions among quarks and gluons, in predicting the existence of glueballs, and in application to heavy flavor production in strong interactions. The editor, Antonino Zichichi, provides a study of the multiparticle hadronicmore » systems produced in highenergy soft (pp) interactions. Other interesting chapters deal with photon scattering at very high energies and theoretical alternatives to the electroweak model, and the volume concludes with proposals for future experimental facilities for European physics.« less

  3. Atomic quantum simulation of dynamical gauge fields coupled to fermionic matter: from string breaking to evolution after a quench.

    PubMed

    Banerjee, D; Dalmonte, M; Müller, M; Rico, E; Stebler, P; Wiese, U-J; Zoller, P

    2012-10-26

    Using a Fermi-Bose mixture of ultracold atoms in an optical lattice, we construct a quantum simulator for a U(1) gauge theory coupled to fermionic matter. The construction is based on quantum links which realize continuous gauge symmetry with discrete quantum variables. At low energies, quantum link models with staggered fermions emerge from a Hubbard-type model which can be quantum simulated. This allows us to investigate string breaking as well as the real-time evolution after a quench in gauge theories, which are inaccessible to classical simulation methods.

  4. On the spectrum of gauge/gravity duals with reduced supersymmetry

    NASA Astrophysics Data System (ADS)

    Solovyov, Alexander

    The topic of the present thesis is the study of some examples in gauge/string duality. We carefully study the orbifold gauge theory and orbifold string theory and show that the known integrability in AdS/CFT extends to the general supersymmetric orbifolds of AdS5 x S5. There is an interesting interplay between the two descriptions of the orbifold gauge theory. Another interesting example is the Klebanov-Strassler (KS) background. We find the exhaustive list of the supergravity excitations in the I -odd sector of the KS theory. These comprise the three j = 1/2 massive supermultiplets each consisting of a (possibly pseudo) scalar, two fermions and a vector, and the two j = 1 supermultiplets whose bosonic content is a vector and a pseudovector. Surprisingly, the spectrum of the excitations which fit into the pure gauge sector strongly resembles the results obtained from the numeric studies in lattice gauge theory.

  5. Cartan gravity, matter fields, and the gauge principle

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Westman, Hans F., E-mail: hwestman74@gmail.com; Zlosnik, Tom G., E-mail: t.zlosnik@imperial.ac.uk

    Gravity is commonly thought of as one of the four force fields in nature. However, in standard formulations its mathematical structure is rather different from the Yang–Mills fields of particle physics that govern the electromagnetic, weak, and strong interactions. This paper explores this dissonance with particular focus on how gravity couples to matter from the perspective of the Cartan-geometric formulation of gravity. There the gravitational field is represented by a pair of variables: (1) a ‘contact vector’ V{sup A} which is geometrically visualized as the contact point between the spacetime manifold and a model spacetime being ‘rolled’ on top ofmore » it, and (2) a gauge connection A{sub μ}{sup AB}, here taken to be valued in the Lie algebra of SO(2,3) or SO(1,4), which mathematically determines how much the model spacetime is rotated when rolled. By insisting on two principles, the gauge principle and polynomial simplicity, we shall show how one can reformulate matter field actions in a way that is harmonious with Cartan’s geometric construction. This yields a formulation of all matter fields in terms of first order partial differential equations. We show in detail how the standard second order formulation can be recovered. In particular, the Hodge dual, which characterizes the structure of bosonic field equations, pops up automatically. Furthermore, the energy–momentum and spin-density three-forms are naturally combined into a single object here denoted the spin-energy–momentum three-form. Finally, we highlight a peculiarity in the mathematical structure of our first-order formulation of Yang–Mills fields. This suggests a way to unify a U(1) gauge field with gravity into a SO(1,5)-valued gauge field using a natural generalization of Cartan geometry in which the larger symmetry group is spontaneously broken down to SO(1,3)×U(1). The coupling of this unified theory to matter fields and possible extensions to non-Abelian gauge fields are

  6. A note on the sphere free energy of p-form gauge theory and Hodge duality

    NASA Astrophysics Data System (ADS)

    Raj, Himanshu

    2017-12-01

    We consider a free p-form gauge theory on a d-dimensional sphere of radius R and calculate its free energy. We perform the calculation for generic values of p and obtain the free energy as a function of d, p and R. The result contains a \\renewcommand{\\r}ρ \\renewcommand{\\l}λ log R term with a coefficient proportional to \\renewcommand{\\r}ρ \\renewcommand{\\l}λ (2p+2-d) , which is consistent with lack of conformal invariance for p form theories in dimensions other than 2p+2 . We also compare the result for p-form and (d-p-2) -form theory which are classically Hodge dual to each other in d dimensions and find that they agree for odd values of d. Also, for even d, we find that the results disagree by an amount that is consistent with the reported values in the literature.

  7. Soft thermal contributions to 3-loop gauge coupling

    NASA Astrophysics Data System (ADS)

    Laine, M.; Schicho, P.; Schröder, Y.

    2018-05-01

    We analyze 3-loop contributions to the gauge coupling felt by ultrasoft ("magnetostatic") modes in hot Yang-Mills theory. So-called soft/hard terms, originating from dimension-six operators within the soft effective theory, are shown to cancel 1097/1098 of the IR divergence found in a recent determination of the hard 3-loop contribution to the soft gauge coupling. The remaining 1/1098 originates from ultrasoft/hard contributions, induced by dimension-six operators in the ultrasoft effective theory. Soft 3-loop contributions are likewise computed, and are found to be IR divergent, rendering the ultrasoft gauge coupling non-perturbative at relative order O({α}s^{3/2}) . We elaborate on the implications of these findings for effective theory studies of physical observables in thermal QCD.

  8. Cosmology from a gauge induced gravity

    NASA Astrophysics Data System (ADS)

    Falciano, F. T.; Sadovski, G.; Sobreiro, R. F.; Tomaz, A. A.

    2017-09-01

    The main goal of the present work is to analyze the cosmological scenario of the induced gravity theory developed in previous works. Such a theory consists on a Yang-Mills theory in a four-dimensional Euclidian spacetime with { SO}(m,n) such that m+n=5 and m\\in {0,1,2} as its gauge group. This theory undergoes a dynamical gauge symmetry breaking via an Inönü-Wigner contraction in its infrared sector. As a consequence, the { SO}(m,n) algebra is deformed into a Lorentz algebra with the emergency of the local Lorentz symmetries and the gauge fields being identified with a vierbein and a spin connection. As a result, gravity is described as an effective Einstein-Cartan-like theory with ultraviolet correction terms and a propagating torsion field. We show that the cosmological model associated with this effective theory has three different regimes. In particular, the high curvature regime presents a de Sitter phase which tends towards a Λ CDM model. We argue that { SO}(m,n) induced gravities are promising effective theories to describe the early phase of the universe.

  9. CERN Winter School on Supergravity, Strings, and Gauge Theory 2010

    ScienceCinema

    None

    2018-05-15

    The CERN Winter School on Supergravity, Strings, and Gauge Theory is the analytic continuation of the yearly training school of the former EC-RTN string network Constituents, Fundamental Forces and Symmetries of the Universe. The 2010 edition of the school is supported and organized by the CERN Theory Divison, and will take place from Monday January 25 to Friday January 29, at CERN. As its predecessors, this school is meant primarily for training of doctoral students and young postdoctoral researchers in recent developments in theoretical high-energy physics and string theory. The programme of the school will consist of five series of pedagogical lectures, complemented by tutorial discussion sessions in the afternoons. Previous schools in this series were organized in 2005 at SISSA in Trieste, and in 2006, 2007, 2008, and 2009 at CERN, Geneva.

  10. Poincaré gauge gravity: An emergent scenario

    NASA Astrophysics Data System (ADS)

    Chkareuli, J. L.

    2017-04-01

    The Poincaré gauge gravity (PGG) with the underlying vector fields of tetrads and spin-connections is perhaps the best theory candidate for gravitation to be unified with the other three elementary forces of nature. There is a clear analogy between the local frame in PGG and the local internal symmetry space in the Standard Model. As a result, the spin-connection fields, gauging the local frame Lorentz symmetry group S O (1 ,3 )LF , appear in PGG much as photons and gluons appear in SM. We propose that such an analogy may follow from their common emergent nature allowing us to derive PGG in the same way as conventional gauge theories. In essence, we start with an arbitrary theory of some vector and fermion fields which possesses only global spacetime symmetries, such as Lorentz and translational invariance, in flat Minkowski space. The two vector field multiplets involved are proposed to belong, respectively, to the adjoint (Aμi j) and vector (eμi) representations of the starting global Lorentz symmetry. We show that if these prototype vector fields are covariantly constrained, Aμi jAij μ=±MA2 and eμieiμ=±Me2 , thus causing a spontaneous violation of the accompanying global symmetries (MA ,e are their proposed violation scales), then the only possible theory compatible with these length-preserving constraints is turned out to be the gauge invariant PGG, while the corresponding massless (pseudo)Goldstone modes are naturally collected in the emergent gauge fields of tetrads and spin-connections. In a minimal theory case being linear in a curvature we unavoidably come to the Einstein-Cartan theory. The extended theories with propagating spin-connection and tetrad modes are also considered and their possible unification with the Standard Model is briefly discussed.

  11. Note on gauge and gravitational anomalies of discrete Z N symmetries

    NASA Astrophysics Data System (ADS)

    Byakti, Pritibhajan; Ghosh, Diptimoy; Sharma, Tarun

    2018-01-01

    In this note, we discuss the consistency conditions which a discrete Z N symmetry should satisfy in order that it is not violated by gauge and gravitational instantons. As examples, we enlist all the Z N ℛ-symmetries as well as non-ℛ Z N symmetries (N=2,3,4) in the minimally supersymmetric standard model (MSSM) that are free from gauge and gravitational anomalies. We show that there exists non-anomalous discrete symmetries that forbid Baryon number violation up to dimension 6 level (in superspace). We also observe that there exists no non-anomalous Z 3 ℛ-symmetry in the MSSM. Furthermore, we point out that in a theory with one Majorana spin 3/2 gravitino, a large class of Z 4 ℛ-symmetries are violated in the presence of Eguchi-Hanson (EH) gravitational instanton. This is also in general true for higher Z N ℛ-symmetries. We also notice that in 4 dimensional N=1 supergravity, the global U(1) ℛ-symmetry is always violated by the EH instanton irrespective of the matter content of the theory.

  12. Entanglement renormalization and gauge symmetry

    NASA Astrophysics Data System (ADS)

    Tagliacozzo, L.; Vidal, G.

    2011-03-01

    A lattice gauge theory is described by a redundantly large vector space that is subject to local constraints and can be regarded as the low-energy limit of an extended lattice model with a local symmetry. We propose a numerical coarse-graining scheme to produce low-energy, effective descriptions of lattice models with a local symmetry such that the local symmetry is exactly preserved during coarse-graining. Our approach results in a variational ansatz for the ground state(s) and low-energy excitations of such models and, by extension, of lattice gauge theories. This ansatz incorporates the local symmetry in its structure and exploits it to obtain a significant reduction of computational costs. We test the approach in the context of a Z2 lattice gauge theory formulated as the low-energy theory of a specific regime of the toric code with a magnetic field, for lattices with up to 16×16 sites (162×2=512 spins) on a torus. We reproduce the well-known ground-state phase diagram of the model, consisting of a deconfined and spin-polarized phases separated by a continuous quantum phase transition, and obtain accurate estimates of energy gaps, ground-state fidelities, Wilson loops, and several other quantities.

  13. Cartan gravity, matter fields, and the gauge principle

    NASA Astrophysics Data System (ADS)

    Westman, Hans F.; Zlosnik, Tom G.

    2013-07-01

    Gravity is commonly thought of as one of the four force fields in nature. However, in standard formulations its mathematical structure is rather different from the Yang-Mills fields of particle physics that govern the electromagnetic, weak, and strong interactions. This paper explores this dissonance with particular focus on how gravity couples to matter from the perspective of the Cartan-geometric formulation of gravity. There the gravitational field is represented by a pair of variables: (1) a 'contact vector' VA which is geometrically visualized as the contact point between the spacetime manifold and a model spacetime being 'rolled' on top of it, and (2) a gauge connection AμAB, here taken to be valued in the Lie algebra of SO(2,3) or SO(1,4), which mathematically determines how much the model spacetime is rotated when rolled. By insisting on two principles, the gauge principle and polynomial simplicity, we shall show how one can reformulate matter field actions in a way that is harmonious with Cartan's geometric construction. This yields a formulation of all matter fields in terms of first order partial differential equations. We show in detail how the standard second order formulation can be recovered. In particular, the Hodge dual, which characterizes the structure of bosonic field equations, pops up automatically. Furthermore, the energy-momentum and spin-density three-forms are naturally combined into a single object here denoted the spin-energy-momentum three-form. Finally, we highlight a peculiarity in the mathematical structure of our first-order formulation of Yang-Mills fields. This suggests a way to unify a U(1) gauge field with gravity into a SO(1,5)-valued gauge field using a natural generalization of Cartan geometry in which the larger symmetry group is spontaneously broken down to SO(1,3)×U(1). The coupling of this unified theory to matter fields and possible extensions to non-Abelian gauge fields are left as open questions.

  14. A string realisation of Ω-deformed Abelian N =2* theory

    NASA Astrophysics Data System (ADS)

    Angelantonj, Carlo; Antoniadis, Ignatios; Samsonyan, Marine

    2017-10-01

    The N =2* supersymmetric gauge theory is a massive deformation of N = 4, in which the adjoint hypermultiplet gets a mass. We present a D-brane realisation of the (non-)Abelian N =2* theory, and compute suitable topological amplitudes, which are expressed as a double series expansion. The coefficients determine couplings of higher-dimensional operators in the effective supergravity action that involve powers of the anti-self-dual N = 2 chiral Weyl superfield and of self-dual gauge field strengths superpartners of the D5-brane coupling modulus. In the field theory limit, the result reproduces the Nekrasov partition function in the two-parameter Ω-background, in agreement with a recent proposal.

  15. Spiky strings and single trace operators in gauge theories

    NASA Astrophysics Data System (ADS)

    Kruczenski, Martin

    2005-08-01

    We consider single trace operators of the form Script Ol1...ln = Tr D+l1F...D+lnF which are common to all gauge theories. We argue that, when all li are equal and large, they have a dual description as strings with cusps, or spikes, one for each field F. In the case of Script N = 4 SYM, we compute the energy as a function of angular momentum by finding the corresponding solutions in AdS5 and compare with a 1-loop calculation of the anomalous dimension. As in the case of two spikes (twist two operators), there is agreement in the functional form but not in the coupling constant dependence. After that, we analyze the system in more detail and find an effective classical mechanics describing the motion of the spikes. In the appropriate limit, it is the same (up to the coupling constant dependence) as the coherent state description of linear combinations of the operators Script Ol1...ln such that all li are equal on average. This agreement provides a map between the operators in the boundary and the position of the spikes in the bulk. We further suggest that moving the spikes in other directions should describe operators with derivatives other than D+ indicating that these ideas are quite generic and should help in unraveling the string description of the large-N limit of gauge theories.

  16. Global Constraints on Anomalous Triple Gauge Couplings in the Effective Field Theory Approach.

    PubMed

    Falkowski, Adam; González-Alonso, Martín; Greljo, Admir; Marzocca, David

    2016-01-08

    We present a combined analysis of LHC Higgs data (signal strengths) together with LEP-2 WW production measurements. To characterize possible deviations from the standard model (SM) predictions, we employ the framework of an effective field theory (EFT) where the SM is extended by higher-dimensional operators suppressed by the mass scale of new physics Λ. The analysis is performed consistently at the order Λ(-2) in the EFT expansion keeping all the relevant operators. While the two data sets suffer from flat directions, together they impose stringent model-independent constraints on the anomalous triple gauge couplings.

  17. Gauging hidden symmetries in two dimensions

    NASA Astrophysics Data System (ADS)

    Samtleben, Henning; Weidner, Martin

    2007-08-01

    We initiate the systematic construction of gauged matter-coupled supergravity theories in two dimensions. Subgroups of the affine global symmetry group of toroidally compactified supergravity can be gauged by coupling vector fields with minimal couplings and a particular topological term. The gauge groups typically include hidden symmetries that are not among the target-space isometries of the ungauged theory. The gaugings constructed in this paper are described group-theoretically in terms of a constant embedding tensor subject to a number of constraints which parametrizes the different theories and entirely encodes the gauged Lagrangian. The prime example is the bosonic sector of the maximally supersymmetric theory whose ungauged version admits an affine fraktur e9 global symmetry algebra. The various parameters (related to higher-dimensional p-form fluxes, geometric and non-geometric fluxes, etc.) which characterize the possible gaugings, combine into an embedding tensor transforming in the basic representation of fraktur e9. This yields an infinite-dimensional class of maximally supersymmetric theories in two dimensions. We work out and discuss several examples of higher-dimensional origin which can be systematically analyzed using the different gradings of fraktur e9.

  18. Localization of U(1) gauge vector field on flat branes with five-dimension (asymptotic) AdS5 spacetime

    NASA Astrophysics Data System (ADS)

    Zhao, Zhen-Hua; Xie, Qun-Ying

    2018-05-01

    In order to localize U(1) gauge vector field on Randall-Sundrum-like braneworld model with infinite extra dimension, we propose a new kind of non-minimal coupling between the U(1) gauge field and the gravity. We propose three kinds of coupling methods and they all support the localization of zero mode. In addition, one of them can support the localization of massive modes. Moreover, the massive tachyonic modes can be excluded. And our method can be used not only in the thin braneword models but also in the thick ones.

  19. Probing the holographic principle using dynamical gauge effects from open spin-orbit coupling

    NASA Astrophysics Data System (ADS)

    Zhao, Jianshi; Price, Craig; Liu, Qi; Gemelke, Nathan

    2016-05-01

    Dynamical gauge fields result from locally defined symmetries and an effective over-labeling of quantum states. Coupling atoms weakly to a reservoir of laser modes can create an effective dynamical gauge field purely due to the disregard of information in the optical states. Here we report measurements revealing effects of open spin-orbit coupling in a system where an effective model can be formed from a non-abelian SU(2) × U(1) field theory following the Yang-Mills construct. Forming a close analogy to dynamical gauge effects in quantum chromodynamics, we extract a measure of atomic motion which reveals the analog of a closing mass gap for the relevant gauge boson, shedding insight on long standing open problems in gauge-fixing scale anomalies. Using arguments following the holographic principle, we measure scaling relations which can be understood by quantifying information present in the local potential. New prospects using these techniques for developing fractionalization of multi-particle and macroscopic systems using dissipative and non-abelian gauge fields will also be discussed. We acknowledge support from NSF Award No. 1068570, and the Charles E. Kaufman Foundation.

  20. Rate theory scenarios study on fission gas behavior of U 3 Si 2 under LOCA conditions in LWRs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miao, Yinbin; Gamble, Kyle A.; Andersson, David

    Fission gas behavior of U3Si2 under various loss-of-coolant accident (LOCA) conditions in light water reactors (LWRs) was simulated using rate theory. A rate theory model for U3Si2 that covers both steady-state operation and power transients was developed for the GRASS-SST code based on existing research reactor/ion irradiation experimental data and theoretical predictions of density functional theory (DFT) calculations. The steady-state and LOCA condition parameters were either directly provided or inspired by BISON simulations. Due to the absence of in-pile experiment data for U3Si2's fuel performance under LWR conditions at this stage of accident tolerant fuel (ATF) development, a variety ofmore » LOCA scenarios were taken into consideration to comprehensively and conservatively evaluate the fission gas behavior of U3Si2 during a LOCA.« less

  1. Multiloop amplitudes of light-cone gauge superstring field theory: odd spin structure contributions

    NASA Astrophysics Data System (ADS)

    Ishibashi, Nobuyuki; Murakami, Koichi

    2018-03-01

    We study the odd spin structure contributions to the multiloop amplitudes of light-cone gauge superstring field theory. We show that they coincide with the amplitudes in the conformal gauge with two of the vertex operators chosen to be in the pictures different from the standard choice, namely (-1, -1) picture in the type II case and -1 picture in the heterotic case. We also show that the contact term divergences can be regularized in the same way as in the amplitudes for the even structures and we get the amplitudes which coincide with those obtained from the first-quantized approach.

  2. Three dimensional finite temperature SU(3) gauge theory near the phase transition

    NASA Astrophysics Data System (ADS)

    Bialas, P.; Daniel, L.; Morel, A.; Petersson, B.

    2013-06-01

    We have measured the correlation function of Polyakov loops on the lattice in three dimensional SU(3) gauge theory near its finite temperature phase transition. Using a new and powerful application of finite size scaling, we furthermore extend the measurements of the critical couplings to considerably larger values of the lattice sizes, both in the temperature and space directions, than was investigated earlier in this theory. With the help of these measurements we perform a detailed finite size scaling analysis, showing that for the critical exponents of the two dimensional three state Potts model the mass and the susceptibility fall on unique scaling curves. This strongly supports the expectation that the gauge theory is in the same universality class. The Nambu-Goto string model on the other hand predicts that the exponent ν has the mean field value, which is quite different from the value in the abovementioned Potts model. Using our values of the critical couplings we also determine the continuum limit of the value of the critical temperature in terms of the square root of the zero temperature string tension. This value is very near to the prediction of the Nambu-Goto string model in spite of the different critical behaviour.

  3. SU (2) lattice gauge theory simulations on Fermi GPUs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cardoso, Nuno, E-mail: nunocardoso@cftp.ist.utl.p; Bicudo, Pedro, E-mail: bicudo@ist.utl.p

    2011-05-10

    In this work we explore the performance of CUDA in quenched lattice SU (2) simulations. CUDA, NVIDIA Compute Unified Device Architecture, is a hardware and software architecture developed by NVIDIA for computing on the GPU. We present an analysis and performance comparison between the GPU and CPU in single and double precision. Analyses with multiple GPUs and two different architectures (G200 and Fermi architectures) are also presented. In order to obtain a high performance, the code must be optimized for the GPU architecture, i.e., an implementation that exploits the memory hierarchy of the CUDA programming model. We produce codes formore » the Monte Carlo generation of SU (2) lattice gauge configurations, for the mean plaquette, for the Polyakov Loop at finite T and for the Wilson loop. We also present results for the potential using many configurations (50,000) without smearing and almost 2000 configurations with APE smearing. With two Fermi GPUs we have achieved an excellent performance of 200x the speed over one CPU, in single precision, around 110 Gflops/s. We also find that, using the Fermi architecture, double precision computations for the static quark-antiquark potential are not much slower (less than 2x slower) than single precision computations.« less

  4. SU (2) lattice gauge theory simulations on Fermi GPUs

    NASA Astrophysics Data System (ADS)

    Cardoso, Nuno; Bicudo, Pedro

    2011-05-01

    In this work we explore the performance of CUDA in quenched lattice SU (2) simulations. CUDA, NVIDIA Compute Unified Device Architecture, is a hardware and software architecture developed by NVIDIA for computing on the GPU. We present an analysis and performance comparison between the GPU and CPU in single and double precision. Analyses with multiple GPUs and two different architectures (G200 and Fermi architectures) are also presented. In order to obtain a high performance, the code must be optimized for the GPU architecture, i.e., an implementation that exploits the memory hierarchy of the CUDA programming model. We produce codes for the Monte Carlo generation of SU (2) lattice gauge configurations, for the mean plaquette, for the Polyakov Loop at finite T and for the Wilson loop. We also present results for the potential using many configurations (50,000) without smearing and almost 2000 configurations with APE smearing. With two Fermi GPUs we have achieved an excellent performance of 200× the speed over one CPU, in single precision, around 110 Gflops/s. We also find that, using the Fermi architecture, double precision computations for the static quark-antiquark potential are not much slower (less than 2× slower) than single precision computations.

  5. Gauge equivalence of two different IAnsaaumlItze Rfor non-Abelian charged vortices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Paul, S.K.

    1987-05-15

    Recently the existence of non-Abelian charged vortices has been established by taking two different Ansa$uml: tze in SU(2) gauge theories. We point out that these two Ansa$uml: tze are in two topologically equivalent prescriptions. We show that they are gauge equivalent only at infinity. We also show that this gauge equivalence is not possible for Z/sub N/ vortices in SU(N) gauge theories for Ngreater than or equal to3.

  6. Quantization of Spontaneously Broken Gauge Theory Based on the Bft-Bfv Formalism

    NASA Astrophysics Data System (ADS)

    Kim, Yong-Wan; Park, Young-Jai

    We quantize the spontaneously broken Abelian U(1) Higgs model by using the improved BFT and BFV formalisms. We construct the BFT physical fields and obtain the firstclass observables including the Hamiltonian in terms of these fields. We also explicitly show that there are exact form invariances between the second-class and first-class quantities. Then, according to the BFV formalism, we derive the corresponding Lagrangian having U(1) gauge symmetry. We also discuss at the classical level how one easily gets the first-class Lagrangian from the symmetry-broken second-class Lagrangian.

  7. Topological Quantum Phase Transition in Synthetic Non-Abelian Gauge Potential: Gauge Invariance and Experimental Detections

    PubMed Central

    Sun, Fadi; Yu, Xiao-Lu; Ye, Jinwu; Fan, Heng; Liu, Wu-Ming

    2013-01-01

    The method of synthetic gauge potentials opens up a new avenue for our understanding and discovering novel quantum states of matter. We investigate the topological quantum phase transition of Fermi gases trapped in a honeycomb lattice in the presence of a synthetic non-Abelian gauge potential. We develop a systematic fermionic effective field theory to describe a topological quantum phase transition tuned by the non-Abelian gauge potential and explore its various important experimental consequences. Numerical calculations on lattice scales are performed to compare with the results achieved by the fermionic effective field theory. Several possible experimental detection methods of topological quantum phase transition are proposed. In contrast to condensed matter experiments where only gauge invariant quantities can be measured, both gauge invariant and non-gauge invariant quantities can be measured by experimentally generating various non-Abelian gauges corresponding to the same set of Wilson loops. PMID:23846153

  8. Feynman rules for the Standard Model Effective Field Theory in R ξ -gauges

    NASA Astrophysics Data System (ADS)

    Dedes, A.; Materkowska, W.; Paraskevas, M.; Rosiek, J.; Suxho, K.

    2017-06-01

    We assume that New Physics effects are parametrized within the Standard Model Effective Field Theory (SMEFT) written in a complete basis of gauge invariant operators up to dimension 6, commonly referred to as "Warsaw basis". We discuss all steps necessary to obtain a consistent transition to the spontaneously broken theory and several other important aspects, including the BRST-invariance of the SMEFT action for linear R ξ -gauges. The final theory is expressed in a basis characterized by SM-like propagators for all physical and unphysical fields. The effect of the non-renormalizable operators appears explicitly in triple or higher multiplicity vertices. In this mass basis we derive the complete set of Feynman rules, without resorting to any simplifying assumptions such as baryon-, lepton-number or CP conservation. As it turns out, for most SMEFT vertices the expressions are reasonably short, with a noticeable exception of those involving 4, 5 and 6 gluons. We have also supplemented our set of Feynman rules, given in an appendix here, with a publicly available Mathematica code working with the FeynRules package and producing output which can be integrated with other symbolic algebra or numerical codes for automatic SMEFT amplitude calculations.

  9. Gauge invariant lattice quantum field theory: Implications for statistical properties of high frequency financial markets

    NASA Astrophysics Data System (ADS)

    Dupoyet, B.; Fiebig, H. R.; Musgrove, D. P.

    2010-01-01

    We report on initial studies of a quantum field theory defined on a lattice with multi-ladder geometry and the dilation group as a local gauge symmetry. The model is relevant in the cross-disciplinary area of econophysics. A corresponding proposal by Ilinski aimed at gauge modeling in non-equilibrium pricing is implemented in a numerical simulation. We arrive at a probability distribution of relative gains which matches the high frequency historical data of the NASDAQ stock exchange index.

  10. Density functional theory calculations of UO2 oxidation: evolution of UO(2+x), U4O(9-y), U3O7, and U3O8.

    PubMed

    Andersson, D A; Baldinozzi, G; Desgranges, L; Conradson, D R; Conradson, S D

    2013-03-04

    Formation of hyperstoichiometric uranium dioxide, UO2+x, derived from the fluorite structure was investigated by means of density functional theory (DFT) calculations. Oxidation was modeled by adding oxygen atoms to UO2 fluorite supercells. For each compound ab initio molecular dynamics simulations were performed to allow the ions to optimize their local geometry. A similar approach was used for studying the reduction of U3O8. In agreement with the experimental phase diagram we identify stable line compounds at the U4O9-y and U3O7 stoichiometries. Although the transition from fluorite to the layered U3O8 structure occurs at U3O7 (UO2.333) or U3O7.333 (UO2.444), our calculated low temperature phase diagram indicates that the fluorite derived compounds are favored up to UO2.5, that is, as long as the charge-compensation for adding oxygen atoms occurs via formation of U(5+) ions, after which the U3O8-y phase becomes more stable. The most stable fluorite UO2+x phases at low temperature (0 K) are based on ordering of split quad-interstitial oxygen clusters. Most existing crystallographic models of U4O9 and U3O7, however, apply the cuboctahedral cluster. To better understand these discrepancies, the new structural models are analyzed in terms of existing neutron diffraction data. DFT calculations were also performed on the experimental cuboctahedral based U4O9-y structure, which enable comparisons between the properties of this phase with the quad-interstitial ones in detail.

  11. On the origin of Poincaré gauge gravity

    NASA Astrophysics Data System (ADS)

    Chkareuli, J. L.

    2017-06-01

    We argue that the origin of Poincaré gauge gravity (PGG) may be related to spontaneous violation of underlying spacetime symmetries involved and appearance of gauge fields as vector Goldstone bosons. In essence, we start with an arbitrary theory of some vector and fermion fields which possesses only global spacetime symmetries, such as Lorentz and translational invariance, in flat Minkowski space. The two vector field multiplets involved are assumed to belong, respectively, to the adjoint (Aμij) and vector (eμi) representations of the starting global Lorentz symmetry. We propose that these prototype vector fields are covariantly constrained, Aμij Aijμ = ±MA2 and eμi eiμ = ±Me2 , that causes a spontaneous violation of the accompanying global symmetries (MA,e are their presumed violation scales). It then follows that the only possible theory compatible with these length-preserving constraints is turned out to be the gauge invariant PGG, while the corresponding massless (pseudo)Goldstone modes are naturally collected in the emergent gauge fields of tetrads and spin-connections. In a minimal theory case being linear in a curvature we unavoidably come to the Einstein-Cartan theory. The extended theories with propagating spin-connection and tetrad modes are also considered and their possible unification with the Standard Model is briefly discussed.

  12. Type II string theory on Calabi-Yau manifolds with torsion and non-Abelian discrete gauge symmetries

    DOE PAGES

    Braun, Volker; Cvetič, Mirjam; Donagi, Ron; ...

    2017-07-26

    Here, we provide the first explicit example of Type IIB string theory compactication on a globally defined Calabi-Yau threefold with torsion which results in a fourdimensional effective theory with a non-Abelian discrete gauge symmetry. Our example is based on a particular Calabi-Yau manifold, the quotient of a product of three elliptic curves by a fixed point free action of Z 2 X Z 2. Its cohomology contains torsion classes in various degrees. The main technical novelty is in determining the multiplicative structure of the (torsion part of) the cohomology ring, and in particular showing that the cup product of secondmore » cohomology torsion elements goes non-trivially to the fourth cohomology. This specifies a non-Abelian, Heisenberg-type discrete symmetry group of the four-dimensional theory.« less

  13. Type II string theory on Calabi-Yau manifolds with torsion and non-Abelian discrete gauge symmetries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Braun, Volker; Cvetič, Mirjam; Donagi, Ron

    Here, we provide the first explicit example of Type IIB string theory compactication on a globally defined Calabi-Yau threefold with torsion which results in a fourdimensional effective theory with a non-Abelian discrete gauge symmetry. Our example is based on a particular Calabi-Yau manifold, the quotient of a product of three elliptic curves by a fixed point free action of Z 2 X Z 2. Its cohomology contains torsion classes in various degrees. The main technical novelty is in determining the multiplicative structure of the (torsion part of) the cohomology ring, and in particular showing that the cup product of secondmore » cohomology torsion elements goes non-trivially to the fourth cohomology. This specifies a non-Abelian, Heisenberg-type discrete symmetry group of the four-dimensional theory.« less

  14. No black holes: A gravitational gauge theory possibility

    NASA Astrophysics Data System (ADS)

    Chang, David B.; Johnson, Harold H.

    1980-06-01

    The most general lowest order lagrangian that can be formed from gauge-derived vierbein invariants is constrained by the hypothesis that the speed of light as measured by conventional rods and clocks of atomic constitution is independent of direction in a gravitational field. It is shown that the standard weak field observational tests of general relativity serve to eliminate all possible combinations of parameters in this constrained lagrangian except two. One parameter choice gives the isotropic Schwarzchild black hole metric of the general theory of relativity. The other allowable choice leads to an exponential metric of the class proposed by Yilmaz, corresponding in strong fields to large red shifts without black hole formation. Permanent address: Trinity College; Deerfield, Illinois.

  15. Gauge-flation and cosmic no-hair conjecture

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maleknejad, A.; Sheikh-Jabbari, M.M.; Soda, Jiro, E-mail: azade@ipm.ir, E-mail: jabbari@theory.ipm.ac.ir, E-mail: jiro@tap.scphys.kyoto-u.ac.jp

    2012-01-01

    Gauge-flation, inflation from non-Abelian gauge fields, was introduced in [1, 2]. In this work, we study the cosmic no-hair conjecture in gauge-flation. Starting from Bianchi-type I cosmology and through analytic and numeric studies we demonstrate that the isotropic FLRW inflation is an attractor of the dynamics of the theory and that the anisotropies are damped within a few e-folds, in accord with the cosmic no-hair conjecture.

  16. Equivalence between the Lovelock-Cartan action and a constrained gauge theory

    NASA Astrophysics Data System (ADS)

    Junqueira, O. C.; Pereira, A. D.; Sadovski, G.; Santos, T. R. S.; Sobreiro, R. F.; Tomaz, A. A.

    2017-04-01

    We show that the four-dimensional Lovelock-Cartan action can be derived from a massless gauge theory for the SO(1, 3) group with an additional BRST trivial part. The model is originally composed of a topological sector and a BRST exact piece and has no explicit dependence on the metric, the vierbein or a mass parameter. The vierbein is introduced together with a mass parameter through some BRST trivial constraints. The effect of the constraints is to identify the vierbein with some of the additional fields, transforming the original action into the Lovelock-Cartan one. In this scenario, the mass parameter is identified with Newton's constant, while the gauge field is identified with the spin connection. The symmetries of the model are also explored. Moreover, the extension of the model to a quantum version is qualitatively discussed.

  17. N =1 Lagrangians for generalized Argyres-Douglas theories

    NASA Astrophysics Data System (ADS)

    Agarwal, Prarit; Sciarappa, Antonio; Song, Jaewon

    2017-10-01

    We find N = 1 Lagrangian gauge theories that flow to generalized ArgyresDouglas theories with N = 2 supersymmetry. We find that certain SU quiver gauge theories flow to generalized Argyres-Douglas theories of type ( A k-1 , A mk-1) and ( I m,km , S). We also find quiver gauge theories of SO/Sp gauge groups flowing to the ( A 2 m-1 , D 2 mk+1), ( A 2 m , D 2 m( k-1)+ k ) and D m(2 k + 2) m(2 k + 2) [ m] theories.

  18. Explaining the DAMPE data with scalar dark matter and gauged U(1)_{L_e-L_μ } interaction

    NASA Astrophysics Data System (ADS)

    Cao, Junjie; Feng, Lei; Guo, Xiaofei; Shang, Liangliang; Wang, Fei; Wu, Peiwen; Zu, Lei

    2018-03-01

    Inspired by the peak structure observed by recent DAMPE experiment in e^+e^- cosmic-ray spectrum, we consider a scalar dark matter (DM) model with gauged U(1)_{L_e-L_μ } symmetry, which is the most economical anomaly-free theory to potentially explain the peak by DM annihilation in nearby subhalo. We utilize the process χ χ → Z^' Z^' → l \\bar{l} l^' \\bar{l}^' , where χ , Z^' , l^{(' )} denote the scalar DM, the new gauge boson and l^{(' )} =e, μ , respectively, to generate the e^+e^- spectrum. By fitting the predicted spectrum to the experimental data, we obtain the favored DM mass range m_χ ˜eq 3060^{+80}_{-100} GeV and Δ m ≡ m_χ - m_{Z^' } ≲ 14 GeV at 68% Confidence Level (C.L.). Furthermore, we determine the parameter space of the model which can explain the peak and meanwhile satisfy the constraints from DM relic abundance, DM direct detection and the collider bounds. We conclude that the model we consider can account for the peak, although there exists a tension with the constraints from the LEP-II bound on m_{Z^' } arising from the cross section measurement of e^+e^- → Z^' *} → e^+ e^-.

  19. On the reduction of 4d $$ \\mathcal{N}=1 $$ theories on $$ {\\mathbb{S}}^2 $$

    DOE PAGES

    Gadde, Abhijit; Razamat, Shlomo S.; Willett, Brian

    2015-11-24

    Here, we discuss reductions of generalmore » $$ \\mathcal{N}=1 $$ four dimensional gauge theories on $$ {\\mathbb{S}}^2 $$. The effective two dimensional theory one obtains depends on the details of the coupling of the theory to background fields, which can be translated to a choice of R-symmetry. We argue that, for special choices of R-symmetry, the resulting two dimensional theory has a natural interpretation as an $$ \\mathcal{N}(0,2) $$ gauge theory. As an application of our general observations, we discuss reductions of $$ \\mathcal{N}=1 $$ and $$ \\mathcal{N}=2 $$ dualities and argue that they imply certain two dimensional dualities.« less

  20. Hamiltonian approach to second order gauge invariant cosmological perturbations

    NASA Astrophysics Data System (ADS)

    Domènech, Guillem; Sasaki, Misao

    2018-01-01

    In view of growing interest in tensor modes and their possible detection, we clarify the definition of tensor modes up to 2nd order in perturbation theory within the Hamiltonian formalism. Like in gauge theory, in cosmology the Hamiltonian is a suitable and consistent approach to reduce the gauge degrees of freedom. In this paper we employ the Faddeev-Jackiw method of Hamiltonian reduction. An appropriate set of gauge invariant variables that describe the dynamical degrees of freedom may be obtained by suitable canonical transformations in the phase space. We derive a set of gauge invariant variables up to 2nd order in perturbation expansion and for the first time we reduce the 3rd order action without adding gauge fixing terms. In particular, we are able to show the relation between the uniform-ϕ and Newtonian slicings, and study the difference in the definition of tensor modes in these two slicings.

  1. Hidden U (1 ) gauge symmetry realizing a neutrinophilic two-Higgs-doublet model with dark matter

    NASA Astrophysics Data System (ADS)

    Nomura, Takaaki; Okada, Hiroshi

    2018-04-01

    We propose a neutrinophilic two-Higgs-doublet model with hidden local U (1 ) symmetry, where active neutrinos are Dirac type, and a fermionic dark matter (DM) candidate is naturally induced as a result of remnant symmetry even after the spontaneous symmetry breaking. In addition, a physical Goldstone boson arises as a consequence of two types of gauge singlet bosons and contributes to the DM phenomenologies as well as an additional neutral gauge boson. Then, we analyze the relic density of DM within the safe range of direct detection searches and show the allowed region of dark matter mass.

  2. Singular gauge transformation and the Erler-Maccaferri solution in bosonic open string field theory

    NASA Astrophysics Data System (ADS)

    Miwa, Akitsugu; Sugita, Kazuhiro

    2017-09-01

    We study candidate multiple-brane solutions of bosonic open string field theory. They are constructed by performing a singular gauge transformation n times for the Erler-Maccaferri solution. We check the equation of motion in the strong sense, and find that it is satisfied only when we perform the gauge transformation once. We calculate the energy for that case and obtain a support that the solution is a multiple-brane solution. We also check the tachyon profile for a specific solution that we interpret as describing a D24-brane placed on a D25-brane.

  3. Topics in Two-Dimensional Quantum Gravity and Chern-Simons Gauge Theories

    NASA Astrophysics Data System (ADS)

    Zemba, Guillermo Raul

    A series of studies in two and three dimensional theories is presented. The two dimensional problems are considered in the framework of String Theory. The first one determines the region of integration in the space of inequivalent tori of a tadpole diagram in Closed String Field Theory, using the naive Witten three-string vertex. It is shown that every surface is counted an infinite number of times and the source of this behavior is identified. The second study analyzes the behavior of the discrete matrix model of two dimensional gravity without matter using a mathematically well-defined construction, confirming several conjectures and partial results from the literature. The studies in three dimensions are based on Chern Simons pure gauge theory. The first one deals with the projection of the theory onto a two-dimensional surface of constant time, whereas the second analyzes the large N behavior of the SU(N) theory and makes evident a duality symmetry between the only two parameters of the theory. (Copies available exclusively from MIT Libraries, Rm. 14-0551, Cambridge, MA 02139-4307. Ph. 617-253-5668; Fax 617-253 -1690.).

  4. Gaseous swelling of U 3 Si 2 during steady-state LWR operation: A rate theory investigation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miao, Yinbin; Gamble, Kyle A.; Andersson, David

    Rate theory simulations of fission gas behavior in U 3Si 2 are reported for light water reactor (LWR) steady-state operation scenarios. We developed a model of U 3Si 2 and implemented into the GRASS-SST code based on available research reactor post-irradiation examination (PIE) data, and density functional theory (DFT) calculations of key material properties. Simplified peripheral models were also introduced to capture the fuel-cladding interaction. The simulations identified three regimes of U 3Si 2 swelling behavior between 390 K and 1190 K. Under typical steady-state LWR operating conditions where U 3Si 2 temperature is expected to be below 1000 K,more » intragranular bubbles are dominant and fission gas is retained in those bubbles. The consequent gaseous swelling is low and associated degradation in the fuel thermal conductivity is also limited. Those predictions of U 3Si 2 performance during steady-state operations in LWRs suggest that this fuel material is an appropriate LWR candidate fuel material. Fission gas behavior models established based on this work are being coupled to the thermo-mechanical simulation of the fuel behavior using the BISON fuel performance multi-dimensional finite element code.« less

  5. Gaseous swelling of U 3 Si 2 during steady-state LWR operation: A rate theory investigation

    DOE PAGES

    Miao, Yinbin; Gamble, Kyle A.; Andersson, David; ...

    2017-07-25

    Rate theory simulations of fission gas behavior in U 3Si 2 are reported for light water reactor (LWR) steady-state operation scenarios. We developed a model of U 3Si 2 and implemented into the GRASS-SST code based on available research reactor post-irradiation examination (PIE) data, and density functional theory (DFT) calculations of key material properties. Simplified peripheral models were also introduced to capture the fuel-cladding interaction. The simulations identified three regimes of U 3Si 2 swelling behavior between 390 K and 1190 K. Under typical steady-state LWR operating conditions where U 3Si 2 temperature is expected to be below 1000 K,more » intragranular bubbles are dominant and fission gas is retained in those bubbles. The consequent gaseous swelling is low and associated degradation in the fuel thermal conductivity is also limited. Those predictions of U 3Si 2 performance during steady-state operations in LWRs suggest that this fuel material is an appropriate LWR candidate fuel material. Fission gas behavior models established based on this work are being coupled to the thermo-mechanical simulation of the fuel behavior using the BISON fuel performance multi-dimensional finite element code.« less

  6. Current algebra formulation of radiative corrections in gauge theories and the universality of the weak interactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sirlin, A.

    1978-07-01

    A current algebra formulation of the radiative corrections in gauge theories, with special applications to the analysis of the universality of the weak interactions, is developed in the framework of quantum chromodynamics. For definiteness, we work in the SU(2) x U(1) model with four quark flavors, but the methods are quite general and can be applied to other theories. The explicit cancellation of ultraviolet divergences for arbitrary semileptonic processes is achieved relying solely on the Ward identities and general considerations, both in the W and Higgs sectors. The finite parts of order G/sub F/..cap alpha.. are then evaluated in themore » case of the superallowed Fermi transitions, including small effects proportional to g/sup -2//sub S/(kappa/sup 2/), which are induced by the strong interactions in the asymptotic domain. We consider here both the simplest version of the Weinberg--Salam model in which the Higgs scalars transform as a single isospinsor, as well as the case of general symmetry breaking. Except for the small effects proportional to g/sup -2//sub S/(kappa/sup 2/), the results are identical to the answers previously found on the basis of heuristic arguments. The phenomenological verification of Cabibbo universality on the basis of these corrections and the superallowed Fermi transitions has been discussed before and found to be in very good agreement with present experimental evidence. The analogous calculation for the transition rate of pion ..beta.. decay is given. Theoretical alternatives to quantum chromdynamics as a framework for the evaluate ion of the radiative corrections are briefly discussed. The appendixes contain a generalization of an important result in the theory of radiative corrections, an analysis of the hadronic contributions to the W and phi propagators, mathematical methods for evaluating the g/sup -2//sub S/(kappa/sup 2/) corrections, and discussions of quark mass renormalization and the absence of operator ''seagulls'' in

  7. Discrete symmetries in Heterotic/F-theory duality and mirror symmetry

    DOE PAGES

    Cvetič, Mirjam; Grassi, Antonella; Poretschkin, Maximilian

    2017-06-30

    We study aspects of Heterotic/F-theory duality for compacti cations with Abelian discrete gauge symmetries. We consider F-theory compacti cations on genus-one bered Calabi-Yau manifolds with n-sections, associated with the Tate-Shafarevich group Z n. Such models are obtained by studying rst a speci c toric set-up whose associated Heterotic vector bundle has structure group Z n. By employing a conjectured Heterotic/Ftheory mirror symmetry we construct dual geometries of these original toric models, where in the stable degeneration limit we obtain a discrete gauge symmetry of order two and three, for compacti cations to six dimensions. We provide explicit constructions of mirrorpairsmore » for symmetric examples with Z 2 and Z 3, in six dimensions. The Heterotic models with symmetric discrete symmetries are related in eld theory to a Higgsing of Heterotic models with two symmetric abelian U(1) gauge factors, where due to the Stuckelberg mechanism only a diagonal U(1) factor remains massless, and thus after Higgsing only a diagonal discrete symmetry of order n is present in the Heterotic models and detected via Heterotic/F-theory duality. These constructions also provide further evidence for the conjectured mirror symmetry in Heterotic/F-theory at the level of brations with torsional sections and those with multi-sections.« less

  8. Discrete symmetries in Heterotic/F-theory duality and mirror symmetry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cvetič, Mirjam; Grassi, Antonella; Poretschkin, Maximilian

    We study aspects of Heterotic/F-theory duality for compacti cations with Abelian discrete gauge symmetries. We consider F-theory compacti cations on genus-one bered Calabi-Yau manifolds with n-sections, associated with the Tate-Shafarevich group Z n. Such models are obtained by studying rst a speci c toric set-up whose associated Heterotic vector bundle has structure group Z n. By employing a conjectured Heterotic/Ftheory mirror symmetry we construct dual geometries of these original toric models, where in the stable degeneration limit we obtain a discrete gauge symmetry of order two and three, for compacti cations to six dimensions. We provide explicit constructions of mirrorpairsmore » for symmetric examples with Z 2 and Z 3, in six dimensions. The Heterotic models with symmetric discrete symmetries are related in eld theory to a Higgsing of Heterotic models with two symmetric abelian U(1) gauge factors, where due to the Stuckelberg mechanism only a diagonal U(1) factor remains massless, and thus after Higgsing only a diagonal discrete symmetry of order n is present in the Heterotic models and detected via Heterotic/F-theory duality. These constructions also provide further evidence for the conjectured mirror symmetry in Heterotic/F-theory at the level of brations with torsional sections and those with multi-sections.« less

  9. Five-Dimensional Gauged Supergravity with Higher Derivatives

    NASA Astrophysics Data System (ADS)

    Hanaki, Kentaro

    This thesis summarizes the recent developments on the study of five-dimensional gauged supergravity with higher derivative terms, emphasizing in particular the application to understanding the hydrodynamic properties of gauge theory plasma via the AdS/CFT correspondence. We first review how the ungauged and gauged five-dimensional supergravity actions with higher derivative terms can be constructed using the off-shell superconformal formalism. Then we relate the gauged supergravity to four-dimensional gauge theory using the AdS/CFT correspondence and extract the physical quantities associated with gauge theory plasma from the dual classical supergravity computations. We put a particular emphasis on the discussion of the conjectured lower bound for the shear viscosity over entropy density ratio proposed by Kovtun, Son and Starinets, and discuss how higher derivative terms in supergravity and the introduction of chemical potential for the R-charge affect this bound.

  10. Millicharged dark matter in quantum gravity and string theory.

    PubMed

    Shiu, Gary; Soler, Pablo; Ye, Fang

    2013-06-14

    We examine the millicharged dark matter scenario from a string theory perspective. In this scenario, kinetic and mass mixings of the photon with extra U(1) bosons are claimed to give rise to small electric charges, carried by dark matter particles, whose values are determined by continuous parameters of the theory. This seems to contradict folk theorems of quantum gravity that forbid the existence of irrational charges in theories with a single massless gauge field. By considering the underlying structure of the U(1) mass matrix that appears in type II string compactifications, we show that millicharges arise exclusively through kinetic mixing, and require the existence of at least two exactly massless gauge bosons.

  11. A highly optimized vectorized code for Monte Carlo simulations of SU(3) lattice gauge theories

    NASA Technical Reports Server (NTRS)

    Barkai, D.; Moriarty, K. J. M.; Rebbi, C.

    1984-01-01

    New methods are introduced for improving the performance of the vectorized Monte Carlo SU(3) lattice gauge theory algorithm using the CDC CYBER 205. Structure, algorithm and programming considerations are discussed. The performance achieved for a 16(4) lattice on a 2-pipe system may be phrased in terms of the link update time or overall MFLOPS rates. For 32-bit arithmetic, it is 36.3 microsecond/link for 8 hits per iteration (40.9 microsecond for 10 hits) or 101.5 MFLOPS.

  12. Hawking radiation via anomaly cancellation for the black holes of five-dimensional minimal gauged supergravity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Porfyriadis, Achilleas P.

    2009-04-15

    The anomaly cancellation method proposed by Wilczek et al. is applied to the general charged rotating black holes in five-dimensional minimal gauged supergravity. Thus Hawking temperature and fluxes are found. The Hawking temperature obtained agrees with the surface gravity formula. The black holes have charge and two unequal angular momenta, and these give rise to appropriate terms in the effective U(1) gauge field of the reduced (1+1)-dimensional theory. In particular, it is found that the terms in this U(1) gauge field correspond exactly to the correct electrostatic potential and the two angular velocities on the horizon of the black holes,more » and so the results for the Hawking fluxes derived here from the anomaly cancellation method are in complete agreement with the ones obtained from integrating the Planck distribution.« less

  13. Implications of hidden gauged U (1 ) model for B anomalies

    NASA Astrophysics Data System (ADS)

    Fuyuto, Kaori; Li, Hao-Lin; Yu, Jiang-Hao

    2018-06-01

    We propose a hidden gauged U (1 )H Z' model to explain deviations from the standard model (SM) values in lepton flavor universality known as RK and RD anomalies. The Z' only interacts with the SM fermions via their mixing with vectorlike doublet fermions after the U (1 )H symmetry breaking, which leads to b →s μ μ transition through the Z' at tree level. Moreover, introducing an additional mediator, inert-Higgs doublet, yields b →c τ ν process via charged scalar contribution at tree level. Using flavio package, we scrutinize adequate sizes of the relevant Wilson coefficients to these two processes by taking various flavor observables into account. It is found that significant mixing between the vectorlike and the second generation leptons is needed for the RK anomaly. A possible explanation of the RD anomaly can also be simultaneously addressed in a motivated situation, where a single scalar operator plays a dominant role, by the successful model parameters for the RK anomaly.

  14. $$ \\mathcal{N} $$ = 2 supersymmetric Janus solutions and flows: From gauged supergravity to M theory

    DOE PAGES

    Pilch, Krzysztof; Tyukov, Alexander; Warner, Nicholas P.

    2016-05-02

    In this study, we investigate a family of SU(3)×U(1)×U(1)-invariant holographic flows and Janus solutions obtained from gaugedmore » $$ \\mathcal{N} $$ = 8 supergravity in four dimensions. We give complete details of how to use the uplift formulae to obtain the corresponding solutions in M theory. While the flow solutions appear to be singular from the four-dimensional perspective, we find that the eleven-dimensional solutions are much better behaved and give rise to interesting new classes of compactification geometries that are smooth, up to orbifolds, in the infra-red limit. Our solutions involve new phases in which M2 branes polarize partially or even completely into M5 branes. We derive the eleven-dimensional supersymmetries and show that the eleven-dimensional equations of motion and BPS equations are indeed satisfied as a consequence of their four-dimensional counterparts. Apart from elucidating a whole new class of eleven-dimensional Janus and flow solutions, our work provides extensive and highly non-trivial tests of the recently-derived uplift formulae.« less

  15. Infrared problem in non-Abelian gauge theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yao, Y.

    1976-03-22

    I extend the Bloch--Nordsieck idea to show that in the lowest nontrivial order of radiative correction the fermion--fermion and gauge-meson--fermion scattering rates are finite, provided that they are averaged over the initial and summed over the final internal spin states. Questions of the physical gauge coupling and infrared slavery are discussed. (AIP)

  16. FAST TRACK COMMUNICATION: Symmetry breaking, conformal geometry and gauge invariance

    NASA Astrophysics Data System (ADS)

    Ilderton, Anton; Lavelle, Martin; McMullan, David

    2010-08-01

    When the electroweak action is rewritten in terms of SU(2) gauge-invariant variables, the Higgs can be interpreted as a conformal metric factor. We show that asymptotic flatness of the metric is required to avoid a Gribov problem: without it, the new variables fail to be nonperturbatively gauge invariant. We also clarify the relations between this approach and unitary gauge fixing, and the existence of similar transformations in other gauge theories.

  17. Tensor renormalization group methods for spin and gauge models

    NASA Astrophysics Data System (ADS)

    Zou, Haiyuan

    The analysis of the error of perturbative series by comparing it to the exact solution is an important tool to understand the non-perturbative physics of statistical models. For some toy models, a new method can be used to calculate higher order weak coupling expansion and modified perturbation theory can be constructed. However, it is nontrivial to generalize the new method to understand the critical behavior of high dimensional spin and gauge models. Actually, it is a big challenge in both high energy physics and condensed matter physics to develop accurate and efficient numerical algorithms to solve these problems. In this thesis, one systematic way named tensor renormalization group method is discussed. The applications of the method to several spin and gauge models on a lattice are investigated. theoretically, the new method allows one to write an exact representation of the partition function of models with local interactions. E.g. O(N) models, Z2 gauge models and U(1) gauge models. Practically, by using controllable approximations, results in both finite volume and the thermodynamic limit can be obtained. Another advantage of the new method is that it is insensitive to sign problems for models with complex coupling and chemical potential. Through the new approach, the Fisher's zeros of the 2D O(2) model in the complex coupling plane can be calculated and the finite size scaling of the results agrees well with the Kosterlitz-Thouless assumption. Applying the method to the O(2) model with a chemical potential, new phase diagram of the models can be obtained. The structure of the tensor language may provide a new tool to understand phase transition properties in general.

  18. A Lie based 4-dimensional higher Chern-Simons theory

    NASA Astrophysics Data System (ADS)

    Zucchini, Roberto

    2016-05-01

    We present and study a model of 4-dimensional higher Chern-Simons theory, special Chern-Simons (SCS) theory, instances of which have appeared in the string literature, whose symmetry is encoded in a skeletal semistrict Lie 2-algebra constructed from a compact Lie group with non discrete center. The field content of SCS theory consists of a Lie valued 2-connection coupled to a background closed 3-form. SCS theory enjoys a large gauge and gauge for gauge symmetry organized in an infinite dimensional strict Lie 2-group. The partition function of SCS theory is simply related to that of a topological gauge theory localizing on flat connections with degree 3 second characteristic class determined by the background 3-form. Finally, SCS theory is related to a 3-dimensional special gauge theory whose 2-connection space has a natural symplectic structure with respect to which the 1-gauge transformation action is Hamiltonian, the 2-curvature map acting as moment map.

  19. Finite-temperature phase transitions of third and higher order in gauge theories at large N

    DOE PAGES

    Nishimura, Hiromichi; Pisarski, Robert D.; Skokov, Vladimir V.

    2018-02-15

    We study phase transitions in SU(∞) gauge theories at nonzero temperature using matrix models. Our basic assumption is that the effective potential is dominated by double trace terms for the Polyakov loops. As a function of the various parameters, related to terms linear, quadratic, and quartic in the Polyakov loop, the phase diagram exhibits a universal structure. In a large region of this parameter space, there is a continuous phase transition whose order is larger than second. This is a generalization of the phase transition of Gross, Witten, and Wadia (GWW). Depending upon the detailed form of the matrix model,more » the eigenvalue density and the behavior of the specific heat near the transition differ drastically. Here, we speculate that in the pure gauge theory, that although the deconfining transition is thermodynamically of first order, it can be nevertheless conformally symmetric at infnite N.« less

  20. Finite-temperature phase transitions of third and higher order in gauge theories at large N

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nishimura, Hiromichi; Pisarski, Robert D.; Skokov, Vladimir V.

    We study phase transitions in SU(∞) gauge theories at nonzero temperature using matrix models. Our basic assumption is that the effective potential is dominated by double trace terms for the Polyakov loops. As a function of the various parameters, related to terms linear, quadratic, and quartic in the Polyakov loop, the phase diagram exhibits a universal structure. In a large region of this parameter space, there is a continuous phase transition whose order is larger than second. This is a generalization of the phase transition of Gross, Witten, and Wadia (GWW). Depending upon the detailed form of the matrix model,more » the eigenvalue density and the behavior of the specific heat near the transition differ drastically. Here, we speculate that in the pure gauge theory, that although the deconfining transition is thermodynamically of first order, it can be nevertheless conformally symmetric at infnite N.« less

  1. On the dualization of scalars into ( d - 2)-forms in supergravity. Momentum maps, R-symmetry and gauged supergravity

    NASA Astrophysics Data System (ADS)

    Bandos, Igor A.; Ortín, Tomás

    2016-08-01

    We review and investigate different aspects of scalar fields in supergravity theories both when they parametrize symmetric spaces and when they parametrize spaces of special holonomy which are not necessarily symmetric (Kähler and Quaternionic-Kähler spaces): their rôle in the definition of derivatives of the fermions covariant under the R-symmetry group and (in gauged supergravities) under some gauge group, their dualization into ( d - 2)-forms, their role in the supersymmetry transformation rules (via fermion shifts, for instance) etc. We find a general definition of momentum map that applies to any manifold admitting a Killing vector and coincides with those of the holomorphic and tri-holomorphic momentum maps in Kähler and quaternionic-Kähler spaces and with an independent definition that can be given in symmetric spaces. We show how the momen-tum map occurs ubiquitously: in gauge-covariant derivatives of fermions, in fermion shifts, in the supersymmetry transformation rules of ( d - 2)-forms etc. We also give the general structure of the Noether-Gaillard-Zumino conserved currents in theories with fields of different ranks in any dimension.

  2. Gauge-invariant flow equation

    NASA Astrophysics Data System (ADS)

    Wetterich, C.

    2018-06-01

    We propose a closed gauge-invariant functional flow equation for Yang-Mills theories and quantum gravity that only involves one macroscopic gauge field or metric. It is based on a projection on physical and gauge fluctuations. Deriving this equation from a functional integral we employ the freedom in the precise choice of the macroscopic field and the effective average action in order to realize a closed and simple form of the flow equation.

  3. Gauged twistor spinors and symmetry operators

    NASA Astrophysics Data System (ADS)

    Ertem, Ümit

    2017-03-01

    We consider gauged twistor spinors which are supersymmetry generators of supersymmetric and superconformal field theories in curved backgrounds. We show that the spinor bilinears of gauged twistor spinors satisfy the gauged conformal Killing-Yano equation. We prove that the symmetry operators of the gauged twistor spinor equation can be constructed from ordinary conformal Killing-Yano forms in constant curvature backgrounds. This provides a way to obtain gauged twistor spinors from ordinary twistor spinors.

  4. Neutrino masses, dark matter and leptogenesis with U(1) B - L gauge symmetry

    NASA Astrophysics Data System (ADS)

    Geng, Chao-Qiang; Okada, Hiroshi

    2018-06-01

    We propose a model with an U(1) B - L gauge symmetry, in which small neutrino masses, dark matter and the matter-antimatter asymmetry in the Universe can be simultaneously explained. In particular, the neutrino masses are generated radiatively, while the matter-antimatter asymmetry is led by the leptogenesis mechanism, at TeV scale. We also explore allowed regions of the model parameters and discuss some phenomenological effects, including lepton flavor violating processes.

  5. Tetrahalide complexes of the [U(NR)2]2+ ion: synthesis, theory, and chlorine K-edge X-ray absorption spectroscopy.

    PubMed

    Spencer, Liam P; Yang, Ping; Minasian, Stefan G; Jilek, Robert E; Batista, Enrique R; Boland, Kevin S; Boncella, James M; Conradson, Steven D; Clark, David L; Hayton, Trevor W; Kozimor, Stosh A; Martin, Richard L; MacInnes, Molly M; Olson, Angela C; Scott, Brian L; Shuh, David K; Wilkerson, Marianne P

    2013-02-13

    Synthetic routes to salts containing uranium bis-imido tetrahalide anions [U(NR)(2)X(4)](2-) (X = Cl(-), Br(-)) and non-coordinating NEt(4)(+) and PPh(4)(+) countercations are reported. In general, these compounds can be prepared from U(NR)(2)I(2)(THF)(x) (x = 2 and R = (t)Bu, Ph; x = 3 and R = Me) upon addition of excess halide. In addition to providing stable coordination complexes with Cl(-), the [U(NMe)(2)](2+) cation also reacts with Br(-) to form stable [NEt(4)](2)[U(NMe)(2)Br(4)] complexes. These materials were used as a platform to compare electronic structure and bonding in [U(NR)(2)](2+) with [UO(2)](2+). Specifically, Cl K-edge X-ray absorption spectroscopy (XAS) and both ground-state and time-dependent hybrid density functional theory (DFT and TDDFT) were used to probe U-Cl bonding interactions in [PPh(4)](2)[U(N(t)Bu)(2)Cl(4)] and [PPh(4)](2)[UO(2)Cl(4)]. The DFT and XAS results show the total amount of Cl 3p character mixed with the U 5f orbitals was roughly 7-10% per U-Cl bond for both compounds, which shows that moving from oxo to imido has little effect on orbital mixing between the U 5f and equatorial Cl 3p orbitals. The results are presented in the context of recent Cl K-edge XAS and DFT studies on other hexavalent uranium chloride systems with fewer oxo or imido ligands.

  6. The problems in quantum foundations in the light of gauge theories

    NASA Astrophysics Data System (ADS)

    Ne'Eman, Yuval

    1986-04-01

    We review the issues of nonseparability and seemingly acausal propagation of information in EPR, as displayed by experiments and the failure of Bell's inequalities. We show that global effects are in the very nature of the geometric structure of modern physical theories, occurring even at the classical level. The Aharonov-Bohm effect, magnetic monopoles, instantons, etc. result from the topology and homotopy features of the fiber bundle manifolds of gauge theories. The conservation of probabilities, a supposedly highly quantum effect, is also achieved through global geometry equations. The EPR observables all fit in such geometries, and space-time is a truncated representation and is not the correct arena for their understanding. Relativistic quantum field theory represents the global action of the measurement operators as the zero-momentum (and therefore spatially infinitely spread) limit of their wave functions (form factors). We also analyze the collapse of the state vector as a case of spontaneous symmetry breakdown in the apparatus-observed state interaction.

  7. Large tensor non-Gaussianity from axion-gauge field dynamics

    NASA Astrophysics Data System (ADS)

    Agrawal, Aniket; Fujita, Tomohiro; Komatsu, Eiichiro

    2018-05-01

    We show that an inflation model in which a spectator axion field is coupled to an S U (2 ) gauge field produces a large three-point function (bispectrum) of primordial gravitational waves, Bh, on the scales relevant to the cosmic microwave background experiments. The amplitude of the bispectrum at the equilateral configuration is characterized by Bh/Ph2=O (10 )×ΩA-1 , where ΩA is a fraction of the energy density in the gauge field and Ph is the power spectrum of gravitational waves produced by the gauge field.

  8. Effective field theory analysis on μ problem in low-scale gauge mediation

    NASA Astrophysics Data System (ADS)

    Zheng, Sibo

    2012-02-01

    Supersymmetric models based on the scenario of gauge mediation often suffer from the well-known μ problem. In this paper, we reconsider this problem in low-scale gauge mediation in terms of effective field theory analysis. In this paradigm, all high energy input soft mass can be expressed via loop expansions. If the corrections coming from messenger thresholds are small, as we assume in this letter, then all RG evaluations can be taken as linearly approximation for low-scale supersymmetric breaking. Due to these observations, the parameter space can be systematically classified and studied after constraints coming from electro-weak symmetry breaking are imposed. We find that some old proposals in the literature are reproduced, and two new classes are uncovered. We refer to a microscopic model, where the specific relations among coefficients in one of the new classes are well motivated. Also, we discuss some primary phenomenologies.

  9. Gauge fields at finite temperatures—"Thermo field dynamics" and the KMS condition and their extension to gauge theories

    NASA Astrophysics Data System (ADS)

    Ojima, Izumi

    1981-11-01

    "Thermo field dynamics," allowing the Feynman diagram method to be applied to real-time causal Green's functions at finite temperatures ( not temperature Green's functions with imaginary times) expressed in the form of "vacuum" expectation values, is reconsidered in light of its connection with the algebraic formulation of statical machanics based upon the KMS condition. On the basis of so-obtained general basic formulae, the formalism is extended to the case of gauge theories, where the subsidiary condition specifying physical states, the notion of observables, and the structure of the physical subspace at finite temperatures are clarified.

  10. Noncontractible hyperloops in gauge models with Higgs fields in the fundamental representation

    NASA Astrophysics Data System (ADS)

    Burzlaff, Jürgen

    1984-11-01

    We study finite-energy configurations in SO( N) gauge theories with Higgs fields in the fundamental representation. For all winding numbers, noncontractible hyperloops are constructed. The corresponding energy density is spherically symmetric, and the configuration with maximal energy on each hyperloop can be determined. Noncontractible hyperloops with an arbitrary winding number for SU(2) gauge theory are also given.

  11. Dirac dark matter and b →s ℓ+ℓ- with U(1) gauge symmetry

    NASA Astrophysics Data System (ADS)

    Celis, Alejandro; Feng, Wan-Zhe; Vollmann, Martin

    2017-02-01

    We revisit the possibility of a Dirac fermion dark matter candidate in the light of current b →s ℓ+ℓ- anomalies by investigating a minimal extension of the Standard Model with a horizontal U(1 ) ' local symmetry. Dark matter stability is protected by a remnant Z2 symmetry arising after spontaneous symmetry breaking of U(1 ) '. The associated Z' gauge boson can accommodate current hints of new physics in b →s ℓ+ℓ- decays, and acts as a vector portal between dark matter and the visible sector. We find that the model is severely constrained by a combination of precision measurements at flavor factories, LHC searches for dilepton resonances, as well as direct and indirect dark matter searches. Despite this, viable regions of the parameter space accommodating the observed dark matter relic abundance and the b →s ℓ+ℓ-anomalies still persist for dark matter and Z ' masses in the TeV range.

  12. Lattice field theory study of magnetic catalysis in graphene

    DOE PAGES

    DeTar, Carleton; Winterowd, Christopher; Zafeiropoulos, Savvas

    2017-04-15

    We discuss the simulation of the low-energy effective field theory (EFT) for graphene in the presence of an external magnetic field. Our fully nonperturbative calculation uses methods of lattice gauge theory to study the theory using a hybrid Monte Carlo approach. We investigate the phenomenon of magnetic catalysis in the context of graphene by studying the chiral condensate which is the order parameter characterizing the spontaneous breaking of chiral symmetry. In the EFT, the symmetry breaking pattern is given bymore » $$U(4) \\to U(2) \\times U(2)$$. We also comment on the difficulty, in this lattice formalism, of studying the time-reversal-odd condensate characterizing the ground state in the presence of a magnetic field. Lastly, we study the mass spectrum of the theory, in particular the Nambu-Goldstone (NG) mode as well as the Dirac quasiparticle, which is predicted to obtain a dynamical mass.« less

  13. Minimal realization of right-handed gauge symmetry

    NASA Astrophysics Data System (ADS)

    Nomura, Takaaki; Okada, Hiroshi

    2018-01-01

    We propose a minimally extended gauge symmetry model with U (1 )R , where only the right-handed fermions have nonzero charges in the fermion sector. To achieve both anomaly cancellations and minimality, three right-handed neutrinos are naturally required, and the standard model Higgs has to have nonzero charge under this symmetry. Then we find that its breaking scale(Λ ) is restricted by precise measurement of neutral gauge boson in the standard model; therefore, O (10 ) TeV ≲Λ . We also discuss its testability of the new gauge boson and discrimination of U (1 )R model from U (1 )B-L one at collider physics such as LHC and ILC.

  14. The role of gauge symmetry in spintronics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sobreiro, R.F., E-mail: sobreiro@if.uff.br; Vasquez Otoya, V.J.

    2011-12-15

    In this work we employ a field theoretical approach to explain the nature of the non-conserved spin current in spintronics. In particular, we consider the usual U(1) gauge theory for the electromagnetism at classical level in order to obtain the broken continuity equation involving the spin current and spin-transfer torque. Inspired by the recent work of A. Vernes, B. L. Gyorffy and P. Weinberger where they obtain such an equation in terms of relativistic quantum mechanics, we formalize their result in terms of the well known currents of field theory such as the Bargmann-Wigner current and the chiral current. Thus,more » an interpretation of spintronics is provided in terms of Noether currents (conserved or not) and symmetries of the electromagnetism. In fact, the main result of the present work is that the non-conservation of the spin current is associated with the gauge invariance of physical observables where the breaking term is proportional to the chiral current. Moreover, we generalize their result by including the electromagnetic field as a dynamical field instead of an external one.« less

  15. Magnetic monopole versus vortex as gauge-invariant topological objects for quark confinement

    NASA Astrophysics Data System (ADS)

    Kondo, Kei-Ichi; Sasago, Takaaki; Shinohara, Toru; Shibata, Akihiro; Kato, Seikou

    2017-12-01

    First, we give a gauge-independent definition of chromomagnetic monopoles in SU(N) Yang-Mills theory which is derived through a non-Abelian Stokes theorem for the Wilson loop operator. Then we discuss how such magnetic monopoles can give a nontrivial contribution to the Wilson loop operator for understanding the area law of the Wilson loop average. Next, we discuss how the magnetic monopole condensation picture are compatible with the vortex condensation picture as another promising scenario for quark confinement. We analyze the profile function of the magnetic flux tube as the non-Abelian vortex solution of U(N) gauge-Higgs model, which is to be compared with numerical simulations of the SU(N) Yang-Mills theory on a lattice. This analysis gives an estimate of the string tension based on the vortex condensation picture, and possible interactions between two non-Abelian vortices.

  16. Neutrinophilic two Higgs doublet model with dark matter under an alternative U(1)_{B-L} gauge symmetry

    NASA Astrophysics Data System (ADS)

    Nomura, Takaaki; Okada, Hiroshi

    2018-03-01

    We propose a Dirac type active neutrino with rank two mass matrix and a Majorana fermion dark matter candidate with an alternative local U(1)_{B-L} extension of neutrinophilic two Higgs doublet model. Our dark matter candidate can be stabilized due to charge assignment under the gauge symmetry without imposing extra discrete Z_2 symmetry and the relic density is obtained from an Z' boson exchanging process. Taking into account collider constraints on the Z' boson mass and coupling, we estimate the relic density.

  17. Gauged BPS baby Skyrmions with quantized magnetic flux

    NASA Astrophysics Data System (ADS)

    Adam, C.; Wereszczynski, A.

    2017-06-01

    A new type of gauged BPS baby Skyrme model is presented, where the derivative term is just the Schroers current (i.e., gauge invariant and conserved version of the topological current) squared. This class of models has a topological bound saturated for solutions of the pertinent Bogomolnyi equations supplemented by a so-called superpotential equation. In contrast to the gauged BPS baby Skyrme models considered previously, the superpotential equation is linear and, hence, completely solvable. Furthermore, the magnetic flux is quantized in units of 2 π , which allows, in principle, to define this theory on a compact manifold without boundary, unlike all gauged baby Skyrme models considered so far.

  18. PREFACE: Lectures from the CERN Winter School on Strings, Supergravity and Gauge Theories, CERN, 9-13 February 2009 Lectures from the CERN Winter School on Strings, Supergravity and Gauge Theories, CERN, 9-13 February 2009

    NASA Astrophysics Data System (ADS)

    Uranga, A. M.

    2009-11-01

    This special section is devoted to the proceedings of the conference `Winter School on Strings, Supergravity and Gauge Theories', which took place at CERN, the European Centre for Nuclear Research, in Geneva, Switzerland 9-13 February 2009. This event is part of a yearly series of scientific schools, which represents a well established tradition. Previous events have been held at SISSA, in Trieste, Italy, in February 2005 and at CERN in January 2006, January 2007 and January 2008, and were funded by the European Mobility Research and Training Network `Constituents, Fundamental Forces and Symmetries of the Universe'. The next event will take place again at CERN, in January 2010. The school was primarily meant for young doctoral students and postdoctoral researchers working in the area of string theory. It consisted of several general lectures of four hours each, whose notes are published in this special section, and six working group discussion sessions, focused on specific topics of the network research program. It was well attended by over 200 participants. The topics of the lectures were chosen to provide an introduction to some of the areas of recent progress, and to the open problems, in string theory. One of the most active areas in string theory in recent years has been the AdS/CFT or gauge/gravity correspondence, which proposes the complete equivalence of string theory on (asymptotically) anti de Sitter spacetimes with certain quantum (gauge) field theories. The duality has recently been applied to understanding the hydrodynamical properties of a hot plasma in gauge theories (like the quark-gluon plasma created in heavy ion collisions at the RHIC experiment at Brookhaven, and soon at the LHC at CERN) in terms of a dual gravitational AdS theory in the presence of a black hole. These developments were reviewed in the lecture notes by M Rangamani. In addition, the AdS/CFT duality has been proposed as a tool to study interesting physical properties in other

  19. Quantization of gauge fields, graph polynomials and graph homology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kreimer, Dirk, E-mail: kreimer@physik.hu-berlin.de; Sars, Matthias; Suijlekom, Walter D. van

    2013-09-15

    We review quantization of gauge fields using algebraic properties of 3-regular graphs. We derive the Feynman integrand at n loops for a non-abelian gauge theory quantized in a covariant gauge from scalar integrands for connected 3-regular graphs, obtained from the two Symanzik polynomials. The transition to the full gauge theory amplitude is obtained by the use of a third, new, graph polynomial, the corolla polynomial. This implies effectively a covariant quantization without ghosts, where all the relevant signs of the ghost sector are incorporated in a double complex furnished by the corolla polynomial–we call it cycle homology–and by graph homology.more » -- Highlights: •We derive gauge theory Feynman from scalar field theory with 3-valent vertices. •We clarify the role of graph homology and cycle homology. •We use parametric renormalization and the new corolla polynomial.« less

  20. Loop suppressed light fermion masses with U (1 )R gauge symmetry

    NASA Astrophysics Data System (ADS)

    Nomura, Takaaki; Okada, Hiroshi

    2017-07-01

    We propose a model with a two-Higgs doublet, where quark and charged-lepton masses in the first and second families are induced at one-loop level, and neutrino masses are induced at the two-loop level. In our model, we introduce an extra U (1 )R gauge symmetry that plays a crucial role in achieving desired terms in no conflict with anomaly cancellation. We show the mechanism to generate fermion masses, the resultant mass matrices, and Yukawa interactions in mass eigenstates, and we discuss several interesting phenomenologies such as the muon anomalous magnetic dipole moment and the dark matter candidate that arise from this model.

  1. Argyres-Douglas theories and S-duality

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Buican, Matthew; Giacomelli, Simone; Nishinaka, Takahiro

    We generalize S-duality to N=2 superconformal field theories (SCFTs) with Coulomb branch operators of non-integer scaling dimension. As simple examples, we find minimal generalizations of the S-dualities discovered in SU(2) gauge theory with four fundamental flavors by Seiberg and Witten and in SU(3) gauge theory with six fundamental flavors by Argyres and Seiberg. Our constructions start by weakly gauging diagonal SU(2) and SU(3) flavor symmetry subgroups of two copies of a particular rank-one Argyres-Douglas theory (along with sufficient numbers of hypermultiplets to guarantee conformality of the gauging). Here, as we explore the resulting conformal manifold of the SU(2) SCFT, wemore » find an action of S-duality on the parameters of the theory that is reminiscent of Spin(8) triality. On the other hand, as we explore the conformal manifold of the SU(3) theory, we find that an exotic rank-two SCFT emerges in a dual SU(2) description.« less

  2. Controlled calculation of the thermal conductivity for a spinon Fermi surface coupled to a U(1) gauge field

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Freire, Hermann, E-mail: hfreire@mit.edu

    2014-10-15

    Motivated by recent transport measurements on the candidate spin-liquid phase of the organic triangular lattice insulator EtMe{sub 3}Sb[Pd(dmit){sub 2}]{sub 2}, we perform a controlled calculation of the thermal conductivity at intermediate temperatures in a spin liquid system where a spinon Fermi surface is coupled to a U(1) gauge field. The present computation builds upon the double expansion approach developed by Mross et al. (2010) for small ϵ=z{sub b}−2 (where z{sub b} is the dynamical critical exponent of the gauge field) and large number of fermionic species N. Using the so-called memory matrix formalism that most crucially does not assume the existencemore » of well-defined quasiparticles at low energies in the system, we calculate the temperature dependence of the thermal conductivity κ of this model due to non-critical Umklapp scattering of the spinons for a finite N and small ϵ. Then we discuss the physical implications of such theoretical result in connection with the experimental data available in the literature.« less

  3. High accuracy step gauge interferometer

    NASA Astrophysics Data System (ADS)

    Byman, V.; Jaakkola, T.; Palosuo, I.; Lassila, A.

    2018-05-01

    Step gauges are convenient transfer standards for the calibration of coordinate measuring machines. A novel interferometer for step gauge calibrations implemented at VTT MIKES is described. The four-pass interferometer follows Abbe’s principle and measures the position of the inductive probe attached to a measuring head. The measuring head of the instrument is connected to a balanced boom above the carriage by a piezo translation stage. A key part of the measuring head is an invar structure on which the inductive probe and the corner cubes of the measuring arm of the interferometer are attached. The invar structure can be elevated so that the probe is raised without breaking the laser beam. During probing, the bending of the probe and the interferometer readings are recorded and the measurement face position is extrapolated to zero force. The measurement process is fully automated and the face positions of the steps can be measured up to a length of 2 m. Ambient conditions are measured continuously and the refractive index of air is compensated for. Before measurements the step gauge is aligned with an integrated 2D coordinate measuring system. The expanded uncertainty of step gauge calibration is U=\\sqrt{{{(64 nm)}2}+{{(88× {{10}-9}L)}2}} .

  4. Dependence of the propagators on the sampling of Gribov copies inside the first Gribov region of Landau gauge

    NASA Astrophysics Data System (ADS)

    Maas, Axel

    2017-12-01

    Beyond perturbation theory the number of gauge copies drastically increases due to the Gribov-Singer ambiguity. Any way of treating them defines, in principle, a new, non-perturbative gauge, and the gauge-dependent correlation functions can vary between them. Herein various such gauges will be constructed as completions of the Landau gauge inside the first Gribov region. The dependence of the propagators and the running coupling on these gauges will be studied for SU(2) Yang-Mills theory in two, three, and four dimensions using lattice gauge theory, and for a wide range of lattice parameters. While the gluon propagator is rather insensitive to the choice, the ghost propagator and the running coupling show a stronger dependence. It is also found that the influence of lattice artifacts is larger than in minimal Landau gauge.

  5. Toward a proof of Montonen-Olive duality via multiple M2-branes

    NASA Astrophysics Data System (ADS)

    Hashimoto, Koji; Tai, Ta-Sheng; Terashima, Seiji

    2009-04-01

    We derive 4-dimensional Script N = 4 U(N) supersymmetric Yang-Mills theory from a 3-dimensional Chern-Simons-matter theory with product gauge group (U(N))2n. The latter describes M2-branes probing an orbifold where a torus emerges in a scaling limit. It is expected that the SL(2,Z) duality of the 4-dimensional Yang-Mills theory will be shown in M-theory point of view since it is trivially realized as modular transformations of the torus. Indeed, starting from one single Chern-Simons-matter theory, we find infinitely many equivalent 4-dimensional theories differing up to T-transformation of the SL(2,Z) redefinition of the gauge coupling τ = θ/2π + 4πi/g2 and a parity transformation in 4 dimensions. Although S-transformation can not be shown in our work, it is important that a part of the SL(2,Z) transformation is realized via the M2-brane action. Thus we think our work can be a step toward a proof of Montonen-Olive duality via M2-branes.

  6. Leptophilic dark matter in gauged U(1)_{L{_e}-L_{μ }} model in light of DAMPE cosmic ray {e{^+}} + {e{^-}} excess

    NASA Astrophysics Data System (ADS)

    Duan, Guang Hua; He, Xiao-Gang; Wu, Lei; Yang, Jin Min

    2018-04-01

    Motivated by the very recent cosmic-ray electron+positron excess observed by DAMPE collaboration, we investigate a Dirac fermion dark matter (DM) in the gauged {{L_e} - {L_μ }} model. DM interacts with the electron and muon via the U(1)_{e-μ } gauge boson Z^' . The model can explain the DAMPE data well. Although a non-zero DM-nucleon cross section is only generated at one loop level and there is a partial cancellation between Z^' }ee and Z^' }μ μ couplings, we find that a large portion of Z' mass is ruled out from direct DM detection limit leaving the allowed Z^' } mass to be close to two times of the DM mass. Implications for pp → Z^' } → 2ℓ and pp → 2ℓ + Z^' }, and muon g-2 anomaly are also studied.

  7. Gauge symmetries of the free supersymmetric string field theories

    NASA Astrophysics Data System (ADS)

    Neveu, A.; West, P. C.

    1985-12-01

    The gauge covariant local formulations of the free supersymmetric strings that contained a finite number of supplementary fields are extended so as to place all the generators of the Ramond-Neveu-Schwarz algebra on a more equal footing. Permanent address: King's College, Mathematics Department, London WC2R 2LS, UK.

  8. Precision lattice test of the gauge/gravity duality at large N

    DOE PAGES

    Berkowitz, Evan; Rinaldi, Enrico; Hanada, Masanori; ...

    2016-11-03

    We perform a systematic, large-scale lattice simulation of D0-brane quantum mechanics. The large-N and continuum limits of the gauge theory are taken for the first time at various temperatures 0.4≤T≤1.0. As a way to test the gauge/gravity duality conjecture we compute the internal energy of the black hole as a function of the temperature directly from the gauge theory. We obtain a leading behavior that is compatible with the supergravity result E/N 2=7.41T 14/5: the coefficient is estimated to be 7.4±0.5 when the exponent is fixed and stringy corrections are included. This is the first confirmation of the supergravity predictionmore » for the internal energy of a black hole at finite temperature coming directly from the dual gauge theory. As a result, we also constrain stringy corrections to the internal energy.« less

  9. Atomic quantum simulation of the lattice gauge-Higgs model: Higgs couplings and emergence of exact local gauge symmetry.

    PubMed

    Kasamatsu, Kenichi; Ichinose, Ikuo; Matsui, Tetsuo

    2013-09-13

    Recently, the possibility of quantum simulation of dynamical gauge fields was pointed out by using a system of cold atoms trapped on each link in an optical lattice. However, to implement exact local gauge invariance, fine-tuning the interaction parameters among atoms is necessary. In the present Letter, we study the effect of violation of the U(1) local gauge invariance by relaxing the fine-tuning of the parameters and showing that a wide variety of cold atoms is still a faithful quantum simulator for a U(1) gauge-Higgs model containing a Higgs field sitting on sites. The clarification of the dynamics of this gauge-Higgs model sheds some light upon various unsolved problems, including the inflation process of the early Universe. We study the phase structure of this model by Monte Carlo simulation and also discuss the atomic characteristics of the Higgs phase in each simulator.

  10. Second-order Boltzmann equation: gauge dependence and gauge invariance

    NASA Astrophysics Data System (ADS)

    Naruko, Atsushi; Pitrou, Cyril; Koyama, Kazuya; Sasaki, Misao

    2013-08-01

    In the context of cosmological perturbation theory, we derive the second-order Boltzmann equation describing the evolution of the distribution function of radiation without a specific gauge choice. The essential steps in deriving the Boltzmann equation are revisited and extended given this more general framework: (i) the polarization of light is incorporated in this formalism by using a tensor-valued distribution function; (ii) the importance of a choice of the tetrad field to define the local inertial frame in the description of the distribution function is emphasized; (iii) we perform a separation between temperature and spectral distortion, both for the intensity and polarization for the first time; (iv) the gauge dependence of all perturbed quantities that enter the Boltzmann equation is derived, and this enables us to check the correctness of the perturbed Boltzmann equation by explicitly showing its gauge-invariance for both intensity and polarization. We finally discuss several implications of the gauge dependence for the observed temperature.

  11. CERN Winter School on Supergravity, Strings, and Gauge Theory 2010

    ScienceCinema

    McAllister, Liam

    2018-05-14

    The CERN Winter School on Supergravity, Strings, and Gauge Theory is the analytic continuation of the yearly training school of the former EC-RTN string network "Constituents, Fundamental Forces and Symmetries of the Universe". The 2010 edition of the school is supported and organized by the CERN Theory Divison, and will take place from Monday January 25 to Friday January 29, at CERN. As its predecessors, this school is meant primarily for training of doctoral students and young postdoctoral researchers in recent developments in theoretical high-energy physics and string theory. The programme of the school will consist of five series of pedagogical lectures, complemented by tutorial discussion sessions in the afternoons. Previous schools in this series were organized in 2005 at SISSA in Trieste, and in 2006, 2007, 2008, and 2009 at CERN, Geneva. Other similar schools have been organized in the past by the former related RTN network "The Quantum Structure of Spacetime and the Geometric Nature of Fundamental Interactions". This edition of the school is not funded by the European Union. The school is funded by the CERN Theory Division, and the Arnold Sommerfeld Center at Ludwig-Maximilians University of Munich. Scientific committee: M. Gaberdiel, D. Luest, A. Sevrin, J. Simon, K. Stelle, S. Theisen, A. Uranga, A. Van Proeyen, E. Verlinde Local organizers: A. Uranga, J. Walcher

  12. CERN Winter School on Supergravity, Strings, and Gauge Theory 2010

    ScienceCinema

    None

    2018-05-22

    The CERN Winter School on Supergravity, Strings, and Gauge Theory is the analytic continuation of the yearly training school of the former EC-RTN string network "Constituents, Fundamental Forces and Symmetries of the Universe". The 2010 edition of the school is supported and organized by the CERN Theory Divison, and will take place from Monday January 25 to Friday January 29, at CERN. As its predecessors, this school is meant primarily for training of doctoral students and young postdoctoral researchers in recent developments in theoretical high-energy physics and string theory. The programme of the school will consist of five series of pedagogical lectures, complemented by tutorial discussion sessions in the afternoons.Previous schools in this series were organized in 2005 at SISSA in Trieste, and in 2006, 2007, 2008, and 2009 at CERN, Geneva. Other similar schools have been organized in the past by the former related RTN network "The Quantum Structure of Spacetime and the Geometric Nature of Fundamental Interactions". This edition of the school is not funded by the European Union. The school is funded by the CERN Theory Division, and the Arnold Sommerfeld Center at Ludwig-Maximilians University of Munich. Scientific committee: M. Gaberdiel, D. Luest, A. Sevrin, J. Simon, K. Stelle, S. Theisen, A. Uranga, A. Van Proeyen, E. Verlinde Local organizers: A. Uranga, J. Walcher

  13. CERN Winter School on Supergravity, Strings, and Gauge Theory 2010

    ScienceCinema

    Sen, Ashoke

    2017-12-18

    Part 7.The CERN Winter School on Supergravity, Strings, and Gauge Theory is the analytic continuation of the yearly training school of the former EC-RTN string network "Constituents, Fundamental Forces and Symmetries of the Universe". The 2010 edition of the school is supported and organized by the CERN Theory Divison, and will take place from Monday January 25 to Friday January 29, at CERN. As its predecessors, this school is meant primarily for training of doctoral students and young postdoctoral researchers in recent developments in theoretical high-energy physics and string theory. The programme of the school will consist of five series of pedagogical lectures, complemented by tutorial discussion sessions in the afternoons. Previous schools in this series were organized in 2005 at SISSA in Trieste, and in 2006, 2007, 2008, and 2009 at CERN, Geneva. Other similar schools have been organized in the past by the former related RTN network "The Quantum Structure of Spacetime and the Geometric Nature of Fundamental Interactions". This edition of the school is not funded by the European Union. The school is funded by the CERN Theory Division, and the Arnold Sommerfeld Center at Ludwig-Maximilians University of Munich. Scientific committee: M. Gaberdiel, D. Luest, A. Sevrin, J. Simon, K. Stelle, S. Theisen, A. Uranga, A. Van Proeyen, E. Verlinde Local organizers: A. Uranga, J. Walcher

  14. CERN Winter School on Supergravity, Strings, and Gauge Theory 2010

    ScienceCinema

    None

    2018-06-28

    The CERN Winter School on Supergravity, Strings, and Gauge Theory is the analytic continuation of the yearly training school of the former EC-RTN string network "Constituents, Fundamental Forces and Symmetries of the Universe". The 2010 edition of the school is supported and organized by the CERN Theory Divison, and will take place from Monday January 25 to Friday January 29, at CERN. As its predecessors, this school is meant primarily for training of doctoral students and young postdoctoral researchers in recent developments in theoretical high-energy physics and string theory. The programme of the school will consist of five series of pedagogical lectures, complemented by tutorial discussion sessions in the afternoons. Previous schools in this series were organized in 2005 at SISSA in Trieste, and in 2006, 2007, 2008, and 2009 at CERN, Geneva. Other similar schools have been organized in the past by the former related RTN network "The Quantum Structure of Spacetime and the Geometric Nature of Fundamental Interactions". This edition of the school is not funded by the European Union. The school is funded by the CERN Theory Division, and the Arnold Sommerfeld Center at Ludwig-Maximilians University of Munich. Scientific committee: M. Gaberdiel, D. Luest, A. Sevrin, J. Simon, K. Stelle, S. Theisen, A. Uranga, A. Van Proeyen, E. Verlinde Local organizers: A. Uranga, J. Walcher

  15. CERN Winter School on Supergravity, Strings, and Gauge Theory 2010

    ScienceCinema

    None

    2018-05-23

    The CERN Winter School on Supergravity, Strings, and Gauge Theory is the analytic continuation of the yearly training school of the former EC-RTN string network "Constituents, Fundamental Forces and Symmetries of the Universe". The 2010 edition of the school is supported and organized by the CERN Theory Divison, and will take place from Monday January 25 to Friday January 29, at CERN. As its predecessors, this school is meant primarily for training of doctoral students and young postdoctoral researchers in recent developments in theoretical high-energy physics and string theory. The programme of the school will consist of five series of pedagogical lectures, complemented by tutorial discussion sessions in the afternoons. Previous schools in this series were organized in 2005 at SISSA in Trieste, and in 2006, 2007, 2008, and 2009 at CERN, Geneva. Other similar schools have been organized in the past by the former related RTN network "The Quantum Structure of Spacetime and the Geometric Nature of Fundamental Interactions". This edition of the school is not funded by the European Union. The school is funded by the CERN Theory Division, and the Arnold Sommerfeld Center at Ludwig-Maximilians University of Munich. Scientific committee: M. Gaberdiel, D. Luest, A. Sevrin, J. Simon, K. Stelle, S. Theisen, A. Uranga, A. Van Proeyen, E. Verlinde Local organizers: A. Uranga, J. Walcher

  16. CERN Winter School on Supergravity, Strings, and Gauge Theory 2010

    ScienceCinema

    None

    2017-12-09

    The CERN Winter School on Supergravity, Strings, and Gauge Theory is the analytic continuation of the yearly training school of the former EC-RTN string network "Constituents, Fundamental Forces and Symmetries of the Universe". The 2010 edition of the school is supported and organized by the CERN Theory Divison, and will take place from Monday January 25 to Friday January 29, at CERN. As its predecessors, this school is meant primarily for training of doctoral students and young postdoctoral researchers in recent developments in theoretical high-energy physics and string theory. The programme of the school will consist of five series of pedagogical lectures, complemented by tutorial discussion sessions in the afternoons. Previous schools in this series were organized in 2005 at SISSA in Trieste, and in 2006, 2007, 2008, and 2009 at CERN, Geneva. Other similar schools have been organized in the past by the former related RTN network "The Quantum Structure of Spacetime and the Geometric Nature of Fundamental Interactions". This edition of the school is not funded by the European Union. The school is funded by the CERN Theory Division, and the Arnold Sommerfeld Center at Ludwig-Maximilians University of Munich. Scientific committee: M. Gaberdiel, D. Luest, A. Sevrin, J. Simon, K. Stelle, S. Theisen, A. Uranga, A. Van Proeyen, E. Verlinde Local organizers: A. Uranga, J. Walcher

  17. CERN Winter School on Supergravity, Strings, and Gauge Theory 2010

    ScienceCinema

    None

    2018-02-09

    The CERN Winter School on Supergravity, Strings, and Gauge Theory is the analytic continuation of the yearly training school of the former EC-RTN string network "Constituents, Fundamental Forces and Symmetries of the Universe". The 2010 edition of the school is supported and organized by the CERN Theory Divison, and will take place from Monday January 25 to Friday January 29, at CERN. As its predecessors, this school is meant primarily for training of doctoral students and young postdoctoral researchers in recent developments in theoretical high-energy physics and string theory. The programme of the school will consist of five series of pedagogical lectures, complemented by tutorial discussion sessions in the afternoons. Previous schools in this series were organized in 2005 at SISSA in Trieste, and in 2006, 2007, 2008, and 2009 at CERN, Geneva. Other similar schools have been organized in the past by the former related RTN network "The Quantum Structure of Spacetime and the Geometric Nature of Fundamental InteractionS". This edition of the school is not funded by the European Union. The school is funded by the CERN Theory Division, and the Arnold Sommerfeld Center at Ludwig-Maximilians University of Munich. Scientific committee: M. Gaberdiel, D. Luest, A. Sevrin, J. Simon, K. Stelle, S. Theisen, A. Uranga, A. Van Proeyen, E. Verlinde Local organizers: A. Uranga, J. Walcher

  18. CERN Winter School on Supergravity, Strings, and Gauge Theory 2010

    ScienceCinema

    McAllister, Liam

    2018-05-24

    The CERN Winter School on Supergravity, Strings, and Gauge Theory is the analytic continuation of the yearly training school of the former EC-RTN string network "Constituents, Fundamental Forces and Symmetries of the Universe";. The 2010 edition of the school is supported and organized by the CERN Theory Divison, and will take place from Monday January 25 to Friday January 29, at CERN. As its predecessors, this school is meant primarily for training of doctoral students and young postdoctoral researchers in recent developments in theoretical high-energy physics and string theory. The programme of the school will consist of five series of pedagogical lectures, complemented by tutorial discussion sessions in the afternoons. Previous schools in this series were organized in 2005 at SISSA in Trieste, and in 2006, 2007, 2008, and 2009 at CERN, Geneva. Other similar schools have been organized in the past by the former related RTN network "The Quantum Structure of Spacetime and the Geometric Nature of Fundamental Interactions".This edition of the school is not funded by the European Union. The school is funded by the CERN Theory Division, and the Arnold Sommerfeld Center at Ludwig-Maximilians University of Munich. Scientific committee: M. Gaberdiel, D. Luest, A. Sevrin, J. Simon, K. Stelle, S. Theisen, A. Uranga, A. Van Proeyen, E. Verlinde. Local organizers: A. Uranga, J. Walcher

  19. CERN Winter School on Supergravity, Strings, and Gauge Theory 2010

    ScienceCinema

    Sen, Ashoke

    2018-04-27

    The CERN Winter School on Supergravity, Strings, and Gauge Theory is the analytic continuation of the yearly training school of the former EC-RTN string network "Constituents, Fundamental Forces and Symmetries of the Universe". The 2010 edition of the school is supported and organized by the CERN Theory Divison, and will take place from Monday January 25 to Friday January 29, at CERN. As its predecessors, this school is meant primarily for training of doctoral students and young postdoctoral researchers in recent developments in theoretical high-energy physics and string theory. The programme of the school will consist of five series of pedagogical lectures, complemented by tutorial discussion sessions in the afternoons. Previous schools in this series were organized in 2005 at SISSA in Trieste, and in 2006, 2007, 2008, and 2009 at CERN, Geneva. Other similar schools have been organized in the past by the former related RTN network". The Quantum Structure of Spacetime and the Geometric Nature of Fundamental Interactions". This edition of the school is not funded by the European Union. The school is funded by the CERN Theory Division, and the Arnold Sommerfeld Center at Ludwig-Maximilians University of Munich. Scientific committee: M. Gaberdiel, D. Luest, A. Sevrin, J. Simon, K. Stelle, S. Theisen, A. Uranga, A. Van Proeyen, E. Verlinde Local organizers: A. Uranga, J. Walcher.

  20. CERN Winter School on Supergravity, Strings, and Gauge Theory 2010

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2010-01-22

    The CERN Winter School on Supergravity, Strings, and Gauge Theory is the analytic continuation of the yearly training school of the former EC-RTN string network "Constituents, Fundamental Forces and Symmetries of the Universe". The 2010 edition of the school is supported and organized by the CERN Theory Divison, and will take place from Monday January 25 to Friday January 29, at CERN. As its predecessors, this school is meant primarily for training of doctoral students and young postdoctoral researchers in recent developments in theoretical high-energy physics and string theory. The programme of the school will consist of five series ofmore » pedagogical lectures, complemented by tutorial discussion sessions in the afternoons. Previous schools in this series were organized in 2005 at SISSA in Trieste, and in 2006, 2007, 2008, and 2009 at CERN, Geneva. Other similar schools have been organized in the past by the former related RTN network "The Quantum Structure of Spacetime and the Geometric Nature of Fundamental Interactions". This edition of the school is not funded by the European Union. The school is funded by the CERN Theory Division, and the Arnold Sommerfeld Center at Ludwig-Maximilians University of Munich. Scientific committee: M. Gaberdiel, D. Luest, A. Sevrin, J. Simon, K. Stelle, S. Theisen, A. Uranga, A. Van Proeyen, E. Verlinde Local organizers: A. Uranga, J. Walcher« less

  1. CERN Winter School on Supergravity, Strings, and Gauge Theory 2010

    ScienceCinema

    None

    2018-05-23

    The CERN Winter School on Supergravity, Strings, and Gauge Theory is the analytic continuation of the yearly training school of the former EC-RTN string network "Constituents, Fundamental Forces and Symmetries of the Universe";. The 2010 edition of the school is supported and organized by the CERN Theory Divison, and will take place from Monday January 25 to Friday January 29, at CERN. As its predecessors, this school is meant primarily for training of doctoral students and young postdoctoral researchers in recent developments in theoretical high-energy physics and string theory. The programme of the school will consist of five series of pedagogical lectures, complemented by tutorial discussion sessions in the afternoons. Previous schools in this series were organized in 2005 at SISSA in Trieste, and in 2006, 2007, 2008, and 2009 at CERN, Geneva. Other similar schools have been organized in the past by the former related RTN network "The Quantum Structure of Spacetime and the Geometric Nature of Fundamental Interactions". This edition of the school is not funded by the European Union. The school is funded by the CERN Theory Division, and the Arnold Sommerfeld Center at Ludwig-Maximilians University of Munich. Scientific committee: M. Gaberdiel, D. Luest, A. Sevrin, J. Simon, K. Stelle, S. Theisen, A. Uranga, A. Van Proeyen, E. Verlinde Local organizers: A. Uranga, J. Walcher

  2. Lattice Gauge Theories Within and Beyond the Standard Model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gelzer, Zechariah John

    The Standard Model of particle physics has been very successful in describing fundamental interactions up to the highest energies currently probed in particle accelerator experiments. However, the Standard Model is incomplete and currently exhibits tension with experimental data for interactions involvingmore » $B$~mesons. Consequently, $B$-meson physics is of great interest to both experimentalists and theorists. Experimentalists worldwide are studying the decay and mixing processes of $B$~mesons in particle accelerators. Theorists are working to understand the data by employing lattice gauge theories within and beyond the Standard Model. This work addresses the theoretical effort and is divided into two main parts. In the first part, I present a lattice-QCD calculation of form factors for exclusive semileptonic decays of $B$~mesons that are mediated by both charged currents ($$B \\to \\pi \\ell \

  3. Gauging away a big bang

    NASA Astrophysics Data System (ADS)

    Krishnan, Chethan; Raju, Avinash

    2017-08-01

    We argue that in the tensionless phase of string theory where the stringy gauge symmetries are unbroken, (at least some) cosmological singularities can be understood as gauge artefacts. We present two conceptually related, but distinct, pieces of evidence: one relying on spacetime and the other on worldsheet.

  4. The toric SO(10) F-theory landscape

    NASA Astrophysics Data System (ADS)

    Buchmüller, W.; Dierigl, M.; Oehlmann, P.-K.; Rühle, F.

    2017-12-01

    Supergravity theories in more than four dimensions with grand unified gauge symmetries are an important intermediate step towards the ultraviolet completion of the Standard Model in string theory. Using toric geometry, we classify and analyze six-dimensional F-theory vacua with gauge group SO(10) taking into account Mordell-Weil U(1) and discrete gauge factors. We determine the full matter spectrum of these models, including charged and neutral SO(10) singlets. Based solely on the geometry, we compute all matter multiplicities and confirm the cancellation of gauge and gravitational anomalies independent of the base space. Particular emphasis is put on symmetry enhancements at the loci of matter fields and to the frequent appearance of superconformal points. They are linked to non-toric Kähler deformations which contribute to the counting of degrees of freedom. We compute the anomaly coefficients for these theories as well by using a base-independent blow-up procedure and superconformal matter transitions. Finally, we identify six-dimensional supergravity models which can yield the Standard Model with high-scale supersymmetry by further compactification to four dimensions in an Abelian flux background.

  5. Quark confinement: Dual superconductor picture based on a non-Abelian Stokes theorem and reformulations of Yang-Mills theory

    NASA Astrophysics Data System (ADS)

    Kondo, Kei-Ichi; Kato, Seikou; Shibata, Akihiro; Shinohara, Toru

    2015-05-01

    confinement. The Wilson loop average is calculated according to the new reformulation written in terms of new field variables obtained from the original Yang-Mills field based on change of variables. The Maximally Abelian gauge in the original Yang-Mills theory is also reproduced by taking a specific gauge fixing in the reformulated Yang-Mills theory. This observation justifies the preceding results obtained in the maximal Abelian gauge at least for gauge-invariant quantities for SU(2) gauge group, which eliminates the criticism of gauge artifact raised for the Abelian projection. The claim has been confirmed based on the numerical simulations. However, for SU(N) (N ≥ 3), such a gauge-invariant reformulation is not unique, although the extension along the line proposed by Cho, Faddeev and Niemi is possible. In fact, we have found that there are a number of possible options of the reformulations, which are discriminated by the maximal stability group H ˜ of G, while there is a unique option of H ˜ = U(1) for G = SU(2) . The maximal stability group depends on the representation of the gauge group, to that the quark source belongs. For the fundamental quark for SU(3) , the maximal stability group is U(2) , which is different from the maximal torus group U(1) × U(1) suggested from the Abelian projection. Therefore, the chromomagnetic monopole inherent in the Wilson loop operator responsible for confinement of quarks in the fundamental representation for SU(3) is the non-Abelian magnetic monopole, which is distinct from the Abelian magnetic monopole for the SU(2) case. Therefore, we claim that the mechanism for quark confinement for SU(N) (N ≥ 3) is the non-Abelian dual superconductivity caused by condensation of non-Abelian magnetic monopoles. We give some theoretical considerations and numerical results supporting this picture. Finally, we discuss some issues to be investigated in future studies.

  6. Exact Holography of Massive M2-brane Theories and Entanglement Entropy

    NASA Astrophysics Data System (ADS)

    Jang, Dongmin; Kim, Yoonbai; Kwon, O.-Kab; Tolla, D. D.

    2018-01-01

    We test the gauge/gravity duality between the N = 6 mass-deformed ABJM theory with Uk(N) × U-k(N) gauge symmetry and the 11-dimensional supergravity on LLM geometries with SO(4)=ℤk × SO(4)=ℤk isometry. Our analysis is based on the evaluation of vacuum expectation values of chiral primary operators from the supersymmetric vacua of mass-deformed ABJM theory and from the implementation of Kaluza-Klein (KK) holography to the LLM geometries. We focus on the chiral primary operator (CPO) with conformal dimension Δ = 1. The non-vanishing vacuum expectation value (vev) implies the breaking of conformal symmetry. In that case, we show that the variation of the holographic entanglement entropy (HEE) from it's value in the CFT, is related to the non-vanishing one-point function due to the relevant deformation as well as the source field. Applying Ryu Takayanagi's HEE conjecture to the 4-dimensional gravity solutions, which are obtained from the KK reduction of the 11-dimensional LLM solutions, we calculate the variation of the HEE. We show how the vev and the value of the source field determine the HEE.

  7. A note on the WGC, effective field theory and clockwork within string theory

    NASA Astrophysics Data System (ADS)

    Ibáñez, Luis E.; Montero, Miguel

    2018-02-01

    It has been recently argued that Higgsing of theories with U(1) n gauge interactions consistent with the Weak Gravity Conjecture (WGC) may lead to effective field theories parametrically violating WGC constraints. The minimal examples typically involve Higgs scalars with a large charge with respect to a U(1) (e.g. charges ( Z, 1) in U(1)2 with Z ≫ 1). This type of Higgs multiplets play also a key role in clockwork U(1) theories. We study these issues in the context of heterotic string theory and find that, even if there is no new physics at the standard magnetic WGC scale Λ ˜ g IR M P , the string scale is just slightly above, at a scale ˜ √{k_{IR}}Λ. Here k IR is the level of the IR U(1) worldsheet current. We show that, unlike the standard magnetic cutoff, this bound is insensitive to subsequent Higgsing. One may argue that this constraint gives rise to no bound at the effective field theory level since k IR is model dependent and in general unknown. However there is an additional constraint to be taken into account, which is that the Higgsing scalars with large charge Z should be part of the string massless spectrum, which becomes an upper bound k IR ≤ k 0 2 , where k 0 is the level of the UV currents. Thus, for fixed k 0, Z cannot be made parametrically large. The upper bound on the charges Z leads to limitations on the size and structure of hierarchies in an iterated U(1) clockwork mechanism.

  8. Local gauge symmetry on optical lattices?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Yuzhi; Meurice, Yannick; Tsai, Shan-Wen

    2012-11-01

    The versatile technology of cold atoms confined in optical lattices allows the creation of a vast number of lattice geometries and interactions, providing a promising platform for emulating various lattice models. This opens the possibility of letting nature take care of sign problems and real time evolution in carefully prepared situations. Up to now, experimentalists have succeeded to implement several types of Hubbard models considered by condensed matter theorists. In this proceeding, we discuss the possibility of extending this effort to lattice gauge theory. We report recent efforts to establish the strong coupling equivalence between the Fermi Hubbard model andmore » SU(2) pure gauge theory in 2+1 dimensions by standard determinantal methods developed by Robert Sugar and collaborators. We discuss the possibility of using dipolar molecules and external fields to build models where the equivalence holds beyond the leading order in the strong coupling expansion.« less

  9. Compact, singular G 2-holonomy manifolds and M/heterotic/F-theory duality

    NASA Astrophysics Data System (ADS)

    Braun, Andreas P.; Schäfer-Nameki, Sakura

    2018-04-01

    We study the duality between M-theory on compact holonomy G 2-manifolds and the heterotic string on Calabi-Yau three-folds. The duality is studied for K3-fibered G 2-manifolds, called twisted connected sums, which lend themselves to an application of fiber-wise M-theory/Heterotic Duality. For a large class of such G 2-manifolds we are able to identify the dual heterotic as well as F-theory realizations. First we establish this chain of dualities for smooth G 2-manifolds. This has a natural generalization to situations with non-abelian gauge groups, which correspond to singular G 2-manifolds, where each of the K3-fibers degenerates. We argue for their existence through the chain of dualities, supported by non-trivial checks of the spectra. The corresponding 4d gauge groups can be both Higgsable and non-Higgsable, and we provide several explicit examples of the general construction.

  10. Width and string tension of the flux tube in SU(2) lattice gauge theory at high temperature

    NASA Astrophysics Data System (ADS)

    Chagdaa, S.; Galsandorj, E.; Laermann, E.; Purev, B.

    2018-02-01

    We study the profiles of the flux tube between a static quark and an antiquark in quenched SU(2) lattice gauge theory at temperatures around the deconfinement phase transition. The physical width of the flux tube and the string tension have been determined from the transverse profiles and the q\\bar{q} potential, respectively. Exploiting the computational power of a GPU accelerator in our flux tube investigation, we achieve much higher statistics through which we can increase the signal to noise ratio of our observables in the simulation. This has allowed the investigation of larger lattices as well as larger separations between the quarks than in our previous work. The improved accuracy gives us better results for the width and the string tension. The physical width of the flux tube increases with the temperature up to around T c while keeping its increasing dependence on the q\\bar{q} separation. The string tension results are compared for two different sizes of the lattice. As the lattice becomes larger and finer together with the improved precision, the temperature dependent string tension tends to have a smaller value than the previous one.

  11. Characteristic classes of gauge systems

    NASA Astrophysics Data System (ADS)

    Lyakhovich, S. L.; Sharapov, A. A.

    2004-12-01

    We define and study invariants which can be uniformly constructed for any gauge system. By a gauge system we understand an (anti-)Poisson supermanifold provided with an odd Hamiltonian self-commuting vector field called a homological vector field. This definition encompasses all the cases usually included into the notion of a gauge theory in physics as well as some other similar (but different) structures like Lie or Courant algebroids. For Lagrangian gauge theories or Hamiltonian first class constrained systems, the homological vector field is identified with the classical BRST transformation operator. We define characteristic classes of a gauge system as universal cohomology classes of the homological vector field, which are uniformly constructed in terms of this vector field itself. Not striving to exhaustively classify all the characteristic classes in this work, we compute those invariants which are built up in terms of the first derivatives of the homological vector field. We also consider the cohomological operations in the space of all the characteristic classes. In particular, we show that the (anti-)Poisson bracket becomes trivial when applied to the space of all the characteristic classes, instead the latter space can be endowed with another Lie bracket operation. Making use of this Lie bracket one can generate new characteristic classes involving higher derivatives of the homological vector field. The simplest characteristic classes are illustrated by the examples relating them to anomalies in the traditional BV or BFV-BRST theory and to characteristic classes of (singular) foliations.

  12. Unveiling a spinor field classification with non-Abelian gauge symmetries

    NASA Astrophysics Data System (ADS)

    Fabbri, Luca; da Rocha, Roldão

    2018-05-01

    A spinor fields classification with non-Abelian gauge symmetries is introduced, generalizing the U(1) gauge symmetries-based Lounesto's classification. Here, a more general classification, contrary to the Lounesto's one, encompasses spinor multiplets, corresponding to non-Abelian gauge fields. The particular case of SU(2) gauge symmetry, encompassing electroweak and electromagnetic conserved charges, is then implemented by a non-Abelian spinor classification, now involving 14 mixed classes of spinor doublets. A richer flagpole, dipole, and flag-dipole structure naturally descends from this general classification. The Lounesto's classification of spinors is shown to arise as a Pauli's singlet, into this more general classification.

  13. Loop induced type-II seesaw model and GeV dark matter with U(1)B - L gauge symmetry

    NASA Astrophysics Data System (ADS)

    Nomura, Takaaki; Okada, Hiroshi

    2017-11-01

    We propose a model with U(1) B - L gauge symmetry and several new fermions in no conflict with anomaly cancellation where the neutrino masses are given by the vacuum expectation value of Higgs triplet induced at the one-loop level. The new fermions are odd under discrete Z2 symmetry and the lightest one becomes dark matter candidate. We find that the mass of dark matter is typically O (1)- O (10) GeV. Then relic density of the dark matter is discussed.

  14. Primordial anisotropies in gauged hybrid inflation

    NASA Astrophysics Data System (ADS)

    Akbar Abolhasani, Ali; Emami, Razieh; Firouzjahi, Hassan

    2014-05-01

    We study primordial anisotropies generated in the model of gauged hybrid inflation in which the complex waterfall field is charged under a U(1)gauge field. Primordial anisotropies are generated either actively during inflation or from inhomogeneities modulating the surface of end of inflation during waterfall transition. We present a consistent δN mechanism to calculate the anisotropic power spectrum and bispectrum. We show that the primordial anisotropies generated at the surface of end of inflation do not depend on the number of e-folds and therefore do not produce dangerously large anisotropies associated with the IR modes. Furthermore, one can find the parameter space that the anisotropies generated from the surface of end of inflation cancel the anisotropies generated during inflation, therefore relaxing the constrains on model parameters imposed from IR anisotropies. We also show that the gauge field fluctuations induce a red-tilted power spectrum so the averaged power spectrum from the gauge field can change the total power spectrum from blue to red. Therefore, hybrid inflation, once gauged under a U(1) field, can be consistent with the cosmological observations.

  15. Symmetry enriched U(1) quantum spin liquids

    NASA Astrophysics Data System (ADS)

    Zou, Liujun; Wang, Chong; Senthil, T.

    2018-05-01

    We classify and characterize three-dimensional U (1 ) quantum spin liquids [deconfined U (1 ) gauge theories] with global symmetries. These spin liquids have an emergent gapless photon and emergent electric/magnetic excitations (which we assume are gapped). We first discuss in great detail the case with time-reversal and SO(3 ) spin rotational symmetries. We find there are 15 distinct such quantum spin liquids based on the properties of bulk excitations. We show how to interpret them as gauged symmetry-protected topological states (SPTs). Some of these states possess fractional response to an external SO (3 ) gauge field, due to which we dub them "fractional topological paramagnets." We identify 11 other anomalous states that can be grouped into three anomaly classes. The classification is further refined by weakly coupling these quantum spin liquids to bosonic symmetry protected topological (SPT) phases with the same symmetry. This refinement does not modify the bulk excitation structure but modifies universal surface properties. Taking this refinement into account, we find there are 168 distinct such U (1 ) quantum spin liquids. After this warm-up, we provide a general framework to classify symmetry enriched U (1 ) quantum spin liquids for a large class of symmetries. As a more complex example, we discuss U (1 ) quantum spin liquids with time-reversal and Z2 symmetries in detail. Based on the properties of the bulk excitations, we find there are 38 distinct such spin liquids that are anomaly-free. There are also 37 anomalous U (1 ) quantum spin liquids with this symmetry. Finally, we briefly discuss the classification of U (1 ) quantum spin liquids enriched by some other symmetries.

  16. Gauged multisoliton baby Skyrme model

    NASA Astrophysics Data System (ADS)

    Samoilenka, A.; Shnir, Ya.

    2016-03-01

    We present a study of U (1 ) gauged modification of the 2 +1 -dimensional planar Skyrme model with a particular choice of the symmetry breaking potential term which combines a short-range repulsion and a long-range attraction. In the absence of the gauge interaction, the multisolitons of the model are aloof, as they consist of the individual constituents which are well separated. A peculiar feature of the model is that there are usually several different stable static multisoliton solutions of rather similar energy in a topological sector of given degree. We investigate the pattern of the solutions and find new previously unknown local minima. It is shown that coupling of the aloof planar multi-Skyrmions to the magnetic field strongly affects the pattern of interaction between the constituents. We analyze the dependency of the structure of the solutions, their energies, and magnetic fluxes on the strength of the gauge coupling. It is found that, generically, in the strong coupling limit, the coupling to the gauge field results in effective recovery of the rotational invariance of the configuration.

  17. Tensor hierarchy and generalized Cartan calculus in SL(3) × SL(2) exceptional field theory

    NASA Astrophysics Data System (ADS)

    Hohm, Olaf; Wang, Yi-Nan

    2015-04-01

    We construct exceptional field theory for the duality group SL(3) × SL(2). The theory is defined on a space with 8 `external' coordinates and 6 `internal' coordinates in the (3, 2) fundamental representation, leading to a 14-dimensional generalized spacetime. The bosonic theory is uniquely determined by gauge invariance under generalized external and internal diffeomorphisms. The latter invariance can be made manifest by introducing higher form gauge fields and a so-called tensor hierarchy, which we systematically develop to much higher degree than in previous studies. To this end we introduce a novel Cartan-like tensor calculus based on a covariant nil-potent differential, generalizing the exterior derivative of conventional differential geometry. The theory encodes the full D = 11 or type IIB supergravity, respectively.

  18. Weakly Isolated horizons: first order actions and gauge symmetries

    NASA Astrophysics Data System (ADS)

    Corichi, Alejandro; Reyes, Juan D.; Vukašinac, Tatjana

    2017-04-01

    The notion of Isolated Horizons has played an important role in gravitational physics, being useful from the characterization of the endpoint of black hole mergers to (quantum) black hole entropy. With an eye towards a canonical formulation we consider general relativity in terms of connection and vierbein variables and their corresponding first order actions. We focus on two main issues: (i) The role of the internal gauge freedom that exists, in the consistent formulations of the action principle, and (ii) the role that a 3  +  1 canonical decomposition has in the allowed internal gauge freedom. More concretely, we clarify in detail how the requirement of having well posed variational principles compatible with general weakly isolated horizons (WIHs) as internal boundaries does lead to a partial gauge fixing in the first order descriptions used previously in the literature. We consider the standard Hilbert-Palatini action together with the Holst extension (needed for a consistent 3  +  1 decomposition), with and without boundary terms at the horizon. We show in detail that, for the complete configuration space—with no gauge fixing—, while the Palatini action is differentiable without additional surface terms at the inner WIH boundary, the more general Holst action is not. The introduction of a surface term at the horizon—that renders the action for asymptotically flat configurations differentiable—does make the Holst action differentiable, but only if one restricts the configuration space and partially reduces the internal Lorentz gauge. For the second issue at hand, we show that upon performing a 3  +  1 decomposition and imposing the time gauge, there is a further gauge reduction of the Hamiltonian theory in terms of Ashtekar-Barbero variables to a U(1)-gauge theory on the horizon. We also extend our analysis to the more restricted boundary conditions of (strongly) isolated horizons as inner boundary. We show that even when the

  19. On gauged maximal d  =  8 supergravities

    NASA Astrophysics Data System (ADS)

    Lasso Andino, Óscar; Ortín, Tomás

    2018-04-01

    We study the gauging of maximal d  =  8 supergravity using the embedding tensor formalism. We focus on SO(3) gaugings, study all the possible choices of gauge fields and construct explicitly the bosonic actions (including the complicated Chern–Simons terms) for all these choices, which are parametrized by a parameter associated to the 8-dimensional SL(2, {R}) duality group that relates all the possible choices which are, ultimately, equivalent from the purely 8-dimensional point of view. Our result proves that the theory constructed by Salam and Sezgin by Scherk–Schwarz compactification of d  =  11 supergravity and the theory constructed in Alonso-Alberca (2001 Nucl. Phys. B 602 329) by dimensional reduction of the so called ‘massive 11-dimensional supergravity’ proposed by Meessen and Ortín in (1999 Nucl. Phys. B 541 195) are indeed related by an SL(2, {R}) duality even though they have two completely different 11-dimensional origins.

  20. On the equivalence among stress tensors in a gauge-fluid system

    NASA Astrophysics Data System (ADS)

    Mitra, Arpan Krishna; Banerjee, Rabin; Ghosh, Subir

    2017-12-01

    In this paper, we bring out the subtleties involved in the study of a first-order relativistic field theory with auxiliary field variables playing an essential role. In particular, we discuss the nonisentropic Eulerian (or Hamiltonian) fluid model. Interactions are introduced by coupling the fluid to a dynamical Maxwell (U(1)) gauge field. This dynamical nature of the gauge field is crucial in showing the equivalence, on the physical subspace, of the stress tensor derived from two definitions, i.e. the canonical (Noether) one and the symmetric one. In the conventional equal-time formalism, we have shown that the generators of the space-time transformations obtained from these two definitions agree modulo the Gauss constraint. This equivalence in the physical sector has been achieved only because of the dynamical nature of the gauge fields. Subsequently, we have explicitly demonstrated the validity of the Schwinger condition. A detailed analysis of the model in lightcone formalism has also been done where several interesting features are revealed.

  1. Strong Coupling Expansion of the Generating Functional for Gauge Systems on a Lattice with Arbitrary Sources

    NASA Astrophysics Data System (ADS)

    Hoek, Jaap

    1983-02-01

    A set of programs to calculate algebraically the generating functional (free energy) of a gauge system with arbitrary external sources on a lattice has been developed. It makes use of the strong coupling expansion. For theories with the standard Tr(UUU †U †) action results have been obtained up to fourth order.

  2. EDITORIAL: Lectures from the European RTN Winter School on Strings, Supergravity and Gauge Theories, CERN, 21 25 January 2008

    NASA Astrophysics Data System (ADS)

    Derendinger, J.-P.; Orlando, D.; Uranga, A.

    2008-11-01

    This special issue is devoted to the proceedings of the conference 'RTN Winter School on Strings, Supergravity and Gauge Theories', which took place at CERN, the European Centre for Nuclear Research, in Geneva, Switzerland, on the 21 25 January 2008. This event was organized in the framework of the European Mobility Research and Training Network entitled 'Constituents, Fundamental Forces and Symmetries of the Universe'. It is part of a yearly series of scientific schools, which represents what is by now a well established tradition. The previous ones have been held at SISSA, in Trieste, Italy, in February 2005 and at CERN in January 2006. The next one will again take place at CERN, in February 2009. The school was primarily meant for young doctoral students and postdoctoral researchers working in the area of string theory. It consisted of several general lectures of four hours each, whose notes are published in the present proceedings, and five working group discussion sessions, focused on specific topics of the network research program. It was attended by approximatively 250 participants. The topics of the lectures were chosen to provide an introduction to some of the areas of recent progress, and to the open problems, in string theory. One of the most active areas in string theory in recent years is the AdS/CFT or gauge/gravity correspondence, which proposes the complete equivalence of string theory on (asymptotically) anti-de Sitter spacetimes with gauge theories. The duality relates the weak coupling regime of one system to the strongly coupled regime of the other, and is therefore very non-trivial to test beyond the supersymmetry-protected BPS sector. One of the key ideas to quantitatively match several quantities on both sides is the use of integrability, both in the gauge theory and the string side. The lecture notes by Nick Dorey provide a pedagogical introduction to the fascinating topic of integrability in AdS/CFT. On the string theory side, progress has

  3. First International Symposium on Strain Gauge Balances. Part 2

    NASA Technical Reports Server (NTRS)

    Tripp, John S (Editor); Tcheng, Ping (Editor)

    1999-01-01

    The first International Symposium on Strain Gauge Balances was sponsored and held at NASA Langley Research Center during October 22-25, 1996. The symposium provided an open international forum for presentation, discussion, and exchange of technical information among wind tunnel test technique specialists and strain gauge balance designers. The Symposium also served to initiate organized professional activities among the participating and relevant international technical communities. Over 130 delegates from 15 countries were in attendance. The program opened with a panel discussion, followed by technical paper sessions, and guided tours of the National Transonic Facility (NTF) wind tunnel, a local commercial balance fabrication facility, and the LaRC balance calibration laboratory. The opening panel discussion addressed "Future Trends in Balance Development and Applications." Forty-six technical papers were presented in 11 technical sessions covering the following areas: calibration, automatic calibration, data reduction, facility reports, design, accuracy and uncertainty analysis, strain gauges, instrumentation, balance design, thermal effects, finite element analysis, applications, and special balances. At the conclusion of the Symposium, a steering committee representing most of the nations and several U.S. organizations attending the Symposium was established to initiate planning for a second international balance symposium, to be held in 1999 in the UK.

  4. Numerical algebraic geometry: a new perspective on gauge and string theories

    NASA Astrophysics Data System (ADS)

    Mehta, Dhagash; He, Yang-Hui; Hauensteine, Jonathan D.

    2012-07-01

    There is a rich interplay between algebraic geometry and string and gauge theories which has been recently aided immensely by advances in computational algebra. However, symbolic (Gröbner) methods are severely limited by algorithmic issues such as exponential space complexity and being highly sequential. In this paper, we introduce a novel paradigm of numerical algebraic geometry which in a plethora of situations overcomes these shortcomings. The so-called `embarrassing parallelizability' allows us to solve many problems and extract physical information which elude symbolic methods. We describe the method and then use it to solve various problems arising from physics which could not be otherwise solved.

  5. Gauge fixing in higher-derivative gravity

    NASA Astrophysics Data System (ADS)

    Bartoli, A.; Julve, J.; Sánchez, E. J.

    1999-07-01

    Linearized 4-derivative gravity with a general gauge-fixing term is considered. By a Legendre transform and a suitable diagonalization procedure it is cast into a second-order equivalent form where the nature of the physical degrees of freedom, the gauge ghosts, the Weyl ghosts and the intriguing `third ghosts', characteristic to higher-derivative theories, is made explicit. The symmetries of the theory and the structure of the compensating Faddeev-Popov ghost sector exhibit non-trivial peculiarities. The unitarity breaking negative-norm Weyl ghosts, already present in the diff-invariant theory, are out of the reach of the ghost cancellation BRST mechanism.

  6. Chern-Simons-matter dualities with SO and USp gauge groups

    DOE PAGES

    Aharony, Ofer; Benini, Francesco; Hsin, Po -Shen; ...

    2017-02-14

    In the last few years several dualities were found between the low-energy behaviors of Chern-Simons-matter theories with unitary gauge groups coupled to scalars, and similar theories coupled to fermions. In this paper we generalize those dualities to orthogonal and symplectic gauge groups. In particular, we conjecture dualities between SO(N) k Chern-Simons theories coupled to N f real scalars in the fundamental representation, and SO(k)- N+N f /2 coupled to N f real (Majorana) fermions in the fundamental. For N f = 0 these are just level-rank dualities of pure Chern-Simons theories, whose precise form we clarify. They lead us tomore » propose new gapped boundary states of topological insulators and superconductors. As a result, for k = 1 we get an interesting low-energy duality between N f free Majorana fermions and an SO( N) 1 Chern-Simons theory coupled to N f scalar fields (with N f ≤ N-2).« less

  7. Gauge-invariant variables and entanglement entropy

    NASA Astrophysics Data System (ADS)

    Agarwal, Abhishek; Karabali, Dimitra; Nair, V. P.

    2017-12-01

    The entanglement entropy (EE) of gauge theories in three spacetime dimensions is analyzed using manifestly gauge-invariant variables defined directly in the continuum. Specifically, we focus on the Maxwell, Maxwell-Chern-Simons (MCS), and non-Abelian Yang-Mills theories. Special attention is paid to the analysis of edge modes and their contribution to EE. The contact term is derived without invoking the replica method and its physical origin is traced to the phase space volume measure for the edge modes. The topological contribution to the EE for the MCS case is calculated. For all the Abelian cases, the EE presented in this paper agrees with known results in the literature. The EE for the non-Abelian theory is computed in a gauge-invariant Gaussian approximation, which incorporates the dynamically generated mass gap. A formulation of the contact term for the non-Abelian case is also presented.

  8. Cosmological attractor inflation from the RG-improved Higgs sector of finite gauge theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Elizalde, Emilio; Odintsov, Sergei D.; Pozdeeva, Ekaterina O.

    2016-02-01

    The possibility to construct an inflationary scenario for renormalization-group improved potentials corresponding to the Higgs sector of finite gauge models is investigated. Taking into account quantum corrections to the renormalization-group potential which sums all leading logs of perturbation theory is essential for a successful realization of the inflationary scenario, with very reasonable parameter values. The inflationary models thus obtained are seen to be in good agreement with the most recent and accurate observational data. More specifically, the values of the relevant inflationary parameters, n{sub s} and r, are close to the corresponding ones in the R{sup 2} and Higgs-driven inflationmore » scenarios. It is shown that the model here constructed and Higgs-driven inflation belong to the same class of cosmological attractors.« less

  9. S U (2 ) Chern-Simons theory coupled to competing scalars

    NASA Astrophysics Data System (ADS)

    Pérez Ipiña, J. M.; Schaposnik, F. A.; Tallarita, G.

    2018-06-01

    We study a spontaneously broken S U (2 ) Chern-Simons-Higgs model coupled though a Higgs portal to an uncharged triplet scalar with a vacuum state competing with the Higgs one. We find vortexlike solutions to the field equations in different parameter space regions. Depending on the scalar coupling constants, we find a parameter region in which the competing order creates a halo about the Chern-Simons-Higgs vortex core, together with two other regions, one where no vortex solutions exist and the other where ordinary Chern-Simons-Higgs vortices can be found. We derive the low-energy theory for the moduli fields on the vortex world sheet and also discuss the connection of our results with those found in studies of competing orders in high-temperature superconductors.

  10. Higgsed Gauge-flation

    NASA Astrophysics Data System (ADS)

    Adshead, Peter; Sfakianakis, Evangelos I.

    2017-08-01

    We study a variant of Gauge-flation where the gauge symmetry is spontaneously broken by a Higgs sector. We work in the Stueckelberg limit and demonstrate that the dynamics remain (catastrophically) unstable for cases where the gauge field masses satisfy γ < 2, where γ = g 2 ψ 2/ H 2, g is the gauge coupling, ψ is the gauge field vacuum expectation value, and H is the Hubble rate. We compute the spectrum of density fluctuations and gravitational waves, and show that the model can produce observationally viable spectra. The background gauge field texture violates parity, resulting in a chiral gravitational wave spectrum. This arises due to an exponential enhancement of one polarization of the spin-2 fluctuation of the gauge field. Higgsed Gauge-flation can produce observable gravitational waves at inflationary energy scales well below the GUT scale.

  11. Quark-antiquark potential in defect conformal field theory

    NASA Astrophysics Data System (ADS)

    Preti, Michelangelo; Trancanelli, Diego; Vescovi, Edoardo

    2017-10-01

    We consider antiparallel Wilson lines in N = 4 super Yang-Mills in the presence of a codimension-1 defect. We compute the Wilson lines' expectation value both at weak coupling, in the gauge theory, and at strong coupling, by finding the string configurations which are dual to this operator. These configurations display a Gross-Ooguri transition between a connected, U-shaped string phase and a phase in which the string breaks into two disconnected surfaces. We analyze in detail the critical configurations separating the two phases and compare the string result with the gauge theory one in a certain double scaling limit.

  12. Hadronic density of states from string theory.

    PubMed

    Pando Zayas, Leopoldo A; Vaman, Diana

    2003-09-12

    We present an exact calculation of the finite temperature partition function for the hadronic states corresponding to a Penrose-Güven limit of the Maldacena-Nùñez embedding of the N=1 super Yang-Mills (SYM) into string theory. It is established that the theory exhibits a Hagedorn density of states. We propose a semiclassical string approximation to the finite temperature partition function for confining gauge theories admitting a supergravity dual, by performing an expansion around classical solutions characterized by temporal windings. This semiclassical approximation reveals a hadronic energy density of states of a Hagedorn type, with the coefficient determined by the gauge theory string tension as expected for confining theories. We argue that our proposal captures primarily information about states of pure N=1 SYM theory, given that this semiclassical approximation does not entail a projection onto states of large U(1) charge.

  13. 27 CFR 19.454 - Gauge for denaturation.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... dumped from previously gauged containers or spirits transferred directly to mixing tanks from gauge tanks... devices or methods. (Sec. 201, Pub. L. 85-859, 72 Stat. 1358, as amended (26 U.S.C. 5204); sec. 807, Pub...

  14. ABJ theory in the higher spin limit

    NASA Astrophysics Data System (ADS)

    Hirano, Shinji; Honda, Masazumi; Okuyama, Kazumi; Shigemori, Masaki

    2016-08-01

    We study the conjecture made by Chang, Minwalla, Sharma, and Yin on the duality between the {N}=6 Vasiliev higher spin theory on AdS4 and the {N}=6 Chern-Simons-matter theory, so-called ABJ theory, with gauge group U( N) × U( N + M). Building on our earlier results on the ABJ partition function, we develop the systematic 1 /M expansion, corresponding to the weak coupling expansion in the higher spin theory, and compare the leading 1 /M correction, with our proposed prescription, to the one-loop free energy of the {N}=6 Vasiliev theory. We find an agreement between the two sides up to an ambiguity that appears in the bulk one-loop calculation.

  15. On the gauge chosen by the bosonic open string

    NASA Astrophysics Data System (ADS)

    Pesando, Igor

    2017-05-01

    String theory gives S matrix elements from which is not possible to read any gauge information. Using factorization we go off shell in the simplest and most naive way and we read which are the vertices suggested by string. To compare with the associated Effective Field Theory it is natural to use color ordered vertices. The α‧ = 0 color ordered vertices suggested by string theory are more efficient than the usual ones since the three gluon color ordered vertex has three terms instead of six and the four gluon one has one term instead of three. They are written in the so called Gervais-Neveu gauge. The full Effective Field Theory is in a generalization of the Gervais-Neveu gauge with α‧ corrections. Moreover a field redefinition is required to be mapped to the field used by string theory. We also give an intuitive way of understanding why string choose this gauge in terms of the minimal number of couplings necessary to reproduce the non-abelian amplitudes starting from color ordered ones.

  16. Stringy horizons and generalized FZZ duality in perturbation theory

    NASA Astrophysics Data System (ADS)

    Giribet, Gaston

    2017-02-01

    We study scattering amplitudes in two-dimensional string theory on a black hole bakground. We start with a simple derivation of the Fateev-Zamolodchikov-Zamolodchikov (FZZ) duality, which associates correlation functions of the sine-Liouville integrable model on the Riemann sphere to tree-level string amplitudes on the Euclidean two-dimensional black hole. This derivation of FZZ duality is based on perturbation theory, and it relies on a trick originally due to Fateev, which involves duality relations between different Selberg type integrals. This enables us to rewrite the correlation functions of sine-Liouville theory in terms of a special set of correlators in the gauged Wess-Zumino-Witten (WZW) theory, and use this to perform further consistency checks of the recently conjectured Generalized FZZ (GFZZ) duality. In particular, we prove that n-point correlation functions in sine-Liouville theory involving n - 2 winding modes actually coincide with the correlation functions in the SL(2,R)/U(1) gauged WZW model that include n - 2 oscillator operators of the type described by Giveon, Itzhaki and Kutasov in reference [1]. This proves the GFZZ duality for the case of tree level maximally winding violating n-point amplitudes with arbitrary n. We also comment on the connection between GFZZ and other marginal deformations previously considered in the literature.

  17. A remark on the phase transitions of modified action spin and gauge models

    NASA Astrophysics Data System (ADS)

    Seiberg, Nathan; Solomon, Sorin

    1983-06-01

    We consider the phase diagrams of modified action gauge and spin models and concentrate on their periphery - infinitely far from their origins (zero temperature - β-1 = 0). In this limit the exact positions of the phase transitions are found by looking for the global minimum of the single plaquette action (for a spin system - the single link energy). As the parameters of the model are varied, the position of such a global minimum is in general changed. When this changed is non-analytic, a phase transition takes place. The phase structure for finite β is clearly similar, but not identical to the infinite β one. We discuss several finite β corrections that should be applied to the exactly known infinite β picture. We confront our analysis for infinite β2 = ∑ iβ2i with the Monte Carlo simulations for two four-dimensional gauge systems: an SU(3) gauge model with action S=-Re∑ p( β1tr Up+ β2(tr Up) 2) and an SU(2) model with S=- Re Σ p[β 1{1}/{2}trU p+β 2( {1}/{2}trU p) 2+β 3( {1}/{2}trU p) 3] .

  18. Higgsed Gauge-flation

    DOE PAGES

    Adshead, Peter; Sfakianakis, Evangelos I.

    2017-08-29

    We study a variant of Gauge-flation where the gauge symmetry is spontaneously broken by a Higgs sector. Here, we work in the Stueckelberg limit and demonstrate that the dynamics remain (catastrophically) unstable for cases where the gauge field masses satisfy γ< 2, where γ= g 2 2=ψH 2, g is the gauge coupling, ψ is the gauge field vacuum expectation value, and H is the Hubble rate. We compute the spectrum of density uctuations and gravitational waves, and show that the model can produce observationally viable spectra. The background gauge field texture violates parity, resulting in a chiral gravitational wavemore » spectrum. This arises due to an exponential enhancement of one polarization of the spin-2 fluctuation of the gauge field. Higgsed Gauge-flation can produce observable gravitational waves at in inflationary energy scales well below the GUT scale.« less

  19. Higgsed Gauge-flation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adshead, Peter; Sfakianakis, Evangelos I.

    We study a variant of Gauge-flation where the gauge symmetry is spontaneously broken by a Higgs sector. Here, we work in the Stueckelberg limit and demonstrate that the dynamics remain (catastrophically) unstable for cases where the gauge field masses satisfy γ< 2, where γ= g 2 2=ψH 2, g is the gauge coupling, ψ is the gauge field vacuum expectation value, and H is the Hubble rate. We compute the spectrum of density uctuations and gravitational waves, and show that the model can produce observationally viable spectra. The background gauge field texture violates parity, resulting in a chiral gravitational wavemore » spectrum. This arises due to an exponential enhancement of one polarization of the spin-2 fluctuation of the gauge field. Higgsed Gauge-flation can produce observable gravitational waves at in inflationary energy scales well below the GUT scale.« less

  20. Aspects of Superconformal Field Theories

    NASA Astrophysics Data System (ADS)

    Gadde, Abhijit

    Recently, a lot of progress has been made towards understanding the strongly coupled supersymmetric quantum gauge theories. The problem of strong coupling for SU(N) gauge theories can be formulated in two separate regimes of interest, one at finite N and the other at large N in 't Hooft limit. In the first case electric/magnetic duality also called S-duality and in the second, AdS/CFT duality map the strongly coupled problem to a weakly coupled one. Both of the dualities have been well understood in the maximally supersymmetric 4 d gauge theory, the N = 4 super Yang-Mills. In this thesis, as a natural next step, we focus on the strong coupling behavior in N = 2 supersymmetric gauge theories.

  1. Scalar quantum electrodynamics via Duffin-Kemmer-Petiau gauge theory in the Heisenberg picture: Vacuum polarization

    NASA Astrophysics Data System (ADS)

    Beltran, J.; Maia, N. T.; Pimentel, B. M.

    2018-04-01

    Scalar Quantum Electrodynamics is investigated in the Heisenberg picture via the Duffin-Kemmer-Petiau gauge theory. On this framework, a perturbative method is used to compute the vacuum polarization tensor and its corresponding induced current for the case of a charged scalar field in the presence of an external electromagnetic field. Charge renormalization is brought into discussion for the interpretation of the results for the vacuum polarization.

  2. The effective supergravity of little string theory

    NASA Astrophysics Data System (ADS)

    Antoniadis, Ignatios; Delgado, Antonio; Markou, Chrysoula; Pokorski, Stefan

    2018-02-01

    In this work we present the minimal supersymmetric extension of the five-dimensional dilaton-gravity theory that captures the main properties of the holographic dual of little string theory. It is described by a particular gauging of N=2 supergravity coupled with one vector multiplet associated with the string dilaton, along the U(1) subgroup of SU(2) R-symmetry. The linear dilaton in the fifth coordinate solution of the equations of motion (with flat string frame metric) breaks half of the supersymmetries to N=1 in four dimensions. Interest in the linear dilaton model has lately been revived in the context of the clockwork mechanism, which has recently been proposed as a new source of exponential scale separation in field theory.

  3. A Gas Pressure Scale Based on Primary Standard Piston Gauges

    PubMed Central

    Olson, Douglas A.; Driver, R. Greg; Bowers, Walter J.

    2010-01-01

    The National Institute of Standards and Technology (NIST) has redefined its gas pressure scale, up to 17 MPa, based on two primary standard piston gauges. The primary standard piston gauges are 35.8 mm in diameter and operate from 20 kPa to 1 MPa. Ten secondary standard piston gauges, two each of five series of the Ruska 2465 type, with successively smaller diameters form the scale extending up to 17 MPa. Six of the piston gauges were directly compared to the primary standards to determine their effective area and expanded (k = 2) uncertainty. Two piston gauges operating to 7 MPa were compared to the 1.4 MPa gauges, and two piston gauges operating to 17 MPa were compared to the 7 MPa gauges. Distortion in the 7 MPa piston gauges was determined by comparing those gauges to a DH Instruments PG7601 type piston gauge, whose distortion was calculated using elasticity theory. The relative standard uncertainties achieved by the primary standards range from 3.0 × 10−6 to 3.2 × 10−6. The relative standard uncertainty of the secondary standards is as low as 4.2 × 10−6 at 300 kPa. The effective areas and uncertainties were validated by comparison to standards of other National Metrology Institutes (NMIs). Results show agreement in all cases to better than the expanded (k = 2) uncertainty of the difference between NIST and the other NMIs, and in most cases to better than the standard (k = 1) uncertainty of the difference. PMID:27134793

  4. PyR@TE. Renormalization group equations for general gauge theories

    NASA Astrophysics Data System (ADS)

    Lyonnet, F.; Schienbein, I.; Staub, F.; Wingerter, A.

    2014-03-01

    Although the two-loop renormalization group equations for a general gauge field theory have been known for quite some time, deriving them for specific models has often been difficult in practice. This is mainly due to the fact that, albeit straightforward, the involved calculations are quite long, tedious and prone to error. The present work is an attempt to facilitate the practical use of the renormalization group equations in model building. To that end, we have developed two completely independent sets of programs written in Python and Mathematica, respectively. The Mathematica scripts will be part of an upcoming release of SARAH 4. The present article describes the collection of Python routines that we dubbed PyR@TE which is an acronym for “Python Renormalization group equations At Two-loop for Everyone”. In PyR@TE, once the user specifies the gauge group and the particle content of the model, the routines automatically generate the full two-loop renormalization group equations for all (dimensionless and dimensionful) parameters. The results can optionally be exported to LaTeX and Mathematica, or stored in a Python data structure for further processing by other programs. For ease of use, we have implemented an interactive mode for PyR@TE in form of an IPython Notebook. As a first application, we have generated with PyR@TE the renormalization group equations for several non-supersymmetric extensions of the Standard Model and found some discrepancies with the existing literature. Catalogue identifier: AERV_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AERV_v1_0.html Program obtainable from: CPC Program Library, Queen’s University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 924959 No. of bytes in distributed program, including test data, etc.: 495197 Distribution format: tar.gz Programming language: Python. Computer

  5. Non-Abelian semilocal strings in N=2 supersymmetric QCD

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shifman, M.; Yung, A.; Petersburg Nuclear Physics Institute, Gatchina, St. Petersburg 188300

    2006-06-15

    We consider a benchmark bulk theory in four dimensions: N=2 supersymmetric QCD with the gauge group U(N) and N{sub f} flavors of fundamental matter hypermultiplets (quarks). The nature of the Bogomol'nyi-Prasad-Sommerfield (BPS) strings in this benchmark theory crucially depends on N{sub f}. If N{sub f}{>=}N and all quark masses are equal, it supports non-Abelian BPS strings which have internal (orientational) moduli. If N{sub f}>N these strings become semilocal, developing additional moduli {rho} related to (unlimited) variations of their transverse size. Using the U(2) gauge group with N{sub f}=3, 4 as an example, we derive an effective low-energy theory on themore » (two-dimensional) string world sheet. Our derivation is field theoretic, direct and explicit: we first analyze the Bogomol'nyi equations for string-geometry solitons, suggest an ansatz, and solve it at large {rho}. Then we use this solution to obtain the world-sheet theory. In the semiclassical limit our result confirms the Hanany-Tong conjecture, which rests on brane-based arguments, that the world-sheet theory is an N=2 supersymmetric U(1) gauge theory with N positively and N{sub e}=N{sub f}-N negatively charged matter multiplets and the Fayet-Iliopoulos term determined by the four-dimensional coupling constant. We conclude that the Higgs branch of this model is not lifted by quantum effects. As a result, such strings cannot confine. Our analysis of infrared effects, not seen in the Hanany-Tong consideration, shows that, in fact, the derivative expansion can make sense only provided that the theory under consideration is regularized in the infrared, e.g. by the quark mass differences. The world-sheet action discussed in this paper becomes a bona fide low-energy effective action only if {delta}m{sub AB}{ne}0.« less

  6. Tensor non-Gaussianity from axion-gauge-fields dynamics: parameter search

    NASA Astrophysics Data System (ADS)

    Agrawal, Aniket; Fujita, Tomohiro; Komatsu, Eiichiro

    2018-06-01

    We calculate the bispectrum of scale-invariant tensor modes sourced by spectator SU(2) gauge fields during inflation in a model containing a scalar inflaton, a pseudoscalar axion and SU(2) gauge fields. A large bispectrum is generated in this model at tree-level as the gauge fields contain a tensor degree of freedom, and its production is dominated by self-coupling of the gauge fields. This is a unique feature of non-Abelian gauge theory. The shape of the tensor bispectrum is approximately an equilateral shape for 3lesssim mQlesssim 4, where mQ is an effective dimensionless mass of the SU(2) field normalised by the Hubble expansion rate during inflation. The amplitude of non-Gaussianity of the tensor modes, characterised by the ratio Bh/P2h, is inversely proportional to the energy density fraction of the gauge field. This ratio can be much greater than unity, whereas the ratio from the vacuum fluctuation of the metric is of order unity. The bispectrum is effective at constraining large mQ regions of the parameter space, whereas the power spectrum constrains small mQ regions.

  7. Unification of gauge and Yukawa couplings

    NASA Astrophysics Data System (ADS)

    Abdalgabar, Ammar; Khojali, Mohammed Omer; Cornell, Alan S.; Cacciapaglia, Giacomo; Deandrea, Aldo

    2018-01-01

    The unification of gauge and top Yukawa couplings is an attractive feature of gauge-Higgs unification models in extra-dimensions. This feature is usually considered difficult to obtain based on simple group theory analyses. We reconsider a minimal toy model including the renormalisation group running at one loop. Our results show that the gauge couplings unify asymptotically at high energies, and that this may result from the presence of an UV fixed point. The Yukawa coupling in our toy model is enhanced at low energies, showing that a genuine unification of gauge and Yukawa couplings may be achieved.

  8. Assessing Hubbard-corrected AM05+ U and PBEsol+ U density functionals for strongly correlated oxides CeO 2 and Ce 2O 3

    DOE PAGES

    Weck, Philippe F.; Kim, Eunja

    2016-09-12

    The structure–property relationships of bulk CeO 2 and Ce 2O 3 have been investigated using AM05 and PBEsol exchange–correlation functionals within the frameworks of Hubbard-corrected density functional theory (DFT+ U) and density functional perturbation theory (DFPT+ U). Compared with conventional PBE+ U, RPBE+ U, PW91+ U and LDA+ U functionals, AM05+ U and PBEsol+ U describe experimental crystalline parameters and properties of CeO 2 and Ce 2O 3 with superior accuracy, especially when + U is chosen close to its value derived by the linear-response approach. Lastly, the present findings call for a reexamination of some of the problematic oxidemore » materials featuring strong f- and d-electron correlation using AM05+ U and PBEsol+ U.« less

  9. Assessing Hubbard-corrected AM05+ U and PBEsol+ U density functionals for strongly correlated oxides CeO 2 and Ce 2O 3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weck, Philippe F.; Kim, Eunja

    The structure–property relationships of bulk CeO 2 and Ce 2O 3 have been investigated using AM05 and PBEsol exchange–correlation functionals within the frameworks of Hubbard-corrected density functional theory (DFT+ U) and density functional perturbation theory (DFPT+ U). Compared with conventional PBE+ U, RPBE+ U, PW91+ U and LDA+ U functionals, AM05+ U and PBEsol+ U describe experimental crystalline parameters and properties of CeO 2 and Ce 2O 3 with superior accuracy, especially when + U is chosen close to its value derived by the linear-response approach. Lastly, the present findings call for a reexamination of some of the problematic oxidemore » materials featuring strong f- and d-electron correlation using AM05+ U and PBEsol+ U.« less

  10. Renormalization in Coulomb-gauge QCD within the Lagrangian formalism

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Niegawa, A.

    2006-08-15

    We study renormalization of Coulomb-gauge QCD within the Lagrangian, second-order, formalism. We derive a Ward identity and the Zinn-Justin equation, and, with the help of the latter, we give a proof of algebraic renormalizability of the theory. Through diagrammatic analysis, we show that, in the strict Coulomb gauge, g{sup 2}D{sup 00} is invariant under renormalization. (D{sup 00} is the time-time component of the gluon propagator.)

  11. Five-dimensional fermionic Chern-Simons theory

    NASA Astrophysics Data System (ADS)

    Bak, Dongsu; Gustavsson, Andreas

    2018-02-01

    We study 5d fermionic CS theory with a fermionic 2-form gauge potential. This theory can be obtained from 5d maximally supersymmetric YM theory by performing the maximal topological twist. We put the theory on a five-manifold and compute the partition function. We find that it is a topological quantity, which involves the Ray-Singer torsion of the five-manifold. For abelian gauge group we consider the uplift to the 6d theory and find a mismatch between the 5d partition function and the 6d index, due to the nontrivial dimensional reduction of a selfdual two-form gauge field on a circle. We also discuss an application of the 5d theory to generalized knots made of 2d sheets embedded in 5d.

  12. FIMP and muon ( g - 2) in a U(1) Lμ- Lτ model

    NASA Astrophysics Data System (ADS)

    Biswas, Anirban; Choubey, Sandhya; Khan, Sarif

    2017-02-01

    The tightening of the constraints on the standard thermal WIMP scenario has forced physicists to propose alternative dark matter (DM) models. One of the most popular alternate explanations of the origin of DM is the non-thermal production of DM via freeze-in. In this scenario the DM never attains thermal equilibrium with the thermal soup because of its feeble coupling strength (˜10-12) with the other particles in the thermal bath and is generally called the Feebly Interacting Massive Particle (FIMP). In this work, we present a gauged U(1) Lμ- Lτ extension of the Standard Model (SM) which has a scalar FIMP DM candidate and can consistently explain the DM relic density bound. In addition, the spontaneous breaking of the U(1) Lμ- Lτ gauge symmetry gives an extra massive neutral gauge boson Z μτ which can explain the muon ( g - 2) data through its additional one-loop contribution to the process. Lastly, presence of three right-handed neutrinos enable the model to successfully explain the small neutrino masses via the Type-I seesaw mechanism. The presence of the spontaneously broken U(1) Lμ- Lτ gives a particular structure to the light neutrino mass matrix which can explain the peculiar mixing pattern of the light neutrinos.

  13. New Results in {mathcal {N}}=2 N = 2 Theories from Non-perturbative String

    NASA Astrophysics Data System (ADS)

    Bonelli, Giulio; Grassi, Alba; Tanzini, Alessandro

    2018-03-01

    We describe the magnetic phase of SU(N) $\\mathcal{N}=2$ Super Yang-Mills theories in the self-dual Omega background in terms of a new class of multi-cut matrix models. These arise from a non-perturbative completion of topological strings in the dual four dimensional limit which engineers the gauge theory in the strongly coupled magnetic frame. The corresponding spectral determinants provide natural candidates for the tau functions of isomonodromy problems for flat spectral connections associated to the Seiberg-Witten geometry.

  14. On 3-gauge transformations, 3-curvatures, and Gray-categories

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Wei, E-mail: wwang@zju.edu.cn

    In the 3-gauge theory, a 3-connection is given by a 1-form A valued in the Lie algebra g, a 2-form B valued in the Lie algebra h, and a 3-form C valued in the Lie algebra l, where (g,h,l) constitutes a differential 2-crossed module. We give the 3-gauge transformations from one 3-connection to another, and show the transformation formulae of the 1-curvature 2-form, the 2-curvature 3-form, and the 3-curvature 4-form. The gauge configurations can be interpreted as smooth Gray-functors between two Gray 3-groupoids: the path 3-groupoid P{sub 3}(X) and the 3-gauge group G{sup L} associated to the 2-crossed module L,more » whose differential is (g,h,l). The derivatives of Gray-functors are 3-connections, and the derivatives of lax-natural transformations between two such Gray-functors are 3-gauge transformations. We give the 3-dimensional holonomy, the lattice version of the 3-curvature, whose derivative gives the 3-curvature 4-form. The covariance of 3-curvatures easily follows from this construction. This Gray-categorical construction explains why 3-gauge transformations and 3-curvatures have the given forms. The interchanging 3-arrows are responsible for the appearance of terms with the Peiffer commutator (, )« less

  15. Vectorlike particles, Z‧ and Yukawa unification in F-theory inspired E6

    NASA Astrophysics Data System (ADS)

    Karozas, Athanasios; Leontaris, George K.; Shafi, Qaisar

    2018-03-01

    We explore the low energy implications of an F-theory inspired E6 model whose breaking yields, in addition to the MSSM gauge symmetry, a Z‧ gauge boson associated with a U (1) symmetry broken at the TeV scale. The zero mode spectrum of the effective low energy theory is derived from the decomposition of the 27 and 27 ‾ representations of E6 and we parametrise their multiplicities in terms of a minimum number of flux parameters. We perform a two-loop renormalisation group analysis of the gauge and Yukawa couplings of the effective theory model and estimate lower bounds on the new vectorlike particles predicted in the model. We compute the third generation Yukawa couplings in an F-theory context assuming an E8 point of enhancement and express our results in terms of the local flux densities associated with the gauge symmetry breaking. We find that their values are compatible with the ones computed by the renormalisation group equations, and we identify points in the parameter space of the flux densities where the t - b - τ Yukawa couplings unify.

  16. Understanding Systems Theory for U.S. Marines

    DTIC Science & Technology

    2007-01-01

    Combat Development Command Quantico, Virginia 22134-5068 FUTURE WAR Understanding Systems Theory for U.S. Marines SUBMITTED IN...Systems Theory for U.S. Marines 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR( S ) 5d. PROJECT NUMBER 5e. TASK NUMBER 5f...attached as Appendix C). Developing solutions requires understanding the problem( s ). In complex situations, some behavior of the target system

  17. Formal and Applied AdS/CFT

    NASA Astrophysics Data System (ADS)

    Pufu, Silviu Stefan

    The gauge/gravity duality is a powerful mathematical tool that relates strongly-interacting gauge theories with large numbers of colors to classical gravitational theories with negative cosmological constant. This thesis uses the gauge/gravity duality in two ways. The first half of the thesis explores the notion of a holographic p-wave superconductor/superfluid. On the gauge theory side there is an SU(2) global symmetry that is explicitly broken to U(1) by turning on a charge density. This U(1) symmetry is in turn spontaneously broken when the ratio between temperature and charge density is smaller than a critical value. The spontaneous breaking of the U(1) symmetry is accompanied by a spontaneous breaking of rotational symmetry. On the gravity side the SU(2) and U(1) symmetries are gauged, and the symmetry-broken backgrounds are charged black branes surrounded by clouds made of off-diagonal gauge bosons. The gauge/gravity duality is used to compute various critical exponents and transport coefficients related to the phase transition between the U(1) symmetry-broken and symmetry-restored phases. The second half of this thesis builds on the recent progress on using the technique of localization for computing supersymmetry-protected quantities in gauge theories with N ≥ 2 supersymmetry on the three-sphere. Using this technique, the infinite-dimensional path integrals of these theories were reduced to finite-dimensional multi-matrix integrals. In the second half of this thesis these multi-matrix integrals are computed approximately for the case of effective gauge theories on M2-branes probing various Calabi-Yau singularities. The answers match the predictions of the gauge/gravity duality. In particular, they reproduce the N3/2 scaling of the number of degrees of freedom on N coincident M2-branes.

  18. Pure gauge spin-orbit couplings

    NASA Astrophysics Data System (ADS)

    Shikakhwa, M. S.

    2017-01-01

    Planar systems with a general linear spin-orbit interaction (SOI) that can be cast in the form of a non-Abelian pure gauge field are investigated using the language of non-Abelian gauge field theory. A special class of these fields that, though a 2×2 matrix, are Abelian are seen to emerge and their general form is given. It is shown that the unitary transformation that gauges away these fields induces at the same time a rotation on the wave function about a fixed axis but with a space-dependent angle, both of which being characteristics of the SOI involved. The experimentally important case of equal-strength Rashba and Dresselhaus SOI (R+D SOI) is shown to fall within this special class of Abelian gauge fields, and the phenomenon of persistent spin helix (PSH) that emerges in the presence of this latter SOI in a plane is shown to fit naturally within the general formalism developed. The general formalism is also extended to the case of a particle confined to a ring. It is shown that the Hamiltonian on a ring in the presence of equal-strength R+D SOI is unitarily equivalent to that of a particle subject to only a spin-independent but θ-dependent potential with the unitary transformation relating the two being again the space-dependent rotation operator characteristic of R+D SOI.

  19. SU(5)×U(1)X grand unification with minimal seesaw and Z‧-portal dark matter

    NASA Astrophysics Data System (ADS)

    Okada, Nobuchika; Okada, Satomi; Raut, Digesh

    2018-05-01

    We propose a grand unified SU (5) × U(1)X model, where the standard SU(5) grand unified theory is supplemented by minimal seesaw and a right-handed neutrino dark matter with an introduction of a global Z2-parity. In the presence of three right-handed neutrinos (RHNs), the model is free from all gauge and mixed-gravitational anomalies. The SU(5) symmetry is broken into the Standard Model (SM) gauge group at MGUT ≃ 4 ×1016GeV in the standard manner, while the U(1)X symmetry breaking occurs at the TeV scale, which generates the TeV-scale mass of the U(1)X gauge boson (Z‧ boson) and the three Majorana RHNs. A unique Z2-odd RHN is stable and serves as the dark matter (DM) in the present Universe, while the remaining two RHNs work to generate the SM neutrino masses through the minimal seesaw. We investigate the Z‧-portal RHN DM scenario in this model context. We find that the constraints from the DM relic abundance, and the Z‧ boson search at the Large Hadron Collider (LHC), and the perturbativity bound on the U(1)X gauge coupling are complementary to narrow down the allowed parameter region in the range of 3.0 ≤mZ‧ [TeV ] ≤ 9.2 for the Z‧ boson mass. The allowed region for mZ‧ ≤ 5TeV will be fully covered by the future LHC experiments. We also briefly discuss the successful implementation of Baryogenesis and cosmological inflation scenarios in the present model.

  20. The dyon spectra of finite gauge theories

    NASA Astrophysics Data System (ADS)

    Ferrari, Frank

    1997-02-01

    It is shown that all the ( p, q) dyon bound states exist and are unique in N = 4 and N = 2 with four massless flavor supersymmetric SU(2) Yang-Mills theories, where p and q are any relatively prime integers. The proof can be understood in the context of field theory alone, and does not rely on any duality assumption. We also give a general physical argument showing that these theories should have at least an exact Γ(2) duality symmetry, and then deduce in particular the existence of the (2 p,2 q) vector multiplets in the Nf = 4 theory. The corresponding massive theories are studied in parallel, and it is shown that though in these cases the spectrum is no longer self-dual at a given point on the moduli space, it is still in perfect agreement with an exact S duality. We also discuss the interplay between our results and both the semiclassical quantization and the heterotic-type II string-string duality conjecture.

  1. A report from the AVS Standards Committee - Comparison of ion gauge calibrations by several standards laboratories

    NASA Technical Reports Server (NTRS)

    Warshawsky, I.

    1982-01-01

    Calibrations by four U.S. laboratories of four hot-cathode ion gauges, in the range 0.07-13 mPa, showed systematic differences among laboratories that were much larger than the expected error of any one calibration. They also suggested that any of the four gauges tested, if properly packaged and shipped, was able to serve as a transfer standard with probable error of 2%. A second comparison was made of the calibrations by two U.S. laboratories of some other gauges that had also been calibrated by the National Physical Laboratory, England. Results did not permit conclusive determination of whether differences were due to the laboratories or to changes in the gauges.

  2. Determining triple gauge boson couplings from Higgs data.

    PubMed

    Corbett, Tyler; Éboli, O J P; Gonzalez-Fraile, J; Gonzalez-Garcia, M C

    2013-07-05

    In the framework of effective Lagrangians with the SU(2)(L)×U(1)(Y) symmetry linearly realized, modifications of the couplings of the Higgs field to the electroweak gauge bosons are related to anomalous triple gauge couplings (TGCs). Here, we show that the analysis of the latest Higgs boson production data at the LHC and Tevatron give rise to strong bounds on TGCs that are complementary to those from direct TGC analysis. We present the constraints on TGCs obtained by combining all available data on direct TGC studies and on Higgs production analysis.

  3. Topics in Nonsupersymmetric Scattering Amplitudes in Gauge and Gravity Theories

    NASA Astrophysics Data System (ADS)

    Nohle, Joshua David

    In Chapters 1 and 2, we introduce and review the duality between color and kinematics in Yang-Mills theory uncovered by Bern, Carrasco and Johansson (BCJ). In Chapter 3, we provide evidence in favor of the conjectured duality between color and kinematics for the case of nonsupersymmetric pure Yang-Mills amplitudes by constructing a form of the one-loop four-point amplitude of this theory that makes the duality manifest. Our construction is valid in any dimension. We also describe a duality-satisfying representation for the two-loop four-point amplitude with identical four-dimensional external helicities. We use these results to obtain corresponding gravity integrands for a theory containing a graviton, dilaton, and antisymmetric tensor, simply by replacing color factors with specified diagram numerators. Using this, we give explicit forms of ultraviolet divergences at one loop in four, six, and eight dimensions, and at two loops in four dimensions. In Chapter 4, we extend the four-point one-loop nonsupersymmetric pure Yang-Mills discussion of Chapter 3 to include fermions and scalars circulating in the loop with all external gluons. This gives another nontrivial loop-level example showing that the duality between color and kinematics holds in nonsupersymmetric gauge theory. The construction is valid in any spacetime dimension and written in terms of formal polarization vectors. We also convert these expressions into a four-dimensional form with explicit external helicity states. Using this, we compare our results to one-loop duality-satisfying amplitudes that are already present in literature. In Chapter 5, we switch from the topic of color-kinematics duality to discuss the recently renewed interest in the soft behavior of gravitons and gluons. Specifically, we discuss the subleading low-energy behavior. Cachazo and Strominger recently proposed an extension of the soft-graviton theorem found by Weinberg. In addition, they proved the validity of their extension at

  4. Rescriptive and Descriptive Gauge Symmetry in Finite-Dimensional Dynamical Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gurfil, Pini

    2007-02-07

    Gauge theories in physics constitute a fundamental tool for modeling interactions among electromagnetic, weak and strong forces. They have been used in a myriad of fields, ranging from sub-atomic physics to cosmology. The basic mathematical tool generating the gauge theories is that of symmetry, i.e. a redundancy in the description of the system. Although symmetries have long been recognized as a fundamental tool for solving ordinary differential equations, they have not been formally categorized as gauge theories. In this paper, we show how simple systems described by ordinary differential equations are prone to exhibit gauge symmetry, and discuss a fewmore » practical applications of this approach. In particular, we utilize the notion of gauge symmetry to question some common engineering misconceptions of chaotic and stochastic phenomena, and show that seemingly 'disordered' (deterministic) or 'random' (stochastic) behaviors can be 'ordered'. This brings into play the notion of observation; we show that temporal observations may be misleading when used for chaos detection. From a practical standpoint, we use gauge symmetry to considerably mitigate the numerical truncation error of numerical integrations.« less

  5. 2 + 1 dimensional de Sitter universe emerging from the gauge structure of a nonlinear quantum system.

    PubMed

    Kam, Chon-Fai; Liu, Ren-Bao

    2017-08-29

    Berry phases and gauge structures are fundamental quantum phenomena. In linear quantum mechanics the gauge field in parameter space presents monopole singularities where the energy levels become degenerate. In nonlinear quantum mechanics, which is an effective theory of interacting quantum systems, there can be phase transitions and hence critical surfaces in the parameter space. We find that these critical surfaces result in a new type of gauge field singularity, namely, a conic singularity that resembles the big bang of a 2 + 1 dimensional de Sitter universe, with the fundamental frequency of Bogoliubov excitations acting as the cosmic scale, and mode softening at the critical surface, where the fundamental frequency vanishes, causing a causal singularity. Such conic singularity may be observed in various systems such as Bose-Einstein condensates and molecular magnets. This finding offers a new approach to quantum simulation of fundamental physics.

  6. Ideal walking dynamics via a gauged NJL model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rantaharju, Jarno; Pica, Claudio; Sannino, Francesco

    According to the ideal walking technicolor paradigm, large mass anomalous dimensions arise in gauged Nambu–Jona-Lasinio (NJL) models when the four-fermion coupling is sufficiently strong to induce spontaneous symmetry breaking in an otherwise conformal gauge theory. Therefore, we study the SU(2) gauged NJL model with two adjoint fermions using lattice simulations. The model is in an infrared conformal phase at small NJL coupling while it displays a chirally broken phase at large NJL couplings. In the infrared conformal phase, we find that the mass anomalous dimension varies with the NJL coupling, reaching γm ~ 1 close to the chiral symmetry breakingmore » transition, de facto making the present model the first explicit realization of the ideal walking scenario.« less

  7. Ideal walking dynamics via a gauged NJL model

    DOE PAGES

    Rantaharju, Jarno; Pica, Claudio; Sannino, Francesco

    2017-07-25

    According to the ideal walking technicolor paradigm, large mass anomalous dimensions arise in gauged Nambu–Jona-Lasinio (NJL) models when the four-fermion coupling is sufficiently strong to induce spontaneous symmetry breaking in an otherwise conformal gauge theory. Therefore, we study the SU(2) gauged NJL model with two adjoint fermions using lattice simulations. The model is in an infrared conformal phase at small NJL coupling while it displays a chirally broken phase at large NJL couplings. In the infrared conformal phase, we find that the mass anomalous dimension varies with the NJL coupling, reaching γm ~ 1 close to the chiral symmetry breakingmore » transition, de facto making the present model the first explicit realization of the ideal walking scenario.« less

  8. Diffractive Scattering and Gauge/String Duality

    ScienceCinema

    Tan, Chung-I

    2018-05-11

    High-energy diffractive scattering will be discussed based on Gauge/String duality. As shown by Brower, Polchinski, Strassler and Tan, the ubiquitous Pomeron emerges naturally in gauge theories with string-theoretical descriptions. Its existence is intimately tied to gluons, and also to the energy-momentum tensor. With a confining dual background metric, the Pomeron can be interpreted as a 'massive graviton'. In a single unified step, both its infrared and ultraviolet properties are dealt with, reflecting confinement and conformal symmetry respectively. An effective field theory for high-energy scattering can be constructed. Applications based on this approach will also be described.

  9. Global U(1 ) Y⊗BRST symmetry and the LSS theorem: Ward-Takahashi identities governing Green's functions, on-shell T -matrix elements, and the effective potential in the scalar sector of the spontaneously broken extended Abelian Higgs model

    NASA Astrophysics Data System (ADS)

    Lynn, Bryan W.; Starkman, Glenn D.

    2017-09-01

    The weak-scale U (1 )Y Abelian Higgs model (AHM) is the simplest spontaneous symmetry breaking (SSB) gauge theory: a scalar ϕ =1/√{2 }(H +i π )≡1/√{2 }H ˜ei π ˜/⟨H ⟩ and a vector Aμ. The extended AHM (E-AHM) adds certain heavy (MΦ2,Mψ2˜MHeavy2≫⟨H ⟩2˜mWeak2 ) spin S =0 scalars Φ and S =1/2 fermions ψ . In Lorenz gauge, ∂μAμ=0 , the SSB AHM (and E-AHM) has a global U (1 )Y conserved physical current, but no conserved charge. As shown by T. W. B. Kibble, the Goldstone theorem applies, so π ˜ is a massless derivatively coupled Nambu-Goldstone boson (NGB). Proof of all-loop-orders renormalizability and unitarity for the SSB case is tricky because the Becchi-Rouet-Stora-Tyutin (BRST)-invariant Lagrangian is not U (1 )Y symmetric. Nevertheless, Slavnov-Taylor identities guarantee that on-shell T-matrix elements of physical states Aμ,ϕ , Φ , ψ (but not ghosts ω , η ¯ ) are independent of anomaly-free local U (1 )Y gauge transformations. We observe here that they are therefore also independent of the usual anomaly-free U (1 )Y global/rigid transformations. It follows that the associated global current, which is classically conserved only up to gauge-fixing terms, is exactly conserved for amplitudes of physical states in the AHM and E-AHM. We identify corresponding "undeformed" [i.e. with full global U (1 )Y symmetry] Ward-Takahashi identities (WTI). The proof of renormalizability and unitarity, which relies on BRST invariance, is undisturbed. In Lorenz gauge, two towers of "1-soft-pion" SSB global WTI govern the ϕ -sector, and represent a new global U (1 )Y⊗BRST symmetry not of the Lagrangian but of the physics. The first gives relations among off-shell Green's functions, yielding powerful constraints on the all-loop-orders ϕ -sector SSB E-AHM low-energy effective Lagrangian and an additional global shift symmetry for the NGB: π ˜→π ˜+⟨H ⟩θ . A second tower, governing on-shell T-matrix elements, replaces the old Adler

  10. SU(2U(1) gauge invariance and the shape of new physics in rare B decays.

    PubMed

    Alonso, R; Grinstein, B; Martin Camalich, J

    2014-12-12

    New physics effects in B decays are routinely modeled through operators invariant under the strong and electromagnetic gauge symmetries. Assuming the scale for new physics is well above the electroweak scale, we further require invariance under the full standard model gauge symmetry group. Retaining up to dimension-six operators, we unveil new constraints between different new physics operators that are assumed to be independent in the standard phenomenological analyses. We illustrate this approach by analyzing the constraints on new physics from rare B(q) (semi-)leptonic decays.

  11. Numerical solution of open string field theory in Schnabl gauge

    NASA Astrophysics Data System (ADS)

    Arroyo, E. Aldo; Fernandes-Silva, A.; Szitas, R.

    2018-01-01

    Using traditional Virasoro L 0 level-truncation computations, we evaluate the open bosonic string field theory action up to level (10 , 30). Extremizing this level-truncated potential, we construct a numerical solution for tachyon condensation in Schnabl gauge. We find that the energy associated to the numerical solution overshoots the expected value -1 at level L = 6. Extrapolating the level-truncation data for L ≤ 10 to estimate the vacuum energies for L > 10, we predict that the energy reaches a minimum value at L ˜ 12, and then turns back to approach -1 asymptotically as L → ∞. Furthermore, we analyze the tachyon vacuum expectation value (vev), for which by extrapolating its corresponding level-truncation data, we predict that the tachyon vev reaches a minimum value at L ˜ 26, and then turns back to approach the expected analytical result as L → ∞.

  12. On the tensionless limit of gauged WZW models

    NASA Astrophysics Data System (ADS)

    Bakas, I.; Sourdis, C.

    2004-06-01

    The tensionless limit of gauged WZW models arises when the level of the underlying Kac-Moody algebra assumes its critical value, equal to the dual Coxeter number, in which case the central charge of the Virasoro algebra becomes infinite. We examine this limit from the world-sheet and target space viewpoint and show that gravity decouples naturally from the spectrum. Using the two-dimensional black-hole coset SL(2,Bbb R)k/U(1) as illustrative example, we find for k = 2 that the world-sheet symmetry is described by a truncated version of Winfty generated by chiral fields with integer spin s geq 3, whereas the Virasoro algebra becomes abelian and it can be consistently factored out. The geometry of target space looks like an infinitely curved hyperboloid, which invalidates the effective field theory description and conformal invariance can no longer be used to yield reliable space-time interpretation. We also compare our results with the null gauging of WZW models, which correspond to infinite boost in target space and they describe the Liouville mode that decouples in the tensionless limit. A formal BRST analysis of the world-sheet symmetry suggests that the central charge of all higher spin generators should be fixed to a critical value, which is not seen by the contracted Virasoro symmetry. Generalizations to higher dimensional coset models are also briefly discussed in the tensionless limit, where similar observations are made.

  13. Path-integral invariants in abelian Chern-Simons theory

    NASA Astrophysics Data System (ADS)

    Guadagnini, E.; Thuillier, F.

    2014-05-01

    We consider the U(1) Chern-Simons gauge theory defined in a general closed oriented 3-manifold M; the functional integration is used to compute the normalized partition function and the expectation values of the link holonomies. The non-perturbative path-integral is defined in the space of the gauge orbits of the connections which belong to the various inequivalent U(1) principal bundles over M; the different sectors of configuration space are labelled by the elements of the first homology group of M and are characterized by appropriate background connections. The gauge orbits of flat connections, whose classification is also based on the homology group, control the non-perturbative contributions to the mean values. The functional integration is carried out in any 3-manifold M, and the corresponding path-integral invariants turn out to be strictly related with the abelian Reshetikhin-Turaev surgery invariants.

  14. Fluxes, holography and twistors: String theory paths to four dimensions

    NASA Astrophysics Data System (ADS)

    Gao, Peng

    2007-12-01

    string theories by the inclusion of flux. Hence gauged supergravity is a robust framework for studying flux vacua even when these stringy effects are taken into account. The mechanisms which protect the gauged isometries are different in the two theories. Then we switch to the understanding of SL(2, Z ) duality transformations in asymptotically AdS4 x S7 spacetime with an Abelian gauge theory. The bulk duality acts non-trivially on the three-dimensional SCFT of coincident M2-branes on the conformal boundary. We develop a systematic method to holographically obtain the deformations of the boundary CFT manifested by generalized boundary conditions and show how SL(2, Z ) duality relates different deformations of the conformal vacuum. We analyze in detail marginal deformations and deformations by dimension 4 operators. In the case of massive deformations, the RG flow induces a Legendre transform as well as S-duality. Correlation functions in the CFT are computed by differentiating with respect to magnetic bulk sources, whereas correlation functions in the Legendre dual CFT are computed using electric bulk sources. Under massive deformations, the boundary effective action is generically minimized by massive self-dual configurations of the U(1) gauge field. We show that a massive and self-dual boundary condition corresponds to the unique self-dual topologically massive gauge theory in three dimensions. Thus, self-duality in three dimensions can be understood as a consequence of SL(2, Z ) invariance in the bulk of AdS4. We discuss various implications for understanding the strongly interacting worldvolume theory of M2-branes and more general dualities of the maximally supersymmetric AdS4 supergravity theory. Finally we study the twistor string theory whose D-instanton expansion gives the perturbative expansion of marginally deformed N = 4 super-Yang-Mills theories. More precisely this string theory is a topological B-model with both open and closed string sectors with target

  15. New BCJ representations for one-loop amplitudes in gauge theories and gravity

    NASA Astrophysics Data System (ADS)

    He, Song; Schlotterer, Oliver; Zhang, Yong

    2018-05-01

    We explain a procedure to manifest the Bern-Carrasco-Johansson duality between color and kinematics in n-point one-loop amplitudes of a variety of supersymmetric gauge theories. Explicit amplitude representations are constructed through a systematic reorganization of the integrands in the Cachazo-He-Yuan formalism. Our construction holds for any nonzero number of supersymmetries and does not depend on the number of spacetime dimensions. The cancellations from supersymmetry multiplets in the loop as well as the resulting power counting of loop momenta is manifested along the lines of the corresponding superstring computations. The setup is used to derive the one-loop version of the Kawai-Lewellen-Tye formula for the loop integrands of gravitational amplitudes.

  16. Optical Rain Gauge Performance: Second Workshop on Optical Rain Gauge Measurements

    NASA Technical Reports Server (NTRS)

    Short, David A. (Editor); Thiele, Otto W. (Editor); Mcphaden, Michael J. (Editor)

    1994-01-01

    The primary focus of the workshop was on the performance and reliability of STi mini-Optical Rain Gauges in a number of environments, including deployments on ships and buoys in the western equatorial Pacific Ocean during the TOGA/COARE field experiment, deployments on buoys in U.S. coastal waters, and comparisons with other types of rain gauges on the Virginia coast and in Florida. The workshop was attended by 20 investigators, representing 10 different institutions, who gathered to present new results obtained since the first workshop (April 1993), to discuss problems, to consider solutions, and to chart future directions. Post-TOGA/COARE calibration studies were also presented.

  17. Critical solutions of topologically gauged = 8 CFTs in three dimensions

    NASA Astrophysics Data System (ADS)

    Nilsson, Bengt E. W.

    2014-04-01

    In this paper we discuss some special (critical) background solutions that arise in topological gauged = 8 three-dimensional CFTs with SO(N) gauge group. Depending on how many scalar fields are given a VEV the theory has background solutions for certain values of μl, where μ and l are parameters in the TMG Lagrangian. Apart from Minkowski, chiral round AdS 3 and null-warped AdS 3 (or Schrödinger( z = 2)) we identify also a more exotic solution recently found in TMG by Ertl, Grumiller and Johansson. We also discuss the spectrum, symmetry breaking pattern and the supermultiplet structure in the various backgrounds and argue that some properties are due to their common origin in a conformal phase. Some of the scalar fields, including all higgsed ones, turn out to satisfy three-dimensional field equations similar to those of the singleton. Finally, we note that topologically gauged = 6 ABJ(M) theories have a similar, but more restricted, set of background solutions.

  18. Supersymmetric Janus solutions of dyonic ISO(7)-gauged N = 8 supergravity

    NASA Astrophysics Data System (ADS)

    Suh, Minwoo

    2018-04-01

    We study supersymmetric Janus solutions of dyonic ISO(7)-gauged N = 8 supergravity. We mostly find Janus solutions flowing to 3d N = 8 SYM phase which is the worldvolume theory on D2-branes and non-conformal. There are also solutions flowing from the critical points which are dual to 3d SCFTs from deformations of the D2-brane theory.

  19. Lopsided gauge mediation

    NASA Astrophysics Data System (ADS)

    de Simone, Andrea; Franceschini, Roberto; Giudice, Gian Francesco; Pappadopulo, Duccio; Rattazzi, Riccardo

    2011-05-01

    It has been recently pointed out that the unavoidable tuning among supersymmetric parameters required to raise the Higgs boson mass beyond its experimental limit opens up new avenues for dealing with the so called μ- B μ problem of gauge mediation. In fact, it allows for accommodating, with no further parameter tuning, large values of B μ and of the other Higgs-sector soft masses, as predicted in models where both μ and B μ are generated at one-loop order. This class of models, called Lopsided Gauge Mediation, offers an interesting alternative to conventional gauge mediation and is characterized by a strikingly different phenomenology, with light higgsinos, very large Higgs pseudoscalar mass, and moderately light sleptons. We discuss general parametric relations involving the fine-tuning of the model and various observables such as the chargino mass and the value of tan β. We build an explicit model and we study the constraints coming from LEP and Tevatron. We show that in spite of new interactions between the Higgs and the messenger superfields, the theory can remain perturbative up to very large scales, thus retaining gauge coupling unification.

  20. Evaporation from weighing precipitation gauges: impacts on automated gauge measurements and quality assurance methods

    NASA Astrophysics Data System (ADS)

    Leeper, R. D.; Kochendorfer, J.

    2015-06-01

    Evaporation from a precipitation gauge can cause errors in the amount of measured precipitation. For automated weighing-bucket gauges, the World Meteorological Organization (WMO) suggests the use of evaporative suppressants and frequent observations to limit these biases. However, the use of evaporation suppressants is not always feasible due to environmental hazards and the added cost of maintenance, transport, and disposal of the gauge additive. In addition, research has suggested that evaporation prior to precipitation may affect precipitation measurements from auto-recording gauges operating at sub-hourly frequencies. For further evaluation, a field campaign was conducted to monitor evaporation and its impacts on the quality of precipitation measurements from gauges used at U.S. Climate Reference Network (USCRN) stations. Two Geonor gauges were collocated, with one gauge using an evaporative suppressant (referred to as Geonor-NonEvap) and the other with no suppressant (referred to as Geonor-Evap) to evaluate evaporative losses and evaporation biases on precipitation measurements. From June to August, evaporative losses from the Geonor-Evap gauge exceeded accumulated precipitation, with an average loss of 0.12 mm h-1. The impact of evaporation on precipitation measurements was sensitive to the choice of calculation method. In general, the pairwise method that utilized a longer time series to smooth out sensor noise was more sensitive to gauge evaporation (-4.6% bias with respect to control) than the weighted-average method that calculated depth change over a smaller window (<+1% bias). These results indicate that while climate and gauge design affect gauge evaporation rates, computational methods also influence the magnitude of evaporation biases on precipitation measurements. This study can be used to advance quality insurance (QA) techniques used in other automated networks to mitigate the impact of evaporation biases on precipitation measurements.

  1. Unified theory of nonlinear electrodynamics and gravity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Torres-Gomez, Alexander; Krasnov, Kirill; Scarinci, Carlos

    2011-01-15

    We describe a class of unified theories of electromagnetism and gravity. The Lagrangian is of the BF type, with a potential for the B field, the gauge group is U(2) (complexified). Given a choice of the potential function the theory is a deformation of (complex) general relativity and electromagnetism, and describes just two propagating polarizations of the graviton and two of the photon. When gravity is switched off the theory becomes the usual nonlinear electrodynamics with a general structure function. The Einstein-Maxwell theory can be recovered by sending some of the parameters of the defining potential to zero, but formore » any generic choice of the potential the theory is indistinguishable from Einstein-Maxwell at low energies. A real theory is obtained by imposing suitable reality conditions. We also study the spherically-symmetric solution and show how the usual Reissner-Nordstrom solution is recovered.« less

  2. The chiral magnetic effect and chiral symmetry breaking in SU(3) quenched lattice gauge theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Braguta, V. V., E-mail: braguta@mail.ru; Buividovich, P. V., E-mail: buividovich@itep.ru; Kalaydzhyan, T., E-mail: tigran.kalaydzhyan@desy.de

    2012-04-15

    We study some properties of the non-Abelian vacuum induced by strong external magnetic field. We perform calculations in the quenched SU(3) lattice gauge theory with tadpole-improved Luescher-Weisz action and chirally invariant lattice Dirac operator. The following results are obtained: The chiral symmetry breaking is enhanced by the magnetic field. The chiral condensate depends on the strength of the applied field as a power function with exponent {nu} = 1.6 {+-} 0.2. There is a paramagnetic polarization of the vacuum. The corresponding susceptibility and other magnetic properties are calculated and compared with the theoretical estimations. There are nonzero local fluctuations ofmore » the chirality and electromagnetic current, which grow with the magnetic field strength. These fluctuations can be a manifestation of the Chiral Magnetic Effect.« less

  3. Gauge boson exchange in AdS d+1

    NASA Astrophysics Data System (ADS)

    D'Hoker, Eric; Freedman, Daniel Z.

    1999-04-01

    We study the amplitude for exchange of massless gauge bosons between pairs of massive scalar fields in anti-de Sitter space. In the AdS/CFT correspondence this amplitude describes the contribution of conserved flavor symmetry currents to 4-point functions of scalar operators in the boundary conformal theory. A concise, covariant, Y2K compatible derivation of the gauge boson propagator in AdS d + 1 is given. Techniques are developed to calculate the two bulk integrals over AdS space leading to explicit expressions or convenient, simple integral representations for the amplitude. The amplitude contains leading power and sub-leading logarithmic singularities in the gauge boson channel and leading logarithms in the crossed channel. The new methods of this paper are expected to have other applications in the study of the Maldacena conjecture.

  4. Gaugeon formalism for the second-rank antisymmetric tensor gauge fields

    NASA Astrophysics Data System (ADS)

    Aochi, Masataka; Endo, Ryusuke; Miura, Hikaru

    2018-02-01

    We present a BRST symmetric gaugeon formalism for the second-rank antisymmetric tensor gauge fields. A set of vector gaugeon fields is introduced as a quantum gauge freedom. One of the gaugeon fields satisfies a higher-derivative field equation; this property is necessary to change the gauge-fixing parameter of the antisymmetric tensor gauge field. A naive Lagrangian for the vector gaugeon fields is itself invariant under a gauge transformation for the vector gaugeon field. The Lagrangian of our theory includes the gauge-fixing terms for the gaugeon fields and corresponding Faddeev-Popov ghost terms.

  5. Tensor network simulation of QED on infinite lattices: Learning from (1 +1 ) d , and prospects for (2 +1 ) d

    NASA Astrophysics Data System (ADS)

    Zapp, Kai; Orús, Román

    2017-06-01

    The simulation of lattice gauge theories with tensor network (TN) methods is becoming increasingly fruitful. The vision is that such methods will, eventually, be used to simulate theories in (3 +1 ) dimensions in regimes difficult for other methods. So far, however, TN methods have mostly simulated lattice gauge theories in (1 +1 ) dimensions. The aim of this paper is to explore the simulation of quantum electrodynamics (QED) on infinite lattices with TNs, i.e., fermionic matter fields coupled to a U (1 ) gauge field, directly in the thermodynamic limit. With this idea in mind we first consider a gauge-invariant infinite density matrix renormalization group simulation of the Schwinger model—i.e., QED in (1 +1 ) d . After giving a precise description of the numerical method, we benchmark our simulations by computing the subtracted chiral condensate in the continuum, in good agreement with other approaches. Our simulations of the Schwinger model allow us to build intuition about how a simulation should proceed in (2 +1 ) dimensions. Based on this, we propose a variational ansatz using infinite projected entangled pair states (PEPS) to describe the ground state of (2 +1 ) d QED. The ansatz includes U (1 ) gauge symmetry at the level of the tensors, as well as fermionic (matter) and bosonic (gauge) degrees of freedom both at the physical and virtual levels. We argue that all the necessary ingredients for the simulation of (2 +1 ) d QED are, a priori, already in place, paving the way for future upcoming results.

  6. Towards natural inflation from weakly coupled heterotic string theory

    NASA Astrophysics Data System (ADS)

    Abe, Hiroyuki; Kobayashi, Tatsuo; Otsuka, Hajime

    2015-06-01

    We propose natural inflation from the heterotic string theory on the "Swiss-Cheese" Calabi-Yau manifold with multiple U(1) magnetic fluxes. Such multiple U(1) magnetic fluxes stabilize the same number of the linear combination of the universal axion and Kähler axions, and one of the Kähler axions is identified as the inflaton. This axion decay constant can be determined by the size of one-loop corrections to the gauge kinetic function of the hidden gauge groups, which leads effectively to the trans-Planckian axion decay constant consistent with the Planck data. During the inflation, the real parts of the moduli are also stabilized by employing the nature of the "Swiss-Cheese" Calabi-Yau manifold.

  7. Seiberg-Witten/Whitham Equations and Instanton Corrections in {\\mathscr{N}}=2 Supersymmetric Yang-Mills Theory

    NASA Astrophysics Data System (ADS)

    Dai, Jia-Liang; Fan, En-Gui

    2018-05-01

    We obtain the instanton correction recursion relations for the low energy effective prepotential in pure {\\mathscr{N}}=2 SU(n) supersymmetric Yang-Mills gauge theory from Whitham hierarchy and Seiberg-Witten/Whitham equations. These formulae provide us a powerful tool to calculate arbitrary order instanton corrections coefficients from the perturbative contributions of the effective prepotential in Seiberg-Witten gauge theory. We apply this idea to evaluate one- and twoorder instanton corrections coefficients explicitly in SU(n) case in detail through the dynamical scale parameter expressed in terms of Riemann’s theta-function. Supported by the National Natural Science Foundation of China under Grant No. 11271079

  8. Constructive tensorial group field theory II: the {U(1)-T^4_4} model

    NASA Astrophysics Data System (ADS)

    Lahoche, Vincent

    2018-05-01

    In this paper, we continue our program of non-pertubative constructions of tensorial group field theories (TGFT). We prove analyticity and Borel summability in a suitable domain of the coupling constant of the simplest super-renormalizable TGFT which contains some ultraviolet divergencies, namely the color-symmetric quartic melonic rank-four model with Abelian gauge invariance, nicknamed . We use a multiscale loop vertex expansion. It is an extension of the loop vertex expansion (the basic constructive technique for non-local theories) which is required for theories that involve non-trivial renormalization.

  9. An Alternative to the Gauge Theoretic Setting

    NASA Astrophysics Data System (ADS)

    Schroer, Bert

    2011-10-01

    The standard formulation of quantum gauge theories results from the Lagrangian (functional integral) quantization of classical gauge theories. A more intrinsic quantum theoretical access in the spirit of Wigner's representation theory shows that there is a fundamental clash between the pointlike localization of zero mass (vector, tensor) potentials and the Hilbert space (positivity, unitarity) structure of QT. The quantization approach has no other way than to stay with pointlike localization and sacrifice the Hilbert space whereas the approach built on the intrinsic quantum concept of modular localization keeps the Hilbert space and trades the conflict creating pointlike generation with the tightest consistent localization: semiinfinite spacelike string localization. Whereas these potentials in the presence of interactions stay quite close to associated pointlike field strengths, the interacting matter fields to which they are coupled bear the brunt of the nonlocal aspect in that they are string-generated in a way which cannot be undone by any differentiation. The new stringlike approach to gauge theory also revives the idea of a Schwinger-Higgs screening mechanism as a deeper and less metaphoric description of the Higgs spontaneous symmetry breaking and its accompanying tale about "God's particle" and its mass generation for all the other particles.

  10. (2,2) and (0,4) supersymmetric boundary conditions in 3d N =4 theories and type IIB branes

    NASA Astrophysics Data System (ADS)

    Chung, Hee-Joong; Okazaki, Tadashi

    2017-10-01

    The half-BPS boundary conditions preserving N =(2 ,2 ) and N =(0 ,4 ) supersymmetry in 3d N =4 supersymmetric gauge theories are examined. The BPS equations admit decomposition of the bulk supermultiplets into specific boundary supermultiplets of preserved supersymmetry. Nahm-like equations arise in the vector multiplet BPS boundary condition preserving N =(0 ,4 ) supersymmetry, and Robin-type boundary conditions appear for the hypermultiplet coupled to the vector multiplet when N =(2 ,2 ) supersymmetry is preserved. The half-BPS boundary conditions are realized in the brane configurations of type IIB string theory.

  11. To gauge or not to gauge?

    NASA Astrophysics Data System (ADS)

    Maldacena, Juan; Milekhin, Alexey

    2018-04-01

    The D0 brane, or BFSS, matrix model is a quantum mechanical theory with an interesting gravity dual. We consider a variant of this model where we treat the SU( N) symmetry as a global symmetry, rather than as a gauge symmetry. This variant contains new non-singlet states. We consider the impact of these new states on its gravity dual. We argue that the gravity dual is essentially the same as the one for the original matrix model. The non-singlet states have higher energy at strong coupling and are therefore dynamically suppressed.

  12. Emergent gauge theories and supersymmetry: A QED primer

    NASA Astrophysics Data System (ADS)

    Chkareuli, J. L.

    2013-04-01

    We argue that a generic trigger for photon and other gauge fields to emerge as massless Nambu-Goldstone modes could be spontaneously broken supersymmetry rather than physically manifested Lorentz violation. We consider supersymmetric QED model extended by an arbitrary polynomial potential of vector superfield that induces the spontaneous SUSY violation in the visible sector. As a consequence, massless photon appears as a companion of massless photino being Goldstone fermion state in tree approximation. Remarkably, the photon masslessness appearing at tree level is further protected against radiative corrections due to the simultaneously generated special gauge invariance in the broken SUSY phase. Meanwhile, photino being mixed with another goldstino appearing from a spontaneous SUSY violation in the hidden sector largely turns into light pseudo-goldstino whose physics seems to be of special interest.

  13. Universal consistent truncation for 6d/7d gauge/gravity duals

    NASA Astrophysics Data System (ADS)

    Passias, Achilleas; Rota, Andrea; Tomasiello, Alessandro

    2015-10-01

    Recently, AdS7 solutions of IIA supergravity have been classified; there are infinitely many of them, whose expression is known analytically, and with internal space of S 3 topology. Their field theory duals are six-dimensional (1,0) SCFT's. In this paper we show that for each of these AdS7 solutions there exists a consistent truncation from massive IIA supergravity to minimal gauged supergravity in seven dimensions. This theory has an SU(2) gauge group, and a single scalar, whose value is related to a certain distortion of the internal S 3. This explains the universality observed in recent work on AdS5 and AdS4 solutions dual to compactifications of the (1, 0) SCFT6's. Thanks to previous work on the minimal gauged supergravity, the truncation also implies the existence of holographic RG-flows connecting those solutions to the AdS7 vacuum, as well as new classes of IIA AdS3 solutions.

  14. Gauge/Gravity correspondence and black hole attractors in various dimensions

    NASA Astrophysics Data System (ADS)

    Li, Wei

    This thesis investigates several topics on Gauge/Gravity correspondence and black hole attractors in various dimensions. The first chapter contains a brief review and summary of main results. Chapters 2 and 3 aim at a microscopic description of black objects in five dimensions. Chapter 2 studies higher-derivative corrections for 5D black rings and spinning black holes. It shows that certain R 2 terms found in Calabi-Yau compactifications of M-theory yield macroscopic corrections to the entropies that match the microscopic corrections. Chapter 3 constructs probe brane configurations that preserve half of the enhanced near-horizon supersymmetry of 5D spinning black holes, whose near-horizon geometry is squashed AdS2 x S 3. There are supersymmetric zero-brane probes stabilized by orbital angular momentum on S3 and one-brane probes with momentum and winding around a U(1)L x U(1)R torus in S3. Chapter 4 constructs and analyzes generic single-centered and multi-centered black hole attractor solutions in various four-dimensional models which, after Kaluza-Klein reduction, admit a description in terms of 3D gravity coupled to a sigma model whose target space is symmetric coset space. The solutions correspond to certain nilpotent generators of the coset algebra. The non-BPS black hole attractors are found to be drastically different from their BPS counterparts. Chapter 5 examines three-dimensional topologically massive gravity with negative cosmological constant in asymptotically AdS 3 spacetimes. It proves that the theory is unitary and stable only at a special value of Chern-Simons coupling, where the theory becomes chiral. This suggests the existence of a stable, consistent quantum gravity theory at the chiral point which is dual to a holomorphic boundary CFT 2. Finally, Chapter 6 studies the two-dimensional N = 1 critical string theory with a linear dilaton background. It constructs time-dependent boundary state solutions that correspond to D0-branes falling toward the

  15. Noether’s second theorem and Ward identities for gauge symmetries

    DOE PAGES

    Avery, Steven G.; Schwab, Burkhard U. W.

    2016-02-04

    Recently, a number of new Ward identities for large gauge transformations and large diffeomorphisms have been discovered. Some of the identities are reinterpretations of previously known statements, while some appear to be genuinely new. We present and use Noether’s second theorem with the path integral as a powerful way of generating these kinds of Ward identities. We reintroduce Noether’s second theorem and discuss how to work with the physical remnant of gauge symmetry in gauge fixed systems. We illustrate our mechanism in Maxwell theory, Yang-Mills theory, p-form field theory, and Einstein-Hilbert gravity. We comment on multiple connections between Noether’s secondmore » theorem and known results in the recent literature. Finally, our approach suggests a novel point of view with important physical consequences.« less

  16. One-Loop Calculations and Detailed Analysis of the Localized Non-Commutative p^{-2} U(1) Gauge Model

    NASA Astrophysics Data System (ADS)

    Blaschke, Daniel N.; Rofner, Arnold; Sedmik, René I. P.

    2010-05-01

    This paper carries forward a series of articles describing our enterprise to construct a gauge equivalent for the θ-deformed non-commutative p-2 model originally introduced by Gurau et al. [Comm. Math. Phys. 287 (2009), 275-290]. It is shown that breaking terms of the form used by Vilar et al. [J. Phys. A: Math. Theor. 43 (2010), 135401, 13 pages] and ourselves [Eur. Phys. J. C: Part. Fields 62 (2009), 433-443] to localize the BRST covariant operator (D2θ2D2)-1 lead to difficulties concerning renormalization. The reason is that this dimensionless operator is invariant with respect to any symmetry of the model, and can be inserted to arbitrary power. In the present article we discuss explicit one-loop calculations, and analyze the mechanism the mentioned problems originate from.

  17. Sequestered gravity in gauge mediation.

    PubMed

    Antoniadis, Ignatios; Benakli, Karim; Quiros, Mariano

    2016-01-01

    We present a novel mechanism of supersymmetry breaking embeddable in string theory and simultaneously sharing the main advantages of (sequestered) gravity and gauge mediation. It is driven by a Scherk-Schwarz deformation along a compact extra dimension, transverse to a brane stack supporting the supersymmetric extension of the Standard Model. This fixes the magnitude of the gravitino mass, together with that of the gauginos of a bulk gauge group, at a scale as high as [Formula: see text] GeV. Supersymmetry breaking is mediated to the observable sector dominantly by gauge interactions using massive messengers transforming non-trivially under the bulk and Standard Model gauge groups and leading to a neutralino LSP as dark matter candidate. The Higgsino mass [Formula: see text] and soft Higgs-bilinear [Formula: see text] term could be generated at the same order of magnitude as the other soft terms by effective supergravity couplings as in the Giudice-Masiero mechanism.

  18. Flavor non-universal gauge interactions and anomalies in B-meson decays

    NASA Astrophysics Data System (ADS)

    Tang, Yong; Wu, Yue-Liang

    2018-02-01

    Motivated by flavor non-universality and anomalies in semi-leptonic B-meson decays, we present a general and systematic discussion about how to construct anomaly-free U(1)‧ gauge theories based on an extended standard model with only three right-handed neutrinos. If all standard model fermions are vector-like under this new gauge symmetry, the most general family non-universal charge assignments, (a,b,c) for three-generation quarks and (d,e,f) for leptons, need satisfy just one condition to be anomaly-free, 3(a+b+c) = - (d+e+f). Any assignment can be linear combinations of five independent anomaly-free solutions. We also illustrate how such models can generally lead to flavor-changing interactions and easily resolve the anomalies in B-meson decays. Probes with {{B}}{s} - {{\\bar B}}{s} mixing, decay into τ ±, dilepton and dijet searches at colliders are also discussed. Supported by the Grant-in-Aid for Innovative Areas (16H06490)

  19. PREFACE: Gauge-string duality and integrability: progress and outlook Gauge-string duality and integrability: progress and outlook

    NASA Astrophysics Data System (ADS)

    Kristjansen, C.; Staudacher, M.; Tseytlin, A.

    2009-06-01

    The AdS/CFT correspondence, proposed a little more than a decade ago, has become a major subject of contemporary theoretical physics. One reason is that it suggests the exact identity of a certain ten-dimensional superstring theory, and a specific supersymmetric four-dimensional gauge field theory. This indicates that string theory, often thought of as a generalization of quantum field theory, can also lead to an alternative and computationally advantageous reformulation of gauge theory. This establishes the direct, down-to-earth relevance of string theory beyond loftier ideas of finding a theory of everything. Put differently, strings definitely lead to a theory of something highly relevant: a non-abelian gauge theory in a physical number of dimensions! A second reason for recent excitement around AdS/CFT is that it uncovers surprising novel connections between otherwise increasingly separate subdisciplines of theoretical physics, such as high energy physics and condensed matter theory. This collection of review articles concerns precisely such a link. About six years ago evidence was discovered showing that the AdS/CFT string/gauge system might actually be an exactly integrable model, at least in the so-called planar limit. Its spectrum appears to be described by (a generalization of) a Bethe ansatz, first proposed as an exact solution for certain one-dimensional magnetic spin chains in the early days of quantum mechanics. The field has been developing very rapidly, and a collection of fine review articles is needed. This special issue is striving to provide precisely that. The first article of the present collection, by Nick Dorey, is a pedagogical introduction to the subject. The second article, by Adam Rej, based on the translation of the author's PhD thesis, describes important techniques for analysing and interpreting the integrable structure of AdS/CFT, mostly from the point of view of the gauge theory. The third contribution, by Gleb Arutyunov and Sergey

  20. Tachyonic instabilities in 2  +  1 dimensional Yang-Mills theory and its connection to number theory

    NASA Astrophysics Data System (ADS)

    Chamizo, Fernando; González-Arroyo, Antonio

    2017-06-01

    We consider the 2  +  1 dimensional Yang-Mills theory with gauge group {{SU}}(N) on a flat 2-torus under twisted boundary conditions. We study the possibility of phase transitions (tachyonic instabilities) when N and the volume vary and certain chromomagnetic flux associated to the topology of the bundle can be adjusted. Under natural assumptions about how to match the perturbative regime and the expected confinement, we prove that the absence of tachyonic instabilities is related to some problems in number theory, namely the Diophantine approximation of irreducible fractions by other fractions of smaller denominator.

  1. Infinitely many {N}=1 dualities from m + 1 - m = 1

    NASA Astrophysics Data System (ADS)

    Agarwal, Prarit; Intriligator, Kenneth; Song, Jaewon

    2015-10-01

    We discuss two infinite classes of 4d supersymmetric theories, T N ( m) and {U}_N^{(m)} , labelled by an arbitrary non-negative integer, m. The T N ( m) theory arises from the 6d, A N - 1 type N=(2,0) theory reduced on a 3-punctured sphere, with normal bundle given by line bundles of degree ( m + 1 , - m); the m = 0 case is the N=2 supersymmetric T N theory. The novelty is the negative-degree line bundle. The {U}_N^{(m)} theories likewise arise from the 6d N=(2,0) theory on a 4-punctured sphere, and can be regarded as gluing together two (partially Higgsed) T N ( m) theories. The T N ( m) and {U}_N^{(m)} theories can be represented, in various duality frames, as quiver gauge theories, built from T N components via gauging and nilpotent Higgsing. We analyze the RG flow of the {U}_N^{(m)} theories, and find that, for all integer m > 0, they end up at the same IR SCFT as SU( N) SQCD with 2 N flavors and quartic superpotential. The {U}_N^{(m)} theories can thus be regarded as an infinite set of UV completions, dual to SQCD with N f = 2 N c . The {U}_N^{(m)} duals have different duality frame quiver representations, with 2 m + 1 gauge nodes.

  2. F4 , E6 and G2 exceptional gauge groups in the vacuum domain structure model

    NASA Astrophysics Data System (ADS)

    Shahlaei, Amir; Rafibakhsh, Shahnoosh

    2018-03-01

    Using a vacuum domain structure model, we calculate trivial static potentials in various representations of F4 , E6, and G2 exceptional groups by means of the unit center element. Due to the absence of the nontrivial center elements, the potential of every representation is screened at far distances. However, the linear part is observed at intermediate quark separations and is investigated by the decomposition of the exceptional group to its maximal subgroups. Comparing the group factor of the supergroup with the corresponding one obtained from the nontrivial center elements of S U (3 ) subgroup shows that S U (3 ) is not the direct cause of temporary confinement in any of the exceptional groups. However, the trivial potential obtained from the group decomposition into the S U (3 ) subgroup is the same as the potential of the supergroup itself. In addition, any regular or singular decomposition into the S U (2 ) subgroup that produces the Cartan generator with the same elements as h1, in any exceptional group, leads to the linear intermediate potential of the exceptional gauge groups. The other S U (2 ) decompositions with the Cartan generator different from h1 are still able to describe the linear potential if the number of S U (2 ) nontrivial center elements that emerge in the decompositions is the same. As a result, it is the center vortices quantized in terms of nontrivial center elements of the S U (2 ) subgroup that give rise to the intermediate confinement in the static potentials.

  3. Gauge fixing and BFV quantization

    NASA Astrophysics Data System (ADS)

    Rogers, Alice

    2000-01-01

    Non-singularity conditions are established for the Batalin-Fradkin-Vilkovisky (BFV) gauge-fixing fermion which are sufficient for it to lead to the correct path integral for a theory with constraints canonically quantized in the BFV approach. The conditions ensure that the anticommutator of this fermion with the BRST charge regularizes the path integral by regularizing the trace over non-physical states in each ghost sector. The results are applied to the quantization of a system which has a Gribov problem, using a non-standard form of the gauge-fixing fermion.

  4. Gauge Factor and Stretchability of Silicon-on-Polymer Strain Gauges

    PubMed Central

    Yang, Shixuan; Lu, Nanshu

    2013-01-01

    Strain gauges are widely applied to measure mechanical deformation of structures and specimens. While metallic foil gauges usually have a gauge factor slightly over 2, single crystalline silicon demonstrates intrinsic gauge factors as high as 200. Although silicon is an intrinsically stiff and brittle material, flexible and even stretchable strain gauges have been achieved by integrating thin silicon strips on soft and deformable polymer substrates. To achieve a fundamental understanding of the large variance in gauge factor and stretchability of reported flexible/stretchable silicon-on-polymer strain gauges, finite element and analytically models are established to reveal the effects of the length of the silicon strip, and the thickness and modulus of the polymer substrate. Analytical results for two limiting cases, i.e., infinitely thick substrate and infinitely long strip, have found good agreement with FEM results. We have discovered that strains in silicon resistor can vary by orders of magnitude with different substrate materials whereas strip length or substrate thickness only affects the strain level mildly. While the average strain in silicon reflects the gauge factor, the maximum strain in silicon governs the stretchability of the system. The tradeoff between gauge factor and stretchability of silicon-on-polymer strain gauges has been proposed and discussed. PMID:23881128

  5. Gravitational waves from non-Abelian gauge fields at a tachyonic transition

    NASA Astrophysics Data System (ADS)

    Tranberg, Anders; Tähtinen, Sara; Weir, David J.

    2018-04-01

    We compute the gravitational wave spectrum from a tachyonic preheating transition of a Standard Model-like SU(2)-Higgs system. Tachyonic preheating involves exponentially growing IR modes, at scales as large as the horizon. Such a transition at the electroweak scale could be detectable by LISA, if these non-perturbatively large modes translate into non-linear dynamics sourcing gravitational waves. Through large-scale numerical simulations, we find that the spectrum of gravitational waves does not exhibit such IR features. Instead, we find two peaks corresponding to the Higgs and gauge field mass, respectively. We find that the gravitational wave production is reduced when adding non-Abelian gauge fields to a scalar-only theory, but increases when adding Abelian gauge fields. In particular, gauge fields suppress the gravitational wave spectrum in the IR. A tachyonic transition in the early Universe will therefore not be detectable by LISA, even if it involves non-Abelian gauge fields.

  6. Consistent compactification of double field theory on non-geometric flux backgrounds

    NASA Astrophysics Data System (ADS)

    Hassler, Falk; Lüst, Dieter

    2014-05-01

    In this paper, we construct non-trivial solutions to the 2 D-dimensional field equations of Double Field Theory (DFT) by using a consistent Scherk-Schwarz ansatz. The ansatz identifies 2( D - d) internal directions with a twist U M N which is directly connected to the covariant fluxes ABC . It exhibits 2( D - d) linear independent generalized Killing vectors K I J and gives rise to a gauged supergravity in d dimensions. We analyze the covariant fluxes and the corresponding gauged supergravity with a Minkowski vacuum. We calculate fluctuations around such vacua and show how they gives rise to massive scalars field and vectors field with a non-abelian gauge algebra. Because DFT is a background independent theory, these fields should directly correspond the string excitations in the corresponding background. For ( D - d) = 3 we perform a complete scan of all allowed covariant fluxes and find two different kinds of backgrounds: the single and the double elliptic case. The later is not T-dual to a geometric background and cannot be transformed to a geometric setting by a field redefinition either. While this background fulfills the strong constraint, it is still consistent with the Killing vectors depending on the coordinates and the winding coordinates, thereby giving a non-geometric patching. This background can therefore not be described in Supergravity or Generalized Geometry.

  7. Enhancement of Supersymmetry via Renormalization Group Flow and the Superconformal Index

    NASA Astrophysics Data System (ADS)

    Maruyoshi, Kazunobu; Song, Jaewon

    2017-04-01

    We find a four-dimensional N =1 gauge theory which flows to the minimal interacting N =2 superconformal field theory, the Argyres-Douglas theory, in the infrared up to the extra free chiral multiplets. The gauge theory is obtained from a certain N =1 preserving deformation of the N =2 S U (2 ) gauge theory with four fundamental hypermultiplets. From this description, we compute the full superconformal index and find agreements with the known results in special limits.

  8. Differential calculus and gauge transformations on a deformed space

    NASA Astrophysics Data System (ADS)

    Wess, Julius

    2007-08-01

    We consider a formalism by which gauge theories can be constructed on noncommutative space time structures. The coordinates are supposed to form an algebra, restricted by certain requirements that allow us to realise the algebra in terms of star products. In this formulation it is useful to define derivatives and to extend the algebra of coordinates by these derivatives. The elements of this extended algebra are deformed differential operators. We then show that there is a morphism between these deformed differential operators and the usual higher order differential operators acting on functions of commuting coordinates. In this way we obtain deformed gauge transformations and a deformed version of the algebra of diffeomorphisms. The deformation of these algebras can be clearly seen in the category of Hopf algebras. The comultiplication will be twisted. These twisted algebras can be realised on noncommutative spaces and allow the construction of deformed gauge theories and deformed gravity theory.

  9. The Fock-Schwinger gauge in the BFV formalism

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barcelos-Neto, J.; Galvao, C.A.P.; Gaete, P.

    1991-06-07

    The authors consider the implementation of a properly modified form of the Fock-Schwinger gauge condition in a general non-Abelian gauge theory in the context of the BFV formalism. In this paper arguments are presented to justify the necessity of modifying the original Fock-Schwinger condition. The free field propagator and the general Ward identity are also calculated.

  10. 46 CFR 52.01-110 - Water-level indicators, water columns, gauge-glass connections, gauge cocks, and pressure gauges...

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 2 2014-10-01 2014-10-01 false Water-level indicators, water columns, gauge-glass connections, gauge cocks, and pressure gauges (modifies PG-60). 52.01-110 Section 52.01-110 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING POWER BOILERS General Requirements § 52.01-110 Water-level indicators, water...

  11. 46 CFR 52.01-110 - Water-level indicators, water columns, gauge-glass connections, gauge cocks, and pressure gauges...

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 2 2012-10-01 2012-10-01 false Water-level indicators, water columns, gauge-glass connections, gauge cocks, and pressure gauges (modifies PG-60). 52.01-110 Section 52.01-110 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING POWER BOILERS General Requirements § 52.01-110 Water-level indicators, water...

  12. 46 CFR 52.01-110 - Water-level indicators, water columns, gauge-glass connections, gauge cocks, and pressure gauges...

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Water-level indicators, water columns, gauge-glass connections, gauge cocks, and pressure gauges (modifies PG-60). 52.01-110 Section 52.01-110 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING POWER BOILERS General Requirements § 52.01-110 Water-level indicators, water...

  13. 46 CFR 52.01-110 - Water-level indicators, water columns, gauge-glass connections, gauge cocks, and pressure gauges...

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 2 2013-10-01 2013-10-01 false Water-level indicators, water columns, gauge-glass connections, gauge cocks, and pressure gauges (modifies PG-60). 52.01-110 Section 52.01-110 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING POWER BOILERS General Requirements § 52.01-110 Water-level indicators, water...

  14. 46 CFR 52.01-110 - Water-level indicators, water columns, gauge-glass connections, gauge cocks, and pressure gauges...

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 2 2011-10-01 2011-10-01 false Water-level indicators, water columns, gauge-glass connections, gauge cocks, and pressure gauges (modifies PG-60). 52.01-110 Section 52.01-110 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING POWER BOILERS General Requirements § 52.01-110 Water-level indicators, water...

  15. Electronic, structural, and thermodynamic properties of mixed actinide dioxides (U, Pu, Am) O2 from hybrid density functional theory

    NASA Astrophysics Data System (ADS)

    Ma, Li; Ray, Asok K.

    2010-03-01

    As a continuation of our studies of pure actinide metals using hybrid density functional theory,footnotetextR. Atta-Fynn and A. K. Ray, Europhysics Letters, 85, 27008-p1- p6 (2009); Chemical Physics Letters, 482, 223-227 (2009). we present here a systematic study of the electronic and geometric structure properties of mixed actinide dioxides, U0.5Pu0.5O2, U0.5Am0.5O2, Pu0.5Am0.5 O2 and U0.8Pu0.2O2. The fraction of exact Hartree-Fock exchange used was 40%. To investigate the effect of spin-orbit coupling on the ground state electronic and geometric structure properties, computations have been carried out at two theoretical levels, one at the scalar-relativistic level with no spin-orbit coupling and one at the fully relativistic level with spin-orbit coupling. Thermodynamic properties have been calculated by a coupling of first-principles calculation and lattice dynamics.

  16. Exact partition functions for deformed N=2 theories with N_f=4 flavours

    NASA Astrophysics Data System (ADS)

    Beccaria, Matteo; Fachechi, Alberto; Macorini, Guido; Martina, Luigi

    2016-12-01

    We consider the Ω-deformed N=2 SU(2) gauge theory in four dimensions with N f = 4 massive fundamental hypermultiplets. The low energy effective action depends on the deformation parameters ɛ 1 , ɛ 2, the scalar field expectation value a, and the hypermultiplet masses m = ( m 1 , m 2 , m 3 , m 4). Motivated by recent findings in the N={2}^{*} theory, we explore the theories that are characterized by special fixed ratios ɛ 2 /ɛ 1 and m /ɛ 1 and propose a simple condition on the structure of the multi-instanton contributions to the prepotential determining the effective action. This condition determines a finite set Π N of special points such that the prepotential has N poles at fixed positions independent on the instanton number. In analogy with what happens in the N={2}^{*} gauge theory, the full prepotential of the Π N theories may be given in closed form as an explicit function of a and the modular parameter q appearing in special combinations of Eisenstein series and Jacobi theta functions with well defined modular properties. The resulting finite pole partition functions are related by AGT correspondence to special 4-point spherical conformal blocks of the Virasoro algebra. We examine in full details special cases where the closed expression of the block is known and confirms our Ansatz. We systematically study the special features of Zamolodchikov's recursion for the Π N conformal blocks. As a result, we provide a novel effective recursion relation that can be exactly solved and allows to prove the conjectured closed expressions analytically in the case of the Π1 and Π2 conformal blocks.

  17. 2D Kac-Moody symmetry of 4D Yang-Mills theory

    DOE PAGES

    He, Temple; Mitra, Prahar; Strominger, Andrew

    2016-10-25

    Scattering amplitudes of any four-dimensional theory with nonabelian gauge group G may be recast as two-dimensional correlation functions on the asymptotic twosphere at null in nity. The soft gluon theorem is shown, for massless theories at the semiclassical level, to be the Ward identity of a holomorphic two-dimensional G-Kac-Moody symmetry acting on these correlation functions. Holomorphic Kac-Moody current insertions are positive helicity soft gluon insertions. Furthermore, the Kac-Moody transformations are a CPT invariant subgroup of gauge transformations which act nontrivially at null in nity and comprise the four-dimensional asymptotic symmetry group.

  18. Calculating the jet quenching parameter in the plasma of noncommutative Yang-Mills theory from gauge/gravity duality

    NASA Astrophysics Data System (ADS)

    Chakraborty, Somdeb; Roy, Shibaji

    2012-02-01

    A particular decoupling limit of the nonextremal (D1, D3) brane bound state system of type IIB string theory is known to give the gravity dual of space-space noncommutative Yang-Mills theory at finite temperature. We use a string probe in this background to compute the jet quenching parameter in a strongly coupled plasma of hot noncommutative Yang-Mills theory in (3+1) dimensions from gauge/gravity duality. We give expressions for the jet quenching parameter for both small and large noncommutativity. For small noncommutativity, we find that the value of the jet quenching parameter gets reduced from its commutative value. The reduction is enhanced with temperature as T7 for fixed noncommutativity and fixed ’t Hooft coupling. We also give an estimate of the correction due to noncommutativity at the present collider energies like in RHIC or in LHC and find it too small to be detected. We further generalize the results for noncommutative Yang-Mills theories in diverse dimensions.

  19. Electroweak Sudakov logarithms and real gauge-boson radiation in the TeV region

    NASA Astrophysics Data System (ADS)

    Bell, G.; Kühn, J. H.; Rittinger, J.

    2010-12-01

    Electroweak radiative corrections give rise to large negative, double-logarithmically enhanced corrections in the TeV region. These are partly compensated by real radiation and, moreover, affected by selecting isospin-non-invariant external states. We investigate the impact of real gauge boson radiation more quantitatively by considering different restricted final state configurations. We consider successively a massive abelian gauge theory, a spontaneously broken SU(2) theory and the electroweak Standard Model. We find that details of the choice of the phase space cuts, in particular whether a fraction of collinear and soft radiation is included, have a strong impact on the relative amount of real and virtual corrections.

  20. Toward {U}(N|M) knot invariant from ABJM theory

    NASA Astrophysics Data System (ADS)

    Eynard, Bertrand; Kimura, Taro

    2017-06-01

    We study {U}(N|M) character expectation value with the supermatrix Chern-Simons theory, known as the ABJM matrix model, with emphasis on its connection to the knot invariant. This average just gives the half-BPS circular Wilson loop expectation value in ABJM theory, which shall correspond to the unknot invariant. We derive the determinantal formula, which gives {U}(N|M) character expectation values in terms of {U}(1|1) averages for a particular type of character representations. This means that the {U}(1|1) character expectation value is a building block for the {U}(N|M) averages and also, by an appropriate limit, for the {U}(N) invariants. In addition to the original model, we introduce another supermatrix model obtained through the symplectic transform, which is motivated by the torus knot Chern-Simons matrix model. We obtain the Rosso-Jones-type formula and the spectral curve for this case.