Sample records for u937 cells induced

  1. Para-Nonylphenol Induces Apoptosis of U937 Human Monocyte Leukemia Cells in vitro.

    PubMed

    Santa, Kazuki; Ohsawa, Tomonori; Sakimoto, Takehiko

    2016-01-01

    Human autoimmune diseases are caused by a variety of factors, such as environmental chemicals, including para-nonylphenol. Macrophages play many critical roles in the regulation of immunity and the progression of autoimmune diseases. However, little information is available regarding the effects of para-nonylphenol on cellular signaling pathways and the death of these cells in vitro. Here, we show that very high concentrations of para-nonylphenol (50-100 μM) induce apoptosis in U937 human monocyte leukemia cells in a dose-dependent manner. Cell viability was judged using the trypan blue exclusion method. FACS analysis for DNA fragmentation was conducted, cellular signaling pathways were evaluated using western blot analysis, and caspase activity was measured by using substrates. U937 cells were differentiated by PMA. Treatment with > 50 μM para-nonylphenol induced apoptosis in U937 monocyte cells and MCF- 7 and MDA-MB231 human breast cancer cells. We found cytochrome c release from the mitochondria to the cytoplasm, DNA fragmentation, and decreased expression of anti-apoptotic protein Bcl-XL. Caspase 3 and 9 were induced, but caspase 1 and 3-inhibitor treatment suppressed apoptosis. Para-nonylphenol decreased the levels of activated AKT and increased the levels of activated JNK/SAPK at 15 min after treatment. Furthermore, with PMA treatment, U937 cells were differentiated into a macrophage-like phenotype and showed attenuated cell death against para-nonylphenol. As this assay system is simple and rapid, it may represent a useful artificial tool to clarify the signaling pathways of apoptotic cell death in human monocytes in vitro. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  2. Hydroquinone-induced FOXP3-ADAM17-Lyn-Akt-p21 signaling axis promotes malignant progression of human leukemia U937 cells.

    PubMed

    Chen, Ying-Jung; Liu, Wen-Hsin; Chang, Long-Sen

    2017-02-01

    Hydroquinone (1,4-benzenediol; HQ), a major marrow metabolite of the leukemogen benzene, has been proven to evoke benzene-related hematological disorders and myelotoxicity in vitro and in vivo. The goal of the present study was to explore the role of FOXP3 in HQ-induced malignant progression of U937 human leukemia cells. U937 cells were treated with 5 μM HQ for 24 h, and the cells were re-suspended in serum-containing medium without HQ for 2 days. The same procedure was repeated three times, and the resulting U937/HQ cells were maintained in cultured medium containing 5 μM HQ. Proliferation and colony formation of U937/HQ cells were notably higher than those of U937 cells. Ten-eleven translocation methylcytosine dioxygenase-mediated demethylation of the Treg-specific demethylated region in FOXP3 gene resulted in higher FOXP3 expression in U937/HQ cells than in U937 cells. FOXP3-induced miR-183 expression reduced β-TrCP mRNA stability and suppressed β-TrCP-mediated Sp1 degradation, leading to up-regulation of Sp1 expression in U937/HQ cells. Sp1 up-regulation further increased ADAM17 and Lyn expression, and ADAM17 up-regulation stimulated Lyn activation in U937/HQ cells. Moreover, U937/HQ cells showed higher Lyn-mediated Akt activation and cytoplasmic p21 expression than U937 cells did. Abolishment of Akt activation decreased cytoplasmic p21 expression in U937/HQ cells. Suppression of FOXP3, ADAM17, and Lyn expression, as well as Akt inactivation, repressed proliferation and clonogenicity of U937/HQ cells. Together with the finding that cytoplasmic p21 shows anti-apoptotic and oncogenic activities in cancer cells, the present data suggest a role of FOXP3/ADAM17/Lyn/Akt/p21 signaling axis in HQ-induced hematological disorders.

  3. Apoptotic Effect of Nigella sativa on Human Lymphoma U937 Cells.

    PubMed

    Arslan, Belkis Atasever; Isik, Fatma Busra; Gur, Hazal; Ozen, Fatih; Catal, Tunc

    2017-10-01

    Nigella sativa is from botanical Ranunculaceae family and commonly known as black seed. Apoptotic effect of N. sativa and its apoptotic signaling pathways on U937 lymphoma cells are unknown. In this study, we investigated selective cytotoxic and apoptotic effects of N. sativa extract and its apoptotic mechanisms on U937 cells. In addition, we also studied selective cytotoxic activity of thymoquinone that is the most active essential oil of N. sativa . Our results showed that N. sativa extract has selective cytotoxicity and apoptotic effects on U937 cells but not ECV304 control cells. However, thymoquinone had no significant cytotoxicity against on both cells. N. sativa extract increased significantly caspase-3, BAD, and p53 gene expressions in U937 cells. N. sativa may have anticancer drug potential and trigger p53-induced apoptosis in U937 lymphoma cells. This is the first study showing the apoptotic effect of Nigella sativa extract on U937 cells. Abbreviations used: CI: Cytotoxicity index, DMEM: Dulbecco's Modified Eagle Medium, HL: Hodgkin's lymphoma, MTT: 3-(4,5-dimethy lthiazol-2yl)-2,5-diphenyl tetrazolium bromide, RPMI: Roswell Park Memorial Institute medium.

  4. The methylene chloride fraction of Trichosanthis Fructus induces apoptosis in U937 cells through the mitochondrial pathway.

    PubMed

    Lee, Eun-Ok; Lee, Ju-Ryoung; Kim, Kwan-Hyun; Baek, Nam-In; Lee, Soo-Jin; Lee, Bog-Hieu; Cho, Kyung-Dong; Ahn, Kyoo-Seok; Kim, Sung-Hoon

    2006-01-01

    Trichosanthis kirilowii MAXIM has been used as a folk remedy to treat diabetes, leukemia, and breast cancer. In the present study, the apoptotic mechanism of the methylene chloride fraction of Trichosanthis Fructus (MCTF) was investigated in human leukemic U937 cells. MCTF exhibited antiproliferative effectsagainst U937 cells (IC50=ca. 8 microg/ml). Apoptotic bodies were observed in MCTF-treated U937 cells in the TUNEL assay. We also confirmed that MCTF significantly increases annexin V(+)/propidium iodide-cells using FACS analysis. MCTF treatment activated caspase-8, -9 and -3, and led to cleaved poly (ADP-ribose) polymerase and release of cytochrome c into cytosol in a concentration-dependent manner, while MCTF did not affect Bax or Bcl-2 protein levels as shown by Western blot analysis. Taken together, these results indicate that MCTF can induce apoptosis in U937 cells chiefly via a mitochondrial-mediated pathway and suggest that Trichosanthis Fructus can be used in cancer treatment as a chemopreventive agent.

  5. 20(S)-Ginsenoside Rh2 Induce the Apoptosis and Autophagy in U937 and K562 Cells.

    PubMed

    Zhuang, Jianjian; Yin, Juxin; Xu, Chaojian; Mu, Ying; Lv, Shaowu

    2018-03-08

    Acute myeloid leukemia (AML) and Chronic myelogenous leukemia (CML) are common leukemia in adults. 20(S)-GRh2 is an important bioactive substance that is present in Panax ginseng. However, there are no investigations that deal with the comparison of apoptosis, the occurrence of autophagy, and the relationship between apoptosis and autophagy after being treated with 20(S)-GRh2 in AML and CML. In this study, we explored the effect of 20(S)-GRh2 on the AML and CML (U937 and K562). Fluorescence microscopy, CCK-8, Quantitative realtime PCR, Western blot, transmission electron microscopy (TEM), and flow cytometric analysis were used to detect the occurrence of cell proliferation inhibition, apoptosis, and autophagy. By using the above methods, it was determined that apoptosis induced by 20(S)-GRh2 was more obvious in K562 than U937 cells and 20(S)-GRh2 could generate autophagy in K562 and U937 cells. When pretreated by a specific inhibitor of autophagy, (3-methyladenine), the 20(S)-GRh2-induced apoptosis was enhanced, which indicated that 20(S)-GRh2-induced autophagy may protect U937 and K562 cells from undergoing apoptotic cell death. On the other hand, pretreated by an apoptosis suppressor (Z-VAD-FMK), it greatly induced the autophagy and partially prevented 20(S)-GRh2 induced apoptosis. This phenomenon indicated that 20(S)-GRh2-induced autophagy may serve as a survival mechanism and apoptosis and autophagy could act as partners to induce cell death in a cooperative manner. These findings may provide a rationale for future clinical application by using 20(S)-GRh2 combined autophagy inhibitors for AML and CML.

  6. Agaritine from Agaricus blazei Murrill induces apoptosis in the leukemic cell line U937.

    PubMed

    Akiyama, Hidehiko; Endo, Masahiro; Matsui, Taei; Katsuda, Itsurou; Emi, Nobuhiko; Kawamoto, Yasuko; Koike, Takaaki; Beppu, Hidehiko

    2011-05-01

    Agaricus blazei Murrill (ABM) has been shown to exhibit immunostimulatory and anti-cancer activities; however, its mechanism of action is poorly understood. We recently found that the diffusible fraction of hot-water extract of ABM exhibits anti-tumor activity toward leukemic cells, and identified it as agaritine, a hydrazine-containing compound. In the present study, we examined the morphological and cytochemical effects of agaritine on U937 cells to elucidate the tumoricidal mechanism of agaritine. Surface expression of phosphatidylserine (evaluated by annexin V binding), Fas antigen, DNA cleavage using TUNEL staining, changes in caspase activities and cytochrome c release, before and after treatment with agaritine, were examined using U937 cells. Nuclear damage, DNA fragmentation, was observed by Wright-Giemsa, TUNEL staining and agarose gel electrophoresis when U937 cells were incubated with 10μg/mL of agaritine for 48h. Flow cytometric analysis indicated that agaritine augments the proportion of annexin V-positive U937 cells without significant change in Fas antigen expression. Activities of caspase-3, -8 and -9 were gradually increased after the addition of agaritine. In the presence of caspase-3 or granzyme B inhibitor, except for the caspase-8 inhibitor, annexin V expression was significantly decreased, suggesting that mainly caspase-3 and -9 participate in the apoptotic pathway. Furthermore, cytochrome c release was detected by western blotting analysis after agaritine treatment. These results strongly suggest that the ABM constituent agaritine moderately induces apoptosis in U937 leukemic cells via caspase activation through cytochrome c release from mitochondria. This is the first report suggesting that the anti-tumor effect of agaritine is mediated through apoptosis. The present results might provide helpful suggestions for the design of anti-tumor drugs toward leukemia patients. Copyright © 2011 Elsevier B.V. All rights reserved.

  7. Staurosporine induces rapid homotypic intercellular adhesion of U937 cells via multiple kinase activation

    PubMed Central

    Cho, Jae Youl; Katz, David R; Chain, Benjamin M

    2003-01-01

    Staurosporine is a broad-specificity kinase inhibitor, which has acted as lead compound for the development of some novel cytotoxic compounds for treatment of cancer. This study investigates the unexpected observation that staurosporine can also induce homotypic cellular aggregation. In this study, staurosporine is shown to activate rapid homotypic aggregation of U937 cells, at concentrations below those required to induce cell death. This activity is a particular feature of staurosporine, and is not shared by a number of other kinase inhibitors. The proaggregating activity of staurosporine is inhibited by deoxyglucose, cytochalasin B and colchicine. Staurosporine-induced aggregation can be distinguished from that induced by the phorbol 12-myristate 13-acetate by faster kinetics and insensitivity to cycloheximide. Staurosporine induces translocation of conventional and novel, but not atypical isoforms of protein kinase C (PKC). Aggregation induced by staurosporine is inhibited by a number of inhibitors of PKC isoforms, and by inhibitors of protein tyrosine kinases. Staurosporine also induces rapid phosphorylation of ERK and p38, and inhibitors of both these enzymes block aggregation. Staurosporine induces dysregulated activation of multiple kinase signaling pathways in U937 cells, and the combined activity of several of these pathways is essential for the induction of aggregation. PMID:12970105

  8. Bcl-2 and caspase-3 are major regulators in Agaricus blazei-induced human leukemic U937 cell apoptosis through dephoshorylation of Akt.

    PubMed

    Jin, Cheng-Yun; Moon, Dong-Oh; Choi, Yung Hyun; Lee, Jae-Dong; Kim, Gi-Young

    2007-08-01

    Agaricus blazei is a medicinal mushroom that possesses antimetastatic, antitumor, antimutagenic, and immunostimulating effects. However, the molecular mechanisms involved in A. blazei-mediated apoptosis remain unclear. In the present study, to elucidate the role of the Bcl-2 in A. blazei-mediated apoptosis, U937 cells were transfected with either empty vector (U937/vec) or vector containing cDNA encoding full-length Bcl-2 (U937/Bcl-2). As compared with U937/vec, U937/Bcl-2 cells exhibited a 4-fold greater expression of Bcl-2. Treatment of U937/vec with 1.0-4.0 mg/ml of A. blazei extract (ABE) for 24 h resulted in a significant induction of morphologic features indicative of apoptosis. In contrast, U937/Bcl-2 exposed to the same ABE treatment only exhibited a slight induction of apoptotic features. ABE-induced apoptosis was accompanied by downregulation of antiapoptotic proteins such as X-linked inhibitor of apoptosis protein (XIAP), inhibitor of apoptosis protein (cIAP)-2 and Bcl-2, activation of caspase-3, and cleavage of poly(ADP-ribose)polymerase (PARP). Ectopic expression of Bcl-2 was associated with significantly induced expression of antiapoptotic proteins, such as cIAP-2 and Bcl-2, but not XIAP. Ectopic expression of Bcl-2 also reduced caspase-3 activation and PARP cleavage in ABE treated U937 cells. Furthermore, treatment with the caspase-3 inhibitor z-DEVD-fmk was sufficient to restore cell viability following ABE treatment. This increase in viability was ascribed to downregulation of caspase-3 and blockage of PARP and PLC-gamma cleavage. ABE also triggered the downregulation of Akt, and combined treatment with LY294002 (an inhibitor of Akt) significantly decreased cell viability. The results indicated that major regulators of ABE-induced apoptosis in human leukemic U937 cells are Bcl-2 and caspase-3, which are associated with dephosphorylation of the Akt signal pathway.

  9. Tryptophol induces death receptor (DR) 5-mediated apoptosis in U937 cells.

    PubMed

    Inagaki, Shyuichiro; Morimura, Shigeru; Tang, Yueqin; Akutagawa, Hiroshi; Kida, Kenji

    2007-08-01

    Tryptophol is a natural component isolated from vinegar produced from the boiled extract of black soybean. We have reported that tryptophol induces apoptosis in U937 cells via activation of caspase-8 followed by caspase-3. Tryptophol, however, did not affect human peripheral blood lymphocytes (PBL). In this study, we found that tryptophol enhances formation of a death-inducing signaling complex including death receptor (DR) 5. Cell viability and induction of apoptosis by tryptophol was reduced by transfection with decoy receptor (DcR) 1. These results indicate that tryptophol induces apoptosis through DR5 and that the resistance of PBL to tryptophol-induced apoptosis might be due to competition from DcR1.

  10. NF-kB activity-dependent P-selectin involved in ox-LDL-induced foam cell formation in U937 cell

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Yi, E-mail: wangyi2004a@126.com; Wang, Xiang; Sun, Minghui

    Highlights: {yields} Ox-LDL induced foam cell formation in the human U937 promonocytic cell line in a dose- and time-dependent manner. {yields} Ox-LDL induced expression of P-selectin through degradation of IkBa and augment of NF-kB activity and protein level during macrophage-derived foam cell formation. {yields} P-selectin and NF-kB may be identified as pivotal regulators of ox-LDL-induced foam cell formation. {yields} Therapy based on the inhibition of P-selectin and NF-kB may complement conventional treatments to prevent atherosclerosis. -- Abstract: Oxidized low-density lipoprotein (ox-LDL) plays a critical role in regulation of atherosclerosis. However, little is known about the role of Nuclear factor kBmore » (NF-kB) activity-dependent P-selectin in ox-LDL-induced foam cell formation during atherosclerosis. In this study, we first investigated ox-LDL induced foam cell formation in the human U937 promonocytic cell line in a dose- and time-dependent manner. Treatment of U937 cells with ox-LDL increased lipid accumulation as well as intracellular cholesterol content. Next, a comparative analysis of gene expression profiling using cDNA microarray and Real-time-PCR indicated that ox-LDL exposure induced, in three treated groups, an extremely marked increase in the mRNA level of P-selectin. Protein levels of P-selectin and its upstream regulators IkBa and NF-kB showed that NF-kB pathway is involved in the ox-LDL-induced foam cell formation. Finally, overexpression of NF-kB significantly accelerated, whereas, inhibition of NF-kB with siRNA remarkably attenuated ox-LDL-induced macrophage-derived foam cell formation. It was concluded that the activity of NF-kB is augmented during macrophage-derived foam cell formation. Activation of NF-kB increased, whereas, inhibition of NF-kB decreased ox-LDL-induced P-selectin expression and lipid accumulation in macrophages, suggesting ox-LDL induced expression of P-selectin through degradation of IkBa and activation of NF

  11. Antisense oligodeoxynucleotide inhibits vascular endothelial growth factor expression in U937 foam cells.

    PubMed

    Yang, Peng-Yuan; Rui, Yao-Cheng; Jin, You-Xin; Li, Tie-Jun; Qiu, Yan; Zhang, Li; Wang, Jie-Song

    2003-06-01

    To study the expression of vascular endothelial growth factor (VEGF) induced by oxidized low density liporotein (ox-LDL) and the inhibitory effects of antisense oligodeoxynucleotide (asODN) on the levels of VEGF protein and mRNA in the U937 foam cells. U937 cells were incubated with ox-LDL 80 mg/L for 48 h, then, the foam cells were treated with asODN (0, 5, 10, and 20 micromol/L). The VEGF concentration in the media was determined by ELISA. The VEGF protein expression level in cells was measured by immuohistochemistry; the positive ratio detected by a morphometrical analysis system was used as the amount of the VEGF expression level. The VEGF mRNA level was examined by Northern blotting. After U937 cells were incubated with ox-LDL, VEGF expression level increased greatly both in the cells and in the media. asODN markedly inhibited the increase of VEGF. After treatment with asODN 20 micromol/L, the VEGF protein concentration in the media decreased by 45.0%, the VEGF positive ratio detected by immuohistochemistry in cells decreased by 64.9%, and the VEGF mRNA level decreased by 47.1%. The expression of VEGF in U937 foam cells was strong. asODN inhibited VEGF expression significantly in U937 foam cells in vitro.

  12. Potential mechanisms of cytosolic calcium modulation in interferon-gamma treated U937 cells

    NASA Technical Reports Server (NTRS)

    Klein, Jon B.; Mcleish, Kenneth R.; Sonnenfeld, Gerald; Dean, William L.

    1987-01-01

    The ability of interferon-gamma (IFN-gamma) to alter cytoplasmic Ca(2+) content in the monocytelike cell line U937 was investigated, using a slow Ca-channel blocker, diltiazem. In addition, the Ca-ATPase and the Ca-uptake activities were measured in isolated U937 membranes, together with the effect of inositol trisphosphate (IP3) upon the Ca(2+) release from Ca-loaded membranes. The addition of 50 U/ml INF-gamma to U937 cultures was found to increase internal Ca(2+) by about 100 percent within 3 min. The increase was significantly reduced by incubation in Ca-free buffer or by the addition of diltiazem. A crude membrane preparation from U937 cells was found to contain significant amounts of Ca-ATPase activity and to sequester Ca(2+) to a level of 8 nmol/mg in 30 sec; the addition of IP3 induced release of a portion of the sequestered Ca(2+) which was then resequestered. The results suggest that IFN-gamma causes an increase of cytoplasmic Ca(2+), in part, by the IP3-induced release from the internal storage sites and, in part, from the entry of extracellular Ca through slow channels.

  13. miR-211 Plays a Critical Role in Cnidium officinale Makino Extract-Induced, ROS/ER Stress-Mediated Apoptosis in U937 and U266 Cells

    PubMed Central

    Cha, Jin Ah; Song, Hyo-Sook; Kang, Beomku; Park, Moon Nyeo; Park, Kyoung Sun; Shim, Bum-Sang

    2018-01-01

    Though Cnidium officinale Makino (COM) was known to have anti-angiogenic, anti-oxidant, neuroprotective, and anti-cancer effects, the underlying anticancer mechanism of COM using endoplasmic reticulum (ER) stress and miRNA remained unclear until now. Thus, in the current study, the inhibitory mechanism of COM in lymphoma and multiple myeloma (MM) cells was elucidated. COM exerted cytotoxicity in U937 and U266 but not Raw264.7 cells. COM treatment increased the expression of ER stress-related proteins such as p-protein kinase RNA-like endoplasmic reticulum kinase (p-PERK), p-eukaryotic initiation factor (p-eIF2α), and activating transcription factor 4 (ATF4) and C/EBP homologous protein (CHOP). COM also cleaved poly (ADP-ribose) polymerase (PARP) in a dose-dependent manner in both cells. Also, reactive oxygen species (ROS) generation was elevated by COM treatment. Conversely, the apoptotic effect of COM treatment was blocked by N-acetyl-l-cysteine (NAC) pretreatment. Also, the pro-survival miRNA, miR-211 was decreased by COM treatment in U937 and U266 cells. miR-211 mimic attenuated COM-induced apoptosis. Taken together, these results support the scientific evidence that COM induces apoptosis via ROS generation/CHOP activation and miR-211 suppression in U937 and U266 cells. PMID:29543750

  14. Induction of apoptosis by withaferin A in human leukemia U937 cells through down-regulation of Akt phosphorylation.

    PubMed

    Oh, Jung Hwa; Lee, Tae-Jin; Kim, Sang Hyun; Choi, Yung Hyun; Lee, Sang Han; Lee, Jin Man; Kim, Young-Ho; Park, Jong-Wook; Kwon, Taeg Kyu

    2008-12-01

    Withaferin A, a major chemical constituent of Withania somnifera, has been reported for its tumor cell growth inhibitory activity, antitumor effects, and impairing metastasis and angiogenesis. The mechanism by which withaferin A initiates apoptosis remains poorly understood. In the present report, we investigated the effect of withaferin A on the apoptotic pathway in U937 human promonocytic cells. We show that withaferin A induces apoptosis in association with the activation of caspase-3. JNK and Akt signal pathways play crucial roles in withaferin A-induced apoptosis in U937 cells. Furthermore, we have shown that overexpression of Bcl-2 and active Akt (myr-Akt) in U937 cells inhibited the induction of apoptosis, activation of caspase-3, and PLC-gamma1 cleavage by withaferin A. Taken together, our results indicated that the JNK and Akt pathways and inhibition of NF-kappaB activity were key regulators of apoptosis in response to withaferin A in human leukemia U937 cells.

  15. Reversible differentiation of human monoblastic leukemia U937 cells by ML-9, an inhibitor of myosin light chain kinase.

    PubMed

    Yamamoto-Yamaguchi, Y; Makishima, M; Kanatani, Y; Kasukabe, T; Honma, Y

    1996-05-01

    Human monoblastic leukemia U937 cells are induced to differentiate into monocytes and macrophages by various agents. We have shown that 1-(5-chloronaphthalene-1-sulfonyl)-1H-hexahydro-1,4-diazepine hydrochloride (ML-9), an inhibitor of myosin light chain kinase, induces differentiation of monocytoid leukemia cell lines U937 and THP-1 but not of myeloblastic leukemic ML-1 cell or erythroleukemia K562 cells. In the present study, we further analyzed the effect of ML-9 in comparison with that of 1 alpha, 25-dihydroxyvitamin D3 (VD3) a typical inducer of monocytic differentiation. ML-9 induced nitroblue tetrazolium (NBT)-reducing activity of U937 cell more rapidly than VD3: This differentiation marker was induced significantly after incubation with ML-9 and VD3 for 4 hours and 1 day, respectively. ML-9 also induced alpha-naphthyl acetate esterase (ANAE) activity, another monocytic differentiation marker, more rapidly than VD3. The maximum levels of these markers induced by ML-9 were comparable to those induced by VD3, but after removal of ML-9 from the medium by washing the cells, the expressions of theses markers decreased within 4 hours and reached basal levels in 1 day, indicating that ML-9's induction of expression of differentiation-associated phenotypes was reversible. The growth inhibition of U937 cells by ML-9 was also reversible. Similar effects were observed in another line of human monoblastic cells, THP-1. ML-9 had little or no effect on the morphology of U937 cells but increased the expression of monocyte-macrophage lineage-associated surface antigen, CD14, to some extent. Irreversible terminal differentiation induced by VD3 is associated with down regulation of the expression of c-myc and upregulation of the expression of c-fos and c-jun, but ML-9 did not affect the expression of these oncogenes appreciably. ML-9-induced differentiation was also reversible when the cells were cultured with cultured with ML-9 plus an anti-cancer drug such as 1-beta

  16. Oxalomalate, a competitive inhibitor of NADP+ -dependent isocitrate dehydrogenase, regulates lipid peroxidation-mediated apoptosis in U937 cells.

    PubMed

    Yang, Eun Sun; Yang, Joon-Hyuck; Park, Ji Eun; Park, Jeen-Woo

    2005-01-01

    Membrane lipid peroxidation processes yield products that may react with DNA and proteins to cause oxidative modifications. Recently, we demonstrated that the control of cytosolic redox balance and the cellular defense against oxidative damage is one of the primary functions of cytosolic NADP+ -dependent isocitrate dehydrogenase (IDPc) through to supply NADPH for antioxidant systems. The protective role of IDPc against lipid peroxidation-mediated apoptosis in U937 cells was investigated in control and cells pre-treated with oxlalomalate, a competitive inhibitor of IDPc. Upon exposure to 2,2'-azobis (2-amidinopropane) hydrochloride (AAPH) to U937 cells, which induces lipid peroxidation in membranes, the susceptibility to apoptosis was higher in oxalomalate-treated cells as compared to control cells. The results suggest that IDPc plays an important protective role in apoptosis of U937 cells induced by lipid peroxidation-mediated oxidative stress.

  17. Basic study on apoptosis induction into cancer cells U-937 and EL-4 by ultrasound exposure.

    PubMed

    Takeuchi, Shinichi; Udagawa, Yoshiko; Oku, Yumiko; Fujii, Takuma; Nishimura, Hiroyuki; Kawashima, Norimichi

    2006-12-22

    Recently, the low invasive cancer treatments with small aftereffects have been considered. We are studying on the suppression methods of cancer cell proliferation with ultrasound. Cancer cells of mouse T lymphoma (EL-4) have been used in our study. The human histitocytic lymphoma cells (U-937) was used in this time. The cancer cells were cultured in a culture medium of RPMI1640. The standing wave acoustic field was formed in a water tank of our ultrasound exposure system by a vibrating plate driven with a Langevine type transducer. The U-937 and EL-4 were exposed to ultrasound in the acoustic field with spatial average acoustic intensity of 350 mW/cm(2) at 150 kHz. The viable rate of EL-4 decreased with the lapse of culture time after ultrasound exposure. U-937 did not show the remarkable decrease tendency. The proliferation of U-937 which exposed to ultrasound with 700 mW/cm(2) was suppressed. It can be thought that apoptosis was induced in the cancer cells in this condition. We observed the morphological change on the U-937 exposed to ultrasound with this condition. The morphological changes by apoptosis like the shrink of cells, formation of apoptotic bodies etc. can be observed with an optical microscope and a phase contrast microscope.

  18. Differential changes in sphingolipids between TNF-induced necroptosis and apoptosis in U937 cells and necroptosis-resistant sublines.

    PubMed

    Sawai, Hirofumi; Ogiso, Hideo; Okazaki, Toshiro

    2015-09-01

    Differential changes in various sphingolipids between TNF-induced necroptosis and apoptosis were investigated using liquid chromatography-tandem mass spectrometry. A marked increase in d18:1/16:0 ceramide was detected in U937 cells treated with TNF in the presence of Z-VAD-fmk (VAD). The level of d18:1/16:0 ceramide in necroptosis was almost twice as high as that in apoptosis after 4h, while an increase in PI-positive cells was observed only in necroptosis within 4h. Necroptosis-resistant U937 (UNR) sublines were established to more clearly discriminate between necroptosis and apoptosis. All three UNR sublines were almost completely resistant to the treatment with TNF/VAD, but were as sensitive to TNF-induced apoptosis as parental cells. The expression of RIP3, a pivotal kinase in necroptosis, was lost in all three UNR sublines. In contrast with the large increase in ceramide levels in TNF/VAD-treated parental cells, they were only slightly increased in UNR cells. Although intracellular levels of reactive oxygen species (ROS) were elevated in both necroptosis and apoptosis, the treatment with butylated hydroxyanisole, an antioxidant, significantly inhibited increases in ceramide levels and PI-positive cells only in necroptosis. These results implicate that the ROS-induced large increase in ceramide levels may play a role in plasma membrane permeabilization in TNF-induced necroptosis. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. CRISPR/Cas9-mediated ASXL1 mutations in U937 cells disrupt myeloid differentiation

    PubMed Central

    Wu, Zhi-Jie; Zhao, Xin; Banaszak, Lauren G.; Gutierrez-Rodrigues, Fernanda; Keyvanfar, Keyvan; Gao, Shou-Guo; Raffo, Diego Quinones; Kajigaya, Sachiko; Young, Neal S.

    2018-01-01

    Additional sex combs-like 1 (ASXL1) is a well-known tumor suppressor gene and epigenetic modifier. ASXL1 mutations are frequent in myeloid malignances; these mutations are risk factors for the development of myelodysplasia and also appear as small clones during normal aging. ASXL1 appears to act as an epigenetic regulator of cell survival and myeloid differentiation; however, the molecular mechanisms underlying the malignant transformation of cells with ASXL1 mutations are not well defined. Using Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)/CRISPR-associated protein-9 nuclease (Cas9) genome editing, heterozygous and homozygous ASXL1 mutations were introduced into human U937 leukemic cells. Comparable cell growth and cell cycle progression were observed between wild-type (WT) and ASXL1-mutated U937 cells. Drug-induced cytotoxicity, as measured by growth inhibition and apoptosis in the presence of the cell-cycle active agent 5-fluorouracil, was variable among the mutated clones but was not significantly different from WT cells. In addition, ASXL1-mutated cells exhibited defects in monocyte/macrophage differentiation. Transcriptome analysis revealed that ASXL1 mutations altered differentiation of U937 cells by disturbing genes involved in myeloid differentiation, including cytochrome B-245 β chain and C-type lectin domain family 5, member A. Dysregulation of numerous gene sets associated with cell death and survival were also observed in ASXL1-mutated cells. These data provide evidence regarding the underlying molecular mechanisms induced by mutated ASXL1 in leukemogenesis. PMID:29532865

  20. Flavonoids from Orostachys japonicus A. Berger induces caspase-dependent apoptosis at least partly through activation of p38 MAPK pathway in U937 human leukemic cells.

    PubMed

    Lee, Won Sup; Yun, Jeong Won; Nagappan, Arulkumar; Jung, Ji Hyun; Yi, Sang Mi; Kim, Dong Hoon; Kim, Hye Jung; Kim, GonSup; Ryu, Chung Ho; Shin, Sung Chul; Hong, Soon Chan; Choi, Yung Hyun; Jung, Jin-Myung

    2015-01-01

    Orostachys japonicus A. Berger (A. Berger) is commonly used as a folk remedy for cancer therapy. However, the mechanisms of its anti-cancer activity are poorly investigated in human cancer cells. In this study, we investigated whether flavonoids extracted from Orostachys japonicus A. Berger (FEOJ) might have anticancer effects in human leukemia cells, focusing on cell death mechanisms. U937 human leukemic cancer cells were used. FEOJ induced apoptosis in a dose-dependent manner in human U937 cancer cells. Flow cytometry revealed significant accumulation of cells with sub-G1 DNA content at the concentrations of 200 μg/mL and 400 μg/mL. FEOJ-induced apoptosis was caspase-dependent through loss of mitochondrial membrane potential (MMP, ΔΨm) in human U937 cancer cells, which might be associated with suppression of Bcl-2 and XIAP proteins. FEOJ induced the p38 MAPK signaling pathway, playing at least in part an important role in FEOJ-induced apoptosis. This study suggested that FEOJ may induce caspase-dependent apoptosis in human leukemic cells by regulating MMP (ΔΨm) through suppressing Bcl-2 and X-IAP. In addition, the results indicated that upstream p38 MAPK signaling regulates the apoptotic effect of FEOJ. This study provides evidence that FEOJ might have anti-cancer potential for human leukemic cells.

  1. Naja nigricollis CMS-9 enhances the mitochondria-mediated death pathway in adaphostin-treated human leukaemia U937 cells.

    PubMed

    Chen, Ying-Jung; Wang, Jeh-Jeng; Chang, Long-Sen

    2011-11-01

    1. The aim of the present study was to explore the effect of the Naja nigricollis phospholipase A(2) CMS-9 on adaphostin-induced death of human leukaemia U937 cells. 2. Leukaemia U937 cells (Bcr/Abl-negative cells) were treated with adaphostin (0-10 μmol/L) and CMS-9 (0-1 μmol/L). The effects of CMS-9, adaphostin and their combination on cell viability, the generation reactive oxygen species (ROS), [Ca(2+) ](i) , p38 mitogen-activated protein kinase (MAPK) activation, Akt and extracellular signal-regulated kinase (ERK) inactivation, mitochondrial membrane potential (ΔΨ(m) ) and Bcl-2 family proteins were analysed. 3. Both adaphostin and CMS-9 induced U937 cell apoptosis, characterized by dissipation of ΔΨ(m) and ROS generation. Combined treatment further increased ΔΨ(m) loss and reduced the viability of adaphostin-treated cells. Unlike in CMS-9-treated cells, in adaphostin-treated cells ROS-induced increases in [Ca(2+) ](i) were observed. CMS-9-induced ROS generation resulted in p38 MAPK activation, whereas adaphostin treatment elicited ROS/Ca(2+) -mediated inactivation of Akt and ERK. Moreover, Akt was found to be involved in ERK phosphorylation. Suppression of p38 MAPK activation blocked CMS-9-induced ΔΨ(m) loss and Bcl-xL downregulation. Overexpression of constitutively active Akt and mitogen-activated protein kinase kinase (MEK) 1 rescued adaphostin-induced ΔΨ(m) loss and Bcl-2 downregulation. Similarly, CMS-9 augmented adaphostin toxicity in human leukaemia K562 cells via increased mitochondrial alterations. 4. The results suggest that two distinct pathways mediate adaphostin- and CMS-9-induced mitochondrial damage (i.e. the ROS-Ca(2+) -Akt-ERK and ROS-p38 MAPK pathways, respectively). These distinct pathway explain the augmentation by CMS-9 of ΔΨ(m) loss and apoptosis in adaphostin-treated U937 cells. © 2011 The Authors. Clinical and Experimental Pharmacology and Physiology © 2011 Blackwell Publishing Asia Pty Ltd.

  2. Oxalomalate, a competitive inhibitor of NADP+-dependent isocitrate dehydrogenase, enhances lipid peroxidation-mediated oxidative damage in U937 cells.

    PubMed

    Yang, Joon-Hyuck; Park, Jeen-Woo

    2003-08-01

    Membrane lipid peroxidation processes yield products that may react with DNA and proteins to cause oxidative modifications. Cytosolic NADP+-dependent isocitrate dehydrogenase (ICDH) in U937 cells produces NADPH, an essential reducing equivalent for the antioxidant system. The protective role of ICDH against lipid peroxidation-mediated oxidative damage in U937 cells was investigated in control cells pre-treated with oxalomalate, a competitive inhibitor of ICDH. Upon exposure to 2,2'-azobis(2-amidinopropane) hydrochloride (AAPH) to U937 cells, which induces lipid peroxidation in membranes, the viability was lower and the protein oxidation, lipid peroxidation, and oxidative DNA damage, reflected by an increase in 8-hydroxy-2'-deoxyguanosine, were higher in oxalomalate-treated cells as compared to control cells. We also observed the significant increase in the endogenous production of reactive oxygen species, as measured by the oxidation of 2',7'-dichlorodihydrofluorescin, as well as the significant decrease in the intracellular GSH level in oxalomalate-treated U937 cells upon exposure to AAPH. These results suggest that ICDH plays an important role as an antioxidant enzyme in cellular defense against lipid peroxidation-mediated oxidative damage through the removal of reactive oxygen species.

  3. Induction of Programmed Cell Death by Parvovirus H-1 in U937 Cells: Connection with the Tumor Necrosis Factor Alpha Signalling Pathway

    PubMed Central

    Rayet, Béatrice; Lopez-Guerrero, José-Antonio; Rommelaere, Jean; Dinsart, Christiane

    1998-01-01

    The human promonocytic cell line U937 undergoes apoptosis upon treatment with tumor necrosis factor alpha (TNF-α). This cell line has previously been shown to be very sensitive to the lytic effect of the autonomous parvovirus H-1. Parvovirus infection leads to the activation of the CPP32 ICE-like cysteine protease which cleaves the enzyme poly(ADP-ribose)polymerase and induces morphologic changes that are characteristic of apoptosis in a way that is similar to TNF-α treatment. This effect is also observed when the U937 cells are infected with a recombinant H-1 virus which expresses the nonstructural (NS) proteins but in which the capsid genes are replaced by a reporter gene, indicating that the induction of apoptosis can be assigned to the cytotoxic nonstructural proteins in this cell system. The c-Myc protein, which is overexpressed in U937 cells, is rapidly downregulated during infection, in keeping with a possible role of this product in mediating the apoptotic cell death induced by H-1 virus infection. Interestingly, four clones (designated RU) derived from the U937 cell line and selected for their resistance to H-1 virus (J. A. Lopez-Guerrero et al., Blood 89:1642–1653, 1997) failed to decrease c-Myc expression upon treatment with differentiation agents and also resisted the induction of cell death after TNF-α treatment. Our data suggest that the RU clones have developed defense strategies against apoptosis, either by their failure to downregulate c-Myc and/or by activating antiapoptotic factors. PMID:9765434

  4. CD147 induces up-regulation of vascular endothelial growth factor in U937-derived foam cells through PI3K/AKT pathway.

    PubMed

    Zong, JiaXin; Li, YunTian; Du, DaYong; Liu, Yang; Yin, YongJun

    2016-11-01

    Intraplaque angiogenesis has been recognized as an important risk factor for the rupture of advanced atherosclerotic plaques in recent years. CD147, also called Extracellular Matrix Metalloproteinase Inducer, has been found the ability to promote angiogenesis in many pathological conditions such as cancer diseases and rheumatoid arthritis via the up-regulation of vascular endothelial growth factor (VEGF), a critical mediator of angiogenesis. We investigated whether CD147 would also induce the up-regulation of VEGF in the foam cells formation process and explored the probable signaling pathway. The results showed the expression of CD147 and VEGF was significantly higher in U937-derived foam cells. After CD147 stealth siRNA transfection treatment, the production of VEGF was reduced depended on the inhibition efficiency of CD147 siRNAs.The special signaling pathway inhibitors LY294002, SP600125, SB203580 and U0126 were added to cultures respectively and the results showed LY294002 dose-dependently inhibited the expression of VEGF. The reduction of phospho-Akt was observed in both LY294002 and siRNA groups, suggested that the phosphatidylinositol 3-kinase/Akt pathway may be the probable signaling pathway underlying CD147 induced up-regulation of VEGF in U937-derived foam cells. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Assessment of the U937 cell line for the detection of contact allergens

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Python, Francois; Goebel, Carsten; Aeby, Pierre

    2007-04-15

    The human myeloid cell line U937 was evaluated as an in vitro test system to identify contact sensitizers in order to develop alternatives to animal tests for the cosmetic industry. Specific culture conditions (i.e., presence of interleukin-4, IL-4) were applied to obtain a dendritic cell-like phenotype. In the described test protocol, these cells were exposed to test chemicals and then analyzed by flow cytometry for CD86 expression and by quantitative real-time reverse transcriptase-polymerase chain reaction for IL-1{beta} and IL-8 gene expressions. Eight sensitizers, three non-sensitizers and five oxidative hair dye precursors were examined after 24-, 48- and 72-h exposure times.more » Test item-specific modulations of the chosen activation markers (CD86, IL-1{beta} and IL-8) suggest that this U937 activation test could discriminate test items classified as contact sensitizers or non-sensitizers in the local lymph node assay in mice (LLNA). More specifically, a test item can be considered as a potential sensitizer when it significantly induced the upregulation of the expression of at least two markers. Using this approach, we could correctly evaluate the dendritic cell (DC) activation potential for 15 out of 16 tested chemicals. We conclude that the U937 activation test may represent an useful tool in a future in vitro test battery for predicting sensitizing properties of chemicals.« less

  6. Resveratrol strongly enhances the retinoic acid-induced superoxide generating activity via up-regulation of gp91-phox gene expression in U937 cells.

    PubMed

    Kikuchi, Hidehiko; Mimuro, Hitomi; Kuribayashi, Futoshi

    2018-01-01

    The membrane bound cytochrome b 558 composed of gp91-phox and p22-phox proteins, and cytosolic proteins p40-, p47-and p67-phox are important components of superoxide (O 2 - )-generating system in phagocytes. Here, we describe that resveratrol, a pleiotropic phytochemical belonging to the stilbenoids, dramatically activates the O 2 - -generating system during retinoic acid (RA)-induced differentiation of human monoblastic leukemia U937 cells to macrophage-like cells. When U937 cells were cultured in the presence of RA and resveratrol, the O 2 - -generating activity increased more than 5-fold compared with that in the absence of the latter. Semiquantitative RT-PCR showed that co-treatment with RA and resveratrol strongly enhanced transcription of the gp91-phox compared with those of the RA-treatment only. On the other hand, immunoblot analysis revealed that co-treatment with RA and resveratrol caused remarkable accumulation of protein levels of gp91-phox (to 4-fold), p22-phox (to 5-fold) and p47-phox (to 4-fold) compared with those of the RA-treatment alone. In addition, ChIP assay suggested that resveratrol participates in enhancing the gene expression of gp91-phox via promoting acetylation of Lys-9 residues and Lys-14 residues of histone H3 within chromatin around the promoter regions of the gene. These results suggested that resveratrol strongly enhances the RA-induced O 2 - -generating activity via up-regulation of gp91-phox gene expression in U937 cells. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. HLA-B27 Modulates Intracellular Growth of Salmonella Pathogenicity Island 2 Mutants and Production of Cytokines in Infected Monocytic U937 Cells

    PubMed Central

    Ge, Shichao; He, Qiushui; Granfors, Kaisa

    2012-01-01

    Background Salmonella enterica serovar Enteritidis PT4 KS8822/88 replicates rapidly in HLA-B27-transfected human monocytic U937 cells. In this process, Salmonella pathogenicity island 2 (SPI-2) genes play a crucial role. Our previous study indicated that 118 Salmonella genes, including 8 SPI-2 genes were affected by HLA-B27 antigen during Salmonella infection of U937 cells. Methods/Principal Findings To further investigate Salmonella replication in HLA-B27-positive U937 monocytic cells, two SPI-2 genes, ssaS and sscA up-regulated most during Salmonella infection of HLA-B27-transfected U937 cells, were mutated by using one-step gene disruption method. Intracellular survival and replication of the mutants in the U937 cells was compared to that of the wild type strain. Surprisingly, the two mutated strains replicated significantly more than the wild type bacteria in HLA-B27-transfected cells. Secretion of tumor necrosis factor alpha (TNF-α) and interleukin 10 (IL-10) was significantly induced during the infection of HLA-B27-transfected U937 cells with the mutants. The results indicated that the certain SPI-2 genes in wild type bacteria suppress Salmonella intracellular growth and production of cytokines in infected HLA-B27-transfected cells. HLA-B27-associated modulation of Salmonella SPI-2 genes and cytokine production may have importance in the persistent infection of the bacteria and the pathogenesis of reactive arthritis. Conclusions The study provides evidence that certain virulence factors of pathogens can reduce the intracellular growth in the host cells. We suggest that the limiting intracellular growth might be a strategy for persistence of bacteria in host cells, keeping a balance between pathogenic growth and pathogenesis. PMID:22470519

  8. Staurosporine Induces Necroptotic Cell Death under Caspase-Compromised Conditions in U937 Cells

    PubMed Central

    Dunai, Zsuzsanna A.; Imre, Gergely; Barna, Gabor; Korcsmaros, Tamas; Petak, Istvan; Bauer, Pal I.; Mihalik, Rudolf

    2012-01-01

    For a long time necrosis was thought to be an uncontrolled process but evidences recently have revealed that necrosis can also occur in a regulated manner. Necroptosis, a type of programmed necrosis is defined as a death receptor-initiated process under caspase-compromised conditions. The process requires the kinase activity of receptor-interacting protein kinase 1 and 3 (RIPK1 and RIPK3) and mixed lineage kinase domain-like protein (MLKL), as a substrate of RIPK3. The further downstream events remain elusive. We applied known inhibitors to characterize the contributing enzymes in necroptosis and their effect on cell viability and different cellular functions were detected mainly by flow cytometry. Here we report that staurosporine, the classical inducer of intrinsic apoptotic pathway can induce necroptosis under caspase-compromised conditions in U937 cell line. This process could be hampered at least partially by the RIPK1 inhibitor necrotstin-1 and by the heat shock protein 90 kDa inhibitor geldanamycin. Moreover both the staurosporine-triggered and the classical death ligand-induced necroptotic pathway can be effectively arrested by a lysosomal enzyme inhibitor CA-074-OMe and the recently discovered MLKL inhibitor necrosulfonamide. We also confirmed that the enzymatic role of poly(ADP-ribose)polymerase (PARP) is dispensable in necroptosis but it contributes to membrane disruption in secondary necrosis. In conclusion, we identified a novel way of necroptosis induction that can facilitate our understanding of the molecular mechanisms of necroptosis. Our results shed light on alternative application of staurosporine, as a possible anticancer therapeutic agent. Furthermore, we showed that the CA-074-OMe has a target in the signaling pathway leading to necroptosis. Finally, we could differentiate necroptotic and secondary necrotic processes based on participation of PARP enzyme. PMID:22860037

  9. Sensitization of U937 leukemia cells to doxorubicin by the MG132 proteasome inhibitor induces an increase in apoptosis by suppressing NF-kappa B and mitochondrial membrane potential loss

    PubMed Central

    2014-01-01

    Background The resistance of cancerous cells to chemotherapy remains the main limitation for cancer treatment at present. Doxorubicin (DOX) is a potent antitumor drug that activates the ubiquitin-proteasome system, but unfortunately it also activates the Nuclear factor kappa B (NF-кB) pathway leading to the promotion of tumor cell survival. MG132 is a drug that inhibits I kappa B degradation by the proteasome-avoiding activation of NF-кB. In this work, we studied the sensitizing effect of the MG132 proteasome inhibitor on the antitumor activity of DOX. Methods U937 human leukemia cells were treated with MG132, DOX, or both drugs. We evaluated proliferation, viability, apoptosis, caspase-3, -8, and −9 activity and cleavage, cytochrome c release, mitochondrial membrane potential, the Bcl-2 and Bcl-XL antiapoptotic proteins, senescence, p65 phosphorylation, and pro- and antiapoptotic genes. Results The greatest apoptosis percentage in U937 cells was obtained with a combination of MG132 + DOX. Likewise, employing both drugs, we observed a decrease in tumor cell proliferation and important caspase-3 activation, as well as mitochondrial membrane potential loss. Therefore, MG132 decreases senescence, p65 phosphorylation, and the DOX-induced Bcl-2 antiapoptotic protein. The MG132 + DOX treatment induced upregulation of proapoptotic genes BAX, DIABLO, NOXA, DR4, and FAS. It also induced downregulation of the antiapoptotic genes BCL-XL and SURVIVIN. Conclusion MG132 sensitizes U937 leukemia cells to DOX-induced apoptosis, increasing its anti-leukemic effectiveness. PMID:24495648

  10. Toxicity of silver nanoparticles towards tumoral human cell lines U-937 and HL-60.

    PubMed

    Barbasz, Anna; Oćwieja, Magdalena; Roman, Maciej

    2017-08-01

    The toxicity of three types of silver nanoparticles towards histiocytic lymphoma (U-937) and human promyelocytic cells (HL-60) was studied. The nanoparticles were synthesized in a chemical reduction method using sodium borohydride. Trisodium citrate and cysteamine hydrochloride were used to generate a negative and positive nanoparticle surface charge. The evaluation of cell viability, membrane integrity, antioxidant activity and the induction of inflammation were used to evaluate the difference in cellular response to the nanoparticle treatment. The results revealed that the cysteamine-stabilized (positively charged) nanoparticles (SBATE) were the least toxic although they exhibited a similar ion release profile as the unmodified (negatively charged) nanoparticles obtained using sodium borohydride (SBNM). Citrate-stabilized nanoparticles (SBTC) induced superoxide dismutase (SOD) activity in the HL-60 cells and total antioxidant activity in the U-937 cells despite their resistance to oxidative dissolution. The toxicity of SBNM nanoparticles was manifested in the disruption of membrane integrity, decrease in the mitochondrial functions of cells and the induction of inflammation. These findings allowed to conclude that mechanism of silver nanoparticle cytotoxicity is the combination of effects coming from the surface charge of nanoparticles, released silver ions and biological activity of stabilizing agent molecules. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. shRNA-mediated EMMPRIN silencing inhibits human leukemic monocyte lymphoma U937 cell proliferation and increases chemosensitivity to adriamycin.

    PubMed

    Gao, Hui; Jiang, Qixiao; Han, Yantao; Peng, Jianjun; Wang, Chunbo

    2015-03-01

    EMMPRIN is a widely distributed cell surface glycoprotein, which plays an important role in tumor progression and confers resistance to some chemotherapeutic drugs. Recent studies have shown that EMMPRIN overexpression indicates poor prognosis in acute myeloid leukemia (AML). However, little was known on the role of EMMPRIN in leukemia. Human leukemia cell line U937 was stably transfected with a EMMPRIN-targeted shRNA-containing vector to investigate the effect of EMMPRIN on cellular functions. EMMPRIN expression was monitored by qRT-PCR and Western blotting. Cell viability and proliferation were determined by trypan blue exclusion and BrdU labeling, respectively. Cell cycle and apoptosis were analyzed by flow cytometry. Cytotoxicity of chemotherapeutic agent adriamycin on cells was assessed by MTT assay. Knockdown of EMMPRIN gene significantly inhibited cell viability and decreased cell proliferation. Fluorescence-activated cell-sorting analysis revealed that the reduced EMMPRIN expression resulted in cell cycle arrest at G1 phase and induced apoptosis. Meanwhile, western blotting analysis showed that EMMPRIN knockdown was associated with downregulation of cell cycle- and apoptosis-related molecules including cyclin D1, cyclin E, as well as increase in cleavage of caspase-3 and PARP. This study also showed that silencing of EMMPRIN sensitized U937 cells to Adriamycin. EMMPRIN is involved in proliferation, growth, and chemosensitivity of human AML line U937, indicating that EMMPRIN may be a promising therapeutic target for AML.

  12. A micro-Raman spectroscopic investigation of leukemic U-937 cells in aged cultures

    NASA Astrophysics Data System (ADS)

    Fazio, Enza; Trusso, Sebastiano; Franco, Domenico; Nicolò, Marco Sebastiano; Allegra, Alessandro; Neri, Fortunato; Musolino, Caterina; Guglielmino, Salvatore P. P.

    2016-04-01

    Recently it has been shown that micro-Raman spectroscopy combined with multivariate analysis is able to discriminate among different types of tissues and tumoral cells by the detection of significant alterations and/or reorganizations of complex biological molecules, such as nucleic acids, lipids and proteins. Moreover, its use, being in principle a non-invasive technique, appears an interesting clinical tool for the evaluation of the therapeutical effects and of the disease progression. In this work we analyzed molecular changes in aged cultures of leukemia model U937 cells with respect to fresh cultures of the same cell line. In fact, structural variations of individual neoplastic cells on aging may lead to a heterogeneous data set, therefore falsifying confidence intervals, increasing error levels of analysis and consequently limiting the use of Raman spectroscopy analysis. We found that the observed morphological changes of U937 cells corresponded to well defined modifications of the Raman contributions in selected spectral regions, where markers of specific functional groups, useful to characterize the cell state, are present. A detailed subcellular analysis showed a change in cellular organization as a function of time, and correlated to a significant increase of apoptosis levels. Besides the aforementioned study, Raman spectra were used as input for principal component analysis (PCA) in order to detect and classify spectral changes among U937 cells.

  13. Effects of the ACTH(4-9) analogue, ORG 2766, on vincristine cytotoxicity in two human lymphoma cell lines, U937 and U715.

    PubMed Central

    Kiburg, B.; van de Loosdrecht, A. A.; Schweitzer, K. M.; Ossenkoppele, G. J.; Müller, L. J.; Heimans, J. J.; Huijgens, P. C.

    1994-01-01

    The use of cytotoxic drug vincristine (VCR) is limited by the occurrence of peripheral neuropathy. A neurotrophic ACTH(4-9) analogue, ORG 2766, is being studied for its protective effect. Possible modulatory effects of ORG 2766 on tumour cell growth and interference with the cytotoxic efficacy of VCR were studied in two human lymphoma cell lines, U937 and U715. The effects of ORG 2766 on cell growth and survival and on VCR-mediated cytotoxicity were investigated using two MTT-based assays to study direct cytotoxic effects and to assess residual growth after pretreatment. Treatment with ORG 2766 alone had no effect on cell growth and survival. Neither did this drug affect VCR cytotoxicity. However, after 96 h pretreatment with ORG 2766 and a culture period of 7 days, a reduction in residual growth and a potentiation of VCR-induced inhibition of growth capacity was observed in U715 cells, and to some extent also in U937 cells. It is concluded that ORG 2766 has no stimulatory effects on tumour growth and does not negatively interfere with VCR-mediated cytotoxicity. Rather it enhances the cytostatic effect of VCR. It is suggested that ORG 2766 can safely be used in clinical trials investigating the ability of ORG 2766 to counteract VCR-induced neurotoxicity. PMID:8123480

  14. Regulation of the steady state level of Fc gamma RI mRNA by IFN-gamma and dexamethasone in human monocytes, neutrophils, and U-937 cells.

    PubMed

    Pan, L Y; Mendel, D B; Zurlo, J; Guyre, P M

    1990-07-01

    The high affinity IgG FcR Fc gamma RI, CD64, plays important roles in the immune response. Fc gamma RI is predominantly expressed on monocytes and macrophages, and barely detectable on neutrophils. rIFN-gamma markedly increases the expression of Fc gamma RI on neutrophils, monocytes, macrophages and myeloid cell lines such as U-937, HL-60, and THP-1. Glucocorticoids inhibit the augmentation of Fc gamma RI expression by rIFN-gamma on neutrophils and myeloid cell lines, but enhance the augmentation of Fc gamma RI expression by rIFN-gamma on monocytes. In this study, we examined the effect of rIFN-gamma and dexamethasone (Dex) on the steady state level of Fc gamma RI mRNA in U-937 cells, neutrophils, and monocytes by hybridizing total RNA with the Fc gamma RI cDNA probe, p135. We found that the amount of Fc gamma RI mRNA increased within 1 h of treatment with rIFN-gamma in all three cell types. This initial induction of Fc gamma RI mRNA by rIFN-gamma was completely blocked by an inhibitor of RNA synthesis, actinomycin D, suggesting that the rIFN-gamma-mediated induction of Fc gamma RI mRNA is dependent on gene transcription. Dex, used in combination with rIFN-gamma, partially blocked the induction of Fc gamma RI mRNA by rIFN-gamma in U-937 cells and neutrophils, but caused a synergistic increase in Fc gamma RI mRNA levels in monocytes. The inhibitory effect of Dex on the steady state level of Fc gamma RI mRNA in U-937 cells was blocked by an inhibitor of protein synthesis, cycloheximide, suggesting that Dex-induced proteins were involved in the regulation of Fc gamma RI expression. This study indicates that the regulation of Fc gamma RI expression on U-937 cells, neutrophils, and monocytes by rIFN-gamma and Dex occurs, at least in part, at the mRNA level. rIFN-gamma increases the steady state level of Fc gamma RI mRNA through a common pathway among U-937 cells, neutrophils, and monocytes, whereas the effect of Dex on rIFN-gamma-induced Fc gamma RI mRNA is cell

  15. Microgravity modifies protein kinase C isoform translocation in the human monocytic cell line U937 and human peripheral blood T-cells

    NASA Technical Reports Server (NTRS)

    Hatton, Jason P.; Gaubert, Francois; Cazenave, Jean-Pierre; Schmitt, Didier; Hashemi, B. B. (Principal Investigator); Hughes-Fulford, M. (Principal Investigator)

    2002-01-01

    Individual protein kinase C (PKC) isoforms fulfill distinct roles in the regulation of the commitment to differentiation, cell cycle arrest, and apoptosis in both monocytes and T-cells. The human monocyte like cell line U937 and T-cells were exposed to microgravity, during spaceflight and the translocation (a critical step in PKC signaling) of individual isoforms to cell particulate fraction examined. PKC activating phorbol esters induced a rapid translocation of several PKC isoforms to the particulate fraction of U937 monocytes under terrestrial gravity (1 g) conditions in the laboratory. In microgravity, the translocation of PKC beta II, delta, and epsilon in response to phorbol esters was reduced in microgravity compared to 1 g, but was enhanced in weak hypergravity (1.4 g). All isoforms showed a net increase in particulate PKC following phorbol ester stimulation, except PKC delta which showed a net decrease in microgravity. In T-cells, phorbol ester induced translocation of PKC delta was reduced in microgravity, compared to 1 g, while PKC beta II translocation was not significantly different at the two g-levels. These data show that microgravity differentially alters the translocation of individual PKC isoforms in monocytes and T-cells, thus providing a partial explanation for the modifications previously observed in the activation of these cell types under microgravity.

  16. Molecular mechanisms of apoptosis induction by 2-dodecylcyclobutanone, a radiolytic product of palmitic acid, in human lymphoma U937 cells.

    PubMed

    Yu, Da-Yong; Zhao, Qing-Li; Furuta, Masakazu; Todoriki, Setsuko; Izumi, Keisuke; Yamakage, Kohji; Matsumoto, Kozo; Nomura, Takaharu; Kondo, Takashi

    2012-06-01

    The irradiation of fat-containing food forms 2-dodecylcyclobutanone (2-DCB) from palmitic acid (PA). In this study, we investigated whether 2-DCB and PA induce apoptosis in human lymphoma U937 cells. We found that cell viability decreased by 2-DCB and apoptosis was induced by 2-DCB and PA. 2-DCB and PA significantly enhanced the formation of intracellular reactive oxygen species (ROS). Apoptosis induced by 2-DCB and PA was strongly prevented by an antioxidant, N-acetyl-L: -cysteine. The treatment with 2-DCB and PA resulted in the loss of mitochondrial membrane potential, and Fas, caspase-8 and caspase-3 activation. Pretreatment with a pan-caspase inhibitor (z-VAD) significantly inhibited apoptosis induced by 2-DCB and PA. Moreover, 2-DCB and PA also induced Bax up-regulation, the reduction in Bcl-2 expression level, Bid cleavage and the release of cytochrome c from the mitochondria to the cytosol. In addition, an increase in intracellular Ca(2+) concentration ([Ca(2+)](i)) was observed after the treatment with 2-DCB and PA. Our results indicated that intracellular ROS generation, the modulation of the Fas-mitochondrion-caspase-dependent pathway and the increase in [Ca(2+)](i) involved in apoptosis are induced by 2-DCB and PA in U937 cells.

  17. Cervical cancer cell supernatants induce a phenotypic switch from U937-derived macrophage-activated M1 state into M2-like suppressor phenotype with change in Toll-like receptor profile.

    PubMed

    Sánchez-Reyes, Karina; Bravo-Cuellar, Alejandro; Hernández-Flores, Georgina; Lerma-Díaz, José Manuel; Jave-Suárez, Luis Felipe; Gómez-Lomelí, Paulina; de Celis, Ruth; Aguilar-Lemarroy, Adriana; Domínguez-Rodríguez, Jorge Ramiro; Ortiz-Lazareno, Pablo Cesar

    2014-01-01

    Cervical cancer (CC) is the second most common cancer among women worldwide. Infection with human papillomavirus (HPV) is the main risk factor for developing CC. Macrophages are important immune effector cells; they can be differentiated into two phenotypes, identified as M1 (classically activated) and M2 (alternatively activated). Macrophage polarization exerts profound effects on the Toll-like receptor (TLR) profile. In this study, we evaluated whether the supernatant of human CC cells HeLa, SiHa, and C-33A induces a shift of M1 macrophage toward M2 macrophage in U937-derived macrophages. The results showed that soluble factors secreted by CC cells induce a change in the immunophenotype of macrophages from macrophage M1 into macrophage M2. U937-derived macrophages M1 released proinflammatory cytokines and nitric oxide; however, when these cells were treated with the supernatant of CC cell lines, we observed a turnover of M1 toward M2. These cells increased CD163 and IL-10 expression. The expression of TLR-3, -7, and -9 is increased when the macrophages were treated with the supernatant of CC cells. Our result strongly suggests that CC cells may, through the secretion of soluble factors, induce a change of immunophenotype M1 into M2 macrophages.

  18. Synergism between arsenite and proteasome inhibitor MG132 over cell death in myeloid leukaemic cells U937 and the induction of low levels of intracellular superoxide anion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lombardo, Tomás; Cavaliere, Victoria; Costantino, Susana N.

    Increased oxygen species production has often been cited as a mechanism determining synergism on cell death and growth inhibition effects of arsenic-combined drugs. However the net effect of drug combination may not be easily anticipated solely from available knowledge of drug-induced death mechanisms. We evaluated the combined effect of sodium arsenite with the proteasome inhibitor MG132, and the anti-leukaemic agent CAPE, on growth-inhibition and cell death effect in acute myeloid leukaemic cells U937 and Burkitt's lymphoma-derived Raji cells, by the Chou–Talalay method. In addition we explored the association of cytotoxic effect of drugs with changes in intracellular superoxide anion (O{submore » 2}{sup −}) levels. Our results showed that combined arsenite + MG132 produced low levels of O{sub 2}{sup −} at 6 h and 24 h after exposure and were synergic on cell death induction in U937 cells over the whole dose range, although the combination was antagonistic on growth inhibition effect. Exposure to a constant non-cytotoxic dose of 80 μM hydrogen peroxide together with arsenite + MG132 changed synergism on cell death to antagonism at all effect levels while increasing O{sub 2}{sup −} levels. Arsenite + hydrogen peroxide also resulted in antagonism with increased O{sub 2}{sup −} levels in U937 cells. In Raji cells, arsenite + MG132 also produced low levels of O{sub 2}{sup −} at 6 h and 24 h but resulted in antagonism on cell death and growth inhibition. By contrast, the combination arsenite + CAPE showed high levels of O{sub 2}{sup −} production at 6 h and 24 h post exposure but resulted in antagonism over cell death and growth inhibition effects in U937 and Raji cells. We conclude that synergism between arsenite and MG132 in U937 cells is negatively associated to O{sub 2}{sup −} levels at early time points after exposure. -- Highlights: ► Arsenic combined cytotoxic and anti-proliferative effects by Chou–Talalay method. ► Cytotoxic effect

  19. Apoptosis is rapidly triggered by antisense depletion of MCL-1 in differentiating U937 cells.

    PubMed

    Moulding, D A; Giles, R V; Spiller, D G; White, M R; Tidd, D M; Edwards, S W

    2000-09-01

    Mcl-1 is a member of the Bcl-2 protein family, which has been shown to delay apoptosis in transfection and/or overexpression experiments. As yet no gene knockout mice have been engineered, and so there is little evidence to show that loss of Mcl-1 expression is sufficient to trigger apoptosis. U937 cells constitutively express the antiapoptotic protein Bcl-2; but during differentiation, in response to the phorbol ester PMA (phorbol 12 beta-myristate 13 alpha-acetate), Mcl-1 is transiently induced. The purpose of this investigation was to determine the functional role played by Mcl-1 in this differentiation program. Mcl-1 expression was specifically disrupted by chimeric methylphosphonate/phosphodiester antisense oligodeoxynucleotides to just 5% of control levels. The depletion of Mcl-1 messenger RNA (mRNA) and protein was both rapid and specific, as indicated by the use of control oligodeoxynucleotides and analysis of the expression of other BCL2 family members and PMA-induced tumor necrosis factor-alpha (TNF-alpha). Specific depletion of Mcl-1 mRNA and protein, in the absence of changes in cellular levels of Bcl-2, results in a rapid entry into apoptosis. Levels of the proapoptotic protein Bax remained unchanged during differentiation, while Bak expression doubled within 24 hours. Apoptosis was detected within 4 hours of Mcl-1 antisense treatment by a variety of parameters including a novel live cell imaging technique allowing correlation of antisense treatment and apoptosis in individual cells. The induction of Mcl-1 is required to prevent apoptosis during differentiation of U937 cells, and the constitutive expression of Bcl-2 is unable to compensate for the loss of Mcl-1. (Blood. 2000;96:1756-1763)

  20. Induction of Apoptosis in U937 Cells by Using a Combination of Bortezomib and Low-Intensity Ultrasound

    PubMed Central

    Saliev, Timur; Feril, Loreto B.; Ogawa, Koichi; Watanabe, Akiko; Begimbetova, Dinara; Molkenov, Askhat; Alimbetov, Dauren; Tachibana, Katsuro

    2016-01-01

    Background We scrutinized the feasibility of apoptosis induction in blood cancer cells by means of low-intensity ultrasound and the proteasome inhibitor bortezomib (Velcade). Material/Methods Human leukemic monocyte lymphoma U937 cells were subjected to ultrasound in the presence of bortezomib and the echo contrast agent Sonazoid. Two types of acoustic intensity (0.18 W/cm2 and 0.05 W/cm2) were used for the experiments. Treated U937 cells were analyzed for viability and levels of early and late apoptosis. In addition, scanning electron microscopy analysis of treated cells was performed. Results The percentage of cells that underwent early apoptosis in the group treated with ultrasound and Sonazoid was 8.0±1.31% (intensity 0.18 W/cm2) and 7.0±1.69% (0.05 W/cm2). However, coupling of bortezomib and Sonazoid resulted in an increase in the percentage of cells in the early apoptosis phase, up to 32.50±3.59% (intensity 0.18 W/cm2) and 33.0±4.90% (0.05 W/cm2). The percentage of U937 cells in the late apoptosis stage was not significantly different from that in the group treated with bortezomib only. Conclusions Our findings indicate the feasibility of apoptosis induction in blood cancer cells by using a combination of bortezomib, ultrasound contrast agents, and low-intensity ultrasound. PMID:28003640

  1. Effects of selected food phytochemicals in reducing the toxic actions of TCDD and p,p′-DDT in U937 macrophages

    PubMed Central

    Sciullo, Eric M.; Vogel, Christoph F.; Wu, Dalei; Murakami, Akira; Ohigashi, Hajime

    2010-01-01

    To assess the effectiveness of selected food phytochemicals in reducing the toxic effects of the environmental toxicants, 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) and p,p′-DDT (DDT), we tested the potencies of auraptene, nobiletin, zerumbone, and (±)-13-hydroxy-10-oxo-trans-11-octadecenoic acid (13-HOA) in reversing the inflammatory action of these toxicants in U937 human macrophages. Using quantitative RT–PCR as the initial screening assay, we identified antagonistic actions of zerumbone and auraptene against the action of TCDD and DDT in up-regulating the mRNA expressions of COX-2 and VEGF. The functional significance of the inhibitory action of zerumbone on COX-2 expression was confirmed by demonstrating its suppression of TCDD-induced activation of COX-2 gene expression in mouse MMDD1 cells. We tested auraptene on DDT-induced reactive oxygen species (ROS) formation in U937 macrophages and found that auraptene is a powerful agent antagonizing this action of DDT. To confirm the significance of these actions of zerumbone and auraptene at the cellular level, we assessed their influence on TCDD-induced apoptosis resistance in intact U937 macrophages and found that they are capable of reversing this action of TCDD. In conclusion, zerumbone and auraptene were identified to be the most effective agents in protecting U937 macrophages from developing these cell toxic effects of TCDD and DDT. PMID:20865247

  2. Cucurbitacin E as a new inhibitor of cofilin phosphorylation in human leukemia U937 cells.

    PubMed

    Nakashima, Souichi; Matsuda, Hisashi; Kurume, Ai; Oda, Yoshimi; Nakamura, Seikou; Yamashita, Masayuki; Yoshikawa, Masayuki

    2010-05-01

    Cucurbitane-type triterpenes, cucurbitacins B and E, were reported to exhibit cytotoxic effects in several cell lines mediated by JAK/STAT3 signaling. However, neither compound inhibited phosphorylation of STAT3 in human leukemia (U937) cells at low concentrations. We therefore synthesized a biotin-linked cucurbitacin E to isolate target proteins based on affinity for the molecule. As a result, cofilin, which regulates the depolymerization of actin, was isolated and suggested to be a target. Cucurbitacins E and I inhibited the phosphorylation of cofilin in a concentration-dependent manner, and their effective concentrations having the same range as the concentrations at which they had cytotoxic effects in U937 cells. In addition, the fibrous-/globular-actin ratio was decreased after treatment with cucurbitacin E in HT1080 cells. These findings suggested that the inhibition of cofilin's phosphorylation increased the severing activity of cofilin, and then the depolymerization of actin was enhanced after treatment with cucurbitacin E at lower concentrations. 2010 Elsevier Ltd. All rights reserved.

  3. Bone marrow - mesenchymal stem cells impact on the U937 cells in the presence of staphylococcal enterotoxin B (SEB).

    PubMed

    Ejtehadifar, Mostafa; Halabian, Raheleh; Ghazavi, Ali; Khansarinejad, Behzad; Mosayebi, Ghasem; Imani Fooladi, Abbas Ali

    2018-04-14

    The growing resistance against conventional chemotherapy in acute myeloid leukemia (AML) is a noticeable clinical concern. Therefore, many researchers are looking for novel substances to overcome drug resistance in cancer. Staphylococcal enterotoxin B (SEB) is a superantigen (SAg) and a promising compound which has lethal effects on malignant cells. In this unprecedented study, SEB was used against U937 cells in a co-culture system in the presence of human bone marrow-mesenchymal stem cells (hBM-MSCs). The effects of hBM-MSCs on the proliferation and survival of U937 cell line with SEB was assessed using MTT assay and AnnexinV/PI flowcytometry, respectively. Moreover, the expression of IL-6, IL-10, TGF-β, and inhibitor of nuclear factor kappa-B kinase (IKKb) was evaluated by real-time PCR technique. The same experiments were also carried out using hBM-MSCs-conditioned medium (hBM-MSCs-CM). The results showed that SEB reduced the proliferation and survival of U937 cell line, but hBM-MSCs or hBM-MSCs-CM suppressed the effects of SEB. Furthermore, real-timePCR demonstrated that SEB could decrease the expression of IL-6, IL-10, and TGF-β in hBM-MSCs (P < .05), while the production of IKKb was increased in comparison with the control group. These findings help us to have a broader understanding ofthe usage of SEB in the treatment of haematological malignancies, especially if it is targeted against hBM-MSCs to disrupt their supportive effects on malignant cells. © 2018 John Wiley & Sons Australia, Ltd.

  4. Dexamethasone enhances interaction of endogenous annexin 1 with L-selectin and triggers shedding of L-selectin in the monocytic cell line U-937.

    PubMed

    de Coupade, Catherine; Solito, Egle; Levine, Jon D

    2003-09-01

    (1) L-selectin, constitutively expressed by leukocytes, is involved in the initial binding of leukocytes to activated endothelium. Anti-inflammatory drugs like glucocorticoids can induce shedding of L-selectin, but the mechanism is still unknown. Annexin 1, a protein whose synthesis and externalization/secretion are induced during the inflammatory response, has been proposed as a mediator of the anti-inflammatory actions of glucocorticoids. (2) The monocytic cell line U-937 strongly expresses Annexin 1 after 24 h of phorbol 12-myristate 13-acetate (PMA, 1 nm) treatment and externalizes/releases the protein after additional 16 h of dexamethasone (1 microm) treatment. (3) This study investigated the possible regulation of cell surface L-selectin shedding by endogenous Annexin 1, and its role in glucocorticoid-induced L-selectin shedding in the U-937 cell line. (4) PMA- and dexamethasone treatment-induced L-selectin shedding was potentially mediated by Annexin 1, since neutralizing antibodies against Annexin 1 reduced dexamethasone- and Annexin 1-induced shedding. (5) Immunoprecipitation and binding assays provided support for the suggestion that this effect could be mediated by an interaction between externalized Annexin 1 and L-selectin. Such interaction involved the N-terminal domain of Annexin 1 and was calcium-dependent. Confocal microscopy studies demonstrated increased colocalization of Annexin 1 and L-selectin on the cell surface. (6) Overall, our study provides new insights into the potential role of endogenous ANXA1 as a mediator of dexamethasone-induced L-selectin shedding, which may contribute to the anti-inflammatory activity of glucocorticoids.

  5. Altered regulation of ELAVL1/HuR in HLA-B27-expressing U937 monocytic cells.

    PubMed

    Sahlberg, Anna S; Ruuska, Marja; Granfors, Kaisa; Penttinen, Markus A

    2013-01-01

    To investigate the role of HLA-B27 expression in the regulation of RNA binding protein (RBP) Embryonic Lethal Abnormal Vision (ELAV) L1/Human antigen R (HuR) expression in Salmonella-infected or LPS-stimulated human monocytic cells, since HuR is a critical regulator of the post-transcriptional fate of many genes (e.g. TNFα) important in inflammatory response. U937 monocytic cells were stably transfected with pSV2neo resistant vector (mock), wild type HLA-B27, or mutated HLA-B27 with amino acid substitutions in the B pocket. Cells were differentiated, infected with Salmonella enteritidis or stimulated with lipopolysaccharide. The expression levels of HuR protein and cleavage products (CP1 and CP2) were detected by Western blotting and flow cytometry. Specific inhibitors were used to study the role of PKR and p38 in HuR expression and generation of CPs. TNFα and IL-10 secretion after p38 and PKR inhibition were measured by ELISA. Full length HuR is overexpressed and HuR cleavage is disturbed in U937 monocytic cells expressing HLA-B27 heavy chains (HC). Increased full length HuR expression, disturbed cleavage and reduced dependence on PKR after infection correlate with the expression of glutamic acid 45 in the B pocket that is linked to the misfolding of HLA-B27. Results show that the expression of HLA-B27 HCs modulates the intracellular environment of U937 monocyte/macrophages by altering HuR regulation. This phenomenon is at least partly dependent on the misfolding feature of the B27 molecule. Since HuR is an important regulator of multiple genes involved in inflammatory response observations offer an explanation how HLA-B27 may modulate inflammatory response.

  6. Suppression of Akt/Foxp3-mediated miR-183 expression blocks Sp1-mediated ADAM17 expression and TNFα-mediated NFκB activation in piceatannol-treated human leukemia U937 cells.

    PubMed

    Liu, Wen-Hsin; Chang, Long-Sen

    2012-09-01

    To address the mechanism of piceatannol in inhibiting TNFα-mediated pathway, studies on piceatannol-treated human leukemia U937 cells were conducted. Piceatannol treatment reduced TNFα shedding and NFκB activation and decreased the release of soluble TNFα into the culture medium of U937 cells. Moreover, ADAM17 expression was down-regulated in piceatannol-treated cells. Over-expression of ADAM17 abrogated the ability of piceatannol to suppress TNFα-mediated NFκB activation. Piceatannol-evoked β-TrCP up-regulation promoted Sp1 degradation, thus reducing transcriptional level of ADAM17 gene in U937 cells. Piceatannol treatment induced p38 MAPK phosphorylation but inactivation of Akt and ERK. In contrast to p38 MAPK inhibitor or restoration of ERK activation, transfection of constitutive active Akt abolished the effect of piceatannol on β-TrCP, Sp1 and ADAM17 expression. Piceatannol-elicited down-regulation of miR-183 expression was found to cause β-TrCP up-regulation. Inactivation of Akt resulted in Foxp3 down-regulation and reduced miR-183 expression in piceatannol-treated cells. Knock-down of Foxp3 and chromatin immunoprecipitating revealed that Foxp3 genetically regulated transcription of miR-183 gene. Taken together, our data indicate that suppression of Akt/Foxp3-mediated miR-183 expression blocks Sp1-mediated ADAM17 expression in piceatannol-treated U937 cells. Consequently, piceatannol suppresses TNFα shedding, leading to inhibition of TNFα/NFκB pathway. Copyright © 2012 Elsevier Inc. All rights reserved.

  7. A novel assay system for macrophage-activating factor activity using a human U937 cell line.

    PubMed

    Ishikawa, Mami; Inoue, Takahiro; Inui, Toshio; Kuchiike, Daisuke; Kubo, Kentaro; Uto, Yoshihiro; Nishikata, Takahito

    2014-08-01

    Macrophages play important roles in antitumor immunity, and immunotherapy with the group-specific component protein-derived macrophage-activating factor (GcMAF) has been reported to be effective in patients with various types of cancers. However, in macrophage research, it is important to properly evaluate macrophage activity. U937 macrophages were induced by 12-O-tetradecanoyl-13-phorbolacetate (TPA). The phagocytic activity of macrophages was evaluated as the internalized beads ratio. The MAF activity was assessed at 30 min after MAF addition as the activation ratio. We established a novel assay for phagocytic activities using differentiated U937 macrophages. The novel protocol was simple and rapid and was sensitive for GcMAF. This protocol should be useful not only for basic studies, such as those on molecular mechanisms underlying macrophage activation, but also for clinical studies, such as assessment of GcMAF activity prior to clinical use. Copyright© 2014 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  8. Altered Regulation of ELAVL1/HuR in HLA-B27–Expressing U937 Monocytic Cells

    PubMed Central

    Sahlberg, Anna S.; Ruuska, Marja; Granfors, Kaisa; Penttinen, Markus A.

    2013-01-01

    Objective To investigate the role of HLA-B27 expression in the regulation of RNA binding protein (RBP) Embryonic Lethal Abnormal Vision (ELAV) L1/Human antigen R (HuR) expression in Salmonella-infected or LPS-stimulated human monocytic cells, since HuR is a critical regulator of the post-transcriptional fate of many genes (e.g. TNFα) important in inflammatory response. Methods U937 monocytic cells were stably transfected with pSV2neo resistant vector (mock), wild type HLA–B27, or mutated HLA–B27 with amino acid substitutions in the B pocket. Cells were differentiated, infected with Salmonella enteritidis or stimulated with lipopolysaccharide. The expression levels of HuR protein and cleavage products (CP1 and CP2) were detected by Western blotting and flow cytometry. Specific inhibitors were used to study the role of PKR and p38 in HuR expression and generation of CPs. TNFα and IL-10 secretion after p38 and PKR inhibition were measured by ELISA. Results Full length HuR is overexpressed and HuR cleavage is disturbed in U937 monocytic cells expressing HLA-B27 heavy chains (HC). Increased full length HuR expression, disturbed cleavage and reduced dependence on PKR after infection correlate with the expression of glutamic acid 45 in the B pocket that is linked to the misfolding of HLA-B27. Conclusion Results show that the expression of HLA-B27 HCs modulates the intracellular environment of U937 monocyte/macrophages by altering HuR regulation. This phenomenon is at least partly dependent on the misfolding feature of the B27 molecule. Since HuR is an important regulator of multiple genes involved in inflammatory response observations offer an explanation how HLA-B27 may modulate inflammatory response. PMID:23894643

  9. Alterations in protein glycosylation in PMA-differentiated U-937 cells exposed to mineral particles.

    PubMed Central

    Trabelsi, N; Greffard, A; Pairon, J C; Bignon, J; Zanetti, G; Fubini, B; Pilatte, Y

    1997-01-01

    Carbohydrate moieties of cell glycoconjugates play a pivotal role in molecular recognition phenomena involved in the regulation of most biological systems and the changes observed in cell surface carbohydrates during cell activation or differentiation frequently modulate certain cell functions. Consequently, some aspects of macrophage response to particle exposure might conceivably result from alterations in glycosylation. Therefore, the effect of mineral particles on protein glycosylation was investigated in phorbol myristate acetate (PMA)-differentiated U-937. Jacalin, a lectin specific for O-glycosylated structures, showed a global increase in O-glycosylation in particle-treated cells. In contrast, no significant modifications were observed with concanavalin A, a lectin that recognizes certain N-glycosylated structures. The sialic acid-specific lectins Sambucus nigra agglutinin and Maackia amurensis agglutinin and the galactose-specific lectin Ricinus communis agglutinin revealed a complex pattern of alterations in glycoprotein glycosylation after crystalline silica or manganese dioxide treatments. Expression of sialyl Lewis(x), a glycosylated structure implicated in leukocyte trafficking, could not be detected in control or treated cells. This finding was consistent with the decrease in sialyl Lewis(x) expression observed during PMA-induced differentiation. In conclusion, various treatments used in this study induced quantitative as well as qualitative changes in protein glycosylation. Whether these changes are due to glycosidase release or to an alteration in glycosyltransferase expression remains to be determined. The potential functional implications of these changes are currently under investigation. Images Figure 1. A Figure 1. B Figure 2. A Figure 2. B Figure 3. A Figure 3. B Figure 3. C Figure 4. PMID:9400716

  10. Evaluation of the Genetic Response of U937 and Jurkat Cells to 10-Nanosecond Electrical Pulses (nsEP)

    PubMed Central

    Glickman, Randolph D.; Tolstykh, Gleb P.; Estlack, Larry E.; Moen, Erick K.; Echchgadda, Ibtissam; Beier, Hope T.; Barnes, Ronald A.; Ibey, Bennett L.

    2016-01-01

    Nanosecond electrical pulse (nsEP) exposure activates signaling pathways, produces oxidative stress, stimulates hormone secretion, causes cell swelling and induces apoptotic and necrotic death. The underlying biophysical connection(s) between these diverse cellular reactions and nsEP has yet to be elucidated. Using global genetic analysis, we evaluated how two commonly studied cell types, U937 and Jurkat, respond to nsEP exposure. We hypothesized that by studying the genetic response of the cells following exposure, we would gain direct insight into the stresses experienced by the cell and in turn better understand the biophysical interaction taking place during the exposure. Using Ingenuity Systems software, we found genes associated with cell growth, movement and development to be significantly up-regulated in both cell types 4 h post exposure to nsEP. In agreement with our hypothesis, we also found that both cell lines exhibit significant biological changes consistent with mechanical stress induction. These results advance nsEP research by providing strong evidence that the interaction of nsEPs with cells involves mechanical stress. PMID:27135944

  11. Curcumin induces apoptosis in human leukemic cell lines through an IFIT2-dependent pathway

    PubMed Central

    Zhang, Yonglu; Kong, Yunyuan; Liu, Shuyuan; Zeng, Lingbing; Wan, Lagen; Zhang, Zhanglin

    2017-01-01

    ABSTRACT Curcumin, the primary bioactive component isolated from turmeric, has been shown to possess variety of biologic functions including anti-cancer activity. However, molecular mechanisms in different cancer cells are various. In the present study, we demonstrated that curcumin induced G2/M cell cycle arrest and apoptosis by increasing the expression levels of cleaved caspase-3, cleaved PARP and decreasing the expression of BCL−2 in U937 human leukemic cells but not in K562 cells. We found some interferon induced genes, especially interferon-induced protein with tetratricopeptide repeats 2 (IFIT2), were significantly upregulated when treated with curcumin in U937 cells by gene expression chip array, and further confirmed that the expression of IFIT2 was obviously higher in U937 than that in K562 cells by Western blot assay. In addition, inhibiting the expression of IFIT2 by shRNA in U937 rescued curcumin-induced apoptosis and exogenous overexpression of IFIT2 by lentiviral transduction or treating with IFNγ in K562 cells enhanced anti-cancer activity of curcumin. These results indicated for the first time that curcumin induced leukemic cell apoptosis via an IFIT2-dependent signaling pathways. The present study identified a novel mechanism underlying the antitumor effects of curcumin, and may provide a theoretical basis for curcumin combined with interferon in the cancer therapeutics. PMID:28071969

  12. Involvement of PKC and ROS in the cytotoxic mechanism of anti-leukemic decursin and its derivatives and their structure-activity relationship in human K562 erythroleukemia and U937 myeloleukemia cells.

    PubMed

    Kim, Hyeon Ho; Sik Bang, Sung; Seok Choi, Jin; Han, Hogyu; Kim, Ik-Hwan

    2005-06-08

    Protein kinase C (PKC) plays an important role in the proliferation and differentiation of various cell types including normal and leukemic hematopoietic cells. Recently, various PKC modulators were used as a chemotherapeutic agent of leukemia. Decursin (1), a pyranocoumarin from Angelica gigas, exhibits the cytotoxic effects on various human cancer cell lines and in vitro PKC activation. For the development of more effective anticancer agents with PKC modulation activity, 11 decursin derivatives 2-12 were chemically synthesized and evaluated for their ability to act as a tumor-suppressing PKC activator and as an antagonist to phorbol 12-myristate 13-acetate (PMA), a tumor-promoting PKC activator. In the presence of phosphatidylserine (PS), all of 12 compounds 1-12 activated PKC (mainly alpha, beta, and gamma isozymes) but only three compounds 1-3 activated PKC even in the absence of PS. Six compounds 1-6 containing the coumarin structure were cytotoxic to human K562 erythroleukemia and U937 myeloleukemia cells. A cytotoxic mechanism of decursin and its derivatives was investigated using TUR cells, a PKC betaII-deficient variant of U937 cells. Among six compounds 1-6 with cytotoxicity to K562 and U937 leukemia cells, only three compounds 1-3 were cytotoxic to TUR cells. Therefore, compounds 1-3 and 4-6 inhibit the proliferation of leukemia cells in a PKC betaII-independent and dependent manner, respectively, indicating that the side chain of compounds determines the dependency of their cytotoxicity on PKC betaII. To further elucidate the cytotoxic mechanism of compounds 1 and 2, levels of PKC isozymes and generation of reactive oxygen species (ROS) were investigated. Compounds 1-2 induced the down-regulation of PKC alpha and betaII in K562 cells and the production of ROS in U937 cells. Thus, PKC and ROS are probably important factors in the cytotoxic mechanism of compounds 1-2. From these results, the structure-activity relationship of decursin and its derivatives

  13. Calcium and the heat-shock response in the human monocytic line U-937.

    PubMed

    Kantengwa, S; Capponi, A M; Bonventre, J V; Polla, B S

    1990-07-01

    In the human monocytic line U-937, 1,25-dihydroxyvitamin D3 [1,25-(OH)2D3] increases cytosolic free calcium concentration ([Ca2+]i). 1,25-(OH)2D3 also enhances the synthesis of heat-shock proteins (HSPs) when U-937 cells are exposed to elevated temperatures. To establish whether these two effects of 1,25-(OH)2D3 are related, we examined the effects of calcium on the heat-shock (HS) response, as well as the influence of 1,25-(OH)2D3 on this system. The equilibrium dissociation constant (Kd) of the fluorescent probe used to measure [Ca2+]i, fura-2, at 37 and 45 degrees C was found to be 191 and 234 nM, respectively. Exposure of U-937 cells to 45 degrees C did not increase [Ca2+]i under conditions in which active efflux of the dye was prevented by the organic anion transport inhibitor probenecid (1 mM). In cells preincubated in calcium-free medium, with subsequent addition of 4 mM EGTA before HS, or exposed to the calmodulin antagonist N-(6-aminohexyl)-5-chloro-1-naphthalene sulfonamide (W-7), the increase in HSPs synthesis was not affected. Cell viability, assessed by [3H]thymidine uptake, was not different between cells exposed to HS in calcium-containing or calcium-free media. Moreover, the effects of 1,25-(OH)2D3 on the HS response were also observed in a calcium-depleted medium, indicating that the effects of 1,25-(OH)2D3 on HSP synthesis were not mediated by [Ca2+]i.

  14. Pentoxifylline and the proteasome inhibitor MG132 induce apoptosis in human leukemia U937 cells through a decrease in the expression of Bcl-2 and Bcl-XL and phosphorylation of p65.

    PubMed

    Bravo-Cuellar, Alejandro; Hernández-Flores, Georgina; Lerma-Díaz, José Manuel; Domínguez-Rodríguez, Jorge Ramiro; Jave-Suárez, Luis F; De Célis-Carrillo, Ruth; Aguilar-Lemarroy, Adriana; Gómez-Lomeli, Paulina; Ortiz-Lazareno, Pablo Cesar

    2013-02-28

    In Oncology, the resistance of the cancerous cells to chemotherapy continues to be the principal limitation. The nuclear factor-kappa B (NF-κB) transcription factor plays an important role in tumor escape and resistance to chemotherapy and this factor regulates several pathways that promote tumor survival including some antiapoptotic proteins such as Bcl-2 and Bcl-XL. In this study, we investigated, in U937 human leukemia cells, the effects of PTX and the MG132 proteasome inhibitor, drugs that can disrupt the NF-κB pathway. For this, we evaluated viability, apoptosis, cell cycle, caspases-3, -8, -9, cytochrome c release, mitochondrial membrane potential loss, p65 phosphorylation, and the modification in the expression of pro- and antiapoptotic genes, and the Bcl-2 and Bcl-XL antiapoptotic proteins. The two drugs affect the viability of the leukemia cells in a time-dependent manner. The greatest percentage of apoptosis was obtained with a combination of the drugs; likewise, PTX and MG132 induce G1 phase cell cycle arrest and cleavage of caspases -3,-8, -9 and cytochrome c release and mitochondrial membrane potential loss in U937 human leukemia cells. In these cells, PTX and the MG132 proteasome inhibitor decrease p65 (NF-κB subunit) phosphorylation and the antiapoptotic proteins Bcl-2 and Bcl-XL. We also observed, with a combination of these drugs overexpression of a group of the proapoptotic genes BAX, DIABLO, and FAS while the genes BCL-XL, MCL-1, survivin, IκB, and P65 were downregulated. The two drugs used induce apoptosis per se, this cytotoxicity was greater with combination of both drugs. These observations are related with the caspases -9, -3 cleavage and G1 phase cell cycle arrest, and a decrease in p65 phosphorylation and Bcl-2 and Bcl-XL proteins. As well as this combination of drugs promotes the upregulation of the proapoptotic genes and downregulation of antiapoptotic genes. These observations strongly confirm antileukemic potential.

  15. New Approach in Translational Medicine: Effects of Electrolyzed Reduced Water (ERW) on NF-κB/iNOS Pathway in U937 Cell Line under Altered Redox State

    PubMed Central

    Franceschelli, Sara; Gatta, Daniela Maria Pia; Pesce, Mirko; Ferrone, Alessio; Patruno, Antonia; de Lutiis, Maria Anna; Grilli, Alfredo; Felaco, Mario; Croce, Fausto; Speranza, Lorenza

    2016-01-01

    It is known that increased levels of reactive oxygen species (ROS) and reactive nitrogen species (RNS) can exert harmful effects, altering the cellular redox state. Electrolyzed Reduced Water (ERW) produced near the cathode during water electrolysis exhibits high pH, high concentration of dissolved hydrogen and an extremely negative redox potential. Several findings indicate that ERW had the ability of a scavenger free radical, which results from hydrogen molecules with a high reducing ability and may participate in the redox regulation of cellular function. We investigated the effect of ERW on H2O2-induced U937 damage by evaluating the modulation of redox cellular state. Western blotting and spectrophotometrical analysis showed that ERW inhibited oxidative stress by restoring the antioxidant capacity of superoxide dismutase, catalase and glutathione peroxidase. Consequently, ERW restores the ability of the glutathione reductase to supply the cell of an important endogenous antioxidant, such as GSH, reversing the inhibitory effect of H2O2 on redox balance of U937 cells. Therefore, this means a reduction of cytotoxicity induced by peroxynitrite via a downregulation of the NF-κB/iNOS pathway and could be used as an antioxidant for preventive and therapeutic application. In conclusion, ERW can protect the cellular redox balance, reducing the risk of several diseases with altered cellular homeostasis such as inflammation. PMID:27598129

  16. Anti-CHMP5 single chain variable fragment antibody retrovirus infection induces programmed cell death of AML leukemic cells in vitro.

    PubMed

    Wang, Hai-rong; Xiao, Zhen-yu; Chen, Miao; Wang, Fei-long; Liu, Jia; Zhong, Hua; Zhong, Ji-hua; Ou-Yang, Ren-rong; Shen, Yan-lin; Pan, Shu-ming

    2012-06-01

    Over-expressed CHMP5 was found to act as oncogene that probably participated in leukemogenesis. In this study, we constructed the CHMP5 single chain variable fragment antibody (CHMP5-scFv) retrovirus and studied the changes of programmed cell death (PCD) of AML leukemic cells after infection by the retrovirus. The anti-CHMP5 KC14 hybridoma cell line was constructed to generate monoclonal antibody of CHMP5. The protein expression of CHMP5 was studied using immunofluorescence analysis. pMIG-CHMP5 scFv antibody expressible retroviral vector was constructed to prepare CHMP5-scFv retrovirus. AML leukemic U937 cells were infected with the retrovirus, and programmed cell death was studied using confocal microscope, FCM and Western blot. We obtained a monoclonal antibody of CHMP5, and found the expression of CHMP5 was up-regulated in the leukemic cells. After U937 cells were infected with CHMP5-scFv retrovirus, CHMP5 protein was neutralized. Moreover, the infection resulted in a significant increase in apoptosis and necrosis of U937 cells. In U937 cells infected with CHMP5-scFv retrovirus, apoptosis-inducing factor (AIF)-mediated caspase-independent necrotic PCD was activated, but autophagic programmed cell death was not observed. Neither the intrinsic nor extrinsic apoptotic PCD pathway was activated. The granzyme B/perforin-mediated caspase-dependent apoptotic PCD pathway was not activated. CHMP5-scFv retrovirus can neutralize the abnormally high levels of the CHMP5 protein in the cytosol of AML leukemic U937 cells, thereby inducing the programmed cell death of the leukemic cells via AIF-mediated caspase-independent necrosis and apoptosis.

  17. HSV-1-induced activation of NF-κB protects U937 monocytic cells against both virus replication and apoptosis

    PubMed Central

    Marino-Merlo, Francesca; Papaianni, Emanuela; Medici, Maria Antonietta; Macchi, Beatrice; Grelli, Sandro; Mosca, Claudia; Borner, Christoph; Mastino, Antonio

    2016-01-01

    The transcription factor nuclear factor-kappa B (NF-κB) is a crucial player of the antiviral innate response. Intriguingly, however, NF-κB activation is assumed to favour herpes simplex virus (HSV) infection rather than restrict it. Apoptosis, a form of innate response to viruses, is completely inhibited by HSV in fully permissive cells, but not in cells incapable to fully sustain HSV replication, such as immunocompetent cells. To resolve the intricate interplay among NF-κB signalling, apoptosis and permissiveness to HSV-1 in monocytic cells, we utilized U937 monocytic cells in which NF-κB activation was inhibited by expressing a dominant-negative IκBα. Surprisingly, viral production was increased in monocytic cells in which NF-κB was inhibited. Moreover, inhibition of NF-κB led to increased apoptosis following HSV-1 infection, associated with lysosomal membrane permeabilization. High expression of late viral proteins and induction of apoptosis occurred in distinct cells. Transcriptional analysis of known innate response genes by real-time quantitative reverse transcription-PCR excluded a contribution of the assayed genes to the observed phenomena. Thus, in monocytic cells NF-κB activation simultaneously serves as an innate process to restrict viral replication as well as a mechanism to limit the damage of an excessive apoptotic response to HSV-1 infection. This finding may clarify mechanisms controlling HSV-1 infection in monocytic cells. PMID:27584793

  18. NFκB- and AP-1-mediated DNA looping regulates matrix metalloproteinase-9 transcription in TNF-α-treated human leukemia U937 cells.

    PubMed

    Chen, Ying-Jung; Chang, Long-Sen

    2015-10-01

    The aim of this study is to explore the spatial association of critical genomic elements in the effect of TNF-α on matrix metalloproteinase-9 (MMP-9) expression in human leukemia U937 cells. TNF-α up-regulated MMP-9 protein expression and mRNA level in U937 cells, and Akt-mediated-NFκB/p65 activation and JNK-mediated c-Jun activation were proven to be involved in TNF-α-induced MMP-9 up-regulation. Promoter luciferase activity assay revealed that NFκB (nt-600) and AP-1 (nt-79) binding sites were crucial for TNF-α-induced transcription of MMP-9 gene. The results of a chromatin immunoprecipitation assay indicated that TNF-α reduced histone deacetylase-1 (HDAC-1) recruitment but increased p300 (a histone acetyltransferase) recruitment to MMP-9 promoter regions surrounding NFκB and AP-1 binding sites. Consistently, TNF-α increased enrichment of the acetylated histone H3 mark on MMP-9 promoter regions. DNA affinity purification assay revealed that p300 and HDAC1 could bind oligonucleotides containing AP-1/c-Jun and NFκB/p65 binding sites. Chromosome conformation capture assay showed that TNF-α stimulated chromosomal loops in the MMP-9 promoter via NFκB/p65 and AP-1/c-Jun. The p300-associated acetyltransferase activity was crucial for p65/c-Jun-mediated DNA looping, and inhibition of HDAC activity increased the level of DNA looping. Reduction in the level of DNA looping eliminated all TNF-α-stimulated MMP-9 up-regulation. Taken together, our data suggest that p65/c-Jun-mediated DNA looping is involved in TNF-α-induced MMP-9 up-regulation and that the recruitment of p300 or HDAC1 to NFκB and AP-1 binding sites modifies the level of DNA looping. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Effects of an inhibitor of tripeptidyl peptidase II (Ala-Ala-Phe-chloromethylketone) and its combination with an inhibitor of the chymotrypsin-like activity of the proteasome (PSI) on apoptosis, cell cycle and proteasome activity in U937 cells.

    PubMed

    Bury, M; Młynarczuk, I; Pleban, E; Hoser, G; Kawiak, J; Wójcik, C

    2001-01-01

    AAF-AMC is not a specific TPP II substrate, since it is also hydrolyzed by purified proteasomes. Moreover, AAF-cmk, claimed to be a specific TPP II inhibitor, also inhibits the chymotrypsin-like activity of the proteasome. While AAF-cmk itself is mildly cytostatic to U-937 cells and induces cell cycle block in G1, its combination with PSI does not induce an increase in the cytostatic/cytotoxic effects. This suggests that TPP II is possibly less important for cell metabolism than it was previously believed and it is less probable that it can be able to fully compensate for the loss of the proteasome function.

  20. Effects of Liposomal Compositions with Oxidized Dextrans on Functional Activity of U937 Macrophage-Like Cells In Vitro.

    PubMed

    Kozhin, P M; Chechushkov, A V; Zaitseva, N S; Lemza, A E; Men'shchikova, E B; Troitskii, A V; Shkurupy, V A

    2015-11-01

    We studied the effects of liposomal pharmaceutical compositions with oxidized dextrans on functional activity of U937 monocyte/macrophage-like cells. Liposomes in the emulsion contained oxidized dextran with a molecular weights of 40 kDa or 70 kDa or isonicotinic acid hydrazide (INAH) conjugated with oxidized dextran (40 kDa). Cell viability was evaluated by MTT test; mitochondrial transmembrane potential and production of superoxide anion and H2O2 were studied by fluorescent methods. The studied compositions exhibited no cytotoxic effect and even improved cell viability and mitochondrial respiration. Liposomes with oxidized 40 kDa dextran, including those with INAH-conjugated dextran, inhibited production of superoxide anion, but increased H2O2 generation.

  1. Synthesis of a Novel Series of 2-Methylsulfanyl Fatty Acids and their Toxicity on the Human K-562 and U-937 Leukemia Cell Lines

    PubMed Central

    Carballeira, Néstor M.; Miranda, Carlos; Orellano, Elsie A.; González, Fernando A.

    2006-01-01

    The hitherto unknown 2-methylsulfanyldecanoic acid and 2-methylsulfanyldodecanoic acid were synthesized from methyl decanoate and methyl dodecanoate, respectively, through the reaction of lithium diisopropylamide and dimethyldisulfide in THF followed by saponification with potassium hydroxide in ethanol. Both α-methylsulfanylated FA were cytotoxic to the human chronic myelogenous leukemia K-562 and the human histiocytic lymphoma U-937 cell lines with EC50 values in the 200-300 μM range, which makes them more cytotoxic to these cell lines than either decanoic acid or dodecanoic acid. The cytotoxicity of the studied FA towards K-562 followed the order: 2-SCH3-12:0 > 2-SCH3-10:0 > 10:0 > 12:0 > 2-OCH3-12:0, while towards U-937 the cytotoxicity was found to be: 2-SCH3-10:0 > 2-SCH3-12:0 > 12:0 > 10:0 > 2-OCH3-12:0. These results indicate that the α-methylsulfanyl substitution increases the cytotoxicity of the C10 and C12 fatty acids towards the studied leukemia cell lines. PMID:16382579

  2. Distinct MAPK signaling pathways, p21 up-regulation and caspase-mediated p21 cleavage establishes the fate of U937 cells exposed to 3-hydrogenkwadaphnin: Differentiation versus apoptosis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moosavi, Mohammad Amin; Yazdanparast, Razieh

    2008-07-01

    Despite the depth of knowledge concerning the pathogenesis of acute myeloblastic leukemia (AML), long-term survival remains unresolved. Therefore, new agents that act more selectively and more potently are required. In that line, we have recently characterized a novel diterpene ester, called 3-hydrogenkwadaphnin (3-HK), with capability to induce both differentiation and apoptosis in various leukemia cell lines. These effects of 3-HK were mediated through inhibition of inosine 5'-monophosphate dehydrogenase, a selective up-regulated enzyme in cancerous cells, especially leukemia. However, it remains elusive to understand how cells display different fates in response to 3-HK. Here, we report the distinct molecular signaling pathwaysmore » involved in forcing of 3-HK-treated U937 cells to undergo differentiation and apoptosis. After 3-HK (15 nM) treatment, a portion of U937 cells adhered to the culture plates and showed macrophage criteria while others remained in suspension and underwent apoptosis. The differentiated cells arrested in G{sub 0}/G{sub 1} phase of cell cycle and showed early activation of ERK1/2 pathway (3 h) along with ERK-dependent p21{sup Cip/WAF1} (p21) up-regulation and expression of p27{sup Kip1} and Bcl-2. In contrast, the suspension cells underwent apoptosis through Fas/FasL and mitochondrial pathways. The occurrence of apoptosis in these cells were accompanied with caspase-8-mediated p21 cleavage and delayed activation (24 h) of JNK1/2 and p38 MAPK. Taken together, these results suggest that distinct signaling pathways play a pivotal role in fates of drug-treated leukemia cells, thus this may pave some novel therapeutical utilities.« less

  3. Apigenin induces apoptosis in human leukemia cells and exhibits anti-leukemic activity in vivo via inactivation of Akt and activation of JNK

    PubMed Central

    Budhraja, Amit; Gao, Ning; Zhang, Zhuo; Son, Young-Ok; Cheng, Senping; Wang, Xin; Ding, Songze; Hitron, Andrew; Chen, Gang; Luo, Jia; Shi, Xianglin

    2015-01-01

    In this study, we investigated the functional role of Akt and JNK signaling cascades in apigenin-induced apoptosis in U937 human leukemia cells and anti-leukemic activity of apigenin in vivo. Apigenin-induced apoptosis by inactivation of Akt with a concomitant activation of JNK, Mcl-1 and Bcl-2 down-regulation, cytochrome c release from mitochondria and activation of caspases. Constitutively active myristolated Akt prevented apigenin-induced JNK, caspases activation, and apoptosis. Conversely, LY294002 and a dominant negative construct of Akt potentiated apigenin-induced apoptosis in leukemia cells. Interruption of JNK pathway showed marked reduction in apigenin-induced caspases activation and apoptosis in leukemia cells. Furthermore, in vivo administration of apigenin resulted in attenuation of tumor growth in U937 xenografts accompanied inactivation of Akt and activation of JNK. Attenuation of tumor growth in U937 xenografts by apigenin raises the possibility that apigenin may have clinical implications and can be further tested for incorporating in leukemia treatment regimens. PMID:22084167

  4. Unidirectional Flux Balance of Monovalent Ions in Cells with Na/Na and Li/Na Exchange: Experimental and Computational Studies on Lymphoid U937 Cells

    PubMed Central

    Vereninov, Igor A.; Yurinskaya, Valentina E.; Model, Michael A.; Vereninov, Alexey A.

    2016-01-01

    Monovalent ion traffic across the cell membrane occurs via various pathways. Evaluation of individual fluxes in whole cell is hampered by their strong interdependence. This difficulty can be overcome by computational analysis of the whole cell flux balance. However, the previous computational studies disregarded ion movement of the self-exchange type. We have taken this exchange into account. The developed software allows determination of unidirectional fluxes of all monovalent ions via the major pathways both under the balanced state and during transient processes. We show how the problem of finding the rate coefficients can be solved by measurement of monovalent ion concentrations and some of the fluxes. Interdependence of fluxes due to the mandatory conditions of electroneutrality and osmotic balance and due to specific effects can be discriminated, enabling one to identify specific changes in ion transfer machinery under varied conditions. To test the effectiveness of the developed approach we made use of the fact that Li/Na exchange is known to be an analogue of the coupled Na/Na exchange. Thus, we compared the predicted and experimental data obtained on U937 cells under varied Li+ concentrations and following inhibition of the sodium pump with ouabain. We found that the coupled Na/Na exchange in U937 cells comprises a significant portion of the entire Na+ turnover. The data showed that the loading of the sodium pump by Li/Na exchange involved in the secondary active Li+ transport at 1–10 mM external Li+ is small. This result may be extrapolated to similar Li+ and Na+ flux relationships in erythrocytes and other cells in patients treated with Li+ in therapeutic doses. The developed computational approach is applicable for studying various cells and can be useful in education for demonstrating the effects of individual transporters and channels on ion gradients, cell water content and membrane potential. PMID:27159324

  5. Synergistic in-vitro effects of combining an antiglycolytic, 3-bromopyruvate, and a bromodomain-4 inhibitor on U937 myeloid leukemia cells.

    PubMed

    Kapp, Nicolette; Stander, Xiao X; Stander, Barend A

    2018-06-01

    This project investigated the in-vitro effects of a glycolytic inhibitor, 3-bromopyruvate (3-BrP), in combination with and a new in silico-designed inhibitor of the bromodomain-4 (BRD-4) protein, ITH-47, on the U937 acute myeloid leukemia cell line. 3-BrP is an agent that targets the altered metabolism of cancer cells by interfering with glucose metabolism in the glycolytic pathway. ITH-47 is an acetyl-lysine inhibitor that displaces bromdomain 4 proteins from chromatin by competitively binding to the acetyl-lysine recognition pocket of this bromodomain and extraterminal (BET) BRD protein, thereby preventing transcription of cancer-associated genes and further cell growth. Cell growth studies determined the IC50 after 48 h exposure for 3-BrP and ITH-47 to be 6 and 2 μmol/l, respectively. When combined, 2.4 and 1 μmol/l of 3-BrP and ITH-47, respectively, inhibited 50% of the cell population, yielding a synergistic combination index of 0.9. Subsequent mechanistic studies showed that the IC50 concentrations of ITH-47 and 3-BrP and the combination increased observable apoptotic bodies and cell shrinkage in U937 cells treated for 48 h. Cell cycle analysis showed an increase in the sub-G1 fraction in all treated cells, suggesting that cell death was increased in the treated samples. Annexin-V-FITC apoptosis analysis showed a statistically significant increase in the number of cells in early and late apoptosis, indicating that cell death occurred through apoptosis and not necrosis. Only U937 cells exposed to ITH-47 showed a decrease in mitochondrial membrane potential compared with the vehicle control. Reactive oxygen species production was decreased in all treated samples. ITH-47-exposed cells showed a decrease in c-Myc, Bcl-2, and p53 gene expressions. 3-BrP-treated cells showed an increase in c-myc and p53 gene expressions. The combination of ITH-47 and 3-BrP lead to downregulation of c-myc and Bcl-2 genes. ITH-47 exposure conditions yielded a marked decrease

  6. A comparative study of U937 cell size changes during apoptosis initiation by flow cytometry, light scattering, water assay and electronic sizing.

    PubMed

    Yurinskaya, Valentina; Aksenov, Nikolay; Moshkov, Alexey; Model, Michael; Goryachaya, Tatyana; Vereninov, Alexey

    2017-10-01

    A decrease in flow cytometric forward light scatter (FSC) is commonly interpreted as a sign of apoptotic cell volume decrease (AVD). However, the intensity of light scattering depends not only on the cell size but also on its other characteristics, such as hydration, which may affect the scattering in the opposite way. That makes estimation of AVD by FSC problematic. Here, we aimed to clarify the relationship between light scattering, cell hydration (assayed by buoyant density) and cell size by the Coulter technique. We used human lymphoid cells U937 exposed to staurosporine, etoposide or hypertonic stress as an apoptotic model. An initial increase in FSC was found to occur in apoptotic cells treated with staurosporine and hypertonic solutions; it is accompanied by cell dehydration and is absent in apoptosis caused by etoposide that is consistent with the lack of dehydration in this case. Thus, the effect of dehydration on the scattering signal outweighs the effect of reduction in cell size. The subsequent FSC decrease, which occurred in parallel to accumulation of annexin-positive cells, was similar in apoptosis caused by all three types of inducers. We conclude that an increase, but not a decrease in light scattering, indicates the initial cell volume decrease associated with apoptotic cell dehydration.

  7. Diterpenes from Xylopia langsdorffiana inhibit cell growth and induce differentiation in human leukemia cells.

    PubMed

    Castello Branco, Marianna V S; Anazetti, Maristella C; Silva, Marcelo S; Tavares, Josean F; Diniz, Margareth F F Melo; Frungillo, Lucas; Haun, Marcela; Melo, Patrícia S

    2009-01-01

    Two new diterpenes were isolated from stems and leaves of Xylopia langsdorffiana, ent-atisane-7alpha,16alpha-diol (xylodiol) and ent-7alpha-acetoxytrachyloban-18-oic acid (trachylobane), along with the known 8(17),12E,14-labdatrien-18-oic acid (labdane). We investigated their antitumour effects on HL60, U937 and K562 human leukemia cell lines. We found that xylodiol was the most potent diterpene in inhibiting cell proliferation of HL60, U937 and K562 cells, with mean IC50 values of 90, 80 and 50 microM, respectively. Based on the nitroblue tetrazolium (NBT) reduction assay, all the diterpenes were found to induce terminal differentiation in HL60 and K562 cells, with xylodiol being the most effective. NBT reduction was increased by almost 120% after 12 h exposure of HL60 cells to xylodiol at a concentration lower than the IC50 (50 microM). Thus, xylodiol inhibited human leukemia cell growth in vitro partly by inducing cell differentiation, and merits further studies to examine its mechanism of action as a potential antitumoural agent.

  8. Enhanced phosphorylation of STAT1 is dependent on PKR signaling in HLA-B27 expressing U937 monocytic cells

    PubMed Central

    Ruuska, Marja; Sahlberg, Anna S.; Colbert, Robert A.; Granfors, Kaisa; Penttinen, Markus A.

    2011-01-01

    Objective To study the phosphorylation of STAT1 in HLA-B27-transfected human monocytic cells and the role of signaling molecules PKR and p38 in STAT1 phosphorylation. Methods U937 human monocytic cell transfectants stably expressing wild type HLA-B27 or mutated HLA-B27 heavy chains (HC) with amino acid substitutions in the B pocket were prepared. Mock transfected cells were prepared using the antibiotic resistance vectors (pSV2neo or RSV5neo) alone. PMA differentiated cells were stimulated with LPS or infected with S. enteritidis. Western blotting and flow cytometry were used to detect the phosphorylation and expression levels of STAT1 protein. Specific inhibitors were added in cell culture to study the role of PKR and p38 on STAT1 phosphorylation. Results STAT1 is constitutively highly phosphorylated on tyrosine 701 residue in HLA-B27 positive monocytic cells when compared to control cells, even prior to stimulation with LPS or bacteria. This phenotype is associated with the expression of HLA-B27 HCs that misfold. In addition, phosphorylation of STAT1 is dependent on PKR. Conclusion Our results show that STAT1 tyrosine 701 is constitutively highly phosphorylated in HLA-B27 expressing monocyte-macrophage cell line. Since phosphorylation of tyrosine 701 on STAT1 is sufficient to induce interferon-dependent genes, constitutive activity of this phosphorylation site may lead to overexpression of interferon-dependent genes, as well as other STAT1-dependent genes, in HLA-B27 monocyte-macrophages. Our results offer a mechanism by which B27 expression alone, without any external trigger, is potentially capable of inducing activation of STAT1, a critical regulator of the inflammatory response. PMID:21968657

  9. Comparison of Virulence of Legionella longbeachae Strains in Guinea Pigs and U937 Macrophage-Like Cells

    PubMed Central

    Doyle, Robyn M.; Cianciotto, Nicholas P.; Banvi, Shaila; Manning, Paul A.; Heuzenroeder, Michael W.

    2001-01-01

    A guinea pig model of experimental legionellosis was established for assessment of virulence of isolates of Legionella longbeachae. The results showed that there were distinct virulence groupings of L. longbeachae serogroup 1 strains based on the severity of disease produced in this model. Statistical analysis of the animal model data suggests that Australian isolates of L. longbeachae may be inherently more virulent than non-Australian strains. Infection studies performed with U937 cells were consistent with the animal model studies and showed that isolates of this species were capable of multiplying within these phagocytic cells. Electron microscopy studies of infected lung tissue were also undertaken to determine the intracellular nature of L. longbeachae serogroup 1 infection. The data showed that phagosomes containing virulent L. longbeachae serogroup 1 appeared bloated, contained cellular debris and had an apparent rim of ribosomes while those containing avirulent L. longbeachae serogroup 1 were compact, clear and smooth. PMID:11500403

  10. Hyaluronan inhibits prostaglandin E2 production via CD44 in U937 human macrophages.

    PubMed

    Yasuda, Tadashi

    2010-03-01

    Prostaglandin E(2) (PGE(2)) is one of the key mediators of inflammation in affected joints of rheumatoid arthritis (RA). Intra-articular injection of high molecular weight hyaluronan (HA) into RA knee joints relieves arthritic pain. Although HA has been shown to inhibit PGE(2) production in cytokine-stimulated synovial fibroblasts, it remains unclear how HA suppresses PGE(2) production in activated cells. Furthermore, HA effect on macrophages has rarely been investigated in spite of their contribution to RA joint pathology. This study was aimed to investigate the inhibitory mechanism of HA on lipopolysaccharide (LPS)-stimulated PGE(2) production in U937 human macrophages. Stimulation of U937 macrophages with LPS enhanced PGE(2) production in association with increased protein levels of cyclooxygenase-2 (COX-2). Pretreatment with HA of 2,700 kDa resulted in suppression of the LPS-mediated induction of COX-2, leading to a decrease in PGE(2) production. Likewise, the LPS-stimulated PGE(2) production was inhibited by the pretreatment with a specific COX2 inhibitor, NS-398, or a specific inhibitor of nuclear factor (NF)-kappaB, BAY11-7085. HA also decreased the degree of phosphorylation and nuclear translocation of NF-kappaB enhanced by LPS. Fluorescence cytochemistry demonstrated that HA bound to CD44, the principal HA receptor, on U937 macrophages. Anti-CD44 antibody reversed the inhibitory effects of HA on the LPS-mediated increase in PGE(2) production, COX-2 induction, and activation of NF-kappaB. These results indicate that HA suppresses the LPS-stimulated PGE(2) production via CD44 through down-regulation of NF-kappaB. Administration of HA into RA joints may decrease PGE(2) production by activated macrophages, which could result in improvement of arthritic pain.

  11. Combination of doxorubicin and low-intensity ultrasound causes a synergistic enhancement in cell killing and an additive enhancement in apoptosis induction in human lymphoma U937 cells.

    PubMed

    Yoshida, Toru; Kondo, Takashi; Ogawa, Ryohei; Feril, Loreto B; Zhao, Qing-Li; Watanabe, Akihiko; Tsukada, Kazuhiro

    2008-04-01

    Potential clinical use of ultrasound (US) in enhancing the effects of anticancer drugs in the treatment of cancers has been highlighted in previous reports. Increased uptake of drugs by the cancer cells due to US has been suggested as a mechanism. However, the precise mechanism of the enhancement has not yet been elucidated. Here, the combined effects of low-intensity pulsed US and doxorubicin (DOX) on cell killing and apoptosis induction of U937 cells, and mechanisms involved were investigated. Human myelomonocytic lymphoma U937 cells were used for the experiments. Experiments were conducted in 4 groups: (1) non-treated, (2) DOX treated (DOX), (3) US treated (US), and (4) combined (DOX + US). In DOX +US, cells were exposed to 5 microM DOX for 30 min and sonicated by 1 MHz pulsed US (PRF 100 Hz, DF 10%) at intensities of 0.2-0.5 W/cm(2) for 60 s. The cells were washed and incubated for 6 h. The viability was evaluated by Trypan blue dye exclusion test and apoptosis and incorporation of DOX was assessed by flow cytometry. Involvement of sonoporation in molecular incorporation was evaluated using FITC-dextran, hydroxyl radical formation was measured by electron paramagnetic resonance-spin trapping, membrane alteration including lipid peroxidation and membrane fluidity by DOX was evaluated using cis-parinaric acid and perylene fluorescence polarization method, respectively. Synergistic enhancement in cell killing and additive enhancement in induction of apoptosis were observed at and above 0.3 W/cm(2). No enhancement was observed at 0.2 W/cm(2) in cell killing and induction of apoptosis. Hydroxyl radicals formation was detected at and above 0.3 W/cm(2). The radicals were produced more in the DOX + US than US alone. Incorporation of DOX was increased 13% in DOX + US (vs. DOX) at 0.5 W/cm(2). Involvement of sonoporation for increase of drug uptake was suggested by experiment using FITC-labeled dextran. We made the hypothesis that DOX treatment made the cells weaken

  12. Chronic effects of ethanol and/or darunavir/ritonavir on U937 monocytic cells: Regulation of cytochrome P450 and antioxidant enzymes, oxidative stress, and cytotoxicity

    PubMed Central

    Rao, P.S.S.; Kumar, Santosh

    2015-01-01

    Background Our recent study has shown that acute treatment with ethanol increases oxidative stress and cytotoxicity through cytochrome P450 2E1 (CYP2E1)-mediated pathway in U937 monocytic cells. U937 cells are derived from blood monocytes and are considered as the model system for HIV-related study. Since the prevalence of alcohol use in HIV-infected population is high, and HIV+ patients are on antiretroviral therapy (ART) soon after they are diagnosed, it is important to study the interactions between ethanol and ART in monocytes. Methods This study examined the chronic effects of ethanol and ART (darunavir/ritonavir), alone and in combination, on expression/levels of cytochrome P450 enzymes (CYPs), antioxidant enzymes (AOEs), reactive oxygen species (ROS), and cytotoxicity in U937 cells. The mRNA and protein levels were measured using quantitative RTPCR and Western blot, respectively. ROS and cytotoxicity were measured using flow cytometry and XTT assay, respectively. Results While chronic ART treatment increased CYP2E1 protein expression by 2-fold, ethanol and ethanol+ART increased CYP2E1 by ~5-fold. In contrast, ART and ethanol treatments decreased CYP3A4 protein expression by 38±17% and 74±15%, respectively, and the combination additively decreased CYP3A4 level by 90±8%. Expressions of superoxide dismutase (SOD1) and peroxiredoxin (PRDX6) were decreased by both ethanol and ART, however, the expressions of SOD2 and catalase were unaltered. These results suggested increased ethanol metabolism, increased ART accumulation, and decreased defense against ROS. Therefore, we determined the effects of ethanol and ART on ROS and cytotoxicity. While ART showed a slight increase, ethanol and ethanol+ART displayed significant increase in ROS and cytotoxicity. Moreover, the combination showed additive effects on ROS and cytotoxicity. Conclusions These results suggest that chronic ethanol, in the absence and presence of ART, increases ROS and cytotoxicity in monocytes

  13. SIRT6 Is a Positive Regulator of Aldose Reductase Expression in U937 and HeLa cells under Osmotic Stress: In Vitro and In Silico Insights

    PubMed Central

    Timucin, Ahmet Can; Basaga, Huveyda

    2016-01-01

    SIRT6 is a protein deacetylase, involved in various intracellular processes including suppression of glycolysis and DNA repair. Aldose Reductase (AR), first enzyme of polyol pathway, was proposed to be indirectly associated to these SIRT6 linked processes. Despite these associations, presence of SIRT6 based regulation of AR still remains ambiguous. Thus, regulation of AR expression by SIRT6 was investigated under hyperosmotic stress. A unique model of osmotic stress in U937 cells was used to demonstrate the presence of a potential link between SIRT6 and AR expression. By overexpressing SIRT6 in HeLa cells under hyperosmotic stress, its role on upregulation of AR was revealed. In parallel, increased SIRT6 activity was shown to upregulate AR in U937 cells under hyperosmotic milieu by using pharmacological modulators. Since these modulators also target SIRT1, binding of the inhibitor, Ex-527, specifically to SIRT6 was analyzed in silico. Computational observations indicated that Ex-527 may also target SIRT6 active site residues under high salt concentration, thus, validating in vitro findings. Based on these evidences, a novel regulatory step by SIRT6, modifying AR expression under hyperosmotic stress was presented and its possible interactions with intracellular machinery was discussed. PMID:27536992

  14. Macrophage differentiation induced by PMA is mediated by activation of RhoA/ROCK signaling.

    PubMed

    Yang, Lifeng; Dai, Fan; Tang, Lian; Le, Yulan; Yao, Wenjuan

    2017-01-01

    In order to investigate the effects of RhoA/ROCK signaling in macrophage differentiation, we used 100 ng/mL PMA to induce macrophage differentiation from U937 cells in vitro. The observation of cell morphology and the expression of CD68 and SR-A were performed to confirm the differentiation induced by PMA. Western blot analysis showed that the expression of ROCK1 and ROCK2 and the phosphorylation of MYPT1 were significantly increased after PMA treatment. Pulldown assay showed that the activation of RhoA was obviously enhanced when U937 cells were treated with PMA. In order to further demonstrate whether RhoA/ROCK signaling could mediate the macrophage differentiation induced by PMA, we successfully suppressed the expression of RhoA, ROCK1 and ROCK2 by performing siRNA technology in U937 cells, respectively. The macrophage differentiation and the expression of CD68 and SR-A were significantly inhibited by the suppression of RhoA, ROCK1 or ROCK2 in PMA-induced U937 cells, indicating that the macrophage differentiation induced by PMA is associated with RhoA/ROCK signaling pathway. In addition, we pretreated U937 cells with Y27632 (ROCK inhibitor, 20 μM) for 30 min and then observed the macrophage differentiation induced by PMA. The result illustrated that Y27632 pretreatment obviously inhibited PMA-induced differentiation and the expression of CD68 and SR-A. In conclusion, the activation of RhoA/ROCK signaling is responsible for the macrophage differentiation induced by PMA.

  15. Effect of Bee Venom and Its Fractions on the Release of Pro-Inflammatory Cytokines in PMA-Differentiated U937 Cells Co-Stimulated with LPS

    PubMed Central

    Tusiimire, Jonans; Wallace, Jennifer; Woods, Nicola; Dufton, Mark J.; Parkinson, John A.; Abbott, Grainne; Clements, Carol J.; Young, Louise; Park, Jin Kyu; Jeon, Jong Woon; Ferro, Valerie A.; Watson, David G.

    2016-01-01

    The venom of Apis mellifera (honey bee) has been reported to play a role in immunotherapy, but existing evidence to support its immuno-modulatory claims is insufficient. Four fractions from whole bee venom (BV) were separated using medium pressure liquid chromatography. Their ability to induce the production of cytokines TNFα, IL-1β and IL-6 in phorbol-12-myristate-13-acetate (PMA)-treated U937 cells was assessed. The levels of the three cytokines produced by stimulation with the four fractions and crude BV without LPS were not significantly different from negative control values. However, co-stimulation of the cells with LPS and Fraction 4 (F-4) induced a 1.6-fold increase in TNF-α level (p < 0.05) compared to LPS alone. Likewise, LPS-induced IL-1β production was significantly synergised in the presence of F-1 (nine-fold), F-2 (six-fold), F-3 (four-fold) and F-4 (two-fold) fractions, but was only slightly enhanced with crude BV (1.5-fold) relative to LPS. Furthermore, the LPS-stimulated production of IL-6 was not significantly increased in cells co-treated with F-2 and F-3, but the organic fraction (F-4) showed an inhibitory effect (p < 0.05) on IL-6 production. The latter was elucidated by NMR spectroscopy and found to contain(Z)-9-eicosen-1-ol. The effects observed with the purified BV fractions were more marked than those obtained with the crude sample. PMID:27104574

  16. Cloning of a long HIV-1 readthrough transcript and detection of an increased level of early growth response protein-1 (Egr-1) mRNA in chronically infected U937 cells.

    PubMed

    Dron, M; Hameau, L; Benboudjema, L; Guymarho, J; Cajean-Feroldi, C; Rizza, P; Godard, C; Jasmin, C; Tovey, M G; Lang, M C

    1999-01-01

    To identify the pathways involved in HIV-1 modification of cellular gene expression, chronically infected U937 cells were screened by mRNA differential display. A chimeric transcript consisting of the 3' end of the LTR of a HIV-1 provirus, followed by 3.7 kb of cellular RNA was identified suggesting that long readthrough transcription might be one of the mechanisms by which gene expression could be modified in individual infected cells. Such a phenomenon may also be the first step towards the potential transduction of cellular sequences. Furthermore, the mRNA encoding for the transcription factor Egr-1 was detected as an over-represented transcript in infected cells. Northern blot analysis confirmed the increase of Egr-1 mRNA content in both HIV-1 infected promonocytic U937 cells and T cell lines such as Jurkat and CEM. Interestingly a similar increase of Egr-1 mRNA has previously been reported to occur in HTLV-1 and HTLV-2 infected T cell lines. Despite the consistent increase in the level of Egr-1 mRNA, the amount of the encoded protein did not appear to be modified in HIV-1 infected cells, suggesting an increased turn over of the protein in chronically infected cells.

  17. Delayed translational silencing of ceruloplasmin transcript in gamma interferon-activated U937 monocytic cells: role of the 3' untranslated region

    NASA Technical Reports Server (NTRS)

    Mazumder, B.; Fox, P. L.

    1999-01-01

    Ceruloplasmin (Cp) is an acute-phase protein with ferroxidase, amine oxidase, and pro- and antioxidant activities. The primary site of Cp synthesis in human adults is the liver, but it is also synthesized by cells of monocytic origin. We have shown that gamma interferon (IFN-gamma) induces the synthesis of Cp mRNA and protein in monocytic cells. We now report that the induced synthesis of Cp is terminated by a mechanism involving transcript-specific translational repression. Cp protein synthesis in U937 cells ceased after 16 h even in the presence of abundant Cp mRNA. RNA isolated from cells treated with IFN-gamma for 24 h exhibited a high in vitro translation rate, suggesting that the transcript was not defective. Ribosomal association of Cp mRNA was examined by sucrose centrifugation. When Cp synthesis was high, i.e., after 8 h of IFN-gamma treatment, Cp mRNA was primarily associated with polyribosomes. However, after 24 h, when Cp synthesis was low, Cp mRNA was primarily in the nonpolyribosomal fraction. Cytosolic extracts from cells treated with IFN-gamma for 24 h, but not for 8 h, contained a factor which blocked in vitro Cp translation. Inhibitor expression was cell type specific and present in extracts of human cells of myeloid origin, but not in several nonmyeloid cells. The inhibitory factor bound to the 3' untranslated region (3'-UTR) of Cp mRNA, as shown by restoration of in vitro translation by synthetic 3'-UTR added as a "decoy" and detection of a binding complex by RNA gel shift analysis. Deletion mapping of the Cp 3'-UTR indicated an internal 100-nucleotide region of the Cp 3'-UTR that was required for complex formation as well as for silencing of translation. Although transcript-specific translational control is common during development and differentiation and global translational control occurs during responses to cytokines and stress, to our knowledge, this is the first report of translational silencing of a specific transcript following cytokine

  18. Identification of 6-methylsulfinylhexyl isothiocyanate as an apoptosis-inducing component in wasabi.

    PubMed

    Watanabe, Makoto; Ohata, Masahiko; Hayakawa, Sumio; Isemura, Mamoru; Kumazawa, Shigenori; Nakayama, Tsutomu; Furugori, Michiyo; Kinae, Naohide

    2003-03-01

    The ethanol extract from Japanese horseradish wasabi was found to inhibit cell proliferation in human monoblastic leukemia U937 cells by inducing apoptotic cell death. Separation by methods including silica gel chromatography and preparative HPLC gave an active compound, which was identified as 6-methylsulfinylhexyl isothiocyanate (6-HITC). Several lines of evidence indicated that 6-HITC induced apoptosis in U937 cells and human stomach cancer MKN45 cells. Thus, 6-HITC is potentially useful as a natural anti-cancer agent.

  19. U-937 Toxicity Testing of Lunar Dust Stimulant (JSC-1A-vf)

    NASA Technical Reports Server (NTRS)

    Bales, Kristyn; Hammond, Dianne; Wallace, William; Jeevarajan, Antony

    2007-01-01

    With NASA planning to extend the human presence to the moon by 2020, the dangers of the lunar environment must be assessed and appropriate countermeasures must be developed. Possible toxic effects of the lunar dust are of particular importance to human health because of the dust's chemical composition, reactivity, and small size. This project focuses on the toxicity of lunar dust stimulant (JSC-1A-vf), in both its active and passive forms, using U-937 human monocyte cells. Simulant was mechanically activated from its passive form by grinding, and its ability to produce hydroxyl radicals was determined. To test for toxicity, active and passivated simulant was diluted in media and applied to the cells for various time periods. Toxicity was then estimated using flow cytometry on the Guava Personal Cell Analysis system. Preliminary results suggest that passivated stimulant is slightly toxic, with an increase in toxicity for activated stimulant. Toxicity results may be affected by cell lysing behavior and quenching of hydroxyl radical production by the cell media.

  20. [Molecular mechanism involved in adhesion of monocytes to endothelial cells induced by nicotine and Porphyromonas gingivalis-LPS].

    PubMed

    Wang, Yi-xiang; An, Na; Ouyang, Xiang-ying

    2015-10-18

    To investigate molecular mechanism involved in nicotine in combination with Porphyromonas gingivalis (P.g) caused monocyte-endothelial cell adhesion. The effect of nicotine, P.g-lipopolysaccharide (P.g-LPS) and their combination on the proliferation of U937 cells was determined by CCK-8 method. Interleukin-6 (IL-6) expression was investigated by real-time PCR after U937 cells were treated with nicotine, P.g-LPS and their combination. In human umbilical vein endothelial cells (HUVECs), the expressions of monocyte chemoattractant protein CCL-8 and adhesion molecules including vascular cell adhesion molecule 1 (Vcam-1), very late antigen 4 alpha (VLA4α), tumor necrosis factor receptor superfamily member 4 (OX40) and OX40 ligand (OX40L) were detected by real-time PCR or Western blotting assays after HUVEC cells were treated with nicotine, P.g-LPS and their combination. Adhesion of monocytes to endothelial cells was detected after the HUVECs and U937 cells were stimulated with nicotine, P.g-LPS and their combination, respectively. P.g-LPS did not affect the proliferative ability of nicotine in U937 cells. However, the ability of P.g-LPS induced IL-6 expression was inhibited by 100 μmol/L nicotine in U937 cells. In HUVECs, the expressions of CCL-8, Vcam-1, VLA4α, OX40 and OX40L were significantly up-regulated by nicotine and P.g-LPS combination compared with nicotine alone, P.g-LPS alone and the untreated control. Adhesion of monocytes to HUVECs results showed that the two types of cells treated with nicotine in combination with P.g-LPS could markedly increase the adhesion ability of monocytes to HUVECs. P.g-LPS in combination with nicotine could recruit monocytes to endothelial lesion through up-regulation of CCL-8, and promote adhesion of monocytes to endothelial cells through enhancement of Vcam-1/VLA4α and OX40/OX40L interactions, which could be involved in the initiation and development of atherosclerosis.

  1. Attenuation of cadmium-induced necrotic cell death by necrostatin-1: Potential necrostatin-1 acting sites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hsu, T.-S.; Yang, P.-M.; Tsai, J.-S.

    2009-03-01

    Cadmium (Cd) induces necrotic death in Chinese hamster ovary (CHO) K1 cells and we have established the responsible signaling pathway. Reportedly, necrostatin-1 (Nec-1) rescues cells from necrotic death by mediating through the death domain receptor (DR) signaling pathway. We show here that Nec-1 also effectively attenuates necrotic death triggered by Cd. Two other treatments that cause necrotic cell death, one can (z-VAD-fmk/TNF-{alpha} on U937 cells) and the other cannot (etherynic acid (EA) on DLD-1 cells) be rescued by Nec-1, were also studied in parallel for comparison. Results show that Nec-1 is ineffectual in modulating intracellular calcium contents, calpain activity (amore » downstream protease), or reactive oxygen species production. It can counteract the reduction in mitochondrial membrane potential (MMP) caused by treating CHO K1 or U937 cells with necrosis-inducing agent. However, this effect was not found in EA-treated DLD-1 cells. Notably, Nec-1 elevates NF-{kappa}B activity in the presence or absence of necrosis-inducing agents. Our study shows that, in addition to DR-mediated necrosis, Nec-1 is effective in attenuating Cd-induced necrosis. It rescues cells with reduced MMP implying that mitochondrion is its major acting site.« less

  2. Interleukin 4 receptor signaling in human monocytes and U937 cells involves the activation of a phosphatidylcholine-specific phospholipase C: a comparison with chemotactic peptide, FMLP, phospholipase D, and sphingomyelinase

    PubMed Central

    1994-01-01

    Interleukin 4 (IL-4) diminishes cytokine activation of human macrophage. IL-4 binding to monocyte IL-4R is associated with protein kinase C (PKC) translocation to a nuclear fraction. The cleavage of diacyglycerol (DAG), an activator of PKC, from membrane phospholipids was investigated to define the proximal events of IL-4R signaling. IL-4 induced a statistically significant time-and dose-dependent generation of DAG. The IL-4-triggered production of DAG was not derived from phosphatidylinositol 4,5-bisphosphate (PIP2) hydrolysis, since neither cytosolic calcium flux nor liberation of inositol phosphates was detected in response to IL-4. Experiments were performed using [14C- methyl]choline-labeled U937 cells and monocytes to determine whether IL- 4R activated phospholipase C (PLC), PLD, or PLA2 to use membrane phosphatidylcholine (PC) to form DAG. IL-4 induced a time- and dose- dependent increase of phosphocholine (pchol) with concomitant degradation of membrane PC (p < 0.05 compared with control). The finding that the peak reduction of PC was equivalent to peak production of pchol suggested that IL-4R signaling involved the activation of a PC- specific PLC. Changes in choline (chol) or lyso-PC and glycerolphosphocholine, the respective products of PC cleavage by PLD or PLA2, were not detected in IL-4-treated cells. In contrast, exogenous PLD induced an increase in chol and concomitant loss of membrane PC. Additional investigation suggested that IL-4R signaling does not involve PLD. In cells labeled with L-lyso-3-PC 1-[1- 14C]palmitoyl, PLD but not IL-4, increased the production of phosphatidic acid (PA) and phosphatidyl-ethanol when pretreated with ethanol. Propranolol, an inhibitor of phosphatidate phosphohydrolase, and calyculin A, a phosphatase 1 and 2A inhibitor, blocked DAG production in response to FMLP but not to IL-4. In propranolol pretreated cells, PMA but not IL-4 triggered the production of PA and lowered the amount of DAG. Evidence that PLA2 is not

  3. Magnoflorine Enhances LPS-Activated Pro-Inflammatory Responses via MyD88-Dependent Pathways in U937 Macrophages.

    PubMed

    Haque, Md Areeful; Jantan, Ibrahim; Harikrishnan, Hemavathy; Abdul Wahab, Siti Mariam

    2018-06-15

    Magnoflorine, a major bioactive metabolite isolated from Tinospora crispa, has been reported for its diverse biochemical and pharmacological properties. However, there is little report on its underlying mechanisms of action on immune responses, particularly on macrophage activation. In this study, we aimed to investigate the effects of magnoflorine, isolated from T. crispa on the pro-inflammatory mediators generation induced by LPS and the concomitant NF- κ B, MAPKs, and PI3K-Akt signaling pathways in U937 macrophages. Differentiated U937 macrophages were treated with magnoflorine and the release of pro-inflammatory mediators was evaluated through ELISA, while the relative mRNA expression of the respective mediators was quantified through qRT-PCR. Correspondingly, western blotting was executed to observe the modulatory effects of magnoflorine on the expression of various markers related to NF- κ B, MAPK and PI3K-Akt signaling activation in LPS-primed U937 macrophages. Magnoflorine significantly enhanced the upregulation of TNF- α , IL-1 β , and PGE 2 production as well as COX-2 protein expression. Successively, magnoflorine prompted the mRNA transcription level of these pro-inflammatory mediators. Magnoflorine enhanced the NF- κ B activation by prompting p65, I κ B α , and IKK α / β phosphorylation as well as I κ B α degradation. Besides, magnoflorine treatments concentration-dependently augmented the phosphorylation of JNK, ERK, and p38 MAPKs as well as Akt. The immunoaugmenting effects were further confirmed by investigating the effects of magnoflorine on specific inhibitors, where the treatment with specific inhibitors of NF- κ B, MAPKs, and PI3K-Akt proficiently blocked the magnoflorine-triggered TNF- α release and COX-2 expression. Magnoflorine furthermore enhanced the MyD88 and TLR4 upregulation. The results suggest that magnoflorine has high potential on augmenting immune responses. Georg Thieme Verlag KG Stuttgart · New York.

  4. Induction of cytosine arabinoside-resistant human myeloid leukemia cell death through autophagy regulation by hydroxychloroquine.

    PubMed

    Kim, Yundeok; Eom, Ju-In; Jeung, Hoi-Kyung; Jang, Ji Eun; Kim, Jin Seok; Cheong, June-Won; Kim, Young Sam; Min, Yoo Hong

    2015-07-01

    We investigated the effects of the autophagy inhibitor hydroxychloroquine (HCQ) on cell death of cytosine arabinoside (Ara-C)-resistant human acute myeloid leukemia (AML) cells. Ara-C-sensitive (U937, AML-2) and Ara-C-resistant (U937/AR, AML-2/AR) human AML cell lines were used to evaluate HCQ-regulated cytotoxicity, autophagy, and apoptosis as well as effects on cell death-related signaling pathways. We found that HCQ-induced dose- and time-dependent cell death in Ara-C-resistant cells compared to Ara-C-sensitive cell lines. The extent of cell death and features of HCQ-induced autophagic markers including increase in microtubule-associated protein light chain 3 (LC3) I conversion to LC3-II, beclin-1, ATG5, as well as green fluorescent protein-LC3 positive puncta and autophagosome were remarkably greater in U937/AR cells. Also, p62/SQSTM1 was increased in response to HCQ. p62/SQSTM1 protein interacts with both LC3-II and ubiquitin protein and is degraded in autophagosomes. Therefore, a reduction of p62/SQSTM1 indicates increased autophagic degradation, whereas an increase of p62/SQSTM1 by HCQ indicates inhibited autophagic degradation. Knock down of p62/SQSTM1 using siRNA were prevented the HCQ-induced LC3-II protein level as well as significantly reduced the HCQ-induced cell death in U937/AR cells. Also, apoptotic cell death and caspase activation in U937/AR cells were increased by HCQ, provided evidence that HCQ-induced autophagy blockade. Taken together, our data show that HCQ-induced apoptotic cell death in Ara-C-resistant AML cells through autophagy regulation. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  5. Tunicamycin promotes apoptosis in leukemia cells through ROS generation and downregulation of survivin expression.

    PubMed

    Lim, Eun Jin; Heo, Jeonghoon; Kim, Young-Ho

    2015-08-01

    Tunicamycin (TN), one of the endoplasmic reticulum stress inducers, has been reported to inhibit tumor cell growth and exhibit anticarcinogenic activity. However, the mechanism by which TN initiates apoptosis remains poorly understood. In the present study, we investigated the effect of TN on the apoptotic pathway in U937 cells. We show that TN induces apoptosis in association with caspase-3 activation, generation of reactive oxygen species (ROS), and downregulation of survivin expression. P38 MAPK (mitogen-activated protein kinase) and the generation of ROS signaling pathway play crucial roles in TN-induced apoptosis in U937 cells. We hypothesized that TN-induced activation of p38 MAPK signaling pathway is responsible for cell death. To test this hypothesis, we selectively inhibited MAPK during treatment with TN. Our data demonstrated that inhibitor of p38 (SB), but not ERK (PD) or JNK (SP), partially maintained apoptosis during treatment with TN. Pre-treatment with NAC and GSH markedly prevented cell death, suggesting a role for ROS in this process. Ectopic expression of survivin in U937 cells attenuated TN-induced apoptosis by suppression of caspase-3 cleavage, mitochondrial membrane potential, and cytochrome c release in U937 cells. Taken together, our results show that TN modulates multiple components of the apoptotic response of human leukemia cells and raise the possibility of a novel therapeutic strategy for hematological malignancies.

  6. Biosynthesis and processing of cathepsin G and neutrophil elastase in the leukemic myeloid cell line U-937.

    PubMed

    Lindmark, A; Persson, A M; Olsson, I

    1990-12-01

    The processing of the neutral proteases cathepsin G and neutrophil elastase, normally synthesized in myeloid precursor cells and stored in azurophil granules, were investigated by biosynthetic labeling with 14C-leucine of the monoblastic cell line U-937. The proteases were precipitated with specific antibodies and the immunoprecipitates were analyzed by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) followed by fluorography. The transfer to lysosomes of newly synthesized proteases was demonstrated in pulse-chase labeling experiments followed by centrifugation of cell homogenates in a Percoll gradient. The presence of a closely spaced polypeptide band-doublet at intermediate gradient density suggested cleavage of the specific aminoterminal pro dipeptide extension before storage in lysosomes. The molecular heterogeneity observed for cathepsin G and neutrophil elastase seemed to be due to modifications occurring after sorting into lysosomes, most likely because of C-terminal processing. Modifications of the secreted enzymes were not detectable by SDS-PAGE. In contrast to other lysosomal enzymes, no phosphorylation was demonstrated. Newly synthesized cathepsin G and neutrophil elastase rapidly became resistant to endoglycosidase H, indicating transport through the medial and trans cisternae of the Golgi complex and conversion to "complex" oligosaccharide side chains. This conversion was inhibited by an agent swainsonine, but translocation from the Golgi complex and secretion were unaffected. The processing described may play a role in activation of the proteases.

  7. Epigallocatechin 3-gallate inhibits 7-ketocholesterol-induced monocyte-endothelial cell adhesion.

    PubMed

    Yamagata, Kazuo; Tanaka, Noriko; Suzuki, Koichi

    2013-07-01

    7-Ketocholesterol (7KC) induces monocytic adhesion to endothelial cells, and induces arteriosclerosis while high-density lipoprotein (HDL) inhibits monocytic adhesion to the endothelium. Epigallocatechin 3-gallate (EGCG) was found to have a protective effect against arteriosclerosis. Therefore, the purpose of this study was to examine the possible HDL-like mechanisms of EGCG in endothelial cells by investigating whether EGCG inhibits 7KC-induced monocyte-endothelial cell adhesion by activating HDL-dependent signal transduction pathways. 7KC and/or EGCG were added to human endothelial cells (ISO-HAS), and the adhesion of pro-monocytic U937 cells was examined. The expression of genes associated with HDL effects such as Ca(2+)/calmodulin-dependent kinase II (CaMKKII), liver kinase B (LKD1), PSD-95/Dlg/ZO-1 kinase 1 (PDZK1), phosphatidylinositol 3-kinase (PI3K), intercellular adhesion molecule-1 (ICAM-1), monocyte chemotactic protein-1 (MCP-1), and endothelial nitric oxide synthase (eNOS) was examined by RT-PCR, and ICAM-1 protein expression was evaluated by western blot (WB). Production of reactive oxygen species (ROS) was examined with H2DCFDA. 7KC significantly induced adhesion of U937 cells to human endothelial cells while significantly increasing gene expressions of ICAM-1 and MCP-1 and decreasing eNOS and CaMKKII gene expressions. EGCG inhibited 7KC-induced monocytic adhesion to endothelial cells, and induced expression of eNOS and several genes involved in the CaMKKII pathway. Stimulation of endothelial cells with EGCG produced intracellular ROS, whereas treatment with N-acetylcysteine (NAC) blocked EGCG-induced expression of eNOS and CaMKKII. These results suggest that inhibition of monocyte-endothelial cell adhesion by EGCG is associated with CaMKKII pathway activation by ROS. Inhibition of 7KC-induced monocyte-endothelial cell adhesion induced by EGCG may function similarly to HDL. Copyright © 2013 Elsevier Inc. All rights reserved.

  8. Synergistic effect of muramyldipeptide with lipopolysaccharide or lipoteichoic acid to induce inflammatory cytokines in human monocytic cells in culture.

    PubMed

    Yang, S; Tamai, R; Akashi, S; Takeuchi, O; Akira, S; Sugawara, S; Takada, H

    2001-04-01

    An analog of 1alpha,25-dihydroxyvitamin D3, 22-oxyacalcitriol (OCT), differentiated human monocytic THP-1 and U937 cells to express membrane CD14 and rendered the cells responsive to bacterial cell surface components. Both THP-1 and U937 cells expressed Toll-like receptor 4 (TLR4) on the cell surface and TLR4 mRNA in the cells, irrespective of OCT treatment. In contrast, OCT-treated U937 cells scarcely expressed TLR2 mRNA, while OCT-treated THP-1 cells expressed this transcript. Muramyldipeptide (MDP) by itself exhibited only a weak ability to induce secretion of inflammatory cytokines such as interleukin-8 (IL-8) in the OCT-differentiated THP-1 cells but showed marked synergistic effects with Salmonella lipopolysaccharide (LPS) or lipoteichoic acid (LTA) from Staphylococcus aureus, both of which exhibited strong activities. Combinatory stimulation with LPS plus LTA did not show a synergistic effect on OCT-differentiated THP-1 cells. Similar results were observed in OCT-differentiated U937 cells, although combination experiments were carried out only with MDP plus LPS. Anti-CD14 monoclonal antibody (MAb) MY4, anti-TLR4 MAb HTA125, and the synthetic lipid A precursor LA-14-PP almost completely inhibited the IL-8-inducing activities of LTA as well as LPS on OCT-treated THP-1 cells, but these treatments increased MDP activity. OCT-treated THP-1 cells primed with MDP exhibited enhanced production of IL-8 upon stimulation with LPS, while the cells primed with LPS showed no change in production upon stimulation with MDP. MDP up-regulated mRNA expression of an adapter molecule to TLRs, MyD88, to an extent similar to that for LPS in OCT-treated THP-1 cells. These findings suggested that LTA as well as LPS activated human monocytic cells in a CD14- and TLR4-dependent manner, whereas MDP exhibited activity in a CD14-, TLR4-, and probably TLR2-independent manner and exhibited synergistic and priming effects on the cells for cytokine production in response to various bacterial

  9. Annexin 1 Modulates Monocyte-Endothelial Cell Interaction In Vitro and Cell Migration In Vivo in the Human SCID Mouse Transplantation Model1

    PubMed Central

    Perretti, Mauro; Ingegnoli, Francesca; Wheller, Samantha K.; Blades, Mark C.; Solito, Egle; Pitzalis, Costantino

    2015-01-01

    The effect of the glucocorticoid inducible protein annexin 1 (ANXA1) on the process of monocytic cell migration was studied using transfected U937 cells expressing variable protein levels. An antisense (AS) (36.4AS; ~50% less ANXA1) and a sense (S) clone (15S; overexpressing the bioactive 24-kDa fragment) together with the empty plasmid CMV clone were obtained and compared with wild-type U937 cells in various models of cell migration in vitro and in vivo. 15S-transfected U937 cells displayed a reduced (50%) degree of trans-endothelial migration in response to stromal cell-derived factor-1α (CXC chemokine ligand 12 (CXCL12)). In addition, the inhibitory role of endogenous ANXA1 on U937 cell migration in vitro was confirmed by the potentiating effect of a neutralizing anti-ANXA1 serum. Importantly, overexpression of ANXA1 in clone 15S inhibited the extent of cell migration into rheumatoid synovial grafts transplanted into SCID mice. ANXA1 inhibitory effects were not due to modifications in adhesion molecule or CXCL12 receptor (CXCR4) expression as shown by the similar amounts of surface molecules found in transfected and wild-type U937 cells. Likewise, an equal chemotactic response to CXCL12 in vitro excluded an intrinsic defect in cell motility in clones 15S and 36.4AS. These data strongly support the notion that ANXA1 critically interferes with a leukocyte endothelial step essential for U937 cell, and possibly monocyte, transmigration both in vitro and in vivo. PMID:12165536

  10. Calcium-dependent mitochondrial formation of species mediating DNA single strand breakage in U937 cells exposed to sublethal concentrations of tert-butylhydroperoxide.

    PubMed

    Guidarelli, A; Clementi, E; Sciorati, C; Cattabeni, F; Cantoni, O

    1997-10-01

    Treatment of U937 cells with a sublethal albeit DNA-damaging concentration of tert-butylhydroperoxide (tB-OOH) enhanced mitochondrial Ca++ uptake and ruthenium red (RR), a polycation that inhibits the calcium uniporter of mitochondria, significantly reduced the extent of DNA cleavage generated by the hydroperoxide. Release of Ca++ from the ryanodine(Ry)/caffeine(Cf)-sensitive stores further increased mitochondrial Ca++ uptake and elicited a parallel enhancement in DNA strand scission induced by tB-OOH that was prevented by both Ry and RR. DNA damage caused by tB-OOH alone or associated with either Cf or RR was prevented by iron chelators, insensitive to antioxidants and repaired with kinetics superimposable with those observed after treatment with H2O2. Cf enhanced the DNA-damaging effects of tB-OOH in permeabilized cells as well, and similar effects were observed upon addition of CaCl2. Cf did not further increase the formation of DNA lesions elicited by tB-OOH in the presence of CaCl2. The enhancing effects of Cf were prevented by RR and ryanodine, whereas those mediated by exogenous calcium were prevented only by RR. DNA strand scission caused by tB-OOH alone or associated with Cf in the permeabilized cell system was severely inhibited by ethylene glycol-bis(beta-aminoethyl ether)-N, N,N',N'-tetraacetic acid. The mechanism(s) whereby Ca++ promotes the mitochondrial formation of species that will ultimately result in the formation of DNA lesions was subsequently analyzed using intact as well as permeabilized cells. Hydrogen peroxide was identified to be one of these species.

  11. Concurrent targeting Akt and sphingosine kinase 1 by A-674563 in acute myeloid leukemia cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Lin; Shaoyang Central Hospital, Hunan Province; Zhang, Yanan

    Akt signaling plays a pivotal role in acute myeloid leukemia (AML) development and progression. In the present study, we evaluated the potential anti-AML activity by a novel Akt kinase inhibitor A-674563. Our results showed that A-674563 dose-dependently inhibited survival and proliferation of U937 AML cells and six lines of human AML progenitor cells, yet sparing human peripheral blood mononuclear leukocytes (PBMCs). A-674563 activated caspase-3/9 and apoptosis in the AML cells. Reversely, the pan-caspase inhibitor z-VAD-CHO dramatically alleviated A-674563-induced AML cell apoptosis and cytotoxicity. For the molecular study, we showed that A-674563 blocked Akt activation in U937 cells and human AMLmore » progenitor cells. Further, A-674563 decreased sphingosine kinase 1 (SphK1) activity in above AML cells to deplete pro-survival sphingosine-1-phosphate (S1P) and boost pro-apoptotic ceramide production. Such an effect on SphK1 signaling by A-674563 appeared independent of Akt blockage. Significantly, K6PC-5, a novel SphK1 activator, or supplement with S1P attenuated A-674563-induced ceramide production, and subsequent U937 cell death and apoptosis. Importantly, intraperitoneal injection of A-674563 at well-tolerated doses suppressed U937 leukemic xenograft tumor growth in nude mice, whiling significantly improving the animal survival. The results of the current study demonstrate that A-674563 exerts potent anti-leukemic activity in vitro and in vivo, possibly via concurrent targeting Akt and SphK1 signalings. - Highlights: • A-674563 is cytotoxic and anti-proliferative in U937 and AML progenitor cells. • A-674563 activates caspase-3/9 and apoptosis in U937 and AML progenitor cells. • Whiling blocking Akt, A-674563 manipulates other signalings in AML cells. • A-674563 inhibits SphK1 activity in AML cells, independent of Akt blockage. • A-674563 injection inhibits U937 xenograft in vivo growth, and improves mice survival.« less

  12. Changes in protein expression of U937 and Jurkat cells exposed to nanosecond pulsed electric fields

    NASA Astrophysics Data System (ADS)

    Moen, Erick K.; Roth, Caleb C.; Cerna, Caesar; Estalck, Larry; Wilmink, Gerald; Ibey, Bennett L.

    2013-02-01

    Application of nanosecond pulsed electric fields (nsPEF) to various biological cell lines has been to shown to cause many diverse effects, including poration of the plasma membrane, depolarization of the mitochondrial membrane, blebbing, apoptosis, and intracellular calcium bursts. The underlying mechanism(s) responsible for these diverse responses are poorly understood. Of specific interest in this paper are the long-term effects of nsPEF on cellular processes, including the regulation of genes and production of proteins. Previous studies have reported transient activation of select signaling pathways involving mitogen-activated protein kinases (MAPKs), protein phosphorylation and downstream gene expression following nsPEF application. We hypothesize that nsPEF represents a unique stimulus that could be used to externally modulate cellular processes. To validate our hypothesis, we performed a series of cuvette-based exposures at 10 and 600ns pulse widths using a custom Blumlien line pulser system. We measured acute changes in the plasma membrane structure using flow cytometry by tracking phosphatidylserine externalization via FITC-Annexin V labeling and poration via propidium iodide uptake. We then compared these results to viability of the cells at 24 hours post exposure using MTT assay and changes in the MAPK family of proteins at 8 hours post-exposure using Luminex assay. By comparing exposures at 10 and 600ns duration, we found that most MAPK family-protein expression increased in Jurkat and U937 cell lines following exposure and compared well with drops in viability and changes in plasma membrane asymmetry. What proved interesting is that some MAPK family proteins (e.g. p53, STAT1), were expressed in one cell line, but not the other. This difference may point to an underlying mechanism for observed difference in cellular sensitivity to nsPEFinduced stresses.

  13. Effect of platinum nanoparticles on cell death induced by ultrasound in human lymphoma U937 cells.

    PubMed

    Jawaid, Paras; Rehman, Mati Ur; Hassan, Mariame Ali; Zhao, Qing Li; Li, Peng; Miyamoto, Yusei; Misawa, Masaki; Ogawa, Ryohei; Shimizu, Tadamichi; Kondo, Takashi

    2016-07-01

    In this study, we report on the potential use of platinum nanoparticles (Pt-NPs), a superoxide dismutase (SOD)/catalase mimetic antioxidant, in combination with 1MHz ultrasound (US) at an intensity of 0.4 W/cm(2), 10% duty factor, 100 Hz PRF, for 2 min. Apoptosis induction was assessed by DNA fragmentation assay, cell cycle analysis and Annexin V-FITC/PI staining. Cell killing was confirmed by cell counting and microscopic examination. The mitochondrial and Ca(2+)-dependent pathways were investigated. Caspase-8 expression and autophagy-related proteins were detected by spectrophotometry and western blot analysis, respectively. Intracellular reactive oxygen species (ROS) elevation was detected by flow cytometry, while extracellular free radical formation was assessed by electron paramagnetic resonance spin trapping spectrometry. The results showed that Pt-NPs exerted differential effects depending on their internalization. Pt-NPs functioned as potent free radical scavengers when added immediately before sonication while pre-treatment with Pt-NPs suppressed the induction of apoptosis as well as autophagy (AP), and resulted in enhanced cell killing. Dead cells displayed the features of pyknosis. The exact mode of cell death is still unclear. In conclusion, the results indicate that US-induced AP may contribute to cell survival post sonication. To our knowledge this is the first study to discuss autophagy as a pro-survival pathway in the context of US. The combination of Pt-NPs and US might be effective in cancer eradication. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. A cytotoxic protein (BF-CT1) purified from Bungarus fasciatus venom acts through apoptosis, modulation of PI3K/AKT, MAPKinase pathway and cell cycle regulation.

    PubMed

    Bhattacharya, Shamik; Das, Tanaya; Biswas, Archita; Gomes, Aparna; Gomes, Antony; Dungdung, Sandhya Rekha

    2013-11-01

    BF-CT1, a 13 kDa protein isolated from Bungarus fasciatus snake venom through CM cellulose ion exchange chromatography at 0.02 M NaCl salt gradient showed cytotoxicity in in vitro and in vivo experimental models. In in vivo Ehrlich ascites carcinoma (EAC) induced BALB/c mice model, BF-CT1 treatment reduced EAC cell count significantly through apoptotic cell death pathway as evidenced by FACS analysis, increased caspase 3, 9 activity and altered pro, antiapoptotic protein expression. BF-CT1 treatment caused cell shrinkage, chromatin condensation and induced apoptosis through increased caspase 3, caspase 9 activity, PARP cleavage and down regulation of heat shock proteins in U937 leukemic cell line. Cytosolic cytochrome C production was increased after BF-CT1 treatment upon U937 cell line. BF-CT1 treated U937 cell showed cell cycle arrest at sub G1 phase through cyclin D and CDK down regulation with up regulation of p15 and p16. It also down regulated PI3K/AKT pathway and MAPkinase pathway and promoted apoptosis and regulated cell proliferation in U937 cells. BF-CT1 prevented angiogenesis in in vitro U937 cell line through decreased VEGF and TGF-β1 production. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. Cardiac Glycoside Glucoevatromonoside Induces Cancer Type-Specific Cell Death

    PubMed Central

    Schneider, Naira F. Z.; Cerella, Claudia; Lee, Jin-Young; Mazumder, Aloran; Kim, Kyung Rok; de Carvalho, Annelise; Munkert, Jennifer; Pádua, Rodrigo M.; Kreis, Wolfgang; Kim, Kyu-Won; Christov, Christo; Dicato, Mario; Kim, Hyun-Jung; Han, Byung Woo; Braga, Fernão C.; Simões, Cláudia M. O.; Diederich, Marc

    2018-01-01

    Cardiac glycosides (CGs) are natural compounds used traditionally to treat congestive heart diseases. Recent investigations repositioned CGs as potential anticancer agents. To discover novel cytotoxic CG scaffolds, we selected the cardenolide glucoevatromonoside (GEV) out of 46 CGs for its low nanomolar anti-lung cancer activity. GEV presented reduced toxicity toward non-cancerous cell types (lung MRC-5 and PBMC) and high-affinity binding to the Na+/K+-ATPase α subunit, assessed by computational docking. GEV-induced cell death was caspase-independent, as investigated by a multiparametric approach, and culminates in severe morphological alterations in A549 cells, monitored by transmission electron microscopy, live cell imaging and flow cytometry. This non-canonical cell death was not preceded or accompanied by exacerbation of autophagy. In the presence of GEV, markers of autophagic flux (e.g. LC3I-II conversion) were impacted, even in presence of bafilomycin A1. Cell death induction remained unaffected by calpain, cathepsin, parthanatos, or necroptosis inhibitors. Interestingly, GEV triggered caspase-dependent apoptosis in U937 acute myeloid leukemia cells, witnessing cancer-type specific cell death induction. Differential cell cycle modulation by this CG led to a G2/M arrest, cyclin B1 and p53 downregulation in A549, but not in U937 cells. We further extended the anti-cancer potential of GEV to 3D cell culture using clonogenic and spheroid formation assays and validated our findings in vivo by zebrafish xenografts. Altogether, GEV shows an interesting anticancer profile with the ability to exert cytotoxic effects via induction of different cell death modalities. PMID:29545747

  16. Korean red ginseng extract induces apoptosis and decreases telomerase activity in human leukemia cells.

    PubMed

    Park, Sang Eun; Park, Cheol; Kim, Sun Hee; Hossain, Mohammad Akbar; Kim, Min Young; Chung, Hae Young; Son, Woo Sung; Kim, Gi-Young; Choi, Yung Hyun; Kim, Nam Deuk

    2009-01-21

    Korean red ginseng (KRG, Panax ginseng C.A. Meyer Radix rubra) has been used to treat various diseases including cancer. However, the molecular mechanisms responsible for KRG extract induced apoptosis and telomerase inhibition remain unclear. The hot water extract from KRG was used to evaluate the mechanism of induction of apoptosis in U937 human leukemia cells and its effects on cyclooxgenase-2 (COX-2) and telomerase activity. KRG extract treatment to U937 cells resulted in growth inhibition and induction of apoptosis in a concentration-dependent manner as measured by hemacytometer counts, MTT assay, fluorescence microscopy, agarose gel electrophoresis and flow cytometry analysis. The increase in apoptosis was associated with the down-regulation of antiapoptotic Bcl-2, Bcl-X(L), and IAPs family members, and the activation of caspase-3. KRG extract treatment also decreased the expression levels of COX-2 and inducible nitric oxide synthase. Furthermore, KRG extract treatment progressively down-regulated the expression of human telomerase reverse transcriptase, a main determinant of the telomerase enzymatic activity, with inhibiting the expression of c-Myc in a concentration-dependent manner. These results provide important new insights into the possible molecular mechanisms of the anticancer activity of KRG extract.

  17. Novel Derivative of Benzofuran Induces Cell Death Mostly by G2/M Cell Cycle Arrest through p53-dependent Pathway but Partially by Inhibition of NF-κB*

    PubMed Central

    Manna, Sunil K.; Bose, Julie S.; Gangan, Vijay; Raviprakash, Nune; Navaneetha, Thota; Raghavendra, Pongali B.; Babajan, Banaganapalli; Kumar, Chitta S.; Jain, Swatantra K.

    2010-01-01

    The Dracaena resin is widely used in traditional medicine as an anticancer agent, and benzofuran lignan is the active component. In this report, we provide evidence that the synthetic derivative of benzofuran lignan (Benfur) showed antitumor activities. It induced apoptosis in p53-positive cells. Though it inhibited endotoxin-induced nuclear factor κB (NF-κB) activation in both p53-positive and -negative cells, the activation of caspase 3 was observed in p53-positive cells. It showed partial cell death effect in both p53-positive and -negative cells through inhibition of NF-κB. Cell cycle analysis using flow cytometry showed that treatment with this novel benozofuran lignan derivative to Jurkat T-cells, but not U-937 cells, resulted in a G2/M arrest in a dose- and time-dependent manner. It increased amounts of p21, p27, and cyclin B, but not phospho-Rb through p53 nuclear translocation in Jurkat T-cells, but not in U-937 cells. It inhibited amounts of MDM2 (murine double minute 2) by repressing the transcription factor Sp1, which was also proved in silico. It induced cell death in tumor cells, but not in primary T-cells. Overall, our data suggest that Benfur-mediated cell death is partially dependent upon NF-κB, but predominantly dependent on p53. Thus, this novel benzofuran lignan derivative can be effective chemopreventive or chemotherapeutic agent against malignant T-cells. PMID:20472557

  18. Role of monocyte-lineage cells in prostate cancer cell invasion and tissue factor expression.

    PubMed

    Lindholm, Paul F; Lu, Yi; Adley, Brian P; Vladislav, Tudor; Jovanovic, Borko; Sivapurapu, Neela; Yang, Ximing J; Kajdacsy-Balla, André

    2010-11-01

    Tissue factor (TF) is a cell surface glycoprotein intricately related to blood coagulation and inflammation. This study was performed to investigate the role of monocyte-lineage cells in prostate cancer cell TF expression and cell invasion. Prostate cancer cell invasion was tested with and without added peripheral blood monocytes or human monocyte-lineage cell lines. TF neutralizing antibodies were used to determine the TF requirement for prostate cancer cell invasion activity. Immunohistochemistry was performed to identify prostate tissue CD68 positive monocyte-derived cells and prostate epithelial TF expression. Co-culture of PC-3, DU145, and LNCaP cells with isolated human monocytes significantly stimulated prostate cancer cell invasion activity. TF expression was greater in highly invasive prostate cancer cells and was induced in PC-3, DU145, and LNCaP cells by co-culture with U-937 cells, but not with THP-1 cells. TF neutralizing antibodies inhibited PC-3 cell invasion in co-cultures with monocyte-lineage U-937 or THP-1 cells. Prostate cancer tissues contained more CD68 positive cells in the stroma and epithelium (145 ± 53/mm(2)) than benign prostate (108 ± 31/mm(2)). Samples from advanced stage prostate cancer tended to contain more CD68 positive cells when compared with lower stage lesions. Prostatic adenocarcinoma demonstrated significantly increased TF expression compared with benign prostatic epithelium. This study shows that co-culture with monocyte-lineage cells induced prostate cancer cell invasion activity. PC-3 invasion and TF expression was induced in co-culture with U-937 cells and partially inhibited with TF neutralizing antibodies.

  19. The inhibition of macrophage foam cell formation by tetrahydroxystilbene glucoside is driven by suppressing vimentin cytoskeleton.

    PubMed

    Yao, Wenjuan; Huang, Lei; Sun, Qinju; Yang, Lifeng; Tang, Lian; Meng, Guoliang; Xu, Xiaole; Zhang, Wei

    2016-10-01

    Macrophage foam cell formation triggered by oxLDL is an important event that occurs during the development of atherosclerosis. 2,3,5,4'-Tetrahydroxystilbene-2-O-β-d-glucoside (TSG) exhibits significant anti-atherosclerotic activity. Herein we used U937 cells induced by PMA and oxLDL in vitro to investigate the inhibitory effects of TSG on U937 differentiation and macrophage foam cell formation. TSG pretreatment markedly inhibited cell differentiation induced by PMA, macrophage apoptosis and foam cell formation induced by oxLDL. The inhibition of vimentin expression and cleavage was involved in these inhibitory effects of TSG. The suppression of vimentin by siRNA in U937 significantly inhibited cell differentiation, apoptosis and foam cell formation. Using inhibitors for TGFβR1 and PI3K, we found that vimentin production in U937 cells is regulated by TGFβ/Smad signaling, but not by PI3K-Akt-mTOR signaling. Meanwhile, TSG pretreatment inhibited both the expression of TGFβ1 and the phosphorylation of Smad2 and Smad3, and TSG suppressed the nuclear translocation of Smad4 induced by PMA and oxLDL. Furthermore, TSG attenuated the induced caspase-3 activation and adhesion molecules levels by PMA and oxLDL. PMA and oxLDL increased the co-localization of vimentin with ICAM-1, which was attenuated by pretreatment with TSG. These results suggest that TSG inhibits macrophage foam cell formation through suppressing vimentin expression and cleavage, adhesion molecules expression and vimentin-ICAM-1 co-localization. The interruption of TGFβ/Smad pathway and caspase-3 activation is responsible for the downregulation of TSG on vimentin expression and degradation, respectively. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  20. Hamamelitannin from Hamamelis virginiana inhibits the tumour necrosis factor-alpha (TNF)-induced endothelial cell death in vitro.

    PubMed

    Habtemariam, Solomon

    2002-01-01

    The tumour necrosis factor-alpha (TNF) inhibitory activity of hamamelitannin from Hamamelis virginiana was investigated by assessing the TNF-mediated EAhy926 endothelial cell death and adhesiveness to monocytes. Treatment of the cells by TNF (25 ng/ml) and actinomycin D (0.1ng/ml) resulted in significant DNA fragmentation (34+/-0.6, n=4) and cytotoxicity (97+/-4.5%, n=6) following treatment for 8 and 24h, respectively. One to 100 microM concentrations of hamamelitannin inhibited the TNF-mediated endothelial cell death and DNA fragmentation in a dose-dependent manner. One hundred % protection against TNF-induced DNA fragmentation and cytotoxicity was obtained for hamamelitannin concentrations higher than 10 microM. The protective effect of hamamelitannin was comparable with that of a related compound epigallocatechin gallate while gallic acid was a weak protective agent (<40% protection). EAhy926 endothelial cells upregulated (by 4- to 7-fold) the surface expression of intercellular adhesion molecule-1 (ICAM-1) and adhesiveness to monocytic U937 cells after treatment with TNF (0.5ng/ml) for 6 or 24h. Concentrations (1-100 microM) of hamamelitannin that inhibited the TNF-mediated cell death and DNA fragmentation, however, failed to inhibit the TNF-induced ICAM-1 expression and EAhy926 cell adhesiveness to U937 cells. Thus, hamamelitannin inhibits the TNF-mediated endothelial cell death without altering the TNF-induced upregulation of endothelial adhesiveness. The observed anti-TNF activity of hamamelitannin may explain the antihamorrhaegic use of H. virginiana in traditional medicine and its claimed use as a protective agent for UV radiation.

  1. 6-Shogaol induces apoptosis in human leukemia cells through a process involving caspase-mediated cleavage of eIF2α.

    PubMed

    Liu, Qun; Peng, Yong-Bo; Zhou, Ping; Qi, Lian-Wen; Zhang, Mu; Gao, Ning; Liu, E-Hu; Li, Ping

    2013-11-12

    6-Shogaol is a promising antitumor agent isolated from dietary ginger (Zingiber officinale). However, little is known about the efficacy of 6-shogaol on leukemia cells. Here we investigated the underlying mechanism of 6-shogaol induced apoptosis in human leukemia cells in vitro and in vivo. Three leukemia cell lines and primary leukemia cells were used to investigate the apoptosis effect of 6-shogaol. A shotgun approach based on label-free proteome with LC-CHIP Q-TOF MS/MS was employed to identify the cellular targets of 6-shogaol and the differentially expressed proteins were analyzed by bioinformatics protocols. The present study indicated that 6-shogaol selectively induced apoptosis in transformed and primary leukemia cells but not in normal cells. Eukaryotic translation initiation factor 2 alpha (eIF2α), a key regulator in apoptosis signaling pathway, was significantly affected in both Jurkat and U937 proteome profiles. The docking results suggested that 6-shogaol might bind well to eIF2α at Ser51 of the N-terminal domain. Immunoblotting data indicated that 6-shogaol induced apoptosis through a process involving dephosphorylation of eIF2α and caspase activation-dependent cleavage of eIF2α. Furthermore, 6-shogaol markedly inhibited tumor growth and induced apoptosis in U937 xenograft mouse model. The potent anti-leukemia activity of 6-shogaol found both in vitro and in vivo in our study make this compound a potential anti-tumor agent for hematologic malignancies.

  2. The t(10;11)(p13;q14) in the U937 cell line results in the fusion of the AF10 gene and CALM, encoding a new member of the AP-3 clathrin assembly protein family.

    PubMed Central

    Dreyling, M H; Martinez-Climent, J A; Zheng, M; Mao, J; Rowley, J D; Bohlander, S K

    1996-01-01

    The translocation t(10;11)(p13;q14) is a recurring chromosomal abnormality that has been observed in patients with acute lymphoblastic leukemia as well as acute myeloid leukemia. We have recently reported that the monocytic cell line U937 has a t(10;11)(p13;q14) translocation. Using a combination of positional cloning and candidate gene approach, we cloned the breakpoint and were able to show that AF10 is fused to a novel gene that we named CALM (Clathrin Assembly Lymphoid Myeloid leukemia gene) located at 11q14. AF10, a putative transcription factor, had recently been cloned as one of the fusion partners of MLL. CALM has a very high homology in its N-terminal third to the murine ap-3 gene which is one of the clathrin assembly proteins. The N-terminal region of ap-3 has been shown to bind to clathrin and to have a high-affinity binding site for phosphoinositols. The identification of the CALM/AF10 fusion gene in the widely used U937 cell line will contribute to our understanding of the malignant phenotype of this line. Images Fig. 1 Fig. 3 PMID:8643484

  3. Toxicological effects of three types of silver nanoparticles and their salt precursors acting on human U-937 and HL-60 cells.

    PubMed

    Barbasz, Anna; Oćwieja, Magdalena; Walas, Stanisław

    2017-01-01

    The growing popularity of nanomaterials requires a systematic study of their effects on the human body. Silver nanoparticles (AgNPs), due to their antiseptic properties, are used in almost every area of life. The purpose of the study was to examine whether the precursor used for the synthesis of nanoparticles affects their bio-influence and modifies their impact on cells of the human immune system. To compare the effects of precursor silver salts (AgNO 3 , CH 3 COOAg and AgClO 4 ) and corresponding nanoparticles (TAN TAA and TAC) cytotoxicity study was conducted on two cell lines U-937 and HL-60. For both cell lines, silver salts are more toxic than the corresponding nanoparticles. Cell viability after treatment with the two forms of silver (salt/particle) is dependent on silver dose and degree of cells differentiation. Addition of the silver salt of doses greater than 5 mg/L results in decreased cell viability by over 60%, whereas nanoparticles' addition reduces cell viability on average by 30%. On the basis of the determined LD 50 values it can be stated that for the tested cells the most toxic are AgClO 4 and TAC. Production of nitric oxide, which is a mediator of inflammation, is the greatest after treatment of the cells by TAC. Different interactions of studied nanoparticles with albumin has been found and it was shown that addition of albumin to the cells treated by nanoparticles reduces their toxic effects. Obtained by us highly purified, mono-disperse AgNPs exhibit diverse effects relative to the biological systems, depending on the precursor salt used.

  4. 6-Shogaol induces apoptosis in human leukemia cells through a process involving caspase-mediated cleavage of eIF2α

    PubMed Central

    2013-01-01

    Background 6-Shogaol is a promising antitumor agent isolated from dietary ginger (Zingiber officinale). However, little is known about the efficacy of 6-shogaol on leukemia cells. Here we investigated the underlying mechanism of 6-shogaol induced apoptosis in human leukemia cells in vitro and in vivo. Methods Three leukemia cell lines and primary leukemia cells were used to investigate the apoptosis effect of 6-shogaol. A shotgun approach based on label-free proteome with LC-CHIP Q-TOF MS/MS was employed to identify the cellular targets of 6-shogaol and the differentially expressed proteins were analyzed by bioinformatics protocols. Results The present study indicated that 6-shogaol selectively induced apoptosis in transformed and primary leukemia cells but not in normal cells. Eukaryotic translation initiation factor 2 alpha (eIF2α), a key regulator in apoptosis signaling pathway, was significantly affected in both Jurkat and U937 proteome profiles. The docking results suggested that 6-shogaol might bind well to eIF2α at Ser51 of the N-terminal domain. Immunoblotting data indicated that 6-shogaol induced apoptosis through a process involving dephosphorylation of eIF2α and caspase activation–dependent cleavage of eIF2α. Furthermore, 6-shogaol markedly inhibited tumor growth and induced apoptosis in U937 xenograft mouse model. Conclusion The potent anti-leukemia activity of 6-shogaol found both in vitro and in vivo in our study make this compound a potential anti-tumor agent for hematologic malignancies. PMID:24215632

  5. Five novel naphthylisoquinoline alkaloids with growth inhibitory activities against human leukemia cells HL-60, K562 and U937 from stems and leaves of Ancistrocladus tectorius.

    PubMed

    Jiang, Chao; Li, Zhan-Lin; Gong, Ping; Kang, Sheng-Li; Liu, Ming-Sheng; Pei, Yue-Hu; Jing, Yong-Kui; Hua, Hui-Ming

    2013-12-01

    Two new 7,6'-coupled naphthylisoquinolines, namely ancistrotectorines A (1) and B (2), two new 5,3'-coupled naphthylisoquinolines, namely ancistrotectorines C (3) and D (4), and one new 7,8-coupled naphthylisoquinoline, namely ancistrotectorine E (5), together with 9 known naphthylisoquinoline alkaloids, hamatine (6), ancistrobertsonine B (7), ancistrocladinine (8), hamatinine (9), ancistrotanzanine A (10), ancistrotanzanine B (11), ancistrotectoriline B (12), 7-epi-ancistrobrevine D (13), and ancistrotectorine (14), were isolated from the 70% EtOH extract of Ancistrocladus tectorius. Their structures were elucidated based on the extensive analysis of spectroscopic data (1D, 2D NMR and MS). Compound 5 exhibited inhibitory activities against HL-60, K562 and U937 cell lines with IC50 values of 1.70, 4.18 and 2.56 μM respectively. © 2013.

  6. Curcumin inhibits activation induced by urban particulate material or titanium dioxide nanoparticles in primary human endothelial cells

    PubMed Central

    Montiel-Dávalos, Angélica; Silva Sánchez, Guadalupe Jazmin; Huerta-García, Elizabeth; Rueda-Romero, Cristhiam; Soca Chafre, Giovanny; Mitre-Aguilar, Irma B.; Alfaro-Moreno, Ernesto; Pedraza-Chaverri, José

    2017-01-01

    Curcumin has protective effects against toxic agents and shows preventive properties for various diseases. Particulate material with an aerodynamic diameter of ≤10 μm (PM10) and titanium dioxide nanoparticles (TiO2-NPs) induce endothelial dysfunction and activation. We explored whether curcumin is able to attenuate different events related to endothelial activation. This includes adhesion, expression of adhesion molecules and oxidative stress induced by PM10 and TiO2-NPs. Human umbilical vein endothelial cells (HUVEC) were treated with 1, 10 and 100 μM curcumin for 1 h and then exposed to PM10 at 3 μg/cm2 or TiO2-NPs at 10 μg/cm2. Cell adhesion was evaluated by co-culture with U937 human myelomonocytic cells. Adhesion molecules expression was measured by flow cytometry after 3 or 24 h of exposure. Oxidative stress was determined by 2,7-dichlorodihydrofluorescein (H2DCF) oxidation. PM10 and TiO2-NPs induced the adhesion of U937 cells and the expression of E- and P-selectins, intercellular adhesion molecule-1 (ICAM-1), vascular cell adhesion molecule-1 (VCAM-1) and platelet-endothelial cell adhesion molecule-1 (PECAM-1). The expression of E- and P-selectins matched the adhesion of monocytes to HUVEC after 3 h. In HUVEC treated with 1 or 10 μM curcumin, the expression of adhesion molecules and monocytes adhesion was significantly diminished. Curcumin also partially reduced the H2DCF oxidation induced by PM10 and TiO2-NPs. Our results suggest an anti-inflammatory and antioxidant role by curcumin attenuating the activation caused on endothelial cells by exposure to particles. Therefore, curcumin could be useful in the treatment of diseases where an inflammatory process and endothelial activation are involved. PMID:29244817

  7. Plant extracts of spices and coffee synergistically dampen nuclear factor-κB in U937 cells.

    PubMed

    Kolberg, Marit; Paur, Ingvild; Balstad, Trude R; Pedersen, Sigrid; Jacobs, David R; Blomhoff, Rune

    2013-10-01

    A large array of bioactive plant compounds (phytochemicals) has been identified and synergy among these compounds might contribute to the beneficial effects of plant foods. The transcription factor nuclear factor-κB (NF-κB) has been suggested as a target for many phytochemicals. Due to the complexity of mechanisms involved in NF-κB regulation, including numerous feedback loops, and the large number of phytochemicals which regulate NF-κB activity, we hypothesize that synergistic or antagonistic effects are involved. The objectives of our study were to develop a statistical methodology to evaluate the concept of synergy and antagonism and to use this methodology in a monocytic cell line (U937 expressing an NF-κB-luciferase reporter) treated with lipopolysaccharide and phytochemical-rich plant extracts. Both synergistic and antagonistic effects were clearly observed. Observed synergy was most pronounced for the combinations of oregano and coffee, and thyme and oregano. For oregano and coffee the synergistic effect was highest at 5 mg/mL with 13.9% (P < .001), and for thyme and oregano the highest synergistic effects was at 3 mg/mL with 13.7% (P < .001). Dose dependent synergistic and antagonistic effects were observed for all combinations tested. In conclusion, this work presents a methodological tool to define synergy in experimental studies. Our results support the hypothesis that phytochemical-rich plants may exert synergistic and antagonistic effects on NF-κB regulation. Such complex mechanistic interactions between phytochemicals are likely to underlie the protective effects of a plant-based diet on life-style related diseases. © 2013 Elsevier Inc. All rights reserved.

  8. CoCr wear particles generated from CoCr alloy metal-on-metal hip replacements, and cobalt ions stimulate apoptosis and expression of general toxicology-related genes in monocyte-like U937 cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Posada, Olga M., E-mail: O.M.PosadaEstefan@leeds.ac.uk; Gilmour, Denise; Tate, Rothwelle J., E-mail: r.j.tate@strath.ac.uk

    Cobalt-chromium (CoCr) particles in the nanometre size range and their concomitant release of Co and Cr ions into the patients' circulation are produced by wear at the articulating surfaces of metal-on-metal (MoM) implants. This process is associated with inflammation, bone loss and implant loosening and led to the withdrawal from the market of the DePuy ASR™ MoM hip replacements in 2010. Ions released from CoCr particles derived from a resurfacing implant in vitro and their subsequent cellular up-take were measured by ICP-MS. Moreover, the ability of such metal debris and Co ions to induce both apoptosis was evaluated with bothmore » FACS and immunoblotting. qRT-PCR was used to assess the effects on the expression of lymphotoxin alpha (LTA), BCL2-associated athanogene (BAG1), nitric oxide synthase 2 inducible (NOS2), FBJ murine osteosarcoma viral oncogene homolog (FOS), growth arrest and DNA-damage-inducible alpha (GADD45A). ICP-MS showed that the wear debris released significant (p < 0.05) amounts of Co and Cr ions into the culture medium, and significant (p < 0.05) cellular uptake of both ions. There was also an increase (p < 0.05) in apoptosis after a 48 h exposure to wear debris. Analysis of qRT-PCR results found significant up-regulation (p < 0.05) particularly of NOS2 and BAG1 in Co pre-treated cells which were subsequently exposed to Co ions + debris. Metal debris was more effective as an inducer of apoptosis and gene expression when cells had been pre-treated with Co ions. This suggests that if a patient receives sequential bilateral CoCr implants, the second implant may be more likely to produce adverse effects than the first one. - Highlights: • Effects of CoCr nanoparticles and Co ions on U937 cells were investigated. • Ions released from wear debris play an important role in cellular response, • Toxicity of Co ions could be related to NO metabolic processes and apoptosis. • CoCr particles were a more effective inducer of apoptosis after

  9. Inhibition of X-linked inhibitor of apoptosis protein enhances anti-tumor potency of pure total flavonoids on the growth of leukemic cells

    PubMed Central

    Wu, Liqiang; Zhang, Xiuxia; Lin, Xiaojie; Wang, Bo; Huang, Chang; Qin, Yao; Lin, Shengyun

    2018-01-01

    Flavonoids, a vast group of polyphenols widely distributed in plants, are known to possess a range of biological activities and potential anti-tumor effects. X-linked inhibitor of apoptosis protein (XIAP) promotes the progression of leukemia by preventing tumor cells undergoing apoptosis. The present study investigated the potential effects and underlying mechanisms of pure total flavonoids from Citrus paradisi Macfad (PTFC) on human U937 cells, and explored the effects of short hairpin (sh)RNA-mediated XIAP knockdown on the anti-cancer effects of PTFC. Western blotting was used to determine level of apoptosis-associated effectors following PTFC treatment. A lentiviral vector of RNA interference of XIAP gene was constructed to downregulate XIAP expression. MTT assay and flow cytometry were used to determine the effects of PTFC separately or combined with XIAP-shRNA on inhibition and apoptosis of U937 cells, respectively. Treatment with PTFC effectively inhibited leukemic cell proliferation in a dose- and time-dependent manner. PTFC induced apoptosis of U937 cells in a dose-dependent manner, at a particular concentration range, by decreasing XIAP expression levels and activating caspases-3, −7 and −9. PTFC treatment combined with XIAP-shRNA additionally demonstrated a marked increase in cell apoptosis, compared with PTFC or XIAP-shRNA alone (P<0.05). Therefore, these findings suggest that PTFC inhibits growth and induces apoptosis in U937 cells in vitro. Furthermore, suppression of XIAP expression enhances these effects. PMID:29434799

  10. Comparative proteomic analysis of virulent Korean Mycobacterium tuberculosis K-strain with other mycobacteria strain following infection of U-937 macrophage.

    PubMed

    Ryoo, Sung Weon; Park, Young Kil; Park, Sue-Nie; Shim, Young Soo; Liew, Hyunjeong; Kang, Seongman; Bai, Gill-Han

    2007-06-01

    In Korea, the Mycobacterium tuberculosis K-strain is the most prevalent clinical isolates and belongs to the Beijing family. In this study, we conducted comparative porteomics of expressed proteins of clinical isolates of the K-strain with H37Rv, H37Ra as well as the vaccine strain of Mycobacterium bovis BCG following phagocytosis by the human monocytic cell line U-937. Proteins were analyzed by 2-D PAGE and MALDITOF-MS. Two proteins, Mb1363 (probable glycogen phosphorylase GlgP) and MT2656 (Haloalkane dehalogenase LinB) were most abundant after phagocytosis of M. tuberculosis K-strain. This approach provides a method to determine specific proteins that may have critical roles in tuberculosis pathogenesis.

  11. The targeted inhibition of mitochondrial Hsp90 overcomes the apoptosis resistance conferred by Bcl-2 in Hep3B cells via necroptosis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yan, Chunlan; Department of Physiology, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058; Oh, Joon Seok

    Previous studies have reported that a Gamitrinib variant containing triphenylphosphonium (G-TPP) binds to mitochondrial Hsp90 and rapidly inhibits its activity, thus inducing the apoptotic pathway in the cells. Accordingly, G-TPP shows a potential as a promising drug for the treatment of cancer. A cell can die from different types of cell death such as apoptosis, necrosis, necroptosis, and autophagic cell death. In this study, we further investigated the mechanisms and modes of cell death in the G-TPP-treated Hep3B and U937 cell lines. We discovered that G-TPP kills the U937 cells through the apoptotic pathway and the overexpression of Bcl-2 significantlymore » inhibits U937 cell death to G-TPP. We further discovered that G-TPP kills the Hep3B cells by activating necroptosis in combination with the partial activation of caspase-dependent apoptosis. Importantly, G-TPP overcomes the apoptosis resistance conferred by Bcl-2 in Hep3B cells via necroptosis. We also observed that G-TPP induces compensatory autophagy in the Hep3B cell line. We further found that whereas there is a Bcl-2-Beclin 1 interaction in response to G-TPP, silencing the beclin 1 gene failed to block LC3-II accumulation in the Hep3B cells, indicating that G-TPP triggers Beclin 1-independent protective autophagy in Hep3B cells. Taken together, these data reveal that G-TPP induces cell death through a combination of death pathways, including necroptosis and apoptosis, and overcomes the apoptosis resistance conferred by Bcl-2 in Hep3B cells via necroptosis. These findings are important for the therapeutic exploitation of necroptosis as an alternative cell death program to bypass the resistance to apoptosis. Highlights: ► G-TPP binds to mitochondrial Hsp90. ► G-TPP induces apoptosis in U937 human leukemia cancer cells. ► G-TPP induces combination of death pathways in Hep3B cell. ► G-TPP overcomes the resistance conferred by Bcl-2 in Hep3B cells via necroptosis. ► G-TPP triggers Beclin 1

  12. Magnolol inhibits tumor necrosis factor-α-induced ICAM-1 expression via suppressing NF-κB and MAPK signaling pathways in human lung epithelial cells.

    PubMed

    Chunlian, Wu; Heyong, Wang; Jia, Xu; Jie, Huang; Xi, Chen; Gentao, Liu

    2014-12-01

    Magnolol is a traditional Chinese medicine from the root and bark of Magnolia officinalis. It has long been used to treat anxiety, cough, headache and allergies, as well as a variety of inflammations. Lung inflammation is a key event in the pathogenesis of asthma and chronic obstructive pulmonary disease. The present study sought to examine the effects of magnolol on tumor necrosis factor (TNF)-α-induced upregulation of intercellular adhesion molecule-1 (ICAM-1), activation of the nuclear factor (NF)-κB and mitogen-activated protein kinase (MAPK) signaling pathway in cultured human pulmonary epithelial cells, and adhesion of human macrophage-like U937 cells to A549 cells. A549 cells were incubated with magnolol at 25 and 50 μmol/l. Then, 20 ng/ml TNF-α was used to activate the cells. Magnolol inhibited the growth of human pulmonary epithelial A549 cells in a dose- and time-dependent manner. Magnolol suppressed the adhesion of U937 cells to TNF-α-induced A549 cells. In cultured human pulmonary epithelial A549 cells, magnolol decreased TNF-α-induced upregulation of ICAM-1. Magnolol repressed TNF-α-induced activation of NF-κB and mitogen-activated protein kinase (MAPK) signaling pathways in A549 cells by inhibiting phosphorylation of NF-κB, p38, extracellular signal-regulated kinase (ERK) 1/2, and stress-activated protein kinase (SAPK)/c-Jun N-terminal kinase (JNK). These findings support the hypothesis that magnolol inhibits the inflammatory process in lung epithelial A549 cells by suppressing the ICAM-1 and NF-κB and MAPK signaling pathways. Taken together, these results indicate that magnolol offers significant potential as a therapeutic treatment for inflammatory diseases of the lungs including asthma, sepsis, and chronic obstructive pulmonary disease.

  13. [Influence of macrophages on some biological features of endothelial cells].

    PubMed

    Liu, Liang; Wang, Ying; Ziiang, Xiao-Qi; Liu, Xu-Sheng

    2008-02-01

    To establish the co-culture model of human macrophage cell line (U937) with human vein umbilical cell line (ECV304), and to explore the feasibility of using concanavalin A (ConA) as U937 cell stimulator in regulating angiogenesis. ECV304 cells were cultured in vitro, and to which were respectively added U937 cells (1 x 10(5)), 25 microg/mL ConA, and U937 cell (1 x 10(5)) + ConA (25 microg/mL) after cell fusion rate reaching 60%, and then co-cultured for 48 hours. ECV 304 cells in conventional culture were used as controls. 3H-TdR incorporation test was employed to determine the DNA synthesis of vascular endothelial cells. Flow cytometry was used to determine the changes in the cell cycle, and RT-PCR was adopted to determine the expression of homeobox (HOXB2) mRNA. After conA stimulation to ECV 304 co-cultured with U937 cells, the percentage of cells in S phase (48.860 +/- 2.290), the DNA synthesis [(5694 +/- 917) min(-1)], and the expression of HOXB2 mRNA (0.947 +/- 0.003) were obviously higher than those in control group [41.590 +/- 2.590 vs (2498 +/- 1109) min(-1) vs 0.646 +/- 0.004, P > 0.01]. There was no obvious difference in apoptosis among above stimulation methods (P >0.05). U937 cells activated by ConA can promote the proliferation of ECV304 cells and further regulate angiogenesis. HOXB2 gene is closely related to the endothelial proliferation.

  14. Leukemia-associated gene MLAA-34 reduces arsenic trioxide-induced apoptosis in HeLa cells via activation of the Wnt/β-catenin signaling pathway.

    PubMed

    Zhang, Pengyu; Zhao, Xuan; Zhang, Wenjuan; He, Aili; Lei, Bo; Zhang, Wanggang; Chen, Yinxia

    2017-01-01

    Our laboratory previously used the SEREX method in U937 cells and identified a novel leukemia-associated gene MLAA-34, a novel splice variant of CAB39L associated with acute monocytic leukemia, that exhibited anti-apoptotic activities in U937 cells. Whether MLAA-34 has an anti-apoptotic role in other tumor cells has not yet been reported. We explored whether MLAA-34 exhibited anti-apoptotic effects in HeLa cervical cancer cells and the possible mechanism of action. We generated a HeLa cell line stably expressing MLAA-34 and found that MLAA-34 overexpression had no effect on the growth, apoptosis and cell cycle of HeLa cells. However, upon treatment with arsenic trioxide (ATO) to induce apoptosis, the cell viability and colony formation ability of ATO-treated MLAA-34 stable HeLa cells were significantly higher than that of ATO-treated controls, and the apoptosis rate and proportion of G2/M cells also decreased. We found that ATO treatment of HeLa cells resulted in significant decreases in the expression of β-catenin mRNA and protein and the downstream target factors c-Myc, cyclin B1, and cyclin D1 in the Wnt signaling pathway. Notably, ATO-treated MLAA-34 stable HeLa cells showed a significant reduction in the ATO-mediated downregulation of these factors. In addition, MLAA-34 overexpression significantly increased the expression of nuclear β-catenin protein in ATO-treated cells compared with HeLa cells treated only with ATO. Thus, here we have found that the Wnt/β-catenin signaling pathway is involved in ATO-induced apoptosis in HeLa cells. MLAA-34 reduces ATO-induced apoptosis and G2/M arrest, and the anti-apoptotic effect may be achieved by activating the Wnt/β-catenin signaling pathway in HeLa cells.

  15. Leukemia-associated gene MLAA-34 reduces arsenic trioxide-induced apoptosis in HeLa cells via activation of the Wnt/β-catenin signaling pathway

    PubMed Central

    Zhao, Xuan; Zhang, Wenjuan; He, Aili; Lei, Bo; Zhang, Wanggang; Chen, Yinxia

    2017-01-01

    Our laboratory previously used the SEREX method in U937 cells and identified a novel leukemia-associated gene MLAA-34, a novel splice variant of CAB39L associated with acute monocytic leukemia, that exhibited anti-apoptotic activities in U937 cells. Whether MLAA-34 has an anti-apoptotic role in other tumor cells has not yet been reported. We explored whether MLAA-34 exhibited anti-apoptotic effects in HeLa cervical cancer cells and the possible mechanism of action. We generated a HeLa cell line stably expressing MLAA-34 and found that MLAA-34 overexpression had no effect on the growth, apoptosis and cell cycle of HeLa cells. However, upon treatment with arsenic trioxide (ATO) to induce apoptosis, the cell viability and colony formation ability of ATO-treated MLAA-34 stable HeLa cells were significantly higher than that of ATO-treated controls, and the apoptosis rate and proportion of G2/M cells also decreased. We found that ATO treatment of HeLa cells resulted in significant decreases in the expression of β-catenin mRNA and protein and the downstream target factors c-Myc, cyclin B1, and cyclin D1 in the Wnt signaling pathway. Notably, ATO-treated MLAA-34 stable HeLa cells showed a significant reduction in the ATO-mediated downregulation of these factors. In addition, MLAA-34 overexpression significantly increased the expression of nuclear β-catenin protein in ATO-treated cells compared with HeLa cells treated only with ATO. Thus, here we have found that the Wnt/β-catenin signaling pathway is involved in ATO-induced apoptosis in HeLa cells. MLAA-34 reduces ATO-induced apoptosis and G2/M arrest, and the anti-apoptotic effect may be achieved by activating the Wnt/β-catenin signaling pathway in HeLa cells. PMID:29059232

  16. Ap4A induces apoptosis in human cultured cells.

    PubMed

    Vartanian, A; Alexandrov, I; Prudowski, I; McLennan, A; Kisselev, L

    1999-07-30

    Diadenosine oligophosphates (Ap(n)A) have been proposed as intracellular and extracellular signaling molecules in animal cells. The ratio of diadenosine 5',5'''-P1,P3-triphosphate to diadenosine 5',5'''-P1,P4-tetraphosphate (Ap3A/Ap4A) is sensitive to the cellular status and alters when cultured cells undergo differentiation or are treated with interferons. In cells undergoing apoptosis induced by DNA topoisomerase II inhibitor VP16, the concentration of Ap3A decreases significantly while that of Ap4A increases. Here, we have examined the effects of exogenously added Ap3A and Ap4A on apoptosis and morphological differentiation. Penetration of Ap(n)A into cells was achieved by cold shock. Ap4A at 10 microM induced programmed cell death in human HL60, U937 and Jurkat cells and mouse VMRO cells and this effect appeared to require Ap4A breakdown as hydrolysis-resistant analogues of Ap4A were inactive. On its own, Ap3A induced neither apoptosis nor cell differentiation but did display strong synergism with the protein kinase C activators 12-deoxyphorbol-13-O-phenylacetate and 12-deoxyphorbol-13-O-phenylacetate-20-acetate in inducing differentiation of HL60 cells. We propose that Ap4A and Ap3A are physiological antagonists in determination of the cellular status: Ap4A induces apoptosis whereas Ap3A is a co-inductor of differentiation. In both cases, the mechanism of signal transduction remains unknown.

  17. Subinhibitory Concentrations of Antimicrobial Agents Reduce the Uptake of Legionella pneumophila into Acanthamoeba castellanii and U937 Cells by Altering the Expression of Virulence-Associated Antigens

    PubMed Central

    Lück, P. Christian; Schmitt, Jürgen W.; Hengerer, Arne; Helbig, Jürgen H.

    1998-01-01

    We determined the MICs of ampicillin, ciprofloxacin, erythromycin, imipenem, and rifampin for two clinical isolates of Legionella pneumophila serogroup 1 by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) reduction assay and by quantitative culture. To test the influence of subinhibitory concentrations (sub-MICs) of antimicrobial agents on Legionella uptake into Acanthamoeba castellanii and U937 macrophage-like cells, both strains were pretreated with 0.25 MICs of the antibiotics for 24 h. In comparison to that for the untreated control, subinhibitory concentrations of antibiotics significantly reduced Legionella uptake into the host cells. Measurement of the binding of monoclonal antibodies against several Legionella antigens by enzyme-linked immunoassays indicated that sub-MIC antibiotic treatment reduced the expression of the macrophage infectivity potentiator protein (Mip), the Hsp 60 protein, the outer membrane protein (OmpM), an as-yet-uncharacterized protein of 55 kDa, and a few lipopolysaccharide (LPS) epitopes. In contrast, the expression of some LPS epitopes recognized by monoclonal antibodies 8/5 and 30/4 as well as a 45-kDa protein, a 58-kDa protein, and the major outer membrane protein (OmpS) remained unaffected. PMID:9797218

  18. The prosurvival role of autophagy in Resveratrol-induced cytotoxicity in human U251 glioma cells

    PubMed Central

    2009-01-01

    Background Previous study reported that resveratrol has anti-tumor activity. In this study, we investigated the involvement of autophagy in the resveratrol-induced apoptotic death of human U251 glioma cells. Methods The growth inhibition of U251 cells induced by resveratrol was assessed with methyl thiazolyl tetrazolium (MTT). The activation of autophagy and proapoptotic effect were characterized by monodansylcadaverine labeling and Hoechst stain, respectively. Mitochondrialtransmembrane potential (ΔΨm) was measured as a function of drug treatment using 5,5',6,6'-tetrachloro-1,1',3,3'-tetraethylbenzimidazolylcarbocyanine iodide (JC-1). The role of autophagy and apoptosis in the resveratrol-induced death of U251 cells was assessed using autophagic and caspase inhibitors. Immunofluorescence, flow cytometry, and Western blot analysis were used to study the apoptotic and autophagic mechanisms. Results Methyl thiazolyl tetrazolium (MTT) assays indicated that resveratrol decreased the viability of U251 cells in a dose- and time-dependent manner. Flow cytometry analysis indicated that resveratrol increased cell population at sub-G1 phase, an index of apoptosis. Furthermore, resveratrol-induced cell death was associated with a collapse of the mitochondrial membrane potential. The pan-caspase inhibitor Z-VAD-fmk suppressed resveratrol-induced U251 cell death. Resveratrol stimulated autophagy was evidenced by punctuate monodansylcadaverine(MDC) staining and microtubule-associated protein light chain 3 (LC3) immunoreactivty. Resveratrol also increased protein levels of beclin 1 and membrane form LC3 (LC3-II). Autophagy inhibitors 3-methylademine (3-MA) and bafilomycin A1 sensitized the cytotoxicity of resveratrol. Conclusion Together, these findings indicate that resveratrol induces autophagy in human U251 glioma cells and autophagy suppressed resveratrol-induced apoptosis. This study thus suggests that autophagy inhibitors can increase the cytotoxicity of resveratrol to

  19. Hydrogen Peroxide-Induced Secreted Frizzled-Related Protein 1 Gene Demethylation Contributes to Hydrogen Peroxide-Induced Apoptosis in Human U251 Glioma Cells.

    PubMed

    Xing, Zhiguo; Ni, Yaping; Zhao, Junjie; Ma, Xudong

    2017-05-01

    Glioblastoma multiforme is a type of central nervous system tumor with extremely poor prognosis. Previously, hydrogen peroxide (H 2 O 2 ), which promotes the oxidative stress response, has been reported to induce the apoptosis of glioma cells. Recently, secreted frizzled-related protein 1 (SFRP1) has been shown to be associated with various types of malignant tumors and with H 2 O 2 -induced oxidative stress in cardiomyocytes by negatively regulating the Wnt signaling pathway. This study aimed to explore SFRP1 expression and its roles in H 2 O 2 -induced apoptosis in human glioma cells. We found that the SFRP1 level was decreased in several human glioma cell lines, including U87, U251, and SW1783 cells. In U251 cells, SFRP1 could function as a cancer suppressor gene, and the growth of U251 cells could be inhibited not only by H 2 O 2 but also by the overexpression of SFRP1. Furthermore, we demonstrated that H 2 O 2 -induced SFRP1 gene demethylation partially contributed to H 2 O 2 -induced U251 cell apoptosis, which was verified by studies using an SFRP inhibitor (WAY-316606). Our research identified that H 2 O 2 -induced SFRP1 gene demethylation contributes to H 2 O 2 -induced apoptosis in human U251 glioma cells.

  20. Pirfenidone exerts a suppressive effect on CCL18 expression in U937-derived macrophages partly by inhibiting STAT6 phosphorylation.

    PubMed

    Saito, Yoshinobu; Azuma, Arata; Matsuda, Kuniko; Kamio, Koichiro; Abe, Shinji; Gemma, Akihiko

    2016-10-27

    CC chemokine ligand 18 (CCL18) is suggested to play a role in the development of pulmonary fibrosis. Macrophages are thought to be the main source of CCL18, and the effect of pirfenidone, an anti-fibrotic agent for idiopathic pulmonary fibrosis, on the expression of CCL18 in macrophages warrants investigation. The purpose of this study was to investigate the effect of pirfenidone on the expression of CCL18 in macrophages. U937 cells were differentiated into macrophages by phorbol myristate acetate and then stimulated with recombinant IL-4 to induce the production of CCL18. The cells were treated with pirfenidone, and the mRNA and protein levels for CCL18 were measured by a reverse transcription-polymerase chain reaction and enzyme-linked immunosorbent assay, respectively. The effects of pirfenidone on the IL-4 receptor (IL-4R) expression and STAT6 activation were investigated and on the JAK kinase activity were measured using the Z'-LYTE™ kinase assay. Pirfenidone significantly suppressed the expression of CCL18 when the cells were treated with concentrations of 50-250 μg/mL. Pirfenidone did not affect the expression of the IL-4R components. The selective STAT6 inhibitor AS1517499 suppressed CCL18 expression. Both AS1517499 and pirfenidone suppressed STAT6 phosphorylation (p < .05), although the effect of pirfenidone was less marked than that of AS1517499. The Z'-LYTE™ kinase assay showed a reduction in the activities of JAK1, JAK3 and TYK2 by pirfenidone. Pirfenidone suppresses CCL18 expression in macrophages and this effect is thought to be attributed partly to the inhibition of STAT6 phosphorylation.

  1. SphK1 inhibitor II (SKI-II) inhibits acute myelogenous leukemia cell growth in vitro and in vivo

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Li; Weng, Wei; Sun, Zhi-Xin

    Previous studies have identified sphingosine kinase 1 (SphK1) as a potential drug target for treatment of acute myeloid leukemia (AML). In the current study, we investigated the potential anti-leukemic activity of a novel and specific SphK1 inhibitor, SKI-II. We demonstrated that SKI-II inhibited growth and survival of human AML cell lines (HL-60 and U937 cells). SKI-II was more efficient than two known SphK1 inhibitors SK1-I and FTY720 in inhibiting AML cells. Meanwhile, it induced dramatic apoptosis in above AML cells, and the cytotoxicity by SKI-II was almost reversed by the general caspase inhibitor z-VAD-fmk. SKI-II treatment inhibited SphK1 activation, andmore » concomitantly increased level of sphingosine-1-phosphate (S1P) precursor ceramide in AML cells. Conversely, exogenously-added S1P protected against SKI-II-induced cytotoxicity, while cell permeable short-chain ceramide (C6) aggravated SKI-II's lethality against AML cells. Notably, SKI-II induced potent apoptotic death in primary human AML cells, but was generally safe to the human peripheral blood mononuclear cells (PBMCs) isolated from healthy donors. In vivo, SKI-II administration suppressed growth of U937 leukemic xenograft tumors in severe combined immunodeficient (SCID) mice. These results suggest that SKI-II might be further investigated as a promising anti-AML agent. - Highlights: • SKI-II inhibits proliferation and survival of primary and transformed AML cells. • SKI-II induces apoptotic death of AML cells, but is safe to normal PBMCs. • SKI-II is more efficient than two known SphK1 inhibitors in inhibiting AML cells. • SKI-II inhibits SphK1 activity, while increasing ceramide production in AML cells. • SKI-II dose-dependently inhibits U937 xenograft growth in SCID mice.« less

  2. Infrared microspectroscopy of live cells in microfluidic devices (MD-IRMS): toward a powerful label-free cell-based assay.

    PubMed

    Vaccari, L; Birarda, G; Businaro, L; Pacor, S; Grenci, G

    2012-06-05

    Until nowadays most infrared microspectroscopy (IRMS) experiments on biological specimens (i.e., tissues or cells) have been routinely carried out on fixed or dried samples in order to circumvent water absorption problems. In this paper, we demonstrate the possibility to widen the range of in-vitro IRMS experiments to vibrational analysis of live cellular samples, thanks to the development of novel biocompatible IR-visible transparent microfluidic devices (MD). In order to highlight the biological relevance of IRMS in MD (MD-IRMS), we performed a systematic exploration of the biochemical alterations induced by different fixation protocols, ethanol 70% and formaldehyde solution 4%, as well as air-drying on U937 leukemic monocytes by comparing their IR vibrational features with the live U937 counterpart. Both fixation and air-drying procedures affected lipid composition and order as well as protein structure at a different extent while they both induced structural alterations in nucleic acids. Therefore, only IRMS of live cells can provide reliable information on both DNA and RNA structure and on their cellular dynamic. In summary, we show that MD-IRMS of live cells is feasible, reliable, and biologically relevant to be recognized as a label-free cell-based assay.

  3. Role of ATM in bystander signaling between human monocytes and lung adenocarcinoma cells.

    PubMed

    Ghosh, Somnath; Ghosh, Anu; Krishna, Malini

    2015-12-01

    The response of a cell or tissue to ionizing radiation is mediated by direct damage to cellular components and indirect damage mediated by radiolysis of water. Radiation affects both irradiated cells and the surrounding cells and tissues. The radiation-induced bystander effect is defined by the presence of biological effects in cells that were not themselves in the field of irradiation. To establish the contribution of the bystander effect in the survival of the neighboring cells, lung carcinoma A549 cells were exposed to gamma-irradiation, 2Gy. The medium from the irradiated cells was transferred to non-irradiated A549 cells. Irradiated A549 cells as well as non-irradiated A549 cells cultured in the presence of medium from irradiated cells showed decrease in survival and increase in γ-H2AX and p-ATM foci, indicating a bystander effect. Bystander signaling was also observed between different cell types. Phorbol-12-myristate-13-acetate (PMA)-stimulated and gamma-irradiated U937 (human monocyte) cells induced a bystander response in non-irradiated A549 (lung carcinoma) cells as shown by decreased survival and increased γ-H2AX and p-ATM foci. Non-stimulated and/or irradiated U937 cells did not induce such effects in non-irradiated A549 cells. Since ATM protein was activated in irradiated cells as well as bystander cells, it was of interest to understand its role in bystander effect. Suppression of ATM with siRNA in A549 cells completely inhibited bystander effect in bystander A549 cells. On the other hand suppression of ATM with siRNA in PMA stimulated U937 cells caused only a partial inhibition of bystander effect in bystander A549 cells. These results indicate that apart from ATM, some additional factor may be involved in bystander effect between different cell types. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Matrix metalloproteinase-2 and -9 are induced differently by metal nanoparticles in human monocytes: The role of oxidative stress and protein tyrosine kinase activation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wan Rong; Department of Pathology, Fujian Medical University, Fujian; Mo Yiqun

    2008-12-01

    Recently, many studies have shown that nanoparticles can translocate from the lungs to the circulatory system. As a particulate foreign body, nanoparticles could induce host responses such as reactive oxygen species (ROS) generation, inflammatory cytokine and matrix metalloproteinase (MMP) release which play a major role in tissue destruction and remodeling. However, the direct effects of nanoparticles on leukocytes, especially monocytes, are still unclear. The objective of the present study was to compare the ability of Nano-Co and Nano-TiO{sub 2} to cause alteration of transcription and activity of MMPs and to explore possible mechanisms. We hypothesized that non-toxic doses of somemore » transition metal nanoparticles stimulate an imbalance of MMP/TIMP that cause MMP production that may contribute to their health effects. To test this hypothesis, U937 cells were treated with Nano-Co and Nano-TiO{sub 2} and cytotoxic effects and ROS generation were measured. The alteration of MMP-2 and MMP-9 expression and activity of MMP-2 and MMP-9 after exposure to these metal nanoparticles were subsequently determined. To investigate the potential signaling pathways involved in the Nano-Co-induced MMP activation, the ROS scavengers or inhibitors, AP-1 inhibitor, and protein tyrosine kinase (PTK) inhibitors were also used to pre-treat U937 cells. Our results demonstrated that exposure of U937 cells to Nano-Co, but not to Nano-TiO{sub 2}, at a dose that does not cause cytotoxicity, resulted in ROS generation and up-regulation of MMP-2 and MMP-9 mRNA expression{sub ..} Our results also showed dose- and time-related increases in pro-MMP-2 and pro-MMP-9 gelatinolytic activities in conditioned media after exposure of U937 cells to Nano-Co, but not to Nano-TiO{sub 2}. Nano-Co-induced pro-MMP-2 and pro-MMP-9 activity increases were inhibited by pre-treatment with ROS scavengers or inhibitors. We also demonstrated dose- and time-related decreases in tissue inhibitors of

  5. Syk-dependent tyrosine phosphorylation of 3BP2 is required for optimal FcRγ-mediated phagocytosis and chemokine expression in U937 cells.

    PubMed

    Chihara, Kazuyasu; Kato, Yuji; Yoshiki, Hatsumi; Takeuchi, Kenji; Fujieda, Shigeharu; Sada, Kiyonao

    2017-09-13

    The adaptor protein c-Abl SH3 domain binding protein-2 (3BP2) is tyrosine phosphorylated by Syk in response to cross-linking of antigen receptors, which in turn activates various immune responses. Recently, a study using the mouse model of cherubism, a dominant inherited disorder caused by mutations in the gene encoding 3BP2, showed that 3BP2 is involved in the regulation of phagocytosis mediated by Fc receptor for IgG (FcγR) in macrophages. However, the molecular mechanisms underlying 3BP2-mediated regulation of phagocytosis and the physiological relevance of 3BP2 tyrosine phosphorylation remains elusive. In this study, we established various gene knockout U937 cell lines using the CRISPR/Cas9 system and found that 3BP2 is rapidly tyrosine phosphorylated by Syk in response to cross-linking of FcγRI. Depletion of 3BP2 caused significant reduction in the Fc receptor γ chain (FcRγ)-mediated phagocytosis in addition to the FcγRI-mediated induction of chemokine mRNA for IL-8, CCL3L3 and CCL4L2. Syk-dependent tyrosine phosphorylation of 3BP2 was required for overcoming these defects. Finally, we found that the PH and SH2 domains play important roles on FcγRI-mediated tyrosine phosphorylation of 3BP2 in HL-60 cells. Taken together, these results indicate that Syk-dependent tyrosine phosphorylation of 3BP2 is required for optimal FcRγ-mediated phagocytosis and chemokine expression.

  6. [Apoptosis of human leukemic cells induced by topoisomerase I and II inhibitors].

    PubMed

    Solary, E; Dubrez, L; Eymin, B; Bertrand, R; Pommier, Y

    1996-03-01

    Comparison between five human leukemic lines (BV173, HL60, U937, K562, KCL22) suggest that the main determinant of their sensitivity to topoisomerase I (camptothecin) and II (VP-16) inhibitors is their ability to regulate cell cycle progression in response to specific DNA damage, then to die through apoptosis: the more the cells inhibit cell cycle progression, the less sensitive they are. The final pathway of apoptosis induction involves a cytoplasmic signal, active at neutral pH, needing magnesium, sensitive to various protease inhibitors and activated directly by staurosporine. Modulators of intracellular signaling (calcium chelators, calmodulin inhibitors, PKC modulators, kinase and phosphatase inhibitors) have no significant influence upon apoptosis induction. Conversely, apoptosis induction pathway is modified during monocytic differentiation of HL60 cells induced by phorbol esters. Lastly, poly(ADP-ribosyl)ation and chromatine structure should regulate apoptotic DNA fragmentation that is prevented by 3-aminobenzamide and spermine, respectively.

  7. Effects of haloperidol, clozapine and olanzapine on the survival of human neuronal and immune cells in vitro.

    PubMed

    Heiser, Philip; Enning, Frank; Krieg, Jürgen-Christian; Vedder, Helmut

    2007-11-01

    Cytotoxic effects on neuronal as well as on immune cells have been reported for both typical and atypical antipsychotic drugs. We evaluated the effects of different concentrations of a typical (haloperidol) and two atypical (clozapine, olanzapine) antipsychotics on the survival of human neuronal (SH-SY5Y cells) and immune cells (U937 cells) by determining the metabolic activity after 24 h of incubation by the modified tetrazolium method. The dopaminergic neuroblastoma SH-SY5Y and the lymphoma U-937 cell line are well established models for in vitro investigations. To further elucidate possible mechanisms of action we also determined the ATP content in the cultured cells. After experimental treatment, significant effects were detected by Kruskal Wallis test for all treatment conditions. Post-hoc tests (Dunn's method) showed that haloperidol and clozapine at the two highest concentrations (25 and 50 microg/ml) caused a significant decrease of metabolic activity in both cell systems, which was also detectable after treatment with clozapine at a concentration of 12.5 microg/ml in U937 cells. In contrast, olanzapine induced a significant increase in metabolic activity of SH-SY5Y cells at all concentrations except for the concentration of 3.1 microg/ml, whereas the metabolic activity in U937 cells was increased at concentrations of 1.6 and 6.25 microg/ml. For the determination of ATP content, the LD(50) values of the metabolic activity were used, except for olanzapine for which no distinct LD(50) value was available. Significant changes were detected for all treatments and post-hoc tests revealed that haloperidol caused a significant decrease compared to the control condition in both cell systems. These findings suggest that antipsychotic substances of different classes exert differential metabolic effects in both neuronal and immune cell systems.

  8. Homoharringtonine targets Smad3 and TGF-β pathway to inhibit the proliferation of acute myeloid leukemia cells.

    PubMed

    Chen, Jian; Mu, Qitian; Li, Xia; Yin, Xiufeng; Yu, Mengxia; Jin, Jing; Li, Chenying; Zhou, Yile; Zhou, Jiani; Suo, Shanshan; Lu, Demin; Jin, Jie

    2017-06-20

    Homoharringtonine (HHT) has long and widely been used in China for the treatment of acute myeloid leukemia (AML), the clinical therapeutic effect is significant but the working mechanism is poorly understood. The purpose of this study is to screen the possible target for HHT with virtual screening and verify the findings by cell experiments. Software including Autodock, Python, and MGL tools were used, with HHT being the ligand and proteins from PI3K-Akt pathway, Jak-stat pathway, TGF-β pathway and NK-κB pathway as the receptors. Human AML cell lines including U937, KG-1, THP-1 were cultured and used as the experiment cell lines. MTT assay was used for proliferation detection, flowcytometry was used to detect apoptosis and cell cycle arrest upon HHT functioning, western blotting was used to detect the protein level changes, viral shRNA transfection was used to suppress the expression level of the target protein candidate, and viral mRNA transfection was used for over-expression. Virtual screening revealed that smad3 from TGF-β pathway might be the candidate for HHT binding. In AML cell line U937 and KG-1, HHT can induce the Ser423/425 phosphorylation of smad3, and this phosphorylation can subsequently activate the TGF-β pathway, causing cell cycle arrest at G1 phase in U937 cells and apoptosis in KG-1 cells, knockdown of smad3 can impair the sensitivity of U937 cell to HHT, and over-expression of smad3 can re-establish the sensitivity in both cell lines. We conclude that smad3 is the probable target protein of HHT and plays an important role in the functioning mechanism of HHT.

  9. Homoharringtonine targets Smad3 and TGF-β pathway to inhibit the proliferation of acute myeloid leukemia cells

    PubMed Central

    Yin, Xiufeng; Yu, Mengxia; Jin, Jing; Li, Chenying; Zhou, Yile; Zhou, Jiani; Suo, Shanshan; Lu, Demin; Jin, Jie

    2017-01-01

    Homoharringtonine (HHT) has long and widely been used in China for the treatment of acute myeloid leukemia (AML), the clinical therapeutic effect is significant but the working mechanism is poorly understood. The purpose of this study is to screen the possible target for HHT with virtual screening and verify the findings by cell experiments. Software including Autodock, Python, and MGL tools were used, with HHT being the ligand and proteins from PI3K-Akt pathway, Jak-stat pathway, TGF-β pathway and NK-κB pathway as the receptors. Human AML cell lines including U937, KG-1, THP-1 were cultured and used as the experiment cell lines. MTT assay was used for proliferation detection, flowcytometry was used to detect apoptosis and cell cycle arrest upon HHT functioning, western blotting was used to detect the protein level changes, viral shRNA transfection was used to suppress the expression level of the target protein candidate, and viral mRNA transfection was used for over-expression. Virtual screening revealed that smad3 from TGF-β pathway might be the candidate for HHT binding. In AML cell line U937 and KG-1, HHT can induce the Ser423/425 phosphorylation of smad3, and this phosphorylation can subsequently activate the TGF-β pathway, causing cell cycle arrest at G1 phase in U937 cells and apoptosis in KG-1 cells, knockdown of smad3 can impair the sensitivity of U937 cell to HHT, and over-expression of smad3 can re-establish the sensitivity in both cell lines. We conclude that smad3 is the probable target protein of HHT and plays an important role in the functioning mechanism of HHT. PMID:28454099

  10. TMPRSS4 induces cancer cell invasion through pro-uPA processing.

    PubMed

    Min, Hye-Jin; Lee, Myung Kyu; Lee, Jung Weon; Kim, Semi

    2014-03-28

    TMPRSS4 is a novel type II transmembrane serine protease that is highly expressed on the cell surface in pancreatic, thyroid, colon, and other cancer tissues. Previously, we demonstrated that TMPRSS4 mediates cancer cell invasion, epithelial-mesenchymal transition, and metastasis and that increased TMPRSS4 expression correlates with colorectal cancer progression. We also demonstrated that TMPRSS4 upregulates urokinase-type plasminogen activator (uPA) gene expression to induce cancer cell invasion. However, it remains unknown how proteolytic activity of TMPRSS4 contributes to invasion. In this study, we report that TMPRSS4 directly converted inactive pro-uPA into the active form through its proteolytic activity. Analysis of conditioned medium from cells overexpressing TMPRSS4 demonstrated that the active TMPRSS4 protease domain is released from the cells and is associated with the plasma membrane. Furthermore, TMPRSS4 could increase pro-uPA-mediated invasion in a serine proteolytic activity-dependent manner. These observations suggest that TMPRSS4 is an upstream regulator of pro-uPA activation. This study provides valuable insights into the proteolytic function of TMPRSS4 as well as mechanisms for the control of invasion. Copyright © 2014 Elsevier Inc. All rights reserved.

  11. Dual Ca2+ requirement for optimal lipid peroxidation of low density lipoprotein by activated human monocytes.

    PubMed

    Li, Q; Tallant, A; Cathcart, M K

    1993-04-01

    The oxidative modification of LDL seems a key event in atherogenesis and may participate in inflammatory tissue injury. Our previous studies suggested that the process of LDL oxidation by activated human monocytes/macrophages required O2- and activity of intracellular lipoxygenase. Herein, we studied the mechanisms involved in this oxidative modification of LDL. In this study, we used the human monocytoid cell line U937 to examine the role of Ca2+ in U937 cell-mediated lipid peroxidation of LDL. U937 cells were activated by opsonized zymosan. Removal of Ca2+ from cell culture medium by EGTA inhibited U937 cell-mediated peroxidation of LDL lipids. Therefore, Ca2+ influx and mobilization were examined for their influence on U937 cell-mediated LDL lipid peroxidation. Ca2+ channel blockers nifedipine and verapamil blocked both Ca2+ influx and LDL lipid peroxidation by activated U937 cells. The inhibitory effects of nifedipine and verapamil were dose dependent. TMB-8 and ryanodine, agents known to prevent Ca2+ release from intracellular stores, also caused a dose-dependent inhibition of LDL lipid peroxidation by activated U937 cells while exhibiting no effect on Ca2+ influx. Thus, both Ca2+ influx through functional calcium channels and Ca2+ mobilization from intracellular stores participate in the oxidative modification of LDL by activated U937 cells. 45Ca2+ uptake experiments revealed profound Ca2+ influx during the early stages of U937 cell activation, however, the Ca2+ ionophore 4-bromo A23187 was unable to induce activation of U937 cells and peroxidation of LDL lipids. Release of intracellular Ca2+ by thapsigargin only caused a suboptimal peroxidation of LDL lipids. Our results indicate that although increases in intracellular Ca2+ levels provided by both influx and intracellular Ca2+ mobilization are required, other intracellular signals may be involved for optimal peroxidation of LDL lipids by activated human monocytes.

  12. Analysis of myelomonocytic leukemic differentiation by a cell surface marker panel including a fucose-binding lectin from Lotus tetragonolobus.

    PubMed

    Elias, L; Van Epps, D E

    1984-06-01

    The fucose-binding lectin from Lotus tetragonolobus ( FBL -L) has been previously shown to bind specifically to normal cells of the myeloid and monocytic lineages. The purpose of this study was to explore the utility of fluoresceinated FBL -L as a leukemia differentiation marker in conjunction with a panel of other frequently used surface markers (Fc receptor, HLA-DR, OKM1, and antimonocyte antibody). FBL -L reacted with leukemic cells in 8/9 cases of clinically recognized acute myeloid leukemia, including myeloid blast crisis of chronic granulocytic leukemia, 3/3 cases of chronic phase chronic myelogenous leukemia, and in 2/7 cases of clinically undifferentiated acute leukemia. Correlations were noted between reactivity with FBL -L, and DR and Fc receptor expression. Among continuous cell lines, FBL -L bound with high intensity to a majority of HL-60 and U937 cells. The less well differentiated myeloblast cell lines, KG-1, KG1a , and HL-60 blast II, exhibited less FBL -L binding than HL-60 and U937. A moderate proportion of K562 cells exhibited low level binding of FBL -L. Several lymphoblastic cell lines exhibited a pattern of low intensity binding that was distinguishable from the high intensity binding pattern of the myeloblastic lines. FBL -L reactivity of U937 was enhanced by induction of differentiation with leukocyte conditioned medium, but not dimethylsulfoxide. Such treatments induced contrasting patterns of change of HL-60 and U937 when labeled with OKM1, alpha-Mono, and HLA-DR. These studies demonstrate the application of FBL -L to analysis and quantitation of myelomonocytic leukemic differentiation.

  13. Dominant Negative Pleiotrophin Induces Tetraploidy and Aneuploidy in U87MG Human Glioblastoma Cells

    PubMed Central

    Chang, Yunchao; Berenson, James R.; Wang, Zhaoyi; Deuel, Thomas F.

    2007-01-01

    Summary Pleiotrophin (PTN, Ptn) is an 18 kD secretory cytokine that is expressed in many human cancers, including glioblastoma. In previous experiments, interruption of the constitutive PTN signaling in human U87MG glioblastoma cells that inappropriately express endogenous Ptn reversed their rapid growth in vitro and their malignant phenotype in vivo. To seek a mechanism for the effect of the dominant negative PTN, flow cytometry was used to compare the profiles of U87MG cells and four clones of U87MG cells that express the dominant negative PTN (U87MG/PTN 1–40 cells); here, we report that the dominant negative PTN in U87MG cells induces tetraploidy and aneuploidy and arrests the tetraploid and aneuploid cells in the G1 phase of the cell cycle. The data suggest that PTN signaling may have a critical role in chromosomal segregation and cell cycle progression; the data suggest induction of tetraploidy and aneuploidy in U87MG glioblastoma cells may be an important mechanism that contributes to the loss of the malignant phenotype of U87MG cells. PMID:17067552

  14. 40 CFR 35.937-5 - Negotiation.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 1 2010-07-01 2010-07-01 false Negotiation. 35.937-5 Section 35.937-5... ASSISTANCE Grants for Construction of Treatment Works-Clean Water Act § 35.937-5 Negotiation. (a) Grantees are responsible for negotiation of their contracts for architectural or engineering services. Contract...

  15. 40 CFR 35.937-5 - Negotiation.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 1 2011-07-01 2011-07-01 false Negotiation. 35.937-5 Section 35.937-5... ASSISTANCE Grants for Construction of Treatment Works-Clean Water Act § 35.937-5 Negotiation. (a) Grantees are responsible for negotiation of their contracts for architectural or engineering services. Contract...

  16. 40 CFR 35.937-5 - Negotiation.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 1 2012-07-01 2012-07-01 false Negotiation. 35.937-5 Section 35.937-5... ASSISTANCE Grants for Construction of Treatment Works-Clean Water Act § 35.937-5 Negotiation. (a) Grantees are responsible for negotiation of their contracts for architectural or engineering services. Contract...

  17. 40 CFR 35.937-5 - Negotiation.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 1 2013-07-01 2013-07-01 false Negotiation. 35.937-5 Section 35.937-5... ASSISTANCE Grants for Construction of Treatment Works-Clean Water Act § 35.937-5 Negotiation. (a) Grantees are responsible for negotiation of their contracts for architectural or engineering services. Contract...

  18. 40 CFR 35.937-5 - Negotiation.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 1 2014-07-01 2014-07-01 false Negotiation. 35.937-5 Section 35.937-5... ASSISTANCE Grants for Construction of Treatment Works-Clean Water Act § 35.937-5 Negotiation. (a) Grantees are responsible for negotiation of their contracts for architectural or engineering services. Contract...

  19. 30 CFR 937.845 - Civil penalties.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Civil penalties. 937.845 Section 937.845... PROGRAMS FOR THE CONDUCT OF SURFACE MINING OPERATIONS WITHIN EACH STATE OREGON § 937.845 Civil penalties. Part 845 of this chapter, Civil Penalties, shall apply when civil penalties are assessed for violations...

  20. 30 CFR 937.845 - Civil penalties.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 3 2012-07-01 2012-07-01 false Civil penalties. 937.845 Section 937.845... PROGRAMS FOR THE CONDUCT OF SURFACE MINING OPERATIONS WITHIN EACH STATE OREGON § 937.845 Civil penalties. Part 845 of this chapter, Civil Penalties, shall apply when civil penalties are assessed for violations...

  1. 30 CFR 937.845 - Civil penalties.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 3 2014-07-01 2014-07-01 false Civil penalties. 937.845 Section 937.845... PROGRAMS FOR THE CONDUCT OF SURFACE MINING OPERATIONS WITHIN EACH STATE OREGON § 937.845 Civil penalties. Part 845 of this chapter, Civil Penalties, shall apply when civil penalties are assessed for violations...

  2. 30 CFR 937.845 - Civil penalties.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 3 2013-07-01 2013-07-01 false Civil penalties. 937.845 Section 937.845... PROGRAMS FOR THE CONDUCT OF SURFACE MINING OPERATIONS WITHIN EACH STATE OREGON § 937.845 Civil penalties. Part 845 of this chapter, Civil Penalties, shall apply when civil penalties are assessed for violations...

  3. 30 CFR 937.845 - Civil penalties.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 3 2011-07-01 2011-07-01 false Civil penalties. 937.845 Section 937.845... PROGRAMS FOR THE CONDUCT OF SURFACE MINING OPERATIONS WITHIN EACH STATE OREGON § 937.845 Civil penalties. Part 845 of this chapter, Civil Penalties, shall apply when civil penalties are assessed for violations...

  4. Cardiolipin plays a role in KCN-induced necrosis.

    PubMed

    Tsesin, Natalia; Khalfin, Boris; Nathan, Ilana; Parola, Abraham H

    2014-10-01

    Cardiolipin (CL) is a unique anionic, dimeric phospholipid found almost exclusively in the inner mitochondrial membrane and is essential for the function of numerous enzymes that are involved in mitochondrial energy metabolism. While the role of cardiolipin in apoptosis is well established, its involvement in necrosis is enigmatic. In the present study, KCN-induced necrosis in U937 cells was used as an experimental model to assess the role of CL in necrosis. KCN addition to U937 cells induced reactive oxygen species (ROS) formation, while the antioxidants inhibited necrosis, indicating that ROS play a role in KCN-induced cell death. Further, CL oxidation was confirmed by the monomer green fluorescence of 10-N-nonyl acridine orange (NAO) and by TLC. Utilizing the red fluorescence of the dimeric NAO, redistribution of CL in mitochondrial membrane during necrosis was revealed. We also showed that the catalytic activity of purified adenosine triphosphate (ATP) synthase complex, known to be modulated by cardiolipin, decreased following KCN treatment. All these events occurred at an early phase of the necrotic process prior to rupture of the cell membrane. Furthermore, CL-deficient HeLa cells were found to be resistant to KCN-induced necrosis as compared with the wild type cells. We suggest that KCN, an effective reversible inhibitor of cytochrome oxidase and thereby of the respiratory chain leads to ROS increase, which in turn oxidizes CL (amongst other membrane phospholipids) and leads to mitochondrial membrane lipid reorganization and loss of CL symmetry. Finally, the resistance of CL-deficient cells to necrosis further supports the notion that CL, which undergoes oxidation during necrotic cell death, is an integral part of the milieu of events taking place in mitochondria leading to membrane disorganization and mitochondrial dysfunction. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  5. 13 CFR 120.937 - Assumption.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 13 Business Credit and Assistance 1 2010-01-01 2010-01-01 false Assumption. 120.937 Section 120.937 Business Credit and Assistance SMALL BUSINESS ADMINISTRATION BUSINESS LOANS Development Company... prior written approval. ...

  6. Andrographolide potentiates the antitumor effect of topotecan in acute myeloid leukemia cells through an intrinsic apoptotic pathway.

    PubMed

    Hodroj, Mohammad Hassan; Jardaly, Achraf; Abi Raad, Sarah; Zouein, Annalise; Rizk, Sandra

    2018-01-01

    Topotecan (TP) is an anticancer drug acting as topoisomerase I inhibitor that is used in the treatment of many types of cancers including leukemia, but it has significant side effects. Andrographolide, a compound extracted from Andrographis paniculata , was recently proven to inhibit the growth of cancer cells and can induce apoptosis. The aim of this study is to investigate the possible synergism between TP and andrographolide in acute myeloid cells in vitro. U937 acute myeloid leukemic cells were cultured using Roswell Park Memorial Institute (RPMI) medium and then treated for 24 h with TP and andrographolide prepared through the dilution of dimethyl sulfoxide (DMSO) stocks with RPMI on the day of treatment. Cell proliferation was assessed using cell proliferation assay upon treatment with both compounds separately and in combination. Cell-cycle study and apoptosis detection were performed by staining the cells with propidium iodide (PI) stain and Annexin V/PI stain, respectively, followed by flow cytometry analysis. Western blotting was used to assess the expression of various proteins involved in apoptotic pathways. Both TP and andrographolide showed an antiproliferative effect in a dose-dependent manner when applied on U937 cells separately; however, pretreating the cells with andrographolide before applying TP exhibited a synergistic effect with lower inhibitory concentrations (half-maximal inhibitory concentration). Treating the cells with TP alone led to specific cell-cycle arrest at S phase that was more prominent upon pretreatment combination with andrographolide. Using Annexin V/PI staining to assess the proapoptotic effect following the pretreatment combination showed an increase in the number of apoptotic cells, which was supported by the Western blot results that manifested an upregulation of several proapoptotic proteins expression. The pretreatment of U937 with andrographolide followed by low doses of TP showed an enhancement in inducing apoptosis

  7. Ectopic overexpression of LAPTM5 results in lysosomal targeting and induces Mcl-1 down-regulation, Bak activation, and mitochondria-dependent apoptosis in human HeLa cells

    PubMed Central

    Jun, Do Youn; Kim, Hyejin; Jang, Won Young; Lee, Ji Young; Fukui, Kiyoshi; Kim, Young Ho

    2017-01-01

    Human lysosomal-associated protein multispanning membrane 5 (LAPTM5) was identified by an ordered differential display-polymerase chain reaction (ODD-PCR) as an up-regulated cDNA fragment during 12-O-tetradecanoylphorbol 13-acetate (TPA)-induced differentiation of U937 cells into monocytes/macrophages. After TPA-treatment, the levels of LAPTM5 mRNA and protein increased and reached a maximum at 18–36 h. In healthy human tissues, LAPTM5 mRNA was expressed at high levels in hematopoietic cells and tissues, at low levels in the lung and fetal liver, and was not detected in other non-hematopoietic tissues. LAPTM5 mRNA was detected in immature malignant cells of myeloid lineage, such as K562, HL-60, U937, and THP-1 cells, and in unstimulated peripheral T cells, but was absent or barely detectable in lymphoid malignant or non-hematopoietic malignant cells. The LAPTM5 level in HL-60 cells increased more significantly during TPA-induced monocyte/macrophage differentiation than during DMSO-induced granulocyte differentiation. Ectopic expression of GFP-LAPTM5 or LAPTM5 in HeLa cells exhibited the localization of LAPTM5 to the lysosome. In HeLa cells overexpressing LAPTM5, the Mcl-1 and Bid levels declined markedly and apoptosis was induced via Bak activation, Δψm loss, activation of caspase-9, -8 and -3, and PARP degradation without accompanying necrosis. However, these LAPTM5-induced apoptotic events except for the decline of Bid level were completely abrogated by concomitant overexpression of Mcl-1. The pan-caspase inhibitor (z-VAD-fmk) could suppress the LAPTM5-induced apoptotic sub-G1 peak by ~40% but failed to block the induced Δψm loss, whereas the broad-range inhibitor of cathepsins (Cathepsin Inhibitor I) could suppress the LAPTM5-induced apoptotic sub-G1 peak and Δψm loss, by ~22% and ~23%, respectively, suggesting that the LAPTM5-mediated Δψm loss was exerted at least in part in a cathepsin-dependent manner. Together, these results demonstrate that

  8. The CNGRC-GG-D(KLAKLAK)2 peptide induces a caspase-independent, Ca2+-dependent death in human leukemic myeloid cells by targeting surface aminopeptidase N/CD13.

    PubMed

    Bouchet, Sandrine; Tang, Ruoping; Fava, Fanny; Legrand, Ollivier; Bauvois, Brigitte

    2016-04-12

    The CD13 antigen's binding site for the Asn-Gly-Arg (NGR) motif enables NGR-containing chemotherapeutic drugs to be delivered to CD13-positive tumours. Human CD13-positive acute myeloid leukemia (AML) cells proliferate abnormally and escape death. Here, we show that the CNGRC-GG-D(KLAKLAK)2 peptide induces death in AML cell lines (U937, THP-1, NB4, HL-60) and primary blood cells from AML patients. Cell death was characterized as a caspase-independent mechanism, without DNA fragmentation, but phosphatidylserine externalization and membrane disruption. Our results demonstrate in U937 cells that (i) the NGR-peptide triggers the loss of mitochondrial potential(ΔΨm) and generates superoxide anion (O2-), (ii) N-acetyl-L-cysteine (NAC) and extra/intracellular Ca2+ chelators (BAPTA) prevent both O2- production and cell death, (iii) the Ca2+-channel blocker nifedipine prevents cell death (indicating that Ca2+ influx is the initial death trigger), and (iv) BAPTA, but not NAC, prevents ΔΨm loss (suggesting O2- is a mitochondrial downstream effector). AML cell lines and primary blasts responding to the lethal action of NGR-peptide express promatrix metalloproteinase-12 (proMMP-12) and its substrate progranulin (an 88 kDa cell survival factor). A cell-free assay highlighted proMMP-12 activation by O2-. Accordingly, NGR-peptide's downregulation of 88 kDa progranulin protein was prevented by BAPTA and NAC. Conversely, AML blast resistance to NGR-peptide is associated with the expression of a distinct, 105 kDa progranulin isoform. These results indicate that CNGRC-GG-D(KLAKLAK)2 induces death in AML cells through the Ca2+-mitochondria-O2.-pathway, and support the link between proMMP-12 activation and progranulin cleavage during cell death. Our findings may have implications for the understanding of tumour biology and treatment.

  9. Recombinant latcripin 11 of Lentinula edodes C91-3 suppresses the proliferation of various cancer cells.

    PubMed

    Gao, Yifan; Padhiar, Arshad Ahmed; Wang, Jia; Zhang, Wei; Zhong, Mintao; Liu, Ben; Kang, Zhijie; Wang, Xiaoli; Li, Xingyun; Huang, Min

    2018-02-05

    Lentinula edodes C91-3 is an edible mushroom that has demonstrated a remarkable anti-tumor effect in various cancer cells both in vitro and in vivo. In the present study, we report the ability of recombinant thioredoxin-like latcripin 11 (LP-11) of Lentinula edodes C91-3 to suppress the proliferation of various cancer cells. The LP-11 gene of Lentinula edodes C91-3 was cloned in the pET-32a(+) expression vector and expressed in a prokaryotic system. The expressed protein was refolded by gradual dialysis and purified by affinity gel filtration chromatography. The antioxidant activity of LP-11 was tested by 1,1-dipheny l-2-picrylhydrazyl (DPPH) assay. The anti-tumor activity of recombinant LP-11 was tested in eight kinds of tumor cell lines by CCK-8 assay. Recombinant LP-11 significantly suppressed the proliferation of various cancer cells, but not normal human umbilical vein endothelial cells. Human lymphoma U937 cells exhibited the most sensitivity to LP-11 protein. U937 cell apoptosis was assessed by Annexin V staining coupled with flow cytometry, and mitochondrial morphology was analyzed by light and electron microscopy. It was revealed that recombinant LP-11 induced apoptosis in human leukemic monocyte lymphoma U937 cells. Our findings suggest that recombinant LP-11 is a promising agent for the treatment of lymphoma. Copyright © 2017. Published by Elsevier B.V.

  10. Hyperforin inhibits Akt1 kinase activity and promotes caspase-mediated apoptosis involving Bad and Noxa activation in human myeloid tumor cells.

    PubMed

    Merhi, Faten; Tang, Ruoping; Piedfer, Marion; Mathieu, Julie; Bombarda, Isabelle; Zaher, Murhaf; Kolb, Jean-Pierre; Billard, Christian; Bauvois, Brigitte

    2011-01-01

    The natural phloroglucinol hyperforin HF displays anti-inflammatory and anti-tumoral properties of potential pharmacological interest. Acute myeloid leukemia (AML) cells abnormally proliferate and escape apoptosis. Herein, the effects and mechanisms of purified HF on AML cell dysfunction were investigated in AML cell lines defining distinct AML subfamilies and primary AML cells cultured ex vivo. HF inhibited in a time- and concentration-dependent manner the growth of AML cell lines (U937, OCI-AML3, NB4, HL-60) by inducing apoptosis as evidenced by accumulation of sub-G1 population, phosphatidylserine externalization and DNA fragmentation. HF also induced apoptosis in primary AML blasts, whereas normal blood cells were not affected. The apoptotic process in U937 cells was accompanied by downregulation of anti-apoptotic Bcl-2, upregulation of pro-apoptotic Noxa, mitochondrial membrane depolarization, activation of procaspases and cleavage of the caspase substrate PARP-1. The general caspase inhibitor Z-VAD-fmk and the caspase-9- and -3-specific inhibitors, but not caspase-8 inhibitor, significantly attenuated apoptosis. HF-mediated apoptosis was associated with dephosphorylation of active Akt1 (at Ser(473)) and Akt1 substrate Bad (at Ser(136)) which activates Bad pro-apoptotic function. HF supppressed the kinase activity of Akt1, and combined treatment with the allosteric Akt1 inhibitor Akt-I-VIII significantly enhanced apoptosis of U937 cells. Our data provide new evidence that HF's pro-apoptotic effect in AML cells involved inhibition of Akt1 signaling, mitochondria and Bcl-2 members dysfunctions, and activation of procaspases -9/-3. Combined interruption of mitochondrial and Akt1 pathways by HF may have implications for AML treatment.

  11. Hyperforin Inhibits Akt1 Kinase Activity and Promotes Caspase-Mediated Apoptosis Involving Bad and Noxa Activation in Human Myeloid Tumor Cells

    PubMed Central

    Merhi, Faten; Tang, Ruoping; Piedfer, Marion; Mathieu, Julie; Bombarda, Isabelle; Zaher, Murhaf; Kolb, Jean-Pierre; Billard, Christian; Bauvois, Brigitte

    2011-01-01

    Background The natural phloroglucinol hyperforin HF displays anti-inflammatory and anti-tumoral properties of potential pharmacological interest. Acute myeloid leukemia (AML) cells abnormally proliferate and escape apoptosis. Herein, the effects and mechanisms of purified HF on AML cell dysfunction were investigated in AML cell lines defining distinct AML subfamilies and primary AML cells cultured ex vivo. Methodology and Results HF inhibited in a time- and concentration-dependent manner the growth of AML cell lines (U937, OCI-AML3, NB4, HL-60) by inducing apoptosis as evidenced by accumulation of sub-G1 population, phosphatidylserine externalization and DNA fragmentation. HF also induced apoptosis in primary AML blasts, whereas normal blood cells were not affected. The apoptotic process in U937 cells was accompanied by downregulation of anti-apoptotic Bcl-2, upregulation of pro-apoptotic Noxa, mitochondrial membrane depolarization, activation of procaspases and cleavage of the caspase substrate PARP-1. The general caspase inhibitor Z-VAD-fmk and the caspase-9- and -3-specific inhibitors, but not caspase-8 inhibitor, significantly attenuated apoptosis. HF-mediated apoptosis was associated with dephosphorylation of active Akt1 (at Ser473) and Akt1 substrate Bad (at Ser136) which activates Bad pro-apoptotic function. HF supppressed the kinase activity of Akt1, and combined treatment with the allosteric Akt1 inhibitor Akt-I-VIII significantly enhanced apoptosis of U937 cells. Significance Our data provide new evidence that HF's pro-apoptotic effect in AML cells involved inhibition of Akt1 signaling, mitochondria and Bcl-2 members dysfunctions, and activation of procaspases -9/-3. Combined interruption of mitochondrial and Akt1 pathways by HF may have implications for AML treatment. PMID:21998731

  12. Regulation of CD93 cell surface expression by protein kinase C isoenzymes.

    PubMed

    Ikewaki, Nobunao; Kulski, Jerzy K; Inoko, Hidetoshi

    2006-01-01

    Human CD93, also known as complement protein 1, q subcomponent, receptor (C1qRp), is selectively expressed by cells with a myeloid lineage, endothelial cells, platelets, and microglia and was originally reported to be involved in the complement protein 1, q subcomponent (C1q)-mediated enhancement of phagocytosis. The intracellular molecular events responsible for the regulation of its expression on the cell surface, however, have not been determined. In this study, the effect of protein kinases in the regulation of CD93 expression on the cell surface of a human monocyte-like cell line (U937), a human NK-like cell line (KHYG-1), and a human umbilical vein endothelial cell line (HUV-EC-C) was investigated using four types of protein kinase inhibitors, the classical protein kinase C (cPKC) inhibitor Go6976, the novel PKC (nPKC) inhibitor Rottlerin, the protein kinase A (PKA) inhibitor H-89 and the protein tyrosine kinase (PTK) inhibitor herbimycin A at their optimum concentrations for 24 hr. CD93 expression was analyzed using flow cytometry and glutaraldehyde-fixed cellular enzyme-linked immunoassay (EIA) techniques utilizing a CD93 monoclonal antibody (mAb), mNI-11, that was originally established in our laboratory as a CD93 detection probe. The nPKC inhibitor Rottlerin strongly down-regulated CD93 expression on the U937 cells in a dose-dependent manner, whereas the other inhibitors had little or no effect. CD93 expression was down-regulated by Go6976, but not by Rottlerin, in the KHYG-1 cells and by both Rottlerin and Go6976 in the HUV-EC-C cells. The PKC stimulator, phorbol myristate acetate (PMA), strongly up-regulated CD93 expression on the cell surface of all three cell-lines and induced interleukin-8 (IL-8) production by the U937 cells and interferon-gamma (IFN-gamma) production by the KHYG-1 cells. In addition, both Go6976 and Rottlerin inhibited the up-regulation of CD93 expression induced by PMA and IL-8 or IFN-gamma production in the respective cell

  13. Helium-based cold atmospheric plasma-induced reactive oxygen species-mediated apoptotic pathway attenuated by platinum nanoparticles.

    PubMed

    Jawaid, Paras; Rehman, Mati Ur; Zhao, Qing Li; Takeda, Keigo; Ishikawa, Kenji; Hori, Masaru; Shimizu, Tadamichi; Kondo, Takashi

    2016-09-01

    Plasma is generated by ionizing gas molecules. Helium (He)-based cold atmospheric plasma (CAP) was generated using a high-voltage power supply with low-frequency excitation (60 Hz at 7 kV) and He flow at 2 l/min. Platinum nanoparticles (Pt-NPs) are potent antioxidants due to their unique ability to scavenge superoxides and peroxides. These features make them useful for the protection against oxidative stress-associated pathologies. Here, the effects of Pt-NPs on He-CAP-induced apoptosis and the underlying mechanism were examined in human lymphoma U937 cells. Apoptosis was measured after cells were exposed to He-CAP in the presence or absence of Pt-NPs. The effects of combined treatment were determined by observing the changes in intracellular reactive oxygen species (ROS) and both mitochondrial and Fas dependent pathway. The results indicate that Pt-NPs substantially scavenge He-CAP-induced superoxides and peroxides and inhibit all the pathways involved in apoptosis execution. This might be because of the SOD/catalase mimetic effects of Pt-NPs. These results showed that the Pt-NPs can induce He-CAP desensitization in human lymphoma U937 cells. © 2016 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.

  14. 43 CFR 12.937 - Property trust relationship.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 43 Public Lands: Interior 1 2011-10-01 2011-10-01 false Property trust relationship. 12.937 Section 12.937 Public Lands: Interior Office of the Secretary of the Interior ADMINISTRATIVE AND AUDIT... Requirements § 12.937 Property trust relationship. Real property, equipment, intangible property and debt...

  15. Oncolytic vesicular stomatitis virus induces apoptosis in U87 glioblastoma cells by a type II death receptor mechanism and induces cell death and tumor clearance in vivo.

    PubMed

    Cary, Zachary D; Willingham, Mark C; Lyles, Douglas S

    2011-06-01

    Vesicular stomatitis virus (VSV) is a potential oncolytic virus for treating glioblastoma multiforme (GBM), an aggressive brain tumor. Matrix (M) protein mutants of VSV have shown greater selectivity for killing GBM cells versus normal brain cells than VSV with wild-type M protein. The goal of this research was to determine the contribution of death receptor and mitochondrial pathways to apoptosis induced by an M protein mutant (M51R) VSV in U87 human GBM tumor cells. Compared to controls, U87 cells expressing a dominant negative form of Fas (dnFas) or overexpressing Bcl-X(L) had reduced caspase-3 activation following infection with M51R VSV, indicating that both the death receptor pathway and mitochondrial pathways are important for M51R VSV-induced apoptosis. Death receptor signaling has been classified as type I or type II, depending on whether signaling is independent (type I) or dependent on the mitochondrial pathway (type II). Bcl-X(L) overexpression inhibited caspase activation in response to a Fas-inducing antibody, similar to the inhibition in response to M51R VSV infection, indicating that U87 cells behave as type II cells. Inhibition of apoptosis in vitro delayed, but did not prevent, virus-induced cell death. Murine xenografts of U87 cells that overexpress Bcl-X(L) regressed with a time course similar to that of control cells following treatment with M51R VSV, and tumors were not detectable at 21 days postinoculation. Immunohistochemical analysis demonstrated similar levels of viral antigen expression but reduced activation of caspase-3 following virus treatment of Bcl-X(L)-overexpressing tumors compared to controls. Further, the pathological changes in tumors following treatment with virus were quite different in the presence versus the absence of Bcl-X(L) overexpression. These results demonstrate that M51R VSV efficiently induces oncolysis in GBM tumor cells despite deregulation of apoptotic pathways, underscoring its potential use as a treatment for

  16. 30 CFR 937.955 - Certification of blasters.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Certification of blasters. 937.955 Section 937.955 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT, DEPARTMENT OF THE INTERIOR PROGRAMS FOR THE CONDUCT OF SURFACE MINING OPERATIONS WITHIN EACH STATE OREGON § 937.955 Certification of...

  17. 30 CFR 937.955 - Certification of blasters.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 3 2014-07-01 2014-07-01 false Certification of blasters. 937.955 Section 937.955 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT, DEPARTMENT OF THE INTERIOR PROGRAMS FOR THE CONDUCT OF SURFACE MINING OPERATIONS WITHIN EACH STATE OREGON § 937.955 Certification of...

  18. 30 CFR 937.846 - Individual civil penalties.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 3 2013-07-01 2013-07-01 false Individual civil penalties. 937.846 Section 937.846 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT, DEPARTMENT OF THE INTERIOR PROGRAMS FOR THE CONDUCT OF SURFACE MINING OPERATIONS WITHIN EACH STATE OREGON § 937.846 Individual civil...

  19. 30 CFR 937.846 - Individual civil penalties.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 3 2014-07-01 2014-07-01 false Individual civil penalties. 937.846 Section 937.846 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT, DEPARTMENT OF THE INTERIOR PROGRAMS FOR THE CONDUCT OF SURFACE MINING OPERATIONS WITHIN EACH STATE OREGON § 937.846 Individual civil...

  20. 30 CFR 937.795 - Small operator assistance.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 3 2013-07-01 2013-07-01 false Small operator assistance. 937.795 Section 937.795 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT, DEPARTMENT OF THE INTERIOR PROGRAMS FOR THE CONDUCT OF SURFACE MINING OPERATIONS WITHIN EACH STATE OREGON § 937.795 Small operator...

  1. 30 CFR 937.955 - Certification of blasters.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 3 2013-07-01 2013-07-01 false Certification of blasters. 937.955 Section 937.955 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT, DEPARTMENT OF THE INTERIOR PROGRAMS FOR THE CONDUCT OF SURFACE MINING OPERATIONS WITHIN EACH STATE OREGON § 937.955 Certification of...

  2. 30 CFR 937.795 - Small operator assistance.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 3 2014-07-01 2014-07-01 false Small operator assistance. 937.795 Section 937.795 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT, DEPARTMENT OF THE INTERIOR PROGRAMS FOR THE CONDUCT OF SURFACE MINING OPERATIONS WITHIN EACH STATE OREGON § 937.795 Small operator...

  3. 30 CFR 937.955 - Certification of blasters.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 3 2011-07-01 2011-07-01 false Certification of blasters. 937.955 Section 937.955 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT, DEPARTMENT OF THE INTERIOR PROGRAMS FOR THE CONDUCT OF SURFACE MINING OPERATIONS WITHIN EACH STATE OREGON § 937.955 Certification of...

  4. 30 CFR 937.846 - Individual civil penalties.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Individual civil penalties. 937.846 Section 937.846 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT, DEPARTMENT OF THE INTERIOR PROGRAMS FOR THE CONDUCT OF SURFACE MINING OPERATIONS WITHIN EACH STATE OREGON § 937.846 Individual civil...

  5. 30 CFR 937.795 - Small operator assistance.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 3 2011-07-01 2011-07-01 false Small operator assistance. 937.795 Section 937.795 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT, DEPARTMENT OF THE INTERIOR PROGRAMS FOR THE CONDUCT OF SURFACE MINING OPERATIONS WITHIN EACH STATE OREGON § 937.795 Small operator...

  6. 30 CFR 937.846 - Individual civil penalties.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 3 2011-07-01 2011-07-01 false Individual civil penalties. 937.846 Section 937.846 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT, DEPARTMENT OF THE INTERIOR PROGRAMS FOR THE CONDUCT OF SURFACE MINING OPERATIONS WITHIN EACH STATE OREGON § 937.846 Individual civil...

  7. 30 CFR 937.795 - Small operator assistance.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Small operator assistance. 937.795 Section 937.795 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT, DEPARTMENT OF THE INTERIOR PROGRAMS FOR THE CONDUCT OF SURFACE MINING OPERATIONS WITHIN EACH STATE OREGON § 937.795 Small operator...

  8. 30 CFR 937.700 - Oregon Federal program.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 3 2012-07-01 2012-07-01 false Oregon Federal program. 937.700 Section 937.700... PROGRAMS FOR THE CONDUCT OF SURFACE MINING OPERATIONS WITHIN EACH STATE OREGON § 937.700 Oregon Federal program. (a) This part contains all rules that are applicable to surface coal mining operations in Oregon...

  9. 30 CFR 937.700 - Oregon Federal program.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 3 2011-07-01 2011-07-01 false Oregon Federal program. 937.700 Section 937.700... PROGRAMS FOR THE CONDUCT OF SURFACE MINING OPERATIONS WITHIN EACH STATE OREGON § 937.700 Oregon Federal program. (a) This part contains all rules that are applicable to surface coal mining operations in Oregon...

  10. 30 CFR 937.700 - Oregon Federal program.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 3 2014-07-01 2014-07-01 false Oregon Federal program. 937.700 Section 937.700... PROGRAMS FOR THE CONDUCT OF SURFACE MINING OPERATIONS WITHIN EACH STATE OREGON § 937.700 Oregon Federal program. (a) This part contains all rules that are applicable to surface coal mining operations in Oregon...

  11. 2 CFR 1125.937 - DoD Component.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 2 Grants and Agreements 1 2011-01-01 2011-01-01 false DoD Component. 1125.937 Section 1125.937 Grants and Agreements Federal Agency Regulations for Grants and Agreements DEPARTMENT OF DEFENSE NONPROCUREMENT DEBARMENT AND SUSPENSION Definitions § 1125.937 DoD Component. In this part, DoD Component means...

  12. [Effects of macrophages on the biological behaviors and VEGF receptor mRNA, Hoxb2 mRNA, and integrin alphavbeta3 expressions of vascular endothelial cells].

    PubMed

    Liu, Liang; Liu, Xu-Sheng; Zhang, Xiao-Qi; Ming, Jia; Xu, Hui; Cheng, Tian-Min

    2005-02-01

    To explore the mechanism by which macrophages regulate angiogenesis by co-culturing human umbilical vein endothelial cells (ECV-304) with human macrophage cells (U937) stimulated by concanavalin A (ConA). Monolayer ECV-304 cells growing to 60% confluence were co-cultured with 1 x 10(5)/ml U937 cells in the presence or absence of ConA (ConA+U937+ECV-304 and U937+ECV-304 groups, respectively), with non-treated and ConA-treated ECV-304 cells serving as the control groups (ECV-304 and ConA+ECV-304 groups, respectively). Forty-eight h later, U937 cells were removed from the cell co-culture for examining changes in DNA synthesis of ECV-304 cells with (3)H-TdR incorporation assay and for cell cycle analysis with flow cytometry. RT-PCR was employed to assess the influence of macrophages stimulated by ConA on the expression of the target genes. With immunofluorescent method, the changes in the expression of integrin receptor alphavbeta3 of ECV-304 were determined. A significant increase in S-phase ECV-304 cells with enhanced DNA synthesis was observed after co-culture of the cells with ConA-stimulated U937 cells (P<0.01), which also resulted in significant up-regulation of the expressions of KDR mRNA (0.879+/-0.003), Hoxb2 mRNA (0.947+/-0.003) and integrin receptor alphavbeta3 (10.26+/-1.73). Macrophages can accelerate the proliferation, migration and adhesion of the vascular endothelial cells to the basilar membrane matrix by affecting their cell cycle, DNA synthesis, expression of KDR mRNA, Hoxb2 mRNA and integrin alphavbeta3, so as to modulate the angiogenetic process of the latter cells.

  13. Andrographolide potentiates the antitumor effect of topotecan in acute myeloid leukemia cells through an intrinsic apoptotic pathway

    PubMed Central

    Hodroj, Mohammad Hassan; Jardaly, Achraf; Abi Raad, Sarah; Zouein, Annalise; Rizk, Sandra

    2018-01-01

    Background Topotecan (TP) is an anticancer drug acting as topoisomerase I inhibitor that is used in the treatment of many types of cancers including leukemia, but it has significant side effects. Andrographolide, a compound extracted from Andrographis paniculata, was recently proven to inhibit the growth of cancer cells and can induce apoptosis. The aim of this study is to investigate the possible synergism between TP and andrographolide in acute myeloid cells in vitro. Materials and methods U937 acute myeloid leukemic cells were cultured using Roswell Park Memorial Institute (RPMI) medium and then treated for 24 h with TP and andrographolide prepared through the dilution of dimethyl sulfoxide (DMSO) stocks with RPMI on the day of treatment. Cell proliferation was assessed using cell proliferation assay upon treatment with both compounds separately and in combination. Cell-cycle study and apoptosis detection were performed by staining the cells with propidium iodide (PI) stain and Annexin V/PI stain, respectively, followed by flow cytometry analysis. Western blotting was used to assess the expression of various proteins involved in apoptotic pathways. Results Both TP and andrographolide showed an antiproliferative effect in a dose-dependent manner when applied on U937 cells separately; however, pretreating the cells with andrographolide before applying TP exhibited a synergistic effect with lower inhibitory concentrations (half-maximal inhibitory concentration). Treating the cells with TP alone led to specific cell-cycle arrest at S phase that was more prominent upon pretreatment combination with andrographolide. Using Annexin V/PI staining to assess the proapoptotic effect following the pretreatment combination showed an increase in the number of apoptotic cells, which was supported by the Western blot results that manifested an upregulation of several proapoptotic proteins expression. Conclusion The pretreatment of U937 with andrographolide followed by low doses

  14. The Recognition of N-Glycans by the Lectin ArtinM Mediates Cell Death of a Human Myeloid Leukemia Cell Line

    PubMed Central

    Carvalho, Fernanda Caroline; Soares, Sandro Gomes; Tamarozzi, Mirela Barros; Rego, Eduardo Magalhães; Roque-Barreira, Maria-Cristina

    2011-01-01

    ArtinM, a d-mannose-binding lectin from Artocarpus heterophyllus (jackfruit), interacts with N-glycosylated receptors on the surface of several cells of hematopoietic origin, triggering cell migration, degranulation, and cytokine release. Because malignant transformation is often associated with altered expression of cell surface glycans, we evaluated the interaction of ArtinM with human myelocytic leukemia cells and investigated cellular responses to lectin binding. The intensity of ArtinM binding varied across 3 leukemia cell lines: NB4>K562>U937. The binding, which was directly related to cell growth suppression, was inhibited in the presence of Manα1-3(Manα1-6)Manβ1, and was reverted in underglycosylated NB4 cells. ArtinM interaction with NB4 cells induced cell death (IC50 = 10 µg/mL), as indicated by cell surface exposure of phosphatidylserine and disruption of mitochondrial membrane potential unassociated with caspase activation or DNA fragmentation. Moreover, ArtinM treatment of NB4 cells strongly induced reactive oxygen species generation and autophagy, as indicated by the detection of acidic vesicular organelles in the treated cells. NB4 cell death was attributed to ArtinM recognition of the trimannosyl core of N-glycans containing a ß1,6-GlcNAc branch linked to α1,6-mannose. This modification correlated with higher levels of N-acetylglucosaminyltransferase V transcripts in NB4 cells than in K562 or U937 cells. Our results provide new insights into the potential of N-glycans containing a β1,6-GlcNAc branch linked to α1,6-mannose as a novel target for anti-leukemia treatment. PMID:22132163

  15. Autophagy is an important event for low-dose cytarabine treatment in acute myeloid leukemia cells.

    PubMed

    Chen, Liyun; Guo, Pei; Zhang, Yunxiang; Li, Xiaoyang; Jia, Peimin; Tong, Jianhua; Li, Junmin

    2017-09-01

    Cytarabine (Ara-c) has been an important agent in acute myeloid leukemia (AML) treatment for more than 40 years. While, the mechanisms underlying low dose cytarabine (LD Ara-c) is poorly understood. In this study, we investigated the therapeutic effect of LD Ara-C in vitro. U937 and HEL cell lines were treated with increasing dose of Ara-C and showed growth inhibition rates in a time and dose-dependent manner. Treatment with LD Ara-C (50nM) induced a time-dependent increase in expression of microtubule-associated protein light chain 3 (LC3) and beclin1, but degradation of sequestosome1 (p62) in both U937 and HEL cells. Characteristic of autophagosomes appeared after 24h treatment. Meanwhile, deregulation of Akt-mTOR pathway was also detected. When cultured in presence of autophagy inhibitors, autophagy and differentiation was reversed, and cell growth inhibition was also attenuated. Similar phenomenon could also be seen when beclin1 expression was down-regulated. Taken together, we concluded that LD Ara-C can induce autophagy in AML cells and appeared to play an important role in differentiation and death. Down-regulation of Akt-mTOR pathway is involved in these processes. We suggest that cytarabine-induced autophagy is not a pro-survival mechanism, but accounts for its antineoplastic effects. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. The CNGRC-GG-D(KLAKLAK)2 peptide induces a caspase-independent, Ca2+-dependent death in human leukemic myeloid cells by targeting surface aminopeptidase N/CD13

    PubMed Central

    Bouchet, Sandrine; Tang, Ruoping; Fava, Fanny; Legrand, Ollivier; Bauvois, Brigitte

    2016-01-01

    The CD13 antigen's binding site for the Asn-Gly-Arg (NGR) motif enables NGR-containing chemotherapeutic drugs to be delivered to CD13-positive tumours. Human CD13-positive acute myeloid leukemia (AML) cells proliferate abnormally and escape death. Here, we show that the CNGRC-GG-D(KLAKLAK)2 peptide induces death in AML cell lines (U937, THP-1, NB4, HL-60) and primary blood cells from AML patients. Cell death was characterized as a caspase-independent mechanism, without DNA fragmentation, but phosphatidylserine externalization and membrane disruption. Our results demonstrate in U937 cells that (i) the NGR-peptide triggers the loss of mitochondrial potential(ΔΨm) and generates superoxide anion (O2−), (ii) N-acetyl-L-cysteine (NAC) and extra/intracellular Ca2+ chelators (BAPTA) prevent both O2− production and cell death, (iii) the Ca2+-channel blocker nifedipine prevents cell death (indicating that Ca2+ influx is the initial death trigger), and (iv) BAPTA, but not NAC, prevents ΔΨm loss (suggesting O2− is a mitochondrial downstream effector). AML cell lines and primary blasts responding to the lethal action of NGR-peptide express promatrix metalloproteinase-12 (proMMP-12) and its substrate progranulin (an 88 kDa cell survival factor). A cell-free assay highlighted proMMP-12 activation by O2−. Accordingly, NGR-peptide's downregulation of 88 kDa progranulin protein was prevented by BAPTA and NAC. Conversely, AML blast resistance to NGR-peptide is associated with the expression of a distinct, 105 kDa progranulin isoform. These results indicate that CNGRC-GG-D(KLAKLAK)2 induces death in AML cells through the Ca2+-mitochondria-O2.-pathway, and support the link between proMMP-12 activation and progranulin cleavage during cell death. Our findings may have implications for the understanding of tumour biology and treatment. PMID:26655501

  17. CD36 signaling inhibits the translation of heat shock protein 70 induced by oxidized low density lipoprotein through activation of peroxisome proliferators-activated receptor γ

    PubMed Central

    Lee, Kyoung-Jin; Ha, Eun-Soo; Kim, Min-Kyoung; Lee, Sang-Hoon; Suh, Jae Sung; Lee, Sun-Hee; Park, Kyeong Han; Park, Jeong Hyun; Kim, Dae Joong; Kang, Dongmin; Kim, Byung-Chul; Jeoung, Dooil; Kim, Young-Kyoun; Kim, Ho-Dirk

    2008-01-01

    Oxidized LDL (OxLDL), a causal factor in atherosclerosis, induces the expression of heat shock proteins (Hsp) in a variety of cells. In this study, we investigated the role of CD36, an OxLDL receptor, and peroxisome proliferator-activated receptor γ (PPARγ) in OxLDL-induced Hsp70 expression. Overexpression of dominant-negative forms of CD36 or knockdown of CD36 by siRNA transfection increased OxLDL-induced Hsp70 protein expression in human monocytic U937 cells, suggesting that CD36 signaling inhibits Hsp70 expression. Similar results were obtained by the inhibition of PPARγ activity or knockdown of PPARγ expression. In contrast, overexpression of CD36, which is induced by treatment of MCF-7 cells with troglitazone, decreased Hsp70 protein expression induced by OxLDL. Interestingly, activation of PPARγ through a synthetic ligand, ciglitazone or troglitazone, decreased the expression levels of Hsp70 protein in OxLDL-treated U937 cells. However, major changes in Hsp70 mRNA levels were not observed. Cycloheximide studies demonstrate that troglitazone attenuates Hsp70 translation but not Hsp70 protein stability. PPARγ siRNA transfection reversed the inhibitory effects of troglitazone on Hsp70 translation. These results suggest that CD36 signaling may inhibit stress-induced gene expression by suppressing translation via activation of PPARγ in monocytes. These findings reveal a new molecular basis for the anti-inflammatory effects of PPARγ. PMID:19116451

  18. Retinoic acid induces signal transducer and activator of transcription (STAT) 1, STAT2, and p48 expression in myeloid leukemia cells and enhances their responsiveness to interferons.

    PubMed

    Matikainen, S; Ronni, T; Lehtonen, A; Sareneva, T; Melén, K; Nordling, S; Levy, D E; Julkunen, I

    1997-06-01

    IFNs are antiproliferative cytokines that have growth-inhibitory effects on various normal and malignant cells. Therefore, they have been used in the treatment of certain forms of cancer, such as chronic myelogenous leukemia and hairy cell leukemia. However, there is little evidence that IFNs would be effective in the treatment of acute myelogenous leukemia, and molecular mechanisms underlying IFN unresponsiveness have not been clarified. Here we have studied the activation and induction of IFN-specific transcription factors signal transducer and activator of transcription (STAT) 1, STAT2, and p48 in all-trans-retinoic acid (ATRA)-differentiated myeloid leukemia cells using promyelocytic NB4, myeloblastic HL-60, and monoblastic U937 cells as model systems. These cells respond to ATRA by growth inhibition and differentiation. We show that in undifferentiated NB4 cells, 2',5'-oligoadenylate synthetase and MxB gene expression is not activated by IFN-alpha, possibly due to a relative lack of signaling molecules, especially p48 protein. However, during ATRA-induced differentiation, steady-state STAT1, STAT2, and especially p48 mRNA and corresponding protein levels were elevated both in NB4 and U937 cells, apparently correlating to an enhanced responsiveness of these cells to IFNs. ATRA treatment of NB4 cells sensitized them to IFN action as seen by increased IFN-gamma activation site DNA-binding activity or by efficient formation of IFN-alpha-specific ISGF3 complex and subsequent oligoadenylate synthetase and MxB gene expression. Lack of p48 expression could be one of the mechanisms of promyelocytic leukemia cell escape from growth-inhibitory effects of IFN-alpha.

  19. Preclinical evaluation of WYE-687, a mTOR kinase inhibitor, as a potential anti-acute myeloid leukemia agent

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cheng, Feng; Wang, Lingling; Shen, Yunfeng

    Mammalian target of rapamycin (mTOR) as a potential drug target for treatment of acute myeloid leukemia (AML). Here, we investigated the potential anti-leukemic activity by WYE-687, a potent mTOR kinase inhibitor. We demonstrated that WYE-687 potently inhibited survival and proliferation of established (HL-60, U937, AML-193 and THP-1 lines) and human AML progenitor cells. Yet, same WYE-687 treatment was non-cytotoxic to the primary peripheral blood mononuclear leukocytes (PBMCs) isolated from healthy donors. WYE-687 induced caspase-dependent apoptotic death in above AML cells/progenitor cells. On the other hand, the pan-caspase inhibitor (Z-VAD-FMK), the caspase-3 specific inhibitor (Z-DEVD-FMK) or the caspase-9 specific inhibitor (z-LEHD-fmk)more » attenuated WYE-687-induced cytotoxicity. At the molecular level, WYE-687 concurrently inhibited activation of mTORC1 (p70S6K1 and S6 phosphorylations) and mTORC2 (AKT Ser-473 and FoxO1/3a phosphorylations), whiling downregulating mTORC1/2-regulated genes (Bcl-xL and hypoxia-inducible factor 1/2α) in both HL-60/U937 cells and human AML progenitor cells. In vivo, oral administration of WYE-687 potently inhibited U937 leukemic xenograft tumor growth in severe combined immunodeficient (SCID) mice, without causing significant toxicities. In summary, our results demonstrate that targeting mTORC1/2 by WYE-687 leads to potent antitumor activity in preclinical models of AML. - Highlights: • WYE-687 inhibits survival and proliferation of human AML cells/progenitor cells. • WYE-687 induces apoptotic death of human AML cells/progenitor cells. • WYE-687 inhibits mTORC1/2 activation in human AML cells/progenitor cells. • WYE-687 inhibits U937 xenograft growth in SCID mice.« less

  20. Induction of ceruloplasmin synthesis by IFN-gamma in human monocytic cells

    NASA Technical Reports Server (NTRS)

    Mazumder, B.; Mukhopadhyay, C. K.; Prok, A.; Cathcart, M. K.; Fox, P. L.

    1997-01-01

    Ceruloplasmin is a 132-kDa glycoprotein abundant in human plasma. It has multiple in vitro activities, including copper transport, lipid pro- and antioxidant activity, and oxidation of ferrous ion and aromatic amines; however, its physiologic role is uncertain. Although ceruloplasmin is synthesized primarily by the liver in adult humans, production by cells of monocytic origin has been reported. We here show that IFN-gamma is a potent inducer of ceruloplasmin synthesis by monocytic cells. Activation of human monoblastic leukemia U937 cells with IFN-gamma increased the production of ceruloplasmin by at least 20-fold. The identity of the protein was confirmed by plasmin fingerprinting. IFN-gamma also increased ceruloplasmin mRNA. Induction followed a 2- to 4-h lag and was partially blocked by cycloheximide, indicating a requirement for newly synthesized factors. Ceruloplasmin induction in monocytic cells was agonist specific, as IL-1, IL-4, IL-6, IFN-alpha, IFN-beta, TNF-alpha, and LPS were completely ineffective. The induction was also cell type specific, as IFN-gamma did not induce ceruloplasmin synthesis in endothelial or smooth muscle cells. In contrast, IFN-gamma was stimulatory in other monocytic cells, including THP-1 cells and human peripheral blood monocytes, and also in HepG2 cells. Ceruloplasmin secreted by IFN-gamma-stimulated U937 cells had ferroxidase activity and was, in fact, the only secreted protein with this activity. Monocytic cell-derived ceruloplasmin may contribute to defense responses via its ferroxidase activity, which may drive iron homeostasis in a direction unfavorable to invasive organisms.

  1. Synchrony in human, mouse and bacterial cell cultures--a comparison

    NASA Technical Reports Server (NTRS)

    Helmstetter, Charles E.; Thornton, Maureen; Romero, Ana; Eward, K. Leigh

    2003-01-01

    Growth characteristics of synchronous human MOLT-4, human U-937 and mouse L1210 cultures produced with a new minimally-disturbing technology were compared to each other and to synchronous Escherichia coli B/r. Based on measurements of cell concentrations during synchronous growth, synchrony persisted in similar fashion for all cells. Cell size and DNA distributions in the mammalian cultures also progressed synchronously and reproducibly for multiple cell cycles. The results demonstrate that unambiguous multi-cycle synchrony, critical for verifying the absence of significant growth imbalances induced by the synchronization procedure, is feasible with these cell lines, and possibly others.

  2. Substance P Induces Rapid and Transient Membrane Blebbing in U373MG Cells in a p21-Activated Kinase-Dependent Manner

    PubMed Central

    Meshki, John; Douglas, Steven D.; Hu, Mingyue; Leeman, Susan E.; Tuluc, Florin

    2011-01-01

    U373MG astrocytoma cells endogenously express the full-length neurokinin 1 receptor (NK1R). Substance P (SP), the natural ligand for NK1R, triggers rapid and transient membrane blebbing and we report that these morphological changes have different dynamics and intracellular signaling as compared to the changes that we have previously described in HEK293-NK1R cells. In both cell lines, the SP-induced morphological changes are Gq-independent, and they require the Rho, Rho-associated coiled-coil kinase (ROCK) signaling pathway. Using confocal microscopy we have demonstrated that tubulin is phosphorylated subsequent to cell stimulation with SP and that tubulin accumulates inside the blebs. Colchicine, a tubulin polymerization inhibitor, blocked SP-induced blebbing in U373MG but not in HEK293-NK1R cells. Although p21-activated kinase (PAK) is expressed in both cell lines, SP induced rapid phosphorylation of PAK in U373MG, but failed to phosphorylate PAK in HEK293-NK1R cells. The cell-permeable Rho inhibitor C3 transferase inhibited SP-induced PAK phosphorylation, but the ROCK inhibitor Y27632 had no effect on PAK phosphorylation, suggesting that Rho activates PAK in a ROCK-independent manner. Our study demonstrates that SP triggers rapid changes in cell morphology mediated by distinct intracellular signaling mechanisms in U373MG versus HEK293-NK1R cells. PMID:21966499

  3. 7 CFR 58.937 - Physical requirements for evaporated milk.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 3 2011-01-01 2011-01-01 false Physical requirements for evaporated milk. 58.937 Section 58.937 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING... Service 1 Requirements for Finished Products Bearing Usda Official Identification § 58.937 Physical...

  4. 7 CFR 58.937 - Physical requirements for evaporated milk.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 3 2012-01-01 2012-01-01 false Physical requirements for evaporated milk. 58.937 Section 58.937 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING... Service 1 Requirements for Finished Products Bearing Usda Official Identification § 58.937 Physical...

  5. 7 CFR 58.937 - Physical requirements for evaporated milk.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 3 2013-01-01 2013-01-01 false Physical requirements for evaporated milk. 58.937 Section 58.937 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING... Service 1 Requirements for Finished Products Bearing Usda Official Identification § 58.937 Physical...

  6. 7 CFR 58.937 - Physical requirements for evaporated milk.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 3 2014-01-01 2014-01-01 false Physical requirements for evaporated milk. 58.937 Section 58.937 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING... Service 1 Requirements for Finished Products Bearing Usda Official Identification § 58.937 Physical...

  7. 7 CFR 58.937 - Physical requirements for evaporated milk.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 3 2010-01-01 2010-01-01 false Physical requirements for evaporated milk. 58.937 Section 58.937 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING... Service 1 Requirements for Finished Products Bearing Usda Official Identification § 58.937 Physical...

  8. Extract of corn silk (stigma of Zea mays) inhibits the tumour necrosis factor-alpha- and bacterial lipopolysaccharide-induced cell adhesion and ICAM-1 expression.

    PubMed

    Habtemariam, S

    1998-05-01

    Treatment of human endothelial cells with cytokines such as tumour necrosis factor-alpha (TNF) or E. coli lipopolysaccharide (LPS) induces the expression of several adhesion molecules and enhances leukocyte adhesion to endothelial cell surface. Interfering with this leukocyte adhesion or adhesion molecules upregulation is an important therapeutic target for the treatment of bacterial sepsis and various inflammatory diseases. In the course of screening marketed European anti-inflammatory herbal drugs for TNF antagonistic activity, a crude ethanolic extract of corn silk (stigma of Zea mays) exhibited significant activity. The extract at concentrations of 9-250 micrograms/ml effectively inhibited the TNF- and LPS-induced adhesiveness of EAhy 926 endothelial cells to monocytic U937 cells. Similar concentration ranges of corn silk extract did also block the TNF and LPS but not the phorbol 12-myristate 13-acetate-induced ICAM-1 expression on EAhy 926 endothelial cell surface. The extract did not alter the production of TNF by LPS-activated macrophages and failed to inhibit the cytotoxic activity of TNF. It is concluded that corn silk possesses important therapeutic potential for TNF- and LPS-mediated leukocyte adhesion and trafficking.

  9. 40 CFR 35.937-11 - Applicability to existing contracts.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 1 2010-07-01 2010-07-01 false Applicability to existing contracts. 35.937-11 Section 35.937-11 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY GRANTS AND OTHER... § 35.937-11 Applicability to existing contracts. Some negotiated engineering subagreements already in...

  10. Cytotoxicity of Vitex agnus-castus fruit extract and its major component, casticin, correlates with differentiation status in leukemia cell lines.

    PubMed

    Kikuchi, Hidetomo; Yuan, Bo; Nishimura, Yoshio; Imai, Masahiko; Furutani, Ryota; Kamoi, Saki; Seno, Misako; Fukushima, Shin; Hazama, Shingo; Hirobe, Chieko; Ohyama, Kunio; Hu, Xiao-Mei; Takagi, Norio; Hirano, Toshihiko; Toyoda, Hiroo

    2013-12-01

    We have demonstrated that an extract from the ripe fruit of Vitex agnus-castus (Vitex) exhibits cytotoxic activities against various types of solid tumor cells, whereas its effects on leukemia cells has not been evaluated to date. In this study, the effects of Vitex and its major component, casticin, on leukemia cell lines, HL-60 and U-937, were investigated by focusing on proliferation, induction of apoptosis and differentiation. Identification and quantitation by NMR spectroscopy showed that casticin accounted for approximate 1% weight of Vitex. Dose-dependent cytotoxicity of Vitex and casticin was observed in both cell lines, and HL-60 cells were more sensitive to the cytotoxicity of Vitex/casticin compared to U-937 cells. Furthermore, compared to unstimulated HL-60 cells, phorbol 12-myristate 13-acetate (PMA)- and 1,25-dihydroxyvitamin D₃ (VD₃)-differentiated HL-60 cells acquired resistance to Vitex/casticin based on the results from cell viability and apoptosis induction analysis. Since the HL-60 cell line is more immature than the U-937 cell line, these results suggested that the levels of cytotoxicity of Vitex/casticin were largely attributed to the degree of differentiation of leukemia cells; that is, cell lines with less differentiated phenotype were more susceptible than the differentiated ones. RT-PCR analysis demonstrated that PMA upregulated the expression of intercellular adhesion molecule-1 (ICAM-1) in HL-60 cells, and that anti-ICAM-1 monoclonal antibody not only abrogated PMA-induced aggregation and adhesion of the cells but also restored its sensitivity to Vitex. These results suggested that ICAM-1 plays a crucial role in the acquired resistance in PMA-differentiated HL-60 cells by contributing to cell adhesion. These findings provide fundamental insights into the clinical application of Vitex/casticin for hematopoietic malignancy.

  11. 30 CFR 937.819 - Special performance standards-auger mining.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 3 2013-07-01 2013-07-01 false Special performance standards-auger mining. 937.819 Section 937.819 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT, DEPARTMENT OF THE INTERIOR PROGRAMS FOR THE CONDUCT OF SURFACE MINING OPERATIONS WITHIN EACH STATE OREGON § 937...

  12. 30 CFR 937.819 - Special performance standards-auger mining.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 3 2014-07-01 2014-07-01 false Special performance standards-auger mining. 937.819 Section 937.819 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT, DEPARTMENT OF THE INTERIOR PROGRAMS FOR THE CONDUCT OF SURFACE MINING OPERATIONS WITHIN EACH STATE OREGON § 937...

  13. 30 CFR 937.819 - Special performance standards-auger mining.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Special performance standards-auger mining. 937.819 Section 937.819 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT, DEPARTMENT OF THE INTERIOR PROGRAMS FOR THE CONDUCT OF SURFACE MINING OPERATIONS WITHIN EACH STATE OREGON § 937...

  14. 30 CFR 937.819 - Special performance standards-auger mining.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 3 2011-07-01 2011-07-01 false Special performance standards-auger mining. 937.819 Section 937.819 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT, DEPARTMENT OF THE INTERIOR PROGRAMS FOR THE CONDUCT OF SURFACE MINING OPERATIONS WITHIN EACH STATE OREGON § 937...

  15. SiO2-induced release of sVEGFRs from pulmonary macrophages.

    PubMed

    Chao, Jie; Lv, Yan; Chen, Jin; Wang, Jing; Yao, Honghong

    2018-01-01

    The inhalation of silicon dioxide (SiO 2 ) particles causes silicosis, a stubborn pulmonary disease that is characterized by alveolar inflammation during the early stage. Soluble cytokine receptors (SCRs) play important roles in regulating inflammation by either attenuating or promoting cytokine signaling. However, the role of SCRs in silicosis remains unknown. Luminex assays revealed increased soluble vascular endothelial growth factor receptor (sVEGFR) family levels in the plasma of silicosis patients. In an enzyme-linked immunosorbent assay (ELISA), cells from the differentiated human monocytic cell line U937 released sVEGFR family proteins after exposure to SiO 2 (50μg/cm 2 ). Further Western blot experiments revealed that VEGFR expression was also elevated in U937 cells. In contrast, levels of sVEGFR family members did not change in the supernatants of human umbilical vein endothelial cells (HUVECs) after exposure to SiO 2 (50μg/cm 2 ). Interestingly, VEGFR expression in HUVECs decreased after SiO 2 treatment. In a scratch assay, HUVECs exhibited cell migration ability, indicating the acquisition of mesenchymal properties. Our findings highlight the important role of sVEGFRs in both inflammation and fibrosis induced by SiO 2 , suggesting a possible mechanism for the fibrogenic effects observed in pulmonary diseases associated with fibrosis. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. 40 CFR 35.937-1 - Type of contract (subagreement).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 1 2011-07-01 2011-07-01 false Type of contract (subagreement). 35.937-1 Section 35.937-1 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY GRANTS AND OTHER... § 35.937-1 Type of contract (subagreement). (a) General. Cost-plus-percentage-of-cost and percentage-of...

  17. 40 CFR 35.937-1 - Type of contract (subagreement).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 1 2010-07-01 2010-07-01 false Type of contract (subagreement). 35.937-1 Section 35.937-1 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY GRANTS AND OTHER... § 35.937-1 Type of contract (subagreement). (a) General. Cost-plus-percentage-of-cost and percentage-of...

  18. Protein C Inhibitor (PCI) Binds to Phosphatidylserine Exposing Cells with Implications in the Phagocytosis of Apoptotic Cells and Activated Platelets

    PubMed Central

    Rieger, Daniela; Assinger, Alice; Einfinger, Katrin; Sokolikova, Barbora; Geiger, Margarethe

    2014-01-01

    Protein C Inhibitor (PCI) is a secreted serine protease inhibitor, belonging to the family of serpins. In addition to activated protein C PCI inactivates several other proteases of the coagulation and fibrinolytic systems, suggesting a regulatory role in hemostasis. Glycosaminoglycans and certain negatively charged phospholipids, like phosphatidylserine, bind to PCI and modulate its activity. Phosphatidylerine (PS) is exposed on the surface of apoptotic cells and known as a phagocytosis marker. We hypothesized that PCI might bind to PS exposed on apoptotic cells and thereby influence their removal by phagocytosis. Using Jurkat T-lymphocytes and U937 myeloid cells, we show here that PCI binds to apoptotic cells to a similar extent at the same sites as Annexin V, but in a different manner as compared to live cells (defined spots on ∼10–30% of cells). PCI dose dependently decreased phagocytosis of apoptotic Jurkat cells by U937 macrophages. Moreover, the phagocytosis of PS exposing, activated platelets by human blood derived monocytes declined in the presence of PCI. In U937 cells the expression of PCI as well as the surface binding of PCI increased with time of phorbol ester treatment/macrophage differentiation. The results of this study suggest a role of PCI not only for the function and/or maturation of macrophages, but also as a negative regulator of apoptotic cell and activated platelets removal. PMID:25000564

  19. The role of hypoxia inducible factor-1α in the increased MMP-2 and MMP-9 production by human monocytes exposed to nickel nanoparticles.

    PubMed

    Wan, Rong; Mo, Yiqun; Chien, Sufan; Li, Yihua; Li, Yixin; Tollerud, David J; Zhang, Qunwei

    2011-12-01

    Nickel is an important economic commodity, but it can cause skin sensitization and may cause lung diseases such as lung fibrosis, pneumonitis, bronchial asthma and lung cancer. With development of nanotechnology, nano-sized nickel (Nano-Ni) and nano-sized titanium dioxide (Nano-TiO₂) particles have been developed and produced for many years with new formulations and surface properties to meet novel demands. Our previous studies have shown that Nano-Ni instilled into rat lungs caused a greater inflammatory response as compared with standard-sized nickel (5 μm) at equivalent mass concentrations. Nano-Ni caused a persistent high level of inflammation in lungs even at low doses. Recently, several studies have shown that nanoparticles can translocate from the lungs to the circulatory system. To evaluate the potential systemic effects of metal nanoparticles, we compared the effects of Nano-Ni and Nano-TiO₂ on matrix metalloproteinases 2 and 9 (MMP-2 and MMP-9) gene expression and activity. Our results showed that exposure of human monocyte U937 to Nano-Ni caused dose- and time- dependent increase in MMP-2 and MMP-9 mRNA expression and pro-MMP-2 and pro-MMP-9 activity, but Nano-TiO₂ did not. Nano-Ni also caused dose- and time- related increase in tissue inhibitor of metalloproteinases 1 (TIMP-1), but Nano-TiO₂ did not. To determine the potential mechanisms involved, we measured the expression of hypoxia inducible factor 1α (HIF-1α) in U937 cells exposed to Nano-Ni and Nano-TiO₂. Our results showed that exposure to Nano-Ni caused HIF-1α accumulation in the nucleus. Furthermore, pre-treatment of U937 cells with heat shock protein 90 (Hsp90) inhibitor, 17-(Allylamino)-17-demethoxygeldanamycin (17-AAG), prior to exposure to Nano-Ni significantly abolished Nano-Ni-induced MMP-2 and MMP-9 mRNA upregulation and increased pro-MMP-2 and pro-MMP-9 activity. Our results suggest that HIF-1α accumulation may be involved in the increased MMP-2 and MMP-9 production in U

  20. 43 CFR 12.937 - Property trust relationship.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 43 Public Lands: Interior 1 2010-10-01 2010-10-01 false Property trust relationship. 12.937... Requirements § 12.937 Property trust relationship. Real property, equipment, intangible property and debt instruments that are acquired or improved with Federal funds shall be held in trust by the recipient as...

  1. RhoA/ROCK pathway mediates leptin-induced uPA expression to promote cell invasion in ovarian cancer cells.

    PubMed

    Ghasemi, Ahmad; Hashemy, Seyed Isaac; Aghaei, Mahmoud; Panjehpour, Mojtaba

    2017-04-01

    Previous studies have shown that leptin, an adipocyte-secreted hormone, stimulates ovarian cancer invasion. Here, we investigated the contribution of uPA in leptin-induced ovarian cancer cell invasion. The cell invasion and migration experiments were carried out using matrigel invasion and wound healing assays in ovarian cancer cell lines (OVCAR3, SKOV3and CaoV-3). The mechanism underlying the invasive effect of leptin was examined using cell transfection with Ob-Rb siRNA, pre-treatment with a specific inhibitor of RhoA and ROCK, RhoA activation assay, OB-Rb, Rock and upA protein expression. Our results show that leptin induced ovarian cancer cell invasion via up-regulating upA in a time and dose-dependent manner, which was attenuated using knockdown of OB-Rb by siRNA. Moreover, pre-incubation with C3 (inhibitor of RhoA) and Y-27632 (inhibitor of ROCK) effectively attenuated leptin-induced upA expression and inhibited invasive ability of ovarian cancer cells. We also found that pretreatment with inhibitors of PI3K/AKT (LY294002), JAK/STAT (AG490) and NF-kB (BAY 11-7082) significantly reduced leptin-induced upA expression. Collectively, our findings demonstrate that OB-Rb, RhoA/ROCK, PI3K/AKT, JAK/STAT pathways and NF-kB activation are involved in leptin-induced upA expression. These results may provide a new mechanism that facilitates leptin-induced ovarian cancer invasion. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. 27 CFR 9.37 - California Shenandoah Valley.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false California Shenandoah Valley. 9.37 Section 9.37 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU...) Boundaries. The Shenandoah Valley viticultural Area is located in portions of Amador and El Dorado Counties...

  3. 27 CFR 9.37 - California Shenandoah Valley.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2011-04-01 2011-04-01 false California Shenandoah Valley. 9.37 Section 9.37 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU...) Boundaries. The Shenandoah Valley viticultural Area is located in portions of Amador and El Dorado Counties...

  4. Estradiol attenuates EGF-induced rapid uPAR mobilization and cell migration via the G-protein-coupled receptor 30 in ovarian cancer cells.

    PubMed

    Henic, Emir; Noskova, Vera; Høyer-Hansen, Gunilla; Hansson, Stefan; Casslén, Bertil

    2009-02-01

    Epidermal growth factor (EGF) stimulates proliferation and migration in ovarian cancer cells, and high tumor expression of the EGF system correlates with poor prognosis. Epidermal growth factor upregulates urokinase plasminogen activator receptor (uPAR) on the cell surface via 3 distinct mechanisms: rapid mobilization of uPAR from detergent-resistant domains, increased mRNA, and decreased degradation. G-protein-coupled receptor 30 (GPR30) is a newly identified membrane estrogen receptor (ER).The objective of this study was to explore the effects of 17beta-estradiol (E(2)) on uPAR expression and cell migration in ovarian cancer cells and further to identify the ER involved.We used 7 ovarian cancer cell lines, cell migration assay, cellular binding of (125)I-uPA, cellular degradation of (125)I-uPA/PAI-1 complex, enzyme-linked immunosorbent assay for uPAR, solid-phase enzyme immunoassay for ERalpha, and quantitative polymerase chain reaction. Estradiol attenuates the stimulatory effect of EGF on cell migration and uPAR expression. Specifically, E(2) reduces the very rapid increase of detergent extractable uPAR, which occurs within minutes of EGF stimulation and probably represents mobilization of uPAR from detergent-resistant domains such as lipid rafts. Estradiol influenced neither the amount of uPAR mRNA nor the rate of uPAR degradation or solubilization. The nuclear ER antagonists ICI 182780 and tamoxifen, which are GPR30 agonists, as well as the specifically constructed GPR30 agonist G1, mimicked the effect of E(2) on uPAR expression and cell migration. OVCAR-3 cells express mRNA for GPR30.Estradiol attenuates EGF-induced mobilization of ligated uPAR from detergent-resistant domains and subsequent migration in ovarian cancer cells. The response to various ER ligands indicates that this effect is mediated via the membrane ER GPR30.

  5. Enhancement of natural killer cell activity in human immunodeficiency virus-infected subjects by in vitro treatment with biologic response modifier OK-432.

    PubMed Central

    Huang, X L; Fan, Z; Murayama, T; Rinaldo, C

    1995-01-01

    A decrease in natural killer (NK) cell function has been related to the progression of human immunodeficiency virus (HIV) infection. In the present study, we assessed the ability of a streptococcus-derived biologic response modifier, OK-432, to augment NK lysis of uninfected K562 and U937 cells and HIV-infected U937 cells by peripheral blood mononuclear cells (PBMC) from HIV-seropositive homosexual men. Optimal two- to fourfold increases in lysis of the three targets were observed after pretreatment of PBMC from HIV-negative subjects for 4 h with 2 micrograms of OK-432 per ml. This effect was related primarily to gamma interferon (IFN-gamma) production induced by OK-432 and was not linked to production of tumor necrosis factors alpha and beta or to monocytes in the cultures. The enhancing effect of OK-432 on NK cell function was diminished but still evident in PBMC from subjects with relatively early-phase (< 3-year) HIV infection and high CD4+ cell counts and was lower in subjects with longer-term HIV infection (> 3 years), in association with reduced production of IFN-gamma. Augmentation of NK cell activity in HIV-infected men by OK-432 was comparable to that induced by treatment of cells with 1,000 U of IFN-alpha or interleukin 2 per ml. The data suggest that the NK cell-enhancing effects of OK-432 are at least in part mediated by IFN-gamma and that OK-432 may be effective in treatment of patients with early-phase HIV infection. PMID:7719919

  6. Hematopoietic Cancer Cell Lines Can Support Replication of Sabin Poliovirus Type 1

    PubMed Central

    van Eikenhorst, Gerco; de Gruijl, Tanja D.; van der Pol, Leo A.; Bakker, Wilfried A. M.

    2015-01-01

    Viral vaccines can be produced in adherent or in suspension cells. The objective of this work was to screen human suspension cell lines for the capacity to support viral replication. As the first step, it was investigated whether poliovirus can replicate in such cell lines. Sabin poliovirus type 1 was serially passaged on five human cell lines, HL60, K562, KG1, THP-1, and U937. Sabin type 1 was capable of efficiently replicating in three cell lines (K562, KG1, and U937), yielding high viral titers after replication. Expression of CD155, the poliovirus receptor, did not explain susceptibility to replication, since all cell lines expressed CD155. Furthermore, we showed that passaged virus replicated more efficiently than parental virus in KG1 cells, yielding higher virus titers in the supernatant early after infection. Infection of cell lines at an MOI of 0.01 resulted in high viral titers in the supernatant at day 4. Infection of K562 with passaged Sabin type 1 in a bioreactor system yielded high viral titers in the supernatant. Altogether, these data suggest that K562, KG1, and U937 cell lines are useful for propagation of poliovirus. PMID:25815312

  7. 30 CFR 937.777 - General content requirements for permit applications.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 3 2011-07-01 2011-07-01 false General content requirements for permit applications. 937.777 Section 937.777 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT... § 937.777 General content requirements for permit applications. Part 777 of this chapter, General...

  8. 30 CFR 937.777 - General content requirements for permit applications.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 3 2010-07-01 2010-07-01 false General content requirements for permit applications. 937.777 Section 937.777 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT... § 937.777 General content requirements for permit applications. Part 777 of this chapter, General...

  9. 47 CFR 2.937 - Equipment defect and/or design change.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 1 2012-10-01 2012-10-01 false Equipment defect and/or design change. 2.937 Section 2.937 Telecommunication FEDERAL COMMUNICATIONS COMMISSION GENERAL FREQUENCY ALLOCATIONS AND RADIO TREATY MATTERS; GENERAL RULES AND REGULATIONS Equipment Authorization Procedures Conditions Attendant to An Equipment Authorization § 2.937...

  10. Inhibition of EGR-1 and NF-kappa B gene expression by dexamethasone during phorbol ester-induced human monocytic differentiation.

    PubMed

    Hass, R; Brach, M; Gunji, H; Kharbanda, S; Kufe, D

    1992-10-20

    The treatment of human myeloid leukemia cells (HL-60, U-937, THP-1) with 12-O-tetradecanoylphorbol-13-acetate (TPA) is associated with growth arrest and appearance of a differentiated monocytic phenotype. While previous studies have reported that the glucocorticoid dexamethasone blocks phenotypic characteristics of monocytic differentiation, we demonstrated in the present work that dexamethasone delays the effects of TPA on the loss of U-937 cell proliferation. We also demonstrated that this glucocorticoid inhibits TPA-induced increases in expression of the EGR-1 early response gene. The results of nuclear run-on assays and half-life experiments indicated that this effect of dexamethasone is regulated at the post-transcriptional level. Similar studies were performed for the NF-kappa B gene. While TPA treatment was associated with transient increases in NF-kappa B mRNA levels, this induction was blocked by dexamethasone. In contrast, dexamethasone had no significant effect on the activation of pre-existing NF-kappa B protein as determined in DNA-binding assays. Taken together, these findings suggest that the activated glucocorticoid receptor inhibits signaling pathways which include expression of the EGR-1 and NF-kappa B genes and that such effects may contribute to a block in TPA-induced monocytic differentiation.

  11. Number and brightness image analysis reveals ATF-induced dimerization kinetics of uPAR in the cell membrane

    PubMed Central

    Hellriegel, Christian; Caiolfa, Valeria R.; Corti, Valeria; Sidenius, Nicolai; Zamai, Moreno

    2011-01-01

    We studied the molecular forms of the GPI-anchored urokinase plasminogen activator receptor (uPAR-mEGFP) in the human embryo kidney (HEK293) cell membrane and demonstrated that the binding of the amino-terminal fragment (ATF) of urokinase plasminogen activator is sufficient to induce the dimerization of the receptor. We followed the association kinetics and determined precisely the dimeric stoichiometry of uPAR-mEGFP complexes by applying number and brightness (N&B) image analysis. N&B is a novel fluctuation-based approach for measuring the molecular brightness of fluorophores in an image time sequence in live cells. Because N&B is very sensitive to long-term temporal fluctuations and photobleaching, we have introduced a filtering protocol that corrects for these important sources of error. Critical experimental parameters in N&B analysis are illustrated and analyzed by simulation studies. Control experiments are based on mEGFP-GPI, mEGFP-mEGFP-GPI, and mCherry-GPI, expressed in HEK293. This work provides a first direct demonstration of the dimerization of uPAR in live cells. We also provide the first methodological guide on N&B to discern minor changes in molecular composition such as those due to dimerization events, which are involved in fundamental cell signaling mechanisms.—Hellriegel, C., Caiolfa, V. R., Corti, V., Sidenius, N., Zamai, M. Number and brightness image analysis reveals ATF-induced dimerization kinetics of uPAR in the cell membrane. PMID:21602447

  12. Shock wave-induced ATP release from osteosarcoma U2OS cells promotes cellular uptake and cytotoxicity of methotrexate.

    PubMed

    Qi, Baochang; Yu, Tiecheng; Wang, Chengxue; Wang, Tiejun; Yao, Jihang; Zhang, Xiaomeng; Deng, Pengfei; Xia, Yongning; Junger, Wolfgang G; Sun, Dahui

    2016-10-03

    Osteosarcoma is the most prevalent primary malignant bone tumor, but treatment is difficult and prognosis remains poor. Recently, large-dose chemotherapy has been shown to improve outcome but this approach can cause many side effects. Minimizing the dose of chemotherapeutic drugs and optimizing their curative effects is a current goal in the management of osteosarcoma patients. In our study, trypan blue dye exclusion assay was performed to investigate the optimal conditions for the sensitization of osteosarcoma U2OS cells. Cellular uptake of the fluorophores Lucifer Yellow CH dilithium salt and Calcein was measured by qualitative and quantitative methods. Human MTX ELISA Kit and MTT assay were used to assess the outcome for osteosarcoma U2OS cells in the present of shock wave and methotrexate. To explore the mechanism, P2X7 receptor in U2OS cells was detected by immunofluorescence and the extracellular ATP levels was detected by ATP assay kit. All data were analyzed using SPSS17.0 statistical software. Comparisons were made with t test between two groups. Treatment of human osteosarcoma U2OS cells with up to 450 shock wave pulses at 7 kV or up to 200 shock wave pulses at 14 kV had little effect on cell viability. However, this shock wave treatment significantly promoted the uptake of Calcein and Lucifer Yellow CH by osteosarcoma U2OS cells. Importantly, shock wave treatment also significantly enhanced the uptake of the chemotherapy drug methotrexate and increased the rate of methotrexate-induced apoptosis. We found that shock wave treatment increased the extracellular concentration of ATP and that KN62, an inhibitor of P2X7 receptor reduced the capacity methotrexate-induced apoptosis. Our results suggest that shock wave treatment promotes methotrexate-induced apoptosis by altering cell membrane permeability in a P2X7 receptor-dependent manner. Shock wave treatment may thus represent a possible adjuvant therapy for osteosarcoma.

  13. 17{alpha}-Estradiol arrests cell cycle progression at G{sub 2}/M and induces apoptotic cell death in human acute leukemia Jurkat T cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jun, Do Youn; Park, Hae Sun; Kim, Jun Seok

    2008-09-15

    A pharmacological dose (2.5-10 {mu}M) of 17{alpha}-estradiol (17{alpha}-E{sub 2}) exerted a cytotoxic effect on human leukemias Jurkat T and U937 cells, which was not suppressed by the estrogen receptor (ER) antagonist ICI 182,780. Along with cytotoxicity in Jurkat T cells, several apoptotic events including mitochondrial cytochrome c release, activation of caspase-9, -3, and -8, PARP degradation, and DNA fragmentation were induced. The cytotoxicity of 17{alpha}-E{sub 2} was not blocked by the anti-Fas neutralizing antibody ZB-4. While undergoing apoptosis, there was a remarkable accumulation of G{sub 2}/M cells with the upregulatoin of cdc2 kinase activity, which was reflected in the Thr56more » phosphorylation of Bcl-2. Dephosphorylation at Tyr15 and phosphorylation at Thr161 of cdc2, and significant increase in the cyclin B1 level were underlying factors for the cdc2 kinase activation. Whereas the 17{alpha}-E{sub 2}-induced apoptosis was completely abrogated by overexpression of Bcl-2 or by pretreatment with the pan-caspase inhibitor z-VAD-fmk, the accumulation of G{sub 2}/M cells significantly increased. The caspase-8 inhibitor z-IETD-fmk failed to influence 17{alpha}-E{sub 2}-mediated caspase-9 activation, but it markedly reduced caspase-3 activation and PARP degradation with the suppression of apoptosis, indicating the contribution of caspase-8; not as an upstream event of the mitochondrial cytochrome c release, but to caspase-3 activation. In the presence of hydroxyurea, which blocked the cell cycle progression at the G{sub 1}/S boundary, 17{alpha}-E{sub 2} failed to induce the G{sub 2}/M arrest as well as apoptosis. These results demonstrate that the cytotoxicity of 17{alpha}-E{sub 2} toward Jurkat T cells is attributable to apoptosis mainly induced in G{sub 2}/M-arrested cells, in an ER-independent manner, via a mitochondria-dependent caspase pathway regulated by Bcl-2.« less

  14. 14 CFR 1274.937 - Security requirements for unclassified information technology resources.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... information technology resources. 1274.937 Section 1274.937 Aeronautics and Space NATIONAL AERONAUTICS AND... Conditions § 1274.937 Security requirements for unclassified information technology resources. Security Requirements for Unclassified Information Technology Resources July 2002 (a) The Recipient shall be responsible...

  15. 14 CFR 1274.937 - Security requirements for unclassified information technology resources.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... information technology resources. 1274.937 Section 1274.937 Aeronautics and Space NATIONAL AERONAUTICS AND... Conditions § 1274.937 Security requirements for unclassified information technology resources. Security Requirements for Unclassified Information Technology Resources July 2002 (a) The Recipient shall be responsible...

  16. 14 CFR 1274.937 - Security requirements for unclassified information technology resources.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... information technology resources. 1274.937 Section 1274.937 Aeronautics and Space NATIONAL AERONAUTICS AND... Conditions § 1274.937 Security requirements for unclassified information technology resources. Security Requirements for Unclassified Information Technology Resources July 2002 (a) The Recipient shall be responsible...

  17. 14 CFR 1274.937 - Security requirements for unclassified information technology resources.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... information technology resources. 1274.937 Section 1274.937 Aeronautics and Space NATIONAL AERONAUTICS AND... Conditions § 1274.937 Security requirements for unclassified information technology resources. Security Requirements for Unclassified Information Technology Resources July 2002 (a) The Recipient shall be responsible...

  18. Role of Spm-Cer-S1P signalling pathway in MMP-2 mediated U46619-induced proliferation of pulmonary artery smooth muscle cells: protective role of epigallocatechin-3-gallate.

    PubMed

    Chowdhury, Animesh; Sarkar, Jaganmay; Chakraborti, Tapati; Chakraborti, Sajal

    2015-10-01

    During remodelling of pulmonary artery, marked proliferation of pulmonary artery smooth muscle cells (PASMCs) occurs, which contributes to pulmonary hypertension. Thromboxane A2 (TxA2) has been shown to produce pulmonary hypertension. The present study investigates the inhibitory effect of epigallocatechin-3-gallate (EGCG) on the TxA2 mimetic, U46619-induced proliferation of PASMCs. U46619 at a concentration of 10 nM induces maximum proliferation of bovine PASMCs. Both pharmacological and genetic inhibitors of p(38)MAPK, NF-κB and MMP-2 significantly inhibit U46619-induced cell proliferation. EGCG markedly abrogate U46619-induced p(38)MAPK phosphorylation, NF-κB activation, proMMP-2 expression and activation, and also the cell proliferation. U46619 causes an increase in the activation of sphingomyelinase (SMase) and sphingosine kinase (SPHK) and also increase sphingosine 1 phosphate (S1P) level. U46619 also induces phosphorylation of ERK1/2, which phosphorylates SPHK leading to an increase in S1P level. Both pharmacological and genetic inhibitors of SMase and SPHK markedly inhibit U46619-induced cell proliferation. Additionally, pharmacological and genetic inhibitors of MMP-2 markedly abrogate U46619-induced SMase activity and S1P level. EGCG markedly inhibit U46619-induced SMase activity, ERK1/2 and SPHK phosphorylation and S1P level in the cells. Overall, Sphingomyeline-Ceramide-Sphingosine-1-phosphate (Spm-Cer-S1P) signalling axis plays an important role in MMP-2 mediated U46619-induced proliferation of PASMCs. Importantly, EGCG inhibits U46619 induced increase in MMP-2 activation by modulating p(38)MAPK-NFκB pathway and subsequently prevents the cell proliferation. Copyright © 2015 John Wiley & Sons, Ltd.

  19. Activation of Coagulation by Lenalidomide-Based Regimens for the Treatment of Multiple Myeloma

    PubMed Central

    Isozumi, Yu; Arai, Reina; Fujimoto, Kazumi; Koyama, Takatoshi

    2013-01-01

    We investigated the procoagulant effects of lenalidomide (Len)-based regimens in vitro focusing on tissue factor (TF) and phosphatidylserine (PS). We examined the effects of a pharmacological concentration of Len with or without the corticosteroid dexamethasone (Dex) and the proteasome inhibitor bortezomib (Bor) using the human vascular endothelial cell line EAhy926 and the monocytic cell lines THP-1 and U937. Cell-surface procoagulant activity (PCA) was induced by Dex-containing regimens in all lines. Expression of TF antigen on the cell surface and of TF mRNA was markedly increased by Dex-containing regimens. PS exposure was increased modestly by a Len-based regimen. PS exposure was increased modestly in EAhy926 cells, and markedly increased in THP-1 and U937 cells by Bor-containing treatment. An anti-TF monoclonal antibody almost completely blocked the induced PCA. When Len is given in combination with Dex, PCA may be induced on endothelial cells and monocytes through TF expression and PS exposure. PMID:23696885

  20. Activation of coagulation by lenalidomide-based regimens for the treatment of multiple myeloma.

    PubMed

    Isozumi, Yu; Arai, Reina; Fujimoto, Kazumi; Koyama, Takatoshi

    2013-01-01

    We investigated the procoagulant effects of lenalidomide (Len)-based regimens in vitro focusing on tissue factor (TF) and phosphatidylserine (PS). We examined the effects of a pharmacological concentration of Len with or without the corticosteroid dexamethasone (Dex) and the proteasome inhibitor bortezomib (Bor) using the human vascular endothelial cell line EAhy926 and the monocytic cell lines THP-1 and U937. Cell-surface procoagulant activity (PCA) was induced by Dex-containing regimens in all lines. Expression of TF antigen on the cell surface and of TF mRNA was markedly increased by Dex-containing regimens. PS exposure was increased modestly by a Len-based regimen. PS exposure was increased modestly in EAhy926 cells, and markedly increased in THP-1 and U937 cells by Bor-containing treatment. An anti-TF monoclonal antibody almost completely blocked the induced PCA. When Len is given in combination with Dex, PCA may be induced on endothelial cells and monocytes through TF expression and PS exposure.

  1. AML sensitivity to YM155 is modulated through AKT and Mcl-1

    PubMed Central

    de Necochea-Campion, Rosalia; Diaz Osterman, Carlos J.; Hsu, Heng-Wei; Fan, Junjie; Mirshahidi, Saied; Wall, Nathan R.; Chen, Chien-Shing

    2015-01-01

    HL60 and U937 (acute myeloid leukemia (AML) cell lines) were assessed for sensitivity to YM155, and found to have distinct sensitive and resistant phenotypes, respectively. In HL60 cells, YM155 inhibition of growth proliferation was due to apoptosis which was measured by annexin V/PI staining. YM155 induced apoptosis through activation of intrinsic and extrinsic pathways that also culminated in caspase-3 activity and PARP cleavage. YM155 sensitivity was partially associated with this compound’s ability to downregulate survivin transcription since this was more pronounced in the HL60 cell line. However, marked differences were also observed in XIAP, Bcl-2, and Mcl-1L, and Mcl-1s. Furthermore, YM155 treatment completely inhibited production of total Akt protein in HL60, but not U937 cells. Importantly, Akt activity (pAkt-Ser473) levels were maintained in YM155 treated U937 cells which may help stabilize other anti-apoptotic proteins. Combination treatments with an Akt inhibitor, MK-2206, reduced levels of pAkt-Ser473 in U937 cells and synergistically sensitized them to YM155 cytotoxicity. Collectively our results indicate that Akt signaling may be an important factor mediating YM155 response in AML, and combinatorial therapies with Akt inhibitors could improve treatment efficacy in YM155-resistant cells. PMID:26118775

  2. uPA/uPAR system activation drives a glycolytic phenotype in melanoma cells.

    PubMed

    Laurenzana, Anna; Chillà, Anastasia; Luciani, Cristina; Peppicelli, Silvia; Biagioni, Alessio; Bianchini, Francesca; Tenedini, Elena; Torre, Eugenio; Mocali, Alessandra; Calorini, Lido; Margheri, Francesca; Fibbi, Gabriella; Del Rosso, Mario

    2017-09-15

    In this manuscript, we show the involvement of the uPA/uPAR system in the regulation of aerobic glycolysis of melanoma cells. uPAR over-expression in human melanoma cells controls an invasive and glycolytic phenotype in normoxic conditions. uPAR down-regulation by siRNA or its uncoupling from integrins, and hence from integrin-linked tyrosine kinase receptors (IL-TKRs), by an antagonist peptide induced a striking inhibition of the PI3K/AKT/mTOR/HIF1α pathway, resulting into impairment of glucose uptake, decrease of several glycolytic enzymes and of PKM2, a checkpoint that controls metabolism of cancer cells. Further, binding of uPA to uPAR regulates expression of molecules that govern cell invasion, including extracellular matrix metallo-proteinases inducer (EMPPRIN) and enolase, a glycolytyc enzyme that also serves as a plasminogen receptor, thus providing a common denominator between tumor metabolism and phenotypic invasive features. Such effects depend on the α5β1-integrin-mediated uPAR connection with EGFR in melanoma cells with engagement of the PI3K-mTOR-HIFα pathway. HIF-1α trans-activates genes whose products mediate tumor invasion and glycolysis, thus providing the common denominator between melanoma metabolism and its invasive features. These findings unveil a unrecognized interaction between the invasion-related uPAR and IL-TKRs in the control of glycolysis and disclose a new pharmacological target (i.e., uPAR/IL-TKRs axis) for the therapy of melanoma. © 2017 UICC.

  3. Enhanced cell killing and apoptosis of oral squamous cell carcinoma cells with ultrasound in combination with cetuximab coated albumin microbubbles.

    PubMed

    Narihira, Kyoichi; Watanabe, Akiko; Sheng, Hong; Endo, Hitomi; Feril, Loreto B; Irie, Yutaka; Ogawa, Koichi; Moosavi-Nejad, Seyedeh; Kondo, Seiji; Kikuta, Toshihiro; Tachibana, Katsuro

    2018-03-01

    Targeted microbubbles have the potential to be used for ultrasound (US) therapy and diagnosis of various cancers. In the present study, US was irradiated to oral squamous cell carcinoma cells (HSC-2) in the presence of cetuximab-coated albumin microbubbles (CCAM). Cell killing rate with US treatment at 0.9 W/cm 2 and 1.0 W/cm 2 in the presence of CCAM was greater compared to non-targeted albumin microbubbles (p < .05). On the other hand, selective cell killing was not observed in human myelomonocytic lymphoma cell line (U937) that had no affinity to cetuximab. Furthermore, US irradiation in the presence of CCAM showed a fivefold increase of cell apoptotic rate for HSC-2 cells (21.0 ± 3.8%) as compared to U937 cells (4.0 ± 0.8%). Time-signal intensity curve in a tissue phantom demonstrated clear visualisation of CCAM with conventional US imaging device. Our experiment verifies the hypothesis that CCAM was selective to HSC-2 cells and may be applied as a novel therapeutic/diagnostic microbubble for oral squamous cell carcinoma.

  4. 40 CFR 35.937-10 - Subagreement payments-architectural or engineering services.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... engineering services. 35.937-10 Section 35.937-10 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY...-Clean Water Act § 35.937-10 Subagreement payments—architectural or engineering services. The grantee... engineering agreement or in accordance with paragraph 7b of appendix C-1 to this subpart. Any retainage is at...

  5. 40 CFR 35.937-10 - Subagreement payments-architectural or engineering services.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... engineering services. 35.937-10 Section 35.937-10 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY...-Clean Water Act § 35.937-10 Subagreement payments—architectural or engineering services. The grantee... engineering agreement or in accordance with paragraph 7b of appendix C-1 to this subpart. Any retainage is at...

  6. 40 CFR 35.937-10 - Subagreement payments-architectural or engineering services.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... engineering services. 35.937-10 Section 35.937-10 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY...-Clean Water Act § 35.937-10 Subagreement payments—architectural or engineering services. The grantee... engineering agreement or in accordance with paragraph 7b of appendix C-1 to this subpart. Any retainage is at...

  7. 40 CFR 35.937-10 - Subagreement payments-architectural or engineering services.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... engineering services. 35.937-10 Section 35.937-10 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY...-Clean Water Act § 35.937-10 Subagreement payments—architectural or engineering services. The grantee... engineering agreement or in accordance with paragraph 7b of appendix C-1 to this subpart. Any retainage is at...

  8. 40 CFR 35.937-10 - Subagreement payments-architectural or engineering services.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... engineering services. 35.937-10 Section 35.937-10 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY...-Clean Water Act § 35.937-10 Subagreement payments—architectural or engineering services. The grantee... engineering agreement or in accordance with paragraph 7b of appendix C-1 to this subpart. Any retainage is at...

  9. The neuro-steroid, 3β androstene 17α diol exhibits potent cytotoxic effects on human malignant glioma and lymphoma cells through different programmed cell death pathways

    PubMed Central

    Graf, M R; Jia, W; Loria, R M

    2007-01-01

    The neuro-steroids 3β-androstene-17α-diol (17α-AED), 3β-androstene-17β-diol (17β-AED), 3β-androstene-7α,-17β-triol (7α-AET) and 3β-androstene-7β,-17β-triol (7β-AET) are metabolites of dehydroepiandrosterone and are produced in neuro-ectodermal tissue. Both epimers of androstenediols (17α-AED and 17β-AED) and androstenetriols (7α-AET and 7β-AET) have markedly different biological functions of their chemical analogue. We investigated the cytotoxic activity of these neuro-steroids on human T98G and U251MG glioblastoma and U937 lymphoma cells. Proliferation studies showed that 17α-AED is the most potent inhibitor, with an IC50 ∼15 μM. For T98G glioma, 90% inhibition was achieved with 25 μM of 17α-AED. Other neuro-steroids tested only marginally suppressed cell proliferation. Reduced cell adherence and viability could be detected after 18 h of 17α-AED exposure. Treatment with 17α-AED induced a significant level of apoptosis in U937 lymphoma cells, but not in the glioma cells. Cytopathology of 17α-AED-treated T98G cells revealed the presence of multiple cytoplasmic vacuoles. Acridine orange staining demonstrated the formation of acidic vesicular organelles in 17α-AED-treated T98G and U251MG, which was inhibited by bafilomycin A1. These findings indicate that 17α-AED bears the most potent cytotoxic activity of the neuro-steroids tested, and the effectiveness may depend on the number of hydroxyls and their position on the androstene molecule. These cytotoxic effects may utilize a non-apoptotic pathway in malignant glioma cells. PMID:17637679

  10. Role of the MAPK pathway in the observed bystander effect in lymphocytes co-cultured with macrophages irradiated with γ-rays or carbon ions.

    PubMed

    Dong, Chen; He, Mingyuan; Ren, Ruiping; Xie, Yuexia; Yuan, Dexiao; Dang, Bingrong; Li, Wenjian; Shao, Chunlin

    2015-04-15

    The radiation-induced bystander effect (RIBE) has potential implications in cancer risks from space particle radiation; however, the mechanisms underlying RIBE are unclear. The role of the MAPK pathway in the RIBEs of different linear energy transfer (LET) was investigated. Human macrophage U937 cells were irradiated with γ-rays or carbon ions and then co-cultured with nonirradiated HMy2.CIR (HMy) lymphocytes for different periods. The activation of MAPK proteins and the generation of intracellular nitric oxide (NO) and reactive oxygen species (ROS) in the irradiated U937 cells were measured. Micronuclei (MN) formation in the HMy cells was applied to evaluate the bystander damage. Some U937 cells were pretreated with different MAPK inhibitors before irradiation. Additional MN formation was induced in the HMy cells after co-culturing with irradiated U937 cells, and the yield of this bystander MN formation was dependent on the co-culture period with γ-ray irradiation but remained high after 1h of co-culture with carbon irradiation. Further investigations disclosed that the time response of the RIBEs had a relationship with LET, where ERK played a different role from JNK and p38 in regulating RIBEs by regulating the generation of the bystander signaling factors NO and ROS. The finding that the RIBE of high-LET radiation could persist for a much longer period than that of γ-rays implies that particle radiation during space flight could have a high risk of long-term harmful effects. An appropriate intervention targeting the MAPK pathway may have significant implications in reducing this risk. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. The differential role of human macrophage in triggering secondary bystander effects after either gamma-ray or carbon beam irradiation

    PubMed Central

    Dong, Chen; He, Mingyuan; Tu, Wenzhi; Konishi, Teruaki; Liu, Weili; Xie, Yuexia; Dang, Bingrong; Li, Wenjian; Uchihori, Yukio; Hei, Tom K.; Shao, Chunlin

    2015-01-01

    The abscopal effect could be an underlying factor in evaluating prognosis of radiotherapy. This study established an in vitro system to examine whether tumor-generated bystander signals could be transmitted by macrophages to further trigger secondary cellular responses after different irradiations, where human lung cancer NCI-H446 cells were irradiated with either γ-rays or carbon ions and co-cultured with human macrophage U937 cells, then these U937 cells were used as a bystander signal transmitter and co-cultured with human bronchial epithelial cells BEAS-2B. Results showed that U937 cells were only activated by γ-irradiated NCI-H446 cells so that the secondary injuries in BEAS-2B cells under carbon ion irradiation were weaker than γ-rays. Both TNF-α and IL-1α were involved in γ-irradiation induced secondary bystander effect but only TNF-α contributed to the carbon ion induced response. Further assay disclosed that IL-1α but not TNF-α was largely responsible for the activation of macrophages and the formation of micronucleus in BEAS-2B cells. These data suggest that macrophages could transfer secondary bystander signals and play a key role in the secondary bystander effect of photon irradiation while carbon ion irradiation has conspicuous advantage due to its reduced secondary injury. PMID:25896631

  12. The differential role of human macrophage in triggering secondary bystander effects after either gamma-ray or carbon beam irradiation.

    PubMed

    Dong, Chen; He, Mingyuan; Tu, Wenzhi; Konishi, Teruaki; Liu, Weili; Xie, Yuexia; Dang, Bingrong; Li, Wenjian; Uchihori, Yukio; Hei, Tom K; Shao, Chunlin

    2015-07-10

    The abscopal effect could be an underlying factor in evaluating prognosis of radiotherapy. This study established an in vitro system to examine whether tumor-generated bystander signals could be transmitted by macrophages to further trigger secondary cellular responses after different irradiations, where human lung cancer NCI-H446 cells were irradiated with either γ-rays or carbon ions and co-cultured with human macrophage U937 cells, then these U937 cells were used as a bystander signal transmitter and co-cultured with human bronchial epithelial cells BEAS-2B. Results showed that U937 cells were only activated by γ-irradiated NCI-H446 cells so that the secondary injuries in BEAS-2B cells under carbon ion irradiation were weaker than γ-rays. Both TNF-α and IL-1α were involved in the γ-irradiation induced secondary bystander effect but only TNF-α contributed to the carbon ion induced response. Further assay disclosed that IL-1α but not TNF-α was largely responsible for the activation of macrophages and the formation of micronucleus in BEAS-2B cells. These data suggest that macrophages could transfer secondary bystander signals and play a key role in the secondary bystander effect of photon irradiation, while carbon ion irradiation has conspicuous advantage due to its reduced secondary injury. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  13. Thalidomide inhibits inflammatory and angiogenic activation of human intestinal microvascular endothelial cells (HIMEC).

    PubMed

    Rafiee, Parvaneh; Stein, Daniel J; Nelson, Victoria M; Otterson, Mary F; Shaker, Reza; Binion, David G

    2010-02-01

    The glutamic acid derivative thalidomide is a transcriptional inhibitor of TNF-alpha but is also known to affect human blood vessels, which may underlie its teratogenicity. Thalidomide has been used in the treatment of refractory Crohn's disease (CD), but the therapeutic mechanism is not defined. We examined the effect of thalidomide on primary cultures of human intestinal microvascular endothelial cells (HIMEC), the relevant endothelial cell population in inflammatory bowel disease (IBD), to determine its effect on endothelial activation, leukocyte interaction, and VEGF-induced angiogenesis. HIMEC cultures were pretreated with thalidomide before activation with either TNF-alpha/LPS or VEGF. A low-shear-stress flow adhesion assay with either U-937 or whole blood was used to assess HIMEC activation following TNF-alpha/LPS, and a Wright's stain identified adherent leukocytes. Expression of cell adhesion molecules (E-selectin, intercellular adhesion molecule-1, vascular cell adhesion molecule-1) was assessed using radioimmunoassay. Effects of thalidomide on NF-kappaB activation, cyclooxygenase (COX)-2, and inducible nitric oxide synthase (iNOS) expression in TNF-alpha/LPS-activated HIMEC were determined by RT-PCR and Western blotting. Thalidomide blocked adhesion of both U-937 and whole blood leukocytes by 50% in HIMEC, inhibiting binding of all classes of leukocytes. Thalidomide also blocked NF-kappaB and cell adhesion molecule expression in HIMEC. In marked contrast, thalidomide did not affect either iNOS or COX-2 expression, two key molecules that play a role in the downregulation of HIMEC activation. VEGF-induced HIMEC transmigration, growth, proliferation, tube formation, and Akt phosphorylation were significantly inhibited by thalidomide. In summary, thalidomide exerted a potent effect on HIMEC growth and activation, suggesting that it may also function via an endothelial mechanism in the treatment of CD.

  14. Thalidomide inhibits inflammatory and angiogenic activation of human intestinal microvascular endothelial cells (HIMEC)

    PubMed Central

    Stein, Daniel J.; Nelson, Victoria M.; Otterson, Mary F.; Shaker, Reza; Binion, David G.

    2010-01-01

    The glutamic acid derivative thalidomide is a transcriptional inhibitor of TNF-α but is also known to affect human blood vessels, which may underlie its teratogenicity. Thalidomide has been used in the treatment of refractory Crohn's disease (CD), but the therapeutic mechanism is not defined. We examined the effect of thalidomide on primary cultures of human intestinal microvascular endothelial cells (HIMEC), the relevant endothelial cell population in inflammatory bowel disease (IBD), to determine its effect on endothelial activation, leukocyte interaction, and VEGF-induced angiogenesis. HIMEC cultures were pretreated with thalidomide before activation with either TNF-α/LPS or VEGF. A low-shear-stress flow adhesion assay with either U-937 or whole blood was used to assess HIMEC activation following TNF-α/LPS, and a Wright's stain identified adherent leukocytes. Expression of cell adhesion molecules (E-selectin, intercellular adhesion molecule-1, vascular cell adhesion molecule-1) was assessed using radioimmunoassay. Effects of thalidomide on NF-κB activation, cyclooxygenase (COX)-2, and inducible nitric oxide synthase (iNOS) expression in TNF-α/LPS-activated HIMEC were determined by RT-PCR and Western blotting. Thalidomide blocked adhesion of both U-937 and whole blood leukocytes by 50% in HIMEC, inhibiting binding of all classes of leukocytes. Thalidomide also blocked NF-κB and cell adhesion molecule expression in HIMEC. In marked contrast, thalidomide did not affect either iNOS or COX-2 expression, two key molecules that play a role in the downregulation of HIMEC activation. VEGF-induced HIMEC transmigration, growth, proliferation, tube formation, and Akt phosphorylation were significantly inhibited by thalidomide. In summary, thalidomide exerted a potent effect on HIMEC growth and activation, suggesting that it may also function via an endothelial mechanism in the treatment of CD. PMID:19926820

  15. Withaferin A inhibits tumor necrosis factor-alpha-induced expression of cell adhesion molecules by inactivation of Akt and NF-kappaB in human pulmonary epithelial cells.

    PubMed

    Oh, Jung Hwa; Kwon, Taeg Kyu

    2009-05-01

    We here investigated the functional effect of withaferin A on airway inflammation and its action mechanism. Withaferin A inhibited the expression of intercellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1) in human lung epithelial A549 cells stimulated with tumor necrosis factor-alpha (TNF-alpha), resulting in the suppression of leukocyte adhesion to lung epithelial A549 cells. In addition, withaferin A inhibited TNF-alpha-induced expression of adhesion molecules (ICAM-1 and VCAM-1) protein and mRNA in a dose-dependent manner. Withaferin A prevented DNA binding activity of nuclear factor-kappaB (NF-kappaB) and nuclear translocation of NF-kappaB. It also inhibited phosphorylation of Akt and extracellular signal-regulated kinase (ERK), which are upstream in the regulation of adhesion molecules by TNF-alpha. Furthermore, withaferin A inhibited U937 monocyte adhesion to A549 cells stimulated by TNF-alpha, suggesting that it may inhibit the binding of these cells by regulating the expression of critical adhesion molecules by TNF-alpha. Taken together, these results suggest that withaferin A inhibits cell adhesion through inhibition of ICAM-1 and VCAM-1 expression, at least in part, by blocking Akt and down-regulating NF-kappaB activity.

  16. Quercetin-induced downregulation of phospholipase D1 inhibits proliferation and invasion in U87 glioma cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Park, Mi Hee; Min, Do Sik, E-mail: minds@pusan.ac.kr

    Highlights: {yields} Quercetin, a bioactive flavonoid, suppresses expression and enzymatic activity of phospholipase D1. {yields} Quercetin abolishes NFkB-induced phospholipase D1 expression via inhibition of NFkB transactivation. {yields} Quercetin-induced suppression of phospholipase D1 inhibits invasion and proliferation of human glioma cells. -- Abstract: Phospholipase D (PLD) has been recognized as a regulator of cell proliferation and tumorigenesis, but little is known about the molecules regulating PLD expression. Thus, the identification of small molecules inhibiting PLD expression would be an important advance in PLD-mediated physiology. Quercetin, a ubiquitous bioactive flavonoid, is known to inhibit proliferation and induce apoptosis in a variety ofmore » cancer cells. In the present study, we examined the effect of quercetin on the expression of PLD in U87 glioma cells. Quercetin significantly suppressed the expression of PLD1 at the transcriptional level. Moreover, quercetin abolished the protein expression of PLD1 in a time and dose-dependent manner, as well as inhibited PLD activity. Quercetin suppressed NF{kappa}B-induced PLD1 expression via inhibition of NFkB transactivation. Furthermore, quercetin inhibited activation and invasion of metalloproteinase-2 (MMP-2), a key modulator of glioma cell invasion, induced by phosphatidic acid (PA), a product of PLD activity. Taken together these data demonstrate that quercetin abolishes PLD1 expression and subsequently inhibits invasion and proliferation of glioma cells.« less

  17. Tumor necrosis factor alpha (TNF-alpha)-induced cell adhesion to human endothelial cells is under dominant control of one TNF receptor type, TNF-R55

    PubMed Central

    1993-01-01

    Tumor necrosis factor alpha (TNF-alpha) is a pleiotropic cytokine triggering cell responses through two distinct membrane receptors. Stimulation of leukocyte adhesion to the endothelium is one of the many TNF-alpha activities and is explained by the upregulation of adhesion molecules on the endothelial cell surface. Human umbilical vein endothelial cells (HUVEC) were isolated, cultured, and demonstrated to express both TNF receptor types, TNF-R55 and TNF-R75. Cell adhesion to HUVEC was studied using the HL60, U937, and MOLT-4 cell lines. HUVEC were activated by either TNF-alpha, binding to both TNF-R55 and TNF- R75, and by receptor type-specific agonists, binding exclusively to TNF- R55 or to TNF-R75. The TNF-alpha-induced cell adhesion to HUVEC was found to be controlled almost exclusively by TNF-R55. This finding correlated with the exclusive activity of TNF-R55 in the TNF-alpha- dependent regulation of the expression of the intercellular adhesion molecule type 1 (ICAM-1), E-selectin, and vascular cell adhesion molecule type 1 (VCAM-1). The CD44 adhesion molecule in HUVEC was also found to be upregulated through TNF-R55. However, both TNF-R55 and TNF- R75 upregulate alpha 2 integrin expression in HUVEC. The predominant role of TNF-R55 in TNF-alpha-induced adhesion in HUVEC may correlate with its specific control of NF-kappa B activation, since kappa B elements are known to be present in ICAM-1, E-selectin, and VCAM-1 gene regulatory sequences. PMID:8386742

  18. Saponin 6 derived from Anemone taipaiensis induces U87 human malignant glioblastoma cell apoptosis via regulation of Fas and Bcl‑2 family proteins.

    PubMed

    Ji, Chen-Chen; Tang, Hai-Feng; Hu, Yi-Yang; Zhang, Yun; Zheng, Min-Hua; Qin, Hong-Yan; Li, San-Zhong; Wang, Xiao-Yang; Fei, Zhou; Cheng, Guang

    2016-07-01

    Glioblastoma multiforme (GBM) is the most common and aggressive type of brain tumor, and is associated with a poor prognosis. Saponin 6, derived from Anemone taipaiensis, exerts potent cytotoxic effects against the human hepatocellular carcinoma HepG2 cell line and the human promyelocytic leukemia HL‑60 cell line; however, the effects of saponin 6 on glioblastoma remain unknown. The present study aimed to evaluate the effects of saponin 6 on human U87 malignant glioblastoma (U87 MG) cells. The current study revealed that saponin 6 induced U87 MG cell death in a dose‑ and time‑dependent manner, with a half maximal inhibitory concentration (IC50) value of 2.83 µM after treatment for 48 h. However, saponin 6 was needed to be used at a lesser potency in HT‑22 cells, with an IC50 value of 6.24 µM. Cell apoptosis was assessed by flow cytometry using Annexin V‑fluorescein isothiocyanate/propidium iodide double staining. DNA fragmentation and alterations in nuclear morphology were examined by terminal deoxynucleotidyl transferase‑mediated dUTP nick end labeling and transmission electron microscopy, respectively. The present study demonstrated that treatment with saponin 6 induced cell apoptosis in U87 MG cells, and resulted in DNA fragmentation and nuclear morphological alterations typical of apoptosis. In addition, flow cytometric analysis revealed that saponin 6 was able to induce cell cycle arrest. The present study also demonstrated that saponin 6‑induced apoptosis of U87 MG cells was attributed to increases in the protein expression levels of Fas, Fas ligand, and cleaved caspase‑3, ‑8 and ‑9, and decreases in the levels of B‑cell lymphoma 2. The current study indicated that saponin 6 may exhibit selective cytotoxicity toward U87 MG cells by activating apoptosis via the extrinsic and intrinsic pathways. Therefore, saponin 6 derived from A. taipaiensis may possess therapeutic potential for the treatment of GBM.

  19. 30 CFR 937.817 - Performance standards-underground mining activities.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 3 2013-07-01 2013-07-01 false Performance standards-underground mining activities. 937.817 Section 937.817 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT, DEPARTMENT OF THE INTERIOR PROGRAMS FOR THE CONDUCT OF SURFACE MINING OPERATIONS WITHIN EACH STATE OREGON...

  20. 30 CFR 937.817 - Performance standards-underground mining activities.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 3 2014-07-01 2014-07-01 false Performance standards-underground mining activities. 937.817 Section 937.817 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT, DEPARTMENT OF THE INTERIOR PROGRAMS FOR THE CONDUCT OF SURFACE MINING OPERATIONS WITHIN EACH STATE OREGON...

  1. 30 CFR 937.824 - Special performance standards-mountaintop removal.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 3 2011-07-01 2011-07-01 false Special performance standards-mountaintop removal. 937.824 Section 937.824 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT, DEPARTMENT OF THE INTERIOR PROGRAMS FOR THE CONDUCT OF SURFACE MINING OPERATIONS WITHIN EACH STATE OREGON...

  2. 30 CFR 937.824 - Special performance standards-mountaintop removal.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Special performance standards-mountaintop removal. 937.824 Section 937.824 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT, DEPARTMENT OF THE INTERIOR PROGRAMS FOR THE CONDUCT OF SURFACE MINING OPERATIONS WITHIN EACH STATE OREGON...

  3. 30 CFR 937.816 - Performance standards-surface mining activities.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 3 2014-07-01 2014-07-01 false Performance standards-surface mining activities. 937.816 Section 937.816 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT, DEPARTMENT OF THE INTERIOR PROGRAMS FOR THE CONDUCT OF SURFACE MINING OPERATIONS WITHIN EACH STATE OREGON...

  4. 30 CFR 937.816 - Performance standards-surface mining activities.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 3 2013-07-01 2013-07-01 false Performance standards-surface mining activities. 937.816 Section 937.816 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT, DEPARTMENT OF THE INTERIOR PROGRAMS FOR THE CONDUCT OF SURFACE MINING OPERATIONS WITHIN EACH STATE OREGON...

  5. 30 CFR 937.824 - Special performance standards-mountaintop removal.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 3 2014-07-01 2014-07-01 false Special performance standards-mountaintop removal. 937.824 Section 937.824 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT, DEPARTMENT OF THE INTERIOR PROGRAMS FOR THE CONDUCT OF SURFACE MINING OPERATIONS WITHIN EACH STATE OREGON...

  6. 30 CFR 937.824 - Special performance standards-mountaintop removal.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 3 2013-07-01 2013-07-01 false Special performance standards-mountaintop removal. 937.824 Section 937.824 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT, DEPARTMENT OF THE INTERIOR PROGRAMS FOR THE CONDUCT OF SURFACE MINING OPERATIONS WITHIN EACH STATE OREGON...

  7. 30 CFR 937.817 - Performance standards-underground mining activities.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Performance standards-underground mining activities. 937.817 Section 937.817 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT, DEPARTMENT OF THE INTERIOR PROGRAMS FOR THE CONDUCT OF SURFACE MINING OPERATIONS WITHIN EACH STATE OREGON...

  8. 30 CFR 937.816 - Performance standards-surface mining activities.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Performance standards-surface mining activities. 937.816 Section 937.816 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT, DEPARTMENT OF THE INTERIOR PROGRAMS FOR THE CONDUCT OF SURFACE MINING OPERATIONS WITHIN EACH STATE OREGON...

  9. 30 CFR 937.817 - Performance standards-underground mining activities.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 3 2011-07-01 2011-07-01 false Performance standards-underground mining activities. 937.817 Section 937.817 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT, DEPARTMENT OF THE INTERIOR PROGRAMS FOR THE CONDUCT OF SURFACE MINING OPERATIONS WITHIN EACH STATE OREGON...

  10. 30 CFR 937.816 - Performance standards-surface mining activities.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 3 2011-07-01 2011-07-01 false Performance standards-surface mining activities. 937.816 Section 937.816 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT, DEPARTMENT OF THE INTERIOR PROGRAMS FOR THE CONDUCT OF SURFACE MINING OPERATIONS WITHIN EACH STATE OREGON...

  11. Methylation of CIITA promoter IV causes loss of HLA-II inducibility by IFN-γ in promyelocytic cells

    PubMed Central

    De Ambrosis, Alessandro; Banelli, Barbara; Pira, Giuseppina Li; Aresu, Ottavia; Romani, Massimo; Ferrini, Silvano; Accolla, Roberto S.

    2008-01-01

    The human promyelocytic cell line THP-1 expresses high level of HLA class II (HLA-II) molecules after IFN-γ treatment. Here, we report a variant of THP-1 that does not express HLA-II after IFN-γ. The variant's HLA-II phenotype is constant over time in culture and it is not related to a defective IFN-γ-signalling pathway. Transfection of CIITA, the HLA-II transcriptional activator, under the control of a cytomegalovirus promoter rescues high level of HLA-DR surface expression in the variant indicating that the biosynthetic block resides in the expression of CIITA and not in the CIITA-dependent transactivation of the HLA-II promoters. Treatment of the variant with 5-azacytidine (5-aza), which inhibits CpG methylation, restores inducibility of HLA-II by IFN-γ both at transcriptional and phenotypic level and antigen presenting and processing function of the variant. DNA studies demonstrate that the molecular defect of the THP-1 variant originates from the methylation of the CIITA promoter IV. Furthermore, treatment with 5-aza produces a substantial demethylation of CIITA promoter IV and a significant increase of IFN-γ-dependent HLA-II expression in another myelomonocytic cell line, U937. Therefore hyper-methylation of CIITA promoter IV may be a relevant mechanism of epigenetic control preventing HLA-II IFN-γ inducibility in the myelomonocytic cell lineage. PMID:18829986

  12. 14 CFR § 1274.937 - Security requirements for unclassified information technology resources.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... information technology resources. § 1274.937 Section § 1274.937 Aeronautics and Space NATIONAL AERONAUTICS... Conditions § 1274.937 Security requirements for unclassified information technology resources. Security Requirements for Unclassified Information Technology Resources July 2002 (a) The Recipient shall be responsible...

  13. New sesquiterpene lactones from Ambrosia cumanensis Kunth.

    PubMed

    Jimenez-Usuga, Nora Del Socorro; Malafronte, Nicola; Cotugno, Roberta; De Leo, Marinella; Osorio, Edison; De Tommasi, Nunziatina

    2016-09-01

    Eleven sesquiterpene lactones, including three new natural products (1-3), were isolated from the n-butanolic extract of Ambrosia cumanensis Kunth. aerial parts. The structure of all isolated compounds was elucidated by 1D- and 2D-NMR, and MS analyses. All compounds were tested for their antiproliferative activity on HeLa, Jurkat, and U937 cell lines. Compound 3, 2,3-dehydropsilostachyn C, showed cytotoxic activity with different potency in all cell lines. By means of flow cytometric studies, compound 3 was demonstrated to induce in Jurkat cells a G2/M cell cycle block, while in U937 elicited both cytostatic and cytotoxic responses. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. 42 CFR 417.937 - Loan and loan guarantee provisions.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 42 Public Health 3 2010-10-01 2010-10-01 false Loan and loan guarantee provisions. 417.937 Section... HEALTH CARE PREPAYMENT PLANS Administration of Outstanding Loans and Loan Guarantees § 417.937 Loan and loan guarantee provisions. (a) Disbursement of loan proceeds. The principal amount of any loan made or...

  15. The crude extract of Corni Fructus induces apoptotic cell death through reactive oxygen species-modulated pathways in U-2 OS human osteosarcoma cells.

    PubMed

    Liao, Ching-Lung; Hsu, Shu-Chun; Yu, Chien-Chih; Yang, Jai-Sing; Tang, Nou-Ying; Wood, Wellington Gibson; Lin, Jaung-Geng; Chung, Jing-Gung

    2014-09-01

    Crude extract of Corni Fructus (CECF) has been used in Traditional Chinese medicine for the treatment of different diseases for hundreds of years. The purpose of this study was to investigate the cytotoxic effects of CECF on U-2 OS human osteosarcoma cells. Flow cytometry was used for measuring the percentage of viable cells, cell-cycle distribution, apoptotic cells in sub-G1 phase, reactive oxygen species (ROS), Ca(2+) levels, and mitochondrial membrane potential (ΔΨm ). Comet assay and 4'-6-diamidino-2-phenylindole staining were used for examining DNA damage and condensation. Western blotting was used to examine apoptosis-associated protein levels in U-2 OS cells after exposed to CECF. Immunostaining and confocal laser system microscope were used to examine protein translocation after CECF incubation. CECF decreased the percentage of viability, induced DNA damage and DNA condensation, G₀/G₁ arrest, and apoptosis in U-2 OS cells. CECF-stimulated activities of caspase-8, caspase-9, and caspase-3, ROS, and Ca(2+) production, decreased ΔΨm levels of in U-2 OS cells. CECF increased protein levels of caspase-3, caspase-9, Bax, cytochrome c, GRP78, AIF, ATF-6α, Fas, TRAIL, p21, p27, and p16 which were associated with cell-cycle arrest and apoptosis. These findings suggest that CECF triggers apoptosis in U-2 OS cells via ROS-modulated caspase-dependent and -independent pathways. Copyright © 2012 Wiley Periodicals, Inc., a Wiley company.

  16. Down-regulation of 14-3-3β exerts anti-cancer effects through inducing ER stress in human glioma U87 cells: Involvement of CHOP–Wnt pathway

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cao, Lei; Lei, Hui; Chang, Ming-Ze

    We previously identified 14-3-3β as a tumor-specific isoform of 14-3-3 protein in astrocytoma, but its functional role in glioma cells and underlying mechanisms are poorly understood. In the present study, we investigated the effects of 14-3-3β inhibition in human glioma U87 cells using specific targeted small interfering RNA (siRNA). The results showed that 14-3-3β is highly expressed in U87 cells but not in normal astrocyte SVGp12 cells. Knockdown of 14-3-3β by Si-14-3-3β transfection significantly decreased the cell viability but increased the LDH release in a time-dependent fashion in U87 cells, and these effects were accompanied with G0/G1 cell cycle arrestmore » and apoptosis. In addition, 14-3-3β knockdown induced ER stress in U87 cells, as evidenced by ER calcium release, increased expression of XBP1S mRNA and induction of ER related pro-apoptotic factors. Down-regulation of 14-3-3β significantly decreased the nuclear localization of β-catenin and inhibited Topflash activity, which was shown to be reversely correlated with CHOP. Furthermore, Si-CHOP and sFRP were used to inhibit CHOP and Wnt, respectively. The results showed that the anti-cancer effects of 14-3-3β knockdown in U87 cells were mediated by increased expression of CHOP and followed inhibition of Wnt/β-catenin pathway. In summary, the remarkable efficiency of 14-3-3β knockdown to induce apoptotic cell death in U87 cells may find therapeutic application for the treatment of glioma patients. - Highlights: • Knockdown of 14-3-3β leads to cytotoxicity in human glioma U87 cells. • Knockdown of 14-3-3β induces cell cycle arrest and apoptosis in U87 cells. • Knockdown of 14-3-3β results in ER stress in U87 cells. • Knockdown of 14-3-3β inhibits Wnt/β-catenin pathway via CHOP activation.« less

  17. Autophagy protein p62/SQSTM1 is involved in HAMLET-induced cell death by modulating apotosis in U87MG cells

    PubMed Central

    Zhang, Y-B; Gong, J-L; Xing, T-Y; Zheng, S-P; Ding, W

    2013-01-01

    HAMLET is a complex of oleic acids and decalcified α-lactalbumin that was discovered to selectively kill tumor cells both in vitro and in vivo. Autophagy is an important cellular process involved in drug-induced cell death of glioma cells. We treated U87MG human glioma cells with HAMLET and found that the cell viability was significantly decreased and accompanied with the activation of autophagy. Interestingly, we observed an increase in p62/SQSTM1, an important substrate of autophagosome enzymes, at the protein level upon HAMLET treatment for short periods. To better understand the functionality of autophagy and p62/SQSTM1 in HAMLET-induced cell death, we modulated the level of autophagy or p62/SQSTM1 with biochemical or genetic methods. The results showed that inhibition of autophagy aggravated HAMLET-induced cell death, whereas activation of authophagy attenuated this process. Meanwhile, we found that overexpression of wild-type p62/SQSTM1 was able to activate caspase-8, and then promote HAMLET-induced apoptosis, whereas knockdown of p62/SQSTM1 manifested the opposite effect. We further demonstrated that the function of p62/SQSTM1 following HAMLET treatment required its C-terminus UBA domain. Our results indicated that in addition to being a marker of autophagy activation in HAMLET-treated glioma cells, p62/SQSTM1 could also function as an important mediator for the activation of caspase-8-dependent cell death. PMID:23519119

  18. Autophagy protein p62/SQSTM1 is involved in HAMLET-induced cell death by modulating apotosis in U87MG cells.

    PubMed

    Zhang, Y-B; Gong, J-L; Xing, T-Y; Zheng, S-P; Ding, W

    2013-03-21

    HAMLET is a complex of oleic acids and decalcified α-lactalbumin that was discovered to selectively kill tumor cells both in vitro and in vivo. Autophagy is an important cellular process involved in drug-induced cell death of glioma cells. We treated U87MG human glioma cells with HAMLET and found that the cell viability was significantly decreased and accompanied with the activation of autophagy. Interestingly, we observed an increase in p62/SQSTM1, an important substrate of autophagosome enzymes, at the protein level upon HAMLET treatment for short periods. To better understand the functionality of autophagy and p62/SQSTM1 in HAMLET-induced cell death, we modulated the level of autophagy or p62/SQSTM1 with biochemical or genetic methods. The results showed that inhibition of autophagy aggravated HAMLET-induced cell death, whereas activation of authophagy attenuated this process. Meanwhile, we found that overexpression of wild-type p62/SQSTM1 was able to activate caspase-8, and then promote HAMLET-induced apoptosis, whereas knockdown of p62/SQSTM1 manifested the opposite effect. We further demonstrated that the function of p62/SQSTM1 following HAMLET treatment required its C-terminus UBA domain. Our results indicated that in addition to being a marker of autophagy activation in HAMLET-treated glioma cells, p62/SQSTM1 could also function as an important mediator for the activation of caspase-8-dependent cell death.

  19. Differential responses of Mcl-1 in photosensitized epithelial vs lymphoid-derived human cancer cells.

    PubMed

    Xue, Liang-yan; Chiu, Song-mao; Oleinick, Nancy L

    2005-10-20

    The antiapoptotic Bcl-2-family proteins, Bcl-2 and Bcl-xL, are recognized phototargets of photodynamic therapy (PDT) with the mitochondrion-targeting phthalocyanine photosensitizer Pc 4. In the present study, we found that myeloid cell leukemia 1 (Mcl-1), another antiapoptotic member of the Bcl-2 family, was not photodamaged in Pc 4-PDT-treated human carcinoma cells MCF-7c3, MDA-MB468, DU145, and A431, although Mcl-1 turnover was observed after exposure of HeLa or MCF-7c3 cells to a supralethal dose of UVC. In contrast, when human lymphoma U937 and Jurkat cells were treated with Pc 4-PDT, staurosporine (STS) or UVC, Mcl-1 was cleaved to generate a 28-kDa fragment over a 2-4 h period. The cleavage of Mcl-1 was accompanied by the activation of caspases-3, -9, and -8. The broad-specificity caspase inhibitor z-VAD-fmk completely blocked Mcl-1 cleavage induced by PDT, STS or UVC, providing evidence for Mcl-1 as a substrate for caspases. Western blot analysis localized Mcl-1 to mitochondria, ER, and cytosol of both MCF-7c3 and U937 cells, suggesting that Mcl-1 protein, unlike Bcl-2 and Bcl-xL, is not a target for Pc 4-PDT, probably due to its localization to sites removed from those of Pc 4 binding. The 28-kDa cleaved fragment of Mcl-1, which has proapoptotic activity, was produced in PDT-treated lymphoid-derived cells, but not in cells of epithelial origin, suggesting that PDT-induced rapid and extensive apoptosis in lymphoma cells may result in part from the sensitivity of their Mcl-1 to caspase cleavage, removing an important negative control on apoptosis.

  20. Dihydroptychantol A, a macrocyclic bisbibenzyl derivative, induces autophagy and following apoptosis associated with p53 pathway in human osteosarcoma U2OS cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li Xia; School of Ocean, Shandong University, Weihai 264209; Wu, William K.K.

    2011-03-01

    Dihydroptychantol A (DHA), a novel macrocyclic bisbibenzyl compound extracted from liverwort Asterella angusta, has antifungal and multi-drug resistance reversal properties. Here, the chemically synthesized DHA was employed to test its anti-cancer activities in human osteosarcoma U2OS cells. Our results demonstrated that DHA induced autophagy followed by apoptotic cell death accompanied with G{sub 2}/M-phase cell cycle arrest in U2OS cells. DHA-induced autophagy was morphologically characterized by the formation of double membrane-bound autophagic vacuoles recognizable at the ultrastructural level. DHA also increased the levels of LC3-II, a marker of autophagy. Surprisingly, DHA-mediated apoptotic cell death was potentiated by the autophagy inhibitor 3-methyladenine,more » suggesting that autophagy may play a protective role that impedes the eventual cell death. Furthermore, p53 was shown to be involved in DHA-meditated autophagy and apoptosis. In this connection, DHA increased nuclear expression of p53, induced p53 phosphorylation, and upregulated p53 target gene p21{sup Waf1/Cip1}. In contrast, cytoplasmic p53 was reduced by DHA, which contributed to the stimulation of autophagy. In relation to the cell cycle, DHA decreased the expression of cyclin B{sub 1}, a cyclin required for progression through the G{sub 2}/M phase. Taken together, DHA induces G{sub 2}/M-phase cell cycle arrest and apoptosis in U2OS cells. DHA-induced apoptosis was preceded by the induction of protective autophagy. DHA-mediated autophagy and apoptosis are associated with the cytoplasmic and nuclear functions of p53.« less

  1. Comparative DNA microarray analysis of human monocyte derived dendritic cells and MUTZ-3 cells exposed to the moderate skin sensitizer cinnamaldehyde

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Python, Francois; Goebel, Carsten; Aeby, Pierre

    2009-09-15

    The number of studies involved in the development of in vitro skin sensitization tests has increased since the adoption of the EU 7th amendment to the cosmetics directive proposing to ban animal testing for cosmetic ingredients by 2013. Several studies have recently demonstrated that sensitizers induce a relevant up-regulation of activation markers such as CD86, CD54, IL-8 or IL-1{beta} in human myeloid cell lines (e.g., U937, MUTZ-3, THP-1) or in human peripheral blood monocyte-derived dendritic cells (PBMDCs). The present study aimed at the identification of new dendritic cell activation markers in order to further improve the in vitro evaluation ofmore » the sensitizing potential of chemicals. We have compared the gene expression profiles of PBMDCs and the human cell line MUTZ-3 after a 24-h exposure to the moderate sensitizer cinnamaldehyde. A list of 80 genes modulated in both cell types was obtained and a set of candidate marker genes was selected for further analysis. Cells were exposed to selected sensitizers and non-sensitizers for 24 h and gene expression was analyzed by quantitative real-time reverse transcriptase-polymerase chain reaction. Results indicated that PIR, TRIM16 and two Nrf2-regulated genes, CES1 and NQO1, are modulated by most sensitizers. Up-regulation of these genes could also be observed in our recently published DC-activation test with U937 cells. Due to their role in DC activation, these new genes may help to further refine the in vitro approaches for the screening of the sensitizing properties of a chemical.« less

  2. Synthesis, structural characterization, and pro-apoptotic activity of 1-indanone thiosemicarbazone platinum(II) and palladium(II) complexes: potential as antileukemic agents.

    PubMed

    Gómez, Natalia; Santos, Diego; Vázquez, Ramiro; Suescun, Leopoldo; Mombrú, Alvaro; Vermeulen, Monica; Finkielsztein, Liliana; Shayo, Carina; Moglioni, Albertina; Gambino, Dinorah; Davio, Carlos

    2011-08-01

    In the search for alternative chemotherapeutic strategies against leukemia, various 1-indanone thiosemicarbazones, as well as eight novel platinum(II) and palladium(II) complexes, with the formula [MCl₂(HL)] and [M(HL)(L)]Cl, derived from two 1-indanone thiosemicarbazones were synthesized and tested for antiproliferative activity against the human leukemia U937 cell line. The crystal structure of [Pt(HL1)(L1)]Cl·2MeOH, where L1=1-indanone thiosemicarbazone, was solved by X-ray diffraction. Free thiosemicarbazone ligands showed no antiproliferative effect, but the corresponding platinum(II) and palladium(II) complexes inhibited cell proliferation and induced apoptosis. Platinum(II) complexes also displayed selective apoptotic activity in U937 cells but not in peripheral blood monocytes or the human hepatocellular carcinoma HepG2 cell line used to screen for potential hepatotoxicity. Present findings show that, in U937 cells, 1-indanone thiosemicarbazones coordinated to palladium(II) were more cytotoxic than those complexed with platinum(II), although the latter were found to be more selective for leukemic cells suggesting that they are promising compounds with potential therapeutic application against hematological malignancies. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. DIFFERENCES IN ARACHIDONIC ACID METABOLISM BY HUMAN MYELOMONCYTIC CELL LINES

    EPA Science Inventory

    The production of arachidonic acid metabolites by the HL60, ML3, and U937 human phagocyte cell lines were determined after incubation with interferongamma (IFNg; 500 U/ml) or vehicle for 4 days. ells were prelabeled with tritiated arachidonic acid for 4 hours, and media supernata...

  4. mTOR signaling promotes foam cell formation and inhibits foam cell egress through suppressing the SIRT1 signaling pathway.

    PubMed

    Zheng, Haixiang; Fu, Yucai; Huang, Yusheng; Zheng, Xinde; Yu, Wei; Wang, Wei

    2017-09-01

    Atherosclerosis (AS) is a chronic immuno‑inflammatory disease accompanied by dyslipidemia. The authors previously demonstrated that sirtuin 1 (SIRT1) may prevent atherogenesis through influencing the liver X receptor/C‑C chemokine receptor type 7/nuclear factor‑κB (LXR‑CCR7/NF‑κB) signaling pathway. Previous studies have suggested a role for mammalian target of rapamycin (mTOR) signaling in the pathogenesis of cardiovascular diseases. The present study investigated the potential association between mTOR signaling and SIRT1‑LXR‑CCR7/NF‑κB signaling (SIRT1 signaling) in AS pathogenesis. To induce foam cell formation, U937 cells were differentiated into macrophages by exposure to phorbol 12‑myristate 13‑acetate (PMA) for 24 h, followed by treatment with palmitate and oxidized low density lipoprotein for a further 24 h. Oil red O staining revealed a large accumulation of lipid droplets present in foam cells. Western blot analysis demonstrated increased protein levels of phosphorylated (p)‑mTOR and its downstream factor p‑ribosomal protein S6 kinase (p70S6K). Reverse transcription‑quantitative polymerase chain reaction and western blot analyses additionally revealed decreased expression of SIRT1, LXRα and CCR7 and increased expression of NF‑κB and its downstream factor tumor necrosis factor‑α (TNF‑α) in an atherogenetic condition induced by lysophosphatidic acid (LPA). In addition, abundant lipid droplets accumulated in U937‑LPA‑treated foam cells. Rapamycin, an mTOR inhibitor, suppressed the expression and activity of mTOR and p70S6K, however enhanced expression of SIRT1, LXRα, and CCR7. Conversely, rapamycin deceased TNF‑α and NF‑κB activity, the latter of which was further confirmed by immunofluorescence analysis demonstrating increased levels of NF‑κB present in the cytoplasm compared with the nucleus. The findings of the present study suggest that mTOR signaling promotes foam cell formation and inhibits foam

  5. 30 CFR 937.777 - General content requirements for permit applications.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 3 2013-07-01 2013-07-01 false General content requirements for permit applications. 937.777 Section 937.777 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT, DEPARTMENT OF THE INTERIOR PROGRAMS FOR THE CONDUCT OF SURFACE MINING OPERATIONS WITHIN EACH STATE OREGON...

  6. 30 CFR 937.777 - General content requirements for permit applications.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 3 2014-07-01 2014-07-01 false General content requirements for permit applications. 937.777 Section 937.777 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT, DEPARTMENT OF THE INTERIOR PROGRAMS FOR THE CONDUCT OF SURFACE MINING OPERATIONS WITHIN EACH STATE OREGON...

  7. 30 CFR 937.775 - Administrative and judicial review of decisions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Administrative and judicial review of decisions. 937.775 Section 937.775 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT, DEPARTMENT OF THE INTERIOR PROGRAMS FOR THE CONDUCT OF SURFACE MINING OPERATIONS WITHIN EACH STATE OREGON...

  8. 30 CFR 937.775 - Administrative and judicial review of decisions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 3 2011-07-01 2011-07-01 false Administrative and judicial review of decisions. 937.775 Section 937.775 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT, DEPARTMENT OF THE INTERIOR PROGRAMS FOR THE CONDUCT OF SURFACE MINING OPERATIONS WITHIN EACH STATE OREGON...

  9. 30 CFR 937.775 - Administrative and judicial review of decisions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 3 2013-07-01 2013-07-01 false Administrative and judicial review of decisions. 937.775 Section 937.775 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT, DEPARTMENT OF THE INTERIOR PROGRAMS FOR THE CONDUCT OF SURFACE MINING OPERATIONS WITHIN EACH STATE OREGON...

  10. 30 CFR 937.775 - Administrative and judicial review of decisions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 3 2014-07-01 2014-07-01 false Administrative and judicial review of decisions. 937.775 Section 937.775 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT, DEPARTMENT OF THE INTERIOR PROGRAMS FOR THE CONDUCT OF SURFACE MINING OPERATIONS WITHIN EACH STATE OREGON...

  11. Interaction of β(3) /β(2) -peptides, consisting of Val-Ala-Leu segments, with POPC giant unilamellar vesicles (GUVs) and white blood cancer cells (U937)--a new type of cell-penetrating peptides, and a surprising chain-length dependence of their vesicle- and cell-lysing activity.

    PubMed

    Kolesinska, Beata; Eyer, Klaus; Robinson, Tom; Dittrich, Petra S; Beck, Albert K; Seebach, Dieter; Walde, Peter

    2015-05-01

    Many years ago, β(2) /β(3) -peptides, consisting of alternatively arranged β(2) - and β(3) h-amino-acid residues, have been found to undergo folding to a unique type of helix, the 10/12-helix, and to exhibit non-polar, lipophilic properties (Helv. Chim. Acta 1997, 80, 2033). We have now synthesized such 'mixed' hexa-, nona-, dodeca-, and octadecapeptides, consisting of Val-Ala-Leu triads, with N-terminal fluorescein (FAM) labels, i.e., 1-4, and studied their interactions with POPC (=1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine) giant unilamellar vesicles (GUVs) and with human white blood cancer cells U937. The methods used were microfluidic technology, fluorescence correlation spectroscopy (FCS), a flow-cytometry assay, a membrane-toxicity assay with the dehydrogenase G6PDH as enzymatic reporter, and visual microscopy observations. All β(3) /β(2) -peptide derivatives penetrate the GUVs and/or the cells. As shown with the isomeric β(3) /β(2) -, β(3) -, and β(2) -nonamers, 2, 5, and 6, respectively, the derivatives 5 and 6 consisting exclusively of β(3) - or β(2) -amino-acid residues, respectively, interact neither with the vesicles nor with the cells. Depending on the method of investigation and on the pretreatment of the cells, the β(3) /β(2) -nonamer and/or the β(3) /β(2) -dodecamer derivative, 2 and/or 3, respectively, cause a surprising disintegration or lysis of the GUVs and cells, comparable with the action of tensides, viral fusion peptides, and host-defense antimicrobial peptides. Possible sources of the chain-length-dependent destructive potential of the β(3) /β(2) -nona- and β(3) /β(2) -dodecapeptide derivatives, and a possible relationship with the phosphate-to-phosphate and hydrocarbon thicknesses of GUVs, and eukaryotic cells are discussed. Further investigations with other types of GUVs and of eukaryotic or prokaryotic cells will be necessary to elucidate the mechanism(s) of interaction of 'mixed' β(3) /β(2) -peptides with

  12. Human serum amyloid A genes are expressed in monocyte/macrophage cell lines.

    PubMed

    Urieli-Shoval, S; Meek, R L; Hanson, R H; Eriksen, N; Benditt, E P

    1994-09-01

    Serum amyloid A (apoSAA) is a family of proteins found, mainly associated with high density lipoproteins, in the blood plasma of mammals and at least one avian species, the Pekin duck. These proteins are present in small amounts under normal circumstances, but their concentration is capable of rising 100- to 1,000-fold in situations involving tissue injury or infection. Like classic acute phase proteins they are produced in the liver; however, expression of one of the apoSAA genes is known to occur in activated macrophages of mice. We examined three human macrophage precursor cell lines (THP-1, U-937, and HL-60), before and after differentiation with phorbol 12-myristate 13-acetate or 1 alpha,25-dihydroxy-vitamin D3, for apoSAA messenger (m)-RNA expression and found that: 1) induction of steady-state apoSAA mRNA by lipopolysaccharide, interleukin-1, or interleukin-6 required the presence of the synthetic glucocorticoid dexamethasone; 2) the three known active genes, apoSAA1, apoSAA2, and apoSAA4, were induced in THP-1 cells, whereas the pseudogene apoSAA3 was not; 3) differentiated and undifferentiated THP-1 cells expressed apoSAA mRNA, but U-937 cells expressed apoSAA mRNA (low levels) only after phorbol 12-myristate 13-acetate differentiation and HL-60 cells did not express apoSAA mRNA whether differentiated or not; 4) apoSAA protein was detectable immunologically at a low level in lyophilized medium from induced THP-1 cells. Our findings are compatible with the hypotheses that 1) apoSAA gene expression in human monocytes/macrophages in vivo is differentiation dependent; 2) activated macrophages provide a local source of apoSAA at sites of tissue injury or inflammation; 3) apoSAA is induced in tissue macrophages by local stimuli, under conditions that may not evoke the systemic acute phase response.

  13. 30 CFR 937.842 - Federal inspections.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... PROGRAMS FOR THE CONDUCT OF SURFACE MINING OPERATIONS WITHIN EACH STATE OREGON § 937.842 Federal... inspections conducted pursuant to this subpart to the Oregon Department of Geology and Mineral Industries. ...

  14. 30 CFR 937.842 - Federal inspections.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... PROGRAMS FOR THE CONDUCT OF SURFACE MINING OPERATIONS WITHIN EACH STATE OREGON § 937.842 Federal... inspections conducted pursuant to this subpart to the Oregon Department of Geology and Mineral Industries. ...

  15. 30 CFR 937.842 - Federal inspections.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... PROGRAMS FOR THE CONDUCT OF SURFACE MINING OPERATIONS WITHIN EACH STATE OREGON § 937.842 Federal... inspections conducted pursuant to this subpart to the Oregon Department of Geology and Mineral Industries. ...

  16. 30 CFR 937.842 - Federal inspections.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... PROGRAMS FOR THE CONDUCT OF SURFACE MINING OPERATIONS WITHIN EACH STATE OREGON § 937.842 Federal... inspections conducted pursuant to this subpart to the Oregon Department of Geology and Mineral Industries. ...

  17. 40 CFR 35.937-4 - Solicitation and evaluation of proposals.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 1 2012-07-01 2012-07-01 false Solicitation and evaluation of proposals. 35.937-4 Section 35.937-4 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY GRANTS AND... relative importance attached to each criterion (a numerical weighted formula need not be utilized). (c) All...

  18. 40 CFR 35.937-4 - Solicitation and evaluation of proposals.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 1 2013-07-01 2013-07-01 false Solicitation and evaluation of proposals. 35.937-4 Section 35.937-4 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY GRANTS AND... relative importance attached to each criterion (a numerical weighted formula need not be utilized). (c) All...

  19. 40 CFR 35.937-4 - Solicitation and evaluation of proposals.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 1 2011-07-01 2011-07-01 false Solicitation and evaluation of proposals. 35.937-4 Section 35.937-4 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY GRANTS AND... relative importance attached to each criterion (a numerical weighted formula need not be utilized). (c) All...

  20. 40 CFR 35.937-4 - Solicitation and evaluation of proposals.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 1 2014-07-01 2014-07-01 false Solicitation and evaluation of proposals. 35.937-4 Section 35.937-4 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY GRANTS AND... relative importance attached to each criterion (a numerical weighted formula need not be utilized). (c) All...

  1. 30 CFR 937.843 - Federal enforcement.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... PROGRAMS FOR THE CONDUCT OF SURFACE MINING OPERATIONS WITHIN EACH STATE OREGON § 937.843 Federal... each enforcement action document and order to show cause issued pursuant to this subpart to the Oregon...

  2. 30 CFR 937.843 - Federal enforcement.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... PROGRAMS FOR THE CONDUCT OF SURFACE MINING OPERATIONS WITHIN EACH STATE OREGON § 937.843 Federal... each enforcement action document and order to show cause issued pursuant to this subpart to the Oregon...

  3. 30 CFR 937.843 - Federal enforcement.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... PROGRAMS FOR THE CONDUCT OF SURFACE MINING OPERATIONS WITHIN EACH STATE OREGON § 937.843 Federal... each enforcement action document and order to show cause issued pursuant to this subpart to the Oregon...

  4. 30 CFR 937.843 - Federal enforcement.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... PROGRAMS FOR THE CONDUCT OF SURFACE MINING OPERATIONS WITHIN EACH STATE OREGON § 937.843 Federal... each enforcement action document and order to show cause issued pursuant to this subpart to the Oregon...

  5. 40 CFR 35.937-7 - Profit.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... ASSISTANCE Grants for Construction of Treatment Works-Clean Water Act § 35.937-7 Profit. The objective of negotiations shall be the exercise of sound business judgment and good administrative practice including the...

  6. 40 CFR 35.937-7 - Profit.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... ASSISTANCE Grants for Construction of Treatment Works-Clean Water Act § 35.937-7 Profit. The objective of negotiations shall be the exercise of sound business judgment and good administrative practice including the...

  7. 40 CFR 35.937-7 - Profit.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... ASSISTANCE Grants for Construction of Treatment Works-Clean Water Act § 35.937-7 Profit. The objective of negotiations shall be the exercise of sound business judgment and good administrative practice including the...

  8. 40 CFR 35.937-7 - Profit.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... ASSISTANCE Grants for Construction of Treatment Works-Clean Water Act § 35.937-7 Profit. The objective of negotiations shall be the exercise of sound business judgment and good administrative practice including the...

  9. Ketamine suppresses the substance P-induced production of IL-6 and IL-8 by human U373MG glioblastoma/astrocytoma cells.

    PubMed

    Yamaguchi, Keisuke; Kumakura, Seiichiro; Murakami, Taisuke; Someya, Akimasa; Inada, Eiichi; Nagaoka, Isao

    2017-03-01

    The neuropeptide substance P (SP) is an important mediator of neurogenic inflammation within the central and peripheral nervous systems. SP has been shown to induce the expression of pro-inflammatory cytokines implicated in the pathogenesis of several disorders of the human brain via the neurokinin-1 receptor (NK-1R). Ketamine, an intravenous anesthetic agent, functions as a competitive antagonist of the excitatory neurotransmission N-methyl-D‑aspartate (NMDA) receptor, and also antagonizes the NK-1R by interfering with the binding of SP. In the present study, we investigated the anti-inflammatory effects of ketamine on the SP-induced activation of a human astrocytoma cell line, U373MG, which expresses high levels of NK-1R. The results from our experiments indicated that ketamine suppressed the production of interleukin (IL)-6 and IL-8 by the U373MG cells. Furthermore, ketamine inhibited the SP-induced activation of extracellular signal‑regulated kinase (ERK)1/2, p38 mitogen-activated protein kinase (MAPK) and nuclear factor-κB (NF-κB). Taken together, these observations suggest that ketamine may suppress the SP-induced activation (IL-6 and IL-8 production) of U373MG cells by inhibiting the phosphorylation of signaling molecules (namely ERK1/2, p38 MAPK and NF-κB), thereby exerting anti‑inflammatory effects. Thus, ketamine may modulate SP-induced inflammatory responses by NK-1R‑expressing cells through the suppression of signaling molecules (such as ERK1/2, p38 MAPK and NF-κB).

  10. EdU induces DNA damage response and cell death in mESC in culture.

    PubMed

    Kohlmeier, Fanni; Maya-Mendoza, Apolinar; Jackson, Dean A

    2013-03-01

    Recently, a novel DNA replication precursor analogue called 5-ethynyl-2'-deoxyuridine (EdU) has been widely used to monitor DNA synthesis as an alternative to bromodeoxyuridine. Use of EdU benefits from simplicity and reproducibility and the simple chemical detection systems allows excellent preservation of nuclear structure. However, the alkyne moiety is highly reactive, raising the possibility that incorporation might compromise genome stability. To assess the extent of possible DNA damage, we have analysed the effect of EdU incorporation into DNA during short- and long-term cell culture using a variety of cell lines. We show that EdU incorporation has no measurable impact on the rate of elongation of replication forks during synthesis. However, using different cell lines we find that during long-term cell culture variable responses to EdU incorporation are seen, which range from delayed cell cycle progression to complete cell cycle arrest. The most profound phenotypes were seen in mouse embryonic stem cells, which following incorporation of EdU accumulated in the G2/M-phase of the cell cycle before undergoing apoptosis. In long-term cell culture, EdU incorporation also triggered a DNA damage response in all cell types analysed. Our study shows that while EdU is extremely useful to tag sites of on-going replication, for long-term studies (i.e. beyond the cell cycle in which labelling is performed), a careful analysis of cell cycle perturbations must be performed in order to ensure that any conclusions made after EdU treatment are not a direct consequence of EdU-dependent activation of cell stress responses.

  11. In Vitro Effects of Bromoalkyl Phenytoin Derivatives on Regulated Death, Cell Cycle and Ultrastructure of Leukemia Cells.

    PubMed

    Śladowska, Katarzyna; Opydo-Chanek, Małgorzata; Król, Teodora; Trybus, Wojciech; Trybus, Ewa; Kopacz-Bednarska, Anna; Handzlik, Jadwiga; Kieć-Kononowicz, Katarzyna; Mazur, Lidia

    2017-11-01

    To search for new antileukemic agents, the chemical structure of phenytoin was modified. A possible cytotoxic activity of three bromoalkyl phenytoin analogs, methyl 2-(1-(3-bromopropyl)-2,4-dioxo-5,5-diphenylimidazolidin-3-yl) propanoate (PH2), 1-(3-bromopropyl)-3-methyl-5,5-diphenylimidazolidine-2,4-dione (PH3) and 1-(4-bromobutyl)-3-methyl-5,5-diphenylimidazolidine-2,4-dione (PH4) on regulated cell death, the cell cycle and cell ultrastructure was assessed. The experiments were performed in vitro on HL-60 and U937 cells, using flow cytometry and electron microscopy methods. Application of PH2, PH3, and PH4 resulted in cell surface exposure of phosphatidylserine and plasma membrane impairment, caspase-8, -9, and -3/7 activation, dissipation of mitochondrial membrane potential, DNA breakage, cell-cycle disturbance and cell ultrastructural changes. In general, PH3 appeared to be the most active against the leukemia cells, and all bromoalkyl hydantoins, PH2-PH4, were more active in HL-60 cells than in U937 cells. The antileukemic activity of the bromoalkyl phenytoin analogs depended on the combination of N-hydantoin substituents and the human cell line used. Copyright© 2017, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  12. Membrane Transfer from Mononuclear Cells to Polymorphonuclear Neutrophils Transduces Cell Survival and Activation Signals in the Recipient Cells via Anti-Extrinsic Apoptotic and MAP Kinase Signaling Pathways.

    PubMed

    Li, Ko-Jen; Wu, Cheng-Han; Shen, Chieh-Yu; Kuo, Yu-Min; Yu, Chia-Li; Hsieh, Song-Chou

    2016-01-01

    The biological significance of membrane transfer (trogocytosis) between polymorphonuclear neutrophils (PMNs) and mononuclear cells (MNCs) remains unclear. We investigated the biological/immunological effects and molecular basis of trogocytosis among various immune cells in healthy individuals and patients with active systemic lupus erythematosus (SLE). By flow cytometry, we determined that molecules in the immunological synapse, including HLA class-I and-II, CD11b and LFA-1, along with CXCR1, are exchanged among autologous PMNs, CD4+ T cells, and U937 cells (monocytes) after cell-cell contact. Small interfering RNA knockdown of the integrin adhesion molecule CD11a in U937 unexpectedly enhanced the level of total membrane transfer from U937 to PMN cells. Functionally, phagocytosis and IL-8 production by PMNs were enhanced after co-culture with T cells. Total membrane transfer from CD4+ T to PMNs delayed PMN apoptosis by suppressing the extrinsic apoptotic molecules, BAX, MYC and caspase 8. This enhancement of activities of PMNs by T cells was found to be mediated via p38- and P44/42-Akt-MAP kinase pathways and inhibited by the actin-polymerization inhibitor, latrunculin B, the clathrin inhibitor, Pitstop-2, and human immunoglobulin G, but not by the caveolin inhibitor, methyl-β-cyclodextrin. In addition, membrane transfer from PMNs enhanced IL-2 production by recipient anti-CD3/anti-CD28 activated MNCs, and this was suppressed by inhibitors of mitogen-activated protein kinase (PD98059) and protein kinase C (Rottlerin). Of clinical significance, decreased total membrane transfer from PMNs to MNCs in patients with active SLE suppressed mononuclear IL-2 production. In conclusion, membrane transfer from MNCs to PMNs, mainly at the immunological synapse, transduces survival and activation signals to enhance PMN functions and is dependent on actin polymerization, clathrin activation, and Fcγ receptors, while membrane transfer from PMNs to MNCs depends on MAP kinase and

  13. Acrylamide-induced apoptosis in rat primary astrocytes and human astrocytoma cell lines.

    PubMed

    Lee, Jiann-Gwu; Wang, Yan-Shiu; Chou, Chin-Cheng

    2014-06-01

    This study aimed to evaluate the acrylamide (ACR)-induced apoptotic effects on rat primary astrocytes and three human astrocytoma-derived cell lines (U-1240 MG, U-87 MG, and U-251 MG). As determined through the MTT assay, treatment with 1 and 2 mM ACR for 24-72 h resulted in decreased cell viability in all cells. Decreases in cell viability could be blocked in all cells with the exception of U-251 MG cells by Z-DEVD FMK. ACR-induced dose-dependent apoptotic effects were also demonstrated by increases in the sub-G1 phase cell population in all cells. The decreased expressions of pro-caspase 3, 8, and 9 and the interruption of the mitochondrial membrane potential were observed in all cells. Exposure to 2 mM ACR for 48 h resulted in increased Bax/Bcl-2 ratios in primary astrocytes and U-87 MG cells, whereas the overexpression of Bcl-2 was observed in U-1240 MG and U-251 MG cells. The ACR-induced increases in the levels of p53 and pp53 in primary astrocytes could be attenuated by caffeine. These results suggest the existence of a common apoptotic pathway among all cell types and that U-87 MG cells may be a suitable substitute in vitro model for primary astrocytes in future studies on ACR-induced neurotoxicity. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Annexin A2-S100A10 heterotetramer is upregulated by PML/RARα fusion protein and promotes plasminogen-dependent fibrinolysis and matrix invasion in acute promyelocytic leukemia.

    PubMed

    Huang, Dan; Yang, Yan; Sun, Jian; Dong, Xiaorong; Wang, Jiao; Liu, Hongchen; Lu, Chengquan; Chen, Xueyu; Shao, Jing; Yan, Jinsong

    2017-09-01

    Aberrant expression of annexin A2-S100A10 heterotetramer (AIIt) associated with PML/RARα fusion protein causes lethal hyperfibrinolysis in acute promyelocytic leukemia (APL), but the mechanism is unclear. To facilitate the investigation of regulatory association between ANXA2 and promyelocytic leukemia/retinoic acid receptor a (PML/RARα) fusion protein, this work was performed to determine the transcription start site of ANXA2 promoter with rapid amplification of 5'-cDNA ends analysis. Zinc-induced U937/PR9 cells expressed PML/RARα fusion protein, and resultant increases in ANXA2 transcripts and translational expressions of both ANXA2 and S100A10, while S100A10 transcripts remained constitutive. The transactivation of ANXA2 promoter by PML/RARα fusion protein was 3.29 ± 0.13 fold higher than that by control pSG5 vector or wild-type RARα. The overexpression of ANXA2 in U937 transfected with full-length ANXA2 cDNA was associated with increased S100A10 subunit, although S100A10 transcripts remained constitutive. The tPA-dependent initial rate of plasmin generation (IRPG) in zinc-treated U937/PR9 increased by 2.13-fold, and cell invasiveness increased by 27.6%. Antibodies against ANXA2, S100A10, or combination of both all remarkably inhibited the IRPG and invasiveness in U937/PR9 and NB4. Treatment of zinc-induced U937/PR9 or circulating APL blasts with all-trans retinoic acid (ATRA) significantly reduced cell surface ANXA2 and S100A10 and associated reductions in IRPG and invasiveness. Thus, PML/RARα fusion protein transactivated the ANXA2 promoter to upregulate ANXA2 and accumulate S100A10. Increased AIIt promoted IRPG and invasiveness, both of which were partly abolished by antibodies against ANXA2 and S100A10 or by ATRA.

  15. Discovery and characterization of Isofistularin-3, a marine brominated alkaloid, as a new DNA demethylating agent inducing cell cycle arrest and sensitization to TRAIL in cancer cells

    PubMed Central

    Florean, Cristina; Schnekenburger, Michael; Lee, Jin-Young; Kim, Kyung Rok; Mazumder, Aloran; Song, Sungmi; Kim, Jae-Myun; Grandjenette, Cindy; Kim, Jeoung-Gyun; Yoon, Ah-Young; Dicato, Mario; Kim, Kyu-Won; Christov, Christo; Han, Byung-Woo; Proksch, Peter; Diederich, Marc

    2016-01-01

    We characterized the brominated alkaloid Isofistularin-3 (Iso-3), from the marine sponge Aplysina aerophoba, as a new DNA methyltransferase (DNMT)1 inhibitor. Docking analysis confirmed our in vitro DNMT inhibition data and revealed binding of Iso-3 within the DNA binding site of DNMT1. Subsequent increased expression of tumor suppressor gene aryl hydrocarbon receptor (AHR) could be correlated to decreased methylation of CpG sites within the essential Sp1 regulatory region of its promoter. Iso-3 induced growth arrest of cancer cells in G0/G1 concomitant with increased p21 and p27 expression and reduced cyclin E1, PCNA and c-myc levels. Reduced proliferation was accompanied by morphological changes typical of autophagy revealed by fluorescent and transmission electron microscopy and validated by LC3I-II conversion. Furthermore, Iso-3 strongly synergized with tumor-necrosis-factor related apoptosis inducing ligand (TRAIL) in RAJI [combination index (CI) = 0.22] and U-937 cells (CI = 0.21) and increased TRAIL-induced apoptosis via a mechanism involving reduction of survivin expression but not of Bcl-2 family proteins nor X-linked inhibitor of apoptosis protein (XIAP). Iso-3 treatment decreased FLIPL expression and triggered activation of endoplasmatic reticulum (ER) stress with increased GRP78 expression, eventually inducing TRAIL receptor death receptor (DR)5 surface expression. Importantly, as a potential candidate for further anticancer drug development, Iso-3 reduced the viability, colony and in vivo tumor forming potential without affecting the viability of PBMCs from healthy donors or zebrafish development. PMID:27006469

  16. Discovery and characterization of Isofistularin-3, a marine brominated alkaloid, as a new DNA demethylating agent inducing cell cycle arrest and sensitization to TRAIL in cancer cells.

    PubMed

    Florean, Cristina; Schnekenburger, Michael; Lee, Jin-Young; Kim, Kyung Rok; Mazumder, Aloran; Song, Sungmi; Kim, Jae-Myun; Grandjenette, Cindy; Kim, Jeoung-Gyun; Yoon, Ah-Young; Dicato, Mario; Kim, Kyu-Won; Christov, Christo; Han, Byung-Woo; Proksch, Peter; Diederich, Marc

    2016-04-26

    We characterized the brominated alkaloid Isofistularin-3 (Iso-3), from the marine sponge Aplysina aerophoba, as a new DNA methyltransferase (DNMT)1 inhibitor. Docking analysis confirmed our in vitro DNMT inhibition data and revealed binding of Iso-3 within the DNA binding site of DNMT1. Subsequent increased expression of tumor suppressor gene aryl hydrocarbon receptor (AHR) could be correlated to decreased methylation of CpG sites within the essential Sp1 regulatory region of its promoter. Iso-3 induced growth arrest of cancer cells in G0/G1 concomitant with increased p21 and p27 expression and reduced cyclin E1, PCNA and c-myc levels. Reduced proliferation was accompanied by morphological changes typical of autophagy revealed by fluorescent and transmission electron microscopy and validated by LC3I-II conversion. Furthermore, Iso-3 strongly synergized with tumor-necrosis-factor related apoptosis inducing ligand (TRAIL) in RAJI [combination index (CI) = 0.22] and U-937 cells (CI = 0.21) and increased TRAIL-induced apoptosis via a mechanism involving reduction of survivin expression but not of Bcl-2 family proteins nor X-linked inhibitor of apoptosis protein (XIAP). Iso-3 treatment decreased FLIPL expression and triggered activation of endoplasmatic reticulum (ER) stress with increased GRP78 expression, eventually inducing TRAIL receptor death receptor (DR)5 surface expression. Importantly, as a potential candidate for further anticancer drug development, Iso-3 reduced the viability, colony and in vivo tumor forming potential without affecting the viability of PBMCs from healthy donors or zebrafish development.

  17. MK-2206 induces apoptosis of AML cells and enhances the cytotoxicity of cytarabine.

    PubMed

    Lu, Jeng-Wei; Lin, Yu-Min; Lai, Yen-Ling; Chen, Chien-Yuan; Hu, Chung-Yi; Tien, Hwei-Fang; Ou, Da-Liang; Lin, Liang-In

    2015-07-01

    Genetic alterations in the PI3K/AKT cascade have been linked to various human cancers including acute myeloid leukemia (AML) and have emerged to be promising targets for treatment. In this study, we explored the molecular mechanism and clinical implication of a specific allosteric AKT inhibitor, MK-2206, in the treatment of AML. Four leukemia cell lines, MV-4-11, MOLM-13, OCI/AML3, and U937, were used. Apoptosis and cell cycle distribution were determined by flow cytometry analysis. Expression of anti-apoptotic protein family and glycogen synthase kinase 3β (GSK3β) signaling was determined by western blotting. Drug combination effects of MK-2206 with cytarabine were evaluated by cell proliferation assay, and the combination index values were calculated by CompuSyn software. MK-2206 had no effect on normal peripheral blood mononuclear cells, but induced G1-phase arrest and apoptosis in leukemia cells. Among anti-apoptotic Bcl-2 family members, only myeloid cell leukemia-1 (Mcl-1) was significantly suppressed. Mcl-1 suppression by MK-2206 was closely associated with decreased GSK3β phosphorylation at Ser9, an event leads to GSK3β activation. Furthermore, the effect of MK-2206 on Mcl-1 downregulation was abolished by GSK3β inhibitor, lithium chloride and proteasome inhibitor, MG-132, suggesting that MK-2206 acted through a GSK3β-mediated, proteasome-dependent protein degradation. In addition, co-administration of MK-2206 with cytarabine could enhance the cytotoxic efficacy of cytarabine in leukemia cell lines. In conclusion, we have demonstrated that MK-2206 is an active agent in AML and its efficacy as in combination with cytarabine is implicated.

  18. A novel vaccine containing EphA2 epitope and LIGHT plasmid induces robust cellular immunity against glioma U251 cells.

    PubMed

    Chen, Hongjie; Yuan, Bangqing; Zheng, Zhaocong; Liu, Zheng; Wang, Shousen; Liu, Yong

    2011-01-01

    EphA2 is a receptor tyrosine kinase and can be acted as an attractive antigen for glioma vaccines. In addition, LIGHT plays an important role on enhancing T cell proliferation and cytokine production. To improve the CTL mediated immune response against glioma cells, we prepared the novel vaccine containing EphA2(883-891) peptide (TLADFDPRV) and LIGHT plasmid and utilized it to immunize the HLA-A2 transgenic HHD mice. In addition, trimera mice were immunized with the novel vaccine to elicit the antitumor immune response. The results demonstrated that the novel vaccine could induce robust cellular immunity against glioma U251 cells without lysing autologous lymphocytes. Moreover, the novel vaccine could significantly inhibit the tumor growth and prolong the life span of tumor bearing mice. These findings suggested that the novel vaccine containing EphA2 epitope and LIGHT plasmid could induce anti-tumor immunity against U251 cells expressing EphA2, and provided a promising strategy for glioma immunotherapy. Copyright © 2011 Elsevier Inc. All rights reserved.

  19. Urokinase–urokinase receptor interaction mediates an inhibitory signal for HIV-1 replication

    PubMed Central

    Alfano, Massimo; Sidenius, Nicolai; Panzeri, Barbara; Blasi, Francesco; Poli, Guido

    2002-01-01

    Elevated levels of soluble urokinase-type plasminogen activator (uPA) receptor, CD87/u-PAR, predict survival in individuals infected with HIV-1. Here, we report that pro-uPA (or uPA) inhibits HIV-1 expression in U937-derived chronically infected promonocytic U1 cells stimulated with phorbol 12-myristate 13-acetate (PMA) or tumor necrosis factor-α (TNF-α). However, pro-uPA did not inhibit PMA or TNF-α-dependent activation of nuclear factor-kB or activation protein-1 in U1 cells. Cell-associated HIV protein synthesis also was not decreased by pro-uPA, although the release of virion-associated reverse transcriptase activity was substantially inhibited, suggesting a functional analogy between pro-uPA and the antiviral effects of IFNs. Indeed, cell disruption reversed the inhibitory effect of pro-uPA on activated U1 cells, and ultrastructural analysis confirmed that virions were preferentially retained within cell vacuoles in pro-uPA treated cells. Neither expression of endogenous IFNs nor activation of the IFN-inducible Janus kinase/signal transducer and activator of transcription pathway were induced by pro-uPA. Pro-uPA also inhibited acute HIV replication in monocyte-derived macrophages and activated peripheral blood mononuclear cells, although with great inter-donor variability. However, pro-uPA inhibited HIV replication in acutely infected promonocytic U937 cells and in ex vivo cultures of lymphoid tissue infected in vitro. Because these effects occurred at concentrations substantially lower than those affecting thrombolysis, pro-uPA may represent a previously uncharacterized class of antiviral agents mimicking IFNs in their inhibitory effects on HIV expression and replication. PMID:12084931

  20. 30 CFR 937.774 - Revision; renewal; and transfer, assignment, or sale of permit rights.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... sale of permit rights. 937.774 Section 937.774 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION... WITHIN EACH STATE OREGON § 937.774 Revision; renewal; and transfer, assignment, or sale of permit rights. (a) Part 774 of this chapter, Revision; Renewal; and Transfer, Assignment, or Sale of Permit Rights...

  1. Impact of psychostimulants and atomoxetine on the expression of 8-hydroxyguanine glycosylase 1 in human cells.

    PubMed

    Schmidt, Andreas Johannes; Clement, Hans-Willi; Gebhardt, Stefan; Hemmeter, Ulrich Michael; Schulz, Eberhard; Krieg, Jürgen-Christian; Kircher, Tilo; Heiser, Philip

    2010-06-01

    Oxidative DNA damage as one sign of reactive oxygen species induced oxidative stress is an important factor in the pathogenesis of various psychiatric disorders. Altered levels of DNA base damage products as well as the expression of the main repair enzyme 8-hydroxyguanine glycosylase 1 have been described. The aim of the present study was to examine the effects of drugs (amphetamine, methylphenidate and atomoxetine) used in the treatment of attention deficit-hyperactivity disorder on the expression of this enzyme via reverse transcriptase-polymerase chain reaction in human neuroblastoma SH-SY5Y and human monocytic U-937 cells at concentrations of 50, 500 and 5,000 ng/ml. We observed decreased expression of this enzyme for all applied substances. In U-937 cells, the significance level was reached after treatment with 5,000 ng/ml amphetamine as well as after treatment with 50, 500 and 5,000 ng/ml atomoxetine. Incubation of SH-SY5Y cells with 50 and 5,000 ng/ml amphetamine and 5,000 ng/ml methylphenidate led to significant decreases of 8-hydroxyguanine glycosylase 1. As a positive correlation between the expression of 8-hydroxyguanine glycosylase 1 and the level of oxidative DNA damage products has been described, we accordingly consider these substances (amphetamine, methylphenidate and atomoxetine) to possibly play a protective role in this process.

  2. The Activation-Induced Assembly of an RNA/Protein Interactome Centered on the Splicing Factor U2AF2 Regulates Gene Expression in Human CD4 T Cells.

    PubMed

    Whisenant, Thomas C; Peralta, Eigen R; Aarreberg, Lauren D; Gao, Nina J; Head, Steven R; Ordoukhanian, Phillip; Williamson, Jamie R; Salomon, Daniel R

    2015-01-01

    Activation of CD4 T cells is a reaction to challenges such as microbial pathogens, cancer and toxins that defines adaptive immune responses. The roles of T cell receptor crosslinking, intracellular signaling, and transcription factor activation are well described, but the importance of post-transcriptional regulation by RNA-binding proteins (RBPs) has not been considered in depth. We describe a new model expanding and activating primary human CD4 T cells and applied this to characterizing activation-induced assembly of splicing factors centered on U2AF2. We immunoprecipitated U2AF2 to identify what mRNA transcripts were bound as a function of activation by TCR crosslinking and costimulation. In parallel, mass spectrometry revealed the proteins incorporated into the U2AF2-centered RNA/protein interactome. Molecules that retained interaction with the U2AF2 complex after RNAse treatment were designated as "central" interactome members (CIMs). Mass spectrometry also identified a second class of activation-induced proteins, "peripheral" interactome members (PIMs), that bound to the same transcripts but were not in physical association with U2AF2 or its partners. siRNA knockdown of two CIMs and two PIMs caused changes in activation marker expression, cytokine secretion, and gene expression that were unique to each protein and mapped to pathways associated with key aspects of T cell activation. While knocking down the PIM, SYNCRIP, impacts a limited but immunologically important set of U2AF2-bound transcripts, knockdown of U2AF1 significantly impairs assembly of the majority of protein and mRNA components in the activation-induced interactome. These results demonstrated that CIMs and PIMs, either directly or indirectly through RNA, assembled into activation-induced U2AF2 complexes and play roles in post-transcriptional regulation of genes related to cytokine secretion. These data suggest an additional layer of regulation mediated by the activation-induced assembly of RNA

  3. The Activation-Induced Assembly of an RNA/Protein Interactome Centered on the Splicing Factor U2AF2 Regulates Gene Expression in Human CD4 T Cells

    PubMed Central

    Aarreberg, Lauren D.; Gao, Nina J.; Head, Steven R.; Ordoukhanian, Phillip; Williamson, Jamie R.; Salomon, Daniel R.

    2015-01-01

    Activation of CD4 T cells is a reaction to challenges such as microbial pathogens, cancer and toxins that defines adaptive immune responses. The roles of T cell receptor crosslinking, intracellular signaling, and transcription factor activation are well described, but the importance of post-transcriptional regulation by RNA-binding proteins (RBPs) has not been considered in depth. We describe a new model expanding and activating primary human CD4 T cells and applied this to characterizing activation-induced assembly of splicing factors centered on U2AF2. We immunoprecipitated U2AF2 to identify what mRNA transcripts were bound as a function of activation by TCR crosslinking and costimulation. In parallel, mass spectrometry revealed the proteins incorporated into the U2AF2-centered RNA/protein interactome. Molecules that retained interaction with the U2AF2 complex after RNAse treatment were designated as “central” interactome members (CIMs). Mass spectrometry also identified a second class of activation-induced proteins, “peripheral” interactome members (PIMs), that bound to the same transcripts but were not in physical association with U2AF2 or its partners. siRNA knockdown of two CIMs and two PIMs caused changes in activation marker expression, cytokine secretion, and gene expression that were unique to each protein and mapped to pathways associated with key aspects of T cell activation. While knocking down the PIM, SYNCRIP, impacts a limited but immunologically important set of U2AF2-bound transcripts, knockdown of U2AF1 significantly impairs assembly of the majority of protein and mRNA components in the activation-induced interactome. These results demonstrated that CIMs and PIMs, either directly or indirectly through RNA, assembled into activation-induced U2AF2 complexes and play roles in post-transcriptional regulation of genes related to cytokine secretion. These data suggest an additional layer of regulation mediated by the activation-induced assembly

  4. Lysosomotropic cationic drugs induce cytostatic and cytotoxic effects: Role of liposolubility and autophagic flux and antagonism by cholesterol ablation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parks, Alexandre; Marceau, François, E-mail: franc

    Cation trapping in acidic cell compartments determines an antiproliferative effect that has a potential interest in oncology, as shown by clinical data and trials involving chloroquine and hydroxychloroquine. To further characterize the mechanism of this effect, we studied a series of 6 substituted triethylamine (s-Et{sub 3}N) drugs that encompasses a wide range of liposolubility (amiodarone, quinacrine, chloroquine, hydroxychloroquine, lidocaine, and procainamide). Three tumor cell lines and primary human endothelial cells were exploited in proliferation assays (48 h, cell counts). Accumulation of the autophagic effector LC3 II and the apoptotic marker cleaved PARP1 (immunoblots), cytotoxicity, cell cycle analysis and endocytic functionmore » were further tested in the p53-null histiocytic lymphoma U937 line. A profound and desynchronized antiproliferative effect was observed in response to all s-Et{sub 3}Ns with essentially no cell type specificity. Predictors of s-Et{sub 3}N potency were liposolubility and the acute accumulation of the autophagic effector LC3 II (6 h-treatments). For each s-Et{sub 3}N, there was an antiproliferative concentration range where cytotoxicity and apoptosis were not triggered in U937 cells (24–48 h-treatments). Quinacrine was the most potent cytostatic drug (1–5 μM). Co-treatment of cells with inhibitors of cholesterol, β-cyclodextrin or lovastatin, partially reversed the antiproliferative effect of each s-Et{sub 3}N. The cytopathology induced by cationic drug accumulation includes a cytostatic effect. Its intensity is cell type- and p53-independent, but predicted by the inhibition of autophagic flux and by the liposolubility of individual drugs and alleviated by cholesterol ablation. The superiority of quinacrine, biomarker value of LC3 II and antagonism by a statin may be clinically relevant. - Highlights: • Cation trapping in acidic cell compartments induces a cytostatic effect. • A series of substituted triethylamines

  5. Optimizing Polychlorinated Biphenyl Degradation by Flavonoid-Induced Cells of the Rhizobacterium Rhodococcus erythropolis U23A.

    PubMed

    Pham, Thi Thanh My; Pino Rodriguez, Nancy Johanna; Hijri, Mohamed; Sylvestre, Michel

    2015-01-01

    There is evidence that many plant secondary metabolites may act as signal molecules to trigger the bacterial ability to metabolize polychlorinated biphenyls (PCBs) during the rhizoremediation process. However, the bases for the PCB rhizoremediation process are still largely unknown. The rhizobacterium Rhodococcus erythropolis U23A is unable to use flavanone as a growth substrate. However, on the basis of an assay that monitors the amount of 4-chlorobenzoate produced from 4-chlorobiphenyl by cells grown co-metabolically on flavanone plus sodium acetate, this flavonoid was previously found to be a potential inducer of the U23A biphenyl catabolic pathway. In this work, and using the same assay, we identified ten other flavonoids that did not support growth, but that acted as inducers of the U23A biphenyl pathway, and we confirmed flavonoid induction of the biphenyl catabolic pathway using quantitative real-time polymerase chain reaction (RT-qPCR) on the bphA gene. We also examined the effect of the growth co-substrate on flavonoid induction. Sodium acetate was replaced by glucose, mannose, sucrose, or mannitol, which are sugars found in plant root exudates. The data showed that the level of induction of strain U23A biphenyl-degrading enzymes was significantly influenced by the nature and concentration of the flavonoid in the growth medium, as well as by the substrate used for growth. Sucrose allowed for an optimal induction response for most flavonoids. Some flavonoids, such as flavone and isoflavone, were better inducers of the biphenyl catabolic enzymes than biphenyl itself. We also found that all flavonoids tested in this work were metabolized by strain U23A during co-metabolic growth, but that the metabolite profiles, as well as the level of efficiency of degradation, differed for each flavonoid. To obtain insight into how flavonoids interact with strain U23A to promote polychlorinated biphenyl (PCB) degradation, we determined the concentration of flavanone at

  6. Optimizing Polychlorinated Biphenyl Degradation by Flavonoid-Induced Cells of the Rhizobacterium Rhodococcus erythropolis U23A

    PubMed Central

    Hijri, Mohamed; Sylvestre, Michel

    2015-01-01

    There is evidence that many plant secondary metabolites may act as signal molecules to trigger the bacterial ability to metabolize polychlorinated biphenyls (PCBs) during the rhizoremediation process. However, the bases for the PCB rhizoremediation process are still largely unknown. The rhizobacterium Rhodococcus erythropolis U23A is unable to use flavanone as a growth substrate. However, on the basis of an assay that monitors the amount of 4-chlorobenzoate produced from 4-chlorobiphenyl by cells grown co-metabolically on flavanone plus sodium acetate, this flavonoid was previously found to be a potential inducer of the U23A biphenyl catabolic pathway. In this work, and using the same assay, we identified ten other flavonoids that did not support growth, but that acted as inducers of the U23A biphenyl pathway, and we confirmed flavonoid induction of the biphenyl catabolic pathway using quantitative real-time polymerase chain reaction (RT-qPCR) on the bphA gene. We also examined the effect of the growth co-substrate on flavonoid induction. Sodium acetate was replaced by glucose, mannose, sucrose, or mannitol, which are sugars found in plant root exudates. The data showed that the level of induction of strain U23A biphenyl-degrading enzymes was significantly influenced by the nature and concentration of the flavonoid in the growth medium, as well as by the substrate used for growth. Sucrose allowed for an optimal induction response for most flavonoids. Some flavonoids, such as flavone and isoflavone, were better inducers of the biphenyl catabolic enzymes than biphenyl itself. We also found that all flavonoids tested in this work were metabolized by strain U23A during co-metabolic growth, but that the metabolite profiles, as well as the level of efficiency of degradation, differed for each flavonoid. To obtain insight into how flavonoids interact with strain U23A to promote polychlorinated biphenyl (PCB) degradation, we determined the concentration of flavanone at

  7. 1,25-DIHYDROXYVITAMIN D3 INDUCES MONOCYTIC DIFFERENTIATION OF HUMAN MYELOID LEUKEMIA CELLS BY REGULATING C/EBPβ EXPRESSION THROUGH MEF2C

    PubMed Central

    Zheng, Ruifang; Wang, Xuening; Studzinski, George P.

    2015-01-01

    Myogenic enhancer factor2 (Mef2) consists of a family of transcription factors involved in morphogenesis of skeletal, cardiac and smooth muscle cells. Among the four isoforms (Mef2A, 2B, 2C, and 2D), Mef2C was also found to play important roles in hematopoiesis. At myeloid progenitor level, Mef2C expression favors monocytic differentiation. Previous studies from our laboratory demonstrated that ERK5 was activated in 1,25-dihydroxyvitamin D3 (1,25D)-induced monocytic differentiation in AML cells and ERK5 activation was accompanied by increased Mef2C phosphorylation. We therefore examined the role of Mef2C in 1,25D-induced monocytic differentiation in AML cell lines (HL60, U937 and THP1) and found that knockdown of Mef2C with small interfering RNA (siRNA) significantly decreases the expression of the monocytic marker, CD14, without affecting the expression of the general myeloid marker, CD11b. CCAAT/Enhancer-binding protein (C/EBP) β, which can bind to CD14 promoter and increase its transcription, has been shown to be the downstream effector of 1,25D-induced monocytic differentiation in AML cells. When Mef2C was knocked down, expression of C/EBPβ was reduced at both mRNA and protein levels. The protein expression levels of cell cycle regulators, p27Kip1 and cyclin D1, were not affected by Mef2C knockdown, nor the monopoiesis related transcription factor, ATF2 (Activating Transcription Factor 2). Thus, we conclude that 1,25D-induced monocytic differentiation, and CD14 expression in particular, is mediated through activation of ERK5-Mef2C-C/EBPβ signaling pathway, and that Mef2C does not seem to modulate cell cycle progression. PMID:25448741

  8. In vitro cytotoxic activity evaluation of phenytoin derivatives against human leukemia cells.

    PubMed

    Śladowska, Katarzyna; Handzlik, Jadwiga; Kieć-Kononowicz, Katarzyna; Mazur, Lidia

    2016-09-01

    Hydantoin derivatives, including phenytoin (5,5-diphenylhydantoin), have recently gained attention as they possess a variety of important biochemical and pharmacological properties. Nevertheless, available information on anticancer activity of hydantoin derivatives is still scarce. Here, we evaluated possible antileukemic potential of four phenytoin analogs, namely: methyl 2-(2,4-dioxo-5,5-diphenylimidazolidin-3-yl)propanoate (1), methyl 2-(1-(3-bromopropyl)-2,4-dioxo-5,5-diphenylimidazolidin-3-yl)propanoate (2), 1-(3-bromopropyl)-3-methyl-5,5-diphenylimidazolidine-2,4-dione (3) and 1-(3-bromobutyl)-3-methyl-5,5-diphenylimidazolidine-2,4-dione (4). The experiments were performed on human acute histiocytic lymphoma U937 cells and human promyelocytic leukemia HL-60 cells. The present study was conducted using spectrophotometric 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl tetrazolium bromide (MTT) assay and the electronic Beckman-Coulter method. We observed temporary changes in the leukemia cell viability, volume and count. The effects of the four 5,5-diphenylhydantoin derivatives on U937 and HL-60 cells depended on the agent tested and its concentration, the time intervals after the compound application, and the leukemia cell line used. HL-60 cells were more sensitive than U937 cells to the action of the phenytoin analogs (1-4). The antileukemic activities of the three bromoalkyl diphenylhydantoin derivatives (2, 3, and 4) were stronger than that of the compound 1 [methyl 2-(2,4-dioxo-5,5-diphenylimidazolidin-3-yl) propanoate], with no bromoalkyl substituent. The structural modifications of 5,5-diphenylhydantoin are responsible for such varied antileukemic potential of its four derivatives.

  9. Development of an in vitro skin sensitization test using human cell lines; human Cell Line Activation Test (h-CLAT). II. An inter-laboratory study of the h-CLAT.

    PubMed

    Sakaguchi, H; Ashikaga, T; Miyazawa, M; Yoshida, Y; Ito, Y; Yoneyama, K; Hirota, M; Itagaki, H; Toyoda, H; Suzuki, H

    2006-08-01

    Recent regulatory changes have placed a major emphasis on in vitro safety testing and alternative models. In regard to skin sensitization tests, dendritic cells (DCs) derived from human peripheral blood have been considered in the development of new in vitro alternatives. Human cell lines have been also reported recently. In our previous study, we suggested that measuring CD86 and/or CD54 expression on THP-1 cells (human monocytic leukemia cell line) could be used as an in vitro skin sensitization method. An inter-laboratory study among two laboratories was undertaken in Japan in order to further develop an in vitro skin sensitization model. In the present study, we used two human cell lines: THP-1 and U-937 (human histiocytic lymphoma cell line). First we optimized our test protocol (refer to the related paper entitled "optimization of the h-CLAT protocol" within this journal) and then we did an inter-laboratory validation with nine chemicals using the optimized protocol. We measured the expression of CD86 and CD54 on the above cells using flow cytometry after a 24h and 48h exposure to six known allergens (e.g., DNCB, pPD, NiSO(4)) and three non-allergens (e.g., SLS, tween 80). For the sample test concentration, four doses (0.1x, 0.5x, 1x, and 2x of the 50% inhibitory concentration (IC(50))) were evaluated. IC(50) was calculated using MTT assay. We found that allergens/non-allergens were better predicted using THP-1 cells compared to U-937 cells following a 24 h and a 48 h exposure. We also found that the 24h treatment time tended to have a better accuracy than the 48 h treatment time for THP-1 cells. Expression of CD86 and CD54 were good predictive markers for THP-1 cells, but for U-937 cells, expression of CD86 was a better predictor than CD54, at the 24h and the 48 h treatment time. The accuracy also improved when both markers (CD86 and CD54) were used as compared with a single marker for THP-1 cells. Both laboratories gave a good prediction of allergen

  10. Acidosis Decreases c-Myc Oncogene Expression in Human Lymphoma Cells: A Role for the Proton-Sensing G Protein-Coupled Receptor TDAG8

    PubMed Central

    Li, Zhigang; Dong, Lixue; Dean, Eric; Yang, Li V.

    2013-01-01

    Acidosis is a biochemical hallmark of the tumor microenvironment. Here, we report that acute acidosis decreases c-Myc oncogene expression in U937 human lymphoma cells. The level of c-Myc transcripts, but not mRNA or protein stability, contributes to c-Myc protein reduction under acidosis. The pH-sensing receptor TDAG8 (GPR65) is involved in acidosis-induced c-Myc downregulation. TDAG8 is expressed in U937 lymphoma cells, and the overexpression or knockdown of TDAG8 further decreases or partially rescues c-Myc expression, respectively. Acidic pH alone is insufficient to reduce c-Myc expression, as it does not decrease c-Myc in H1299 lung cancer cells expressing very low levels of pH-sensing G protein-coupled receptors (GPCRs). Instead, c-Myc is slightly increased by acidosis in H1299 cells, but this increase is completely inhibited by ectopic overexpression of TDAG8. Interestingly, TDAG8 expression is decreased by more than 50% in human lymphoma samples in comparison to non-tumorous lymph nodes and spleens, suggesting a potential tumor suppressor function of TDAG8 in lymphoma. Collectively, our results identify a novel mechanism of c-Myc regulation by acidosis in the tumor microenvironment and indicate that modulation of TDAG8 and related pH-sensing receptor pathways may be exploited as a new approach to inhibit Myc expression. PMID:24152439

  11. Formononetin induces apoptosis of human osteosarcoma cell line U2OS by regulating the expression of Bcl-2, Bax and MiR-375 in vitro and in vivo.

    PubMed

    Hu, Wei; Xiao, ZengMing

    2015-01-01

    Phytoestrogens are known to prevent tumor progression by inhibiting proliferation and inducing apoptosis in cancer cells. Formononetin is one of the main components of red clover plants, and is considered as a typical phytoestrogen. This study investigates formononetin induction of apoptosis of human osteosarcoma cell line U2OS by regulating Bcl-2 and Bax expression in vitro and in vivo. U2OS cells were treated with different concentrations of formononetin and the proliferation of the cells was measured using an MTT assay. Cell apoptosis was examined by flow cytometry. The levels of miR-375, Bax and Bcl-2 protein expression in treated cells were determined by Western blot and RT-PCR. The antitumor activity of formononetin was also evaluated in vivo in nude mice bearing orthotopic tumor implants. High concentrations of formononetin significantly suppress the proliferation of U2OS cells and induce cell apoptosis. Moreover, compared to control group the expression of Bcl-2 and miR-375 decreases with formononetin in the U2OS cells, while Bax increases. Formononetin has inhibitory effects on the proliferation of U2SO cells, both in vitro and in vivo. This antitumor effect is directly correlated with formononetin concentration. © 2015 The Author(s) Published by S. Karger AG, Basel.

  12. Erythrophagocytosis induces heat shock protein synthesis by human monocytes-macrophages.

    PubMed

    Clerget, M; Polla, B S

    1990-02-01

    Exposure of cells to elevated temperatures and other environmental stresses results in the expression of specific genes encoding the so-called heat shock proteins (HSPs). Since exogenous H2O2 induces in human monocytes the synthesis of HSPs, and previous induction of HSPs protects these cells from oxidative injury, we investigated whether HSP synthesis was also induced during generation of reactive oxygen species by the phagocyte itself during phagocytosis. As a model system, we analyzed the effects of erythrophagocytosis on protein synthesis by the human premonocytic line U937, in which phagocytosis is induced during differentiation with 1,25-dihydroxyvitamin D3. Exposure to whole erythrocytes, but not to erythrocyte ghosts, induced in the phagocytic cells only the synthesis of the 70- and 83- to 90-kDa HSPs and a 32-kDa oxidation-related stress protein identical by partial peptide mapping to heme oxygenase. The radioprotective aminothiol N-(2'-mercaptoethyl)-1,3-propanediamine (WR-1065), which can substitute for glutathione as hydrogen donor, prevented this induction. These results suggest that oxygen free radicals generated in the presence of hemoglobin-derived iron and consecutive glutathione depletion are involved in induction of stress protein synthesis during erythrophagocytosis. HSPs synthesized during phagocytosis may play a role in the phagocyte's defense mechanisms and in protective immunity.

  13. SGK is a primary glucocorticoid-induced gene in the human.

    PubMed

    Náray-Fejes-Tóth, A; Fejes-Tóth, G; Volk, K A; Stokes, J B

    2000-12-01

    Serum- and glucocorticoid-induced kinase (sgk) is transcriptionally regulated by corticosteroids in several cell types. Recent findings suggest that sgk is an important gene in the early action of corticosteroids on epithelial sodium reabsorption. Surprisingly, the human sgk was reported not to be transcriptionally regulated by corticosteroids in a hepatoma cell line, and thus far no glucocorticoid response element has been identified in the human SGK gene. Since humans clearly respond to both aldosterone and glucocorticoids in cells where sgk action seems to be important, in this study we determined sgk mRNA levels following dexamethasone treatment for various duration in five human cell lines. These cell lines included epithelial cells (H441, T84 and HT29) and lymphoid/monocyte (U937 and THP-1) lines. Using quantitative reverse transcriptase-polymerase chain reaction (RT-PCR), we found that sgk mRNA levels are markedly induced by glucocorticoids in all of the five cell lines studied. Time course analyses revealed that sgk mRNA levels are elevated as early as 30 min after addition of the glucocorticoid, and remain elevated for several hours. Northern analysis in H441 cells confirmed that sgk is an early induced gene. The induction of sgk by dexamethasone was unaffected by cycloheximide, indicating that it does not require de novo protein synthesis. These results indicate that the human sgk, just like its counterparts in other species, is a primary glucocorticoid-induced gene.

  14. Droplet microfluidic technology for single-cell high-throughput screening.

    PubMed

    Brouzes, Eric; Medkova, Martina; Savenelli, Neal; Marran, Dave; Twardowski, Mariusz; Hutchison, J Brian; Rothberg, Jonathan M; Link, Darren R; Perrimon, Norbert; Samuels, Michael L

    2009-08-25

    We present a droplet-based microfluidic technology that enables high-throughput screening of single mammalian cells. This integrated platform allows for the encapsulation of single cells and reagents in independent aqueous microdroplets (1 pL to 10 nL volumes) dispersed in an immiscible carrier oil and enables the digital manipulation of these reactors at a very high-throughput. Here, we validate a full droplet screening workflow by conducting a droplet-based cytotoxicity screen. To perform this screen, we first developed a droplet viability assay that permits the quantitative scoring of cell viability and growth within intact droplets. Next, we demonstrated the high viability of encapsulated human monocytic U937 cells over a period of 4 days. Finally, we developed an optically-coded droplet library enabling the identification of the droplets composition during the assay read-out. Using the integrated droplet technology, we screened a drug library for its cytotoxic effect against U937 cells. Taken together our droplet microfluidic platform is modular, robust, uses no moving parts, and has a wide range of potential applications including high-throughput single-cell analyses, combinatorial screening, and facilitating small sample analyses.

  15. 40 CFR 35.937-7 - Profit.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... performance and not merely the application of a predetermined percentage factor. For the purpose of... ASSISTANCE Grants for Construction of Treatment Works-Clean Water Act § 35.937-7 Profit. The objective of negotiations shall be the exercise of sound business judgment and good administrative practice including the...

  16. Investigation of a direct effect of nanosecond pulse electric fields on mitochondria

    NASA Astrophysics Data System (ADS)

    Estlack, Larry E.; Roth, Caleb C.; Cerna, Cesario Z.; Wilmink, Gerald J.; Ibey, Bennett L.

    2014-03-01

    The unique cellular response to nanosecond pulsed electric field (nsPEF) exposure, as compared to longer pulse exposure, has been theorized to be due to permeabilization of intracellular organelles including the mitochondria. In this investigation, we utilized a high-throughput oxygen and pH sensing system (Seahorse® XF24 extracellular flux analyzer) to assess the mitochondrial activity of Jurkat and U937 cells after nsPEF. The XF Analyzer uses a transient micro-chamber of only a few μL in specialized cell culture micro-plates to enable oxygen consumption rate (OCR) and extracellular acidification rate (ECAR) to be monitored in real-time. We found that for nsPEF exposures of 10 pulses at 10-ns pulse width and at 50 kV/cm e-field, we were able to cause an increase in OCR in both U937 and Jurkat cells. We also found that high pulse numbers (>100) caused a significant decrease in OCR. Higher amplitude 150 kV/cm exposures had no effect on U937 cells and yet they had a deleterious effect on Jurkat cells, matching previously published 24 hour survival data. These results suggest that the exposures were modulating metabolic activity in cells possibly due to direct effects on the mitochondria themselves. To validate this hypothesis, we isolated mitochondria from U937 cells and exposed them similarly and found no significant change in metabolic activity for any pulse number. In a final experiment, we removed calcium from the buffer solution that the cells were exposed in and found that no significant enhancement in metabolic activity was observed. These results suggest that direct permeabilization of the mitochondria is unlikely a primary effect of nsPEF exposure and calcium-mediated intracellular pathway activation is likely responsible for observed pulse-induced mitochondrial effects.

  17. Gemcitabine treatment induces endoplasmic reticular (ER) stress and subsequently upregulates urokinase plasminogen activator (uPA) to block mitochondrial-dependent apoptosis in Panc-1 cancer stem-like cells (CSCs).

    PubMed

    Wang, Li; Zhang, Yi; Wang, Weiguo; Zhu, Yunjie; Chen, Yang; Tian, Bole

    2017-01-01

    Pancreatic ductal adenocarcinoma (PDAC) is an aggressive cancer with poor survival rates. The presence of cancer stem-like cells (CSCs) is believed to be among the underlying reasons for the aggressiveness of PDAC, which contributes to chemoresistance and recurrence. However, the mechanisms that induce chemoresistance and inhibit apoptosis remain largely unknown. We used serum-free medium to enrich CSCs from panc-1 human pancreatic cancer cells and performed sphere formation testing, flow cytometry, quantitative reverse transcription polymerase chain reaction (RT-qPCR) and semi-quantitative western blotting to confirm the stemness of panc-1 CSCs. Hallmarks of endoplasmic reticulum (ER) stress, including IRE1, PERK, ATF4, ATF6α, GRP78 and uPA expression, were detected after gemcitabine treatment. Effects of gemcitabine-induced uPA expression on cell invasion, sphere formation, colony formation and gemcitabine sensitivity were detected. Electrophoretic mobility shift assays (EMSAs) and RNA-immunoprecipitation (RIP) were performed to detect interaction between the uPA mRNA 3'-UTR and mutant p53-R273H expressed by panc-1 CSCs. The effects of upregulated uPA by gemcitabine on apoptosis were detected by Annexin V-FITC/PI staining, and the impact of uPA on small molecule CP-31398-restored mutant p53 transcriptional activity was measured by a luciferase reporter assay. Enriched panc-1 CSCs expressing high levels of CD44 and CD133 also produced significantly higher amounts of Oct4 and Nanog. Compared with panc-1 cells, panc-1 CSCs presented chemoresistance to gemcitabine. ER stress gene detections demonstrated effects of gemcitabine-induced ER stress on both the pro-apoptotic and pro-survival branches. ER stress-induced ATF6α upregulated level of uPA by transcriptionally activating GRP78. Gemcitabine-induced uPA promoted invasion, sphere formation and colony formation and attenuated apoptosis induced by gemcitabine in panc-1 CSCs, depending on interaction with mutant p53

  18. Gemcitabine treatment induces endoplasmic reticular (ER) stress and subsequently upregulates urokinase plasminogen activator (uPA) to block mitochondrial-dependent apoptosis in Panc-1 cancer stem-like cells (CSCs)

    PubMed Central

    Wang, Weiguo; Zhu, Yunjie; Chen, Yang

    2017-01-01

    Background Pancreatic ductal adenocarcinoma (PDAC) is an aggressive cancer with poor survival rates. The presence of cancer stem-like cells (CSCs) is believed to be among the underlying reasons for the aggressiveness of PDAC, which contributes to chemoresistance and recurrence. However, the mechanisms that induce chemoresistance and inhibit apoptosis remain largely unknown. Methods We used serum-free medium to enrich CSCs from panc-1 human pancreatic cancer cells and performed sphere formation testing, flow cytometry, quantitative reverse transcription polymerase chain reaction (RT-qPCR) and semi-quantitative western blotting to confirm the stemness of panc-1 CSCs. Hallmarks of endoplasmic reticulum (ER) stress, including IRE1, PERK, ATF4, ATF6α, GRP78 and uPA expression, were detected after gemcitabine treatment. Effects of gemcitabine-induced uPA expression on cell invasion, sphere formation, colony formation and gemcitabine sensitivity were detected. Electrophoretic mobility shift assays (EMSAs) and RNA-immunoprecipitation (RIP) were performed to detect interaction between the uPA mRNA 3’-UTR and mutant p53-R273H expressed by panc-1 CSCs. The effects of upregulated uPA by gemcitabine on apoptosis were detected by Annexin V-FITC/PI staining, and the impact of uPA on small molecule CP-31398-restored mutant p53 transcriptional activity was measured by a luciferase reporter assay. Results Enriched panc-1 CSCs expressing high levels of CD44 and CD133 also produced significantly higher amounts of Oct4 and Nanog. Compared with panc-1 cells, panc-1 CSCs presented chemoresistance to gemcitabine. ER stress gene detections demonstrated effects of gemcitabine-induced ER stress on both the pro-apoptotic and pro-survival branches. ER stress-induced ATF6α upregulated level of uPA by transcriptionally activating GRP78. Gemcitabine-induced uPA promoted invasion, sphere formation and colony formation and attenuated apoptosis induced by gemcitabine in panc-1 CSCs, depending on

  19. Cytokine profiling of docetaxel-resistant castration-resistant prostate cancer.

    PubMed

    Mahon, K L; Lin, H-M; Castillo, L; Lee, B Y; Lee-Ng, M; Chatfield, M D; Chiam, K; Breit, S N; Brown, D A; Molloy, M P; Marx, G M; Pavlakis, N; Boyer, M J; Stockler, M R; Daly, R J; Henshall, S M; Horvath, L G

    2015-04-14

    Docetaxel improves symptoms and survival in metastatic castration-resistant prostate cancer (CRPC). However, ∼50% of patients are chemoresistant. This study examined whether changes in cytokine levels predict for docetaxel resistance in vitro and in a clinical cohort. PC3 cells or their docetaxel-resistant subline (PC3Rx) were co-cultured with U937 monocytes, with and without docetaxel treatment, and cytokine levels were measured. The circulating levels of 28 cytokines were measured pre-/post cycle 1 of docetaxel from 55 men with CRPC, and compared with prostate-specific antigen (PSA) response. PC3Rx-U937 co-culture expressed more cytokines, chiefly markers of alternative macrophage differentiation, compared with PC3-U937 co-culture. Docetaxel treatment enhanced cytokine production by PC3Rx-U937 co-culture, while reducing cytokine levels in PC3-U937. In patients, changes in the levels of seven circulating cytokines (macrophage inhibitory cytokine 1 (MIC1), interleukin (IL)-1ra, IL-1β, IL-4, IL-6, IL-12 and IFNγ) after cycle 1 of docetaxel were associated with progressive disease (all P<0.05). The combination of changes in MIC1, IL-4 and IL-6 most strongly predicted PSA response (P=0.002). In vitro studies suggest docetaxel resistance is mediated, at least in part, by cytokines induced by the interaction between the docetaxel-resistant tumour cells and macrophages. Early changes in circulating cytokine levels were associated with docetaxel resistance in CRPC patients. When considered together, these data suggest a significant role for the inflammatory response and macrophages in the development of docetaxel resistance in CRPC.

  20. Lethality to leukemia cell lines of DNA interstrand cross-links generated by Cloretazine derived alkylating species

    PubMed Central

    Penketh, Philip G.; Baumann, Raymond P.; Ishiguro, Kimiko; Shyam, Krishnamurthy; Seow, Helen A.; Sartorelli, Alan C.

    2010-01-01

    Cloretazine [1, 2-bis(methylsulfonyl)-1-(2-chloroethyl)-2-[(methylamino)carbonyl]-hydrazine; VNP40101M; 101M] is a relatively new prodrug with activity in elderly acute myelogenous leukemia patients. Its therapeutic action is due largely to the production of 1-(3-cytosinyl),2-(1-guanyl)ethane cross-links (G-C ethane cross-links) in DNA. The number of cross-links produced in three experimental leukemia lines (L1210, U937 and HL-60) were fewer than 10 per genome at their respective LC50 concentrations. Only 1 in approximately 20,000 90CE molecules produce a cross-link in the AGT (O6-alkylguanine-DNA alkyltransferase) negative L1210 and U937 cell lines and 1 in 400,000 in the AGT positive HL-60 cell line. PMID:18479747

  1. [Saponin 6 of Anemone Taipaiensis inhibits proliferation and induces apoptosis of U87 MG cells].

    PubMed

    Ji, Chenchen; Cheng, Guang; Tang, Haifeng; Zhang, Yun; Hu, Yiyang; Zheng, Minhua; Fei, Zhou

    2015-04-01

    To investigate the effect of saponin 6 of Anemone Taipaiensis on the proliferation of human U87 MG glioma cells and the possible mechanism. U87 MG cells were treated with different concentrations of saponin 6 (0.0, 1.6, 3.2, 6.4, 12.8 μg/mL) for 24 hours or 48 hours. Cell viability was measured by MTT assay; the apoptosis rate was detected by flow cytometry combined with annexin V-FITC /PI staining; Western blotting was applied to determine the protein level of activated caspase-3. Compared with control groups, saponin 6 significantly inhibited U87 MG cell proliferation in a time- and dose-depended manner. Apoptosis rate of U87 MG cells and the expression of activated caspase-3 were raised with the increasing concentration of saponin 6. Saponin 6 of Anemone Taipaiensis could depress cell proliferation in a dose-depended manner, increase the expression of activated caspase-3 and promote apoptosis in U87 MG cells.

  2. Diabetes-Induced Superoxide Anion and Breakdown of the Blood-Retinal Barrier: Role of the VEGF/uPAR Pathway

    PubMed Central

    El-Remessy, Azza B.; Franklin, Telina; Ghaley, Nagla; Yang, Jinling; Brands, Michael W.; Caldwell, Ruth B.; Behzadian, Mohamed Ali

    2013-01-01

    Diabetes-induced breakdown of the blood-retinal barrier (BRB) has been linked to hyperglycemia-induced expression of vascular endothelial growth factor (VEGF) and is likely mediated by an increase in oxidative stress. We have shown that VEGF increases permeability of retinal endothelial cells (REC) by inducing expression of urokinase plasminogen activator receptor (uPAR). The purpose of this study was to define the role of superoxide anion in VEGF/uPAR expression and BRB breakdown in diabetes. Studies were performed in streptozotocin diabetic rats and mice and high glucose (HG) treated REC. The superoxide dismutase (SOD) mimetic tempol blocked diabetes-induced permeability and uPAR expression in rats and the cell permeable SOD inhibited HG-induced expression of uPAR and VEGF in REC. Inhibiting VEGFR blocked HG-induced expression of VEGF and uPAR and GSK-3β phosphorylation in REC. HG caused β-catenin translocation from the plasma membrane into the cytosol and nucleus. Treatment with HG-conditioned media increased REC paracellular permeability that was blocked by anti-uPA or anti-uPAR antibodies. Moreover, deletion of uPAR blocked diabetes-induced BRB breakdown and activation of MMP-9 in mice. Together, these data indicate that diabetes-induced oxidative stress triggers BRB breakdown by a mechanism involving uPAR expression through VEGF-induced activation of the GSK3β/β-catenin signaling pathway. PMID:23951261

  3. Control of proliferating potential of myeloid leukemia cells during long-term treatment with vitamin D3 analogues and other differentiation inducers in combination with antileukemic drugs: in vitro and in vivo studies.

    PubMed

    Kasukabe, T; Honma, Y; Hozumi, M; Suda, T; Nishii, Y

    1987-01-15

    Growth inhibition of murine and human myeloid leukemia cells by differentiation inducers during long-term culture was examined to improve the strategy for therapy of myeloid leukemia by differentiation inducers. When the effect of 1 alpha,25-dihydroxyvitamin D3, a typical differentiation inducer, on proliferation of mouse myeloid leukemia M1 cells was examined at a constant product of time and concentration (480 nM in 20 days), the continuous treatment with 24 nM 1 alpha,25-dihydroxyvitamin D3 was the most effective for inhibition of cell proliferation. After 20 days, the cumulative cell number was reduced about 3 X 10(5) times by continuous treatment with 24 nM 1 alpha,25-dihydroxyvitamin D3. Similar results were obtained when M1 cells were treated continuously with dexamethasone. M1 cells resistant to 1 alpha,25-dihydroxyvitamin D3 appeared about 25 days after the start of continuous treatment with 24 nM 1 alpha,25-dihydroxyvitamin D3. On the other hand, when M1 cells were treated continuously with 1 alpha,25-dihydroxyvitamin D3 and noncytotoxic doses of antileukemic drugs such as 1-beta-D-arabinofuranosylcytosine and daunomycin, resistant cells did not appear for at least 35 days. A similar effect of 1 alpha,25-dihydroxyvitamin D3 and antileukemic drugs on cell proliferation was observed with the human monoblast-like cell line U937. The survival of syngeneic SL mice inoculated with M1 cells was prolonged more by treatment with both 1 alpha-hydroxyvitamin D3 and daunomycin than by treatment with either drug alone. These results suggest that continuous treatment with both differentiation inducers and certain antileukemic drugs may be more effective therapeutically than treatment with a differentiation inducer alone.

  4. Suppression of NRF2–ARE activity sensitizes chemotherapeutic agent-induced cytotoxicity in human acute monocytic leukemia cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peng, Hui; Institute of Disease Control and Prevention, Academy of Military Medical Sciences, Beijing; Wang, Huihui

    2016-02-01

    Nuclear factor erythroid 2-related factor 2 (NRF2), a master regulator of the antioxidant response element (ARE)-dependent transcription, plays a pivotal role in chemical detoxification in normal and tumor cells. Consistent with previous findings that NRF2–ARE contributes to chemotherapeutic resistance of cancer cells, we found that stable knockdown of NRF2 by lentiviral shRNA in human acute monocytic leukemia (AML) THP-1 cells enhanced the cytotoxicity of several chemotherapeutic agents, including arsenic trioxide (As{sub 2}O{sub 3}), etoposide and doxorubicin. Using an ARE-luciferase reporter expressed in several human and mouse cells, we identified a set of compounds, including isonicotinic acid amides, isoniazid and ethionamide,more » that inhibited NRF2–ARE activity. Treatment of THP-1 cells with ethionamide, for instance, significantly reduced mRNA expression of multiple ARE-driven genes under either basal or As{sub 2}O{sub 3}-challenged conditions. As determined by cell viability and cell cycle, suppression of NRF2–ARE by ethionamide also significantly enhanced susceptibility of THP-1 and U937 cells to As{sub 2}O{sub 3}-induced cytotoxicity. In THP-1 cells, the sensitizing effect of ethionamide on As{sub 2}O{sub 3}-induced cytotoxicity was highly dependent on NRF2. To our knowledge, the present study is the first to demonstrate that ethionamide suppresses NRF2–ARE signaling and disrupts the transcriptional network of the antioxidant response in AML cells, leading to sensitization to chemotherapeutic agents. - Highlights: • Identification of novel inhibitors of ARE-dependent transcription • Suppression of NRF2–ARE sensitizes THP-1 cells to chemotherapy. • Ethionamide suppresses ARE-dependent transcriptional activity. • Ethionamide and isoniazid increase the cytotoxicity of As{sub 2}O{sub 3} in AML cells. • Sensitization of THP-1 cells to As{sub 2}O{sub 3} toxicity by ethionamide is NRF2-dependent.« less

  5. 3, 3′-Diindolylmethane Exhibits Antileukemic Activity In Vitro and In Vivo through a Akt-Dependent Process

    PubMed Central

    Gao, Ning; Cheng, Senping; Budhraja, Amit; Liu, E-Hu; Chen, Jieping; Chen, Deying; Yang, Zailin; Luo, Jia; Shi, Xianglin; Zhang, Zhuo

    2012-01-01

    3,3′-diindolylmethane (DIM), one of the active products derived from Brassica plants, is a promising antitumor agent. The present study indicated that DIM significantly induced apoptosis in U937 human leukemia cells in dose- and time-dependent manners. These events were also noted in other human leukemia cells (Jurkat and HL-60) and primary human leukemia cells (AML) but not in normal bone marrow mononuclear cells. We also found that DIM-induced lethality is associated with caspases activation, myeloid cell leukemia-1 (Mcl-1) down-regulation, p21cip1/waf1 up-regulation, and Akt inactivation accompanied by c-jun NH2-terminal kinase (JNK) activation. Enforced activation of Akt by a constitutively active Akt construct prevented DIM-mediated caspase activation, Mcl-1 down-regulation, JNK activation, and apoptosis. Conversely, DIM lethality was potentiated by the PI3K inhibitor LY294002. Interruption of the JNK pathway by pharmacologic or genetic approaches attenuated DIM-induced caspases activation, Mcl-1 down-regulation, and apoptosis. Lastly, DIM inhibits tumor growth of mouse U937 xenograft, which was related to induction of apoptosis and inactivation of Akt, as well as activation of JNK. Collectively, these findings suggest that DIM induces apoptosis in human leukemia cell lines and primary human leukemia cells, and exhibits antileukemic activity in vivo through Akt inactivation and JNK activation. PMID:22363731

  6. Oligosaccharide receptor mimics inhibit Legionella pneumophila attachment to human respiratory epithelial cells.

    PubMed

    Thomas, Richard J; Brooks, Tim J

    2004-02-01

    Legionnaire's disease is caused by the intracellular pathogen Legionella pneumophila, presenting as an acute pneumonia. Attachment is the key step during infection, often relying on an interaction between host cell oligosaccharides and bacterial adhesins. Inhibition of this interaction by receptor mimics offers possible novel therapeutic treatments. L. pneumophila attachment to the A549 cell line was significantly reduced by treatment with tunicamycin (73.6%) and sodium metaperiodate (63.7%). This indicates the importance of cell surface oligosaccharide chains in adhesion. A number of putative anti-adhesion compounds inhibited attachment to the A549 and U937 cell lines. The most inhibitory compounds were polymeric saccharides, GalNAcbeta1-4Gal, Galbeta1-4GlcNAc and para-nitrophenol. These compounds inhibited adhesion to a range of human respiratory cell lines, including nasal epithelial, bronchial epithelial and alveolar epithelial cell lines and the human monocytic cell line, U937. Some eukaryotic receptors for L. pneumophila were determined to be the glycolipids, asialo-GM1 and asialo-GM2 that contain the inhibitory saccharide moiety, GalNAcbeta1-4Gal. The identified compounds have the potential to be used as novel treatments for Legionnaire's disease.

  7. 40 CFR 35.937-12 - Subcontracts under subagreements for architectural or engineering services.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... architectural or engineering services. 35.937-12 Section 35.937-12 Protection of Environment ENVIRONMENTAL... engineering services. (a) Neither award and execution of subcontracts under a prime contract for architectural or engineering services, nor the procurement and negotiation procedures used by the engineer in...

  8. 40 CFR 35.937-12 - Subcontracts under subagreements for architectural or engineering services.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... architectural or engineering services. 35.937-12 Section 35.937-12 Protection of Environment ENVIRONMENTAL... engineering services. (a) Neither award and execution of subcontracts under a prime contract for architectural or engineering services, nor the procurement and negotiation procedures used by the engineer in...

  9. 40 CFR 35.937-12 - Subcontracts under subagreements for architectural or engineering services.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... architectural or engineering services. 35.937-12 Section 35.937-12 Protection of Environment ENVIRONMENTAL... engineering services. (a) Neither award and execution of subcontracts under a prime contract for architectural or engineering services, nor the procurement and negotiation procedures used by the engineer in...

  10. 40 CFR 35.937-12 - Subcontracts under subagreements for architectural or engineering services.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... architectural or engineering services. 35.937-12 Section 35.937-12 Protection of Environment ENVIRONMENTAL... engineering services. (a) Neither award and execution of subcontracts under a prime contract for architectural or engineering services, nor the procurement and negotiation procedures used by the engineer in...

  11. 40 CFR 35.937-12 - Subcontracts under subagreements for architectural or engineering services.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... architectural or engineering services. 35.937-12 Section 35.937-12 Protection of Environment ENVIRONMENTAL... engineering services. (a) Neither award and execution of subcontracts under a prime contract for architectural or engineering services, nor the procurement and negotiation procedures used by the engineer in...

  12. Curcumin suppresses colon cancer cell invasion via AMPK-induced inhibition of NF-κB, uPA activator and MMP9.

    PubMed

    Tong, Weihua; Wang, Quan; Sun, Donghui; Suo, Jian

    2016-11-01

    Curcumin, an active nontoxic ingredient of turmeric, possesses potent anti-inflammatory, antioxidant and anti-cancer properties; however, the molecular mechanisms of curcumin are not fully understood. The transcription factor nuclear factor-κB (NF-κB) is key in cellular processes, and the expression/activation of urokinase-type plasminogen activator (uPA) and matrix metalloproteinase-9 (MMP9) are crucial for cell invasion. The present study investigated the hypothesis that curcumin inhibits colon cancer cell invasion by modulating NF-κB-mediated expression and activation of uPA and MMP9. Human colon cancer SW480 and LoVo cells were treated with various concentrations of curcumin. Curcumin was demonstrated to dose-dependently inhibit the adhesion and proliferation ability of LoVo and SW480 cells using Transwell and MTT assays, respectively. In addition, curcumin activated 5' AMP-activated protein kinase (AMPK) and suppressed p65 NF-κB phosphorylation, as shown by western blot analysis. Compound C, a potent AMPK inhibitor, abolished curcumin-induced inhibition of NF-κB, uPA and MMP9, suggesting that AMPK activation is responsible for curcumin-mediated NF-κB, uPA and MMP9 inhibition. The binding activity of NF-κB to DNA was examined and western blotting and quantitative polymerase reaction was performed to detect the effect of curcumin on the expression of uPA and MMP9. The present results revealed that curcumin significantly decreased the expression of uPA and MMP9 and NF-κB DNA binding activity. Furthermore, curcumin decreased the level of the p65 subunit of NF-κB binding to the promoter of the gene encoding uPA and MMP9, which suppressed transcriptional activation of uPA and MMP9. Overall, the present data suggest that curcumin inhibits colon cancer cell invasion via AMPK activation and subsequent inhibition of p65 NF-κB, uPA and MMP9. The therapeutic potential of curcumin for colon cancer metastasis required additional study.

  13. The HIV Nef protein modulates cellular and exosomal miRNA profiles in human monocytic cells.

    PubMed

    Aqil, Madeeha; Naqvi, Afsar Raza; Mallik, Saurav; Bandyopadhyay, Sanghamitra; Maulik, Ujjwal; Jameel, Shahid

    2014-01-01

    The HIV Nef protein is a multifunctional virulence factor that perturbs intracellular membranes and signalling and is secreted into exosomes. While Nef-containing exosomes have a distinct proteomic profile, no comprehensive analysis of their miRNA cargo has been carried out. Since Nef functions as a viral suppressor of RNA interference and disturbs the distribution of RNA-induced silencing complex proteins between cells and exosomes, we hypothesized that it might also affect the export of miRNAs into exosomes. Exosomes were purified from human monocytic U937 cells that stably expressed HIV-1 Nef. The RNA from cells and exosomes was profiled for 667 miRNAs using a Taqman Low Density Array. Selected miRNAs and their mRNA targets were validated by quantitative RT-PCR. Bioinformatics analyses were used to identify targets and predict pathways. Nef expression affected a significant fraction of miRNAs in U937 cells. Our analysis showed 47 miRNAs to be selectively secreted into Nef exosomes and 2 miRNAs to be selectively retained in Nef-expressing cells. The exosomal miRNAs were predicted to target several cellular genes in inflammatory cytokine and other pathways important for HIV pathogenesis, and an overwhelming majority had targets within the HIV genome. This is the first study to report miRnome analysis of HIV Nef expressing monocytes and exosomes. Our results demonstrate that Nef causes large-scale dysregulation of cellular miRNAs, including their secretion through exosomes. We suggest this to be a novel viral strategy to affect pathogenesis and to limit the effects of RNA interference on viral replication and persistence.

  14. 30 CFR 937.700 - Oregon Federal program.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT, DEPARTMENT OF THE INTERIOR PROGRAMS FOR THE CONDUCT OF SURFACE MINING OPERATIONS WITHIN EACH STATE OREGON § 937.700 Oregon Federal program. (a) This part contains all rules that are applicable to surface coal mining operations in Oregon...

  15. Mycobacterium tuberculosis infection causes different levels of apoptosis and necrosis in human macrophages and alveolar epithelial cells.

    PubMed

    Danelishvili, Lia; McGarvey, Jeffery; Li, Yong-Jun; Bermudez, Luiz E

    2003-09-01

    Mycobacterium tuberculosis interacts with macrophages and epithelial cells in the alveolar space of the lung, where it is able to invade and replicate in both cell types. M. tuberculosis-associated cytotoxicity to these cells has been well documented, but the mechanisms of host cell death are not well understood. We examined the induction of apoptosis and necrosis of human macrophages (U937) and type II alveolar epithelial cells (A549) by virulent (H37Rv) and attenuated (H37Ra) M. tuberculosis strains. Apoptosis was determined by both enzyme-linked immunosorbent assay (ELISA) and TdT-mediated dUTP nick end labelling (TUNEL) assay, whereas necrosis was evaluated by the release of lactate dehydrogenase (LDH). Both virulent and attenuated M. tuberculosis induced apoptosis in macrophages; however, the attenuated strain resulted in significantly more apoptosis than the virulent strain after 5 days of infection. In contrast, cytotoxicity of alveolar cells was the result of necrosis, but not apoptosis. Although infection with M. tuberculosis strains resulted in apoptosis of 14% of the cells on the monolayer, cell death associated with necrosis was observed in 59% of alveolar epithelial cells after 5 days of infection. Infection with M. tuberculosis suppressed apoptosis of alveolar epithelial cells induced by the kinase inhibitor, staurosporine. Because our findings suggest that M. tuberculosis can modulate the apoptotic response of macrophages and epithelial cells, we carried out an apoptosis pathway-specific cDNA microarray analysis of human macrophages and alveolar epithelial cells. Whereas the inhibitors of apoptosis, bcl-2 and Rb, were upregulated over 2.5-fold in infected (48 h) alveolar epithelial cells, the proapoptotic genes, bad and bax, were downregulated. The opposite was observed when U937 macrophages were infected with M. tuberculosis. Upon infection of alveolar epithelial cells with M. tuberculosis, the generation of apoptosis, as determined by the

  16. [Study on the specific immunity induced by dendritic cell vaccine loading allogenic microvascular endothelial cell bEnd.3 antigen against U14 cervical cancer cell in mice].

    PubMed

    Zhao, Jun; Lu, Jing; Liu, Ya-qin; Yang, Hong-yan; Huang, You-tian; Zhao, Ji-min; Li, Shan; Zhai, Jing-ming; Zhao, Ming-yao; Zhang, Xi; Dong, Zi-ming

    2011-01-01

    To explore the specific cellular and humoral immunity induced by dendritic cells (DC) vaccine loading allogenic microvascular endothelial cell bEnd.3 antigen against U14 cervical cancer cell of mice. Mouse brain microvascular endothelial cell bEnd.3 was cultured and identified for preparation endothelial cell bEnd.3 antigen. The level of mRNA expression of vascular endothelial growth factor receptor 2 (VEGF-R₂) and integrin αV was detected by reverse transcription (RT)-PCR. The BALB/c mice were immuned with DC loading bEnd.3 antigen 4 times in 4 weeks (bEnd.3-DC group), while the mice only were immuned with DC or injected with phosphate buffer saline (PBS group) as control group. One week after last vaccination, U14 cervical cancer cells were injected subcutaneously into the mice. The tumor size, cytotoxic T lymphocyte (CTL) response of spleen lymphocytes in vitro, the percentage of CD₃+CD₈+ surface markers of spleen lymphocytes, and the titer of serum antibody were detected. The specific immunity was examined by immunocytochemistry and western blot. The expression of VEGF-R₂ and integrin αV gene in bEnd.3 cells were expressed highly. After the vaccine was injected, the tumors of mice in PBS group grew faster than those in other groups, while the tumors in bEnd.3-DC group grew slowly and disappeared after 2 weeks. The volume of tumors in DC group grew slower than those in PBS group [(0.11 ± 0.13) cm³ versus (3.38 ± 0.34) cm³]. The CTL response of spleen lymphocytes in vitro showed that bEnd.3-DC cells could kill bEnd.3 cells, the special lysis rate was more than 60%. The percentage of CD₃+CD₈+ spleen lymphocytes in bEnd.3-DC group [(38.6 ± 0.7)%] was higher than those in other groups (P < 0.05). The titer of serum antibody of bEnd.3-DC group was 1:3200, while it was 1:800 in DC group and there were not any in PBS group. Immunocytochemistry analysis indicated there were specific antigen-antibody reaction to bEnd.3 cell in bEnd.3-DC group. Western

  17. Analysis of the HIV-1 LTR NF-kappaB-proximal Sp site III: evidence for cell type-specific gene regulation and viral replication.

    PubMed

    McAllister, J J; Phillips, D; Millhouse, S; Conner, J; Hogan, T; Ross, H L; Wigdahl, B

    2000-09-01

    It has been widely demonstrated that the human immunodeficiency virus type 1 (HIV-1) envelope, specifically the V3 loop of the gp120 spike, evolves to facilitate adaptation to different cellular populations within an infected host. Less energy has been directed at determining whether the viral promoter, designated the long terminal repeat (LTR), also exhibits this adaptive quality. Because of the unique nature of the cell populations infected during the course of HIV-1 infection, one might expect the opportunity for such adaptation to exist. This would permit select viral species to take advantage of the different array of conditions and factors influencing transcription within a given cell type. To investigate this hypothesis, the function of natural variants of the NF-kappaB-proximal Sp element (Sp site III) was examined in human cell line models of the two major cell types infected during the natural course of HIV-1 infection, T cells and monocytes. Utilizing the HIV-1 LAI molecular clone, which naturally contains a high-affinity Sp site III, substitution of low-affinity Sp sites in place of the natural site III element markedly decreased viral replication in Jurkat T cells. However, these substitutions had relatively small effects on viral replication in U-937 monocytic cells. Transient transfections of HIV-1 LAI-based LTR-luciferase constructs into these cell lines suggest that the large reduction in viral replication in Jurkat T cells, caused by low-affinity Sp site III variants, may result from reduced basal as well as Vpr- and Tat-activated LTR activities in Jurkat T cells compared to those in U-937 monocytic cells. When the function of Sp site III was examined in the context of HIV-1 YU-2-based LTR-luciferase constructs, substitution of a high-affinity element in place of the natural low-affinity element resulted in increased basal YU-2 LTR activity in Jurkat T cells and reduced activity in U-937 monocytic cells. These observations suggest that recruitment

  18. Diagnosis of Cell Death by Means of Infrared Spectroscopy

    PubMed Central

    Zelig, Udi; Kapelushnik, Joseph; Moreh, Raymond; Mordechai, Shaul; Nathan, Ilana

    2009-01-01

    Abstract Fourier transform infrared (FTIR) spectroscopy has been established as a fast spectroscopic method for biochemical analysis of cells and tissues. In this research we aimed to investigate FTIR's utility for identifying and characterizing different modes of cell death, using leukemic cell lines as a model system. CCRF-CEM and U937 leukemia cells were treated with arabinoside and doxorubicin apoptosis inducers, as well as with potassium cyanide, saponin, freezing-thawing, and H2O2 necrosis inducers. Cell death mode was determined by various gold standard biochemical methods in parallel with FTIR-microscope measurements. Both cell death modes exhibit large spectral changes in lipid absorbance during apoptosis and necrosis; however, these changes are similar and thus cannot be used to distinguish apoptosis from necrosis. In contrast to the above confounding factor, our results reveal that apoptosis and necrosis can still be distinguished by the degree of DNA opaqueness to infrared light. Moreover, these two cell death modes also can be differentiated by their infrared absorbance, which relates to the secondary structure of total cellular protein. In light of these findings, we conclude that, because of its capacity to monitor multiple biomolecular parameters, FTIR spectroscopy enables unambiguous and easy analysis of cell death modes and may be useful for biochemical and medical applications. PMID:19804743

  19. The regulated in development and DNA damage response 2 (REDD2) gene mediates human monocyte cell death through a reduction in thioredoxin-1 expression.

    PubMed

    Imen, Jguirim-Souissi; Billiet, Ludivine; Cuaz-Pérolin, Clarisse; Michaud, Nadège; Rouis, Mustapha

    2009-05-15

    In a previous study, we identified the regulated in development and DNA damage response 2 (REDD2) gene as a highly expressed gene in human atherosclerotic lesions in comparison to normal artery, as well as in cultured human macrophages, and showed its implication in oxidized low-density lipoprotein (LDL)-induced macrophage death sensitivity. In this article, we attempt to identify the mechanism by which REDD2 induces such a phenomenon. Transient transfection of U-937 monocytic cells with a pCI.CMV.REDD2 expression vector increased by approximately twofold the mRNA levels of REDD2 in comparison to control cells transfected with pCI.CMV.GFP. Reactive oxygen species (ROS) production was significantly induced in REDD2-transfected cells compared with control cells (157+/-48 and 100+/-8 arbitrary units/mg cell protein, respectively; p<0.05). Moreover, a significant increase in parameters known to reflect the oxidative modifications of LDL was observed. Among enzymes involved in ROS production or degradation, we found a specific reduction in thioredoxin-1 (Trx-1) mRNA ( approximately 52+/-7% decrease, p<0.01 vs control cells) and protein ( approximately 60+/-4% decrease, p<0.001 vs control cells) levels in cells overexpressing REDD2 in comparison to control cells. In contrast, transfection of U-937 cells with siRNA against REDD2 decreased the mRNA levels of REDD2 by approximately 60% and increased Trx-1 mRNA and protein levels. Moreover, we observed no or a moderate increase in Bax (proapoptotic) and a significant decrease in Bcl2 (antiapoptotic) gene expression in cells that overexpress REDD2 compared to control cells. In addition, we showed that Trx-1 mRNA and protein levels were increased at low H(2)O(2) doses and decreased at higher doses. Interestingly, macrophages isolated from human atherosclerotic lesions differentially express REDD2 and Trx-1. Indeed, in certain patients, levels of REDD2 mRNA were low and those of Trx-1 mRNA were high. In contrast, in other

  20. MEK inhibitor U0126 interferes with immunofluorescence analysis of apoptotic cell death.

    PubMed

    Blank, Norbert; Burger, Renate; Duerr, Birgit; Bakker, Frank; Wohlfarth, Anika; Dumitriu, Ingrid; Kalden, Joachim R; Herrmann, Martin

    2002-08-01

    Binding of extracellular growth factors to cell surface receptors often results in activation of the mitogen-activated protein kinase (MAPK). MAPK is regulated by MAPK kinase, also called MEK. Deprivation of growth factors during cell culture or intracellular MEK inhibition leads to inhibition of proliferation and apoptotic cell death. Besides other techniques, apoptotic cells can be identified by phosphatidylserine (PS) exposure and exclusion of membrane-impermeant propidium iodide (PI). We investigated the limitations of detection of apoptotic cell death and cytofluorometry in cells cultured in the presence of the MEK inhibitor U0126. Apoptotic cell death was induced in the plasmacytoma cell line INA-6, in peripheral blood mononuclear cells (PBMC), and in cultured T lymphoblasts by deprivation of interleukin-6 (IL-6) or by incubation with the MEK inhibitor U0126. Apoptotic cell death was quantified by flow cytometry using annexin V/propidium iodide (AxV/PI) double staining. U0126-treated cells dramatically changed their fluorescence pattern during cell culture. If AxV/PI staining is employed to detect apoptotic cell death, the background fluorescence mimicks PS exposure on viable cells. The compound itself has no intrinsic fluorescence in vitro but develops an intensive fluorescence during cell culture which can be observed in all fluorescence channels with a predominance in the FL1 channel (525 nm). We further demonstrate that at least some of the U0126-induced background fluorescence is dependent on cellular uptake and intracellular modifications or cellular responses. These results demonstrate that appropriate controls for every single time point are necessary if fluorescence analyses are performed in the presence of chemical enzyme inhibitors. In the case of MEK inhibitors, either the use of PD098059 or PD184352 as an alternative for U0126 or nonfluorometric methods for detection of apoptosis should be considered. Copyright 2002 Wiley-Liss, Inc.

  1. An oral vaccine based on U-Omp19 induces protection against B. abortus mucosal challenge by inducing an adaptive IL-17 immune response in mice.

    PubMed

    Pasquevich, Karina A; Ibañez, Andrés E; Coria, Lorena M; García Samartino, Clara; Estein, Silvia M; Zwerdling, Astrid; Barrionuevo, Paula; Oliveira, Fernanda S; Seither, Christine; Warzecha, Heribert; Oliveira, Sergio C; Giambartolomei, Guillermo H; Cassataro, Juliana

    2011-01-14

    As Brucella infections occur mainly through mucosal surfaces, the development of mucosal administered vaccines could be radical for the control of brucellosis. In this work we evaluated the potential of Brucella abortus 19 kDa outer membrane protein (U-Omp19) as an edible subunit vaccine against brucellosis. We investigated the protective immune response elicited against oral B. abortus infection after vaccination of mice with leaves from transgenic plants expressing U-Omp19; or with plant-made or E. coli-made purified U-Omp19. All tested U-Omp19 formulations induced protection against Brucella when orally administered without the need of adjuvants. U-Omp19 also induced protection against a systemic challenge when parenterally administered. This built-in adjuvant ability of U-Omp19 was independent of TLR4 and could be explained at least in part by its capability to activate dendritic cells in vivo. While unadjuvanted U-Omp19 intraperitoneally administered induced a specific Th1 response, following U-Omp19 oral delivery a mixed specific Th1-Th17 response was induced. Depletion of CD4(+) T cells in mice orally vaccinated with U-Omp19 resulted in a loss of the elicited protection, indicating that this cell type mediates immune protection. The role of IL-17 against Brucella infection has never been explored. In this study, we determined that if IL-17A was neutralized in vivo during the challenge period, the mucosal U-Omp19 vaccine did not confer mucosal protection. On the contrary, IL-17A neutralization during the infection did not influence at all the subsistence and growth of this bacterium in PBS-immunized mice. All together, our results indicate that an oral unadjuvanted vaccine based on U-Omp19 induces protection against a mucosal challenge with Brucella abortus by inducing an adaptive IL-17 immune response. They also indicate different and important new aspects i) IL-17 does not contribute to reduce the bacterial burden in non vaccinated mice and ii) IL-17 plays

  2. Farnesyltransferase inhibitor tipifarnib inhibits Rheb prenylation and stabilizes Bax in acute myelogenous leukemia cells

    PubMed Central

    Ding, Husheng; McDonald, Jennifer S.; Yun, Seongseok; Schneider, Paula A.; Peterson, Kevin L.; Flatten, Karen S.; Loegering, David A.; Oberg, Ann L.; Riska, Shaun M.; Huang, Shengbing; Sinicrope, Frank A.; Adjei, Alex A.; Karp, Judith E.; Meng, X. Wei; Kaufmann, Scott H.

    2014-01-01

    Although farnesyltransferase inhibitors have shown promising activity in relapsed lymphoma and sporadic activity in acute myelogenous leukemia, their mechanism of cytotoxicity is incompletely understood, making development of predictive biomarkers difficult. In the present study, we examined the action of tipifarnib in human acute myelogenous leukemia cell lines and clinical samples. In contrast to the Ras/MEK/ERK pathway-mediated Bim upregulation that is responsible for tipifarnib-induced killing of malignant lymphoid cells, inhibition of Rheb-induced mTOR signaling followed by dose-dependent upregulation of Bax and Puma occurred in acute myelogenous leukemia cell lines undergoing tipifarnib-induced apoptosis. Similar Bax and Puma upregulation occurred in serial bone marrow samples harvested from a subset of acute myelogenous leukemia patients during tipifarnib treatment. Expression of FTI-resistant Rheb M184L, like knockdown of Bax or Puma, diminished tipifarnib-induced killing. Further analysis demonstrated that increased Bax and Puma levels reflect protein stabilization rather than increased gene expression. In U937 cells selected for tipifarnib resistance, neither inhibition of signaling downstream of Rheb nor Bax and Puma stabilization occurred. Collectively, these results not only identify a pathway downstream from Rheb that contributes to tipifarnib cytotoxicity in human acute myelogenous leukemia cells, but also demonstrate that FTI-induced killing of lymphoid versus myeloid cells reflects distinct biochemical mechanisms downstream of different farnesylated substrates. (ClinicalTrials.gov identifier NCT00602771) PMID:23996484

  3. Inhibition of differentiation of monocyte to macrophages in atherosclerosis by oligomeric proanthocyanidins -In-vivo and in-vitro study.

    PubMed

    Mohana, Thiruchenduran; Navin, Alukkathara Vijayan; Jamuna, Sanker; Sakeena Sadullah, Mohammed Sadullah; Niranjali Devaraj, Sivasithamparam

    2015-08-01

    Monocyte to macrophage differentiation is a key event in the progression of atherosclerosis. An understanding on the fundamental molecular mechanisms and the identification of regulatory mechanisms behind this differentiation may aid in the identification of new therapeutic strategies. Inhibition of this phenomenon will form first line of defense in the prevention and treatment of atherosclerosis. In the current study we explored hypercholesterolemia induced monocyte to macrophage differentiation in-vivo (Wistar rats) leading to atherosclerosis and OxyLDL, M-CSF induced monocyte differentiation in-vitro (U937 cells). Oligomeric proanthocyanidin (OPC) isolated from Crataegus oxyacantha was tested for its efficacy in downregulating this differentiation and in preventing atherogenic disturbances. Cholesterol cholic acid diet induced an increased monocyte to macrophage differentiation by upregulating MCP1 and VCAM1 which induced the inflammatory cytokines that further substantiated the monocyte conversion and infiltration into the vascular walls. On addition of OxyLDL and M-CSF to U937 cells, macrophage markers CD36 and CD 68, PPARγ, MMP2 and 9 were elevated, suggesting differentiation. OPC downregulated this differentiation and thus could prevent the initiation of atherosclerosis. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Mycobacterium tuberculosis surface protein Rv0227c contains high activity binding peptides which inhibit cell invasion.

    PubMed

    Rodríguez, Diana Marcela; Ocampo, Marisol; Curtidor, Hernando; Vanegas, Magnolia; Patarroyo, Manuel Elkin; Patarroyo, Manuel Alfonso

    2012-12-01

    Mycobacterium tuberculosis surface proteins involved in target cell invasion may be identified as a strategy for developing subunit-based, chemically-synthesized vaccines. The Rv0227c protein was thus selected to assess its role in the invasion and infection of Mycobacterium tuberculosis target cells. Results revealed Rv0227c localization on mycobacterial surface by immunoelectron microscopy and Western blot. Receptor-ligand assays using 20-mer, non-overlapping peptides covering the complete Rv0227c protein sequence revealed three high activity binding peptides for U937 phagocytic cells and seven for A549 cells. Peptide 16944 significantly inhibited mycobacterial entry to both cell lines while 16943 and 16949 only managed to inhibit entrance to U937 cells and 16951 to A549 cells. The Jnet bioinformatics tool predicted secondary structure elements for the complete protein, agreeing with elements determined for such chemically-synthesized peptides. It was thus concluded that high activity binding peptides which were able to inhibit mycobacterial entry to target cells are of great importance when selecting peptide candidates for inclusion in an anti-tuberculosis vaccine. Copyright © 2012 Elsevier Inc. All rights reserved.

  5. 30 CFR 937.815 - Performance standards-coal exploration.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Performance standards-coal exploration. 937.815... Performance standards—coal exploration. Part 815 of this chapter, Permanent Program Performance Standards—Coal Exploration, shall apply to any person conducting coal exploration operations. ...

  6. 30 CFR 937.815 - Performance standards-coal exploration.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 3 2014-07-01 2014-07-01 false Performance standards-coal exploration. 937.815... Performance standards—coal exploration. Part 815 of this chapter, Permanent Program Performance Standards—Coal Exploration, shall apply to any person conducting coal exploration operations. ...

  7. 30 CFR 937.815 - Performance standards-coal exploration.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 3 2013-07-01 2013-07-01 false Performance standards-coal exploration. 937.815... Performance standards—coal exploration. Part 815 of this chapter, Permanent Program Performance Standards—Coal Exploration, shall apply to any person conducting coal exploration operations. ...

  8. 30 CFR 937.815 - Performance standards-coal exploration.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 3 2012-07-01 2012-07-01 false Performance standards-coal exploration. 937.815... Performance standards—coal exploration. Part 815 of this chapter, Permanent Program Performance Standards—Coal Exploration, shall apply to any person conducting coal exploration operations. ...

  9. 30 CFR 937.815 - Performance standards-coal exploration.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 3 2011-07-01 2011-07-01 false Performance standards-coal exploration. 937.815... Performance standards—coal exploration. Part 815 of this chapter, Permanent Program Performance Standards—Coal Exploration, shall apply to any person conducting coal exploration operations. ...

  10. Withaferin-A Induces Apoptosis in Osteosarcoma U2OS Cell Line via Generation of ROS and Disruption of Mitochondrial Membrane Potential.

    PubMed

    Zhang, Hui-Liang; Zhang, Hong

    2017-01-01

    Withaferin-A (WF-A) is a well-known dietary compound isolated from Withania sominifera . It has tremendous pharmacological potential and has been shown to exhibit antiproliferative activity against several types of cancerous cells. Currently, the main focus of anti-cancer therapeutic development is to identify apoptosis inducing drug-like molecules. Osteosarcoma is a rare type of osteocancer, affecting human. The present study therefore focused on the evaluation of antitumor potential of WF-A against several osteosarcoma cell lines. MTT assay was used to evaluate WF-A against osteosarcoma cell lines and to calculate the IC 50 . DAPI staining was used to confirm the apoptosis inducing potential of WF-A. Mitochondrial membrane potential, reactive oxygen species (ROS) assay, and Western blotting were used to confirm the basis of apoptosis. The results revealed that that WF-A exhibited strong antiproliferative activity against all the cells lines, with IC 50 ranging from 0.32 to 7.6 μM. The lowest IC 50 (0.32 μM) was observed against U2OS cell line and therefore it was selected for further analysis. DAPI staining indicated that WF-A exhibited antiproliferative activity via induction of apoptosis. Moreover, WF-A induced ROS-mediated reduction in mitochondrial membrane potential ΔΨm) in a dose-dependent manner and activation of caspase-3 in osteosarcoma cells. We propose that WF-A may prove a potent therapeutic agent for inducing apoptosis in osteosarcoma cell lines via generation of ROS and disruption of mitochondrial membrane potential. WF-A exhibits strong anticancer activity against osteosarcoma cell linesAntiproliferative activity of WF-A is via induction of apoptosisWF-A induced ROS-mediated reduction in mitochondrial membrane potentialWF-A induced expression of caspase-3 in osteosarcoma cells. Abbreviations used: WA: Withaferin A; ROS: Reactive oxygen species; OS: Osteosarcoma; MMP: Mitochondrial membrane potential.

  11. Production of minimally disturbed synchronous cultures of hematopoietic cells

    NASA Technical Reports Server (NTRS)

    Thornton, Maureen; Eward, Kathryn Leigh; Helmstetter, Charles E.; Edward, K. L. (Principal Investigator)

    2002-01-01

    A method is describedforproducing sizable quantities of synchronously dividing, minimally disturbed mammalian cells. Cultures were grown immobilized on surfaces such that cell division within the population resulted in the continuous release of synchronous newborn cells. As judged by the quality and duration of synchronous growth, cell size distributions, and DNA compositions, newborn mouse L1210 cells grew with a very high level of synchrony without overt evidence of growth disturbances. The technology should be applicable to a variety of hematopoietic cells, as evidenced by similar results with human MOLT-4 and U937 cell lines.

  12. Comparison of the cytotoxicity of clinically relevant cobalt-chromium and alumina ceramic wear particles in vitro.

    PubMed

    Germain, M A; Hatton, A; Williams, S; Matthews, J B; Stone, M H; Fisher, J; Ingham, E

    2003-02-01

    Concern over polyethylene wear particle induced aseptic loosening of metal-on-polyethylene hip prostheses has led to renewed interest in alternative materials such as metal-on-metal and alumina ceramic-on-alumina ceramic for total hip replacement. This study compared the effects of clinically relevant cobalt-chromium and alumina ceramic wear particles on the viability of U937 histiocytes and L929 fibroblasts in vitro. Clinically relevant cobalt-chromium wear particles were generated using a flat pin-on-plate tribometer. The mean size of the clinically relevant metal particles was 29.5+/-6.3 nm (range 5-200 nm). Clinically relevant alumina ceramic particles were generated in the Leeds MkII anatomical hip simulator from a Mittelmieier prosthesis using micro-separation motion. This produced particles with a bimodal size distribution. The majority (98%) of the clinically relevant alumina ceramic wear debris was 5-20 nm in size. The cytotoxicity of the clinically relevant wear particles was compared to commercially available cobalt-chromium (9.87 microm+/-5.67) and alumina ceramic (0.503+/-0.19 microm) particles. The effects of the particles on the cells over a 5 day period at different particle volume (microm(3)) to cell number ratios were tested and viability determined using ATP-Lite(TM). Clinically relevant cobalt-chromium particles 50 and 5 microm(3) per cell reduced the viability of U937 cells by 97% and 42% and reduced the viability of L929 cells by 95% and 73%, respectively. At 50 microm(3) per cell, the clinically relevant ceramic particles reduced U937 cell viability by 18%. None of the other concentrations of the clinically relevant particles were toxic. The commercial cobalt-chromium and alumina particles did not affect the viability of either the U937 histiocytes or the L929 fibroblasts.Thus at equivalent particle volumes the clinically relevant cobalt-chromium particles were more toxic then the alumina ceramic particles. This study has emphasised the fact

  13. 24 CFR 200.937 - Supplementary specific procedural requirements under HUD building product standards and...

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 24 Housing and Urban Development 2 2011-04-01 2011-04-01 false Supplementary specific procedural requirements under HUD building product standards and certification program for plastic bathtub units, plastic shower receptors and stalls, plastic lavatories, plastic water closet bowls and tanks. 200.937 Section 200.937 Housing and Urban Developmen...

  14. 47 CFR 1.937 - Repetitious or conflicting applications.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... or denied any license application in the Wireless Radio Services, or revoked any such license, the... Commission dismissing with prejudice or denying any application in the Wireless Radio Services, or if the... Section 1.937 Telecommunication FEDERAL COMMUNICATIONS COMMISSION GENERAL PRACTICE AND PROCEDURE Wireless...

  15. 47 CFR 1.937 - Repetitious or conflicting applications.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... or denied any license application in the Wireless Radio Services, or revoked any such license, the... Commission dismissing with prejudice or denying any application in the Wireless Radio Services, or if the... Section 1.937 Telecommunication FEDERAL COMMUNICATIONS COMMISSION GENERAL PRACTICE AND PROCEDURE Wireless...

  16. Fast Neutron Induced Autophagy Leads To Necrosis In Glioblastoma Multiforme Cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yasui, Linda; Gladden, Samantha; Andorf, Christine

    Fast neutrons are highly effective at killing glioblastoma multiforme (GBM), U87 and U251 cells. The mode of cell death was investigated using transmission electron microscopy (TEM) to identify the fraction of irradiated U87 or U251 cells having morphological features of autophagy and/or necrosis. U87 or U251 cells were irradiated with 2 Gy fast neturons or 10 Gy {gamma} rays. A majority of U87 and U251 cells exhibit features of cell death with autophagy after irradiation with either 10 Gy {gamma} rays or 2 Gy fast neutrons. Very few {gamma} irradiated cells had features of necrosis (U87 or U251 cell samplesmore » processed for TEM 1 day after 10 Gy {gamma} irradiation). In contrast, a significant increase was observed in necrotic U87 and U251 cells irradiated with fast neutrons. These results show a greater percentage of cells exhibit morphological evidence of necrosis induced by a lower dose of fast neutron irradiation compared to {gamma} irradiation. Also, the evidence of necrosis in fast neutron irradiated U87 and U251 cells occurs in a background of autophagy. Since autophagy is observed before necrosis, autophagy may play a role in signaling programmed necrosis in fast neutron irradiated U87 and U251 cells.« less

  17. Expression of R132H mutational IDH1 in human U87 glioblastoma cells affects the SREBP1a pathway and induces cellular proliferation.

    PubMed

    Zhu, Jian; Cui, Gang; Chen, Ming; Xu, Qinian; Wang, Xiuyun; Zhou, Dai; Lv, Shengxiang; Fu, Linshan; Wang, Zhong; Zuo, Jianling

    2013-05-01

    Sterol regulatory element-binding protein-1a (SREBP1a) is a member of the SREBP family of transcription factors, which mainly controls homeostasis of lipids. SREBP1a can also activate the transcription of isocitrate dehydrogenase 1 (IDH1) by binding to its promoter region. IDH1 mutations, especially R132H mutation of IDH1, are a common feature of a major subset of human gliomas. There are few data available on the relationship between mutational IDH1 expression and SREBP1a pathway. In this study, we investigated cellular effects and SREBP1a pathway alterations caused by R132H mutational IDH1 expression in U87 cells. Two glioma cell lines, stably expressing mutational (U87/R132H) or wild type (U87/wt) IDH1, were established. A cell line, stably transfected with pcDNA3.1(+) (U87/vector), was generated as a control. Click-iT EdU assay, sulforhodamine B assay, and wound healing assay respectively showed that the expression of R132H induced cellular proliferation, cell growth, and cell migration. Western blot revealed that SREBP1 was increased in U87/R132H compared with that in U87/wt. Elevated SREBP1a and several its target genes, but not SREBP1c, were detected by real-time polymerase chain reaction in U87/R132H. All these findings indicated that R132H mutational IDH1 is involved in the regulation of proliferation, growth, and migration of glioma cells. These effects may partially be mediated by SREBP1a pathway.

  18. P27/Kip1 is responsible for magnolol-induced U373 apoptosis in vitro and in vivo.

    PubMed

    Chen, Li-Ching; Lee, Wen-Sen

    2013-03-20

    Previously, we demonstrated that magnolol, a hydroxylated biphenyl compound isolated from the bark of Magnolia officinalis, at low concentrations (3-10 μM) exerted an antiproliferation effect in colon cancer, hepatoma, and glioblastoma (U373) cell lines through upregulation of the p21/Cip1 protein. Magnolol at a higher concentration of 100 μM, however, induced apoptosis and upregulated p27/Kip1 expression in U373. In the present study, we further studied whether the increased p27/Kip1 expression contributes to the magnolol-induced apoptosis in U373. Our data show that knock-down of p27/Kip1 expression significantly suppressed the magnolol-induced apoptosis, suggesting that p27/Kip1 might play an important role in the regulation of magnolol-induced apoptosis. This notion was further supported by demonstrating that magnolol induced an increase of the caspase activity in U373 in vitro and in vivo, and these effects were abolished by pretransfection of the cell with p27/Kip1 siRNA. To delineate the possible signaling pathways involved in the magnolol-induced increases of p27/Kip1 expression and apoptosis, we found that magnolol (100 μM) increased the levels of phosphorylated cSrc (p-cSrc), p-ERK, p-p38 MAP kinase (p-p38 MAPK), and p-AKT but not p-JNK in U373. Moreover, pretreatment of U373 with a cSrc inhibitor (PP2), a PI3K inhibitor (LY294002), an ERK inhibitor (PD98059), or a p38 MAPK inhibitor (SB203580) but not a JNK inhibitor (SP600125) significantly reduced the magnolol-induced increases of p27/Kip1 protein levels and apoptosis. Taken together, our data suggest that magnolol at a higher concentration of 100 μM induced apopotosis in U373 cells through cSrc-mediated upregulation of p27/Kip1.

  19. Regulation of ICAM-1 in cells of the monocyte/macrophage system in microgravity.

    PubMed

    Paulsen, Katrin; Tauber, Svantje; Dumrese, Claudia; Bradacs, Gesine; Simmet, Dana M; Gölz, Nadine; Hauschild, Swantje; Raig, Christiane; Engeli, Stephanie; Gutewort, Annett; Hürlimann, Eva; Biskup, Josefine; Unverdorben, Felix; Rieder, Gabriela; Hofmänner, Daniel; Mutschler, Lisa; Krammer, Sonja; Buttron, Isabell; Philpot, Claudia; Huge, Andreas; Lier, Hartwin; Barz, Ines; Engelmann, Frank; Layer, Liliana E; Thiel, Cora S; Ullrich, Oliver

    2015-01-01

    Cells of the immune system are highly sensitive to altered gravity, and the monocyte as well as the macrophage function is proven to be impaired under microgravity conditions. In our study, we investigated the surface expression of ICAM-1 protein and expression of ICAM-1 mRNA in cells of the monocyte/macrophage system in microgravity during clinostat, parabolic flight, sounding rocket, and orbital experiments. In murine BV-2 microglial cells, we detected a downregulation of ICAM-1 expression in clinorotation experiments and a rapid and reversible downregulation in the microgravity phase of parabolic flight experiments. In contrast, ICAM-1 expression increased in macrophage-like differentiated human U937 cells during the microgravity phase of parabolic flights and in long-term microgravity provided by a 2D clinostat or during the orbital SIMBOX/Shenzhou-8 mission. In nondifferentiated U937 cells, no effect of microgravity on ICAM-1 expression could be observed during parabolic flight experiments. We conclude that disturbed immune function in microgravity could be a consequence of ICAM-1 modulation in the monocyte/macrophage system, which in turn could have a strong impact on the interaction with T lymphocytes and cell migration. Thus, ICAM-1 can be considered as a rapid-reacting and sustained gravity-regulated molecule in mammalian cells.

  20. Regulation of ICAM-1 in Cells of the Monocyte/Macrophage System in Microgravity

    PubMed Central

    Paulsen, Katrin; Tauber, Svantje; Dumrese, Claudia; Bradacs, Gesine; Simmet, Dana M.; Gölz, Nadine; Hauschild, Swantje; Raig, Christiane; Engeli, Stephanie; Gutewort, Annett; Hürlimann, Eva; Biskup, Josefine; Rieder, Gabriela; Hofmänner, Daniel; Mutschler, Lisa; Krammer, Sonja; Philpot, Claudia; Huge, Andreas; Lier, Hartwin; Barz, Ines; Engelmann, Frank; Layer, Liliana E.; Thiel, Cora S.

    2015-01-01

    Cells of the immune system are highly sensitive to altered gravity, and the monocyte as well as the macrophage function is proven to be impaired under microgravity conditions. In our study, we investigated the surface expression of ICAM-1 protein and expression of ICAM-1 mRNA in cells of the monocyte/macrophage system in microgravity during clinostat, parabolic flight, sounding rocket, and orbital experiments. In murine BV-2 microglial cells, we detected a downregulation of ICAM-1 expression in clinorotation experiments and a rapid and reversible downregulation in the microgravity phase of parabolic flight experiments. In contrast, ICAM-1 expression increased in macrophage-like differentiated human U937 cells during the microgravity phase of parabolic flights and in long-term microgravity provided by a 2D clinostat or during the orbital SIMBOX/Shenzhou-8 mission. In nondifferentiated U937 cells, no effect of microgravity on ICAM-1 expression could be observed during parabolic flight experiments. We conclude that disturbed immune function in microgravity could be a consequence of ICAM-1 modulation in the monocyte/macrophage system, which in turn could have a strong impact on the interaction with T lymphocytes and cell migration. Thus, ICAM-1 can be considered as a rapid-reacting and sustained gravity-regulated molecule in mammalian cells. PMID:25654110

  1. 14 CFR 23.937 - Turbopropeller-drag limiting systems.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... actuated after engine power loss, can move the propeller blades toward the feather position to reduce... General § 23.937 Turbopropeller-drag limiting systems. (a) Turbopropeller-powered airplane propeller-drag... normal or emergency operation results in propeller drag in excess of that for which the airplane was...

  2. 14 CFR 23.937 - Turbopropeller-drag limiting systems.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... actuated after engine power loss, can move the propeller blades toward the feather position to reduce... General § 23.937 Turbopropeller-drag limiting systems. (a) Turbopropeller-powered airplane propeller-drag... normal or emergency operation results in propeller drag in excess of that for which the airplane was...

  3. 14 CFR 23.937 - Turbopropeller-drag limiting systems.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... actuated after engine power loss, can move the propeller blades toward the feather position to reduce... General § 23.937 Turbopropeller-drag limiting systems. (a) Turbopropeller-powered airplane propeller-drag... normal or emergency operation results in propeller drag in excess of that for which the airplane was...

  4. 14 CFR 23.937 - Turbopropeller-drag limiting systems.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... actuated after engine power loss, can move the propeller blades toward the feather position to reduce... General § 23.937 Turbopropeller-drag limiting systems. (a) Turbopropeller-powered airplane propeller-drag... normal or emergency operation results in propeller drag in excess of that for which the airplane was...

  5. 14 CFR 23.937 - Turbopropeller-drag limiting systems.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... actuated after engine power loss, can move the propeller blades toward the feather position to reduce... General § 23.937 Turbopropeller-drag limiting systems. (a) Turbopropeller-powered airplane propeller-drag... normal or emergency operation results in propeller drag in excess of that for which the airplane was...

  6. The novel compound OSI-461 induces apoptosis and growth arrest in human acute myeloid leukemia cells.

    PubMed

    Singh, Raminder; Fröbel, Julia; Cadeddu, Ron-Patrick; Bruns, Ingmar; Schroeder, Thomas; Brünnert, Daniela; Wilk, Christian Matthias; Zerbini, Luiz Fernando; Haas, Rainer; Czibere, Akos

    2012-02-01

    Acute myeloid leukemia (AML) is a heterogeneous hematological malignancy. Treatment of patients suffering from high-risk AML as defined by clinical parameters, cytogenetics, and/or molecular analyses is often unsuccessful. OSI-461 is a pro-apoptotic compound that has been proposed as a novel therapeutic option for patients suffering from solid tumors like prostate or colorectal carcinoma. But little is known about its anti-proliferative potential in AML. Hence, we treated bone marrow derived CD34(+) selected blast cells from 20 AML patients and the five AML cell lines KG-1a, THP-1, HL-60, U-937, and MV4-11 with the physiologically achievable concentration of 1 μM OSI-461 or equal amounts of DMSO as a control. Following incubation with OSI-461, we found a consistent induction of apoptosis and an accumulation of cells in the G2/M phase of the cell cycle. In addition, we demonstrate that the OSI-461 mediated anti-proliferative effects observed in AML are associated with the induction of the pro-apoptotic cytokine mda-7/IL-24 and activation of the growth arrest and DNA-damage inducible genes (GADD) 45α and 45γ. Furthermore, OSI-461 treated leukemia cells did not regain their proliferative potential for up to 8 days after cessation of treatment following the initial 48 h treatment period with 1 μM OSI-461. This indicates sufficient targeting of the leukemia-initiating cells in our in vitro experiments through OSI-461. The AML samples tested in this study included samples from patients who were resistant to conventional chemotherapy and/or had FLT3-ITD mutations demonstrating the high potential of OSI-461 in human AML.

  7. Wu-Tou Decoction in Rheumatoid Arthritis: Integrating Network Pharmacology and In Vivo Pharmacological Evaluation

    PubMed Central

    Guo, Qingqing; Zheng, Kang; Fan, Danping; Zhao, Yukun; Li, Li; Bian, Yanqin; Qiu, Xuemei; Liu, Xue; Zhang, Ge; Ma, Chaoying; He, Xiaojuan; Lu, Aiping

    2017-01-01

    Purpose: This study aimed to explore underlying action mechanism of Wu-Tou decoction (WTD) in rheumatoid arthritis (RA) through network pharmacology prediction and experimental verification. Methods: Chemical compounds and human target proteins of WTD as well as RA-related human genes were obtained from TCM Database @ Taiwan, PubChem and GenBank, respectively. Subsequently, molecular networks and canonical pathways presumably involved in the treatment of WTD on RA were generated by ingenuity pathway analysis (IPA) software. Furthermore, experimental validation was carried out with MIP-1β-induced U937 cell model and collagen induced arthritis (CIA) rat model. Results: CCR5 signaling pathway in macrophages was shown to be the top one shared signaling pathway associated with both cell immune response and cytokine signaling. In addition, protein kinase C (PKC) δ and p38 in this pathway were treated as target proteins of WTD in RA. In vitro experiments indicated that WTD inhibited MIP-1β-induced production of TNF-α, MIP-1α, and RANTES as well as phosphorylation of CCR5, PKC δ, and p38 in U937 cells. WTD treatment maintained the inhibitory effects on production of TNF-α and RANTES in MIP-1β-induced U937 cells after CCR5 knockdown. In vivo experiments demonstrated that WTD ameliorated symptoms in CIA rats, decreased the levels of IL-1β, IL-2, IL-6, TNF-α, MIP-1α, MIP-2, RANTES, and IP-10 in serum of CIA rats, as well as mRNA levels of MIP-1α, MIP-2, RANTES, and IP-10 in ankle joints of CIA rats. Furthermore, WTD also lowered the phosphorylation levels of CCR5, PKC δ and p38 in both ankle joints and macrophages in ankle joints from CIA rats. Conclusion: It was demonstrated in this research that WTD played a role in inhibiting inflammatory response in RA which was closely connected with the modulation effect of WTD on CCR5 signaling pathway in macrophages. PMID:28515692

  8. IRAK-M alters the polarity of macrophages to facilitate the survival of Mycobacterium tuberculosis.

    PubMed

    Shen, Pei; Li, Quan; Ma, Jilei; Tian, Maopeng; Hong, Fei; Zhai, Xinjie; Li, Jianrong; Huang, Hanju; Shi, Chunwei

    2017-08-23

    Intracellular bacterium, Mycobacterium tuberculosis (M. tb), infects specifically macrophages as host cells. IRAK-M, a member of IRAK family, is a negative regulator in TLR signaling and specifically expresses in monocytes and macrophages. The role of IRAK-M in intracellular growth of M. tb and macrophage polarization was explored, for deeply understanding the pathogenesis of M. tb, the significance of IRAK-M to innate immunity and pathogen-host interaction. IRAK-M expression was detected in M. tb infected macrophages and in human lung tissue of pulmonary tuberculosis with immunofluorescence staining, Western blot and immunohistochemistry. IRAK-M knock-down and over-expressing cell strains were constructed and intracellular survival of M. tb was investigated by acid-fast staining and colony forming units. Molecular markers of M1-type (pSTAT1 and iNOS) and M2-type (pSTAT6 and Arg-1) macrophages were detected using Western blot in IRAK-M knockdown U937 cells infected with M. tb H37Rv. U937 cells were stimulated with immunostimulant CpG7909 into M1 status and then infected with M. tb H37Rv. Expression of IRAK-M, IRAK-4 and iNOS was detected with immunofluorescence staining and Western blot, to evaluate the effect of IRAK-M to CpG directed M1-type polarization of macrophages during M. tb infection. Molecules related with macrophage's bactericidal ability such as Hif-1 and phosphorylated ERK1/2 were detected with immunohistochemistry and Western blot. IRAK-M increased in M. tb infected macrophage cells and also in human lung tissue of pulmonary tuberculosis. IRAK-M over-expression resulted in higher bacterial load, while IRAK-M interference resulted in lower bacterial load in M. tb infected cells. During M. tb infection, IRAK-M knockdown induced M1-type, while inhibited M2-type polarization of macrophage. M1-type polarization of U937 cells induced by CpG7909 was inhibited by M. tb infection, which was reversed by IRAK-M knockdown in U937 cells. IRAK-M affected Hif-1 and

  9. 40 CFR 35.937-3 - Evaluation of qualifications.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... bodies, and with private industry, including such factors as control of costs, quality of work, and ability to meet schedules; (3) The candidate's capacity to perform the work (including any specialized... ASSISTANCE STATE AND LOCAL ASSISTANCE Grants for Construction of Treatment Works-Clean Water Act § 35.937-3...

  10. 40 CFR 35.937-3 - Evaluation of qualifications.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... bodies, and with private industry, including such factors as control of costs, quality of work, and ability to meet schedules; (3) The candidate's capacity to perform the work (including any specialized... ASSISTANCE STATE AND LOCAL ASSISTANCE Grants for Construction of Treatment Works-Clean Water Act § 35.937-3...

  11. 40 CFR 35.937-3 - Evaluation of qualifications.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... bodies, and with private industry, including such factors as control of costs, quality of work, and ability to meet schedules; (3) The candidate's capacity to perform the work (including any specialized... ASSISTANCE STATE AND LOCAL ASSISTANCE Grants for Construction of Treatment Works-Clean Water Act § 35.937-3...

  12. 40 CFR 35.937-3 - Evaluation of qualifications.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... bodies, and with private industry, including such factors as control of costs, quality of work, and ability to meet schedules; (3) The candidate's capacity to perform the work (including any specialized... ASSISTANCE STATE AND LOCAL ASSISTANCE Grants for Construction of Treatment Works-Clean Water Act § 35.937-3...

  13. 30 CFR 937.780 - Surface mining permit applications-minimum requirements for reclamation and operation plan.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... requirements for reclamation and operation plan. 937.780 Section 937.780 Mineral Resources OFFICE OF SURFACE... reclamation and operation plan. (a) Part 780 of this chapter, Surface Mining Permit Applications—Minimum Requirement for Reclamation and Operation Plan, shall apply to any person who makes application to conduct...

  14. 30 CFR 937.784 - Underground mining permit applications-minimum requirements for reclamation and operation plan.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... requirements for reclamation and operation plan. 937.784 Section 937.784 Mineral Resources OFFICE OF SURFACE... reclamation and operation plan. Part 784 of this chapter, Underground Mining Permit Applications—Minimum Requirements for Reclamation and Operation Plan, shall apply to any person who makes application to conduct...

  15. Polysaccharide peptide isolated from grass-cultured Ganoderma lucidum induces anti-proliferative and pro-apoptotic effects in the human U251 glioma cell line

    PubMed Central

    Wang, Chunhua; Lin, Dongmei; Chen, Quan; Lin, Shuqian; Shi, Songsheng; Chen, Chunmei

    2018-01-01

    The Ganoderma lucidum (G. lucidum) mushroom is one of the most extensively studied functional foods, known for its numerous health benefits, including the inhibition of tumor cell growth. The present study assessed the anti-proliferative and pro-apoptotic activity of a novel G. lucidum polysaccharide peptide (GL-PP) in human glioma U251 cells, which was purified from grass-cultured G. lucidum. GL-PP is a glycopeptide with an average molecular weight of 42,635 Da and a polysaccharide-to-peptide ratio of 88.70:11.30. The polysaccharides were composed of l-arabinose, d-mannose and d-glucose at a molar ratio of 1.329:0.372:2.953 and a total of 17 amino acids were detected. The results of the current study demonstrated that GL-PP significantly inhibited U251 cellular proliferation. The proportion of G0/G1 phase cells and sub-G1 phase cells significantly increased as the concentration of GL-PP increased, as did the activity of caspase-3. These results indicate that GL-PP directly inhibited human glioma U251 proliferation by inducing cell cycle arrest and promoting apoptosis. PMID:29541200

  16. Polysaccharide peptide isolated from grass-cultured Ganoderma lucidum induces anti-proliferative and pro-apoptotic effects in the human U251 glioma cell line.

    PubMed

    Wang, Chunhua; Lin, Dongmei; Chen, Quan; Lin, Shuqian; Shi, Songsheng; Chen, Chunmei

    2018-04-01

    The Ganoderma lucidum ( G. lucidum ) mushroom is one of the most extensively studied functional foods, known for its numerous health benefits, including the inhibition of tumor cell growth. The present study assessed the anti-proliferative and pro-apoptotic activity of a novel G. lucidum polysaccharide peptide (GL-PP) in human glioma U251 cells, which was purified from grass-cultured G. lucidum . GL-PP is a glycopeptide with an average molecular weight of 42,635 Da and a polysaccharide-to-peptide ratio of 88.70:11.30. The polysaccharides were composed of l-arabinose, d-mannose and d-glucose at a molar ratio of 1.329:0.372:2.953 and a total of 17 amino acids were detected. The results of the current study demonstrated that GL-PP significantly inhibited U251 cellular proliferation. The proportion of G 0 /G 1 phase cells and sub-G 1 phase cells significantly increased as the concentration of GL-PP increased, as did the activity of caspase-3. These results indicate that GL-PP directly inhibited human glioma U251 proliferation by inducing cell cycle arrest and promoting apoptosis.

  17. Effects of FR235222, a novel HDAC inhibitor, in proliferation and apoptosis of human leukaemia cell lines: role of annexin A1.

    PubMed

    Petrella, Antonello; D'Acunto, Cosimo Walter; Rodriquez, Manuela; Festa, Michela; Tosco, Alessandra; Bruno, Ines; Terracciano, Stefania; Taddei, Maurizio; Paloma, Luigi Gomez; Parente, Luca

    2008-03-01

    FR235222, a novel histone deacetylase inhibitor (HDACi), at 50nM caused accumulation of acetylated histone H4, inhibition of cell proliferation and G1 cycle arrest accompanied by increase of p21 and down-regulation of cyclin E in human promyelocytic leukaemia U937 cells. The compound was also able to increase the protein and mRNA levels of annexin A1 (ANXA1) without effects on apoptosis. Similar effects were observed in human chronic myelogenous leukaemia K562 cells and human T cell leukaemia Jurkat cells. Cycle arrest and ANXA1 expression, without significant effects on apoptosis, were also induced by different HDACi like suberoylanilide hydroxamic acid (SAHA) and trichostatin-A (TSA). FR235222 at 0.5 microM stimulated apoptosis of all leukaemia cell lines associated to an increased expression of the full-length (37kDa) protein and the appearance of a 33kDa N-terminal cleavage product in both cytosol and membrane. These results suggest that ANXA1 expression may mediate cycle arrest induced by low doses FR235222, whereas apoptosis induced by high doses FR235222 is associated to ANXA1 processing.

  18. Protein Kinase A Increases Type-2 Inositol 1,4,5-Trisphosphate Receptor Activity by Phosphorylation of Serine 937*

    PubMed Central

    Betzenhauser, Matthew J.; Fike, Jenna L.; Wagner, Larry E.; Yule, David I.

    2009-01-01

    Protein kinase A (PKA) phosphorylation of inositol 1,4,5-trisphosphate receptors (InsP3Rs) represents a mechanism for shaping intracellular Ca2+ signals following a concomitant elevation in cAMP. Activation of PKA results in enhanced Ca2+ release in cells that express predominantly InsP3R2. PKA is known to phosphorylate InsP3R2, but the molecular determinants of this effect are not known. We have expressed mouse InsP3R2 in DT40-3KO cells that are devoid of endogenous InsP3R and examined the effects of PKA phosphorylation on this isoform in unambiguous isolation. Activation of PKA increased Ca2+ signals and augmented the single channel open probability of InsP3R2. A PKA phosphorylation site unique to the InsP3R2 was identified at Ser937. The enhancing effects of PKA activation on this isoform required the phosphorylation of Ser937, since replacing this residue with alanine eliminated the positive effects of PKA activation. These results provide a mechanism responsible for the enhanced Ca2+ signaling following PKA activation in cells that express predominantly InsP3R2. PMID:19608738

  19. UNG protects B cells from AID-induced telomere loss

    PubMed Central

    Cortizas, Elena M.; Zahn, Astrid; Safavi, Shiva

    2016-01-01

    Activation-induced deaminase (AID) initiates antibody gene diversification by creating G:U mismatches in the immunoglobulin loci. However, AID also deaminates nonimmunoglobulin genes, and failure to faithfully repair these off-target lesions can cause B cell lymphoma. In this study, we identify a mechanism by which processing of G:U produced by AID at the telomeres can eliminate B cells at risk of genomic instability. We show that telomeres are off-target substrates of AID and that B cell proliferation depends on protective repair by uracil-DNA glycosylase (UNG). In contrast, in the absence of UNG activity, deleterious processing by mismatch repair leads to telomere loss and defective cell proliferation. Indeed, we show that UNG deficiency reduces B cell clonal expansion in the germinal center in mice and blocks the proliferation of tumor B cells expressing AID. We propose that AID-induced damage at telomeres acts as a fail-safe mechanism to limit the tumor promoting activity of AID when it overwhelms uracil excision repair. PMID:27697833

  20. Withaferin-A induces apoptosis in osteosarcoma U2OS cell line via generation of ROS and disruption of mitochondrial membrane potential.

    PubMed

    Li, A-X; Sun, M; Li, X

    2017-03-01

    Withaferin-A (WF-A) is a well-known dietary compound isolated from Withania somnifera. It has marked pharmacological potential and has been shown to exhibit antiproliferative activity against several types of cancerous cells. Currently, the main focus of anti-cancer therapeutic development is to identify apoptosis-inducing drug-like molecules. Osteosarcoma is a rare type of bone cancer affecting humans. The objective of the present study was therefore to evaluate the antitumor potential of WF-A against several osteosarcoma cell lines. MTT assay was used to evaluate WF-A against osteosarcoma cell lines and to calculate the IC50. DAPI staining was used to confirm the apoptosis-inducing potential of WF-A. Mitochondrial membrane potential, reactive oxygen species (ROS) assay, and Western blotting were used to confirm the basis of apoptosis. The results of the present study revealed that WF-A exhibited strong antiproliferative activity against all the cells lines, with IC50 ranging from 0.32 to 7.6 µM. The lowest IC50 (0.32 µM) was observed against U2OS cell line and, therefore, it was selected for further analysis. DAPI staining indicated that WF-A exhibited antiproliferative activity via induction of apoptosis. Moreover, WF-A induced a ROS-mediated reduction in mitochondrial membrane potential in a dose-dependent manner and activation of caspase-3 in osteosarcoma cells. We suggest that WF-A may prove a potent therapeutic agent for inducing apoptosis in osteosarcoma cell lines via generation of ROS and disruption of mitochondrial membrane potential.

  1. 6-Methylsulfinylhexyl isothiocyanate modulates endothelial cell function and suppresses leukocyte adhesion.

    PubMed

    Okamoto, Takayuki; Akita, Nobuyuki; Nagai, Masashi; Hayashi, Tatsuya; Suzuki, Koji

    2014-01-01

    6-Methylsulfinylhexyl isothiocyanate (6-MSITC) is an active compound in wasabi (Wasabia japonica Matsum.), which is one of the most popular spices in Japan. 6-MSITC suppresses lipopolysaccharide-induced macrophage activation, arachidonic- or adenosine diphosphate-induced platelet activation, and tumor cell proliferation. These data indicate that 6-MSITC has several biological activities involving anti-inflammatory, anti-coagulant, and anti-apoptosis properties. Endothelial cells (ECs) maintain vascular homeostasis and play crucial roles in crosstalk between blood coagulation and vascular inflammation. In this study, we determined the anti-coagulant and anti-inflammatory effects of 6-MSITC on human umbilical vein endothelial cells (HUVECs). 6-MSITC slightly reduced tissue factor expression, but did not alter von Willebrand factor release in activated HUVECs. 6-MSITC modulated the generation of activated protein C, which is essential for negative regulation of blood coagulation, on normal ECs. In addition, 6-MSITC reduced tumor necrosis factor-α (TNF-α)-induced interleukin-6 and monocyte chemoattractant protein-1 expression. 6-MSITC markedly attenuated TNF-α-induced adhesion of human monoblast U937 cells to HUVECs and reduced vascular cell adhesion molecule-1 and E-selectin mRNA expression in activated ECs. These results showed that 6-MSITC modulates EC function and suppresses cell adhesion. This study provides new insight into the mechanism of the anti-inflammatory effect of 6-MSITC, suggesting that 6-MSITC has therapeutic potential as a treatment for vasculitis and vascular inflammation.

  2. Efficacy of a novel chelator BPCBG for removing uranium and protecting against uranium-induced renal cell damage in rats and HK-2 cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bao, Yizhong; Wang, Dan; Li, Zhiming

    2013-05-15

    Chelation therapy is a known effective method to increase the excretion of U(VI) from the body. Until now, no any uranium chelator has been approved for emergency medical use worldwide. The present study aimed to evaluate the efficacy of new ligand BPCBG containing two catechol groups and two aminocarboxylic acid groups in decorporation of U(VI) and protection against acute U(VI) nephrotoxicity in rats, and further explored the detoxification mechanism of BPCBG for U(VI)-induced nephrotoxicity in HK-2 cells with comparison to DTPA-CaNa{sub 3}. Chelating agents were administered at various times before or after injections of U(VI) in rats. The U(VI) levelsmore » in urine, kidneys and femurs were measured 24 h after U(VI) injections. Histopathological changes in the kidney and serum urea and creatinine and urine protein were examined. After treatment of U(VI)-exposed HK-2 cells with chelating agent, the intracellular U(VI) contents, formation of micronuclei, lactate dehydrogenase (LDH) activity and production of reactive oxygen species (ROS) were assessed. It was found that prompt, advanced or delayed injections of BPCBG effectively increased 24 h-urinary U(VI) excretion and decreased the levels of U(VI) in kidney and bone. Meanwhile, BPCBG injection obviously reduced the severity of the U(VI)-induced histological alterations in the kidney, which was in parallel with the amelioration noted in serum indicators, urea and creatinine, and urine protein of U(VI) nephrotoxicity. In U(VI)-exposed HK-2 cells, immediate and delayed treatment with BPCBG significantly decreased the formation of micronuclei and LDH release by inhibiting the cellular U(VI) intake, promoting the intracellular U(VI) release and inhibiting the production of intracellular ROS. Our data suggest that BPCBG is a novel bi-functional U(VI) decorporation agent with a better efficacy than DTPA-CaNa{sub 3}. - Highlights: ► BPCBG accelerated the urine U(VI) excretion and reduced the tissues U(VI) in rats

  3. 30 CFR 937.772 - Requirements for coal exploration.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Requirements for coal exploration. 937.772... Requirements for coal exploration. (a) Part 772 of this chapter, Requirements for Coal Exploration, shall apply to any person who conducts or seeks to conduct coal exploration operations. (b) The Office shall make...

  4. 30 CFR 937.772 - Requirements for coal exploration.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 3 2014-07-01 2014-07-01 false Requirements for coal exploration. 937.772... Requirements for coal exploration. (a) Part 772 of this chapter, Requirements for Coal Exploration, shall apply to any person who conducts or seeks to conduct coal exploration operations. (b) The Office shall make...

  5. 30 CFR 937.772 - Requirements for coal exploration.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 3 2012-07-01 2012-07-01 false Requirements for coal exploration. 937.772... Requirements for coal exploration. (a) Part 772 of this chapter, Requirements for Coal Exploration, shall apply to any person who conducts or seeks to conduct coal exploration operations. (b) The Office shall make...

  6. 30 CFR 937.772 - Requirements for coal exploration.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 3 2013-07-01 2013-07-01 false Requirements for coal exploration. 937.772... Requirements for coal exploration. (a) Part 772 of this chapter, Requirements for Coal Exploration, shall apply to any person who conducts or seeks to conduct coal exploration operations. (b) The Office shall make...

  7. 30 CFR 937.772 - Requirements for coal exploration.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 3 2011-07-01 2011-07-01 false Requirements for coal exploration. 937.772... Requirements for coal exploration. (a) Part 772 of this chapter, Requirements for Coal Exploration, shall apply to any person who conducts or seeks to conduct coal exploration operations. (b) The Office shall make...

  8. Synthesis, characterization and deepening in the comprehension of the biological action mechanisms of a new nickel complex with antiproliferative activity.

    PubMed

    Buschini, Annamaria; Pinelli, Silvana; Pellacani, Claudia; Giordani, Federica; Ferrari, Marisa Belicchi; Bisceglie, Franco; Giannetto, Marco; Pelosi, Giorgio; Tarasconi, Pieralberto

    2009-05-01

    Thiosemicarbazones are versatile organic compounds that present considerable pharmaceutical interest because of a wide range of properties. In our laboratory we synthesised some new metal-complexes with thiosemicarbazones derived from natural aldehydes which showed peculiar biological activities. In particular, a nickel complex [Ni(S-tcitr)(2)] (S-tcitr=S-citronellalthiosemicarbazonate) was observed to induce an antiproliferative effect on U937, a human histiocytic lymphoma cell line, at low concentrations (IC(50)=14.4microM). Therefore, we decided to study the interactions of this molecule with various cellular components and to characterise the induced apoptotic pathway. Results showed that [Ni(S-tcitr)(2)] causes programmed cell death via down-regulation of Bcl-2, alteration of mitochondrial membrane potential and caspase-3 activity, regardless of p53 function. The metal complex is not active on G(0) cells (i.e. fresh leukocytes) but is able to induce perturbation of the cell cycle on stimulated lymphocytes and U937 cells, in which a G(2)/M block was detected. It reaches the nucleus where it induces, at low concentrations (2.5-5.0microM), DNA damage, which could be partially ascribed to oxidative stress. [Ni(S-tcitr)(2)] is moreover able to strongly reduce the telomerase activity. Although the biological target of this metal complex is still unknown, the reported data suggest that [Ni(S-tcitr)(2)] could be a good model for the synthesis of new metal thiosemicarbazones with specific biological activity.

  9. 30 CFR 937.702 - Exemption for coal extraction incidental to the extraction of other minerals.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Exemption for coal extraction incidental to the extraction of other minerals. 937.702 Section 937.702 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION... minerals. Part 702 of this chapter, Exemption for Coal Extraction Incidental to the Extraction of Other...

  10. Survival and signaling changes in antigen presenting cell subsets after radiation

    NASA Astrophysics Data System (ADS)

    Parker, Jennifer Janell

    Radiation therapy is a widely used cancer treatment that has the potential to influence anti-tumor immune responses. Both myeloablative and non-myeloablative radiation are often used as part of preparatory regimens for hematopoetic stem cell transplantation, in combination with other chemotherapy or immuno-modulatory (e.g. Anti-thymocyte globulin (ATG)) therapies for both cytotoxic and immune modulatory purposes. However, the mechanisms responsible for the effect of radiation on antigen presenting cell (APC) responsiveness and radioresistance are poorly understood. The first studies described in this thesis were designed to identify and characterize early radiation-induced signaling changes in antigen presenting cells and to determine the effects of these signaling changes on APC receptor expression and function. The NFkappaB pathway in antigen presenting cells was chosen for study because it is activated by radiation in a wide range of other cell types and plays a vital role in the maintenance and regulation of the immune system. The effects of therapeutically relevant doses radiation (2 and 20 Gy) were compared at various timepoints in the human monocytic cell line (U937) using phospho-flow cytometry staining methods and cytometric analysis. These studies demonstrated that radiation-induced changes in the phosphorylation state of NFkappaB family members that were p53 independent. However, these changes were dependent upon activation of ATM in response to single or double-stranded breaks in DNA, as shown in experiments using an inhibitor of ATM and ATM siRNA knockdown U937 cells. In addition, studies examining the effect of radiation on co-stimulatory receptors with and without inhibition of the NFkappaB pathway via phospho-flow cytometry revealed that radiation-induced phosphorylation of NEMO promoted the activation and functional maturation of U937 cells. Furthermore, functional studies using both phospho-flow cytometry and/or mixed lymphocyte reactions to

  11. 36 CFR 9.37 - Plan of operations approval.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Regional Director shall not approve a plan of operations: (1) Until the operator shows that the operations... Regional Director shall make an environmental analysis of such plan, and: (1) Notify the operator that the... specified by the Regional Director, he shall comply with § 9.37(b) (1) through (5). (c) The Regional...

  12. 36 CFR 9.37 - Plan of operations approval.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Regional Director shall not approve a plan of operations: (1) Until the operator shows that the operations... Regional Director shall make an environmental analysis of such plan, and: (1) Notify the operator that the... specified by the Regional Director, he shall comply with § 9.37(b) (1) through (5). (c) The Regional...

  13. 36 CFR 9.37 - Plan of operations approval.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Regional Director shall not approve a plan of operations: (1) Until the operator shows that the operations... Regional Director shall make an environmental analysis of such plan, and: (1) Notify the operator that the... specified by the Regional Director, he shall comply with § 9.37(b) (1) through (5). (c) The Regional...

  14. 36 CFR 9.37 - Plan of operations approval.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Regional Director shall not approve a plan of operations: (1) Until the operator shows that the operations... Regional Director shall make an environmental analysis of such plan, and: (1) Notify the operator that the... specified by the Regional Director, he shall comply with § 9.37(b) (1) through (5). (c) The Regional...

  15. 26 CFR 1.937-3 - Income effectively connected with the conduct of a trade or business in a possession.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... of a trade or business in a possession. 1.937-3 Section 1.937-3 Internal Revenue INTERNAL REVENUE... United States § 1.937-3 Income effectively connected with the conduct of a trade or business in a... effectively connected with the conduct of a trade or business within a particular possession (the relevant...

  16. Downregulation of Programmed Cell Death 4 by Inflammatory Conditions Contributes to the Generation of the Tumor Promoting Microenvironment

    PubMed Central

    Yasuda, Michiko; Schmid, Tobias; Rübsamen, Daniela; Colburn, Nancy H.; Irie, Kazuhiro; Murakami, Akira

    2012-01-01

    Ample evidence has shown key roles of inflammation in tumor promotion and carcinogenesis, and tumor-associated macrophages are known to promote tumor growth and dissemination. Programmed cell death 4 (Pdcd4) is a novel tumor suppressor, and although various studies have revealed that the functions and expression mechanisms of Pdcd4 in tumor promotion, those in regard to inflammation remain unclear. In the present study, we examined whether inflammatory stimuli regulate Pdcd4 expression. 12-O-tetradecanoylphorbol 13-acetate (TPA) suppressed expression of pdcd4 mRNA in human monocytic cell lines (U937, THP-1). Similarly, the bacterial endotoxin lipopolysaccharide (LPS) downregulated pdcd4 level in mouse RAW264.7 and peritoneal macrophages. Furthermore, conditioned medium from LPS-stimulated RAW264.7 macrophages suppressed pdcd4 mRNA in RAW264.7 macrophages, and findings obtained with recombinant tumor necrosis factor-α (TNF-α) and TNF-α-specific siRNA suggested that TNF-α partly mediates LPS-triggered Pdcd4 downregulation via an autocrine mechanism. Specific inhibitors of phosphoinositide-3-kinase (PI3K) and c-jun N-terminus kinase (JNK) restored LPS-abolished pdcd4 mRNA. Consistently, in MCF7 mammary carcinoma cells, conditioned medium from TPA-differentiated/activated U937 cells suppressed pdcd4 mRNA. Additionally, knockdown of pdcd4 in RAW264.7 macrophages using siRNA significantly enhanced LPS-induced TNF-α protein production, and interferon-γ, CC chemokine ligand (Ccl) 1, Ccl20, and interleukin-10 mRNA expression. These results suggest that Pdcd4 suppresses the induction of these inflammatory mediators. Taken together, loss of Pdcd4 in macrophages may be a critical step in establishing the inflammatory environment while that in tumor cells contributes to tumor progression. PMID:20607724

  17. In vitro immunotoxicity assessment of culture-derived extracellular vesicles in human monocytes

    PubMed Central

    Rosas, Lucia E.; Elgamal, Ola A.; Mo, Xiaokui; Phelps, Mitch A.; Schmittgen, Thomas D.; Papenfuss, Tracey L.

    2016-01-01

    The potential to engineer extracellular vesicles (EV) that target specific cells and deliver a therapeutic payload has propelled a growing interest in their development as promising therapeutics. These EV are often produced from cultured cells. Very little is known about the interaction of cell culture-derived EV with cells of the immune system and their potential immunomodulatory effects. The present study evaluated potential immunotoxic effects of HEK293T-derived EV on the human monocytic cell lines THP-1 and U937. Incubation of cells with different doses of EV for 16–24 h was followed by assessment of cytotoxicity and cell function by flow cytometry. Changes in cell functionality were evaluated by the capacity of cells to phagocytize fluorescent microspheres. In addition, the internalization of labeled EV in THP-1 and U937 cells was evaluated. Exposure to EV did not affect the viability of THP-1 or U937 cells. Although lower doses of the EV increased phagocytic capacity in both cell lines, phagocytic efficiency of individual cells was not affected by EV exposure at any of the doses evaluated. This study also demonstrated that THP-1 and U937 monocytic cells are highly permissive to EV entry in a dose-response manner. These results suggest that, although HEK293T-derived EV are efficiently internalized by human monocytic cells, they do not exert a cytotoxic effect or alter phagocytic efficiency on the cell lines evaluated. PMID:27075513

  18. 30 CFR 937.707 - Exemption for coal extraction incident to government-financed highway or other construction.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... government-financed highway or other construction. 937.707 Section 937.707 Mineral Resources OFFICE OF...-financed highway or other construction. Part 707 of this chapter, Exemption for Coal Extraction Incident to Government-financed Highway or Other Construction, shall apply to surface coal mining and reclamation...

  19. 30 CFR 937.707 - Exemption for coal extraction incident to government-financed highway or other construction.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... government-financed highway or other construction. 937.707 Section 937.707 Mineral Resources OFFICE OF...-financed highway or other construction. Part 707 of this chapter, Exemption for Coal Extraction Incident to Government-financed Highway or Other Construction, shall apply to surface coal mining and reclamation...

  20. 30 CFR 937.707 - Exemption for coal extraction incident to government-financed highway or other construction.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... government-financed highway or other construction. 937.707 Section 937.707 Mineral Resources OFFICE OF...-financed highway or other construction. Part 707 of this chapter, Exemption for Coal Extraction Incident to Government-financed Highway or Other Construction, shall apply to surface coal mining and reclamation...

  1. 30 CFR 937.707 - Exemption for coal extraction incident to government-financed highway or other construction.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... government-financed highway or other construction. 937.707 Section 937.707 Mineral Resources OFFICE OF...-financed highway or other construction. Part 707 of this chapter, Exemption for Coal Extraction Incident to Government-financed Highway or Other Construction, shall apply to surface coal mining and reclamation...

  2. 30 CFR 937.707 - Exemption for coal extraction incident to government-financed highway or other construction.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... government-financed highway or other construction. 937.707 Section 937.707 Mineral Resources OFFICE OF...-financed highway or other construction. Part 707 of this chapter, Exemption for Coal Extraction Incident to Government-financed Highway or Other Construction, shall apply to surface coal mining and reclamation...

  3. Downregulation of HIF-1a sensitizes U251 glioma cells to the temozolomide (TMZ) treatment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tang, Jun-Hai; Ma, Zhi-Xiong; Huang, Guo-Hao

    Purpose: The aim of this study was to investigate the effect of downregulation of HIF-1α gene on human U251 glioma cells and examine the consequent changes of TMZ induced effects and explore the molecular mechanisms. Methods: U251 cell line stably expressing HIF-1α shRNA was acquired via lentiviral vector transfection. The mRNA and protein expression alterations of genes involved in our study were determined respectively by qRT-PCR and Western blot. Cell proliferation was measured by MTT assay and colony formation assay, cell invasion/migration capacity was determined by transwell invasion assay/wound healing assay, and cell apoptosis was detected by flow cytometry. Results:more » We successfully established a U251 cell line with highly efficient HIF-1α knockdown. HIF-1a downregulation sensitized U251 cells to TMZ treatment and enhanced the proliferation-inhibiting, invasion/migration-suppressing, apoptosis-inducing and differentiation-promoting effects exerted by TMZ. The related molecular mechanisms demonstrated that expression of O{sup 6}-methylguanine DNA methyltransferase gene (MGMT) and genes of Notch1 pathway were significantly upregulated by TMZ treatment. However, this upregulation was abrogated by HIF-1α knockdown. We further confirmed important regulatory roles of HIF-1α in the expression of MGMT and activation of Notch1 pathways. Conclusion: HIF-1α downregulation sensitizes U251 glioma cells to the temozolomide treatment via inhibiting MGMT expression and Notch1 pathway activation. - Highlights: • TMZ caused more significant proliferation inhibition and apoptosis in U251 cells after downregulating HIF-1α. • Under TMZ treatment, HIF-1 downregulated U251 cells exhibited weaker mobility and more differentiated state. • TMZ caused MGMT over-expression and Notch1 pathway activation, which could be abrogated by HIF-1α downregulation.« less

  4. Protective effect of Nigella sativa extract and thymoquinone on serum/glucose deprivation-induced PC12 cells death.

    PubMed

    Mousavi, S H; Tayarani-Najaran, Z; Asghari, M; Sadeghnia, H R

    2010-05-01

    The serum/glucose deprivation (SGD)-induced cell death in cultured PC12 cells represents a useful in vitro model for the study of brain ischemia and neurodegenerative disorders. Nigella sativa L. (family Ranunculaceae) and its active component thymoquinone (TQ) has been known as a source of antioxidants. In the present study, the protective effects of N. sativa and TQ on cell viability and reactive oxygen species (ROS) production in cultured PC12 cells were investigated under SGD conditions. PC12 cells were cultured in DMEM medium containing 10% (v/v) fetal bovine serum, 100 units/ml penicillin, and 100 microg/ml streptomycin. Cells were seeded overnight and then deprived of serum/glucose for 6 and 18 h. Cells were pretreated with different concentrations of N. sativa extract (15.62-250 microg/ml) and TQ (1.17-150 microM) for 2 h. Cell viability was quantitated by MTT assay. Intracellular ROS production was measured by flow cytometry using 2',7'-dichlorofluorescin diacetate (DCF-DA) as a probe. SGD induced significant cells toxicity after 6, 18, or 24 h (P < 0.001). Pretreatment with N. sativa (15.62-250 microg/ml) and TQ (1.17-37.5 microM) reduced SGD-induced cytotoxicity in PC12 cells after 6 and 18 h. A significant increase in intracellular ROS production was seen following SGD (P < 0.001). N. sativa (250 microg/ml, P < 0.01) and TQ (2.34, 4.68, 9.37 microM, P < 0.01) pretreatment reversed the increased ROS production following ischemic insult. The experimental results suggest that N. sativa extract and TQ protects the PC12 cells against SGD-induced cytotoxicity via antioxidant mechanisms. Our findings might raise the possibility of potential therapeutic application of N. sativa extract and TQ for managing cerebral ischemic and neurodegenerative disorders.

  5. Cell Fate of Müller Cells During Photoreceptor Regeneration in an N-Methyl-N-nitrosourea-Induced Retinal Degeneration Model of Zebrafish.

    PubMed

    Ogai, Kazuhiro; Hisano, Suguru; Sugitani, Kayo; Koriyama, Yoshiki; Kato, Satoru

    2016-01-01

    Zebrafish can regenerate several organs such as the tail fin, heart, central nervous system, and photoreceptors. Very recently, a study has demonstrated the photoreceptor regeneration in the alkylating agent N-methyl-N-nitrosourea (MNU)-induced retinal degeneration (RD) zebrafish model, in which whole photoreceptors are lost within a week after MNU treatment and then regenerated within a month. The research has also shown massive proliferation of Müller cells within a week. To address the question of whether proliferating Müller cells are the source of regenerating photoreceptors, which remains unknown in the MNU-induced zebrafish RD model, we employed a BrdU pulse-chase technique to label the proliferating cells within a week after MNU treatment. As a result of the BrdU pulse-chase technique, a number of BrdU(+) cells were observed in the outer nuclear layer as well as the inner nuclear layer. This implies that regenerating photoreceptors are derived from proliferating Müller cells in the zebrafish MNU-induced RD model.

  6. Visualisation of an nsPEF induced calcium wave using the genetically encoded calcium indicator GCaMP in U87 human glioblastoma cells.

    PubMed

    Carr, Lynn; Bardet, Sylvia M; Arnaud-Cormos, Delia; Leveque, Philippe; O'Connor, Rodney P

    2018-02-01

    Cytosolic, synthetic chemical calcium indicators are typically used to visualise the rapid increase in intracellular calcium ion concentration that follows nanosecond pulsed electric field (nsPEF) application. This study looks at the application of genetically encoded calcium indicators (GECIs) to investigate the spatiotemporal nature of nsPEF-induced calcium signals using fluorescent live cell imaging. Calcium responses to 44kV/cm, 10ns pulses were observed in U87-MG cells expressing either a plasma membrane targeted GECI (GCaMP5-G), or one cytosolically expressed (GCaMP6-S), and compared to the response of cells loaded with cytosolic or plasma membrane targeted chemical calcium indicators. Application of 100 pulses, to cells containing plasma membrane targeted indicators, revealed a wave of calcium across the cell initiating at the cathode side. A similar spatial wave was not observed with cytosolic indicators with mobile calcium buffering properties. The speed of the wave was related to pulse application frequency and it was not propagated by calcium induced calcium release. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. 9-cis-Retinoic Acid Promotes Cell Adhesion Through Integrin Dependent and Independent Mechanisms Across Immune Lineages

    PubMed Central

    Whelan, Jarrett T.; Chen, Jianming; Miller, Jabin; Morrow, Rebekah L.; Lingo, Joshuah D.; Merrell, Kaitlin; Shaikh, Saame Raza; Bridges, Lance C.

    2012-01-01

    Retinoids are essential in the proper establishment and maintenance of immunity. Although retinoids are implicated in immune related processes, their role in immune cell adhesion has not been well established. In this study, the effect of 9-cis-retinoic acid (9-cis-RA) on human hematopoietic cell adhesion was investigated. 9-cis-RA treatment specifically induced cell adhesion of the human immune cell lines HuT-78, NB4, RPMI 8866, and U937. Due to the prominent role of integrin receptors in mediating immune cell adhesion, we sought to evaluate if cell adhesion was integrin-dependent. By employing a variety of integrin antagonist including function-blocking antibodies and EDTA, we establish that 9-cis-RA prompts immune cell adhesion through established integrin receptors in addition to a novel integrin-independent process. The novel integrin-independent adhesion required the presence of retinoid and was attenuated by treatment with synthetic corticosteroids. Finally, we demonstrate that 9-cis-RA treatment of primary murine B-cells induces ex vivo adhesion that persists in the absence of integrin function. Our study is the first to demonstrate that 9-cis-retinoic acid influences immune cell adhesion through at least two functionally distinct mechanisms. PMID:22925918

  8. Detection of BrdU-label Retaining Cells in the Lacrimal Gland: Implications for Tissue Repair

    PubMed Central

    You, Samantha; Tariq, Ayesha; Kublin, Claire L.; Zoukhri, Driss

    2011-01-01

    The purpose of the present study was to determine if the lacrimal gland contains 5-bromo-2’-deoxyuridine (BrdU)-label retaining cells and if they are involved in tissue repair. Animals were pulsed daily with BrdU injections for 7 consecutive days. After a chase period of 2, 4, or 12 weeks, the animals were sacrificed and the lacrimal glands were removed and processed for BrdU immunostaining. In another series of experiments, the lacrimal glands of 12-week chased animals were either left untreated or were injected with interleukin 1 (IL-1) to induce injury. Two and half day post-injection, the lacrimal glands were removed and processed for BrdU immunostaining. After 2 and 4 week of chase period, a substantial number of lacrimal gland cells were BrdU+ (11.98 ± 1.84 and 7.95 ± 1.83 BrdU+ cells/mm2, respectively). After 12 weeks of chase, there was a 97% decline in the number of BrdU+ cells (0.38 ± 0.06 BrdU+ cells/mm2), suggesting that these BrdU-label retaining cells may represent slow-cycling adult stem/progenitor cells. In support of this hypothesis, the number of BrdU labeled cells increased over 7-fold during repair of the lacrimal gland (control: 0.41 ± 0.09 BrdU+ cells/mm2, injured: 2.91 ± 0.62 BrdU+ cells/mm2). Furthermore, during repair, among BrdU+ cells 58.2 ± 3.6 % were acinar cells, 26.4 ± 4.1% were myoepithelial cells, 0.4 ± 0.4% were ductal cells, and 15.0 ± 3.0% were stromal cells. We conclude that the murine lacrimal gland contains BrdU-label retaining cells that are mobilized following injury to generate acinar, myoepithelial and ductal cells. PMID:22101331

  9. γ-Oryzanol reduces adhesion molecule expression in vascular endothelial cells via suppression of nuclear factor-κB activation.

    PubMed

    Sakai, Satoshi; Murata, Takahisa; Tsubosaka, Yoshiki; Ushio, Hideki; Hori, Masatoshi; Ozaki, Hiroshi

    2012-04-04

    γ-Oryzanol (γ-ORZ) is a mixture of phytosteryl ferulates purified from rice bran oil. In this study, we examined whether γ-ORZ represents a suppressive effect on the lipopolysaccharide (LPS)-induced adhesion molecule expression on vascular endothelium. Treatment with LPS elevated the mRNA expression of vascular cell adhesion molecule-1 (VCAM-1), intercellular adhesion molecule-1 (ICAM-1), and E-selectin in bovine aortic endothelial cells (BAECs). Pretreatment with γ-ORZ dose-dependently decreased the LPS-mediated expression of these genes. Western blotting also revealed that pretreatment with γ-ORZ dose-dependently inhibited LPS-induced VCAM-1 expression in human umbilical vein endothelial cells. Consistently, pretreatment with γ-ORZ dose-dependently reduced LPS-induced U937 monocyte adhesion to BAECs. In immunofluorescence, LPS caused nuclear factor-κB (NF-κB) nuclear translocation in 40% of BAECs, which indicates NF-κB activation. Pretreatment with γ-ORZ, as well as its components (cycloartenyl ferulate, ferulic acid, or cycloartenol), dose-dependently inhibited LPS-mediated NF-κB activation. Collectively, our results suggested that γ-ORZ reduced LPS-mediated adhesion molecule expression through NF-κB inhibition in vascular endothelium.

  10. Intracellular cholesterol level regulates sensitivity of glioblastoma cells against temozolomide-induced cell death by modulation of caspase-8 activation via death receptor 5-accumulation and activation in the plasma membrane lipid raft.

    PubMed

    Yamamoto, Yutaro; Tomiyama, Arata; Sasaki, Nobuyoshi; Yamaguchi, Hideki; Shirakihara, Takuya; Nakashima, Katsuhiko; Kumagai, Kosuke; Takeuchi, Satoru; Toyooka, Terushige; Otani, Naoki; Wada, Kojiro; Narita, Yoshitaka; Ichimura, Koichi; Sakai, Ryuichi; Namba, Hiroki; Mori, Kentaro

    2018-01-01

    Development of resistance against temozolomide (TMZ) in glioblastoma (GBM) after continuous treatment with TMZ is one of the critical problems in clinical GBM therapy. Intracellular cholesterol regulates cancer cell biology, but whether intracellular cholesterol is involved in TMZ resistance of GBM cells remains unclear. The involvement of intracellular cholesterol in acquired resistance against TMZ in GBM cells was investigated. Intracellular cholesterol levels were measured in human U251 MG cells with acquired TMZ resistance (U251-R cells) and TMZ-sensitive control U251 MG cells (U251-Con cells), and found that the intracellular cholesterol level was significantly lower in U251-R cells than in U251-Con cells. In addition, treatment by intracellular cholesterol remover, methyl-beta cyclodextrin (MβCD), or intracellular cholesterol inducer, soluble cholesterol (Chol), regulated TMZ-induced U251-Con cell death in line with changes in intracellular cholesterol level. Involvement of death receptor 5 (DR5), a death receptor localized in the plasma membrane, was evaluated. TMZ without or with MβCD and/or Chol caused accumulation of DR5 into the plasma membrane lipid raft and formed a complex with caspase-8, an extrinsic caspase cascade inducer, reflected in the induction of cell death. In addition, treatment with caspase-8 inhibitor or knockdown of DR5 dramatically suppressed U251-Con cell death induced by combination treatment with TMZ, MβCD, and Chol. Combined treatment of Chol with TMZ reversed the TMZ resistance of U251-R cells and another GBM cell model with acquired TMZ resistance, whereas clinical antihypercholesterolemia agents at physiological concentrations suppressed TMZ-induced cell death of U251-Con cells. These findings suggest that intracellular cholesterol level affects TMZ treatment of GBM mediated via a DR5-caspase-8 mechanism. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. A Miniature Couette to Generate Shear for Flow Cytometry: Studying Real-Time Modulation of Intracellular Calcium in Monocytic Cells

    PubMed Central

    Zwartz, Gordon J.; Chigaev, Alexandre; Foutz, Terry D.; Edwards, Bruce; Sklar, Larry A.

    2013-01-01

    Extracellular hydrodynamic forces may be transmitted to the interior of cells through the alteration of integrin conformation and affinity. Integrin activation regulates leukocyte recruitment, cell activation, and transmigration. The cellular and molecular mechanisms for integrin activation are not precisely known, although intracellular calcium signaling is involved. Flow cytometry offers a versatile way to study intracellular calcium signaling in real-time. We report a novel method to generate defined shear by using a miniature Couette. Testing involved measuring shear induced intracellular calcium signals of human monoblastoid U937 cells in suspension. The Couette was connected externally to a flow cytometer and pressurized at 6 PSI (4.1 N/m2). Cells were subjected to well-defined shear between 0 and 1000 s−1 and delivered continuously within 10 s to a FACScan at 1 μl/s. Intracellular calcium levels and the percentage of cells activated increased as shear increased in duration and intensity. PMID:22045643

  12. On-chip immune cell activation and subsequent time-resolved magnetic bead-based cytokine detection.

    PubMed

    Kongsuphol, Patthara; Liu, Yunxiao; Ramadan, Qasem

    2016-10-01

    Cytokine profiling and immunophenotyping offer great potential for understanding many disease mechanisms, personalized diagnosis, and immunotherapy. Here, we demonstrate a time-resolved detection of cytokine from a single cell cluster using an in situ magnetic immune assay. An array of triple-layered microfluidic chambers was fabricated to enable simultaneous cell culture under perfusion flow and detection of the induced cytokines at multiple time-points. Each culture chamber comprises three fluidic compartments which are dedicated to, cell culture, perfusion and immunoassay. The three compartments are separated by porous membranes, which allow the diffusion of fresh nutrient from the perfusion compartment into the cell culture compartment and cytokines secretion from the cell culture compartment into the immune assay compartment. This structure hence enables capturing the released cytokines without disturbing the cell culture and without minimizing benefit gain from perfusion. Functionalized magnetic beads were used as a solid phase carrier for cytokine capturing and quantification. The cytokines released from differential stimuli were quantified in situ in non-differentiated U937 monocytes and differentiated macrophages.

  13. 40 CFR 35.937-6 - Cost and price considerations.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 1 2011-07-01 2011-07-01 false Cost and price considerations. 35.937-6...) shall apply. (1) The candidate(s) selected for negotiation shall submit to the grantee for review...) Cost review. (1) The grantee shall review proposed subagreement costs. (2) As a minimum, proposed...

  14. 40 CFR 35.937-6 - Cost and price considerations.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 1 2010-07-01 2010-07-01 false Cost and price considerations. 35.937-6...) shall apply. (1) The candidate(s) selected for negotiation shall submit to the grantee for review...) Cost review. (1) The grantee shall review proposed subagreement costs. (2) As a minimum, proposed...

  15. Ethanol extracts of black pepper or turmeric down-regulated SIRT1 protein expression in Daudi culture cells.

    PubMed

    Nishimura, Yuri; Kitagishi, Yasuko; Yoshida, Hitomi; Okumura, Naoko; Matsuda, Satoru

    2011-01-01

    SIRT1 is a mammalian candidate molecule involved in longevity and diverse metabolic processes. The present study aimed to determine the effects of certain herbs and spices on SIRT1 expression. Human cell lines Daudi, Jurkat, U937 and K562 were cultured in RPMI-1640. Herb and spice powders were prepared and the supernatants were collected. RT-PCR was used to quantify the expression level of the gene. Protein samples were then analyzed by Western blotting. Western blotting revealed the down-regulation of SIRT1 protein expression in Daudi cells treated with extracts of black pepper or turmeric. On the other hand, the effect on the SIRT1 gene expression examined by reverse transcription polymerase chain reaction was unaltered. In conclusion, component(s) of certain herbs and spices may induce the down-regulation of SIRT1 protein.

  16. Mechanism of Hericium erinaceus (Yamabushitake) Mushroom-Induced Apoptosis of U937 Human Monocytic Leukemia Cells

    USDA-ARS?s Scientific Manuscript database

    Phytochemicals in some foods are a potential source of bioactive safe compounds for cancer chemoprevention. In the present study, we evaluated hot water (HWE), microwaved 50% ethanol (MWE), acidic (ACE), and alkaline (AKE) extracts of the fruit body (sporocarp) of edible Hericium erinaceus (Yamabus...

  17. EndoU is a novel regulator of AICD during peripheral B cell selection

    PubMed Central

    Poe, Jonathan C.; Kountikov, Evgueni I.; Lykken, Jacquelyn M.; Natarajan, Abirami; Marchuk, Douglas A.

    2014-01-01

    Balanced transmembrane signals maintain a competent peripheral B cell pool limited in self-reactive B cells that may produce pathogenic autoantibodies. To identify molecules regulating peripheral B cell survival and tolerance to self-antigens (Ags), a gene modifier screen was performed with B cells from CD22-deficient C57BL/6 (CD22−/−[B6]) mice that undergo activation-induced cell death (AICD) and fail to up-regulate c-Myc expression after B cell Ag receptor ligation. Likewise, lysozyme auto-Ag–specific B cells in IgTg hen egg lysozyme (HEL) transgenic mice inhabit the spleen but undergo AICD after auto-Ag encounter. This gene modifier screen identified EndoU, a single-stranded RNA-binding protein of ancient origin, as a major regulator of B cell survival in both models. EndoU gene disruption prevents AICD and normalizes c-Myc expression. These findings reveal that EndoU is a critical regulator of an unexpected and novel RNA-dependent pathway controlling peripheral B cell survival and Ag responsiveness that may contribute to peripheral B cell tolerance. PMID:24344237

  18. EndoU is a novel regulator of AICD during peripheral B cell selection.

    PubMed

    Poe, Jonathan C; Kountikov, Evgueni I; Lykken, Jacquelyn M; Natarajan, Abirami; Marchuk, Douglas A; Tedder, Thomas F

    2014-01-13

    Balanced transmembrane signals maintain a competent peripheral B cell pool limited in self-reactive B cells that may produce pathogenic autoantibodies. To identify molecules regulating peripheral B cell survival and tolerance to self-antigens (Ags), a gene modifier screen was performed with B cells from CD22-deficient C57BL/6 (CD22(-/-[B6])) mice that undergo activation-induced cell death (AICD) and fail to up-regulate c-Myc expression after B cell Ag receptor ligation. Likewise, lysozyme auto-Ag-specific B cells in Ig(Tg) hen egg lysozyme (HEL) transgenic mice inhabit the spleen but undergo AICD after auto-Ag encounter. This gene modifier screen identified EndoU, a single-stranded RNA-binding protein of ancient origin, as a major regulator of B cell survival in both models. EndoU gene disruption prevents AICD and normalizes c-Myc expression. These findings reveal that EndoU is a critical regulator of an unexpected and novel RNA-dependent pathway controlling peripheral B cell survival and Ag responsiveness that may contribute to peripheral B cell tolerance.

  19. Bone marrow mesenchymal stem cells ameliorate inflammatory factor-induced dysfunction of INS-1 cells on chip.

    PubMed

    Sun, Yu; Yao, Zhina; Lin, Peng; Hou, Xinguo; Chen, Li

    2014-05-01

    Using a microfluidic chip, we have investigated whether bone marrow mesenchymal stem cells (BM-MSCs) could ameliorate IL-1β/IFN-γ-induced dysfunction of INS-1 cells. BM-MSCs were obtained from diabetes mellitus patients and their cell surface antigen expression profiles were analyzed by flow cytometric. INS-1 cells were cocultured with BM-MSCs on a microfluidic chip with persistent perfusion of medium containing 1 ng/mL IL-1β and 2.5 U/mL IFN-γ for 72 h. BM-MSCs could partially rescue INS-1 cells from cytokine-induced dysfunction and ameliorate the expression of insulin and PDX-1 gene in INS-1 cells. Thus BM-MSCs can be viewed as a promising stem cell source to depress inflammatory factor-induced dysfunction of pancreatic β cells in diabetic patients. © 2014 International Federation for Cell Biology.

  20. Automated and manual patch clamp data of human induced pluripotent stem cell-derived dopaminergic neurons.

    PubMed

    Franz, Denise; Olsen, Hervør Lykke; Klink, Oliver; Gimsa, Jan

    2017-04-25

    Human induced pluripotent stem cells can be differentiated into dopaminergic neurons (Dopa.4U). Dopa.4U neurons expressed voltage-gated Na V and K V channels and showed neuron-like spontaneous electrical activity. In automated patch clamp measurements with suspended Dopa.4U neurons, delayed rectifier K + current (delayed K V ) and rapidly inactivating A-type K + current (fast K V ) were identified. Examination of the fast K V current with inhibitors yielded IC 50 values of 0.4 mM (4-aminopyridine) and 0.1 mM (tetraethylammonium). In manual patch clamp measurements with adherent Dopa.4U neurons, fast K V current could not be detected, while the delayed K V current showed an IC 50 of 2 mM for 4-aminopyridine. The Na V channels in adherent and suspended Dopa.4U neurons showed IC 50 values for tetrodotoxin of 27 and 2.9 nM, respectively. GABA-induced currents that could be observed in adherent Dopa.4U neurons could not be detected in suspended cells. Application of current pulses induced action potentials in approx. 70 % of the cells. Our results proved the feasibility of automated electrophysiological characterization of neuronal cells.

  1. Ajoene, a garlic-derived natural compound, enhances chemotherapy-induced apoptosis in human myeloid leukaemia CD34-positive resistant cells.

    PubMed

    Ahmed, N; Laverick, L; Sammons, J; Zhang, H; Maslin, D J; Hassan, H T

    2001-01-01

    The reputation of garlic as an effective remedy for tumours extends back to the Egyptian Codex Ebers of 1550 BC. Several garlic compounds, including allicin and its corresponding sulfide, inhibit the proliferation of several human malignant cells. Ajoene is a garlic-derived compound produced most efficiently from pure allicin and has the advantage of a greater chemical stability than allicin. Recently, ajoene was shown to inhibit proliferation and induce apoptosis of human leukaemia CD34-negative cells including HL-60, U937, HEL and OCIM-I. More significantly, ajoene was shown to induce 30% apoptosis in myeloblasts from a chronic myeloid leukaemia patient in blastic crisis. Acute myeloid leukaemia (AML) is a heterogeneous malignant disease in which disease progression at the level of CD34-positive cells has a major impact on resistance to chemotherapy and relapse. The aim of the present study was to investigate the effect of ajoene on changes in the expression of apoptosis-related proteins: bcl-2 and caspase-3, induced by two principal drugs used in treatment of AML, cytarabine and fludarabine, in KGI human myeloid leukaemia CD34-positive-resistant cells. Both quantitative ELISA measurement of bcl-2 and colourimetric measurement of active caspase-3 were used. Quantitative ELISA measurement of bcl-2 (units per million cells) showed treatment of KG1-resistant leukaemia cells with 40 microM ajoene alone to significantly reduce the bcl-2-expression from 239.5 +/- 1.5 in control cultures to only 22.0 +/- 4.0 in ajoene-treated cultures. Fludarabine had significantly more inhibitory effect on bcl-2-expression than cytarabine in KGI-resistant myeloid leukaemia cells. Ajoene significantly enhanced the inhibitory effect of the two chemotherapeutic drugs, cytarabine and fludarabine, on bcl-2-expression in KGI cells. Bcl-2-expression could not be detected in fludarabine + ajoene-treated cultures. The Western blot of bcl-2-expression in KGI control and treated cells confirmed

  2. Counter-Check of 4,937 WDS Objects for Being Physical Double Stars

    NASA Astrophysics Data System (ADS)

    Knapp, Wilfried; Bryant, T. V.

    2018-04-01

    The WDS catalog contains (as of August 2017) more than 20,000 V-coded objects which are considered to be physical pairs because of their common proper motion (CPM) or other attributes. For 4,937 of these objects both components were identified in the UCAC5 catalog and counter-checked with UCAC5 proper motion data using a CPM assessment scheme according to Knapp and Nanson 2017. A surprisingly large number of these pairs seem to be optical rather than physical. Additionally GAIA DR1 positions are given for all components, and precise separation and position angle based on GAIA DR1 coordinates were calculated for all of the 4,937 pair.

  3. Surface-Acoustic-Wave (SAW)-Driven Device for Dynamic Cell Cultures.

    PubMed

    Greco, Gina; Agostini, Matteo; Tonazzini, Ilaria; Sallemi, Damiano; Barone, Stefano; Cecchini, Marco

    2018-06-19

    In the last few decades, new types of cell cultures have been introduced to provide better cell survival and development, with micro- and nanoenvironmental physicochemical conditions aimed at mimicking those present in vivo. However, despite the efforts made, the systems available to date are often difficult to replicate and use. Here, an easy-to-use surface-acoustic-wave (SAW)-based platform is presented for realizing dynamic cell cultures that is compatible with standard optical microscopes, incubators, and cell-culture dishes. The SAW chip is coupled to a standard Petri dish via a polydimethylsiloxane (PDMS) disc and consists of a lithium niobate (LN) substrate on which gold interdigital transducers (IDTs) are patterned to generate the SAWs and induce acoustic streaming in the dish. SAW excitation is verified and characterized by laser Doppler vibrometry, and the fluid dynamics is studied by microparticle image velocimetry (μPIV). Heating is measured by an infrared (IR) thermal camera. We finally tested this device with the U-937 monocyte cell line for viability and proliferation and cell-morphological analysis. The data demonstrate that it is possible to induce significant fluid recirculation within the Petri dish while maintaining negligible heating. Remarkably, cell proliferation in this condition was enhanced by 36 ± 12% with respect to those of standard static cultures. Finally, we show that cell death does not increase and that cell morphology is not altered in the presence of SAWs. This device is the first demonstration that SAW-induced streaming can mechanically improve cell proliferation and further supports the great versatility and biocompatibility of the SAW technology for cell manipulation.

  4. Individual and combined tumoricidal effects of dexamethasone and interferons on human leukocyte cell lines.

    PubMed

    Pan, L Y; Guyre, P M

    1988-02-01

    We investigated the influence of glucocorticoids on two effects of interferons (IFNs) which are thought to relate to their antitumor actions: cytotoxic activity and induction of HLA antigen expression. We treated human myeloid cell lines (U-937, HL-60, THP-1, K-562, and KG-1a), and T-(MOLT-4) and B- (Daudi) lymphoblastic cell lines with concentrations of IFN-alpha, IFN-gamma, and dexamethasone (Dex) which are commonly achieved in the circulation following therapeutic administration. The results show that for every cell line except Daudi, the greatest inhibition of cell growth occurred when IFN-gamma and Dex treatments were combined. The advantage of combined IFN-gamma and Dex treatment over treatment with either agent alone was most dramatic for the three cell lines (U-937, HL-60, and THP-1) which have monocytoid characteristics. There was also more growth inhibition by the combination of IFN-alpha and Dex than by either agent alone for all seven cell lines tested. The induction of HLA antigen expression by IFN-alpha and IFN-gamma, an effect which could increase recognition of the tumor cells by the immune system, was as great or greater in the presence of Dex as in its absence. These results demonstrate that glucocorticoids do not inhibit, and in some cases enhance, two effects of IFNs that appear to be related to their antitumor actions: inhibition of tumor cell proliferation and enhancement of HLA antigen expression.

  5. Inflammatory and Oxidative Responses Induced by Exposure to Commonly Used e-Cigarette Flavoring Chemicals and Flavored e-Liquids without Nicotine.

    PubMed

    Muthumalage, Thivanka; Prinz, Melanie; Ansah, Kwadwo O; Gerloff, Janice; Sundar, Isaac K; Rahman, Irfan

    2017-01-01

    Background: The respiratory health effects of inhalation exposure to e-cigarette flavoring chemicals are not well understood. We focused our study on the immuno-toxicological and the oxidative stress effects by these e-cigarette flavoring chemicals on two types of human monocytic cell lines, Mono Mac 6 (MM6) and U937. The potential to cause oxidative stress by these flavoring chemicals was assessed by measuring the production of reactive oxygen species (ROS). We hypothesized that the flavoring chemicals used in e-juices/e-liquids induce an inflammatory response, cellular toxicity, and ROS production. Methods: Two monocytic cell types, MM6 and U937 were exposed to commonly used e-cigarette flavoring chemicals; diacetyl, cinnamaldehyde, acetoin, pentanedione, o-vanillin, maltol and coumarin at different doses between 10 and 1,000 μM. Cell viability and the concentrations of the secreted inflammatory cytokine interleukin 8 (IL-8) were measured in the conditioned media. Cell-free ROS produced by these commonly used flavoring chemicals were also measured using a 2',7'dichlorofluorescein diacetate probe. These DCF fluorescence data were expressed as hydrogen peroxide (H 2 O 2 ) equivalents. Cytotoxicity due to the exposure to selected e-liquids was assessed by cell viability and the IL-8 inflammatory cytokine response in the conditioned media. Results: Treatment of the cells with flavoring chemicals and flavored e-liquid without nicotine caused cytotoxicity dose-dependently. The exposed monocytic cells secreted interleukin 8 (IL-8) chemokine in a dose-dependent manner compared to the unexposed cell groups depicting a biologically significant inflammatory response. The measurement of cell-free ROS by the flavoring chemicals and e-liquids showed significantly increased levels of H 2 O 2 equivalents in a dose-dependent manner compared to the control reagents. Mixing a variety of flavors resulted in greater cytotoxicity and cell-free ROS levels compared to the treatments

  6. Inflammatory and Oxidative Responses Induced by Exposure to Commonly Used e-Cigarette Flavoring Chemicals and Flavored e-Liquids without Nicotine

    PubMed Central

    Muthumalage, Thivanka; Prinz, Melanie; Ansah, Kwadwo O.; Gerloff, Janice; Sundar, Isaac K.; Rahman, Irfan

    2018-01-01

    Background: The respiratory health effects of inhalation exposure to e-cigarette flavoring chemicals are not well understood. We focused our study on the immuno-toxicological and the oxidative stress effects by these e-cigarette flavoring chemicals on two types of human monocytic cell lines, Mono Mac 6 (MM6) and U937. The potential to cause oxidative stress by these flavoring chemicals was assessed by measuring the production of reactive oxygen species (ROS). We hypothesized that the flavoring chemicals used in e-juices/e-liquids induce an inflammatory response, cellular toxicity, and ROS production. Methods: Two monocytic cell types, MM6 and U937 were exposed to commonly used e-cigarette flavoring chemicals; diacetyl, cinnamaldehyde, acetoin, pentanedione, o-vanillin, maltol and coumarin at different doses between 10 and 1,000 μM. Cell viability and the concentrations of the secreted inflammatory cytokine interleukin 8 (IL-8) were measured in the conditioned media. Cell-free ROS produced by these commonly used flavoring chemicals were also measured using a 2′,7′dichlorofluorescein diacetate probe. These DCF fluorescence data were expressed as hydrogen peroxide (H2O2) equivalents. Cytotoxicity due to the exposure to selected e-liquids was assessed by cell viability and the IL-8 inflammatory cytokine response in the conditioned media. Results: Treatment of the cells with flavoring chemicals and flavored e-liquid without nicotine caused cytotoxicity dose-dependently. The exposed monocytic cells secreted interleukin 8 (IL-8) chemokine in a dose-dependent manner compared to the unexposed cell groups depicting a biologically significant inflammatory response. The measurement of cell-free ROS by the flavoring chemicals and e-liquids showed significantly increased levels of H2O2 equivalents in a dose-dependent manner compared to the control reagents. Mixing a variety of flavors resulted in greater cytotoxicity and cell-free ROS levels compared to the treatments with

  7. Role of Bruton's tyrosine kinase inhibitors in HIV-1-infected cells.

    PubMed

    Guendel, Irene; Iordanskiy, Sergey; Sampey, Gavin C; Van Duyne, Rachel; Calvert, Valerie; Petricoin, Emanuel; Saifuddin, Mohammed; Kehn-Hall, Kylene; Kashanchi, Fatah

    2015-06-01

    Many cellular cofactors have been documented to be critical for various stages of viral replication. Using high-throughput proteomic assays, we have previously identified Bruton's tyrosine kinase (BTK) as a host protein that was uniquely upregulated in the plasma membrane of human immunodeficiency virus (HIV-1)-infected T cells. Here, we have further characterized the BTK expression in HIV-1 infection and show that this cellular factor is specifically expressed in infected myeloid cells. Significant upregulation of the phosphorylated form of BTK was observed in infected cells. Using size exclusion chromatography, we found BTK to be virtually absent in the uninfected U937 cells; however, new BTK protein complexes were identified and distributed in both high molecular weight (∼600 kDa) and a small molecular weight complex (∼60-120 kDa) in the infected U1 cells. BTK levels were highest in cells either chronically expressing virus or induced/infected myeloid cells and that BTK translocated to the membrane following induction of the infected cells. BTK knockdown in HIV-1-infected cells using small interfering RNA (siRNA) resulted in selective death of infected, but not uninfected, cells. Using BTK-specific antibody and small-molecule inhibitors including LFM-A13 and a FDA-approved compound, ibrutinib (PCI-32765), we have found that HIV-1-infected cells are sensitive to apoptotic cell death and result in a decrease in virus production. Overall, our data suggests that HIV-1-infected cells are sensitive to treatments targeting BTK expressed in infected cells.

  8. 30 CFR 937.828 - Special performance standards-in situ processing.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 3 2012-07-01 2012-07-01 false Special performance standards-in situ... § 937.828 Special performance standards—in situ processing. Part 828 of this chapter, Special Permanent Program Performance Standards—In Situ Processing, shall apply to any person who conducts in situ...

  9. 30 CFR 937.828 - Special performance standards-in situ processing.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Special performance standards-in situ... § 937.828 Special performance standards—in situ processing. Part 828 of this chapter, Special Permanent Program Performance Standards—In Situ Processing, shall apply to any person who conducts in situ...

  10. 30 CFR 937.828 - Special performance standards-in situ processing.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 3 2011-07-01 2011-07-01 false Special performance standards-in situ... § 937.828 Special performance standards—in situ processing. Part 828 of this chapter, Special Permanent Program Performance Standards—In Situ Processing, shall apply to any person who conducts in situ...

  11. 30 CFR 937.828 - Special performance standards-in situ processing.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 3 2014-07-01 2014-07-01 false Special performance standards-in situ... § 937.828 Special performance standards—in situ processing. Part 828 of this chapter, Special Permanent Program Performance Standards—In Situ Processing, shall apply to any person who conducts in situ...

  12. 30 CFR 937.828 - Special performance standards-in situ processing.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 3 2013-07-01 2013-07-01 false Special performance standards-in situ... § 937.828 Special performance standards—in situ processing. Part 828 of this chapter, Special Permanent Program Performance Standards—In Situ Processing, shall apply to any person who conducts in situ...

  13. Emodin induces apoptosis of human osteosarcoma cells via mitochondria- and endoplasmic reticulum stress-related pathways.

    PubMed

    Ying, Jinhe; Xu, Huan; Wu, Dhua; Wu, Xiaoguang

    2015-01-01

    Emodin showed anti-cancer activity against multiple human malignant tumors by inducing apoptosis. However, the apoptotic inducing effect against human osteosarcoma and related mechanism are still not studied. This study was aimed to investigate them. Emodin was used to incubate human OS cell U2OS cells at serially diluted concentrations. Hoechst staining was used to evaluate apoptosis; flow cytometry was applied to assess the collapse of mitochondrial membrane potential (MMP); intracellular ROS generation was detected by DCFH-DA staining; endoplasmic reticulum stress activation was examined by western blotting. Cell apoptosis of U2OS cells was induced by emodin incubation in a concentration-dependent manner; MMP collapse and ROS generation were identified at starting concentration of 80 μmol/L of emodin in a concentration-dependent manner. ER stress activation was found at beginning concentration of 40 μmol/L of emodin. The MMP collapse was inhibited while the ER stress was not inhibited by NAC administration. Emodin induces death of human osteosarcoma cells by initiating ROS-dependent mitochondria-induced and ROS-independent ER stress-induced apoptosis.

  14. Identification of a role for the nuclear receptor EAR-2 in the maintenance of clonogenic status within the leukemia cell hierarchy

    PubMed Central

    Ichim, CV; Atkins, HL; Iscove, NN; Wells, RA

    2016-01-01

    Identification of genes that regulate clonogenicity of acute myelogenous leukemia (AML) cells is hindered by the difficulty of isolating pure populations of cells with defined proliferative abilities. By analyzing the growth of clonal siblings in low passage cultures of the cell line OCI/AML4 we resolved this heterogeneous population into strata of distinct clonogenic potential, permitting analysis of the transcriptional signature of single cells with defined proliferative abilities. By microarray analysis we showed that the expression of the orphan nuclear receptor EAR-2 (NR2F6) is greater in leukemia cells with extensive proliferative capacity than in those that have lost proliferative ability. EAR-2 is expressed highly in long-term hematopoietic stem cells, relative to short-term hematopoietic stem and progenitor cells, and is downregulated in AML cells after induction of differentiation. Exogenous expression of EAR-2 increased the growth of U937 cells and prevented the proliferative arrest associated with terminal differentiation, and blocked differentiation of U937 and 32Dcl3 cells. Conversely, silencing of EAR-2 by short-hairpin RNA initiated terminal differentiation of these cell lines. These data identify EAR-2 as an important factor in the regulation of clonogenicity and differentiation, and establish that analysis of clonal siblings allows the elucidation of differences in gene expression within the AML hierarchy. PMID:21637284

  15. Proarrhythmia risk prediction using human induced pluripotent stem cell-derived cardiomyocytes.

    PubMed

    Yamazaki, Daiju; Kitaguchi, Takashi; Ishimura, Masakazu; Taniguchi, Tomohiko; Yamanishi, Atsuhiro; Saji, Daisuke; Takahashi, Etsushi; Oguchi, Masao; Moriyama, Yuta; Maeda, Sanae; Miyamoto, Kaori; Morimura, Kaoru; Ohnaka, Hiroki; Tashibu, Hiroyuki; Sekino, Yuko; Miyamoto, Norimasa; Kanda, Yasunari

    2018-04-01

    Human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) are expected to become a useful tool for proarrhythmia risk prediction in the non-clinical drug development phase. Several features including electrophysiological properties, ion channel expression profile and drug responses were investigated using commercially available hiPSC-CMs, such as iCell-CMs and Cor.4U-CMs. Although drug-induced arrhythmia has been extensively examined by microelectrode array (MEA) assays in iCell-CMs, it has not been fully understood an availability of Cor.4U-CMs for proarrhythmia risk. Here, we evaluated the predictivity of proarrhythmia risk using Cor.4U-CMs. MEA assay revealed linear regression between inter-spike interval and field potential duration (FPD). The hERG inhibitor E-4031 induced reverse-use dependent FPD prolongation. We next evaluated the proarrhythmia risk prediction by a two-dimensional map, which we have previously proposed. We determined the relative torsade de pointes risk score, based on the extent of FPD with Fridericia's correction (FPDcF) change and early afterdepolarization occurrence, and calculated the margins normalized to free effective therapeutic plasma concentrations. The drugs were classified into three risk groups using the two-dimensional map. This risk-categorization system showed high concordance with the torsadogenic information obtained by a public database CredibleMeds. Taken together, these results indicate that Cor.4U-CMs can be used for drug-induced proarrhythmia risk prediction. Copyright © 2018 The Authors. Production and hosting by Elsevier B.V. All rights reserved.

  16. Resveratrol induces cellular senescence with attenuated mono-ubiquitination of histone H2B in glioma cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gao, Zhen; Xu, Michael S.; Barnett, Tamara L.

    2011-04-08

    Research highlights: {yields} Resveratrol induces cellular senescence in glioma cell. {yields} Resveratrol inhibits mono-ubiquitination of histone H2B at K120. {yields} Depletion of RNF20, phenocopies the inhibitory effects of resveratrol. {yields} Mono-ubiquitination of histone H2B at K120 is a novel target of resveratrol. {yields} RNF20 inhibits cellular senescence in proliferating glioma cells. -- Abstract: Resveratrol (3,4',5-trihydroxy-trans-stilbene), a polyphenol naturally occurring in grapes and other plants, has cancer chemo-preventive effects and therapeutic potential. Although resveratrol modulates multiple pathways in tumor cells, how resveratrol or its affected pathways converge on chromatin to mediate its effects is not known. Using glioma cells as amore » model, we showed here that resveratrol inhibited cell proliferation and induced cellular hypertrophy by transforming spindle-shaped cells to enlarged, irregular and flatten-shaped ones. We further showed that resveratrol-induced hypertrophic cells expressed senescence-associated-{beta}-galactosidase, suggesting that resveratrol-induced cellular senescence in glioma cells. Consistent with these observations, we demonstrated that resveratrol inhibited clonogenic efficiencies in vitro and tumor growth in a xenograft model. Furthermore, we found that acute treatment of resveratrol inhibited mono-ubiquitination of histone H2B at K120 (uH2B) in breast, prostate, pancreatic, lung, brain tumor cells as well as primary human cells. Chronic treatment with low doses of resveratrol also inhibited uH2B in the resveratrol-induced senescent glioma cells. Moreover, we showed that depletion of RNF20, a ubiquitin ligase of histone H2B, inhibited uH2B and induced cellular senescence in glioma cells in vitro, thereby recapitulated the effects of resveratrol. Taken together, our results suggest that uH2B is a novel direct or indirect chromatin target of resveratrol and RNF20 plays an important role in inhibiting

  17. TRPV2 channel negatively controls glioma cell proliferation and resistance to Fas-induced apoptosis in ERK-dependent manner.

    PubMed

    Nabissi, Massimo; Morelli, Maria Beatrice; Amantini, Consuelo; Farfariello, Valerio; Ricci-Vitiani, Lucia; Caprodossi, Sara; Arcella, Antonella; Santoni, Matteo; Giangaspero, Felice; De Maria, Ruggero; Santoni, Giorgio

    2010-05-01

    The aim of this study was to investigate the expression and function of the transient receptor potential vanilloid 2 (TRPV2) in human glioma cells. By Real-Time-PCR and western blot analysis, we found that TRPV2 messenger RNA (mRNA) and protein were expressed in benign astrocyte tissues, and its expression progressively declined in high-grade glioma tissues as histological grade increased (n = 49 cases), and in U87MG cells and in MZC, FCL and FSL primary glioma cells. To investigate the function of TRPV2 in glioma, small RNA interfering was used to silence TRPV2 expression in U87MG cells. As evaluated by RT-Profiler PCR array, siTRPV2-U87MG transfected cells displayed a marked downregulation of Fas and procaspase-8 mRNA expression, associated with upregulation of cyclin E1, cyclin-dependent kinase 2, E2F1 transcriptor factor 1, V-raf-1 murine leukemia viral oncogene homolog 1 and Bcl-2-associated X protein (Bcl-X(L)) mRNA expression. TRPV2 silencing increased U87MG cell proliferation as shown by the increased percentage of cells incorporating 5-bromo-2-deoxyuridine expressing beta(III)-tubulin and rescued glioma cells to Fas-induced apoptosis. These events were dependent on extracellular signal-regulated kinase (ERK) activation: indeed inhibition of ERK activation in siTRPV2-U87MG transfected cells by treatment with PD98059, a specific mitogen-activated protein kinase/extracellular signal-regulated kinase kinase inhibitor, reduced Bcl-X(L) protein levels, promoted Fas expression, and restored Akt/protein kinase B pathway activation leading to reduced U87MG cell survival and proliferation, and increased sensitivity to Fas-induced apoptosis. In addition, transfection of TRPV2 in MZC glioma cells, by inducing Fas overexpression, resulted in a reduced viability and an increased spontaneous and Fas-induced apoptosis. Overall, our findings indicate that TRPV2 negatively controls glioma cell survival and proliferation, as well as resistance to Fas-induced apoptotic cell

  18. [Influence of macrophages on the expression of vascular endothelial growth factor receptor mRNA, homeobox B2 mRNA, and integrin alpha nu beta3 in vascular endothelial strain].

    PubMed

    Liu, Liang; Liu, Chang; Zhang, Xiao-qi; Ming, Jia; Liu, Xu-sheng; Xu, Hui; Cheng, Tian-min

    2005-06-01

    To investigate the influence of macrophages on the expression of the vascular endothelial growth factor (VEGF) receptor (KDR) mRNA, homeobox B2 (HOXB2) mRNA, and integrin alpha nu beta3 in vitro in vascular endothelial strain. Human umbilical vein cells (ECV304) were cultured in vitro and divided into 4 groups, i.e. (1) ECV304 group, (2) ECV304 + conA group [with conA (25 microg/ml in culture) added to ECV304], (3) ECV304 + U937 group (with 1 x 10(5)/ml of U937 cells added to 1 x 10(5)/ml ECV 304), (4) ECV304 + U937 + conA group [with 1 x 10(5)/ml of U937 cells and conA (25 microg/ml in culture)] groups. Forty-eight hours after culturing, the expression of integrin receptor alpha nu beta3 and the changes in the expression of KDR mRNA and HOXB2 mRNA in each group were determined by immunofluorescent technique and RT-PCR, respectively. The expression of integrin receptor alpha nu beta3, KDR mRNA, and HOXB2 mRNA in ECV304 group were 6.7 +/- 1.5, 0.633 +/- 0.012, and 0.674 +/- 0.004, respectively, while those in ECV304 + U937 + conA group (10.2 +/- 1.7, 0.879 +/- 0.003, 0.947 +/- 0.003) were obviously more upregulated when compared with those in ECV304 group (P < 0.01). No difference in the above indices was found between ECV304 and ECV304 + conA, ECV304 + U937 groups (P > 0.05). Macrophages activated by ConA can accelerate the proliferation, migration and adhesion to the basement membrane matrix of vascular endothelial cells through the influence on the expression of KDR mRNA, HOXB2 mRNA and integrin alpha nu beta3, and through this pathway the angiogenesis is modulated.

  19. Calpain expression in lymphoid cells. Increased mRNA and protein levels after cell activation.

    PubMed

    Deshpande, R V; Goust, J M; Chakrabarti, A K; Barbosa, E; Hogan, E L; Banik, N L

    1995-02-10

    Although calpain is ubiquitously present in human tissues and is thought to play a role in demyelination, its activity is very low in resting normal lymphocytes. To determine the nature of calpain expression at the mRNA and protein levels in human lymphoid cells, we studied human T lymphocytic, B lymphocytic, and monocytic lines as well as peripheral blood mononuclear cells. Stimulation of cells with the phorbol ester phorbol myristate acetate and the calcium ionophore A23187 resulted in increased calpain mRNA and protein expression. Calpain mRNA expression is also increased in human T cells stimulated with anti-CD3. A dissociation between the increases of RNA and protein suggested that calpain could be released from the cells; the subsequent experiments showed its presence in the extracellular environment. 5,6-Dichloro-1b-D-ribofuranosylbenzimidazole, a reversible inhibitor of mRNA synthesis, reduced calpain mRNA levels by 50-67% and protein levels by 72-91%. Its removal resulted in resumption of both calpain mRNA and protein synthesis. Cycloheximide, a translational inhibitor, reduced calpain protein levels by 77-81% and calpain mRNA levels by 96% in activated THP-1 cells. Interferon-gamma induced calpain mRNA and protein in U-937 and THP-1 cells. Dexamethasone increased mRNA expression in THP-1 cells. Our results indicate that activation of lymphoid cells results in de novo synthesis and secretion of calpain.

  20. [Effect of mitogen activated protein kinase signal transduction on apoptosis of PC12 cells induced by electromagnetic exposure].

    PubMed

    Yang, Xue-Sen; Zhang, Wei; Gong, Qian-Fen

    2008-06-01

    To observe the effect of mitogen activated protein kinase (MAPK) signal transduction system on the apoptosis induced by electromagnetic exposure in PC12 cells. After pretreated by SB203580 alone or together with U0126, PC12 cells were exposed to 65 mW/cm(2) electromagnetic wave for 20 min. The phosphorylations of ERK1/2, JNK and P38 MAPK were tested by Western-blot at 3 h and 24 h after electromagnetic exposure. The apoptosis of PC12 cells were detected by Annexin-V-FITC flow cytometry. U0126, but not SB203580 could inhibit the activation of ERK1/2 induced by electromagnetic exposure. U0126 and SB203580 had no effects on the activation of JNK. SB203580 could inhibit the activation of P38 MAPK significantly. But U0126 had no such effect on the activation of P38 MAPK. After pretreated by SB203580 alone or together with U0126, the apoptosis of PC12 cells decreased. But the pretreatment by U0126 alone had no influence on the apoptosis of PC12 cells. The P38 MAPK signal transduction modulate the apoptosis of PC12 cells induced by electromagnetic exposure. ERK signal transduction has no effect on the apoptosis of PC12 cells. JNK signal transduction may promote the apoptosis of PC12 cells in the early stage after electromagnetic exposure.

  1. Monomer–dimer dynamics and distribution of GPI-anchored uPAR are determined by cell surface protein assemblies

    PubMed Central

    Caiolfa, Valeria R.; Zamai, Moreno; Malengo, Gabriele; Andolfo, Annapaola; Madsen, Chris D.; Sutin, Jason; Digman, Michelle A.; Gratton, Enrico; Blasi, Francesco; Sidenius, Nicolai

    2007-01-01

    To search for functional links between glycosylphosphatidylinositol (GPI) protein monomer–oligomer exchange and membrane dynamics and confinement, we studied urokinase plasminogen activator (uPA) receptor (uPAR), a GPI receptor involved in the regulation of cell adhesion, migration, and proliferation. Using a functionally active fluorescent protein–uPAR in live cells, we analyzed the effect that extracellular matrix proteins and uPAR ligands have on uPAR dynamics and dimerization at the cell membrane. Vitronectin directs the recruitment of dimers and slows down the diffusion of the receptors at the basal membrane. The commitment to uPA–plasminogen activator inhibitor type 1–mediated endocytosis and recycling modifies uPAR diffusion and induces an exchange between uPAR monomers and dimers. This exchange is fully reversible. The data demonstrate that cell surface protein assemblies are important in regulating the dynamics and localization of uPAR at the cell membrane and the exchange of monomers and dimers. These results also provide a strong rationale for dynamic studies of GPI-anchored molecules in live cells at steady state and in the absence of cross-linker/clustering agents. PMID:18056417

  2. Synthesis of some novel orcinol based coumarin triazole hybrids with capabilities to inhibit RANKL-induced osteoclastogenesis through NF-κB signaling pathway.

    PubMed

    Rama Krishna, Boddu; Thummuri, Dinesh; Naidu, V G M; Ramakrishna, Sistla; Venkata Mallavadhani, Uppuluri

    2018-08-01

    A total of twenty-two novel coumarin triazole hybrids (4a-4k and 6a-6k) were synthesized from orcinol in good to excellent yields of 70-94%. The structures of all the synthesized compounds were elucidated by spectroscopic techniques such as 1 H NMR, 13 C NMR, and HRMS. The anti-inflammatory potential of synthesized compounds was investigated against the proinflammatory cytokine, TNF-α on U937 cell line and compounds 4d, 4j, and 6j were found to exhibit promising anti-inflammatory activity. These three compounds were further screened against TNF-α on LPS-stimulated RAW 264.7 cells, which confirm their anti-inflammatory potential. Furthermore, the above said active compounds were tested for their inhibitory effect on RANKL-induced osteoclastogenesis in RAW 264.7 cells by using tartrate resistant acid phosphatase (TRAP) staining assay at 10 µM. Molecular mechanism studies demonstrated that compound 4d exhibited dose dependent inhibition of RANKL-induced osteoclastogenesis by suppression of the NF-kB pathway. Thus, compound 4d is a promising candidate for further optimization to develop as a potent anti-osteoporotic agent. Copyright © 2018 Elsevier Inc. All rights reserved.

  3. Lipopolysaccharide-induced inflammation attenuates taste progenitor cell proliferation and shortens the life span of taste bud cells.

    PubMed

    Cohn, Zachary J; Kim, Agnes; Huang, Liquan; Brand, Joseph; Wang, Hong

    2010-06-10

    The mammalian taste bud, a complex collection of taste sensory cells, supporting cells, and immature basal cells, is the structural unit for detecting taste stimuli in the oral cavity. Even though the cells of the taste bud undergo constant turnover, the structural homeostasis of the bud is maintained by balancing cell proliferation and cell death. Compared with nongustatory lingual epithelial cells, taste cells express higher levels of several inflammatory receptors and signalling proteins. Whether inflammation, an underlying condition in some diseases associated with taste disorders, interferes with taste cell renewal and turnover is unknown. Here we report the effects of lipopolysaccharide (LPS)-induced inflammation on taste progenitor cell proliferation and taste bud cell turnover in mouse taste tissues. Intraperitoneal injection of LPS rapidly induced expression of several inflammatory cytokines, including tumor necrosis factor (TNF)-alpha, interferon (IFN)-gamma, and interleukin (IL)-6, in mouse circumvallate and foliate papillae. TNF-alpha and IFN-gamma immunoreactivities were preferentially localized to subsets of cells in taste buds. LPS-induced inflammation significantly reduced the number of 5-bromo-2'-deoxyuridine (BrdU)-labeled newborn taste bud cells 1-3 days after LPS injection, suggesting an inhibition of taste bud cell renewal. BrdU pulse-chase experiments showed that BrdU-labeled taste cells had a shorter average life span in LPS-treated mice than in controls. To investigate whether LPS inhibits taste cell renewal by suppressing taste progenitor cell proliferation, we studied the expression of Ki67, a cell proliferation marker. Quantitative real-time RT-PCR revealed that LPS markedly reduced Ki67 mRNA levels in circumvallate and foliate epithelia. Immunofluorescent staining using anti-Ki67 antibodies showed that LPS decreased the number of Ki67-positive cells in the basal regions surrounding circumvallate taste buds, the niche for taste progenitor

  4. Role of Bruton’s Tyrosine Kinase inhibitors in HIV-1 infected cells

    PubMed Central

    Guendel, Irene; Iordanskiy, Sergey; Sampey, Gavin C; Van Duyne, Rachel; Calvert, Valerie; Petricoin, Emanuel; Saifuddin, Mohammed; Kehn-Hall, Kylene; Kashanchi, Fatah

    2015-01-01

    Many cellular cofactors have been documented to be critical for various stages of viral replication. Using high throughput proteomic assays, we have previously identified Bruton’s tyrosine kinase (BTK) as a host protein that was uniquely up-regulated in the plasma membrane of HIV-1 infected T-cells. Here, we have further characterized the BTK expression in HIV-1 infection and show that this cellular factor is specifically expressed in infected myeloid cells. Significant up-regulation of the phosphorylated form of BTK was observed in infected cells. Using size exclusion chromatography, we found BTK to be virtually absent in the uninfected U937 cells, however new BTK protein complexes were identified and distributed in both high molecular weight (~600 kDa) and a small molecular weight complex (~60–120 kDa) in the infected U1 cells. BTK levels were highest in cells either chronically expressing virus or induced/infected myeloid cells and that BTK translocated to the membrane following induction of the infected cells. BTK knockdown in HIV-1 infected cells using siRNA resulted in selective death of infected, but not uninfected, cells. Using BTK specific antibody and small molecule inhibitors including LFM-A13 and a FDA approved compound, Ibrutinib (PCI – 32765), we have found that HIV-1 infected cells are sensitive to apoptotic cell death and result in a decrease in virus production. Overall, our data suggests that HIV-1 infected cells are sensitive to treatments targeting BTK expressed in infected cells. PMID:25672887

  5. Restoration of Corticosteroid Sensitivity in Chronic Obstructive Pulmonary Disease by Inhibition of Mammalian Target of Rapamycin.

    PubMed

    Mitani, Akihisa; Ito, Kazuhiro; Vuppusetty, Chaitanya; Barnes, Peter J; Mercado, Nicolas

    2016-01-15

    Corticosteroid resistance is a major barrier to the effective treatment of chronic obstructive pulmonary disease (COPD). Several molecular mechanisms have been proposed, such as activations of the phosphoinositide-3-kinase/Akt pathway and p38 mitogen-activated protein kinase. However, the mechanism for corticosteroid resistance is still not fully elucidated. To investigate the role of mammalian target of rapamycin (mTOR) in corticosteroid sensitivity in COPD. The corticosteroid sensitivity of peripheral blood mononuclear cells collected from patients with COPD, smokers, and nonsmoking control subjects, or of human monocytic U937 cells exposed to cigarette smoke extract (CSE), was quantified as the dexamethasone concentration required to achieve 30% inhibition of tumor necrosis factor-α-induced CXCL8 production in the presence or absence of the mTOR inhibitor rapamycin. mTOR activity was determined as the phosphorylation of p70 S6 kinase, using Western blotting. mTOR activity was increased in peripheral blood mononuclear cells from patients with COPD, and treatment with rapamycin inhibited this as well as restoring corticosteroid sensitivity. In U937 cells, CSE stimulated mTOR activity and c-Jun expression, but pretreatment with rapamycin inhibited both and also reversed CSE-induced corticosteroid insensitivity. mTOR inhibition by rapamycin restores corticosteroid sensitivity via inhibition of c-Jun expression, and thus mTOR is a potential novel therapeutic target for COPD.

  6. Morphometric Characterization of Rat and Human Alveolar Macrophage Cell Models and their Response to Amiodarone using High Content Image Analysis.

    PubMed

    Hoffman, Ewelina; Patel, Aateka; Ball, Doug; Klapwijk, Jan; Millar, Val; Kumar, Abhinav; Martin, Abigail; Mahendran, Rhamiya; Dailey, Lea Ann; Forbes, Ben; Hutter, Victoria

    2017-12-01

    Progress to the clinic may be delayed or prevented when vacuolated or "foamy" alveolar macrophages are observed during non-clinical inhalation toxicology assessment. The first step in developing methods to study this response in vitro is to characterize macrophage cell lines and their response to drug exposures. Human (U937) and rat (NR8383) cell lines and primary rat alveolar macrophages obtained by bronchoalveolar lavage were characterized using high content fluorescence imaging analysis quantification of cell viability, morphometry, and phospholipid and neutral lipid accumulation. Cell health, morphology and lipid content were comparable (p < 0.05) for both cell lines and the primary macrophages in terms of vacuole number, size and lipid content. Responses to amiodarone, a known inducer of phospholipidosis, required analysis of shifts in cell population profiles (the proportion of cells with elevated vacuolation or lipid content) rather than average population data which was insensitive to the changes observed. A high content image analysis assay was developed and used to provide detailed morphological characterization of rat and human alveolar-like macrophages and their response to a phospholipidosis-inducing agent. This provides a basis for development of assays to predict or understand macrophage vacuolation following inhaled drug exposure.

  7. The use of ebselen for radioprotection in cultured cells and mice.

    PubMed

    Tak, Jean Kyoung; Park, Jeen-Woo

    2009-04-15

    Ionizing radiation induces the production of reactive oxygen species (ROS), which play an important causative role in cell death. Therefore, compounds that control the level of ROS may confer radioprotective effects. Ebselen, a seleno-organic compound, has been shown to protect against cell injury caused by ROS. The objective of this study was to examine the effects of ebselen on radiation-dependent toxicity. We investigated the protective role of ebselen against ionizing radiation in U937 cells and mice. Upon exposure to 20 Gy of gamma-irradiation, there was a distinct difference between untreated cells and the cells pretreated with 5 microM ebselen for 2 h with respect to viability, cellular redox status, and oxidative damage to cells. When cells were exposed to 2 Gy of gamma-irradiation, there was a distinct difference between the untreated cells and the cells pretreated with ebselen with respect to apoptotic features and mitochondrial function. Ebselen administration for 14 days at a daily dosage of 10 mg/kg provided substantial protection against killing and oxidative damage to mice exposed to whole-body irradiation. These data indicate that ebselen may have great potential as a new class of in vivo, non-sulfur-containing radiation protector.

  8. Leonurine protects against tumor necrosis factor-α-mediated inflammation in human umbilical vein endothelial cells.

    PubMed

    Liu, Xinhua; Pan, Lilong; Wang, Xianli; Gong, Qihai; Zhu, Yi Zhun

    2012-05-01

    Leonurine, a bioactive alkaloid compound in Herba leonuri, has various pharmacological activities, including antioxidant and anti-apoptotic capacities. This study was conducted to test the hypothesis that leonurine was able to attenuate tumor necrosis factor (TNF)-α-induced human umbilical vein endothelial cells (HUVEC) activation and the underlying molecular mechanisms. Mitogen-activated protein kinases (MAPK) activation, nuclear factor-κB (NF-κB) activation, and inflammatory mediators expression were detected by Western blot or enzyme-liked immunosorbent assay, intracellular reactive oxygen species (ROS) and NF-κB p65 translocation were measured by immunofluorescence, endothelial cell-monocyte interaction was detected by microscope. Leonurine inhibited U937 cells adhesion to TNF-α-activated HUVEC in a concentration dependent manner. Treatment with leonurine blocked TNF-α-induced mRNA and protein expression of adhesion molecules (intercellular adhesion molecule-1 and vascular cell adhesion molecule-1), cyclooxygenase-2, and monocyte chemoattractant protein-1 in endothelial cells. In addition, leonurine attenuated TNF-α-induced intracellular ROS production in HUVEC. Furthermore, leonurine also suppressed the TNF-α-activated p38 phosphorylation and IκBα degradation. Subsequently, reduced NF-κB p65 phosphorylation, nuclear translocation, and DNA-binding activity were also observed. Our results demonstrated for the first time that the anti-inflammatory properties of leonurine in endothelial cells, at least in part, through suppression of NF-κB activation, which may have a potential therapeutic use for inflammatory vascular diseases. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  9. Effect of propofol on hypoxia re-oxygenation induced neuronal cell damage in vitro*.

    PubMed

    Huang, Y; Zitta, K; Bein, B; Scholz, J; Steinfath, M; Albrecht, M

    2013-01-01

    Propofol may protect neuronal cells from hypoxia re-oxygenation injury, possibly via an antioxidant actions under hypoxic conditions. This study investigated the molecular effects of propofol on hypoxia-induced cell damage using a neuronal cell line. Cultured human IMR-32 cells were exposed to propofol (30 μm) and biochemical and molecular approaches were used to assess cellular effects. Propofol significantly reduced hypoxia-mediated increases in lactate dehydrogenase, a marker of cell damage (mean (SD) for normoxia: 0.39 (0.07) a.u.; hypoxia: 0.78 (0.21) a.u.; hypoxia+propofol: 0.44 (0.17) a.u.; normoxia vs hypoxia, p<0.05; hypoxia vs hypoxia+propofol, p<0.05), reactive oxygen species and hydrogen peroxide. Propofol also diminished the morphological signs of cell damage. Increased amounts of catalase, which degrades hydrogen peroxide, were detected under hypoxic conditions. Propofol decreased the amount of catalase produced, but increased its enzymatic activity. Propofol protects neuronal cells from hypoxia re-oxygenation injury, possibly via a combined direct antioxidant effect along with induced cellular antioxidant mechanisms. Anaesthesia © 2012 The Association of Anaesthetists of Great Britain and Ireland.

  10. 5-Bromodeoxyuridine induced differentiation of a human small cell lung cancer cell line is associated with alteration of gene expression.

    PubMed

    Chen, Yuan; Pacyna-Gengelbach, Manuela; Deutschmann, Nicole; Ye, Fei; Petersen, Iver

    2007-02-16

    Small cell lung cancer (SCLC) appears to arise from neuroendocrine cells with the potential to differentiate into a variety of lung epithelial cell lineages. In order to investigate molecular events underlying the cell type transition in SCLC, we treated a SCLC cell line H526 with a differentiation inducing agent 5-bromodeoxyuridine (BrdU). The treatment led to a dramatic conversion from suspension cells to adherent cells exhibiting an epithelioid phenotype, which remarkably reduced the ability of colony formation in soft agar and suppressed the tumor growth rate in nude mice. The phenotypic transition was consistent with upregulation of surfactant protein C (SFTPC), thyroid transcription factor 1 (TTF-1), Connexin 26 (Cx26), insulin-like growth factor binding protein-related protein 1 (IGFBP-rP1), as well as homeobox genes LAGY, PITX1, and HOXB2. Our data suggest that BrdU induced cell differentiation could be linked to the development of a less aggressively phenotype in small cell lung cancer.

  11. Antitumor activity of ethanol extract from Hippophae rhamnoides L. leaves towards human acute myeloid leukemia cells in vitro.

    PubMed

    Zhamanbaeva, G T; Murzakhmetova, M K; Tuleukhanov, S T; Danilenko, M P

    2014-12-01

    We studied the effects of ethanol extract from Hippophae rhamnoides L. leaves on the growth and differentiation of human acute myeloid leukemia cells (KG-1a, HL60, and U937). The extract of Hippophae rhamnoides L. leaves inhibited cell growth depending on the cell strain and extract dose. In a high concentration (100 μg/ml), the extract also exhibited a cytotoxic effect on HL60 cells. Hippophae rhamnoides L. leaves extract did not affect cell differentiation and did not modify the differentiating effect of calcitriol, active vitamin D metabolite. Inhibition of cell proliferation was paralleled by paradoxical accumulation of phase S cells (synthetic phase) with a reciprocal decrease in the count of G1 cells (presynthetic phase). The extract in a concentration of 100 μg/ml induced the appearance of cells with a subdiploid DNA content (sub-G1 phase cells), which indicated induction of apoptosis. The antiproliferative effect of Hippophae rhamnoides L. extract on acute myeloid leukemia cells was at least partially determined by activation of the S phase checkpoint, which probably led to deceleration of the cell cycle and apoptosis induction.

  12. Apoptotic cell death through inhibition of protein kinase CKII activity by 3,4-dihydroxybenzaldehyde purified from Xanthium strumarium.

    PubMed

    Lee, Bang Hyo; Yoon, Soo-Hyun; Kim, Yun-Sook; Kim, Sang Kook; Moon, Byong Jo; Bae, Young-Seuk

    2008-01-01

    The CKII inhibitory compound was purified from the fruit of Xanthium strumarium by organic solvent extraction and silica gel chromatography. The inhibitory compound was identified as 3,4-dihydroxybenzaldehyde by analysis with FT-IR, FAB-Mass, EI-Mass, (1)H-NMR and (13)C-NMR. 3,4-dihydroxybenzaldehyde inhibited the phosphotransferase activity of CKII with IC(50) of about 783 microM. Steady-state studies revealed that the inhibitor acts as a competitive inhibitor with respect to the substrate ATP. A value of 138.6 microM was obtained for the apparent K(i). Concentration of 300 microM 3,4-dihydroxybenzaldehyde caused 50% growth inhibition of human cancer cell U937. 3,4-dihydroxybenzaldehyde-induced cell death was characterised with the cleavage of poly(ADP-ribose) polymerase and procaspase-3. Furthermore, the inhibitor induced the fragmentation of DNA into multiples of 180 bp, indicating that it triggered apoptosis. This induction of apoptosis by 3,4-dihydroxybenzaldehyde was also confirmed by using flow cytometry analysis. Since CKII is involved in cell proliferation and oncogenesis, these results suggest that 3,4-dihydroxybenzaldehyde may function by inhibiting oncogenic disease, at least in part, through the inhibition of CKII activity.

  13. Emodin induces apoptosis of human osteosarcoma cells via mitochondria- and endoplasmic reticulum stress-related pathways

    PubMed Central

    Ying, Jinhe; Xu, Huan; Wu, Dhua; Wu, Xiaoguang

    2015-01-01

    Aim: Emodin showed anti-cancer activity against multiple human malignant tumors by inducing apoptosis. However, the apoptotic inducing effect against human osteosarcoma and related mechanism are still not studied. This study was aimed to investigate them. Methods: Emodin was used to incubate human OS cell U2OS cells at serially diluted concentrations. Hoechst staining was used to evaluate apoptosis; flow cytometry was applied to assess the collapse of mitochondrial membrane potential (MMP); intracellular ROS generation was detected by DCFH-DA staining; endoplasmic reticulum stress activation was examined by western blotting. Results: Cell apoptosis of U2OS cells was induced by emodin incubation in a concentration-dependent manner; MMP collapse and ROS generation were identified at starting concentration of 80 μmol/L of emodin in a concentration-dependent manner. ER stress activation was found at beginning concentration of 40 μmol/L of emodin. The MMP collapse was inhibited while the ER stress was not inhibited by NAC administration. Conclusions: Emodin induces death of human osteosarcoma cells by initiating ROS-dependent mitochondria-induced and ROS-independent ER stress-induced apoptosis. PMID:26722474

  14. [Streptococcus group B--association with Aerobic vaginitis and ability to human cell lines activation].

    PubMed

    Romanik, Małgorzata; Kafel, Joanna; Lagergård, Teresa; Martirosian, Gayane

    2007-01-01

    The aim of this study was to estimate: the frequency of aerobic vaginitis, susceptibility of the GBS isolated from vagina of non-pregnant women with and without cervicitis to selected antibiotics and chemotherapeutics and the proinflammatory cytokines production by HeLa, THP-I, U - 937 cells after stimulation by vaginal GBS. Our results indicated low frequency of the aerobic vaginitis -4.5% among non-pregnant young women and ability of the vaginal GBS to release proinflammatory cytokines by human cell lines in vitro.

  15. Hyperglycemic Conditions Prime Cells for RIP1-dependent Necroptosis*

    PubMed Central

    LaRocca, Timothy J.; Sosunov, Sergey A.; Shakerley, Nicole L.; Ten, Vadim S.; Ratner, Adam J.

    2016-01-01

    Necroptosis is a RIP1-dependent programmed cell death (PCD) pathway that is distinct from apoptosis. Downstream effector pathways of necroptosis include formation of advanced glycation end products (AGEs) and reactive oxygen species (ROS), both of which depend on glycolysis. This suggests that increased cellular glucose may prime necroptosis. Here we show that exposure to hyperglycemic levels of glucose enhances necroptosis in primary red blood cells (RBCs), Jurkat T cells, and U937 monocytes. Pharmacologic or siRNA inhibition of RIP1 prevented the enhanced death, confirming it as RIP1-dependent necroptosis. Hyperglycemic enhancement of necroptosis depends upon glycolysis with AGEs and ROS playing a role. Total levels of RIP1, RIP3, and mixed lineage kinase domain-like (MLKL) proteins were increased following treatment with high levels of glucose in Jurkat and U937 cells and was not due to transcriptional regulation. The observed increase in RIP1, RIP3, and MLKL protein levels suggests a potential positive feedback mechanism in nucleated cell types. Enhanced PCD due to hyperglycemia was specific to necroptosis as extrinsic apoptosis was inhibited by exposure to high levels of glucose. Hyperglycemia resulted in increased infarct size in a mouse model of brain hypoxia-ischemia injury. The increased infarct size was prevented by treatment with nec-1s, strongly suggesting that increased necroptosis accounts for exacerbation of this injury in conditions of hyperglycemia. This work reveals that hyperglycemia represents a condition in which cells are extraordinarily susceptible to necroptosis, that local glucose levels alter the balance of PCD pathways, and that clinically relevant outcomes may depend on glucose-mediated effects on PCD. PMID:27129772

  16. Carprofen analogues as sirtuin inhibitors: enzyme and cellular studies.

    PubMed

    Mellini, Paolo; Carafa, Vincenzo; Di Rienzo, Barbara; Rotili, Dante; De Vita, Daniela; Cirilli, Roberto; Gallinella, Bruno; Provvisiero, Donatella Paola; Di Maro, Salvatore; Novellino, Ettore; Altucci, Lucia; Mai, Antonello

    2012-11-01

    The best of both: SIRT1/2 inhibitors were developed by combining chemical features of selisistat (SIRT1-selective inhibitor; blue) and carprofen (anti-inflammatory drug; red). The most potent compound (shown) increased acetyl-p53 and acetyl-α-tubulin levels, and induced slight apoptosis at 50 μM in U937 cells, differently from selisistat and carprofen. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. RhoE interferes with Rb inactivation and regulates the proliferation and survival of the U87 human glioblastoma cell line

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Poch, Enric; Minambres, Rebeca; Mocholi, Enric

    2007-02-15

    Rho GTPases are important regulators of actin cytoskeleton, but they are also involved in cell proliferation, transformation and oncogenesis. One of this proteins, RhoE, inhibits cell proliferation, however the mechanism that regulates this effect remains poorly understood. Therefore, we undertook the present study to determine the role of RhoE in the regulation of cell proliferation. For this purpose we generated an adenovirus system to overexpress RhoE in U87 glioblastoma cells. Our results show that RhoE disrupts actin cytoskeleton organization and inhibits U87 glioblastoma cell proliferation. Importantly, RhoE expressing cells show a reduction in Rb phosphorylation and in cyclin D1 expression.more » Furthermore, RhoE inhibits ERK activation following serum stimulation of quiescent cells. Based in these findings, we propose that RhoE inhibits ERK activation, thereby decreasing cyclin D1 expression and leading to a reduction in Rb inactivation, and that this mechanism is involved in the RhoE-induced cell growth inhibition. Moreover, we also demonstrate that RhoE induces apoptosis in U87 cells and also in colon carcinoma and melanoma cells. These results indicate that RhoE plays an important role in the regulation of cell proliferation and survival, and suggest that this protein may be considered as an oncosupressor since it is capable to induce apoptosis in several tumor cell lines.« less

  18. Role of Rab5 in the formation of macrophage-derived foam cell.

    PubMed

    Chan, Lokwern; Hong, Jin; Pan, Junjie; Li, Jian; Wen, Zhichao; Shi, Haiming; Ding, Jianping; Luo, Xinping

    2017-09-12

    Foam cells play a key role in the occurrence and pathogenesis of atherosclerosis. Its formation starts with the ingestion of oxidized low-density lipoprotein (oxLDL). The process is associated with Ras related protein in brain 5 (Rab5) which plays a critical role in regulating endocytosis and early endosomal trafficking. Base on this, we presumed that Rab5 might participate in the maturation of foam cell. The aim of this study is to investigate the effect of Rab5 on macrophage cholesterol during the evolvement of macrophage when induced by oxLDL to the formation of foam cell. Immunohistochemistry was performed to analyze the distribution of macrophages and Rab5 in atherosclerotic plaque. RNA inteference study and transfection of inactive mutant (GFP-Rab5-S34N) and active mutant (GFP-Rab5-Q79L) in U937-derived macrophage were utilized to investigate the impact of Rab5 on the process of macrophage cholesterol, which could be detected by oil red O staining, determination of intracellular lipid content, filipin staining, nile red staining and the costaining of early endosome antigen-1 (EEA-1) and 1,1'-dioctadecyl-3,3,3',3'-tetramethylin dicarbocyanine (Dil)-labelled oxLDL (Dil-oxLDL). Rab5 was found abundantly localized in macrophage rich areas of human atherosclerotic lesions. On the foam cell study, the expression of Rab5 was increased after the incubation of oxLDL. The inteference study indicated the depletion of Rab5 led to the decreases of oil red O staining areas, total cholesterol and cholesterol esters in U937-derived marophages. Moreover, the fluorescence intensity of filipin and nile red staining were lower in GFP-Rab5-S34N as compared with GFP-Rab5-Q79L. The confocal study demonstrated less Dil-oxLDL was internalized in GFP-Rab5-S34N as compared with GFP-Rab5-Q79L; the result showed also the decrease in colocalization of internalized Dil-oxLDL and EEA-1 for GFP-Rab5-S34N as compared with GFP-Rab5-Q79L. Rab5 plays an important role in modulating the

  19. Bioactivity screening and mass spectrometric confirmation for the detection of PPARδ agonists that increase type 1 muscle fibres.

    PubMed

    Bovee, Toine F H; Blokland, Marco; Kersten, Sander; Hamers, Astrid R M; Heskamp, Henri H; Essers, Martien L; Nielen, Michel W F; van Ginkel, Leendert A

    2014-01-01

    Sensitive and robust bioassays able to detect nuclear receptor activation are very useful for veterinary and doping control, pharmaceutical industry and environmental scientists. Here, we used bioassays based on human leukemic monocyte lymphoma U937 and human liver hepatocellular carcinoma HepG2 cell lines to detect the ligand-induced activation of the peroxisome proliferator-activated receptor delta (PPARδ). Exposure of U937 cells to the PPARδ agonist GW501516 resulted in a marked increase in mRNA expression of the PPARδ target gene Angptl4 which was quantified by qRT-PCR analysis. Exposure of HepG2 cells transiently transfected with a PPARδ expression plasmid and a PPAR-response element-driven luciferase reporter plasmid to PPARδ agonists GW501516, GW610742 and L-165041 resulted in clear dose-response curves. Although the qRT-PCR resulted in higher fold inductions, the luciferase assay with transfected HepG2 cells is cheaper and quicker and about ten times more sensitive to GW501516 compared to analysis of Angptl4 mRNA expression in U937 cells by qRT-PCR. The HepG2-based luciferase assay was therefore used to screen GW501516-spiked supplements and feed and water samples. After liquid extraction and clean-up by solid phase extraction using a weak anion exchange column, extracts were screened in the HepG2 bioassay followed by confirmation with a newly developed UPLC-MS/MS method, using two transitions for each compound, i.e., for GW501516, 454.07>188.15 (collision energy (CE) 46 V) and 454.07>257.08 (CE 30 V); for GW610742, 472.07>206.2 (CE 48 V) and 472.07>275.08 (CE 30 V); and for L-165041, 401.2>193.15 (CE 26 V) and 401.2>343.2 (CE 20 V).

  20. EphA2 promotes cell adhesion and spreading of monocyte and monocyte/macrophage cell lines on integrin ligand-coated surfaces.

    PubMed

    Saeki, Noritaka; Nishino, Shingo; Shimizu, Tomohiro; Ogawa, Kazushige

    2015-01-01

    Eph signaling, which arises following stimulation by ephrins, is known to induce opposite cell behaviors such as promoting and inhibiting cell adhesion as well as promoting cell-cell adhesion and repulsion by altering the organization of the actin cytoskeleton and influencing the adhesion activities of integrins. However, crosstalk between Eph/ephrin with integrin signaling has not been fully elucidated in leukocytes, including monocytes and their related cells. Using a cell attachment stripe assay, we have shown that, following stimulation with ephrin-A1, kinase-independent EphA2 promoted cell spreading/elongation as well as adhesion to integrin ligand-coated surfaces in cultured U937 (monocyte) and J774.1 (monocyte/macrophage) cells as well as sublines of these cells expressing dominant negative EphA2 that lacks most of the intracellular region. Moreover, a pull-down assay showed that dominant negative EphA2 is recruited to the β2 integrin/ICAM1 and β2 integrin/VCAM1 molecular complexes in the subline cells following stimulation with ephrin-A1-Fc. Notably, this study is the first comprehensive analysis of the effects of EphA2 receptors on integrin-mediated cell adhesion in monocytic cells. Based on these findings we propose that EphA2 promotes cell adhesion by an unknown signaling pathway that largely depends on the extracellular region of EphA2 and the activation of outside-in integrin signaling.

  1. An Aminopropyl Carbazole Derivative Induces Neurogenesis by Increasing Final Cell Division in Neural Stem Cells.

    PubMed

    Shin, Jae-Yeon; Kong, Sun-Young; Yoon, Hye Jin; Ann, Jihyae; Lee, Jeewoo; Kim, Hyun-Jung

    2015-07-01

    P7C3 and its derivatives, 1-(3,6-dibromo-9H-carbazol-9-yl)-3-(p-tolylamino)propan-2-ol (1) and N-(3-(3,6-dibromo-9H-carbazol-9-yl)-2-hydroxypropyl)-N-(3-methoxyphenyl)-4-methylbenzenesulfonamide (2), were previously reported to increase neurogenesis in rat neural stem cells (NSCs). Although P7C3 is known to increase neurogenesis by protecting newborn neurons, it is not known whether its derivatives also have protective effects to increase neurogenesis. In the current study, we examined how 1 induces neurogenesis. The treatment of 1 in NSCs increased numbers of cells in the absence of epidermal growth factor (EGF) and fibroblast growth factor 2 (FGF2), while not affecting those in the presence of growth factors. Compound 1 did not induce astrocytogenesis during NSC differentiation. 5-Bromo-2'-deoxyuridine (BrdU) pulsing experiments showed that 1 significantly enhanced BrdU-positive neurons. Taken together, our data suggest that 1 promotes neurogenesis by the induction of final cell division during NSC differentiation.

  2. Nicotinamide induces differentiation of embryonic stem cells into insulin-secreting cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vaca, Pilar; Berna, Genoveva; Araujo, Raquel

    2008-03-10

    The poly(ADP-ribose) polymerase (PARP) inhibitor, nicotinamide, induces differentiation and maturation of fetal pancreatic cells. In addition, we have previously reported evidence that nicotinamide increases the insulin content of cells differentiated from embryonic stem (ES) cells, but the possibility of nicotinamide acting as a differentiating agent on its own has never been completely explored. Islet cell differentiation was studied by: (i) X-gal staining after neomycin selection; (ii) BrdU studies; (iii) single and double immunohistochemistry for insulin, C-peptide and Glut-2; (iv) insulin and C-peptide content and secretion assays; and (v) transplantation of differentiated cells, under the kidney capsule, into streptozotocin (STZ)-diabetic mice.more » Here we show that undifferentiated mouse ES cells treated with nicotinamide: (i) showed an 80% decrease in cell proliferation; (ii) co-expressed insulin, C-peptide and Glut-2; (iii) had values of insulin and C-peptide corresponding to 10% of normal mouse islets; (iv) released insulin and C-peptide in response to stimulatory glucose concentrations; and (v) after transplantation into diabetic mice, normalized blood glucose levels over 7 weeks. Our data indicate that nicotinamide decreases ES cell proliferation and induces differentiation into insulin-secreting cells. Both aspects are very important when thinking about cell therapy for the treatment of diabetes based on ES cells.« less

  3. Acute dyskerin depletion triggers cellular senescence and renders osteosarcoma cells resistant to genotoxic stress-induced apoptosis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, Ping; Mobasher, Maral E.; Alawi, Faizan, E-mail: falawi@upenn.edu

    Highlights: • Dyskerin depletion triggers cellular senescence in U2OS osteosarcoma cells. • Dyskerin-depleted cells are resistant to apoptosis induced by genotoxic stress. • Chromatin relaxation sensitizes dyskerin-depleted cells to apoptosis. - Abstract: Dyskerin is a conserved, nucleolar RNA-binding protein implicated in an increasing array of fundamental cellular processes. Germline mutation in the dyskerin gene (DKC1) is the cause of X-linked dyskeratosis congenita (DC). Conversely, wild-type dyskerin is overexpressed in sporadic cancers, and high-levels may be associated with poor prognosis. It was previously reported that acute loss of dyskerin function via siRNA-mediated depletion slowed the proliferation of transformed cell lines. However,more » the mechanisms remained unclear. Using human U2OS osteosarcoma cells, we show that siRNA-mediated dyskerin depletion induced cellular senescence as evidenced by proliferative arrest, senescence-associated heterochromatinization and a senescence-associated molecular profile. Senescence can render cells resistant to apoptosis. Conversely, chromatin relaxation can reverse the repressive effects of senescence-associated heterochromatinization on apoptosis. To this end, genotoxic stress-induced apoptosis was suppressed in dyskerin-depleted cells. In contrast, agents that induce chromatin relaxation, including histone deacetylase inhibitors and the DNA intercalator chloroquine, sensitized dyskerin-depleted cells to apoptosis. Dyskerin is a core component of the telomerase complex and plays an important role in telomere homeostasis. Defective telomere maintenance resulting in premature senescence is thought to primarily underlie the pathogenesis of X-linked DC. Since U2OS cells are telomerase-negative, this leads us to conclude that loss of dyskerin function can also induce cellular senescence via mechanisms independent of telomere shortening.« less

  4. The influence of differential processing of procathepsin H on its aminopeptidase activity, secretion and subcellular localization in human cell lines.

    PubMed

    Rojnik, Matija; Jevnikar, Zala R; Doljak, Bojan; Turk, Samo; Zidar, Nace; Kos, Janko

    2012-10-01

    Cathepsin H is a unique member of the cysteine cathepsins that acts primarily as an aminopeptidase. Like other cysteine cathepsins, it is synthesized as an inactive precursor and activated by proteolytic removal of its propeptide. Here we demonstrate that, in human cells, the processing of the propeptide is an autocatalytic, multistep process proceeding from an inactive 41kDa pro-form, through a 30kDa intermediate form, to the 28kDa mature form. Tyr87P and Gly90P were identified as the two major endopeptidase cleavage sites, converting the 30kDa form into the mature 28kDa form. The level of processing differs significantly in different human cell lines. In monocyte-derived macrophages U937 and prostate cancer cells PC-3, the 28kDa form is predominant, whereas in osteoblasts HOS the processing from the 30kDa form to the 28kDa form is significantly lower. The aminopeptidase activity of the enzyme and its subcellular localization are independent of the product, however the 30kDa form was not secreted in HOS cells. The activity of the resulting cathepsin H in U937 cells was significantly lower than that in HOS cells, presumably due to the high levels of endogenous cysteine protease inhibitor cystatin F present specifically in this cell line. These results provide an insight into the dependence of human cathepsin H processing and regulation on cell type. Copyright © 2012 Elsevier GmbH. All rights reserved.

  5. Increased expression of human leucocyte antigen class I free heavy chains on monocytes of patients with spondyloarthritis and cells transfected with HLA-B27.

    PubMed

    Ding, Jin; Feng, Yuan; Zheng, Zhao Hui; Li, Xue Yi; Wu, Zhen Biao; Zhu, Ping

    2015-02-01

    Human leucocyte antigen (HLA)-B27 expression is correlated with spondyloarthritis (SpA), but its role in disease pathogenesis remains unclear. The aim of the study was to determine whether HLA-B27 free heavy chain (FHC) contributes to SpA pathogenesis. Flow cytometry was used to analyse the FHC expression on CD3+ and CD14+ cells in the peripheral blood (PB) and synovial fluid (SF) from SpA patients, healthy controls, and rheumatoid arthritis (RA) patients. Human monocytic U937 cell lines stably expressing enhanced green fluorescence protein (EGFP)/HLA-B27, EGFP/HLA-A2 or EGFP alone were created to further investigate the relation between HLA-B27 and FHC expression. The relative FHC level on CD14+ PB cells was significantly higher in SpA patients than in controls, but lower than on the SF cells of SpA patients. No significant correlation was found for relative FHC expression with HLA-B27 or β2-microglobulin expression. HLA-B27-transfected U937 cells expressed higher FHC levels than either EGFP/HLA-A2- or EGFP-transfected cells. HLA class I FHC expression was significantly increased on monocytes of SpA patients and HLA-B27-transfected cells, implying that FHC, perhaps mostly derived from HLA-B27, plays an important role in SpA pathogenesis. © 2014 John Wiley & Sons Ltd.

  6. CD1 molecule expression on human monocytes induced by granulocyte-macrophage colony-stimulating factor.

    PubMed

    Kasinrerk, W; Baumruker, T; Majdic, O; Knapp, W; Stockinger, H

    1993-01-15

    In this paper we demonstrate that granulocyte-macrophage CSF (GM-CSF) specifically induces the expression of CD1 molecules, CD1a, CD1b and CD1c, upon human monocytes. CD1 molecules appeared upon monocytes on day 1 of stimulation with rGM-CSF, and expression was up-regulated until day 3. Monocytes cultured in the presence of LPS, FMLP, PMA, recombinant granulocyte-CSF, rIFN-gamma, rTNF-alpha, rIL-1 alpha, rIL-1 beta, and rIL-6 remained negative. The induction of CD1 molecules by rGM-CSF was restricted to monocytes, since no such effect was observed upon peripheral blood granulocytes, PBL, and the myeloid cell lines Monomac1, Monomac6, MV4/11, HL60, U937, THP1, KG1, and KG1A. CD1a mRNA was detectable in rGM-CSF-induced monocytes but not in those freshly isolated. SDS-PAGE and immunoblotting analyses of CD1a mAb VIT6 immunoprecipitate from lysate of rGM-CSF-activated monocytes revealed an appropriate CD1a polypeptide band of 49 kDa associated with beta 2-microglobulin. Expression of CD1 molecules on monocytes complements the distribution of these structures on accessory cells, and their specific induction by GM-CSF strengthens the suggestion that CD1 is a family of crucial structures required for interaction between accessory cells and T cells.

  7. Plasminogen-induced aggregation of PANC-1 cells requires conversion to plasmin and is inhibited by endogenous plasminogen activator inhibitor-1.

    PubMed

    Deshet, Naamit; Lupu-Meiri, Monica; Espinoza, Ingrid; Fili, Oded; Shapira, Yuval; Lupu, Ruth; Gershengorn, Marvin C; Oron, Yoram

    2008-09-01

    PANC-1 cells express proteinase-activated receptors (PARs)-1, -2, and respond to their activation by transient elevation of cytosolic [Ca(2+)] and accelerated aggregation (Wei et al., 2006, J Cell Physiol 206:322-328). We studied the effect of plasminogen (PGN), an inactive precursor of the PAR-1-activating protease, plasmin (PN) on aggregation of pancreatic adenocarcinoma (PDAC) cells. A single dose of PGN time- and dose-dependently promoted PANC-1 cells aggregation in serum-free medium, while PN did not. PANC-1 cells express urokinase plasminogen activator (uPA), which continuously converted PGN to PN. This activity and PGN-induced aggregation were inhibited by the uPA inhibitor amiloride. PGN-induced aggregation was also inhibited by alpha-antiplasmin and by the PN inhibitor epsilon-aminocaproic acid (EACA). Direct assay of uPA activity revealed very low rate, markedly enhanced in the presence of PGN. Moreover, in PGN activator inhibitor 1-deficient PANC-1 cells, uPA activity and PGN-induced aggregation were markedly potentiated. Two additional human PDAC cell lines, MiaPaCa and Colo347, were assayed for PGN-induced aggregation. Both cell lines responded by aggregation and exhibited PGN-enhanced uPA activity. We hypothesized that the continuous conversion of PGN to PN by endogenous uPA is limited by PN's degradation and negatively controlled by endogenously produced PAI-1. Indeed, we found that PANC-1 cells inactivate PN with t1/2 of approximately 7 h, while the continuous addition of PN promoted aggregation. Our data suggest that PANC-1 cells possess intrinsic, PAI-1-sensitive mechanism for promotion of aggregation and differentiation by prolonged exposure to PGN and, possibly, additional precursors of PARs agonists.

  8. SAHA-induced TRAIL-sensitisation of Multiple Myeloma cells is enhanced in 3D cell culture.

    PubMed

    Arhoma, A; Chantry, A D; Haywood-Small, S L; Cross, N A

    2017-11-15

    Multiple Myeloma (MM) is currently incurable despite many novel therapies. Tumour Necrosis Factor-Related Apoptosis-Inducing Ligand (TRAIL) is a potential anti-tumour agent although effects as a single agent are limited. In this study, we investigated whether the Histone Deacetylase (HDAC) inhibitor SAHA can enhance TRAIL-induced apoptosis and target TRAIL resistance in both suspension culture, and 3D cell culture as a model of disseminated MM lesions that form in bone. The effects of SAHA and/or TRAIL in 6 Multiple Myeloma cell lines were assessed in both suspension cultures and in an Alginate-based 3D cell culture model. The effect of SAHA and/or TRAIL was assessed on apoptosis by assessment of nuclear morphology using Hoechst 33342/Propidium Iodide staining. Viable cell number was assessed by CellTiter-Glo luminescence assay, Caspase-8 and -9 activities were measured by Caspase-Glo™ assay kit. TRAIL-resistant cells were generated by culture of RPMI 8226 and NCI-H929 by acute exposure to TRAIL followed by selection of TRAIL-resistant cells. TRAIL significantly induced apoptosis in a dose-dependent manner in OPM-2, RPMI 8226, NCI-H929, U266, JJN-3 MM cell lines and ADC-1 plasma cell leukaemia cells. SAHA amplified TRAIL responses in all lines except OPM-2, and enhanced TRAIL responses were both via Caspase-8 and -9. SAHA treatment induced growth inhibition that further increased in the combination treatment with TRAIL in MM cells. The co-treatment of TRAIL and SAHA reduced viable cell numbers all cell lines. TRAIL responses were further potentiated by SAHA in 3D cell culture in NCI-H929, RPMI 8226 and U266 at lower TRAIL + SAHA doses than in suspension culture. However TRAIL responses in cells that had been selected for TRAIL resistance were not further enhanced by SAHA treatment. SAHA is a potent sensitizer of TRAIL responses in both TRAIL sensitive and resistant cell lines, in both suspension and 3D culture, however SAHA did not sensitise TRAIL-sensitive cell

  9. The development of the Ariane-4 adaptor 937B

    NASA Astrophysics Data System (ADS)

    Jimenez, A.; Pascual, J.; Lechon, J.; Aceituna, J.

    1990-06-01

    The Carbon Fiber Reinforced Plastic (CFRP) sandwich shell Ariane 4 payload adapter 937B is described. Two interface metallic end rings are incorporated in the design. The overall dimensions of the adapter are described. The main feature of the adapter is the use of cocuring technology in manufacturing the entire adapter sandwich shell in one piece. Manufacturing cost reductions are described. Qualification test results are presented. Mathematical models used in design analysis of the adapter are outlined.

  10. Hyperglycemic Conditions Prime Cells for RIP1-dependent Necroptosis.

    PubMed

    LaRocca, Timothy J; Sosunov, Sergey A; Shakerley, Nicole L; Ten, Vadim S; Ratner, Adam J

    2016-06-24

    Necroptosis is a RIP1-dependent programmed cell death (PCD) pathway that is distinct from apoptosis. Downstream effector pathways of necroptosis include formation of advanced glycation end products (AGEs) and reactive oxygen species (ROS), both of which depend on glycolysis. This suggests that increased cellular glucose may prime necroptosis. Here we show that exposure to hyperglycemic levels of glucose enhances necroptosis in primary red blood cells (RBCs), Jurkat T cells, and U937 monocytes. Pharmacologic or siRNA inhibition of RIP1 prevented the enhanced death, confirming it as RIP1-dependent necroptosis. Hyperglycemic enhancement of necroptosis depends upon glycolysis with AGEs and ROS playing a role. Total levels of RIP1, RIP3, and mixed lineage kinase domain-like (MLKL) proteins were increased following treatment with high levels of glucose in Jurkat and U937 cells and was not due to transcriptional regulation. The observed increase in RIP1, RIP3, and MLKL protein levels suggests a potential positive feedback mechanism in nucleated cell types. Enhanced PCD due to hyperglycemia was specific to necroptosis as extrinsic apoptosis was inhibited by exposure to high levels of glucose. Hyperglycemia resulted in increased infarct size in a mouse model of brain hypoxia-ischemia injury. The increased infarct size was prevented by treatment with nec-1s, strongly suggesting that increased necroptosis accounts for exacerbation of this injury in conditions of hyperglycemia. This work reveals that hyperglycemia represents a condition in which cells are extraordinarily susceptible to necroptosis, that local glucose levels alter the balance of PCD pathways, and that clinically relevant outcomes may depend on glucose-mediated effects on PCD. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  11. EVA1A inhibits GBM cell proliferation by inducing autophagy and apoptosis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shen, Xue; Kan, Shifeng; Liu, Zhen

    Eva-1 homolog A (EVA1A) is a novel lysosome and endoplasmic reticulum-associated protein involved in autophagy and apoptosis. In this study, we constructed a recombinant adenovirus 5-EVA1A vector (Ad5-EVA1A) to overexpress EVA1A in glioblastoma (GBM) cell lines and evaluated its anti-tumor activities in vitro and in vivo. We found that overexpression of EVA1A in three GBM cell lines (U251, U87 and SHG44) resulted in a suppression of tumor cell growth via activation of autophagy and induction of cell apoptosis in a dose- and time-dependent manner. EVA1A-mediated autophagy was associated with inactivation of the mTOR/RPS6KB1 signaling pathway. Furthermore in vivo, overexpression ofmore » EVA1A successfully inhibited tumor growth in NOD/SCID mice. Our data suggest that EVA1A-induced autophagy and apoptosis play a role in suppressing the development of GBM and their up-regulation may be an effective method for treating this form of cancer. - Highlights: • Overexpression of EVA1A suppresses GBM cell growth. • EVA1A induces autophagy through the mTOR/RPS6KB1 pathway. • EVA1A induces GBM cell apoptosis. • EVA1A inhibits the development of GBM in vivo.« less

  12. Microencapsulation of dopamine neurons derived from human induced pluripotent stem cells.

    PubMed

    Konagaya, Shuhei; Iwata, Hiroo

    2015-01-01

    Dopamine neurons derived from induced pluripotent stem cells have been widely studied for the treatment of Parkinson's disease. However, various difficulties remain to be overcome, such as tumor formation, fragility of dopamine neurons, difficulty in handling large numbers of dopamine neurons, and immune reactions. In this study, human induced pluripotent stem cell-derived precursors of dopamine neurons were encapsulated in agarose microbeads. Dopamine neurons in microbeads could be handled without specific protocols, because the microbeads protected the fragile dopamine neurons from mechanical stress. hiPS cells were seeded on a Matrigel-coated dish and cultured to induce differentiation into a dopamine neuronal linage. On day 18 of culture, cells were collected from the culture dishes and seeded into U-bottom 96-well plates to induce cell aggregate formation. After 5 days, cell aggregates were collected from the plates and microencapsulated in agarose microbeads. The microencapsulated aggregates were cultured for an additional 45 days to induce maturation of dopamine neurons. Approximately 60% of all cells differentiated into tyrosine hydroxylase-positive neurons in agarose microbeads. The cells released dopamine for more than 40 days. In addition, microbeads containing cells could be cryopreserved. hiPS cells were successfully differentiated into dopamine neurons in agarose microbeads. Agarose microencapsulation provides a good supporting environment for the preparation and storage of dopamine neurons. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Vitamin K4 inhibits the proliferation and induces apoptosis of U2OS osteosarcoma cells via mitochondrial dysfunction.

    PubMed

    Di, Weihua; Khan, Muhammad; Gao, Yong; Cui, Jing; Wang, Deqiang; Qu, Mingfen; Feng, Liangtao; Maryam, Amara; Gao, Hongwen

    2017-01-01

    Vitamin K (VK) is a group of fat‑soluble vitamins, which serve important roles in blood coagulation and bone metabolism. A recent study reported that several VK subtypes possess antitumor properties, however the antitumor effects of VK in osteosarcoma are unknown. The present study aimed to identify the antitumor effects of VK in osteosarcoma and the possible underlying mechanism of action. The effect of VK4 on cell viability was determined using a 3‑(4,5‑dimethylthiazol‑2‑yl)‑2,5‑diphenyltetrazolium bromide (MTT) assay. Cellular and nuclear morphological changes were observed by phase contrast microscopy. Cell cycle analysis, apoptotic rate, mitochondrial membrane potential and levels of reactive oxygen species (ROS) were detected by flow cytometry. In vitro cancer cell migration activities were evaluated using a Wound healing assay and Transwell microplates. The results demonstrated that VK4 arrested the cells in S phase and induced apoptosis. Additional mechanistic studies indicated that the induction of apoptosis by VK4 was associated with the increased production of reactive oxygen species, dissipation of the mitochondrial membrane potential, decreased Bcl‑2 family protein expression levels and activation of caspase‑3. In conclusion, the results suggest that the sensitivity of U2OS osteosarcoma cells to VK4 may be as a result of mitochondrial dysfunction. As it is readily available for human consumption, VK4 may therefore present a novel therapeutic candidate for the treatment of patients with osteosarcoma.

  14. Infrasound sensitizes human glioblastoma cells to cisplatin-induced apoptosis.

    PubMed

    Rachlin, Kenneth; Moore, Dan H; Yount, Garret

    2013-11-01

    The development of nontoxic agents that can selectively enhance the cytotoxicity of chemotherapy is an important aim in oncology. This study evaluates the ability of infrasound exposure to sensitize glioblastoma cells to cisplatin-induced apoptosis. The infrasound was delivered using a device designed to replicate the unique infrasound emissions measured during external Qigong treatments. Human glioblastoma cell lines harboring wild-type p53 (U87) or mutant p53 (U251, SF210, and SF188) were treated in culture with cisplatin, infrasound emissions, or the combination of the 2 agents. Induction of apoptosis was quantified after 24 hours by flow cytometry following annexin V/propidium iodide staining. Infrasound emissions alone, delivered at moderate levels (~10 mPa) with dynamic frequency content (7-13 Hz), did not induce apoptosis, yet combining infrasound with cisplatin augmented the induction of apoptosis by cisplatin in all the 4 cell lines (P < .05). Increased cellular uptake of the fluorophore calcein associated with infrasound exposure was quantified by fluorescence microscopy as well as flow cytometry, demonstrating increased cell membrane permeability. The 4 cell lines differed in the degree to which infrasound exposure increased calcein uptake, and these differences were predictive of the extent to which infrasound enhanced cisplatin-induced apoptosis. When exposed to specific frequencies, membrane permeabilization also appeared to be differentially responsive for each cell line, suggesting the potential for selective targeting of tissue types using isolated infrasonic frequencies. Additionally, the pressure amplitudes used in this study were several orders of magnitude less than those used in similar studies involving ultrasound and shock waves. The results of this study provide support for using infrasound to enhance the chemotherapeutic effects of cisplatin in a clinical setting.

  15. Downregulation of ROCK2 through nanocomplex sensitizes the cytotoxic effect of temozolomide in U251 glioma cells.

    PubMed

    Wen, Xiaojun; Huang, Amin; Liu, Zhonglin; Liu, Yunyun; Hu, Jingyang; Liu, Jun; Shuai, Xintao

    2014-01-01

    Rho-associated coiled-coil kinase 2 (ROCK2) is an attractive therapeutic target because it is overexpressed in many malignancies, including glioma. Therefore, we designed the current study to determine whether the downregulation of ROCK2 would sensitize the cytotoxic effect of temozolomide (TMZ) in U251 cells. Glycol-polyethyleneimine (PEG-PEI) was used to deliver siROCK2 to U251 cells, and the physical characteristics of the PEG-PEI/siROCK2 complex (referred to as the siROCK2 complex) were investigated. The transfection efficiency and cell uptake were determined by flow cytometry (FCM) and confocal laser microscopy (CLSM), respectively. U251 cells were then treated with 100 μM TMZ, siROCK2 complexes or their combination. The apoptosis rate and cell migration were measured by FCM and wound-healing assay, respectively. The levels of Bax, Bcl-2, cleaved caspase-3, MMP-2, and MMP-9 were detected to analyze the degrees of apoptosis and migration. Our results revealed that the characteristics of the siROCK2 complexes depended closely on the N/P ratios. PEG-PEI served as a good vector for siROCK2 and exhibited low cytotoxicity toward U251 cells. The CLSM assay showed that the siROCK2 complexes were successfully uptaken and that both the protein and mRNA levels of ROCK2 were significantly suppressed. Furthermore, the combination treatment induced a higher apoptosis rate and markedly increased the gap distance of U251 cells in the wound-healing assay. Levels of the proapoptotic proteins Bax and cleaved caspase-3 were significantly increased, whereas levels of the antiapoptotic protein Bcl-2 and the migration-related proteins MMP-2 and MMP-9 were significantly reduced by the combination treatment compared with either treatment alone. In conclusion, our results demonstrate that the combination of TMZ and siROCK2 effectively induces apoptosis and inhibits the migration of U251 cells. Therefore, the combination of TMZ and siROCK2 complex is a potential therapeutic approach

  16. Downregulation of ROCK2 through Nanocomplex Sensitizes the Cytotoxic Effect of Temozolomide in U251 Glioma Cells

    PubMed Central

    Liu, Yunyun; Hu, Jingyang; Liu, Jun; Shuai, Xintao

    2014-01-01

    Objective Rho-associated coiled-coil kinase 2 (ROCK2) is an attractive therapeutic target because it is overexpressed in many malignancies, including glioma. Therefore, we designed the current study to determine whether the downregulation of ROCK2 would sensitize the cytotoxic effect of temozolomide (TMZ) in U251 cells. Methods Glycol-polyethyleneimine (PEG-PEI) was used to deliver siROCK2 to U251 cells, and the physical characteristics of the PEG-PEI/siROCK2 complex (referred to as the siROCK2 complex) were investigated. The transfection efficiency and cell uptake were determined by flow cytometry (FCM) and confocal laser microscopy (CLSM), respectively. U251 cells were then treated with 100 μM TMZ, siROCK2 complexes or their combination. The apoptosis rate and cell migration were measured by FCM and wound-healing assay, respectively. The levels of Bax, Bcl-2, cleaved caspase-3, MMP-2, and MMP-9 were detected to analyze the degrees of apoptosis and migration. Results Our results revealed that the characteristics of the siROCK2 complexes depended closely on the N/P ratios. PEG-PEI served as a good vector for siROCK2 and exhibited low cytotoxicity toward U251 cells. The CLSM assay showed that the siROCK2 complexes were successfully uptaken and that both the protein and mRNA levels of ROCK2 were significantly suppressed. Furthermore, the combination treatment induced a higher apoptosis rate and markedly increased the gap distance of U251 cells in the wound-healing assay. Levels of the proapoptotic proteins Bax and cleaved caspase-3 were significantly increased, whereas levels of the antiapoptotic protein Bcl-2 and the migration-related proteins MMP-2 and MMP-9 were significantly reduced by the combination treatment compared with either treatment alone. Conclusions In conclusion, our results demonstrate that the combination of TMZ and siROCK2 effectively induces apoptosis and inhibits the migration of U251 cells. Therefore, the combination of TMZ and siROCK2 complex

  17. Induction of cell cycle changes and modulation of apoptogenic/anti-apoptotic and extracellular signaling regulatory protein expression by water extracts of I'm-Yunity™ (PSP)

    PubMed Central

    Hsieh, Tze-chen; Wu, Peili; Park, Spencer; Wu, Joseph M

    2006-01-01

    Background I'm-Yunity™ (PSP) is a mushroom extract derived from deep-layer cultivated mycelia of the patented Cov-1 strain of Coriolus versicolor (CV), which contains as its main bioactive ingredient a family of polysaccharo-peptide with heterogeneous charge properties and molecular sizes. I'm-Yunity™ (PSP) is used as a dietary supplement by cancer patients and by individuals diagnosed with various chronic diseases. Laboratory studies have shown that I'm-Yunity™ (PSP) enhances immune functions and also modulates cellular responses to external challenges. Recently, I'm-Yunity™ (PSP) was also reported to exert potent anti-tumorigenic effects, evident by suppression of cell proliferation and induction of apoptosis in malignant cells. We investigate the mechanisms by which I'm-Yunity™ (PSP) elicits these effects. Methods Human leukemia HL-60 and U-937 cells were incubated with increasing doses of aqueous extracts of I'm-Yunity™ (PSP). Control and treated cells were harvested at various times and analyzed for changes in: (1) cell proliferation and viability, (2) cell cycle phase transition, (3) induction of apoptosis, (4) expression of cell cycle, apoptogenic/anti-apoptotic, and extracellular regulatory proteins. Results Aqueous extracts of I'm-Yunity™ (PSP) inhibited cell proliferation and induced apoptosis in HL-60 and U-937 cells, accompanied by a cell type-dependent disruption of the G1/S and G2/M phases of cell cycle progression. A more pronounced growth suppression was observed in treated HL-60 cells, which was correlated with time- and dose-dependent down regulation of the retinoblastoma protein Rb, diminution in the expression of anti-apoptotic proteins bcl-2 and survivin, increase in apoptogenic proteins bax and cytochrome c, and cleavage of poly(ADP-ribose) polymerase (PARP) from its native 112-kDa form to the 89-kDa truncated product. Moreover, I'm-Yunity™ (PSP)-treated HL-60 cells also showed a substantial decrease in p65 and to a lesser

  18. Arctigenin, a natural lignan compound, induces G0/G1 cell cycle arrest and apoptosis in human glioma cells.

    PubMed

    Maimaitili, Aisha; Shu, Zunhua; Cheng, Xiaojiang; Kaheerman, Kadeer; Sikandeer, Alifu; Li, Weimin

    2017-02-01

    The aim of the current study was to investigate the anticancer potential of arctigenin, a natural lignan compound, in malignant gliomas. The U87MG and T98G human glioma cell lines were treated with various concentrations of arctigenin for 48 h and the effects of arctigenin on the aggressive phenotypes of glioma cells were assessed. The results demonstrated that arctigenin dose-dependently inhibited the growth of U87MG and T98G cells, as determined using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide and bromodeoxyuridine incorporation assays. Arctigenin exposure also induced a 60-75% reduction in colony formation compared with vehicle-treated control cells. However, arctigenin was not observed to affect the invasiveness of glioma cells. Arctigenin significantly increased the proportion of cells in the G 0 /G 1 phase and reduced the number of cells in the S phase, as compared with the control group (P<0.05). Western blot analysis demonstrated that arctigenin increased the expression levels of p21, retinoblastoma and p53 proteins, and significantly decreased the expression levels of cyclin D1 and cyclin-dependent kinase 4 proteins. Additionally, arctigenin was able to induce apoptosis in glioma cells, coupled with increased expression levels of cleaved caspase-3 and the pro-apoptotic BCL2-associated X protein. Furthermore, arctigenin-induced apoptosis was significantly suppressed by the pretreatment of cells with Z-DEVD-FMK, a caspase-3 inhibitor. In conclusion, the results suggest that arctigenin is able to inhibit cell proliferation and may induce apoptosis and cell cycle arrest at the G 0 /G 1 phase in glioma cells. These results warrant further investigation of the anticancer effects of arctigenin in animal models of gliomas.

  19. Arctigenin, a natural lignan compound, induces G0/G1 cell cycle arrest and apoptosis in human glioma cells

    PubMed Central

    Maimaitili, Aisha; Shu, Zunhua; Cheng, Xiaojiang; Kaheerman, Kadeer; Sikandeer, Alifu; Li, Weimin

    2017-01-01

    The aim of the current study was to investigate the anticancer potential of arctigenin, a natural lignan compound, in malignant gliomas. The U87MG and T98G human glioma cell lines were treated with various concentrations of arctigenin for 48 h and the effects of arctigenin on the aggressive phenotypes of glioma cells were assessed. The results demonstrated that arctigenin dose-dependently inhibited the growth of U87MG and T98G cells, as determined using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide and bromodeoxyuridine incorporation assays. Arctigenin exposure also induced a 60–75% reduction in colony formation compared with vehicle-treated control cells. However, arctigenin was not observed to affect the invasiveness of glioma cells. Arctigenin significantly increased the proportion of cells in the G0/G1 phase and reduced the number of cells in the S phase, as compared with the control group (P<0.05). Western blot analysis demonstrated that arctigenin increased the expression levels of p21, retinoblastoma and p53 proteins, and significantly decreased the expression levels of cyclin D1 and cyclin-dependent kinase 4 proteins. Additionally, arctigenin was able to induce apoptosis in glioma cells, coupled with increased expression levels of cleaved caspase-3 and the pro-apoptotic BCL2-associated X protein. Furthermore, arctigenin-induced apoptosis was significantly suppressed by the pretreatment of cells with Z-DEVD-FMK, a caspase-3 inhibitor. In conclusion, the results suggest that arctigenin is able to inhibit cell proliferation and may induce apoptosis and cell cycle arrest at the G0/G1 phase in glioma cells. These results warrant further investigation of the anticancer effects of arctigenin in animal models of gliomas. PMID:28356992

  20. IGF-1 protects against dexamethasone-induced cell death in insulin secreting INS-1 cells independent of AKT/PKB phosphorylation.

    PubMed

    Avram, Diana; Ranta, Felicia; Hennige, Anita M; Berchtold, Susanne; Hopp, Sabine; Häring, Hans-Ulrich; Lang, Florian; Ullrich, Susanne

    2008-01-01

    Appropriate insulin secretion depends on beta-cell mass that is determined by the balance between cell proliferation and death. IGF-1 stimulates proliferation and protects against apoptosis. In contrast, glucocorticoids promote cell death. In this study we examined molecular interactions of the glucocorticoid dexamethasone (dexa) with IGF-1 signalling pathways in insulin secreting INS-1 cells. IGF-1 (50 ng/ml) increased the growth rate and stimulated BrdU incorporation, while dexa (100 nmol/l) inhibited cell growth, BrdU incorporation and induced apoptosis. Dexa-induced cell death was partially antagonized by IGF-1. This protection was further increased by LY294002 (10 micromol/l), an inhibitor of PI3 kinase. In contrast, MAP kinase inhibitor PD98059 (10 micromol/l) significantly reduced the protective effect of IGF-1. The analysis of signalling pathways by Western blotting revealed that dexa increased IRS-2 protein abundance while the expression of PI3K, PKB and ERK remained unchanged. Despite increased IRS-2 protein,IRS-2 tyrosine phosphorylation stimulated by IGF-1 was inhibited by dexa. Dexa treatment reduced basal PKB phosphorylation. However, IGF-1-mediated stimulation of PKB phosphorylation was not affected by dexa, but ERK phosphorylation was reduced. LY294002 restored IGF-1-induced ERK phosphorylation. These data suggest that dexa induces apoptosis in INS-1 cells by inhibiting phosphorylation of IRS-2, PKB and ERK. IGF-1 counteracts dexa-mediated apoptosis in the presence of reduced PKB but increased ERK phosphorylation. (c) 2008 S. Karger AG, Basel.

  1. Multifactorial resistance to aminopeptidase inhibitor prodrug CHR2863 in myeloid leukemia cells: down-regulation of carboxylesterase 1, drug sequestration in lipid droplets and pro-survival activation ERK/Akt/mTOR

    PubMed Central

    Verbrugge, Sue Ellen; Al, Marjon; Assaraf, Yehuda G.; Kammerer, Sarah; Chandrupatla, Durga M.S.H.; Honeywell, Richard; Musters, Rene P.J.; Giovannetti, Elisa; O'Toole, Tom; Scheffer, George L.; Krige, David; de Gruijl, Tanja D.; Niessen, Hans W.M.; Lems, Willem F.; Kramer, Pieternella A.; Scheper, Rik J.; Cloos, Jacqueline; Ossenkoppele, Gert J.; Peters, Godefridus J.; Jansen, Gerrit

    2016-01-01

    Aminopeptidase inhibitors are receiving attention as combination chemotherapeutic agents for the treatment of refractory acute myeloid leukemia. However, the factors determining therapeutic efficacy remain elusive. Here we identified the molecular basis of acquired resistance to CHR2863, an orally available hydrophobic aminopeptidase inhibitor prodrug with an esterase-sensitive motif, in myeloid leukemia cells. CHR2863 enters cells by diffusion and is retained therein upon esterase activity-mediated conversion to its hydrophilic active metabolite drug CHR6768, thereby exerting amino acid depletion. Carboxylesterases (CES) serve as candidate prodrug activating enzymes given CES1 expression in acute myeloid leukemia specimens. We established two novel myeloid leukemia sublines U937/CHR2863(200) and U937/CHR2863(5uM), with low (14-fold) and high level (270-fold) CHR2863 resistance. The latter drug resistant cells displayed: (i) complete loss of CES1-mediated drug activation associated with down-regulation of CES1 mRNA and protein, (ii) marked retention/sequestration of the prodrug, (iii) a substantial increase in intracellular lipid droplets, and (iv) a dominant activation of the pro-survival Akt/mTOR pathway. Remarkably, the latter feature coincided with a gain of sensitivity to the mTOR inhibitor rapamycin. These finding delineate the molecular basis of CHR2863 resistance and offer a novel modality to overcome this drug resistance in myeloid leukemia cells. PMID:26496029

  2. Magnolol pretreatment attenuates heat stress-induced IEC-6 cell injury*

    PubMed Central

    Mei, Chen; He, Sha-sha; Yin, Peng; Xu, Lei; Shi, Ya-ran; Yu, Xiao-hong; Lyu, An; Liu, Feng-hua; Jiang, Lin-shu

    2016-01-01

    Objective: Heat stress (HS) is an important environmental stressor that adversely influences livestock during the summer. The aim of this study was to investigate whether magnolol protects against HS-induced intestinal epithelial cell injury. Materials and methods: An intestinal epithelial cell line (IEC-6) was subjected to HS at 42 °C, with and without magnolol pretreatment. Cell injury was detected by monitoring lactate dehydrogenase (LDH) release. MTS (3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium) assay was used to assess cell proliferation and viability, including identifying effective concentrations of magnolol. Flow cytometry confirmed G1-phase cell-cycle arrest and its alleviation by magnolol. Active DNA synthesis was measured by incorporation of nucleic acid 5-ethynyl-2'-deoxyuridine (EdU). G1-phase cell-cycle-related gene expression was assessed by real-time reverse transcription polymerase chain reaction (RT-PCR) and levels of G1-phase-related proteins by Western blotting. Results: HS induced IEC-6 cell injury and decreased cell viability, as demonstrated by data from LDH and MTS assays, respectively. Based on a number of criteria, IEC-6 cells subjected to HS were arrested in the G1 phase of the cell cycle. Magnolol pretreatment decreased HS-induced cell injury through relief of this cell-cycle arrest. Conclusions: Magnolol pretreatment attenuates HS-induced injury in IEC-6 cells. Magnolol is potentially promising as a protective strategy for HS in livestock. PMID:27256675

  3. Magnolol pretreatment attenuates heat stress-induced IEC-6 cell injury.

    PubMed

    Mei, Chen; He, Sha-Sha; Yin, Peng; Xu, Lei; Shi, Ya-Ran; Yu, Xiao-Hong; Lyu, An; Liu, Feng-Hua; Jiang, Lin-Shu

    2016-06-01

    Heat stress (HS) is an important environmental stressor that adversely influences livestock during the summer. The aim of this study was to investigate whether magnolol protects against HS-induced intestinal epithelial cell injury. An intestinal epithelial cell line (IEC-6) was subjected to HS at 42 °C, with and without magnolol pretreatment. Cell injury was detected by monitoring lactate dehydrogenase (LDH) release. MTS (3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium) assay was used to assess cell proliferation and viability, including identifying effective concentrations of magnolol. Flow cytometry confirmed G1-phase cell-cycle arrest and its alleviation by magnolol. Active DNA synthesis was measured by incorporation of nucleic acid 5-ethynyl-2'-deoxyuridine (EdU). G1-phase cell-cycle-related gene expression was assessed by real-time reverse transcription polymerase chain reaction (RT-PCR) and levels of G1-phase-related proteins by Western blotting. HS induced IEC-6 cell injury and decreased cell viability, as demonstrated by data from LDH and MTS assays, respectively. Based on a number of criteria, IEC-6 cells subjected to HS were arrested in the G1 phase of the cell cycle. Magnolol pretreatment decreased HS-induced cell injury through relief of this cell-cycle arrest. Magnolol pretreatment attenuates HS-induced injury in IEC-6 cells. Magnolol is potentially promising as a protective strategy for HS in livestock.

  4. MAP30 promotes apoptosis of U251 and U87 cells by suppressing the LGR5 and Wnt/β-catenin signaling pathway, and enhancing Smac expression

    PubMed Central

    Jiang, Yilin; Miao, Junjie; Wang, Dongliang; Zhou, Jingru; Liu, Bo; Jiao, Feng; Liang, Jiangfeng; Wang, Yangshuo; Fan, Cungang; Zhang, Qingjun

    2018-01-01

    Significant antitumor activity of Momordica anti-human immunodeficiency virus protein of 30 kDa (MAP30) purified from Momordica charantia has been the subject of previous research. However, the effective mechanism of MAP30 on malignant glioma cells has not yet been clarified. The aim of the present study was to investigate the effects and mechanism of MAP30 on U87 and U251 cell lines. A Cell Counting Kit-8 assay, wound healing assay and Transwell assay were used to detect the effects on U87 and U251 cells treated with different concentrations of MAP30 (0.5, 1, 2, 4, 8 and 16 µM) over different periods of time. Proliferation, migration and invasion of each cell line were markedly inhibited by MAP30 in a dose- and time-dependent manner. Flow cytometry and fluorescence staining demonstrated that apoptosis increased and the cell cycle was arrested in S-phase in the two investigated cell lines following MAP30 treatment. Western blot analysis demonstrated that leucine-rich-repeat-containing G-protein-coupled receptor 5 (LGR5) expression and key proteins in the Wnt/β-catenin signaling pathway were apparently decreased, whereas second mitochondria-derived activator of caspase (Smac) protein expression significantly increased with MAP30 treatment in the same manner. These results suggest that MAP30 markedly induces apoptosis in U87 and U251 cell lines by suppressing LGR5 and the Wnt/β-catenin signaling pathway, and enhancing Smac expression in a dose- and time-dependent manner. PMID:29556310

  5. Antioxidant activity, anti-proliferative activity, and amino acid profiles of ethanolic extracts of edible mushrooms.

    PubMed

    Panthong, S; Boonsathorn, N; Chuchawankul, S

    2016-10-17

    Biological activities of various mushrooms have recently been discovered, particularly, immunomodulatory and antitumor activities. Herein, three edible mushrooms, Auricularia auricula-judae (AA), Pleurotus abalonus (PA) and Pleurotus sajor-caju (PS) extracted using Soxhlet ethanol extraction were evaluated for their antioxidative, anti-proliferative effects on leukemia cells. Using the Folin-Ciocalteau method and Trolox equivalent antioxidant capacity assay, phenolics and antioxidant activity were found in all sample mushrooms. Additionally, anti-proliferative activity of mushroom extracts against U937 leukemia cells was determined using a viability assay based on mitochondrial activity. PA (0.5 mg/mL) and AA (0.25-0.5 mg/mL) significantly reduced cell viability. Interestingly, PS caused a hormetic-like biphasic dose-response. Low doses (0-0.25 mg/L) of PS promoted cell proliferation up to 140% relative to control, whereas higher doses (0.50 mg/mL) inhibited cell proliferation. Against U937 cells, AA IC 50 was 0.28 ± 0.04 mg/mL, which was lower than PS or PA IC 50 (0.45 ± 0.01 and 0.49 ± 0.001 mg/mL, respectively). Furthermore, lactate dehydrogenase (LDH) leakage conferred cytotoxicity. PS and PA were not toxic to U937 cells at any tested concentration; AA (0.50 mg/mL) showed high LDH levels and caused 50% cytotoxicity. Additionally, UPLC-HRMS data indicated several phytochemicals known to support functional activities as either antioxidant or anti-proliferative. Glutamic acid was uniquely found in ethanolic extracts of AA, and was considered an anti-cancer amino acid with potent anti-proliferative effects on U937 cells. Collectively, all mushroom extracts exhibited antioxidant effects, but their anti-proliferative effects were dose-dependent. Nevertheless, the AA extract, with highest potency, is a promising candidate for future applications.

  6. Juglone reduces growth and migration of U251 glioblastoma cells and disrupts angiogenesis.

    PubMed

    Wang, Jian; Liu, Ke; Wang, Xiao-Feng; Sun, Dian-Jun

    2017-10-01

    Accumulating data show that prolylisomerase (Pin1) is overexpressed in human glioblastoma multiforme (GBM) specimens. Therefore, Pin1 inhibitors should be investigated as a new chemotherapeutic drug that may enhance the clinical management of human gliomas. Recently, juglone, a Pin1 inhibitor, was shown to exhibit potent anticancer activity in various tumor cells, but its role in human glioma cells remains unknown. In the present study, we determined if juglone exerts antitumor effects in the U251 human glioma cell line and investigated its potential underlying molecular mechanisms. Cell survival, apoptosis, migration, angiogenesis and molecular targets were identified with multiple detection techniques including the MTT cell proliferation assay, dual acridine orange/ethidium bromide staining, electron microscopy, transwell migration assay, chick chorioallantoic membrane assay, quantitative real-time polymerase chain reaction and immunoblotting. The results showed that 5-20 µM juglone markedly suppressed cell proliferation, induced apoptosis, and enhanced caspase-3 activity in U251 cells in a dose- and time-dependent manner. Moreover, juglone inhibited cell migration and the formation of new blood vessels. At the molecular level, juglone markedly suppressed Pin1 levels in a time-dependent manner. TGF-β1/Smad signaling, a critical upstream regulator of miR-21, was also suppressed by juglone. Moreover, the transient overexpression of Pin1 reversed its antitumor effects in U251 cells and inhibited juglone-mediated changes to the TGF-β1/miR-21 signaling pathway. These findings suggest that juglone inhibits cell growth by causing apoptosis, thereby inhibiting the migration of U251 glioma cells and disrupting angiogenesis; and that Pin1 is a critical target for juglone's antitumor activity. The present study provides evidence that juglone has in vitro efficacy against glioma. Therefore, additional studies are warranted to examine the clinical potential of juglone in

  7. The role of p44/42 activation in tributyltin- induced inhibition of human natural killer cells: Effects of MEK inhibitors

    PubMed Central

    Abraha, Abraham B.; Whalen, Margaret M.

    2008-01-01

    Destruction of tumor cells is a key function of NK cells. Previous studies have shown that tributyltin (TBT) can significantly reduce the lytic function of the human NK cells with accompanying increases in the phosphorylation (activation) states of the mitogen activated protein kinases (MAPKs), p44/42. The current studies examine the role of p44/42 activation in the TBT-induced reduction of NK-lytic function, by using MAPK kinase (MEK) inhibitors, PD98059 and U0126. A 1 h treatment with PD98059 or U0126 or both decreased the ability of NK cells to lyse K562 tumor cells. PD98059, U0126 or a combination of both inhibitors were able to completely block TBT-induced activation of p44/42. However, when p44/42 activation was blocked by the presence of PD98059, U0126, or the combination, subsequent exposure to TBT was still able to decrease the lytic function of NK cells. These results indicate that TBT-induced activation of p44/42 occurs via the activation of its upstream activator, MEK, and not by a TBT-induced inhibition of p44/42 phosphatase activity. Additionally, as lytic function was never completely blocked by MEK inhibitors, the results indicate that activation of p44/42 pathway is not solely responsible for the activation of lytic function of freshly isolated human NK cells. Finally, the results showed that TBT-induced activation of p44/42 is not solely responsible for the loss of lytic function. PMID:18989867

  8. MAPK/AP-1-Targeted Anti-Inflammatory Activities of Xanthium strumarium.

    PubMed

    Hossen, Muhammad Jahangir; Kim, Mi-Yeon; Cho, Jae Youl

    2016-01-01

    Xanthium strumarium L. (Asteraceae), a traditional Chinese medicine, is prescribed to treat arthritis, bronchitis, and rhinitis. Although the plant has been used for many years, the mechanism by which it ameliorates various inflammatory diseases is not yet fully understood. To explore the anti-inflammatory mechanism of methanol extracts of X. strumarium (Xs-ME) and its therapeutic potential, we used lipopolysaccharide (LPS)-stimulated murine macrophage-like RAW264.7 cells and human monocyte-like U937 cells as well as a LPS/D-galactosamine (GalN)-induced acute hepatitis mouse model. To find the target inflammatory pathway, we used holistic immunoblotting analysis, reporter gene assays, and mRNA analysis. Xs-ME significantly suppressed the up-regulation of both the activator protein (AP)-1-mediated luciferase activity and the production of LPS-induced proinflammatory cytokines, including interleukin (IL)-1[Formula: see text], IL-6, and tumor necrosis factor (TNF)-[Formula: see text]. Moreover, Xs-ME strongly inhibited the phosphorylation of mitogen-activated protein kinase (MAPK) in LPS-stimulated RAW264.7 and U937 cells. Additionally, these results highlighted the hepatoprotective and curative effects of Xs-ME in a mouse model of LPS/D-GalN-induced acute liver injury, as assessed by elevated serum levels of aspartate aminotransferase (AST) and alanine aminotransferase (ALT), and histological damage. Therefore, our results strongly suggest that the ethnopharmacological roles of Xs-ME in hepatitis and other inflammatory diseases might result from its inhibitory activities on the inflammatory signaling of MAPK and AP-1.

  9. Purification and characterization of a novel high molecular weight exotoxin produced by red tide phytoplankton, Alexandrium tamarense.

    PubMed

    Yamasaki, Yasuhiro; Katsuo, Daisuke; Nakayasu, Seiichiro; Salati, Cristina; Duan, JingJing; Zou, Yanan; Matsuyama, Yukihiko; Yamaguchi, Kenichi; Oda, Tatsuya

    2008-01-01

    Our recent studies have demonstrated that the aqueous extract prepared from Alexandrium tamarense, a harmful red tide phytoplankton, showed cytotoxicity on Vero cells. In this study, the toxic substance was purified from the culture supernatant of A. tamarense. Based on the gel-filtration profile, the molecular mass of a purified toxin was estimated to be about 1,000 kDa. On sodium dodecylsulfate-polyacrylamide gel electrophoresis (SDS-PAGE) analysis, a main band with molecular mass of 1,000 kDa was detected with periodic acid-Schiff (PAS) staining, but no protein bands were detected by Coomassie brilliant blue (CBB) protein staining. Sugar composition analysis of the toxin suggested that the toxin contains galactose, fucose, mannose, N-acetylglucosamine, xylose, and other minor saccharides, whereas no significant levels of amino acids were detected by amino acid analysis. These results suggest that the toxin is a polysaccharide-based compound. The toxin showed cytotoxic effects on various cell lines in a concentration-dependent manner. Among the cell lines tested, U937 cells were the most susceptible to the toxin. In U937 cells treated with the toxin, a typical apoptotic nuclear morphological change and DNA fragmentation were observed. This is the first report demonstrating that a polysaccharide-based toxin isolated from red tide phytoplankton can induce apoptotic cell death. (c) 2008 Wiley Periodicals, Inc.

  10. Saponin B, a novel cytostatic compound purified from Anemone taipaiensis, induces apoptosis in a human glioblastoma cell line.

    PubMed

    Wang, Yuangang; Tang, Haifeng; Zhang, Yun; Li, Juan; Li, Bo; Gao, Zhenhui; Wang, Xiaoyang; Cheng, Guang; Fei, Zhou

    2013-11-01

    Glioblastoma multiforme (GBM) is one of the most common malignant brain tumors. Saponin B, a novel compound isolated from the medicinal plant, Anemone taipaiensis, has been found to have a strong time- and dose-dependent cytostatic effect on human glioma cells and to suppress the growth of U87MG GBM cells. In this study, we investigated whether saponin B induces the apoptosis of glioblastoma cells and examined the underlying mechanism(s) of action of saponin B. Saponin B significantly suppressed U87MG cell proliferation. Flow cytometric analysis of DNA in the U87MG cells confirmed that saponin B blocked the cell cycle at the S phase. Furthermore, treatment of the U87MG cells with saponin B induced chromatin condensation and led to the formation of apoptotic bodies, as observed under a fluorescence microscope, and Annexin V/PI assay further suggested that phosphatidylserine (PS) externalization was apparent at higher drug concentrations. Treatment with saponin B activated the receptor-mediated pathway of apoptosis, as western blot analysis revealed the activation of Fas-l. Saponin B increased the Bax and caspase-3 ratio and decreased the protein expression of Bcl-2. The results from the present study demonstrate that the novel compound, saponin B, effectively induces the apoptosis of GBM cells and inhibits glioma cell growth and survival. Therefore, saponin B may be a potential candidate for the development of novel cancer therapeutics with antitumor activity against gliomas.

  11. Amine-Rich Organic Thin Films for Cell Culture: Possible Electrostatic Effects in Cell-Surface Interactions

    NASA Astrophysics Data System (ADS)

    Wertheimer, Michael R.; St-Georges-Robillard, Amélie; Lerouge, Sophie; Mwale, Fackson; Elkin, Bentsian; Oehr, Christian; Wirges, Werner; Gerhard, Reimund

    2012-11-01

    In recent communications from these laboratories, we observed that amine-rich thin organic layers are very efficient surfaces for the adhesion of mammalian cells. We prepare such deposits by plasma polymerization at low pressure, atmospheric pressure, or by vacuum-ultraviolet photo-polymerization. More recently, we have also investigated a commercially available material, Parylene diX AM. In this article we first briefly introduce literature relating to electrostatic interactions between cells, proteins, and charged surfaces. We then present certain selected cell-response results that pertain to applications in orthopedic and cardiovascular medicine: we discuss the influence of surface properties on the observed behaviors of two particular cell lines, human U937 monocytes, and Chinese hamster ovary cells. Particular emphasis is placed on possible electrostatic attractive forces due to positively charged R-NH3+ groups and negatively charged proteins and cells, respectively. Experiments carried out with electrets, polymers with high positive or negative surface potentials are added for comparison.

  12. Globular adiponectin induces a pro-inflammatory response in human astrocytic cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wan, Zhongxiao; Mah, Dorrian; Simtchouk, Svetlana

    Highlights: • Adiponectin receptors are expressed in human astrocytes. • Globular adiponectin induces secretion of IL-6 and MCP-1 from cultured astrocytes. • Adiponectin may play a pro-inflammatory role in astrocytes. - Abstract: Neuroinflammation, mediated in part by activated brain astrocytes, plays a critical role in the development of neurodegenerative disorders, including Alzheimer’s disease (AD). Adiponectin is the most abundant adipokine secreted from adipose tissue and has been reported to exert both anti- and pro-inflammatory effects in peripheral tissues; however, the effects of adiponectin on astrocytes remain unknown. Shifts in peripheral concentrations of adipokines, including adiponectin, could contribute to the observedmore » link between midlife adiposity and increased AD risk. The aim of the present study was to characterize the effects of globular adiponectin (gAd) on pro-inflammatory cytokine mRNA expression and secretion in human U373 MG astrocytic cells and to explore the potential involvement of nuclear factor (NF)-κB, p38 mitogen-activated protein kinase (MAPK), extracellular signal-regulated kinase (ERK)1/2, c-Jun N-terminal kinase (JNK) and phosphatidylinositide 3-kinases (PI3 K) signaling pathways in these processes. We demonstrated expression of adiponectin receptor 1 (adipoR1) and adipoR2 in U373 MG cells and primary human astrocytes. gAd induced secretion of interleukin (IL)-6 and monocyte chemoattractant protein (MCP)-1, and gene expression of IL-6, MCP-1, IL-1β and IL-8 in U373 MG cells. Using specific inhibitors, we found that NF-κB, p38MAPK and ERK1/2 pathways are involved in gAd-induced induction of cytokines with ERK1/2 contributing the most. These findings provide evidence that gAd may induce a pro-inflammatory phenotype in human astrocytes.« less

  13. Cell proliferation during hair cell regeneration induced by Math1 in vestibular epithelia in vitro

    PubMed Central

    Huang, Yi-bo; Ma, Rui; Yang, Juan-mei; Han, Zhao; Cong, Ning; Gao, Zhen; Ren, Dongdong; Wang, Jing; Chi, Fang-lu

    2018-01-01

    Hair cell regeneration is the fundamental method of correcting hearing loss and balance disorders caused by hair cell damage or loss. How to promote hair cell regeneration is a hot focus in current research. In mammals, cochlear hair cells cannot be regenerated and few vestibular hair cells can be renewed through spontaneous regeneration. However, Math1 gene transfer allows a few inner ear cells to be transformed into hair cells in vitro or in vivo. Hair cells can be renewed through two possible means in birds: supporting cell differentiation and transdifferentiation with or without cell division. Hair cell regeneration is strongly associated with cell proliferation. Therefore, this study explored the relationship between Math1-induced vestibular hair cell regeneration and cell division in mammals. The mouse vestibule was isolated to harvest vestibular epithelial cells. Ad-Math1-enhanced green fluorescent protein (EGFP) was used to track cell division during hair cell transformation. 5-Bromo-2′-deoxyuridine (BrdU) was added to track cell proliferation at various time points. Immunocytochemistry was utilized to determine cell differentiation and proliferation. Results demonstrated that when epithelial cells were in a higher proliferative stage, more of these cells differentiated into hair cells by Math1 gene transfer. However, in the low proliferation stage, no BrdU-positive cells were seen after Math1 gene transfer. Cell division always occurred before Math1 transfection but not during or after Math1 transfection, when cells were labeled with BrdU before and after Ad-Math1-EGFP transfection. These results confirm that vestibular epithelial cells with high proliferative potential can differentiate into new hair cells by Math1 gene transfer, but this process is independent of cell proliferation. PMID:29623936

  14. Properly Substituted Analogues of BIX-01294 Lose Inhibition of G9a Histone Methyltransferase and Gain Selective Anti-DNA Methyltransferase 3A Activity

    PubMed Central

    Rotili, Dante; Tarantino, Domenico; Marrocco, Biagina; Gros, Christina; Masson, Véronique; Poughon, Valérie; Ausseil, Fréderic; Chang, Yanqi; Labella, Donatella; Cosconati, Sandro; Di Maro, Salvatore; Novellino, Ettore; Schnekenburger, Michael; Grandjenette, Cindy; Bouvy, Celine; Diederich, Marc; Cheng, Xiaodong; Arimondo, Paola B.; Mai, Antonello

    2014-01-01

    Chemical manipulations performed on the histone H3 lysine 9 methyltransferases (G9a/GLP) inhibitor BIX-01294 afforded novel desmethoxyquinazolines able to inhibit the DNA methyltransferase DNMT3A at low micromolar levels without any significant inhibition of DNMT1 and G9a. In KG-1 cells such compounds, when tested at sub-toxic doses, induced the luciferase re-expression in a stable construct controlled by a cytomegalovirus (CMV) promoter silenced by methylation (CMV-luc assay). Finally, in human lymphoma U-937 and RAJI cells, the N-(1-benzylpiperidin-4-yl)-2-(4-phenylpiperazin-1-yl)quinazolin-4-amine induced the highest proliferation arrest and cell death induction starting from 10 µM, in agreement with its DNMT3A inhibitory potency. PMID:24810902

  15. Use of an adaptable cell culture kit for performing lymphocyte and monocyte cell cultures in microgravity

    NASA Technical Reports Server (NTRS)

    Hatton, J. P.; Lewis, M. L.; Roquefeuil, S. B.; Chaput, D.; Cazenave, J. P.; Schmitt, D. A.

    1998-01-01

    The results of experiments performed in recent years on board facilities such as the Space Shuttle/Spacelab have demonstrated that many cell systems, ranging from simple bacteria to mammalian cells, are sensitive to the microgravity environment, suggesting gravity affects fundamental cellular processes. However, performing well-controlled experiments aboard spacecraft offers unique challenges to the cell biologist. Although systems such as the European 'Biorack' provide generic experiment facilities including an incubator, on-board 1-g reference centrifuge, and contained area for manipulations, the experimenter must still establish a system for performing cell culture experiments that is compatible with the constraints of spaceflight. Two different cell culture kits developed by the French Space Agency, CNES, were recently used to perform a series of experiments during four flights of the 'Biorack' facility aboard the Space Shuttle. The first unit, Generic Cell Activation Kit 1 (GCAK-1), contains six separate culture units per cassette, each consisting of a culture chamber, activator chamber, filtration system (permitting separation of cells from supernatant in-flight), injection port, and supernatant collection chamber. The second unit (GCAK-2) also contains six separate culture units, including a culture, activator, and fixation chambers. Both hardware units permit relatively complex cell culture manipulations without extensive use of spacecraft resources (crew time, volume, mass, power), or the need for excessive safety measures. Possible operations include stimulation of cultures with activators, separation of cells from supernatant, fixation/lysis, manipulation of radiolabelled reagents, and medium exchange. Investigations performed aboard the Space Shuttle in six different experiments used Jurkat, purified T-cells or U937 cells, the results of which are reported separately. We report here the behaviour of Jurkat and U937 cells in the GCAK hardware in ground

  16. Anti-Cancerous Effect of Inonotus taiwanensis Polysaccharide Extract on Human Acute Monocytic Leukemia Cells through ROS-Independent Intrinsic Mitochondrial Pathway.

    PubMed

    Chao, Tsai-Ling; Wang, Ting-Yin; Lee, Chin-Huei; Yiin, Shuenn-Jiun; Ho, Chun-Te; Wu, Sheng-Hua; You, Huey-Ling; Chern, Chi-Liang

    2018-01-29

    Acute leukemia is one of the commonly diagnosed neoplasms and causes human death. However, the treatment for acute leukemia is not yet satisfactory. Studies have shown that mushroom-derived polysaccharides display low toxicity and have been used clinically for cancer therapy. Therefore, we set out to evaluate the anti-cancerous efficacy of a water-soluble polysaccharide extract from Inonotus taiwanensis (WSPIS) on human acute monocytic leukemia THP-1 and U937 cell lines in vitro. Under our experimental conditions, WSPIS elicited dose-dependent growth retardation and induced apoptotic cell death. Further analysis showed that WSPIS-induced apoptosis was associated with a mitochondrial apoptotic pathway, such as the disruption of mitochondrial membrane potential (MMP), followed by the activation of caspase-9, caspase-3, and PARP (poly(ADP-ribose) polymerase) cleavage. However, a broad caspase inhibitor, Z-VAD.fmk, could not prevent WSPIS-induced apoptosis. These data imply that mechanism(s) other than caspase might be involved. Thus, the involvement of endonuclease G (endoG), a mediator arbitrating caspase-independent oligonucleosomal DNA fragmentation, was examined. Western blotting demonstrated that WSPIS could elicit nuclear translocation of endoG. MMP disruption after WSPIS treatment was accompanied by intracellular reactive oxygen species (ROS) generation. However, pretreatment with N -acetyl-l-cysteine (NAC) could not attenuate WSPIS-induced apoptosis. In addition, our data also show that WSPIS could inhibit autophagy. Activation of autophagy by rapamycin decreased WSPIS-induced apoptosis and cell death. Taken together, our findings suggest that cell cycle arrest, endonuclease G-mediated apoptosis, and autophagy inhibition contribute to the anti-cancerous effect of WSPIS on human acute monocytic leukemia cells.

  17. Potassium Channels Mediate Killing by Human Natural Killer Cells

    NASA Astrophysics Data System (ADS)

    Schlichter, Lyanne; Sidell, Neil; Hagiwara, Susumu

    1986-01-01

    Human natural killer (NK) cells in peripheral blood spontaneously recognize and kill a wide variety of target cells. It has been suggested that ion channels are involved in the killing process because there is a Ca-dependent stage and because killing by presensitized cytotoxic T lymphocytes, which in many respects resembles NK killing, is associated with changes in K and Na transport in the target cell. However, no direct evidence exists for ion channels in NK cells or in their target cells. Using the whole-cell variation of the patch-clamp technique, we found a voltage-dependent potassium (K+) current in NK cells. The K+ current was reduced in a dose-dependent manner by the K-channel blockers 4-aminopyridine and quinidine and by the traditional Ca-channel blockers verapamil and Cd2+. We tested the effects of ion-channel blockers on killing of two commonly used target cell lines: K562, which is derived from a human myeloid leukemia, and U937, which is derived from a human histiocytic leukemia. Killing of K562 target cells, determined in a standard 51Cr-release assay, was inhibited in a dose-dependent manner by verapamil, quinidine, Cd2+, and 4-aminopyridine at concentrations comparable to those that blocked the K+ current in NK cells. In K562 target cells only a voltage-dependent Na+ current was found and it was blocked by concentrations of tetrodotoxin that had no effect on killing. Killing of U937 target cells was also inhibited by the two ion-channel blockers tested, quinidine and verapamil. In this cell line only a small K+ current was found that was similar to the one in NK cells. We could not find any evidence of a Ca2+ current in target cells or in NK cells; therefore, our results cannot explain the Ca dependence of killing. Our findings show that there are K channels in NK cells and that these channels play a necessary role in the killing process. In contrast, the endogenous channel type in the target cell is probably not a factor in determining target cell

  18. Complement activation by carbon nanotubes and its influence on the phagocytosis and cytokine response by macrophages.

    PubMed

    Pondman, Kirsten M; Sobik, Martin; Nayak, Annapurna; Tsolaki, Anthony G; Jäkel, Anne; Flahaut, Emmanuel; Hampel, Silke; Ten Haken, Bennie; Sim, Robert B; Kishore, Uday

    2014-08-01

    Carbon nanotubes (CNTs) have promised a range of applications in biomedicine. Although influenced by the dispersants used, CNTs are recognized by the innate immune system, predominantly by the classical pathway of the complement system. Here, we confirm that complement activation by the CNT used continues up to C3 and C5, indicating that the entire complement system is activated including the formation of membrane-attack complexes. Using recombinant forms of the globular regions of human C1q (gC1q) as inhibitors of CNT-mediated classical pathway activation, we show that C1q, the first recognition subcomponent of the classical pathway, binds CNTs via the gC1q domain. Complement opsonisation of CNTs significantly enhances their uptake by U937 cells, with concomitant downregulation of pro-inflammatory cytokines and up-regulation of anti-inflammatory cytokines in both U937 cells and human monocytes. We propose that CNT-mediated complement activation may cause recruitment of cellular infiltration, followed by phagocytosis without inducing a pro-inflammatory immune response. This study highlights the importance of the complement system in response to carbon nanontube administration, suggesting that the ensuing complement activation may cause recruitment of cellular infiltration, followed by phagocytosis without inducing a pro-inflammatory immune response. Copyright © 2014 Elsevier Inc. All rights reserved.

  19. Newcastle disease virus triggers autophagy in U251 glioma cells to enhance virus replication.

    PubMed

    Meng, Chunchun; Zhou, Zhizhi; Jiang, Ke; Yu, Shengqing; Jia, Lijun; Wu, Yantao; Liu, Yanqing; Meng, Songshu; Ding, Chan

    2012-06-01

    Newcastle disease virus (NDV) can replicate in tumor cells and induce apoptosis in late stages of infection. However, the interaction between NDV and cells in early stages of infection is not well understood. Here, we report that, shortly after infection, NDV triggers the formation of autophagosomes in U251 glioma cells, as demonstrated by an increased number of double-membrane vesicles, GFP-microtubule-associated protein 1 light chain 3 (GFP-LC3) a dot formations, and elevated production of LC3II. Moreover, modulation of NDV-induced autophagy by rapamycin, chloroquine or small interfering RNAs targeting the genes critical for autophagosome formation (Atg5 and Beclin-1) affects virus production, indicating that autophagy may be utilized by NDV to facilitate its own production. Furthermore, the class III phosphatidylinositol 3-kinase (PI3K)/Beclin-1 pathway plays a role in NDV-induced autophagy and virus production. Collectively, our data provide a unique example of a paramyxovirus that uses autophagy to enhance its production.

  20. Nutraceutical phycocyanin nanoformulation for efficient drug delivery of paclitaxel in human glioblastoma U87MG cell line

    NASA Astrophysics Data System (ADS)

    Agrawal, Madhunika; Yadav, Sanjeev Kumar; Agrawal, Satyam Kumar; Karmakar, Surajit

    2017-08-01

    To enhance the therapeutic efficacy of chemotherapy on glioblastoma U87MG cell line, paclitaxel-loaded phycocyanin nanoparticles (PTX-PcNPs) were prepared by modified desolvation process. PTX-PcNPs were characterised in terms of size, zeta potential, drug loading efficiency and drug release. Confocal laser scanning microscopy showed PTX-PcNPs could be internalised by U87MG cells. The anti-cancer activity was investigated in vitro by 3-(4,5-dimethylthizol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay with and without photodynamic therapy. It was observed that formulation could significantly inhibit growth of U87MG cells as compared to PTX alone and also induced apoptosis, which was evidenced by presence of apoptotic bodies and nuclear fragmentation in treated cells. The present study suggests that PTX-PcNPs can act as a promising drug delivery system for cancer treatment. [Figure not available: see fulltext.