Sample records for uaf gas volumes

  1. The USP1-UAF1 complex interacts with RAD51AP1 to promote homologous recombination repair.

    PubMed

    Cukras, Scott; Lee, Euiho; Palumbo, Emily; Benavidez, Pamela; Moldovan, George-Lucian; Kee, Younghoon

    2016-10-01

    USP1 deubiquitinating enzyme and its stoichiometric binding partner UAF1 play an essential role in promoting DNA homologous recombination (HR) repair in response to various types of DNA damaging agents. Deubiquitination of FANCD2 may be attributed to the key role of USP1-UAF1 complex in regulating HR repair, however whether USP1-UAF1 promotes HR repair independently of FANCD2 deubiquitination is not known. Here we show evidence that the USP1-UAF1 complex has a FANCD2-independent function in promoting HR repair. Proteomic search of UAF1-interacting proteins revealed that UAF1 associates with RAD51AP1, a RAD51-interacting protein implicated in HR repair. We show that UAF1 mediates the interaction between USP1 and RAD51AP1, and that depletion of USP1 or UAF1 led to a decreased stability of RAD51AP1. Protein interaction mapping analysis identified some key residues within RAD51AP1 required for interacting with the USP1-UAF1 complex. Cells expressing the UAF1 interaction-deficient mutant of RAD51AP1 show increased chromosomal aberrations in response to Mitomycin C treatment. Moreover, similar to the RAD51AP1 depleted cells, the cells expressing UAF1-interaction deficient RAD51AP1 display persistent RAD51 foci following DNA damage exposure, indicating that these factors regulate a later step during the HR repair. These data altogether suggest that the USP1-UAF1 complex promotes HR repair via multiple mechanisms: through FANCD2 deubiquitination, as well as by interacting with RAD51AP1.

  2. The USP1-UAF1 complex interacts with RAD51AP1 to promote homologous recombination repair

    PubMed Central

    Cukras, Scott; Lee, Euiho; Palumbo, Emily; Benavidez, Pamela; Moldovan, George-Lucian; Kee, Younghoon

    2016-01-01

    ABSTRACT USP1 deubiquitinating enzyme and its stoichiometric binding partner UAF1 play an essential role in promoting DNA homologous recombination (HR) repair in response to various types of DNA damaging agents. Deubiquitination of FANCD2 may be attributed to the key role of USP1-UAF1 complex in regulating HR repair, however whether USP1-UAF1 promotes HR repair independently of FANCD2 deubiquitination is not known. Here we show evidence that the USP1-UAF1 complex has a FANCD2-independent function in promoting HR repair. Proteomic search of UAF1-interacting proteins revealed that UAF1 associates with RAD51AP1, a RAD51-interacting protein implicated in HR repair. We show that UAF1 mediates the interaction between USP1 and RAD51AP1, and that depletion of USP1 or UAF1 led to a decreased stability of RAD51AP1. Protein interaction mapping analysis identified some key residues within RAD51AP1 required for interacting with the USP1-UAF1 complex. Cells expressing the UAF1 interaction-deficient mutant of RAD51AP1 show increased chromosomal aberrations in response to Mitomycin C treatment. Moreover, similar to the RAD51AP1 depleted cells, the cells expressing UAF1-interaction deficient RAD51AP1 display persistent RAD51 foci following DNA damage exposure, indicating that these factors regulate a later step during the HR repair. These data altogether suggest that the USP1-UAF1 complex promotes HR repair via multiple mechanisms: through FANCD2 deubiquitination, as well as by interacting with RAD51AP1. PMID:27463890

  3. Artificial Recruitment of UAF1-USP Complexes by a PHLPP1-E1 Chimeric Helicase Enhances Human Papillomavirus DNA Replication

    PubMed Central

    Gagnon, David; Lehoux, Michaël

    2015-01-01

    ABSTRACT The E1 helicase from anogenital human papillomavirus (HPV) types interacts with the cellular WD repeat-containing protein UAF1 in complex with the deubiquitinating enzyme USP1, USP12, or USP46. This interaction stimulates viral DNA replication and is required for maintenance of the viral episome in keratinocytes. E1 associates with UAF1 through a short UAF1-binding site (UBS) located within the N-terminal 40 residues of the protein. Here, we investigated if the E1 UBS could be replaced by the analogous domain from an unrelated protein, the pleckstrin homology domain and leucine-rich repeat protein phosphatase 1 (PHLPP1). We found that PHLPP1 and E1 interact with UAF1 in a mutually exclusive manner and mapped the minimal PHLPP1 UBS (PUBS) to a 100-amino-acid region sufficient for assembly into UAF1-USP complexes. Similarly to the E1 UBS, overexpression of PUBS in trans inhibited HPV DNA replication, albeit less efficiently. Characterization of a PHLPP1-E1 chimeric helicase revealed that PUBS could partially substitute for the E1 UBS in enhancing viral DNA replication and that the stimulatory effect of PUBS likely involves recruitment of UAF1-USP complexes, as it was abolished by mutations that weaken UAF1-binding and by overexpression of catalytically inactive USPs. Although functionally similar to the E1 UBS, PUBS is larger in size and requires both the WD repeat region and C-terminal ubiquitin-like domain of UAF1 for interaction, in contrast to E1, which does not contact the latter. Overall, this comparison of two heterologous UBSs indicates that these domains function as transferable protein interaction modules and provide further evidence that the association of E1 with UAF1-containing deubiquitinating complexes stimulates HPV DNA replication. IMPORTANCE The E1 protein from anogenital HPV types interacts with the UAF1-associated deubiquitinating enzymes USP1, USP12, and USP46 to stimulate replication of the viral genome. Little is known about the

  4. Artificial Recruitment of UAF1-USP Complexes by a PHLPP1-E1 Chimeric Helicase Enhances Human Papillomavirus DNA Replication.

    PubMed

    Gagnon, David; Lehoux, Michaël; Archambault, Jacques

    2015-06-01

    The E1 helicase from anogenital human papillomavirus (HPV) types interacts with the cellular WD repeat-containing protein UAF1 in complex with the deubiquitinating enzyme USP1, USP12, or USP46. This interaction stimulates viral DNA replication and is required for maintenance of the viral episome in keratinocytes. E1 associates with UAF1 through a short UAF1-binding site (UBS) located within the N-terminal 40 residues of the protein. Here, we investigated if the E1 UBS could be replaced by the analogous domain from an unrelated protein, the pleckstrin homology domain and leucine-rich repeat protein phosphatase 1 (PHLPP1). We found that PHLPP1 and E1 interact with UAF1 in a mutually exclusive manner and mapped the minimal PHLPP1 UBS (PUBS) to a 100-amino-acid region sufficient for assembly into UAF1-USP complexes. Similarly to the E1 UBS, overexpression of PUBS in trans inhibited HPV DNA replication, albeit less efficiently. Characterization of a PHLPP1-E1 chimeric helicase revealed that PUBS could partially substitute for the E1 UBS in enhancing viral DNA replication and that the stimulatory effect of PUBS likely involves recruitment of UAF1-USP complexes, as it was abolished by mutations that weaken UAF1-binding and by overexpression of catalytically inactive USPs. Although functionally similar to the E1 UBS, PUBS is larger in size and requires both the WD repeat region and C-terminal ubiquitin-like domain of UAF1 for interaction, in contrast to E1, which does not contact the latter. Overall, this comparison of two heterologous UBSs indicates that these domains function as transferable protein interaction modules and provide further evidence that the association of E1 with UAF1-containing deubiquitinating complexes stimulates HPV DNA replication. The E1 protein from anogenital HPV types interacts with the UAF1-associated deubiquitinating enzymes USP1, USP12, and USP46 to stimulate replication of the viral genome. Little is known about the molecular nature of the E1

  5. UAF: a generic OPC unified architecture framework

    NASA Astrophysics Data System (ADS)

    Pessemier, Wim; Deconinck, Geert; Raskin, Gert; Saey, Philippe; Van Winckel, Hans

    2012-09-01

    As an emerging Service Oriented Architecture (SOA) specically designed for industrial automation and process control, the OPC Unied Architecture specication should be regarded as an attractive candidate for controlling scientic instrumentation. Even though an industry-backed standard such as OPC UA can oer substantial added value to these projects, its inherent complexity poses an important obstacle for adopting the technology. Building OPC UA applications requires considerable eort, even when taking advantage of a COTS Software Development Kit (SDK). The OPC Unied Architecture Framework (UAF) attempts to reduce this burden by introducing an abstraction layer between the SDK and the application code in order to achieve a better separation of the technical and the functional concerns. True to its industrial origin, the primary requirement of the framework is to maintain interoperability by staying close to the standard specications, and by expecting the minimum compliance from other OPC UA servers and clients. UAF can therefore be regarded as a software framework to quickly and comfortably develop and deploy OPC UA-based applications, while remaining compatible to third party OPC UA-compliant toolkits, servers (such as PLCs) and clients (such as SCADA software). In the rst phase, as covered by this paper, only the client-side of UAF has been tackled in order to transparently handle discovery, session management, subscriptions, monitored items etc. We describe the design principles and internal architecture of our open-source software project, the rst results of the framework running at the Mercator Telescope, and we give a preview of the planned server-side implementation.

  6. Selective and cell-active inhibitors of the USP1/UAF1 deubiquitinase complex reverse cisplatin resistance in non-small cell lung cancer cells

    PubMed Central

    Chen, Junjun; Dexheimer, Thomas S.; Ai, Yongxing; Liang, Qin; Villamil, Mark A.; Inglese, James; Maloney, David J; Jadhav, Ajit; Simeonov, Anton; Zhuang, Zhihao

    2012-01-01

    Ubiquitin-specific proteases (USPs) have in recent years emerged as a promising therapeutic target class. We identified selective small-molecule inhibitors against a deubiquitinase complex, the human USP1/UAF1, through quantitative high throughput screening (qHTS) of a collection of bioactive molecules. The top inhibitors, pimozide and GW7647, inhibited USP1/UAF1 noncompetitively with a Ki of 0.5 and 0.7 μM respectively, and displayed selectivity against a number of deubiquitinases, deSUMOylase and cysteine proteases. The USP1/UAF1 inhibitors act synergistically with cisplatin in inhibiting cisplatin-resistant non-small cell lung cancer (NSCLC) cell proliferation. USP1/UAF1 represents a promising target for drug intervention because of its involvement in translesion synthesis and Fanconi anemia pathway important for normal DNA damage response. Our results support USP1/UAF1 as a potential therapeutic target and provide the first example of targeting the USP/WD40 repeat protein complex for inhibitor discovery. PMID:22118673

  7. Comparison of the UAF Ionosphere Model with Incoherent-Scatter Radar Data

    NASA Astrophysics Data System (ADS)

    McAllister, J.; Maurits, S.; Kulchitsky, A.; Watkins, B.

    2004-12-01

    The UAF Eulerian Parallel Polar Ionosphere Model (UAF EPPIM) is a first-principles three-dimensional time-dependent representation of the northern polar ionosphere (>50 degrees north latitude). The model routinely generates short-term (~2 hours) ionospheric forecasts in real-time. It may also be run in post-processing/batch mode for specific time periods, including long-term (multi-year) simulations. The model code has been extensively validated (~100k comparisons/model year) against ionosonde foF2 data during quiet and moderate solar activity in 2002-2004 with reasonable fidelity (typical relative RMS 10-20% for summer daytime, 30-50% winter nighttime). However, ionosonde data is frequently not available during geomagnetic disturbances. The objective of the work reported here is to compare model outputs with available incoherent-scatter radar data during the storm period of October-November 2003. Model accuracy is examined for this period and compared to model performance during geomagnetically quiet and moderate circumstances. Possible improvements are suggested which are likely to boost model fidelity during storm conditions.

  8. Future Operations of HAARP with the UAF's Geophysical Institute

    NASA Astrophysics Data System (ADS)

    McCoy, R. P.

    2015-12-01

    The High frequency Active Aurora Research Program (HAARP) in Gakona Alaska is the world's premier facility for active experimentation in the ionosphere and upper atmosphere. The ionosphere affects communication, navigation, radar and a variety of other systems depending on, or affected by, radio propagation through this region. The primary component of HAARP, the Ionospheric Research Instrument (IRI), is a phased array of 180 HF antennas spread across 33 acres and capable of radiating 3.6 MW into the upper atmosphere and ionosphere. The array is fed by five 2500 kW generators, each driven by a 3600 hp diesel engine (4 + 1 spare). Transmit frequencies are selectable in the range 2.8 to 10 MHz and complex configurations of rapidly slewed single or multiple beams are possible. HAARP was owned by the Air Force Research Laboratory (AFRL/RV) in Albuquerque, NM but recently was transferred to the Geophysical Institute of the University of Alaska Fairbanks (UAF/GI). The transfer of ownership of the facility is being implemented in stages involving a Cooperative Research and Development Agreement (CRADA) and an Educational Partnership Agreement (EPA) which are complete, and future agreements to transfer ownership of the facility land. The UAF/GI plans to operate the facility for continued ionospheric and upper atmospheric experimentation in a pay-per-use model. In their 2013 "Decadal Survey in Solar and Space Physics" the National Research Council (NRC) made the recommendation to "Fully realize the potential of ionospheric modification…" and in their 2013 Workshop Report: "Opportunities for High-Power, High-Frequency Transmitters to Advance Ionospheric/Thermospheric Research" the NRC outlined the broad range of future ionospheric, thermospheric and magnetospheric experiments that could be performed with HAARP. HAARP is contains a variety of RF and optical ionospheric diagnostic instruments to measure the effects of the heater in real time. The UAF/GI encourages the

  9. Thermal Characterization of Purified Glucose Oxidase from A Newly Isolated Aspergillus Niger UAF-1

    PubMed Central

    Anjum Zia, Muhammad; Khalil-ur-Rahman; K. Saeed, Muhammad; Andaleeb, Fozia; I. Rajoka, Muhammad; A. Sheikh, Munir; A. Khan, Iftikhar; I. Khan, Azeem

    2007-01-01

    An intracellular glucose oxidase was isolated from the mycelium extract of a locally isolated strain of Aspergillus niger UAF-1. The enzyme was purified to a yield of 28.43% and specific activity of 135 U mg−1 through ammonium sulfate precipitation, anion exchange and gel filtration chromatography. The enzyme showed high affinity for D-glucose with a Km value of 2.56 mM. The enzyme exhibited optimum catalytic activity at pH 5.5. Temperature optimum for glucose oxidase, catalyzed D-glucose oxidation was 40°C. The enzyme showed a high thermostability having a half-life 30 min, enthalpy of denaturation 99.66 kJ mol−1 and free energy of denaturation 103.63 kJ mol−1. These characteristics suggest the use of glucose oxidase from Aspergillus niger UAF-1 as an analytical reagent and in the design of biosensors for clinical, biochemical and diagnostic assays. PMID:18193107

  10. A selective USP1-UAF1 inhibitor links deubiquitination to DNA damage responses

    PubMed Central

    Liang, Qin; Dexheimer, Thomas S; Zhang, Ping; Rosenthal, Andrew S; Villamil, Mark A; You, Changjun; Zhang, Qiuting; Chen, Junjun; Ott, Christine A; Sun, Hongmao; Luci, Diane K; Yuan, Bifeng; Simeonov, Anton; Jadhav, Ajit; Xiao, Hui; Wang, Yinsheng; Maloney, David J; Zhuang, Zhihao

    2014-01-01

    Protein ubiquitination and deubiquitination are central to the control of a large number of cellular pathways and signaling networks in eukaryotes. Although the essential roles of ubiquitination have been established in the eukaryotic DNA damage response, the deubiquitination process remains poorly defined. Chemical probes that perturb the activity of deubiquitinases (DUBs) are needed to characterize the cellular function of deubiquitination. Here we report ML323 (2), a highly potent inhibitor of the USP1-UAF1 deubiquitinase complex with excellent selectivity against human DUBs, deSUMOylase, deneddylase and unrelated proteases. Using ML323, we interrogated deubiquitination in the cellular response to UV- and cisplatin-induced DNA damage and revealed new insights into the requirement of deubiquitination in the DNA translesion synthesis and Fanconi anemia pathways. Moreover, ML323 potentiates cisplatin cytotoxicity in non-small cell lung cancer and osteosarcoma cells. Our findings point to USP1-UAF1 as a key regulator of the DNA damage response and a target for overcoming resistance to the platinum-based anticancer drugs. PMID:24531842

  11. High resolution gas volume change sensor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dirckx, Joris J. J.; Aernouts, Jef E. F.; Aerts, Johan R. M.

    2007-05-15

    Changes of gas quantity in a system can be measured either by measuring pressure changes or by measuring volume changes. As sensitive pressure sensors are readily available, pressure change is the commonly used technique. In many physiologic systems, however, buildup of pressure influences the gas exchange mechanisms, thus changing the gas quantity change rate. If one wants to study the gas flow in or out of a biological gas pocket, measurements need to be done at constant pressure. In this article we present a highly sensitive sensor for quantitative measurements of gas volume change at constant pressure. The sensor ismore » based on optical detection of the movement of a droplet of fluid enclosed in a capillary. The device is easy to use and delivers gas volume data at a rate of more than 15 measurements/s and a resolution better than 0.06 {mu}l. At the onset of a gas quantity change the sensor shows a small pressure artifact of less than 15 Pa, and at constant change rates the pressure artifact is smaller than 10 Pa or 0.01% of ambient pressure.« less

  12. Constant volume gas cell optical phase-shifter

    DOEpatents

    Phillion, Donald W.

    2002-01-01

    A constant volume gas cell optical phase-shifter, particularly applicable for phase-shifting interferometry, contains a sealed volume of atmospheric gas at a pressure somewhat different than atmospheric. An optical window is present at each end of the cell, and as the length of the cell is changed, the optical path length of a laser beam traversing the cell changes. The cell comprises movable coaxial tubes with seals and a volume equalizing opening. Because the cell is constant volume, the pressure, temperature, and density of the contained gas do not change as the cell changes length. This produces an exactly linear relationship between the change in the length of the gas cell and the change in optical phase of the laser beam traversing it. Because the refractive index difference between the gas inside and the atmosphere outside is very much the same, a large motion must be made to change the optical phase by the small fraction of a wavelength that is required by phase-shifting interferometry for its phase step. This motion can be made to great fractional accuracy.

  13. A new gas dilution method for measuring body volume.

    PubMed Central

    Nagao, N; Tamaki, K; Kuchiki, T; Nagao, M

    1995-01-01

    This study was designed to examine the validity of a new gas dilution method (GD) for measuring human body volume and to compare its accuracy with the results obtained by the underwater weighing method (UW). We measured the volume of plastic bottles and 16 subjects (including two females), aged 18-42 years with each method. For the bottles, the volume measured by hydrostatic weighing was correlated highly (r = 1.000) with that measured by the new gas dilution method. For the subjects, the body volume determined by the two methods was significantly correlated (r = 0.998). However, the subject's volume measured by the gas dilution method was significantly larger than that by underwater weighing method. There was significant correlation (r = 0.806) between GD volume-UW volume and the body mass index (BMI), so that UW volume could be predicted from GD volume and BMI. It can be concluded that the new gas dilution method offers promising possibilities for future research in the population who cannot submerge underwater. PMID:7551760

  14. Multiple volume compressor for hot gas engine

    DOEpatents

    Stotts, Robert E.

    1986-01-01

    A multiple volume compressor for use in a hot gas (Stirling) engine having a plurality of different volume chambers arranged to pump down the engine when decreased power is called for and return the working gas to a storage tank or reservoir. A valve actuated bypass loop is placed over each chamber which can be opened to return gas discharged from the chamber back to the inlet thereto. By selectively actuating the bypass valves, a number of different compressor capacities can be attained without changing compressor speed whereby the capacity of the compressor can be matched to the power available from the engine which is used to drive the compressor.

  15. Dry Volume Fracturing Simulation of Shale Gas Reservoir

    NASA Astrophysics Data System (ADS)

    Xu, Guixi; Wang, Shuzhong; Luo, Xiangrong; Jing, Zefeng

    2017-11-01

    Application of CO2 dry fracturing technology to shale gas reservoir development in China has advantages of no water consumption, little reservoir damage and promoting CH4 desorption. This paper uses Meyer simulation to study complex fracture network extension and the distribution characteristics of shale gas reservoirs in the CO2 dry volume fracturing process. The simulation results prove the validity of the modified CO2 dry fracturing fluid used in shale volume fracturing and provides a theoretical basis for the following study on interval optimization of the shale reservoir dry volume fracturing.

  16. 30 CFR 203.73 - How do suspension volumes apply to natural gas?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 2 2011-07-01 2011-07-01 false How do suspension volumes apply to natural gas... § 203.73 How do suspension volumes apply to natural gas? You must measure natural gas production under the royalty-suspension volume as follows: 5.62 thousand cubic feet of natural gas, measured in...

  17. 30 CFR 203.73 - How do suspension volumes apply to natural gas?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 2 2010-07-01 2010-07-01 false How do suspension volumes apply to natural gas... suspension volumes apply to natural gas? You must measure natural gas production under the royalty-suspension volume as follows: 5.62 thousand cubic feet of natural gas, measured in accordance with 30 CFR part 250...

  18. Natural gas annual 1992: Volume 1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1993-11-22

    This document provides information on the supply and disposition of natural gas to a wide audience including industry, consumers, Federal and State agencies, and education institutions. The 1992 data are presented in a sequence that follows natural gas (including supplemental supplies) from its production top its end use. Tables summarizing natural gas supply and disposition from 1988 to 1992 are given for each Census Division and each State. Annual historical data are shown at the national level. Volume 2 of this report presents State-level historical data.

  19. Determination of gas volume trapped in a closed fluid system

    NASA Technical Reports Server (NTRS)

    Hunter, W. F.; Jolley, J. E.

    1971-01-01

    Technique involves extracting known volume of fluid and measuring system before and after extraction, volume of entrapped gas is then computed. Formula derived from ideal gas laws is basis of this method. Technique is applicable to thermodynamic cycles and hydraulic systems.

  20. Gas volume contents within a container, smart volume instrument

    NASA Technical Reports Server (NTRS)

    Van Buskirk, Paul D. (Inventor); Kelley, Anthony R. (Inventor)

    2008-01-01

    A method for determining the volume of an incompressible gas in a system including incompressible substances in a zero-gravity environment. The method includes inducing a volumetric displacement within a container and measuring the resulting pressure change. From this data, the liquid level can be determined.

  1. Gas hydrate volume estimations on the South Shetland continental margin, Antarctic Peninsula

    USGS Publications Warehouse

    Jin, Y.K.; Lee, M.W.; Kim, Y.; Nam, S.H.; Kim, K.J.

    2003-01-01

    Multi-channel seismic data acquired on the South Shetland margin, northern Antarctic Peninsula, show that Bottom Simulating Reflectors (BSRs) are widespread in the area, implying large volumes of gas hydrates. In order to estimate the volume of gas hydrate in the area, interval velocities were determined using a 1-D velocity inversion method and porosities were deduced from their relationship with sub-bottom depth for terrigenous sediments. Because data such as well logs are not available, we made two baseline models for the velocities and porosities of non-gas hydrate-bearing sediments in the area, considering the velocity jump observed at the shallow sub-bottom depth due to joint contributions of gas hydrate and a shallow unconformity. The difference between the results of the two models is not significant. The parameters used to estimate the total volume of gas hydrate in the study area were 145 km of total length of BSRs identified on seismic profiles, 350 m thickness and 15 km width of gas hydrate-bearing sediments, and 6.3% of the average volume gas hydrate concentration (based on the second baseline model). Assuming that gas hydrates exist only where BSRs are observed, the total volume of gas hydrates along the seismic profiles in the area is about 4.8 ?? 1010 m3 (7.7 ?? 1012 m3 volume of methane at standard temperature and pressure).

  2. The effect of intraocular gas and fluid volumes on intraocular pressure.

    PubMed

    Simone, J N; Whitacre, M M

    1990-02-01

    Large increases in the intraocular pressure (IOP) of postoperative gas-containing eyes may require the removal of gas or fluid to reduce the IOP to the normal range. Application of the ideal gas law to Friedenwald's equation provides a mathematical model of the relationship between IOP, intraocular gas and fluid volumes, and the coefficient of scleral rigidity. This mathematic model shows that removal of a given volume of gas or fluid produces an identical decrease in IOP and that the more gas an eye contains, the greater the volume reduction necessary to reduce the pressure. Application of the model shows that the effective coefficient of scleral rigidity is low (mean K, 0.0021) in eyes with elevated IOP that have undergone vitrectomy and retinal cryopexy and very low (mean K, 0.0013) in eyes with elevated IOP that have undergone placement of a scleral buckle and band. By using the appropriate mean coefficient of rigidity, the volume of material to be aspirated to produce a given decrease in IOP can be predicted with clinically useful accuracy.

  3. 30 CFR 250.1163 - How must I measure gas flaring or venting volumes and liquid hydrocarbon burning volumes, and...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ..., including all gas flared, gas vented, and liquid hydrocarbons burned, to Minerals Revenue Management on Form... and maintain records detailing gas flaring, gas venting, and liquid hydrocarbon burning for each... include, at a minimum: (i) Daily volumes of gas flared, gas vented, and liquid hydrocarbons burned; (ii...

  4. 30 CFR 250.1163 - How must I measure gas flaring or venting volumes and liquid hydrocarbon burning volumes, and...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ..., gas vented, and liquid hydrocarbons burned, to Office of Natural Resources Revenue on Form ONRR-4054... records detailing gas flaring, gas venting, and liquid hydrocarbon burning for each facility for 6 years... minimum: (i) Daily volumes of gas flared, gas vented, and liquid hydrocarbons burned; (ii) Number of hours...

  5. 30 CFR 250.1163 - How must I measure gas flaring or venting volumes and liquid hydrocarbon burning volumes, and...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ..., gas vented, and liquid hydrocarbons burned, to Office of Natural Resources Revenue on Form ONRR-4054... records detailing gas flaring, gas venting, and liquid hydrocarbon burning for each facility for 6 years... minimum: (i) Daily volumes of gas flared, gas vented, and liquid hydrocarbons burned; (ii) Number of hours...

  6. 30 CFR 250.1163 - How must I measure gas flaring or venting volumes and liquid hydrocarbon burning volumes, and...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ..., gas vented, and liquid hydrocarbons burned, to Office of Natural Resources Revenue on Form ONRR-4054... records detailing gas flaring, gas venting, and liquid hydrocarbon burning for each facility for 6 years... minimum: (i) Daily volumes of gas flared, gas vented, and liquid hydrocarbons burned; (ii) Number of hours...

  7. Radiation from Large Gas Volumes and Heat Exchange in Steam Boiler Furnaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Makarov, A. N., E-mail: tgtu-kafedra-ese@mail.ru

    2015-09-15

    Radiation from large cylindrical gas volumes is studied as a means of simulating the flare in steam boiler furnaces. Calculations of heat exchange in a furnace by the zonal method and by simulation of the flare with cylindrical gas volumes are described. The latter method is more accurate and yields more reliable information on heat transfer processes taking place in furnaces.

  8. 30 CFR 250.1163 - How must I measure gas flaring or venting volumes and liquid hydrocarbon burning volumes, and...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ..., and Burning Hydrocarbons § 250.1163 How must I measure gas flaring or venting volumes and liquid... vented, and liquid hydrocarbons burned, to Minerals Revenue Management on Form MMS-4054 (Oil and Gas... gas flaring, gas venting, and liquid hydrocarbon burning for each facility for 6 years. (1) You must...

  9. METHANE EMISSIONS FROM THE NATURAL GAS INDUSTRY VOLUME 15: GAS-ASSISTED GLYCOL PUMPS

    EPA Science Inventory

    The 15-volume report summarizes the results of a comprehensive program to quantify methane (CH4) emissions from the U.S. natural gas industry for the base year. The objective was to determine CH4 emissions from the wellhead and ending downstream at the customer's meter. The accur...

  10. A notable difference between ideal gas and infinite molar volume limit of van der Waals gas

    NASA Astrophysics Data System (ADS)

    Liu, Q. H.; Shen, Y.; Bai, R. L.; Wang, X.

    2010-05-01

    The van der Waals equation of state does not sufficiently represent a gas unless a thermodynamic potential with two proper and independent variables is simultaneously determined. The limiting procedures under which the behaviour of the van der Waals gas approaches that of an ideal gas are letting two van der Waals coefficients be zero rather than letting the molar volume become infinitely large; otherwise, the partial derivative of internal energy with respect to pressure at a fixed temperature does not vanish.

  11. A new estimate of the volume and distribution of gas hydrate in the northern Gulf of Mexico

    NASA Astrophysics Data System (ADS)

    Majumdar, U.; Cook, A.

    2016-12-01

    In spite of the wealth of information gained over the last several decades about gas hydrate in the northern Gulf of Mexico, there is still considerable uncertainty about the distribution and volume of gas hydrate. In our assessment we build a dataset of basin-wide gas hydrate distribution and thickness, as appraised from publicly available petroleum industry well logs within the gas hydrate stability zone (HSZ), and subsequently develop a Monte Carlo to determine the volumetric estimate of gas hydrate using the dataset. We evaluate the presence of gas hydrate from electrical resistivity well logs, and categorized possible reservoir type (either sand or clay) based on the gamma ray response and resistivity curve characteristics. Out of the 798 wells with resistivity well log data within the HSZ we analyzed, we found evidence of gas hydrate in 124 wells. In this research we present a new stochastic estimate of the gas hydrate volume in the northern Gulf of Mexico guided by our well log dataset. For our Monte Carlo simulation, we divided our assessment area of 200,000 km2 into 1 km2 grid cells. Our volume assessment model incorporates variables unique to our well log dataset such as the likelihood of gas hydrate occurrence, fraction of the HSZ occupied by gas hydrate, reservoir type, and gas hydrate saturation depending on the reservoir, in each grid cell, in addition to other basic variables such as HSZ thickness and porosity. Preliminary results from our model suggests that the total volume of gas at standard temperature and pressure in gas hydrate in the northern Gulf of Mexico is in the range of 430 trillion cubic feet (TCF) to 730 TCF, with a mean volume of 585 TCF. While the reservoir distribution from our well log dataset found gas hydrate in sand reservoirs in 30 wells out of the 124 wells with evidence of gas hydrate ( 24%), we find sand reservoirs contain over half of the total volume of gas hydrate in the Gulf of Mexico, as a result of the relatively high

  12. Estimation of gas and tissue lung volumes by MRI: functional approach of lung imaging.

    PubMed

    Qanadli, S D; Orvoen-Frija, E; Lacombe, P; Di Paola, R; Bittoun, J; Frija, G

    1999-01-01

    The purpose of this work was to assess the accuracy of MRI for the determination of lung gas and tissue volumes. Fifteen healthy subjects underwent MRI of the thorax and pulmonary function tests [vital capacity (VC) and total lung capacity (TLC)] in the supine position. MR examinations were performed at inspiration and expiration. Lung volumes were measured by a previously validated technique on phantoms. Both individual and total lung volumes and capacities were calculated. MRI total vital capacity (VC(MRI)) was compared with spirometric vital capacity (VC(SP)). Capacities were correlated to lung volumes. Tissue volume (V(T)) was estimated as the difference between the total lung volume at full inspiration and the TLC. No significant difference was seen between VC(MRI) and VC(SP). Individual capacities were well correlated (r = 0.9) to static volume at full inspiration. The V(T) was estimated to be 836+/-393 ml. This preliminary study demonstrates that MRI can accurately estimate lung gas and tissue volumes. The proposed approach appears well suited for functional imaging of the lung.

  13. Theoretical test of Jarzynski's equality for reversible volume-switching processes of an ideal gas system.

    PubMed

    Sung, Jaeyoung

    2007-07-01

    We present an exact theoretical test of Jarzynski's equality (JE) for reversible volume-switching processes of an ideal gas system. The exact analysis shows that the prediction of JE for the free energy difference is the same as the work done on the gas system during the reversible process that is dependent on the shape of path of the reversible volume-switching process.

  14. Theoretical and experimental analysis of a multiphase screw pump, handling gas-liquid mixtures with very high gas volume fractions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Raebiger, K.; Faculty of Advanced Technology, University of Glamorgan, Pontypridd, Wales; Maksoud, T.M.A.

    In the investigation of the pumping behaviour of multiphase screw pumps, handling gas-liquid mixtures with very high gas volume fractions, theoretical and experimental analyses were performed. A new theoretical screw pump model was developed, which calculates the time-dependent conditions inside the several chambers of a screw pump as well as the exchange of mass and energy between these chambers. By means of the performed experimental analysis, the screw pump model was verified, especially at very high gas volume fractions from 90% to 99%. The experiments, which were conducted with the reference fluids water and air, can be divided mainly intomore » the determination of the steady state pumping behaviour on the one hand and into the analysis of selected transient operating conditions on the other hand, whereas the visualisation of the leakage flows through the circumferential gaps was rounded off the experimental analysis. (author)« less

  15. Microbubble gas volume: A unifying dose parameter in blood-brain barrier opening by focused ultrasound.

    PubMed

    Song, Kang-Ho; Fan, Alexander C; Hinkle, Joshua J; Newman, Joshua; Borden, Mark A; Harvey, Brandon K

    2017-01-01

    Focused ultrasound with microbubbles is being developed to transiently, locally and noninvasively open the blood-brain barrier (BBB) for improved pharmaceutical delivery. Prior work has demonstrated that, for a given concentration dose, microbubble size affects both the intravascular circulation persistence and extent of BBB opening. When matched to gas volume dose, however, the circulation half-life was found to be independent of microbubble size. In order to determine whether this holds true for BBB opening as well, we independently measured the effects of microbubble size (2 vs. 6 µm diameter) and concentration, covering a range of overlapping gas volume doses (1-40 µL/kg). We first demonstrated precise targeting and a linear dose-response of Evans Blue dye extravasation to the rat striatum for a set of constant microbubble and ultrasound parameters. We found that dye extravasation increased linearly with gas volume dose, with data points from both microbubble sizes collapsing to a single line. A linear trend was observed for both the initial sonication (R 2 =0.90) and a second sonication on the contralateral side (R 2 =0.68). Based on these results, we conclude that microbubble gas volume dose, not size, determines the extent of BBB opening by focused ultrasound (1 MHz, ~0.5 MPa at the focus). This result may simplify planning for focused ultrasound treatments by constraining the protocol to a single microbubble parameter - gas volume dose - which gives equivalent results for varying size distributions. Finally, using optimal parameters determined for Evan Blue, we demonstrated gene delivery and expression using a viral vector, dsAAV1-CMV-EGFP, one week after BBB disruption, which allowed us to qualitatively evaluate neuronal health.

  16. EVALUATION OF VAPOR EQUILIBRATION AND IMPACT OF PURGE VOLUME ON SOIL-GAS SAMPLING RESULTS

    EPA Science Inventory

    Sequential sampling was utilized at the Raymark Superfund site to evaluate attainment of vapor equilibration and the impact of purge volume on soil-gas sample results. A simple mass-balance equation indicates that removal of three to five internal volumes of a sample system shou...

  17. Application and advantages of novel clay ceramic particles (CCPs) in an up-flow anaerobic bio-filter (UAF) for wastewater treatment.

    PubMed

    Han, Wei; Yue, Qinyan; Wu, Suqing; Zhao, Yaqin; Gao, Baoyu; Li, Qian; Wang, Yan

    2013-06-01

    Utilization of clay ceramic particles (CCPs) as the novel filter media employed in an up-flow anaerobic bio-filter (UAF) was investigated. After a series of tests and operations, CCPs have presented higher total porosity and roughness, meanwhile lower bulk and grain density. When CCPs were utilized as fillers, the reactor had a shorter start up period of 45 days comparing with conventional reactors, and removal rate of chemical oxygen demand (COD) still reached about 76% at a relatively lower temperature during the stable state. In addition, degradation of COD and ammonia nitrogen (NH4-N) at different media height along the reactor was evaluated, and the dates showed that the main reduction process happened within the first 30 cm media height from the bottom flange. Five phases were observed according to different organic loadings during the experiment period, and the results indicated that COD removal increased linearly when the organic loading was increased. Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. Multiphase flowmeter successfully measures three-phase flow at extremely high gas-volume fractions -- Gulf of Suez, Egypt

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leggett, R.B.; Borling, D.C.; Powers, B.S.

    1998-02-01

    A multiphase flowmeter (MPFM) installed in offshore Egypt has accurately measured three-phase flow in extremely gassy flow conditions. The meter is completely nonintrusive, with no moving parts, requires no flow mixing before measurement, and has no bypass loop to remove gas before multiphase measurement. Flow regimes observed during the field test of this meter ranged from severe slugging to annular flow caused by the dynamics of gas-lift gas in the production stream. Average gas-volume fraction ranged from 93 to 98% during tests conducted on seven wells. The meter was installed in the Gulf of Suez on a well protector platformmore » in the Gulf of Suez Petroleum Co. (Gupco) October field, and was placed in series with a test separator located on a nearby production platform. Wells were individually tested with flow conditions ranging from 1,300 to 4,700 B/D fluid, 2.4 to 3.9 MMscf/D of gas, and water cuts from 1 to 52%. The meter is capable of measuring water cuts up to 100%. Production was routed through both the MPFM and the test separator simultaneously as wells flowed with the assistance of gas-lift gas. The MPFM measured gas and liquid rates to within {+-} 10% of test-separator reference measurement flow rates, and accomplished this at gas-volume fractions from 93 to 96%. At higher gas-volume fractions up to 98%, accuracy deteriorated but the meter continued to provide repeatable results.« less

  19. Single-dose volume regulation algorithm for a gas-compensated intrathecal infusion pump.

    PubMed

    Nam, Kyoung Won; Kim, Kwang Gi; Sung, Mun Hyun; Choi, Seong Wook; Kim, Dae Hyun; Jo, Yung Ho

    2011-01-01

    The internal pressures of medication reservoirs of gas-compensated intrathecal medication infusion pumps decrease when medication is discharged, and these discharge-induced pressure drops can decrease the volume of medication discharged. To prevent these reductions, the volumes discharged must be adjusted to maintain the required dosage levels. In this study, the authors developed an automatic control algorithm for an intrathecal infusion pump developed by the Korean National Cancer Center that regulates single-dose volumes. The proposed algorithm estimates the amount of medication remaining and adjusts control parameters automatically to maintain single-dose volumes at predetermined levels. Experimental results demonstrated that the proposed algorithm can regulate mean single-dose volumes with a variation of <3% and estimate the remaining medication volume with an accuracy of >98%. © 2010, Copyright the Authors. Artificial Organs © 2010, International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.

  20. METHANE EMISSIONS FROM THE NATURAL GAS INDUSTRY VOLUME 9: UNDERGROUND PIPELINES

    EPA Science Inventory

    The 15-volume report summarizes the results of a comprehensive program to quantify methane (CH4) emissions from the U.S. natural gas industry for the base year. The objective was to determine CH4 emissions from the wellhead and ending downstream at the customer's meter. The accur...

  1. METHANE EMISSIONS FROM THE NATURAL GAS INDUSTRY VOLUME 14: GLYCOL DEHYDRATORS

    EPA Science Inventory

    The 15-volume report summarizes the results of a comprehensive program to quantify methane (CH4) emissions from the U.S. natural gas industry for the base year. The objective was to determine CH4 emissions from the wellhead and ending downstream at the customer's meter. The accur...

  2. METHANE EMISSIONS FROM THE NATURAL GAS INDUSTRY VOLUME 8: EQUIPMENT LEAKS

    EPA Science Inventory

    The 15-volume report summarizes the results of a comprehensive program to quantify methane (CH4) emissions from the U.S. natural gas industry for the base year. The objective was to determine CH4 emissions from the wellhead and ending downstream at the customer's meter. The accur...

  3. METHANE EMISSIONS FROM THE NATURAL GAS INDUSTRY VOLUME 5: ACTIVITY FACTORS

    EPA Science Inventory

    The 15-volume report summarizes the results of a comprehensive program to quantify methane (CH4) emissions from the U.S. natural gas industry for the base year. The objective was to determine CH4 emissions from the wellhead and ending downstream at the customer's meter. The accur...

  4. METHANE EMISSIONS FROM THE NATURAL GAS INDUSTRY VOLUME 2: TECHNICAL REPORT

    EPA Science Inventory

    The 15-volume report summarizes the results of a comprehensive program to quantify methane (CH4) emissions from the U.S. natural gas industry for the base year. The objective was to determine CH4 emissions from the wellhead and ending downstream at the customer's meter. The accur...

  5. METHANE EMISSIONS FROM THE NATURAL GAS INDUSTRY VOLUME 3: GENERAL METHODOLOGY

    EPA Science Inventory

    The 15-volume report summarizes the results of a comprehensive program to quantify methane (CH4) emissions from the U.S. natural gas industry for the base year. The objective was to determine CH4 emissions from the wellhead and ending downstream at the customer's meter. The accur...

  6. METHANE EMISSIONS FROM THE NATURAL GAS INDUSTRY VOLUME 4: STATISTICAL METHODOLOGY

    EPA Science Inventory

    The 15-volume report summarizes the results of a comprehensive program to quantify methane (CH4) emissions from the U.S. natural gas industry for the base year. The objective was to determine CH4 emissions from the wellhead and ending downstream at the customer's meter. The accur...

  7. METHANE EMISSIONS FROM THE NATURAL GAS INDUSTRY VOLUME 12: PNEUMATIC DEVICES

    EPA Science Inventory

    The 15-volume report summarizes the results of a comprehensive program to quantify methane (CH4) emissions from the U.S. natural gas industry for the base year. The objective was to determine CH4 emissions from the wellhead and ending downstream at the customer's meter. The accur...

  8. METHANE EMISSIONS FROM THE NATURAL GAS INDUSTRY VOLUME 1: EXECUTIVE SUMMARY

    EPA Science Inventory

    The 15-volume report summarizes the results of a comprehensive program to quantify methane (CH4) emissions from the U.S. natural gas industry for the base year. The objective was to determine CH4 emissions from the wellhead and ending downstream at the customer's meter. The accur...

  9. Gas-Grain Simulation Facility (GGSF). Volume 2: Conceptual design definition

    NASA Technical Reports Server (NTRS)

    Zamel, James M.

    1993-01-01

    This document is Volume 2 of the Final Report for the Phase A Study of the Gas-Grain Simulation Facility (GGSF), and presents the GGSF Conceptual Design. It is a follow-on to the Volume 1 Facility Definition Study, NASA report CR 177606. The development of a conceptual design for a Space Station Freedom (SSF) facility that will be used for investigating particle interactions in varying environments, including various gas mixtures, pressures, and temperatures is delineated. It's not possible to study these experiments on earth due to the long reaction times associated with this type of phenomena, hence the need for extended periods of microgravity. The particle types will vary in composition (solids and liquids), sizes (from submicrons to centimeters), and concentrations (from single particles to 10(exp 10) per cubic centimeter). The results of the experiments pursued in the GGSF will benefit a variety of scientific inquiries. These investigations span such diverse topics as the formation of planets and planetary rings, cloud and haze processes in planetary atmospheres, the composition and structure of astrophysical objects, and the viability of airborne microbes (e.g., in a manned spacecraft).

  10. Industrial Fuel Gas Demonstration Plant Program. Volume 1. Demonstration plant environmental analysis (Deliverable No. 27)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gray, Robert W.; Swift, Richard J.; Krause, Arthur J.

    1979-08-01

    This environmental report describes the proposed action to construct, test and operate a coal gasification demonstration plant in Memphis, Tennessee, under the co-sponsorship of the Memphis Light, Gas and Water Division (MLGW) and the US Department of Energy (DOE). This document is Volume I of a three-volume Environmental Report. Volume I consists of the Summary, Introduction and the Description of the Proposed Action. Volume II consists of the Description of the Existing Environment. Volume III contains the Environmental Impacts of the Proposed Action, Mitigating Measures and Alternatives to the Proposed Action.

  11. PROCEEDINGS: SYMPOSIUM ON FLUE GAS DESULFURIZATION HELD AT LAS VEGAS, NEVADA, MARCH 1979; VOLUME II

    EPA Science Inventory

    The publication, in two volumes, contains the text of all papers presented at EPA's fifth flue gas desulfurization (FGD) symposium, March 5-8, 1979, at Las Vegas, Nevada. A partial listing of papers in Volume 2 includes the following: Basin Electric's involvement with dry flue ga...

  12. METHANE EMISSIONS FROM THE NATURAL GAS INDUSTRY VOLUME 13: CHEMICAL INJECTION PUMPS

    EPA Science Inventory

    The 15-volume report summarizes the results of a comprehensive program to quantify methane (CH4) emissions from the U.S. natural gas industry for the base year. The objective was to determine CH4 emissions from the wellhead and ending downstream at the customer's meter. The accur...

  13. METHANE EMISSIONS FROM THE NATURAL GAS INDUSTRY VOLUME 11: COMPRESSOR DRIVER EXHAUST

    EPA Science Inventory

    The 15-volume report summarizes the results of a comprehensive program to quantify methane (CH4) emissions from the U.S. natural gas industry for the base year. The objective was to determine CH4 emissions from the wellhead and ending downstream at the customer's meter. The accur...

  14. Application of Fractal Geometry in Evaluation of Effective Stimulated Reservoir Volume in Shale Gas Reservoirs

    NASA Astrophysics Data System (ADS)

    Sheng, Guanglong; Su, Yuliang; Wang, Wendong; Javadpour, Farzam; Tang, Meirong

    According to hydraulic-fracturing practices conducted in shale reservoirs, effective stimulated reservoir volume (ESRV) significantly affects the production of hydraulic fractured well. Therefore, estimating ESRV is an important prerequisite for confirming the success of hydraulic fracturing and predicting the production of hydraulic fracturing wells in shale reservoirs. However, ESRV calculation remains a longstanding challenge in hydraulic-fracturing operation. In considering fractal characteristics of the fracture network in stimulated reservoir volume (SRV), this paper introduces a fractal random-fracture-network algorithm for converting the microseismic data into fractal geometry. Five key parameters, including bifurcation direction, generating length (d), deviation angle (α), iteration times (N) and generating rules, are proposed to quantitatively characterize fracture geometry. Furthermore, we introduce an orthogonal-fractures coupled dual-porosity-media representation elementary volume (REV) flow model to predict the volumetric flux of gas in shale reservoirs. On the basis of the migration of adsorbed gas in porous kerogen of REV with different fracture spaces, an ESRV criterion for shale reservoirs with SRV is proposed. Eventually, combining the ESRV criterion and fractal characteristic of a fracture network, we propose a new approach for evaluating ESRV in shale reservoirs. The approach has been used in the Eagle Ford shale gas reservoir, and results show that the fracture space has a measurable influence on migration of adsorbed gas. The fracture network can contribute to enhancement of the absorbed gas recovery ratio when the fracture space is less than 0.2 m. ESRV is evaluated in this paper, and results indicate that the ESRV accounts for 27.87% of the total SRV in shale gas reservoirs. This work is important and timely for evaluating fracturing effect and predicting production of hydraulic fracturing wells in shale reservoirs.

  15. Lung gas volumes and expiratory time constant in immature newborn rabbits treated with natural or synthetic surfactant or detergents.

    PubMed

    Bongrani, S; Fornasier, M; Papotti, M; Razzetti, R; Robertson, B

    1994-01-01

    Immature newborn rabbits delivered at a gestational age of 27 days were tracheotomized and treated, via the tracheal cannula, with clinically recommended doses of natural or synthetic surfactant (Curosurf and Exosurf, respectively). Littermates received 0.1% tyloxapol, 5% Tween 20, or saline. The dose volume of Curosurf was 2.5 ml/kg, that of the other materials 5 ml/kg. Animals were kept in a multiplethysmograph system and ventilated for 30 min with a standardized sequence of insufflation pressures. End-expiratory lung gas volume was calculated at the end of the experiment from measurements of lung weight and total lung volume. Tidal volumes were significantly improved in all groups of animals receiving surfactant or detergents. However, expiratory time constant (determined from the tidal volume tracing) was significantly longer, and end-expiratory gas volume significantly larger, in animals treated with Curosurf than in those receiving Exosurf or detergents. These differences were confirmed by semiquantitative evaluation of alveolar air expansion in histological sections. In addition, airway epithelial necrosis was reduced in animals receiving Curosurf, Exosurf, or Tween 20, but not in animals treated with tyloxapol. The discrepancy between improvements in tidal volume, expiratory time constant, and end-expiratory gas volume reflects failure of lung stabilization in animals treated with Exosurf or detergents, probably due to absence of specific hydrophobic proteins in the synthetic products.

  16. The capability of radial basis function to forecast the volume fractions of the annular three-phase flow of gas-oil-water.

    PubMed

    Roshani, G H; Karami, A; Salehizadeh, A; Nazemi, E

    2017-11-01

    The problem of how to precisely measure the volume fractions of oil-gas-water mixtures in a pipeline remains as one of the main challenges in the petroleum industry. This paper reports the capability of Radial Basis Function (RBF) in forecasting the volume fractions in a gas-oil-water multiphase system. Indeed, in the present research, the volume fractions in the annular three-phase flow are measured based on a dual energy metering system including the 152 Eu and 137 Cs and one NaI detector, and then modeled by a RBF model. Since the summation of volume fractions are constant (equal to 100%), therefore it is enough for the RBF model to forecast only two volume fractions. In this investigation, three RBF models are employed. The first model is used to forecast the oil and water volume fractions. The next one is utilized to forecast the water and gas volume fractions, and the last one to forecast the gas and oil volume fractions. In the next stage, the numerical data obtained from MCNP-X code must be introduced to the RBF models. Then, the average errors of these three models are calculated and compared. The model which has the least error is picked up as the best predictive model. Based on the results, the best RBF model, forecasts the oil and water volume fractions with the mean relative error of less than 0.5%, which indicates that the RBF model introduced in this study ensures an effective enough mechanism to forecast the results. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Detection of gas hydrate with downhole logs and assessment of gas hydrate concentrations (saturations) and gas volumes on the Blake Ridge with electrical resistivity log data

    USGS Publications Warehouse

    Collett, T.S.; Ladd, J.

    2000-01-01

    Let 164 of the Ocean Drilling Program was designed to investigate the occurrence of gas hydrate in the sedimentary section beneath the Blake Ridge on the southeastern continental margin of North America. Site 994, and 997 were drilled on the Blake Ridge to refine our understanding of the in situ characteristics of natural gas hydrate. Because gas hydrate is unstable at surface pressure and temperature conditions, a major emphasis was placed on the downhole logging program to determine the in situ physical properties of the gas hydrate-bearing sediments. Downhole logging tool strings deployed on Leg 164 included the Schlumberger quad-combination tool (NGT, LSS/SDT, DIT, CNT-G, HLDT), the Formation MicroScanner (FMS), and the Geochemical Combination Tool (GST). Electrical resistivity (DIT) and acoustic transit-time (LSS/SDT) downhole logs from Sites 994, 995, and 997 indicate the presence of gas hydrate in the depth interval between 185 and 450 mbsf on the Blake Ridge. Electrical resistivity log calculations suggest that the gas hydrate-bearing sedimentary section on the Blake Ridge may contain between 2 and 11 percent bulk volume (vol%) gas hydrate. We have determined that the log-inferred gas hydrates and underlying free-gas accumulations on the Blake Ridge may contain as much as 57 trillion m3 of gas.

  18. Model documentation Natural Gas Transmission and Distribution Model of the National Energy Modeling System. Volume 1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1996-02-26

    The Natural Gas Transmission and Distribution Model (NGTDM) of the National Energy Modeling System is developed and maintained by the Energy Information Administration (EIA), Office of Integrated Analysis and Forecasting. This report documents the archived version of the NGTDM that was used to produce the natural gas forecasts presented in the Annual Energy Outlook 1996, (DOE/EIA-0383(96)). The purpose of this report is to provide a reference document for model analysts, users, and the public that defines the objectives of the model, describes its basic approach, and provides detail on the methodology employed. Previously this report represented Volume I of amore » two-volume set. Volume II reported on model performance, detailing convergence criteria and properties, results of sensitivity testing, comparison of model outputs with the literature and/or other model results, and major unresolved issues.« less

  19. Equivalence of Fluctuation Splitting and Finite Volume for One-Dimensional Gas Dynamics

    NASA Technical Reports Server (NTRS)

    Wood, William A.

    1997-01-01

    The equivalence of the discretized equations resulting from both fluctuation splitting and finite volume schemes is demonstrated in one dimension. Scalar equations are considered for advection, diffusion, and combined advection/diffusion. Analysis of systems is performed for the Euler and Navier-Stokes equations of gas dynamics. Non-uniform mesh-point distributions are included in the analyses.

  20. METHANE EMISSIONS FROM THE NATURAL GAS INDUSTRY VOLUME 10: METERING AND PRESSURE REGULATING STATIONS IN NATURAL GAS TRANSMISSIONS AND DISTRIBUTION

    EPA Science Inventory

    The 15-volume report summarizes the results of a comprehensive program to quantify methane (CH4) emissions from the U.S. natural gas industry for the base year. The objective was to determine CH4 emissions from the wellhead and ending downstream at the customer's meter. The accur...

  1. METHANE EMISSIONS FROM THE NATURAL GAS INDUSTRY VOLUME 6: VENTED & COMBUSTION SOURCE SUMMARY

    EPA Science Inventory

    The 15-volume report summarizes the results of a comprehensive program to quantify methane (CH4) emissions from the U.S. natural gas industry for the base year. The objective was to determine CH4 emissions from the wellhead and ending downstream at the customer's meter. The accur...

  2. METHANE EMISSIONS FROM THE NATURAL GAS INDUSTRY VOLUME 7: BLOW AND PURGE ACTIVITIES

    EPA Science Inventory

    The 15-volume report summarizes the results of a comprehensive program to quantify methane (CH4) emissions from the U.S. natural gas industry for the base year. The objective was to determine CH4 emissions from the wellhead and ending downstream at the customer's meter. The accur...

  3. Gas Detectors, Volume 1.

    ERIC Educational Resources Information Center

    Defense Documentation Center, Alexandria, VA.

    The report contains annotated references on gas detectors compiled from the Defense Documentation Center's data bank. The range of the topics deals with detection of toxic propellants, odors, gas leaks, oxygen, etc. Included with the bibliographic reference are the corporate author-monitoring agency, subject, and title indexes. (Author/JR)

  4. Role of stranded gas in increasing global gas supplies

    USGS Publications Warehouse

    Attanasi, E.D.; Freeman, P.A.

    2013-01-01

    This report synthesizes the findings of three regional studies in order to evaluate, at the global scale, the contribution that stranded gas resources can make to global natural gas supplies. Stranded gas, as defined for this study, is natural gas in discovered conventional gas and oil fields that is currently not commercially producible for either physical or economic reasons. The regional studies evaluated the cost of bringing the large volumes of undeveloped gas in stranded gas fields to selected markets. In particular, stranded gas fields of selected Atlantic Basin countries, north Africa, Russia, and central Asia are screened to determine whether the volumes are sufficient to meet Europe’s increasing demand for gas imports. Stranded gas fields in Russia, central Asia, Southeast Asia, and Australia are also screened to estimate development, production, and transport costs and corresponding gas volumes that could be supplied to Asian markets in China, India, Japan, and South Korea. The data and cost analysis presented here suggest that for the European market and the markets examined in Asia, the development of stranded gas provides a way to meet projected gas import demands for the 2020-to-2040 period. Although this is a reconnaissance-type appraisal, it is based on volumes of gas that are associated with individual identified fields. Individual field data were carefully examined. Some fields were not evaluated because current technology was insufficient or it appeared the gas was likely to be held off the export market. Most of the evaluated stranded gas can be produced and delivered to markets at costs comparable to historical prices. Moreover, the associated volumes of gas are sufficient to provide an interim supply while additional technologies are developed to unlock gas diffused in shale and hydrates or while countries transition to making a greater use of renewable energy sources.

  5. ADVANCED COMBUSTION SYSTEMS FOR STATIONARY GAS TURBINE ENGINES: VOLUME I. REVIEW AND PRELIMINARY EVALUATION

    EPA Science Inventory

    The reports describe an exploratory development program to identify, evaluate, and demonstrate dry techniques for significantly reducing NOx from thermal and fuel-bound sources in stationary gas turbine engines. Volume 1 covers Phase I of the four-phase effort. In Phase I, duty c...

  6. Comparing volume of fluid and level set methods for evaporating liquid-gas flows

    NASA Astrophysics Data System (ADS)

    Palmore, John; Desjardins, Olivier

    2016-11-01

    This presentation demonstrates three numerical strategies for simulating liquid-gas flows undergoing evaporation. The practical aim of this work is to choose a framework capable of simulating the combustion of liquid fuels in an internal combustion engine. Each framework is analyzed with respect to its accuracy and computational cost. All simulations are performed using a conservative, finite volume code for simulating reacting, multiphase flows under the low-Mach assumption. The strategies used in this study correspond to different methods for tracking the liquid-gas interface and handling the transport of the discontinuous momentum and vapor mass fractions fields. The first two strategies are based on conservative, geometric volume of fluid schemes using directionally split and un-split advection, respectively. The third strategy is the accurate conservative level set method. For all strategies, special attention is given to ensuring the consistency between the fluxes of mass, momentum, and vapor fractions. The study performs three-dimensional simulations of an isolated droplet of a single component fuel evaporating into air. Evaporation rates and vapor mass fractions are compared to analytical results.

  7. Free volumes and gas transport in polymers: amine-modified epoxy resins as a case study.

    PubMed

    Patil, Pushkar N; Roilo, David; Brusa, Roberto S; Miotello, Antonio; Aghion, Stefano; Ferragut, Rafael; Checchetto, Riccardo

    2016-02-07

    The CO2 transport process was studied in a series of amine-modified epoxy resins having different cross-linking densities but the same chemical environment for the penetrant molecules. Positron Annihilation Lifetime Spectroscopy (PALS) was used to monitor the free volume structure of the samples and experimentally evaluate their fractional free volume fh(T) and its temperature evolution. The analysis of the free volume hole size distribution showed that all the holes have a size large enough to accommodate the penetrant molecules at temperatures T above the glass transition temperature Tg. The measured gas diffusion constants at T > Tg have been reproduced in the framework of the free volume theory of diffusion using a novel procedure based on the use of fh(T) as an input experimental parameter.

  8. One-Dimensional Ablation with Pyrolysis Gas Flow Using a Full Newton's Method and Finite Control Volume Procedure

    NASA Technical Reports Server (NTRS)

    Amar, Adam J.; Blackwell, Ben F.; Edwards, Jack R.

    2007-01-01

    The development and verification of a one-dimensional material thermal response code with ablation is presented. The implicit time integrator, control volume finite element spatial discretization, and Newton's method for nonlinear iteration on the entire system of residual equations have been implemented and verified for the thermochemical ablation of internally decomposing materials. This study is a continuation of the work presented in "One-Dimensional Ablation with Pyrolysis Gas Flow Using a Full Newton's Method and Finite Control Volume Procedure" (AIAA-2006-2910), which described the derivation, implementation, and verification of the constant density solid energy equation terms and boundary conditions. The present study extends the model to decomposing materials including decomposition kinetics, pyrolysis gas flow through the porous char layer, and a mixture (solid and gas) energy equation. Verification results are presented for the thermochemical ablation of a carbon-phenolic ablator which involves the solution of the entire system of governing equations.

  9. Body density and diving gas volume of the northern bottlenose whale (Hyperoodon ampullatus).

    PubMed

    Miller, Patrick; Narazaki, Tomoko; Isojunno, Saana; Aoki, Kagari; Smout, Sophie; Sato, Katsufumi

    2016-08-15

    Diving lung volume and tissue density, reflecting lipid store volume, are important physiological parameters that have only been estimated for a few breath-hold diving species. We fitted 12 northern bottlenose whales with data loggers that recorded depth, 3-axis acceleration and speed either with a fly-wheel or from change of depth corrected by pitch angle. We fitted measured values of the change in speed during 5 s descent and ascent glides to a hydrodynamic model of drag and buoyancy forces using a Bayesian estimation framework. The resulting estimate of diving gas volume was 27.4±4.2 (95% credible interval, CI) ml kg(-1), closely matching the measured lung capacity of the species. Dive-by-dive variation in gas volume did not correlate with dive depth or duration. Estimated body densities of individuals ranged from 1028.4 to 1033.9 kg m(-3) at the sea surface, indicating overall negative tissue buoyancy of this species in seawater. Body density estimates were highly precise with ±95% CI ranging from 0.1 to 0.4 kg m(-3), which would equate to a precision of <0.5% of lipid content based upon extrapolation from the elephant seal. Six whales tagged near Jan Mayen (Norway, 71°N) had lower body density and were closer to neutral buoyancy than six whales tagged in the Gully (Nova Scotia, Canada, 44°N), a difference that was consistent with the amount of gliding observed during ascent versus descent phases in these animals. Implementation of this approach using longer-duration tags could be used to track longitudinal changes in body density and lipid store body condition of free-ranging cetaceans. © 2016. Published by The Company of Biologists Ltd.

  10. Body density and diving gas volume of the northern bottlenose whale (Hyperoodon ampullatus)

    PubMed Central

    Miller, Patrick; Narazaki, Tomoko; Isojunno, Saana; Aoki, Kagari; Smout, Sophie; Sato, Katsufumi

    2016-01-01

    ABSTRACT Diving lung volume and tissue density, reflecting lipid store volume, are important physiological parameters that have only been estimated for a few breath-hold diving species. We fitted 12 northern bottlenose whales with data loggers that recorded depth, 3-axis acceleration and speed either with a fly-wheel or from change of depth corrected by pitch angle. We fitted measured values of the change in speed during 5 s descent and ascent glides to a hydrodynamic model of drag and buoyancy forces using a Bayesian estimation framework. The resulting estimate of diving gas volume was 27.4±4.2 (95% credible interval, CI) ml kg−1, closely matching the measured lung capacity of the species. Dive-by-dive variation in gas volume did not correlate with dive depth or duration. Estimated body densities of individuals ranged from 1028.4 to 1033.9 kg m−3 at the sea surface, indicating overall negative tissue buoyancy of this species in seawater. Body density estimates were highly precise with ±95% CI ranging from 0.1 to 0.4 kg m−3, which would equate to a precision of <0.5% of lipid content based upon extrapolation from the elephant seal. Six whales tagged near Jan Mayen (Norway, 71°N) had lower body density and were closer to neutral buoyancy than six whales tagged in the Gully (Nova Scotia, Canada, 44°N), a difference that was consistent with the amount of gliding observed during ascent versus descent phases in these animals. Implementation of this approach using longer-duration tags could be used to track longitudinal changes in body density and lipid store body condition of free-ranging cetaceans. PMID:27296044

  11. A Simple Mercury-Free Laboratory Apparatus to Study the Relationship between Pressure, Volume, and Temperature in a Gas

    ERIC Educational Resources Information Center

    McGregor, Donna; Sweeney, William V.; Mills, Pamela

    2012-01-01

    A simple and inexpensive mercury-free apparatus to measure the change in volume of a gas as a function of pressure at different temperatures is described. The apparatus is simpler than many found in the literature and can be used to study variations in pressure, volume, and temperature. (Contains 1 table and 7 figures.)

  12. Demonstrating the Gas Laws.

    ERIC Educational Resources Information Center

    Holko, David A.

    1982-01-01

    Presents a complete computer program demonstrating the relationship between volume/pressure for Boyle's Law, volume/temperature for Charles' Law, and volume/moles of gas for Avagadro's Law. The programing reinforces students' application of gas laws and equates a simulated moving piston to theoretical values derived using the ideal gas law.…

  13. U S Navy Diving Manual. Volume 2. Mixed-Gas Diving. Revision 1.

    DTIC Science & Technology

    1981-07-01

    has been soaked in a solution of portant aspects of underwater physics and physiology caustic potash. This chemical absorbed the carbon as they...between the diver’s breathing passages and the circuit must be of minimum volume minimum of caustic fumes. Water produced by the to preclude deadspace and...strongly react with water to pro- space around the absorbent bed to reduce the gas duce caustic fumes and cannot be used in UBA’s. flow distance. The

  14. Effects of cardiac oscillations and lung volume on acinar gas mixing during apnea

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mackenzie, C.F.; Skacel, M.; Barnas, G.M.

    1990-05-01

    We evaluated the importance of cardiogenic gas mixing in the acini of 13 dogs during 2 min of apnea. 133Xe (1-2 mCi in 4 ml of saline) was injected into an alveolar region through an occluded pulmonary artery branch, and washout was measured by gamma scintillation scanning during continued occlusion or with blood flow reinstated. The monoexponential rate constant for Xe washout (XeW) was -0.4 +/- 0.08 (SE) min-1 at functional residual capacity (FRC) with no blood flow in the injected region. It decreased by more than half at lung volumes 500 ml above and 392 ml below FRC. Withmore » intact pulmonary blood flow, XeW was -1.0 +/- 0.08 (SE) min-1 at FRC, and it increased with decreasing lung volume. However, if calculated Xe uptake by the blood was subtracted from the XeW measured with blood flow intact, resulting values at FRC and at FRC + 500 ml were not different from XeW with no blood flow. Reasonable calculation of Xe blood uptake at 392 ml below FRC was not possible because airway closure, increased shunt, and other factors affect XeW. After death, no significant XeW could be measured, which suggests that XeW caused by molecular diffusion was small. We conclude that (1) the effect of heart motion on the lung parenchyma increases acinar gas mixing during apnea, (2) this effect diminishes above or below FRC, and (3) there is probably no direct effect of pulmonary vascular pulsatility on acinar gas mixing.« less

  15. Gas flow meter and method for measuring gas flow rate

    DOEpatents

    Robertson, Eric P.

    2006-08-01

    A gas flow rate meter includes an upstream line and two chambers having substantially equal, fixed volumes. An adjustable valve may direct the gas flow through the upstream line to either of the two chambers. A pressure monitoring device may be configured to prompt valve adjustments, directing the gas flow to an alternate chamber each time a pre-set pressure in the upstream line is reached. A method of measuring the gas flow rate measures the time required for the pressure in the upstream line to reach the pre-set pressure. The volume of the chamber and upstream line are known and fixed, thus the time required for the increase in pressure may be used to determine the flow rate of the gas. Another method of measuring the gas flow rate uses two pressure measurements of a fixed volume, taken at different times, to determine the flow rate of the gas.

  16. Development of Parametric Mass and Volume Models for an Aerospace SOFC/Gas Turbine Hybrid System

    NASA Technical Reports Server (NTRS)

    Tornabene, Robert; Wang, Xiao-yen; Steffen, Christopher J., Jr.; Freeh, Joshua E.

    2005-01-01

    In aerospace power systems, mass and volume are key considerations to produce a viable design. The utilization of fuel cells is being studied for a commercial aircraft electrical power unit. Based on preliminary analyses, a SOFC/gas turbine system may be a potential solution. This paper describes the parametric mass and volume models that are used to assess an aerospace hybrid system design. The design tool utilizes input from the thermodynamic system model and produces component sizing, performance, and mass estimates. The software is designed such that the thermodynamic model is linked to the mass and volume model to provide immediate feedback during the design process. It allows for automating an optimization process that accounts for mass and volume in its figure of merit. Each component in the system is modeled with a combination of theoretical and empirical approaches. A description of the assumptions and design analyses is presented.

  17. 40 CFR Table 1 to Subpart Ja of... - Molar Exhaust Volumes and Molar Heat Content of Fuel Gas Constituents

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 7 2014-07-01 2014-07-01 false Molar Exhaust Volumes and Molar Heat... Exhaust Volumes and Molar Heat Content of Fuel Gas Constituents Constituent MEVa dscf/mol MHCb Btu/mol... standard conditions of 68 °F and 1 atmosphere. b MHC = molar heat content (higher heating value basis), Btu...

  18. 40 CFR Table 1 to Subpart Ja of... - Molar Exhaust Volumes and Molar Heat Content of Fuel Gas Constituents

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 7 2013-07-01 2013-07-01 false Molar Exhaust Volumes and Molar Heat... Exhaust Volumes and Molar Heat Content of Fuel Gas Constituents Constituent MEVa dscf/mol MHCb Btu/mol... standard conditions of 68 °F and 1 atmosphere. b MHC = molar heat content (higher heating value basis), Btu...

  19. The catalogCleaner: Separating the Sheep from the Goats

    NASA Astrophysics Data System (ADS)

    O'Brien, K.; Hankin, S. C.; Schweitzer, R.; Koyuk, H.

    2012-12-01

    The Global Earth Observation Integrated Data Environment (GEO-IDE) is NOAA's effort to successfully integrate data and information with partners in the national US-Global Earth Observation System (US-GEO) and the international Global Earth Observation System of Systems (GEOSS). As part of the GEO-IDE, the Unified Access Framework (UAF) is working to build momentum towards the goal of increased data integration and interoperability. The UAF project is moving towards this goal with an approach that includes leveraging well known and widely used standards and focusing initially on well understood data types, such as gridded data from climate models. This phased approach serves to engage data providers and users and also has a high probability of demonstrable successes. The UAF project shares the widely held conviction that the use of data standards is a key ingredient necessary to achieve interoperability. Many community-based consensus standards fail, though, due to poor compliance. Compliance problems emerge for many reasons: because the standards evolve through versions, because documentation is ambiguous or because individual data providers find the standard inadequate as-is to meet their special needs. In addition, minimalist use of standards will lead to a compliant service, but one which is of low quality. For example, serving five hundred individual files from a single climate model might be compliant, but enhancing the service so that those files are all aggregated together into one virtual dataset and available through a single access URL provides a much more useful service. The UAF project began showcasing the advantages of providing compliant data by manually building a master catalog generated from hand-picked THREDDS servers. With an understanding that educating data managers to provide standards compliant data and metadata can take years, the UAF project wanted to continue increasing the volume of data served through the master catalog as much as

  20. Volumetric measurement of tank volume

    NASA Technical Reports Server (NTRS)

    Walter, Richard T. (Inventor); Vanbuskirk, Paul D. (Inventor); Weber, William F. (Inventor); Froebel, Richard C. (Inventor)

    1991-01-01

    A method is disclosed for determining the volume of compressible gas in a system including incompressible substances in a zero-gravity environment consisting of measuring the change in pressure (delta P) for a known volume change rate (delta V/delta t) in the polytrophic region between isothermal and adiabatic conditions. The measurements are utilized in an idealized formula for determining the change in isothermal pressure (delta P sub iso) for the gas. From the isothermal pressure change (delta iso) the gas volume is obtained. The method is also applicable to determination of gas volume by utilizing work (W) in the compression process. In a passive system, the relationship of specific densities can be obtained.

  1. Analysis of Knock Phenomenon Induced in a Constant Volume Chamber by Local Gas Temperature Measurement and Visualization

    NASA Astrophysics Data System (ADS)

    Moriyoshi, Yasuo; Kobayashi, Shigemi; Enomoto, Yoshiteru

    Knock phenomenon in SI engines is regarded as an auto-ignition of unburned end-gas, and it has been widely examined by using rapid compression machines (RCM), shock-tubes or test engines. Recent researches point out the importance of the low temperature chemical reaction and the negative temperature coefficient (NTC). To investigate the effects, analyses of instantaneous local gas temperature, flow visualization and gaseous pressure were conducted in this study. As measurements using real engines are too difficult to analyze, the authors aimed to make measurements using a constant volume vessel under knock conditions where propagating flame exists during the induction time of auto-ignition. Adopting the two-wire thermocouple method enabled us to measure the instantaneous local gas temperature until the moment when the flame front passes by. High-speed images inside the unburned region were also recorded simultaneously using an endoscope. As a result, it was found that when knock occurs, the auto-ignition initiation time seems slightly early compared to the results without knock. This causes a higher volume ratio of unburned mixture and existence of many hot spots and stochastically leads to an initiation of knock.

  2. Further development of the dynamic gas temperature measurement system. Volume 2: Computer program user's manual

    NASA Technical Reports Server (NTRS)

    Stocks, Dana R.

    1986-01-01

    The Dynamic Gas Temperature Measurement System compensation software accepts digitized data from two different diameter thermocouples and computes a compensated frequency response spectrum for one of the thermocouples. Detailed discussions of the physical system, analytical model, and computer software are presented in this volume and in Volume 1 of this report under Task 3. Computer program software restrictions and test cases are also presented. Compensated and uncompensated data may be presented in either the time or frequency domain. Time domain data are presented as instantaneous temperature vs time. Frequency domain data may be presented in several forms such as power spectral density vs frequency.

  3. Residual gas analysis device

    DOEpatents

    Thornberg, Steven M [Peralta, NM

    2012-07-31

    A system is provided for testing the hermeticity of a package, such as a microelectromechanical systems package containing a sealed gas volume, with a sampling device that has the capability to isolate the package and breach the gas seal connected to a pulse valve that can controllably transmit small volumes down to 2 nanoliters to a gas chamber for analysis using gas chromatography/mass spectroscopy diagnostics.

  4. Calculation of hydrocarbon-in-place in gas and gas-condensate reservoirs - Carbon dioxide sequestration

    USGS Publications Warehouse

    Verma, Mahendra K.

    2012-01-01

    The Energy Independence and Security Act of 2007 (Public Law 110-140) authorized the U.S. Geological Survey (USGS) to conduct a national assessment of geologic storage resources for carbon dioxide (CO2), requiring estimation of hydrocarbon-in-place volumes and formation volume factors for all the oil, gas, and gas-condensate reservoirs within the U.S. sedimentary basins. The procedures to calculate in-place volumes for oil and gas reservoirs have already been presented by Verma and Bird (2005) to help with the USGS assessment of the undiscovered resources in the National Petroleum Reserve, Alaska, but there is no straightforward procedure available for calculating in-place volumes for gas-condensate reservoirs for the carbon sequestration project. The objective of the present study is to propose a simple procedure for calculating the hydrocarbon-in-place volume of a condensate reservoir to help estimate the hydrocarbon pore volume for potential CO2 sequestration.

  5. Second law of thermodynamics in volume diffusion hydrodynamics in multicomponent gas mixtures

    NASA Astrophysics Data System (ADS)

    Dadzie, S. Kokou

    2012-10-01

    We presented the thermodynamic structure of a new continuum flow model for multicomponent gas mixtures. The continuum model is based on a volume diffusion concept involving specific species. It is independent of the observer's reference frame and enables a straightforward tracking of a selected species within a mixture composed of a large number of constituents. A method to derive the second law and constitutive equations accompanying the model is presented. Using the configuration of a rotating fluid we illustrated an example of non-classical flow physics predicted by new contributions in the entropy and constitutive equations.

  6. Inhibition of Human Papillomavirus DNA Replication by an E1-Derived p80/UAF1-Binding Peptide

    PubMed Central

    Lehoux, Michaël; Fradet-Turcotte, Amélie; Lussier-Price, Mathieu; Omichinski, James G.

    2012-01-01

    The papillomavirus E1 helicase is recruited by E2 to the viral origin, where it assembles into a double hexamer that orchestrates replication of the viral genome. We previously identified the cellular WD40 repeat-containing protein p80/UAF1 as a novel interaction partner of E1 from anogenital human papillomavirus (HPV) types. p80 was found to interact with the first 40 residues of HPV type 31 (HPV31) E1, and amino acid substitutions within this domain abrogated the maintenance of the viral episome in keratinocytes. In this study, we report that these p80-binding substitutions reduce by 70% the ability of E1 to support transient viral DNA replication without affecting its interaction with E2 and assembly at the origin in vivo. Microscopy studies revealed that p80 is relocalized from the cytoplasm to discrete subnuclear foci by E1 and E2. Chromatin immunoprecipitation assays further revealed that p80 is recruited to the viral origin in an E1- and E2-dependent manner. Interestingly, overexpression of a 40-amino-acid-long p80-binding peptide, derived from HPV31 E1, was found to inhibit viral DNA replication by preventing the recruitment of endogenous p80 to the origin. Mutant peptides defective for p80 interaction were not inhibitory, demonstrating the specificity of this effect. Characterization of this E1 peptide by nuclear magnetic resonance (NMR) showed that it is intrinsically disordered in solution, while mapping studies indicated that the WD repeats of p80 are required for E1 interaction. These results provide additional evidence for the requirement for p80 in anogenital HPV DNA replication and highlight the potential of E1-p80 interaction as a novel antiviral target. PMID:22278251

  7. Gas-Grain Simulation Facility: Fundamental studies of particle formation and interactions. Volume 1: Executive summary and overview

    NASA Technical Reports Server (NTRS)

    Fogleman, Guy (Editor); Huntington, Judith L. (Editor); Schwartz, Deborah E. (Editor); Fonda, Mark L. (Editor)

    1989-01-01

    An overview of the Gas-Grain Simulation Facility (GGSF) project and its current status is provided. The proceedings of the Gas-Grain Simulation Facility Experiments Workshop are recorded. The goal of the workshop was to define experiments for the GGSF--a small particle microgravity research facility. The workshop addressed the opportunity for performing, in Earth orbit, a wide variety of experiments that involve single small particles (grains) or clouds of particles. The first volume includes the executive summary, overview, scientific justification, history, and planned development of the Facility.

  8. Effects of vertical positioning on gas exchange and lung volumes in acute respiratory distress syndrome.

    PubMed

    Richard, Jean-Christophe M; Maggiore, Salvatore Maurizio; Mancebo, Jordi; Lemaire, François; Jonson, Bjorn; Brochard, Laurent

    2006-10-01

    Supine position may contribute to the loss of aerated lung volume in patients with acute respiratory distress syndrome (ARDS). We hypothesized that verticalization increases lung volume and improves gas exchange by reducing the pressure surrounding lung bases. Prospective observational physiological study in a medical ICU. In 16 patients with ARDS we measured arterial blood gases, pressure-volume curves of the respiratory system recorded from positive-end expiratory pressure (PEEP), and changes in lung volume in supine and vertical positions (trunk elevated at 45 degrees and legs down at 45 degrees ). Vertical positioning increased PaO(2) significantly from 94+/-33 to 142+/-49 mmHg, with an increase higher than 40% in 11 responders. The volume at 20 cmH(2)O measured on the PV curve from PEEP increased using the vertical position only in responders (233+/-146 vs. -8+/-9 1ml in nonresponders); this change was correlated to oxygenation change (rho=0.55). End-expiratory lung volume variation from supine to vertical and 1 h later back to supine, measured in 12 patients showed a significant increase during the 1-h upright period in responders (n=7) but not in nonresponders (n=5; 215+/-220 vs. 10+/-22 ml), suggesting a time-dependent recruitment. Vertical positioning is a simple technique that may improve oxygenation and lung recruitment in ARDS patients.

  9. Gas-Grain Simulation Facility: Fundamental studies of particle formation and interactions. Volume 2: Abstracts, candidate experiments and feasibility study

    NASA Technical Reports Server (NTRS)

    Fogleman, Guy (Editor); Huntington, Judith L. (Editor); Schwartz, Deborah E. (Editor); Fonda, Mark L. (Editor)

    1989-01-01

    An overview of the Gas-Grain Simulation Facility (GGSF) project and its current status is provided. The proceedings of the Gas-Grain Simulation Facility Experiments Workshop are recorded. The goal of the workshop was to define experiments for the GGSF--a small particle microgravity research facility. The workshop addressed the opportunity for performing, in Earth orbit, a wide variety of experiments that involve single small particles (grains) or clouds of particles. Twenty experiments from the fields of exobiology, planetary science, astrophysics, atmospheric science, biology, physics, and chemistry were described at the workshop and are outlined in Volume 2. Each experiment description included specific scientific objectives, an outline of the experimental procedure, and the anticipated GGSF performance requirements. Since these experiments represent the types of studies that will ultimately be proposed for the facility, they will be used to define the general science requirements of the GGSF. Also included in the second volume is a physics feasibility study and abstracts of example Gas-Grain Simulation Facility experiments and related experiments in progress.

  10. 30 CFR 250.1203 - Gas measurement.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... any changes to the previously-approved measurement and/or allocation procedures. Your application... and reflect the same degree of water saturation as in the gas volume. (8) When requested by the Regional Supervisor, submit copies of gas volume statements for each requested gas meter. Show whether gas...

  11. High-reliability gas-turbine combined-cycle development program: Phase II, Volume 3. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hecht, K.G.; Sanderson, R.A.; Smith, M.J.

    This three-volume report presents the results of Phase II of the multiphase EPRI-sponsored High-Reliability Gas Turbine Combined-Cycle Development Program whose goal is to achieve a highly reliable gas turbine combined-cycle power plant, available by the mid-1980s, which would be an economically attractive baseload generation alternative for the electric utility industry. The Phase II program objective was to prepare the preliminary design of this power plant. The power plant was addressed in three areas: (1) the gas turbine, (2) the gas turbine ancillaries, and (3) the balance of plant including the steam turbine generator. To achieve the program goals, a gasmore » turbine was incorporated which combined proven reliability characteristics with improved performance features. This gas turbine, designated the V84.3, is the result of a cooperative effort between Kraftwerk Union AG and United Technologies Corporation. Gas turbines of similar design operating in Europe under baseload conditions have demonstrated mean time between failures in excess of 40,000. The reliability characteristics of the gas turbine ancillaries and balance-of-plant equipment were improved through system simplification and component redundancy and by selection of component with inherent high reliability. A digital control system was included with logic, communications, sensor redundancy, and manual backup. An independent condition monitoring and diagnostic system was also included. Program results provide the preliminary design of a gas turbine combined-cycle baseload power plant. This power plant has a predicted mean time between failure of nearly twice the 3000-h EPRI goal. The cost of added reliability features is offset by improved performance, which results in a comparable specific cost and an 8% lower cost of electricty compared to present market offerings.« less

  12. Survey of stranded gas and delivered costs to Europe of selected gas resources

    USGS Publications Warehouse

    Attanasi, E.D.; Freeman, P.A.

    2011-01-01

    Two important trends affecting the expected growth of global gas markets are (1) the shift by many industrialized countries from coal-fired electricity generation to the use of natural gas to generate electricity and (2) the industrialization of the heavily populated Asian countries of India and China. This paper surveys discovered gas in stranded conventional gas accumulations and presents estimates of the cost of developing and producing stranded gas in selected countries. Stranded gas is natural gas in discovered or identified fields that is not currently commercially producible for either physical or economic reasons. Published reserves of gas at the global level do not distinguish between volumes of gas in producing fields and volumes in nonproducing fields. Data on stranded gas reported here-that is the volumes, geographical distribution, and size distributions of stranded gas fields at the country and regional level-are based on the examination of individual-field data and represent a significant improvement in information available to industry and government decision makers. Globally, stranded gas is pervasive, but large volumes in large accumulations are concentrated in only a few areas. The cost component of the paper focuses on stranded conventional gas accumulations in Africa and South America that have the potential to augment supplies to Europe. The methods described for the computation of extraction and transport costs are innovative in that they use information on the sizes and geographical distribution of the identified stranded gas fields. The costs are based on industry data specific to the country and geologic basin where the stranded gas is located. Gas supplies to Europe can be increased significantly at competitive costs by the development of stranded gas. Net extraction costs of producing the identified gas depend critically on the natural-gas-liquids (NGLs) content, the prevailing prices of liquids, the size of the gas accumulation, and the

  13. Measurement Corner: Volume, Temperature and Pressure

    ERIC Educational Resources Information Center

    Teates, Thomas G.

    1977-01-01

    Boyle's Law and basic relationships between volume and pressure of a gas at constant temperature are presented. Suggests two laboratory activities for demonstrating the effect of temperature on the volume of a gas or liquid. (CS)

  14. The Use of Cryogenically Cooled 5A Molecular Sieves for Large Volume Reduction of Tritiated Hydrogen Gas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Antoniazzi, A.B.; Bartoszek, F.E.; Sherlock, A.M.

    2006-07-01

    A commercial hydrogen isotope separation system based on gas chromatography (AGC-ISS) has been built. The system operates in two modes: stripping and volume reduction. The purpose of the stripping mode is to reduce a large volume of tritiated hydrogen gas to a small volume of tritium rich hydrogen gas. The results here illustrate the effectiveness of the AGC-ISS in the stripping and volume reduction phases. Column readiness for hydrogen isotope separation is confirmed by room temperature air separation tests. Production runs were initially carried out using natural levels of deuterium (110-160 ppm) in high purity hydrogen. After completion of themore » deuterium/hydrogen runs the system began operations with tritiated hydrogen. The paper presents details of the AGC-ISS design and results of tritium tests. The heart of the AGC-ISS consists of two packed columns (9 m long, 3.8 cm OD) containing 5A molecular sieve material of 40/60 mesh size. Each column has 5 individually controlled heaters along the length of the column and is coiled around an inverted inner dewar. The coiled column and inner dewar are both contained within an outer dewar. In this arrangement liquid nitrogen, used to cryogenically cool the columns, flows into and out off the annular space defined by the two dewars, allowing for alternate heating and cooling cycles. Tritiated hydrogen feed is injected in batch quantities. The batch size is variable with the maximum quantity restricted by the tritium concentration in the exhausted hydrogen. The stripping operations can be carried out in full automated mode or in full manual mode. The average cycle time between injections is about 75 minutes. To date, the maximum throughput achieved is 10.5 m{sup 3}/day. A total of 37.8 m{sup 3} of tritiated hydrogen has been processed during commissioning. The system has demonstrated that venting of >99.95% of the feed gas is possible while retaining 99.98% of the tritium. At a maximum tritium concentration of

  15. Dynamic gas temperature measurement system, volume 1

    NASA Technical Reports Server (NTRS)

    Elmore, D. L.; Robinson, W. W.; Watkins, W. B.

    1983-01-01

    A gas temperature measurement system with compensated frequency response of 1 kHz and capability to operate in the exhaust of a gas turbine engine combustor was developed. A review of available technologies which could attain this objective was done. The most promising method was identified as a two wire thermocouple, with a compensation method based on the responses of the two different diameter thermocouples to the fluctuating gas temperature field. In a detailed design of the probe, transient conduction effects were identified as significant. A compensation scheme was derived to include the effects of gas convection and wire conduction. The two wire thermocouple concept was tested in a laboratory burner exhaust to temperatures of about 3000 F and in a gas turbine engine to combustor exhaust temperatures of about 2400 F. Uncompensated and compensated waveforms and compensation spectra are presented.

  16. Large-volume constant-concentration sampling technique coupling with surface-enhanced Raman spectroscopy for rapid on-site gas analysis

    NASA Astrophysics Data System (ADS)

    Zhang, Zhuomin; Zhan, Yisen; Huang, Yichun; Li, Gongke

    2017-08-01

    In this work, a portable large-volume constant-concentration (LVCC) sampling technique coupling with surface-enhanced Raman spectroscopy (SERS) was developed for the rapid on-site gas analysis based on suitable derivatization methods. LVCC sampling technique mainly consisted of a specially designed sampling cell including the rigid sample container and flexible sampling bag, and an absorption-derivatization module with a portable pump and a gas flowmeter. LVCC sampling technique allowed large, alterable and well-controlled sampling volume, which kept the concentration of gas target in headspace phase constant during the entire sampling process and made the sampling result more representative. Moreover, absorption and derivatization of gas target during LVCC sampling process were efficiently merged in one step using bromine-thiourea and OPA-NH4+ strategy for ethylene and SO2 respectively, which made LVCC sampling technique conveniently adapted to consequent SERS analysis. Finally, a new LVCC sampling-SERS method was developed and successfully applied for rapid analysis of trace ethylene and SO2 from fruits. It was satisfied that trace ethylene and SO2 from real fruit samples could be actually and accurately quantified by this method. The minor concentration fluctuations of ethylene and SO2 during the entire LVCC sampling process were proved to be < 4.3% and 2.1% respectively. Good recoveries for ethylene and sulfur dioxide from fruit samples were achieved in range of 95.0-101% and 97.0-104% respectively. It is expected that portable LVCC sampling technique would pave the way for rapid on-site analysis of accurate concentrations of trace gas targets from real samples by SERS.

  17. Large-volume constant-concentration sampling technique coupling with surface-enhanced Raman spectroscopy for rapid on-site gas analysis.

    PubMed

    Zhang, Zhuomin; Zhan, Yisen; Huang, Yichun; Li, Gongke

    2017-08-05

    In this work, a portable large-volume constant-concentration (LVCC) sampling technique coupling with surface-enhanced Raman spectroscopy (SERS) was developed for the rapid on-site gas analysis based on suitable derivatization methods. LVCC sampling technique mainly consisted of a specially designed sampling cell including the rigid sample container and flexible sampling bag, and an absorption-derivatization module with a portable pump and a gas flowmeter. LVCC sampling technique allowed large, alterable and well-controlled sampling volume, which kept the concentration of gas target in headspace phase constant during the entire sampling process and made the sampling result more representative. Moreover, absorption and derivatization of gas target during LVCC sampling process were efficiently merged in one step using bromine-thiourea and OPA-NH 4 + strategy for ethylene and SO 2 respectively, which made LVCC sampling technique conveniently adapted to consequent SERS analysis. Finally, a new LVCC sampling-SERS method was developed and successfully applied for rapid analysis of trace ethylene and SO 2 from fruits. It was satisfied that trace ethylene and SO 2 from real fruit samples could be actually and accurately quantified by this method. The minor concentration fluctuations of ethylene and SO 2 during the entire LVCC sampling process were proved to be <4.3% and 2.1% respectively. Good recoveries for ethylene and sulfur dioxide from fruit samples were achieved in range of 95.0-101% and 97.0-104% respectively. It is expected that portable LVCC sampling technique would pave the way for rapid on-site analysis of accurate concentrations of trace gas targets from real samples by SERS. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Converting Constant Volume, Multizone Air Handling Systems to Energy Efficient Variable Air Volume Multizone Systems

    DTIC Science & Technology

    2017-10-26

    30. Energy Information Agency Natural Gas Price Data ..................................................................................... 65 Figure...different market sectors (residential, commercial, and industrial). Figure 30. Energy Information Agency Natural Gas Price Data 7.2.3 AHU Size...1 FINAL REPORT Converting Constant Volume, Multizone Air Handling Systems to Energy Efficient Variable Air Volume Multizone

  19. Ultrasound assisted immersion freezing of broccoli (Brassica oleracea L. var. botrytis L.).

    PubMed

    Xin, Ying; Zhang, Min; Adhikari, Benu

    2014-09-01

    The aim of this study was to research the ultrasound-assisted freezing (UAF) of broccoli. CaCl2 solution was used as freezing medium. The comparative advantage of using UAF over normal freezing on the freezing time, cell-wall bound calcium to total calcium ratio, textural properties, color, drip loss and L-ascorbic acid contents was evaluated. The application of UAF at selected acoustic intensity with a range of 0.250-0.412 W/cm(2) decreased the freezing time and the loss of cell-wall bound calcium content. Compared to normal freezing, the values of textural properties, color, L-ascorbic acid content were better preserved and the drip loss was significantly minimized by the application of UAF. However, when outside that range of acoustic intensity, the quality of the ultrasound-assisted frozen broccoli was inferior compared to that of the normally frozen samples. Selected the appropriate acoustic intensity was very important for the application of UAF. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Bubble Continuous Positive Airway Pressure Enhances Lung Volume and Gas Exchange in Preterm Lambs

    PubMed Central

    Pillow, J. Jane; Hillman, Noah; Moss, Timothy J. M.; Polglase, Graeme; Bold, Geoff; Beaumont, Chris; Ikegami, Machiko; Jobe, Alan H.

    2007-01-01

    Rationale: The technique used to provide continuous positive airway pressure (CPAP) to the newborn may influence lung function and breathing efficiency. Objectives: To compare differences in gas exchange physiology and lung injury resulting from treatment of respiratory distress with either bubble or constant pressure CPAP and to determine if the applied flow influences short-term outcomes. Methods: Lambs (133 d gestation; term is 150 d) born via cesarean section were weighed, intubated, and treated with CPAP for 3 hours. Two groups were treated with 8 L/minute applied flow using the bubble (n = 12) or the constant pressure (n = 12) technique. A third group (n = 10) received the bubble method with 12 L/minute bias flow. Measurements at study completion included arterial blood gases, oxygraphy, capnography, tidal flow, multiple breath washout, lung mechanics, static pressure–volume curves, and bronchoalveolar lavage fluid protein. Measurements and Main Results: Birth weight and arterial gas variables at 15 minutes were comparable. Flow (8 or 12 L/min) did not influence the 3-hour outcomes in the bubble group. Bubble technique was associated with a higher pH, PaO2, oxygen uptake, and area under the flow–volume curve, and a decreased alveolar protein, respiratory quotient, PaCO2, and ventilation inhomogeneity compared with the constant pressure group. Conclusions: Compared with constant pressure technique, bubble CPAP promotes enhanced airway patency during treatment of acute postnatal respiratory disease in preterm lambs and may offer protection against lung injury. PMID:17431223

  1. Changes in lung volumes and gas trapping in patients with large hiatal hernia.

    PubMed

    Naoum, Christopher; Kritharides, Leonard; Ing, Alvin; Falk, Gregory L; Yiannikas, John

    2017-03-01

    Studies assessing hiatal hernia (HH)-related effects on lung volumes derived by body plethysmography are limited. We aimed to evaluate the effect of hernia size on lung volumes (including assessment by body plethysmography) and the relationship to functional capacity, as well as the impact of corrective surgery. Seventy-three patients (70 ± 10 years; 54 female) with large HH [mean ± standard deviation, intra-thoracic stomach (ITS) (%): 63 ± 20%; type III in 65/73] had respiratory function data (spirometry, 73/73; body plethysmography, 64/73; diffusing capacity, 71/73) and underwent HH surgery. Respiratory function was analysed in relation to hernia size (groups I, II and III: ≤50, 50%-75% and ≥75% ITS, respectively) and functional capacity. Post-operative changes were quantified in a subgroup. Total lung capacity (TLC) and vital capacity (VC) correlated inversely with hernia size (TLC: 97 ± 11%, 96 ± 13%, 88 ± 10% predicted in groups I, II and III, respectively, P = 0.01; VC: 110 ± 17%, 111 ± 14%, 98 ± 14% predicted, P = 0.02); however, mean values were normal and only 14% had abnormal lung volumes. Surgery increased TLC (93 ± 11% vs 97 ± 10% predicted) and VC (105 ± 15% vs 116 ± 18%), and decreased residual volume/total lung capacity (RV/TLC) ratio (39 ± 7% vs 37 ± 6%) (P < 0.01 for all). Respiratory changes were modest relative to the marked functional class improvement. Among parameters that improved following HH surgery, decreased TLC and forced expiratory volume in 1 s and increased RV/TLC ratio correlated with poorer functional class pre-operatively. Increasing HH size correlates with reduced TLC and VC. Surgery improves lung volumes and gas trapping; however, the changes are mild and within the normal range. © 2015 John Wiley & Sons Ltd.

  2. Modeling Approach for Estimating Co-Produced Water Volumes and Saltwater Disposal Volumes in Oklahoma

    NASA Astrophysics Data System (ADS)

    Murray, K. E.

    2016-12-01

    Management of produced fluids has become an important issue in Oklahoma because large volumes of saltwater are co-produced with oil and gas, and disposed into saltwater disposal wells at high rates. Petroleum production increased from 2009-2015, especially in central and north-central Oklahoma where the Mississippian and Hunton zones were redeveloped using horizontal wells and dewatering techniques that have led to a disproportional increase in produced water volumes. Improved management of co-produced water, including desalination for beneficial reuse and decreased saltwater disposal volumes, is only possible if spatial and temporal trends can be defined and related to the producing zones. It is challenging to quantify the volumes of co-produced water by region or production zone because co-produced water volumes are generally not reported. Therefore, the goal of this research is to estimate co-produced water volumes for 2008-present with an approach that can be replicated as petroleum production shifts to other regions. Oil and gas production rates from subsurface zones were multiplied by ratios of H2O:oil and H2O:gas for the respective zones. Initial H2O:oil and H2O:gas ratios were adjusted/calibrated, by zone, to maximize correlation of county-scale produced H2O estimates versus saltwater disposal volumes from 2013-2015. These calibrated ratios were then used to compute saltwater disposal volumes from 2008-2012 because of apparent data gaps in reported saltwater disposal volumes during that timeframe. This research can be used to identify regions that have the greatest need for produced water treatment systems. The next step in management of produced fluids is to explore optimal energy-efficient strategies that reduce deleterious effects.

  3. Correlation of Gas Permeability in a Metal-Organic Framework MIL-101(Cr)–Polysulfone Mixed-Matrix Membrane with Free Volume Measurements by Positron Annihilation Lifetime Spectroscopy (PALS)

    PubMed Central

    Jeazet, Harold B. Tanh; Koschine, Tönjes; Staudt, Claudia; Raetzke, Klaus; Janiak, Christoph

    2013-01-01

    Hydrothermally stable particles of the metal-organic framework MIL-101(Cr) were incorporated into a polysulfone (PSF) matrix to produce mixed-matrix or composite membranes with excellent dispersion of MIL-101 particles and good adhesion within the polymer matrix. Pure gas (O2, N2, CO2 and CH4) permeation tests showed a significant increase of gas permeabilities of the mixed-matrix membranes without any loss in selectivity. Positron annihilation lifetime spectroscopy (PALS) indicated that the increased gas permeability is due to the free volume in the PSF polymer and the added large free volume inside the MIL-101 particles. The trend of the gas transport properties of the composite membranes could be reproduced by a Maxwell model. PMID:24957061

  4. System Would Regulate Low Gas Pressure

    NASA Technical Reports Server (NTRS)

    Frazer, Robert E.

    1994-01-01

    System intended to maintain gases in containers at pressures near atmospheric. Includes ballast volume in form of underinflated balloon that communicates with working volume. Balloon housed in rigid chamber not subjected to extremes of temperature of working volume. Pressure in chamber surrounding balloon regulated at ambient atmospheric pressure or at constant small differential pressure above or below ambient. Expansion and contraction of balloon accommodates expansion or contraction of gas during operational heating or cooling in working volume, maintaining pressure in working volume at ambient or constant differential above or below ambient. Gas lost from system due to leakage or diffusion, low-pressure sensor responds, signaling valve actuators to supply more gas to working volume. If pressure rises too high, overpressure relief valve opens before excessive pressure damages system.

  5. Versatile, ultra-low sample volume gas analyzer using a rapid, broad-tuning ECQCL and a hollow fiber gas cell

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kriesel, Jason M.; Makarem, Camille N.; Phillips, Mark C.

    We describe a versatile mid-infrared (Mid-IR) spectroscopy system developed to measure the concentration of a wide range of gases with an ultra-low sample size. The system combines a rapidly-swept external cavity quantum cascade laser (ECQCL) with a hollow fiber gas cell. The ECQCL has sufficient spectral resolution and reproducibility to measure gases with narrow features (e.g., water, methane, ammonia, etc.), and also the spectral tuning range needed to measure volatile organic compounds (VOCs), (e.g., aldehydes, ketones, hydrocarbons), sulfur compounds, chlorine compounds, etc. The hollow fiber is a capillary tube having an internal reflective coating optimized for transmitting the Mid-IR lasermore » beam to a detector. Sample gas introduced into the fiber (e.g., internal volume = 0.6 ml) interacts strongly with the laser beam, and despite relatively modest path lengths (e.g., L ~ 3 m), the requisite quantity of sample needed for sensitive measurements can be significantly less than what is required using conventional IR laser spectroscopy systems. Example measurements are presented including quantification of VOCs relevant for human breath analysis with a sensitivity of ~2 picomoles at a 1 Hz data rate.« less

  6. Versatile, ultra-low sample volume gas analyzer using a rapid, broad-tuning ECQCL and a hollow fiber gas cell

    NASA Astrophysics Data System (ADS)

    Kriesel, Jason M.; Makarem, Camille N.; Phillips, Mark C.; Moran, James J.; Coleman, Max L.; Christensen, Lance E.; Kelly, James F.

    2017-05-01

    We describe a versatile mid-infrared (Mid-IR) spectroscopy system developed to measure the concentration of a wide range of gases with an ultra-low sample size. The system combines a rapidly-swept external cavity quantum cascade laser (ECQCL) with a hollow fiber gas cell. The ECQCL has sufficient spectral resolution and reproducibility to measure gases with narrow features (e.g., water, methane, ammonia, etc.), and also the spectral tuning range needed to measure volatile organic compounds (VOCs), (e.g., aldehydes, ketones, hydrocarbons), sulfur compounds, chlorine compounds, etc. The hollow fiber is a capillary tube having an internal reflective coating optimized for transmitting the Mid-IR laser beam to a detector. Sample gas introduced into the fiber (e.g., internal volume = 0.6 ml) interacts strongly with the laser beam, and despite relatively modest path lengths (e.g., L 3 m), the requisite quantity of sample needed for sensitive measurements can be significantly less than what is required using conventional IR laser spectroscopy systems. Example measurements are presented including quantification of VOCs relevant for human breath analysis with a sensitivity of 2 picomoles at a 1 Hz data rate.

  7. Construction and Start-up of a Large-Volume Thermostat for Dielectric-Constant Gas Thermometry

    NASA Astrophysics Data System (ADS)

    Merlone, A.; Moro, F.; Zandt, T.; Gaiser, C.; Fellmuth, B.

    2010-07-01

    A liquid-bath thermostat with a volume of about 800 L was designed to provide a suitable thermal environment for a dielectric-constant gas thermometer (DCGT) in the range from the triple point of mercury to the melting point of gallium. In the article, results obtained with the unique, huge thermostat without the DCGT measuring chamber are reported to demonstrate the capability of controlling the temperature of very large systems at a metrological level. First tests showed that the bath together with its temperature controller provide a temperature variation of less than ±0.5mK peak-to-peak. This temperature instability could be maintained over a period of several days. In the central working volume (diameter—500mm, height—650mm), in which the vacuum chamber containing the measuring system of the DCGT will be placed later, the temperature inhomogeneity has been demonstrated to be also well below 1mK.

  8. Feasibility study for the construction of a new LNG receiving terminal, turkey. Volume 2. Appendix. Export trade information. [LNG (liquified natural gas)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1993-06-01

    The report was prepared by The M. W. Kellogg Co. for BOTAS Petroleum Pipeline Corporation of Ankara, Turkey. The study was undertaken to evaluate the cost and economics of constructing a second liquified natural gas (LNG) terminal in Turkey to meet future requirements for natural gas. Volume 2 contains the following appendices: LNG Storage Tanks; Vaporizers; Compressors; Pumps; Loading Arms; Marine Installations; Shipping; and Seismic Study.

  9. Preliminary performance assessment for the Waste Isolation Pilot Plant, December 1992. Volume 5, Uncertainty and sensitivity analyses of gas and brine migration for undisturbed performance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1993-08-01

    Before disposing of transuranic radioactive waste in the Waste Isolation Pilot Plant (WIPP), the United States Department of Energy (DOE) must evaluate compliance with applicable long-term regulations of the United States Environmental Protection Agency (EPA). Sandia National Laboratories is conducting iterative performance assessments (PAs) of the WIPP for the DOE to provide interim guidance while preparing for a final compliance evaluation. This volume of the 1992 PA contains results of uncertainty and sensitivity analyses with respect to migration of gas and brine from the undisturbed repository. Additional information about the 1992 PA is provided in other volumes. Volume 1 containsmore » an overview of WIPP PA and results of a preliminary comparison with 40 CFR 191, Subpart B. Volume 2 describes the technical basis for the performance assessment, including descriptions of the linked computational models used in the Monte Carlo analyses. Volume 3 contains the reference data base and values for input parameters used in consequence and probability modeling. Volume 4 contains uncertainty and sensitivity analyses with respect to the EPA`s Environmental Standards for the Management and Disposal of Spent Nuclear Fuel, High-Level and Transuranic Radioactive Wastes (40 CFR 191, Subpart B). Finally, guidance derived from the entire 1992 PA is presented in Volume 6. Results of the 1992 uncertainty and sensitivity analyses indicate that, conditional on the modeling assumptions and the assigned parameter-value distributions, the most important parameters for which uncertainty has the potential to affect gas and brine migration from the undisturbed repository are: initial liquid saturation in the waste, anhydrite permeability, biodegradation-reaction stoichiometry, gas-generation rates for both corrosion and biodegradation under inundated conditions, and the permeability of the long-term shaft seal.« less

  10. Canopy volume removal from oil and gas development activity in the upper Susquehanna River basin in Pennsylvania and New York (USA): An assessment using lidar data

    USGS Publications Warehouse

    Young, John A.; Maloney, Kelly O.; Slonecker, Terry; Milheim, Lesley E.; Siripoonsup, David

    2018-01-01

    Oil and gas development is changing the landscape in many regions of the United States and globally. However, the nature, extent, and magnitude of landscape change and development, and precisely how this development compares to other ongoing land conversion (e.g. urban/sub-urban development, timber harvest) is not well understood. In this study, we examine land conversion from oil and gas infrastructure development in the upper Susquehanna River basin in Pennsylvania and New York, an area that has experienced much oil and gas development over the past 10 years. We quantified land conversion in terms of forest canopy geometric volume loss in contrast to previous studies that considered only areal impacts. For the first time in a study of this type, we use fine-scale lidar forest canopy geometric models to assess the volumetric change due to forest clearing from oil and gas development and contrast this land change to clear cut forest harvesting, and urban and suburban development. Results show that oil and gas infrastructure development removed a large volume of forest canopy from 2006 to 2013, and this removal spread over a large portion of the study area. Timber operations (clear cutting) on Pennsylvania State Forest lands removed a larger total volume of forest canopy during the same time period, but this canopy removal was concentrated in a smaller area. Results of our study point to the need to consider volumetric impacts of oil and gas development on ecosystems, and to place potential impacts in context with other ongoing land conversions.

  11. Gas occurrence property in shales of Tuha basin northwest china

    NASA Astrophysics Data System (ADS)

    Chen, Jinlong; Huang, Zhilong

    2017-04-01

    Pore of rock under formation condition must be fulfilled by gas, oil, or water, so the volume of water and gas is equation to porous volume in shale gas. The occurrences states of gas are free gas, solution gas, and absorbed gas. Field analysis is used to obtain total gas content by improved lost gas recover method. Free gas content acquired by pore proportion of gas, which use measured pore volume minus water and oil saturation, convert gas content of standard condition by state equation. Water saturation obtain from core water content, oil saturation obtain from extract carbohydrate. Solution gas need gas solubility in oil and water to calculate solution gas content in standard condition. Absorbed gas, introduce Absorbed Gas Saturation ɛ, which acquire from isothermal adsorption volume vs field analysis gas content in many basins of published paper, need isothermal adsorption and Absorbed Gas Saturation to obtain absorbed gas content. All of the data build connect with logging value by regression equation. The gas content is 0.92-1.53 m3/t from field analysis, evaluate gas content is 1.33 m3/t average, free gas proportion is about 47%, absorbed gas counter for 49%, and solution gas is average 4%.

  12. Fuel gas conditioning process

    DOEpatents

    Lokhandwala, Kaaeid A.

    2000-01-01

    A process for conditioning natural gas containing C.sub.3+ hydrocarbons and/or acid gas, so that it can be used as combustion fuel to run gas-powered equipment, including compressors, in the gas field or the gas processing plant. Compared with prior art processes, the invention creates lesser quantities of low-pressure gas per unit volume of fuel gas produced. Optionally, the process can also produce an NGL product.

  13. Variable volume combustor

    DOEpatents

    Ostebee, Heath Michael; Ziminsky, Willy Steve; Johnson, Thomas Edward; Keener, Christopher Paul

    2017-01-17

    The present application provides a variable volume combustor for use with a gas turbine engine. The variable volume combustor may include a liner, a number of micro-mixer fuel nozzles positioned within the liner, and a linear actuator so as to maneuver the micro-mixer fuel nozzles axially along the liner.

  14. Gas Control System for HEAO-B

    NASA Technical Reports Server (NTRS)

    Taylor, B.; Brissette, R.; Humphrey, A.; Morris, J.; Luger, J.; Swift, W.

    1978-01-01

    The HEAO-B Gas Control System consists of a high pressure gas storage supply together with distribution and regulation assemblies and their associated electronics for management of gas required for HEAO-B X-ray counter experiments. The Gas Control System replenishes a gas mixture (82 percent argon, 12.3 percent carbon dioxide, 5.7 percent xenon) in the counter volumes which is lost by: diffusion through controlled leakage plugs, diffusion through counter windows, and consumption resulting from periodic purges. The gas density in each counter volume is maintained constant to within 0.25 percent by comparison with a sealed reference volume. The system is fully redundant, capable of operating at atmospheric pressure as well as in a vacuum, contains interlocks which shut down gas flow in the event of either leakage or excessive pressure, and is able to shut down counter high voltage if counter pressure is abnormally low. The system is electronically controlled by ground command and self-sustaining in orbit for a period of at least one year.

  15. Effect of nitric oxide, perfluorocarbon, and heliox on minute volume measurement and ventilator volumes delivered.

    PubMed

    Devabhaktuni, V G; Torres, A; Wilson, S; Yeh, M P

    1999-08-01

    To determine the effect of heliox, nitric oxide (NO), and perfluorocarbon on differential pressure pneumotachometer characteristics and to determine the effect of heliox on volumes delivered by the Siemens S900C (S900C), and Servo Ventilator 300 (SV300) ventilators. Prospective, laboratory study. Pulmonary laboratory of a tertiary care, nonprofit children's hospital. SV300, S900C ventilator, differential pressure pneumotachometer. Dual pneumotachometers were connected in series to a 0.5-L calibration syringe and a 1-L anesthesia bag creating a closed system. Calibration of the pneumotachometers was done in room air at ambient temperature with 100 strokes. Accepted accuracy of measured volumes is within 0.5%. Flow-conductance curves were constructed using 100 strokes each for heliox (70:30 mixture), NO, and perfluorocarbon. Expired gases of room air and a 70:30 mixture of heliox from the above ventilators were collected into a nondiffusing gas collection bag, and the volume was measured in a chain-compensated gasometer. Ten sets of 500-mL breaths (20 breaths each set) and 100-mL breaths (40 breaths each set) were collected. The paired Student's t-test was used to detect significant differences in measured volumes, with significance defined as p < .01. Volumes measured with the pneumotachometer using 25 ppm of NO, 50 ppm of NO, and perfluorocarbon were within +0.25%, -0.7%, and +0.4%, respectively (p = .155, p = .001, p = .06). Heliox decreased the conductance of the pneumotachometer, thereby increasing the measured volume by 15% (p < .001). However, heliox did not affect its linearity. Heliox had no affect on volumes delivered by the S900C. However, the SV300 delivered 7.9% less volume of heliox at a set tidal volume of 500 mL and 10.8% less at a set tidal volume of 100 mL. A 70:30 mixture of heliox caused a significantly overestimated gas volume measured and, therefore, an underestimated gas volume delivered by SV300. NO at 25 ppm and perfluorocarbon did not

  16. Small-volume cavity cell using hollow optical fiber for Raman scattering-based gas detection

    NASA Astrophysics Data System (ADS)

    Okita, Y.; Katagiri, T.; Matsuura, Y.

    2011-03-01

    The highly sensitive Raman cell based on the hollow optical fiber that is suitable for the real-time breath analysis is reported. Hollow optical fiber with inner coating of silver is used as a gas cell and a Stokes light collector. A very small cell whose volume is only 0.4 ml or less enables fast response and real-time measurement of trace gases. To increase the sensitivity the cell is arranged in a cavity which includes of a long-pass filter and a high reflective mirror. The sensitivity of the cavity cell is more than two times higher than that of the cell without cavity.

  17. Natural Gas Monthly

    EIA Publications

    2017-01-01

    Highlights activities, events, and analyses associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer related activities and underground storage data are also reported.

  18. Microscale Gas Chemistry

    ERIC Educational Resources Information Center

    Mattson, Bruce; Anderson, Michael P.

    2011-01-01

    The development of syringes having free movement while remaining gas-tight enabled methods in chemistry to be changed. Successfully containing and measuring volumes of gas without the need to trap them using liquids made it possible to work with smaller quantities. The invention of the LuerLok syringe cap also allowed the gas to be stored for a…

  19. In-line gas chromatographic apparatus for measuring the hydrophobic micropore volume (HMV) and contaminant transformation in mineral micropores.

    PubMed

    Cheng, Hefa; Reinhard, Martin

    2010-07-15

    Desorption of hydrophobic organic compounds from micropores is characteristically slow compared to surface adsorption and partitioning. The slow-desorbing mass of a hydrophobic probe molecule can be used to calculate the hydrophobic micropore volume (HMV) of microporous solids. A gas chromatographic apparatus is described that allows characterization of the sorbed mass with respect to the desorption rate. The method is demonstrated using a dealuminated zeolite and an aquifer sand as the model and reference sorbents, respectively, and trichloroethylene (TCE) as the probe molecule. A glass column packed with the microporous sorbent is coupled directly to a gas chromatograph that is equipped with flame ionization and electron capture detectors. Sorption and desorption of TCE on the sorbent was measured by sampling the influent and effluent of the column using a combination of switching and injection valves. For geosorbents, the HMV is quantified based on Gurvitsch's rule from the mass of TCE desorbed at a rate that is characteristic for micropores. Instrumental requirements, design considerations, hardware details, detector calibration, performance, and data analysis are discussed along with applications. The method is novel and complements traditional vacuum gravimetric and piezometric techniques, which quantify the total pore volume under vacuum conditions. The HMV is more relevant than the total micropore volume for predicting the fate and transport of organic contaminants in the subsurface. Sorption in hydrophobic micropores strongly impacts the mobility of organic contaminants, and their chemical and biological transformations. The apparatus can serve as a tool for characterizing microporous solids and investigating contaminant-solid interactions. 2010 Elsevier B.V. All rights reserved.

  20. Top Value Added Chemicals From Biomass. Volume 1 - Results of Screening for Potential Candidates From Sugars and Synthesis Gas

    DTIC Science & Technology

    2004-08-01

    Hydrogenation of sugars or extraction from biomass pretreatment processes. Very few if any. Commercial processes Non-nutritive sweeteners ...and no commercial production of arabinitol. Xylitol is used as a non-nutritive sweetener . The technology required to convert the five carbon sugars ...Top Value Added Chemicals from Biomass Volume I—Results of Screening for Potential Candidates from Sugars and Synthesis Gas Produced by

  1. Geochemical constraints on the origin and volume of gas in the New Albany Shale (Devonian-Mississippian), eastern Illinois Basin

    USGS Publications Warehouse

    Strapoc, D.; Mastalerz, Maria; Schimmelmann, A.; Drobniak, A.; Hasenmueller, N.R.

    2010-01-01

    This study involved analyses of kerogen petrography, gas desorption, geochemistry, microporosity, and mesoporosity of the New Albany Shale (Devonian-Mississippian) in the eastern part of the Illinois Basin. Specifically, detailed core analysis from two locations, one in Owen County, Indiana, and one in Pike County, Indiana, has been conducted. The gas content in the locations studied was primarily dependent on total organic carbon content and the micropore volume of the shales. Gas origin was assessed using stable isotope geochemistry. Measured and modeled vitrinite reflectance values were compared. Depth of burial and formation water salinity dictated different dominant origins of the gas in place in the two locations studied in detail. The shallower Owen County location (415-433 m [1362-1421 ft] deep) contained significant additions of microbial methane, whereas the Pike County location (832-860 m [2730-2822 ft] deep) was characterized exclusively by thermogenic gas. Despite differences in the gas origin, the total gas in both locations was similar, reaching up to 2.1 cm3/g (66 scf/ton). Lower thermogenic gas content in the shallower location (lower maturity and higher loss of gas related to uplift and leakage via relaxed fractures) was compensated for by the additional generation of microbial methane, which was stimulated by an influx of glacial melt water, inducing brine dilution and microbial inoculation. The characteristics of the shale of the Maquoketa Group (Ordovician) in the Pike County location are briefly discussed to provide a comparison to the New Albany Shale. Copyright ??2010. The American Association of Petroleum Geologists. All rights reserved.

  2. Role of naturally occurring gas hydrates in sediment transport

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McIver, R.D.

    1982-06-01

    Naturally occurring gas hydrates have the potential to store enormous volumes of both gas and water in semi-solid form in ocean-bottom sediments and then to release that gas and water when the hydrate's equilibrium condition are disturbed. Therefore, hydrates provide a potential mechanism for transporting large volumes of sediments. Under the combined low bottom-water temperatures and moderate hydrostatic pressures that exist over most of the continental slopes and all of the continental rises and abyssal plains, hydrocarbon gases at or near saturation in the interstitial waters of the near-bottom sediments will form hydrates. The gas can either be autochthonous, microbiallymore » produced gas, or allochthonous, catagenic gas from deeper sediments. Equilibrium conditions that stabilize hydrated sediments may be disturbed, for example, by continued sedimentation or by lowering of sea level. In either case, some of the solid gas-water matrix decomposes. Released gas and water volume exceeds the volume occupied by the hydrate, so the internal pressure rises - drastically if large volumes of hydrate are decomposed. Part of the once rigid sediment is converted to a gas- and water-rich, relatively low density mud. When the internal pressure, due to the presence of the compressed gas or to buoyancy, is sufficiently high, the overlying sediment may be lifted and/or breached, and the less dense, gas-cut mud may break through. Such hydrate-related phenomena can cause mud diapirs, mud volcanos, mud slides, or turbidite flows, depending on sediment configuration and bottom topography. 4 figures.« less

  3. Gas-Grain Simulation Facility (GGSF). Volume 1: Stage 1 facility definition studies

    NASA Technical Reports Server (NTRS)

    Gat, Nahum

    1993-01-01

    The Gas-Grain Simulation Facility (GGSF) is a facility-type payload to be included in the Space Station Freedom (SSF). The GGSF is a multidisciplinary facility that will accommodate several classes of experiments, including exobiology, planetary science, atmospheric science, and astrophysics. The physical mechanisms envisioned to be investigated include crystal growth, aggregation, nucleation, coagulation, condensation, collisions, fractal growth, cycles of freezing and evaporation, scavenging, longevity of bacteria, and more. TRW performed a Phase A study that included analyses of the science and technical (S&T) requirements, the development of facility functional requirements, and a conceptual design of the facility. The work that was performed under Stage 1 of the Phase A study and the results to date are summarized. In this stage, facility definition studies were conducted in sufficient detail to establish the technical feasibility of the candidate strawman experiments. The studies identified technical difficulties, identified required facility subsystems, surveyed existing technology studies and established preliminary facility weight, volume, power consumption, data systems, interface definition, and crew time requirements. The results of this study served as the basis for Stage 2 of the Phase A study in which a conceptual design and a reference design were performed. The results also served as a basis for a related study for a Gas-Grain Simulation Experiment Module (GGSEM), which is an apparatus intended to perform a subset of the GGSF experiments on board a low-Earth-orbiting platform.

  4. A gas-loading system for LANL two-stage gas guns

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gibson, Lloyd Lee; Bartram, Brian Douglas; Dattelbaum, Dana Mcgraw

    A novel gas loading system was designed for the specific application of remotely loading high purity gases into targets for gas-gun driven plate impact experiments. The high purity gases are loaded into well-defined target configurations to obtain Hugoniot states in the gas phase at greater than ambient pressures.The small volume of the gas samples is challenging, as slight changing in the ambient temperature result in measurable pressure changes. Therefore, the ability to load a gas gun target and continually monitor the sample pressure prior to firing provides the most stable and reliable target fielding approach. We present the design andmore » evaluation of a gas loading system built for the LANL 50 mm bore two-stage light gas gun. Targets for the gun are made of 6061 Al or OFHC Cu, and assembled to form a gas containment cell with a volume of approximately 1.38 cc. The compatibility of materials was a major consideration in the design of the system, particularly for its use with corrosive gases. Piping and valves are stainless steel with wetted seals made from Kalrez® and Teflon®. Preliminary testing was completed to ensure proper flow rate and that the proper safety controls were in place. The system has been used to successfully load Ar, Kr, Xe, and anhydrous ammonia with purities of up to 99.999 percent. The design of the system and example data from the plate impact experiments will be shown.« less

  5. A gas-loading system for LANL two-stage gas guns

    NASA Astrophysics Data System (ADS)

    Gibson, L. L.; Bartram, B. D.; Dattelbaum, D. M.; Lang, J. M.; Morris, J. S.

    2017-01-01

    A novel gas loading system was designed for the specific application of remotely loading high purity gases into targets for gas-gun driven plate impact experiments. The high purity gases are loaded into well-defined target configurations to obtain Hugoniot states in the gas phase at greater than ambient pressures. The small volume of the gas samples is challenging, as slight changing in the ambient temperature result in measurable pressure changes. Therefore, the ability to load a gas gun target and continually monitor the sample pressure prior to firing provides the most stable and reliable target fielding approach. We present the design and evaluation of a gas loading system built for the LANL 50 mm bore two-stage light gas gun. Targets for the gun are made of 6061 Al or OFHC Cu, and assembled to form a gas containment cell with a volume of approximately 1.38 cc. The compatibility of materials was a major consideration in the design of the system, particularly for its use with corrosive gases. Piping and valves are stainless steel with wetted seals made from Kalrez® and Teflon®. Preliminary testing was completed to ensure proper flow rate and that the proper safety controls were in place. The system has been used to successfully load Ar, Kr, Xe, and anhydrous ammonia with purities of up to 99.999 percent. The design of the system and example data from the plate impact experiments will be shown.

  6. A method for calculating the gas volume proportions and inhalation temperature of inert gas mixtures allowing reaching normothermic or hypothermic target body temperature in the awake rat.

    PubMed

    Abraini, Jacques H; David, Hélène N; Blatteau, Jean-Éric; Risso, Jean Jacques; Vallée, Nicolas

    2017-01-01

    The noble gases xenon (Xe) and helium (He) are known to possess neuroprotective properties. Xe is considered the golden standard neuroprotective gas. However, Xe has a higher molecular weight and lower thermal conductivity and specific heat than those of nitrogen, the main diluent of oxygen (O2) in air, conditions that could impair or at least reduce the intrinsic neuroprotective properties of Xe by increasing the critical care patient's respiratory workload and body temperature. In contrast, He has a lower molecular weight and higher thermal conductivity and specific heat than those of nitrogen, but is unfortunately far less potent than Xe at providing neuroprotection. Therefore, combining Xe with He could allow obtaining, depending on the gas inhalation temperature and composition, gas mixtures with neutral or hypothermic properties, the latter being advantageous in term of neuroprotection. However, calculating the thermal properties of a mixture, whatever the substances - gases, metals, rubbers, etc . - is not trivial. To answer this question, we provide a graphical method to assess the volume proportions of Xe, He and O2 that a gas mixture should contain, and the inhalation temperature to which it should be administered to allow a clinician to maintain the patient at a target body temperature.

  7. A method for calculating the gas volume proportions and inhalation temperature of inert gas mixtures allowing reaching normothermic or hypothermic target body temperature in the awake rat

    PubMed Central

    Abraini, Jacques H.; David, Hélène N.; Blatteau, Jean-Éric; Risso, Jean Jacques; Vallée, Nicolas

    2017-01-01

    The noble gases xenon (Xe) and helium (He) are known to possess neuroprotective properties. Xe is considered the golden standard neuroprotective gas. However, Xe has a higher molecular weight and lower thermal conductivity and specific heat than those of nitrogen, the main diluent of oxygen (O2) in air, conditions that could impair or at least reduce the intrinsic neuroprotective properties of Xe by increasing the critical care patient's respiratory workload and body temperature. In contrast, He has a lower molecular weight and higher thermal conductivity and specific heat than those of nitrogen, but is unfortunately far less potent than Xe at providing neuroprotection. Therefore, combining Xe with He could allow obtaining, depending on the gas inhalation temperature and composition, gas mixtures with neutral or hypothermic properties, the latter being advantageous in term of neuroprotection. However, calculating the thermal properties of a mixture, whatever the substances – gases, metals, rubbers, etc. – is not trivial. To answer this question, we provide a graphical method to assess the volume proportions of Xe, He and O2 that a gas mixture should contain, and the inhalation temperature to which it should be administered to allow a clinician to maintain the patient at a target body temperature. PMID:29152210

  8. Effect of mobile unidirectional air flow unit on microbial contamination of air in standard urologic procedures.

    PubMed

    Ferretti, Stefania; Pasquarella, Cesira; Fornia, Samanta; Saccani, Elisa; Signorelli, Carlo; Vitali, Pietro; Sansebastiano, Giuliano Ezio

    2009-12-01

    Infection is one of the most feared complications of surgery. New instrumentation is being developed to reduce deposition of bacteria. We investigated 45 major surgical procedures (21 radical nephrectomies [RN] and 24 radical retropubic prostatectomies [RRP]) in our urology department during 2007. In about one-half of the interventions, an ultraclean air flow mobile (UAF) unit was used. Bacterial sedimentation was evaluated by nitrocellulose membranes placed on the instrument tray and by settle plates positioned at four points in the operating room. In 27 operations, an additional membrane was located near the incision. Bacterial counts on the nitrocellulose membranes during RN were 230 colony-forming units (cfu)/m(2)/h with the UAF unit and 2,254 cfu/m(2)/h without the unit (p = 0.001). During RRP, the values were 288 cfu/m(2)/h and 3,126 cfu/m(2)/h respectively (p = 0.001). The membrane placed near the incision during RN showed a microbial count of 1,235 cfu/m(2)/h with the UAF unit and 5,093 cfu/m(2)/h without the unit (p = 0.002); during RRP, the values were 1,845 cfu/m(2)/h and 3,790 cfu/m(2)/h, respectively (difference not significant). Bacterial contamination detected by settle plates during RN showed a mean value of 2,273 cfu/m(2)/h when the UAF unit was used and 2,054 cfu/m(2)/h without the unit; during RRP, the values were 2,332 cfu/m(2)/h and 2,629 cfu/m(2)/h with and without the UAF unit, respectively (NS). No statistically significant differences were detected in the clinical data registered in patients operated on under standard conditions and while the UAF unit was functioning. The UAF appears able to reduce microbial contamination at the operating table, reaching a bacterial number obtained in ultraclean operating theatres.

  9. A Free and Open Source Web-based Data Catalog Evaluation Tool

    NASA Astrophysics Data System (ADS)

    O'Brien, K.; Schweitzer, R.; Burger, E. F.

    2015-12-01

    For many years, the Unified Access Framework (UAF) project has worked to provide improved access to scientific data by leveraging widely used data standards and conventions. These standards include the Climate and Forecast (CF) metadata conventions, the Data Access Protocol (DAP) and various Open Geospatial Consortium (OGC) standards such as WMS and WCS. The UAF has also worked to create a unified access point for scientific data access through THREDDS and ERDDAP catalogs. A significant effort was made by the UAF project to build a catalog-crawling tool that was designed to crawl remote catalogs, analyze their content and then build a clean catalog that 1) represented only CF compliant data; 2) provided a uniform set of access services and 3) where possible, aggregated data in time. That catalog is available at http://ferret.pmel.noaa.gov/geoide/geoIDECleanCatalog.html.Although this tool has proved immensely valuable in allowing the UAF project to create a high quality data catalog, the need for a catalog evaluation service or tool to operate on a more local level also exists. Many programs that generate data of interest to the public are recognizing the utility and power of using the THREDDS data server (TDS) to serve that data. However, for some groups that lack the resources to maintain dedicated IT personnel, it can be difficult to set up a properly configured TDS. The TDS catalog evaluating service that is under development and will be discussed in this presentation is an effort, through the UAF project, to bridge that gap. Based upon the power of the original UAF catalog cleaner, the web evaluator will have the ability to scan and crawl a local TDS catalog, evaluate the contents for compliance with CF standards, analyze the services offered, and identify datasets where possible temporal aggregation would benefit data access. The results of the catalog evaluator will guide the configuration of the dataset in TDS to ensure that it meets the standards as

  10. A new MODIS based approach for gas flared volumes estimation: the case of the Val d'Agri Oil Center (Southern Italy)

    NASA Astrophysics Data System (ADS)

    Lacava, T.; Faruolo, M.; Coviello, I.; Filizzola, C.; Pergola, N.; Tramutoli, V.

    2014-12-01

    Gas flaring is one of the most controversial energetic and environmental issues the Earth is facing, moreover contributing to the global warming and climate change. According to the World Bank, each year about 150 Billion Cubic Meter of gas are being flared globally, that is equivalent to the annual gas use of Italy and France combined. Besides, about 400 million tons of CO2 (representing about 1.2% of global CO2 emissions) are added annually into the atmosphere. Efforts to evaluate the impact of flaring on the surrounding environment are hampered by lack of official information on flare locations and volumes. Suitable satellite based techniques could offers a potential solution to this problem through the detection and subsequent mapping of flare locations as well as gas emissions estimation. In this paper a new methodological approach, based on the Robust Satellite Techniques (RST), a multi-temporal scheme of satellite data analysis, was developed to analyze and characterize the flaring activity of the largest Italian gas and oil pre-treatment plant (ENI-COVA) located in Val d'Agri (Basilicata) For this site, located in an anthropized area characterized by a large environmental complexity, flaring emissions are mainly related to emergency conditions (i.e. waste flaring), being the industrial process regulated by strict regional laws. With reference to the peculiar characteristics of COVA flaring, the RST approach was implemented on 13 years of EOS-MODIS (Earth Observing System - Moderate Resolution Imaging Spectroradiometer) infrared data to detect COVA-related thermal anomalies and to develop a regression model for gas flared volume estimation. The methodological approach, the whole processing chain and the preliminarily achieved results will be shown and discussed in this paper. In addition, the possible implementation of the proposed approach on the data acquired by the SUOMI NPP - VIIRS (National Polar-orbiting Partnership - Visible Infrared Imaging

  11. Thermal Battery Operating Gas Atmosphere Control and Heat Transfer Optimization

    DTIC Science & Technology

    2012-09-01

    volume of water vapor present at 21.8 C in sample bottles std atm cc 1.533645 Maximum volume of water vapor present at 21.8 C in gas handling system and...sample bottles std atm cc Comparison of gas volumes measured at 838.197 and 1682.297 seconds shows that no water vapor was present and that the gas reacted...temperature of 22.0 ºC torr 0.241556 Maximum volume of water vapor present in one sample bottle std atm cc 0.000194 Maximum weight of water vapor present

  12. 46 CFR 154.906 - Inert gas generators.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ...: (a) Produce an inert gas containing less than 5% oxygen by volume; (b) Have a device to continuously sample the discharge of the generator for oxygen content; and (c) Have an audible and visual alarm in the cargo control station that alarms when the inert gas contains 5% or more oxygen by volume. ...

  13. 46 CFR 154.906 - Inert gas generators.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ...: (a) Produce an inert gas containing less than 5% oxygen by volume; (b) Have a device to continuously sample the discharge of the generator for oxygen content; and (c) Have an audible and visual alarm in the cargo control station that alarms when the inert gas contains 5% or more oxygen by volume. ...

  14. 46 CFR 154.906 - Inert gas generators.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ...: (a) Produce an inert gas containing less than 5% oxygen by volume; (b) Have a device to continuously sample the discharge of the generator for oxygen content; and (c) Have an audible and visual alarm in the cargo control station that alarms when the inert gas contains 5% or more oxygen by volume. ...

  15. 46 CFR 154.906 - Inert gas generators.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ...: (a) Produce an inert gas containing less than 5% oxygen by volume; (b) Have a device to continuously sample the discharge of the generator for oxygen content; and (c) Have an audible and visual alarm in the cargo control station that alarms when the inert gas contains 5% or more oxygen by volume. ...

  16. 46 CFR 154.906 - Inert gas generators.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ...: (a) Produce an inert gas containing less than 5% oxygen by volume; (b) Have a device to continuously sample the discharge of the generator for oxygen content; and (c) Have an audible and visual alarm in the cargo control station that alarms when the inert gas contains 5% or more oxygen by volume. ...

  17. Gas chromatograph sample-transfer valve

    NASA Technical Reports Server (NTRS)

    Wang, W. S.; Wright, H. W., Jr.

    1971-01-01

    Slide-type gate valve incorporates sampling volume and transfer passageway for guiding a metered quantity of gas from pressurized test cell to gas chromatograph. Gate is moved by pneumatic bellows-type actuator.

  18. Automated gas chromatography

    DOEpatents

    Mowry, Curtis D.; Blair, Dianna S.; Rodacy, Philip J.; Reber, Stephen D.

    1999-01-01

    An apparatus and process for the continuous, near real-time monitoring of low-level concentrations of organic compounds in a liquid, and, more particularly, a water stream. A small liquid volume of flow from a liquid process stream containing organic compounds is diverted by an automated process to a heated vaporization capillary where the liquid volume is vaporized to a gas that flows to an automated gas chromatograph separation column to chromatographically separate the organic compounds. Organic compounds are detected and the information transmitted to a control system for use in process control. Concentrations of organic compounds less than one part per million are detected in less than one minute.

  19. Balloon-Expandable Stent Graft for Treating Uretero-Iliac Artery Fistula

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guntau, Moritz, E-mail: guntau@med.uni-marburg.de; Hegele, Axel; Rheinheimer, Stephan

    PurposeTo evaluate the safety, efficacy and outcome of percutaneous balloon-expandable covered stent graft placement for uretero-iliac artery fistula (UAF) treatment.MethodsThis retrospective study evaluated the single-center experience of percutaneous balloon-expandable covered stent graft placement (ADVANTA™, Atrium Hudson, NH, USA) in UAF. Data were obtained from a prospective institutional database. Patient follow-up included complications, symptoms recurrence and mortality rate.ResultsTen UAFs in eight patients (3 males; 5 females) with a mean age of 64.5 (35–77) years were identified. All patients had a history pelvic malignancy, extirpative surgery (n = 6), long-term ureteral stenting (n = 7) and pelvic radiation (n = 5). All procedures were completed successfully without complications.more » Thirty-day mortality rate was zero. At a median follow-up of 6 (1–60) months, one patient suffered recurrent hematuria requiring a secondary stent graft placement 26 months after the initial treatment. During follow-up, five patients died of the underlying disease (43, 66, 105, and 183 and 274 days after the last procedure).ConclusionPercutaneous balloon-expandable stent graft placement in UAF is a safe and effective treatment option. Implantation of stent grafts should be considered as treatment of choice in UAF.« less

  20. Advanced controls for airbreathing engines, volume 3: Allison gas turbine

    NASA Technical Reports Server (NTRS)

    Bough, R. M.

    1993-01-01

    The application of advanced control concepts to airbreathing engines may yield significant improvements in aircraft/engine performance and operability. Screening studies of advanced control concepts for airbreathing engines were conducted by three major domestic aircraft engine manufacturers to determine the potential impact of concepts on turbine engine performance and operability. The purpose of the studies was to identify concepts which offered high potential yet may incur high research and development risk. A target suite of proposed advanced control concepts was formulated and evaluated in a two-phase study to quantify each concept's impact on desired engine characteristics. To aid in the evaluation specific aircraft/engine combinations were considered: a Military High Performance Fighter mission, a High Speed Civil Transport mission, and a Civil Tiltrotor mission. Each of the advanced control concepts considered in the study are defined and described. The concept potential impact on engine performance was determined. Relevant figures of merit on which to evaluate the concepts are determined. Finally, the concepts are ranked with respect to the target aircraft/engine missions. A final report describing the screening studies was prepared by each engine manufacturer. Volume 3 of these reports describes the studies performed by the Allison Gas Turbine Division.

  1. LASER APPLICATIONS AND OTHER TOPICS IN QUANTUM ELECTRONICS: Study of a volume discharge in inert-gas halides without preionisation

    NASA Astrophysics Data System (ADS)

    Erofeev, M. V.; Tarasenko, V. F.

    2008-04-01

    The energy characteristics of radiation of halides of inert gases excited by a volume discharge without additional preionisation are studied. The pressures of working mixtures and relations between the inert gas and halogen optimal for obtaining the maximum pulsed power and radiation efficiency are determined. The peak UV radiation power density achieved 5 kW cm-2 and the radiation efficiency was ≈5.5%. The pulse FWHM was 30—40 ns.

  2. Gas Exchange of Algae

    PubMed Central

    Ammann, Elizabeth C. B.; Lynch, Victoria H.

    1967-01-01

    The oxygen production of a photosynthetic gas exchanger containing Chlorella pyrenoidosa (1% packed cell volume) was measured when various concentrations of carbon dioxide were present within the culture unit. The internal carbon dioxide concentrations were obtained by manipulating the entrance gas concentration and the flow rate. Carbon dioxide percentages were monitored by means of electrodes placed directly in the nutrient medium. The concentration of carbon dioxide in the nutrient medium which produced maximal photosynthesis was in the range of 1.5 to 2.5% by volume. Results were unaffected by either the level of carbon dioxide in the entrance gas or the rate of gas flow. Entrance gases containing 2% carbon dioxide flowing at 320 ml/min, 3% carbon dioxide at 135 ml/min, and 4% carbon dioxide at 55 ml/min yielded optimal carbon dioxide concentrations in the particular unit studied. By using carbon dioxide electrodes implanted directly in the gas exchanger to optimize the carbon dioxide concentration throughout the culture medium, it should be possible to design more efficient large-scale units. PMID:4382391

  3. Large-Flow-Area Flow-Selective Liquid/Gas Separator

    NASA Technical Reports Server (NTRS)

    Vasquez, Arturo; Bradley, Karla F.

    2010-01-01

    This liquid/gas separator provides the basis for a first stage of a fuel cell product water/oxygen gas phase separator. It can separate liquid and gas in bulk in multiple gravity environments. The system separates fuel cell product water entrained with circulating oxygen gas from the outlet of a fuel cell stack before allowing the gas to return to the fuel cell stack inlet. Additional makeup oxygen gas is added either before or after the separator to account for the gas consumed in the fuel cell power plant. A large volume is provided upstream of porous material in the separator to allow for the collection of water that does not exit the separator with the outgoing oxygen gas. The water then can be removed as it continues to collect, so that the accumulation of water does not impede the separating action of the device. The system is designed with a series of tubes of the porous material configured into a shell-and-tube heat exchanger configuration. The two-phase fluid stream to be separated enters the shell-side portion of the device. Gas flows to the center passages of the tubes through the porous material and is then routed to a common volume at the end of the tubes by simple pressure difference from a pumping device. Gas flows through the porous material of the tubes with greater ease as a function of the ratio of the dynamic viscosity of the water and gas. By careful selection of the dimensions of the tubes (wall thickness, porosity, diameter, length of the tubes, number of the tubes, and tube-to-tube spacing in the shell volume) a suitable design can be made to match the magnitude of water and gas flow, developed pressures from the oxygen reactant pumping device, and required residual water inventory for the shellside volume.

  4. Feasibility study for the construction of a new LNG receiving terminal. Turkey. Volume 1. Export trade information. [LNG (liquified natural gas)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1993-06-01

    The report was prepared by The M. W. Kellogg Co. for BOTAS Petroleum Pipeline Corporation of Ankara, Turkey. The study was undertaken to evaluate the cost and economics of constructing a second liquified natural gas (LNG) terminal in Turkey to meet future requirements for natural gas. Volume 1 is divided into the following sections: (1) Introduction; (2) Summary and Conclusions; (3) Design Basis; (4) Site Evaluation; (5) LNG Terminal Design; (6) Major Equipment and Instrumentation; (7) Marine Operations; (8) Safety Considerations; (9) Environmental Review; (10) Preliminary Project Execution Strategy; (11) Cost Estimates; (12) Project Master Schedule; (13) Economic Analysis; (14)more » Financing; (15) Future Work.« less

  5. Control apparatus for hot gas engine

    DOEpatents

    Stotts, Robert E.

    1986-01-01

    A mean pressure power control system for a hot gas (Stirling) engine utilizing a plurality of supply tanks for storing a working gas at different pressures. During pump down operations gas is bled from the engine by a compressor having a plurality of independent pumping volumes. In one embodiment of the invention, a bypass control valve system allows one or more of the compressor volumes to be connected to the storage tanks. By selectively sequencing the bypass valves, a capacity range can be developed over the compressor that allows for lower engine idle pressures and more rapid pump down rates.

  6. Fuel Gas Demonstration Plant Program. Volume I. Demonstration plant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1979-01-01

    The objective of this project is for Babcock Contractors Inc. (BCI) to provide process designs, and gasifier retort design for a fuel gas demonstration plant for Erie Mining Company at Hoyt Lake, Minnesota. The fuel gas produced will be used to supplement natural gas and fuel oil for iron ore pellet induration. The fuel gas demonstration plant will consist of five stirred, two-stage fixed-bed gasifier retorts capable of handling caking and non-caking coals, and provisions for the installation of a sixth retort. The process and unit design has been based on operation with caking coals; however, the retorts have beenmore » designed for easy conversion to handle non-caking coals. The demonstration unit has been designed to provide for expansion to a commercial plant (described in Commercial Plant Package) in an economical manner.« less

  7. Chemo-mechanical coupling in kerogen gas adsorption/desorption.

    PubMed

    Ho, Tuan Anh; Wang, Yifeng; Criscenti, Louise J

    2018-05-09

    Kerogen plays a central role in hydrocarbon generation in an oil/gas reservoir. In a subsurface environment, kerogen is constantly subjected to stress confinement or relaxation. The interplay between mechanical deformation and gas adsorption of the materials could be an important process for shale gas production but unfortunately is poorly understood. Using a hybrid Monte Carlo/molecular dynamics simulation, we show here that a strong chemo-mechanical coupling may exist between gas adsorption and mechanical strain of a kerogen matrix. The results indicate that the kerogen volume can expand by up to 5.4% and 11% upon CH4 and CO2 adsorption at 192 atm, respectively. The kerogen volume increases with gas pressure and eventually approaches a plateau as the kerogen becomes saturated. The volume expansion appears to quadratically increase with the amount of gas adsorbed, indicating a critical role of the surface layer of gas adsorbed in the bulk strain of the material. Furthermore, gas uptake is greatly enhanced by kerogen swelling. Swelling also increases the surface area, porosity, and pore size of kerogen. Our results illustrate the dynamic nature of kerogen, thus questioning the validity of the current assumption of a rigid kerogen molecular structure in the estimation of gas-in-place for a shale gas reservoir or gas storage capacity for subsurface carbon sequestration. The coupling between gas adsorption and kerogen matrix deformation should be taken into consideration.

  8. Natural gas monthly, July 1994

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1994-07-20

    The Natural Gas Monthly (NGM) highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. From time to time, the NGM features articles designed to assist readers in using and interpreting natural gas information.

  9. Natural gas monthly, September 1995

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1995-09-27

    The (NGM) Natural Gas Monthly highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. From time to time, the NGM features articles designed to assist readers in using and interpreting natural gas information.

  10. Automated gas chromatography

    DOEpatents

    Mowry, C.D.; Blair, D.S.; Rodacy, P.J.; Reber, S.D.

    1999-07-13

    An apparatus and process for the continuous, near real-time monitoring of low-level concentrations of organic compounds in a liquid, and, more particularly, a water stream. A small liquid volume of flow from a liquid process stream containing organic compounds is diverted by an automated process to a heated vaporization capillary where the liquid volume is vaporized to a gas that flows to an automated gas chromatograph separation column to chromatographically separate the organic compounds. Organic compounds are detected and the information transmitted to a control system for use in process control. Concentrations of organic compounds less than one part per million are detected in less than one minute. 7 figs.

  11. Effect of Channel Geometry and Properties of a Vapor-Gas Mixture on Volume Condensation in a Flow through a Nozzle

    NASA Astrophysics Data System (ADS)

    Sidorov, A. A.; Yastrebov, A. K.

    2018-01-01

    A method of direct numerical solution of the kinetic equation for the droplet size distribution function was used for the numerical investigation of volume condensation in a supersonic vapor-gas flow. Distributions of temperature for the gas phase and droplets, degree of supersaturation, pressure, fraction of droplets by weight, the number of droplets per unit mass, and of the nucleation rate along the channel were determined. The influence of nozzle geometry, mixture composition, and temperature dependence of the mixture properties on the investigated process was evaluated. It has been found that the nozzle divergence angle determines the vapor-gas mixture expansion rate: an increase in the divergence angle enhances the temperature decrease rate and the supersaturation degree raise rate. With an increase or decrease in the partial pressure of incondensable gas, the droplet temperature approaches the gas phase temperature or the saturation temperature at the partial gas pressure, respectively. A considerable effect of the temperature dependence of the liquid surface tension and properties on gas phase parameters and the integral characteristics of condensation aerosol was revealed. However, the difference in results obtained with or without considering the temperature dependence of evaporation heat is negligible. The predictions are compared with experimental data of other investigations for two mixtures: a mixture of heavy water vapor with nitrogen (incondensable gas) or n-nonane vapor with nitrogen. The predictions agree quite well qualitatively and quantitatively with the experiment. The comparison of the predictions with numerical results from other publications obtained using the method of moments demonstrates the usefulness of the direct numerical solution method and the method of moments in a wide range of input data.

  12. Sub-Nanoliter Spectroscopic Gas Sensor

    PubMed Central

    Alfeeli, Bassam; Pickrell, Gary; Wang, Anbo

    2006-01-01

    In this work, a new type of optical fiber based chemical sensor, the sub-nanoliter sample cell (SNSC) based gas sensor, is described and compared to existing sensors designs in the literature. This novel SNSC gas sensor is shown to have the capability of gas detection with a cell volume in the sub-nanoliter range. Experimental results for various configurations of the sensor design are presented which demonstrate the capabilities of the miniature gas sensor.

  13. Unconventional oil and gas spills: Materials, volumes, and risks to surface waters in four states of the U.S.

    PubMed

    Maloney, Kelly O; Baruch-Mordo, Sharon; Patterson, Lauren A; Nicot, Jean-Philippe; Entrekin, Sally A; Fargione, Joseph E; Kiesecker, Joseph M; Konschnik, Kate E; Ryan, Joseph N; Trainor, Anne M; Saiers, James E; Wiseman, Hannah J

    2017-03-01

    Extraction of oil and gas from unconventional sources, such as shale, has dramatically increased over the past ten years, raising the potential for spills or releases of chemicals, waste materials, and oil and gas. We analyzed spill data associated with unconventional wells from Colorado, New Mexico, North Dakota and Pennsylvania from 2005 to 2014, where we defined unconventional wells as horizontally drilled into an unconventional formation. We identified materials spilled by state and for each material we summarized frequency, volumes and spill rates. We evaluated the environmental risk of spills by calculating distance to the nearest stream and compared these distances to existing setback regulations. Finally, we summarized relative importance to drinking water in watersheds where spills occurred. Across all four states, we identified 21,300 unconventional wells and 6622 reported spills. The number of horizontal well bores increased sharply beginning in the late 2000s; spill rates also increased for all states except PA where the rate initially increased, reached a maximum in 2009 and then decreased. Wastewater, crude oil, drilling waste, and hydraulic fracturing fluid were the materials most often spilled; spilled volumes of these materials largely ranged from 100 to 10,000L. Across all states, the average distance of spills to a stream was highest in New Mexico (1379m), followed by Colorado (747m), North Dakota (598m) and then Pennsylvania (268m), and 7.0, 13.3, and 20.4% of spills occurred within existing surface water setback regulations of 30.5, 61.0, and 91.4m, respectively. Pennsylvania spills occurred in watersheds with a higher relative importance to drinking water than the other three states. Results from this study can inform risk assessments by providing improved input parameters on volume and rates of materials spilled, and guide regulations and the management policy of spills. Published by Elsevier B.V.

  14. Unconventional oil and gas spills: Materials, volumes, and risks to surface waters in four states of the U.S.

    USGS Publications Warehouse

    Maloney, Kelly O.; Baruch-Mordo, Sharon; Patterson, Lauren A.; Nicot, Jean-Philippe; Entrekin, Sally; Fargione, Joe E.; Kiesecker, Joseph M.; Konschnik, Kate E.; Ryan, Joseph N.; Trainor, Anne M.; Saiers, James E.; Wiseman, Hannah J.

    2017-01-01

    Extraction of oil and gas from unconventional sources, such as shale, has dramatically increased over the past ten years, raising the potential for spills or releases of chemicals, waste materials, and oil and gas. We analyzed spill data associated with unconventional wells from Colorado, New Mexico, North Dakota and Pennsylvania from 2005 to 2014, where we defined unconventional wells as horizontally drilled into an unconventional formation. We identified materials spilled by state and for each material we summarized frequency, volumes and spill rates. We evaluated the environmental risk of spills by calculating distance to the nearest stream and compared these distances to existing setback regulations. Finally, we summarized relative importance to drinking water in watersheds where spills occurred. Across all four states, we identified 21,300 unconventional wells and 6622 reported spills. The number of horizontal well bores increased sharply beginning in the late 2000s; spill rates also increased for all states except PA where the rate initially increased, reached a maximum in 2009 and then decreased. Wastewater, crude oil, drilling waste, and hydraulic fracturing fluid were the materials most often spilled; spilled volumes of these materials largely ranged from 100 to 10,000 L. Across all states, the average distance of spills to a stream was highest in New Mexico (1379 m), followed by Colorado (747 m), North Dakota (598 m) and then Pennsylvania (268 m), and 7.0, 13.3, and 20.4% of spills occurred within existing surface water setback regulations of 30.5, 61.0, and 91.4 m, respectively. Pennsylvania spills occurred in watersheds with a higher relative importance to drinking water than the other three states. Results from this study can inform risk assessments by providing improved input parameters on volume and rates of materials spilled, and guide regulations and the management policy of spills.

  15. Natural gas monthly, June 1996

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1996-06-24

    The natural gas monthly (NGM) highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. From time to time, the NGM features articles designed to assist readers in using and interpreting natural gas information. The feature article for this month is Natural Gas Industry Restructuring and EIA Data Collection.

  16. Field monitoring and evaluation of a residential gas-engine-driven heat pump: Volume 2, Heating season

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miller, J.D.

    1995-11-01

    The Federal Government is the largest single energy consumer in the United States; consumption approaches 1.5 quads/year of energy (1 quad = 10{sup 15} Btu) at a cost valued at nearly $10 billion annually. The US Department of Energy (DOE) Federal Energy Management Program (FEMP) supports efforts to reduce energy use and associated expenses in the Federal sector. One such effort, the New Technology Demonstration Program (NTDP), seeks to evaluate new energy-saving US technologies and secure their more timely adoption by the US Government. Pacific Northwest Laboratory (PNL) is one of four DOE national multiprogram laboratories that participate in themore » NTDP by providing technical expertise and equipment to evaluate new, energy-saving technologies being studied and evaluated under that program. This two-volume report describes a field evaluation that PNL conducted for DOE/FEMP and the US Department of Defense (DoD) Strategic Environmental Research and Development Program (SERDP) to examine the performance of a candidate energy-saving technology -- a gas-engine-driven heat pump. The unit was installed at a single residence at Fort Sam Houston, a US Army base in San Antonio, Texas, and the performance was monitored under the NTDP. Participating in this effort under a Cooperative Research and Development Agreement (CRADA) were York International, the heat pump manufacturer; Gas Research Institute (GRI), the technology developer; City Public Service of San Antonio, the local utility; American Gas Cooling Center (AGCC); Fort Sam Houston; and PNL.« less

  17. [Effect of SO2 volume fraction in flue gas on the adsorption behaviors adsorbed by ZL50 activated carbon and kinetic analysis].

    PubMed

    Gao, Ji-xian; Wang, Tie-feng; Wang, Jin-fu

    2010-05-01

    The influence of SO2 dynamic adsorption behaviors using ZL50 activated carbon for flue gas desulphurization and denitrification under different SO2 volume fraction was investigated experimentally, and the kinetic analysis was conducted by kinetic models. With the increase of SO2 volume fraction in flue gas, the SO2 removal ratio and the activity ratio of ZL50 activated carbon decreased, respectively, and SO2 adsorption rate and capacity increased correspondingly. The calculated results indicate that Bangham model has the best prediction effect, the chemisorption processes of SO2 was significantly affected by catalytic oxidative reaction. The adsorption rate constant of Lagergren's pseudo first order model increased with the increase of inlet SO, volume fraction, which indicated that catalytic oxidative reaction of SO2 adsorbed by ZL50 activated carbon may be the rate controlling step in earlier adsorption stage. The Lagergren's and Bangham's initial adsorption rate were deduced and defined, respectively. The Ho's and Elovich's initial adsorption rate were also deduced in this paper. The Bangham's initial adsorption rate values were defined in good agreement with those of experiments. The defined Bangham's adsorptive reaction kinetic model can describe the SO2 dynamic adsorption rate well. The studied results indicated that the SO2 partial order of initial reaction rate was one or adjacent to one, while the O2 and water vapor partial order of initial reaction rate were constants ranging from 0.15-0.20 and 0.45-0.50, respectively.

  18. Preventing Molecular and Particulate Infiltration in a Confined Volume

    NASA Technical Reports Server (NTRS)

    Scialdone, John J.

    1999-01-01

    Contaminants from an instrument's self-generated sources or from sources external to the instrument may degrade its critical surfaces and/or create an environment which limits the instrument's intended performance. Analyses have been carried out on a method to investigate the required purging flow of clean, dry gas to prevent the ingestion of external contaminants into the instrument container volume. The pressure to be maintained and the required flow are examined in terms of their effectiveness in preventing gaseous and particulate contaminant ingestion and abatement of self-generated contaminants in the volume. The required venting area or the existing volume venting area is correlated to the volume to be purged, the allowable pressure differential across the volume, the external contaminant partial pressure, and the sizes of the ambient particulates. The diffusion of external water vapor into the volume while it was being purged was experimentally obtained in terms of an infiltration time constant. That data and the acceptable fraction of the outside pressure into the volume indicate the required flow of purge gas expressed in terms of volume change per unit time. The exclusion of particulates is based on the incoming velocity of the particles and the exit flow speed and density of the purge gas. The purging flow pressures needed to maintain the required flows through the vent passages are indicated. The purge gas must prevent or limit the entrance of the external contaminants to the critical locations of the instrument. It should also prevent self- contamination from surfaces, reduce material outgassing, and sweep out the outgassed products. Systems and facilities that can benefit from purging may be optical equipment, clinical facilities, manufacturing facilities, clean rooms, and other systems requiring clean environments.

  19. Self-activation of biochar from furfural residues by recycled pyrolysis gas.

    PubMed

    Yin, Yulei; Gao, Yuan; Li, Aimin

    2018-04-17

    Biochar samples with controllable specific surface area and mesopore ratio were self-activated from furfural residues by recycled pyrolysis gas. The objective of this study was to develop a new cyclic utilization method for the gas produced by pyrolysis. The influences of preparation parameters on the resulting biochar were studied by varying the pyrolysis-gas flow rate, activation time and temperature. Structural characterization of the produced biochar was performed by analysis of nitrogen adsorption isotherms at 77 K and scanning electron microscope (SEM). The pyrolysis gas compositions before and after activation were determined by a gas chromatograph. The results indicated that the surface area of the biochar was increased from 167 m 2 /g to 567 m 2 /g, the total pore volume increased from 0.121 cm 3 /g to 0.380 cm 3 /g, and the ratio of the mesopore pore volume to the total pore volume increased 17-39.7%. The CO volume fraction of the pyrolysis gas changed from 34.66 to 62.29% and the CO 2 volume fraction decreased from 48.26% to 12.17% under different conditions of pyrolysis-gas flow rate, activation time and temperature. The calorific values of pyrolysis gas changed from 8.82 J/cm 3 to 14.00 J/cm 3 , which were higher than those of conventional pyrolysis gases. The slower pyrolysis-gas flow rate and higher activation time increased the efficiency of the reaction between carbon and pyrolysis gas. These results demonstrated the feasibility of treatment of the furfural residues to produce microporous and mesoporous biochar. The pyrolysis gas that results from the activation process could be used as fuel. Overall, this new self-activation method meets the development requirements of cyclic economy and cleaner production. Copyright © 2018. Published by Elsevier Ltd.

  20. US crude oil, natural gas, and natural gas liquids reserves, 1992 annual report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1993-10-18

    This report presents estimates of proved reserves of crude oil, natural gas, and natural gas liquids as of December 31, 1992, as well as production volumes for the United States, and selected States and State subdivisions for the year 1992. Estimates are presented for the following four categories of natural gas: total gas (wet after lease separation), its two major components (nonassociated and associated-dissolved gas), and total dry gas (wet gas adjusted for the removal of liquids at natural gas processing plants). In addition, two components of natural gas liquids, lease condensate and natural gas plant liquids, have their reservesmore » and production data presented. Also included is information on indicated additional crude oil reserves and crude oil, natural gas, and lease condensate reserves in nonproducing reservoirs. A discussion of notable oil and gas exploration and development activities during 1992 is provided.« less

  1. Natural gas monthly, August 1993

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1993-08-25

    The Natural Gas Monthly (NGM) is prepared in the Data Operations Branch of the Reserves and Natural Gas Division, Office of Oil and Gas, Energy Information Administration (EIA), US Department of Energy (DOE). The NGM highhghts activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. From time to time, the NGM features articles designed to assist readers in using and interpreting natural gas information.

  2. Natural gas monthly, April 1997

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1997-04-01

    The Natural Gas Monthly (NGM) highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are present3ed each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. From time to time, the NGM features articles designed to assist readers in using and interpreting natural gas information. The feature article is entitled ``Natural gas pipeline and system expansions.`` 6 figs., 27 tabs.

  3. Volume change associated with formation and dissociation of hydrate in sediment

    USGS Publications Warehouse

    Ruppel, Carolyn D.; Lee, J.Y.; Santamarina, J. Carlos

    2017-01-01

    Gas hydrate formation and dissociation in sediments are accompanied by changes in the bulk volume of the sediment and can lead to changes in sediment properties, loss of integrity for boreholes, and possibly regional subsidence of the ground surface over areas where methane might be produced from gas hydrate in the future. Experiments on sand, silts, and clay subject to different effective stress and containing different saturations of hydrate formed from dissolved phase tetrahydrofuran are used to systematically investigate the impact of gas hydrate formation and dissociation on bulk sediment volume. Volume changes in low specific surface sediments (i.e., having a rigid sediment skeleton like sand) are much lower than those measured in high specific surface sediments (e.g., clay). Early hydrate formation is accompanied by contraction for all soils and most stress states in part because growing gas hydrate crystals buckle skeletal force chains. Dilation can occur at high hydrate saturations. Hydrate dissociation under drained, zero lateral strain conditions is always associated with some contraction, regardless of soil type, effective stress level, or hydrate saturation. Changes in void ratio during formation-dissociation decrease at high effective stress levels. The volumetric strain during dissociation under zero lateral strain scales with hydrate saturation and sediment compressibility. The volumetric strain during dissociation under high shear is a function of the initial volume average void ratio and the stress-dependent critical state void ratio of the sediment. Other contributions to volume reduction upon hydrate dissociation are related to segregated hydrate in lenses and nodules. For natural gas hydrates, some conditions (e.g., gas production driven by depressurization) might contribute to additional volume reduction by increasing the effective stress.

  4. Air-gas exchange reevaluated: clinically important results of a computer simulation.

    PubMed

    Shunmugam, Manoharan; Shunmugam, Sudhakaran; Williamson, Tom H; Laidlaw, D Alistair

    2011-10-21

    The primary aim of this study was to evaluate the efficiency of air-gas exchange techniques and the factors that influence the final concentration of an intraocular gas tamponade. Parameters were varied to find the optimum method of performing an air-gas exchange in ideal circumstances. A computer model of the eye was designed using 3D software with fluid flow analysis capabilities. Factors such as angular distance between ports, gas infusion gauge, exhaust vent gauge and depth were varied in the model. Flow rate and axial length were also modulated to simulate faster injections and more myopic eyes, respectively. The flush volume of gas required to achieve a 97% intraocular gas fraction concentration were compared. Modulating individual factors did not reveal any clinically significant difference in the angular distance between ports, exhaust vent size, and depth or rate of gas injection. In combination, however, there was a 28% increase in air-gas exchange efficiency comparing the most efficient with the least efficient studied parameters in this model. The gas flush volume required to achieve a 97% gas fill also increased proportionately at a ratio of 5.5 to 6.2 times the volume of the eye. A 35-mL flush is adequate for eyes up to 25 mm in axial length; however, eyes longer than this would require a much greater flush volume, and surgeons should consider using two separate 50-mL gas syringes to ensure optimal gas concentration for eyes greater than 25 mm in axial length.

  5. Gas formation and biological effects of biodegradable magnesium in a preclinical and clinical observation

    PubMed Central

    Lee, Kwang-Bok; Bode, Ken; Kwon, Tae-Young; Jeon, Moo Heon

    2018-01-01

    Abstract Magnesium alloys are biodegradable metals receiving increasing attention, but the clinical applications of these materials are delayed by concerns over the rapid corrosion rate and gas formation. Unlike corrosion, which weakens mechanical properties, the gas formation issue has received little attention. Therefore, we evaluated the gas formation and biological effects for Mg implants through preclinical (immersed in Earle’s balanced salt solution and in vivo) and clinical studies. The immersion test examined the gas volume and composition. The in vivo study also examined gas volume and histological analysis. The clinical study examined the gas volume and safety after Mg screw metatarsal fixation. Gas was mainly composed of H2, CO and CO2. Maximum volumes of gas formed after 5 days for in vivo and 7 days in clinical study. Within the clinical examination, two superficial wound complications healed with local wound care. Osteolytic lesions in the surrounding metaphysis of the Mg screw insertion developed in all cases and union occurred at 3 months. Mg implants released gas with variable volumes and composition (H2, CO, and CO2), with no long-term toxic effects on the surrounding tissue. The implants enabled bone healing, although complications of wound breakdown and osteolytic lesions developed. PMID:29707071

  6. Field tests prove microscale NRU to upgrade low-btu gas

    USGS Publications Warehouse

    Bhattacharya, Saibal; Newell, K. David; Watney, W. Lynn; Sigel, Micael

    2009-01-01

    The Kansas Geological Survey (University of Kansas) and the American Energies Corp., Wichita, have conducted field tests of a scalable, microscale, N2-rejection unit (NRU) to demonstrate its effectiveness to upgrade low-pressure ((<100 psig) and low-volume (=100 Mcfd) low-btu gas to pipeline quality. The tests aim to develop inexpensive NRU technology, which is designed for low- volume, low-pressure gas wells, to significantly increase the contribution of marginal low-btu gas to the gas supply of the US. The NRU uses two towers and uses three stages, namely, adsorption under pressure, venting to 2 psig, and desorption under vacuum. The modular design allows additional sets of towers to be added or removed to handle increases or decreases in feed volumes. The field tests also reveal that a strong compressor, which is capable of evacuating the tower (volume) as quickly as possible, should be employed to reduce process cycle time and increase plant throughput.

  7. Natural gas imports and exports, first quarter report 2000

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    The Office of Natural Gas and Petroleum Import and Export Activities prepares quarterly reports showing natural gas import and export activity. Companies are required to file quarterly reports. Attachments show the percentage of takes to maximum firm contract levels and the weighted average per unit price for each of the long-term importers during the 5 most recent reporting quarters, volumes and prices of gas purchased by long-term importers and exporters during the past 12 months, volume and price data for gas imported on a short-term or spot market basis, and the gas exported on a short-term or spot market basismore » to Canada and Mexico.« less

  8. Natural gas imports and exports, fourth quarter report 1999

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    The Office of Natural Gas and Petroleum Import and Export Activities prepares quarterly reports showing natural gas import and export activity. Companies are required to file quarterly reports. Attachments show the percentage of takes to maximum firm contract levels and the weighted average per unit price for each of the long-term importers during the five most recent quarters, volumes and prices of gas purchased by long-term importers and exporters during the past 12 months, volume and price data for gas imported on a short-term or spot market basis, and the gas exported on a short-term or spot market basis tomore » Canada and Mexico.« less

  9. Treatment of ureteroarterial fistula with an endoureteral stent graft.

    PubMed

    Horikawa, Masahiro; Saito, Hiroya; Hokotate, Hirofumi; Mori, Tatsuya

    2012-09-01

    A patient with a history of total cystectomy for bladder cancer, cutaneous ureterostomy, irradiation, and long-term indwelling urinary catheters presented with an aortoureteral fistula (UAF), which was treated with an endoureteral stent graft. The described ureteral approach using stent grafts may be considered for the management of UAFs when more traditional approaches are unavailable. Copyright © 2012 SIR. Published by Elsevier Inc. All rights reserved.

  10. Trace Gas Analyzer (TGA) program

    NASA Technical Reports Server (NTRS)

    1977-01-01

    The design, fabrication, and test of a breadboard trace gas analyzer (TGA) is documented. The TGA is a gas chromatograph/mass spectrometer system. The gas chromatograph subsystem employs a recirculating hydrogen carrier gas. The recirculation feature minimizes the requirement for transport and storage of large volumes of carrier gas during a mission. The silver-palladium hydrogen separator which permits the removal of the carrier gas and its reuse also decreases vacuum requirements for the mass spectrometer since the mass spectrometer vacuum system need handle only the very low sample pressure, not sample plus carrier. System performance was evaluated with a representative group of compounds.

  11. A Review and Evaluation of the Phase Equilibria, Liquid-Phase Heats of Mixing and Excess Volumes, and Gas-Phase PVT Measurements for Nitrogen+Methane

    NASA Astrophysics Data System (ADS)

    Kidnay, A. J.; Miller, R. C.; Sloan, E. D.; Hiza, M. J.

    1985-07-01

    The available experimental data for vapor-liquid equilibria, heat of mixing, change in volume on mixing for liquid mixtures, and gas-phase PVT measurements for nitrogen+methane have been reviewed and where possible evaluated for consistency. The derived properties chosen for analysis and correlation were liquid mixture excess Gibbs free energies, and Henry's constants.

  12. U.S. crude oil, natural gas, and natural gas liquids reserves 1997 annual report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wood, John H.; Grape, Steven G.; Green, Rhonda S.

    1998-12-01

    This report presents estimates of proved reserves of crude oil, natural gas, and natural gas liquids as of December 31, 1997, as well as production volumes for the US and selected States and State subdivisions for the year 1997. Estimates are presented for the following four categories of natural gas: total gas (wet after lease separation), nonassociated gas and associated-dissolved gas (which are the two major types of wet natural gas), and total dry gas (wet gas adjusted for the removal of liquids at natural gas processing plants). In addition, reserve estimates for two types of natural gas liquids, leasemore » condensate and natural gas plant liquids, are presented. Also included is information on indicated additional crude oil reserves and crude oil, natural gas, and lease condensate reserves in nonproducing reservoirs. A discussion of notable oil and gas exploration and development activities during 1997 is provided. 21 figs., 16 tabs.« less

  13. The Numerical Simulation of the Shock Wave of Coal Gas Explosions in Gas Pipe*

    NASA Astrophysics Data System (ADS)

    Chen, Zhenxing; Hou, Kepeng; Chen, Longwei

    2018-03-01

    For the problem of large deformation and vortex, the method of Euler and Lagrange has both advantage and disadvantage. In this paper we adopt special fuzzy interface method(volume of fluid). Gas satisfies the conditions of conservation equations of mass, momentum, and energy. Based on explosion and three-dimension fluid dynamics theory, using unsteady, compressible, inviscid hydrodynamic equations and state equations, this paper considers pressure gradient’s effects to velocity, mass and energy in Lagrange steps by the finite difference method. To minimize transport errors of material, energy and volume in Finite Difference mesh, it also considers material transport in Euler steps. Programmed with Fortran PowerStation 4.0 and visualized with the software designed independently, we design the numerical simulation of gas explosion with specific pipeline structure, check the key points of the pressure change in the flow field, reproduce the gas explosion in pipeline of shock wave propagation, from the initial development, flame and accelerate the process of shock wave. This offers beneficial reference and experience to coal gas explosion accidents or safety precautions.

  14. Characterization of a hydro-pneumatic suspension strut with gas-oil emulsion

    NASA Astrophysics Data System (ADS)

    Yin, Yuming; Rakheja, Subhash; Yang, Jue; Boileau, Paul-Emile

    2018-06-01

    The nonlinear stiffness and damping properties of a simple and low-cost design of a hydro-pneumatic suspension (HPS) strut that permits entrapment of gas into the hydraulic oil are characterized experimentally and analytically. The formulation of gas-oil emulsion is studied in the laboratory, and the variations in the bulk modulus and mass density of the emulsion are formulated as a function of the gas volume fraction. An analytical model of the HPS is formulated considering polytropic change in the gas state, seal friction, and the gas-oil emulsion flows through orifices and valves. The model is formulated considering one and two bleed orifices configurations of the strut. The measured data acquired under a nearly constant temperature are used to identify gas volume fraction of the emulsion, and friction and flow discharge coefficients as functions of the strut velocity and fluid pressure. The results suggested that single orifice configuration, owing to high fluid pressure, causes greater gas entrapment within the oil and thus significantly higher compressibility of the gas-oil emulsion. The model results obtained under different excitations in the 0.1-8 Hz frequency range showed reasonably good agreements with the measured stiffness and damping properties of the HPS strut. The results show that the variations in fluid compressibility and free gas volume cause increase in effective stiffness but considerable reduction in the damping in a highly nonlinear manner. Increasing the gas volume fraction resulted in substantial hysteresis in the force-deflection and force-velocity characteristics of the strut.

  15. Gas-separation process

    DOEpatents

    Toy, Lora G.; Pinnau, Ingo; Baker, Richard W.

    1994-01-01

    A process for separating condensable organic components from gas streams. The process makes use of a membrane made from a polymer material that is glassy and that has an unusually high free volume within the polymer material.

  16. Low-Dead-Volume Inlet for Vacuum Chamber

    NASA Technical Reports Server (NTRS)

    Naylor, Guy; Arkin, C.

    2010-01-01

    Gas introduction from near-ambient pressures to high vacuum traditionally is accomplished either by multi-stage differential pumping that allows for very rapid response, or by a capillary method that allows for a simple, single-stage introduction, but which often has a delayed response. Another means to introduce the gas sample is to use the multi-stage design with only a single stage. This is accomplished by using a very small conductance limit. The problem with this method is that a small conductance limit will amplify issues associated with dead -volume. As a result, a high -vacuum gas inlet was developed with low dead -volume, allowing the use of a very low conductance limit interface. Gas flows through the ConFlat flange at a relatively high flow rate at orders of magnitude greater than through the conductance limit. The small flow goes through a conductance limit that is a double-sided ConFlat.

  17. Low-Dead-Volume Inlet for Vacuum Chamber

    NASA Technical Reports Server (NTRS)

    Naylor, Guy; Arkin, C.

    2011-01-01

    Gas introduction from near-ambient pressures to high vacuum traditionally is accomplished either by multi-stage differential pumping that allows for very rapid response, or by a capillary method that allows for a simple, single-stage introduction, but which often has a delayed response. Another means to introduce the gas sample is to use the multi-stage design with only a single stage. This is accomplished by using a very small conductance limit. The problem with this method is that a small conductance limit will amplify issues associated with dead-volume. As a result, a high-vacuum gas inlet was developed with low dead-volume, allowing the use of a very low conductance limit interface. Gas flows through the ConFlat flange at a relatively high flow rate at orders of magnitude greater than through the conductance limit. The small flow goes through a conductance limit that is a double-sided ConFlat.

  18. Temperature and pressure correlation for volume of gas hydrates with crystal structures sI and sII

    NASA Astrophysics Data System (ADS)

    Vinš, Václav; Jäger, Andreas; Hielscher, Sebastian; Span, Roland; Hrubý, Jan; Breitkopf, Cornelia

    The temperature and pressure correlations for the volume of gas hydrates forming crystal structures sI and sII developed in previous study [Fluid Phase Equilib. 427 (2016) 268-281], focused on the modeling of pure gas hydrates relevant in CCS (carbon capture and storage), were revised and modified for the modeling of mixed hydrates in this study. A universal reference state at temperature of 273.15 K and pressure of 1 Pa is used in the new correlation. Coefficients for the thermal expansion together with the reference lattice parameter were simultaneously correlated to both the temperature data and the pressure data for the lattice parameter. A two-stage Levenberg Marquardt algorithm was employed for the parameter optimization. The pressure dependence described in terms of the bulk modulus remained unchanged compared to the original study. A constant value for the bulk modulus B0 = 10 GPa was employed for all selected hydrate formers. The new correlation is in good agreement with the experimental data over wide temperature and pressure ranges from 0 K to 293 K and from 0 to 2000 MPa, respectively. Compared to the original correlation used for the modeling of pure gas hydrates the new correlation provides significantly better agreement with the experimental data for sI hydrates. The results of the new correlation are comparable to the results of the old correlation in case of sII hydrates. In addition, the new correlation is suitable for modeling of mixed hydrates.

  19. Gas dispersion and immobile gas volume in solid and porous particle biofilter materials at low air flow velocities.

    PubMed

    Sharma, Prabhakar; Poulsen, Tjalfe G

    2010-07-01

    Gas-phase dispersion in granular biofilter materials with a wide range of particle sizes was investigated using atmospheric air and nitrogen as tracer gases. Two types of materials were used: (1) light extended clay aggregates (LECA), consisting of highly porous particles, and (2) gravel, consisting of solid particles. LECA is a commercial material that is used for insulation, as a soil conditioner, and as a carrier material in biofilters for air cleaning. These two materials were selected to have approximately the same particle shape. Column gas transport experiments were conducted for both materials using different mean particle diameters, different particle size ranges, and different gas flow velocities. Measured breakthrough curves were modeled using the advection-dispersion equation modified for mass transfer between mobile and immobile gas phases. The results showed that gas dispersivity increased with increasing mean particle diameter for LECA but was independent of mean particle diameter for gravel. Gas dispersivity also increased with increasing particle size range for both media. Dispersivities in LECA were generally higher than for gravel. The mobile gas content in both materials increased with increasing gas flow velocity but it did not show any strong dependency on mean particle diameter or particle size range. The relative fraction of mobile gas compared with total porosity was highest for gravel and lowest for LECA likely because of its high internal porosity.

  20. Planck/SDSS Cluster Mass and Gas Scaling Relations for a Volume-Complete redMaPPer Sample

    NASA Astrophysics Data System (ADS)

    Jimeno, Pablo; Diego, Jose M.; Broadhurst, Tom; De Martino, I.; Lazkoz, Ruth

    2018-04-01

    Using Planck satellite data, we construct Sunyaev-Zel'dovich (SZ) gas pressure profiles for a large, volume-complete sample of optically selected clusters. We have defined a sample of over 8,000 redMaPPer clusters from the Sloan Digital Sky Survey (SDSS), within the volume-complete redshift region 0.100 < z < 0.325, for which we construct SZ effect maps by stacking Planck data over the full range of richness. Dividing the sample into richness bins we simultaneously solve for the mean cluster mass in each bin together with the corresponding radial pressure profile parameters, employing an MCMC analysis. These profiles are well detected over a much wider range of cluster mass and radius than previous work, showing a clear trend towards larger break radius with increasing cluster mass. Our SZ-based masses fall ˜16% below the mass-richness relations from weak lensing, in a similar fashion as the "hydrostatic bias" related with X-ray derived masses. Finally, we derive a tight Y500-M500 relation over a wide range of cluster mass, with a power law slope equal to 1.70 ± 0.07, that agrees well with the independent slope obtained by the Planck team with an SZ-selected cluster sample, but extends to lower masses with higher precision.

  1. Bismuth-Based, Disposable Sensor for the Detection of Hydrogen Sulfide Gas.

    PubMed

    Rosolina, Samuel M; Carpenter, Thomas S; Xue, Zi-Ling

    2016-02-02

    A new sensor for the detection of hydrogen sulfide (H2S) gas has been developed to replace commercial lead(II) acetate-based test papers. The new sensor is a wet, porous, paper-like substrate coated with Bi(OH)3 or its alkaline derivatives at pH 11. In contrast to the neurotoxic lead(II) acetate, bismuth is used due to its nontoxic properties, as Bi(III) has been a reagent in medications such as Pepto-Bismol. The reaction between H2S gas and the current sensor produces a visible color change from white to yellow/brown, and the sensor responds to ≥ 30 ppb H2S in a total volume of 1.35 L of gas, a typical volume of human breath. The alkaline, wet coating helps the trapping of acidic H2S gas and its reaction with Bi(III) species, forming colored Bi2S3. The sensor is suitable for testing human bad breath and is at least 2 orders of magnitude more sensitive than a commercial H2S test paper based on Pb(II)(acetate)2. The small volume of 1.35-L H2S is important, as the commercial Pb(II)(acetate)2-based paper requires large volumes of 5 ppm H2S gas. The new sensor reported here is inexpensive, disposable, safe, and user-friendly. A simple, laboratory setup for generating small volumes of ppb-ppm of H2S gas is also reported.

  2. Natural gas monthly, October 1995

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1995-10-23

    The Natural Gas Monthly highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. A glossary of the terms used in this report is provided to assist readers in understanding the data presented in this publication. 6 figs., 30 tabs.

  3. Detection of gas leakage

    DOEpatents

    Thornberg, Steven [Peralta, NM; Brown, Jason [Albuquerque, NM

    2012-06-19

    A method of detecting leaks and measuring volumes as well as an apparatus, the Power-free Pump Module (PPM), that is a self-contained leak test and volume measurement apparatus that requires no external sources of electrical power during leak testing or volume measurement, where the invention is a portable, pneumatically-controlled instrument capable of generating a vacuum, calibrating volumes, and performing quantitative leak tests on a closed test system or device, all without the use of alternating current (AC) power. Capabilities include the ability is to provide a modest vacuum (less than 10 Torr), perform a pressure rise leak test, measure the gas's absolute pressure, and perform volume measurements. All operations are performed through a simple rotary control valve which controls pneumatically-operated manifold valves.

  4. Free Volume of the Hard Spheres Gas

    ERIC Educational Resources Information Center

    Shutler, P. M. E.; Martinez, J. C.; Springham, S. V.

    2007-01-01

    The Enskog factor [chi] plays a central role in the theory of dense gases, quantifying how the finite size of molecules causes many physical quantities, such as the equation of state, the mean free path, and the diffusion coefficient, to deviate from those of an ideal gas. We suggest an intuitive but rigorous derivation of this fact by showing how…

  5. Variable volume combustor with a conical liner support

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, Thomas Edward; McConnaughhay, Johnie Franklin; Keener, Chrisophter Paul

    The present application provides a variable volume combustor for use with a gas turbine engine. The variable volume combustor may include a liner, a number of micro-mixer fuel nozzles positioned within the liner, and a conical liner support supporting the liner.

  6. Gas-separation process

    DOEpatents

    Toy, L.G.; Pinnau, I.; Baker, R.W.

    1994-01-25

    A process is described for separating condensable organic components from gas streams. The process makes use of a membrane made from a polymer material that is glassy and that has an unusually high free volume within the polymer material. 6 figures.

  7. Comparison of static end-expiratory and effective lung volumes for gas exchange in healthy and surfactant-depleted lungs.

    PubMed

    Albu, Gergely; Wallin, Mats; Hallbäck, Magnus; Emtell, Per; Wolf, Andrew; Lönnqvist, Per-Arne; Göthberg, Sylvia; Peták, Ferenc; Habre, Walid

    2013-07-01

    Effective lung volume (ELV) for gas exchange is a new measure that could be used as a real-time guide during controlled mechanical ventilation. The authors established the relationships of ELV to static end-expiratory lung volume (EELV) with varying levels of positive end-expiratory pressure (PEEP) in healthy and surfactant-depleted rabbit lungs. Nine rabbits were anesthetized and ventilated with a modified volume-controlled mode where periods of five consecutive alterations in inspiratory/expiratory ratio (1:2-1.5:1) were imposed to measure ELV from the corresponding carbon dioxide elimination traces. EELV and the lung clearance index were concomitantly determined by helium wash-out technique. Airway and tissue mechanics were assessed by using low-frequency forced oscillations. Measurements were collected at PEEP 0, 3, 6, and 9 cm H2O levels under control condition and after surfactant depletion by whole-lung lavage. ELV was greater than EELV at all PEEP levels before lavage, whereas there was no evidence for a difference in the lung volume indices after surfactant depletion at PEEP 6 or 9 cm H2O. Increasing PEEP level caused significant parallel increases in both ELV and EELV levels, decreases in ventilation heterogeneity, and improvement in airway and tissue mechanics under control condition and after surfactant depletion. ELV and EELV exhibited strong and statistically significant correlations before (r=0.84) and after lavage (r=0.87). The parallel changes in ELV and EELV with PEEP in healthy and surfactant-depleted lungs support the clinical value of ELV measurement as a bedside tool to estimate dynamic changes in EELV in children and infants.

  8. Hydrocarbon Gas Liquids (HGL): Recent Market Trends and Issues

    EIA Publications

    2014-01-01

    Over the past five years, rapid growth in U.S. onshore natural gas and oil production has led to increased volumes of natural gas plant liquids (NGPL) and liquefied refinery gases (LRG). The increasing economic importance of these volumes, as a result of their significant growth in production, has revealed the need for better data accuracy and transparency to improve the quality of historical data and projections for supply, demand, and prices of these liquids, co-products, and competing products. To reduce confusion in terminology and improve its presentation of data, EIA has worked with industry and federal and state governments to clarify gas liquid terminology and has developed the term Hydrocarbon Gas Liquids, or HGL.

  9. Long-term Results of Endovascular Stent Graft Placement of Ureteroarterial Fistula

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Okada, Takuya, E-mail: okabone@gmail.com; Yamaguchi, Masato, E-mail: masato03310402@yahoo.co.jp; Muradi, Akhmadu, E-mail: muradiakhmadu@gmail.com

    2013-08-01

    PurposeTo evaluate the safety, efficacy, and long-term results of endovascular stent graft placement for ureteroarterial fistula (UAF).MethodsWe retrospectively analyzed stent graft placement for UAF performed at our institution from 2004 to 2012. Fistula location was assessed by contrast-enhanced computed tomography (CT) and angiography, and freedom from hematuria recurrence and mortality rates were estimated.ResultsStent graft placement for 11 UAFs was performed (4 men, mean age 72.8 {+-} 11.6 years). Some risk factors were present, including long-term ureteral stenting in 10 (91 %), pelvic surgery in 8 (73 %), and pelvic radiation in 5 (45 %). Contrast-enhanced CT and/or angiography revealed fistulamore » or encasement of the artery in 6 cases (55 %). In the remaining 5 (45 %), angiography revealed no abnormality, and the suspected fistula site was at the crossing area between urinary tract and artery. All procedures were successful. However, one patient died of urosepsis 37 days after the procedure. At a mean follow-up of 548 (range 35-1,386) days, 4 patients (36 %) had recurrent hematuria, and two of them underwent additional treatment with secondary stent graft placement and surgical reconstruction. The hematuria recurrence-free rates at 1 and 2 years were 76.2 and 40.6 %, respectively. The freedom from UAF-related and overall mortality rates at 2 years were 85.7 and 54.9 %, respectively.ConclusionEndovascular stent graft placement for UAF is a safe and effective method to manage acute events. However, the hematuria recurrence rate remains high. A further study of long-term results in larger number of patients is necessary.« less

  10. Enhanced recovery of unconventional gas. Volume II. The program. [Tight gas basins; Devonian shale; coal seams; geopressured aquifers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kuuskraa, V.A.; Brashear, J.P.; Doscher, T.M.

    1978-10-01

    This study was conducted to assist public decision-makers in selecting among many choices to obtain new gas supplies by addressing 2 questions: 1) how severe is the need for additional future supplies of natural gas, and what is the economic potential of providing part of future supply through enhanced recovery from unconventional natural gas resources. The study also serves to assist the DOE in designing a cost-effective R and D program to stimulate industry to recover this unconventional gas and to produce it sooner. Tight gas basins, Devonian shale, methane from coal seams, and methane from geopressured aquifers are considered.more » It is concluded that unconventional sources, already providing about 1 Tcf per year, could provide from 3 to 4 Tcf in 1985 and from 6 to 8 Tcf in 1990 (at $1.75 and $3.00 per Mcf, respectively). However, even with these additions to supply, gas supply is projected to remain below 1977 usage levels. (DLC)« less

  11. Controls on the physical properties of gas-hydrate-bearing sediments because of the interaction between gas hydrate and porous media

    USGS Publications Warehouse

    Lee, Myung W.; Collett, Timothy S.

    2005-01-01

    Physical properties of gas-hydrate-bearing sediments depend on the pore-scale interaction between gas hydrate and porous media as well as the amount of gas hydrate present. Well log measurements such as proton nuclear magnetic resonance (NMR) relaxation and electromagnetic propagation tool (EPT) techniques depend primarily on the bulk volume of gas hydrate in the pore space irrespective of the pore-scale interaction. However, elastic velocities or permeability depend on how gas hydrate is distributed in the pore space as well as the amount of gas hydrate. Gas-hydrate saturations estimated from NMR and EPT measurements are free of adjustable parameters; thus, the estimations are unbiased estimates of gas hydrate if the measurement is accurate. However, the amount of gas hydrate estimated from elastic velocities or electrical resistivities depends on many adjustable parameters and models related to the interaction of gas hydrate and porous media, so these estimates are model dependent and biased. NMR, EPT, elastic-wave velocity, electrical resistivity, and permeability measurements acquired in the Mallik 5L-38 well in the Mackenzie Delta, Canada, show that all of the well log evaluation techniques considered provide comparable gas-hydrate saturations in clean (low shale content) sandstone intervals with high gas-hydrate saturations. However, in shaly intervals, estimates from log measurement depending on the pore-scale interaction between gas hydrate and host sediments are higher than those estimates from measurements depending on the bulk volume of gas hydrate.

  12. Detection of gas leakage

    DOEpatents

    Thornberg, Steven M; Brown, Jason

    2015-02-17

    A method of detecting leaks and measuring volumes as well as a device, the Power-free Pump Module (PPM), provides a self-contained leak test and volume measurement apparatus that requires no external sources of electrical power during leak testing or volume measurement. The PPM is a portable, pneumatically-controlled instrument capable of generating a vacuum, calibrating volumes, and performing quantitative leak tests on a closed test system or device, all without the use of alternating current (AC) power. Capabilities include the ability is to provide a modest vacuum (less than 10 Torr) using a venturi pump, perform a pressure rise leak test, measure the gas's absolute pressure, and perform volume measurements. All operations are performed through a simple rotary control valve which controls pneumatically-operated manifold valves.

  13. INTENSE ENERGETIC GAS DISCHARGE

    DOEpatents

    Luce, J.S.

    1960-03-01

    A method and apparatus for initiating and sustaining an energetic gas arc discharge are described. A hollow cathode and a hollow anode are provided. By regulating the rate of gas flow into the interior of the cathode, the arc discharge is caused to run from the inner surface of the cathode with the result that adequate space-charge neutralization is provided inside the cathode but not in the main arc volume. Thus, the gas fed to the cathode is substantially completely ionized before it leaves the cathode, with the result that an energetic arc discharge can be maintained at lower operating pressures.

  14. Capacitance probe for fluid flow and volume measurements

    NASA Technical Reports Server (NTRS)

    Arndt, G. Dickey (Inventor); Nguyen, Thanh X. (Inventor); Carl, James R. (Inventor)

    1995-01-01

    Method and apparatus for making measurements on fluids are disclosed, including the use of a capacitive probe for measuring the flow volume of a material within a flow stream. The capacitance probe has at least two elongate electrodes and, in a specific embodiment of the invention, has three parallel elongate electrodes with the center electrode being an extension of the center conductor of a co-axial cable. A conductance probe is also provided to provide more accurate flow volume data in response to conductivity of the material within the flow stream. A preferred embodiment of the present invention provides for a gas flow stream through a microgravity environment that allows for monitoring a flow volume of a fluid sample, such as a urine sample, that is entrained within the gas flow stream.

  15. Capacitance Probe for Fluid Flow and Volume Measurements

    NASA Technical Reports Server (NTRS)

    Arndt, G. Dickey (Inventor); Nguyen, Thanh X. (Inventor); Carl, James R. (Inventor)

    1997-01-01

    Method and apparatus for making measurements on fluids are disclosed, including the use of a capacitive probe for measuring the flow volume of a material within a flow stream. The capacitance probe has at least two elongate electrodes and, in a specific embodiment of the invention, has three parallel elongate electrodes with the center electrode being an extension of the center conductor of a co-axial cable. A conductance probe is also provided to provide more accurate flow volume data in response to conductivity of the material within the flow stream. A preferred embodiment of the present invention provides for a gas flow stream through a micro-gravity environment that allows for monitoring a flow volume of a fluid sample, such as a urine sample, that is entrained within the gas flow stream.

  16. A mass-balanced definition of corrected retention volume in gas chromatography.

    PubMed

    Kurganov, A

    2007-05-25

    The mass balance equation of a chromatographic system using a compressible moving phase has been compiled for mass flow of the mobile phase instead of traditional volumetric flow allowing solution of the equation in an analytical form. The relation obtained correlates retention volume measured under ambient conditions with the partition coefficient of the solute. Compared to the relation in the ideal chromatographic system the equation derived contains an additional correction term accounting for the compressibility of the moving phase. When the retention volume is measured under the mean column pressure and column temperature the correction term is reduced to unit and the relation is simplified to those known for the ideal system. This volume according to International Union of Pure and Applied Chemistry (IUPAC) is called the corrected retention volume.

  17. Planck/SDSS cluster mass and gas scaling relations for a volume-complete redMaPPer sample

    NASA Astrophysics Data System (ADS)

    Jimeno, Pablo; Diego, Jose M.; Broadhurst, Tom; De Martino, I.; Lazkoz, Ruth

    2018-07-01

    Using Planck satellite data, we construct Sunyaev-Zel'dovich (SZ) gas pressure profiles for a large, volume-complete sample of optically selected clusters. We have defined a sample of over 8000 redMaPPer clusters from the Sloan Digital Sky Survey, within the volume-complete redshift region 0.100

  18. Method of testing gas insulated systems for the presence of conducting particles utilizing a gas mixture of nitrogen and sulfur hexafluoride

    DOEpatents

    Wootton, Roy E.

    1979-01-01

    A method of testing a gas insulated system for the presence of conducting particles. The method includes inserting a gaseous mixture comprising about 98 volume percent nitrogen and about 2 volume percent sulfur hexafluoride into the gas insulated system at a pressure greater than 60 lb./sq. in. gauge, and then applying a test voltage to the system. If particles are present within the system, the gaseous mixture will break down, providing an indicator of the presence of the particles.

  19. Substrate removal kinetics in high-rate upflow anaerobic filters packed with low-density polyethylene media treating high-strength agro-food wastewaters.

    PubMed

    Rajagopal, Rajinikanth; Torrijos, Michel; Kumar, Pradeep; Mehrotra, Indu

    2013-02-15

    The process kinetics for two upflow anaerobic filters (UAFs) treating high strength fruit canning and cheese-dairy wastewaters as feed were investigated. The experimental unit consisted of a 10-L (effective volume) reactor filled with low-density polyethylene media. COD removal efficiencies of about 80% were recorded at the maximum OLRs of 19 and 17 g COD L(-1) d(-1) for the fruit canning and cheese-dairy wastewaters, respectively. Modified Stover-Kincannon and second-order kinetic models were applied to data obtained from the experimental studies in order to determine the substrate removal kinetics. According to Stover-Kincannon model, U(max) and K(B) values were estimated as 109.9 and 109.7 g L(-1) d(-1) for fruit canning, and 53.5 and 49.7 g L(-1) d(-1) for cheese dairy wastewaters, respectively. The second order substrate removal rate k(2(s)) was found to be 5.0 and 1.93 d(-1) respectively for fruit canning and cheese dairy wastewaters. As both these models gave high correlation coefficients (R(2) = 98-99%), they could be used in predicting the behaviour or design of the UAF. Copyright © 2012 Elsevier Ltd. All rights reserved.

  20. What is shale gas and why is it important?

    EIA Publications

    2012-01-01

    Shale gas refers to natural gas that is trapped within shale formations. Shales are fine-grained sedimentary rocks that can be rich sources of petroleum and natural gas. Over the past decade, the combination of horizontal drilling and hydraulic fracturing has allowed access to large volumes of shale gas that were previously uneconomical to produce. The production of natural gas from shale formations has rejuvenated the natural gas industry in the United States.

  1. Liquefied Petroleum Gas Industry Profile. Volume l. An Overview of the Industry.

    DOT National Transportation Integrated Search

    1985-11-01

    The report provides a broad, factual description of the U.S. liquefied petroleum gas (LP-gas) industry. The basic purpose of the report is to provide analysts and policymakers in government and industry with a comprehensive overview of the LP-gas ind...

  2. Analysis of chlorophenoxy acid herbicides in water by large-volume on-line derivatization and gas chromatography-mass spectrometry.

    PubMed

    Ding, W H; Liu, C H; Yeh, S P

    2000-10-27

    This work presents a modified method to analyze chlorophenoxy acid herbicides in water samples. The herbicides 2,4-D (2,4-dichlorophenoxyacetic acid). Silvex (2,4,5-trichlorophenoxypropionic acid) and 2,4,5-T (2,4,5-trichlorophenoxyacetic acid) were used to evaluate the method. The method involves extraction of samples by a graphitized carbon black cartridge, and on-line derivatization in the GC injection port using a large-volume (10-20 microl) direct sample introduction (DSI) device with tetraalkylammonium salts. The analytes were then identified and quantitated by ion-trap gas chromatography-mass spectrometry. The large-volume DSI injection-port derivatization technique provides sensitivity, fast and reproducible results for chlorophenoxy acid herbicides residues, to quantitation at 0.1 to 0.2 microg/l in 500-ml water samples. An enhanced characteristic mass chromatogram of molecular ions of butylated chlorophenoxy acid herbicides with a significant chlorine isotope pattern by electron impact ionization MS allows us to determine herbicides residues at trace levels in aqueous samples. Recovery of the herbicide residues in spiked various water samples ranged from 70 to 99% while RSDs ranged from 1 to 13%.

  3. Use of nitrogen to remove solvent from through oven transfer adsorption desorption interface during analysis of polycyclic aromatic hydrocarbons by large volume injection in gas chromatography.

    PubMed

    Áragón, Alvaro; Toledano, Rosa M; Cortés, José M; Vázquez, Ana M; Villén, Jesús

    2014-04-25

    The through oven transfer adsorption desorption (TOTAD) interface allows large volume injection (LVI) in gas chromatography and the on-line coupling of liquid chromatography and gas chromatography (LC-GC), enabling the LC step to be carried out in normal as well as in reversed phase. However, large amounts of helium, which is both expensive and scarce, are necessary for solvent elimination. We describe how slight modification of the interface and the operating mode allows nitrogen to be used during the solvent elimination steps. In order to evaluate the performance of the new system, volumes ranging from 20 to 100μL of methanolic solutions of four polycyclic aromatic hydrocarbons (PAHs) were sampled. No significant differences were found in the repeatability and sensitivity of the analyses of standard PAH solutions when using nitrogen or helium. The performance using the proposed modification was similar and equally satisfactory when using nitrogen or helium for solvent elimination in the TOTAD interface. In conclusion, the use of nitrogen will make analyses less expensive. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. A prototype of volume-controlled tidal liquid ventilator using independent piston pumps.

    PubMed

    Robert, Raymond; Micheau, Philippe; Cyr, Stéphane; Lesur, Olivier; Praud, Jean-Paul; Walti, Hervé

    2006-01-01

    Liquid ventilation using perfluorochemicals (PFC) offers clear theoretical advantages over gas ventilation, such as decreased lung damage, recruitment of collapsed lung regions, and lavage of inflammatory debris. We present a total liquid ventilator designed to ventilate patients with completely filled lungs with a tidal volume of PFC liquid. The two independent piston pumps are volume controlled and pressure limited. Measurable pumping errors are corrected by a programmed supervisor module, which modifies the inserted or withdrawn volume. Pump independence also allows easy functional residual capacity modifications during ventilation. The bubble gas exchanger is divided into two sections such that the PFC exiting the lungs is not in contact with the PFC entering the lungs. The heating system is incorporated into the metallic base of the gas exchanger, and a heat-sink-type condenser is placed on top of the exchanger to retrieve PFC vapors. The prototype was tested on 5 healthy term newborn lambs (<5 days old). The results demonstrate the efficiency and safety of the prototype in maintaining adequate gas exchange, normal acido-basis equilibrium, and cardiovascular stability during a short, 2-hour total liquid ventilator. Airway pressure, lung volume, and ventilation scheme were maintained in the targeted range.

  5. Measurement of gas yields and flow rates using a custom flowmeter

    USGS Publications Warehouse

    Circone, S.; Kirby, S.H.; Pinkston, J.C.; Stern, L.A.

    2001-01-01

    A simple gas collection apparatus based on the principles of a Torricelli tube has been designed and built to measure gas volume yields and flow rates. This instrument is routinely used to monitor and collect methane gas released during methane hydrate dissociation experiments. It is easily and inexpensively built, operates at ambient pressures and temperatures, and measures gas volumes of up to 7 L to a precision of about 15 ml (about 0.0025 mol). It is capable of measuring gas flow rates varying from more than 103 to less than 10-1 ml/min during gas evolution events that span minutes to several days. We have obtained a highly reproducible hydrate number of n=5.891 with a propagated uncertainty of ??0.020 for synthetic methane hydrate. ?? 2001 American Institute of Physics.

  6. Perfluorocarbon-associated gas exchange in normal and acid-injured large sheep.

    PubMed

    Hernan, L J; Fuhrman, B P; Kaiser, R E; Penfil, S; Foley, C; Papo, M C; Leach, C L

    1996-03-01

    We hypothesized that a) perfluorocarbon-associated gas exchange could be accomplished in normal large sheep; b) the determinants of gas exchange would be similar during perfluorocarbon-associated gas exchange and conventional gas ventilation; c)in large animals with lung injury, perfluorocarbon-associated gas exchange could be used to enhance gas exchange without adverse effects on hemodynamics; and d) the large animal with lung injury could be supported with an FIO2 of <1.0 during perfluorocarbon-associated gas exchange. Prospective, observational animal study and prospective randomized, controlled animal study. An animal laboratory in a university setting. Thirty adult ewes. Five normal ewes (61.0 +/- 4.0 kg) underwent perfluorocarbon-associated gas exchange to ascertain the effects of tidal volume, end-inspiratory pressure, and positive end-expiratory pressure (PEEP) on oxygenation. Respiratory rate, tidal volume, and minute ventilation were studied to determine their effects on CO2 clearance. Sheep, weighing 58.9 +/- 8.3 kg, had lung injury induced by instilling 2 mL/kg of 0.05 Normal hydrochloric acid into the trachea. Five minutes after injury, PEEP was increased to 10 cm H2O. Ten minutes after injury, sheep with Pao2 values of <100 torr (<13.3 kPa) were randomized to continue gas ventilation (control, n=9) or to institute perfluorocarbon-associated gas exchange (n=9) by instilling 1.6 L of unoxygenated perflubron into the trachea and resuming gas ventilation. Blood gas and hemodynamic measurements were obtained throughout the 4-hr study. Both tidal volume and end-inspiratory pressure influenced oxygenation in normal sheep during perfluorocarbon-associated gas exchange. Minute ventilation determined CO2 clearance during perfluorocarbon-associated gas exchange in normal sheep. After acid aspiration lung injury, perfluorocarbon-associated gas exchange increased PaO2 and reduced intrapulmonary shunt fraction. Hypoxia and intrapulmonary shunting were unabated

  7. [Failure of static pulmonary volume measurements in mucoviscidosis].

    PubMed

    Haluszka, J; Zebrak, J

    1984-01-01

    With worsening of bronchial obstruction during the course of cystic fibrosis the functional residual capacity (CRF) measured by plethysmography increases progressively. The difference between values of CRF obtained by plethysmography or by Helium dilution increases even more. The difference between the two methods (for CRF) is supposed to show the volume of "trapped"' gas. A similar outcome, although less marked, is observed after physiotherapy. The extent of pulmonary distention and gas trapping is markedly overestimated by plethysmographic measurements, when one considers the anatomical and radiological anomalies. It was recently suggested that the rise in compliance of the walls of the extra-thoracic airways in the presence of bronchial obstruction may lead to an over-estimation of the pulmonary volumes measured by plethysmography. This may be the case during the course of mucoviscidosis, when repeated infections lead to a destruction of the bronchial walls. However, this anomaly does not explain this rise in CRF after mucolytic treatment and postural drainage. The CRF seems to reflect not only the volume of trapper gas in the lung, but equally the failure to equalize the interior pressures of the obstructed airways. In order to appreciate the effects of respiratory physiotherapy, different methods of measuring pulmonary volumes are necessary but the interpretation of the results take account of the complex meterology.

  8. Design and Uncertainty Analysis for a PVTt Gas Flow Standard

    PubMed Central

    Wright, John D.; Johnson, Aaron N.; Moldover, Michael R.

    2003-01-01

    A new pressure, volume, temperature, and, time (PVTt) primary gas flow standard at the National Institute of Standards and Technology has an expanded uncertainty (k = 2) of between 0.02 % and 0.05 %. The standard spans the flow range of 1 L/min to 2000 L/min using two collection tanks and two diverter valve systems. The standard measures flow by collecting gas in a tank of known volume during a measured time interval. We describe the significant and novel features of the standard and analyze its uncertainty. The gas collection tanks have a small diameter and are immersed in a uniform, stable, thermostatted water bath. The collected gas achieves thermal equilibrium rapidly and the uncertainty of the average gas temperature is only 7 mK (22 × 10−6 T). A novel operating method leads to essentially zero mass change in and very low uncertainty contributions from the inventory volume. Gravimetric and volume expansion techniques were used to determine the tank and the inventory volumes. Gravimetric determinations of collection tank volume made with nitrogen and argon agree with a standard deviation of 16 × 10−6 VT. The largest source of uncertainty in the flow measurement is drift of the pressure sensor over time, which contributes relative standard uncertainty of 60 × 10−6 to the determinations of the volumes of the collection tanks and to the flow measurements. Throughout the range 3 L/min to 110 L/min, flows were measured independently using the 34 L and the 677 L collection systems, and the two systems agreed within a relative difference of 150 × 10−6. Double diversions were used to evaluate the 677 L system over a range of 300 L/min to 1600 L/min, and the relative differences between single and double diversions were less than 75 × 10−6. PMID:27413592

  9. The RESOLVE Survey Atomic Gas Census and Environmental Influences on Galaxy Gas Reservoirs

    NASA Astrophysics Data System (ADS)

    Stark, David V.; Kannappan, Sheila J.; Eckert, Kathleen D.; Florez, Jonathan; Hall, Kirsten R.; Watson, Linda C.; Hoversten, Erik A.; Burchett, Joseph N.; Guynn, David T.; Baker, Ashley D.; Moffett, Amanda J.; Berlind, Andreas A.; Norris, Mark A.; Haynes, Martha P.; Giovanelli, Riccardo; Leroy, Adam K.; Pisano, D. J.; Wei, Lisa H.; Gonzalez, Roberto E.; Calderon, Victor F.

    2016-12-01

    We present the H I mass inventory for the REsolved Spectroscopy Of a Local VolumE (RESOLVE) survey, a volume-limited, multi-wavelength census of >1500 z = 0 galaxies spanning diverse environments and complete in baryonic mass down to dwarfs of ∼109 {M}ȯ . This first 21 cm data release provides robust detections or strong upper limits (1.4M H I < 5%–10% of stellar mass M *) for ∼94% of RESOLVE. We examine global atomic gas-to-stellar mass ratios (G/S) in relation to galaxy environment using several metrics: group dark matter halo mass M h, central/satellite designation, relative mass density of the cosmic web, and distance to the nearest massive group. We find that at fixed M *, satellites have decreasing G/S with increasing M h starting clearly at M h ∼ 1012 {M}ȯ , suggesting the presence of starvation and/or stripping mechanisms associated with halo gas heating in intermediate-mass groups. The analogous relationship for centrals is uncertain because halo abundance matching builds in relationships between central G/S, stellar mass, and halo mass, which depend on the integrated group property used as a proxy for halo mass (stellar or baryonic mass). On larger scales G/S trends are less sensitive to the abundance matching method. At fixed M h ≤ 1012 {M}ȯ , the fraction of gas-poor centrals increases with large-scale structure density. In overdense regions, we identify a rare population of gas-poor centrals in low-mass (M h < 1011.4 {M}ȯ ) halos primarily located within ∼1.5× the virial radius of more massive (M h > 1012 {M}ȯ ) halos, suggesting that gas stripping and/or starvation may be induced by interactions with larger halos or the surrounding cosmic web. We find that the detailed relationship between G/S and environment varies when we examine different subvolumes of RESOLVE independently, which we suggest may be a signature of assembly bias.

  10. Natural gas imports and exports. Fourth quarter report, 1998

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1998-12-31

    The Office of Natural Gas and Petroleum Import and Export Activities prepares quarterly reports summarizing the data provided by companies authorized to import or export natural gas. Companies are required, as a condition of their authorizations, to file quarterly reports. This report is for the fourth quarter of 1998 (October through December). Attachment A shows the percentage of takes to maximum firm contract levels and the weighted average per unit price for each of the long-term importers during the five most recent reporting quarters. Attachment B shows volumes and prices of gas purchased by long-term importers and exporters during themore » past 12 months. Attachment C shows volume and price information pertaining to gas imported on a short-term or spot market basis. Attachment D shows the gas exported on a short-term or spot market basis to Canada and Mexico.« less

  11. Natural gas imports and exports. Third quarter report 1997

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    This quarterly report, prepared by The Office of Natural Gas and Petroleum Import and Export Activities, summarizes the data provided by companies authorized to import or export natural gas. Numerical data are presented in four attachments, each of which is comprised of a series of tables. Attachment A shows the percentage of takes to maximum firm contract levels and the weighted average per unit price for each of the long-term importers during the five most recent calendar quarters. Volumes and prices of gas purchased by long-term importers and exporters during the past year are given in Attachment B. Attachment Cmore » shows volume and price information pertaining to gas imported on a short-term or spot market basis. Attachment D lists gas exported on a short-term or spot market basis to Canada and Mexico. Highlights of the report are very briefly summarized.« less

  12. Natural gas imports and exports. First quarter report, 1998

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    The Office of Natural Gas and Petroleum Import and Export Activities prepares quarterly reports summarizing the data provided by companies authorized to import or export natural gas. Companies are required, as a condition of their authorizations, to file quarterly reports. This report is for the first quarter of 1998 (January through March). Attachment A shows the percentage of takes to maximum firm contract levels and the weighted average per unit price for each of the long-term importers during the five most recent reporting quarters. Attachment B shows volumes and prices of gas purchased by long-term importers and exporters during themore » past 12 months. Attachment C shows volume and price information pertaining to gas imported on a short-term or spot market basis. Attachment D shows the gas exported on a short-term or spot market basis to Canada and Mexico.« less

  13. Method and apparatus for processing exhaust gas with corona discharge

    DOEpatents

    Barlow, S.E.; Orlando, T.M.; Tonkyn, R.G.

    1999-06-22

    The present invention is placing a catalyst coating upon surfaces surrounding a volume containing corona discharge. In addition, the electrodes are coated with a robust dielectric material. Further, the electrodes are arranged so that at least a surface portion of each electrode extends into a flow path of the exhaust gas to be treated and there is only exhaust gas in the volume between each pair of electrodes. 12 figs.

  14. Method and apparatus for processing exhaust gas with corona discharge

    DOEpatents

    Barlow, Stephan E.; Orlando, Thomas M.; Tonkyn, Russell G.

    1999-01-01

    The present invention is placing a catalyst coating upon surfaces surrounding a volume containing corona discharge. In addition, the electrodes are coated with a robust dielectric material. Further, the electrodes are arranged so that at least a surface portion of each electrode extends into a flow path of the exhaust gas to be treated and there is only exhaust gas in the volume between each pair of electrodes.

  15. Natural gas hydrates; vast resource, uncertain future

    USGS Publications Warehouse

    Collett, T.S.

    2001-01-01

    Gas hydrates are naturally occurring icelike solids in which water molecules trap gas molecules in a cagelike structure known as a clathrate. Although many gases form hydrates in nature, methane hydrate is by far the most common; methane is the most abundant natural gas. The volume of carbon contained in methane hydrates worldwide is estimated to be twice the amount contained in all fossil fuels on Earth, including coal.

  16. A CFD Analysis of Hydrogen Leakage During On-Pad Purge in the ORION/ARES I Shared Volume

    NASA Technical Reports Server (NTRS)

    Ajmani, Kumud; Edwards, Daryl A.

    2011-01-01

    A common open volume is created by the stacking of the Orion vehicle onto the Ares I Upper Stage. Called the Shared Volume, both vehicles contribute to its gas, fluid, and thermal environment. One of these environments is related to hazardous hydrogen gas. While both vehicles use inert purge gas to mitigate any hazardous gas buildup, there are concerns that hydrogen gas may still accumulate and that the Ares I Hazardous Gas Detection System will not be sufficient for monitoring the integrated volume. This Computational Fluid Dynamics (CFD) analysis has been performed to examine these topics. Results of the analysis conclude that the Ares I Hazardous Gas Detection System will be able to sample the vent effluent containing the highest hydrogen concentrations. A second conclusion is that hydrogen does not accumulate under the Orion Service Module (SM) avionics ring as diffusion and purge flow mixing sufficiently dilute the hydrogen to safe concentrations. Finally the hydrogen concentrations within the Orion SM engine nozzle may slightly exceed the 1 percent volume fraction when the entire worse case maximum full leak is directed vertically into the engine nozzle.

  17. US crude oil, natural gas, and natural gas liquids reserves 1996 annual report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1997-12-01

    The EIA annual reserves report series is the only source of comprehensive domestic proved reserves estimates. This publication is used by the Congress, Federal and State agencies, industry, and other interested parties to obtain accurate estimates of the Nation`s proved reserves of crude oil, natural gas, and natural gas liquids. These data are essential to the development, implementation, and evaluation of energy policy and legislation. This report presents estimates of proved reserves of crude oil, natural gas, and natural gas liquids as of December 31, 1996, as well as production volumes for the US and selected States and State subdivisionsmore » for the year 1996. Estimates are presented for the following four categories of natural gas: total gas (wet after lease separation), nonassociated gas and associated-dissolved gas (which are the two major types of wet natural gas), and total dry gas (wet gas adjusted for the removal of liquids at natural gas processing plants). In addition, reserve estimates for two types of natural gas liquids, lease condensate and natural gas plant liquids, are presented. Also included is information on indicated additional crude oil reserves and crude oil, natural gas, and lease condensate reserves in nonproducing reservoirs. A discussion of notable oil and gas exploration and development activities during 1996 is provided. 21 figs., 16 tabs.« less

  18. Gas Flow in the Capillary of the Atmosphere-to-Vacuum Interface of Mass Spectrometers

    NASA Astrophysics Data System (ADS)

    Skoblin, Michael; Chudinov, Alexey; Soulimenkov, Ilia; Brusov, Vladimir; Kozlovskiy, Viacheslav

    2017-10-01

    Numerical simulations of a gas flow through a capillary being a part of mass spectrometer atmospheric interface were performed using a detailed laminar flow model. The simulated interface consisted of atmospheric and forevacuum volumes connected via a thin capillary. The pressure in the forevacuum volume where the gas was expanding after passing through the capillary was varied in the wide range from 10 to 900 mbar in order to study the volume flow rate as well as the other flow parameters as functions of the pressure drop between the atmospheric and forevacuum volumes. The capillary wall temperature was varied in the range from 24 to 150 °C. Numerical integration of the complete system of Navier-Stokes equations for a viscous compressible gas taking into account the heat transfer was performed using the standard gas dynamic simulation software package ANSYS CFX. The simulation results were compared with experimental measurements of gas flow parameters both performed using our experimental setup and taken from the literature. The simulated volume flow rates through the capillary differed no more than by 10% from the measured ones over the entire pressure and temperatures ranges. A conclusion was drawn that the detailed digital laminar model is able to quantitatively describe the measured gas flow rates through the capillaries under conditions considered. [Figure not available: see fulltext.

  19. Gas Flow in the Capillary of the Atmosphere-to-Vacuum Interface of Mass Spectrometers.

    PubMed

    Skoblin, Michael; Chudinov, Alexey; Soulimenkov, Ilia; Brusov, Vladimir; Kozlovskiy, Viacheslav

    2017-10-01

    Numerical simulations of a gas flow through a capillary being a part of mass spectrometer atmospheric interface were performed using a detailed laminar flow model. The simulated interface consisted of atmospheric and forevacuum volumes connected via a thin capillary. The pressure in the forevacuum volume where the gas was expanding after passing through the capillary was varied in the wide range from 10 to 900 mbar in order to study the volume flow rate as well as the other flow parameters as functions of the pressure drop between the atmospheric and forevacuum volumes. The capillary wall temperature was varied in the range from 24 to 150 °C. Numerical integration of the complete system of Navier-Stokes equations for a viscous compressible gas taking into account the heat transfer was performed using the standard gas dynamic simulation software package ANSYS CFX. The simulation results were compared with experimental measurements of gas flow parameters both performed using our experimental setup and taken from the literature. The simulated volume flow rates through the capillary differed no more than by 10% from the measured ones over the entire pressure and temperatures ranges. A conclusion was drawn that the detailed digital laminar model is able to quantitatively describe the measured gas flow rates through the capillaries under conditions considered. Graphical Abstract ᅟ.

  20. Gas flow headspace liquid phase microextraction.

    PubMed

    Yang, Cui; Qiu, Jinxue; Ren, Chunyan; Piao, Xiangfan; Li, Xifeng; Wu, Xue; Li, Donghao

    2009-11-06

    There is a trend towards the use of enrichment techniques such as microextraction in the analysis of trace chemicals. Based on the theory of ideal gases, theory of gas chromatography and the original headspace liquid phase microextraction (HS-LPME) technique, a simple gas flow headspace liquid phase microextraction (GF-HS-LPME) technique has been developed, where the extracting gas phase volume is increased using a gas flow. The system is an open system, where an inert gas containing the target compounds flows continuously through a special gas outlet channel (D=1.8mm), and the target compounds are trapped on a solvent microdrop (2.4 microL) hanging on the microsyringe tip, as a result, a high enrichment factor is obtained. The parameters affecting the enrichment factor, such as the gas flow rate, the position of the microdrop, the diameter of the gas outlet channel, the temperatures of the extracting solvent and of the sample, and the extraction time, were systematically optimized for four types of polycyclic aromatic hydrocarbons. The results were compared with results obtained from HS-LPME. Under the optimized conditions (where the extraction time and the volume of the extracting sample vial were fixed at 20min and 10mL, respectively), detection limits (S/N=3) were approximately a factor of 4 lower than those for the original HS-LPME technique. The method was validated by comparison of the GF-HS-LPME and HS-LPME techniques using data for PAHs from environmental sediment samples.

  1. Assessment of potential additions to conventional oil and gas resources of the world (outside the United States) from reserve growth, 2012

    USGS Publications Warehouse

    Klett, Timothy R.; Cook, Troy A.; Charpentier, Ronald R.; Tennyson, Marilyn E.; Attanasi, E.D.; Freeman, Phil A.; Ryder, Robert T.; Gautier, Donald L.; Verma, Mahendra K.; Le, Phuong A.; Schenk, Christopher J.

    2012-01-01

    The U.S. Geological Survey estimated volumes of technically recoverable, conventional petroleum resources resulting from reserve growth for discovered fields outside the United States that have reported in-place oil and gas volumes of 500 million barrels of oil equivalent or greater. The mean volumes were estimated at 665 billion barrels of crude oil, 1,429 trillion cubic feet of natural gas, and 16 billion barrels of natural gas liquids. These volumes constitute a significant portion of the world's oil and gas resources.

  2. Effect of ambient pressure variation on closed loop gas system for India based Neutrino Observatory (INO)

    NASA Astrophysics Data System (ADS)

    Satyanarayana, B.; Majumder, G.; Mondal, N. K.; Kalmani, S. D.; Shinde, R. R.; Joshi, A.

    2014-10-01

    Pilot unit of a closed loop gas mixing and distribution system for the INO project was designed and is being operated with 1.8meters × 1.9meters RPCs for about two years. A number of studies on controlling the flow and optimisation of the gas mixture through the RPC stack were carried out during this period. The gas system essentially measures and attempts to maintain absolute pressure inside the RPC gas volume. During typical Mumbai monsoon seasons, the barometric pressure changes rather rapidly, due to which the gas system fails to maintain the set differential pressure between the ambience and the RPC gas volume. As the safety bubblers on the RPC gas input lines are set to work on fixed pressure differentials, the ambient pressure changes lead to either venting out and thus wasting gas through safety bubblers or over pressuring the RPCs gas volume and thus degrading its performance. The above problem also leads to gas mixture contamination through minute leaks in gas gap. The problem stated above was solved by including the ambient barometric pressure as an input parameter in the closed loop. Using this, it is now possible to maintain any set differential pressure between the ambience and RPC gas volumes between 0 to 20mm of water column, thus always ensuring a positive pressure inside the RPC gas volume with respect to the ambience. This has resulted in improved performance of the gas system by maintaining the constant gas flow and reducing the gas toping up frequency. In this paper, we will highlight the design features and improvements of the closed loop gas system. We will present some of the performance studies and considerations for scaling up the system to be used with the engineering module and then followed by Iron Calorimeter detector (ICAL), which is designed to deploy about 30,000 RPCs of 1.8meters × 1.9 meters in area.

  3. Purge gas protected transportable pressurized fuel cell modules and their operation in a power plant

    DOEpatents

    Zafred, P.R.; Dederer, J.T.; Gillett, J.E.; Basel, R.A.; Antenucci, A.B.

    1996-11-12

    A fuel cell generator apparatus and method of its operation involves: passing pressurized oxidant gas and pressurized fuel gas into modules containing fuel cells, where the modules are each enclosed by a module housing surrounded by an axially elongated pressure vessel, and where there is a purge gas volume between the module housing and pressure vessel; passing pressurized purge gas through the purge gas volume to dilute any unreacted fuel gas from the modules; and passing exhaust gas and circulated purge gas and any unreacted fuel gas out of the pressure vessel; where the fuel cell generator apparatus is transportable when the pressure vessel is horizontally disposed, providing a low center of gravity. 11 figs.

  4. Measuring Compartment Size and Gas Solubility in Marine Mammals

    DTIC Science & Technology

    2014-09-30

    analyzed by gas chromatography . Injection of the sample into the gas chromatograph is done using a sample loop to minimize volume injection error. We...1 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Measuring Compartment Size and Gas Solubility in Marine...study is to develop methods to estimate marine mammal tissue compartment sizes, and tissue gas solubility. We aim to improve the data available for

  5. Photoswitchable gas permeation membranes based on azobenzene-doped liquid crystals II. Permeation-switching characterization under variable volume and variable pressure conditions

    NASA Astrophysics Data System (ADS)

    Glowacki, E.; Hunt, K.; Abud, D.; Marshall, K. L.

    2010-08-01

    Stimuli-responsive gas permeation membranes hold substantial potential for industrial processes as well as in analytical and screening applications. Such "smart" membrane systems, although prevalent in liquid mass-transfer manipulations, have yet to be realized for gas applications. We report our progress in developing gas permeation membranes in which liquid crystalline (LC) phases afford the active region of permeation. To achieve rapid and reversible switching between LC and isotropic permeation states, we harnessed the photomechanical action of mesogenic azobenzene dyes that can produce isothermal nematic-isotropic transitions. Both polymeric and low-molecular-weight LC materials were tested. Three different dye-doped LC mixtures with mesogenic azo dyes were infused into commercially available track-etched porous membranes with regular cylindrical pores (0.4 to 10.0 μm). Photoinduced isothermal phase changes in the imbibed material produced large and fully reversible changes in the permeability of the membrane to nitrogen with 5 s of irradiation at 2 mW/cm2. Using two measurement tools constructed in-house, the permeability of the photoswitched membranes was determined by both variable-pressure and variable-volume methods. Both the LC and photogenerated isotropic states demonstrate a linear permeability/pressure (ideal sorption) relationship, with up to a 16-fold difference in their permeability coefficients. Liquid crystal compositions can be chosen such that the LC phase is more permeable than the isotropic-or vice versa. This approach is the first system offering reversible tunable gas permeation membranes.

  6. Flowing gas, non-nuclear experiments on the gas core reactor

    NASA Technical Reports Server (NTRS)

    Kunze, J. F.; Suckling, D. H.; Copper, C. G.

    1972-01-01

    Flow tests were conducted on models of the gas core (cavity) reactor. Variations in cavity wall and injection configurations were aimed at establishing flow patterns that give a maximum of the nuclear criticality eigenvalue. Correlation with the nuclear effect was made using multigroup diffusion theory normalized by previous benchmark critical experiments. Air was used to simulate the hydrogen propellant in the flow tests, and smoked air, argon, or freon to simulate the central nuclear fuel gas. All tests were run in the down-firing direction so that gravitational effects simulated the acceleration effect of a rocket. Results show that acceptable flow patterns with high volume fraction for the simulated nuclear fuel gas and high flow rate ratios of propellant to fuel can be obtained. Using a point injector for the fuel, good flow patterns are obtained by directing the outer gas at high velocity along the cavity wall, using louvered or oblique-angle-honeycomb injection schemes.

  7. 75 FR 73073 - Washington Gas Light Company; Notice of Filing

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-29

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. PR11-74-000] Washington Gas Light Company; Notice of Filing November 18, 2010. Take notice that on November 15, 2010, Washington Gas Light Company (Washington Gas) filed its annual actual lost and unaccounted for volumes (LAUF...

  8. Low current plasmatron fuel converter having enlarged volume discharges

    DOEpatents

    Rabinovich, Alexander; Alexeev, Nikolai; Bromberg, Leslie; Cohn, Daniel R.; Samokhin, Andrei

    2005-04-19

    A novel apparatus and method is disclosed for a plasmatron fuel converter (""plasmatron"") that efficiently uses electrical energy to produce hydrogen rich gas. The volume and shape of the plasma discharge is controlled by a fluid flow established in a plasma discharge volume. A plasmatron according to this invention produces a substantially large effective plasma discharge volume allowing for substantially greater volumetric efficiency in the initiation of chemical reactions within a volume of bulk fluid reactant flowing through the plasmatron.

  9. Low current plasmatron fuel converter having enlarged volume discharges

    DOEpatents

    Rabinovich, Alexander [Swampscott, MA; Alexeev, Nikolai [Moscow, RU; Bromberg, Leslie [Sharon, MA; Cohn, Daniel R [Chestnut Hill, MA; Samokhin, Andrei [Moscow, RU

    2009-10-06

    A novel apparatus and method is disclosed for a plasmatron fuel converter ("plasmatron") that efficiently uses electrical energy to produce hydrogen rich gas. The volume and shape of the plasma discharge is controlled by a fluid flow established in a plasma discharge volume. A plasmatron according to this invention produces a substantially large effective plasma discharge volume allowing for substantially greater volumetric efficiency in the initiation of chemical reactions within a volume of bulk fluid reactant flowing through the plasmatron.

  10. Gas vesicles.

    PubMed Central

    Walsby, A E

    1994-01-01

    The gas vesicle is a hollow structure made of protein. It usually has the form of a cylindrical tube closed by conical end caps. Gas vesicles occur in five phyla of the Bacteria and two groups of the Archaea, but they are mostly restricted to planktonic microorganisms, in which they provide buoyancy. By regulating their relative gas vesicle content aquatic microbes are able to perform vertical migrations. In slowly growing organisms such movements are made more efficiently than by swimming with flagella. The gas vesicle is impermeable to liquid water, but it is highly permeable to gases and is normally filled with air. It is a rigid structure of low compressibility, but it collapses flat under a certain critical pressure and buoyancy is then lost. Gas vesicles in different organisms vary in width, from 45 to > 200 nm; in accordance with engineering principles the narrower ones are stronger (have higher critical pressures) than wide ones, but they contain less gas space per wall volume and are therefore less efficient at providing buoyancy. A survey of gas-vacuolate cyanobacteria reveals that there has been natural selection for gas vesicles of the maximum width permitted by the pressure encountered in the natural environment, which is mainly determined by cell turgor pressure and water depth. Gas vesicle width is genetically determined, perhaps through the amino acid sequence of one of the constituent proteins. Up to 14 genes have been implicated in gas vesicle production, but so far the products of only two have been shown to be present in the gas vesicle: GvpA makes the ribs that form the structure, and GvpC binds to the outside of the ribs and stiffens the structure against collapse. The evolution of the gas vesicle is discussed in relation to the homologies of these proteins. Images PMID:8177173

  11. Natural gas monthly, September 1990. [Contains Glossary

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1990-11-30

    This report highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. 7 figs., 33 tabs.

  12. Reproducibility of the Helium-3 Constant-Volume Gas Thermometry and New Data Down to 1.9 K at NMIJ/AIST

    NASA Astrophysics Data System (ADS)

    Nakano, Tohru; Shimazaki, Takeshi; Tamura, Osamu

    2017-07-01

    This study confirms reproducibility of the International Temperature Scale of 1990 (ITS-90) realized by interpolation using the constant-volume gas thermometer (CVGT) of National Metrology Institute of Japan (NMIJ)/AIST with 3He as the working gas from 3 K to 24.5561 K by comparing the newly obtained results and those of earlier reports, indicating that the CVGT has retained its capability after renovation undertaken since strong earthquakes struck Japan. The thermodynamic temperature T is also obtained using the single-isotherm fit to four working gas densities (127 mol\\cdot m^{-3}, 145 mol\\cdot m^{-3}, 171 mol\\cdot m^{-3} and 278 mol\\cdot m^{-3}) down to 1.9 K, using the triple point temperature of Ne as a reference temperature. In this study, only the second virial coefficient is taken into account for the single-isotherm fit. Differences between T and the ITS-90 temperature, T-T_{90}, reported in earlier works down to 3 K were confirmed in this study. At the temperatures below 3 K down to 2.5 K, T-T_{90} is much smaller than the standard combined uncertainty of thermodynamic temperature measurement. However, T- T_{90} seems to increase with decreasing temperature below 2.5 K down to 1.9 K, although still within the standard combined uncertainty of thermodynamic temperature measurement. In this study, T is obtained also from the CVGT with a single gas density of 278 mol\\cdot m^{-3} using the triple-point temperature of Ne as a reference temperature by making correction for the deviation from the ideal gas using theoretical values of the second and third virial coefficients down to 2.6 K, which is the lowest temperature of the theoretical values of the third virial coefficient. T values obtained using this method agree well with those obtained from the single-isotherm fit. We also found that the second virial coefficient obtained by the single-isotherm fit to experimental results agrees well with that obtained by the single-isotherm fit to the theoretically

  13. An Introduction to the Gas Phase

    NASA Astrophysics Data System (ADS)

    Vallance, Claire

    2017-11-01

    'An Introduction to the Gas Phase' is adapted from a set of lecture notes for a core first year lecture course in physical chemistry taught at the University of Oxford. The book is intended to give a relatively concise introduction to the gas phase at a level suitable for any undergraduate scientist. After defining the gas phase, properties of gases such as temperature, pressure, and volume are discussed. The relationships between these properties are explained at a molecular level, and simple models are introduced that allow the various gas laws to be derived from first principles. Finally, the collisional behaviour of gases is used to explain a number of gas-phase phenomena, such as effusion, diffusion, and thermal conductivity.

  14. Well-balanced Arbitrary-Lagrangian-Eulerian finite volume schemes on moving nonconforming meshes for the Euler equations of gas dynamics with gravity

    NASA Astrophysics Data System (ADS)

    Gaburro, Elena; Castro, Manuel J.; Dumbser, Michael

    2018-06-01

    In this work, we present a novel second-order accurate well-balanced arbitrary Lagrangian-Eulerian (ALE) finite volume scheme on moving nonconforming meshes for the Euler equations of compressible gas dynamics with gravity in cylindrical coordinates. The main feature of the proposed algorithm is the capability of preserving many of the physical properties of the system exactly also on the discrete level: besides being conservative for mass, momentum and total energy, also any known steady equilibrium between pressure gradient, centrifugal force, and gravity force can be exactly maintained up to machine precision. Perturbations around such equilibrium solutions are resolved with high accuracy and with minimal dissipation on moving contact discontinuities even for very long computational times. This is achieved by the novel combination of well-balanced path-conservative finite volume schemes, which are expressly designed to deal with source terms written via non-conservative products, with ALE schemes on moving grids, which exhibit only very little numerical dissipation on moving contact waves. In particular, we have formulated a new HLL-type and a novel Osher-type flux that are both able to guarantee the well balancing in a gas cloud rotating around a central object. Moreover, to maintain a high level of quality of the moving mesh, we have adopted a nonconforming treatment of the sliding interfaces that appear due to the differential rotation. A large set of numerical tests has been carried out in order to check the accuracy of the method close and far away from the equilibrium, both, in one- and two-space dimensions.

  15. Purge gas protected transportable pressurized fuel cell modules and their operation in a power plant

    DOEpatents

    Zafred, Paolo R.; Dederer, Jeffrey T.; Gillett, James E.; Basel, Richard A.; Antenucci, Annette B.

    1996-01-01

    A fuel cell generator apparatus and method of its operation involves: passing pressurized oxidant gas, (O) and pressurized fuel gas, (F), into fuel cell modules, (10 and 12), containing fuel cells, where the modules are each enclosed by a module housing (18), surrounded by an axially elongated pressure vessel (64), where there is a purge gas volume, (62), between the module housing and pressure vessel; passing pressurized purge gas, (P), through the purge gas volume, (62), to dilute any unreacted fuel gas from the modules; and passing exhaust gas, (82), and circulated purge gas and any unreacted fuel gas out of the pressure vessel; where the fuel cell generator apparatus is transpatable when the pressure vessel (64) is horizontally disposed, providing a low center of gravity.

  16. Fulminant massive gas gangrene caused by Clostridium perfringens.

    PubMed

    Kuroda, Shoji; Okada, Yumi; Mita, Masaki; Okamoto, Yasuo; Kato, Hirotaka; Ueyama, Shigemitsu; Fujii, Ikuzo; Morita, Sumiharu; Yoshida, Yasuaki

    2005-05-01

    Clostridium perfringens (C.P) gas gangrene is one of the most fulminant infectious diseases. We encountered fulminant massive gas gangrene in a 56- year-old man with alcoholic liver cirrhosis. The patient died 14 hours after diagnosis of gas gangrene (54 hours after admission). Dramatic changes in abdominal CT imaging revealed development of a massive volume of gas in the intra-portal vein, retroperitoneum and abdominal subcutaneous tissue within 24 hours. We also proved C.P infection by immunohistological staining, leading to a diagnosis of C.P gas gangrene.

  17. Noble Gas Leak Detector for Use in the SNS Neutron Electric Dipole Moment Experiment

    NASA Astrophysics Data System (ADS)

    Barrow, Chad; Huffman, Paul; Leung, Kent; Korobkina, Ekaterina; White, Christian; nEDM Collaboration Collaboration

    2017-09-01

    Common practice for leak-checking high vacuum systems uses helium as the probing gas. However, helium may permeate some materials at room temperature, making leak characterization difficult. The experiment to find a permanent electric dipole moment of the neutron (nEDM), to be conducted at Oak Ridge National Laboratories, will employ a large volume of liquid helium housed by such a helium-permeable composite material. It is desirable to construct a leak detector that can employ alternative test gases. The purpose of this experiment is to create a leak detector that can quantify the argon gas flux in a high vacuum environment and interpret this flux as a leak-rate. This apparatus will be used to check the nEDM volumes for leaks at room temperature before cooling down to cryogenic temperatures. Our leak detector uses a residual gas analyzer and a vacuum pumping station to characterize the gas present in an evacuated volume. The introduction of argon gas into the system is interpreted as a leak-rate into the volume. The device has been calibrated with NIST certified calibrated leaks and the machine's sensitivity has been calculated using background gas analysis. As a result of the device construction and software programming, we are able to leak-check composite and polyamide volumes This work was supported in part by the US Department of Energy under Grant No. DE-FG02-97ER41042.

  18. ρ-VOF: An interface sharpening method for gas-liquid flow simulation

    NASA Astrophysics Data System (ADS)

    Wang, Jiantao; Liu, Gang; Jiang, Xiong; Mou, Bin

    2018-05-01

    The study on simulation of compressible gas-liquid flow remains open. Popular methods are either confined to incompressible flow regime, or inevitably induce smear of the free interface. A new finite volume method for compressible two-phase flow simulation is contributed for this subject. First, the “heterogeneous equilibrium” assumption is introduced to the control volume, by hiring free interface reconstruction technology, the distribution of each component in the control volume is achieved. Next, AUSM+-up (advection upstream splitting method) scheme is employed to calculate the convective fluxes and pressure fluxes, with the contact discontinuity characteristic considered, followed by the update of the whole flow field. The new method features on density-based pattern and interface reconstruction technology from VOF (volume of fluid), thus we name it “ρ-VOF method”. Inherited from AUSM families and VOF, ρ-VOF behaves as an all-speed method, capable of simulating shock in gas-liquid flow, and preserving the sharpness of the free interface. Gas-liquid shock tube is simulated to evaluate the method, from which good agreement is obtained between the predicted results and those of the cited literature, meanwhile, sharper free interface is identified. Finally, the capability and validity of ρ-VOF method can be concluded in compressible gas-liquid flow simulation.

  19. Further development and testing of the metabolic gas analyzer

    NASA Technical Reports Server (NTRS)

    1973-01-01

    Continued development of a metabolic monitor utilizing a mass spectrometer and digital computer to perform measurements and data reduction, is reported. The device prints-out breath-by-breath values for 02 consumption, C02 production, minute volume and tidal volume. The flow is measured by introduction of a tracer gas to the expired gas stream. Design modifications to reduce pressure drop in the flow splitter to one inch of water at 600 liters/min flow and to extend the range of linear flow measurement to 1000 liters/min are discussed.

  20. The Formula Design and Performance Study of Gas Generators based on 5-Aminotetrazole

    NASA Astrophysics Data System (ADS)

    Han, Z. Y.; Zhang, Y. P.; Du, Z. M.; Li, Z. Y.; Yao, Q.; Yang, Y. Z.

    2018-01-01

    Up to now, the research studies about 5-aminotetrazole (5-AT) gas generators are still not complete. In this work, ten gas generators based on 5-AT with different ordinary oxidants were designed. At the same time, ten gas generators based on azodicarbonamide (ADC), a current gas-generating material, were also designed, which serves as a contrast to formulas of 5-AT. The oxidants of all formulas are the same in proportion. The specific volume, gas production rate, and combustion temperature of these gas generators were measured and calculated. In conclusion, 5-AT/KClO4/Fe2O3/MnO2 formula has high specific volume, acceptable combustion temperature (1466.07 K), and large gas production (maximum pressures can reach 1.79 MPa). It is a kind of gas generator with potential value of development such as using in inflating airbags of automobiles.

  1. Zero dead volume tube to surface seal

    DOEpatents

    Benett, William J.; Folta, James A.

    2000-01-01

    A method and apparatus for connecting a tube to a surface that creates a dead volume seal. The apparatus is composed of three components, a body, a ferrule, and a threaded fitting. The ferrule is compressed onto a tube and a seal is formed between the tube and a device retained in the body by threading the fitting into the body which provides pressure that seals the face of the ferrule to a mating surface on the device. This seal can be used at elevated temperatures depending on the materials used. While the invention has been developed for use with micro-machined silicon wafers used in Capillary Gas Chromatograph (GC), it can be utilized anywhere for making a gas or fluid face seal to the surface of a device that has near zero dead volume.

  2. Degassing, gas retention and release in Fe(0) permeable reactive barriers.

    PubMed

    Ruhl, Aki S; Jekel, Martin

    2014-04-01

    Corrosion of Fe(0) has been successfully utilized for the reductive treatment of multiple contaminants. Under anaerobic conditions, concurrent corrosion leads to the generation of hydrogen and its liberation as a gas. Gas bubbles are mobile or trapped within the irregular pore structure leading to a reduction of the water filled pore volume and thus decreased residence time and permeability (gas clogging). With regard to the contaminant transport to the reactive site, the estimation of surface properties of the reactive material indicated that individual gas bubbles only occupied minor contact areas of the reactive surface. Quantification of gas entrapment by both gravimetrical and tracer investigations revealed that development of preferential flow paths was not significant. A novel continuous gravimetrical method was implemented to record variations in gas entrapment and gas bubble releases from the reactive filling. Variation of grain size fractions revealed that the pore geometry had a significant impact on gas release. Large pores led to the release of comparably large gas amounts while smaller volumes were released from finer pores with a higher frequency. Relevant processes are explained with a simplified pictorial sequence that incorporates relevant mechanisms. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Computed tomography assessment of intestinal gas volumes in functional gastrointestinal disorders.

    PubMed

    Mc Williams, Sebastian R; Mc Laughlin, Patrick D; O'Connor, Owen J; Desmond, Alan N; Ní Laoíre, Aine; Shanahan, Fergus; Quigley, Eamonn Mm; Maher, Michael M

    2012-10-01

    Many patients with functional gastrointestinal disorders (FGIDs) rank sensations of bloating and distension among their most debilitating symptoms. Previous studies that have examined intestinal gas volume (IGV) in patients with FGIDs have employed a variety of invasive and imaging techniques. These studies are limited by small numbers and have shown conflicting results. The aim of our study was to estimate, using CT of the abdomen and pelvis (CTAP), IGV in patients attending FGID clinic and to compare IGV in patients with and without FGID. All CTAP (n = 312) performed on patients (n = 207) attending a specialized FGID clinic over 10-year period were included in this study. Patients were classified into one of 3 groups according to the established clinical grading system, as organic gastrointestinal disorder (OGID, ie, patients with an organic non-functional disorder, n = 84), FGID (n = 36) or organic and functional gastrointestinal disorder (OFGID, ie, patients with an organic and a functional disorder, n = 87). Two independent readers blinded to the diagnostic group calculated IGV using threshold based 3D region growing with OsiriX. Median IGVs for the FGID, OGID, and OFGID groups were 197.6, 220.6 and 155.0 mL, respectively. Stepwise linear regression revealed age at study, gender, and calculated body mass index to predict the log IGV with an r(2) of 0.116, and P < 0.001. There was a significant positive correlation between age and IGV in OGID (Spearman's = 0.253, P = 0.02) but this correlation was non-significant in the other groups. Although bloating is a classic symptom in FGID patients, IGV may not be increased compared with OGID and OFGID patients.

  4. Massive Fermi gas in the expanding universe

    NASA Astrophysics Data System (ADS)

    Trautner, Andreas

    2017-03-01

    The behavior of a decoupled ideal Fermi gas in a homogeneously expanding three-dimensional volume is investigated, starting from an equilibrium spectrum. In case the gas is massless and/or completely degenerate, the spectrum of the gas can be described by an effective temperature and/or an effective chemical potential, both of which scale down with the volume expansion. In contrast, the spectrum of a decoupled massive and non-degenerate gas can only be described by an effective temperature if there are strong enough self-interactions such as to maintain an equilibrium distribution. Assuming perpetual equilibration, we study a decoupled gas which is relativistic at decoupling and then is red-shifted until it becomes non-relativistic. We find expressions for the effective temperature and effective chemical potential which allow us to calculate the final spectrum for arbitrary initial conditions. This calculation is enabled by a new expansion of the Fermi-Dirac integral, which is for our purpose superior to the well-known Sommerfeld expansion. We also compute the behavior of the phase space density under expansion and compare it to the case of real temperature and real chemical potential. Using our results for the degenerate case, we also obtain the mean relic velocity of the recently proposed non-thermal cosmic neutrino background.

  5. Purging of a multilayer insulation with dacron tuft spacer by gas diffusion

    NASA Technical Reports Server (NTRS)

    Sumner, I. E.; Fisk, W. J.

    1976-01-01

    The time and purge gas usage required to purge a multilayer insulation (MLI) panel with gaseous helium by means of gas diffusion to obtain a condensable gas (nitrogen) concentration of less than 1 percent within the panel are stipulated. Two different, flat, rectangular MLI panels, one incorporating a butt joint, were constructed of of 11 double-aluminized Mylar (DAM) radiation shields separated by Dacron tuft spacers. The DAM/Dacron tuft concept is known commercially as Superfloc. The nitrogen gas concentration as a function of time within the MLI panel could be adequately predicted by using a simple, one dimensional gas diffusion model in which the boundary conditions at the edge of the MLI panel were time dependent. The time and purge gas usage required to achieve 1 percent nitrogen gas concentration within the MLI panel varied from 208 to 86 minutes and 34.1 to 56.5 MLI panel purge volumes, respectively, for gaseous helium purge rates from 10 to 40 MLI panel volumes per hour.

  6. Design of pellet surface grooves for fission gas plenum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carter, T.J.; Jones, L.R.; Macici, N.

    1986-01-01

    In the Canada deuterium uranium pressurized heavy water reactor, short (50-cm) Zircaloy-4 clad bundles are fueled on-power. Although internal void volume within the fuel rods is adequate for the present once-through natural uranium cycle, the authors have investigated methods for increasing the internal gas storage volume needed in high-power, high-burnup, experimental ceramic fuels. This present work sought to prove the methodology for design of gas storage volume within the fuel pellets - specifically the use of grooves pressed or machined into the relatively cool pellet/cladding interface. Preanalysis and design of pellet groove shape and volume was accomplished using the TRUMPmore » heat transfer code. Postirradiation examination (PIE) was used to check the initial design and heat transfer assumptions. Fission gas release was found to be higher for the grooved pellet rods than for the comparison rods with hollow or unmodified pellets. This had been expected from the initial TRUMP thermal analyses. The ELESIM fuel modeling code was used to check in-reactor performance, but some modifications were necessary to accommodate the loss of heat transfer surface to the grooves. It was concluded that for plenum design purposes, circumferential pellet grooves could be adequately modeled by the codes TRUMP and ELESIM.« less

  7. Current trends in Natural Gas Flaring Observed from Space with VIIRS

    NASA Astrophysics Data System (ADS)

    Zhizhin, M. N.; Elvidge, C.; Baugh, K.

    2017-12-01

    The five-year survey of natural gas flaring in 2012-2016 has been completed with nighttime Visible Infrared Imaging Radiometer Suite (VIIRS) data. The survey identifies flaring site locations, annual duty cycle, and provides an estimate of the flared gas volumes in methane equivalents. VIIRS is particularly well-.suited for detecting and measuring the radiant emissions from gas flares through the collection of shortwave and near-infrared data at night, recording the peak radiant emissions from flares. The total flared gas volume is estimated at 140 +/-30 billion cubic meters (BCM) per year, corresponding to 3.5% of global natural gas production. While Russia leads in terms of flared gas volume (>20 BCM), the U.S. has the largest number of flares (8,199 of 19,057 worldwide). The two countries have opposite trends in flaring: while for the U.S. the peak was reached in 2015, for Russia it was the minimum. On the regional scale in the U.S., Texas has the maximum number of flares (3749), with North Dakota, the second highest, having one half of this number (2,003). The number of flares for most of the states has decreased in the last 3 years following the trend in oil prices. The presentation will compare the global estimates, and regional trends observed in the U.S. regions. Preliminary estimates for global gas flaring in 2017 will be presented

  8. Lung volumes: measurement, clinical use, and coding.

    PubMed

    Flesch, Judd D; Dine, C Jessica

    2012-08-01

    Measurement of lung volumes is an integral part of complete pulmonary function testing. Some lung volumes can be measured during spirometry; however, measurement of the residual volume (RV), functional residual capacity (FRC), and total lung capacity (TLC) requires special techniques. FRC is typically measured by one of three methods. Body plethysmography uses Boyle's Law to determine lung volumes, whereas inert gas dilution and nitrogen washout use dilution properties of gases. After determination of FRC, expiratory reserve volume and inspiratory vital capacity are measured, which allows the calculation of the RV and TLC. Lung volumes are commonly used for the diagnosis of restriction. In obstructive lung disease, they are used to assess for hyperinflation. Changes in lung volumes can also be seen in a number of other clinical conditions. Reimbursement for measurement of lung volumes requires knowledge of current procedural terminology (CPT) codes, relevant indications, and an appropriate level of physician supervision. Because of recent efforts to eliminate payment inefficiencies, the 10 previous CPT codes for lung volumes, airway resistance, and diffusing capacity have been bundled into four new CPT codes.

  9. A bubble-based microfluidic gas sensor for gas chromatographs.

    PubMed

    Bulbul, Ashrafuzzaman; Kim, Hanseup

    2015-01-07

    We report a new proof-of-concept bubble-based gas sensor for a gas chromatography system, which utilizes the unique relationship between the diameters of the produced bubbles with the gas types and mixture ratios as a sensing element. The bubble-based gas sensor consists of gas and liquid channels as well as a nozzle to produce gas bubbles through a micro-structure. It utilizes custom-developed software and an optical camera to statistically analyze the diameters of the produced bubbles in flow. The fabricated gas sensor showed that five types of gases (CO2, He, H2, N2, and CH4) produced (1) unique volumes of 0.44, 0.74, 1.03, 1.28, and 1.42 nL (0%, 68%, 134%, 191%, and 223% higher than that of CO2) and (2) characteristic linear expansion coefficients (slope) of 1.38, 2.93, 3.45, 5.06, and 5.44 nL/(kPa (μL s(-1))(-1)). The gas sensor also demonstrated that (3) different gas mixture ratios of CO2 : N2 (100 : 0, 80 : 20, 50 : 50, 20 : 80 and 0 : 100) generated characteristic bubble diameters of 48.95, 77.99, 71.00, 78.53 and 99.50 μm, resulting in a linear coefficient of 10.26 μm (μL s(-1))(-1). It (4) successfully identified an injection (0.01 μL) of pentane (C5) into a continuous carrier gas stream of helium (He) by monitoring bubble diameters and creating a chromatogram and demonstrated (5) the output stability within only 5.60% variation in 67 tests over a month.

  10. 30 CFR 206.152 - Valuation standards-unprocessed gas.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    .... Use the same value for volumes that exceed the over-delivery tolerances even if those volumes are... the value to be determined on the basis of a percentage of the purchaser's proceeds resulting from... section. (2) The value of production, for royalty purposes, of gas subject to this subpart shall be the...

  11. 46 CFR 154.1350 - Flammable gas detection system.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... flammable gas concentration over the concentration or volume ranges under paragraph (t) or (u) of this... a cargo concentration that is 30% or less of the lower flammable limit in air of the cargo carried... the space where the gas detection system's readout is located and must meet § 154.1365. (h) Remote...

  12. Reservoir model for Hillsboro gas storage field management

    USGS Publications Warehouse

    Udegbunam, Emmanuel O.; Kemppainen, Curt; Morgan, Jim; ,

    1995-01-01

    A 3-dimensional reservoir model is used to understand the behavior of the Hillsboro Gas Storage Field and to investigate the field's performance under various future development. Twenty-two years of the gas storage reservoir history, comprising the initial gas bubble development and seasonal gas injection and production cycles, are examined with a full-field, gas water, reservoir simulation model. The results suggest that the gas-water front is already in the vicinity of the west observation well that increasing the field's total gas-in-place volume would cause gas to migrate beyond the east, north and west observation well. They also suggest that storage enlargement through gas injection into the lower layers may not prevent gas migration. Moreover, the results suggest that the addition of strategically-located new wells would boost the simulated gas deliverabilities.

  13. Membranes with artificial free-volume for biofuel production

    NASA Astrophysics Data System (ADS)

    Petzetakis, Nikos; Doherty, Cara M.; Thornton, Aaron W.; Chen, X. Chelsea; Cotanda, Pepa; Hill, Anita J.; Balsara, Nitash P.

    2015-06-01

    Free-volume of polymers governs transport of penetrants through polymeric films. Control over free-volume is thus important for the development of better membranes for a wide variety of applications such as gas separations, pharmaceutical purifications and energy storage. To date, methodologies used to create materials with different amounts of free-volume are based primarily on chemical synthesis of new polymers. Here we report a simple methodology for generating free-volume based on the self-assembly of polyethylene-b-polydimethylsiloxane-b-polyethylene triblock copolymers. We have used this method to fabricate a series of membranes with identical compositions but with different amounts of free-volume. We use the term artificial free-volume to refer to the additional free-volume created by self-assembly. The effect of artificial free-volume on selective transport through the membranes was tested using butanol/water and ethanol/water mixtures due to their importance in biofuel production. We found that the introduction of artificial free-volume improves both alcohol permeability and selectivity.

  14. Preconcentrator with high volume chiller for high vapor pressure particle detection

    DOEpatents

    Linker, Kevin L

    2013-10-22

    Apparatus and method for collecting particles of both high and low vapor pressure target materials entrained in a large volume sample gas stream. Large volume active cooling provides a cold air supply which is mixed with the sample gas stream to reduce the vapor pressure of the particles. In embodiments, a chiller cools air from ambient conditions to 0-15.degree. C. with the volumetric flow rate of the cold air supply being at least equal to the volumetric flow rate of the sample gas stream. In further embodiments an adsorption media is heated in at least two stages, a first of which is below a threshold temperature at which decomposition products of the high vapor pressure particle are generated.

  15. Thermodynamics of an ideal generalized gas: I. Thermodynamic laws.

    PubMed

    Lavenda, B H

    2005-11-01

    The equations of state for an ideal relativistic, or generalized, gas, like an ideal quantum gas, are expressed in terms of power laws of the temperature. In contrast to an ideal classical gas, the internal energy is a function of volume at constant temperature, implying that the ideal generalized gas will show either attractive or repulsive interactions. This is a necessary condition in order that the third law be obeyed and for matter to have an electromagnetic origin. The transition from an ideal generalized to a classical gas occurs when the two independent solutions of the subsidiary equation to Lagrange's equation coalesce. The equation of state relating the pressure to the internal energy encompasses the full range of cosmological scenarios, from the radiation to the matter dominated universes and finally to the vacuum energy, enabling the coefficient of proportionality, analogous to the Grüeisen ratio, to be interpreted in terms of the degrees of freedom related to the temperature exponents of the internal energy and the absolute temperature expressed in terms of a power of the empirical temperature. The limit where these exponents merge is shown to be the ideal classical gas limit. A corollary to Carnot's theorem is proved, asserting that the ratio of the work done over a cycle to the heat absorbed to increase the temperature at constant volume is the same for all bodies at the same volume. As power means, the energy and entropy are incomparable, and a new adiabatic potential is introduced by showing that the volume raised to a characteristic exponent is also the integrating factor for the quantity of heat so that the second law can be based on the property that power means are monotonically increasing functions of their order. The vanishing of the chemical potential in extensive systems implies that energy cannot be transported without matter and is equivalent to the condition that Clapeyron's equation be satisfied.

  16. Natural-gas hydrates: Resource of the twenty-first century?

    USGS Publications Warehouse

    Collett, T.S.

    2001-01-01

    Although considerable uncertainty and disagreement prevail concerning the world's gas-hydrate resources, the estimated amount of gas in those gas-hydrate accumulations greatly exceeds the volume of known conventional gas reserves. However, the role that gas hydrates will play in contributing to the world's energy requirements will ultimately depend less on the volume of gas-hydrate resources than on the cost to extract them. Gas hydrates occur in sedimentary deposits under conditions of pressure and temperature present in permafrost regions and beneath the sea in outer continental margins. The combined information from arctic gas-hydrate studies shows that in permafrost regions, gas hydrates may exist at subsurface depths ranging from about 130 m to 2000 m. The presence of gas hydrates in offshore continental margins has been inferred mainly from anomalous seismic reflectors (known as bottom-simulating reflectors) that have been mapped at depths below the seafloor ranging from approximately 100 m to 1100 m. Current estimates of the amount of gas in the world's marine and permafrost gas-hydrate accumulations are in rough accord at about 20,000 trillion m3. Gas hydrate as an energy commodity is often grouped with other unconventional hydrocarbon resources. In most cases, the evolution of a nonproducible unconventional resource to a producible energy resource has relied on significant capital investment and technology development. To evaluate the energy-resource potential of gas hydrates will also require the support of sustained research and development programs. Despite the fact that relatively little is known about the ultimate resource potential of gas hydrates, it is certain that they are a vast storehouse of natural gas, and significant technical challenges will need to be met before this enormous resource can be considered an economically producible reserve.

  17. Gas permeability of ice-templated, unidirectional porous ceramics

    NASA Astrophysics Data System (ADS)

    Seuba, Jordi; Deville, Sylvain; Guizard, Christian; Stevenson, Adam J.

    2016-01-01

    We investigate the gas flow behavior of unidirectional porous ceramics processed by ice-templating. The pore volume ranged between 54% and 72% and pore size between 2.9 ?m and 19.1 ?m. The maximum permeability (?? m?) was measured in samples with the highest total pore volume (72%) and pore size (19.1 ?m). However, we demonstrate that it is possible to achieve a similar permeability (?? m?) at 54% pore volume by modification of the pore shape. These results were compared with those reported and measured for isotropic porous materials processed by conventional techniques. In unidirectional porous materials tortuosity (?) is mainly controlled by pore size, unlike in isotropic porous structures where ? is linked to pore volume. Furthermore, we assessed the applicability of Ergun and capillary model in the prediction of permeability and we found that the capillary model accurately describes the gas flow behavior of unidirectional porous materials. Finally, we combined the permeability data obtained here with strength data for these materials to establish links between strength and permeability of ice-templated materials.

  18. Visualisation by high resolution synchrotron X-ray phase contrast micro-tomography of gas films on submerged superhydrophobic leaves.

    PubMed

    Lauridsen, Torsten; Glavina, Kyriaki; Colmer, Timothy David; Winkel, Anders; Irvine, Sarah; Lefmann, Kim; Feidenhans'l, Robert; Pedersen, Ole

    2014-10-01

    Floods can completely submerge terrestrial plants but some wetland species can sustain O2 and CO2 exchange with the environment via gas films forming on superhydrophobic leaf surfaces. We used high resolution synchrotron X-ray phase contrast micro-tomography in a novel approach to visualise gas films on submerged leaves of common cordgrass (Spartina anglica). 3D tomograms enabled a hitherto unmatched level of detail regarding the micro-topography of leaf gas films. Gas films formed only on the superhydrophobic adaxial leaf side (water droplet contact angle, Φ=162°) but not on the abaxial side (Φ=135°). The adaxial side of the leaves of common cordgrass is plicate with a longitudinal system of parallel grooves and ridges and the vast majority of the gas film volume was found in large ∼180μm deep elongated triangular volumes in the grooves and these volumes were connected to each neighbouring groove via a fine network of gas tubules (∼1.7μm diameter) across the ridges. In addition to the gas film retained on the leaf exterior, the X-ray phase contrast micro-tomography also successfully distinguished gas spaces internally in the leaf tissues, and the tissue porosity (gas volume per unit tissue volume) ranged from 6.3% to 20.3% in tip and base leaf segments, respectively. We conclude that X-ray phase contrast micro-tomography is a powerful tool to obtain quantitative data of exterior gas features on biological samples because of the significant difference in electron density between air, biological tissues and water. Copyright © 2014 Elsevier Inc. All rights reserved.

  19. Waste heat recovery system including a mechanism for collection, detection and removal of non-condensable gas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ernst, Timothy C.; Zigan, James A.

    2017-06-20

    The disclosure describes a non-condensable gas collection, detection, and removal system for a WHR system that helps to maintain cycle efficiency of the WHR system across the life of an engine system associated with the WHR system. A storage volume is configured to collect non-condensable gas received from the working fluid circuit, and a release valve is configured to selectively release non-condensable gas contained within the storage volume.

  20. Meeting Asia's future gas import demand with stranded natural gas from central Asia, Russia, Southeast Asia, and Australia

    USGS Publications Warehouse

    Attanasi, E.D.; Freeman, P.A.

    2013-01-01

    This analysis shows the important contribution that stranded gas from central Asia, Russia, Southeast Asia, and Australia can make in meeting the projected demand for gas imports of China, India, Japan, and South Korea from 2020 to 2040. The estimated delivered costs of pipeline gas from stranded fields in Russia and central Asia at Shanghai, China, are generally less than delivered costs of liquefied natural gas (LNG). Australia and Malaysia are initially the lowest-cost LNG suppliers. In the concluding section, it is argued that Asian LNG demand is price sensitive, and that current Asian LNG pricing procedures are unlikely to be sustainable for gas import demand to attain maximum potential growth. Resource volumes in stranded fields evaluated can nearly meet projected import demands.

  1. Natural gas flow through critical nozzles

    NASA Technical Reports Server (NTRS)

    Johnson, R. C.

    1969-01-01

    Empirical method for calculating both the mass flow rate and upstream volume flow rate through critical flow nozzles is determined. Method requires knowledge of the composition of natural gas, and of the upstream pressure and temperature.

  2. Apparatus Translates Crossed-Laser-Beam Probe Volume

    NASA Technical Reports Server (NTRS)

    Herring, Gregory C.; South, Bruce W.; Exton, Reginald J.

    1994-01-01

    Optomechanical apparatus translates probe volume of crossed-beam laser velocimeter or similar instrument while maintaining optical alignment of beams. Measures velocity, pressure, and temperature of flowing gas at several locations. Repeated tedious realignments no longer necessary. Designed to accommodate stimulated-Raman-gain spectrometer for noninvasive measurement of local conditions in flowing gas in supersonic wind tunnel. Applicable to other techniques like coherent anti-Stokes Raman spectroscopy involving use of laser beams crossed at small angles (10 degrees or less).

  3. Numerical Modeling of Gas and Water Flow in Shale Gas Formations with a Focus on the Fate of Hydraulic Fracturing Fluid.

    PubMed

    Edwards, Ryan W J; Doster, Florian; Celia, Michael A; Bandilla, Karl W

    2017-12-05

    Hydraulic fracturing in shale gas formations involves the injection of large volumes of aqueous fluid deep underground. Only a small proportion of the injected water volume is typically recovered, raising concerns that the remaining water may migrate upward and potentially contaminate groundwater aquifers. We implement a numerical model of two-phase water and gas flow in a shale gas formation to test the hypothesis that the remaining water is imbibed into the shale rock by capillary forces and retained there indefinitely. The model includes the essential physics of the system and uses the simplest justifiable geometrical structure. We apply the model to simulate wells from a specific well pad in the Horn River Basin, British Columbia, where there is sufficient available data to build and test the model. Our simulations match the water and gas production data from the wells remarkably closely and show that all the injected water can be accounted for within the shale system, with most imbibed into the shale rock matrix and retained there for the long term.

  4. Gas Phase Organophosphate Detection Using Enzymes Encapsulated Within Peptide Nanotubes

    DTIC Science & Technology

    2014-03-27

    as gas and liquid chromatography, although very sensitive and reliable, have disadvantages. The US Air Force currently uses a field portable gas...biosensors to detect OPCs in liquid (Park et al., 2011; Stevens, 2012) and gas (Baker, 2013) phases. Detection is based upon a redox reaction... injecting a known volume of gas saturated at room temperature with malathion (vapor pressure = 25 ppbv), into a 40 ml vial purged with nitrogen at constant

  5. Low-btu gas in the US Midcontinent: A challenge for geologists and engineers

    USGS Publications Warehouse

    Newell, K. David; Bhattacharya, Saibal; Sears, M. Scott

    2009-01-01

    Several low-btu gas plays can be defined by mapping gas quality by geological horizon in the Midcontinent. Some of the more inviting plays include Permian strata west of the Central Kansas uplift and on the eastern flank of Hugoton field and Mississippi chat and other pays that subcrop beneath (and directly overlie) the basal Pennsylvanian angular unconformity at the southern end of the Central Kansas uplift. Successful development of these plays will require the cooperation of reservoir geologists and process engineers so that the gas can be economically upgraded and sold at a nominal pipeline quality of 950 btu/scf or greater. Nitrogen is the major noncombustible contaminant in these gas fields, and various processes can be utilized to separate it from the hydrocarbon gases. Helium, which is usually found in percentages corresponding to nitrogen, is a possible ancillary sales product in this region. Its separation from the nitrogen, of course, requires additional processing. The engineering solution for low-btu gas depends on the rates, volumes, and chemistry of the gas needing upgrading. Cryogenic methods of nitrogen removal are classically used for larger feed volumes, but smaller feed volumes characteristic of isolated, low-pressure gas fields can now be handled by available small-scale PSA technologies. Operations of these PSA plants are now downscaled for upgrading stripper well gas production. Any nitrogen separation process should be sized, within reason, to match the anticipated flow rate. If the reservoir rock surprises to the upside, the modularity of the upgrading units is critical, for they can be stacked to meet higher volumes. If a reservoir disappoints (and some will), modularity allows the asset to be moved to another site without breaking the bank.

  6. Molecular simulation of excess isotherm and excess enthalpy change in gas-phase adsorption.

    PubMed

    Do, D D; Do, H D; Nicholson, D

    2009-01-29

    We present a new approach to calculating excess isotherm and differential enthalpy of adsorption on surfaces or in confined spaces by the Monte Carlo molecular simulation method. The approach is very general and, most importantly, is unambiguous in its application to any configuration of solid structure (crystalline, graphite layer or disordered porous glass), to any type of fluid (simple or complex molecule), and to any operating conditions (subcritical or supercritical). The behavior of the adsorbed phase is studied using the partial molar energy of the simulation box. However, to characterize adsorption for comparison with experimental data, the isotherm is best described by the excess amount, and the enthalpy of adsorption is defined as the change in the total enthalpy of the simulation box with the change in the excess amount, keeping the total number (gas + adsorbed phases) constant. The excess quantities (capacity and energy) require a choice of a reference gaseous phase, which is defined as the adsorptive gas phase occupying the accessible volume and having a density equal to the bulk gas density. The accessible volume is defined as the mean volume space accessible to the center of mass of the adsorbate under consideration. With this choice, the excess isotherm passes through a maximum but always remains positive. This is in stark contrast to the literature where helium void volume is used (which is always greater than the accessible volume) and the resulting excess can be negative. Our definition of enthalpy change is equivalent to the difference between the partial molar enthalpy of the gas phase and the partial molar enthalpy of the adsorbed phase. There is no need to assume ideal gas or negligible molar volume of the adsorbed phase as is traditionally done in the literature. We illustrate this new approach with adsorption of argon, nitrogen, and carbon dioxide under subcritical and supercritical conditions.

  7. 30 CFR 202.152 - Standards for reporting and paying royalties on gas.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... same standards specified in paragraph (a) of this section. (3) Natural gas liquids (NGL) volumes shall... gas. 202.152 Section 202.152 Mineral Resources MINERALS MANAGEMENT SERVICE, DEPARTMENT OF THE INTERIOR MINERALS REVENUE MANAGEMENT ROYALTIES Federal Gas § 202.152 Standards for reporting and paying royalties on...

  8. Jim Driver, Panola County Oil and Gas Boom.

    ERIC Educational Resources Information Center

    Wyatt, Bobbie, Ed.

    1981-01-01

    Written by history students at Gary High School, Gary, Texas, this volume presents several diverse pictures of life in East Texas. The first article, "Jim Driver, Panola County Oil and Gas Boom," (Bobby Kelly and Billy Anderson) talks about drilling for oil and gas and the concerns of an employee of the drilling company. "When I Was…

  9. Heat pipe temperature control utilizing a soluble gas absorption reservior

    NASA Technical Reports Server (NTRS)

    Saaski, E. W.

    1976-01-01

    A new gas-controlled heat pipe design is described which uses a liquid matrix reservior, or sponge, to replace the standard gas reservior. Reservior volume may be reduced by a factor of five to ten for certain gas-liquid combinations, while retaining the same level of temperature control. Experiments with ammonia, butane, and carbon dioxide control gases with methanol working fluid are discussed.

  10. Effectiveness of purging on preventing gas emission buildup in wood pellet storage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yazdanpanah, Fahimeh; Sokhansanj, Shahab; Lim, Choon Jim

    Storage of wood pellets has resulted in deadly accidents in connection with off-gassing and self-heating. A forced ventilation system should be in place to sweep the off-gases and control the thermal conditions. In this study, multiple purging tests were conducted in a pilot scale silo to evaluate the effectiveness of a purging system and quantify the time and volume of the gas needed to sweep the off-gases. To identify the degree of mixing, residence time distribution of the tracer gas was also studied experimentally. Large deviations from plug flow suggested strong gas mixing for all superficial velocities. As the velocitymore » increased, the system dispersion number became smaller, which indicated less degree of mixing with increased volume of the purging gas. Finally, one-dimensional modelling and numerical simulation of the off-gas concentration profile gave the best agreement with the measured gas concentration at the bottom and middle of the silo.« less

  11. Effectiveness of purging on preventing gas emission buildup in wood pellet storage

    DOE PAGES

    Yazdanpanah, Fahimeh; Sokhansanj, Shahab; Lim, Choon Jim; ...

    2015-04-24

    Storage of wood pellets has resulted in deadly accidents in connection with off-gassing and self-heating. A forced ventilation system should be in place to sweep the off-gases and control the thermal conditions. In this study, multiple purging tests were conducted in a pilot scale silo to evaluate the effectiveness of a purging system and quantify the time and volume of the gas needed to sweep the off-gases. To identify the degree of mixing, residence time distribution of the tracer gas was also studied experimentally. Large deviations from plug flow suggested strong gas mixing for all superficial velocities. As the velocitymore » increased, the system dispersion number became smaller, which indicated less degree of mixing with increased volume of the purging gas. Finally, one-dimensional modelling and numerical simulation of the off-gas concentration profile gave the best agreement with the measured gas concentration at the bottom and middle of the silo.« less

  12. Use of hydraulic head to estimate volumetric gas content and ebullition flux in northern peatlands

    USGS Publications Warehouse

    Rosenberry, Donald O.; Glaser, Paul H.; Siegel, Donald I.; Weeks, Edwin P.

    2003-01-01

    Hydraulic head was overpressured at middepth in a 4.2‐m thick raised bog in the Glacial Lake Agassiz peatlands of northern Minnesota, and fluctuated in response to atmospheric pressure. Barometric efficiency (BE), determined by calculating ratios of change in hydraulic head to change in atmospheric pressure, ranged from 0.05 to 0.15 during July through November of both 1997 and 1998. The overpressuring and a BE response were caused by free‐phase gas contained primarily in the center of the peat column between two or more semielastic, semiconfining layers of more competent peat. Two methods were used to determine the volume of gas bubbles contained in the peat, one using the degree of overpressuring in the middepth of the peat, and the other relating BE to specific yield of the shallow peat. The volume of gas calculated from the overpressuring method averaged 9%, assuming that the gas was distributed over a 2‐m thick overpressured interval. The volume of gas using the BE method averaged 13%. Temporal changes in overpressuring and in BE indicate that the volume of gaseous‐phase gas also changed with time, most likely because of rapid degassing (ebullition) that allowed sudden loss of gas to the atmosphere. Estimates of gas released during the largest ebullition events ranged from 0.3 to 0.7 mol m−2 d−1. These ebullition events may contribute a significant source of methane and carbon dioxide to the atmosphere that has so far largely gone unmeasured by gas‐flux chambers or tower‐mounted sensors.

  13. Prediction of gas production using well logs, Cretaceous of north-central Montana

    USGS Publications Warehouse

    Hester, T.C.

    1999-01-01

    Cretaceous gas sands underlie much of east-central Alberta and southern Saskatchewan, eastern Montana, western North Dakota, and parts of South Dakota and Wyoming. Estimates of recoverable biogenic methane from these rocks in the United States are as high as 91 TCF. In northern Montana, current production is localized around a few major structural features, while vast areas in between these structures are not being exploited. Although the potential for production exists, the lack of commercial development is due to three major factors: 1) the lack of pipeline infrastructure; 2) the lack of predictable and reliable rates of production; and 3) the difficulty in recognizing and selecting potentially productive gas-charged intervals. Unconventional (tight), continuous-type reservoirs, such as those in the Cretaceous of the northern Great Plains, are not well suited for conventional methods of formation evaluation. Pay zones frequently consist only of thinly laminated intervals of sandstone, silt, shale stringers, and disseminated clay. Potential producing intervals are commonly unrecognizable on well logs, and thus are overlooked. To aid in the identification and selection of potential producing intervals, a calibration system is developed here that empirically links the 'gas effect' to gas production. The calibration system combines the effects of porosity, water saturation, and clay content into a single 'gas-production index' (GPI) that relates the in-situ rock with production potential. The fundamental method for isolating the gas effect for calibration is a crossplot of neutron porosity minus density porosity vs gamma-ray intensity. Well-log and gas-production data used for this study consist of 242 perforated intervals from 53 gas-producing wells. Interval depths range from about 250 to 2400 ft. Gas volumes in the peak calendar year of production range from about 4 to 136 MMCF. Nine producing formations are represented. Producing-interval data show that porosity

  14. On-site flow calibration of turbine meters for natural gas custody transfer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ting, V.C.; Schexnayder, L.L.; Conkling, D.B.

    1991-05-01

    This paper presents the design criteria, performance characteristics, and calibration procedures relating to a turbine-meter flow-calibration facility used in the high-volume custody transfer of natural gas. The facility, located in Venice, LA, is owned and operated by Chevron U.S.A. Inc. and is used to meter sales volumes of up to 500 MMscf/D (14.16 {times} 10 std m{sup 3}/d) at a nominal operating pressure of 1,000 psig (6.9 MPa). The system includes three 12-in. (30.48 cm) turbine meters used for sales-volume measurement, a bank of sonic nozzles, and a master turbine meter connected in series with the sales meters. The sonicmore » nozzles and master meter serve as flow-proving and -calibration devices. sonic nozzles are recommended by the turbine-meter standard for meter calibration. This paper examines the performance of on-site calibration of gas turbine meters. The Venice facility successfully demonstrated that on-site calibration of gas-metering devices can ensure accurate gas-flow measurement under field conditions.« less

  15. Gas hydrate in seafloor sediments: Impact on future resources and drilling safety

    USGS Publications Warehouse

    Dillon, William P.; Max, Michael D.

    2001-01-01

    Gas hydrate concentrates methane and sometimes other gases in its crystal lattice and this gas can be released intentionally creating a resource or escape accidentally forming a hazard. The densest accumulations of gas hydrate tend to occur at sites where the base of the gas hydrate stability zone (commonly the upper several hundred m of the sedimentary section) is configured to trap gas, often as a broad arch. The gas may rise from below or form by bacterial activity at shallow depth, but gas commonly is concentrated near the base of the gas hydrate stability zone by recycling. This gas accumulates in presumably leaky traps, then enriches the hydrate above as it migrates upward by diffusion, fluid movement through sedimentary pores, or flow along fracture channelways. Analysis of seismic reflection profiles is beginning to identify such concentrations and the circumstances that create them. The first attempt to explore for gas hydrate off Japan by the Japanese National Oil Corporation produced quite favorable results, showing high gas hydrate contents in permeable sediments. Gas hydrate dissociation can be a safety concern in drilling and production. The volume of water and gas released in dissociation is often greater than the volume of the hydrate, so overpressures can be created. Furthermore, the gas hydrate can provide shallow seals, so the possibility of high-pressure flows or generation of slides is apparent. 

  16. Air Versus Sulfur Hexafluoride Gas Tamponade in Descemet Membrane Endothelial Keratoplasty: A Fellow Eye Comparison.

    PubMed

    von Marchtaler, Philipp V; Weller, Julia M; Kruse, Friedrich E; Tourtas, Theofilos

    2018-01-01

    To perform a fellow eye comparison of outcomes and complications when using air or sulfur hexafluoride (SF6) gas as a tamponade in Descemet membrane endothelial keratoplasty (DMEK). One hundred thirty-six eyes of 68 consecutive patients who underwent uneventful DMEK in both eyes for Fuchs endothelial corneal dystrophy were included in this retrospective study. Inclusion criteria were air tamponade (80% of the anterior chamber volume) in the first eye and 20% SF6 gas tamponade (80% of the anterior chamber volume) in the second eye; and same donor tissue culture condition in both eyes. All eyes received laser iridotomy on the day before DMEK. Main outcome measures included preoperative and postoperative best-corrected visual acuity, endothelial cell density, corneal volume, rebubbling rate, and rate of postoperative pupillary block caused by the air/gas bubble. Thirteen of 68 eyes (19.1%) with an air tamponade needed rebubbling compared with 4 of 68 eyes (5.9%) with an SF6 gas tamponade (P = 0.036). Postoperative pupillary block necessitating partial release of air/gas occurred in 1 eye (1.5%) with an air tamponade and 3 eyes (4.4%) with an SF6 gas tamponade (P = 0.301). There were no significant differences in preoperative and postoperative best-corrected visual acuity, endothelial cell density, and corneal volume within 3-month follow-up. Our results confirm the previously reported better graft adhesion when using an SF6 gas tamponade in DMEK without increased endothelial cell toxicity. The rate of pupillary block in eyes with an SF6 gas tamponade was comparable to that with an air tamponade. As a consequence, we recommend using SF6 gas as the tamponade in DMEK.

  17. High-repetition-rate short-pulse gas discharge.

    PubMed

    Tulip, J; Seguin, H; Mace, P N

    1979-09-01

    A high-average-power short-pulse gas discharge is described. This consists of a volume-preionized transverse discharge of the type used in gas lasers driven by a Blumlein energy storage circuit. The Blumlein circuit is fabricated from coaxial cable, is pulse-charged from a high-repetition-rate Marx-bank generator, and is switched by a high-repetition-rate segmented rail gap. The operation of this discharge under conditions typical of rare-gas halide lasers is described. A maximum of 900 pps was obtained, giving a power flow into the discharge of 30 kW.

  18. Comparison of oil removal in surfactant alternating gas with water alternating gas, water flooding and gas flooding in secondary oil recovery process.

    PubMed

    Salehi, Mehdi Mohammad; Safarzadeh, Mohammad Amin; Sahraei, Eghbal; Nejad, Seyyed Alireza Tabatabaei

    2014-08-01

    Growing oil prices coupled with large amounts of residual oil after operating common enhanced oil recovery methods has made using methods with higher operational cost economically feasible. Nitrogen is one of the gases used in both miscible and immiscible gas injection process in oil reservoir. In heterogeneous formations gas tends to breakthrough early in production wells due to overriding, fingering and channeling. Surfactant alternating gas (SAG) injection is one of the methods commonly used to decrease this problem. Foam which is formed on the contact of nitrogen and surfactant increases viscosity of injected gas. This increases the oil-gas contact and sweep efficiency, although adsorption of surfactant on rock surface can causes difficulties and increases costs of process. Many parameters must be considered in design of SAG process. One of the most important parameters is SAG ratio that should be in optimum value to improve the flooding efficiency. In this study, initially the concentration of surfactant was optimized due to minimization of adsorption on rock surface which results in lower cost of surfactant. So, different sodium dodecyl sulfate (SDS) concentrations of 100, 500, 1000, 2000, 3000 and 4000 ppm were used to obtain the optimum concentration at 70 °C and 144.74×10 5  Pa. A simple, clean and relatively fast spectrophotometric method was used for determination of surfactant which is based on the formation of an ion-pair. Then the effect of surfactant to gas volume ratio on oil recovery in secondary oil recovery process during execution of immiscible surfactant alternating gas injection was examined experimentally. The experiments were performed with sand pack under certain temperature, pressure and constant rate. Experiments were performed with surfactant to gas ratio of 1:1, 1:2, 1:3, 2:1 and 3:1 and 1.2 pore volume injected. Then, comparisons were made between obtained results (SAG) with water flooding, gas flooding and water alternating gas

  19. Effect of ultrasound-assisted freezing on the physico-chemical properties and volatile compounds of red radish.

    PubMed

    Xu, Bao-Guo; Zhang, Min; Bhandari, Bhesh; Cheng, Xin-Feng; Islam, Md Nahidul

    2015-11-01

    Power ultrasound, which can enhance nucleation rate and crystal growth rate, can also affect the physico-chemical properties of immersion frozen products. In this study, the influence of slow freezing (SF), immersion freezing (IF) and ultrasound-assisted freezing (UAF) on physico-chemical properties and volatile compounds of red radish was investigated. Results showed that ultrasound application significantly improved the freezing rate; the freezing time of ultrasound application at 0.26 W/cm(2) was shorten by 14% and 90%, compared to IF and SF, respectively. UAF products showed significant (p<0.05) reduction in drip loss and phytonutrients (anthocyanins, vitamin C and phenolics) loss. Compared to SF products, IF and UAF products showed better textural preservation and higher calcium content. The radish tissues exhibited better cellular structures under ultrasonic power intensities of 0.17 and 0.26 W/cm(2) with less cell separation and disruption. Volatile compound data revealed that radish aromatic profile was also affected in the freezing process. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Method of making improved gas storage carbon with enhanced thermal conductivity

    DOEpatents

    Burchell, Timothy D [Oak Ridge, TN; Rogers, Michael R [Knoxville, TN

    2002-11-05

    A method of making an adsorbent carbon fiber based monolith having improved methane gas storage capabilities is disclosed. Additionally, the monolithic nature of the storage carbon allows it to exhibit greater thermal conductivity than conventional granular activated carbon or powdered activated carbon storage beds. The storage of methane gas is achieved through the process of physical adsorption in the micropores that are developed in the structure of the adsorbent monolith. The disclosed monolith is capable of storing greater than 150 V/V of methane [i.e., >150 STP (101.325 KPa, 298K) volumes of methane per unit volume of storage vessel internal volume] at a pressure of 3.5 MPa (500 psi).

  1. Massive Fermi gas in the expanding universe

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Trautner, Andreas, E-mail: atrautner@uni-bonn.de

    The behavior of a decoupled ideal Fermi gas in a homogeneously expanding three-dimensional volume is investigated, starting from an equilibrium spectrum. In case the gas is massless and/or completely degenerate, the spectrum of the gas can be described by an effective temperature and/or an effective chemical potential, both of which scale down with the volume expansion. In contrast, the spectrum of a decoupled massive and non-degenerate gas can only be described by an effective temperature if there are strong enough self-interactions such as to maintain an equilibrium distribution. Assuming perpetual equilibration, we study a decoupled gas which is relativistic atmore » decoupling and then is red-shifted until it becomes non-relativistic. We find expressions for the effective temperature and effective chemical potential which allow us to calculate the final spectrum for arbitrary initial conditions. This calculation is enabled by a new expansion of the Fermi-Dirac integral, which is for our purpose superior to the well-known Sommerfeld expansion. We also compute the behavior of the phase space density under expansion and compare it to the case of real temperature and real chemical potential. Using our results for the degenerate case, we also obtain the mean relic velocity of the recently proposed non-thermal cosmic neutrino background.« less

  2. FIRST ORDER KINETIC GAS GENERATION MODEL PARAMETERS FOR WET LANDFILLS

    EPA Science Inventory

    Landfill gas is produced as a result of a sequence of physical, chemical, and biological processes occurring within an anaerobic landfill. Landfill operators, energy recovery project owners, regulators, and energy users need to be able to project the volume of gas produced and re...

  3. Dissipative properties of hot and dense hadronic matter in an excluded-volume hadron resonance gas model

    NASA Astrophysics Data System (ADS)

    Kadam, Guru Prakash; Mishra, Hiranmaya

    2015-09-01

    We estimate dissipative properties, viz., shear and bulk viscosities of hadronic matter using relativistic Boltzmann equation in relaxation time approximation within the framework of excluded-volume hadron resonance gas (EHRG) model. We find that at zero baryon chemical potential the shear viscosity to entropy ratio (η /s ) decreases with temperature while at finite baryon chemical potential this ratio shows the same behavior as a function of temperature but reaches close to the Kovtun-Son-Starinets (KSS) bound. Further along the chemical freezeout curve, ratio η /s is almost constant apart from small initial monotonic rise. This observation may have some relevance to the experimental finding that the differential elliptic flow of charged hadrons does not change considerably at lower center-of-mass energy. We further find that bulk viscosity to entropy density (ζ /s ) decreases with temperature while this ratio has higher value at finite baryon chemical potential at higher temperature. Along the freezeout curve ζ /s decreases monotonically at lower center-of-mass energy and then saturates.

  4. Solar-pumped gas laser development

    NASA Technical Reports Server (NTRS)

    Wilson, J. W.

    1980-01-01

    A survey of gas properties through detailed kinetic models led to the identification of critical gas parameters for use in choosing appropriate gas combinations for solar pumped lasers. Broadband photoabsorption in the visible or near UV range is required to excite large volumes of gas and to insure good solar absorption efficiency. The photoexcitation density is independent of the absorption bandwidth. The state excited must be a metastable state which is not quenched by the parent gas. The emission bandwidth must be less than 10 A to insure lasing threshold over reasonable gain lengths. The system should show a high degree of chemical reversibility and an insensitivity to increasing temperature. Other properties such as good quantum efficiency and kinetic efficiency are also implied. Although photoexcitation of electronic vibrational transitions is considered as a possible system if the emission bands sufficiently narrow, it appears that photodissociation into atomic metastables is more likely to result in a successful solar pumped laser system.

  5. The Oman-India gas pipeline

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roberts, P.M.

    1995-12-31

    In March 1993, the Governments of the Sultanate of Oman and India executed a Memorandum of Understanding for a long term Gas Supply Contract to transport natural gas from Oman to India by pipeline. A feasibility study was undertaken to determine if such a pipeline was technically achievable and economically attractive. Work was initiated with a consortium of internationally recognized major design and construction firms, as well as with consultants knowledgeable in gas supply and demand in the region. Alternative gas supply volumes as well as two distinct pipeline routes were analyzed in significant detail. As a result of thismore » work, it was concluded that a pipeline crossing, taking a direct route from Oman to India, is economically and technically feasible. In September, 1994, the Agreement on Principal Terms for supply of gas to India from Oman was agreed by the respective governmental authorities. The project and its status are described.« less

  6. Physical interactions of hyperpolarized gas in the lung

    NASA Astrophysics Data System (ADS)

    Chen, Xiu-Hao Josette

    1999-09-01

    This thesis addresses key interactions of hyperpolarized (HP) gas within the biological environment of the lung using magnetic resonance imaging (MRI). The first excised lung image was obtained in 1994 by Albert et al ., indicating the relative youth of the HP gas MRI field. Thus, there are a multitude of parameters which need to be explored to optimize contrast mechanisms and pulse sequences for in vivo applications. To perform HP gas MRI, both the production of HP gas and development of appropriate MRI pulse sequences were necessary. The apparatus for gas polarization was transferred from Princeton University, then modified and optimized to provide larger quantities and higher polarizations. It was ultimately replaced by a prototype commercial apparatus. Existing MRI pulse sequences were changed to accommodate and exploit the unique situation of non-equilibrium polarized gas. Several physical parameters of the gas relating to structure and function in the lung were investigated. It was found that using a range of excitation powers, acquisition windows, and ventilatory cycle segments yielded dramatically different types of images in the guinea pig. Spatially localized lineshapes of HP 3He showed differentiated peaks (corresponding to frequency shifts) which represent gas in major airways (2 ppm) and alveoli (1-2 ppm). Quantitative maps of the diffusion coefficient (D) showed evidence of free diffusion in the trachea (average of 2.4 cm2/s for 3He and 0.68 cm2/s for 129Xe) and restricted diffusion combined with effects of gas mixtures in the distal pulmonary airspaces (average of 0.16 cm2/s for 3He and 0.021 cm2/s for 129Xe). Experimental measurements were verified with gas mixture and porous media theory for both 3He and 129Xe. The dephasing parameter, T*2 , was mapped showing sensitivity to changes in tidal volume and oxygen level. The T*2 values ranged from 9.2 to 15.9 ms in the intrapulmonary airspaces depending on the breathing paradigm. Experimental results

  7. Assessment of undiscovered oil and gas resources of the North Sakhalin Basin Province, Russia, 2011

    USGS Publications Warehouse

    Klett, T.R.; Schenk, Christopher J.; Wandrey, Craig J.; Charpentier, Ronald R.; Brownfield, Michael E.; Pitman, Janet K.; Pollastro, Richard M.; Cook, Troy A.; Tennyson, Marilyn E.

    2011-01-01

    Using a geology-based assessment methodology, the U.S. Geological Survey estimated volumes of undiscovered, technically recoverable, conventional petroleum resources for the North Sakhalin Basin Province of Russia. The mean volumes were estimated at 5.3 billion barrels of crude oil, 43.8 trillion cubic feet of natural gas, and 0.8 billion barrels of natural gas liquids.

  8. A Quantitative Gas Chromatographic Ethanol Determination.

    ERIC Educational Resources Information Center

    Leary, James J.

    1983-01-01

    Describes a gas chromatographic experiment for the quantitative determination of volume percent ethanol in water ethanol solutions. Background information, procedures, and typical results are included. Accuracy and precision of results are both on the order of two percent. (JN)

  9. Bibliography on Cold Regions Science and Technology. Volume 41. Part 1

    DTIC Science & Technology

    1987-12-01

    Seismic surveys, (•eophysical surveys, Bering Sea, Beaaforl Sea. 41-2608 Oil and gas fields in the Kast Coast and Arctic basins of Canada...existing design codes is given. 41-646 Spray-ice islands evaluated for Arctic-drilling struc- tures. Juvkam-Wold, H.C., Oil and gas journal, Apr. 21...Models, Instruments. 41-696 Northern Oil and Gas Action Program (NOGAP) bibliography. Volume 1. Canada. Department of Indian and Northern

  10. Membranes with artificial free-volume for biofuel production

    PubMed Central

    Petzetakis, Nikos; Doherty, Cara M.; Thornton, Aaron W.; Chen, X. Chelsea; Cotanda, Pepa; Hill, Anita J.; Balsara, Nitash P.

    2015-01-01

    Free-volume of polymers governs transport of penetrants through polymeric films. Control over free-volume is thus important for the development of better membranes for a wide variety of applications such as gas separations, pharmaceutical purifications and energy storage. To date, methodologies used to create materials with different amounts of free-volume are based primarily on chemical synthesis of new polymers. Here we report a simple methodology for generating free-volume based on the self-assembly of polyethylene-b-polydimethylsiloxane-b-polyethylene triblock copolymers. We have used this method to fabricate a series of membranes with identical compositions but with different amounts of free-volume. We use the term artificial free-volume to refer to the additional free-volume created by self-assembly. The effect of artificial free-volume on selective transport through the membranes was tested using butanol/water and ethanol/water mixtures due to their importance in biofuel production. We found that the introduction of artificial free-volume improves both alcohol permeability and selectivity. PMID:26104672

  11. Membranes with artificial free-volume for biofuel production

    DOE PAGES

    Petzetakis, Nikos; Doherty, Cara M.; Thornton, Aaron W.; ...

    2015-06-24

    Free-volume of polymers governs transport of penetrants through polymeric films. Control over free-volume is thus important for the development of better membranes for a wide variety of applications such as gas separations, pharmaceutical purifications and energy storage. To date, methodologies used to create materials with different amounts of free-volume are based primarily on chemical synthesis of new polymers. Here we report a simple methodology for generating free-volume based on the self-assembly of polyethylene-b-polydimethylsiloxane-b-polyethylene triblock copolymers. Here, we have used this method to fabricate a series of membranes with identical compositions but with different amounts of free-volume. We use the termmore » artificial free-volume to refer to the additional free-volume created by self-assembly. The effect of artificial free-volume on selective transport through the membranes was tested using butanol/water and ethanol/water mixtures due to their importance in biofuel production. Moreover, we found that the introduction of artificial free-volume improves both alcohol permeability and selectivity.« less

  12. 30 CFR 1202.152 - Standards for reporting and paying royalties on gas.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... gas liquids (NGL) volumes shall be reported in standard U.S. gallons (231 cubic inches) at 60 °F. (4... gas. 1202.152 Section 1202.152 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT, DEPARTMENT OF THE INTERIOR Natural Resources Revenue ROYALTIES Federal Gas § 1202.152 Standards for reporting...

  13. Ultra-wide-field autofluorescence imaging in non-traumatic rhegmatogenous retinal detachment

    PubMed Central

    Witmer, M T; Cho, M; Favarone, G; Paul Chan, R V; D'Amico, D J; Kiss, S

    2012-01-01

    Purpose Rhegmatogenous retinal detachment (RRD) affects the function of the retina before and after surgical repair. We investigated ultra-wide-field autofluorescence (UAF) abnormalities in patients with acute RRD to improve our understanding of the functional changes in the retina before and after surgery. Methods In this retrospective study, we present the UAF imaging findings of 16 patients with acute, non-traumatic RRD. Imaging was obtained with the Optos 200 Tx (Optos) in 14 eyes preoperatively and in 12 eyes postoperatively. Twelve eyes had RRDs that involved the macula (group A), whereas four eyes had macula-sparing RRDs (group B). Results All patients (100%) with bullous retinal detachments demonstrated hypofluorescence over the area of retinal detachment. A hyperfluorescent leading edge (HLE) to the retinal detachment was observed preoperatively in 100% of eyes in group A and 75% of eyes in group B. Preoperative UAF through the fovea of group A eyes was normal (30%), hypofluorescent (50%) or hyperfluorescent (20%). In all patients with a HLE preoperatively, the HLE resolved by the 1-month postoperative visit. A residual line of demarcation remained in 8 of the 12 eyes (67%). In group A eyes, postoperative granular autofluorescent changes were present in four of the nine (44%) eyes, and were associated with worse preoperative (P=0.04) and postoperative (P=0.09) visual acuity. Conclusion UAF imaging reveals abnormalities in RRDs that allow excellent demarcation of the extent of the retinal detachment and assist in preoperative characterization of the detachment and postoperative counselling. PMID:22722489

  14. Hydrogen gas inhalation inhibits progression to the "irreversible" stage of shock after severe hemorrhage in rats.

    PubMed

    Matsuoka, Tadashi; Suzuki, Masaru; Sano, Motoaki; Hayashida, Kei; Tamura, Tomoyoshi; Homma, Koichiro; Fukuda, Keiichi; Sasaki, Junichi

    2017-09-01

    Mortality of hemorrhagic shock primarily depends on whether or not the patients can endure the loss of circulating volume until radical treatment is applied. We investigated whether hydrogen (H2) gas inhalation would influence the tolerance to hemorrhagic shock and improve survival. Hemorrhagic shock was achieved by withdrawing blood until the mean arterial blood pressure reached 30-35 mm Hg. After 60 minutes of shock, the rats were resuscitated with a volume of normal saline equal to four times the volume of shed blood. The rats were assigned to either the H2 gas (1.3% H2, 26% O2, 72.7% N2)-treated group or the control gas (26% O2, 74% N2)-treated group. Inhalation of the specified gas mixture began at the initiation of blood withdrawal and continued for 2 hours after fluid resuscitation. The survival rate at 6 hours after fluid resuscitation was 80% in H2 gas-treated rats and 30% in control gas-treated rats (p < 0.05). The volume of blood that was removed through a catheter to induce shock was significantly larger in the H2 gas-treated rats than in the control rats. Despite losing more blood, the increase in serum potassium levels was suppressed in the H2 gas-treated rats after 60 minutes of shock. Fluid resuscitation completely restored blood pressure in the H2 gas-treated rats, whereas it failed to fully restore the blood pressure in the control gas-treated rats. At 2 hours after fluid resuscitation, blood pressure remained in the normal range and metabolic acidosis was well compensated in the H2 gas-treated rats, whereas we observed decreased blood pressure and uncompensated metabolic acidosis and hyperkalemia in the surviving control gas-treated rats. H2 gas inhalation delays the progression to irreversible shock. Clinically, H2 gas inhalation is expected to stabilize the subject until curative treatment can be performed, thereby increasing the probability of survival after hemorrhagic shock.

  15. Integral Engine Inlet Particle Separator. Volume 1. Technology Program

    DTIC Science & Technology

    1975-07-01

    inlet particle separators for future Army aircraft gas turbine engines . Appropriate technical personnel of this Directorate have reviewed this report...USAAMRDL-TR-75-31A I - / INTEGRAL ENGINE INLET PARTICLE SEPARATOR Volume I-- Technology Program General Electric Company Aircraft Engine Group...N1 i 9ap mm tm~qu INTRODUCTION The adverse environments in which Army equipment operates impose severe )enalties upon gas turbine engine performance

  16. Gas Hydrate Storage of Natural Gas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rudy Rogers; John Etheridge

    2006-03-31

    Environmental and economic benefits could accrue from a safe, above-ground, natural-gas storage process allowing electric power plants to utilize natural gas for peak load demands; numerous other applications of a gas storage process exist. A laboratory study conducted in 1999 to determine the feasibility of a gas-hydrates storage process looked promising. The subsequent scale-up of the process was designed to preserve important features of the laboratory apparatus: (1) symmetry of hydrate accumulation, (2) favorable surface area to volume ratio, (3) heat exchanger surfaces serving as hydrate adsorption surfaces, (4) refrigeration system to remove heat liberated from bulk hydrate formation, (5)more » rapid hydrate formation in a non-stirred system, (6) hydrate self-packing, and (7) heat-exchanger/adsorption plates serving dual purposes to add or extract energy for hydrate formation or decomposition. The hydrate formation/storage/decomposition Proof-of-Concept (POC) pressure vessel and supporting equipment were designed, constructed, and tested. This final report details the design of the scaled POC gas-hydrate storage process, some comments on its fabrication and installation, checkout of the equipment, procedures for conducting the experimental tests, and the test results. The design, construction, and installation of the equipment were on budget target, as was the tests that were subsequently conducted. The budget proposed was met. The primary goal of storing 5000-scf of natural gas in the gas hydrates was exceeded in the final test, as 5289-scf of gas storage was achieved in 54.33 hours. After this 54.33-hour period, as pressure in the formation vessel declined, additional gas went into the hydrates until equilibrium pressure/temperature was reached, so that ultimately more than the 5289-scf storage was achieved. The time required to store the 5000-scf (48.1 hours of operating time) was longer than designed. The lower gas hydrate formation rate is attributed

  17. Volume, conservation and instruction: A classroom based solomon four group study of conflict

    NASA Astrophysics Data System (ADS)

    Rowell, J. A.; Dawson, C. J.

    The research reported is an attempt to widen the applicability of Piagetian theory-based conflict methodology from individual situations to whole classes. A Solomon four group experimental design augmented by a delayed posttest, was used to provide a controlled framework for studying the effects of conflict instruction on Grade 8 students' ability to conserve volume of noncompressible matter, and to apply that knowledge to gas volume. The results, reported for individuals and groups, show the methodology can be effective, particularly when instruction is preceded by a pretest. Immediate posttest differences in knowledge of gas volume between spontaneous (pretest) conservers and instructed conservers of volume of noncompressible matter were no longer in evidence on the delayed posttest. This observation together with the effects of pretesting and of the instructional sequence are shown to have a consistent Piagetian interpretation. Practical implications are discussed.

  18. Gas Turbine Engine Production Implementation Study : Volume 1. Executive Summary.

    DOT National Transportation Integrated Search

    1973-07-01

    The report presents an assessment of available information pertaining to implementing mass production of gas turbine powered automobiles. The status of the technology and implementation schedule visibility reported herein is that existing at the time...

  19. Gas Turbine Engine Production Implementation Study : Volume 2. Technical Discussion.

    DOT National Transportation Integrated Search

    1973-07-01

    This report presents a summarization and assessment of available information pertaining to the potential for implementing mass production of gas turbine engine-powered automobiles. The main topic covered is the schedule requirement for that implement...

  20. Apparatus for dispensing compressed natural gas and liquified natural gas to natural gas powered vehicles

    DOEpatents

    Bingham, Dennis A.; Clark, Michael L.; Wilding, Bruce M.; Palmer, Gary L.

    2007-05-29

    A fueling facility and method for dispensing liquid natural gas (LNG), compressed natural gas (CNG) or both on-demand. The fueling facility may include a source of LNG, such as cryogenic storage vessel. A low volume high pressure pump is coupled to the source of LNG to produce a stream of pressurized LNG. The stream of pressurized LNG may be selectively directed through an LNG flow path or to a CNG flow path which includes a vaporizer configured to produce CNG from the pressurized LNG. A portion of the CNG may be drawn from the CNG flow path and introduced into the CNG flow path to control the temperature of LNG flowing therethrough. Similarly, a portion of the LNG may be drawn from the LNG flow path and introduced into the CNG flow path to control the temperature of CNG flowing therethrough.

  1. 76 FR 58741 - Storage Reporting Requirements of Interstate and Intrastate Natural Gas Companies

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-22

    ... sets of pipelines must include: (1) The identity of each customer injecting gas into storage and/or withdrawing gas from storage (including, for interstate pipelines, any affiliate relationship), (2) The rate... applicable to each storage customer, (4) For each storage customer, the volume of gas (in dekatherms...

  2. Gas adsorption and desorption effects on high pressure small volume cylinders and their relevance to atmospheric trace gas analysis

    NASA Astrophysics Data System (ADS)

    Satar, Ece; Nyfeler, Peter; Pascale, Céline; Niederhauser, Bernhard; Leuenberger, Markus

    2017-04-01

    Long term atmospheric monitoring of trace gases requires great attention to precision and accuracy of the measurement setups. For globally integrated and well established greenhouse gas observation networks, the World Meteorological Organization (WMO) has set recommended compatibility goals within the framework of its Global Atmosphere Watch (GAW) Programme [1]. To achieve these challenging limits, the measurement systems are regularly calibrated with standard gases of known composition. Therefore, the stability of the primary and secondary gas standards over time is an essential issue. Past studies have explained the small instabilities in high pressure standard gas cylinders through leakage, diffusion, regulator effects, gravimetric fractionation and surface processes [2, 3]. The latter include adsorption/desorption, which are functions of temperature, pressure and surface properties. For high pressure standard gas mixtures used in atmospheric trace gas analysis, there exists only a limited amount of data and few attempts to quantify the surface processes [4, 5]. Specifically, we have designed a high pressure measurement chamber to investigate trace gases and their affinity for adsorption on different surfaces over various temperature and pressure ranges. Here, we focus on measurements of CO2, CH4 and CO using a cavity ring down spectroscopy analyzer and quantify the concentration changes due to adsorption/desorption. In this study, the first results from these prototype cylinders of steel and aluminum will be presented. References [1] World Meteorological Organization (WMO), Global Atmosphere Watch.(GAW): Report No. 229, 18th WMO/IAEA Meeting on Carbon Dioxide, Other Greenhouse Gases and Related Tracers Measurement Techniques (GGMT-2015), 2016. [2] Keeling, R. F., Manning, A. C., Paplawsky, W. J., and Cox, A. C.: On the long-term stability of reference gases for atmospheric O2 /N2 and CO2 measurements, Tellus B, 59, 10.3402/tellusb.v59i1.16964, 2007. [3

  3. Using underground gas storage to replace the swing capacity of the giant natural gas field of Groningen in the Netherlands. A reservoir performance feasibility study.

    NASA Astrophysics Data System (ADS)

    Juez-Larre, Joaquim; Remmelts, Gijs; Breunese, Jaap; Van Gessel, Serge; Leeuwenburgh, Olwijn

    2017-04-01

    In this study we probe the ultimate potential Underground Gas Storage (UGS) capacity of the Netherlands by carrying out a detailed feasibility study on inflow performances of all available onshore natural gas reservoirs. The Netherlands is one of the largest natural gas producers in Western Europe. The current decline of its national production and looming production restrictions on its largest field of Groningen -owing to its induced seismicity- have recently made necessary to upgrade the two largest UGS of Norg and Grijpskerk. The joined working volume of these two UGS is expected to replace the swing capacity of the Groningen field to continue guaranteeing the security of supply of low calorific natural gas. The question is whether the current UGS configuration will provide the expected working storage capacity unrestricted by issues on reservoir performances and/or induced seismicity. This matter will be of paramount importance in the near future when production restrictions and/or the advance state of depletion of the Groningen field will turn the Netherlands into a net importer of high calorific natural gas. By then, the question will be whether the current UGS will still be economically attractive to continue operating, or if additional/alternative types of UGS will be needed?. Hence the characterization and ranking of the best potential reservoirs available today is of paramount importance for future UGS developments. We built an in-house automated module based on the application of the traditional inflow performance relationship analysis to screen the performances of 156 natural gas reservoirs in onshore Netherlands. Results enable identifying the 72 best candidates with an ultimate total working volume capacity of 122±30 billion Sm3. A detailed sensitivity analysis shows the impact of variations in the reservoir properties or wellbore/tubing configurations on withdrawal performances and storage capacity. We validate our predictions by comparing them to

  4. Gas shale/oil shale

    USGS Publications Warehouse

    Fishman, N.S.; Bereskin, S.R.; Bowker, K.A.; Cardott, B.J.; Chidsey, T.C.; Dubiel, R.F.; Enomoto, C.B.; Harrison, W.B.; Jarvie, D.M.; Jenkins, C.L.; LeFever, J.A.; Li, Peng; McCracken, J.N.; Morgan, C.D.; Nordeng, S.H.; Nyahay, R.E.; Schamel, Steven; Sumner, R.L.; Wray, L.L.

    2011-01-01

    The production of natural gas from shales continues to increase in North America, and shale gas exploration is on the rise in other parts of the world since the previous report by this committee was published by American Association of Petroleum Geologists, Energy Minerals Division (2009). For the United States, the volume of proved reserves of natural gas increased 11% from 2008 to 2009, the increase driven largely by shale gas development (Energy Information Administration 2010c). Furthermore, shales have increasingly become targets of exploration for oil and condensate as well as gas, which has served to greatly expand their significance as ‘‘unconventional’’ petroleum reservoirs.This report provides information about specific shales across North America and Europe from which gas (biogenic or thermogenic), oil, or natural gas liquids are produced or is actively being explored. The intent is to reflect the recently expanded mission of the Energy Minerals Division (EMD) Gas Shales Committee to serve as a single point of access to technical information on shales regardless of the type of hydrocarbon produced from them. The contents of this report were drawn largely from contributions by numerous members of the EMD Gas Shales Advisory Committee, with much of the data being available from public websites such as state or provincial geological surveys or other public institutions. Shales from which gas or oil is being produced in the United States are listed in alphabetical order by shale name. Information for Canada is presented by province, whereas for Europe, it is presented by country.

  5. Unicam Activity Framework (UAF)

    ERIC Educational Resources Information Center

    Gagliardi, R.; Mauri, M.; Polzonetti, A.

    2016-01-01

    This presentation illustrates the framework of processing performance of the faculty of the University of Camerino. The evaluation criteria are explained and the technological structure that allows automatic performance assessment available online anywhere and anytime. The designed framework is usually applied to the performance evaluation of…

  6. Applications of Gas Imaging Micro-Well Detectors to an Advanced Compton Telescope

    NASA Technical Reports Server (NTRS)

    Bloser, P. F.; Hunter, S. D.; Ryan, J. M.; McConnell, M. L.; Miller, R. S.; Jackson, T. N.; Bai, B.; Jung, S.

    2003-01-01

    We present a concept for an Advanced Compton Telescope (ACT) based on the use of pixelized gas micro-well detectors to form a three-dimensional electron track imager. A micro-well detector consists of an array of individual micro-patterned proportional counters opposite a planar drift electrode. When combined with thin film transistor array readouts, large gas volumes may be imaged with very good spatial and energy resolution at reasonable cost. The third dimension is determined by timing the drift of the ionization electrons. The primary advantage of this approach is the excellent tracking of the Compton recoil electron that is possible in a gas volume. Such good electron tracking allows us to reduce the point spread function of a single incident photon dramatically, greatly improving the imaging capability and sensitivity. The polarization sensitivity, which relies on events with large Compton scattering angles, is particularly enhanced. We describe a possible ACT implementation of this technique, in which the gas tracking volume is surrounded by a CsI calorimeter, and present our plans to build and test a small prototype over the next three years.

  7. Quantity of flowback and produced waters from unconventional oil and gas exploration.

    PubMed

    Kondash, Andrew J; Albright, Elizabeth; Vengosh, Avner

    2017-01-01

    The management and disposal of flowback and produced waters (FP water) is one of the greatest challenges associated with unconventional oil and gas development. The development and production of unconventional natural gas and oil is projected to increase in the coming years, and a better understanding of the volume and quality of FP water is crucial for the safe management of the associated wastewater. We analyzed production data using multiple statistical methods to estimate the total FP water generated per well from six of the major unconventional oil and gas formations in the United States. The estimated median volume ranges from 1.7 to 14.3millionL (0.5 to 3.8milliongal) of FP per well over the first 5-10years of production. Using temporal volume production and water quality data, we show a rapid increase of the salinity associated with a decrease of FP production rates during the first months of unconventional oil and gas production. Based on mass-balance calculations, we estimate that only 4-8% of FP water is composed of returned hydraulic fracturing fluids, while the remaining 92-96% of FP water is derived from naturally occurring formation brines that is extracted together with oil and gas. The salinity and chemical composition of the formation brines are therefore the main limiting factors for beneficial reuse of unconventional oil and gas wastewater. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Automotive Gas Turbine Power System-Performance Analysis Code

    NASA Technical Reports Server (NTRS)

    Juhasz, Albert J.

    1997-01-01

    An open cycle gas turbine numerical modelling code suitable for thermodynamic performance analysis (i.e. thermal efficiency, specific fuel consumption, cycle state points, working fluid flowrates etc.) of automotive and aircraft powerplant applications has been generated at the NASA Lewis Research Center's Power Technology Division. The use this code can be made available to automotive gas turbine preliminary design efforts, either in its present version, or, assuming that resources can be obtained to incorporate empirical models for component weight and packaging volume, in later version that includes the weight-volume estimator feature. The paper contains a brief discussion of the capabilities of the presently operational version of the code, including a listing of input and output parameters and actual sample output listings.

  9. ANOMALOUSLY PRESSURED GAS DISTRIBUTION IN THE WIND RIVER BASIN, WYOMING

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dr. Ronald C. Surdam

    2003-03-31

    velocity inversion surface (i.e., pressure surface boundary); (b) detection and delineation of gas-charged domains beneath the velocity inversion surface (i.e., volumes characterized by anomalously slow velocities); and (c) variations within the internal fabric of the velocity anomaly (i.e., variations in gas charge). Using these procedures, it is possible to construct an anomalous velocity profile for an area, or in the case of the Wind River Basin, an anomalous velocity volume for the whole basin. Such an anomalous velocity volume has been constructed for the Wind River Basin based on 1600 mi of 2-D seismic data and 175 sonic logs, for a total of 132,000 velocity/depth profiles. The technology was tested by constructing six cross sections through the anomalous velocity volume coincident with known gas fields. In each of the cross sections, a strong and intense anomalously slow velocity domain coincided with the gas productive rock/fluid interval; there were no exceptions. To illustrate the applicability of the technology, six target areas were chosen from a series of cross sections through the anomalous velocity volume. The criteria for selection of these undrilled target areas were (1) they were characterized by anomalous velocity domains comparable to known gas fields; (2) they had structural, stratigraphic, and temporal elements analogous to one of the known fields; and (3) they were located at least six sonic miles from the nearest known gas field. The next step in the exploration evolution would be to determine if the detected gas-charged domains are intersected by reservoir intervals characterized by enhanced porosity and permeability. If, in any of these targeted areas, the gas-charged domains are penetrated by reservoir intervals with enhanced storage and deliverability, the gas-charged domains could be elevated to drillable prospects. Hopefully, the work described in this report (the detection and delineation of gas-charged domains) will enable operators in the

  10. Characterization and calibration of gas sensor systems at ppb level—a versatile test gas generation system

    NASA Astrophysics Data System (ADS)

    Leidinger, Martin; Schultealbert, Caroline; Neu, Julian; Schütze, Andreas; Sauerwald, Tilman

    2018-01-01

    This article presents a test gas generation system designed to generate ppb level gas concentrations from gas cylinders. The focus is on permanent gases and volatile organic compounds (VOCs) for applications like indoor and outdoor air quality monitoring or breath analysis. In the design and the setup of the system, several issues regarding handling of trace gas concentrations have been considered, addressed and tested. This concerns not only the active fluidic components (flow controllers, valves), which have been chosen specifically for the task, but also the design of the fluidic tubing regarding dead volumes and delay times, which have been simulated for the chosen setup. Different tubing materials have been tested for their adsorption/desorption characteristics regarding naphthalene, a highly relevant gas for indoor air quality monitoring, which has generated high gas exchange times in a previous gas mixing system due to long time adsorption/desorption effects. Residual gas contaminations of the system and the selected carrier air supply have been detected and quantified using both an analytical method (GC-MS analysis according to ISO 16000-6) and a metal oxide semiconductor gas sensor, which detected a maximum contamination equivalent to 28 ppb of carbon monoxide. A measurement strategy for suppressing even this contamination has been devised, which allows the system to be used for gas sensor and gas sensor system characterization and calibration in the low ppb concentration range.

  11. An Independent Scientific Assessment of Well Stimulation in California Volume III

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jane C.S. Long; Laura C. Feinstein; Birkholzer, Jens

    This study is issued in three volumes. Volume I, issued in January 2015, describes how well stimulation technologies work, how and where operators deploy these technologies for oil and gas production in California, and where they might enable production in the future. Volume II, issued in July 2015, discusses how well stimulation could affect water, atmosphere, seismic activity, wildlife and vegetation, and human health. Volume II reviews available data, and identifies knowledge gaps and alternative practices that could avoid or mitigate these possible impacts. Volume III, this volume, presents case studies that assess environmental issues and qualitative risks for specificmore » geographic regions. The Summary Report summarizes key findings, conclusions and recommendations of all three volumes.« less

  12. An Independent Scientific Assessment of Well Stimulation in California Volume II

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jane C.S. Long; Laura C. Feinstein; Corinne E. Bachmann

    This study is issued in three volumes. Volume I, issued in January 2015, describes how well stimulation technologies work, how and where operators deploy these technologies for oil and gas production in California, and where they might enable production in the future. Volume II, the present volume, discusses how well stimulation could affect water, atmosphere, seismic activity, wildlife and vegetation, and human health. Volume II reviews available data, and identifies knowledge gaps and alternative practices that could avoid or mitigate these possible impacts. Volume III, also issued in July 2015, presents case studies that assess environmental issues and qualitative risksmore » for specific geographic regions. A final Summary Report summarizes key findings, conclusions and recommendations of all three volumes.« less

  13. Structural Impairments of Hippocampus in Coal Mine Gas Explosion-Related Posttraumatic Stress Disorder

    PubMed Central

    Lang, Xu; Li, Huabing; Qin, Wen; Yu, Chunshui

    2014-01-01

    Investigations on hippocampal and amygdalar volume have revealed inconsistent results in patients with posttraumatic stress disorder (PTSD). Little is known about the structural covariance alterations between the hippocampus and amygdala in PTSD. In this study, we evaluated the alteration in the hippocampal and amygdalar volume and their structural covariance in the coal mine gas explosion related PTSD. High resolution T1-weighted magnetic resonance imaging (MRI) was performed on coal mine gas explosion related PTSD male patients (n = 14) and non-traumatized coalminers without PTSD (n = 25). The voxel-based morphometry (VBM) method was used to test the inter-group differences in hippocampal and amygdalar volume as well as the inter-group differences in structural covariance between the ipsilateral hippocampus and amygdala. PTSD patients exhibited decreased gray matter volume (GMV) in the bilateral hippocampi compared to controls (p<0.05, FDR corrected). GMV covariances between the ipsilateral hippocampus and amygdala were significantly reduced in PTSD patients compared with controls (p<0.05, FDR corrected). The coalminers with gas explosion related PTSD had decreased hippocampal volume and structural covariance with the ipsilateral amygdala, suggesting that the structural impairment of the hippocampus may implicate in the pathophysiology of PTSD. PMID:25000505

  14. Acoustic observations of gas bubble streams in the NW Black Sea as a method for estimation of gas flux from vent sites

    NASA Astrophysics Data System (ADS)

    Artemov, Yu. G.

    2003-04-01

    Relatively recent discovery of the natural CH_4 gas seepage from the sea bed had action upon the philosophy of CH_4 contribution to global budgets. So far as numerous gas vent sites are known, an acceptable method for released gas quantification is required. In particular, the questions should be answered as follows: 1) how much amount of gas comes into the water column due to a certain bubble stream, 2) how much amount of gas comes into the water column due to a certain seepage area of the see floor, 3) how much amount of gas diffuses into the water and how much gas phase enters the atmosphere. Echo-sounder is the habitual equipment for detecting gas plumes (flares) in the water column. To provide observations of gas seeps with bubbles tracking, single target and volume backscattering strength measurements, we use installed on board the R/V "Professor Vodyanitskiy" dual frequency (38 and 120 kHz) split-beam scientific echo-sounder SIMRAD EK-500. Dedicated software is developed to extract from the raw echo data and to handle the definite information for analyses of gas bubble streams features. This improved hydroacoustic techniques allows to determine gas bubbles size spectrum at different depths through the water column as well as rise velocity of bubbles of different sizes. For instance, bubble of 4.5 mm diameter has rising speed of 25.8 cm/sec at 105 m depth, while bubble of 1.7 mm diameter has rising speed of 16.3 cm/sec at 32 m depth. Using volume backscattering measurements in addition, it is possible to evaluate flux of the gas phase produced by methane bubble streams and to learn of its fate in the water column. Ranking of various gas plumes by flux rate value is available also. In this presentation results of acoustic observations at the shallow NW Black Sea seepage area are given.

  15. Carbon deposition model for oxygen-hydrocarbon combustion, volume 1

    NASA Technical Reports Server (NTRS)

    Hernandez, R.; Ito, J. I.; Niiya, K. Y.

    1987-01-01

    Presented are details of the design, fabrication, and testing of subscale hardware used in the evaluation of carbon deposition characteristics of liquid oxygen and three hydrocarbon fuels for both main chamber and preburner/gas generator operating conditions. In main chamber conditions, the deposition of carbon on the combustion chamber wall was investigated at mixture ratios of 2.0 to 4.0 and at pressures of 1000 to 1500 psia. No carbon deposition on the chamber walls was detected at these main chamber mixture ratios. In preburner/gas generator operating conditions, the deposition of carbon on the turbine simulator tubes was evaluated at mixture ratios of 0.20 to 0.60 and at chamber pressures of 720 to 1650 psia. The results of the tests showed carbon deposition rate to be a strong function of mixture ratio and a weak function of chamber pressure. Further analyses evaluated the operational consequences of carbon deposition on preburner/gas generator performance. The report is in two volumes, of which this is Volume 1 covering the main body of the report plus Appendixes A through D.

  16. Diffusion Lung Imaging with Hyperpolarized Gas MRI

    PubMed Central

    Yablonskiy, Dmitriy A; Sukstanskii, Alexander L; Quirk, James D

    2015-01-01

    Lung imaging using conventional 1H MRI presents great challenges due to low density of lung tissue, lung motion and very fast lung tissue transverse relaxation (typical T2* is about 1-2 ms). MRI with hyperpolarized gases (3He and 129Xe) provides a valuable alternative due to a very strong signal originated from inhaled gas residing in the lung airspaces and relatively slow gas T2* relaxation (typical T2* is about 20-30 ms). Though in vivo human experiments should be done very fast – usually during a single breath-hold. In this review we describe the recent developments in diffusion lung MRI with hyperpolarized gases. We show that a combination of modeling results of gas diffusion in lung airspaces and diffusion measurements with variable diffusion-sensitizing gradients allows extracting quantitative information on the lung microstructure at the alveolar level. This approach, called in vivo lung morphometry, allows from a less than 15-second MRI scan, providing quantitative values and spatial distributions of the same physiological parameters as are measured by means of the “standard” invasive stereology (mean linear intercept, surface-to-volume ratio, density of alveoli, etc.). Besides, the approach makes it possible to evaluate some advanced Weibel parameters characterizing lung microstructure - average radii of alveolar sacs and ducts, as well as the depth of their alveolar sleeves. Such measurements, providing in vivo information on the integrity of pulmonary acinar airways and their changes in different diseases, are of great importance and interest to a broad range of physiologists and clinicians. We also discuss a new type of experiments that are based on the in vivo lung morphometry technique combined with quantitative CT measurements as well as with the Gradient Echo MRI measurements of hyperpolarized gas transverse relaxation in the lung airspaces. Such experiments provide additional information on the blood vessel volume fraction, specific gas

  17. Institute on oil and gas law and taxation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ernst, A.C.

    1979-01-01

    This volume contains discussions, by acknowledged authorities, of important legal and tax problems of the oil and gas industries. The articles were delivered in condensed form as lectures during the Thirtieth Annual Institute on Oil and Gas Law and Taxation held by the Southwest Legal Foundation. The following topics are discussed: crude oil issues; natural gas liquid-selected problems in regulation; recent developments in DOE audits of refiners and marketers; contrasting administrative procedures before the DOE, DOE organization - the limit of regulatory power, current major developments in federal natural gas legislation and regulation; dedication and abandonment - problems under sectionmore » 7(b) of the Natural Gas Act; Natural gas pipelines - their regulation and their current problems, current antitrust developments in oil and gas exploration and production; developments in nonregulatory oil and gas law; recent developments in oil and gas taxation; entity selection - an experience in alchemy - a comparison of corporations, partnerships, and joint ventures; foreign money and US oil and gas - tax considerations; 1978 legislative developments in oil and gas taxation; and recapture of intangibles under section 1254. (DC)« less

  18. [Interpretation and use of routine pulmonary function tests: Spirometry, static lung volumes, lung diffusion, arterial blood gas, methacholine challenge test and 6-minute walk test].

    PubMed

    Bokov, P; Delclaux, C

    2016-02-01

    Resting pulmonary function tests (PFT) include the assessment of ventilatory capacity: spirometry (forced expiratory flows and mobilisable volumes) and static volume assessment, notably using body plethysmography. Spirometry allows the potential definition of obstructive defect, while static volume assessment allows the potential definition of restrictive defect (decrease in total lung capacity) and thoracic hyperinflation (increase in static volumes). It must be kept in mind that this evaluation is incomplete and that an assessment of ventilatory demand is often warranted, especially when facing dyspnoea: evaluation of arterial blood gas (searching for respiratory insufficiency) and measurement of the transfer coefficient of the lung, allowing with the measurement of alveolar volume to calculate the diffusing capacity of the lung for CO (DLCO: assessment of alveolar-capillary wall and capillary blood volume). All these pulmonary function tests have been the subject of an Americano-European Task force (standardisation of lung function testing) published in 2005, and translated in French in 2007. Interpretative strategies for lung function tests have been recommended, which define abnormal lung function tests using the 5th and 95th percentiles of predicted values (lower and upper limits of normal values). Thus, these recommendations need to be implemented in all pulmonary function test units. A methacholine challenge test will only be performed in the presence of an intermediate pre-test probability for asthma (diagnostic uncertainty), which is an infrequent setting. The most convenient exertional test is the 6-minute walk test that allows the assessment of walking performance, the search for arterial desaturation and the quantification of dyspnoea complaint. Copyright © 2015 Société nationale française de médecine interne (SNFMI). Published by Elsevier SAS. All rights reserved.

  19. Assessment of Undiscovered Oil and Gas Resources of Four West Africa Geologic Provinces

    USGS Publications Warehouse

    Brownfield, Michael E.; Charpentier, Ronald R.; Cook, Troy A.; Klett, Timothy R.; Pitman, Janet K.; Pollastro, Richard M.; Schenk, Christopher J.; Tennyson, Marilyn E.

    2010-01-01

    Four geologic provinces located along the northwest and west-central coast of Africa recently were assessed for undiscovered oil, natural gas, and natural gas liquids resources as part of the U.S. Geological Survey's (USGS) World Oil and Gas Assessment. Using a geology-based assessment methodology, the USGS estimated mean volumes of 71.7 billion barrels of oil, 187.2 trillion cubic feet of natural gas, and 10.9 billion barrels of natural gas liquids.

  20. Assessment of undiscovered oil and gas resources of four East Africa Geologic Provinces

    USGS Publications Warehouse

    Brownfield, Michael E.; Schenk, Christopher J.; Charpentier, Ronald R.; Klett, Timothy R.; Cook, Troy A.; Pollastro, Richard M.; Tennyson, Marilyn E.

    2012-01-01

    Four geologic provinces along the east coast of Africa recently were assessed for undiscovered, technically recoverable oil, natural gas, and natural gas liquids resources as part of the U.S. Geological Survey's (USGS) World Oil and Gas Assessment. Using a geology-based assessment methodology, the USGS estimated mean volumes of 27.6 billion barrels of oil, 441.1 trillion cubic feet of natural gas, and 13.77 billion barrels of natural gas liquids.

  1. Greenhouse Gas Analysis by GC/MS

    NASA Astrophysics Data System (ADS)

    Bock, E. M.; Easton, Z. M.; Macek, P.

    2015-12-01

    Current methods to analyze greenhouse gases rely on designated complex, multiple-column, multiple-detector gas chromatographs. A novel method was developed in partnership with Shimadzu for simultaneous quantification of carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O) in environmental gas samples. Gas bulbs were used to make custom standard mixtures by injecting small volumes of pure analyte into the nitrogen-filled bulb. Resulting calibration curves were validated using a certified gas standard. The use of GC/MS systems to perform this analysis has the potential to move the analysis of greenhouse gasses from expensive, custom GC systems to standard single-quadrupole GC/MS systems that are available in most laboratories, which wide variety of applications beyond greenhouse gas analysis. Additionally, use of mass spectrometry can provide confirmation of identity of target analytes, and will assist in the identification of unknown peaks should they be present in the chromatogram.

  2. Gas filtration and separation with nano-size ceramics

    NASA Astrophysics Data System (ADS)

    Lysenko, V. I.; Trufanov, D. Yu.; Bardakhanov, S. P.

    2011-06-01

    Filtration and separation properties were studied for filters made from open-porosity ceramics (sintered from authors-developed silicon dioxide nanopowder "tarkosil". Key parameters were measured for samples of ceramics produced at different sintering temperatures: porosity, gas permeability coefficient, relative time of standard volume fill-up, gas mixture separation coefficient. The possibility of using the described ceramics for helium enrichment was demonstrated with examples of helium-nitrogen and helium-methane mixtures.

  3. Prediction of resource volumes at untested locations using simple local prediction models

    USGS Publications Warehouse

    Attanasi, E.D.; Coburn, T.C.; Freeman, P.A.

    2006-01-01

    This paper shows how local spatial nonparametric prediction models can be applied to estimate volumes of recoverable gas resources at individual undrilled sites, at multiple sites on a regional scale, and to compute confidence bounds for regional volumes based on the distribution of those estimates. An approach that combines cross-validation, the jackknife, and bootstrap procedures is used to accomplish this task. Simulation experiments show that cross-validation can be applied beneficially to select an appropriate prediction model. The cross-validation procedure worked well for a wide range of different states of nature and levels of information. Jackknife procedures are used to compute individual prediction estimation errors at undrilled locations. The jackknife replicates also are used with a bootstrap resampling procedure to compute confidence bounds for the total volume. The method was applied to data (partitioned into a training set and target set) from the Devonian Antrim Shale continuous-type gas play in the Michigan Basin in Otsego County, Michigan. The analysis showed that the model estimate of total recoverable volumes at prediction sites is within 4 percent of the total observed volume. The model predictions also provide frequency distributions of the cell volumes at the production unit scale. Such distributions are the basis for subsequent economic analyses. ?? Springer Science+Business Media, LLC 2007.

  4. Changes in thoracic gas volume with air-displacement plethysmography after a weight loss program in overweight and obese women.

    PubMed

    Minderico, C S; Silva, A M; Fields, D A; Branco, T L; Martins, S S; Teixeira, P J; Sardinha, L B

    2008-03-01

    This study was designed to compare measured and predicted thoracic gas volume (V (TG)) after weight loss and to analyze the effect of body composition confounders such as waist circumference (WC) on measured V (TG) changes. Prospective intervention study. Outpatient University Laboratory, Lisbon, Portugal. Eighty-five overweight and obese women (body mass index = 30.0+/-3.5 kg/m(2); age = 39.0+/-5.7 years) participating in a 16-month university-based weight control program designed to increase physical activity and improve diet. Body weight (Wb), body volume (Vb), body density (Db), fat mass (FM), percent fat mass (%FM) and fat-free mass (FFM) were assessed by air-displacement plethysmography (ADP) at baseline and at post-intervention (16 months). The ADP assessment included a protocol to measure V (TG) and a software-based predicted V (TG). Dual-energy X-ray absorptiometry (DXA) (Hologic QDR 1500) was also used to estimate FM, %FM and FFM. Maximal oxygen uptake (VO(2) max) was assessed with a modified Balke cardiopulmonary exercise testing protocol with a breath-by-breath gas analysis. Significant differences between the baseline and post-weight loss intervention were observed for body weight and composition (Vb, Db, %FM, FM and FFM), and measures of V (TG) (measured: Delta=0.2 l, P<0.001; predicted: Delta=0.01 l, P<0.010) variables. Measured V (TG) change was negatively associated with the change in the WC (P=0.008), controlling for VO(2) max and age (P=0.007, P=0.511 and P=0.331). Linear regression analysis results indicated that %FM and FM using the measured and predicted V (TG) explained 72 and 76%, and 86 and 90% respectively, of the variance in %FM and FM changes using dual-energy x-ray absorptiometry. After weight loss, measured V (TG) increased significantly, which was partially attributed to changes is an indicator of body fat distribution such as WC. Consequently, measured and predicted V (TG) should not be used interchangeably when tracking changes in

  5. 30 CFR 1206.174 - How do I value gas production when an index-based method cannot be used?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... dispositions of like-quality gas in the same field (or, if necessary to obtain a reasonable sample, from the..., quality of gas, residue gas, or gas plant products, volume, and such other factors as may be appropriate... consideration of other information relevant in valuing like-quality gas, residue gas, or gas plant products...

  6. Gas content and composition of gas hydrate from sediments of the southeastern North American continental margin

    USGS Publications Warehouse

    Lorenson, T.D.; Collett, T.S.

    2000-01-01

    Gas hydrate samples were recovered from four sites (Sites 994, 995, 996, and 997) along the crest of the Blake Ridge during Ocean Drilling Program (ODP) Leg 164. At Site 996, an area of active gas venting, pockmarks, and chemosynthetic communities, vein-like gas hydrate was recovered from less than 1 meter below seafloor (mbsf) and intermittently through the maximum cored depth of 63 mbsf. In contrast, massive gas hydrate, probably fault filling and/or stratigraphically controlled, was recovered from depths of 260 mbsf at Site 994, and from 331 mbsf at Site 997. Downhole-logging data, along with geochemical and core temperature profiles, indicate that gas hydrate at Sites 994, 995, and 997 occurs from about 180 to 450 mbsf and is dispersed in sediment as 5- to 30-m-thick zones of up to about 15% bulk volume gas hydrate. Selected gas hydrate samples were placed in a sealed chamber and allowed to dissociate. Evolved gas to water volumetric ratios measured on seven samples from Site 996 ranged from 20 to 143 mL gas/mL water to 154 mL gas/mL water in one sample from Site 994, and to 139 mL gas/mL water in one sample from Site 997, which can be compared to the theoretical maximum gas to water ratio of 216. These ratios are minimum gas/water ratios for gas hydrate because of partial dissociation during core recovery and potential contamination with pore waters. Nonetheless, the maximum measured volumetric ratio indicates that at least 71% of the cages in this gas hydrate were filled with gas molecules. When corrections for pore-water contamination are made, these volumetric ratios range from 29 to 204, suggesting that cages in some natural gas hydrate are nearly filled. Methane comprises the bulk of the evolved gas from all sites (98.4%-99.9% methane and 0%-1.5% CO2). Site 996 hydrate contained little CO2 (0%-0.56%). Ethane concentrations differed significantly from Site 996, where they ranged from 720 to 1010 parts per million by volume (ppmv), to Sites 994 and 997

  7. Effect of Cross-Linking on Free Volume Properties of PEG Based Thiol-Ene Networks

    NASA Astrophysics Data System (ADS)

    Ramakrishnan, Ramesh; Vasagar, Vivek; Nazarenko, Sergei

    According to the Fox and Loshaek theory, in elastomeric networks, free volume decreases linearly with the cross-link density increase. The aim of this study is to show whether the poly(ethylene glycol) (PEG) based multicomponent thiol-ene elastomeric networks demonstrate this model behavior? Networks with a broad cross-link density range were prepared by changing the ratio of the trithiol crosslinker to PEG dithiol and then UV cured with PEG diene while maintaining 1:1 thiol:ene stoichiometry. Pressure-volume-temperature (PVT) data of the networks was generated from the high pressure dilatometry experiments which was fit using the Simha-Somcynsky Equation-of-State analysis to obtain the fractional free volume of the networks. Using Positron Annihilation Lifetime Spectroscopy (PALS) analysis, the average free volume hole size of the networks was also quantified. The fractional free volume and the average free volume hole size showed a linear change with the cross-link density confirming that the Fox and Loshaek theory can be applied to this multicomponent system. Gas diffusivities of the networks showed a good correlation with free volume. A free volume based model was developed to describe the gas diffusivity trends as a function of cross-link density.

  8. Minimizing EVA Airlock Time and Depress Gas Losses

    NASA Technical Reports Server (NTRS)

    Trevino, Luis A.; Lafuse, Sharon A.

    2008-01-01

    This paper describes the need and solution for minimizing EVA airlock time and depress gas losses using a new method that minimizes EVA out-the-door time for a suited astronaut and reclaims most of the airlock depress gas. This method consists of one or more related concepts that use an evacuated reservoir tank to store and reclaim the airlock depress gas. The evacuated tank can be an inflatable tank, a spent fuel tank from a lunar lander descent stage, or a backup airlock. During EVA airlock operations, the airlock and reservoir would be equalized at some low pressure, and through proper selection of reservoir size, most of the depress gas would be stored in the reservoir for later reclamation. The benefit of this method is directly applicable to long duration lunar and Mars missions that require multiple EVA missions (up to 100, two-person lunar EVAs) and conservation of consumables, including depress pump power and depress gas. The current ISS airlock gas reclamation method requires approximately 45 minutes of the astronaut s time in the airlock and 1 KW in electrical power. The proposed method would decrease the astronaut s time in the airlock because the depress gas is being temporarily stored in a reservoir tank for later recovery. Once the EVA crew is conducting the EVA, the volume in the reservoir would be pumped back to the cabin at a slow rate. Various trades were conducted to optimize this method, which include time to equalize the airlock with the evacuated reservoir versus reservoir size, pump power to reclaim depress gas versus time allotted, inflatable reservoir pros and cons (weight, volume, complexity), and feasibility of spent lunar nitrogen and oxygen tanks as reservoirs.

  9. Supersonic Flow of Chemically Reacting Gas-Particle Mixtures. Volume 2: RAMP - A Computer Code for Analysis of Chemically Reacting Gas-Particle Flows

    NASA Technical Reports Server (NTRS)

    Penny, M. M.; Smith, S. D.; Anderson, P. G.; Sulyma, P. R.; Pearson, M. L.

    1976-01-01

    A computer program written in conjunction with the numerical solution of the flow of chemically reacting gas-particle mixtures was documented. The solution to the set of governing equations was obtained by utilizing the method of characteristics. The equations cast in characteristic form were shown to be formally the same for ideal, frozen, chemical equilibrium and chemical non-equilibrium reacting gas mixtures. The characteristic directions for the gas-particle system are found to be the conventional gas Mach lines, the gas streamlines and the particle streamlines. The basic mesh construction for the flow solution is along streamlines and normals to the streamlines for axisymmetric or two-dimensional flow. The analysis gives detailed information of the supersonic flow and provides for a continuous solution of the nozzle and exhaust plume flow fields. Boundary conditions for the flow solution are either the nozzle wall or the exhaust plume boundary.

  10. Hollow fibers for compact infrared gas sensors

    NASA Astrophysics Data System (ADS)

    Lambrecht, A.; Hartwig, S.; Herbst, J.; Wöllenstein, J.

    2008-02-01

    Hollow fibers can be used for compact infrared gas sensors. The guided light is absorbed by the gas introduced into the hollow core. High sensitivity and a very small sampling volume can be achieved depending on fiber parameters i.e. attenuation, flexibility, and gas exchange rates. Different types of infrared hollow fibers including photonic bandgap fibers were characterized using quantum cascade lasers and thermal radiation sources. Obtained data are compared with available product specifications. Measurements with a compact fiber based ethanol sensor are compared with a system simulation. First results on the detection of trace amounts of the explosive material TATP using hollow fibers and QCL will be shown.

  11. On the thermodynamics of the photoacoustic effect of condensed matter in gas cells

    NASA Astrophysics Data System (ADS)

    Korpiun, P.; Büchner, B.

    1983-03-01

    The photoacoustic (PA) effect of condensed matter measured in a gas-microphone cell can be interpreted by the Rosencwaig-Gersho-model. This model developed originally for thermally thick gas columns is extended to arbitrary gas lengths. The periodic variation of temperature varies the internal energy of the total volume of the gas leading to a pressure oscillation by an isochoric process. Further, taking into account a residual volume as introduced by Tam and Wong, the description leads finally to an extended Rosencwaig-Gersho model (ERG). Measurements with argon (γ=1.67) and Freon 13 (CClF3, γ=1.17) for thermally thin and thick gas colomns confirm the isochoric character of the PA effect at frequencies far below the acoustic cell resonance. Experimental results of other groups can be interpreted very well with our model. Furthermore, the extended Rosencwaig-Gershomodel leads just in the low frequency region to the same results as the model of McDonald and Wetsel.

  12. The Seismic Velocity In Gas-charged Magma

    NASA Astrophysics Data System (ADS)

    Sturton, S.; Neuberg, J. W.

    2001-12-01

    Long-period and hybrid events, seen at the Soufrière Hills Volcano, Montserrat, show dominant low frequency content suggesting the seismic wavefield is formed as a result of interface waves at the boundary between a fluid and a solid medium. This wavefield will depend on the impedance contrast between the two media and therefore the difference in seismic velocity. For a gas-charged magma, increasing pressure with depth reduces the volume of gas exsolved, increasing the seismic velocity with depth in the conduit. The seismic radiation pattern along the conduit can then be modelled. Where single events merge into tremor, gliding lines can sometimes be seen in the spectra and indicate either changes in the seismic parameters with time or varying triggering rates of single events.The differential equation describing the time dependence of bubble growth by diffusion is solved numerically for a stationary magma column undergoing a decompression event. The volume of gas is depth dependent and increases with time as the bubbles grow and expand. It is used to calculate the depth and time dependence of the density, pressure and seismic velocity. The effect of different viscosities associated with different magma types and concentration of water in the melt on the rate of bubble growth is explored. Crystal growth, which increases the concentration of water in the melt, affects the amount of gas that can be exsolved.

  13. Gas-phase mercury reduction to measure total mercury in the flue gas of a coal-fired boiler.

    PubMed

    Meischen, Sandra J; Van Pelt, Vincent J; Zarate, Eugene A; Stephens, Edward A

    2004-01-01

    Gaseous elemental and total (elemental + oxidized) mercury (Hg) in the flue gas from a coal-fired boiler was measured by a modified ultraviolet (UV) spectrometer. Challenges to Hg measurement were the spectral interferences from other flue gas components and that UV measures only elemental Hg. To eliminate interference from flue gas components, a cartridge filled with gold-coated sand removed elemental Hg from a flue gas sample. The Hg-free flue gas was the reference gas, eliminating the spectral interferences. To measure total Hg by UV, oxidized Hg underwent a gas-phase, thermal-reduction in a quartz cell heated to 750 degrees C. Simultaneously, hydrogen was added to flash react with the oxygen present forming water vapor and preventing Hg re-oxidation as it exits the cell. Hg concentration results are in parts per billion by volume Hg at the flue gas oxygen concentration. The modified Hg analyzer and the Ontario Hydro method concurrently measured Hg at a field test site. Measurements were made at a 700-MW steam turbine plant with scrubber units and selective catalytic reduction. The flue gas sampled downstream of the selective catalytic reduction contained 2100 ppm SO2 and 75 ppm NOx. Total Hg measured by the Hg analyzer was within 20% of the Ontario Hydro results.

  14. Assessment of undiscovered oil and gas resources of the Sud Province, north-central Africa

    USGS Publications Warehouse

    Brownfield, M.E.; Klett, T.R.; Schenk, C.J.; Charpentier, R.R.; Cook, T.A.; Pollastro, R.M.; Tennyson, Marilyn E.

    2011-01-01

    The Sud Province located in north-central Africa recently was assessed for undiscovered, technically recoverable oil, natural gas, and natural gas liquids resources as part of the U.S. Geological Survey's (USGS) World Oil and Gas Assessment. Using a geology-based assessment methodology, the USGS estimated mean volumes of 7.31 billion barrels of oil, 13.42 trillion cubic feet of natural gas, and 353 million barrels of natural gas liquids.

  15. An investigation of the matrix sensitivity of refinery gas analysis using gas chromatography with flame ionisation detection.

    PubMed

    Ferracci, Valerio; Brown, Andrew S; Harris, Peter M; Brown, Richard J C

    2015-02-27

    The response of a flame ionisation detector (FID) on a gas chromatograph to methane, ethane, propane, i-butane and n-butane in a series of multi-component refinery gas standards was investigated to assess the matrix sensitivity of the instrument. High-accuracy synthetic gas standards, traceable to the International System of Units, were used to minimise uncertainties. The instrument response exhibited a small dependence on the component amount fraction: this behaviour, consistent with that of another FID, was thoroughly characterised over a wide range of component amount fractions and was shown to introduce a negligible bias in the analysis of refinery gas samples, provided a suitable reference standard is employed. No significant effects of the molar volume, density and viscosity of the gas mixtures on the instrument response were observed, indicating that the FID is suitable for the analysis of refinery gas mixtures over a wide range of component amount fractions provided that appropriate drift-correction procedures are employed. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Natural gas issues (Part 1, Volume 2). Hearings before the Subcommittee on Fossil and Synthetic Fuels of the Committee on Energy and Commerce, House of Representatives, Ninety-Seventh Congress, Second Session, July 26, 30, August 6, 9, 1982

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1983-01-01

    Part 1, volume 2 covers two days in a series of hearings on federal natural-gas policy. Representatives of several gas-distribution companies, which are among the first to feel the impact of price deregulation, testified on August 6, 1982. They were followed on August 9 by representatives of several state agencies charged with regulating the natural gas industry at the state level. Among the concerns raised is the possibility that industrial users will switch from natural gas to cheaper fuels. This would increase costs for the residential market, which is already unhappy. A second area of concern is the competitive disadvantagemore » that federal policies impose on intrastate pipelines. (DCK)« less

  17. Method and apparatus for dispensing compressed natural gas and liquified natural gas to natural gas powered vehicles

    DOEpatents

    Bingham, Dennis A.; Clark, Michael L.; Wilding, Bruce M.; Palmer, Gary L.

    2005-05-31

    A fueling facility and method for dispensing liquid natural gas (LNG), compressed natural gas (CNG) or both on-demand. The fueling facility may include a source of LNG, such as cryogenic storage vessel. A low volume high pressure pump is coupled to the source of LNG to produce a stream of pressurized LNG. The stream of pressurized LNG may be selectively directed through an LNG flow path or to a CNG flow path which includes a vaporizer configured to produce CNG from the pressurized LNG. A portion of the CNG may be drawn from the CNG flow path and introduced into the CNG flow path to control the temperature of LNG flowing therethrough. Similarly, a portion of the LNG may be drawn from the LNG flow path and introduced into the CNG flow path to control the temperature of CNG flowing therethrough.

  18. Gas permeability of ice-templated, unidirectional porous ceramics.

    PubMed

    Seuba, Jordi; Deville, Sylvain; Guizard, Christian; Stevenson, Adam J

    2016-01-01

    We investigate the gas flow behavior of unidirectional porous ceramics processed by ice-templating. The pore volume ranged between 54% and 72% and pore size between 2.9 [Formula: see text]m and 19.1 [Formula: see text]m. The maximum permeability ([Formula: see text] [Formula: see text] m[Formula: see text]) was measured in samples with the highest total pore volume (72%) and pore size (19.1 [Formula: see text]m). However, we demonstrate that it is possible to achieve a similar permeability ([Formula: see text] [Formula: see text] m[Formula: see text]) at 54% pore volume by modification of the pore shape. These results were compared with those reported and measured for isotropic porous materials processed by conventional techniques. In unidirectional porous materials tortuosity ([Formula: see text]) is mainly controlled by pore size, unlike in isotropic porous structures where [Formula: see text] is linked to pore volume. Furthermore, we assessed the applicability of Ergun and capillary model in the prediction of permeability and we found that the capillary model accurately describes the gas flow behavior of unidirectional porous materials. Finally, we combined the permeability data obtained here with strength data for these materials to establish links between strength and permeability of ice-templated materials.

  19. EPA GAS PHASE CHEMISTRY CHAMBER STUDIES

    EPA Science Inventory

    Gas-phase smog chamber experiments are being performed at EPA in order to evaluate a number of current chemical mechanisms for inclusion in EPA regulatory and research models. The smog chambers are 9000 L in volume and constructed of 2-mil teflon film. One of the chambers is co...

  20. A combined volume-of-fluid method and low-Mach-number approach for DNS of evaporating droplets in turbulence

    NASA Astrophysics Data System (ADS)

    Dodd, Michael; Ferrante, Antonino

    2017-11-01

    Our objective is to perform DNS of finite-size droplets that are evaporating in isotropic turbulence. This requires fully resolving the process of momentum, heat, and mass transfer between the droplets and surrounding gas. We developed a combined volume-of-fluid (VOF) method and low-Mach-number approach to simulate this flow. The two main novelties of the method are: (i) the VOF algorithm captures the motion of the liquid gas interface in the presence of mass transfer due to evaporation and condensation without requiring a projection step for the liquid velocity, and (ii) the low-Mach-number approach allows for local volume changes caused by phase change while the total volume of the liquid-gas system is constant. The method is verified against an analytical solution for a Stefan flow problem, and the D2 law is verified for a single droplet in quiescent gas. We also demonstrate the schemes robustness when performing DNS of an evaporating droplet in forced isotropic turbulence.

  1. Enhanced Photoacoustic Gas Analyser Response Time and Impact on Accuracy at Fast Ventilation Rates during Multiple Breath Washout

    PubMed Central

    Horsley, Alex; Macleod, Kenneth; Gupta, Ruchi; Goddard, Nick; Bell, Nicholas

    2014-01-01

    Background The Innocor device contains a highly sensitive photoacoustic gas analyser that has been used to perform multiple breath washout (MBW) measurements using very low concentrations of the tracer gas SF6. Use in smaller subjects has been restricted by the requirement for a gas analyser response time of <100 ms, in order to ensure accurate estimation of lung volumes at rapid ventilation rates. Methods A series of previously reported and novel enhancements were made to the gas analyser to produce a clinically practical system with a reduced response time. An enhanced lung model system, capable of delivering highly accurate ventilation rates and volumes, was used to assess in vitro accuracy of functional residual capacity (FRC) volume calculation and the effects of flow and gas signal alignment on this. Results 10–90% rise time was reduced from 154 to 88 ms. In an adult/child lung model, accuracy of volume calculation was −0.9 to 2.9% for all measurements, including those with ventilation rate of 30/min and FRC of 0.5 L; for the un-enhanced system, accuracy deteriorated at higher ventilation rates and smaller FRC. In a separate smaller lung model (ventilation rate 60/min, FRC 250 ml, tidal volume 100 ml), mean accuracy of FRC measurement for the enhanced system was minus 0.95% (range −3.8 to 2.0%). Error sensitivity to flow and gas signal alignment was increased by ventilation rate, smaller FRC and slower analyser response time. Conclusion The Innocor analyser can be enhanced to reliably generate highly accurate FRC measurements down at volumes as low as those simulating infant lung settings. Signal alignment is a critical factor. With these enhancements, the Innocor analyser exceeds key technical component recommendations for MBW apparatus. PMID:24892522

  2. Apparent diffusion coefficient of hyperpolarized (3)He with minimal influence of the residual gas in small animals.

    PubMed

    Carrero-González, L; Kaulisch, T; Ruiz-Cabello, J; Pérez-Sánchez, J M; Peces-Barba, G; Stiller, D; Rodríguez, I

    2012-09-01

    The apparent diffusion coefficient (ADC) of hyperpolarized (HP) gases is a parameter that reflects changes in lung microstructure. However, ADC is dependent on many physiological and experimental variables that need to be controlled or specified in order to ensure the reliability and reproducibility of this parameter. A single breath-hold experiment is desirable in order to reduce the amount of consumed HP gas. The application of a positive end-expiratory pressure (PEEP) causes an increase in the residual gas volume. Depending on the applied PEEP, the ratio between the incoming and residual gas volumes will change and the ADC will vary, as long as both gases do not have the same diffusion coefficient. The most standard method for human applications uses air for breathing and a bolus of pure HP (3)He for MRI data acquisition. By applying this method in rats, we have demonstrated that ADC values are strongly dependent on the applied PEEP, and therefore on the residual gas volume in the lung. This outcome will play an important role in studies concerning certain diseases, such as emphysema, which is characterized by an increase in the residual volume. Ventilation with an oxygen-helium mixture (VOHeM) is a proposed single breath-hold method that uses two different gas mixtures (O(2)-(4)He for ventilation and HP (3)He-N(2) for imaging). The concentration of each gas in its respective mixture was calculated in order to obtain the same diffusion coefficient in both mixtures. ADCs obtained from VOHeM are independent of PEEP, thus minimizing the effect of the different residual volumes. Copyright © 2012 John Wiley & Sons, Ltd.

  3. EOS Data Products Handbook. Volume 2

    NASA Technical Reports Server (NTRS)

    Parkinson, Claire L. (Editor); Greenstone, Reynold (Editor); Closs, James (Technical Monitor)

    2000-01-01

    The EOS Data Products Handbook provides brief descriptions of the data products that will be produced from a range of missions of the Earth Observing System (EOS) and associated projects. Volume 1, originally published in 1997, covers the Tropical Rainfall Measuring Mission (TRMM), the Terra mission (formerly named EOS AM-1), and the Data Assimilation System, while this volume, Volume 2, covers the Active Cavity Radiometer Irradiance Monitor Satellite (ACRIMSAT), Aqua, Jason-1, Landsat 7, Meteor 3M/Stratospheric Aerosol and Gas Experiment III (SAGE III). the Quick Scatterometer (QuikScat), the Quick Total Ozone Mapping Spectrometer (Quik-TOMS), and the Vegetation Canopy Lidar (VCL) missions. Volume 2 follows closely the format of Volume 1, providing a list of products and an introduction and overview descriptions of the instruments and data processing, all introductory to the core of the book, which presents the individual data product descriptions, organized into 11 topical chapters. The product descriptions are followed by five appendices, which provide contact information for the EOS data centers that will be archiving and distributing the data sets, contact information for the science points of contact for the data products, references, acronyms and abbreviations, and a data products index.

  4. Field Measurements of Black Carbon Yields from Gas Flaring.

    PubMed

    Conrad, Bradley M; Johnson, Matthew R

    2017-02-07

    Black carbon (BC) emissions from gas flaring in the oil and gas industry are postulated to have critical impacts on climate and public health, but actual emission rates remain poorly characterized. This paper presents in situ field measurements of BC emission rates and flare gas volume-specific BC yields for a diverse range of flares. Measurements were performed during a series of field campaigns in Mexico and Ecuador using the sky-LOSA optical measurement technique, in concert with comprehensive Monte Carlo-based uncertainty analyses. Parallel on-site measurements of flare gas flow rate and composition were successfully performed at a subset of locations enabling direct measurements of fuel-specific BC yields from flares under field conditions. Quantified BC emission rates from individual flares spanned more than 4 orders of magnitude (up to 53.7 g/s). In addition, emissions during one notable ∼24-h flaring event (during which the plume transmissivity dropped to zero) would have been even larger than this maximum rate, which was measured as this event was ending. This highlights the likely importance of superemitters to global emission inventories. Flare gas volume-specific BC yields were shown to be strongly correlated with flare gas heating value. A newly derived correlation fitting current field data and previous lab data suggests that, in the context of recent studies investigating transport of flare-generated BC in the Arctic and globally, impacts of flaring in the energy industry may in fact be underestimated.

  5. Transport of Gas and Solutes in Permeable Estuarine Sediments

    DTIC Science & Technology

    2012-09-30

    produce his Ph.D. dissertation based on this reserach . The acoustic method for detecting and measuring small gas bubbles in marine sands. This...the detection and quantification of small free gas volumes in sandy coastal sediments. After introducing and explaining the instrument, the paper ...influence the sediment erosion threshold, biogeochemical zonations, living space for organisms and thereby the role of the sediments in the cycles of

  6. Natural gas monthly, March 1991. [Glossary included

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1991-03-01

    The Natural Gas Monthly (NGM) is prepared in the Data Operations Branch of the Reserves and Natural Gas Division, Office of Oil and Gas, Energy Information Administration (EIA), US Department of Energy (DOE). The NGM highlights activities, events and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. From time to time, the NGM features articles designed to assist readers in using and interpreting natural gas information.more » This month's article is an update on natural gas distribution services. Explanatory Notes supplement the information found in tables of the report. A description of the data collection surveys that support the NGM is provided in the Data Sources section. A glossary of the terms used in this report is also provided to assist readers in understanding the data presented in this publication. 9 figs., 39 tabs.« less

  7. Geostatistical modeling of the gas emission zone and its in-place gas content for Pittsburgh-seam mines using sequential Gaussian simulation

    USGS Publications Warehouse

    Karacan, C.O.; Olea, R.A.; Goodman, G.

    2012-01-01

    Determination of the size of the gas emission zone, the locations of gas sources within, and especially the amount of gas retained in those zones is one of the most important steps for designing a successful methane control strategy and an efficient ventilation system in longwall coal mining. The formation of the gas emission zone and the potential amount of gas-in-place (GIP) that might be available for migration into a mine are factors of local geology and rock properties that usually show spatial variability in continuity and may also show geometric anisotropy. Geostatistical methods are used here for modeling and prediction of gas amounts and for assessing their associated uncertainty in gas emission zones of longwall mines for methane control.This study used core data obtained from 276 vertical exploration boreholes drilled from the surface to the bottom of the Pittsburgh coal seam in a mining district in the Northern Appalachian basin. After identifying important coal and non-coal layers for the gas emission zone, univariate statistical and semivariogram analyses were conducted for data from different formations to define the distribution and continuity of various attributes. Sequential simulations performed stochastic assessment of these attributes, such as gas content, strata thickness, and strata displacement. These analyses were followed by calculations of gas-in-place and their uncertainties in the Pittsburgh seam caved zone and fractured zone of longwall mines in this mining district. Grid blanking was used to isolate the volume over the actual panels from the entire modeled district and to calculate gas amounts that were directly related to the emissions in longwall mines.Results indicated that gas-in-place in the Pittsburgh seam, in the caved zone and in the fractured zone, as well as displacements in major rock units, showed spatial correlations that could be modeled and estimated using geostatistical methods. This study showed that GIP volumes may

  8. Geostatistical modeling of the gas emission zone and its in-place gas content for Pittsburgh-seam mines using sequential Gaussian simulation

    PubMed Central

    Karacan, C. Özgen; Olea, Ricardo A.; Goodman, Gerrit

    2015-01-01

    Determination of the size of the gas emission zone, the locations of gas sources within, and especially the amount of gas retained in those zones is one of the most important steps for designing a successful methane control strategy and an efficient ventilation system in longwall coal mining. The formation of the gas emission zone and the potential amount of gas-in-place (GIP) that might be available for migration into a mine are factors of local geology and rock properties that usually show spatial variability in continuity and may also show geometric anisotropy. Geostatistical methods are used here for modeling and prediction of gas amounts and for assessing their associated uncertainty in gas emission zones of longwall mines for methane control. This study used core data obtained from 276 vertical exploration boreholes drilled from the surface to the bottom of the Pittsburgh coal seam in a mining district in the Northern Appalachian basin. After identifying important coal and non-coal layers for the gas emission zone, univariate statistical and semivariogram analyses were conducted for data from different formations to define the distribution and continuity of various attributes. Sequential simulations performed stochastic assessment of these attributes, such as gas content, strata thickness, and strata displacement. These analyses were followed by calculations of gas-in-place and their uncertainties in the Pittsburgh seam caved zone and fractured zone of longwall mines in this mining district. Grid blanking was used to isolate the volume over the actual panels from the entire modeled district and to calculate gas amounts that were directly related to the emissions in longwall mines. Results indicated that gas-in-place in the Pittsburgh seam, in the caved zone and in the fractured zone, as well as displacements in major rock units, showed spatial correlations that could be modeled and estimated using geostatistical methods. This study showed that GIP volumes may

  9. Getting the gas out - developing gas networks in magmatic systems

    NASA Astrophysics Data System (ADS)

    Cashman, Katharine; Rust, Alison; Oppenheimer, Julie; Belien, Isolde

    2015-04-01

    Volcanic eruption style, and explosive potential, are strongly controlled by the pre-eruptive history of the magmatic volatiles: specifically, the more efficient the gas loss prior to eruption, the lower the likelihood of primary (magmatic) explosive activity. Commonly considered gas loss mechanisms include separated flow, where individual bubbles (or bubble clouds) travel at a rate that is faster than the host magma, and permeable flow, where gas escapes through permeable (connected) pathways developed within a (relatively) static matrix. Importantly, gas loss via separated flow is episodic, while gas loss via permeable flow is likely to be continuous. Analogue experiments and numerical models on three phase (solid-liquid-gas) systems also suggest a third mechanism of gas loss that involves the opening and closing of 'pseudo fractures'. Pseudo fractures form at a critical crystallinity that is close to the maximum particle packing. Fractures form by local rearrangement of solid particles and liquid to form a through-going gas fracture; gas escape is episodic, and modulated by the available gas volume and the rate of return flow of interstitial liquid back into the fracture. In all of the gas escape scenarios described above, a fundamental control on gas behaviour is the melt viscosity, which affects the rate of individual bubble rise, the rate of bubble expansion, the rate of film thinning (required for bubble coalescence), and the rate of melt flow into gas-generated fractures. From the perspective of magma degassing, rates of gas expansion and film thinning are key to the formation of an interconnected (permeable) gas pathway. Experiments with both analogue and natural materials show that bubble coalescence is relatively slow, and, in particle-poor melts, does not necessarily create permeable gas networks. As a result, degassing efficiency is modulated by the time scales required either (1) to produce large individual bubbles or bubble clouds (in low viscosity

  10. Lattice gas methods for computational aeroacoustics

    NASA Technical Reports Server (NTRS)

    Sparrow, Victor W.

    1995-01-01

    This paper presents the lattice gas solution to the category 1 problems of the ICASE/LaRC Workshop on Benchmark Problems in Computational Aeroacoustics. The first and second problems were solved for Delta t = Delta x = 1, and additionally the second problem was solved for Delta t = 1/4 and Delta x = 1/2. The results are striking: even for these large time and space grids the lattice gas numerical solutions are almost indistinguishable from the analytical solutions. A simple bug in the Mathematica code was found in the solutions submitted for comparison, and the comparison plots shown at the end of this volume show the bug. An Appendix to the present paper shows an example lattice gas solution with and without the bug.

  11. Gas hydrates from the continental slope, offshore Sakhalin Island, Okhotsk Sea

    USGS Publications Warehouse

    Ginsburg, G.D.; Soloviev, V.A.; Cranston, R.E.; Lorenson, T.D.; Kvenvolden, K.A.

    1993-01-01

    Ten gas-vent fields were discovered in the Okhotsk Sea on the northeast continental slope offshore from Sakhalin Island in water depths of 620-1040 m. At one vent field, estimated to be more than 250 m across, gas hydrates, containing mainly microbial methane (??13C = -64.3???), were recovered from subbottom depths of 0.3-1.2 m. The sediment, having lenses and bedded layers of gas hydrate, contained 30-40% hydrate per volume of wet sediment. Although gas hydrates were not recovered at other fields, geochemical and thermal measurements suggest that gas hydrates are present. ?? 1993 Springer-Verlag.

  12. Flow and criticality in the open cycle gas core.

    NASA Technical Reports Server (NTRS)

    Kunze, J. F.; Lofthouse, J. H.

    1971-01-01

    A series of flowing gas experiments using air, argon, and freon has been conducted in Idaho. The purpose is to study methods of obtaining flow patterns which would create maximum possible system reactivity consistent with an acceptably low uranium to coolant-gas loss ratio. These have been conducted on both ?two-dimensional' and truly three-dimensional spherical configurations of diameters 18 to 42 inches. The larger diameter is that proposed for a minimum cost flowing gas critical experiment, and the size extremes make extrapolations to the large 6 and 8 foot diameter configurations more reliable. Results show that large enough inner gas (fuel) volume fractions can be achieved to attain criticality.

  13. Assessment of undiscovered oil and gas resources of the South Africa Coastal Province, Africa

    USGS Publications Warehouse

    Brownfield, Michael E.; Schenk, Christopher J.; Charpentier, Ronald R.; Klett, Timothy R.; Cook, Troy A.; Pollastro, Richard M.

    2012-01-01

    The South Africa Coastal Province along the South Africa coast recently was assessed for undiscovered, technically recoverable oil, natural gas, and natural gas liquids resources as part of the U.S. Geological Survey's (USGS) World Oil and Gas Assessment. Using a geology-based assessment methodology, the USGS estimated mean volumes of 2.13 billion barrels of oil, 35.96 trillion cubic feet of natural gas, and 1,115 million barrels of natural gas liquids.

  14. Energy resource potential of natural gas hydrates

    USGS Publications Warehouse

    Collett, T.S.

    2002-01-01

    The discovery of large gas hydrate accumulations in terrestrial permafrost regions of the Arctic and beneath the sea along the outer continental margins of the world's oceans has heightened interest in gas hydrates as a possible energy resource. However, significant to potentially insurmountable technical issues must be resolved before gas hydrates can be considered a viable option for affordable supplies of natural gas. The combined information from Arctic gas hydrate studies shows that, in permafrost regions, gas hydrates may exist at subsurface depths ranging from about 130 to 2000 m. The presence of gas hydrates in offshore continental margins has been inferred mainly from anomalous seismic reflectors, known as bottom-simulating reflectors, that have been mapped at depths below the sea floor ranging from about 100 to 1100 m. Current estimates of the amount of gas in the world's marine and permafrost gas hydrate accumulations are in rough accord at about 20,000 trillion m3. Disagreements over fundamental issues such as the volume of gas stored within delineated gas hydrate accumulations and the concentration of gas hydrates within hydrate-bearing strata have demonstrated that we know little about gas hydrates. Recently, however, several countries, including Japan, India, and the United States, have launched ambitious national projects to further examine the resource potential of gas hydrates. These projects may help answer key questions dealing with the properties of gas hydrate reservoirs, the design of production systems, and, most important, the costs and economics of gas hydrate production.

  15. Assessment of potential additions to conventional oil and gas resources in discovered fields of the United States from reserve growth, 2012

    USGS Publications Warehouse

    ,

    2012-01-01

    The U.S. Geological Survey estimated volumes of technically recoverable, conventional petroleum resources that have the potential to be added to reserves from reserve growth in 70 discovered oil and gas accumulations of the United States, excluding Federal offshore areas. The mean estimated volumes are 32 billion barrels of crude oil, 291 trillion cubic feet of natural gas, and 10 billion barrels of natural gas liquids.

  16. Improved of Natural Gas Storage with Adsorbed Natural Gas (ANG) Technology Using Activated Carbon from Plastic Waste Polyethylene Terepthalate

    NASA Astrophysics Data System (ADS)

    Yuliusman; Nasruddin; Sanal, A.; Bernama, A.; Haris, F.; Hardhi, M.

    2017-07-01

    Indonesia imports high amount of Fuel Oil. Although Indonesia has abundant amount of natural gas reserve, the obstacle lies within the process of natural gas storage itself. In order to create a safe repository, the ANG (Adsorbed Natural Gas) technology is planned. ANG technology in itself has been researched much to manufacture PET-based activated carbon for natural gas storage, but ANG still has several drawbacks. This study begins with making preparations for the equipment and materials that will be used, by characterizing the natural gas, measuring the empty volume, and degassing. The next step will be to examine the adsorption process. The maximum storage capacity obtained in this study for a temperature of 27°C and pressure of 35 bar is 0.0586 kg/kg, while for the desorption process, a maximum value for desorption efficiency was obtained on 35°C temperature with a value of 73.39%.

  17. Natural gas imports and exports. First quarter report 1994

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1994-08-01

    The Office of Fuels Programs Prepares quarterly reports Summarizing the data provided by companies authorized to import or export natural gas. Companies are required, as a condition of their authorizations, to file quarterly reports with the OFP. This report is for the first quarter of 1994 (January--March). Attachment A shows the percentage of takes to maximum firm contract levels and the weighted average per unit price for each of the long-term importers during the five most recent reporting quarters. Attachment B shows volumes and prices of gas purchased by long-term importers and exporters during the past twelve months. Attachment Cmore » shows volume and price information for gas imported on a short-term basis. Attachment D shows the gas exported on a short-term basis to Canada and Mexico. During the first three months of 1994, data indicates that gas imports grew by about 14 percent over the level of the first quarter of 1993 (668 vs. 586 Bcf), with Canadian and Algerian imports increasing by 12 and 53 percent, respectively. During the same time period, exports declined by 15 percent (41 vs. 48 Bcf). Exports to Canada increased by 10 percent from the 1993 level (22 vs. 20 Bcf) and exports to Mexico decreased by 64 percent (5 vs. 14 Bcf).« less

  18. A fission gas release correlation for uranium nitride fuel pins

    NASA Technical Reports Server (NTRS)

    Weinstein, M. B.; Davison, H. W.

    1973-01-01

    A model was developed to predict fission gas releases from UN fuel pins clad with various materials. The model was correlated with total release data obtained by different experimentors, over a range of fuel temperatures primarily between 1250 and 1660 K, and fuel burnups up to 4.6 percent. In the model, fission gas is transported by diffusion mechanisms to the grain boundaries where the volume grows and eventually interconnects with the outside surface of the fuel. The within grain diffusion coefficients are found from fission gas release rate data obtained using a sweep gas facility.

  19. RESULTS FROM EPA FUNDED RESEARCH PROGRAMS ON THE IMPORTANCE OF PURGE VOLUME, SAMPLE VOLUME, SAMPLE FLOW RATE AND TEMPORAL VARIATIONS ON SOIL GAS CONCENTRATIONS

    EPA Science Inventory

    Two research studies funded and overseen by EPA have been conducted since October 2006 on soil gas sampling methods and variations in shallow soil gas concentrations with the purpose of improving our understanding of soil gas methods and data for vapor intrusion applications. Al...

  20. A second-generation constrained reaction volume shock tube

    NASA Astrophysics Data System (ADS)

    Campbell, M. F.; Tulgestke, A. M.; Davidson, D. F.; Hanson, R. K.

    2014-05-01

    We have developed a shock tube that features a sliding gate valve in order to mechanically constrain the reactive test gas mixture to an area close to the shock tube endwall, separating it from a specially formulated non-reactive buffer gas mixture. This second-generation Constrained Reaction Volume (CRV) strategy enables near-constant-pressure shock tube test conditions for reactive experiments behind reflected shocks, thereby enabling improved modeling of the reactive flow field. Here we provide details of the design and operation of the new shock tube. In addition, we detail special buffer gas tailoring procedures, analyze the buffer/test gas interactions that occur on gate valve opening, and outline the size range of fuels that can be studied using the CRV technique in this facility. Finally, we present example low-temperature ignition delay time data to illustrate the CRV shock tube's performance.

  1. Neogene Gas Total Petroleum System -- Neogene Nonassociated Gas Assessment Unit of the San Joaquin Basin Province: Chapter 22 in Petroleum systems and geologic assessment of oil and gas in the San Joaquin Basin Province, California

    USGS Publications Warehouse

    Hosford Scheirer, Allegra; Magoon, Leslie B.

    2009-01-01

    The Neogene Nonassociated Gas Assessment Unit (AU) of the Neogene Total Petroleum System consists of nonassociated gas accumulations in Pliocene marine and brackish-water sandstone located in the south and central San Joaquin Basin Province (Rudkin, 1968). Traps consist mainly of stratigraphic lenses in low-relief, elongate domes that trend northwest-southeast. Reservoir rocks typically occur as sands that pinch out at shallow depths (1,000 to 7,500 feet) within the Etchegoin and San Joaquin Formations. Map boundaries of the assessment unit are shown in figures 22.1 and 22.2; this assessment unit replaces the Pliocene Nonassociated Gas play 1001 (shown by purple line in fig. 22.1) considered by the U.S. Geological Survey (USGS) in its 1995 National Assessment (Beyer, 1996). The AU is drawn to include all existing fields containing nonassociated gas accumulations in the Pliocene to Pleistocene section, as was done in the 1995 assessment, but it was greatly expanded to include adjacent areas believed to contain similar source and reservoir rock relationships. Stratigraphically, the AU extends from the topographic surface to the base of the Etchegoin Formation (figs. 22.3 and 22.4). The boundaries of the AU explicitly exclude gas accumulations in Neogene rocks on the severely deformed west side of the basin and gas accumulations in underlying Miocene rocks; these resources, which primarily consist of a mixture of mostly thermogenic and some biogenic gas, are included in two other assessment units. Lillis and others (this volume, chapter 10) discuss the geochemical characteristics of biogenic gas in the San Joaquin Basin Province. Primary fields in the assessment unit are defined as those containing hydrocarbon resources greater than the USGS minimum threshold for assessment—3 billion cubic feet (BCF) of gas; secondary fields contain smaller volumes of gas but constitute a significant show of hydrocarbons. Although 12 fields meet the 3 BCF criterion for inclusion in

  2. Natural gas hydrates and the mystery of the Bermuda Triangle

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gruy, H.J.

    1998-03-01

    Natural gas hydrates occur on the ocean floor in such great volumes that they contain twice as much carbon as all known coal, oil and conventional natural gas deposits. Releases of this gas caused by sediment slides and other natural causes have resulted in huge slugs of gas saturated water with density too low to float a ship, and enough localized atmospheric contamination to choke air aspirated aircraft engines. The unexplained disappearances of ships and aircraft along with their crews and passengers in the Bermuda Triangle may be tied to the natural venting of gas hydrates. The paper describes whatmore » gas hydrates are, their formation and release, and their possible link to the mystery of the Bermuda Triangle.« less

  3. Encyclopedia of Explosives and Related Items. Volume 10

    DTIC Science & Technology

    1983-01-01

    trinitroethyl stearate 6 E330 Ethyiphosphorodimethylamidycyanadate se Ethyl-substituted acid amides, N-trinitro derivs GA chemical warfare agent 2.C 167; 6...6 GI Galex 6 G8-G9 GA (chemical warfare agent ) 6 G 1 Galil rifle 6 G9 GA see Dimethylaminocyanophosphoric acid Galil rifle 6 G9 5 D1308-D1309 Gabeaud...G45 Gas volumes produced on expln or detonation Gelatina explosiva de guerra 6 G45 of expls 6 G36-G41 Gelatina gomma 6 G45 Gas warfare agents 2 C165

  4. Assessment of undiscovered conventional oil and gas resources of Thailand

    USGS Publications Warehouse

    Schenk, Chris

    2011-01-01

    The U.S. Geological Survey estimated mean volumes of 1.6 billion barrels of undiscovered conventional oil and 17 trillion cubic feet of undiscovered conventional natural gas in three geologic provinces of Thailand using a geology-based methodology. Most of the undiscovered conventional oil and gas resource is estimated to be in the area known as offshore Thai Basin province.

  5. Sonar surveys used in gas-storage cavern analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crossley, N.G.

    1998-05-04

    Natural-gas storage cavern internal configuration, inspection information, and cavern integrity data can be obtained during high-pressure operations with specialized gas-sonar survey logging techniques. TransGas Ltd., Regina, Sask., has successfully performed these operations on several of its deepest and highest pressurized caverns. The data can determine gas-in-place inventory and assess changes in spatial volumes. These changes can result from cavern creep, shrinkage, or closure or from various downhole abnormalities such as fluid infill or collapse of the sidewall or roof. The paper discusses conventional surveys with sonar, running surveys in pressurized caverns, accuracy of the sonar survey, initial development of Cavernmore » 5, a roof fall, Cavern 4 development, and a damaged string.« less

  6. Volume, Conservation and Instruction: A Classroom Based Solomon Four Group Study of Conflict.

    ERIC Educational Resources Information Center

    Rowell, J. A.; Dawson, C. J.

    1981-01-01

    Summarizes a study to widen the applicability of Piagetian theory-based conflict methodology from individual situations to entire classes. A Solomon four group design was used to study effects of conflict instruction on students' (N=127) ability to conserve volume of noncompressible matter and to apply that knowledge to gas volume. (Author/JN)

  7. Terahertz gas sensing based on time-domain-spectroscopy using a hollow-optical fiber gas cell

    NASA Astrophysics Data System (ADS)

    Suzuki, T.; Katagiri, T.; Matsuura, Y.

    2018-02-01

    Terahertz gas sensing system based on time-domain spectroscopy (THz-TDS) using a hollow-optical fiber gas cell is proposed. A hollow optical fiber functions as a long-path and low-volume gas cell and loading a dielectric layer on the inside of the fiber reduces the transmission loss and the dielectric layer also protects the metal layer of the fiber from deterioration. In the fabrication process, a polyethylene tube with a thin wall is drawn from a thick preform and a metal layer is formed on the outside of the tube. By using a 34-cm long fiber gas cell, NH3 gas with a concentration of 8.5 % is detected with a good SN ratio. However, the absorption peaks of NH3 and water vapor appeared at around 1.2 THz are not separated. To improve the frequency resolution in Fourier transformation, the time scan width that is decided by the scanning length of linear stage giving a time delay in the probing THz beam is enlarged. As a result, the absorption peaks at around 1.2 THz are successfully separated. In addition, by introducing a longer fiber gas cell of 60-cm length, the measurement sensitivity is improved and an absorption spectrum of NH3 gas with a concentration of 0.5 % is successfully detected.

  8. Variations in pore characteristics in high volatile bituminous coals: Implications for coal bed gas content

    USGS Publications Warehouse

    Mastalerz, Maria; Drobniak, A.; Strapoc, D.; Solano-Acosta, W.; Rupp, J.

    2008-01-01

    The Seelyville Coal Member of the Linton Formation (Pennsylvanian) in Indiana was studied to: 1) understand variations in pore characteristics within a coal seam at a single location and compare these variations with changes occurring between the same coal at different locations, 2) elaborate on the influence of mineral-matter and maceral composition on mesopore and micropore characteristics, and 3) discuss implications of these variations for coal bed gas content. The coal is high volatile bituminous rank with R0 ranging from 0.57% to 0.60%. BET specific surface areas (determined by nitrogen adsorption) of the coals samples studied range from 1.8 to 22.9??m2/g, BJH adsorption mesopore volumes from 0.0041 to 0.0339??cm3/g, and micropore volumes (determined by carbon dioxide adsorption) from 0.0315 to 0.0540??cm3/g. The coals that had the largest specific surface areas and largest mesopore volumes occur at the shallowest depths, whereas the smallest values for these two parameters occur in the deepest coals. Micropore volumes, in contrast, are not depth-dependent. In the coal samples examined for this study, mineral-matter content influenced both specific surface area as well as mesopore and micropore volumes. It is especially clear in the case of micropores, where an increase in mineral-matter content parallels the decrease of micropore volume of the coal. No obvious relationships were observed between the total vitrinite content and pore characteristics but, after splitting vitrinite into individual macerals, we see that collotelinite influences both meso- and micropore volume positively, whereas collodetrinite contributes to the reduction of mesopore and micropore volumes. There are large variations in gas content within a single coal at a single location. Because of this variability, the entire thickness of the coal must be desorbed in order to determine gas content reliably and to accurately calculate the level of gas saturation. ?? 2008 Elsevier B.V. All

  9. Estimation of regional gas and tissue volumes of the lung in supine man using computed tomography.

    PubMed

    Denison, D M; Morgan, M D; Millar, A B

    1986-08-01

    This study was intended to discover how well computed tomography could recover the volume and weight of lung like foams in a body like shell, and then how well it could recover the volume and weight of the lungs in supine man. Model thoraces were made with various loaves of bread submerged in water. Computed tomography scans recovered the volume of the model lungs (true volume range 250-12,500 ml) within +0.2 (SD 68) ml and their weights (true range 72-3125 g) within +30 (78) g. Scans also recovered successive injections of 50 ml of water, within +/- 5 ml. Scans in 12 healthy supine men recovered their vital capacities, total lung capacities (TLC), and predicted tissue volumes with comparable accuracy. At total lung capacity the mean tissue volume of single lungs was 431 (64) ml and at residual volume (RV) it was 427 (63) ml. Tissue volume was then used to match inspiratory and expiratory slices and calculate regional ventilation. Throughout the mid 90% of lung the RV/TLC ratio was fairly constant--mean 21% (5%). New methods of presenting such regional data graphically and automatically are also described.

  10. Resource-assessment perspectives for unconventional gas systems

    USGS Publications Warehouse

    Schmoker, J.W.

    2002-01-01

    Concepts are described for assessing those unconventional gas systems that can also be defined as continous accumulations. Continuous gas accumulations exist more or less independently of the water column and do not owe their existence directly to the bouyancy of gas in water. They cannot be represented in terms of individual, countable fields or pools delineated by downdip water contacts. For these reasons, traditional resource-assessment methods based on estimating the sizes and numbers of undiscovered discrete fields cannot not be applied to continuous accumulations. Specialized assessment methods are required. Unconventional gas systems that are also continous accumulations include coalbed methane, basin-centered gas, so-called tight gas, fractured shale (and chalk) gas, and gas hydrates. Deep-basin and bacterial gas systems may or may not be continuous accumulations, depending on their geologic setting. Two basic resource-assessment approaches have been employed for continous accumulations. The first approach is based on estimates of gas in place. A volumetric estimate of total gas in place is commonly coupled with an overall recovery factor to narrow the assessment scope from a treatment of gas volumes residing in sedimentary strata to a prediction of potential additions to reserves. The second approach is based on the production performance of continous gas reservoirs, as shown empirically by wells and reservoir-simulation models. In these methods, production characteristics (as opposed to gas in place) are the foundation for forecasts of potential additions to reserves.

  11. Measurement of lung volumes from supine portable chest radiographs.

    PubMed

    Ries, A L; Clausen, J L; Friedman, P J

    1979-12-01

    Lung volumes in supine nonambulatory patients are physiological parameters often difficult to measure with current techniques (plethysmograph, gas dilution). Existing radiographic methods for measuring lung volumes require standard upright chest radiographs. Accordingly, in 31 normal supine adults, we determined helium-dilution functional residual and total lung capacities and measured planimetric lung field areas (LFA) from corresponding portable anteroposterior and lateral radiographs. Low radiation dose methods, which delivered less than 10% of that from standard portable X-ray technique, were utilized. Correlation between lung volume and radiographic LFA was highly significant (r = 0.96, SEE = 10.6%). Multiple-step regressions using height and chest diameter correction factors reduced variance, but weight and radiographic magnification factors did not. In 17 additional subjects studied for validation, the regression equations accurately predicted radiographic lung volume. Thus, this technique can provide accurate and rapid measurement of lung volume in studies involving supine patients.

  12. ASDIR-II. Volume II. Program Description

    DTIC Science & Technology

    1975-01-01

    in ASDIR. INPUT: Engine description, gas properties and case definition (See ASDIR-II, Volume I, User’s Manual). OIWPUT: Primarily the information...conditions Special surface cooling flow conditions Exhaust system surface properties The predictions provided by the progi un for the combination of a...nonattenuated by the atmosphere Optional exhaust system information which can be requested from the program is: Internal fluid flow properties Surface

  13. ATLAS Series of Shuttle Missions. Volume 23

    NASA Technical Reports Server (NTRS)

    1996-01-01

    This technical paper contains selected papers from Geophysical Research Letters (Volume 23, Number 17) on ATLAS series of shuttle missions. The ATLAS space shuttle missions were conducted in March 1992, April 1993, and November 1994. This paper discusses solar irradiance, middle atmospheric temperatures, and trace gas concentrations measurements made by the ATLAS payload and companion instruments.

  14. Model documentation: Natural gas transmission and distribution model of the National Energy Modeling System. Volume 1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1995-02-17

    The Natural Gas Transmission and Distribution Model (NGTDM) is the component of the National Energy Modeling System (NEMS) that is used to represent the domestic natural gas transmission and distribution system. NEMS was developed in the Office of integrated Analysis and Forecasting of the Energy information Administration (EIA). NEMS is the third in a series of computer-based, midterm energy modeling systems used since 1974 by the EIA and its predecessor, the Federal Energy Administration, to analyze domestic energy-economy markets and develop projections. The NGTDM is the model within the NEMS that represents the transmission, distribution, and pricing of natural gas.more » The model also includes representations of the end-use demand for natural gas, the production of domestic natural gas, and the availability of natural gas traded on the international market based on information received from other NEMS models. The NGTDM determines the flow of natural gas in an aggregate, domestic pipeline network, connecting domestic and foreign supply regions with 12 demand regions. The methodology employed allows the analysis of impacts of regional capacity constraints in the interstate natural gas pipeline network and the identification of pipeline capacity expansion requirements. There is an explicit representation of core and noncore markets for natural gas transmission and distribution services, and the key components of pipeline tariffs are represented in a pricing algorithm. Natural gas pricing and flow patterns are derived by obtaining a market equilibrium across the three main elements of the natural gas market: the supply element, the demand element, and the transmission and distribution network that links them. The NGTDM consists of four modules: the Annual Flow Module, the Capacity F-expansion Module, the Pipeline Tariff Module, and the Distributor Tariff Module. A model abstract is provided in Appendix A.« less

  15. Gas network model allows full reservoir coupling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Methnani, M.M.

    The gas-network flow model (Gasnet) developed for and added to an existing Qatar General Petroleum Corp. (OGPC) in-house reservoir simulator, allows improved modeling of the interaction among the reservoir, wells, and pipeline networks. Gasnet is a three-phase model that is modified to handle gas-condensate systems. The numerical solution is based on a control volume scheme that uses the concept of cells and junctions, whereby pressure and phase densities are defined in cells, while phase flows are defined at junction links. The model features common numerical equations for the reservoir, the well, and the pipeline components and an efficient state-variable solutionmore » method in which all primary variables including phase flows are solved directly. Both steady-state and transient flow events can be simulated with the same tool. Three test cases show how the model runs. One case simulates flow redistribution in a simple two-branch gas network. The second simulates a horizontal gas well in a waterflooded gas reservoir. The third involves an export gas pipeline coupled to a producing reservoir.« less

  16. 30 CFR 250.1160 - When may I flare or vent gas?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Requirements Flaring, Venting, and Burning Hydrocarbons § 250.1160 When may I flare or vent gas? (a) You must... production facilities) or is used as an additive necessary to burn waste products, such as H2S The volume of gas flared or vented may not exceed the amount necessary for its intended purpose. Burning waste...

  17. 30 CFR 1202.558 - What standards do I use to report and pay royalties on gas?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... standards specified in paragraph (a) of this section. (2) Report natural gas liquid (NGL) volumes in... royalties on gas? 1202.558 Section 1202.558 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT, DEPARTMENT OF THE INTERIOR Natural Resources Revenue ROYALTIES Gas Production From Indian Leases...

  18. 30 CFR 1202.558 - What standards do I use to report and pay royalties on gas?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... standards specified in paragraph (a) of this section. (2) Report natural gas liquid (NGL) volumes in... royalties on gas? 1202.558 Section 1202.558 Mineral Resources OFFICE OF NATURAL RESOURCES REVENUE, DEPARTMENT OF THE INTERIOR NATURAL RESOURCES REVENUE ROYALTIES Gas Production From Indian Leases § 1202.558...

  19. 30 CFR 1202.558 - What standards do I use to report and pay royalties on gas?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... standards specified in paragraph (a) of this section. (2) Report natural gas liquid (NGL) volumes in... royalties on gas? 1202.558 Section 1202.558 Mineral Resources OFFICE OF NATURAL RESOURCES REVENUE, DEPARTMENT OF THE INTERIOR NATURAL RESOURCES REVENUE ROYALTIES Gas Production From Indian Leases § 1202.558...

  20. 30 CFR 1202.558 - What standards do I use to report and pay royalties on gas?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... standards specified in paragraph (a) of this section. (2) Report natural gas liquid (NGL) volumes in... royalties on gas? 1202.558 Section 1202.558 Mineral Resources OFFICE OF NATURAL RESOURCES REVENUE, DEPARTMENT OF THE INTERIOR NATURAL RESOURCES REVENUE ROYALTIES Gas Production From Indian Leases § 1202.558...

  1. Mesophilic and thermophilic anaerobic digestion of biologically pretreated abattoir wastewaters in an upflow anaerobic filter.

    PubMed

    Gannoun, H; Bouallagui, H; Okbi, A; Sayadi, S; Hamdi, M

    2009-10-15

    The hydrolysis pretreatment of abattoir wastewaters (AW), rich in organic suspended solids (fats and protein) was studied in static and stirred batch reactors without aeration in the presence of natural microbial population acclimated in a storage tank of AW. Microbial analysis showed that the major populations which contribute to the pretreatment of AW belong to the genera Bacillus. Contrary to the static pretreatment, the stirred conditions favoured the hydrolysis and solubilization of 80% of suspended matter into soluble pollution. The pretreated AW, in continuous stirred tank reactor (CSTR) at a hydraulic retention time (HRT) of 2 days, was fed to an upflow anaerobic filter (UAF) at an HRT of 2 days. The performance of anaerobic digestion of biologically pretreated AW was examined under mesophilic (37 degrees C) and thermophilic (55 degrees C) conditions. The shifting from a mesophilic to a thermophilic environment in the UAF was carried out with a short start-up of thermophilic condition. The UAF ran at organic loading rates (OLRs) ranging from 0.9 to 6g COD/Ld in mesophilic conditions and at OLRs from 0.9 to 9 g COD/Ld in thermophilic conditions. COD removal efficiencies of 80-90% were achieved for OLRs up to 4.5 g COD/Ld in mesophilic conditions, while the highest OLRs i.e. 9 g COD/Ld led to efficiencies of 70-72% in thermophilic conditions. The biogas yield in thermophilic conditions was about 0.32-0.45 L biogas/g of COD removed for OLRs up to 4.5 g COD/Ld. For similar OLR, the UAF in mesophilic conditions showed lower percentage of methanization. Mesophilic anaerobic digestion has been shown to destroy pathogens partially, whereas the thermophilic process was more efficient in the removal of indicator microorganisms and pathogenic bacteria at different organic loading rates.

  2. Assessment of undiscovered oil and gas resources of the West African Costal Province, West Africa

    USGS Publications Warehouse

    Brownfield, Michael E.; Charpentier, Ronald R.; Schenk, Christopher J.; Klett, Timothy R.; Cook, Troy A.; Pollastro, Richard M.

    2011-01-01

    The West African Coastal Province along the west African coastline recently was assessed for undiscovered, technically recoverable oil, natural gas, and natural gas liquids resources as part of the U.S. Geological Survey's USGS World Oil and Gas Assessment. Using a geology-based assessment methodology, the USGS estimated mean volumes of 3.2 billion barrels of oil, 23.63 trillion cubic feet of natural gas, and 721 million barrels of natural gas liquids.

  3. Assessment of undiscovered oil and gas resources of the Chad Basin Province, North-Central Africa

    USGS Publications Warehouse

    Brownfield, Michael E.; Schenk, Christopher J.; Charpentier, Ronald R.; Klett, Timothy R.; Cook, Troy A.; Pollastro, Richard M.; Tennyson, Marilyn E.

    2010-01-01

    The Chad Basin Province located in north-central Africa recently was assessed for undiscovered, technically recoverable oil, natural gas, and natural gas liquids resources as part of the U.S. Geological Survey's (USGS) World Oil and Gas Assessment. Using a geology-based assessment methodology, the USGS estimated mean volumes of 2.32 billion barrels of oil, 14.65 trillion cubic feet of natural gas, and 391 million barrels of natural gas liquids.

  4. The Function of Gas Vesicles in Halophilic Archaeaand Bacteria: Theories and Experimental Evidence

    PubMed Central

    Oren, Aharon

    2012-01-01

    A few extremely halophilic Archaea (Halobacterium salinarum, Haloquadratum walsbyi, Haloferax mediterranei, Halorubrum vacuolatum, Halogeometricum borinquense, Haloplanus spp.) possess gas vesicles that bestow buoyancy on the cells. Gas vesicles are also produced by the anaerobic endospore-forming halophilic Bacteria Sporohalobacter lortetii and Orenia sivashensis. We have extensive information on the properties of gas vesicles in Hbt. salinarum and Hfx. mediterranei and the regulation of their formation. Different functions were suggested for gas vesicle synthesis: buoying cells towards oxygen-rich surface layers in hypersaline water bodies to prevent oxygen limitation, reaching higher light intensities for the light-driven proton pump bacteriorhodopsin, positioning the cells optimally for light absorption, light shielding, reducing the cytoplasmic volume leading to a higher surface-area-to-volume ratio (for the Archaea) and dispersal of endospores (for the anaerobic spore-forming Bacteria). Except for Hqr. walsbyi which abounds in saltern crystallizer brines, gas-vacuolate halophiles are not among the dominant life forms in hypersaline environments. There only has been little research on gas vesicles in natural communities of halophilic microorganisms, and the few existing studies failed to provide clear evidence for their possible function. This paper summarizes the current status of the different theories why gas vesicles may provide a selective advantage to some halophilic microorganisms. PMID:25371329

  5. Probing porous media with gas diffusion NMR

    NASA Technical Reports Server (NTRS)

    Mair, R. W.; Wong, G. P.; Hoffmann, D.; Hurlimann, M. D.; Patz, S.; Schwartz, L. M.; Walsworth, R. L.

    1999-01-01

    We show that gas diffusion nuclear magnetic resonance (GD-NMR) provides a powerful technique for probing the structure of porous media. In random packs of glass beads, using both laser-polarized and thermally polarized xenon gas, we find that GD-NMR can accurately measure the pore space surface-area-to-volume ratio, S/V rho, and the tortuosity, alpha (the latter quantity being directly related to the system's transport properties). We also show that GD-NMR provides a good measure of the tortuosity of sandstone and complex carbonate rocks.

  6. ENVIRONMENTAL ASSESSMENT OF A FIRETUBE BOILER FIRING COAL/OIL/WATER MIXTURES. VOLUME 1. TECHNICAL RESULTS

    EPA Science Inventory

    This volume describes emission results from sampling of flue gas from a firetube boiler burning a coal/oil/water (COW) mixture and COW with soda ash added (COW+SA) to control SO2 emissions. Measurements included: continuous monitoring of flue gas emissions; source assessment samp...

  7. Transport of Gas and Solutes in Permeable Estuarine Sediments

    DTIC Science & Technology

    2011-09-30

    shallow sand sediments colonized by photosynthetizing diatoms and cyanobacteria . Photosynthetically active radiation at the water surface raged from...explained with the reduction of the compressible gas volume. Fig. 6. Left graph: Hysteresis in small bubble

  8. Effects of Lung Volume Reduction Surgery on Gas Exchange and Breathing Pattern During Maximum Exercise

    PubMed Central

    Criner, Gerard J.; Belt, Patricia; Sternberg, Alice L.; Mosenifar, Zab; Make, Barry J.; Utz, James P.; Sciurba, Frank

    2009-01-01

    Background: The National Emphysema Treatment Trial studied lung volume reduction surgery (LVRS) for its effects on gas exchange, breathing pattern, and dyspnea during exercise in severe emphysema. Methods: Exercise testing was performed at baseline, and 6, 12, and 24 months. Minute ventilation (V̇e), tidal volume (Vt), carbon dioxide output (V̇co2), dyspnea rating, and workload were recorded at rest, 3 min of unloaded pedaling, and maximum exercise. Pao2, Paco2, pH, fraction of expired carbon dioxide, and bicarbonate were also collected in some subjects at these time points and each minute of testing. There were 1,218 patients enrolled in the study (mean [± SD] age, 66.6 ± 6.1 years; mean, 61%; mean FEV1, 0.77 ± 0.24 L), with 238 patients participating in this substudy (mean age, 66.1 ± 6.8 years; mean, 67%; mean FEV1, 0.78 ± 0.25 L). Results: At 6 months, LVRS patients had higher maximum V̇e (32.8 vs 29.6 L/min, respectively; p = 0.001), V̇co2, (0.923 vs 0.820 L/min, respectively; p = 0.0003), Vt (1.18 vs 1.07 L, respectively; p = 0.001), heart rate (124 vs 121 beats/min, respectively; p = 0.02), and workload (49.3 vs 45.1 W, respectively; p = 0.04), but less breathlessness (as measured by Borg dyspnea scale score) [4.4 vs 5.2, respectively; p = 0.0001] and exercise ventilatory limitation (49.5% vs 71.9%, respectively; p = 0.001) than medical patients. LVRS patients with upper-lobe emphysema showed a downward shift in Paco2 vs V̇co2 (p = 0.001). During exercise, LVRS patients breathed slower and deeper at 6 months (p = 0.01) and 12 months (p = 0.006), with reduced dead space at 6 months (p = 0.007) and 24 months (p = 0.006). Twelve months after patients underwent LVRS, dyspnea was less in patients with upper-lobe emphysema (p = 0.001) and non–upper-lobe emphysema (p = 0.007). Conclusion: During exercise following LVRS, patients with severe emphysema improve carbon dioxide elimination and dead space, breathe slower and deeper, and report less dyspnea

  9. Apparatus and method for excluding gas from a liquid

    DOEpatents

    Murphy, Jr., Robert J.

    1985-01-01

    The present invention is directed to an apparatus and method for preventing diffusion of a gas under high pressure into the bulk of a liquid filling a substantially closed chamber. This apparatus and method is particularly useful in connection with test devices for testing fluid characteristics under harsh conditions of extremely high pressure and high temperature. These devices typically pressurize the liquid by placing the liquid in pressure and fluid communication with a high pressure inert gas. The apparatus and method of the present invention prevent diffusion of the pressurizing gas into the bulk of the test liquid by decreasing the chamber volume at a rate sufficient to maintain the bulk of the liquid free of absorbed or dissolved gas by expelling that portion of the liquid which is contaminated by the pressurizing gas.

  10. Atomistic modeling of structure II gas hydrate mechanics: Compressibility and equations of state

    NASA Astrophysics Data System (ADS)

    Vlasic, Thomas M.; Servio, Phillip; Rey, Alejandro D.

    2016-08-01

    This work uses density functional theory (DFT) to investigate the poorly characterized structure II gas hydrates, for various guests (empty, propane, butane, ethane-methane, propane-methane), at the atomistic scale to determine key structure and mechanical properties such as equilibrium lattice volume and bulk modulus. Several equations of state (EOS) for solids (Murnaghan, Birch-Murnaghan, Vinet, Liu) were fitted to energy-volume curves resulting from structure optimization simulations. These EOS, which can be used to characterize the compressional behaviour of gas hydrates, were evaluated in terms of their robustness. The three-parameter Vinet EOS was found to perform just as well if not better than the four-parameter Liu EOS, over the pressure range in this study. As expected, the Murnaghan EOS proved to be the least robust. Furthermore, the equilibrium lattice volumes were found to increase with guest size, with double-guest hydrates showing a larger increase than single-guest hydrates, which has significant implications for the widely used van der Waals and Platteeuw thermodynamic model for gas hydrates. Also, hydrogen bonds prove to be the most likely factor contributing to the resistance of gas hydrates to compression; bulk modulus was found to increase linearly with hydrogen bond density, resulting in a relationship that could be used predictively to determine the bulk modulus of various structure II gas hydrates. Taken together, these results fill a long existing gap in the material chemical physics of these important clathrates.

  11. Atomistic modeling of structure II gas hydrate mechanics: Compressibility and equations of state

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vlasic, Thomas M.; Servio, Phillip; Rey, Alejandro D., E-mail: alejandro.rey@mcgill.ca

    2016-08-15

    This work uses density functional theory (DFT) to investigate the poorly characterized structure II gas hydrates, for various guests (empty, propane, butane, ethane-methane, propane-methane), at the atomistic scale to determine key structure and mechanical properties such as equilibrium lattice volume and bulk modulus. Several equations of state (EOS) for solids (Murnaghan, Birch-Murnaghan, Vinet, Liu) were fitted to energy-volume curves resulting from structure optimization simulations. These EOS, which can be used to characterize the compressional behaviour of gas hydrates, were evaluated in terms of their robustness. The three-parameter Vinet EOS was found to perform just as well if not better thanmore » the four-parameter Liu EOS, over the pressure range in this study. As expected, the Murnaghan EOS proved to be the least robust. Furthermore, the equilibrium lattice volumes were found to increase with guest size, with double-guest hydrates showing a larger increase than single-guest hydrates, which has significant implications for the widely used van der Waals and Platteeuw thermodynamic model for gas hydrates. Also, hydrogen bonds prove to be the most likely factor contributing to the resistance of gas hydrates to compression; bulk modulus was found to increase linearly with hydrogen bond density, resulting in a relationship that could be used predictively to determine the bulk modulus of various structure II gas hydrates. Taken together, these results fill a long existing gap in the material chemical physics of these important clathrates.« less

  12. Approximation of Gas Volume in a Seafloor Sediment using Time Domain Reflectometry in the Okhotsk Sea

    NASA Astrophysics Data System (ADS)

    Aoki, S.; Noborio, K.; Matsumoto, R.

    2013-12-01

    Global warming has accelerated in recent decades as the concentration of carbon dioxide has increased in the atmosphere due to fossil fuel burning. In addition, increases in consuming fossil fuels have led to their depletion in recent years. One practical measure to meet these two challenges is the conversion of energy resources to natural gas that has less environmental impact. Gas hydrates that contain natural gas have been discovered in the sea around Japan. They are expected to serve as a new non-conventional natural gas resource. To understand the mechanism of gas hydrate accumulation, the amount of free gas in sediments should be known. However, it is difficult to measure this non-destructively without affecting other properties. In this study we examined a technique for measuring the amount of free gas using Time Domain Reflectometry (TDR). TDR was a method of measuring the dielectric constant of the soil. This method is based on the relationship between the volumetric water content and dielectric constant, to estimate the volumetric water content indirectly. TDR has commonly been used to measure the moisture content of soil such as cultivation and paddy. In our study, we used TDR to estimate the gas ratio in the sea-bottom sediment obtained from the Sea of Okhotsk. Measurement by the TDR method was difficult in a high electrical conductivity solution such as seawater. Therefore, we blunted the measurement sensitivity by coating TDR probe with plastic, which makes it possible to measure. We found that the gas phase rates differed depending on the depth and location, so gas phase existed up to about 10%.

  13. Map of assessed tight-gas resources in the United States

    USGS Publications Warehouse

    Biewick, Laura R. H.; ,

    2014-01-01

    This report presents a digital map of tight-gas resource assessments in the United States as part of the U.S. Geological Survey’s (USGS) National Assessment of Oil and Gas Project. Using a geology-based assessment methodology, the USGS quantitatively estimated potential volumes of undiscovered, technically recoverable natural gas resources within tight-gas assessment units (AUs). This is the second digital map product in a series of USGS unconventional oil and gas resource maps. The map plate included in this report can be printed in hard-copy form or downloaded in a Geographic Information System (GIS) data package, including an ArcGIS ArcMap document (.mxd), geodatabase (.gdb), and published map file (.pmf). In addition, the publication access table contains hyperlinks to current USGS tight-gas assessment publications and web pages.

  14. Filter type gas sampler with filter consolidation

    DOEpatents

    Miley, Harry S.; Thompson, Robert C.; Hubbard, Charles W.; Perkins, Richard W.

    1997-01-01

    Disclosed is an apparatus for automatically consolidating a filter or, more specifically, an apparatus for drawing a volume of gas through a plurality of sections of a filter, whereafter the sections are subsequently combined for the purpose of simultaneously interrogating the sections to detect the presence of a contaminant.

  15. 30 CFR 202.558 - What standards do I use to report and pay royalties on gas?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... specified in paragraph (a) of this section. (2) Report natural gas liquid (NGL) volumes in standard U.S... royalties on gas? 202.558 Section 202.558 Mineral Resources MINERALS MANAGEMENT SERVICE, DEPARTMENT OF THE INTERIOR MINERALS REVENUE MANAGEMENT ROYALTIES Gas Production From Indian Leases § 202.558 What standards...

  16. U.S. Geological Survey 2011 assessment of undiscovered oil and gas resources of the Cook Inlet region, south-central Alaska

    USGS Publications Warehouse

    Stanley, Richard G.; Pierce, Brenda S.; Houseknecht, David W.

    2011-01-01

    The U.S. Geological Survey (USGS) has completed an assessment of the volumes of undiscovered, technically recoverable oil and gas resources in conventional and continuous accumulations in Cook Inlet. The assessment used a geology-based methodology and results from new scientific research by the USGS and the State of Alaska, Department of Natural Resources, Division of Geological and Geophysical Surveys and Division of Oil and Gas (DOG). In the Cook Inlet region, the USGS estimates mean undiscovered volumes of nearly 600 million barrels of oil, about 19 trillion cubic feet of gas, and about 46 million barrels of natural gas liquids.

  17. The hydrology of northern peatlands as affected by biogenic gas: Current developments and research needs

    USGS Publications Warehouse

    Rosenberry, D.O.; Glaser, P.H.; Siegel, D.I.

    2006-01-01

    Recent research indicates that accumulation and release of biogenic gas from northern peatlands may substantially affect future climate. Sudden release of free-phase gas bubbles into the atmosphere may preclude the conversion of methane to carbon dioxide in the uppermost oxic layer of the peat, resulting in greater contribution of methane to the atmosphere than is currently estimated. The hydrology of these peatlands also affects and is affected by this process, especially when gas is released suddenly and episodically. Indirect hydrological evidence indicates that ebullitive gas releases are relatively frequent in some peatlands and time-averaged rates may be significantly greater than diffusive releases. Estimates of free-phase gas contained in peat have ranged from 0 to nearly 20% of the peat volume. Abrupt changes in the volume of gas may alter hydraulic gradients and movement of water and solutes in peat, which in turn could alter composition and fluxes of the gas. Peat surfaces also move vertically and horizontally in response to accumulation and release of free-phase gas. Future research should address the distribution, temporal variability, and relative significance of ebullition in peatlands and the consequent hydrological responses to these gas-emission events. Copyright ?? 2006 John Wiley & Sons, Ltd.

  18. Simulating the gas hydrate production test at Mallik using the pilot scale pressure reservoir LARS

    NASA Astrophysics Data System (ADS)

    Heeschen, Katja; Spangenberg, Erik; Schicks, Judith M.; Priegnitz, Mike; Giese, Ronny; Luzi-Helbing, Manja

    2014-05-01

    LARS, the LArge Reservoir Simulator, allows for one of the few pilot scale simulations of gas hydrate formation and dissociation under controlled conditions with a high resolution sensor network to enable the detection of spatial variations. It was designed and built within the German project SUGAR (submarine gas hydrate reservoirs) for sediment samples with a diameter of 0.45 m and a length of 1.3 m. During the project, LARS already served for a number of experiments simulating the production of gas from hydrate-bearing sediments using thermal stimulation and/or depressurization. The latest test simulated the methane production test from gas hydrate-bearing sediments at the Mallik test site, Canada, in 2008 (Uddin et al., 2011). Thus, the starting conditions of 11.5 MPa and 11°C and environmental parameters were set to fit the Mallik test site. The experimental gas hydrate saturation of 90% of the total pore volume (70 l) was slightly higher than volumes found in gas hydrate-bearing formations in the field (70 - 80%). However, the resulting permeability of a few millidarcy was comparable. The depressurization driven gas production at Mallik was conducted in three steps at 7.0 MPa - 5.0 MPa - 4.2 MPa all of which were used in the laboratory experiments. In the lab the pressure was controlled using a back pressure regulator while the confining pressure was stable. All but one of the 12 temperature sensors showed a rapid decrease in temperature throughout the sediment sample, which accompanied the pressure changes as a result of gas hydrate dissociation. During step 1 and 2 they continued up to the point where gas hydrate stability was regained. The pressure decreases and gas hydrate dissociation led to highly variable two phase fluid flow throughout the duration of the simulated production test. The flow rates were measured continuously (gas) and discontinuously (liquid), respectively. Next to being discussed here, both rates were used to verify a model of gas

  19. GASFLOW: A Computational Fluid Dynamics Code for Gases, Aerosols, and Combustion, Volume 3: Assessment Manual

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Müller, C.; Hughes, E. D.; Niederauer, G. F.

    1998-10-01

    Los Alamos National Laboratory (LANL) and Forschungszentrum Karlsruhe (FzK) are developing GASFLOW, a three-dimensional (3D) fluid dynamics field code as a best- estimate tool to characterize local phenomena within a flow field. Examples of 3D phenomena include circulation patterns; flow stratification; hydrogen distribution mixing and stratification; combustion and flame propagation; effects of noncondensable gas distribution on local condensation and evaporation; and aerosol entrainment, transport, and deposition. An analysis with GASFLOW will result in a prediction of the gas composition and discrete particle distribution in space and time throughout the facility and the resulting pressure and temperature loadings on the wallsmore » and internal structures with or without combustion. A major application of GASFLOW is for predicting the transport, mixing, and combustion of hydrogen and other gases in nuclear reactor containment and other facilities. It has been applied to situations involving transporting and distributing combustible gas mixtures. It has been used to study gas dynamic behavior in low-speed, buoyancy-driven flows, as well as sonic flows or diffusion dominated flows; and during chemically reacting flows, including deflagrations. The effects of controlling such mixtures by safety systems can be analyzed. The code version described in this manual is designated GASFLOW 2.1, which combines previous versions of the United States Nuclear Regulatory Commission code HMS (for Hydrogen Mixing Studies) and the Department of Energy and FzK versions of GASFLOW. The code was written in standard Fortran 90. This manual comprises three volumes. Volume I describes the governing physical equations and computational model. Volume II describes how to use the code to set up a model geometry, specify gas species and material properties, define initial and boundary conditions, and specify different outputs, especially graphical displays. Sample problems are included

  20. Annual review of energy. Volume 5

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hollander, J.M.; Simmons, M.K.; Wood, D.O.

    1980-01-01

    The many continuing efforts around the world to deal with the issues of energy supply, demand, and environmental impact are reviewed. This volume carries reviews of recent developments in solar-photovoltaic technology and inertial-confinement fusion as long-term options. Progress in some important nearer-term energy-supply areas is reviewed by contributions in the fields of battery energy storage and coal clean-up technology. In the area of energy sociology, the interesting and poorly understood topic of public opinion about energy is reviewed. The subject of energy economics is represented by a review of the role of governmental incentives in energy production. Topics related tomore » the environmental aspects of energy technologies include coastal flooding from atmospheric carbon dioxide warming, risks of liquefied natural gas and petroleum gas, and the environmental impacts of renewable energy sources. Continuing the practice of earlier volumes to review the energy perspective of a particular region or country, Volume 5 carries a review of emerging energy technologies in island environments, typified by the case of Hawaii. Finally, the energy problem from the perspective of developing countries is reviewed by two papers, the first on renewable energy resources for developing countries, and the second on the problem of energy for the people of Asia and the Pacific. A separate abstract was prepared for each of the 12 reviews for the Energy Data Base (EDB); all will appear in Energy Abstracts for Policy Analysis (EAPA) and three in Energy Research Abstracts (ERA).« less

  1. Diurnal Changes in Volume and Specific Tissue Weight of Crassulacean Acid Metabolism Plants 1

    PubMed Central

    Chen, Sheng-Shu; Black, Clanton C.

    1983-01-01

    The diurnal variations in volume and in specific weight were determined for green stems and leaves of Crassulacen acid metabolism (CAM) plants. Volume changes were measured by a water displacement method. Diurnal variations occurred in the volume of green CAM tissues. Their volume increased early in the light period reaching a maximum about mid-day, then the volume decreased to a minimum near midnight. The maximum volume increase each day was about 2.7% of the total volume. Control leaves of C3 and C4 plants exhibited reverse diurnal volume changes of 0.2 to 0.4%. The hypothesis is presented and supported that green CAM tissues should exhibit a diurnal increase in volume due to the increase of internal gas pressure from CO2 and O2 when their stomata are closed. Conversely, the volume should decrease when the gas pressure is decreased. The second hypothesis presented and supported was that the specific weight (milligrams of dry weight per square centimeter of green surface area) of green CAM tissues should increase at night due to the net fixation of CO2. Green CAM tissues increased their specific weight at night in contrast to control C3 and C4 leaves which decreased their specific weight at night. With Kalanchoë daigremontiana leaves, the calculated increase in specific leaf weight at night based on estimates of carbohydrate available for net CO2 fixation was near 6% and the measured increase in specific leaf weight was 6%. Diurnal measurements of CAM tissue water content were neither coincident nor reciprocal with their diurnal patterns of either volume or specific weight changes. PMID:16662833

  2. 78 FR 68161 - Greenhouse Gas Reporting Program: Final Amendments and Confidentiality Determinations for...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-13

    ... measurements corrected for temperature and non-ideal gas behavior). For gases with low volume consumption for... effect of that abatement system when using either the emission factors and calculation methods in 40 CFR...) basis. To develop the preliminary estimate, the reporter must use the gas consumption in the tools...

  3. Propagation characteristics of pulverized coal and gas two-phase flow during an outburst.

    PubMed

    Zhou, Aitao; Wang, Kai; Fan, Lingpeng; Tao, Bo

    2017-01-01

    Coal and gas outbursts are dynamic failures that can involve the ejection of thousands tons of pulverized coal, as well as considerable volumes of gas, into a limited working space within a short period. The two-phase flow of gas and pulverized coal that occurs during an outburst can lead to fatalities and destroy underground equipment. This article examines the interaction mechanism between pulverized coal and gas flow. Based on the role of gas expansion energy in the development stage of outbursts, a numerical simulation method is proposed for investigating the propagation characteristics of the two-phase flow. This simulation method was verified by a shock tube experiment involving pulverized coal and gas flow. The experimental and simulated results both demonstrate that the instantaneous ejection of pulverized coal and gas flow can form outburst shock waves. These are attenuated along the propagation direction, and the volume fraction of pulverized coal in the two-phase flow has significant influence on attenuation of the outburst shock wave. As a whole, pulverized coal flow has a negative impact on gas flow, which makes a great loss of large amounts of initial energy, blocking the propagation of gas flow. According to comparison of numerical results for different roadway types, the attenuation effect of T-type roadways is best. In the propagation of shock wave, reflection and diffraction of shock wave interact through the complex roadway types.

  4. Propagation characteristics of pulverized coal and gas two-phase flow during an outburst

    PubMed Central

    Zhou, Aitao; Wang, Kai; Fan, Lingpeng; Tao, Bo

    2017-01-01

    Coal and gas outbursts are dynamic failures that can involve the ejection of thousands tons of pulverized coal, as well as considerable volumes of gas, into a limited working space within a short period. The two-phase flow of gas and pulverized coal that occurs during an outburst can lead to fatalities and destroy underground equipment. This article examines the interaction mechanism between pulverized coal and gas flow. Based on the role of gas expansion energy in the development stage of outbursts, a numerical simulation method is proposed for investigating the propagation characteristics of the two-phase flow. This simulation method was verified by a shock tube experiment involving pulverized coal and gas flow. The experimental and simulated results both demonstrate that the instantaneous ejection of pulverized coal and gas flow can form outburst shock waves. These are attenuated along the propagation direction, and the volume fraction of pulverized coal in the two-phase flow has significant influence on attenuation of the outburst shock wave. As a whole, pulverized coal flow has a negative impact on gas flow, which makes a great loss of large amounts of initial energy, blocking the propagation of gas flow. According to comparison of numerical results for different roadway types, the attenuation effect of T-type roadways is best. In the propagation of shock wave, reflection and diffraction of shock wave interact through the complex roadway types. PMID:28727738

  5. Spatial resolution of gas hydrate and permeability changes from ERT data in LARS simulating the Mallik gas hydrate production test

    NASA Astrophysics Data System (ADS)

    Priegnitz, Mike; Thaler, Jan; Spangenberg, Erik; Schicks, Judith M.; Abendroth, Sven

    2014-05-01

    The German gas hydrate project SUGAR studies innovative methods and approaches to be applied in the production of methane from hydrate-bearing reservoirs. To enable laboratory studies in pilot scale, a large reservoir simulator (LARS) was realized allowing for the formation and dissociation of gas hydrates under simulated in-situ conditions. LARS is equipped with a series of sensors. This includes a cylindrical electrical resistance tomography (ERT) array composed of 25 electrode rings featuring 15 electrodes each. The high-resolution ERT array is used to monitor the spatial distribution of the electrical resistivity during hydrate formation and dissociation experiments over time. As the present phases of poorly conducting sediment, well conducting pore fluid, non-conducting hydrates, and isolating free gas cover a wide range of electrical properties, ERT measurements enable us to monitor the spatial distribution of these phases during the experiments. In order to investigate the hydrate dissociation and the resulting fluid flow, we simulated a hydrate production test in LARS that was based on the Mallik gas hydrate production test (see abstract Heeschen et al., this volume). At first, a hydrate phase was produced from methane saturated saline water. During the two months of gas hydrate production we measured the electrical properties within the sediment sample every four hours. These data were used to establish a routine estimating both the local degrees of hydrate saturation and the resulting local permeabilities in the sediment's pore space from the measured resistivity data. The final gas hydrate saturation filled 89.5% of the total pore space. During hydrate dissociation, ERT data do not allow for a quantitative determination of free gas and remaining gas hydrates since both phases are electrically isolating. However, changes are resolved in the spatial distribution of the conducting liquid and the isolating phase with gas being the only mobile isolating phase

  6. Millimeter-wave Line Ratios and Sub-beam Volume Density Distributions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leroy, Adam K.; Gallagher, Molly; Usero, Antonio

    We explore the use of mm-wave emission line ratios to trace molecular gas density when observations integrate over a wide range of volume densities within a single telescope beam. For observations targeting external galaxies, this case is unavoidable. Using a framework similar to that of Krumholz and Thompson, we model emission for a set of common extragalactic lines from lognormal and power law density distributions. We consider the median density of gas that produces emission and the ability to predict density variations from observed line ratios. We emphasize line ratio variations because these do not require us to know themore » absolute abundance of our tracers. Patterns of line ratio variations have the potential to illuminate the high-end shape of the density distribution, and to capture changes in the dense gas fraction and median volume density. Our results with and without a high-density power law tail differ appreciably; we highlight better knowledge of the probability density function (PDF) shape as an important area. We also show the implications of sub-beam density distributions for isotopologue studies targeting dense gas tracers. Differential excitation often implies a significant correction to the naive case. We provide tabulated versions of many of our results, which can be used to interpret changes in mm-wave line ratios in terms of adjustments to the underlying density distributions.« less

  7. Extraction of thermalized projectile fragments from a large volume gas cell

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cooper, K.; Sumithrarachchi, C. S.; Morrissey, D. J.

    2014-11-01

    Experiments to determine the stopping and extraction efficiency of energetic (90 MeV/u) 76Ga fragments in a 1.2 m long gas cell filled with helium at 123 mbar are reported. The thermalized ions were transported by DC and RF fields as well as gas flow, then jetted through a supersonic nozzle into a RF quadrupole ion-guide and accelerated into an electrostatic beam line. The ions were collected in either a Faraday cup or a silicon beta-detector immediately after acceleration or after magnetic analysis. The range distributions of the ions and extraction efficiency of the system were measured for different implantation ratesmore » and compared with the theoretically calculated values. The singly charged 76Ga ions were observed as [ 76Ga(H 2O) n] + molecular ions with n=0, 1, and 2. The stopping efficiency and the extraction efficiency were obtained from the measured distributions and compared to previous results from other devices.« less

  8. Repairing casing at a gas storage field

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hollenbaugh, B.

    1992-09-01

    This paper reports on the Leyden gas storage field which is a 1.5-Bcf working volume underground gas storage facility locating at the northwest edge of the Denver, Colo., metropolitan area. The field is owned by Public Service Co. of Colorado and operated by its wholly owned subsidiary, Western Gas Supply Co. Logging technology was instrumental in locating casing damage at two wells, identifying the extent of the damage and ensuring a successful repair. The well casings were repaired by installing a liner between two packers, with one packer set above the damage and the other set below it. Special equipmentmore » and procedures were required for workover and drilling operations because of the complications associated with cavern storage. Logging technology can locate damaged casing and evaluate the type and extent of the damage, and also predict the probability of gas migration behind the casing.« less

  9. Assessment of undiscovered oil and gas resources of the Assam, Bombay, Cauvery, and Krishna-Godavari Provinces, South Asia, 2011

    USGS Publications Warehouse

    Klett, T.R.; Schenk, Christopher J.; Wandrey, Craig J.; Charpentier, Ronald R.; Cook, Troy A.; Brownfield, Michael E.; Pitman, Janet K.; Pollastro, Richard M.

    2012-01-01

    Using a geology-based assessment methodology, the U.S. Geological Survey estimated volumes of undiscovered, technically recoverable, conventional petroleum resources for the Assam, Bombay, Cauvery, and Krishna–Godavari Provinces, South Asia. The estimated mean volumes are as follows: (1) Assam Province, 273 million barrels of crude oil, 1,559 billion cubic feet of natural gas, and 43 million barrels of natural gas liquids; (2) Bombay Province, 1,854 million barrels of crude oil, 15,417 billion cubic feet of natural gas, and 498 million barrels of natural gas liquids; (3) Cauvery Province, 941 million barrels of crude oil, 25,208 billion cubic feet of natural gas, and 654 million barrels of natural gas liquids; and (4) Krishna–Godavari Province, 466 million barrels of crude oil, 37,168 billion cubic feet of natural gas, and 484 million barrels of natural gas liquids. The totals for the four provinces are 3,534 million barrels of crude oil, 79,352 billion cubic feet of natural gas, and 1,679 million barrels of natural gas liquids.

  10. Physical properties of CO-dark molecular gas traced by C+

    NASA Astrophysics Data System (ADS)

    Tang, Ningyu; Li, Di; Heiles, Carl; Wang, Shen; Pan, Zhichen; Wang, Jun-Jie

    2016-09-01

    Context. Neither Hi nor CO emission can reveal a significant quantity of so-called dark gas in the interstellar medium (ISM). It is considered that CO-dark molecular gas (DMG), the molecular gas with no or weak CO emission, dominates dark gas. Determination of physical properties of DMG is critical for understanding ISM evolution. Previous studies of DMG in the Galactic plane are based on assumptions of excitation temperature and volume density. Independent measurements of temperature and volume density are necessary. Aims: We intend to characterize physical properties of DMG in the Galactic plane based on C+ data from the Herschel open time key program, namely Galactic Observations of Terahertz C+ (GOT C+) and Hi narrow self-absorption (HINSA) data from international Hi 21 cm Galactic plane surveys. Methods: We identified DMG clouds with HINSA features by comparing Hi, C+, and CO spectra. We derived the Hi excitation temperature and Hi column density through spectral analysis of HINSA features. The Hi volume density was determined by utilizing the on-the-sky dimension of the cold foreground Hi cloud under the assumption of axial symmetry. The column and volume density of H2 were derived through excitation analysis of C+ emission. The derived parameters were then compared with a chemical evolutionary model. Results: We identified 36 DMG clouds with HINSA features. Based on uncertainty analysis, optical depth of HiτHi of 1 is a reasonable value for most clouds. With the assumption of τHi = 1, these clouds were characterized by excitation temperatures in a range of 20 K to 92 K with a median value of 55 K and volume densities in the range of 6.2 × 101 cm-3 to 1.2 × 103 cm-3 with a median value of 2.3 × 102 cm-3. The fraction of DMG column density in the cloud (fDMG) decreases with increasing excitation temperature following an empirical relation fDMG =-2.1 × 10-3Tex,(τHi = 1) + 1.0. The relation between fDMG and total hydrogen column density NH is given by f

  11. Building America Case Study: Assessment of a Hybrid Retrofit Gas Water Heater

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    M. Hoeschele, E. Weitzel, C. Backman

    This project completed a modeling evaluation of a hybrid gas water heater that combines a reduced capacity tankless unit with a downsized storage tank. This product would meet a significant market need by providing a higher efficiency gas water heater solution for retrofit applications while maintaining compatibility with the half-inch gas lines and standard B vents found in most homes. The TRNSYS simulation tool was used to model a base case 0.60 EF atmospheric gas storage water, a 0.82 EF non-condensing gas tankless water heater, an existing (high capacity) hybrid unit on the market, and an alternative hybrid unit withmore » lower storage volume and reduced gas input requirements.« less

  12. Flowmeter for gas-entrained solids flow

    DOEpatents

    Porges, Karl G.

    1990-01-01

    An apparatus and method for the measurement of solids feedrate in a gas-entrained solids flow conveyance system. The apparatus and method of the present invention include a vertical duct connecting a source of solids to the gas-entrained flow conveyance system, a control valve positioned in the vertical duct, and a capacitive densitometer positioned along the duct at a location a known distance below the control valved so that the solid feedrate, Q, of the gas entrained flow can be determined by Q=S.rho..phi.V.sub.S where S is the cross sectional area of the duct, .rho. is the density of the solid, .phi. is the solid volume fraction determined by the capacitive densitometer, and v.sub.S is the local solid velocity which can be inferred from the konown distance of the capacitive densitometer below the control valve.

  13. Real gas CFD simulations of hydrogen/oxygen supercritical combustion

    NASA Astrophysics Data System (ADS)

    Pohl, S.; Jarczyk, M.; Pfitzner, M.; Rogg, B.

    2013-03-01

    A comprehensive numerical framework has been established to simulate reacting flows under conditions typically encountered in rocket combustion chambers. The model implemented into the commercial CFD Code ANSYS CFX includes appropriate real gas relations based on the volume-corrected Peng-Robinson (PR) equation of state (EOS) for the flow field and a real gas extension of the laminar flamelet combustion model. The results indicate that the real gas relations have a considerably larger impact on the flow field than on the detailed flame structure. Generally, a realistic flame shape could be achieved for the real gas approach compared to experimental data from the Mascotte test rig V03 operated at ONERA when the differential diffusion processes were only considered within the flame zone.

  14. Associated petroleum gas utilization in Tomsk Oblast: energy efficiency and tax advantages

    NASA Astrophysics Data System (ADS)

    Vazim, A.; Romanyuk, V.; Ahmadeev, K.; Matveenko, I.

    2015-11-01

    This article deals with oil production companies activities in increasing the utilization volume of associated petroleum gas (APG) in Tomsk Oblast. Cost-effectiveness analysis of associated petroleum gas utilization was carried out using the example of gas engine power station AGP-350 implementation at Yuzhno-Cheremshanskoye field, Tomsk Oblast. Authors calculated the effectiveness taking into account the tax advantages of 2012. The implementation of this facility shows high profitability, the payback period being less than 2 years.

  15. Centrifugal Gas Compression Cycle

    NASA Astrophysics Data System (ADS)

    Fultun, Roy

    2002-11-01

    A centrifuged gas of kinetic, elastic hard spheres compresses isothermally and without flow of heat in a process that reverses free expansion. This theorem follows from stated assumptions via a collection of thought experiments, theorems and other supporting results, and it excludes application of the reversible mechanical adiabatic power law in this context. The existence of an isothermal adiabatic centrifugal compression process makes a three-process cycle possible using a fixed sample of the working gas. The three processes are: adiabatic mechanical expansion and cooling against a piston, isothermal adiabatic centrifugal compression back to the original volume, and isochoric temperature rise back to the original temperature due to an influx of heat. This cycle forms the basis for a Thomson perpetuum mobile that induces a loop of energy flow in an isolated system consisting of a heat bath connectable by a thermal path to the working gas, a mechanical extractor of the gas's internal energy, and a device that uses that mechanical energy and dissipates it as heat back into the heat bath. We present a simple experimental procedure to test the assertion that adiabatic centrifugal compression is isothermal. An energy budget for the cycle provides a criterion for breakeven in the conversion of heat to mechanical energy.

  16. Assessment of undiscovered continuous oil and gas resources in the Monterey Formation, San Joaquin Basin Province, California, 2015

    USGS Publications Warehouse

    Tennyson, Marilyn E.; Charpentier, Ronald R.; Klett, Timothy R.; Brownfield, Michael E.; Pitman, Janet K.; Gaswirth, Stephanie B.; Hawkins, Sarah J.; Lillis, Paul G.; Marra, Kristen R.; Mercier, Tracey J.; Leathers, Heidi M.; Schenk, Christopher J.; Whidden, Katherine J.

    2015-10-06

    Using a geology-based assessment methodology, the U.S. Geological Survey assessed mean volumes of 21 million barrels of oil (MMBO), 27 billion cubic feet of gas, and 1 million barrels of natural gas liquids in two assessment units (AUs) that may contain continuous oil resources. Mean volumes of oil for the individual assessment units are 14 MMBO in the Monterey Buttonwillow AU and 7 MMBO in the Monterey Maricopa AU.

  17. a Mini Multi-Gas Detection System Based on Infrared Principle

    NASA Astrophysics Data System (ADS)

    Zhijian, Xie; Qiulin, Tan

    2006-12-01

    To counter the problems of gas accidents in coal mines, family safety resulted from using gas, a new infrared detection system with integration and miniaturization has been developed. The infrared detection optics principle used in developing this system is mainly analyzed. The idea that multi gas detection is introduced and guided through analyzing single gas detection is got across. Through researching the design of cell structure, the cell with integration and miniaturization has been devised. The way of data transmission on Controller Area Network (CAN) bus is explained. By taking Single-Chip Microcomputer (SCM) as intelligence handling, the functional block diagram of gas detection system is designed with its hardware and software system analyzed and devised. This system designed has reached the technology requirement of lower power consumption, mini-volume, big measure range, and able to realize multi-gas detection.

  18. Filter type gas sampler with filter consolidation

    DOEpatents

    Miley, H.S.; Thompson, R.C.; Hubbard, C.W.; Perkins, R.W.

    1997-03-25

    Disclosed is an apparatus for automatically consolidating a filter or, more specifically, an apparatus for drawing a volume of gas through a plurality of sections of a filter, where after the sections are subsequently combined for the purpose of simultaneously interrogating the sections to detect the presence of a contaminant. 5 figs.

  19. Alternatives to argon for gas stopping volumes in the B194 neutron imager

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bleuel, D. L.; Anderson, S.; Caggiano, J. A.

    2017-05-17

    In a recent experiment at Lawrence Berkeley National Laboratory, the 40Ar(d,p)41Ar excitation function between 3-7 MeV was measured, confirming a previous estimation that there may be an intolerable radiation dose from 41Ar production by slowing to rest 6.74 MeV deuterons in the gas cell of the neutron imaging facility being constructed in B194. Gas alternatives to argon are considered, including helium, nitrogen (N2), neon, sulfur hexafluoride (SF6), krypton, and xenon, as well as high atomic number solid backings such as tantalum.

  20. Method for making hydrogen rich gas from hydrocarbon fuel

    DOEpatents

    Krumpelt, M.; Ahmed, S.; Kumar, R.; Doshi, R.

    1999-07-27

    A method of forming a hydrogen rich gas from a source of hydrocarbon fuel in which the hydrocarbon fuel contacts a two-part catalyst comprising a dehydrogenation portion and an oxide-ion conducting portion at a temperature not less than about 400 C for a time sufficient to generate the hydrogen rich gas while maintaining CO content less than about 5 volume percent. There is also disclosed a method of forming partially oxidized hydrocarbons from ethanes in which ethane gas contacts a two-part catalyst comprising a dehydrogenation portion and an oxide-ion conducting portion for a time and at a temperature sufficient to form an oxide. 4 figs.

  1. Method for making hydrogen rich gas from hydrocarbon fuel

    DOEpatents

    Krumpelt, Michael; Ahmed, Shabbir; Kumar, Romesh; Doshi, Rajiv

    1999-01-01

    A method of forming a hydrogen rich gas from a source of hydrocarbon fuel in which the hydrocarbon fuel contacts a two-part catalyst comprising a dehydrogenation portion and an oxide-ion conducting portion at a temperature not less than about 400.degree. C. for a time sufficient to generate the hydrogen rich gas while maintaining CO content less than about 5 volume percent. There is also disclosed a method of forming partially oxidized hydrocarbons from ethanes in which ethane gas contacts a two-part catalyst comprising a dehydrogenation portion and an oxide-ion conducting portion for a time and at a temperature sufficient to form an oxide.

  2. Highly selective solid-phase extraction and large volume injection for the robust gas chromatography-mass spectrometric analysis of TCA and TBA in wines.

    PubMed

    Insa, S; Anticó, E; Ferreira, V

    2005-09-30

    A reliable solid-phase extraction (SPE) method for the simultaneous determination of 2,4,6-trichloroanisole (TCA) and 2,4,6-tribromoanisole (TBA) in wines has been developed. In the proposed procedure 50 mL of wine are extracted in a 1 mL cartridge filled with 50 mg of LiChrolut EN resins. Most wine volatiles are washed up with 12.5 mL of a water:methanol solution (70%, v/v) containing 1% of NaHCO3. Analytes are further eluted with 0.6 mL of dichloromethane. A 40 microL aliquot of this extract is directly injected into a PTV injector operated in the solvent split mode, and analysed by gas chromatography (GC)-ion trap mass spectrometry using the selected ion storage mode. The solid-phase extraction, including sample volume and rinsing and elution solvents, and the large volume GC injection have been carefully evaluated and optimized. The resulting method is precise (RSD (%) < 6% at 100 ng L(-1)), sensitive (LOD were 0.2 and 0.4 ng/L for TCA and TBA, respectively), robust (the absolute recoveries of both analytes are higher than 80% and consistent wine to wine) and friendly to the GC-MS system (the extract is clean, simple and free from non-volatiles).

  3. Pump out the volume--The effect of tracheal and subelytral pressure pulses on convective gas exchange in a dung beetle, Circellium bacchus (Fabricus).

    PubMed

    Duncan, Frances D; Förster, Thomas D; Hetz, Stefan K

    2010-05-01

    Many flightless beetles like the large apterous dung beetle Circellium bacchus, possess a subelytral cavity (SEC) providing an extra air space below the elytra which connects to the tracheal system (TS) via metathoracic and abdominal spiracles. By measuring subelytral and intratracheal pressure as well as body movements and gas exchange simultaneously in a flow-through setup, we investigated the contribution of convection on Circellium respiratory gas exchange. No constriction phase was observed. TS and SEC pressures were always around atmospheric values. During interburst phase open abdominal spiracles and a leaky SEC led to small CO(2)-peaks on a continuous CO(2) baseline, driven by intermittent positive tracheal pressure peaks in anti-phase with small negative subelytral pressure peaks caused by dorso-ventral tergite action. Spiracle opening was accompanied by two types of body movements. Higher frequency telescoping body movements at the beginning of opening resulted in high amplitude SEC and TS pressure peaks. High frequency tergite movements caused subelytral pressure peaks and led to a saw tooth like CO(2) release pattern in a burst. We propose that during the burst open mesothoracic spiracles increase the compliance of the subelytral cavity allowing big volumes of tracheal air being pulled out by convection. Copyright 2009 Elsevier Ltd. All rights reserved.

  4. Delivery of tidal volume from four anaesthesia ventilators during volume-controlled ventilation: a bench study.

    PubMed

    Wallon, G; Bonnet, A; Guérin, C

    2013-06-01

    Tidal volume (V(T)) must be accurately delivered by anaesthesia ventilators in the volume-controlled ventilation mode in order for lung protective ventilation to be effective. However, the impact of fresh gas flow (FGF) and lung mechanics on delivery of V(T) by the newest anaesthesia ventilators has not been reported. We measured delivered V(T) (V(TI)) from four anaesthesia ventilators (Aisys™, Flow-i™, Primus™, and Zeus™) on a pneumatic test lung set with three combinations of lung compliance (C, ml cm H2O(-1)) and resistance (R, cm H2O litre(-1) s(-2)): C60R5, C30R5, C60R20. For each CR, three FGF rates (0.5, 3, 10 litre min(-1)) were investigated at three set V(T)s (300, 500, 800 ml) and two values of PEEP (0 and 10 cm H2O). The volume error = [(V(TI) - V(Tset))/V(Tset)] ×100 was computed in body temperature and pressure-saturated conditions and compared using analysis of variance. For each CR and each set V(T), the absolute value of the volume error significantly declined from Aisys™ to Flow-i™, Zeus™, and Primus™. For C60R5, these values were 12.5% for Aisys™, 5% for Flow-i™ and Zeus™, and 0% for Primus™. With an increase in FGF, absolute values of the volume error increased only for Aisys™ and Zeus™. However, in C30R5, the volume error was minimal at mid-FGF for Aisys™. The results were similar at PEEP 10 cm H2O. Under experimental conditions, the volume error differed significantly between the four new anaesthesia ventilators tested and was influenced by FGF, although this effect may not be clinically relevant.

  5. Map of assessed coalbed-gas resources in the United States, 2014

    USGS Publications Warehouse

    ,; Biewick, Laura R. H.

    2014-01-01

    This report presents a digital map of coalbed-gas resource assessments in the United States as part of the U.S. Geological Survey’s (USGS) National Assessment of Oil and Gas Project. Using a geology-based assessment methodology, the USGS quantitatively estimated potential volumes of undiscovered, technically recoverable natural gas resources within coalbed-gas assessment units (AUs). This is the third digital map product in a series of USGS unconventional oil and gas resource maps. The map plate included in this report can be printed in hardcopy form or downloaded in a Geographic Information System (GIS) data package, including an ArcGIS ArcMap document (.mxd), geodatabase (.gdb), and published map file (.pmf). In addition, the publication access table contains hyperlinks to current USGS coalbed-gas assessment publications and web pages.

  6. 78 FR 75337 - Eos LNG LLC; Application for Long-Term Authorization To Export Liquefied Natural Gas Produced...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-11

    ... Authorization To Export Liquefied Natural Gas Produced From Domestic Natural Gas Resources to Non-Free Trade...- contract authorization to export LNG produced from domestic sources in a volume equivalent to approximately... treatment for trade in natural gas (non-FTA countries) with which trade is not prohibited by U.S. law or...

  7. 78 FR 75339 - Barca LNG LLC; Application for Long-Term Authorization To Export Liquefied Natural Gas Produced...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-11

    ... Authorization To Export Liquefied Natural Gas Produced From Domestic Natural Gas Resources to Non-Free Trade...- contract authorization to export LNG produced from domestic sources in a volume equivalent to approximately... treatment for trade in natural gas (non-FTA countries) with which trade is not prohibited by U.S. law or...

  8. Large volume multiple-path nuclear pumped laser

    NASA Technical Reports Server (NTRS)

    Hohl, F.; Deyoung, R. J. (Inventor)

    1981-01-01

    Large volumes of gas are excited by using internal high reflectance mirrors that are arranged so that the optical path crosses back and forth through the excited gaseous medium. By adjusting the external dielectric mirrors of the laser, the number of paths through the laser cavity can be varied. Output powers were obtained that are substantially higher than the output powers of previous nuclear laser systems.

  9. Metal halides vapor lasers with inner reactor and small active volume.

    NASA Astrophysics Data System (ADS)

    Shiyanov, D. V.; Sukhanov, V. B.; Evtushenko, G. S.

    2018-04-01

    Investigation of the energy characteristics of copper, manganese, lead halide vapor lasers with inner reactor and small active volume 90 cm3 was made. The optimal operating pulse repetition rates, temperatures, and buffer gas pressure for gas discharge tubes with internal and external electrodes are determined. Under identical pump conditions, such systems are not inferior in their characteristics to standard metal halide vapor lasers. It is shown that the use of a zeolite halogen generator provides lifetime laser operation.

  10. Intraoperative low tidal volume ventilation strategy has no benefits during laparoscopic cholecystectomy

    PubMed Central

    Arora, Vandna; Tyagi, Asha; Kumar, Surendra; Kakkar, Aanchal; Das, Shukla

    2017-01-01

    Background and Aims: Benefits of intraoperative low tidal volume ventilation during laparoscopic surgery are not conclusively proven, even though its advantages were seen in other situations with intraoperative respiratory compromise such as one-lung ventilation. The present study compared the efficacy of intraoperative low tidal volume ventilatory strategy (6 ml/kg along with positive end-expiratory pressure [PEEP] of 10 cmH2O) versus one with higher tidal volume (10 ml/kg with no PEEP) on various clinical parameters and plasma levels of interleukin (IL)-6 in patients undergoing laparoscopic cholecystectomy. Material and Methods: A total of 58 adult patients with American Society of Anesthesiologists physical status I or II, undergoing laparoscopic cholecystectomy were randomized to receive the low or higher tidal volume strategy as above (n = 29 each). The primary outcome measure was postoperative PaO2. Systemic levels of IL-6 along with clinical indices of intraoperative gas exchange, pulmonary mechanics, and hemodynamic consequences were measured as secondary outcome measures. Results: There was no statistically significant difference in oxygenation; intraoperative dynamic compliance, peak airway pressures, or hemodynamic parameters, or the IL-6 levels between the two groups (P > 0.05). Low tidal volume strategy was associated with significantly higher mean airway pressure, lower airway resistance, greater respiratory rates, and albeit clinically similar, higher PaCO2and lower pH (P < 0.05). Conclusion: Strategy using 6 ml/kg tidal volume along with 10 cmH2O of PEEP was not associated with any significant improvement in gas exchange, hemodynamic parameters, or systemic inflammatory response over ventilation with 10 ml/kg volume without PEEP during laparoscopic cholecystectomy. PMID:28413273

  11. 18 CFR 281.304 - Computation of alternative fuel volume.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 18 Conservation of Power and Water Resources 1 2013-04-01 2013-04-01 false Computation of alternative fuel volume. 281.304 Section 281.304 Conservation of Power and Water Resources FEDERAL ENERGY... not a diesel engine or turbine designed to use distillate fuels as the only substitute for natural gas...

  12. 18 CFR 281.304 - Computation of alternative fuel volume.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 18 Conservation of Power and Water Resources 1 2014-04-01 2014-04-01 false Computation of alternative fuel volume. 281.304 Section 281.304 Conservation of Power and Water Resources FEDERAL ENERGY... not a diesel engine or turbine designed to use distillate fuels as the only substitute for natural gas...

  13. 18 CFR 281.304 - Computation of alternative fuel volume.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 18 Conservation of Power and Water Resources 1 2011-04-01 2011-04-01 false Computation of alternative fuel volume. 281.304 Section 281.304 Conservation of Power and Water Resources FEDERAL ENERGY... not a diesel engine or turbine designed to use distillate fuels as the only substitute for natural gas...

  14. 18 CFR 281.304 - Computation of alternative fuel volume.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 18 Conservation of Power and Water Resources 1 2010-04-01 2010-04-01 false Computation of alternative fuel volume. 281.304 Section 281.304 Conservation of Power and Water Resources FEDERAL ENERGY... not a diesel engine or turbine designed to use distillate fuels as the only substitute for natural gas...

  15. 18 CFR 281.304 - Computation of alternative fuel volume.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 18 Conservation of Power and Water Resources 1 2012-04-01 2012-04-01 false Computation of alternative fuel volume. 281.304 Section 281.304 Conservation of Power and Water Resources FEDERAL ENERGY... not a diesel engine or turbine designed to use distillate fuels as the only substitute for natural gas...

  16. Temperature Controller System for Gas Gun Targets

    NASA Astrophysics Data System (ADS)

    Bucholtz, Scott; Sheffield, Stephen

    2005-07-01

    A temperature controller system capable of heating and cooling gas gun targets over the range -75 C to +200 C was designed and tested. The system uses cold nitrogen gas from a liquid nitrogen Dewar for cooling and compressed air for heating. Two gas flow heaters control the gas temperature for both heating and cooling. One heater controls the temperature of the target mounting plate and the other the temperature of a copper tubing coil surrounding the target. Each heater is separately adjustable, so the target material will achieve a uniform temperature throughout its volume. A magnetic gauge with integrated thermocouples was developed to measure the internal temperature of the target. Using this system shock experiments, including equation-of-state measurements and shock initiation of high explosives, can be performed over a range of initial temperatures. Successful tests were completed on Teflon samples. This work was supported by the NNSA Enhanced Surveillance Campaign through contract DE-ACO4-01AL66850.

  17. Temperature Controller System for Gas Gun Targets

    NASA Astrophysics Data System (ADS)

    Bucholtz, S. M.; Gehr, R. J.; Rupp, T. D.; Sheffield, S. A.; Robbins, D. L.

    2006-07-01

    A temperature controller system capable of heating and cooling gas gun targets over the range -75°C to +120°C was designed and tested. The system uses cold nitrogen gas from a liquid nitrogen Dewar for cooling and compressed air for heating. Two gas flow heaters control the gas temperature for both heating and cooling. One heater controls the temperature of the target mounting plate and the other the temperature of a copper tubing coil surrounding the target. Each heater is separately adjustable, so the target material will achieve a uniform temperature throughout its volume. A magnetic gauge membrane with integrated thermocouples was developed to measure the internal temperature of the target. Using this system, multiple magnetic gauge shock experiments, including equation-of-state measurements and shock initiation of high explosives, can be performed over a range of initial temperatures. Successful heating and cooling tests were completed on Teflon samples.

  18. Development of gas-to-gas lift pad dynamic seals, volumes 1 and 2

    NASA Technical Reports Server (NTRS)

    Pope, A. N.; Pugh, D. W.

    1987-01-01

    Dynamic tests were performed on self acting (hydrodynamic) carbon face rotary shaft seals to assess their potential, relative to presently used labyrinth seals, for improving performance of aircraft gas turbine engines by reducing air leakage flow rate at compressor end seal locations. Three self acting bearing configurations, designed to supply load support at the interface of the stationary carbon seal and rotating seal race, were tested. Two configurations, the shrouded taper and shrouded flat step, were incorporated on the face of the stationary carbon seal element. The third configuration, inward pumping spiral grooves, was incorporated on the hard faced surface of the rotating seal race. Test results demonstrated seal leakage air flow rates from 75 to 95% lower that can be achieved with best state-of-the-art labyrinth designs and led to identification of the need for a more geometrically stable seal design configuration which is presently being manufactured for subsequent test evaluation.

  19. Assessment of undiscovered conventional oil and gas resources of six geologic provinces of China

    USGS Publications Warehouse

    Charpentier, Ronald R.; Schenk, Christopher J.; Brownfield, Michael E.; Cook, Troy A.; Klett, Timothy R.; Pitman, Janet K.; Pollastro, Richard M.

    2012-01-01

    Using a geology-based assessment methodology, the U.S. Geological Survey estimated mean volumes of undiscovered conventional petroleum resources in six geologic provinces of China at 14.9 billion barrels of oil, 87.6 trillion cubic feet of natural gas, and 1.4 billion barrels of natural-gas liquids.

  20. Gas-liquid mass transfer and flow phenomena in the Peirce-Smith converter: a water model study

    NASA Astrophysics Data System (ADS)

    Zhao, Xing; Zhao, Hong-liang; Zhang, Li-feng; Yang, Li-qiang

    2018-01-01

    A water model with a geometric similarity ratio of 1:5 was developed to investigate the gas-liquid mass transfer and flow characteristics in a Peirce-Smith converter. A gas mixture of CO2 and Ar was injected into a NaOH solution bath. The flow field, volumetric mass transfer coefficient per unit volume ( Ak/V; where A is the contact area between phases, V is the volume, and k is the mass transfer coefficient), and gas utilization ratio ( η) were then measured at different gas flow rates and blow angles. The results showed that the flow field could be divided into five regions, i.e., injection, strong loop, weak loop, splashing, and dead zone. Whereas the Ak/V of the bath increased and then decreased with increasing gas flow rate, and η steadily increased. When the converter was rotated clockwise, both Ak/V and η increased. However, the flow condition deteriorated when the gas flow rate and blow angle were drastically increased. Therefore, these parameters must be controlled to optimal conditions. In the proposed model, the optimal gas flow rate and blow angle were 7.5 m3·h-1 and 10°, respectively.

  1. Implications of Abundant Gas and Oil for Climate Forcing

    NASA Astrophysics Data System (ADS)

    Edmonds, J.

    2015-12-01

    Perhaps the most important development in the field of energy over the past decade has been the advent of technologies that enable the production of larger volumes of natural gas and oil at lower cost. The availability of more abundant gas and oil is reshaping the global energy system, with implications for both evolving emissions of CO2 and other climate forcers. More abundant gas and oil will also transform the character of greenhouse gas emissions mitigation. We review recent findings regarding the impact of abundant gas and oil for climate forcing and the challenge of emissions mitigation. We find strong evidence that, absent policies to limits its penetration against renewable energy, abundant gas has little observable impact on CO2 emissions, and tends to increase overall climate forcing, though the latter finding is subject to substantial uncertainty. The presence of abundant gas also affects emissions mitigation. There is relatively little literature exploring the implication of expanded gas availability on the difficulty in meeting emissions mitigation goals. However, preliminary results indicate that on global scales abundant gas does not substantially affect the cost of emissions mitigation, even though natural gas could have an expanded role in emissions mitigation scenarios as compared with scenarios in which natural gas is less abundant.

  2. Material point method modeling in oil and gas reservoirs

    DOEpatents

    Vanderheyden, William Brian; Zhang, Duan

    2016-06-28

    A computer system and method of simulating the behavior of an oil and gas reservoir including changes in the margins of frangible solids. A system of equations including state equations such as momentum, and conservation laws such as mass conservation and volume fraction continuity, are defined and discretized for at least two phases in a modeled volume, one of which corresponds to frangible material. A material point model technique for numerically solving the system of discretized equations, to derive fluid flow at each of a plurality of mesh nodes in the modeled volume, and the velocity of at each of a plurality of particles representing the frangible material in the modeled volume. A time-splitting technique improves the computational efficiency of the simulation while maintaining accuracy on the deformation scale. The method can be applied to derive accurate upscaled model equations for larger volume scale simulations.

  3. JANNAF 36th Combustion Subcommittee Meeting. Volume 2

    NASA Technical Reports Server (NTRS)

    Fry, Ronald S. (Editor); Gannaway, Mary T. (Editor)

    1999-01-01

    Volume 11, the second of three volumes is a compilation of 33 unclassified/unlimited-distribution technical papers presented at the Joint Army-Navy-NASA-Air Force (JANNAF) 36th Combustion Subcommittee held jointly with the 24 Airbreathing Propulsion Subcommittee and 18th Propulsion Systems Hazards Subcommittee. The meeting was held on 18-21 October 1999 at NASA Kennedy Space Center and The DoubleTree Oceanfront Hotel, Cocoa Beach, Florida. Topics covered include gun solid propellant ignition and combustion, Electrothermal Chemical (ETC) propulsion phenomena, liquid propellant gun combustion and barrel erosion, gas phase propellant combustion, kinetic and decomposition phenomena and liquid and hybrid propellant combustion behavior.

  4. Assessing Gas-Hydrate Prospects on the North Slope of Alaska - Theoretical Considerations

    USGS Publications Warehouse

    Lee, Myung W.; Collett, Timothy S.; Agena, Warren F.

    2008-01-01

    Gas-hydrate resource assessment on the Alaska North Slope using 3-D and 2-D seismic data involved six important steps: (1) determining the top and base of the gas-hydrate stability zone, (2) 'tying' well log information to seismic data through synthetic seismograms, (3) differentiating ice from gas hydrate in the permafrost interval, (4) developing an acoustic model for the reservoir and seal, (5) developing a method to estimate gas-hydrate saturation and thickness from seismic attributes, and (6) assessing the potential gas-hydrate prospects from seismic data based on potential migration pathways, source, reservoir quality, and other relevant geological information. This report describes the first five steps in detail using well logs and provides theoretical backgrounds for resource assessments carried out by the U.S. Geological Survey. Measured and predicted P-wave velocities enabled us to tie synthetic seismograms to the seismic data. The calculated gas-hydrate stability zone from subsurface wellbore temperature data enabled us to focus our effort on the most promising depth intervals in the seismic data. A typical reservoir in this area is characterized by the P-wave velocity of 1.88 km/s, porosity of 42 percent, and clay volume content of 5 percent, whereas seal sediments encasing the reservoir are characterized by the P-wave velocity of 2.2 km/s, porosity of 32 percent, and clay volume content of 20 percent. Because the impedance of a reservoir without gas hydrate is less than that of the seal, a complex amplitude variation with respect to gas-hydrate saturation is predicted, namely polarity change, amplitude blanking, and high seismic amplitude (a bright spot). This amplitude variation with gas-hydrate saturation is the physical basis for the method used to quantify the resource potential of gas hydrates in this assessment.

  5. An allocation of undiscovered oil and gas resources to Big South Fork National Recreation Area and Obed Wild and Scenic River, Kentucky and Tennessee

    USGS Publications Warehouse

    Schenk, Christopher J.; Klett, Timothy R.; Charpentier, Ronald R.; Cook, Troy A.; Pollastro, Richard M.

    2006-01-01

    The U.S. Geological Survey (USGS) estimated volumes of undiscovered oil and gas resources that may underlie Big South Fork National Recreation Area and Obed Wild and Scenic River in Kentucky and Tennessee. Applying the results of existing assessments of undiscovered resources from three assessment units in the Appalachian Basin Province and three plays in the Cincinnati Arch Province that include these land parcels, the USGS allocated approximately (1) 16 billion cubic feet of gas, 15 thousand barrels of oil, and 232 thousand barrels of natural gas liquids to Big South Fork National Recreation Area; and (2) 0.5 billion cubic feet of gas, 0.6 thousand barrels of oil, and 10 thousand barrels of natural gas liquids to Obed Wild and Scenic River. These estimated volumes of undiscovered resources represent potential volumes in new undiscovered fields, but do not include potential additions to reserves within existing fields.

  6. Balancing bulk gas accumulation and gas output before and during lava fountaining episodes at Mt. Etna

    PubMed Central

    Carbone, Daniele; Zuccarello, Luciano; Messina, Alfio; Scollo, Simona; Rymer, Hazel

    2015-01-01

    We focus on a sequence of 9 lava fountains from Etna that occurred in 2011, separated by intervals of 5 to 10 days. Continuous measurements allowed to discover the occurrence of gravity decreases before the onset of most fountaining episodes. We propose that the gravity changes are due to the pre-fountaining accumulation of a foam layer at shallow levels in the plumbing system of the volcano. Relying on the relationship between amount of gas trapped in the foam and amount of gas emitted during each episode, we develop a conceptual model of the mechanism controlling the passage from Strombolian to lava fountaining activity. Gas leakage from the foam layer during the late stages of its accumulation increases the gas volume fraction at upper levels, thus inducing a decrease of the magma-static pressure in the trapping zone and a further growth of the foam. This feedback mechanism eventually leads to the collapse of the foam layer and to the onset of lava fountaining. The possibility to detect the development of a foam layer at depth and to set quantitative constraints on the amount of trapped gas is important because of the implications for forecasting explosive eruptions and predicting their intensity. PMID:26656099

  7. GAS CHROMATOGRAPHIC TECHNIQUES FOR THE MEASUREMENT OF ISOPRENE IN AIR

    EPA Science Inventory

    The chapter discusses gas chromatographic techniques for measuring isoprene in air. Such measurement basically consists of three parts: (1) collection of sufficient sample volume for representative and accurate quantitation, (2) separation (if necessary) of isoprene from interfer...

  8. Gas plant converts amine unit to MDEA-based solvent

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mak, H.Y.

    1992-10-01

    This paper reports that methyldiethanolamine (MDEA) has successfully replaced monoethanolamine (MEA) solvent at one of Canada's largest gas processing plants. This acid gas treating solvent lowered costs associated with pumping horsepower, reboiler duty, solvent losses, corrosion and other gas processing problems. Not all operating conditions at a gas processing plant favor MDEA or MEA. In the Rimbey plant, originally designed to process sour gas, more sweet gas feed (per volume) called for considering advantages of the lesser-used MDEA. Gulf Canada Resources operates several major sour gas plants in Alberta. The Rimbey Plant was designed in 1960 to process 400 MMscfdmore » of sour gas with 2% H[sub 2]S and 1.32% CO[sub 2]. The amine unit was designed to circulate 2,400 gpm of 20 wt% MEA solution. The single train amine plant has four gas conductors and two amine regenerators. The present raw inlet gas flowrate to the Rimbey Plant is about 312 MMscfd which is made up of three sources: 66 MMscfd of sour gas with 1.5% H[sub 2]S and 1.8% CO[sub 2]; 65 MMscfd of high CO[sub 2] gas with 400 ppmv H[sub 2]S and 3.9% CO[sub 2]; and 181 MMscfd of sweet gas with 2.2% CO[sub 2].« less

  9. Lung volume reduction for emphysema.

    PubMed

    Shah, Pallav L; Herth, Felix J; van Geffen, Wouter H; Deslee, Gaetan; Slebos, Dirk-Jan

    2017-02-01

    Advanced emphysema is a lung disease in which alveolar capillary units are destroyed and supporting tissue is lost. The combined effect of reduced gas exchange and changes in airway dynamics impairs expiratory airflow and leads to progressive air trapping. Pharmacological therapies have limited effects. Surgical resection of the most destroyed sections of the lung can improve pulmonary function and exercise capacity but its benefit is tempered by significant morbidity. This issue stimulated a search for novel approaches to lung volume reduction. Alternative minimally invasive approaches using bronchoscopic techniques including valves, coils, vapour thermal ablation, and sclerosant agents have been at the forefront of these developments. Insertion of endobronchial valves in selected patients could have benefits that are comparable with lung volume reduction surgery. Endobronchial coils might have a role in the treatment of patients with emphysema with severe hyperinflation and less parenchymal destruction. Use of vapour thermal energy or a sclerosant might allow focal treatment but the unpredictability of the inflammatory response limits their current use. In this Review, we aim to summarise clinical trial evidence on lung volume reduction and provide guidance on patient selection for available therapies. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. US Rockies gas focus points up need for access, risk takers, infrastructure

    USGS Publications Warehouse

    Thomasson, M.R.; Belanger, P.E.; Cook, L.

    2004-01-01

    The last 20 yr of the Rocky Mountains oil and gas exploration and production business have been turbulent. Most of the major companies have left; they have been replaced with, independents and small to larger private and public companies. Natural gas become the primary focus of exploration. A discussion covers the shift of interest from drilling for oil to gas exploration and development in the Rockies since 1980; resource pyramid, showing relative volumes, reserves, resources, and undiscovered gas; the Wyoming fields that boost US gas supply, i.e., Jonah (6-12 tcf), Pinedale Anticline (10-20 tcf); Big Piney-LaBarge (15-25 tcf), Madden (3-5 tcf), and Powder river (24-27 tcf); and the future.

  11. PROCEEDINGS: SYMPOSIUM ON FLUE GAS DESULFURIZATION - NEW ORLEANS, MARCH 1976, VOLUME I

    EPA Science Inventory

    The proceedings document the presentation made during the symposium, which dealt with the status of flue gas desulfurization technology in the United States and abroad. Subjects considered included: regenerable, nonregenerable, and advanced processes; process costs; and by-produc...

  12. Two dimensional radial gas flows in atmospheric pressure plasma-enhanced chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Kim, Gwihyun; Park, Seran; Shin, Hyunsu; Song, Seungho; Oh, Hoon-Jung; Ko, Dae Hong; Choi, Jung-Il; Baik, Seung Jae

    2017-12-01

    Atmospheric pressure (AP) operation of plasma-enhanced chemical vapor deposition (PECVD) is one of promising concepts for high quality and low cost processing. Atmospheric plasma discharge requires narrow gap configuration, which causes an inherent feature of AP PECVD. Two dimensional radial gas flows in AP PECVD induces radial variation of mass-transport and that of substrate temperature. The opposite trend of these variations would be the key consideration in the development of uniform deposition process. Another inherent feature of AP PECVD is confined plasma discharge, from which volume power density concept is derived as a key parameter for the control of deposition rate. We investigated deposition rate as a function of volume power density, gas flux, source gas partial pressure, hydrogen partial pressure, plasma source frequency, and substrate temperature; and derived a design guideline of deposition tool and process development in terms of deposition rate and uniformity.

  13. [Evaluation of vaporizers by anesthetic gas monitors corrected with a new method for preparation of calibration gases].

    PubMed

    Kurashiki, T

    1996-11-01

    For resolving the discrepancy of concentrations found among anesthetic gas monitors, the author proposed a new method using a vaporizer as a standard anesthetic gas generator for calibration. In this method, the carrier gas volume is measured by a mass flow meter (SEF-510 + FI-101) installed before the inlet of the vaporizer. The vaporized weight of volatile anesthetic agent is simultaneously measured by an electronic force balance (E12000S), on which the vaporizer is placed directly. The molar percent of the anesthetic is calculated using these data and is transformed into the volume percent. These gases discharging from the vaporizer are utilized for calibrating anesthetic gas monitors. These monitors are normalized by the linear equation describing the relationship between concentrations of calibration gases and readings of the anesthetic gas monitors. By using normalized monitors, flow rate-concentration performance curves of several anesthetic vaporizers were obtained. The author concludes that this method can serve as a standard in evaluating anesthetic vaporizers.

  14. PROCEEDINGS: SYMPOSIUM ON FLUE GAS DESULFURIZATION-NEW ORLEANS, MARCH 1976. VOLUME II

    EPA Science Inventory

    The proceedings document the presentations made during the symposium, which dealt with the status of flue gas desulfurization technology in the United States and abroad. Subjects considered included: regenerable, non-regenerable, and advanced processes; process costs; and by-prod...

  15. Effects of gravity and blood volume shifts on cardiogenic oscillations in respired gas.

    PubMed

    Montmerle, Stéphanie; Linnarsson, Dag

    2005-09-01

    During the cardiac cycle, cardiogenic oscillations of expired gas (x) concentrations (COS([x])) are generated. At the same time, there are heart-synchronous cardiogenic oscillations of airway flow (COS(flow)), where inflow occurs during systole. We hypothesized that both phenomena, although primarily generated by the heartbeat, would react differently to the cephalad blood shift caused by inflation of an anti-gravity (anti-G) suit and to changes in gravity. Twelve seated subjects performed a rebreathing-breath-holding-expiration maneuver with a gas mixture containing O2 and He at normal (1 G) and moderately increased gravity (2 G); an anti-G suit was inflated to 85 mmHg in each condition. When the anti-G suit was inflated, COS(flow) amplitude increased (P = 0.0028) at 1 G to 186% of the control value without inflation (1-G control) and at 2 G to 203% of the control value without inflation (2-G control). In contrast, the amplitude of COS of the concentration of the blood-soluble gas O2 (COS([O2/He])), an index of the differences in pulmonary perfusion between lung units, declined to 75% of the 1-G control value and to 74% of the 2-G control value (P = 0.0030). There were no significant changes in COS(flow) or COS([O2/He]) amplitudes with gravity. We conclude that the heart-synchronous mechanical agitation of the lungs, as expressed by COS(flow), is highly dependent on peripheral-to-central blood shifts. In contrast, COS([blood-soluble gas]) appears relatively independent of this mechanical agitation and seems to be determined mainly by differences in intrapulmonary perfusion.

  16. Electrical tree initiation in polyethylene absorbing Penning gas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shimizu, N.; Tohyama, N.; Sato, H.

    1996-12-31

    Ac tree initiation voltage was examined in untreated LDPE, vacuum degassed LDPE and LDPE absorbing He gas (He gas was absorbed after vacuum degassing). The authors have already reported that vacuum degassed LDPE shows much higher tree initiation voltage than untreated one because of absence of oxygen. Therefore they expected that LDPE absorbing He shows the same property with vacuum degassed LDPE. However tree initiation voltage of LDPE absorbing He is as low as that of untreated LDPE. LDPE absorbing Ar gas shows the same tendency. He or Ar gas does not change so much impulse tree initiation voltage. LDPEmore » absorbing He was not well dyed with methylene blue after ac voltage application, which indicates that active oxidation does not occur. Low ac tree initiation voltage in LDPE absorbing He or Ar may be caused by Penning ionization in free volume.« less

  17. Gas Hydrate Estimation Using Rock Physics Modeling and Seismic Inversion

    NASA Astrophysics Data System (ADS)

    Dai, J.; Dutta, N.; Xu, H.

    2006-05-01

    ABSTRACT We conducted a theoretical study of the effects of gas hydrate saturation on the acoustic properties (P- and S- wave velocities, and bulk density) of host rocks, using wireline log data from the Mallik wells in the Mackenzie Delta in Northern Canada. We evaluated a number of gas hydrate rock physics models that correspond to different rock textures. Our study shows that, among the existing rock physics models, the one that treats gas hydrate as part of the solid matrix best fits the measured data. This model was also tested on gas hydrate hole 995B of ODP leg 164 drilling at Blake Ridge, which shows adequate match. Based on the understanding of rock models of gas hydrates and properties of shallow sediments, we define a procedure that quantifies gas hydrate using rock physics modeling and seismic inversion. The method allows us to estimate gas hydrate directly from seismic information only. This paper will show examples of gas hydrates quantification from both 1D profile and 3D volume in the deepwater of Gulf of Mexico.

  18. Porous Structure Design of Polymeric Membranes for Gas Separation

    DOE PAGES

    Zhang, Jinshui; Schott, Jennifer Ann; Mahurin, Shannon Mark; ...

    2017-04-04

    High-performance polymeric membranes for gas separation are of interest for molecular-level separations in industrial-scale chemical, energy and environmental processes. To overcome the inherent trade-off relationship between permeability and selectivity, the creation of permanent microporosity in polymeric matrices is highly desirable because the porous structures can provide a high fractional free volume to facilitate gas transport through the dense layer. In this feature article, recent developments in the formation of porous polymeric membranes and potential strategies for pore structure design are reviewed.

  19. Analysis and Management of Rectal Gas with Kampo Formulas During Intensity-Modulated Radiotherapy of Prostate Cancer: A Case Series Study.

    PubMed

    Nagai, Aiko; Shibamoto, Yuta; Ogawa, Keiko; Inoda, Koji; Yoshida, Masanori; Kikuchi, Yuzo

    2016-06-01

    During intensity-modulated radiation therapy (IMRT) for prostate cancer, the target, bladder, and rectum positions should be kept constant to reduce adverse events, such as radiation proctitis, and to increase local tumor control. For this purpose, decreasing the rectal contents as much as possible is important. Daisaikoto (DST) and bukuryoingohangekobokuto (BIHKT) are traditional Japanese herbal (Kampo) formulas that have been used to treat patients with abdominal bloating or constipation. This study investigated the effect of DST and BIHKT on the rectal gas volume during prostate IMRT according to Kampo diagnosis. Five patients were treated with DST or BIHKT at a dose of 5.0 or 7.5 g/d. The volume of rectal gas in 189 megavoltage computed tomographic images taken before each treatment session and the frequency of rectal gas drainage were evaluated before and after DST or BIHKT administration. After DST or BIHKT treatment, the mean volume of rectal gas was reduced from 6.4 to 2.1 mL, and the mean frequency of gas drainage decreased from 43% to 9%. DST and BIHKT appear to be useful in reducing rectal gas, which would help prevent radiation proctitis and improve the local control of prostate cancer with IMRT.

  20. [Effect of physical properties of respiratory gas on pneumotachographic measurement of ventilation in newborn infants].

    PubMed

    Foitzik, B; Schmalisch, G; Wauer, R R

    1994-04-01

    The measurement of ventilation in neonates has a number of specific characteristics; in contrast to lung function testing in adults, the inspiratory gas for neonates is often conditioned. In pneumotachographs (PNT) based on Hagen-Poiseuille's law, changes in physical characteristics of respiratory gas (temperature, humidity, pressure and oxygen fraction [FiO2]) produce a volume change as calculated with the ideal gas equation p*V/T = const; in addition, the viscosity of the gas is also changed, thus leading to measuring errors. In clinical practice, the effect of viscosity on volume measurement is often ignored. The accuracy of these empirical laws was investigated in a size 0 Fleisch-PNT using a flow-through technique and variously processed respiratory gas. Spontaneous breathing was simulated with the aid of a calibration syringe (20 ml) and a rate of 30 min-1. The largest change in viscosity (11.6% at 22 degrees C and dry gas) is found with an increase in FiO2 (21...100%). A rise in temperature from 24 to 35 degrees C (dry air) produced an increase in viscosity of 5.2%. An increase of humidity (0...90%, 35 degrees C) decreased the viscosity by 3%. A partial compensation of these viscosity errors is thus possible. Pressure change (0...50 mbar, under ambient conditions) caused no measurable viscosity error. With the exception of temperature, the measurements have shown good agreement between the measured volume measuring errors and those calculated from viscosity changes. If the respiratory gas differs from ambient air (e.g. elevated FiO2) or if the PNT is calibrated under BTPS conditions, changes in viscosity must not be neglected when performing accurate ventilation measurements. On the basis of the well-known physical laws of Dalton, Thiesen and Sutherland, a numerical correction of adequate accuracy is possible.

  1. Syringe test screening of microbial gas production activity: Cases denitrification and biogas formation.

    PubMed

    Østgaard, Kjetill; Kowarz, Viktoria; Shuai, Wang; Henry, Ingrid A; Sposob, Michal; Haugen, Hildegunn Hegna; Bakke, Rune

    2017-01-01

    Mass produced plastic syringes may be applied as vessels for cheap, simple and large scale batch culture testing. As illustrated for the cases of denitrification and of biogas formation, metabolic activity was monitored by direct reading of the piston movement due to the gas volume formed. Pressure buildup due to friction was shown to be moderate. A piston pull and slide back routine can be applied before recording gas volume to minimize experimental errors due to friction. Inoculum handling and activity may be conveniently standardized as illustrated by applying biofilm carriers. A robust set of positive as well as negative controls ("blanks") should be included to ensure quality of the actual testing. The denitrification test showed saturation response at increasing amounts of inoculum in the form of adapted moving bed biofilm reactor (MBBR) carriers, with well correlated nitrate consumption vs. gas volume formed. As shown, the denitrification test efficiently screened different inocula at standardized substrates. Also, different substrates were successfully screened and compared at standardized inocula. The biogas potential test showed efficient screening of different substrates with effects of relative amounts of carbohydrate, protein, fat. A second case with CO 2 capture reclaimer waste as substrate demonstrated successful use of co-feeding to support waste treatment and how temperature effects on kinetics and stoichiometry can be observed. In total, syringe test screening of microbial gas production seems highly efficient at a low cost when properly applied. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Gas hydrate accumulation at the Hakon Mosby Mud Volcano

    USGS Publications Warehouse

    Ginsburg, G.D.; Milkov, A.V.; Soloviev, V.A.; Egorov, A.V.; Cherkashev, G.A.; Vogt, P.R.; Crane, K.; Lorenson, T.D.; Khutorskoy, M.D.

    1999-01-01

    Gas hydrate (GH) accumulation is characterized and modeled for the Hakon Mosby mud volcano, ca. 1.5 km across, located on the Norway-Barents-Svalbard margin. Pore water chemical and isotopic results based on shallow sediment cores as well as geothermal and geomorphological data suggest that the GH accumulation is of a concentric pattern controlled by and formed essentially from the ascending mud volcano fluid. The gas hydrate content of sediment peaks at 25% by volume, averaging about 1.2% throughout the accumulation. The amount of hydrate methane is estimated at ca. 108 m3 STP, which could account for about 1-10% of the gas that has escaped from the volcano since its origin.

  3. Methods for recovering a solvent from a fluid volume and methods of removing at least one compound from a nonpolar solvent

    DOEpatents

    Ginosar, Daniel M.; Wendt, Daniel S.; Petkovic, Lucia M.

    2014-06-10

    A method of removing a nonpolar solvent from a fluid volume that includes at least one nonpolar compound, such as a fat, an oil or a triglyceride, is provided. The method comprises contacting a fluid volume with an expanding gas to expand the nonpolar solvent and form a gas-expanded solvent. The gas-expanded solvent may have a substantially reduced density in comparison to the at least one nonpolar compound and/or a substantially reduced capacity to solubilize the nonpolar compound, causing the nonpolar compounds to separate from the gas-expanded nonpolar solvent into a separate liquid phase. The liquid phase including the at least one nonpolar compound may be separated from the gas-expanded solvent using conventional techniques. After separation of the liquid phase, at least one of the temperature and pressure may be reduced to separate the nonpolar solvent from the expanding gas such that the nonpolar solvent may be recovered and reused.

  4. An arbitrary grid CFD algorithm for configuration aerodynamics analysis. Volume 1: Theory and validations

    NASA Technical Reports Server (NTRS)

    Baker, A. J.; Iannelli, G. S.; Manhardt, Paul D.; Orzechowski, J. A.

    1993-01-01

    This report documents the user input and output data requirements for the FEMNAS finite element Navier-Stokes code for real-gas simulations of external aerodynamics flowfields. This code was developed for the configuration aerodynamics branch of NASA ARC, under SBIR Phase 2 contract NAS2-124568 by Computational Mechanics Corporation (COMCO). This report is in two volumes. Volume 1 contains the theory for the derived finite element algorithm and describes the test cases used to validate the computer program described in the Volume 2 user guide.

  5. An arbitrary grid CFD algorithm for configuration aerodynamics analysis. Volume 2: FEMNAS user guide

    NASA Technical Reports Server (NTRS)

    Manhardt, Paul D.; Orzechowski, J. A.; Baker, A. J.

    1992-01-01

    This report documents the user input and output data requirements for the FEMNAS finite element Navier-Stokes code for real-gas simulations of external aerodynamics flowfields. This code was developed for the configuration aerodynamics branch of NASA ARC, under SBIR Phase 2 contract NAS2-124568 by Computational Mechanics Corporation (COMCO). This report is in two volumes. Volume 1 contains the theory for the derived finite element algorithm and describes the test cases used to validate the computer program described in the Volume 2 user guide.

  6. Multi-cylinder hot gas engine

    DOEpatents

    Corey, John A.

    1985-01-01

    A multi-cylinder hot gas engine having an equal angle, V-shaped engine block in which two banks of parallel, equal length, equally sized cylinders are formed together with annular regenerator/cooler units surrounding each cylinder, and wherein the pistons are connected to a single crankshaft. The hot gas engine further includes an annular heater head disposed around a central circular combustor volume having a new balanced-flow hot-working-fluid manifold assembly that provides optimum balanced flow of the working fluid through the heater head working fluid passageways which are connected between each of the cylinders and their respective associated annular regenerator units. This balanced flow provides even heater head temperatures and, therefore, maximum average working fluid temperature for best operating efficiency with the use of a single crankshaft V-shaped engine block.

  7. 40 CFR 86.094-14 - Small-volume manufacturers certification procedures.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES General Provisions for Emission Regulations for 1977 and Later Model Year New Light-Duty Vehicles, Light...-Fueled, Liquefied Petroleum Gas-Fueled and Methanol-Fueled Heavy-Duty Vehicles § 86.094-14 Small-volume...

  8. 40 CFR 86.095-14 - Small-volume manufacturers certification procedures.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...-Fueled, Liquefied Petroleum Gas-Fueled and Methanol-Fueled Heavy-Duty Vehicles § 86.095-14 Small-volume... are exempted from the high altitude emission standards. (18) Proof that the manufacturer has obtained... as proof that the manufacturer has obtained or entered an agreement to purchase the insurance policy...

  9. 40 CFR 86.095-14 - Small-volume manufacturers certification procedures.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...-Fueled, Liquefied Petroleum Gas-Fueled and Methanol-Fueled Heavy-Duty Vehicles § 86.095-14 Small-volume... are exempted from the high altitude emission standards. (18) Proof that the manufacturer has obtained... as proof that the manufacturer has obtained or entered an agreement to purchase the insurance policy...

  10. General slip regime permeability model for gas flow through porous media

    NASA Astrophysics Data System (ADS)

    Zhou, Bo; Jiang, Peixue; Xu, Ruina; Ouyang, Xiaolong

    2016-07-01

    A theoretical effective gas permeability model was developed for rarefied gas flow in porous media, which holds over the entire slip regime with the permeability derived as a function of the Knudsen number. This general slip regime model (GSR model) is derived from the pore-scale Navier-Stokes equations subject to the first-order wall slip boundary condition using the volume-averaging method. The local closure problem for the volume-averaged equations is studied analytically and numerically using a periodic sphere array geometry. The GSR model includes a rational fraction function of the Knudsen number which leads to a limit effective permeability as the Knudsen number increases. The mechanism for this behavior is the viscous fluid inner friction caused by converging-diverging flow channels in porous media. A linearization of the GSR model leads to the Klinkenberg equation for slightly rarefied gas flows. Finite element simulations show that the Klinkenberg model overestimates the effective permeability by as much as 33% when a flow approaches the transition regime. The GSR model reduces to the unified permeability model [F. Civan, "Effective correlation of apparent gas permeability in tight porous media," Transp. Porous Media 82, 375 (2010)] for the flow in the slip regime and clarifies the physical significance of the empirical parameter b in the unified model.

  11. Factors influencing the height of Hawaiian lava fountains: implications for the use of fountain height as an indicator of magma gas content

    USGS Publications Warehouse

    Parfitt, E.A.; Wilson, L.; Neal, C.A.

    1995-01-01

    The heights of lava fountains formed in Hawaiian-style eruptions are controlled by magma gas content, volume flux and the amounts of lava re-entrainment and gas bubble coalescence. Theoretical models of lava fountaining are used to analyse data on lava fountain height variations collected during the 1983-1986 Pu'u 'O'o vent of Kilauea volcano, Hawaii. The results show that the variable fountain heights can be largely explained by the impact of variations in volume flux and amount of lava re-entrainment on erupting magmas with a constant gas content of ???0.32 wt.% H2O. However, the gas content of the magma apparently declined by ???0.05 wt.% during the last 10 episodes of the eruption series and this decline is attributed to more extensive pre-eruption degassing due to a shallowing of the sub-vent feeder dike. It is concluded that variations in lava fountain height cannot be simply interpreted as variations in gas content, as has previously been suggested, but that fountain height can still be a useful guide to minimum gas contents. Where sufficient data are available on eruptive volume fluxes and extent of lava entrainment, greatly improved estimates can be made of magma gas content from lava fountain height. ?? 1995 Springer-Verlag.

  12. High-reliability gas-turbine combined-cycle development program: Phase II. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hecht, K.G.; Sanderson, R.A.; Smith, M.J.

    This three-volume report presents the results of Phase II of the multiphase EPRI-sponsored High-Reliability Gas Turbine Combined-Cycle Development Program whose goal is to achieve a highly reliable gas turbine combined-cycle power plant, available by the mid-1980s, which would be an economically attractive baseload generation alternative for the electric utility industry. The Phase II program objective was to prepare the preliminary design of this power plant. This volume presents information of the reliability, availability, and maintainability (RAM) analysis of a representative plant and the preliminary design of the gas turbine, the gas turbine ancillaries, and the balance of plant including themore » steam turbine generator. To achieve the program goals, a gas turbine was incorporated which combined proven reliability characteristics with improved performance features. This gas turbine, designated the V84.3, is the result of a cooperative effort between Kraftwerk Union AG and United Technologies Corporation. Gas turbines of similar design operating in Europe under baseload conditions have demonstrated mean time between failures in excess of 40,000 hours. The reliability characteristics of the gas turbine ancillaries and balance-of-plant equipment were improved through system simplification and component redundancy and by selection of component with inherent high reliability. A digital control system was included with logic, communications, sensor redundancy, and mandual backup. An independent condition monitoring and diagnostic system was also included. Program results provide the preliminary design of a gas turbine combined-cycle baseload power plant. This power plant has a predicted mean time between failure of nearly twice the 3000-hour EPRI goal. The cost of added reliability features is offset by improved performance, which results in a comparable specific cost and an 8% lower cost of electricity compared to present market offerings.« less

  13. Particulate exhaust emissions from an experimental combustor. [gas turbine engine

    NASA Technical Reports Server (NTRS)

    Norgren, C. T.; Ingebo, R. D.

    1975-01-01

    The concentration of dry particulates (carbon) in the exhaust of an experimental gas turbine combustor was measured at simulated takeoff operating conditions and correlated with the standard smoke-number measurement. Carbon was determined quantitatively from a sample collected on a fiberglass filter by converting the carbon in the smoke sample to carbon dioxide and then measuring the volume of carbon dioxide formed by gas chromatography. At a smoke of 25 (threshold of visibility of the smoke plume for large turbojets) the carbon concentration was 2.8 mg carbon/cu m exhaust gas, which is equivalent to an emission index of 0.17 g carbon/kg fuel.

  14. Application of a novel large-volume injection method using a stomach-shaped inlet liner in capillary gas chromatographic trace analysis of dioxins in human milk and plasma.

    PubMed

    Saito, Koichi; Ohmura, Atsuko; Takekuma, Mikiko; Sasano, Ryoichi; Matsuki, Yasuhiko; Nakazawa, Hiroyuki

    2007-06-01

    A newly developed large-volume injection (LVI) technique that employs a unique stomach-shaped inlet liner (SSIL) inside of a programmable temperature vaporizer was used for the determination of trace amounts of dioxins in human milk and plasma. The initial temperature and the initial dwelling time of the inlet and the kind of solvent used were found to be critical in determining the analytical sensitivity of dioxins due to the loss of these relatively volatile compounds during solvent vaporization. Human milk and plasma were purified and fractionated by pre-packed multi-layered silica-gel chromatography and activated carbon silica-gel column chromatography. A 20-microL aliquot of the fraction collected from the chromatography with toluene was directly applied to the LVI system in high-resolution gas chromatography/high-resolution mass spectrometry. Excellent correlation (r > 0.97) between the values obtained by the LVI method using the SSIL device and those by the conventional regular-volume splitless injection method was obtained for PCDDs, PCDFs and non-ortho PCBs in human milk and plasma samples.

  15. Anal gas evacuation and colonic microbiota in patients with flatulence: effect of diet.

    PubMed

    Manichanh, Chaysavanh; Eck, Anat; Varela, Encarna; Roca, Joaquim; Clemente, José C; González, Antonio; Knights, Dan; Knight, Rob; Estrella, Sandra; Hernandez, Carlos; Guyonnet, Denis; Accarino, Anna; Santos, Javier; Malagelada, Juan-R; Guarner, Francisco; Azpiroz, Fernando

    2014-03-01

    To characterise the influence of diet on abdominal symptoms, anal gas evacuation, intestinal gas distribution and colonic microbiota in patients complaining of flatulence. Patients complaining of flatulence (n=30) and healthy subjects (n=20) were instructed to follow their usual diet for 3 days (basal phase) and to consume a high-flatulogenic diet for another 3 days (challenge phase). During basal phase, patients recorded more abdominal symptoms than healthy subjects in daily questionnaires (5.8±0.3 vs 0.4±0.2 mean discomfort/pain score, respectively; p=<0.0001) and more gas evacuations by an event marker (21.9±2.8 vs 7.4±1.0 daytime evacuations, respectively; p=0.0001), without differences in the volume of gas evacuated after a standard meal (262±22 and 265±25 mL, respectively). On flatulogenic diet, both groups recorded more abdominal symptoms (7.9±0.3 and 2.8±0.4 discomfort/pain, respectively), number of gas evacuations (44.4±5.3 and 21.7±2.9 daytime evacuations, respectively) and had more gas production (656±52 and 673±78 mL, respectively; p<0.05 vs basal diet for all). When challenged with flatulogenic diet, patients' microbiota developed instability in composition, exhibiting variations in the main phyla and reduction of microbial diversity, whereas healthy subjects' microbiota were stable. Taxa from Bacteroides fragilis or Bilophila wadsworthia correlated with number of gas evacuations or volume of gas evacuated, respectively. Patients complaining of flatulence have a poor tolerance of intestinal gas, which is associated with instability of the microbial ecosystem.

  16. A satellite-based analysis of the Val d'Agri Oil Center (southern Italy) gas flaring emissions

    NASA Astrophysics Data System (ADS)

    Faruolo, M.; Coviello, I.; Filizzola, C.; Lacava, T.; Pergola, N.; Tramutoli, V.

    2014-10-01

    In this paper, the robust satellite techniques (RST), a multi-temporal scheme of satellite data analysis, was implemented to analyze the flaring activity of the Val d'Agri Oil Center (COVA), the largest Italian gas and oil pre-treatment plant, owned by Ente Nazionale Idrocarburi (ENI). For this site, located in an anthropized area characterized by a large environmental complexity, flaring emissions are mainly related to emergency conditions (i.e., waste flaring), as industrial processes are regulated by strict regional laws. While regarding the peculiar characteristics of COVA flaring, the main aim of this work was to assess the performances of RST in terms of sensitivity and reliability in providing independent estimations of gas flaring volumes in such conditions. In detail, RST was implemented for 13 years of Moderate Resolution Imaging Spectroradiometer (MODIS) medium and thermal infrared data in order to identify the highly radiant records associated with the COVA flare emergency discharges. Then, using data provided by ENI about gas flaring volumes in the period 2003-2009, a MODIS-based regression model was developed and tested. The results achieved indicate that the such a model is able to estimate, with a good level of accuracy (R2 of 0.83), emitted gas flaring volumes at COVA.

  17. Natural gas monthly, February 1991. [Contains glossary

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1991-02-01

    The Natural Gas Monthly (NGM) highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. From time to time, the NGM features articles designed to assist readers in using and interpreting natural gas information. The data in this publication are collected on surveys conducted by the EIA to fulfill its responsibilities for gathering and reporting energy data. Some of the data are collected undermore » the authority of the Federal Energy Regulatory Commission (FERC), an independent commission within the DOE, which has jurisdiction primarily in the regulation of electric utilities and the interstate natural gas industry. Explanatory Notes supplement the information found in tables of the report. A description of the data collection surveys that support the NGM is provided in the Data Sources section. A glossary of the terms used in this report is also provided to assist readers in understanding the data presented in this publication. 10 figs., 40 tabs.« less

  18. Demonstration of landfill gas enhancement techniques in landfill simulators

    NASA Astrophysics Data System (ADS)

    Walsh, J. J.; Vogt, W. G.

    1982-02-01

    Various techniques to enhance gas production in sanitary landfills were applied to landfill simulators. These techniques include (1) accelerated moisture addition, (2) leachate recycling, (3) buffer addition, (4) nutrient addition, and (5) combinations of the above. Results are compiled through on-going operation and monitoring of sixteen landfill simulators. These test cells contain about 380 kg of municipal solid waste. Quantities of buffer and nutrient materials were placed in selected cells at the time of loading. Water is added to all test cells on a monthly basis; leachate is withdrawn from all cells (and recycled on selected cells) also on a monthly basis. Daily monitoring of gas volumes and refuse temperatures is performed. Gas and leachate samples are collected and analyzed on a monthly basis. Leachate and gas quality and quantity reslts are presented for the first 18 months of operation.

  19. Atomizing-gas temperature effect on cryogenic spray dropsize

    NASA Technical Reports Server (NTRS)

    Ingebo, Robert D.

    1993-01-01

    Correlating expressions for two-phase flow breakup of liquid nitrogen, LN2, jets in sonic velocity nitrogen gasflows were obtained for an atomizing-gas temperature range of 111 to 442 K. The correlations were based on characteristic dropsize measurements obtained with a scattered-light scanner. The effect of droplet vaporization on the measurements of the volume-median dropsize was calculated by using previously determined heat and momentum transfer expressions for droplets evaporating in high-velocity gasflow. Finally, the dropsize of the originally unvaporized spray was calculated, normalized with respect to jet diameter and correlated with atomizing-gas flowrate and temperature.

  20. Equation of state of an ideal gas with nonergodic behavior in two connected vessels.

    PubMed

    Naplekov, D M; Semynozhenko, V P; Yanovsky, V V

    2014-01-01

    We consider a two-dimensional collisionless ideal gas in the two vessels connected through a small hole. One of them is a well-behaved chaotic billiard, another one is known to be nonergodic. A significant part of the second vessel's phase space is occupied by an island of stability. In the works of Zaslavsky and coauthors, distribution of Poincaré recurrence times in similar systems was considered. We study the gas pressure in the vessels; it is uniform in the first vessel and not uniform in second one. An equation of the gas state in the first vessel is obtained. Despite the very different phase-space structure, behavior of the second vessel is found to be very close to the behavior of a good ergodic billiard but of different volume. The equation of state differs from the ordinary equation of ideal gas state by an amendment to the vessel's volume. Correlation of this amendment with a share of the phase space under remaining intact islands of stability is shown.

  1. Further development of the dynamic gas temperature measurement system. Volume 1: Technical efforts

    NASA Technical Reports Server (NTRS)

    Elmore, D. L.; Robinson, W. W.; Watkins, W. B.

    1986-01-01

    A compensated dynamic gas temperature thermocouple measurement method was experimentally verified. Dynamic gas temperature signals from a flow passing through a chopped-wheel signal generator and an atmospheric pressure laboratory burner were measured by the dynamic temperature sensor and other fast-response sensors. Compensated data from dynamic temperature sensor thermoelements were compared with fast-response sensors. Results from the two experiments are presented as time-dependent waveforms and spectral plots. Comparisons between compensated dynamic temperature sensor spectra and a commercially available optical fiber thermometer compensated spectra were made for the atmospheric burner experiment. Increases in precision of the measurement method require optimization of several factors, and directions for further work are identified.

  2. Potential method for gas production: high temperature co-pyrolysis of lignite and sewage sludge with vacuum reactor and long contact time.

    PubMed

    Yang, Xiao; Yuan, Chengyong; Xu, Jiao; Zhang, Weijiang

    2015-03-01

    Lignite and sewage sludge were co-pyrolyzed in a vacuum reactor with high temperature (900°C) and long contact time (more than 2h). Beneficial synergetic effect on gas yield was clearly observed. Gas yield of blend fuel was evidently higher than that of both parent fuels. The gas volume yield, gas lower heating value (LHV), fixed carbon conversion and H2/CO ratio were 1.42 Nm(3)/kg(blend fuel), 10.57 MJ/Nm(3), 96.64% and 0.88% respectively, which indicated this new method a feasible one for gas production. It was possible that sewage sludge acted as gasification agents (CO2 and H2O) and catalyst (alkali and alkaline earth metals) provider during co-pyrolysis, promoting CO2-char and H2O-char gasification which, as a result, invited the improvement of gas volume yield, gas lower heating value and fixed carbon conversion. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Invisible CO2 gas killing trees at Mammoth Mountain, California

    USGS Publications Warehouse

    Sorey, Michael L.; Farrar, Christopher D.; Evans, William C.; Hill, David P.; Bailey, Roy A.; Hendley, James W.; Stauffer, Peter H.

    1996-01-01

    Since 1980, scientists have monitored geologic unrest in Long Valley Caldera and at adjacent Mammoth Mountain, California. After a persistent swarm of earthquakes beneath Mammoth Mountain in 1989, earth scientists discovered that large volumes of carbon dioxide (CO2) gas were seeping from beneath this volcano. This gas is killing trees on the mountain and also can be a danger to people. The USGS continues to study the CO2 emissions to help protect the public from this invisible potential hazard.

  4. Assessment of undiscovered oil and gas resources of the Amu Darya Basin and Afghan-Tajik Basin Provinces, Afghanistan, Iran, Tajikistan, Turkmenistan, and Uzbekistan, 2011

    USGS Publications Warehouse

    Klett, T.R.; Schenk, Christopher J.; Wandrey, Craig J.; Charpentier, Ronald R.; Brownfield, Michael E.; Pitman, Janet K.; Pollastro, Richard M.; Cook, Troy A.; Tennyson, Marilyn E.

    2012-01-01

    Using a geology-based assessment methodology, the U.S. Geological Survey estimated volumes of undiscovered, technically recoverable, conventional petroleum resources for the Amu Darya Basin and Afghan–Tajik Basin Provinces of Afghanistan, Iran, Tajikistan, Turkmenistan, and Uzbekistan. The mean volumes were estimated at 962 million barrels of crude oil, 52 trillion cubic feet of natural gas, and 582 million barrels of natural gas liquids for the Amu Darya Basin Province and at 946 million barrels of crude oil, 7 trillion cubic feet of natural gas, and 85 million barrels of natural gas liquids for the Afghan–Tajik Basin Province.

  5. Monitoring gas-phase CO2 in the headspace of champagne glasses through combined diode laser spectrometry and micro-gas chromatography analysis.

    PubMed

    Moriaux, Anne-Laure; Vallon, Raphaël; Parvitte, Bertrand; Zeninari, Virginie; Liger-Belair, Gérard; Cilindre, Clara

    2018-10-30

    During Champagne or sparkling wine tasting, gas-phase CO 2 and volatile organic compounds invade the headspace above glasses, thus progressively modifying the chemical space perceived by the consumer. Gas-phase CO 2 in excess can even cause a very unpleasant tingling sensation perturbing both ortho- and retronasal olfactory perception. Monitoring as accurately as possible the level of gas-phase CO 2 above glasses is therefore a challenge of importance aimed at better understanding the close relationship between the release of CO 2 and a collection of various tasting parameters. Here, the concentration of CO 2 found in the headspace of champagne glasses served under multivariate conditions was accurately monitored, all along the 10 min following pouring, through a new combined approach by a CO 2 -Diode Laser Sensor and micro-gas chromatography. Our results show the strong impact of various tasting conditions (volume dispensed, intensity of effervescence, and glass shape) on the release of gas-phase CO 2 above the champagne surface. Copyright © 2018 Elsevier Ltd. All rights reserved.

  6. Volumes of critical bubbles from the nucleation theorem

    NASA Astrophysics Data System (ADS)

    Wilemski, Gerald

    2006-09-01

    A corollary of the nucleation theorem due to Kashchiev [Nucleation: Basic Theory with Applications (Butterworth-Heinemann, Oxford, 2000)] allows the volume V* of a critical bubble to be determined from nucleation rate measurements. The original derivation was limited to one-component, ideal gas bubbles with a vapor density much smaller than that of the ambient liquid. Here, an exact result is found for multicomponent, nonideal gas bubbles. Provided a weak density inequality holds, this result reduces to Kashchiev's simple form which thus has a much broader range of applicability than originally expected. Limited applications to droplets are also mentioned, and the utility of the pT,x form of the nucleation theorem as a sum rule is noted.

  7. Mid-IR spectroscopic instrumentation for point-of-care diagnosis using a hollow silica waveguide gas cell

    NASA Astrophysics Data System (ADS)

    Francis, Daniel; Hodgkinson, Jane; Walton, Christopher; Sizer, Jeremy; Black, Paul; Livingstone, Beth; Fowler, Dawn P.; Patel, Mitesh K.; Tatam, Ralph P.

    2017-02-01

    Laser spectroscopy provides the basis of instrumentation developed for the diagnosis of infectious disease, via quantification of organic biomarkers that are produced by associated bacteria. The technology is centred on a multichannel pulsed quantum cascade laser system that allows multiple lasers with different wavelengths to be used simultaneously, each selected to monitor a different diagnostic biomarker. The instrument also utilizes a hollow silica waveguide (HSW) gas cell which has a very high ratio of interaction pathlength to internal volume. This allows sensitive detection of low volume gas species from small volume biological samples. The spectroscopic performance of a range of HSW gas cells with different lengths and bore diameters has been assessed using methane as a test gas and a best-case limit of detection of 0.26 ppm was determined. The response time of this cell was measured as a 1,000 sccm flow of methane passed through it and was found to be 0.75 s. These results are compared with those obtained using a multi-pass Herriot cell. A prototype instrument has been built and approved for clinical trials for detection of lung infection in acute-care patients via analysis of ventilator breath. Demonstration of the instrument for headspace gas analysis is made by monitoring the methane emission from bovine faeces. The manufacture of a hospital-ready device for monitoring biomarkers of infection in the exhaled breath of intensive care ventilator patients is also presented.

  8. A Prototype Two-tier Mentoring Program for Undergraduate Summer Interns from Minority-Serving Institutions at the University of Alaska Fairbanks

    NASA Astrophysics Data System (ADS)

    Gens, R.; Prakash, A.; Ozbay, G.; Sriharan, S.; Balazs, M. S.; Chittambakkam, A.; Starkenburg, D. P.; Waigl, C.; Cook, S.; Ferguson, A.; Foster, K.; Jones, E.; Kluge, A.; Stilson, K.

    2013-12-01

    The University of Alaska Fairbanks (UAF) is partnering with Delaware State University, Virginia State University, Elizabeth City State University, Bethune-Cookman University, and Morgan State University on a U.S. Department of Agriculture - National Institute for Food and Agriculture funded grant for ';Enhancing Geographic Information System Education and Delivery through Collaboration: Curricula Design, Faculty, Staff, and Student Training and Development, and Extension Services'. As a part of this grant, in summer 2013, UAF hosted a week long workshop followed by an intense two week undergraduate internship program. Six undergraduate students from partnering Universities worked with UAF graduate students as their direct mentors. This cohort of undergraduate mentees and graduate student mentors were in-turn counseled by the two UAF principal investigators who served as ';super-mentors'. The role of each person in the two-tier mentoring system was well defined. The super-mentors ensured that there was consistency in the way the internship was setup and resources were allocated. They also ensured that there were no technical glitches in the research projects and that there was healthy communication and interaction among participants. Mentors worked with the mentees ahead of time in outlining a project that aligned with the mentees research interest, provided basic reading material to the interns to get oriented, prepared the datasets required to start the project, and guided the undergraduates throughout the internship. Undergraduates gained hands-on experience in geospatial data collection and application of tools in their projects related to mapping geomorphology, landcover, geothermal sites, fires, and meteorological conditions. Further, they shared their research results and experiences with a broad university-wide audience at the end of the internship period. All participants met at lunch-time for a daily science talk from external speakers. The program offered

  9. Distinctive Geomorphology of Gas Venting and Near Seafloor Gas Hydrate-Bearing sites

    NASA Astrophysics Data System (ADS)

    Paull, C. K.; Caress, D. W.; Lundsten, E.; Anderson, K.; Gwiazda, R.; McGann, M. L.; Edwards, B. D.; Riedel, M.; Herguera, J.

    2012-12-01

    continued to flow out for over an hour. These observations indicate that these small mounds are young features that trap considerable volumes of gas near the seafloor. Together these observations reveal the integrated effect that gas and/or gas hydrate occurrences can have on the seafloor. The existence of gaseous methane within ~1 m of the seafloor has intriguing implications as to the geo-hazard potential of such sites.

  10. Assessment of undiscovered oil and gas resources of the Susitna Basin, southern Alaska, 2017

    USGS Publications Warehouse

    Stanley, Richard G.; Potter, Christopher J.; Lewis, Kristen A.; Lillis, Paul G.; Shah, Anjana K.; Haeussler, Peter J.; Phillips, Jeffrey D.; Valin, Zenon C.; Schenk, Christopher J.; Klett, Timothy R.; Brownfield, Michael E.; Drake II, Ronald M.; Finn, Thomas M.; Haines, Seth S.; Higley, Debra K.; Houseknecht, David W.; Le, Phuong A.; Marra, Kristen R.; Mercier, Tracey J.; Leathers-Miller, Heidi M.; Paxton, Stanley T.; Pearson, Ofori N.; Tennyson, Marilyn E.; Woodall, Cheryl A.; Zyrianova, Margarita V.

    2018-05-01

    The U.S. Geological Survey (USGS) recently completed an assessment of undiscovered, technically recoverable oil and gas resources in the Susitna Basin of southern Alaska. Using a geology-based methodology, the USGS estimates that mean undiscovered volumes of about 2 million barrels of oil and nearly 1.7 trillion cubic feet of gas may be found in this area.

  11. Assessment of Undiscovered Natural Gas Resources of the Arkoma Basin Province and Geologically Related Areas

    USGS Publications Warehouse

    Houseknecht, David W.; Coleman, James L.; Milici, Robert C.; Garrity, Christopher P.; Rouse, William A.; Fulk, Bryant R.; Paxton, Stanley T.; Abbott, Marvin M.; Mars, John L.; Cook, Troy A.; Schenk, Christopher J.; Charpentier, Ronald R.; Klett, Timothy R.; Pollastro, Richard M.; Ellis, Geoffrey S.

    2010-01-01

    Using a geology-based assessment methodology, the U.S. Geological Survey estimated mean volumes of 38 trillion cubic feet (TCF) of undiscovered natural gas, 159 million barrels of natural gas liquid (MMBNGL), and no oil in accumulations of 0.5 million barrels (MMBO) or larger in the Arkoma Basin Province and related areas. More than 97 percent of the undiscovered gas occurs in continuous accumulations-70 percent in shale gas formations, 18 percent in a basin-centered accumulation with tight sandstone reservoirs, and 9 percent in coal beds. Less than 3 percent of the natural gas occurs in conventional accumulations.

  12. Parameterization retrieval of trace gas volume mixing ratios from Airborne MAX-DOAS

    NASA Astrophysics Data System (ADS)

    Dix, Barbara; Koenig, Theodore K.; Volkamer, Rainer

    2016-11-01

    We present a parameterization retrieval of volume mixing ratios (VMRs) from differential slant column density (dSCD) measurements by Airborne Multi-AXis Differential Optical Absorption Spectroscopy (AMAX-DOAS). The method makes use of the fact that horizontally recorded limb spectra (elevation angle 0°) are strongly sensitive to the atmospheric layer at instrument altitude. These limb spectra are analyzed using reference spectra that largely cancel out column contributions from above and below the instrument, so that the resulting limb dSCDs, i.e., the column integrated concentration with respect to a reference spectrum, are almost exclusively sensitive to the atmospheric layers around instrument altitude. The conversion of limb dSCDs into VMRs is then realized by calculating box air mass factors (Box-AMFs) for a Rayleigh atmosphere and applying a scaling factor constrained by O4 dSCDs to account for aerosol extinction. An iterative VMR retrieval scheme corrects for trace gas profile shape effects. Benefits of this method are (1) a fast conversion that only requires the computation of Box-AMFs in a Rayleigh atmosphere; (2) neither local aerosol extinction nor the slant column density in the DOAS reference (SCDref) needs to be known; and (3) VMRs can be retrieved for every measurement point along a flight track, thus increasing statistics and adding flexibility to capture concentration gradients. Sensitivity studies are performed for bromine monoxide (BrO), iodine monoxide (IO) and nitrogen dioxide (NO2), using (1) simulated dSCD data for different trace gas and aerosol profiles and (2) field measurements from the Tropical Ocean tRoposphere Exchange of Reactive halogen species and Oxygenated VOC (TORERO) field experiment. For simulated data in a Rayleigh atmosphere, the agreement between the VMR from the parameterization method (VMRpara) and the true VMR (VMRtrue) is excellent for all trace gases. Offsets, slopes and R2 values for the linear fit of VMRpara over

  13. Parameterization retrieval of trace gas volume mixing ratios from Airborne MAX-DOAS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dix, Barbara; Koenig, Theodore K.; Volkamer, Rainer

    We present a parameterization retrieval of volume mixing ratios (VMRs) from differential slant column density (dSCD) measurements by Airborne Multi-AXis Differential Optical Absorption Spectroscopy (AMAX-DOAS). The method makes use of the fact that horizontally recorded limb spectra (elevation angle 0°) are strongly sensitive to the atmospheric layer at instrument altitude. These limb spectra are analyzed using reference spectra that largely cancel out column contributions from above and below the instrument, so that the resulting limb dSCDs, i.e., the column integrated concentration with respect to a reference spectrum, are almost exclusively sensitive to the atmospheric layers around instrument altitude. The conversionmore » of limb dSCDs into VMRs is then realized by calculating box air mass factors (Box-AMFs) for a Rayleigh atmosphere and applying a scaling factor constrained by O 4 dSCDs to account for aerosol extinction. An iterative VMR retrieval scheme corrects for trace gas profile shape effects. Benefits of this method are (1) a fast conversion that only requires the computation of Box-AMFs in a Rayleigh atmosphere; (2) neither local aerosol extinction nor the slant column density in the DOAS reference (SCD ref) needs to be known; and (3) VMRs can be retrieved for every measurement point along a flight track, thus increasing statistics and adding flexibility to capture concentration gradients. Sensitivity studies are performed for bromine monoxide (BrO), iodine monoxide (IO) and nitrogen dioxide (NO 2), using (1) simulated dSCD data for different trace gas and aerosol profiles and (2) field measurements from the Tropical Ocean tRoposphere Exchange of Reactive halogen species and Oxygenated VOC (TORERO) field experiment. For simulated data in a Rayleigh atmosphere, the agreement between the VMR from the parameterization method (VMR para) and the true VMR (VMR true) is excellent for all trace gases. Offsets, slopes and R 2 values for the linear fit

  14. Parameterization retrieval of trace gas volume mixing ratios from Airborne MAX-DOAS

    DOE PAGES

    Dix, Barbara; Koenig, Theodore K.; Volkamer, Rainer

    2016-11-28

    We present a parameterization retrieval of volume mixing ratios (VMRs) from differential slant column density (dSCD) measurements by Airborne Multi-AXis Differential Optical Absorption Spectroscopy (AMAX-DOAS). The method makes use of the fact that horizontally recorded limb spectra (elevation angle 0°) are strongly sensitive to the atmospheric layer at instrument altitude. These limb spectra are analyzed using reference spectra that largely cancel out column contributions from above and below the instrument, so that the resulting limb dSCDs, i.e., the column integrated concentration with respect to a reference spectrum, are almost exclusively sensitive to the atmospheric layers around instrument altitude. The conversionmore » of limb dSCDs into VMRs is then realized by calculating box air mass factors (Box-AMFs) for a Rayleigh atmosphere and applying a scaling factor constrained by O 4 dSCDs to account for aerosol extinction. An iterative VMR retrieval scheme corrects for trace gas profile shape effects. Benefits of this method are (1) a fast conversion that only requires the computation of Box-AMFs in a Rayleigh atmosphere; (2) neither local aerosol extinction nor the slant column density in the DOAS reference (SCD ref) needs to be known; and (3) VMRs can be retrieved for every measurement point along a flight track, thus increasing statistics and adding flexibility to capture concentration gradients. Sensitivity studies are performed for bromine monoxide (BrO), iodine monoxide (IO) and nitrogen dioxide (NO 2), using (1) simulated dSCD data for different trace gas and aerosol profiles and (2) field measurements from the Tropical Ocean tRoposphere Exchange of Reactive halogen species and Oxygenated VOC (TORERO) field experiment. For simulated data in a Rayleigh atmosphere, the agreement between the VMR from the parameterization method (VMR para) and the true VMR (VMR true) is excellent for all trace gases. Offsets, slopes and R 2 values for the linear fit

  15. Assessment of a Hybrid Retrofit Gas Water Heater

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hoeschele, Marc; Weitzel, Elizabeth; Backman, Christine

    2017-02-28

    This project completed a modeling evaluation of a hybrid gas water heater that combines a reduced capacity tankless unit with a downsized storage tank. This product would meet a significant market need by providing a higher efficiency gas water heater solution for retrofit applications while maintaining compatibility with the 1/2 inch gas lines and standard B vents found in most homes. The TRNSYS simulation tool was used to model a base case 0.60 EF atmospheric gas storage water, a 0.82 EF non-condensing gas tankless water heater, an existing (high capacity) hybrid unit on the market, and an alternative hybrid unitmore » with lower storage volume and reduced gas input requirements. Simulations were completed under a 'peak day' sizing scenario with 183 gpd hot water loads in a Minnesota winter climate case. Full-year simulations were then completed in three climates (ranging from Phoenix to Minneapolis) for three hot water load scenarios (36, 57, and 96 gpd). Model projections indicate that the alternative hybrid offers an average 4.5% efficiency improvement relative to the 0.60 EF gas storage unit across all scenarios modeled. The alternative hybrid water heater evaluated does show promise, but the current low cost of natural gas across much of the country and the relatively small incremental efficiency improvement poses challenges in initially building a market demand for the product.« less

  16. High-resolution seismic imaging of the gas and gas hydrate system at Green Canyon 955 in the Gulf of Mexico

    NASA Astrophysics Data System (ADS)

    Haines, S. S.; Hart, P. E.; Collett, T. S.; Shedd, W. W.; Frye, M.

    2015-12-01

    High-resolution 2D seismic data acquired by the USGS in 2013 enable detailed characterization of the gas and gas hydrate system at lease block Green Canyon 955 (GC955) in the Gulf of Mexico, USA. Earlier studies, based on conventional industry 3D seismic data and logging-while-drilling (LWD) borehole data acquired in 2009, identified general aspects of the regional and local depositional setting along with two gas hydrate-bearing sand reservoirs and one layer containing fracture-filling gas hydrate within fine-grained sediments. These studies also highlighted a number of critical remaining questions. The 2013 high-resolution 2D data fill a significant gap in our previous understanding of the site by enabling interpretation of the complex system of faults and gas chimneys that provide conduits for gas flow and thus control the gas hydrate distribution observed in the LWD data. In addition, we have improved our understanding of the main channel/levee sand reservoir body, mapping in fine detail the levee sequences and the fault system that segments them into individual reservoirs. The 2013 data provide a rarely available high-resolution view of a levee reservoir package, with sequential levee deposits clearly imaged. Further, we can calculate the total gas hydrate resource present in the main reservoir body, refining earlier estimates. Based on the 2013 seismic data and assumptions derived from the LWD data, we estimate an in-place volume of 840 million cubic meters or 29 billion cubic feet of gas in the form of gas hydrate. Together, these interpretations provide a significantly improved understanding of the gas hydrate reservoirs and the gas migration system at GC955.

  17. The Cold Gas History of the Universe as seen by the ngVLA

    NASA Astrophysics Data System (ADS)

    Riechers, Dominik A.; Carilli, Chris Luke; Casey, Caitlin; da Cunha, Elisabete; Hodge, Jacqueline; Ivison, Rob; Murphy, Eric J.; Narayanan, Desika; Sargent, Mark T.; Scoville, Nicholas; Walter, Fabian

    2017-01-01

    The Next Generation Very Large Array (ngVLA) will fundamentally advance our understanding of the formation processes that lead to the assembly of galaxies throughout cosmic history. The combination of large bandwidth with unprecedented sensitivity to the critical low-level CO lines over virtually the entire redshift range will open up the opportunity to conduct large-scale, deep cold molecular gas surveys, mapping the fuel for star formation in galaxies over substantial cosmic volumes. Informed by the first efforts with the Karl G. Jansky Very Large Array (COLDz survey) and the Atacama Large (sub)Millimeter Array (ASPECS survey), we here present initial predictions and possible survey strategies for such "molecular deep field" observations with the ngVLA. These investigations will provide a detailed measurement of the volume density of molecular gas in galaxies as a function of redshift, the "cold gas history of the universe". This will crucially complement studies of the neutral gas, star formation and stellar mass histories with large low-frequency arrays, the Large UV/Optical/Infrared Surveyor, and the Origins Space Telescope, providing the means to obtain a comprehensive picture of galaxy evolution through cosmic times.

  18. Temperature of gas delivered from ventilators.

    PubMed

    Chikata, Yusuke; Onodera, Mutsuo; Imanaka, Hideaki; Nishimura, Masaji

    2013-01-01

    Although heated humidifiers (HHs) are the most efficient humidifying device for mechanical ventilation, some HHs do not provide sufficient humidification when the inlet temperature to the water chamber is high. Because portable and home-care ventilators use turbines, blowers, pistons, or compressors to inhale in ambient air, they may have higher gas temperature than ventilators with piping systems. We carried out a bench study to investigate the temperature of gas delivered from portable and home-care ventilators, including the effects of distance from ventilator outlet, fraction of inspiratory oxygen (FIO2), and minute volume (MV). We evaluated five ventilators equipped with turbine, blower, piston, or compressor system. Ambient air temperature was adjusted to 24°C ± 0.5°C, and ventilation was set at FIO2 0.21, 0.6, and 1.0, at MV 5 and 10 L/min. We analyzed gas temperature at 0, 40, 80, and 120 cm from ventilator outlet and altered ventilator settings. While temperature varied according to ventilators, the outlet gas temperature of ventilators became stable after, at the most, 5 h. Gas temperature was 34.3°C ± 3.9°C at the ventilator outlet, 29.5°C ± 2.2°C after 40 cm, 25.4°C ± 1.2°C after 80 cm and 25.1°C ± 1.2°C after 120 cm (P < 0.01). FIO2 and MV did not affect gas temperature. Gas delivered from portable and home-care ventilator was not too hot to induce heated humidifier malfunctioning. Gas soon declined when passing through the limb.

  19. A Study of School Without Schools: The Columbus, Ohio Public Schools During the Natural Gas Shortage, Winter, 1977. Volume I and Volume II, Appendices.

    ERIC Educational Resources Information Center

    Sanders, James R.; Stufflebeam, Daniel L.

    The energy crisis, specifically a shortage of natural gas, caused by the unusually cold winter of 1977, resulted in the Columbus, Ohio, schools being closed for a month. Schools heated with gas were closed, but students met one day a week in school buildings that used coal, oil, or electricity. The educational program continued with school…

  20. Dynamics of gas cell coalescence during baking expansion of leavened dough.

    PubMed

    Miś, Antoni; Nawrocka, Agnieszka; Lamorski, Krzysztof; Dziki, Dariusz

    2018-01-01

    The investigation of the dynamics of gas cell coalescence, i.e. a phenomenon that deteriorates the homogeneity of the cellular structure of bread crumb, was carried out performing simultaneously measurements of the dough volume, pressure, and viscosity. It was demonstrated that, during the baking expansion of chemically leavened wheat flour dough, the maximum growth rate of the gas cell radius determined from the ratio of pressure exerted by the expanded dough to its viscosity was on average four-fold lower than that calculated from volume changes in the gas phase of the dough. Such a high discrepancy was interpreted as a result of the course of coalescence, and a formula for determination of its rate was developed. The coalescence rate in the initial baking expansion phase had negative values, indicating nucleation of newly formed gas cells, which increased the number of gas cells even by 8%. In the next baking expansion phase, the coalescence rate started to exhibit positive values, reflecting dominance of the coalescence phenomenon over nucleation. The maximum coalescence rates indicate that, during the period of the most intensive dough expansion, the number of gas cells decreased by 2-3% within one second. At the end of the formation of bread crumb, the number of the gas cells declined by 55-67% in comparison with the initial value. The correctness of the results was positively verified using X-ray micro-computed tomography. The developed method can be a useful tool for more profound exploration of the coalescence phenomenon at various stages of evolution of the cellular structure and its determinants, which may contribute to future development of more effective methods for improving the texture and sensory quality of bread crumb. Copyright © 2017 Elsevier Ltd. All rights reserved.