Sample records for ubiquitin-editing enzyme a20

  1. Pathogen-induced ubiquitin-editing enzyme A20 bifunctionally shuts off NF-κB and caspase-8-dependent apoptotic cell death

    PubMed Central

    Lim, Michelle C C; Maubach, Gunter; Sokolova, Olga; Feige, Michael H; Diezko, Rolf; Buchbinder, Jörn; Backert, Steffen; Schlüter, Dirk; Lavrik, Inna N; Naumann, Michael

    2017-01-01

    The human pathogen Helicobacter pylori infects more than half of the world’s population and is a paradigm for persistent yet asymptomatic infection but increases the risk for chronic gastritis and gastric adenocarcinoma. For successful colonization, H. pylori needs to subvert the host cell death response, which serves to confine pathogen infection by killing infected cells and preventing malignant transformation. Infection of gastric epithelial cells by H. pylori provokes direct and fast activation of the proinflammatory and survival factor NF-κB, which regulates target genes, such as CXCL8, BIRC3 and TNFAIP3. However, it is not known how H. pylori exploits NF-κB activation and suppresses the inflammatory response and host apoptotic cell death, in order to avert the innate immune response and avoid cell loss, and thereby enhance colonization to establish long-term infection. Here we assign for the first time that H. pylori and also Campylobacter jejuni-induced ubiquitin-editing enzyme A20 bifunctionally terminates NF-κB activity and negatively regulates apoptotic cell death. Mechanistically, we show that the deubiquitinylase activity of A20 counteracts cullin3-mediated K63-linked ubiquitinylation of procaspase-8, therefore restricting the activity of caspase-8. Interestingly, another inducible NF-κB target gene, the scaffold protein p62, ameliorates the interaction of A20 with procaspase-8. In conclusion, pathogen-induced de novo synthesis of A20 regulates the shut-off of the survival factor NF-κB but, on the other hand, also impedes caspase-8-dependent apoptotic cell death so as to promote the persistence of pathogens. PMID:28574503

  2. Ubiquitin enzymes in the regulation of immune responses.

    PubMed

    Ebner, Petra; Versteeg, Gijs A; Ikeda, Fumiyo

    2017-08-01

    Ubiquitination plays a central role in the regulation of various biological functions including immune responses. Ubiquitination is induced by a cascade of enzymatic reactions by E1 ubiquitin activating enzyme, E2 ubiquitin conjugating enzyme, and E3 ubiquitin ligase, and reversed by deubiquitinases. Depending on the enzymes, specific linkage types of ubiquitin chains are generated or hydrolyzed. Because different linkage types of ubiquitin chains control the fate of the substrate, understanding the regulatory mechanisms of ubiquitin enzymes is central. In this review, we highlight the most recent knowledge of ubiquitination in the immune signaling cascades including the T cell and B cell signaling cascades as well as the TNF signaling cascade regulated by various ubiquitin enzymes. Furthermore, we highlight the TRIM ubiquitin ligase family as one of the examples of critical E3 ubiquitin ligases in the regulation of immune responses.

  3. Ubiquitin enzymes in the regulation of immune responses

    PubMed Central

    Ebner, Petra; Versteeg, Gijs A.; Ikeda, Fumiyo

    2017-01-01

    Abstract Ubiquitination plays a central role in the regulation of various biological functions including immune responses. Ubiquitination is induced by a cascade of enzymatic reactions by E1 ubiquitin activating enzyme, E2 ubiquitin conjugating enzyme, and E3 ubiquitin ligase, and reversed by deubiquitinases. Depending on the enzymes, specific linkage types of ubiquitin chains are generated or hydrolyzed. Because different linkage types of ubiquitin chains control the fate of the substrate, understanding the regulatory mechanisms of ubiquitin enzymes is central. In this review, we highlight the most recent knowledge of ubiquitination in the immune signaling cascades including the T cell and B cell signaling cascades as well as the TNF signaling cascade regulated by various ubiquitin enzymes. Furthermore, we highlight the TRIM ubiquitin ligase family as one of the examples of critical E3 ubiquitin ligases in the regulation of immune responses. PMID:28524749

  4. E2 enzyme inhibition by stabilization of a low affinity interface with ubiquitin

    PubMed Central

    St-Cyr, Daniel J.; Ziemba, Amy; Garg, Pankaj; Plamondon, Serge; Auer, Manfred; Sidhu, Sachdev; Marinier, Anne; Kleiger, Gary; Tyers, Mike; Sicheri, Frank

    2014-01-01

    Weak protein interactions between ubiquitin and the ubiquitin-proteasome system (UPS) enzymes that mediate its covalent attachment to substrates serve to position ubiquitin for optimal catalytic transfer. We show that a small molecule inhibitor of the E2 ubiquitin conjugating enzyme Cdc34A, called CC0651, acts by trapping a weak interaction between ubiquitin and the E2 donor ubiquitin binding site. A structure of the ternary CC0651-Cdc34A-ubiquitin complex reveals that the inhibitor engages a composite binding pocket formed from Cdc34A and ubiquitin. CC0651 also suppresses the spontaneous hydrolysis rate of the Cdc34A-ubiquitin thioester, without overtly affecting the interaction between Cdc34A and the RING domain subunit of the E3 enzyme. Stabilization of the numerous other weak interactions between ubiquitin and UPS enzymes by small molecules may be a feasible strategy to selectively inhibit different UPS activities. PMID:24316736

  5. The roles of ubiquitin modifying enzymes in neoplastic disease.

    PubMed

    Kumari, Nishi; Jaynes, Patrick William; Saei, Azad; Iyengar, Prasanna Vasudevan; Richard, John Lalith Charles; Eichhorn, Pieter Johan Adam

    2017-12-01

    The initial experiments performed by Rose, Hershko, and Ciechanover describing the identification of a specific degradation signal in short-lived proteins paved the way to the discovery of the ubiquitin mediated regulation of numerous physiological functions required for cellular homeostasis. Since their discovery of ubiquitin and ubiquitin function over 30years ago it has become wholly apparent that ubiquitin and their respective ubiquitin modifying enzymes are key players in tumorigenesis. The human genome encodes approximately 600 putative E3 ligases and 80 deubiquitinating enzymes and in the majority of cases these enzymes exhibit specificity in sustaining either pro-tumorigenic or tumour repressive responses. In this review, we highlight the known oncogenic and tumour suppressive effects of ubiquitin modifying enzymes in cancer relevant pathways with specific focus on PI3K, MAPK, TGFβ, WNT, and YAP pathways. Moreover, we discuss the capacity of targeting DUBs as a novel anticancer therapeutic strategy. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Cloning of ubiquitin-activating enzyme and ubiquitin-conjugating enzyme genes from Gracilaria lemaneiformis and their activity under heat shock.

    PubMed

    Li, Guang-Qi; Zang, Xiao-Nan; Zhang, Xue-Cheng; Lu, Ning; Ding, Yan; Gong, Le; Chen, Wen-Chao

    2014-03-15

    To study the response of Gracilaria lemaneiformis to heat stress, two key enzymes - ubiquitin-activating enzyme (E1) and ubiquitin-conjugating enzyme (E2) - of the Ubiquitin/26S proteasome pathway (UPP) were studied in three strains of G. lemaneiformis-wild type, heat-tolerant cultivar 981 and heat-tolerant cultivar 07-2. The full length DNA sequence of E1 contained only one exon. The open reading frame (ORF) sequence was 981 nucleotides encoding 326 amino acids, which contained conserved ATP binding sites (LYDRQIRLWGLE, ELAKNVLLAGV, LKEMN, VVCAI) and the ubiquitin-activating domains (VVCAI…LMTEAC, VFLDLGDEYSYQ, AIVGGMWGRE). The gene sequence of E2 contained four exons and three introns. The sum of the four exons gave an open reading frame sequence of 444 nucleotides encoding 147 amino acids, which contained a conserved ubiquitin-activating domain (GSICLDIL), ubiquitin-conjugating domains (RIYHPNIN, KVLLSICSLL, DDPLV) and ubiquitin-ligase (E3) recognition sites (KRI, YPF, WSP). Real-time-PCR analysis of transcription levels of E1 and E2 under heat shock conditions (28°C and 32°C) showed that in wild type, transcriptions of E1 and E2 were up-regulated at 28°C, while at 32°C, transcriptions of the two enzymes were below the normal level. In cultivar 981 and cultivar 07-2 of G. lemaneiformis, the transcription levels of the two enzymes were up-regulated at 32°C, and transcription level of cultivar 07-2 was even higher than that of cultivar 981. These results suggest that the UPP plays an important role in high temperature resistance of G. lemaneiformis and the bioactivity of UPP is directly related to the heat-resistant ability of G. lemaneiformis. Copyright © 2013 Elsevier B.V. All rights reserved.

  7. An ubiquitin-binding molecule can work as an inhibitor of ubiquitin processing enzymes and ubiquitin receptors.

    PubMed

    Nguyen, Thanh; Ho, Minh; Ghosh, Ambarnil; Kim, Truc; Yun, Sun Il; Lee, Seung Seo; Kim, Kyeong Kyu

    2016-10-07

    The ubiquitin pathway plays a critical role in regulating diverse biological processes, and its dysregulation is associated with various diseases. Therefore, it is important to have a tool that can control the ubiquitin pathway in order to improve understanding of this pathway and to develop therapeutics against relevant diseases. We found that Chicago Sky Blue 6B binds directly to the β-groove, a major interacting surface of ubiquitin. Hence, it could successfully inhibit the enzymatic activity of ubiquitin processing enzymes and the binding of ubiquitin to the CXCR4, a cell surface ubiquitin receptor. Furthermore, we demonstrated that this ubiquitin binding chemical could effectively suppress the ubiquitin induced cancer cell migration by blocking ubiquitin-CXCR4 interaction. Current results suggest that ubiquitin binding molecules can be developed as inhibitors of ubiquitin-protein interactions, which will have the value not only in unveiling the biological role of ubiquitin but also in treating related diseases. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. High Performance Liquid Chromatography Resolution of Ubiquitin Pathway Enzymes from Wheat Germ 1

    PubMed Central

    Sullivan, Michael L.; Callis, Judy; Vierstra, Richard D.

    1990-01-01

    The highly conserved protein ubiquitin is involved in several cellular processes in eukaryotes as a result of its covalent ligation to a variety of target proteins. Here, we describe the purification of several enzymatic activities involved in ubiquitin-protein conjugate formation and disassembly from wheat germ (Triticum vulgare) by a combination of ubiquitin affinity chromatography and anion-exchange high performance liquid chromatography. Using this procedure, ubiquitin activating enzyme (E1), several distinct ubiquitin carrier proteins (E2s) with molecular masses of 16, 20, 23, 23.5, and 25 kilodaltons, and a ubiquitin-protein hydrolase (isopeptidase) were isolated. Purified E1 formed a thiol ester linkage with 125I-ubiquitin in an ATP-dependent manner and transferred bound ubiquitin to the various purified E2s. The ubiquitin protein hydrolase fraction was sensitive to hemin, and in an ATP-independent reaction, was capable of removing the ubiquitin moiety from both ubiquitin 125I-lysozyme conjugates (ε-amino or isopeptide linkage) and the ubiquitin 52-amino acid extension protein fusion (α-amino or peptide linkage). Using this procedure, wheat germ represents an inexpensive source from which enzymes involved in the ubiquitin pathway may be isolated. Images Figure 1 Figure 2 Figure 3 Figure 4 PMID:16667769

  9. Ubiquitin-Modifying Enzymes and Regulation of the Inflammasome.

    PubMed

    Kattah, Michael G; Malynn, Barbara A; Ma, Averil

    2017-11-10

    Ubiquitin and ubiquitin-modifying enzymes play critical roles in a wide variety of intracellular signaling pathways. Inflammatory signaling cascades downstream of TNF, TLR agonists, antigen receptor cross-linking, and cytokine receptors, all rely on ubiquitination events to direct subsequent immune responses. In the past several years, inflammasome activation and subsequent signal transduction have emerged as an excellent example of how ubiquitin signals control inflammatory responses. Inflammasomes are multiprotein signaling complexes that ultimately lead to caspase activation and release of the interleukin-1 (IL-1) family members, IL-1β and IL-18. Inflammasome activation is critical for the host's defense against pathogens, but dysregulation of inflammasomes may contribute to the pathogenesis of multiple diseases. Ultimately, understanding how various ubiquitin interacting proteins control inflammatory signaling cascades could provide new pathways for therapeutic intervention. Here we review specific ubiquitin-modifying enzymes and ubiquitination events that orchestrate inflammatory responses, with an emphasis on the NLRP3 inflammasome. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Ubiquitin in Motion: Structural Studies of the Ubiquitin-Conjugating Enzyme~Ubiquitin Conjugate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pruneda, Jonathan N.; Stoll, Kate E.; Bolton, Laura J.

    2011-03-15

    Ubiquitination of proteins provides a powerful and versatile post-translational signal in the eukaryotic cell. The formation of a thioester bond between ubiquitin (Ub) and the active site of a ubiquitin-conjugating enzyme (E2) is critical for the transfer of Ub to substrates. Assembly of a functional ubiquitin ligase (E3) complex poised for Ub transfer involves recognition and binding of an E2~Ub conjugate. Therefore, full characterization of the structure and dynamics of E2~Ub conjugates is required for further mechanistic understanding of Ub transfer reactions. Here we present characterization of the dynamic behavior of E2~Ub conjugates of two human enzymes, UbcH5c~Ub and Ubc13~Ub,more » in solution as determined by nuclear magnetic resonance and small-angle X-ray scattering. Within each conjugate, Ub retains great flexibility with respect to the E2, indicative of highly dynamic species that adopt manifold orientations. The population distribution of Ub conformations is dictated by the identity of the E2: the UbcH5c~Ub conjugate populates an array of extended conformations, and the population of Ubc13~Ub conjugates favors a closed conformation in which the hydrophobic surface of Ub faces helix 2 of Ubc13. Finally, we propose that the varied conformations adopted by Ub represent available binding modes of the E2~Ub species and thus provide insight into the diverse E2~Ub protein interactome, particularly with regard to interaction with Ub ligases.« less

  11. Ubiquitination independent of E1 and E2 enzymes by bacterial effectors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qiu, Jiazhang; Sheedlo, Michael J.; Yu, Kaiwen

    Signaling by ubiquitination regulates virtually every cellular process in eukaryotes. Covalent attachment of ubiquitin to a substrate is catalyzed by the E1, E2 and E3 three-enzyme cascade 1, which links the C terminus of ubiquitin via an isopeptide bond mostly to the ε-amino group of a lysine of the substrate. Given the essential roles of ubiquitination in the regulation of the immune system, it is not surprising that the ubiquitination network is a common target for diverse infectious agents 2. For example, many bacterial pathogens exploit ubiquitin signaling using virulence factors that function as E3 ligases, deubiquitinases 3 or asmore » enzymes that directly attack ubiquitin 4. The bacterial pathogen Legionella pneumophila utilizes approximately 300 effectors that modulate diverse host processes to create a niche permissive for its replication in phagocytes 5. Here we demonstrate that members of the SidE effector family (SidEs) of L. pneumophila ubiquitinate multiple Rab small GTPases associated with the endoplasmic reticulum (ER). Moreover, we show that these proteins are capable of catalyzing ubiquitination without the need for the E1 and E2 enzymes. The E1/E2-independent ubiquitination catalyzed by these enzymes requires NAD but not ATP and Mg2+. A putative mono ADP-ribosyltransferase (mART) motif critical for the ubiquitination activity is also essential for the role of SidEs in intracellular bacterial replication in a protozoan host. These results establish that ubiquitination can be catalyzed by a single enzyme.« less

  12. Regulation of Ubiquitin Enzymes in the TGF-β Pathway.

    PubMed

    Iyengar, Prasanna Vasudevan

    2017-04-20

    The transforming growth factor-β (TGF-β) pathway has a tumor suppressor role in normal and premalignant cells but promotes oncogenesis in advanced cancer cells. Components of the pathway are tightly controlled by ubiquitin modifying enzymes and aberrations in these enzymes are frequently observed to dysregulate the pathway causing diseases such as bone disorders, cancer and metastasis. These enzymes and their counterparts are increasingly being tested as druggable targets, and thus a deeper understanding of the enzymes is required. This review summarizes the roles of specific ubiquitin modifying enzymes in the TGF-β pathway and how they are regulated.

  13. The Endosome-associated Deubiquitinating Enzyme USP8 Regulates BACE1 Enzyme Ubiquitination and Degradation.

    PubMed

    Yeates, Eniola Funmilayo Aduke; Tesco, Giuseppina

    2016-07-22

    The β-site amyloid precursor protein-cleaving enzyme (BACE1) is the rate-limiting enzyme in the production of amyloid-β, the toxic peptide that accumulates in the brain of subjects affected by Alzheimer disease. Our previous studies have shown that BACE1 is degraded via the lysosomal pathway and that that depletion of the trafficking molecule Golgi-localized γ-ear-containing ARF-binding protein 3 (GGA3) results in increased BACE1 levels and activity because of impaired lysosomal degradation. We also determined that GGA3 regulation of BACE1 levels requires its ability to bind ubiquitin. Accordingly, we reported that BACE1 is ubiquitinated at lysine 501 and that lack of ubiquitination at lysine 501 produces BACE1 stabilization. Ubiquitin conjugation is a reversible process mediated by deubiquitinating enzymes. The ubiquitin-specific peptidase 8 (USP8), an endosome-associated deubiquitinating enzyme, regulates the ubiquitination, trafficking, and lysosomal degradation of several plasma membrane proteins. Here, we report that RNAi-mediated depletion of USP8 reduced levels of both ectopically expressed and endogenous BACE1 in H4 human neuroglioma cells. Moreover, USP8 depletion increased BACE1 ubiquitination, promoted BACE1 accumulation in the early endosomes and late endosomes/lysosomes, and decreased levels of BACE1 in the recycling endosomes. We also found that decreased BACE1 protein levels were accompanied by a decrease in BACE1-mediated amyloid precursor protein cleavage and amyloid-β levels. Our findings demonstrate that USP8 plays a key role in the trafficking and degradation of BACE1 by deubiquitinating lysine 501. These studies suggest that therapies able to accelerate BACE1 degradation (e.g. by increasing BACE1 ubiquitination) may represent a potential treatment for Alzheimer disease. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  14. The Endosome-associated Deubiquitinating Enzyme USP8 Regulates BACE1 Enzyme Ubiquitination and Degradation*

    PubMed Central

    Yeates, Eniola Funmilayo Aduke; Tesco, Giuseppina

    2016-01-01

    The β-site amyloid precursor protein-cleaving enzyme (BACE1) is the rate-limiting enzyme in the production of amyloid-β, the toxic peptide that accumulates in the brain of subjects affected by Alzheimer disease. Our previous studies have shown that BACE1 is degraded via the lysosomal pathway and that that depletion of the trafficking molecule Golgi-localized γ-ear-containing ARF-binding protein 3 (GGA3) results in increased BACE1 levels and activity because of impaired lysosomal degradation. We also determined that GGA3 regulation of BACE1 levels requires its ability to bind ubiquitin. Accordingly, we reported that BACE1 is ubiquitinated at lysine 501 and that lack of ubiquitination at lysine 501 produces BACE1 stabilization. Ubiquitin conjugation is a reversible process mediated by deubiquitinating enzymes. The ubiquitin-specific peptidase 8 (USP8), an endosome-associated deubiquitinating enzyme, regulates the ubiquitination, trafficking, and lysosomal degradation of several plasma membrane proteins. Here, we report that RNAi-mediated depletion of USP8 reduced levels of both ectopically expressed and endogenous BACE1 in H4 human neuroglioma cells. Moreover, USP8 depletion increased BACE1 ubiquitination, promoted BACE1 accumulation in the early endosomes and late endosomes/lysosomes, and decreased levels of BACE1 in the recycling endosomes. We also found that decreased BACE1 protein levels were accompanied by a decrease in BACE1-mediated amyloid precursor protein cleavage and amyloid-β levels. Our findings demonstrate that USP8 plays a key role in the trafficking and degradation of BACE1 by deubiquitinating lysine 501. These studies suggest that therapies able to accelerate BACE1 degradation (e.g. by increasing BACE1 ubiquitination) may represent a potential treatment for Alzheimer disease. PMID:27302062

  15. Divergence in Ubiquitin Interaction and Catalysis among the Ubiquitin-Specific Protease Family Deubiquitinating Enzymes.

    PubMed

    Tencer, Adam H; Liang, Qin; Zhuang, Zhihao

    2016-08-23

    Deubiquitinating enzymes (DUBs) are responsible for reversing mono- and polyubiquitination of proteins and play essential roles in numerous cellular processes. Close to 100 human DUBs have been identified and are classified into five families, with the ubiquitin-specific protease (USP) family being the largest (>50 members). The binding of ubiquitin (Ub) to USP is strikingly different from that observed for the DUBs in the ubiquitin C-terminal hydrolase (UCH) and ovarian tumor domain protease (OTU) families. We generated a panel of mutant ubiquitins and used them to probe the ubiquitin's interaction with a number of USPs. Our results revealed a remarkable divergence of USP-Ub interactions among the USP catalytic domains. Our double-mutant cycle analysis targeting the ubiquitin residues located in the tip, the central body, and the tail of ubiquitin also demonstrated different crosstalk among the USP-Ub interactions. This work uncovered intriguing divergence in the ubiquitin-binding mode in the USP family DUBs and raised the possibility of targeting the ubiquitin-binding hot spots on USPs for selective inhibition of USPs by small molecule antagonists.

  16. A Subset of Ubiquitin-Conjugating Enzymes Is Essential for Plant Immunity.

    PubMed

    Zhou, Bangjun; Mural, Ravi V; Chen, Xuanyang; Oates, Matt E; Connor, Richard A; Martin, Gregory B; Gough, Julian; Zeng, Lirong

    2017-02-01

    Of the three classes of enzymes involved in ubiquitination, ubiquitin-conjugating enzymes (E2) have been often incorrectly considered to play merely an auxiliary role in the process, and few E2 enzymes have been investigated in plants. To reveal the role of E2 in plant innate immunity, we identified and cloned 40 tomato genes encoding ubiquitin E2 proteins. Thioester assays indicated that the majority of the genes encode enzymatically active E2. Phylogenetic analysis classified the 40 tomato E2 enzymes into 13 groups, of which members of group III were found to interact and act specifically with AvrPtoB, a Pseudomonas syringae pv tomato effector that uses its ubiquitin ligase (E3) activity to suppress host immunity. Knocking down the expression of group III E2 genes in Nicotiana benthamiana diminished the AvrPtoB-promoted degradation of the Fen kinase and the AvrPtoB suppression of host immunity-associated programmed cell death. Importantly, silencing group III E2 genes also resulted in reduced pattern-triggered immunity (PTI). By contrast, programmed cell death induced by several effector-triggered immunity elicitors was not affected on group III-silenced plants. Functional characterization suggested redundancy among group III members for their role in the suppression of plant immunity by AvrPtoB and in PTI and identified UBIQUITIN-CONJUGATING11 (UBC11), UBC28, UBC29, UBC39, and UBC40 as playing a more significant role in PTI than other group III members. Our work builds a foundation for the further characterization of E2s in plant immunity and reveals that AvrPtoB has evolved a strategy for suppressing host immunity that is difficult for the plant to thwart. © 2017 American Society of Plant Biologists. All Rights Reserved.

  17. Linear ubiquitin chains: enzymes, mechanisms and biology

    PubMed Central

    2017-01-01

    Ubiquitination is a versatile post-translational modification that regulates a multitude of cellular processes. Its versatility is based on the ability of ubiquitin to form multiple types of polyubiquitin chains, which are recognized by specific ubiquitin receptors to induce the required cellular response. Linear ubiquitin chains are linked through Met 1 and have been established as important players of inflammatory signalling and apoptotic cell death. These chains are generated by a ubiquitin E3 ligase complex called the linear ubiquitin chain assembly complex (LUBAC) that is thus far the only E3 ligase capable of forming linear ubiquitin chains. The complex consists of three subunits, HOIP, HOIL-1L and SHARPIN, each of which have specific roles in the observed biological functions of LUBAC. Furthermore, LUBAC has been found to be associated with OTULIN and CYLD, deubiquitinases that disassemble linear chains and counterbalance the E3 ligase activity of LUBAC. Gene mutations in HOIP, HOIL-1L and OTULIN are found in human patients who suffer from autoimmune diseases, and HOIL-1L mutations are also found in myopathy patients. In this paper, we discuss the mechanisms of linear ubiquitin chain generation and disassembly by their respective enzymes and review our current understanding of their biological functions and association with human diseases. PMID:28446710

  18. Linear ubiquitin chains: enzymes, mechanisms and biology.

    PubMed

    Rittinger, Katrin; Ikeda, Fumiyo

    2017-04-01

    Ubiquitination is a versatile post-translational modification that regulates a multitude of cellular processes. Its versatility is based on the ability of ubiquitin to form multiple types of polyubiquitin chains, which are recognized by specific ubiquitin receptors to induce the required cellular response. Linear ubiquitin chains are linked through Met 1 and have been established as important players of inflammatory signalling and apoptotic cell death. These chains are generated by a ubiquitin E3 ligase complex called the linear ubiquitin chain assembly complex (LUBAC) that is thus far the only E3 ligase capable of forming linear ubiquitin chains. The complex consists of three subunits, HOIP, HOIL-1L and SHARPIN, each of which have specific roles in the observed biological functions of LUBAC. Furthermore, LUBAC has been found to be associated with OTULIN and CYLD, deubiquitinases that disassemble linear chains and counterbalance the E3 ligase activity of LUBAC. Gene mutations in HOIP, HOIL-1L and OTULIN are found in human patients who suffer from autoimmune diseases, and HOIL-1L mutations are also found in myopathy patients. In this paper, we discuss the mechanisms of linear ubiquitin chain generation and disassembly by their respective enzymes and review our current understanding of their biological functions and association with human diseases. © 2017 The Authors.

  19. Wheat germ-based protein libraries for the functional characterisation of the Arabidopsis E2 ubiquitin conjugating enzymes and the RING-type E3 ubiquitin ligase enzymes.

    PubMed

    Ramadan, Abdelaziz; Nemoto, Keiichirou; Seki, Motoaki; Shinozaki, Kazuo; Takeda, Hiroyuki; Takahashi, Hirotaka; Sawasaki, Tatsuya

    2015-11-10

    Protein ubiquitination is a ubiquitous mechanism in eukaryotes. In Arabidopsis, ubiquitin modification is mainly mediated by two ubiquitin activating enzymes (E1s), 37 ubiquitin conjugating enzymes (E2s), and more than 1300 predicted ubiquitin ligase enzymes (E3s), of which ~470 are RING-type E3s. A large proportion of the RING E3's gene products have yet to be characterised in vitro, likely because of the laborious work involved in large-scale cDNA cloning and protein expression, purification, and characterisation. In addition, several E2s, which might be necessary for the activity of certain E3 ligases, cannot be expressed by Escherichia coli or cultured insect cells and, therefore, remain uncharacterised. Using the RIKEN Arabidopsis full-length cDNA library (RAFL) with the 'split-primer' PCR method and a wheat germ cell-free system, we established protein libraries of Arabidopsis E2 and RING E3 enzymes. We expressed 35 Arabidopsis E2s including six enzymes that have not been previously expressed, and 204 RING proteins, most of which had not been functionally characterised. Thioester assays using dithiothreitol (DTT) showed DTT-sensitive ubiquitin thioester formation for all E2s expressed. In expression assays of RING proteins, 31 proteins showed high molecular smears, which are probably the result of their functional activity. The activities of another 27 RING proteins were evaluated with AtUBC10 and/or a group of different E2s. All the 27 RING E3s tested showed ubiquitin ligase activity, including 17 RING E3s. Their activities are reported for the first time. The wheat germ cell-free system used in our study, which is a eukaryotic expression system and more closely resembles the endogenous expression of plant proteins, is very suitable for expressing Arabidopsis E2s and RING E3s in their functional form. In addition, the protein libraries described here can be used for further understanding E2-E3 specificities and as platforms for protein-protein interaction

  20. RING-type E3 ligases: Master manipulators of E2 ubiquitin-conjugating enzymes and ubiquitination

    PubMed Central

    Metzger, Meredith B.; Pruneda, Jonathan N.; Klevit, Rachel E.; Weissman, Allan M.

    2013-01-01

    RING finger domain and RING finger-like ubiquitin ligases (E3s), such as U-box proteins, constitute the vast majority of known E3s. RING-type E3s function together with ubiquitin-conjugating enzymes (E2s) to mediate ubiquitination and are implicated in numerous cellular processes. In part because of their importance in human physiology and disease, these proteins and their cellular functions represent an intense area of study. Here we review recent advances in RING-type E3 recognition of substrates, their cellular regulation, and their varied architecture. Additionally, recent structural insights into RING-type E3 function, with a focus on important interactions with E2s and ubiquitin, are reviewed. This article is part of a Special Issue entitled: Ubiquitin-Proteasome System. PMID:23747565

  1. Emergence of the A20/ABIN-mediated inhibition of NF-κB signaling via modifying the ubiquitinated proteins in a basal chordate.

    PubMed

    Yuan, Shaochun; Dong, Xiangru; Tao, Xin; Xu, Liqun; Ruan, Jie; Peng, Jian; Xu, Anlong

    2014-05-06

    In the past decade, ubiquitination has been well documented to have multifaceted roles in regulating NF-κB activation in mammals. However, its function, especially how deubiquitinating enzymes balance the NF-κB activation, remains largely elusive in invertebrates. Investigating bbtA20 and its binding proteins, bbt A20-binding inhibitor of NF-κB (bbtABIN1) and bbtABIN2, in Chinese amphioxus Branchiostoma belcheri tsingtauense, we found that bbtABIN2 can colocalize and compete with bbt TNF receptor-associated factor 6 to connect the K63-linked polyubiquitin chains, whereas bbtABIN1 physically links bbtA20 to bbt NF-κB essential modulator (bbtNEMO) to facilitate the K48-linked ubiquitination of bbtNEMO. Similar to human A20, bbtA20 is a dual enzyme that removes the K63-linked polyubiquitin chains and builds the K48-linked polyubiquitin chains on bbt receptor-interacting serine/threonine protein kinase 1b, leading to the inhibition of NF-κB signaling. Our study not only suggests that ubiquitination is an ancient strategy in regulating NF-κB activation but also provides the first evidence, to our knowledge, for ABINs/A20-mediated inhibition of NF-κB via modifying the ubiquitinated proteins in a basal chordate, adding information on the stepwise development of vertebrate innate immune signaling.

  2. OTUB1 Co-opts Lys48-Linked Ubiquitin Recognition to Suppress E2 Enzyme Function

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Juang, Yu-Chi; Landry, Marie-Claude; Sanches, Mario

    2012-03-26

    Ubiquitylation entails the concerted action of E1, E2, and E3 enzymes. We recently reported that OTUB1, a deubiquitylase, inhibits the DNA damage response independently of its isopeptidase activity. OTUB1 does so by blocking ubiquitin transfer by UBC13, the cognate E2 enzyme for RNF168. OTUB1 also inhibits E2s of the UBE2D and UBE2E families. Here we elucidate the structural mechanism by which OTUB1 binds E2s to inhibit ubiquitin transfer. OTUB1 recognizes ubiquitin-charged E2s through contacts with both donor ubiquitin and the E2 enzyme. Surprisingly, free ubiquitin associates with the canonical distal ubiquitin-binding site on OTUB1 to promote formation of the inhibitedmore » E2 complex. Lys48 of donor ubiquitin lies near the OTUB1 catalytic site and the C terminus of free ubiquitin, a configuration that mimics the products of Lys48-linked ubiquitin chain cleavage. OTUB1 therefore co-opts Lys48-linked ubiquitin chain recognition to suppress ubiquitin conjugation and the DNA damage response.« less

  3. A Subset of Ubiquitin-Conjugating Enzymes Is Essential for Plant Immunity1[OPEN

    PubMed Central

    Connor, Richard A.

    2017-01-01

    Of the three classes of enzymes involved in ubiquitination, ubiquitin-conjugating enzymes (E2) have been often incorrectly considered to play merely an auxiliary role in the process, and few E2 enzymes have been investigated in plants. To reveal the role of E2 in plant innate immunity, we identified and cloned 40 tomato genes encoding ubiquitin E2 proteins. Thioester assays indicated that the majority of the genes encode enzymatically active E2. Phylogenetic analysis classified the 40 tomato E2 enzymes into 13 groups, of which members of group III were found to interact and act specifically with AvrPtoB, a Pseudomonas syringae pv tomato effector that uses its ubiquitin ligase (E3) activity to suppress host immunity. Knocking down the expression of group III E2 genes in Nicotiana benthamiana diminished the AvrPtoB-promoted degradation of the Fen kinase and the AvrPtoB suppression of host immunity-associated programmed cell death. Importantly, silencing group III E2 genes also resulted in reduced pattern-triggered immunity (PTI). By contrast, programmed cell death induced by several effector-triggered immunity elicitors was not affected on group III-silenced plants. Functional characterization suggested redundancy among group III members for their role in the suppression of plant immunity by AvrPtoB and in PTI and identified UBIQUITIN-CONJUGATING11 (UBC11), UBC28, UBC29, UBC39, and UBC40 as playing a more significant role in PTI than other group III members. Our work builds a foundation for the further characterization of E2s in plant immunity and reveals that AvrPtoB has evolved a strategy for suppressing host immunity that is difficult for the plant to thwart. PMID:27909045

  4. A20 restricts ubiquitination of pro-interleukin-1β protein complexes and suppresses NLRP3 inflammasome activity

    PubMed Central

    Duong, Bao H.; Onizawa, Michio; Oses-Prieto, Juan A.; Advincula, Rommel; Burlingame, Alma; Malynn, Barbara A.; Ma, Averil

    2015-01-01

    SUMMARY Inappropriate inflammasome activation contributes to multiple human diseases, but the mechanisms by which inflammasomes are suppressed are poorly understood. The NFκB inhibitor A20 is a ubiquitin-modifying enzyme that may prevent human inflammatory diseases and lymphomas. Here, we report that A20-deficient macrophages, unlike normal cells, exhibit spontaneous NLRP3 inflammasome activity to LPS alone. The kinase RIPK3, but not the adaptor MyD88, is required for this response. In normal cells, A20 constitutively associates with caspase-1 and pro-IL-1β, and NLRP3 activation further promotes A20 recruitment to the inflammasome. Pro-IL-1β also co-immunoprecipitates with RIPK1, RIPK3, caspase-1 and caspase-8 in a complex that is modified with K63-linked and unanchored polyubiquitin. In A20-deficient macrophages, this pro-IL-1β-associated ubiquitination is markedly increased in a RIPK3-dependent manner. Mass spectrometric and mutational analyses reveal that K133 of pro-IL-1β is a physiological ubiquitination site that supports processing. Our study reveals a novel mechanism by which A20 prevents inflammatory diseases. PMID:25607459

  5. Genome-Wide Identification, Phylogenetic and Expression Analyses of the Ubiquitin-Conjugating Enzyme Gene Family in Maize.

    PubMed

    Jue, Dengwei; Sang, Xuelian; Lu, Shengqiao; Dong, Chen; Zhao, Qiufang; Chen, Hongliang; Jia, Liqiang

    2015-01-01

    Ubiquitination is a post-translation modification where ubiquitin is attached to a substrate. Ubiquitin-conjugating enzymes (E2s) play a major role in the ubiquitin transfer pathway, as well as a variety of functions in plant biological processes. To date, no genome-wide characterization of this gene family has been conducted in maize (Zea mays). In the present study, a total of 75 putative ZmUBC genes have been identified and located in the maize genome. Phylogenetic analysis revealed that ZmUBC proteins could be divided into 15 subfamilies, which include 13 ubiquitin-conjugating enzymes (ZmE2s) and two independent ubiquitin-conjugating enzyme variant (UEV) groups. The predicted ZmUBC genes were distributed across 10 chromosomes at different densities. In addition, analysis of exon-intron junctions and sequence motifs in each candidate gene has revealed high levels of conservation within and between phylogenetic groups. Tissue expression analysis indicated that most ZmUBC genes were expressed in at least one of the tissues, indicating that these are involved in various physiological and developmental processes in maize. Moreover, expression profile analyses of ZmUBC genes under different stress treatments (4°C, 20% PEG6000, and 200 mM NaCl) and various expression patterns indicated that these may play crucial roles in the response of plants to stress. Genome-wide identification, chromosome organization, gene structure, evolutionary and expression analyses of ZmUBC genes have facilitated in the characterization of this gene family, as well as determined its potential involvement in growth, development, and stress responses. This study provides valuable information for better understanding the classification and putative functions of the UBC-encoding genes of maize.

  6. E3 ligase Rad18 promotes monoubiquitination rather than ubiquitin chain formation by E2 enzyme Rad6

    PubMed Central

    Hibbert, Richard G.; Huang, Anding; Boelens, Rolf; Sixma, Titia K.

    2011-01-01

    In ubiquitin conjugation, different combinations of E2 and E3 enzymes catalyse either monoubiquitination or ubiquitin chain formation. The E2/E3 complex Rad6/Rad18 exclusively monoubiquitinates the proliferating cell nuclear antigen (PCNA) to signal for “error prone” DNA damage tolerance, whereas a different set of conjugation enzymes is required for ubiquitin chain formation on PCNA. Here we show that human E2 enzyme Rad6b is intrinsically capable of catalyzing ubiquitin chain formation. This activity is prevented during PCNA ubiquitination by the interaction of Rad6 with E3 enzyme Rad18. Using NMR and X-ray crystallography we show that the R6BD of Rad18 inhibits this activity by competing with ubiquitin for a noncovalent “backside” binding site on Rad6. Our findings provide mechanistic insights into how E3 enzymes can regulate the ubiquitin conjugation process. PMID:21422291

  7. Genome-Wide Identification, Phylogenetic and Expression Analyses of the Ubiquitin-Conjugating Enzyme Gene Family in Maize

    PubMed Central

    Jue, Dengwei; Sang, Xuelian; Lu, Shengqiao; Dong, Chen; Zhao, Qiufang; Chen, Hongliang; Jia, Liqiang

    2015-01-01

    Background Ubiquitination is a post-translation modification where ubiquitin is attached to a substrate. Ubiquitin-conjugating enzymes (E2s) play a major role in the ubiquitin transfer pathway, as well as a variety of functions in plant biological processes. To date, no genome-wide characterization of this gene family has been conducted in maize (Zea mays). Methodology/Principal Findings In the present study, a total of 75 putative ZmUBC genes have been identified and located in the maize genome. Phylogenetic analysis revealed that ZmUBC proteins could be divided into 15 subfamilies, which include 13 ubiquitin-conjugating enzymes (ZmE2s) and two independent ubiquitin-conjugating enzyme variant (UEV) groups. The predicted ZmUBC genes were distributed across 10 chromosomes at different densities. In addition, analysis of exon-intron junctions and sequence motifs in each candidate gene has revealed high levels of conservation within and between phylogenetic groups. Tissue expression analysis indicated that most ZmUBC genes were expressed in at least one of the tissues, indicating that these are involved in various physiological and developmental processes in maize. Moreover, expression profile analyses of ZmUBC genes under different stress treatments (4°C, 20% PEG6000, and 200 mM NaCl) and various expression patterns indicated that these may play crucial roles in the response of plants to stress. Conclusions Genome-wide identification, chromosome organization, gene structure, evolutionary and expression analyses of ZmUBC genes have facilitated in the characterization of this gene family, as well as determined its potential involvement in growth, development, and stress responses. This study provides valuable information for better understanding the classification and putative functions of the UBC-encoding genes of maize. PMID:26606743

  8. Protein-linked Ubiquitin Chain Structure Restricts Activity of Deubiquitinating Enzymes*

    PubMed Central

    Schaefer, Jonathan B.; Morgan, David O.

    2011-01-01

    The attachment of lysine 48 (Lys48)-linked polyubiquitin chains to proteins is a universal signal for degradation by the proteasome. Here, we report that long Lys48-linked chains are resistant to many deubiquitinating enzymes (DUBs). Representative enzymes from this group, Ubp15 from yeast and its human ortholog USP7, rapidly remove mono- and diubiquitin from substrates but are slow to remove longer Lys48-linked chains. This resistance is lost if the structure of Lys48-linked chains is disrupted by mutation of ubiquitin or if chains are linked through Lys63. In contrast to Ubp15 and USP7, Ubp12 readily cleaves the ends of long chains, regardless of chain structure. We propose that the resistance to many DUBs of long, substrate-attached Lys48-linked chains helps ensure that proteins are maintained free from ubiquitin until a threshold of ubiquitin ligase activity enables degradation. PMID:22072716

  9. UUCD: a family-based database of ubiquitin and ubiquitin-like conjugation.

    PubMed

    Gao, Tianshun; Liu, Zexian; Wang, Yongbo; Cheng, Han; Yang, Qing; Guo, Anyuan; Ren, Jian; Xue, Yu

    2013-01-01

    In this work, we developed a family-based database of UUCD (http://uucd.biocuckoo.org) for ubiquitin and ubiquitin-like conjugation, which is one of the most important post-translational modifications responsible for regulating a variety of cellular processes, through a similar E1 (ubiquitin-activating enzyme)-E2 (ubiquitin-conjugating enzyme)-E3 (ubiquitin-protein ligase) enzyme thioester cascade. Although extensive experimental efforts have been taken, an integrative data resource is still not available. From the scientific literature, 26 E1s, 105 E2s, 1003 E3s and 148 deubiquitination enzymes (DUBs) were collected and classified into 1, 3, 19 and 7 families, respectively. To computationally characterize potential enzymes in eukaryotes, we constructed 1, 1, 15 and 6 hidden Markov model (HMM) profiles for E1s, E2s, E3s and DUBs at the family level, separately. Moreover, the ortholog searches were conducted for E3 and DUB families without HMM profiles. Then the UUCD database was developed with 738 E1s, 2937 E2s, 46 631 E3s and 6647 DUBs of 70 eukaryotic species. The detailed annotations and classifications were also provided. The online service of UUCD was implemented in PHP + MySQL + JavaScript + Perl.

  10. A cascading activity-based probe sequentially targets E1–E2–E3 ubiquitin enzymes

    PubMed Central

    Mulder, Monique P.C.; Witting, Katharina; Berlin, Ilana; Pruneda, Jonathan N.; Wu, Kuen-Phon; Chang, Jer-Gung; Merkx, Remco; Bialas, Johanna; Groettrup, Marcus; Vertegaal, Alfred C.O.; Schulman, Brenda A.; Komander, David; Neefjes, Jacques; Oualid, Farid El; Ovaa, Huib

    2016-01-01

    Post-translational modifications of proteins with ubiquitin (Ub) and ubiquitin-like (Ubl) modifiers, orchestrated by a cascade of specialized E1, E2 and E3 enzymes, control a staggering breadth of cellular processes. To monitor catalysis along these complex reaction pathways, we developed a cascading activity-based probe, UbDha. Akin to the native Ub, upon ATP-dependent activation by the E1, UbDha can travel downstream to the E2 (and subsequently E3) enzymes through sequential trans-thioesterifications. Unlike the native Ub, at each step along the cascade UbDha has the option to react irreversibly with active site cysteine residues of target enzymes, thus enabling their detection. We show that our cascading probe ‘hops’ and ‘traps’ catalytically active ubiquitin-modifying enzymes (but not their substrates) by a mechanism diversifiable to Ubls. Our founder methodology, amenable to structural studies, proteome-wide profiling and monitoring of enzymatic activities in living cells, presents novel and versatile tools to interrogate the Ub/Ubl cascades. PMID:27182664

  11. Abundant off-target edits from site-directed RNA editing can be reduced by nuclear localization of the editing enzyme.

    PubMed

    Vallecillo-Viejo, Isabel C; Liscovitch-Brauer, Noa; Montiel-Gonzalez, Maria Fernanda; Eisenberg, Eli; Rosenthal, Joshua J C

    2018-01-02

    Site-directed RNA editing (SDRE) is a general strategy for making targeted base changes in RNA molecules. Although the approach is relatively new, several groups, including our own, have been working on its development. The basic strategy has been to couple the catalytic domain of an adenosine (A) to inosine (I) RNA editing enzyme to a guide RNA that is used for targeting. Although highly efficient on-target editing has been reported, off-target events have not been rigorously quantified. In this report we target premature termination codons (PTCs) in messages encoding both a fluorescent reporter protein and the Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) protein transiently transfected into human epithelial cells. We demonstrate that while on-target editing is efficient, off-target editing is extensive, both within the targeted message and across the entire transcriptome of the transfected cells. By redirecting the editing enzymes from the cytoplasm to the nucleus, off-target editing is reduced without compromising the on-target editing efficiency. The addition of the E488Q mutation to the editing enzymes, a common strategy for increasing on-target editing efficiency, causes a tremendous increase in off-target editing. These results underscore the need to reduce promiscuity in current approaches to SDRE.

  12. Lysine Ubiquitination and Acetylation of Human Cardiac 20S Proteasomes

    PubMed Central

    Lau, Edward; Choi, Howard JH; Ng, Dominic CM; Meyer, David; Fang, Caiyun; Li, Haomin; Wang, Ding; Zelaya, Ivette M; Yates, John R; Lam, Maggie PY

    2016-01-01

    Purpose Altered proteasome functions are associated with multiple cardiomyopathies. While the proteasome targets poly-ubiquitinated proteins for destruction, it itself is modifiable by ubiquitination. We aim to identify the exact ubiquitination sites on cardiac proteasomes and examine whether they are also subject to acetylations. Experimental design Assembled cardiac 20S proteasome complexes were purified from five human hearts with ischemic cardiomyopathy, then analyzed by high-resolution MS to identify ubiquitination and acetylation sites. We developed a library search strategy that may be used to complement database search in identifying PTM in different samples. Results We identified 63 ubiquitinated lysines from intact human cardiac 20S proteasomes. In parallel, 65 acetylated residues were also discovered, 39 of which shared with ubiquitination sites. Conclusion and clinical relevance This is the most comprehensive characterization of cardiac proteasome ubiquitination to-date. There are significant overlaps between the discovered ubiquitination and acetylation sites, permitting potential crosstalk in regulating proteasome functions. The information presented here will aid future therapeutic strategies aimed at regulating the functions of cardiac proteasomes. PMID:24957502

  13. Innate immune signaling in Drosophila is regulated by transforming growth factor β (TGFβ)-activated kinase (Tak1)-triggered ubiquitin editing

    PubMed Central

    Chen, Li; Paquette, Nicholas; Mamoor, Shahan; Rus, Florentina; Nandy, Anubhab; Leszyk, John; Shaffer, Scott A.; Silverman, Neal

    2017-01-01

    Coordinated regulation of innate immune responses is necessary in all metazoans. In Drosophila the Imd pathway detects Gram-negative bacterial infections through recognition of diaminopimelic acid (DAP)-type peptidoglycan and activation of the NF-κB precursor Relish, which drives robust antimicrobial peptide gene expression. Imd is a receptor-proximal adaptor protein homologous to mammalian RIP1 that is regulated by proteolytic cleavage and Lys-63-polyubiquitination. However, the precise events and molecular mechanisms that control the post-translational modification of Imd remain unclear. Here, we demonstrate that Imd is rapidly Lys-63-polyubiquitinated at lysine residues 137 and 153 by the sequential action of two E2 enzymes, Ubc5 and Ubc13-Uev1a, in conjunction with the E3 ligase Diap2. Lys-63-ubiquitination activates the TGFβ-activated kinase (Tak1), which feeds back to phosphorylate Imd, triggering the removal of Lys-63 chains and the addition of Lys-48 polyubiquitin. This ubiquitin-editing process results in the proteasomal degradation of Imd, which we propose functions to restore homeostasis to the Drosophila immune response. PMID:28377500

  14. Ubiquitination in Periodontal Disease: A Review.

    PubMed

    Tsuchida, Sachio; Satoh, Mamoru; Takiwaki, Masaki; Nomura, Fumio

    2017-07-10

    Periodontal disease (periodontitis) is a chronic inflammatory condition initiated by microbial infection that leads to gingival tissue destruction and alveolar bone resorption. The periodontal tissue's response to dental plaque is characterized by the accumulation of polymorphonuclear leukocytes, macrophages, and lymphocytes, all of which release inflammatory mediators and cytokines to orchestrate the immunopathogenesis of periodontal disease. Ubiquitination is achieved by a mechanism that involves a number of factors, including an ubiquitin-activating enzyme, ubiquitin-conjugating enzyme, and ubiquitin-protein ligase. Ubiquitination is a post-translational modification restricted to eukaryotes that are involved in essential host processes. The ubiquitin system has been implicated in the immune response, development, and programmed cell death. Increasing numbers of recent reports have provided evidence that many approaches are delivering promising reports for discovering the relationship between ubiquitination and periodontal disease. The scope of this review was to investigate recent progress in the discovery of ubiquitinated protein in diseased periodontium and to discuss the ubiquitination process in periodontal diseases.

  15. Noncovalent Ubiquitin Interactions Regulate the Catalytic Activity of Ubiquitin Writers.

    PubMed

    Wright, Joshua D; Mace, Peter D; Day, Catherine L

    2016-11-01

    Covalent modification of substrate proteins with ubiquitin is the end result of an intricate network of protein-protein interactions. The inherent ability of the E1, E2, and E3 proteins of the ubiquitylation cascade (the ubiquitin writers) to interact with ubiquitin facilitates this process. Importantly, contact between ubiquitin and the E2/E3 writers is required for catalysis and the assembly of chains of a given linkage. However, ubiquitin is also an activator of ubiquitin-writing enzymes, with many recent studies highlighting the ability of ubiquitin to regulate activity and substrate modification. Here, we review the interactions between ubiquitin-writing enzymes and regulatory ubiquitin molecules that promote activity, and highlight the potential of these interactions to promote processive ubiquitin transfer. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Lysine ubiquitination and acetylation of human cardiac 20S proteasomes.

    PubMed

    Zong, Nobel; Ping, Peipei; Lau, Edward; Choi, Howard Jh; Ng, Dominic Cm; Meyer, David; Fang, Caiyun; Li, Haomin; Wang, Ding; Zelaya, Ivette M; Yates, John R; Lam, Maggie Py

    2014-08-01

    Altered proteasome functions are associated with multiple cardiomyopathies. While the proteasome targets polyubiquitinated proteins for destruction, it itself is modifiable by ubiquitination. We aim to identify the exact ubiquitination sites on cardiac proteasomes and examine whether they are also subject to acetylations. Assembled cardiac 20S proteasome complexes were purified from five human hearts with ischemic cardiomyopathy, then analyzed by high-resolution MS to identify ubiquitination and acetylation sites. We developed a library search strategy that may be used to complement database search in identifying PTM in different samples. We identified 63 ubiquitinated lysines from intact human cardiac 20S proteasomes. In parallel, 65 acetylated residues were also discovered, 39 of which shared with ubiquitination sites. This is the most comprehensive characterization of cardiac proteasome ubiquitination to date. There are significant overlaps between the discovered ubiquitination and acetylation sites, permitting potential crosstalk in regulating proteasome functions. The information presented here will aid future therapeutic strategies aimed at regulating the functions of cardiac proteasomes. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Ubiquitination in Periodontal Disease: A Review

    PubMed Central

    Tsuchida, Sachio; Satoh, Mamoru; Takiwaki, Masaki; Nomura, Fumio

    2017-01-01

    Periodontal disease (periodontitis) is a chronic inflammatory condition initiated by microbial infection that leads to gingival tissue destruction and alveolar bone resorption. The periodontal tissue’s response to dental plaque is characterized by the accumulation of polymorphonuclear leukocytes, macrophages, and lymphocytes, all of which release inflammatory mediators and cytokines to orchestrate the immunopathogenesis of periodontal disease. Ubiquitination is achieved by a mechanism that involves a number of factors, including an ubiquitin-activating enzyme, ubiquitin-conjugating enzyme, and ubiquitin–protein ligase. Ubiquitination is a post-translational modification restricted to eukaryotes that are involved in essential host processes. The ubiquitin system has been implicated in the immune response, development, and programmed cell death. Increasing numbers of recent reports have provided evidence that many approaches are delivering promising reports for discovering the relationship between ubiquitination and periodontal disease. The scope of this review was to investigate recent progress in the discovery of ubiquitinated protein in diseased periodontium and to discuss the ubiquitination process in periodontal diseases. PMID:28698506

  18. Auto-ubiquitination of Mdm2 Enhances Its Substrate Ubiquitin Ligase Activity*

    PubMed Central

    Ranaweera, Ruchira S.; Yang, Xiaolu

    2013-01-01

    The RING domain E3 ubiquitin ligase Mdm2 is the master regulator of the tumor suppressor p53. It targets p53 for proteasomal degradation, restraining the potent activity of p53 and enabling cell survival and proliferation. Like most E3 ligases, Mdm2 can also ubiquitinate itself. How Mdm2 auto-ubiquitination may influence its substrate ubiquitin ligase activity is undefined. Here we show that auto-ubiquitination of Mdm2 is an activating event. Mdm2 that has been conjugated to polyubiquitin chains, but not to single ubiquitins, exhibits substantially enhanced activity to polyubiquitinate p53. Mechanistically, auto-ubiquitination of Mdm2 facilitates the recruitment of the E2 ubiquitin-conjugating enzyme. This occurs through noncovalent interactions between the ubiquitin chains on Mdm2 and the ubiquitin binding domain on E2s. Mutations that diminish the noncovalent interactions render auto-ubiquitination unable to stimulate Mdm2 substrate E3 activity. These results suggest a model in which polyubiquitin chains on an E3 increase the local concentration of E2 enzymes and permit the processivity of substrate ubiquitination. They also support the notion that autocatalysis may be a prevalent mode for turning on the activity of latent enzymes. PMID:23671280

  19. Evolution of the ubiquitin-activating enzyme Uba1 (E1)

    NASA Astrophysics Data System (ADS)

    Allan, Douglas C.; Phillips, J. C.

    2017-10-01

    Ubiquitin tags diseased proteins and initiates an enzyme conjugation cascade, which has three stages. The first-stage enzyme Uba1 (E1) has evolved only modestly from slime mold to humans, and is > 14 times larger than Ub. Here we use critical point thermodynamic scaling theory to connect Uba1 (E1) evolution from yeast and slime mold to fruit flies and humans to subtle changes in its amino acid sequences.

  20. Ubiquitin conjugating enzyme E2-N and sequestosome-1 (p62) are components of the ubiquitination process mediated by the malin-laforin E3-ubiquitin ligase complex.

    PubMed

    Sánchez-Martín, Pablo; Romá-Mateo, Carlos; Viana, Rosa; Sanz, Pascual

    2015-12-01

    Lafora disease (LD, OMIM254780, ORPHA501) is a rare neurodegenerative form of epilepsy related to mutations in two proteins: laforin, a dual specificity phosphatase, and malin, an E3-ubiquitin ligase. Both proteins form a functional complex, where laforin recruits specific substrates to be ubiquitinated by malin. However, little is known about the mechanism driving malin-laforin mediated ubiquitination of its substrates. In this work we present evidence indicating that the malin-laforin complex interacts physically and functionally with the ubiquitin conjugating enzyme E2-N (UBE2N). This binding determines the topology of the chains that the complex is able to promote in the corresponding substrates (mainly K63-linked polyubiquitin chains). In addition, we demonstrate that the malin-laforin complex interacts with the selective autophagy adaptor sequestosome-1 (p62). Binding of p62 to the malin-laforin complex allows its recognition by LC3, a component of the autophagosomal membrane. In addition, p62 enhances the ubiquitinating activity of the malin-laforin E3-ubiquitin ligase complex. These data enrich our knowledge on the mechanism of action of the malin-laforin complex as an E3-ubiquitin ligase and reinforces the role of this complex in targeting substrates toward the autophagy pathway. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. The deubiquitinating enzyme USP36 controls selective autophagy activation by ubiquitinated proteins.

    PubMed

    Taillebourg, Emmanuel; Gregoire, Isabel; Viargues, Perrine; Jacomin, Anne-Claire; Thevenon, Dominique; Faure, Mathias; Fauvarque, Marie-Odile

    2012-05-01

    Initially described as a nonspecific degradation process induced upon starvation, autophagy is now known also to be involved in the degradation of specific ubiquitinated substrates such as mitochondria, bacteria and aggregated proteins, ensuring crucial functions in cell physiology and immunity. We report here that the deubiquitinating enzyme USP36 controls selective autophagy activation in Drosophila and in human cells. We show that dUsp36 loss of function autonomously inhibits cell growth while activating autophagy. Despite the phenotypic similarity, dUSP36 is not part of the TOR signaling pathway. Autophagy induced by dUsp36 loss of function depends on p62/SQSTM1, an adaptor for delivering cargo marked by polyubiquitin to autophagosomes. Consistent with p62 requirement, dUsp36 mutant cells display nuclear aggregates of ubiquitinated proteins, including Histone H2B, and cytoplasmic ubiquitinated proteins; the latter are eliminated by autophagy. Importantly, USP36 function in p62-dependent selective autophagy is conserved in human cells. Our work identifies a novel, crucial role for a deubiquitinating enzyme in selective autophagy.

  2. Terminating protein ubiquitination: Hasta la vista, ubiquitin.

    PubMed

    Stringer, Daniel K; Piper, Robert C

    2011-09-15

    Ubiquitination is a post-translational modification that generally directs proteins for degradation by the proteasome or by lysosomes. However, ubiquitination has been implicated in many other cellular processes, including transcriptional regulation, DNA repair, regulation of protein-protein interactions and association with ubiquitin-binding scaffolds. Ubiquitination is a dynamic process. Ubiquitin is added to proteins by E3 ubiquitin ligases as a covalent modification to one or multiple lysine residues as well as non-lysine amino acids. Ubiquitin itself contains seven lysines, each of which can also be ubiquitinated, leading to polyubiquitin chains that are best characterized for linkages occurring through K48 and K63. Ubiquitination can also be reversed by the action of deubiquitination enzymes (DUbs). Like E3 ligases, DUbs play diverse and critical roles in cells. ( 1) Ubiquitin is expressed as a fusion protein, as a linear repeat or as a fusion to ribosomal subunits, and DUbs are necessary to liberate free ubiquitin, making them the first enzyme of the ubiquitin cascade. Proteins destined for degradation by the proteasome or by lysosomes are deubiquitinated prior to their degradation, which allows ubiquitin to be recycled by the cell, contributing to the steady-state pool of free ubiquitin. Proteins destined for degradation by lysosomes are also acted upon by both ligases and DUbs. Deubiquitination can also act as a means to prevent protein degradation, and many proteins are thought to undergo rounds of ubiquitination and deubiquitination, ultimately resulting in either the degradation or stabilization of those proteins. Despite years of study, examining the effects of the ubiquitination of proteins remains quite challenging. This is because the methods that are currently being employed to study ubiquitination are limiting. Here, we briefly examine current strategies to study the effects of ubiquitination and describe an additional novel approach that we have

  3. Enzyme reversal to explore the function of yeast E3 ubiquitin-ligases.

    PubMed

    MacDonald, Chris; Winistorfer, Stanley; Pope, Robert M; Wright, Michael E; Piper, Robert C

    2017-07-01

    The covalent attachment of ubiquitin onto proteins can elicit a variety of downstream consequences. Attachment is mediated by a large array of E3 ubiquitin ligases, each thought be subject to regulatory control and to have a specific repertoire of substrates. Assessing the biological roles of ligases, and in particular, identifying their biologically relevant substrates has been a persistent yet challenging question. In this study, we describe tools that may help achieve both of these goals. We describe a strategy whereby the activity of a ubiquitin ligase has been enzymatically reversed, accomplished by fusing it to a catalytic domain of an exogenous deubiquitinating enzyme. We present a library of 72 "anti-ligases" that appear to work in a dominant-negative fashion to stabilize their cognate substrates against ubiquitin-dependent proteasomal and lysosomal degradation. We then used the ligase-deubiquitinating enzyme (DUb) library to screen for E3 ligases involved in post-Golgi/endosomal trafficking. We identify ligases previously implicated in these pathways (Rsp5 and Tul1), in addition to ligases previously localized to endosomes (Pib1 and Vps8). We also document an optimized workflow for isolating and analyzing the "ubiquitome" of yeast, which can be used with mass spectrometry to identify substrates perturbed by expression of particular ligase-DUb fusions. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  4. Active Site Gate Dynamics Modulate the Catalytic Activity of the Ubiquitination Enzyme E2-25K.

    PubMed

    Rout, Manoj K; Lee, Brian L; Lin, Aiyang; Xiao, Wei; Spyracopoulos, Leo

    2018-05-03

    The ubiquitin proteasome system (UPS) signals for degradation of proteins through attachment of K48-linked polyubiquitin chains, or alterations in protein-protein recognition through attachment of K63-linked chains. Target proteins are ubiquitinated in three sequential chemical steps by a three-component enzyme system. Ubiquitination, or E2 enzymes, catalyze the central step by facilitating reaction of a target protein lysine with the C-terminus of Ub that is attached to the active site cysteine of the E2 through a thioester bond. E2 reactivity is modulated by dynamics of an active site gate, whose central residue packs against the active site cysteine in a closed conformation. Interestingly, for the E2 Ubc13, which specifically catalyzes K63-linked ubiquitination, the central gate residue adopts an open conformation. We set out to determine if active site gate dynamics play a role in catalysis for E2-25K, which adopts the canonical, closed gate conformation, and which selectively synthesizes K48-linked ubiquitin chains. Gate dynamics were characterized using mutagenesis of key residues, combined with enzyme kinetics measurements, and main chain NMR relaxation. The experimental data were interpreted with all atom MD simulations. The data indicate that active site gate opening and closing rates for E2-25K are precisely balanced.

  5. The ubiquitin conjugating enzyme UbcH10 competes with UbcH3 for binding to the SCF complex, a ubiquitin ligase involved in cell cycle progression

    USDA-ARS?s Scientific Manuscript database

    Ubiquitylation, which regulates most biological pathways, occurs through an enzymatic cascade involving a ubiquitin (ub) activating enzyme (E1), a ub conjugating enzyme (E2) and a ub ligase (E3). UbcH3 is the E2 that interacts with SCF (Skp1/Cul1/F-box protein) complex and ubiquitylates many protein...

  6. Ubiquitin recognition by FAAP20 expands the complex interface beyond the canonical UBZ domain

    PubMed Central

    Wojtaszek, Jessica L.; Wang, Su; Kim, Hyungjin; Wu, Qinglin; D'Andrea, Alan D.; Zhou, Pei

    2014-01-01

    FAAP20 is an integral component of the Fanconi anemia core complex that mediates the repair of DNA interstrand crosslinks. The ubiquitin-binding capacity of the FAAP20 UBZ is required for recruitment of the Fanconi anemia complex to interstrand DNA crosslink sites and for interaction with the translesion synthesis machinery. Although the UBZ–ubiquitin interaction is thought to be exclusively encapsulated within the ββα module of UBZ, we show that the FAAP20ubiquitin interaction extends beyond such a canonical zinc-finger motif. Instead, ubiquitin binding by FAAP20 is accompanied by transforming a disordered tail C-terminal to the UBZ of FAAP20 into a rigid, extended β-loop that latches onto the complex interface of the FAAP20 UBZ and ubiquitin, with the invariant C-terminal tryptophan emanating toward I44Ub for enhanced binding specificity and affinity. Substitution of the C-terminal tryptophan with alanine in FAAP20 not only abolishes FAAP20ubiquitin binding in vitro, but also causes profound cellular hypersensitivity to DNA interstrand crosslink lesions in vivo, highlighting the indispensable role of the C-terminal tail of FAAP20, beyond the compact zinc finger module, toward ubiquitin recognition and Fanconi anemia complex-mediated DNA interstrand crosslink repair. PMID:25414354

  7. E2 superfamily of ubiquitin-conjugating enzymes: constitutively active or activated through phosphorylation in the catalytic cleft.

    PubMed

    Valimberti, Ilaria; Tiberti, Matteo; Lambrughi, Matteo; Sarcevic, Boris; Papaleo, Elena

    2015-10-14

    Protein phosphorylation is a modification that offers a dynamic and reversible mechanism to regulate the majority of cellular processes. Numerous diseases are associated with aberrant regulation of phosphorylation-induced switches. Phosphorylation is emerging as a mechanism to modulate ubiquitination by regulating key enzymes in this pathway. The molecular mechanisms underpinning how phosphorylation regulates ubiquitinating enzymes, however, are elusive. Here, we show the high conservation of a functional site in E2 ubiquitin-conjugating enzymes. In catalytically active E2s, this site contains aspartate or a phosphorylatable serine and we refer to it as the conserved E2 serine/aspartate (CES/D) site. Molecular simulations of substrate-bound and -unbound forms of wild type, mutant and phosphorylated E2s, provide atomistic insight into the role of the CES/D residue for optimal E2 activity. Both the size and charge of the side group at the site play a central role in aligning the substrate lysine toward E2 catalytic cysteine to control ubiquitination efficiency. The CES/D site contributes to the fingerprint of the E2 superfamily. We propose that E2 enzymes can be divided into constitutively active or regulated families. E2s characterized by an aspartate at the CES/D site signify constitutively active E2s, whereas those containing a serine can be regulated by phosphorylation.

  8. Ubiquitin-conjugating enzyme UBE2O regulates cellular clock function by promoting the degradation of the transcription factor BMAL1.

    PubMed

    Chen, Suping; Yang, Jing; Zhang, Yang; Duan, Chunyan; Liu, Qing; Huang, Zhengyun; Xu, Ying; Zhou, Liang; Xu, Guoqiang

    2018-06-05

    Dysregulation of the circadian rhythm is associated with many diseases, including diabetes, obesity, and cancer. Aryl hydrocarbon receptor nuclear translocator-like protein 1 (Arntl or Bmal1) is the only clock gene whose loss disrupts circadian locomotor behavior in constant darkness. BMAL1 levels are affected by proteasomal inhibition and by several enzymes in the ubiquitin-proteasome system, but the exact molecular mechanism remains unclear. Here, using immunoprecipitation and MS analyses, we discovered an interaction between BMAL1 and ubiquitin-conjugating enzyme E2 O (UBE2O), an E3-independent, E2-ubiquitin-conjugating enzyme (i.e. hybrid E2/E3 enzyme). Biochemical experiments with cell lines and animal tissues validated this specific interaction and uncovered that UBE2O expression reduces BMAL1 levels by promoting its ubiquitination and degradation. Moreover, UBE2O expression and UBE2O knockdown diminished and increased, respectively, BMAL1-mediated transcriptional activity, but did not affect BMAL1 gene expression. Bioluminescence experiments disclosed that UBE2O knockdown elevates the amplitude of the circadian clock in human osteosarcoma U2OS cells. Furthermore, mapping of the BMAL1-interacting domain in UBE2O and analyses of BMAL1 stability and ubiquitination revealed that the conserved region 2 (CR2) in UBE2O significantly enhances BMAL1 ubiquitination and decreases BMAL1 protein levels. A Cys-to-Ser substitution in the CR2 domain identified the critical Cys residue responsible for BMAL1 ubiquitination mediated by the CR2 domain in UBE2O. This work identifies UBE2O as a critical regulator in the ubiquitin-proteasome system, which modulates BMAL1 transcriptional activity and circadian function by promoting BMAL1 ubiquitination and degradation under normal physiological conditions. Published under license by The American Society for Biochemistry and Molecular Biology, Inc.

  9. Ubiquitination of Cdc20 by the APC occurs through an intramolecular mechanism

    PubMed Central

    Foe, Ian T.; Foster, Scott A.; Cheung, Stephanie K.; DeLuca, Steven Z.; Morgan, David O.; Toczyski, David P.

    2012-01-01

    SUMMARY Background Cells control progression through late mitosis by regulating Cdc20 and Cdh1, the two mitotic activators of the Anaphase Promoting Complex (APC). The control of Cdc20 protein levels during the cell cycle is not well understood. Results Here, we demonstrate that Cdc20 is degraded in budding yeast by multiple APC-dependent mechanisms. We find that the majority of Cdc20 turnover does not involve a second activator molecule, but instead depends on in cis Cdc20 autoubiquitination while it is bound to its activator-binding site on the APC core. Unlike in trans ubiquitination of Cdc20 substrates, the APC ubiquitinates Cdc20 independent of APC activation by Cdc20’s C-box. Cdc20 turnover by this intramolecular mechanism is cell cycle-regulated, contributing to the decline in Cdc20 levels that occurs after anaphase. Interestingly, high substrate levels in vitro significantly reduce Cdc20 autoubiquitination. Conclusion We show here that Cdc20 fluctuates through the cell cycle via a distinct form of APC-mediated ubiquitination. This in cis autoubiquitination may preferentially occur in early anaphase, following depletion of Cdc20 substrates. This suggests that distinct mechanisms are able to target Cdc20 for ubiquitination at different points during the cell cycle. PMID:22079111

  10. Proteolytic regulation of metabolic enzymes by E3 ubiquitin ligase complexes: lessons from yeast.

    PubMed

    Nakatsukasa, Kunio; Okumura, Fumihiko; Kamura, Takumi

    2015-01-01

    Eukaryotic organisms use diverse mechanisms to control metabolic rates in response to changes in the internal and/or external environment. Fine metabolic control is a highly responsive, energy-saving process that is mediated by allosteric inhibition/activation and/or reversible modification of preexisting metabolic enzymes. In contrast, coarse metabolic control is a relatively long-term and expensive process that involves modulating the level of metabolic enzymes. Coarse metabolic control can be achieved through the degradation of metabolic enzymes by the ubiquitin-proteasome system (UPS), in which substrates are specifically ubiquitinated by an E3 ubiquitin ligase and targeted for proteasomal degradation. Here, we review select multi-protein E3 ligase complexes that directly regulate metabolic enzymes in Saccharomyces cerevisiae. The first part of the review focuses on the endoplasmic reticulum (ER) membrane-associated Hrd1 and Doa10 E3 ligase complexes. In addition to their primary roles in the ER-associated degradation pathway that eliminates misfolded proteins, recent quantitative proteomic analyses identified native substrates of Hrd1 and Doa10 in the sterol synthesis pathway. The second part focuses on the SCF (Skp1-Cul1-F-box protein) complex, an abundant prototypical multi-protein E3 ligase complex. While the best-known roles of the SCF complex are in the regulation of the cell cycle and transcription, accumulating evidence indicates that the SCF complex also modulates carbon metabolism pathways. The increasing number of metabolic enzymes whose stability is directly regulated by the UPS underscores the importance of the proteolytic regulation of metabolic processes for the acclimation of cells to environmental changes.

  11. Enzyme-substrate relationships in the ubiquitin system: approaches for identifying substrates of ubiquitin ligases.

    PubMed

    O'Connor, Hazel F; Huibregtse, Jon M

    2017-09-01

    Protein ubiquitylation is an important post-translational modification, regulating aspects of virtually every biochemical pathway in eukaryotic cells. Hundreds of enzymes participate in the conjugation and deconjugation of ubiquitin, as well as the recognition, signaling functions, and degradation of ubiquitylated proteins. Regulation of ubiquitylation is most commonly at the level of recognition of substrates by E3 ubiquitin ligases. Characterization of the network of E3-substrate relationships is a major goal and challenge in the field, as this expected to yield fundamental biological insights and opportunities for drug development. There has been remarkable success in identifying substrates for some E3 ligases, in many instances using the standard protein-protein interaction techniques (e.g., two-hybrid screens and co-immunoprecipitations paired with mass spectrometry). However, some E3s have remained refractory to characterization, while others have simply not yet been studied due to the sheer number and diversity of E3s. This review will discuss the range of tools and techniques that can be used for substrate profiling of E3 ligases.

  12. Involvement of Ubiquitin-Editing Protein A20 in Modulating Inflammation in Rat Cochlea Associated with Silver Nanoparticle-Induced CD68 Upregulation and TLR4 Activation

    NASA Astrophysics Data System (ADS)

    Feng, Hao; Pyykkö, Ilmari; Zou, Jing

    2016-05-01

    Silver nanoparticles (AgNPs) were shown to temporarily impair the biological barriers in the skin of the external ear canal, mucosa of the middle ear, and inner ear, causing partially reversible hearing loss after delivery into the middle ear. The current study aimed to elucidate the molecular mechanism, emphasizing the TLR signaling pathways in association with the potential recruitment of macrophages in the cochlea and the modulation of inflammation by ubiquitin-editing protein A20. Molecules potentially involved in these signaling pathways were thoroughly analysed using immunohistochemistry in the rat cochlea exposed to AgNPs at various concentrations through intratympanic injection. The results showed that 0.4 % AgNPs but not 0.02 % AgNPs upregulated the expressions of CD68, TLR4, MCP1, A20, and RNF11 in the strial basal cells, spiral ligament fibrocytes, and non-sensory supporting cells of Corti's organ. 0.4 % AgNPs had no effect on CD44, TLR2, MCP2, Rac1, myosin light chain, VCAM1, Erk1/2, JNK, p38, IL-1β, TNF-α, TNFR1, TNFR2, IL-10, or TGF-β. This study suggested that AgNPs might confer macrophage-like functions on the strial basal cells and spiral ligament fibrocytes and enhance the immune activities of non-sensory supporting cells of Corti's organ through the upregulation of CD68, which might be involved in TLR4 activation. A20 and RNF11 played roles in maintaining cochlear homeostasis via negative regulation of the expressions of inflammatory cytokines.

  13. Cellular Ubc2/Rad6 E2 ubiquitin-conjugating enzyme facilitates tombusvirus replication in yeast and plants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Imura, Yoshiyuki, E-mail: imura@brs.nihon-u.ac.jp; Molho, Melissa; Chuang, Chingkai

    Mono- and multi-ubiquitination alters the functions and subcellular localization of many cellular and viral proteins. Viruses can co-opt or actively manipulate the ubiquitin network to support viral processes or suppress innate immunity. Using yeast (Saccharomyces cerevisiae) model host, we show that the yeast Rad6p (radiation sensitive 6) E2 ubiquitin-conjugating enzyme and its plant ortholog, AtUbc2, interact with two tombusviral replication proteins and these E2 ubiquitin-conjugating enzymes could be co-purified with the tombusvirus replicase. We demonstrate that TBSV RNA replication and the mono- and bi-ubiquitination level of p33 is decreased in rad6Δ yeast. However, plasmid-based expression of AtUbc2p could complement bothmore » defects in rad6Δ yeast. Knockdown of UBC2 expression in plants also decreases tombusvirus accumulation and reduces symptom severity, suggesting that Ubc2p is critical for virus replication in plants. We provide evidence that Rad6p is involved in promoting the subversion of Vps23p and Vps4p ESCRT proteins for viral replicase complex assembly. - Highlights: • Tombusvirus p33 replication protein interacts with cellular RAD6/Ubc2 E2 enzymes. • Deletion of RAD6 reduces tombusvirus replication in yeast. • Silencing of UBC2 in plants inhibits tombusvirus replication. • Mono- and bi-ubiquitination of p33 replication protein in yeast and in vitro. • Rad6p promotes the recruitment of cellular ESCRT proteins into the tombusvirus replicase.« less

  14. Molecular basis for the unique deubiquitinating activity of the NF-kappaB inhibitor A20.

    PubMed

    Lin, Su-Chang; Chung, Jee Y; Lamothe, Betty; Rajashankar, Kanagalaghatta; Lu, Miao; Lo, Yu-Chih; Lam, Amy Y; Darnay, Bryant G; Wu, Hao

    2008-02-15

    Nuclear factor kappaB (NF-kappaB) activation in tumor necrosis factor, interleukin-1, and Toll-like receptor pathways requires Lys63-linked nondegradative polyubiquitination. A20 is a specific feedback inhibitor of NF-kappaB activation in these pathways that possesses dual ubiquitin-editing functions. While the N-terminal domain of A20 is a deubiquitinating enzyme (DUB) for Lys63-linked polyubiquitinated signaling mediators such as TRAF6 and RIP, its C-terminal domain is a ubiquitin ligase (E3) for Lys48-linked degradative polyubiquitination of the same substrates. To elucidate the molecular basis for the DUB activity of A20, we determined its crystal structure and performed a series of biochemical and cell biological studies. The structure reveals the potential catalytic mechanism of A20, which may be significantly different from papain-like cysteine proteases. Ubiquitin can be docked onto a conserved A20 surface; this interaction exhibits charge complementarity and no steric clash. Surprisingly, A20 does not have specificity for Lys63-linked polyubiquitin chains. Instead, it effectively removes Lys63-linked polyubiquitin chains from TRAF6 without dissembling the chains themselves. Our studies suggest that A20 does not act as a general DUB but has the specificity for particular polyubiquitinated substrates to assure its fidelity in regulating NF-kappaB activation in the tumor necrosis factor, interleukin-1, and Toll-like receptor pathways.

  15. A conserved catalytic residue in the ubiquitin-conjugating enzyme family

    PubMed Central

    Wu, Pei-Ying; Hanlon, Mary; Eddins, Michael; Tsui, Colleen; Rogers, Richard S.; Jensen, Jane P.; Matunis, Michael J.; Weissman, Allan M.; Wolberger, Cynthia P.; Pickart, Cecile M.

    2003-01-01

    Ubiquitin (Ub) regulates diverse functions in eukaryotes through its attachment to other proteins. The defining step in this protein modification pathway is the attack of a substrate lysine residue on Ub bound through its C-terminus to the active site cysteine residue of a Ub-conjugating enzyme (E2) or certain Ub ligases (E3s). So far, these E2 and E3 cysteine residues are the only enzyme groups known to participate in the catalysis of conjugation. Here we show that a strictly conserved E2 asparagine residue is critical for catalysis of E2- and E2/RING E3-dependent isopeptide bond formation, but dispensable for upstream and downstream reactions of Ub thiol ester formation. In constrast, the strictly conserved histidine and proline residues immediately upstream of the asparagine are dispensable for catalysis of isopeptide bond formation. We propose that the conserved asparagine side chain stabilizes the oxyanion intermediate formed during lysine attack. The E2 asparagine is the first non-covalent catalytic group to be proposed in any Ub conjugation factor. PMID:14517261

  16. The HIP2~Ubiquitin Conjugate Forms a Non-Compact Monomeric Thioester during Di-Ubiquitin Synthesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cook, Benjamin W.; Barber, Kathryn R.; Shilton, Brian H.

    2015-03-23

    Polyubiquitination is a post-translational event used to control the degradation of damaged or unwanted proteins by modifying the target protein with a chain of ubiquitin molecules. One potential mechanism for the assembly of polyubiquitin chains involves the dimerization of an E2 conjugating enzyme allowing conjugated ubiquitin molecules to be put into close proximity to assist reactivity. HIP2 (UBE2K) and Ubc1 (yeast homolog of UBE2K) are unique E2 conjugating enzymes that each contain a C-terminal UBA domain attached to their catalytic domains, and they have basal E3-independent polyubiquitination activity. Although the isolated enzymes are monomeric, polyubiquitin formation activity assays show thatmore » both can act as ubiquitin donors or ubiquitin acceptors when in the activated thioester conjugate suggesting dimerization of the E2-ubiquitin conjugates. Stable disulfide complexes, analytical ultracentrifugation and small angle x-ray scattering were used to show that the HIP2-Ub and Ubc1-Ub thioester complexes remain predominantly monomeric in solution. Models of the HIP2-Ub complex derived from SAXS data show the complex is not compact but instead forms an open or backbent conformation similar to UbcH5b~Ub or Ubc13~Ub where the UBA domain and covalently attached ubiquitin reside on opposite ends of the catalytic domain. Activity assays showed that full length HIP2 exhibited a five-fold increase in the formation rate of di-ubiquitin compared to a HIP2 lacking the UBA domain. This difference was not observed for Ubc1 and may be attributed to the closer proximity of the UBA domain in HIP2 to the catalytic core than for Ubc1.« less

  17. Ubiquitin modifications

    PubMed Central

    Swatek, Kirby N; Komander, David

    2016-01-01

    Protein ubiquitination is a dynamic multifaceted post-translational modification involved in nearly all aspects of eukaryotic biology. Once attached to a substrate, the 76-amino acid protein ubiquitin is subjected to further modifications, creating a multitude of distinct signals with distinct cellular outcomes, referred to as the 'ubiquitin code'. Ubiquitin can be ubiquitinated on seven lysine (Lys) residues or on the N-terminus, leading to polyubiquitin chains that can encompass complex topologies. Alternatively or in addition, ubiquitin Lys residues can be modified by ubiquitin-like molecules (such as SUMO or NEDD8). Finally, ubiquitin can also be acetylated on Lys, or phosphorylated on Ser, Thr or Tyr residues, and each modification has the potential to dramatically alter the signaling outcome. While the number of distinctly modified ubiquitin species in cells is mind-boggling, much progress has been made to characterize the roles of distinct ubiquitin modifications, and many enzymes and receptors have been identified that create, recognize or remove these ubiquitin modifications. We here provide an overview of the various ubiquitin modifications present in cells, and highlight recent progress on ubiquitin chain biology. We then discuss the recent findings in the field of ubiquitin acetylation and phosphorylation, with a focus on Ser65-phosphorylation and its role in mitophagy and Parkin activation. PMID:27012465

  18. Histone ubiquitination: a tagging tail unfolds?

    PubMed

    Jason, Laure J M; Moore, Susan C; Lewis, John D; Lindsey, George; Ausió, Juan

    2002-02-01

    Despite the fact that histone H2A ubiquitination affects about 10-15% of this histone in most eukaryotic cells, histone ubiquitination is among one of the less-well-characterized post-translational histone modifications. Nevertheless, some important observations have been made in recent years. Whilst several enzymes had been known to ubiquitinate histones in vitro, recent studies in yeast have led to the unequivocal identification of the enzyme responsible for this post-translational modification in this organism. A strong functional co-relation to meiosis and spermiogenesis has also now been well documented, although its participation in other functional aspects of chromatin metabolism, such as transcription or DNA repair, still remains rather speculative and controversial. Because of its nature, histone ubiquitination represents the most bulky structural change to histones and as such it would be expected to exert an important effect on chromatin structure. Past and recent structural studies, however, indicate a surprising lack of effect of (H2A/H2B) ubiquitination on nucleosome architecture and of uH2A on chromatin folding. These results suggest that this modification may serve as a signal for recognition by functionally relevant trans-acting factors and/or operate synergistically in conjunction with other post-translational modifications such as for instance acetylation. Copyright 2002 Wiley Periodicals, Inc.

  19. [Ubiquitin-proteasome system and sperm DNA repair: An update].

    PubMed

    Zhang, Guo-Wei; Cai, Hong-Cai; Shang, Xue-Jun

    2016-09-01

    The ubiquitin-proteasome system (UPS) is a proteasome system widely present in the human body, which is composed of ubiquitin (Ub), ubiquitin activating enzymes (E1), ubiquitin conjugating enzymes (E2), ubiquitin protein ligases (E3), 26S proteasome, and deubiquitinating enzymes (DUBs) and involved in cell cycle regulation, immune response, signal transduction, DNA repair as well as protein degradation. Sperm DNA is vulnerable to interference or damage in the progression of chromosome association and homologous recombination. Recent studies show that UPS participates in DNA repair in spermatogenesis by modulating DNA repair enzymes via ubiquitination, assisting in the identification of DNA damage sites, raising damage repair-related proteins, initiating the DNA repair pathway, maintaining chromosome stability, and ensuring the normal process of spermatogenesis.

  20. Natural products inhibiting the ubiquitin-proteasome proteolytic pathway, a target for drug development.

    PubMed

    Tsukamoto, Sachiko; Yokosawa, Hideyoshi

    2006-01-01

    The ubiquitin-proteasome proteolytic pathway plays a major role in selective protein degradation and regulates various cellular events including cell cycle progression, transcription, DNA repair, signal transduction, and immune response. Ubiquitin, a highly conserved small protein in eukaryotes, attaches to a target protein prior to degradation. The polyubiquitin chain tagged to the target protein is recognized by the 26S proteasome, a high-molecular-mass protease subunit complex, and the protein portion is degraded by the 26S proteasome. The potential of specific proteasome inhibitors, which act as anti-cancer agents, is now under intensive investigation, and bortezomib (PS-341), a proteasome inhibitor, has been recently approved by FDA for multiple myeloma treatment. Since ubiquitination of proteins requires the sequential action of three enzymes, ubiquitin-activating enzyme (E1), ubiquitin-conjugating enzyme (E2), and ubiquitin-protein ligase (E3), and polyubiquitination is a prerequisite for proteasome-mediated protein degradation, inhibitors of E1, E2, and E3 are reasonably thought to be drug candidates for treatment of diseases related to ubiquitination. Recently, various compounds inhibiting the ubiquitin-proteasome pathway have been isolated from natural resources. We also succeeded in isolating inhibitors against the proteasome and E1 enzyme from marine natural resources. In this review, we summarize the structures and biological activities of natural products that inhibit the ubiquitin-proteasome proteolytic pathway.

  1. Ubiquitin Ligases: Structure, Function, and Regulation.

    PubMed

    Zheng, Ning; Shabek, Nitzan

    2017-06-20

    Ubiquitin E3 ligases control every aspect of eukaryotic biology by promoting protein ubiquitination and degradation. At the end of a three-enzyme cascade, ubiquitin ligases mediate the transfer of ubiquitin from an E2 ubiquitin-conjugating enzyme to specific substrate proteins. Early investigations of E3s of the RING (really interesting new gene) and HECT (homologous to the E6AP carboxyl terminus) types shed light on their enzymatic activities, general architectures, and substrate degron-binding modes. Recent studies have provided deeper mechanistic insights into their catalysis, activation, and regulation. In this review, we summarize the current progress in structure-function studies of ubiquitin ligases as well as exciting new discoveries of novel classes of E3s and diverse substrate recognition mechanisms. Our increased understanding of ubiquitin ligase function and regulation has provided the rationale for developing E3-targeting therapeutics for the treatment of human diseases.

  2. Multiple E2 ubiquitin-conjugating enzymes regulate human cytomegalovirus US2-mediated immunoreceptor downregulation.

    PubMed

    van de Weijer, Michael L; Schuren, Anouk B C; van den Boomen, Dick J H; Mulder, Arend; Claas, Frans H J; Lehner, Paul J; Lebbink, Robert Jan; Wiertz, Emmanuel J H J

    2017-09-01

    Misfolded endoplasmic reticulum (ER) proteins are dislocated towards the cytosol and degraded by the ubiquitin-proteasome system in a process called ER-associated protein degradation (ERAD). During infection with human cytomegalovirus (HCMV), the viral US2 protein targets HLA class I molecules (HLA-I) for degradation via ERAD to avoid elimination by the immune system. US2-mediated degradation of HLA-I serves as a paradigm of ERAD and has facilitated the identification of TRC8 (also known as RNF139) as an E3 ubiquitin ligase. No specific E2 enzymes had previously been described for cooperation with TRC8. In this study, we used a lentiviral CRISPR/Cas9 library targeting all known human E2 enzymes to assess their involvement in US2-mediated HLA-I downregulation. We identified multiple E2 enzymes involved in this process, of which UBE2G2 was crucial for the degradation of various immunoreceptors. UBE2J2, on the other hand, counteracted US2-induced ERAD by downregulating TRC8 expression. These findings indicate the complexity of cellular quality control mechanisms, which are elegantly exploited by HCMV to elude the immune system. © 2017. Published by The Company of Biologists Ltd.

  3. A single alteration 20 nt 5′ to an editing target inhibits chloroplast RNA editing in vivo

    PubMed Central

    Reed, Martha L.; Peeters, Nemo M.; Hanson, Maureen R.

    2001-01-01

    Transcripts of typical dicot plant plastid genes undergo C→U RNA editing at approximately 30 locations, but there is no consensus sequence surrounding the C targets of editing. The cis-acting elements required for editing of the C located at tobacco rpoB editing site II were investigated by introducing translatable chimeric minigenes containing sequence –20 to +6 surrounding the C target of editing. When the –20 to +6 sequence specified by the homologous region present in the black pine chloroplast genome was incorporated, virtually no editing of the transcripts occurred in transgenic tobacco plastids. Nucleotides that differ between the black pine and tobacco sequence were tested for their role in C→U editing by designing chimeric genes containing one or more of these divergent nucleotides. Surprisingly, the divergent nucleotide that had the strongest negative effect on editing of the minigene transcript was located –20 nt 5′ to the C target of editing. Expression of transgene transcripts carrying the 27 nt sequence did not affect the editing extent of the endogenous rpoB transcripts, even though the chimeric transcripts were much more abundant than those of the endogenous gene. In plants carrying a 93 nt rpoB editing site sequence, transgene transcripts accumulated to a level three times greater than transgene transcripts in the plants carrying the 27 nt rpoB editing sites and resulted in editing of the endogenous transcripts from 100 to 50%. Both a lower affinity of the 27 nt site for a trans-acting factor and lower abundance of the transcript could explain why expression of minigene transcripts containing the 27 nt sequence did not affect endogenous editing. PMID:11266552

  4. Regulation of E2s: A Role for Additional Ubiquitin Binding Sites?

    PubMed

    Middleton, Adam J; Wright, Joshua D; Day, Catherine L

    2017-11-10

    Attachment of ubiquitin to proteins relies on a sophisticated enzyme cascade that is tightly regulated. The machinery of ubiquitylation responds to a range of signals, which remarkably includes ubiquitin itself. Thus, ubiquitin is not only the central player in the ubiquitylation cascade but also a key regulator. The ubiquitin E3 ligases provide specificity to the cascade and often bind the substrate, while the ubiquitin-conjugating enzymes (E2s) have a pivotal role in determining chain linkage and length. Interaction of ubiquitin with the E2 is important for activity, but the weak nature of these contacts has made them hard to identify and study. By reviewing available crystal structures, we identify putative ubiquitin binding sites on E2s, which may enhance E2 processivity and the assembly of chains of a defined linkage. The implications of these new sites are discussed in the context of known E2-ubiquitin interactions. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Zinc-mediated binding of a low-molecular-weight stabilizer of the host anti-viral factor apolipoprotein B mRNA-editing enzyme, catalytic polypeptide-like 3G.

    PubMed

    Radwan, Mohamed O; Sonoda, Sachiko; Ejima, Tomohiko; Tanaka, Ayumi; Koga, Ryoko; Okamoto, Yoshinari; Fujita, Mikako; Otsuka, Masami

    2016-09-15

    Apolipoprotein B mRNA-editing enzyme, catalytic polypeptide-like 3G (APOBEC3G, A3G), is a human anti-virus restriction protein which works deaminase-dependently and -independently. A3G is known to be ubiquitinated by HIV-1 viral infectivity factor (Vif) protein, leading to proteasomal degradation. A3G contains two zinc ions at the N-terminal domain and the C-terminal domain. Four lysine residues, K(297), K(301), K(303), and K(334), are known to be required for Vif-mediated A3G ubiquitination and degradation. Previously, we reported compound SN-1, a zinc chelator that increases steady-state expression level of A3G in the presence of Vif. In this study, we prepared Biotin-SN-1, a biotinylated derivative of SN-1, to study the SN-1-A3G interaction. A pull-down assay revealed that Biotin-SN-1 bound A3G. A zinc-abstraction experiment indicated that SN-1 binds to the zinc site of A3G. We carried out a SN-1-A3G docking study using molecular operating environment. The calculations revealed that SN-1 binds to the C-terminal domain through Zn(2+), H(216), P(247), C(288), and Y(315). Notably, SN-1-binding covers the H(257), E(259), C(288), and C(291) residues that participate in zinc-mediated deamination, and the ubiquitination regions of A3G. The binding of SN-1 presumably perturbs the secondary structure between C(288) and Y(315), leading to less efficient ubiquitination. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Proteasome subunit Rpn13 is a novel ubiquitin receptor

    PubMed Central

    Husnjak, Koraljka; Elsasser, Suzanne; Zhang, Naixia; Chen, Xiang; Randles, Leah; Shi, Yuan; Hofmann, Kay; Walters, Kylie; Finley, Daniel; Dikic, Ivan

    2010-01-01

    Proteasomal receptors that recognize ubiquitin chains attached to substrates are key mediators of selective protein degradation in eukaryotes. Here we report the identification of a new ubiquitin receptor, Rpn13/ARM1, a known component of the proteasome. Rpn13 binds ubiquitin via a conserved N-terminal region termed the Pru domain (Pleckstrin-like receptor for ubiquitin), which binds K48-linked diubiquitin with an affinity of ∼90 nM. Like proteasomal ubiquitin receptor Rpn10/S5a, Rpn13 also binds ubiquitin-like domains of the UBL/UBA family of ubiquitin receptors. A synthetic phenotype results in yeast when specific mutations of the ubiquitin binding sites of Rpn10 and Rpn13 are combined, indicating functional linkage between these ubiquitin receptors. Since Rpn13 is also the proteasomal receptor for Uch37, a deubiquitinating enzyme, our findings suggest a coupling of chain recognition and disassembly at the proteasome. PMID:18497817

  7. Ubiquitin Chains Modified by the Bacterial Ligase SdeA Are Protected from Deubiquitinase Hydrolysis.

    PubMed

    Puvar, Kedar; Zhou, Yiyang; Qiu, Jiazhang; Luo, Zhao-Qing; Wirth, Mary J; Das, Chittaranjan

    2017-09-12

    The SidE family of Legionella pneumophila effectors is a unique group of ubiquitin-modifying enzymes. Along with catalyzing NAD + -dependent ubiquitination of certain host proteins independent of the canonical E1/E2/E3 pathway, they have also been shown to produce phosphoribosylated free ubiquitin. This modified ubiquitin product is incompatible with conventional E1/E2/E3 ubiquitination processes, with the potential to lock down various cellular functions that are dependent on ubiquitin signaling. Here, we show that in addition to free ubiquitin, Lys63-, Lys48-, Lys11-, and Met1-linked diubiquitin chains are also modified by SdeA in a similar fashion. Both the proximal and distal ubiquitin moieties are targeted in the phosphoribosylation reaction. Furthermore, this renders the ubiquitin chains unable to be processed by a variety of deubiquitinating enzymes. These observations broaden the scope of SdeA's modulatory functions during Legionella infection.

  8. The human ubiquitin-conjugating enzyme Cdc34 controls cellular proliferation through regulation of p27{sup Kip1} protein levels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Butz, Nicole; Ruetz, Stephan; Natt, Francois

    2005-02-15

    Ubiquitin-mediated degradation of the cyclin-dependent kinase inhibitor p27{sup Kip1} was shown to be required for the activation of key cyclin-dependent kinases, thereby triggering the onset of DNA replication and cell cycle progression. Although the SCF{sup Skp2} ubiquitin ligase has been reported to mediate p27{sup Kip1} degradation, the nature of the human ubiquitin-conjugating enzyme involved in this process has not yet been determined at the cellular level. Here, we show that antisense oligonucleotides targeting the human ubiquitin-conjugating enzyme Cdc34 downregulate its expression, inhibit the degradation of p27{sup Kip1}, and prevent cellular proliferation. Elevation of p27{sup Kip1} protein level is found tomore » be the sole requirement for the inhibition of cellular proliferation induced upon downregulation of Cdc34. Indeed, reducing the expression of p27{sup Kip1} with a specific antisense oligonucleotide is sufficient to reverse the anti-proliferative phenotype elicited by the Cdc34 antisense. Furthermore, downregulation of Cdc34 is found to specifically increase the abundance of the SCF{sup Skp2} ubiquitin ligase substrate p27{sup Kip1}, but has no concomitant effect on the level of IkB{alpha} and {beta}-catenin, which are known substrates of a closely related SCF ligase.« less

  9. Molecular dynamics simulations reveal a new role for a conserved active site asparagine in a ubiquitin-conjugating enzyme.

    PubMed

    Wilson, R Hunter; Zamfir, Serban; Sumner, Isaiah

    2017-09-01

    The role of a highly conserved active site asparagine (N79) in the ubiquitin conjugating enzyme, Ubc13, is probed using molecular dynamics simulations. Both wild type and mutant enzymes (N79A and N79D) are studied. Contrary to a popular hypothesis, we show that it is unlikely that N79 stabilizes a reaction intermediate, but instead preferentially hydrogen bonds to a loop near the active site. This keeps the sidechain carboxylate of an aspartate in the loop (D119) near the sidechain amine of the substrate lysine. Our simulations show that this distance increases in the mutants. D119 has been hypothesized to play a variety of roles in the enzyme, including deprotonating the substrate lysine, so changing this distance can have an effect on the enzyme's efficiency. Finally, we show that it is possible for the aspartate to deprotonate the substrate even across long distances if short water wires form that connect the proton donor and acceptor. Short water wires form with greater probability in the wild type than in mutant enzymes. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. How Chemical Synthesis of Ubiquitin Conjugates Helps To Understand Ubiquitin Signal Transduction.

    PubMed

    Hameed, Dharjath S; Sapmaz, Aysegul; Ovaa, Huib

    2017-03-15

    Ubiquitin (Ub) is a small post-translational modifier protein involved in a myriad of biochemical processes including DNA damage repair, proteasomal proteolysis, and cell cycle control. Ubiquitin signaling pathways have not been completely deciphered due to the complex nature of the enzymes involved in ubiquitin conjugation and deconjugation. Hence, probes and assay reagents are important to get a better understanding of this pathway. Recently, improvements have been made in synthesis procedures of Ub derivatives. In this perspective, we explain various research reagents available and how chemical synthesis has made an important contribution to Ub research.

  11. An ethanolic extract of Artemisia dracunculus L. regulates gene expression of ubiquitin-proteasome system enzymes in skeletal muscle: potential role in the treatment of sarcopenic obesity.

    PubMed

    Kirk-Ballard, Heather; Kilroy, Gail; Day, Britton C; Wang, Zhong Q; Ribnicky, David M; Cefalu, William T; Floyd, Z Elizabeth

    2014-01-01

    Obesity is linked to insulin resistance, a primary component of metabolic syndrome and type 2 diabetes. The problem of obesity-related insulin resistance is compounded when age-related skeletal muscle loss, called sarcopenia, occurs with obesity. Skeletal muscle loss results from elevated levels of protein degradation and prevention of obesity-related sarcopenic muscle loss will depend on strategies that target pathways involved in protein degradation. An extract from Artemisia dracunculus, termed PMI 5011, improves insulin signaling and increases skeletal muscle myofiber size in a rodent model of obesity-related insulin resistance. The aim of this study was to examine the effect of PMI 5011 on the ubiquitin-proteasome system, a central regulator of muscle protein degradation. Gastrocnemius and vastus lateralis skeletal muscle was obtained from KK-A(y) obese diabetic mice fed a control or 1% (w/w) PMI 5011-supplemented diet. Regulation of genes encoding enzymes of the ubiquitin-proteasome system was determined using real-time quantitative reverse transcriptase polymerase chain reaction. Although MuRF-1 ubiquitin ligase gene expression is consistently down-regulated in skeletal muscle, atrogin-1, Fbxo40, and Traf6 expression is differentially regulated by PMI 5011. Genes encoding other enzymes of the ubiquitin-proteasome system ranging from ubiquitin to ubiquitin-specific proteases are also regulated by PMI 5011. Additionally, expression of the gene encoding the microtubule-associated protein-1 light chain 3 (LC3), a ubiquitin-like protein pivotal to autophagy-mediated protein degradation, is down-regulated by PMI 5011 in the vastus lateralis. PMI 5011 alters the gene expression of ubiquitin-proteasome system enzymes that are essential regulators of skeletal muscle mass. This suggests that PMI 5011 has therapeutic potential in the treatment of obesity-linked sarcopenia by regulating ubiquitin-proteasome-mediated protein degradation. Copyright © 2014 Elsevier Inc

  12. Conformational Dynamics Modulate Activation of the Ubiquitin Conjugating Enzyme Ube2g2

    PubMed Central

    2017-01-01

    The ubiquitin conjugating enzyme Ube2g2 together with its cognate E3 ligase gp78 catalyzes the synthesis of lysine-48 polyubiquitin chains constituting signals for the proteasomal degradation of misfolded proteins in the endoplasmic reticulum. Here, we employ NMR spectroscopy in combination with single-turnover diubiquitin formation assays to examine the role of the RING domain from gp78 in the catalytic activation of Ube2g2∼Ub conjugates. We find that approximately 60% of the Ube2g2∼Ub conjugates occupy a closed conformation in the absence of gp78-RING, with the population increasing to 82% upon gp78-RING binding. As expected, strong mutations in the hydrophobic patch residues of the ∼Ub moiety result in Ube2g2∼Ub populating only open states with corresponding loss of the ubiquitin conjugation activity. Less disruptive mutations introduced into the hydrophobic patch of the ∼Ub moiety also destabilize the closed conformational state, yet the corresponding effect on the ubiquitin conjugation activity ranges from complete loss to an enhancement of the catalytic activity. These results present a picture in which Ube2g2’s active site is in a state of continual dynamic flux with the organization of the active site into a catalytically viable conformation constituting the rate-limiting step for a single ubiquitin ligation event. Ube2g2’s function as a highly specific K48-polyubiquitin chain elongator leads us to speculate that this may be a strategy by which Ube2g2 reduces the probability of nonproductive catalytic outcomes in the absence of available substrate. PMID:28884161

  13. Differential Contributions of Ubiquitin-Modified APOBEC3G Lysine Residues to HIV-1 Vif-Induced Degradation.

    PubMed

    Turner, Tiffany; Shao, Qiujia; Wang, Weiran; Wang, Yudi; Wang, Chenliang; Kinlock, Ballington; Liu, Bindong

    2016-08-28

    Apolipoprotein B mRNA-editing enzyme-catalytic polypeptide-like 3G (A3G) is a host restriction factor that impedes HIV-1 replication. Viral integrity is salvaged by HIV-1 virion infectivity factor (Vif), which mediates A3G polyubiquitination and subsequent cellular depletion. Previous studies have implied that A3G polyubiquitination is essential for Vif-induced degradation. However, the contribution of polyubiquitination to the rate of A3G degradation remains unclear. Here, we show that A3G polyubiquitination is essential for degradation. Inhibition of ubiquitin-activating enzyme E1 by PYR-41 or blocking the formation of ubiquitin chains by over-expressing the lysine to arginine mutation of ubiquitin K48 (K48R) inhibited A3G degradation. Our A3G mutagenesis study showed that lysine residues 297, 301, 303, and 334 were not sufficient to render lysine-free A3G sensitive to Vif-mediated degradation. Our data also confirm that Vif could induce ubiquitin chain formation on lysine residues interspersed throughout A3G. Notably, A3G degradation relied on the lysine residues involved in polyubiquitination. Although A3G and the A3G C-terminal mutant interacted with Vif and were modified by ubiquitin chains, the latter remained more resistant to Vif-induced degradation. Furthermore, the A3G C-terminal mutant, but not the N-terminal mutant, maintained potent antiviral activity in the presence of Vif. Taken together, our results suggest that the location of A3G ubiquitin modification is a determinant for Vif-mediated degradation, implying that in addition to polyubiquitination, other factors may play a key role in the rate of A3G degradation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. The mechanism of OTUB1-mediated inhibition of ubiquitination

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wiener, Reuven; Zhang, Xiangbin; Wang, Tao

    2013-04-08

    Histones are ubiquitinated in response to DNA double-strand breaks (DSB), promoting recruitment of repair proteins to chromatin. UBC13 (also known as UBE2N) is a ubiquitin-conjugating enzyme (E2) that heterodimerizes with UEV1A (also known as UBE2V1) and synthesizes K63-linked polyubiquitin (K63Ub) chains at DSB sites in concert with the ubiquitin ligase (E3), RNF168 (ref. 3). K63Ub synthesis is regulated in a non-canonical manner by the deubiquitinating enzyme, OTUB1 (OTU domain-containing ubiquitin aldehyde-binding protein 1), which binds preferentially to the UBC13-Ub thiolester. Residues amino-terminal to the OTU domain, which had been implicated in ubiquitin binding, are required for binding to UBC13-Ub andmore » inhibition of K63Ub synthesis. Here we describe structural and biochemical studies elucidating how OTUB1 inhibits UBC13 and other E2 enzymes. We unexpectedly find that OTUB1 binding to UBC13-Ub is allosterically regulated by free ubiquitin, which binds to a second site in OTUB1 and increases its affinity for UBC13-Ub, while at the same time disrupting interactions with UEV1A in a manner that depends on the OTUB1 N terminus. Crystal structures of an OTUB1-UBC13 complex and of OTUB1 bound to ubiquitin aldehyde and a chemical UBC13-Ub conjugate show that binding of free ubiquitin to OTUB1 triggers conformational changes in the OTU domain and formation of a ubiquitin-binding helix in the N terminus, thus promoting binding of the conjugated donor ubiquitin in UBC13-Ub to OTUB1. The donor ubiquitin thus cannot interact with the E2 enzyme, which has been shown to be important for ubiquitin transfer. The N-terminal helix of OTUB1 is positioned to interfere with UEV1A binding to UBC13, as well as with attack on the thiolester by an acceptor ubiquitin, thereby inhibiting K63Ub synthesis. OTUB1 binding also occludes the RING E3 binding site on UBC13, thus providing a further component of inhibition. The general features of the inhibition mechanism explain how

  15. Structural and Functional Analysis of a Novel Interaction Motif within UFM1-activating Enzyme 5 (UBA5) Required for Binding to Ubiquitin-like Proteins and Ufmylation*

    PubMed Central

    Habisov, Sabrina; Huber, Jessica; Ichimura, Yoshinobu; Akutsu, Masato; Rogova, Natalia; Loehr, Frank; McEwan, David G.; Johansen, Terje; Dikic, Ivan; Doetsch, Volker; Komatsu, Masaaki; Rogov, Vladimir V.; Kirkin, Vladimir

    2016-01-01

    The covalent conjugation of ubiquitin-fold modifier 1 (UFM1) to proteins generates a signal that regulates transcription, response to cell stress, and differentiation. Ufmylation is initiated by ubiquitin-like modifier activating enzyme 5 (UBA5), which activates and transfers UFM1 to ubiquitin-fold modifier-conjugating enzyme 1 (UFC1). The details of the interaction between UFM1 and UBA5 required for UFM1 activation and its downstream transfer are however unclear. In this study, we described and characterized a combined linear LC3-interacting region/UFM1-interacting motif (LIR/UFIM) within the C terminus of UBA5. This single motif ensures that UBA5 binds both UFM1 and light chain 3/γ-aminobutyric acid receptor-associated proteins (LC3/GABARAP), two ubiquitin (Ub)-like proteins. We demonstrated that LIR/UFIM is required for the full biological activity of UBA5 and for the effective transfer of UFM1 onto UFC1 and a downstream protein substrate both in vitro and in cells. Taken together, our study provides important structural and functional insights into the interaction between UBA5 and Ub-like modifiers, improving the understanding of the biology of the ufmylation pathway. PMID:26929408

  16. Skeletal muscle and liver contain a soluble ATP + ubiquitin-dependent proteolytic system.

    PubMed Central

    Fagan, J M; Waxman, L; Goldberg, A L

    1987-01-01

    Although protein breakdown in most cells seems to require metabolic energy, it has only been possible to establish a soluble ATP-dependent proteolytic system in extracts of reticulocytes and erythroleukemia cells. We have now succeeded in demonstrating in soluble extracts and more purified preparations from rabbit skeletal muscle a 12-fold stimulation by ATP of breakdown of endogenous proteins and a 6-fold stimulation of 125I-lysozyme degradation. However, it has still not been possible to demonstrate such large effects of ATP in similar preparations from liver. Nevertheless, after fractionation by DEAE-chromatography and gel filtration, we found that extracts from liver as well as muscle contain both the enzymes which conjugate ubiquitin to 125I-lysozyme and an enzyme which specifically degrades the ubiquitin-protein conjugates. When this proteolytic activity was recombined with the conjugating enzymes, ATP + ubiquitin-dependent degradation of many proteins was observed. This proteinase is unusually large, approx. 1500 kDa, requires ATP hydrolysis for activity and resembles the ubiquitin-protein-conjugate degrading activity isolated from reticulocytes. Thus the ATP + ubiquitin-dependent pathway is likely to be present in all mammalian cells, although certain tissues may contain inhibitory factors. Images Fig. 2. PMID:2820375

  17. Mass spectrometry techniques for studying the ubiquitin system.

    PubMed

    Heap, Rachel E; Gant, Megan S; Lamoliatte, Frederic; Peltier, Julien; Trost, Matthias

    2017-10-15

    Post-translational control of proteins through covalent attachment of ubiquitin plays important roles in all eukaryotic cell functions. The ubiquitin system in humans consists of 2 E1, 35 E2 and >600 E3 ubiquitin ligases as well as hundreds of deubiquitylases, which reverse ubiquitin attachment. Moreover, there are hundreds of proteins with ubiquitin-binding domains that bind one of the eight possible polyubiquitin chains. Dysfunction of the ubiquitin system is associated with many diseases such as cancer, autoimmunity and neurodegeneration, demonstrating the importance of ubiquitylation. Therefore, enzymes of the ubiquitin system are considered highly attractive drug targets. In recent years, mass spectrometry (MS)-based techniques have become increasingly important in the deciphering of the ubiquitin system. This short review addresses the state-of-the-art MS techniques for the identification of ubiquitylated proteins and their ubiquitylation sites. We also discuss the identification and quantitation of ubiquitin chain topologies and highlight how the activity of enzymes in the ubiquitin pathway can be measured. Finally, we present current MS tools that can be used for drug discovery in the ubiquitin space. © 2017 The Author(s). Published by Portland Press Limited on behalf of the Biochemical Society.

  18. Human T-Cell Leukemia Virus Type 1 (HTLV-1) Tax Requires CADM1/TSLC1 for Inactivation of the NF-κB Inhibitor A20 and Constitutive NF-κB Signaling

    PubMed Central

    Thomas, Remy; van der Weyden, Louise; Rauch, Dan; Ratner, Lee; Nyborg, Jennifer K.; Ramos, Juan Carlos; Takai, Yoshimi; Shembade, Noula

    2015-01-01

    Persistent activation of NF-κB by the Human T-cell leukemia virus type 1 (HTLV-1) oncoprotein, Tax, is vital for the development and pathogenesis of adult T-cell leukemia (ATL) and HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP). K63-linked polyubiquitinated Tax activates the IKK complex in the plasma membrane-associated lipid raft microdomain. Tax also interacts with TAX1BP1 to inactivate the NF-κB negative regulatory ubiquitin-editing A20 enzyme complex. However, the molecular mechanisms of Tax-mediated IKK activation and A20 protein complex inactivation are poorly understood. Here, we demonstrated that membrane associated CADM1 (Cell adhesion molecule1) recruits Ubc13 to Tax, causing K63-linked polyubiquitination of Tax, and IKK complex activation in the membrane lipid raft. The c-terminal cytoplasmic tail containing PDZ binding motif of CADM1 is critical for Tax to maintain persistent NF-κB activation. Finally, Tax failed to inactivate the NF-κB negative regulator ubiquitin-editing enzyme A20 complex, and activate the IKK complex in the lipid raft in absence of CADM1. Our results thus indicate that CADM1 functions as a critical scaffold molecule for Tax and Ubc13 to form a cellular complex with NEMO, TAX1BP1 and NRP, to activate the IKK complex in the plasma membrane-associated lipid rafts, to inactivate NF-κB negative regulators, and maintain persistent NF-κB activation in HTLV-1 infected cells. PMID:25774694

  19. Degradation Signals Recognized by the Ubc6p-Ubc7p Ubiquitin-Conjugating Enzyme Pair

    PubMed Central

    Gilon, Tamar; Chomsky, Orna; Kulka, Richard G.

    2000-01-01

    Proteolysis by the ubiquitin-proteasome system is highly selective. Specificity is achieved by the cooperation of diverse ubiquitin-conjugating enzymes (Ubcs or E2s) with a variety of ubiquitin ligases (E3s) and other ancillary factors. These recognize degradation signals characteristic of their target proteins. In a previous investigation, we identified signals directing the degradation of β-galactosidase and Ura3p fusion proteins via a subsidiary pathway of the ubiquitin-proteasome system involving Ubc6p and Ubc7p. This pathway has recently been shown to be essential for the degradation of misfolded and regulated proteins in the endoplasmic reticulum (ER) lumen and membrane, which are transported to the cytoplasm via the Sec61p translocon. Mutant backgrounds which prevent retrograde transport of ER proteins (hrd1/der3Δ and sec61-2) did not inhibit the degradation of the β-galactosidase and Ura3p fusions carrying Ubc6p/Ubc7p pathway signals. We therefore conclude that the ubiquitination of these fusion proteins takes place on the cytosolic face of the ER without prior transfer to the ER lumen. The contributions of different sequence elements to a 16-amino-acid-residue Ubc6p-Ubc7p-specific signal were analyzed by mutation. A patch of bulky hydrophobic residues was an essential element. In addition, positively charged residues were found to be essential. Unexpectedly, certain substitutions of bulky hydrophobic or positively charged residues with alanine created novel degradation signals, channeling the degradation of fusion proteins to an unidentified proteasomal pathway not involving Ubc6p and Ubc7p. PMID:10982838

  20. Ubiquitin vinyl methyl ester binding orients the misaligned active site of the ubiquitin hydrolase UCHL1 into productive conformation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boudreaux, David A.; Maiti, Tushar K.; Davies, Christopher W.

    Ubiquitin carboxy-terminal hydrolase L1 (UCHL1) is a Parkinson disease-associated, putative cysteine protease found abundantly and selectively expressed in neurons. The crystal structure of apo UCHL1 showed that the active-site residues are not aligned in a canonical form, with the nucleophilic cysteine being 7.7 {angstrom} from the general base histidine, an arrangement consistent with an inactive form of the enzyme. Here we report the crystal structures of the wild type and two Parkinson disease-associated variants of the enzyme, S18Y and I93M, bound to a ubiquitin-based suicide substrate, ubiquitin vinyl methyl ester. These structures reveal that ubiquitin vinyl methyl ester binds primarilymore » at two sites on the enzyme, with its carboxy terminus at the active site and with its amino-terminal {beta}-hairpin at the distal site - a surface-exposed hydrophobic crevice 17 {angstrom} away from the active site. Binding at the distal site initiates a cascade of side-chain movements in the enzyme that starts at a highly conserved, surface-exposed phenylalanine and is relayed to the active site resulting in the reorientation and proximal placement of the general base within 4 {angstrom} of the catalytic cysteine, an arrangement found in productive cysteine proteases. Mutation of the distal-site, surface-exposed phenylalanine to alanine reduces ubiquitin binding and severely impairs the catalytic activity of the enzyme. These results suggest that the activity of UCHL1 may be regulated by its own substrate.« less

  1. Ubiquitin-specific Protease 11 (USP11) Deubiquitinates Hybrid Small Ubiquitin-like Modifier (SUMO)-Ubiquitin Chains to Counteract RING Finger Protein 4 (RNF4)*

    PubMed Central

    Hendriks, Ivo A.; Schimmel, Joost; Eifler, Karolin; Olsen, Jesper V.; Vertegaal, Alfred C. O.

    2015-01-01

    Ring finger protein 4 (RNF4) is a SUMO-targeted ubiquitin E3 ligase with a pivotal function in the DNA damage response (DDR). SUMO interaction motifs (SIMs) in the N-terminal part of RNF4 tightly bind to SUMO polymers, and RNF4 can ubiquitinate these polymers in vitro. Using a proteomic approach, we identified the deubiquitinating enzyme ubiquitin-specific protease 11 (USP11), a known DDR-component, as a functional interactor of RNF4. USP11 can deubiquitinate hybrid SUMO-ubiquitin chains to counteract RNF4. SUMO-enriched nuclear bodies are stabilized by USP11, which functions downstream of RNF4 as a counterbalancing factor. In response to DNA damage induced by methyl methanesulfonate, USP11 could counteract RNF4 to inhibit the dissolution of nuclear bodies. Thus, we provide novel insight into cross-talk between ubiquitin and SUMO and uncover USP11 and RNF4 as a balanced SUMO-targeted ubiquitin ligase/protease pair with a role in the DDR. PMID:25969536

  2. Recognition and Cleavage of Related to Ubiquitin 1 (Rub1) and Rub1-Ubiquitin Chains by Components of the Ubiquitin-Proteasome System*

    PubMed Central

    Singh, Rajesh K.; Zerath, Sylvia; Kleifeld, Oded; Scheffner, Martin; Glickman, Michael H.; Fushman, David

    2012-01-01

    Of all ubiquitin-like proteins, Rub1 (Nedd8 in mammals) is the closest kin of ubiquitin. We show via NMR that structurally, Rub1 and ubiquitin are fundamentally similar as well. Despite these profound similarities, the prevalence of Rub1/Nedd8 and of ubiquitin as modifiers of the proteome is starkly different, and their attachments to specific substrates perform different functions. Recently, some proteins, including p53, p73, EGFR, caspase-7, and Parkin, have been shown to be modified by both Rub1/Nedd8 and ubiquitin within cells. To understand whether and how it might be possible to distinguish among the same target protein modified by Rub1 or ubiquitin or both, we examined whether ubiquitin receptors can differentiate between Rub1 and ubiquitin. Surprisingly, Rub1 interacts with proteasome ubiquitin-shuttle proteins comparably to ubiquitin but binds more weakly to a proteasomal ubiquitin receptor Rpn10. We identified Rub1-ubiquitin heteromers in yeast and Nedd8-Ub heteromers in human cells. We validate that in human cells and in vitro, human Rub1 (Nedd8) forms chains with ubiquitin where it acts as a chain terminator. Interestingly, enzymatically assembled K48-linked Rub1-ubiquitin heterodimers are recognized by various proteasomal ubiquitin shuttles and receptors comparably to K48-linked ubiquitin homodimers. Furthermore, these heterologous chains are cleaved by COP9 signalosome or 26S proteasome. A derubylation function of the proteasome expands the repertoire of its enzymatic activities. In contrast, Rub1 conjugates may be somewhat resilient to the actions of other canonical deubiquitinating enzymes. Taken together, these findings suggest that once Rub1/Nedd8 is channeled into ubiquitin pathways, it is recognized essentially like ubiquitin. PMID:23105008

  3. The ubiquitin-proteasome system is required for African swine fever replication.

    PubMed

    Barrado-Gil, Lucía; Galindo, Inmaculada; Martínez-Alonso, Diego; Viedma, Sergio; Alonso, Covadonga

    2017-01-01

    Several viruses manipulate the ubiquitin-proteasome system (UPS) to initiate a productive infection. Determined viral proteins are able to change the host's ubiquitin machinery and some viruses even encode their own ubiquitinating or deubiquitinating enzymes. African swine fever virus (ASFV) encodes a gene homologous to the E2 ubiquitin conjugating (UBC) enzyme. The viral ubiquitin-conjugating enzyme (UBCv1) is expressed throughout ASFV infection and accumulates at late times post infection. UBCv is also present in the viral particle suggesting that the ubiquitin-proteasome pathway could play an important role at early ASFV infection. We determined that inhibition of the final stage of the ubiquitin-proteasome pathway blocked a post-internalization step in ASFV replication in Vero cells. Under proteasome inhibition, ASF viral genome replication, late gene expression and viral production were severely reduced. Also, ASFV enhanced proteasome activity at late times and the accumulation of polyubiquitinated proteins surrounding viral factories. Core-associated and/or viral proteins involved in DNA replication may be targets for the ubiquitin-proteasome pathway that could possibly assist virus uncoating at final core breakdown and viral DNA release. At later steps, polyubiquitinated proteins at viral factories could exert regulatory roles in cell signaling.

  4. The de-ubiquitinating enzyme ataxin-3 does not modulate disease progression in a knock-in mouse model of Huntington disease.

    PubMed

    Zeng, Li; Tallaksen-Greene, Sara J; Wang, Bo; Albin, Roger L; Paulson, Henry L

    2013-01-01

    Ataxin-3 is a deubiquitinating enzyme (DUB) that participates in ubiquitin-dependent protein quality control pathways and, based on studies in model systems, may be neuroprotective against toxic polyglutamine proteins such as the Huntington's disease (HD) protein, huntingtin (htt). HD is one of at least nine polyglutamine neurodegenerative diseases in which disease-causing proteins accumulate in ubiquitin-positive inclusions within neurons. In studies crossing mice null for ataxin-3 to an established HD knock-in mouse model (HdhQ200), we tested whether loss of ataxin-3 alters disease progression, perhaps by impairing the clearance of mutant htt or the ubiquitination of inclusions. While loss of ataxin-3 mildly exacerbated age-dependent motor deficits, it did not alter inclusion formation, ubiquitination of inclusions or levels of mutant or normal htt. Ataxin-3, itself a polyglutamine-containing protein with multiple ubiquitin binding domains, was not observed to localize to htt inclusions. Changes in neurotransmitter receptor binding known to occur in HD knock-in mice also were not altered by the loss of ataxin-3, although we unexpectedly observed increased GABAA receptor binding in the striatum of HdhQ200 mice, which has not previously been noted. Finally, we confirmed that CNS levels of hsp70 are decreased in HD mice as has been reported in other HD mouse models, regardless of the presence or absence of ataxin-3. We conclude that while ataxin-3 may participate in protein quality control pathways, it does not critically regulate the handling of mutant htt or contribute to major features of disease pathogenesis in HD.

  5. Sequential Poly-ubiquitylation by Specialized Conjugating Enzymes Expands the Versatility of a Quality Control Ubiquitin Ligase.

    PubMed

    Weber, Annika; Cohen, Itamar; Popp, Oliver; Dittmar, Gunnar; Reiss, Yuval; Sommer, Thomas; Ravid, Tommer; Jarosch, Ernst

    2016-09-01

    The Doa10 quality control ubiquitin (Ub) ligase labels proteins with uniform lysine 48-linked poly-Ub (K48-pUB) chains for proteasomal degradation. Processing of Doa10 substrates requires the activity of two Ub conjugating enzymes. Here we show that the non-canonical conjugating enzyme Ubc6 attaches single Ub molecules not only to lysines but also to hydroxylated amino acids. These Ub moieties serve as primers for subsequent poly-ubiquitylation by Ubc7. We propose that the evolutionary conserved propensity of Ubc6 to mount Ub on diverse amino acids augments the number of ubiquitylation sites within a substrate and thereby increases the target range of Doa10. Our work provides new insights on how the consecutive activity of two specialized conjugating enzymes facilitates the attachment of poly-Ub to very heterogeneous client molecules. Such stepwise ubiquitylation reactions most likely represent a more general cellular phenomenon that extends the versatility yet sustains the specificity of the Ub conjugation system. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Ubiquitin acetylation inhibits polyubiquitin chain elongation

    PubMed Central

    Ohtake, Fumiaki; Saeki, Yasushi; Sakamoto, Kensaku; Ohtake, Kazumasa; Nishikawa, Hiroyuki; Tsuchiya, Hikaru; Ohta, Tomohiko; Tanaka, Keiji; Kanno, Jun

    2015-01-01

    Ubiquitylation is a versatile post-translational modification (PTM). The diversity of ubiquitylation topologies, which encompasses different chain lengths and linkages, underlies its widespread cellular roles. Here, we show that endogenous ubiquitin is acetylated at lysine (K)-6 (AcK6) or K48. Acetylated ubiquitin does not affect substrate monoubiquitylation, but inhibits K11-, K48-, and K63-linked polyubiquitin chain elongation by several E2 enzymes in vitro. In cells, AcK6-mimetic ubiquitin stabilizes the monoubiquitylation of histone H2B—which we identify as an endogenous substrate of acetylated ubiquitin—and of artificial ubiquitin fusion degradation substrates. These results characterize a mechanism whereby ubiquitin, itself a PTM, is subject to another PTM to modulate mono- and polyubiquitylation, thus adding a new regulatory layer to ubiquitin biology. PMID:25527407

  7. Substrate specificity of the ubiquitin and Ubl proteases

    PubMed Central

    Ronau, Judith A; Beckmann, John F; Hochstrasser, Mark

    2016-01-01

    Conjugation and deconjugation of ubiquitin and ubiquitin-like proteins (Ubls) to cellular proteins are highly regulated processes integral to cellular homeostasis. Most often, the C-termini of these small polypeptides are attached to lysine side chains of target proteins by an amide (isopeptide) linkage. Deubiquitinating enzymes (DUBs) and Ubl-specific proteases (ULPs) comprise a diverse group of proteases that recognize and remove ubiquitin and Ubls from their substrates. How DUBs and ULPs distinguish among different modifiers, or different polymeric forms of these modifiers, remains poorly understood. The specificity of ubiquitin/Ubl-deconjugating enzymes for particular substrates depends on multiple factors, ranging from the topography of specific substrate features, as in different polyubiquitin chain types, to structural elements unique to each enzyme. Here we summarize recent structural and biochemical studies that provide insights into mechanisms of substrate specificity among various DUBs and ULPs. We also discuss the unexpected specificities of non-eukaryotic proteases in these families. PMID:27012468

  8. Tau protein degradation is catalyzed by the ATP/ubiquitin-independent 20S proteasome under normal cell conditions

    PubMed Central

    Grune, Tilman; Botzen, Diana; Engels, Martina; Voss, Peter; Kaiser, Barbara; Jung, Tobias; Grimm, Stefanie; Ermak, Gennady; Davies, Kelvin J. A.

    2010-01-01

    Tau is the major protein exhibiting intracellular accumulation in Alzheimer disease. The mechanisms leading to its accumulation are not fully understood. It has been proposed that the proteasome is responsible for degrading tau but, since proteasomal inhibitors block both the ubiquitin-dependent 26S proteasome and the ubiqutin-independent 20S proteasome pathways, it is not clear which of these pathways is involved in tau degradation. Some involvement of the ubiquitin ligase, CHIP in tau degradation has also been postulated during stress. In the current studies, we utilized HT22 cells and tau-transfected E36 cells in order to test the relative importance or possible requirement of the ubiquitin-dependent 26S proteasomal system versus the ubiquitin-independent 20S proteasome, in tau degradation. By means of ATP-depletion, ubiquitinylation-deficient E36ts20 cells, a 19S proteasomal regulator subunit MSS1-siRNA approaches, and in vitro ubiquitinylation studies, we were able to demonstrate that ubiquitinylation is not required for normal tau degradation. PMID:20478262

  9. An Hsp20-FBXO4 Axis Regulates Adipocyte Function through Modulating PPARγ Ubiquitination.

    PubMed

    Peng, Jiangtong; Li, Yutian; Wang, Xiaohong; Deng, Shan; Holland, Jenna; Yates, Emily; Chen, Jing; Gu, Haitao; Essandoh, Kobina; Mu, Xingjiang; Wang, Boyu; McNamara, Robert K; Peng, Tianqing; Jegga, Anil G; Liu, Tiemin; Nakamura, Takahisa; Huang, Kai; Perez-Tilve, Diego; Fan, Guo-Chang

    2018-06-19

    Exposure to cold temperature is well known to upregulate heat shock protein (Hsp) expression and recruit and/or activate brown adipose tissue and beige adipocytes in humans and animals. However, whether and how Hsps regulate adipocyte function for energy homeostatic responses is poorly understood. Here, we demonstrate a critical role of Hsp20 as a negative regulator of adipocyte function. Deletion of Hsp20 enhances non-shivering thermogenesis and suppresses inflammatory responses, leading to improvement of glucose and lipid metabolism under both chow diet and high-fat diet conditions. Mechanistically, Hsp20 controls adipocyte function by interacting with the subunit of the ubiquitin ligase complex, F-box only protein 4 (FBXO4), and regulating the ubiquitin-dependent degradation of peroxisome proliferation activated receptor gamma (PPARγ). Indeed, Hsp20 deficiency mimics and enhances the pharmacological effects of the PPARγ agonist rosiglitazone. Together, our findings suggest a role of Hsp20 in mediating adipocyte function by linking β-adrenergic signaling to PPARγ activity. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  10. The ubiquitin conjugating enzyme UbcH7, controls cell migration

    USDA-ARS?s Scientific Manuscript database

    Post translational modification by ubiquitination can target proteins for degradation, allow the interaction of proteins to form complexes or direct relocalization of proteins to different subcellular compartments. As such, ubiquitin controls a variety of essential cellular processes. Previously we ...

  11. Mucosal and systemic anti-HIV immunity controlled by A20 in mouse dendritic cells.

    PubMed

    Hong, Bangxing; Song, Xiao-Tong; Rollins, Lisa; Berry, Lindsey; Huang, Xue F; Chen, Si-Yi

    2011-02-01

    Both mucosal and systemic immune responses are required for preventing or containing HIV transmission and chronic infection. However, currently described vaccination approaches are largely ineffective in inducing both mucosal and systemic responses. In this study, we found that the ubiquitin-editing enzyme A20--an inducible feedback inhibitor of the TNFR, RIG-I, and TLR signaling pathways that broadly controls the maturation, cytokine production, and immunostimulatory potency of DCs--restricted systemically immunized DCs to induce both robust mucosal and systemic HIV-specific cellular and humoral responses. Mechanistic studies revealed that A20 regulated DC production of retinoic acid and proinflammatory cytokines, inhibiting the expression of gut-homing receptors on T and B cells. Furthermore, A20-silenced, hyperactivated DCs exhibited an enhanced homing capacity to draining and gut-associated lymphoid tissues (GALTs) after systemic administration. Thus, this study provides insights into the role of A20 in innate immunity. This work may allow the development of an efficient HIV vaccination strategy that is capable of inducing both robust systemic and mucosal anti-HIV cellular and humoral responses.

  12. A20 promotes metastasis of aggressive basal-like breast cancers through multi-monoubiquitylation of Snail1.

    PubMed

    Lee, Ji-Hyung; Jung, Su Myung; Yang, Kyung-Min; Bae, Eunjin; Ahn, Sung Gwe; Park, Jin Seok; Seo, Dongyeob; Kim, Minbeom; Ha, Jihoon; Lee, Jaewon; Kim, Jun-Hyeong; Kim, Jun Hwan; Ooshima, Akira; Park, Jinah; Shin, Donghyuk; Lee, Youn Sook; Lee, Sangho; van Loo, Geert; Jeong, Joon; Kim, Seong-Jin; Park, Seok Hee

    2017-10-01

    Although the ubiquitin-editing enzyme A20 is a key player in inflammation and autoimmunity, its role in cancer metastasis remains unknown. Here we show that A20 monoubiquitylates Snail1 at three lysine residues and thereby promotes metastasis of aggressive basal-like breast cancers. A20 is significantly upregulated in human basal-like breast cancers and its expression level is inversely correlated with metastasis-free patient survival. A20 facilitates TGF-β1-induced epithelial-mesenchymal transition (EMT) of breast cancer cells through multi-monoubiquitylation of Snail1. Monoubiquitylated Snail1 has reduced affinity for glycogen synthase kinase 3β (GSK3β), and is thus stabilized in the nucleus through decreased phosphorylation. Knockdown of A20 or overexpression of Snail1 with mutation of the monoubiquitylated lysine residues into arginine abolishes lung metastasis in mouse xenograft and orthotopic breast cancer models, indicating that A20 and monoubiquitylated Snail1 are required for metastasis. Our findings uncover an essential role of the A20-Snail1 axis in TGF-β1-induced EMT and metastasis of basal-like breast cancers.

  13. Increased A20-E3 ubiquitin ligase interactions in bid-deficient glia attenuate TLR3- and TLR4-induced inflammation.

    PubMed

    Kinsella, Sinéad; Fichtner, Michael; Watters, Orla; König, Hans-Georg; Prehn, Jochen H M

    2018-05-02

    Chronic pro-inflammatory signaling propagates damage to neural tissue and affects the rate of disease progression. Increased activation of Toll-like receptors (TLRs), master regulators of the innate immune response, is implicated in the etiology of several neuropathologies including amyotrophic lateral sclerosis, Alzheimer's disease, and Parkinson's disease. Previously, we identified that the Bcl-2 family protein BH3-interacting domain death agonist (Bid) potentiates the TLR4-NF-κB pro-inflammatory response in glia, and specifically characterized an interaction between Bid and TNF receptor associated factor 6 (TRAF6) in microglia in response to TLR4 activation. We assessed the activation of mitogen-activated protein kinase (MAPK) and interferon regulatory factor 3 (IRF3) inflammatory pathways in response to TLR3 and TLR4 agonists in wild-type (wt) and bid-deficient microglia and macrophages, using Western blot and qPCR, focusing on the response of the E3 ubiquitin ligases Pellino 1 (Peli1) and TRAF3 in the absence of microglial and astrocytic Bid. Additionally, by Western blot, we investigated the Bid-dependent turnover of Peli1 and TRAF3 in wt and bid -/- microglia using the proteasome inhibitor Bortezomib. Interactions between the de-ubiquitinating Smad6-A20 and the E3 ubiquitin ligases, TRAF3 and TRAF6, were determined by FLAG pull-down in TRAF6-FLAG or Smad6-FLAG overexpressing wt and bid-deficient mixed glia. We elucidated a positive role of Bid in both TIR-domain-containing adapter-inducing interferon-β (TRIF)- and myeloid differentiation primary response 88 (MyD88)-dependent pathways downstream of TLR4, concurrently implicating TLR3-induced inflammation. We identified that Peli1 mRNA levels were significantly reduced in PolyI:C- and lipopolysaccharide (LPS)-stimulated bid-deficient microglia, suggesting disturbed IRF3 activation. Differential regulation of TRAF3 and Peli1, both essential E3 ubiquitin ligases facilitating TRIF-dependent signaling, was

  14. Specificity and disease in the ubiquitin system

    PubMed Central

    Chaugule, Viduth K.; Walden, Helen

    2016-01-01

    Post-translational modification (PTM) of proteins by ubiquitination is an essential cellular regulatory process. Such regulation drives the cell cycle and cell division, signalling and secretory pathways, DNA replication and repair processes and protein quality control and degradation pathways. A huge range of ubiquitin signals can be generated depending on the specificity and catalytic activity of the enzymes required for attachment of ubiquitin to a given target. As a consequence of its importance to eukaryotic life, dysfunction in the ubiquitin system leads to many disease states, including cancers and neurodegeneration. This review takes a retrospective look at our progress in understanding the molecular mechanisms that govern the specificity of ubiquitin conjugation. PMID:26862208

  15. Crystal Structure of a Ube2S-Ubiquitin Conjugate

    PubMed Central

    Lorenz, Sonja; Bhattacharyya, Moitrayee; Feiler, Christian; Rape, Michael; Kuriyan, John

    2016-01-01

    Protein ubiquitination occurs through the sequential formation and reorganization of specific protein-protein interfaces. Ubiquitin-conjugating (E2) enzymes, such as Ube2S, catalyze the formation of an isopeptide linkage between the C-terminus of a “donor” ubiquitin and a primary amino group of an “acceptor” ubiquitin molecule. This reaction involves an intermediate, in which the C-terminus of the donor ubiquitin is thioester-bound to the active site cysteine of the E2 and a functionally important interface is formed between the two proteins. A docked model of a Ube2S-donor ubiquitin complex was generated previously, based on chemical shift mapping by NMR, and predicted contacts were validated in functional studies. We now present the crystal structure of a covalent Ube2S-ubiquitin complex. The structure contains an interface between Ube2S and ubiquitin in trans that resembles the earlier model in general terms, but differs in detail. The crystallographic interface is more hydrophobic than the earlier model and is stable in molecular dynamics (MD) simulations. Remarkably, the docked Ube2S-donor complex converges readily to the configuration seen in the crystal structure in 3 out of 8 MD trajectories. Since the crystallographic interface is fully consistent with mutational effects, this indicates that the structure provides an energetically favorable representation of the functionally critical Ube2S-donor interface. PMID:26828794

  16. A unique deubiquitinase that deconjugates phosphoribosyl-linked protein ubiquitination

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qiu, Jiazhang; Yu, Kaiwen; Fei, Xiaowen

    Ubiquitination regulates many aspects of host immunity and thus is a common target for infectious agents. Recent studies revealed that members of the SidE effector family of the bacterial pathogen Legionella pneumophila attacked several small GTPases associated with the endoplasmic reticulum by a novel ubiquitination mechanism that does not require the E1 and E2 enzymes of the host ubiquitination machinery. Following ubiquitin activation by ADP- ribosylation via a mono-ADP-ribosylation motif, ADP-ribosylated ubiquitin is cleaved by a phosphodiesterasedomainwithinSdeA,whichisconcomitantwiththelinkof phosphoribosylated ubiquitin to serine residues in the substrate. Here we demonstrate that the activity of SidEs is regulated by SidJ, another effector encodedmore » by a gene situated in the locus coding for three members of the SidE family (SdeC, SdeB and SdeA). SidJ functions to remove ubiquitin from SidEs-modified substrates by cleaving the phosphodiester bond that links phosphoribosylated ubiquitin to protein substrates. Further, the deubiquitinase activity of SidJ is essential for its role in L. pneumophila infection. Finally, the activity of SidJ is required for efficiently reducing the abundance of ubiquitinated Rab33b in infected cells within a few hours after bacterial uptake. Our results establish SidJ as a deubiquitinase that functions to impose temporal regulation of the activity of the SidE effectors. The identification of SidJ may shed light on future study of signaling cascades mediated by this unique ubiquitination that also potentially regulates cellular processes in eukaryotic cells.« less

  17. Ubiquitin control of S phase: a new role for the ubiquitin conjugating enzyme, UbcH7

    USDA-ARS?s Scientific Manuscript database

    Events within and transitions between the phases of the eukaryotic cell cycle are tightly controlled by transcriptional and post-translational processes. Prominent among them is a profound role for the ubiquitin proteasome proteolytic pathway. The timely degradation of proteins balances the increase...

  18. RNA editing enzyme ADAR2 is a mediator of neuropathic pain after peripheral nerve injury.

    PubMed

    Uchida, Hitoshi; Matsumura, Shinji; Okada, Shunpei; Suzuki, Tsutomu; Minami, Toshiaki; Ito, Seiji

    2017-05-01

    Transcriptional and post-translational regulations are important in peripheral nerve injury-induced neuropathic pain, but little is known about the role of post-transcriptional modification. Our objective was to determine the possible effect of adenosine deaminase acting on RNA (ADAR) enzymes, which catalyze post-transcriptional RNA editing, in tactile allodynia, a hallmark of neuropathic pain. Seven days after L5 spinal nerve transection (SNT) in adult mice, we found an increase in ADAR2 expression and a decrease in ADAR3 expression in the injured, but not in the uninjured, dorsal root ganglions (DRGs). These changes were accompanied by elevated levels of editing at the D site of the serotonin (5-hydroxytryptamine) 2C receptor (5-HT 2C R), at the I/V site of coatomer protein complex subunit α (COPA), and at the R/G site of AMPA receptor subunit GluA2 in the injured DRG. Compared to Adar2 +/+ /Gria2 R/R littermate controls, Adar2 -/- /Gria2 R/R mice completely lacked the increased editing of 5-HT 2C R, COPA, and GluA2 transcripts in the injured DRG and showed attenuated tactile allodynia after SNT. Furthermore, the antidepressant fluoxetine inhibited neuropathic allodynia after injury and reduced the COPA I/V site editing in the injured DRG. These findings suggest that ADAR2 is a mediator of injury-induced tactile allodynia and thus a potential therapeutic target for the treatment of neuropathic pain.-Uchida, H., Matsumura, S., Okada, S., Suzuki, T., Minami, T., Ito, S. RNA editing enzyme ADAR2 is a mediator of neuropathic pain after peripheral nerve injury. © FASEB.

  19. Decoding the Ubiquitin-Mediated Pathway of Arthropod Disease Vectors

    PubMed Central

    Choy, Anthony; Severo, Maiara S.; Sun, Ruobai; Girke, Thomas; Gillespie, Joseph J.; Pedra, Joao H. F.

    2013-01-01

    Protein regulation by ubiquitin has been extensively described in model organisms. However, characterization of the ubiquitin machinery in disease vectors remains mostly unknown. This fundamental gap in knowledge presents a concern because new therapeutics are needed to control vector-borne diseases, and targeting the ubiquitin machinery as a means for disease intervention has been already adopted in the clinic. In this study, we employed a bioinformatics approach to uncover the ubiquitin-mediated pathway in the genomes of Anopheles gambiae, Aedes aegypti, Culex quinquefasciatus, Ixodes scapularis, Pediculus humanus and Rhodnius prolixus. We observed that (1) disease vectors encode a lower percentage of ubiquitin-related genes when compared to Drosophila melanogaster, Mus musculus and Homo sapiens but not Saccharomyces cerevisiae; (2) overall, there are more proteins categorized as E3 ubiquitin ligases when compared to E2-conjugating or E1-activating enzymes; (3) the ubiquitin machinery within the three mosquito genomes is highly similar; (4) ubiquitin genes are more than doubled in the Chagas disease vector (R. prolixus) when compared to other arthropod vectors; (5) the deer tick I. scapularis and the body louse (P. humanus) genomes carry low numbers of E1-activating enzymes and HECT-type E3 ubiquitin ligases; (6) R. prolixus have low numbers of RING-type E3 ubiquitin ligases; and (7) C. quinquefasciatus present elevated numbers of predicted F-box E3 ubiquitin ligases, JAB and UCH deubiquitinases. Taken together, these findings provide novel opportunities to study the interaction between a pathogen and an arthropod vector. PMID:24205097

  20. Inhibitors of ubiquitin E3 ligase as potential new antimalarial drug leads

    USDA-ARS?s Scientific Manuscript database

    The ubiquitin/proteasome pathway is the principal system for degradation of proteins in eukaryotes. Ubiquitin is a highly conserved polypeptide that covalently attaches to target proteins through the combined action ofubiquitin-activating enzyme (E1), conjugating enzyme (E2) and a protein ligase (E...

  1. The importance of regulatory ubiquitination in cancer and metastasis

    PubMed Central

    Gallo, L. H.; Ko, J.; Donoghue, D. J.

    2017-01-01

    ABSTRACT Ubiquitination serves as a degradation mechanism of proteins, but is involved in additional cellular processes such as activation of NFκB inflammatory response and DNA damage repair. We highlight the E2 ubiquitin conjugating enzymes, E3 ubiquitin ligases and Deubiquitinases that support the metastasis of a plethora of cancers. E3 ubiquitin ligases also modulate pluripotent cancer stem cells attributed to chemotherapy resistance. We further describe mutations in E3 ubiquitin ligases that support tumor proliferation and adaptation to hypoxia. Thus, this review describes how tumors exploit members of the vast ubiquitin signaling pathways to support aberrant oncogenic signaling for survival and metastasis. PMID:28166483

  2. Measuring the Enzyme Activity of Arabidopsis Deubiquitylating Enzymes.

    PubMed

    Kalinowska, Kamila; Nagel, Marie-Kristin; Isono, Erika

    2016-01-01

    Deubiquitylating enzymes, or DUBs, are important regulators of ubiquitin homeostasis and substrate stability, though the molecular mechanisms of most of the DUBs in plants are not yet understood. As different ubiquitin chain types are implicated in different biological pathways, it is important to analyze the enzyme characteristic for studying a DUB. Quantitative analysis of DUB activity is also important to determine enzyme kinetics and the influence of DUB binding proteins on the enzyme activity. Here, we show methods to analyze DUB activity using immunodetection, Coomassie Brilliant Blue staining, and fluorescence measurement that can be useful for understanding the basic characteristic of DUBs.

  3. The Tomato U-Box Type E3 Ligase PUB13 Acts With Group III Ubiquitin E2 Enzymes to Modulate FLS2-Mediated Immune Signaling

    PubMed Central

    Zhou, Bangjun; Zeng, Lirong

    2018-01-01

    In Arabidopsis and rice, the ubiquitin ligase PUB13-mediated protein degradation plays a significant role in plant pattern-triggered immunity (PTI) and flowering time control. The Arabidopsis PUB13 has been shown to attenuate the pattern recognition receptor FLS2-mediated immune signaling by ubiquitinating FLS2 and consequently promoting its degradation by the 26S proteasome. Nevertheless, the cognate ubiquitin-conjugating enzymes (E2) with which PUB13 acts to modulate FLS2-mediated PTI are unknown. To address this question, we investigate here the tomato (Solanum lycopersicum) homolog of PUB13, SlPUB13 by utilizing the recently characterized complete set of tomato E2s. Of the 13 groups of tomato E2s, only members in group III are found to interact and act with SlPUB13. Knocking-down of the group III E2 genes enhances callose deposition and induction of the RbohB gene in the immunity-associated, early oxidative burst after flg22 treatment. The group III E2s are also found to work with SlPUB13 to ubiquitinate FLS2 in vitro and are required for PUB13-mediated degradation of FLS2 in vivo upon flg22 treatment, suggesting an essential role for group III E2s in the modulation of FLS2-mediated immune signaling by PUB13. Additionally, another immunity-associated E3, NtCMPG1 is shown to also work specifically with members of group III E2 in the in vitro ubiquitination assay, which implies the group III E2 enzymes may cooperate with many E3 ligases to regulate different aspects of PTI. Taken together, these data corroborate the notion that group III E2 enzymes play an important role in PTI and build a foundation for further functional and mechanistic characterization of tomato PUB13.

  4. The mechanism of linkage-specific ubiquitin chain elongation by a single-subunit E2

    PubMed Central

    Wickliffe, Katherine E.; Lorenz, Sonja; Wemmer, David E.; Kuriyan, John; Rape, Michael

    2011-01-01

    Ubiquitin chains of different topologies trigger distinct functional consequences, including protein degradation and reorganization of complexes. The assembly of most ubiquitin chains is promoted by E2s, yet how these enzymes achieve linkage specificity is poorly understood. We have discovered that the K11-specific Ube2S orients the donor ubiquitin through an essential non-covalent interaction that occurs in addition to the thioester bond at the E2 active site. The E2-donor ubiquitin complex transiently recognizes the acceptor ubiquitin, primarily through electrostatic interactions. The recognition of the acceptor ubiquitin surface around Lys11, but not around other lysines, generates a catalytically competent active site, which is composed of residues of both Ube2S and ubiquitin. Our studies suggest that monomeric E2s promote linkage-specific ubiquitin chain formation through substrate-assisted catalysis. PMID:21376237

  5. Advances in the Engineering of the Gene Editing Enzymes and the Genomes: Understanding and Handling the Off-Target Effects of CRISPR/Cas9.

    PubMed

    Yin, Yufang; Wang, Qian; Xiao, Li; Wang, Fengjiao; Song, Zhuo; Zhou, Cuilan; Liu, Xuan; Xing, Chungen; He, Nongyue; Li, Kai; Feng, Yan; Zhang, Jia

    2018-03-01

    In the past decades, significant progresses have been achieved in genetic engineering of nucleases. Among the genetically engineered nucleases, zinc finger nucleases, transcription activator-like (TAL) effector nucleases, and CRIPSPR/Cas9 system form a new field of gene editing. The gene editing efficiency or targeting effect and the off-target effect are the two major determinant factors in evaluating the usefulness of a new enzyme. Engineering strategies in improving these gene editing enzymes, particularly in minimizing their off-target effects, are the focus of this paper. Examples of using these genetically engineered enzymes in genome modification are discussed in order to better understand the requirement of engineering efforts in obtaining more powerful and useful gene editing enzymes. In addition, the identification of naturally existed anti-Cas proteins has been employed in minimizing off-target effects. Considering the future application in human gene therapy, optimization of these well recognized gene editing enzymes and exploration of more novel enzymes are both required. Before people find an ideal gene editing system having virtually no off-target effect, technologies used to screen and identify off-target effects are of importance in clinical trials employing gene therapy.

  6. Role of a non-canonical surface of Rad6 in ubiquitin conjugating activity

    PubMed Central

    Kumar, Pankaj; Magala, Pearl; Geiger-Schuller, Kathryn R.; Majumdar, Ananya; Tolman, Joel R.; Wolberger, Cynthia

    2015-01-01

    Rad6 is a yeast E2 ubiquitin conjugating enzyme that monoubiquitinates histone H2B in conjunction with the E3, Bre1, but can non-specifically modify histones on its own. We determined the crystal structure of a Rad6∼Ub thioester mimic, which revealed a network of interactions in the crystal in which the ubiquitin in one conjugate contacts Rad6 in another. The region of Rad6 contacted is located on the distal face of Rad6 opposite the active site, but differs from the canonical E2 backside that mediates free ubiquitin binding and polyubiquitination activity in other E2 enzymes. We find that free ubiquitin interacts weakly with both non-canonical and canonical backside residues of Rad6 and that mutations of non-canonical residues have deleterious effects on Rad6 activity comparable to those observed to mutations in the canonical E2 backside. The effect of non-canonical backside mutations is similar in the presence and absence of Bre1, indicating that contacts with non-canonical backside residues govern the intrinsic activity of Rad6. Our findings shed light on the determinants of intrinsic Rad6 activity and reveal new ways in which contacts with an E2 backside can regulate ubiquitin conjugating activity. PMID:26286193

  7. Ubiquitin C-terminal electrophiles are activity-based probes for identification and mechanistic study of ubiquitin conjugating machinery.

    PubMed

    Love, Kerry Routenberg; Pandya, Renuka K; Spooner, Eric; Ploegh, Hidde L

    2009-04-17

    Protein modification by ubiquitin (Ub) and ubiquitin-like modifiers (Ubl) requires the action of activating (E1), conjugating (E2), and ligating (E3) enzymes and is a key step in the specific destruction of proteins. Deubiquitinating enzymes (DUBs) deconjugate substrates modified with Ub/Ubl's and recycle Ub inside the cell. Genome mining based on sequence homology to proteins with known function has assigned many enzymes to this pathway without confirmation of either conjugating or DUB activity. Function-dependent methodologies are still the most useful for rapid identification or assessment of biological activity of expressed proteins from cells. Activity-based protein profiling uses chemical probes that are active-site-directed for the classification of protein activities in complex mixtures. Here we show that the design and use of an expanded set of Ub-based electrophilic probes allowed us to recover and identify members of each enzyme class in the ubiquitin-proteasome system, including E3 ligases and DUBs with previously unverified activity. We show that epitope-tagged Ub-electrophilic probes can be used as activity-based probes for E3 ligase identification by in vitro labeling and activity studies of purified enzymes identified from complex mixtures in cell lysate. Furthermore, the reactivity of our probe with the HECT domain of the E3 Ub ligase ARF-BP1 suggests that multiple cysteines may be in the vicinity of the E2-binding site and are capable of the transfer of Ub to self or to a substrate protein.

  8. An essential role of ubiquitination in Cbl-mediated negative regulation of the Src-family kinase Fyn

    PubMed Central

    Rao, Navin; Ghosh, Amiya K.; Douillard, Patrice; Andoniou, Christopher E.; Zhou, Pengcheng; Band, Hamid

    2009-01-01

    SUMMARY The Cbl family of ubiquitin ligases function as negative regulators of activated receptor tyrosine kinases by facilitating their ubiquitination and subsequent lysosomal targeting. Here, we have investigated the role of Cbl ubiquitin ligase activity in the negative regulation of a non-receptor tyrosine kinase, the Src-family kinase Fyn. Using primary embryonic fibroblasts from Cbl+/+ and Cbl−/− mice, we demonstrate that endogenous Cbl mediates the ubiquitination of Fyn and dictates the rate of Fyn turnover. By analyzing CHO-TS20 cells with a temperature-sensitive ubiquitin activating enzyme, we demonstrate that intact cellular ubiquitin machinery is required for Cbl-induced degradation of Fyn. Analyses of Cbl mutants, with mutations in or near the RING finger domain, in 293T cells revealed that the ubiquitin ligase activity of Cbl is essential for Cbl-induced degradation of Fyn by the proteasome pathway. Finally, use of a SRE-luciferase reporter demonstrated that Cbl-dependent negative regulation of Fyn function requires the region of Cbl that mediates the ubiquitin ligase activity. Given the conservation of structure between various Src-family kinases and the ability of Cbl to interact with multiple members of this family, Cbl-dependent ubiquitination could serve a general role to negatively regulate activated Src-family kinases. PMID:19966925

  9. Modulation of TEL transcription activity by interaction with the ubiquitin-conjugating enzyme UBC9

    PubMed Central

    Chakrabarti, Subhra Ranjan; Sood, Rashmi; Ganguly, Surajit; Bohlander, Stefan; Shen, Zhiyuan; Nucifora, Giuseppina

    1999-01-01

    The E-26 transforming specific (ETS)-related gene TEL, also known as ETV6, is involved in a large number of chromosomal rearrangements associated with leukemia and congenital fibrosarcoma. The encoded protein contains two functional domains: a helix–loop–helix (HLH) domain (also known as pointed domain) located at the N terminus and a DNA-binding domain located at the C terminus. The HLH domain is involved in protein–protein interaction with itself and other members of the ETS family of transcription factors such as FLI1. TEL is a transcription factor, and we and others have shown that it is a repressor of gene expression. To understand further the role of TEL in the cell, we have used an in vivo interaction system to identify proteins that interact with TEL. We show that a protein, UBC9, interacts specifically with TEL in vitro and in vivo. UBC9 is a member of the family of ubiquitin-conjugating enzymes. These enzymes usually are involved in proteosome-mediated degradation; however, our data suggest that interaction of TEL with UBC9 does not lead to TEL degradation. Our studies show that UBC9 binds to TEL exclusively through the HLH domain of TEL. We also show that TEL expressed as fusion to the DNA-binding domain of Gal4 completely represses a Gal4-responsive promoter, but that the coexpression of UBC9 in the same system restores the activity of the promoter. Targeted point mutation of conserved amino acids in UBC9 essential for enzymatic ubiquitination of proteins does not affect interaction nor transcriptional activity. Based on our data, we conclude that UBC9 physically interacts with TEL through the HLH domain and that the interaction leads to modulation of the transcription activity of TEL. PMID:10377438

  10. Ubiquitination dynamics in the early-branching eukaryote Giardia intestinalis

    PubMed Central

    Niño, Carlos A; Chaparro, Jenny; Soffientini, Paolo; Polo, Simona; Wasserman, Moises

    2013-01-01

    Ubiquitination is a highly dynamic and versatile posttranslational modification that regulates protein function, stability, and interactions. To investigate the roles of ubiquitination in a primitive eukaryotic lineage, we utilized the early-branching eukaryote Giardia intestinalis. Using a combination of biochemical, immunofluorescence-based, and proteomics approaches, we assessed the ubiquitination status during the process of differentiation in Giardia. We observed that different types of ubiquitin modifications present specific cellular and temporal distribution throughout the Giardia life cycle from trophozoites to cyst maturation. Ubiquitin signal was detected in the wall of mature cysts, and enzymes implicated in cyst wall biogenesis were identified as substrates for ubiquitination. Interestingly, inhibition of proteasome activity did not affect trophozoite replication and differentiation, while it caused a decrease in cyst viability, arguing for proteasome involvement in cyst wall maturation. Using a proteomics approach, we identified around 200 high-confidence ubiquitinated candidates that vary their ubiquitination status during differentiation. Our results indicate that ubiquitination is critical for several cellular processes in this primitive eukaryote. PMID:23613346

  11. Characterization and Structural Studies of the Plasmodium falciparum Ubiquitin and Nedd8 Hydrolase UCHL3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Artavanis-Tsakonas, Katerina; Weihofen, Wilhelm A.; Antos, John M.

    Like their human hosts, Plasmodium falciparum parasites rely on the ubiquitin-proteasome system for survival. We previously identified PfUCHL3, a deubiquitinating enzyme, and here we characterize its activity and changes in active site architecture upon binding to ubiquitin. We find strong evidence that PfUCHL3 is essential to parasite survival. The crystal structures of both PfUCHL3 alone and in complex with the ubiquitin-based suicide substrate UbVME suggest a rather rigid active site crossover loop that likely plays a role in restricting the size of ubiquitin adduct substrates. Molecular dynamics simulations of the structures and a model of the PfUCHL3-PfNedd8 complex allowed themore » identification of shared key interactions of ubiquitin and PfNedd8 with PfUCHL3, explaining the dual specificity of this enzyme. Distinct differences observed in ubiquitin binding between PfUCHL3 and its human counterpart make it likely that the parasitic DUB can be selectively targeted while leaving the human enzyme unaffected.« less

  12. Pichia anomala DBVPG 3003 Secretes a Ubiquitin-Like Protein That Has Antimicrobial Activity▿

    PubMed Central

    De Ingeniis, Jessica; Raffaelli, Nadia; Ciani, Maurizio; Mannazzu, Ilaria

    2009-01-01

    The yeast strain Pichia anomala DBVPG 3003 secretes a killer toxin (Pikt) that has antifungal activity against Brettanomyces/Dekkera sp. yeasts. Pikt interacts with β-1,6-glucan, consistent with binding to the cell wall of sensitive targets. In contrast to that of toxin K1, secreted by Saccharomyces cerevisiae, Pikt killer activity is not mediated by an increase in membrane permeability. Purification of the toxin yielded a homogeneous protein of about 8 kDa, which showed a marked similarity to ubiquitin in terms of molecular mass and N-terminal sequences. Pikt is also specifically recognized by anti-bovine ubiquitin antibodies and, similar to ubiquitin-like peptides, is not absorbed by DEAE-cellulose. However, Pikt differs from ubiquitin in its sensitivity to proteolytic enzymes. Therefore, Pikt appears to be a novel ubiquitin-like peptide that has killer activity. PMID:19114528

  13. Ubiquitin-dependent and independent roles of SUMO in proteostasis.

    PubMed

    Liebelt, Frauke; Vertegaal, Alfred C O

    2016-08-01

    Cellular proteomes are continuously undergoing alterations as a result of new production of proteins, protein folding, and degradation of proteins. The proper equilibrium of these processes is known as proteostasis, implying that proteomes are in homeostasis. Stress conditions can affect proteostasis due to the accumulation of misfolded proteins as a result of overloading the degradation machinery. Proteostasis is affected in neurodegenerative diseases like Alzheimer's disease, Parkinson's disease, and multiple polyglutamine disorders including Huntington's disease. Owing to a lack of proteostasis, neuronal cells build up toxic protein aggregates in these diseases. Here, we review the role of the ubiquitin-like posttranslational modification SUMO in proteostasis. SUMO alone contributes to protein homeostasis by influencing protein signaling or solubility. However, the main contribution of SUMO to proteostasis is the ability to cooperate with, complement, and balance the ubiquitin-proteasome system at multiple levels. We discuss the identification of enzymes involved in the interplay between SUMO and ubiquitin, exploring the complexity of this crosstalk which regulates proteostasis. These enzymes include SUMO-targeted ubiquitin ligases and ubiquitin proteases counteracting these ligases. Additionally, we review the role of SUMO in brain-related diseases, where SUMO is primarily investigated because of its role during formation of aggregates, either independently or in cooperation with ubiquitin. Detailed understanding of the role of SUMO in these diseases could lead to novel treatment options. Copyright © 2016 the American Physiological Society.

  14. Analysis of Structural Features Contributing to Weak Affinities of Ubiquitin/Protein Interactions.

    PubMed

    Cohen, Ariel; Rosenthal, Eran; Shifman, Julia M

    2017-11-10

    Ubiquitin is a small protein that enables one of the most common post-translational modifications, where the whole ubiquitin molecule is attached to various target proteins, forming mono- or polyubiquitin conjugations. As a prototypical multispecific protein, ubiquitin interacts non-covalently with a variety of proteins in the cell, including ubiquitin-modifying enzymes and ubiquitin receptors that recognize signals from ubiquitin-conjugated substrates. To enable recognition of multiple targets and to support fast dissociation from the ubiquitin modifying enzymes, ubiquitin/protein interactions are characterized with low affinities, frequently in the higher μM and lower mM range. To determine how structure encodes low binding affinity of ubiquitin/protein complexes, we analyzed structures of more than a hundred such complexes compiled in the Ubiquitin Structural Relational Database. We calculated various structure-based features of ubiquitin/protein binding interfaces and compared them to the same features of general protein-protein interactions (PPIs) with various functions and generally higher affinities. Our analysis shows that ubiquitin/protein binding interfaces on average do not differ in size and shape complementarity from interfaces of higher-affinity PPIs. However, they contain fewer favorable hydrogen bonds and more unfavorable hydrophobic/charge interactions. We further analyzed how binding interfaces change upon affinity maturation of ubiquitin toward its target proteins. We demonstrate that while different features are improved in different experiments, the majority of the evolved complexes exhibit better shape complementarity and hydrogen bond pattern compared to wild-type complexes. Our analysis helps to understand how low-affinity PPIs have evolved and how they could be converted into high-affinity PPIs. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. A Perturbed Ubiquitin Landscape Distinguishes Between Ubiquitin in Trafficking and in Proteolysis*

    PubMed Central

    Ziv, Inbal; Matiuhin, Yulia; Kirkpatrick, Donald S.; Erpapazoglou, Zoi; Leon, Sebastien; Pantazopoulou, Marina; Kim, Woong; Gygi, Steven P.; Haguenauer-Tsapis, Rosine; Reis, Noa; Glickman, Michael H.; Kleifeld, Oded

    2011-01-01

    Any of seven lysine residues on ubiquitin can serve as the base for chain-extension, resulting in a sizeable spectrum of ubiquitin modifications differing in chain length or linkage type. By optimizing a procedure for rapid lysis, we charted the profile of conjugated cellular ubiquitin directly from whole cell extract. Roughly half of conjugated ubiquitin (even at high molecular weights) was nonextended, consisting of monoubiquitin modifications and chain terminators (endcaps). Of extended ubiquitin, the primary linkages were via Lys48 and Lys63. All other linkages were detected, contributing a relatively small portion that increased at lower molecular weights. In vivo expression of lysineless ubiquitin (K0 Ub) perturbed the ubiquitin landscape leading to elevated levels of conjugated ubiquitin, with a higher mono-to-poly ratio. Affinity purification of these trapped conjugates identified a comprehensive list of close to 900 proteins including novel targets. Many of the proteins enriched by K0 ubiquitination were membrane-associated, or involved in cellular trafficking. Prime among them are components of the ESCRT machinery and adaptors of the Rsp5 E3 ubiquitin ligase. Ubiquitin chains associated with these substrates were enriched for Lys63 linkages over Lys48, indicating that K0 Ub is unevenly distributed throughout the ubiquitinome. Biological assays validated the interference of K0 Ub with protein trafficking and MVB sorting, minimally affecting Lys48-dependent turnover of proteasome substrates. We conclude that despite the shared use of the ubiquitin molecule, the two branches of the ubiquitin machinery—the ubiquitin-proteasome system and the ubiquitin trafficking system—were unevenly perturbed by expression of K0 ubiquitin. PMID:21427232

  16. The ubiquitin-proteasome pathway an emerging anticancer strategy for therapeutics: a patent analysis.

    PubMed

    Jain, Chakresh K; Arora, Shivam; Khanna, Aparna; Gupta, Money; Wadhwa, Gulshan; Sharma, Sanjeev K

    2015-01-01

    The degradation of intracellular proteins is targeted by ubiquitin via non-lysosomal proteolytic pathway in the cell system. These ubiquitin molecules have been found to be conserved from yeast to humans. Ubiquitin proteasome machinery utilises ATP and other mechanisms for degrading proteins of cytosol as well as nucleus. This process of ubiquitination is regulated by activating the E3 enzyme ligase, involved in phosphorylation. In humans, proteins which regulate the cell cycle are controlled by ubiquitin; therefore the ubiquitin-proteasome pathway can be targeted for novel anti-cancer strategies. Dysregulation of the components of the ubiquitin system has been linked to many diseases like cancer and inflammation. The primary triggering mechanism (apoptosis) of these diseases can also be induced when TNF-related apoptosis-inducing ligand (TRAIL) binds to its specific receptor DR4 and DR5. In this review, the emerging prospects and importance of ubiquitin proteasome pathway as an evolving anticancer strategy have been discussed. Current challenges in the field of drug discovery have also been discussed on the basis of recent patents on cancer diagnosis and therapeutics.

  17. Structure of the Ubiquitin Hydrolase UCH-L3 Complexed with a Suicide Substrate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Misaghi, S.; Galardy, P.J.; Meester, W.J.

    Ubiquitin C-terminal hydrolases (UCHs) comprise a family of small ubiquitin-specific proteases of uncertain function. Although no cellular substrates have been identified for UCHs, their highly tissue-specific expression patterns and the association of UCH-L1 mutations with human disease strongly suggest a critical role. The structure of the yeast UCH Yuh1-ubiquitin aldehyde complex identified an active site crossover loop predicted to limit the size of suitable substrates. We report the 1.45 {angstrom} resolution crystal structure of human UCH-L3 in complex with the inhibitor ubiquitin vinylmethylester, an inhibitor that forms a covalent adduct with the active site cysteine of ubiquitin-specific proteases. This structuremore » confirms the predicted mechanism of the inhibitor and allows the direct comparison of a UCH family enzyme in the free and ligand-bound state. We also show the efficient hydrolysis by human UCH-L3 of a 13-residue peptide in isopeptide linkage with ubiquitin, consistent with considerable flexibility in UCH substrate size. We propose a model for the catalytic cycle of UCH family members which accounts for the hydrolysis of larger ubiquitin conjugates.« less

  18. FAAP20: a novel ubiquitin-binding FA nuclear core-complex protein required for functional integrity of the FA-BRCA DNA repair pathway

    PubMed Central

    Ali, Abdullah Mahmood; Pradhan, Arun; Singh, Thiyam Ramsingh; Du, Changhu; Li, Jie; Wahengbam, Kebola; Grassman, Elke; Auerbach, Arleen D.; Pang, Qishen

    2012-01-01

    Fanconi anemia (FA) nuclear core complex is a multiprotein complex required for the functional integrity of the FA-BRCA pathway regulating DNA repair. This pathway is inactivated in FA, a devastating genetic disease, which leads to hematologic defects and cancer in patients. Here we report the isolation and characterization of a novel 20-kDa FANCA-associated protein (FAAP20). We show that FAAP20 is an integral component of the FA nuclear core complex. We identify a region on FANCA that physically interacts with FAAP20, and show that FANCA regulates stability of this protein. FAAP20 contains a conserved ubiquitin-binding zinc-finger domain (UBZ), and binds K-63–linked ubiquitin chains in vitro. The FAAP20-UBZ domain is not required for interaction with FANCA, but is required for DNA-damage–induced chromatin loading of FANCA and the functional integrity of the FA pathway. These findings reveal critical roles for FAAP20 in the FA-BRCA pathway of DNA damage repair and genome maintenance. PMID:22343915

  19. Functions of the RNA Editing Enzyme ADAR1 and Their Relevance to Human Diseases.

    PubMed

    Song, Chunzi; Sakurai, Masayuki; Shiromoto, Yusuke; Nishikura, Kazuko

    2016-12-17

    Adenosine deaminases acting on RNA (ADARs) convert adenosine to inosine in double-stranded RNA (dsRNA). Among the three types of mammalian ADARs, ADAR1 has long been recognized as an essential enzyme for normal development. The interferon-inducible ADAR1p150 is involved in immune responses to both exogenous and endogenous triggers, whereas the functions of the constitutively expressed ADAR1p110 are variable. Recent findings that ADAR1 is involved in the recognition of self versus non-self dsRNA provide potential explanations for its links to hematopoiesis, type I interferonopathies, and viral infections. Editing in both coding and noncoding sequences results in diseases ranging from cancers to neurological abnormalities. Furthermore, editing of noncoding sequences, like microRNAs, can regulate protein expression, while editing of Alu sequences can affect translational efficiency and editing of proximal sequences. Novel identifications of long noncoding RNA and retrotransposons as editing targets further expand the effects of A-to-I editing. Besides editing, ADAR1 also interacts with other dsRNA-binding proteins in editing-independent manners. Elucidating the disease-specific patterns of editing and/or ADAR1 expression may be useful in making diagnoses and prognoses. In this review, we relate the mechanisms of ADAR1's actions to its pathological implications, and suggest possible mechanisms for the unexplained associations between ADAR1 and human diseases.

  20. Functions of the RNA Editing Enzyme ADAR1 and Their Relevance to Human Diseases

    PubMed Central

    Song, Chunzi; Sakurai, Masayuki; Shiromoto, Yusuke; Nishikura, Kazuko

    2016-01-01

    Adenosine deaminases acting on RNA (ADARs) convert adenosine to inosine in double-stranded RNA (dsRNA). Among the three types of mammalian ADARs, ADAR1 has long been recognized as an essential enzyme for normal development. The interferon-inducible ADAR1p150 is involved in immune responses to both exogenous and endogenous triggers, whereas the functions of the constitutively expressed ADAR1p110 are variable. Recent findings that ADAR1 is involved in the recognition of self versus non-self dsRNA provide potential explanations for its links to hematopoiesis, type I interferonopathies, and viral infections. Editing in both coding and noncoding sequences results in diseases ranging from cancers to neurological abnormalities. Furthermore, editing of noncoding sequences, like microRNAs, can regulate protein expression, while editing of Alu sequences can affect translational efficiency and editing of proximal sequences. Novel identifications of long noncoding RNA and retrotransposons as editing targets further expand the effects of A-to-I editing. Besides editing, ADAR1 also interacts with other dsRNA-binding proteins in editing-independent manners. Elucidating the disease-specific patterns of editing and/or ADAR1 expression may be useful in making diagnoses and prognoses. In this review, we relate the mechanisms of ADAR1′s actions to its pathological implications, and suggest possible mechanisms for the unexplained associations between ADAR1 and human diseases. PMID:27999332

  1. Receptor Tyrosine Kinase Ubiquitination and De-Ubiquitination in Signal Transduction and Receptor Trafficking

    PubMed Central

    Critchley, William R.; Pellet-Many, Caroline; Ringham-Terry, Benjamin; Zachary, Ian C.; Ponnambalam, Sreenivasan

    2018-01-01

    Receptor tyrosine kinases (RTKs) are membrane-based sensors that enable rapid communication between cells and their environment. Evidence is now emerging that interdependent regulatory mechanisms, such as membrane trafficking, ubiquitination, proteolysis and gene expression, have substantial effects on RTK signal transduction and cellular responses. Different RTKs exhibit both basal and ligand-stimulated ubiquitination, linked to trafficking through different intracellular compartments including the secretory pathway, plasma membrane, endosomes and lysosomes. The ubiquitin ligase superfamily comprising the E1, E2 and E3 enzymes are increasingly implicated in this post-translational modification by adding mono- and polyubiquitin tags to RTKs. Conversely, removal of these ubiquitin tags by proteases called de-ubiquitinases (DUBs) enables RTK recycling for another round of ligand sensing and signal transduction. The endocytosis of basal and activated RTKs from the plasma membrane is closely linked to controlled proteolysis after trafficking and delivery to late endosomes and lysosomes. Proteolytic RTK fragments can also have the capacity to move to compartments such as the nucleus and regulate gene expression. Such mechanistic diversity now provides new opportunities for modulating RTK-regulated cellular responses in health and disease states. PMID:29543760

  2. An anti-HIV-1 compound that increases steady-state expression of apoplipoprotein B mRNA-editing enzyme-catalytic polypeptide-like 3G.

    PubMed

    Ejima, Tomohiko; Hirota, Mayuko; Mizukami, Tamio; Otsuka, Masami; Fujita, Mikako

    2011-10-01

    Human apoplipoprotein B mRNA-editing enzyme-catalytic polypeptide-like (APOBEC) 3G (A3G) is an antiviral protein that blocks HIV-1 replication. However, the antiviral activity of A3G is overcome by the HIV-1 protein Vif. This inhibitory function of Vif is related to its ability to degrade A3G in the proteasome. This finding prompted us to examine the activities of 4-(dimethylamino)-2,6-bis[(N-(2-[(2-nitrophenyl)dithio]ethyl)amino)methyl]pyridine (SN-2) and SN-3. We found that 5 µM SN-2 increases the expression of A3G to a level much higher than that observed in the absence of Vif, without affecting the level of Vif expression. The proteasome inhibitor MG-132 increased the level of both A3G and Vif expression. These results demonstrate that A3G is ubiquitinated and degraded in the proteasome by a factor other than Vif, and that SN-2 selectively inhibits these processes. Furthermore, 5 µM SN-2 significantly inhibited the MAGI cell infectivity of wild-type HIV-1. These findings may contribute to the development of a novel anti-HIV-1 drug.

  3. Molecular Characterization of Plant Ubiquitin-Conjugating Enzymes Belonging to the UbcP4/E2-C/UBCx/UbcH10 Gene Family1

    PubMed Central

    Criqui, Marie Claire; de Almeida Engler, Janice; Camasses, Alain; Capron, Arnaud; Parmentier, Yves; Inzé, Dirk; Genschik, Pascal

    2002-01-01

    The anaphase promoting complex or cyclosome is the ubiquitin-ligase that targets destruction box-containing proteins for proteolysis during the cell cycle. Anaphase promoting complex or cyclosome and its activator (the fizzy and fizzy-related) proteins work together with ubiquitin-conjugating enzymes (UBCs) (E2s). One class of E2s (called E2-C) seems specifically involved in cyclin B1 degradation. Although it has recently been shown that mammalian E2-C is regulated at the protein level during the cell cycle, not much is known concerning the expression of these genes. Arabidopsis encodes two genes belonging to the E2-C gene family (called UBC19 and UBC20). We found that UBC19 is able to complement fission yeast (Schizosaccharomyces pombe) UbcP4-140 mutant, indicating that the plant protein can functionally replace its yeast ortholog for protein degradation during mitosis. In situ hybridization experiments were performed to study the expression of the E2-C genes in various tissues of plants. Their transcripts were always, but not exclusively, found in tissues active for cell division. Thus, the UBC19/20 E2s may have a key function during cell cycle, but may also be involved in ubiquitylation reactions occurring during differentiation and/or in differentiated cells. Finally, we showed that a translational fusion protein between UBC19 and green fluorescent protein localized both in the cytosol and the nucleus in stable transformed tobacco (Nicotiana tabacum cv Bright Yellow 2) cells. PMID:12427990

  4. Inhibitors of ubiquitin E3 ligase as potential new antimalarial drug leads.

    PubMed

    Jain, Jagrati; Jain, Surendra K; Walker, Larry A; Tekwani, Babu L

    2017-06-02

    Protein ubiquitylation is an important post-translational regulation, which has been shown to be necessary for life cycle progression and survival of Plasmodium falciparum. Ubiquitin is a highly conserved 76 amino acid polypeptide, which attaches covalently to target proteins through combined action of three classes of enzymes namely, the ubiquitin-activating enzyme (E1), ubiquitin-conjugating enzyme (E2) and ubiquitin-protein ligase (E3). Ubiquitin E1 and E2 are highly conserved within eukaryotes. However, the P. falciparum E3 ligase is substantially variable and divergent compared to the homologs from other eukaryotes, which make the E3 ligase a parasite-specific target. A set of selected E3 ubiquitin ligase inhibitors was tested in vitro against a chloroquine-sensitive P. falciparum D6 strain (PfD6) and a chloroquine-resistant P. falciparum W2 strain (PfW2). The inhibitors were also tested against Vero and transformed THP1 cells for cytotoxicity. The lead antimalarial E3 ubiquitin ligase inhibitors were further evaluated for the stage-specific antimalarial action and effects on cellular development of P. falciparum in vitro. Statistics analysis was done by two-way ANOVA followed by Tukey and Sidak multiple comparison test using GraphPad Prism 6. E3 ligase inhibitors namely, JNJ 26854165, HLI 373 and Nutlin 3 showed prominent antimalarial activity against PfD6 and PfW2. These inhibitors were considerably less cytotoxic to mammalian Vero cells. JNJ 26854165, HLI 373 and Nutlin 3 blocked the development of P. falciparum parasite at the trophozoite and schizont stages, resulting in accumulation of distorted trophozoites and immature schizonts. Interruption of trophozoites and schizont maturation by the antimalarial E3 ligase inhibitors suggest the role of ubiquitin/proteasome functions in the intraerythrocytic development of malaria parasite. The ubiquitin/proteasome functions may be critical for schizont maturation. Further investigations on the lead E3 ligase

  5. A Novel Strategy to Isolate Ubiquitin Conjugates Reveals Wide Role for Ubiquitination during Neural Development*

    PubMed Central

    Franco, Maribel; Seyfried, Nicholas T.; Brand, Andrea H.; Peng, Junmin; Mayor, Ugo

    2011-01-01

    Ubiquitination has essential roles in neuronal development and function. Ubiquitin proteomics studies on yeast and HeLa cells have proven very informative, but there still is a gap regarding neuronal tissue-specific ubiquitination. In an organism context, direct evidence for the ubiquitination of neuronal proteins is even scarcer. Here, we report a novel proteomics strategy based on the in vivo biotinylation of ubiquitin to isolate ubiquitin conjugates from the neurons of Drosophila melanogaster embryos. We confidently identified 48 neuronal ubiquitin substrates, none of which was yet known to be ubiquitinated. Earlier proteomics and biochemical studies in non-neuronal cell types had identified orthologs to some of those but not to others. The identification here of novel ubiquitin substrates, those with no known ubiquitinated ortholog, suggests that proteomics studies must be performed on neuronal cells to identify ubiquitination pathways not shared by other cell types. Importantly, several of those newly found neuronal ubiquitin substrates are key players in synaptogenesis. Mass spectrometry results were validated by Western blotting to confirm that those proteins are indeed ubiquitinated in the Drosophila embryonic nervous system and to elucidate whether they are mono- or polyubiquitinated. In addition to the ubiquitin substrates, we also identified the ubiquitin carriers that are active during synaptogenesis. Identifying endogenously ubiquitinated proteins in specific cell types, at specific developmental stages, and within the context of a living organism will allow understanding how the tissue-specific function of those proteins is regulated by the ubiquitin system. PMID:20861518

  6. Fission Yeast Apc15 Stabilizes MCC-Cdc20-APC/C Complexes, Ensuring Efficient Cdc20 Ubiquitination and Checkpoint Arrest.

    PubMed

    May, Karen M; Paldi, Flora; Hardwick, Kevin G

    2017-04-24

    During mitosis, cells must segregate the replicated copies of their genome to their daughter cells with extremely high fidelity. Segregation errors lead to an abnormal chromosome number (aneuploidy), which typically results in disease or cell death [1]. Chromosome segregation and anaphase onset are initiated through the action of the multi-subunit E3 ubiquitin ligase known as the anaphase-promoting complex or cyclosome (APC/C [2]). The APC/C is inhibited by the spindle checkpoint in the presence of kinetochore attachment defects [3, 4]. Here we demonstrate that two non-essential APC/C subunits (Apc14 and Apc15) regulate association of spindle checkpoint proteins, in the form of the mitotic checkpoint complex (MCC), with the APC/C. apc14Δ mutants display increased MCC association with the APC/C and are unable to silence the checkpoint efficiently. Conversely, apc15Δ mutants display reduced association between the MCC and APC/C, are defective in poly-ubiquitination of Cdc20, and are checkpoint defective. In vitro reconstitution studies have shown that human MCC-APC/C can contain two molecules of Cdc20 [5-7]. Using a yeast strain expressing two Cdc20 genes with different epitope tags, we show by co-immunoprecipitation that this is true in vivo. MCC binding to the second molecule of Cdc20 is mediated via the C-terminal KEN box in Mad3. Somewhat surprisingly, complexes containing both molecules of Cdc20 accumulate in apc15Δ cells, and the implications of this observation are discussed. Copyright © 2017 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  7. RNF8- and Ube2S-Dependent Ubiquitin Lysine 11-Linkage Modification in Response to DNA Damage.

    PubMed

    Paul, Atanu; Wang, Bin

    2017-05-18

    Ubiquitin modification of proteins plays pivotal roles in the cellular response to DNA damage. Given the complexity of ubiquitin conjugation due to the formation of poly-conjugates of different linkages, functional roles of linkage-specific ubiquitin modification at DNA damage sites are largely unclear. We identify that Lys11-linkage ubiquitin modification occurs at DNA damage sites in an ATM-dependent manner, and ubiquitin-modifying enzymes, including Ube2S E2-conjugating enzyme and RNF8 E3 ligase, are responsible for the assembly of Lys11-linkage conjugates on damaged chromatin, including histone H2A/H2AX. We show that RNF8- and Ube2S-dependent Lys11-linkage ubiquitin conjugation plays an important role in regulating DNA damage-induced transcriptional silencing, distinct from the role of Lys63-linkage ubiquitin in the recruitment of DNA damage repair proteins 53BP1 and BRCA1. Thus, our study highlights the importance of linkage-specific ubiquitination at DNA damage sites, and it reveals that Lys11-linkage ubiquitin modification plays a crucial role in the DNA damage response. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Ubiquitin-mediated modulation of the cytoplasmic viral RNA sensor RIG-I.

    PubMed

    Oshiumi, Hiroyuki; Matsumoto, Misako; Seya, Tsukasa

    2012-01-01

    RIG-I-like receptors, including RIG-I, MDA5 and LGP2, recognize cytoplasmic viral RNA. The RIG-I protein consists of N-terminal CARDs, central RNA helicase and C-terminal domains. RIG-I activation is regulated by ubiquitination. Three ubiquitin ligases target the RIG-I protein. TRIM25 and Riplet ubiquitin ligases are positive regulators of RIG-I and deliver the K63-linked polyubiquitin moiety to RIG-I CARDs and the C-terminal domain. RNF125, another ubiquitin ligase, is a negative regulator of RIG-I and mediates K48-linked polyubiquitination of RIG-I, leading to the degradation of the RIG-I protein by proteasomes. The K63-linked polyubiquitin chains of RIG-I are removed by a deubiquitin enzyme, CYLD. Thus, CYLD is a negative regulator of RIG-I. Furthermore, TRIM25 itself is regulated by ubiquitination. HOIP and HOIL proteins are ubiquitin ligases and are also known as linear ubiquitin assembly complexes (LUBACs). The TRIM25 protein is ubiquitinated by LUBAC and then degraded by proteasomes. The splice variant of RIG-I encodes a protein that lacks the first CARD of RIG-I, and the variant RIG-I protein is not ubiquitinated by TRIM25. Therefore, ubiquitin is the key regulator of the cytoplasmic viral RNA sensor RIG-I.

  9. Dengue Virus Genome Uncoating Requires Ubiquitination

    PubMed Central

    Byk, Laura A.; Iglesias, Néstor G.; De Maio, Federico A.; Gebhard, Leopoldo G.; Rossi, Mario

    2016-01-01

    ABSTRACT The process of genome release or uncoating after viral entry is one of the least-studied steps in the flavivirus life cycle. Flaviviruses are mainly arthropod-borne viruses, including emerging and reemerging pathogens such as dengue, Zika, and West Nile viruses. Currently, dengue virus is one of the most significant human viral pathogens transmitted by mosquitoes and is responsible for about 390 million infections every year around the world. Here, we examined for the first time molecular aspects of dengue virus genome uncoating. We followed the fate of the capsid protein and RNA genome early during infection and found that capsid is degraded after viral internalization by the host ubiquitin-proteasome system. However, proteasome activity and capsid degradation were not necessary to free the genome for initial viral translation. Unexpectedly, genome uncoating was blocked by inhibiting ubiquitination. Using different assays to bypass entry and evaluate the first rounds of viral translation, a narrow window of time during infection that requires ubiquitination but not proteasome activity was identified. In this regard, ubiquitin E1-activating enzyme inhibition was sufficient to stabilize the incoming viral genome in the cytoplasm of infected cells, causing its retention in either endosomes or nucleocapsids. Our data support a model in which dengue virus genome uncoating requires a nondegradative ubiquitination step, providing new insights into this crucial but understudied viral process. PMID:27353759

  10. DUB3 and USP7 de-ubiquitinating enzymes control replication inhibitor Geminin: molecular characterization and associations with breast cancer.

    PubMed

    Hernández-Pérez, S; Cabrera, E; Salido, E; Lim, M; Reid, L; Lakhani, S R; Khanna, K K; Saunus, J M; Freire, R

    2017-08-17

    Correct control of DNA replication is crucial to maintain genomic stability in dividing cells. Inappropriate re-licensing of replicated origins is associated with chromosomal instability (CIN), a hallmark of cancer progression that at the same time provides potential opportunities for therapeutic intervention. Geminin is a critical inhibitor of the DNA replication licensing factor Cdt1. To properly achieve its functions, Geminin levels are tightly regulated through the cell cycle by ubiquitin-dependent proteasomal degradation, but the de-ubiquitinating enzymes (DUBs) involved had not been identified. Here we report that DUB3 and USP7 control human Geminin. Overexpression of either DUB3 or USP7 increases Geminin levels through reduced ubiquitination. Conversely, depletion of DUB3 or USP7 reduces Geminin levels, and DUB3 knockdown increases re-replication events, analogous to the effect of Geminin depletion. In exploring potential clinical implications, we found that USP7 and Geminin are strongly correlated in a cohort of invasive breast cancers (P<1.01E-08). As expected, Geminin expression is highly prognostic. Interestingly, we found a non-monotonic relationship between USP7 and breast cancer-specific survival, with both very low or high levels of USP7 associated with poor outcome, independent of estrogen receptor status. Altogether, our data identify DUB3 and USP7 as factors that regulate DNA replication by controlling Geminin protein stability, and suggest that USP7 may be involved in Geminin dysregulation during breast cancer progression.

  11. The pineal gland: A model for adrenergic modulation of ubiquitin ligases.

    PubMed

    Vriend, Jerry; Liu, Wenjun; Reiter, Russel J

    2017-01-01

    A recent study of the pineal gland of the rat found that the expression of more than 3000 genes showed significant day/night variations (The Hartley dataset). The investigators of this report made available a supplemental table in which they tabulated the expression of many genes that they did not discuss, including those coding for components of the ubiquitin proteasome system. Herein we identify the genes of the ubiquitin proteasome system whose expression were significantly influenced by environmental lighting in the Hartley dataset, those that were stimulated by DBcAMP in pineal glands in culture, and those that were stimulated by norepinephrine. Using the Ubiquitin and Ubiquitin-like Conjugation Database (UUCA) we identified ubiquitin ligases and conjugases, and deubiquitinases in the Hartley dataset for the purpose of determining whether expression of genes of the ubiquitin proteasome pathway were significantly influenced by day/night variations and if these variations were regulated by autonomic innervation of the pineal gland from the superior cervical ganglia. In the Hartley experiments pineal glands groups of rats sacrificed during the day and groups sacrificed during the night were examined for gene expression. Additional groups of rats had their superior cervical ganglia removed surgically or surgically decentralized and the pineal glands likewise examined for gene expression. The genes with at least a 2-fold day/night significant difference in expression included genes for 5 ubiquitin conjugating enzymes, genes for 58 ubiquitin E3 ligases and genes for 6 deubiquitinases. A 35-fold day/night difference was noted in the expression of the gene Sik1, which codes for a protein containing both an ubiquitin binding domain (UBD) and an ubiquitin-associated (UBA) domain. Most of the significant differences in these genes were prevented by surgical removal, or disconnection, of the superior cervical ganglia, and most were responsive, in vitro, to treatment with

  12. The pineal gland: A model for adrenergic modulation of ubiquitin ligases

    PubMed Central

    Liu, Wenjun; Reiter, Russel J.

    2017-01-01

    Introduction A recent study of the pineal gland of the rat found that the expression of more than 3000 genes showed significant day/night variations (The Hartley dataset). The investigators of this report made available a supplemental table in which they tabulated the expression of many genes that they did not discuss, including those coding for components of the ubiquitin proteasome system. Herein we identify the genes of the ubiquitin proteasome system whose expression were significantly influenced by environmental lighting in the Hartley dataset, those that were stimulated by DBcAMP in pineal glands in culture, and those that were stimulated by norepinephrine. Purpose Using the Ubiquitin and Ubiquitin-like Conjugation Database (UUCA) we identified ubiquitin ligases and conjugases, and deubiquitinases in the Hartley dataset for the purpose of determining whether expression of genes of the ubiquitin proteasome pathway were significantly influenced by day/night variations and if these variations were regulated by autonomic innervation of the pineal gland from the superior cervical ganglia. Methods In the Hartley experiments pineal glands groups of rats sacrificed during the day and groups sacrificed during the night were examined for gene expression. Additional groups of rats had their superior cervical ganglia removed surgically or surgically decentralized and the pineal glands likewise examined for gene expression. Results The genes with at least a 2-fold day/night significant difference in expression included genes for 5 ubiquitin conjugating enzymes, genes for 58 ubiquitin E3 ligases and genes for 6 deubiquitinases. A 35-fold day/night difference was noted in the expression of the gene Sik1, which codes for a protein containing both an ubiquitin binding domain (UBD) and an ubiquitin-associated (UBA) domain. Most of the significant differences in these genes were prevented by surgical removal, or disconnection, of the superior cervical ganglia, and most were

  13. Mechanisms, biology and inhibitors of deubiquitinating enzymes.

    PubMed

    Love, Kerry Routenberg; Catic, André; Schlieker, Christian; Ploegh, Hidde L

    2007-11-01

    The addition of ubiquitin (Ub) and ubiquitin-like (Ubl) modifiers to proteins serves to modulate function and is a key step in protein degradation, epigenetic modification and intracellular localization. Deubiquitinating enzymes and Ubl-specific proteases, the proteins responsible for the removal of Ub and Ubls, act as an additional level of control over the ubiquitin-proteasome system. Their conservation and widespread occurrence in eukaryotes, prokaryotes and viruses shows that these proteases constitute an essential class of enzymes. Here, we discuss how chemical tools, including activity-based probes and suicide inhibitors, have enabled (i) discovery of deubiquitinating enzymes, (ii) their functional profiling, crystallographic characterization and mechanistic classification and (iii) development of molecules for therapeutic purposes.

  14. It's all about talking: two-way communication between proteasomal and lysosomal degradation pathways via ubiquitin.

    PubMed

    Liebl, Martina P; Hoppe, Thorsten

    2016-08-01

    Selective degradation of proteins requires a fine-tuned coordination of the two major proteolytic pathways, the ubiquitin-proteasome system (UPS) and autophagy. Substrate selection and proteolytic activity are defined by a plethora of regulatory cofactors influencing each other. Both proteolytic pathways are initiated by ubiquitylation to mark substrate proteins for degradation, although the size and/or topology of the modification are different. In this context E3 ubiquitin ligases, ensuring the covalent attachment of activated ubiquitin to the substrate, are of special importance. The regulation of E3 ligase activity, competition between different E3 ligases for binding E2 conjugation enzymes and substrates, as well as their interplay with deubiquitylating enzymes (DUBs) represent key events in the cross talk between the UPS and autophagy. The coordination between both degradation routes is further influenced by heat shock factors and ubiquitin-binding proteins (UBPs) such as p97, p62, or optineurin. Mutations in enzymes and ubiquitin-binding proteins or a general decline of both proteolytic systems during aging result in accumulation of damaged and aggregated proteins. Thus further mechanistic understanding of how UPS and autophagy communicate might allow therapeutic intervention especially against age-related diseases. Copyright © 2016 the American Physiological Society.

  15. Degradation of the stress-responsive enzyme formate dehydrogenase by the RING-type E3 ligase Keep on Going and the ubiquitin 26S proteasome system.

    PubMed

    McNeilly, Daryl; Schofield, Andrew; Stone, Sophia L

    2018-02-01

    KEG is involved in mediating the proteasome-dependent degradation of FDH, a stress-responsive enzyme. The UPS may function to suppress FDH mediated stress responses under favorable growth conditions. Formate dehydrogenase (FDH) has been studied in bacteria and yeasts for the purpose of industrial application of NADH co-factor regeneration. In plants, FDH is regarded as a universal stress protein involved in responses to various abiotic and biotic stresses. Here we show that FDH abundance is regulated by the ubiquitin proteasome system (UPS). FDH is ubiquitinated in planta and degraded by the 26S proteasome. Interaction assays identified FDH as a potential substrate for the RING-type ubiquitin ligase Keep on Going (KEG). KEG is capable of attaching ubiquitin to FDH in in vitro assays and the turnover of FDH was increased when co-expressed with a functional KEG in planta, suggesting that KEG contributes to FDH degradation. Consistent with a role in regulating FDH abundance, transgenic plants overexpressing KEG were more sensitive to the inhibitory effects of formate. In addition, FDH is a phosphoprotein and dephosphorylation was found to increase the stability of FDH in degradation assays. Based on results from this and previous studies, we propose a model where KEG mediates the ubiquitination and subsequent degradation of phosphorylated FDH and, in response to unfavourable growth conditions, reduction in FDH phosphorylation levels may prohibit turnover allowing the stabilized FDH to facilitate stress responses.

  16. USP7 small-molecule inhibitors interfere with ubiquitin binding.

    PubMed

    Kategaya, Lorna; Di Lello, Paola; Rougé, Lionel; Pastor, Richard; Clark, Kevin R; Drummond, Jason; Kleinheinz, Tracy; Lin, Eva; Upton, John-Paul; Prakash, Sumit; Heideker, Johanna; McCleland, Mark; Ritorto, Maria Stella; Alessi, Dario R; Trost, Matthias; Bainbridge, Travis W; Kwok, Michael C M; Ma, Taylur P; Stiffler, Zachary; Brasher, Bradley; Tang, Yinyan; Jaishankar, Priyadarshini; Hearn, Brian R; Renslo, Adam R; Arkin, Michelle R; Cohen, Frederick; Yu, Kebing; Peale, Frank; Gnad, Florian; Chang, Matthew T; Klijn, Christiaan; Blackwood, Elizabeth; Martin, Scott E; Forrest, William F; Ernst, James A; Ndubaku, Chudi; Wang, Xiaojing; Beresini, Maureen H; Tsui, Vickie; Schwerdtfeger, Carsten; Blake, Robert A; Murray, Jeremy; Maurer, Till; Wertz, Ingrid E

    2017-10-26

    The ubiquitin system regulates essential cellular processes in eukaryotes. Ubiquitin is ligated to substrate proteins as monomers or chains and the topology of ubiquitin modifications regulates substrate interactions with specific proteins. Thus ubiquitination directs a variety of substrate fates including proteasomal degradation. Deubiquitinase enzymes cleave ubiquitin from substrates and are implicated in disease; for example, ubiquitin-specific protease-7 (USP7) regulates stability of the p53 tumour suppressor and other proteins critical for tumour cell survival. However, developing selective deubiquitinase inhibitors has been challenging and no co-crystal structures have been solved with small-molecule inhibitors. Here, using nuclear magnetic resonance-based screening and structure-based design, we describe the development of selective USP7 inhibitors GNE-6640 and GNE-6776. These compounds induce tumour cell death and enhance cytotoxicity with chemotherapeutic agents and targeted compounds, including PIM kinase inhibitors. Structural studies reveal that GNE-6640 and GNE-6776 non-covalently target USP7 12 Å distant from the catalytic cysteine. The compounds attenuate ubiquitin binding and thus inhibit USP7 deubiquitinase activity. GNE-6640 and GNE-6776 interact with acidic residues that mediate hydrogen-bond interactions with the ubiquitin Lys48 side chain, suggesting that USP7 preferentially interacts with and cleaves ubiquitin moieties that have free Lys48 side chains. We investigated this idea by engineering di-ubiquitin chains containing differential proximal and distal isotopic labels and measuring USP7 binding by nuclear magnetic resonance. This preferential binding protracted the depolymerization kinetics of Lys48-linked ubiquitin chains relative to Lys63-linked chains. In summary, engineering compounds that inhibit USP7 activity by attenuating ubiquitin binding suggests opportunities for developing other deubiquitinase inhibitors and may be a strategy

  17. Proteomic snapshot of the EGF-induced ubiquitin network

    PubMed Central

    Argenzio, Elisabetta; Bange, Tanja; Oldrini, Barbara; Bianchi, Fabrizio; Peesari, Raghunath; Mari, Sara; Di Fiore, Pier Paolo; Mann, Matthias; Polo, Simona

    2011-01-01

    The activity, localization and fate of many cellular proteins are regulated through ubiquitination, a process whereby one or more ubiquitin (Ub) monomers or chains are covalently attached to target proteins. While Ub-conjugated and Ub-associated proteomes have been described, we lack a high-resolution picture of the dynamics of ubiquitination in response to signaling. In this study, we describe the epidermal growth factor (EGF)-regulated Ubiproteome, as obtained by two complementary purification strategies coupled to quantitative proteomics. Our results unveil the complex impact of growth factor signaling on Ub-based intracellular networks to levels that extend well beyond what might have been expected. In addition to endocytic proteins, the EGF-regulated Ubiproteome includes a large number of signaling proteins, ubiquitinating and deubiquitinating enzymes, transporters and proteins involved in translation and transcription. The Ub-based signaling network appears to intersect both housekeeping and regulatory circuitries of cellular physiology. Finally, as proof of principle of the biological relevance of the EGF-Ubiproteome, we demonstrated that EphA2 is a novel, downstream ubiquitinated target of epidermal growth factor receptor (EGFR), critically involved in EGFR biological responses. PMID:21245847

  18. Molecular characterization and expression analysis of ubiquitin-activating enzyme E1 gene in Citrus reticulata.

    PubMed

    Miao, Hong-Xia; Qin, Yong-Hua; Ye, Zi-Xing; Hu, Gui-Bing

    2013-01-25

    Ubiquitin-activating enzyme E1 (UBE1) catalyzes the first step in the ubiquitination reaction, which targets a protein for degradation via a proteasome pathway. UBE1 plays an important role in metabolic processes. In this study, full-length cDNA and DNA sequences of UBE1 gene, designated CrUBE1, were obtained from 'Wuzishatangju' (self-incompatible, SI) and 'Shatangju' (self-compatible, SC) mandarins. 5 amino acids and 8 bases were different in cDNA and DNA sequences of CrUBE1 between 'Wuzishatangju' and 'Shatangju', respectively. Southern blot analysis showed that there existed only one copy of the CrUBE1 gene in genome of 'Wuzishatangju' and 'Shatangju'. The temporal and spatial expression characteristics of the CrUBE1 gene were investigated using semi-quantitative RT-PCR (SqPCR) and quantitative real-time PCR (qPCR). The expression level of the CrUBE1 gene in anthers of 'Shatangju' was approximately 10-fold higher than in anthers of 'Wuzishatangju'. The highest expression level of CrUBE1 was detected in pistils at 7days after self-pollination of 'Wuzishatangju', which was approximately 5-fold higher than at 0 h. To obtain CrUBE1 protein, the full-length cDNA of CrUBE1 genes from 'Wuzishatangju' and 'Shatangju' were successfully expressed in Pichia pastoris. Pollen germination frequency of 'Wuzishatangju' was significantly inhibited with increasing of CrUBE1 protein concentrations from 'Wuzishatangju'. Copyright © 2012 Elsevier B.V. All rights reserved.

  19. High-Throughput Screening of HECT E3 Ubiquitin Ligases Using UbFluor.

    PubMed

    Foote, Peter K; Krist, David T; Statsyuk, Alexander V

    2017-09-14

    HECT E3 ubiquitin ligases are responsible for many human disease phenotypes and are promising drug targets; however, screening assays for HECT E3 inhibitors are inherently complex, requiring upstream E1 and E2 enzymes as well as ubiquitin, ATP, and detection reagents. Intermediate ubiquitin thioesters and a complex mixture of polyubiquitin products provide further opportunities for off-target inhibition and increase the complexity of the assay. UbFluor is a novel ubiquitin thioester that bypasses the E1 and E2 enzymes and undergoes direct transthiolation with HECT E3 ligases. The release of fluorophore upon transthiolation allows fluorescence polarization detection of HECT E3 activity. In the presence of inhibitors, HECT E3 activity is ablated, and thus no reaction and no change in FP are observed. This assay has been adapted for high-throughput screening of small molecules against HECT E3 ligases, and its utility has been proven in the discovery of HECT E3 ligase inhibitors. © 2017 by John Wiley & Sons, Inc. Copyright © 2017 John Wiley & Sons, Inc.

  20. Mitochondrial tRNA 5'-editing in Dictyostelium discoideum and Polysphondylium pallidum.

    PubMed

    Abad, Maria G; Long, Yicheng; Kinchen, R Dimitri; Schindel, Elinor T; Gray, Michael W; Jackman, Jane E

    2014-05-30

    Mitochondrial tRNA (mt-tRNA) 5'-editing was first described more than 20 years ago; however, the first candidates for 5'-editing enzymes were only recently identified in a eukaryotic microbe (protist), the slime mold Dictyostelium discoideum. In this organism, eight of 18 mt-tRNAs are predicted to be edited based on the presence of genomically encoded mismatched nucleotides in their aminoacyl-acceptor stem sequences. Here, we demonstrate that mt-tRNA 5'-editing occurs at all predicted sites in D. discoideum as evidenced by changes in the sequences of isolated mt-tRNAs compared with the expected sequences encoded by the mitochondrial genome. We also identify two previously unpredicted editing events in which G-U base pairs are edited in the absence of any other genomically encoded mismatches. A comparison of 5'-editing in D. discoideum with 5'-editing in another slime mold, Polysphondylium pallidum, suggests organism-specific idiosyncrasies in the treatment of U-G/G-U pairs. In vitro activities of putative D. discoideum editing enzymes are consistent with the observed editing reactions and suggest an overall lack of tRNA substrate specificity exhibited by the repair component of the editing enzyme. Although the presence of terminal mismatches in mt-tRNA sequences is highly predictive of the occurrence of mt-tRNA 5'-editing, the variability in treatment of U-G/G-U base pairs observed here indicates that direct experimental evidence of 5'-editing must be obtained to understand the complete spectrum of mt-tRNA editing events in any species. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  1. Ubiquitin-Dependent Regulation of the Mammalian Hippo Pathway: Therapeutic Implications for Cancer

    PubMed Central

    Nguyen, Thanh Hung

    2018-01-01

    The Hippo pathway serves as a key barrier for oncogenic transformation. It acts by limiting the activity of the proto-oncogenes YAP and TAZ. Reduced Hippo signaling and elevated YAP/TAZ activities are frequently observed in various types of tumors. Emerging evidence suggests that the ubiquitin system plays an important role in regulating Hippo pathway activity. Deregulation of ubiquitin ligases and of deubiquitinating enzymes has been implicated in increased YAP/TAZ activity in cancer. In this article, we review recent insights into the ubiquitin-mediated regulation of the mammalian Hippo pathway, its deregulation in cancer, and possibilities for targeting the Hippo pathway through the ubiquitin system. PMID:29673168

  2. Ubiquitin-Dependent Regulation of the Mammalian Hippo Pathway: Therapeutic Implications for Cancer.

    PubMed

    Nguyen, Thanh Hung; Kugler, Jan-Michael

    2018-04-17

    The Hippo pathway serves as a key barrier for oncogenic transformation. It acts by limiting the activity of the proto-oncogenes YAP and TAZ. Reduced Hippo signaling and elevated YAP/TAZ activities are frequently observed in various types of tumors. Emerging evidence suggests that the ubiquitin system plays an important role in regulating Hippo pathway activity. Deregulation of ubiquitin ligases and of deubiquitinating enzymes has been implicated in increased YAP/TAZ activity in cancer. In this article, we review recent insights into the ubiquitin-mediated regulation of the mammalian Hippo pathway, its deregulation in cancer, and possibilities for targeting the Hippo pathway through the ubiquitin system.

  3. Structure and Function of Viral Deubiquitinating Enzymes.

    PubMed

    Bailey-Elkin, Ben A; Knaap, Robert C M; Kikkert, Marjolein; Mark, Brian L

    2017-11-10

    Post-translational modification of cellular proteins by ubiquitin regulates numerous cellular processes, including innate and adaptive immune responses. Ubiquitin-mediated control over these processes can be reversed by cellular deubiquitinating enzymes (DUBs), which remove ubiquitin from cellular targets and depolymerize polyubiquitin chains. The importance of protein ubiquitination to host immunity has been underscored by the discovery of viruses that encode proteases with deubiquitinating activity, many of which have been demonstrated to actively corrupt cellular ubiquitin-dependent processes to suppress innate antiviral responses and promote viral replication. DUBs have now been identified in diverse viral lineages, and their characterization is providing valuable insights into virus biology and the role of the ubiquitin system in host antiviral mechanisms. Here, we provide an overview of the structural biology of these fascinating viral enzymes and their role innate immune evasion and viral replication. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Activity-based probes for the ubiquitin conjugation-deconjugation machinery: new chemistries, new tools, and new insights.

    PubMed

    Hewings, David S; Flygare, John A; Bogyo, Matthew; Wertz, Ingrid E

    2017-05-01

    The reversible post-translational modification of proteins by ubiquitin and ubiquitin-like proteins regulates almost all cellular processes, by affecting protein degradation, localization, and complex formation. Deubiquitinases (DUBs) are proteases that remove ubiquitin modifications or cleave ubiquitin chains. Most DUBs are cysteine proteases, which makes them well suited for study by activity-based probes. These DUB probes report on deubiquitinase activity by reacting covalently with the active site in an enzyme-catalyzed manner. They have proven to be important tools to study DUB selectivity and proteolytic activity in different settings, to identify novel DUBs, and to characterize deubiquitinase inhibitors. Inspired by the efficacy of activity-based probes for DUBs, several groups have recently reported probes for the ubiquitin conjugation machinery (E1, E2, and E3 enzymes). Many of these enzymes, while not proteases, also posses active site cysteine residues and can be targeted by covalent probes. In this review, we will discuss how features of the probe (cysteine-reactive group, recognition element, and reporter tag) affect reactivity and suitability for certain experimental applications. We will also review the diverse applications of the current probes, and discuss the need for new probe types to study emerging aspects of ubiquitin biology. © 2017 Federation of European Biochemical Societies.

  5. Extra Double-stranded RNA Binding Domain (dsRBD) in a Squid RNA Editing Enzyme Confers Resistance to High Salt Environment*

    PubMed Central

    Palavicini, Juan Pablo; Correa-Rojas, Rodrigo A.; Rosenthal, Joshua J. C.

    2012-01-01

    A-to-I RNA editing is particularly common in coding regions of squid mRNAs. Previously, we isolated a squid editing enzyme (sqADAR2) that shows a unique structural feature when compared with other ADAR2 family members: an additional double-stranded RNA (dsRNA) binding domain (dsRBD). Alternative splicing includes or excludes this motif, generating a novel or a conventional variant termed sqADAR2a and sqADAR2b, respectively. The extra dsRBD of sqADAR2a increases its editing activity in vitro. We hypothesized that the high activity is due to an increase in the affinity of the enzyme for dsRNA. This may be important because protein-RNA interactions can be influenced by physical factors. We became particularly interested in analyzing the effects of salt on interactions between sqADAR2 and RNA because squid cells have a ∼3-fold higher ionic strength and proportionally more Cl− than vertebrate cells. To date, in vitro biochemical analyses of adenosine deamination have been conducted using vertebrate-like ionic strength buffers containing chloride as the major anion, although the vast majority of cellular anions are known to be organic. We found that squid-like salt conditions severely impair the binding affinity of conventional ADAR2s for dsRNA, leading to a decrease in nonspecific and site-specific editing activity. Inhibition of editing was mostly due to high Cl− levels and not to the high concentrations of K+, Na+, and organic anions like glutamate. Interestingly, the extra dsRBD in sqADAR2a conferred resistance to the high Cl− levels found in squid neurons. It does so by increasing the affinity of sqADAR2 for dsRNA by 30- or 100-fold in vertebrate-like or squid-like conditions, respectively. Site-directed mutagenesis of squid ADAR2a showed that its increased affinity and editing activity are directly attributable to the RNA binding activity of the extra dsRBD. PMID:22457361

  6. Differential Ubiquitin Binding by the Acidic Loops of Ube2g1 and Ube2r1 Enzymes Distinguishes Their Lys-48-ubiquitylation Activities*

    PubMed Central

    Choi, Yun-Seok; Lee, Yun-Ju; Lee, Seo-Yeon; Shi, Lei; Ha, Jung-Hye; Cheong, Hae-Kap; Cheong, Chaejoon; Cohen, Robert E.; Ryu, Kyoung-Seok

    2015-01-01

    The ubiquitin E2 enzymes, Ube2g1 and Ube2r1, are able to synthesize Lys-48-linked polyubiquitins without an E3 ligase but how that is accomplished has been unclear. Although both E2s contain essential acidic loops, only Ube2r1 requires an additional C-terminal extension (184–196) for efficient Lys-48-ubiquitylation activity. The presence of Tyr-102 and Tyr-104 in the Ube2g1 acidic loop enhanced both ubiquitin binding and Lys-48-ubiquitylation and distinguished Ube2g1 from the otherwise similar truncated Ube2r11–183 (Ube2r1C). Replacement of Gln-105–Ser-106–Gly-107 in the acidic loop of Ube2r1C (Ube2r1CYGY) by the corresponding residues from Ube2g1 (Tyr-102–Gly-103–Tyr-104) increased Lys-48-ubiquitylation activity and ubiquitin binding. Two E2∼UB thioester mimics (oxyester and disulfide) were prepared to characterize the ubiquitin binding activity of the acidic loop. The oxyester but not the disulfide derivative was found to be a functional equivalent of the E2∼UB thioester. The ubiquitin moiety of the Ube2r1CC93S-[15N]UBK48R oxyester displayed two-state conformational exchange, whereas the Ube2r1CC93S/YGY-[15N]UBK48R oxyester showed predominantly one state. Together with NMR studies that compared UBK48R oxyesters of the wild-type and the acidic loop mutant (Y102G/Y104G) forms of Ube2g1, in vitro ubiquitylation assays with various mutation forms of the E2s revealed how the intramolecular interaction between the acidic loop and the attached donor ubiquitin regulates Lys-48-ubiquitylation activity. PMID:25471371

  7. Ubiquitin-protein ligases in muscle wasting: multiple parallel pathways?

    NASA Technical Reports Server (NTRS)

    Lecker, Stewart H.; Goldberg, A. L. (Principal Investigator)

    2003-01-01

    PURPOSE OF REVIEW: Studies in a wide variety of animal models of muscle wasting have led to the concept that increased protein breakdown via the ubiquitin-proteasome pathway is responsible for the loss of muscle mass seen as muscle atrophy. The complexity of the ubiquitination apparatus has hampered our understanding of how this pathway is activated in atrophying muscles and which ubiquitin-conjugating enzymes in muscle are responsible. RECENT FINDINGS: Recent experiments have shown that two newly identified ubiquitin-protein ligases (E3s), atrogin-1/MAFbx and MURF-1, are critical in the development of muscle atrophy. Other in-vitro studies also implicated E2(14k) and E3alpha, of the N-end rule pathway, as playing an important role in the process. SUMMARY: It seems likely that multiple pathways of ubiquitin conjugation are activated in parallel in atrophying muscle, perhaps to target for degradation specific classes of muscle proteins. The emerging challenge will be to define the protein targets for, as well as inhibitors of, these E3s.

  8. Identification and expression of the protein ubiquitination system in Giardia intestinalis.

    PubMed

    Gallego, Eva; Alvarado, Magda; Wasserman, Moises

    2007-06-01

    Giardia intestinalis is a single-cell eukaryotic microorganism, regarded as one of the earliest divergent eukaryotes and thus an attractive model to study the evolution of regulatory systems. Giardia has two different forms throughout its life cycle, cyst and trophozoite, and changes from one to the other in response to environmental signals. The two differentiation processes involve a differential gene expression as well as a quick and specific protein turnover that may be mediated by the ubiquitin/proteasome system. The aim of this work was to search for unreported components of the ubiquitination system and to experimentally demonstrate their expression in the parasite and during the two differentiation processes. We found activity of protein ubiquitination in G. intestinalis trophozoites and analyzed the transcription of the ubiquitin gene, as well as that of the activating (E1), conjugating (E2), and ligase (E3) ubiquitin enzymes during encystation and excystation. A constant ubiquitin expression persisted during the parasite's differentiation processes, whereas variation in transcription was observed in the other genes under study.

  9. USP19-Mediated Deubiquitination Facilitates the Stabilization of HRD1 Ubiquitin Ligase.

    PubMed

    Harada, Kumi; Kato, Masako; Nakamura, Nobuhiro

    2016-11-02

    In the endoplasmic reticulum (ER), misfolded and unfolded proteins are eliminated by a process called ER-associated protein degradation (ERAD) in order to maintain cell homeostasis. In the ERAD pathway, several ER-localized E3 ubiquitin ligases target ERAD substrate proteins for ubiquitination and subsequent proteasomal degradation. However, little is known about how the functions of the ERAD ubiquitin ligases are regulated. Recently, USP19, an ER-anchored deubiquitinating enzyme (DUB), has been suggested to be involved in the regulation of ERAD. In this study, HRD1, an ERAD ubiquitin ligase, is shown to be a novel substrate for USP19. We demonstrate that USP19 rescues HRD1 from proteasomal degradation by deubiquitination of K48-linked ubiquitin chains. In addition, the altered expression of USP19 affects the steady-state levels of HRD1. These results suggest that USP19 regulates the stability of HRD1 and provide insight into the regulatory mechanism of the ERAD ubiquitin ligases.

  10. The Ubiquitin Code in the Ubiquitin-Proteasome System and Autophagy.

    PubMed

    Kwon, Yong Tae; Ciechanover, Aaron

    2017-11-01

    The conjugation of the 76 amino acid protein ubiquitin to other proteins can alter the metabolic stability or non-proteolytic functions of the substrate. Once attached to a substrate (monoubiquitination), ubiquitin can itself be ubiquitinated on any of its seven lysine (Lys) residues or its N-terminal methionine (Met1). A single ubiquitin polymer may contain mixed linkages and/or two or more branches. In addition, ubiquitin can be conjugated with ubiquitin-like modifiers such as SUMO or small molecules such as phosphate. The diverse ways to assemble ubiquitin chains provide countless means to modulate biological processes. We overview here the complexity of the ubiquitin code, with an emphasis on the emerging role of linkage-specific degradation signals (degrons) in the ubiquitin-proteasome system (UPS) and the autophagy-lysosome system (hereafter autophagy). Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. The E2-25K Ubiquitin-associated (UBA) Domain Aids in Polyubiquitin Chain Synthesis and Linkage Specificity

    PubMed Central

    WILSON, Randall C.; EDMONDSON, Stephen P.; FLATT, Justin W.; HELMS, Kimberli; TWIGG, Pamela D.

    2011-01-01

    E2-25K is an ubiquitin-conjugating enzyme with the ability to synthesize Lys48-linked polyubiquitin chains. E2-25K and its homologues represent the only known E2 enzymes which contain a C-terminal ubiquitin-associated (UBA) domain as well as the conserved catalytic ubiquitin-conjugating (UBC) domain. As an additional non-covalent binding surface for ubiquitin, the UBA domain must provide some functional specialization. We mapped the protein-protein interface involved in the E2-25K UBA/ubiquitin complex by solution nuclear magnetic resonance (NMR) spectroscopy and subsequently modeled the structure of the complex. Domain-domain interactions between the E2-25K catalytic UBC domain and the UBA domain do not induce significant structural changes in the UBA domain or alter the affinity of the UBA domain for ubiquitin. We determined that one of the roles of the C-terminal UBA domain, in the context of E2-25K, is to increase processivity in Lys48-linked polyubiquitin chain synthesis, possibly through increased binding to the ubiquitinated substrate. Additionally, we see evidence that the UBA domain directs specificity in polyubiquitin chain linkage. PMID:21281599

  12. PINK1 autophosphorylation is required for ubiquitin recognition.

    PubMed

    Rasool, Shafqat; Soya, Naoto; Truong, Luc; Croteau, Nathalie; Lukacs, Gergely L; Trempe, Jean-François

    2018-04-01

    Mutations in PINK1 cause autosomal recessive Parkinson's disease (PD), a neurodegenerative movement disorder. PINK1 is a kinase that acts as a sensor of mitochondrial damage and initiates Parkin-mediated clearance of the damaged organelle. PINK1 phosphorylates Ser65 in both ubiquitin and the ubiquitin-like (Ubl) domain of Parkin, which stimulates its E3 ligase activity. Autophosphorylation of PINK1 is required for Parkin activation, but how this modulates the ubiquitin kinase activity is unclear. Here, we show that autophosphorylation of Tribolium castaneum PINK1 is required for substrate recognition. Using enzyme kinetics and NMR spectroscopy, we reveal that PINK1 binds the Parkin Ubl with a 10-fold higher affinity than ubiquitin via a conserved interface that is also implicated in RING1 and SH3 binding. The interaction requires phosphorylation at Ser205, an invariant PINK1 residue (Ser228 in human). Using mass spectrometry, we demonstrate that PINK1 rapidly autophosphorylates in trans at Ser205. Small-angle X-ray scattering and hydrogen-deuterium exchange experiments provide insights into the structure of the PINK1 catalytic domain. Our findings suggest that multiple PINK1 molecules autophosphorylate first prior to binding and phosphorylating ubiquitin and Parkin. © 2018 The Authors.

  13. Phospho-ubiquitin: upending the PINK–Parkin–ubiquitin cascade

    PubMed Central

    Matsuda, Noriyuki

    2016-01-01

    Mitochondria with decreased membrane potential are characterized by defects in protein import into the matrix and impairments in high-efficiency synthesis of ATP. These low-quality mitochondria are marked with ubiquitin for selective degradation. Key factors in this mechanism are PTEN-induced putative kinase 1 (PINK1, a mitochondrial kinase) and Parkin (a ubiquitin ligase), disruption of which has been implicated in predisposition to Parkinson’s disease. Previously, the clearance of damaged mitochondria had been thought to be the end result of a simple cascading reaction of PINK1–Parkin–ubiquitin. However, in the past year, several research groups including ours unexpectedly revealed that Parkin regulation is mediated by PINK1-dependent phosphorylation of ubiquitin. These results overturned the simple hierarchy that posited PINK1 and ubiquitin as the upstream and downstream factors of Parkin, respectively. Although ubiquitylation is well-known as a post-translational modification, it has recently become clear that ubiquitin itself can be modified, and that this modification unexpectedly converts ubiquitin to a factor that functions in retrograde signalling. PMID:26839319

  14. Regulation of synaptic structure by ubiquitin C-terminal hydrolase L1.

    PubMed

    Cartier, Anna E; Djakovic, Stevan N; Salehi, Afshin; Wilson, Scott M; Masliah, Eliezer; Patrick, Gentry N

    2009-06-17

    Ubiquitin C-terminal hydrolase L1 (UCH-L1) is a deubiquitinating enzyme that is selectively and abundantly expressed in the brain, and its activity is required for normal synaptic function. Here, we show that UCH-L1 functions in maintaining normal synaptic structure in hippocampal neurons. We found that UCH-L1 activity is rapidly upregulated by NMDA receptor activation, which leads to an increase in the levels of free monomeric ubiquitin. Conversely, pharmacological inhibition of UCH-L1 significantly reduces monomeric ubiquitin levels and causes dramatic alterations in synaptic protein distribution and spine morphology. Inhibition of UCH-L1 activity increases spine size while decreasing spine density. Furthermore, there is a concomitant increase in the size of presynaptic and postsynaptic protein clusters. Interestingly, however, ectopic expression of ubiquitin restores normal synaptic structure in UCH-L1-inhibited neurons. These findings point to a significant role of UCH-L1 in synaptic remodeling, most likely by modulating free monomeric ubiquitin levels in an activity-dependent manner.

  15. Structure of a HOIP/E2~ubiquitin complex reveals RBR E3 ligase mechanism and regulation

    PubMed Central

    Lechtenberg, Bernhard C.; Rajput, Akhil; Sanishvili, Ruslan; Dobaczewska, Małgorzata K.; Ware, Carl F.; Mace, Peter D.; Riedl, Stefan J.

    2015-01-01

    Ubiquitination is a central process affecting all facets of cellular signaling and function1. A critical step in ubiquitination is the transfer of ubiquitin from an E2 ubiquitin-conjugating enzyme to a substrate or a growing ubiquitin chain, which is mediated by E3 ubiquitin ligases. RING-type E3 ligases typically facilitate the transfer of ubiquitin from the E2 directly to the substrate2,3. The RBR family of RING-type E3 ligases, however, breaks this paradigm by forming a covalent intermediate with ubiquitin similarly to HECT-type E3 ligases4–6. The RBR family includes Parkin4 and HOIP, the central catalytic factor of the linear ubiquitin chain assembly complex (LUBAC)7. While structural insights into the RBR E3 ligases Parkin and HHARI in their overall autoinhibited forms are available8–13, no structures exist of intact fully active RBR E3 ligases or any of their complexes. Thus, the RBR mechanism of action has remained largely enigmatic. Here we present the first structure of the fully active HOIP-RBR in its transfer complex with an E2~ubiquitin conjugate, which elucidates the intricate nature of RBR E3 ligases. The active HOIP-RBR adopts a conformation markedly different from that of autoinhibited RBRs. HOIP-RBR binds the E2~ubiquitin conjugate in an elongated fashion, with the E2 and E3 catalytic centers ideally aligned for ubiquitin transfer, which structurally both requires and enables a HECT-like mechanism. In addition, surprisingly, three distinct helix–IBR-fold motifs inherent to RBRs form ubiquitin-binding regions that engage the activated ubiquitin of the E2~Ub conjugate as well as an additional regulatory ubiquitin molecule. The features uncovered reveal critical states of the HOIP-RBR E3 ligase cycle, and comparison with Parkin and HHARI suggests a general mechanism for RBR E3 ligases. PMID:26789245

  16. USP7 Is a Suppressor of PCNA Ubiquitination and Oxidative-Stress-Induced Mutagenesis in Human Cells.

    PubMed

    Kashiwaba, Shu-ichiro; Kanao, Rie; Masuda, Yuji; Kusumoto-Matsuo, Rika; Hanaoka, Fumio; Masutani, Chikahide

    2015-12-15

    Mono-ubiquitinated PCNA activates error-prone DNA polymerases; therefore, strict regulation of PCNA mono-ubiquitination is crucial in avoiding undesired mutagenesis. In this study, we used an in vitro assay system to identify USP7 as a deubiquitinating enzyme of mono-ubiquitinated PCNA. Suppression of USP1, a previously identified PCNA deubiquitinase, or USP7 increased UV- and H2O2-induced PCNA mono-ubiquitination in a distinct and additive manner, suggesting that USP1 and USP7 make different contributions to PCNA deubiquitination in human cells. Cell-cycle-synchronization analyses revealed that USP7 suppression increased H2O2-induced PCNA ubiquitination throughout interphase, whereas USP1 suppression specifically increased ubiquitination in S-phase cells. UV-induced mutagenesis was elevated in USP1-suppressed cells, whereas H2O2-induced mutagenesis was elevated in USP7-suppressed cells. These results suggest that USP1 suppresses UV-induced mutations produced in a manner involving DNA replication, whereas USP7 suppresses H2O2-induced mutagenesis involving cell-cycle-independent processes such as DNA repair. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  17. Degradation signals for ubiquitin system proteolysis in Saccharomyces cerevisiae.

    PubMed Central

    Gilon, T; Chomsky, O; Kulka, R G

    1998-01-01

    Combinations of different ubiquitin-conjugating (Ubc) enzymes and other factors constitute subsidiary pathways of the ubiquitin system, each of which ubiquitinates a specific subset of proteins. There is evidence that certain sequence elements or structural motifs of target proteins are degradation signals which mark them for ubiquitination by a particular branch of the ubiquitin system and for subsequent degradation. Our aim was to devise a way of searching systematically for degradation signals and to determine to which ubiquitin system subpathways they direct the proteins. We have constructed two reporter gene libraries based on the lacZ or URA3 genes which, in Saccharomyces cerevisiae, express fusion proteins with a wide variety of C-terminal extensions. From these, we have isolated clones producing unstable fusion proteins which are stabilized in various ubc mutants. Among these are 10 clones whose products are stabilized in ubc6, ubc7 or ubc6ubc7 double mutants. The C-terminal extensions of these clones, which vary in length from 16 to 50 amino acid residues, are presumed to contain degradation signals channeling proteins for degradation via the UBC6 and/or UBC7 subpathways of the ubiquitin system. Some of these C-terminal tails share similar sequence motifs, and a feature common to almost all of these sequences is a highly hydrophobic region such as is usually located inside globular proteins or inserted into membranes. PMID:9582269

  18. Inhibition of the ubiquitin-proteasome system by natural products for cancer therapy.

    PubMed

    Tsukamoto, Sachiko; Yokosawa, Hideyoshi

    2010-08-01

    The ubiquitin-proteasome system plays a critical role in selective protein degradation and regulates almost all cellular events such as cell cycle progression, signal transduction, cell death, immune responses, metabolism, protein quality control, development, and neuronal function. The recent approval of bortezomib, a synthetic proteasome inhibitor, for the treatment of relapsed multiple myeloma has opened the way to the discovery of drugs targeting the proteasome and ubiquitinating and deubiquitinating enzymes as well as the delivery system. To date, various synthetic and natural products have been reported to inhibit the components of the ubiquitin-proteasome system. Here, we review natural products targeting the ubiquitin-proteasome system as well as synthetic compounds with potent inhibitory effects. Georg Thieme Verlag KG Stuttgart-New York.

  19. Deubiquitinating enzyme regulation of the p53 pathway: A lesson from Otub1

    PubMed Central

    Sun, Xiao-Xin; Dai, Mu-Shui

    2014-01-01

    Deubiquitination has emerged as an important mechanism of p53 regulation. A number of deubiquitinating enzymes (DUBs) from the ubiquitin-specific protease family have been shown to regulate the p53-MDM2-MDMX networks. We recently reported that Otub1, a DUB from the OTU-domain containing protease family, is a novel p53 regulator. Interestingly, Otub1 abrogates p53 ubiquitination and stabilizes and activates p53 in cells independently of its deubiquitinating enzyme activity. Instead, it does so by inhibiting the MDM2 cognate ubiquitin-conjugating enzyme (E2) UbcH5. Otub1 also regulates other biological signaling through this non-canonical mechanism, suppression of E2, including the inhibition of DNA-damage-induced chromatin ubiquitination. Thus, Otub1 evolves as a unique DUB that mainly suppresses E2 to regulate substrates. Here we review the current progress made towards the understanding of the complex regulation of the p53 tumor suppressor pathway by DUBs, the biological function of Otub1 including its positive regulation of p53, and the mechanistic insights into how Otub1 suppresses E2. PMID:24920999

  20. Gene amplification-associated overexpression of the RNA editing enzyme ADAR1 enhances human lung tumorigenesis.

    PubMed

    Anadón, C; Guil, S; Simó-Riudalbas, L; Moutinho, C; Setien, F; Martínez-Cardús, A; Moran, S; Villanueva, A; Calaf, M; Vidal, A; Lazo, P A; Zondervan, I; Savola, S; Kohno, T; Yokota, J; Ribas de Pouplana, L; Esteller, M

    2016-08-18

    The introduction of new therapies against particular genetic mutations in non-small-cell lung cancer is a promising avenue for improving patient survival, but the target population is small. There is a need to discover new potential actionable genetic lesions, to which end, non-conventional cancer pathways, such as RNA editing, are worth exploring. Herein we show that the adenosine-to-inosine editing enzyme ADAR1 undergoes gene amplification in non-small cancer cell lines and primary tumors in association with higher levels of the corresponding mRNA and protein. From a growth and invasion standpoint, the depletion of ADAR1 expression in amplified cells reduces their tumorigenic potential in cell culture and mouse models, whereas its overexpression has the opposite effects. From a functional perspective, ADAR1 overexpression enhances the editing frequencies of target transcripts such as NEIL1 and miR-381. In the clinical setting, patients with early-stage lung cancer, but harboring ADAR1 gene amplification, have poor outcomes. Overall, our results indicate a role for ADAR1 as a lung cancer oncogene undergoing gene amplification-associated activation that affects downstream RNA editing patterns and patient prognosis.

  1. Ube2V2 Is a Rosetta Stone Bridging Redox and Ubiquitin Codes, Coordinating DNA Damage Responses.

    PubMed

    Zhao, Yi; Long, Marcus J C; Wang, Yiran; Zhang, Sheng; Aye, Yimon

    2018-02-28

    Posttranslational modifications (PTMs) are the lingua franca of cellular communication. Most PTMs are enzyme-orchestrated. However, the reemergence of electrophilic drugs has ushered mining of unconventional/non-enzyme-catalyzed electrophile-signaling pathways. Despite the latest impetus toward harnessing kinetically and functionally privileged cysteines for electrophilic drug design, identifying these sensors remains challenging. Herein, we designed "G-REX"-a technique that allows controlled release of reactive electrophiles in vivo. Mitigating toxicity/off-target effects associated with uncontrolled bolus exposure, G-REX tagged first-responding innate cysteines that bind electrophiles under true k cat / K m conditions. G-REX identified two allosteric ubiquitin-conjugating proteins-Ube2V1/Ube2V2-sharing a novel privileged-sensor-cysteine. This non-enzyme-catalyzed-PTM triggered responses specific to each protein. Thus, G-REX is an unbiased method to identify novel functional cysteines. Contrasting conventional active-site/off-active-site cysteine-modifications that regulate target activity, modification of Ube2V2 allosterically hyperactivated its enzymatically active binding-partner Ube2N, promoting K63-linked client ubiquitination and stimulating H2AX-dependent DNA damage response. This work establishes Ube2V2 as a Rosetta-stone bridging redox and ubiquitin codes to guard genome integrity.

  2. Phospho-ubiquitin: upending the PINK-Parkin-ubiquitin cascade.

    PubMed

    Matsuda, Noriyuki

    2016-04-01

    Mitochondria with decreased membrane potential are characterized by defects in protein import into the matrix and impairments in high-efficiency synthesis of ATP. These low-quality mitochondria are marked with ubiquitin for selective degradation. Key factors in this mechanism are PTEN-induced putative kinase 1 (PINK1, a mitochondrial kinase) and Parkin (a ubiquitin ligase), disruption of which has been implicated in predisposition to Parkinson's disease. Previously, the clearance of damaged mitochondria had been thought to be the end result of a simple cascading reaction of PINK1-Parkin-ubiquitin. However, in the past year, several research groups including ours unexpectedly revealed that Parkin regulation is mediated by PINK1-dependent phosphorylation of ubiquitin. These results overturned the simple hierarchy that posited PINK1 and ubiquitin as the upstream and downstream factors of Parkin, respectively. Although ubiquitylation is well-known as a post-translational modification, it has recently become clear that ubiquitin itself can be modified, and that this modification unexpectedly converts ubiquitin to a factor that functions in retrograde signalling. © The Authors 2016. Published by Oxford University Press on behalf of the Japanese Biochemical Society. All rights reserved.

  3. The ubiquitin-conjugating enzyme E2-EPF is overexpressed in cervical cancer and associates with tumor growth.

    PubMed

    Liang, Jing; Nishi, Hirotaka; Bian, Mei-Lu; Higuma, Chinatsu; Sasaki, Toru; Ito, Hiroe; Isaka, Keiichi

    2012-10-01

    We found that the ubiquitin-conjugating enzyme E2-EPF mRNA is highly expressed in cervical squamous cancer relative to normal tissues and its expression levels positively correlate with clinical stage. Reduction of E2-EPF protein levels by >80% using shRNA decreases the expression levels of HIF-1α, and the proliferation, invasion and tumorigenicity of SiHa, a cervical squamous cancer cell line. E2-EPF knockdown also increases the chemosensitivity to topoisomerase I inhibitor (topotecan) and II (etoposide and doxorubicin). Our results suggest that E2-EPF is associated with the growth and aggressivity of cervical tumor cells. Targeting the E2-EPF pathway may have potential clinical applications for the treatment of cervical cancer.

  4. E2-EPF UCP Possesses E3 Ubiquitin Ligase Activity via Its Cysteine 118 Residue.

    PubMed

    Lim, Jung Hwa; Shin, Hee Won; Chung, Kyung-Sook; Kim, Nam-Soon; Kim, Ju Hee; Jung, Hong-Ryul; Im, Dong-Soo; Jung, Cho-Rok

    Here, we show that E2-EPF ubiquitin carrier protein (UCP) elongated E3-independent polyubiquitin chains on the lysine residues of von Hippel-Lindau protein (pVHL) and its own lysine residues both in vitro and in vivo. The initiation of the ubiquitin reaction depended on not only Lys11 linkage but also the Lys6, Lys48 and Lys63 residues of ubiquitin, which were involved in polyubiquitin chain formation on UCP itself. UCP self-association occurred through the UBC domain, which also contributed to the interaction with pVHL. The polyubiquitin chains appeared on the N-terminus of UCP in vivo, which indicated that the N-terminus of UCP contains target lysines for polyubiquitination. The Lys76 residue of UCP was the most critical site for auto-ubiquitination, whereas the polyubiquitin chain formation on pVHL occurred on all three of its lysines (Lys159, Lys171 and Lys196). A UCP mutant in which Cys118 was changed to alanine (UCPC118A) did not form a polyubiquitin chain but did strongly accumulate mono- and di-ubiquitin via auto-ubiquitination. Polyubiquitin chain formation required the coordination of Cys95 and Cys118 between two interacting molecules. The mechanism of the polyubiquitin chain reaction of UCP may involve the transfer of ubiquitin from Cys95 to Cys118 by trans-thiolation, with polyubiquitin chains forming at Cys118 by reversible thioester bonding. The polyubiquitin chains are then moved to the lysine residues of the substrate by irreversible isopeptide bonding. During the elongation of the ubiquitin chain, an active Cys118 residue is required in both parts of UCP, namely, the catalytic enzyme and the substrate. In conclusion, UCP possesses not only E2 ubiquitin conjugating enzyme activity but also E3 ubiquitin ligase activity, and Cys118 is critical for polyubiquitin chain formation.

  5. E2-EPF UCP Possesses E3 Ubiquitin Ligase Activity via Its Cysteine 118 Residue

    PubMed Central

    Lim, Jung Hwa; Shin, Hee Won; Chung, Kyung-Sook; Kim, Nam-Soon; Kim, Ju Hee; Jung, Hong-Ryul; Im, Dong-Soo; Jung, Cho-Rok

    2016-01-01

    Here, we show that E2-EPF ubiquitin carrier protein (UCP) elongated E3-independent polyubiquitin chains on the lysine residues of von Hippel-Lindau protein (pVHL) and its own lysine residues both in vitro and in vivo. The initiation of the ubiquitin reaction depended on not only Lys11 linkage but also the Lys6, Lys48 and Lys63 residues of ubiquitin, which were involved in polyubiquitin chain formation on UCP itself. UCP self-association occurred through the UBC domain, which also contributed to the interaction with pVHL. The polyubiquitin chains appeared on the N-terminus of UCP in vivo, which indicated that the N-terminus of UCP contains target lysines for polyubiquitination. The Lys76 residue of UCP was the most critical site for auto-ubiquitination, whereas the polyubiquitin chain formation on pVHL occurred on all three of its lysines (Lys159, Lys171 and Lys196). A UCP mutant in which Cys118 was changed to alanine (UCPC118A) did not form a polyubiquitin chain but did strongly accumulate mono- and di-ubiquitin via auto-ubiquitination. Polyubiquitin chain formation required the coordination of Cys95 and Cys118 between two interacting molecules. The mechanism of the polyubiquitin chain reaction of UCP may involve the transfer of ubiquitin from Cys95 to Cys118 by trans-thiolation, with polyubiquitin chains forming at Cys118 by reversible thioester bonding. The polyubiquitin chains are then moved to the lysine residues of the substrate by irreversible isopeptide bonding. During the elongation of the ubiquitin chain, an active Cys118 residue is required in both parts of UCP, namely, the catalytic enzyme and the substrate. In conclusion, UCP possesses not only E2 ubiquitin conjugating enzyme activity but also E3 ubiquitin ligase activity, and Cys118 is critical for polyubiquitin chain formation. PMID:27685940

  6. Delineating Crosstalk Mechanisms of the Ubiquitin Proteasome System That Regulate Apoptosis

    PubMed Central

    Gupta, Ishita; Singh, Kanika; Varshney, Nishant K.; Khan, Sameena

    2018-01-01

    Regulatory functions of the ubiquitin-proteasome system (UPS) are exercised mainly by the ubiquitin ligases and deubiquitinating enzymes. Degradation of apoptotic proteins by UPS is central to the maintenance of cell health, and deregulation of this process is associated with several diseases including tumors, neurodegenerative disorders, diabetes, and inflammation. Therefore, it is the view that interrogating protein turnover in cells can offer a strategy for delineating disease-causing mechanistic perturbations and facilitate identification of drug targets. In this review, we are summarizing an overview to elucidate the updated knowledge on the molecular interplay between the apoptosis and UPS pathways. We have condensed around 100 enzymes of UPS machinery from the literature that ubiquitinates or deubiquitinates the apoptotic proteins and regulates the cell fate. We have also provided a detailed insight into how the UPS proteins are able to fine-tune the intrinsic, extrinsic, and p53-mediated apoptotic pathways to regulate cell survival or cell death. This review provides a comprehensive overview of the potential of UPS players as a drug target for cancer and other human disorders. PMID:29479529

  7. The deubiquitinases USP33 and USP20 coordinate beta2 adrenergic receptor recycling and resensitization.

    PubMed

    Berthouze, Magali; Venkataramanan, Vidya; Li, Yi; Shenoy, Sudha K

    2009-06-17

    Agonist-induced ubiquitination of the beta(2) adrenergic receptor (beta(2)AR) functions as an important post-translational modification to sort internalized receptors to the lysosomes for degradation. We now show that this ubiquitination is reversed by two deubiquitinating enzymes, ubiquitin-specific proteases (USPs) 20 and 33, thus, inhibiting lysosomal trafficking when concomitantly promoting receptor recycling from the late-endosomal compartments as well as resensitization of recycled receptors at the cell surface. Dissociation of constitutively bound endogenously expressed USPs 20 and 33 from the beta(2)AR immediately after agonist stimulation and reassociation on prolonged agonist treatment allows receptors to first become ubiquitinated and then deubiquitinated, thus, providing a 'trip switch' between degradative and recycling pathways at the late-endosomal compartments. Thus, USPs 20 and 33 serve as novel regulators that dictate both post-endocytic sorting as well as the intensity and extent of beta(2)AR signalling from the cell surface.

  8. A Conserved Deubiquitinating Enzyme Uses Intrinsically Disordered Regions to Scaffold Multiple Protein Interaction Sites*

    PubMed Central

    Reed, Benjamin J.; Locke, Melissa N.; Gardner, Richard G.

    2015-01-01

    In the canonical view of protein function, it is generally accepted that the three-dimensional structure of a protein determines its function. However, the past decade has seen a dramatic growth in the identification of proteins with extensive intrinsically disordered regions (IDRs), which are conformationally plastic and do not appear to adopt single three-dimensional structures. One current paradigm for IDR function is that disorder enables IDRs to adopt multiple conformations, expanding the ability of a protein to interact with a wide variety of disparate proteins. The capacity for many interactions is an important feature of proteins that occupy the hubs of protein networks, in particular protein-modifying enzymes that usually have a broad spectrum of substrates. One such protein modification is ubiquitination, where ubiquitin is attached to proteins through ubiquitin ligases (E3s) and removed through deubiquitinating enzymes. Numerous proteomic studies have found that thousands of proteins are dynamically regulated by cycles of ubiquitination and deubiquitination. Thus, how these enzymes target their wide array of substrates is of considerable importance for understanding the function of the cell's diverse ubiquitination networks. Here, we characterize a yeast deubiquitinating enzyme, Ubp10, that possesses IDRs flanking its catalytic protease domain. We show that Ubp10 possesses multiple, distinct binding modules within its IDRs that are necessary and sufficient for directing protein interactions important for Ubp10's known roles in gene silencing and ribosome biogenesis. The human homolog of Ubp10, USP36, also has IDRs flanking its catalytic domain, and these IDRs similarly contain binding modules important for protein interactions. This work highlights the significant protein interaction scaffolding abilities of IDRs in the regulation of dynamic protein ubiquitination. PMID:26149687

  9. Human Liver Cytochrome P450 3A4 Ubiquitination

    PubMed Central

    Wang, YongQiang; Kim, Sung-Mi; Trnka, Michael J.; Liu, Yi; Burlingame, A. L.; Correia, Maria Almira

    2015-01-01

    CYP3A4 is an abundant and catalytically dominant human liver endoplasmic reticulum-anchored cytochrome P450 enzyme engaged in the biotransformation of endo- and xenobiotics, including >50% of clinically relevant drugs. Alterations of CYP3A4 protein turnover can influence clinically relevant drug metabolism and bioavailability and drug-drug interactions. This CYP3A4 turnover involves endoplasmic reticulum-associated degradation via the ubiquitin (Ub)-dependent 26 S proteasomal system that relies on two highly complementary E2 Ub-conjugating-E3 Ub-ligase (UBC7-gp78 and UbcH5a-C terminus of Hsc70-interacting protein (CHIP)-Hsc70-Hsp40) complexes, as well as protein kinases (PK) A and C. We have documented that CYP3A4 Ser/Thr phosphorylation (Ser(P)/Thr(P)) by PKA and/or PKC accelerates/enhances its Lys ubiquitination by either of these E2-E3 systems. Intriguingly, CYP3A4 Ser(P)/Thr(P) and ubiquitinated Lys residues reside within the cytosol-accessible surface loop and/or conformationally assembled acidic Asp/Glu clusters, leading us to propose that such post-translational Ser/Thr protein phosphorylation primes CYP3A4 for ubiquitination. Herein, this possibility was examined through various complementary approaches, including site-directed mutagenesis, chemical cross-linking, peptide mapping, and LC-MS/MS analyses. Our findings reveal that such CYP3A4 Asp/Glu/Ser(P)/Thr(P) surface clusters are indeed important for its intermolecular electrostatic interactions with each of these E2-E3 subcomponents. By imparting additional negative charge to these Asp/Glu clusters, such Ser/Thr phosphorylation would generate P450 phosphodegrons for molecular recognition by the E2-E3 complexes, thereby controlling the timing of CYP3A4 ubiquitination and endoplasmic reticulum-associated degradation. Although the importance of phosphodegrons in the CHIP targeting of its substrates is known, to our knowledge this is the first example of phosphodegron involvement in gp78-substrate

  10. E2 Ubiquitin-conjugating Enzyme, UBE2C Gene, Is Reciprocally Regulated by Wild-type and Gain-of-Function Mutant p53.

    PubMed

    Bajaj, Swati; Alam, Sk Kayum; Roy, Kumar Singha; Datta, Arindam; Nath, Somsubhra; Roychoudhury, Susanta

    2016-07-01

    Spindle assembly checkpoint governs proper chromosomal segregation during mitosis to ensure genomic stability. At the cellular level, this event is tightly regulated by UBE2C, an E2 ubiquitin-conjugating enzyme that donates ubiquitin to the anaphase-promoting complex/cyclosome. This, in turn, facilitates anaphase-onset by ubiquitin-mediated degradation of mitotic substrates. UBE2C is an important marker of chromosomal instability and has been associated with malignant growth. However, the mechanism of its regulation is largely unexplored. In this study, we report that UBE2C is transcriptionally activated by the gain-of-function (GOF) mutant p53, although it is transcriptionally repressed by wild-type p53. We showed that wild-type p53-mediated inhibition of UBE2C is p21-E2F4-dependent and GOF mutant p53-mediated transactivation of UBE2C is NF-Y-dependent. We further explored that DNA damage-induced wild-type p53 leads to spindle assembly checkpoint arrest by repressing UBE2C, whereas mutant p53 causes premature anaphase exit by increasing UBE2C expression in the presence of 5-fluorouracil. Identification of UBE2C as a target of wild-type and GOF mutant p53 further highlights the contribution of p53 in regulation of spindle assembly checkpoint. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  11. A Conserved C-terminal Element in the Yeast Doa10 and Human MARCH6 Ubiquitin Ligases Required for Selective Substrate Degradation*

    PubMed Central

    Zattas, Dimitrios; Berk, Jason M.; Kreft, Stefan G.; Hochstrasser, Mark

    2016-01-01

    Specific proteins are modified by ubiquitin at the endoplasmic reticulum (ER) and are degraded by the proteasome, a process referred to as ER-associated protein degradation. In Saccharomyces cerevisiae, two principal ER-associated protein degradation ubiquitin ligases (E3s) reside in the ER membrane, Doa10 and Hrd1. The membrane-embedded Doa10 functions in the degradation of substrates in the ER membrane, nuclear envelope, cytoplasm, and nucleoplasm. How most E3 ligases, including Doa10, recognize their protein substrates remains poorly understood. Here we describe a previously unappreciated but highly conserved C-terminal element (CTE) in Doa10; this cytosolically disposed 16-residue motif follows the final transmembrane helix. A conserved CTE asparagine residue is required for ubiquitylation and degradation of a subset of Doa10 substrates. Such selectivity suggests that the Doa10 CTE is involved in substrate discrimination and not general ligase function. Functional conservation of the CTE was investigated in the human ortholog of Doa10, MARCH6 (TEB4), by analyzing MARCH6 autoregulation of its own degradation. Mutation of the conserved Asn residue (N890A) in the MARCH6 CTE stabilized the normally short lived enzyme to the same degree as a catalytically inactivating mutation (C9A). We also report the localization of endogenous MARCH6 to the ER using epitope tagging of the genomic MARCH6 locus by clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9-mediated genome editing. These localization and CTE analyses support the inference that MARCH6 and Doa10 are functionally similar. Moreover, our results with the yeast enzyme suggest that the CTE is involved in the recognition and/or ubiquitylation of specific protein substrates. PMID:27068744

  12. A Conserved C-terminal Element in the Yeast Doa10 and Human MARCH6 Ubiquitin Ligases Required for Selective Substrate Degradation.

    PubMed

    Zattas, Dimitrios; Berk, Jason M; Kreft, Stefan G; Hochstrasser, Mark

    2016-06-03

    Specific proteins are modified by ubiquitin at the endoplasmic reticulum (ER) and are degraded by the proteasome, a process referred to as ER-associated protein degradation. In Saccharomyces cerevisiae, two principal ER-associated protein degradation ubiquitin ligases (E3s) reside in the ER membrane, Doa10 and Hrd1. The membrane-embedded Doa10 functions in the degradation of substrates in the ER membrane, nuclear envelope, cytoplasm, and nucleoplasm. How most E3 ligases, including Doa10, recognize their protein substrates remains poorly understood. Here we describe a previously unappreciated but highly conserved C-terminal element (CTE) in Doa10; this cytosolically disposed 16-residue motif follows the final transmembrane helix. A conserved CTE asparagine residue is required for ubiquitylation and degradation of a subset of Doa10 substrates. Such selectivity suggests that the Doa10 CTE is involved in substrate discrimination and not general ligase function. Functional conservation of the CTE was investigated in the human ortholog of Doa10, MARCH6 (TEB4), by analyzing MARCH6 autoregulation of its own degradation. Mutation of the conserved Asn residue (N890A) in the MARCH6 CTE stabilized the normally short lived enzyme to the same degree as a catalytically inactivating mutation (C9A). We also report the localization of endogenous MARCH6 to the ER using epitope tagging of the genomic MARCH6 locus by clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9-mediated genome editing. These localization and CTE analyses support the inference that MARCH6 and Doa10 are functionally similar. Moreover, our results with the yeast enzyme suggest that the CTE is involved in the recognition and/or ubiquitylation of specific protein substrates. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  13. Diggin’ on U(biquitin): A Novel Method for the Identification of Physiological E3 Ubiquitin Ligase Substrates

    PubMed Central

    Rubel, Carrie E.; Schisler, Jonathan C.; Hamlett, Eric D.; DeKroon, Robert M.; Gautel, Mathias; Alzate, Oscar; Patterson, Cam

    2013-01-01

    The ubiquitin-proteasome system (UPS) plays a central role in maintaining protein homeostasis, emphasized by a myriad of diseases that are associated with altered UPS function such as cancer, muscle-wasting, and neurodegeneration. Protein ubiquitination plays a central role in both the promotion of proteasomal degradation as well as cellular signaling through regulation of the stability of transcription factors and other signaling molecules. Substrate specificity is a critical regulatory step of ubiquitination and is mediated by ubiquitin ligases. Recent studies implicate ubiquitin ligases in multiple models of cardiac diseases such as cardiac hypertrophy, atrophy, and ischemia/reperfusion injury, both in a cardioprotective and maladaptive role. Therefore, identifying physiological substrates of cardiac ubiquitin ligases provides both mechanistic insights into heart disease as well as possible therapeutic targets. Current methods identifying substrates for ubiquitin ligases rely heavily upon non-physiologic in vitro methods, impeding the unbiased discovery of physiological substrates in relevant model systems. Here we describe a novel method for identifying ubiquitin ligase substrates utilizing Tandem Ubiquitin Binding Entities (TUBE) technology, two-dimensional differential in gel electrophoresis (2-D DIGE), and mass spectrometry, validated by the identification of both known and novel physiological substrates of the ubiquitin ligase MuRF1 in primary cardiomyocytes. This method can be applied to any ubiquitin ligase, both in normal and disease model systems, in order to identify relevant physiological substrates under various biological conditions, opening the door to a clearer mechanistic understanding of ubiquitin ligase function and broadening their potential as therapeutic targets. PMID:23695782

  14. Subunit-Specific Labeling of Ubiquitin Chains by Using Sortase: Insights into the Selectivity of Deubiquitinases.

    PubMed

    Crowe, Sean O; Pham, Grace H; Ziegler, Jacob C; Deol, Kirandeep K; Guenette, Robert G; Ge, Ying; Strieter, Eric R

    2016-08-17

    Information embedded in different ubiquitin chains is transduced by proteins with ubiquitin-binding domains (UBDs) and erased by a set of hydrolytic enzymes referred to as deubiquitinases (DUBs). Understanding the selectivity of UBDs and DUBs is necessary for decoding the functions of different ubiquitin chains. Critical to these efforts is the access to chemically defined ubiquitin chains bearing site-specific fluorescent labels. One approach toward constructing such molecules involves peptide ligation by sortase (SrtA), a bacterial transpeptidase responsible for covalently attaching cell surface proteins to the cell wall. Here, we demonstrate the utility of SrtA in modifying individual subunits of ubiquitin chains. Using ubiquitin derivatives in which an N-terminal glycine is unveiled after protease-mediated digestion, we synthesized ubiquitin dimers, trimers, and tetramers with different isopeptide linkages. SrtA was then used in combination with fluorescent depsipeptide substrates to effect the modification of each subunit in a chain. By constructing branched ubiquitin chains with individual subunits tagged with a fluorophore, we provide evidence that the ubiquitin-specific protease USP15 prefers ubiquitin trimers but has little preference for a particular isopeptide linkage. Our results emphasize the importance of subunit-specific labeling of ubiquitin chains when studying how DUBs process these chains. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Regulation of Proteolysis by Human Deubiquitinating Enzymes

    PubMed Central

    Eletr, Ziad M.; Wilkinson, Keith D.

    2013-01-01

    The post-translational attachment of one or several ubiquitin molecules to a protein generates a variety of targeting signals that are used in many different ways in the cell. Ubiquitination can alter the activity, localization, protein-protein interactions or stability of the targeted protein. Further, a very large number of proteins are subject to regulation by ubiquitin-dependent processes, meaning that virtually all cellular functions are impacted by these pathways. Nearly a hundred enzymes from five different gene families (the deubiquitinating enzymes or DUBs), reverse this modification by hydrolyzing the (iso)peptide bond tethering ubiquitin to itself or the target protein. Four of these families are thiol proteases and one is a metalloprotease. DUBs of the Ubiquitin C-terminal Hydrolase (UCH) family act on small molecule adducts of ubiquitin, process the ubiquitin proprotein, and trim ubiquitin from the distal end of a polyubiquitin chain. Ubiquitin Specific Proteases (USP) tend to recognize and encounter their substrates by interaction of the variable regions of their sequence with the substrate protein directly, or with scaffolds or substrate adapters in multiprotein complexes. Ovarian Tumor (OTU) domain DUBs show remarkable specificity for different Ub chain linkages and may have evolved to recognize substrates on the basis of those linkages. The Josephin family of DUBs may specialize in distinguishing between polyubiquitin chains of different lengths. Finally, the JAB1/MPN+/MOV34 (JAMM) domain metalloproteases cleave the isopeptide bond near the attachment point of polyubiquitin and substrate, as well as being highly specific for the K63 poly-Ub linkage. These DUBs regulate proteolysis by: directly interacting with and co-regulating E3 ligases; altering the level of substrate ubiquitination; hydrolyzing or remodeling ubiquitinated and poly-ubiquitinated substrates; acting in specific locations in the cell and altering the localization of the target

  16. Cycles of Ubiquitination and Deubiquitination Critically Regulate Growth Factor-Mediated Activation of Akt Signaling

    PubMed Central

    Yang, Wei-Lei; Jin, Guoxiang; Li, Chien-Feng; Jeong, Yun Seong; Moten, Asad; Xu, Dazhi; Feng, Zizhen; Chen, Wei; Cai, Zhen; Darnay, Bryant; Gu, Wei; Lin, Hui-Kuan

    2013-01-01

    K63-linked ubiquitination of Akt is a posttranslational modification that plays a critical role in growth factor-mediated membrane recruitment and activation of Akt. Although E3 ligases involved in growth factor-induced Akt ubiquitination have been defined, the deubiquitinating enzyme (DUB) that triggers deubiquitination of Akt and the function of Akt deubiquitination remain largely unclear. Here, we showed that CYLD was a DUB for Akt and suppressed growth factor-mediated Akt ubiquitination and activation. CYLD directly removed ubiquitin moieties on Akt under serum-starved conditions. CYLD dissociated from Akt upon growth factor stimulation, thereby allowing E3 ligases to induce ubiquitination and activation of Akt. CYLD deficiency also promoted cancer cell proliferation, survival, glucose uptake and growth of prostate tumors. Our findings reveal the crucial role of cycles of ubiquitination and deubiquitination of Akt in its membrane recruitment and activation, and further identifies CYLD as a molecular switch for these processes. PMID:23300340

  17. Rines/RNF180, a novel RING finger gene-encoded product, is a membrane-bound ubiquitin ligase.

    PubMed

    Ogawa, Miyuki; Mizugishi, Kiyomi; Ishiguro, Akira; Koyabu, Yoshio; Imai, Yuzuru; Takahashi, Ryosuke; Mikoshiba, Katsuhiko; Aruga, Jun

    2008-04-01

    We identified and characterized a novel RING finger gene, Rines/RNF180, which is well conserved among vertebrates. Putative Rines gene product (Rines) contains a RING finger domain, a basic coiled-coil domain, a novel conserved domain (DSPRC) and a C-terminal hydrophobic region that is predicted to be a transmembrane domain. N-terminally epitope tagged-Rines (Nt-Rines) was detected in the endoplasmic reticulum membrane/nuclear envelope in cultured mammalian cells. Nt-Rines was not extracted by high salt or alkaline buffers and was degraded in intact endoplasmic reticulum treated with proteinase K, indicating that Nt-Rines is an integral membrane protein with most of its N-terminal regions in the cytoplasm. Rines was expressed in brain, kidney, testis and uterus of adult mice, and in developing lens and brain, particularly in the ventricular layer of the cerebral cortex at embryonic stages. In cultured cells, Nt-Rines can bind another protein and promoted its degradation. The degradation was inhibited by proteasomal inhibitors. In addition, Nt-Rines itself was heavily ubiquitinated and degraded by proteasome. The involvement of Rines in the ubiquitin-proteasome pathway was further supported by its binding to the UbcH6 ubiquitin-conjugating enzyme and by its trans-ubiquitination enhancing activities. These results suggest that Rines is a membrane-bound E3 ubiquitin ligase.

  18. Regulation of the Hippo signaling pathway by ubiquitin modification.

    PubMed

    Kim, Youngeun; Jho, Eek-Hoon

    2018-03-01

    The Hippo signaling pathway plays an essential role in adult tissue homeostasis and organ size control. Abnormal regulation of Hippo signaling can be a cause for multiple types of human cancers. Since the awareness of the importance of the Hippo signaling in a wide range of biological fields has been continually grown, it is also understood that a thorough and well-rounded comprehension of the precise dynamics could provide fundamental insights for therapeutic applications. Several components in the Hippo signaling pathway are known to be targeted for proteasomal degradation via ubiquitination by E3 ligases. β-TrCP is a well-known E3 ligase of YAP/TAZ, which leads to the reduction of YAP/TAZ levels. The Hippo signaling pathway can also be inhibited by the E3 ligases (such as ITCH) which target LATS1/2 for degradation. Regulation via ubiquitination involves not only complex network of E3 ligases but also deubiquitinating enzymes (DUBs), which remove ubiquitin from its targets. Interestingly, non-degradative ubiquitin modifications are also known to play important roles in the regulation of Hippo signaling. Although there has been much advanced progress in the investigation of ubiquitin modifications acting as regulators of the Hippo signaling pathway, research done to date still remains inadequate due to the sheer complexity and diversity of the subject. Herein, we review and discuss recent developments that implicate ubiquitin-mediated regulatory mechanisms at multiple steps of the Hippo signaling pathway. [BMB Reports 2018; 51(3): 143-150].

  19. USP8 regulates mitophagy by removing K6-linked ubiquitin conjugates from parkin

    PubMed Central

    Durcan, Thomas M; Tang, Matthew Y; Pérusse, Joëlle R; Dashti, Eman A; Aguileta, Miguel A; McLelland, Gian-Luca; Gros, Priti; Shaler, Thomas A; Faubert, Denis; Coulombe, Benoit; Fon, Edward A

    2014-01-01

    Mutations in the Park2 gene, encoding the E3 ubiquitin-ligase parkin, are responsible for a familial form of Parkinson's disease (PD). Parkin-mediated ubiquitination is critical for the efficient elimination of depolarized dysfunctional mitochondria by autophagy (mitophagy). As damaged mitochondria are a major source of toxic reactive oxygen species within the cell, this pathway is believed to be highly relevant to the pathogenesis of PD. Little is known about how parkin-mediated ubiquitination is regulated during mitophagy or about the nature of the ubiquitin conjugates involved. We report here that USP8/UBPY, a deubiquitinating enzyme not previously implicated in mitochondrial quality control, is critical for parkin-mediated mitophagy. USP8 preferentially removes non-canonical K6-linked ubiquitin chains from parkin, a process required for the efficient recruitment of parkin to depolarized mitochondria and for their subsequent elimination by mitophagy. This work uncovers a novel role for USP8-mediated deubiquitination of K6-linked ubiquitin conjugates from parkin in mitochondrial quality control. PMID:25216678

  20. E3 ubiquitin ligases: key regulators of hormone signaling in plants.

    PubMed

    Kelley, Dior

    2018-03-07

    Ubiquitin-mediated control of protein stability is central to most aspects of plant hormone signaling. Attachment of ubiquitin to target proteins occurs via an enzymatic cascade with the final step being catalyzed by a family of enzymes known as E3 ubiquitin ligases, which have been classified based on their protein domains and structures. While E3 ubiquitin ligases are conserved among eukaryotes, in plants they are well-known to fulfill unique roles as central regulators of phytohormone signaling, including hormone perception and regulation of hormone biosynthesis. This review will highlight up-to-date findings that have refined well-known E3 ligase-substrate interactions and defined novel E3 ligase substrates that mediate numerous hormone signaling pathways. Additionally, examples of how particular E3 ligases may mediate hormone crosstalk will be discussed as an emerging theme. Looking forward, promising experimental approaches and methods that will provide deeper mechanistic insight into the roles of E3 ubiquitin ligases in plants will be considered. Published under license by The American Society for Biochemistry and Molecular Biology, Inc.

  1. Genome-wide A-to-I RNA editing in fungi independent of ADAR enzymes

    PubMed Central

    Liu, Huiquan; Wang, Qinhu; He, Yi; Chen, Lingfeng; Hao, Chaofeng; Jiang, Cong; Li, Yang; Dai, Yafeng; Kang, Zhensheng; Xu, Jin-Rong

    2016-01-01

    Yeasts and filamentous fungi do not have adenosine deaminase acting on RNA (ADAR) orthologs and are believed to lack A-to-I RNA editing, which is the most prevalent editing of mRNA in animals. However, during this study with the PUK1 (FGRRES_01058) pseudokinase gene important for sexual reproduction in Fusarium graminearum, we found that two tandem stop codons, UA1831GUA1834G, in its kinase domain were changed to UG1831GUG1834G by RNA editing in perithecia. To confirm A-to-I editing of PUK1 transcripts, strand-specific RNA-seq data were generated with RNA isolated from conidia, hyphae, and perithecia. PUK1 was almost specifically expressed in perithecia, and 90% of transcripts were edited to UG1831GUG1834G. Genome-wide analysis identified 26,056 perithecium-specific A-to-I editing sites. Unlike those in animals, 70.5% of A-to-I editing sites in F. graminearum occur in coding regions, and more than two-thirds of them result in amino acid changes, including editing of 69 PUK1-like pseudogenes with stop codons in ORFs. PUK1 orthologs and other pseudogenes also displayed stage-specific expression and editing in Neurospora crassa and F. verticillioides. Furthermore, F. graminearum differs from animals in the sequence preference and structure selectivity of A-to-I editing sites. Whereas A's embedded in RNA stems are targeted by ADARs, RNA editing in F. graminearum preferentially targets A's in hairpin loops, which is similar to the anticodon loop of tRNA targeted by adenosine deaminases acting on tRNA (ADATs). Overall, our results showed that A-to-I RNA editing occurs specifically during sexual reproduction and mainly in the coding regions in filamentous ascomycetes, involving adenosine deamination mechanisms distinct from metazoan ADARs. PMID:26934920

  2. The functional interplay between the HIF pathway and the ubiquitin system - more than a one-way road.

    PubMed

    Günter, Julia; Ruiz-Serrano, Amalia; Pickel, Christina; Wenger, Roland H; Scholz, Carsten C

    2017-07-15

    The hypoxia inducible factor (HIF) pathway and the ubiquitin system represent major cellular processes that are involved in the regulation of a plethora of cellular signaling pathways and tissue functions. The ubiquitin system controls the ubiquitination of proteins, which is the covalent linkage of one or several ubiquitin molecules to specific targets. This ubiquitination is catalyzed by approximately 1000 different E3 ubiquitin ligases and can lead to different effects, depending on the type of internal ubiquitin chain linkage. The best-studied function is the targeting of proteins for proteasomal degradation. The activity of E3 ligases is antagonized by proteins called deubiquitinases (or deubiquitinating enzymes), which negatively regulate ubiquitin chains. This is performed in most cases by the catalytic removal of these chains from the targeted protein. The HIF pathway is regulated in an oxygen-dependent manner by oxygen-sensing hydroxylases. Covalent modification of HIFα subunits leads to the recruitment of an E3 ligase complex via the von Hippel-Lindau (VHL) protein and the subsequent polyubiquitination and proteasomal degradation of HIFα subunits, demonstrating the regulation of the HIF pathway by the ubiquitin system. This unidirectional effect of an E3 ligase on the HIF pathway is the best-studied example for the interplay between these two important cellular processes. However, additional regulatory mechanisms of the HIF pathway through the ubiquitin system are emerging and, more recently, also the reciprocal regulation of the ubiquitin system through components of the HIF pathway. Understanding these mechanisms and their relevance for the activity of each other is of major importance for the comprehensive elucidation of the oxygen-dependent regulation of cellular processes. This review describes the current knowledge of the functional bidirectional interplay between the HIF pathway and the ubiquitin system on the protein level. Copyright © 2017

  3. Preparation of ubiquitin-conjugated proteins using an insect cell-free protein synthesis system.

    PubMed

    Suzuki, Takashi; Ezure, Toru; Ando, Eiji; Nishimura, Osamu; Utsumi, Toshihiko; Tsunasawa, Susumu

    2010-01-01

    Ubiquitination is one of the most significant posttranslational modifications (PTMs). To evaluate the ability of an insect cell-free protein synthesis system to carry out ubiquitin (Ub) conjugation to in vitro translated proteins, poly-Ub chain formation was studied in an insect cell-free protein synthesis system. Poly-Ub was generated in the presence of Ub aldehyde (UA), a de-ubiquitinating enzyme inhibitor. In vitro ubiquitination of the p53 tumor suppressor protein was also analyzed, and p53 was poly-ubiquitinated when Ub, UA, and Mdm2, an E3 Ub ligase (E3) for p53, were added to the in vitro reaction mixture. These results suggest that the insect cell-free protein synthesis system contains enzymatic activities capable of carrying out ubiquitination. CBB-detectable ubiquitinated p53 was easily purified from the insect cell-free protein synthesis system, allowing analysis of the Ub-conjugated proteins by mass spectrometry (MS). Lys 305 of p53 was identified as one of the Ub acceptor sites using this strategy. Thus, we conclude that the insect cell-free protein synthesis system is a powerful tool for studying various PTMs of eukaryotic proteins including ubiqutination presented here.

  4. A single ubiquitin is sufficient for cargo protein entry into MVBs in the absence of ESCRT ubiquitination

    PubMed Central

    Stringer, Daniel K.

    2011-01-01

    ESCRTs (endosomal sorting complexes required for transport) bind and sequester ubiquitinated membrane proteins and usher them into multivesicular bodies (MVBs). As Ubiquitin (Ub)-binding proteins, ESCRTs themselves become ubiquitinated. However, it is unclear whether this regulates a critical aspect of their function or is a nonspecific consequence of their association with the Ub system. We investigated whether ubiquitination of the ESCRTs was required for their ability to sort cargo into the MVB lumen. Although we found that Rsp5 was the main Ub ligase responsible for ubiquitination of ESCRT-0, elimination of Rsp5 or elimination of the ubiquitinatable lysines within ESCRT-0 did not affect MVB sorting. Moreover, by fusing the catalytic domain of deubiquitinating peptidases onto ESCRTs, we could block ESCRT ubiquitination and the sorting of proteins that undergo Rsp5-dependent ubiquitination. Yet, proteins fused to a single Ub moiety were efficiently delivered to the MVB lumen, which strongly indicates that a single Ub is sufficient in sorting MVBs in the absence of ESCRT ubiquitination. PMID:21242292

  5. Regulation of Synaptic Structure by the Ubiquitin C-terminal Hydrolase UCH-L1

    PubMed Central

    Cartier, Anna E.; Djakovic, Stevan N.; Salehi, Afshin; Wilson, Scott M.; Masliah, Eliezer; Patrick, Gentry N.

    2009-01-01

    UCH-L1 is a de-ubiquitinating enzyme that is selectively and abundantly expressed in the brain, and its activity is required for normal synaptic function. Here, we show that UCH-L1 functions in maintaining normal synaptic structure in hippocampal neurons. We have found that UCH-L1 activity is rapidly up-regulated by NMDA receptor activation which leads to an increase in the levels of free monomeric ubiquitin. Conversely, pharmacological inhibition of UCH-L1 significantly reduces monomeric ubiquitin levels and causes dramatic alterations in synaptic protein distribution and spine morphology. Inhibition of UCH-L1 activity increases spine size while decreasing spine density. Furthermore, there is a concomitant increase in the size of pre and postsynaptic protein clusters. Interestingly, however, ectopic expression of ubiquitin restores normal synaptic structure in UCH-L1 inhibited neurons. These findings point to a significant role of UCH-L1 in synaptic remodeling most likely by modulating free monomeric ubiquitin levels in an activity-dependent manner. PMID:19535597

  6. Integration of cellular ubiquitin and membrane traffic systems: focus on deubiquitylases.

    PubMed

    Clague, Michael J; Urbé, Sylvie

    2017-06-01

    The cell is comprised of integrated multilevel protein networks or systems. The ubiquitin, protein homeostasis and membrane trafficking systems are highly integrated. Here, we look at the influence of reversible ubiquitylation on membrane trafficking and organelle dynamics. We review the regulation of endocytic sorting, selective autophagy and the secretory pathway by ubiquitin signals, with a particular focus on detailing the contribution of deubiquitylating enzymes. © 2017 The Authors. The FEBS Journal published by John Wiley & Sons Ltd on behalf of Federation of European Biochemical Societies.

  7. The DUSP–Ubl domain of USP4 enhances its catalytic efficiency by promoting ubiquitin exchange

    PubMed Central

    Clerici, Marcello; Luna-Vargas, Mark P. A.; Faesen, Alex C.; Sixma, Titia K.

    2014-01-01

    Ubiquitin-specific protease USP4 is emerging as an important regulator of cellular pathways, including the TGF-β response, NF-κB signalling and splicing, with possible roles in cancer. Here we show that USP4 has its catalytic triad arranged in a productive conformation. Nevertheless, it requires its N-terminal DUSP–Ubl domain to achieve full catalytic turnover. Pre-steady-state kinetics measurements reveal that USP4 catalytic domain activity is strongly inhibited by slow dissociation of ubiquitin after substrate hydrolysis. The DUSP–Ubl domain is able to enhance ubiquitin dissociation, hence promoting efficient turnover. In a mechanism that requires all USP4 domains, binding of the DUSP–Ubl domain promotes a change of a switching loop near the active site. This ‘allosteric regulation of product discharge’ provides a novel way of regulating deubiquitinating enzymes that may have relevance for other enzyme classes. PMID:25404403

  8. Chemotherapy inhibits skeletal muscle ubiquitin-proteasome-dependent proteolysis.

    PubMed

    Tilignac, Thomas; Temparis, Sandrine; Combaret, Lydie; Taillandier, Daniel; Pouch, Marie-Noëlle; Cervek, Matjaz; Cardenas, Diana M; Le Bricon, Thierry; Debiton, Eric; Samuels, Susan E; Madelmont, Jean-Claude; Attaix, Didier

    2002-05-15

    Chemotherapy has cachectic effects, but it is unknown whether cytostatic agents alter skeletal muscle proteolysis. We hypothesized that chemotherapy-induced alterations in protein synthesis should result in the increased incidence of abnormal proteins, which in turn should stimulate ubiquitin-proteasome-dependent proteolysis. The effects of the nitrosourea cystemustine were investigated in skeletal muscles from both healthy and colon 26 adenocarcinoma-bearing mice, an appropriate model for testing the impact of cytostatic agents. Muscle wasting was seen in both groups of mice 4 days after a single cystemustine injection, and the drug further increased the loss of muscle proteins already apparent in tumor-bearing animals. Cystemustine cured the tumor-bearing mice with 100% efficacy. Surprisingly, within 11 days of treatment, rates of muscle proteolysis progressively decreased below basal levels observed in healthy control mice and contributed to the cessation of muscle wasting. Proteasome-dependent proteolysis was inhibited by mechanisms that include reduced mRNA levels for 20S and 26S proteasome subunits, decreased protein levels of 20S proteasome subunits and the S14 non-ATPase subunit of the 26S proteasome, and impaired chymotrypsin- and trypsin-like activities of the enzyme. A combination of cisplatin and ifosfamide, two drugs that are widely used in the treatment of cancer patients, also depressed the expression of proteasomal subunits in muscles from rats bearing the MatB adenocarcinoma below basal levels. Thus, a down-regulation of ubiquitin-proteasome-dependent proteolysis is observed with various cytostatic agents and contributes to reverse the chemotherapy-induced muscle wasting.

  9. USP48 restrains resection by site-specific cleavage of the BRCA1 ubiquitin mark from H2A.

    PubMed

    Uckelmann, Michael; Densham, Ruth M; Baas, Roy; Winterwerp, Herrie H K; Fish, Alexander; Sixma, Titia K; Morris, Joanna R

    2018-01-15

    BRCA1-BARD1-catalyzed ubiquitination of histone H2A is an important regulator of the DNA damage response, priming chromatin for repair by homologous recombination. However, no specific deubiquitinating enzymes (DUBs) are known to antagonize this function. Here we identify ubiquitin specific protease-48 (USP48) as a H2A DUB, specific for the C-terminal BRCA1 ubiquitination site. Detailed biochemical analysis shows that an auxiliary ubiquitin, an additional ubiquitin that itself does not get cleaved, modulates USP48 activity, which has possible implications for its regulation in vivo. In cells we reveal that USP48 antagonizes BRCA1 E3 ligase function and in BRCA1-proficient cells loss of USP48 results in positioning 53BP1 further from the break site and in extended resection lengths. USP48 repression confers a survival benefit to cells treated with camptothecin and its activity acts to restrain gene conversion and mutagenic single-strand annealing. We propose that USP48 promotes genome stability by antagonizing BRCA1 E3 ligase function.

  10. The Unique Morgue Ubiquitination Protein Is Conserved in a Diverse but Restricted Set of Invertebrates

    PubMed Central

    Zhou, Ying; Carpenter, Zachary W.; Brennan, Gregory

    2009-01-01

    Drosophila Morgue is a unique ubiquitination protein that facilitates programmed cell death and associates with DIAP1, a critical cell death inhibitor with E3 ubiquitin ligase activity. Morgue possesses a unique combination of functional domains typically associated with distinct types of ubiquitination enzymes. This includes an F box characteristic of the substrate-binding subunit in Skp, Cullin, and F box (SCF)-type ubiquitin E3 ligase complexes and a variant ubiquitin E2 conjugase domain where the active site cysteine is replaced by a glycine. Morgue also contains a single C4-type zinc finger motif. This architecture suggests potentially novel ubiquitination activities for Morgue. In this study, we address the evolutionary origins of this distinctive protein utilizing a combination of bioinformatics and molecular biology approaches. We find that Morgue exhibits widespread but restricted phylogenetic distribution among metazoans. Morgue proteins were identified in a wide range of Protostome phyla, including Arthropoda, Annelida, Mollusca, Nematoda, and Platyhelminthes. However, with one potential exception, Morgue was not detected in Deuterostomes, including Chordates, Hemichordates, or Echinoderms. Morgue was also not found in Ctenophora, Cnidaria, Placozoa, or Porifera. Characterization of Morgue sequences within specific animal lineages suggests that gene deletion or acquisition has occurred during divergence of nematodes and that at least one arachnid expresses an atypical form of Morgue consisting only of the variant E2 conjugase domain. Analysis of the organization of several morgue genes suggests that exon-shuffling events have contributed to the evolution of the Morgue protein. These results suggest that Morgue mediates conserved and distinctive ubiquitination functions in specific cell death pathways. PMID:19602541

  11. Soy Glycinin Contains a Functional Inhibitory Sequence against Muscle-Atrophy-Associated Ubiquitin Ligase Cbl-b

    PubMed Central

    Yama, Tomonari; Ochi, Arisa; Suto, Takuro; Hirasaka, Katsuya; Teshima-Kondo, Shigetada; Okumura, Yuushi; Oarada, Motoko; Choi, Inho; Mukai, Rie; Terao, Junji

    2013-01-01

    Background. Unloading stress induces skeletal muscle atrophy. We have reported that Cbl-b ubiquitin ligase is a master regulator of unloading-associated muscle atrophy. The present study was designed to elucidate whether dietary soy glycinin protein prevents denervation-mediated muscle atrophy, based on the presence of inhibitory peptides against Cbl-b ubiquitin ligase in soy glycinin protein. Methods. Mice were fed either 20% casein diet, 20% soy protein isolate diet, 10% glycinin diet containing 10% casein, or 20% glycinin diet. One week later, the right sciatic nerve was cut. The wet weight, cross sectional area (CSA), IGF-1 signaling, and atrogene expression in hindlimb muscles were examined at 1, 3, 3.5, or 4 days after denervation. Results. 20% soy glycinin diet significantly prevented denervation-induced decreases in muscle wet weight and myofiber CSA. Furthermore, dietary soy protein inhibited denervation-induced ubiquitination and degradation of IRS-1 in tibialis anterior muscle. Dietary soy glycinin partially suppressed the denervation-mediated expression of atrogenes, such as MAFbx/atrogin-1 and MuRF-1, through the protection of IGF-1 signaling estimated by phosphorylation of Akt-1. Conclusions. Soy glycinin contains a functional inhibitory sequence against muscle-atrophy-associated ubiquitin ligase Cbl-b. Dietary soy glycinin protein significantly prevented muscle atrophy after denervation in mice. PMID:23762056

  12. Testing the Effects of SIAH Ubiquitin E3 Ligases on Lysine Acetyl Transferases.

    PubMed

    Hagenbucher, Jan; Stekman, Hilda; Rodriguez-Gil, Alfonso; Kracht, Michael; Schmitz, M Lienhard

    2017-01-01

    The family of seven-in-absentia (SIAH) ubiquitin E3 ligases functions in the control of numerous key signaling pathways. These enzymes belong to the RING (really interesting new gene) group of E3 ligases and mediate the attachment of ubiquitin chains to substrates, which then leads to their proteasomal degradation. Here, we describe a protocol that allows measuring SIAH-mediated ubiquitination and degradation of its client proteins as exemplified by acetyl transferases using simple overexpression experiments. The impact of SIAH expression on the relative amounts of target proteins and their mRNAs can be quantified by Western blotting and quantitative PCR (qPCR) as described here.

  13. Mechanism of Polyubiquitination by Human Anaphase-Promoting Complex: RING Repurposing for Ubiquitin Chain Assembly

    DOE PAGES

    Brown, Nicholas G.; Watson, Edmond R.; Weissmann, Florian; ...

    2014-10-09

    Polyubiquitination by E2 and E3 enzymes is a predominant mechanism regulating protein function. Some RING E3s, including anaphase-promoting complex/cyclosome (APC), catalyze polyubiquitination by sequential reactions with two different E2s. An initiating E2 ligates ubiquitin to an E3-bound substrate. Another E2 grows a polyubiquitin chain on the ubiquitin-primed substrate through poorly defined mechanisms. Here in this paper we show that human APC’s RING domain is repurposed for dual functions in polyubiquitination. The canonical RING surface activates an initiating E2-ubiquitin intermediate for substrate modification. However, APC engages and activates its specialized ubiquitin chain-elongating E2 UBE2S in ways that differ from current paradigms.more » During chain assembly, a distinct APC11 RING surface helps deliver a substrate-linked ubiquitin to accept another ubiquitin from UBE2S. Our data define mechanisms of APC/UBE2S-mediated polyubiquitination, reveal diverse functions of RING E3s and E2s, and provide a framework for understanding distinctive RING E3 features specifying ubiquitin chain elongation.« less

  14. Ubiquitinated Proteins Activate the Proteasomal ATPases by Binding to Usp14 or Uch37 Homologs*

    PubMed Central

    Peth, Andreas; Kukushkin, Nikolay; Bossé, Marc; Goldberg, Alfred L.

    2013-01-01

    Degradation of ubiquitinated proteins by 26 S proteasomes requires ATP hydrolysis, but it is unclear how the proteasomal ATPases are regulated and how proteolysis, substrate deubiquitination, degradation, and ATP hydrolysis are coordinated. Polyubiquitinated proteins were shown to stimulate ATP hydrolysis by purified proteasomes, but only if the proteins contain a loosely folded domain. If they were not ubiquitinated, such proteins did not increase ATPase activity. However, they did so upon addition of ubiquitin aldehyde, which mimics the ubiquitin chain and binds to 26 S-associated deubiquitinating enzymes (DUBs): in yeast to Ubp6, which is essential for the ATPase activation, and in mammalian 26 S to the Ubp6 homolog, Usp14, and Uch37. Occupancy of either DUB by a ubiquitin conjugate leads to ATPase stimulation, thereby coupling deubiquitination and ATP hydrolysis. Thus, ubiquitinated loosely folded proteins, after becoming bound to the 26 S, interact with Ubp6/Usp14 or Uch37 to activate ATP hydrolysis and enhance their own destruction. PMID:23341450

  15. The yeast Alix homolog, Bro1, functions as a ubiquitin receptor for protein sorting into multivesicular endosomes

    PubMed Central

    Pashkova, Natasha; Gakhar, Lokesh; Winistorfer, Stanley; Sunshine, Anna B.; Rich, Matthew; Dunham, Maitreya J.; Yu, Liping; Piper, Robert

    2013-01-01

    SUMMARY Sorting of ubiquitinated membrane proteins into lumenal vesicles of multivesicular bodies is mediated by the ESCRT apparatus and accessory proteins such as Bro1, which recruits the deubiquitinating enzyme Doa4 to remove ubiquitin from cargo. Here we propose that Bro1 works as a receptor for the selective sorting of ubiquitinated cargos. We found synthetic genetic interactions between BRO1 and ESCRT-0, suggesting Bro1 functions similarly to ESCRT-0. Multiple structural approaches demonstrated that Bro1 binds ubiquitin via the N-terminal trihelical arm of its middle V domain. Mutants of Bro1 that lack the ability to bind Ub were dramatically impaired in their ability to sort Ub-cargo membrane proteins, but only when combined with hypomorphic alleles of ESCRT-0. These data suggest that Bro1 and other Bro1 family members function in parallel with ESCRT-0 to recognize and sort Ub-cargos. PMID:23726974

  16. Exploring the Ubiquitin-Proteasome Protein Degradation Pathway in Yeast

    ERIC Educational Resources Information Center

    Will, Tamara J.; McWatters, Melissa K.; McQuade, Kristi L.

    2006-01-01

    This article describes an undergraduate biochemistry laboratory investigating the ubiquitin-proteasome pathway in yeast. In this exercise, the enzyme beta-galactosidase (beta-gal) is expressed in yeast under the control of a stress response promoter. Following exposure to heat stress to induce beta-gal expression, cycloheximide is added to halt…

  17. Characterization and expression analysis of genes encoding ubiquitin conjugating domain-containing enzymes in Carica papaya.

    PubMed

    Jue, Dengwei; Sang, Xuelian; Shu, Bo; Liu, Liqin; Wang, Yicheng; Jia, Zhiwei; Zou, Yu; Shi, Shengyou

    2017-01-01

    Ripening affects the quality and nutritional contents of fleshy fruits and is a crucial process of fruit development. Although several studies have suggested that ubiquitin-conjugating enzyme (E2s or UBC enzymes) are involved in the regulation of fruit ripening, little is known about the function of E2s in papaya (Carica papaya). In the present study, we searched the papaya genome and identified 34 putative UBC genes, which were clustered into 17 phylogenetic subgroups. We also analyzed the nucleotide sequences of the papaya UBC (CpUBC) genes and found that both exon-intron junctions and sequence motifs were highly conserved among the phylogenetic subgroups. Using real-time PCR analysis, we also found that all the CpUBC genes were expressed in roots, stems, leaves, male and female flowers, and mature fruit, although the expression of some of the genes was increased or decreased in one or several specific organs. We also found that the expression of 13 and two CpUBC genes were incresesd or decreased during one and two ripening stages, respectively. Expression analyses indicates possible E2s playing a more significant role in fruit ripening for further studies. To the best of our knowledge, this is the first reported genome-wide analysis of the papaya UBC gene family, and the results will facilitate further investigation of the roles of UBC genes in fruit ripening and will aide in the functional validation of UBC genes in papaya.

  18. The RNA-Editing Enzyme ADAR1 Controls Innate Immune Responses to RNA

    PubMed Central

    Mannion, Niamh M.; Greenwood, Sam M.; Young, Robert; Cox, Sarah; Brindle, James; Read, David; Nellåker, Christoffer; Vesely, Cornelia; Ponting, Chris P.; McLaughlin, Paul J.; Jantsch, Michael F.; Dorin, Julia; Adams, Ian R.; Scadden, A.D.J.; Öhman, Marie; Keegan, Liam P.; O’Connell, Mary A.

    2014-01-01

    Summary The ADAR RNA-editing enzymes deaminate adenosine bases to inosines in cellular RNAs. Aberrant interferon expression occurs in patients in whom ADAR1 mutations cause Aicardi-Goutières syndrome (AGS) or dystonia arising from striatal neurodegeneration. Adar1 mutant mouse embryos show aberrant interferon induction and die by embryonic day E12.5. We demonstrate that Adar1 embryonic lethality is rescued to live birth in Adar1; Mavs double mutants in which the antiviral interferon induction response to cytoplasmic double-stranded RNA (dsRNA) is prevented. Aberrant immune responses in Adar1 mutant mouse embryo fibroblasts are dramatically reduced by restoring the expression of editing-active cytoplasmic ADARs. We propose that inosine in cellular RNA inhibits antiviral inflammatory and interferon responses by altering RLR interactions. Transfecting dsRNA oligonucleotides containing inosine-uracil base pairs into Adar1 mutant mouse embryo fibroblasts reduces the aberrant innate immune response. ADAR1 mutations causing AGS affect the activity of the interferon-inducible cytoplasmic isoform more severely than the nuclear isoform. PMID:25456137

  19. The RNA-editing enzyme ADAR1 controls innate immune responses to RNA.

    PubMed

    Mannion, Niamh M; Greenwood, Sam M; Young, Robert; Cox, Sarah; Brindle, James; Read, David; Nellåker, Christoffer; Vesely, Cornelia; Ponting, Chris P; McLaughlin, Paul J; Jantsch, Michael F; Dorin, Julia; Adams, Ian R; Scadden, A D J; Ohman, Marie; Keegan, Liam P; O'Connell, Mary A

    2014-11-20

    The ADAR RNA-editing enzymes deaminate adenosine bases to inosines in cellular RNAs. Aberrant interferon expression occurs in patients in whom ADAR1 mutations cause Aicardi-Goutières syndrome (AGS) or dystonia arising from striatal neurodegeneration. Adar1 mutant mouse embryos show aberrant interferon induction and die by embryonic day E12.5. We demonstrate that Adar1 embryonic lethality is rescued to live birth in Adar1; Mavs double mutants in which the antiviral interferon induction response to cytoplasmic double-stranded RNA (dsRNA) is prevented. Aberrant immune responses in Adar1 mutant mouse embryo fibroblasts are dramatically reduced by restoring the expression of editing-active cytoplasmic ADARs. We propose that inosine in cellular RNA inhibits antiviral inflammatory and interferon responses by altering RLR interactions. Transfecting dsRNA oligonucleotides containing inosine-uracil base pairs into Adar1 mutant mouse embryo fibroblasts reduces the aberrant innate immune response. ADAR1 mutations causing AGS affect the activity of the interferon-inducible cytoplasmic isoform more severely than the nuclear isoform. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  20. Ubiquitination of basal VEGFR2 regulates signal transduction and endothelial function

    PubMed Central

    Smith, Gina A.; Fearnley, Gareth W.; Abdul-Zani, Izma; Wheatcroft, Stephen B.; Tomlinson, Darren C.; Harrison, Michael A.

    2017-01-01

    ABSTRACT Cell surface receptors can undergo recycling or proteolysis but the cellular decision-making events that sort between these pathways remain poorly defined. Vascular endothelial growth factor A (VEGF-A) and vascular endothelial growth factor receptor 2 (VEGFR2) regulate signal transduction and angiogenesis, but how signaling and proteolysis is regulated is not well understood. Here, we provide evidence that a pathway requiring the E1 ubiquitin-activating enzyme UBA1 controls basal VEGFR2 levels, hence metering plasma membrane receptor availability for the VEGF-A-regulated endothelial cell response. VEGFR2 undergoes VEGF-A-independent constitutive degradation via a UBA1-dependent ubiquitin-linked pathway. Depletion of UBA1 increased VEGFR2 recycling from endosome-to-plasma membrane and decreased proteolysis. Increased membrane receptor availability after UBA1 depletion elevated VEGF-A-stimulated activation of key signaling enzymes such as PLCγ1 and ERK1/2. Although UBA1 depletion caused an overall decrease in endothelial cell proliferation, surviving cells showed greater VEGF-A-stimulated responses such as cell migration and tubulogenesis. Our study now suggests that a ubiquitin-linked pathway regulates the balance between receptor recycling and degradation which in turn impacts on the intensity and duration of VEGF-A-stimulated signal transduction and the endothelial response. PMID:28798148

  1. Ube2w and ataxin-3 coordinately regulate the ubiquitin ligase CHIP

    PubMed Central

    Scaglione, K. Matthew; Zavodszky, Eszter; Todi, Sokol V.; Patury, Srikanth; Xu, Ping; Rodríguez-Lebrón, Edgardo; Fischer, Svetlana; Konen, John; Djarmati, Ana; Peng, Junmin; Gestwicki, Jason E.; Paulson, Henry L.

    2011-01-01

    Summary The mechanisms by which ubiquitin ligases are regulated remain poorly understood. Here we describe a series of molecular events that coordinately regulate CHIP, a neuroprotective E3 implicated in protein quality control. Through their opposing activities, the initiator E2, Ube2w, and the specialized deubiquitinating enzyme (DUB), ataxin-3, participate in initiating, regulating and terminating the CHIP ubiquitination cycle. Monoubiquitination of CHIP by Ube2w stabilizes the interaction between CHIP and ataxin-3, which through its DUB activity limits the length of chains attached to CHIP substrates. Upon completion of substrate ubiquitination ataxin-3 deubiquitinates CHIP, effectively terminating the reaction. Our results suggest that functional pairing of E3s with ataxin-3 or similar DUBs represents an important point of regulation in ubiquitin-dependent protein quality control. In addition, the results shed light on disease pathogenesis in SCA3, a neurodegenerative disorder caused by polyglutamine expansion in ataxin-3. PMID:21855799

  2. Ubiquitin-Like Proteasome System Represents a Eukaryotic-Like Pathway for Targeted Proteolysis in Archaea

    DOE PAGES

    Fu, Xian; Liu, Rui; Sanchez, Iona; ...

    2016-05-17

    The molecular mechanisms of targeted proteolysis in archaea are poorly understood, yet they may have deep evolutionary roots shared with the ubiquitin-proteasome system of eukaryotic cells. Here, we demonstrate in archaea that TBP2, a TATA-binding protein (TBP) modified by ubiquitin-like isopeptide bonds, is phosphorylated and targeted for degradation by proteasomes. Rapid turnover of TBP2 required the functions of UbaA (the E1/MoeB/ThiF homolog of archaea), AAA ATPases (Cdc48/p97 and Rpt types), a type 2 JAB1/MPN/MOV34 metalloenzyme (JAMM/MPN+) homolog (JAMM2), and 20S proteasomes. The ubiquitin-like protein modifier small archaeal modifier protein 2 (SAMP2) stimulated the degradation of TBP2, but SAMP2 itself wasmore » not degraded. Analysis of the TBP2 fractions that were not modified by ubiquitin-like linkages revealed that TBP2 had multiple N termini, including Met1-Ser2, Ser2, and Met1-Ser2(p) [where (p) represents phosphorylation]. The evidence suggested that the Met1-Ser2(p) form accumulated in cells that were unable to degrade TBP2. We propose a model in archaea in which the attachment of ubiquitin-like tags can target proteins for degradation by proteasomes and be controlled by N-terminal degrons. In support of a proteolytic mechanism that is energy dependent and recycles the ubiquitin-like protein tags, we find that a network of AAA ATPases and a JAMM/MPN+ metalloprotease are required, in addition to 20S proteasomes, for controlled intracellular proteolysis. IMPORTANCEThis study advances the fundamental knowledge of signal-guided proteolysis in archaea and sheds light on components that are related to the ubiquitin-proteasome system of eukaryotes. In archaea, the ubiquitin-like proteasome system is found to require function of an E1/MoeB/ThiF homolog, a type 2 JAMM/MPN+ metalloprotease, and a network of AAA ATPases for the targeted destruction of proteins. We provide evidence that the attachment of the ubiquitin-like protein is controlled by an N

  3. Bioinformatics analysis identifies several intrinsically disordered human E3 ubiquitin-protein ligases.

    PubMed

    Boomsma, Wouter; Nielsen, Sofie V; Lindorff-Larsen, Kresten; Hartmann-Petersen, Rasmus; Ellgaard, Lars

    2016-01-01

    The ubiquitin-proteasome system targets misfolded proteins for degradation. Since the accumulation of such proteins is potentially harmful for the cell, their prompt removal is important. E3 ubiquitin-protein ligases mediate substrate ubiquitination by bringing together the substrate with an E2 ubiquitin-conjugating enzyme, which transfers ubiquitin to the substrate. For misfolded proteins, substrate recognition is generally delegated to molecular chaperones that subsequently interact with specific E3 ligases. An important exception is San1, a yeast E3 ligase. San1 harbors extensive regions of intrinsic disorder, which provide both conformational flexibility and sites for direct recognition of misfolded targets of vastly different conformations. So far, no mammalian ortholog of San1 is known, nor is it clear whether other E3 ligases utilize disordered regions for substrate recognition. Here, we conduct a bioinformatics analysis to examine >600 human and S. cerevisiae E3 ligases to identify enzymes that are similar to San1 in terms of function and/or mechanism of substrate recognition. An initial sequence-based database search was found to detect candidates primarily based on the homology of their ordered regions, and did not capture the unique disorder patterns that encode the functional mechanism of San1. However, by searching specifically for key features of the San1 sequence, such as long regions of intrinsic disorder embedded with short stretches predicted to be suitable for substrate interaction, we identified several E3 ligases with these characteristics. Our initial analysis revealed that another remarkable trait of San1 is shared with several candidate E3 ligases: long stretches of complete lysine suppression, which in San1 limits auto-ubiquitination. We encode these characteristic features into a San1 similarity-score, and present a set of proteins that are plausible candidates as San1 counterparts in humans. In conclusion, our work indicates that San1 is

  4. Ubiquitin-specific protease 14 regulates cell proliferation and apoptosis in oral squamous cell carcinoma.

    PubMed

    Chen, Xiangyun; Wu, Jingjing; Chen, Yitian; Ye, Dongxia; Lei, Hu; Xu, Hanzhang; Yang, Li; Wu, Yingli; Gu, Wenli

    2016-10-01

    Ubiquitin-specific protease 14, a deubiquitinating enzyme, has been implicated in the tumorigenesis and progression of several cancers, but its role in oral squamous cell carcinoma remains to be elucidated. The aim of this study was to explore the expression pattern and roles of Ubiquitin-specific protease 14 in the occurrence and development of oral squamous cell carcinoma. Interestingly, Ubiquitin-specific protease 14 was overexpressed in oral cancer tissues and cell lines at both mRNA and protein levels. b-AP15, a specific inhibitor of Ubiquitin-specific protease 14, significantly inhibited the growth of cancer cells and increased cell apoptosis in a dose-dependent manner. Moreover, knockdown of Ubiquitin-specific protease 14 by shRNA significantly inhibited the proliferation and migration of cancer cells in vitro. Finally, using a xenograft mouse model of oral squamous cell carcinoma, knockdown of Ubiquitin-specific protease 14 markedly inhibited tumor growth and triggered the cancer cell apoptosis in vivo, supporting previous results. In conclusion, for the first time we have demonstrated the expression pattern of Ubiquitin-specific protease 14 in oral squamous cell carcinoma and verified a relationship with tumor growth and metastasis. These results may highlight new therapeutic strategies for tumor treatment, application of Ubiquitin-specific protease 14 selective inhibitor, such as b-AP15, or knockdown by shRNA. Collectively, Ubiquitin-specific protease 14 could be a potential therapeutic target for oral squamous cell carcinoma patients. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Hidden targets of ubiquitin proteasome system: To prevent diabetic nephropathy.

    PubMed

    Goru, Santosh Kumar; Kadakol, Almesh; Gaikwad, Anil Bhanudas

    2017-06-01

    Diabetic nephropathy (DN) is the major cause of end stage renal failure. Although, several therapeutic targets have emerged to prevent the progression of DN, the number of people with DN still continues to rise worldwide, suggesting an urgent need of novel targets to prevent DN completely. Currently, the role of ubiquitin proteasome system (UPS) has been highlighted in the pathogenesis and progression of various diseases like obesity, insulin resistance, atherosclerosis, cancers, neurodegerative disorders and including secondary complications of diabetes. UPS mainly involves in protein homeostatis through ubiquitination (post translational modification) and proteasomal degradation of various proteins. Ubiquitination, not only involves in proteasomal degradation, but also directs the substrate proteins to participate in multitude of cell signalling pathways. However, very little is known about ubiquitination and UPS in the progression of DN. This review mainly focuses on UPS and its components including E2 conjugating enzymes, E3 ligases and deubiquitinases (DUBs) in the development of DN and thus may help us to find novel therapeutic targets with in UPS to prevent DN completely in future. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. New Binding Mode to TNF-Alpha Revealed by Ubiquitin-Based Artificial Binding Protein

    PubMed Central

    Hoffmann, Andreas; Kovermann, Michael; Lilie, Hauke; Fiedler, Markus; Balbach, Jochen; Rudolph, Rainer; Pfeifer, Sven

    2012-01-01

    A variety of approaches have been employed to generate binding proteins from non-antibody scaffolds. Utilizing a beta-sheet of the human ubiquitin for paratope creation we obtained binding proteins against tumor necrosis factor (TNF)-alpha. The bioactive form of this validated pharmacological target protein is a non-covalently linked homo-trimer. This structural feature leads to the observation of a certain heterogeneity concerning the binding mode of TNF-alpha binding molecules, for instance in terms of monomer/trimer specificity. We analyzed a ubiquitin-based TNF-alpha binder, selected by ribosome display, with a particular focus on its mode of interaction. Using enzyme-linked immunosorbent assays, specific binding to TNF-alpha with nanomolar affinity was observed. In isothermal titration calorimetry we obtained comparable results regarding the affinity and detected an exothermic reaction with one ubiquitin-derived binding molecule binding one TNF-alpha trimer. Using NMR spectroscopy and other analytical methods the 1∶3 stoichiometry could be confirmed. Detailed binding analysis showed that the interaction is affected by the detergent Tween-20. Previously, this phenomenon was reported only for one other type of alternative scaffold-derived binding proteins – designed ankyrin repeat proteins – without further investigation. As demonstrated by size exclusion chromatography and NMR spectroscopy, the presence of the detergent increases the association rate significantly. Since the special architecture of TNF-alpha is known to be modulated by detergents, the access to the recognized epitope is indicated to be restricted by conformational transitions within the target protein. Our results suggest that the ubiquitin-derived binding protein targets a new epitope on TNF-alpha, which differs from the epitopes recognized by TNF-alpha neutralizing antibodies. PMID:22363609

  7. Structure of a BMI-1-Ring1B Polycomb Group Ubiquitin Ligase Complex

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li,Z.; Cao, R.; Wang, M.

    2006-01-01

    Polycomb group (PcG) proteins Bmi-1 and Ring1B are core subunits of the PRC1 complex which plays important roles in the regulation of Hox gene expression, X-chromosome inactivation, tumorigenesis and stem cell self-renewal. The RING finger protein Ring1B is an E3 ligase that participates in the ubiquitination of lysine 119 of histone H2A, and the binding of Bmi-1 stimulates the E3 ligase activity. We have mapped the regions of Bmi-1 and Ring1B required for efficient ubiquitin transfer and determined a 2.5 Angstroms structure of the Bmi-1-Ring1B core domain complex. The structure reveals that Ring1B 'hugs' Bmi-1 through extensive RING domain contactsmore » and its N-terminal tail wraps around Bmi-1. The two regions of interaction have a synergistic effect on the E3 ligase activity. Our analyses suggest a model where the Bmi-1-Ring1B complex stabilizes the interaction between the E2 enzyme and the nucleosomal substrate to allow efficient ubiquitin transfer.« less

  8. Characterization and expression analysis of genes encoding ubiquitin conjugating domain-containing enzymes in Carica papaya

    PubMed Central

    Jue, Dengwei; Sang, Xuelian; Shu, Bo; Liu, Liqin; Wang, Yicheng; Jia, Zhiwei; Zou, Yu; Shi, Shengyou

    2017-01-01

    Background Ripening affects the quality and nutritional contents of fleshy fruits and is a crucial process of fruit development. Although several studies have suggested that ubiquitin-conjugating enzyme (E2s or UBC enzymes) are involved in the regulation of fruit ripening, little is known about the function of E2s in papaya (Carica papaya). Methodology/Principal findings In the present study, we searched the papaya genome and identified 34 putative UBC genes, which were clustered into 17 phylogenetic subgroups. We also analyzed the nucleotide sequences of the papaya UBC (CpUBC) genes and found that both exon-intron junctions and sequence motifs were highly conserved among the phylogenetic subgroups. Using real-time PCR analysis, we also found that all the CpUBC genes were expressed in roots, stems, leaves, male and female flowers, and mature fruit, although the expression of some of the genes was increased or decreased in one or several specific organs. We also found that the expression of 13 and two CpUBC genes were incresesd or decreased during one and two ripening stages, respectively. Expression analyses indicates possible E2s playing a more significant role in fruit ripening for further studies. Conclusions To the best of our knowledge, this is the first reported genome-wide analysis of the papaya UBC gene family, and the results will facilitate further investigation of the roles of UBC genes in fruit ripening and will aide in the functional validation of UBC genes in papaya. PMID:28231288

  9. Ubiquitin proteasome system in Parkinson's disease: a keeper or a witness?

    PubMed

    Martins-Branco, Diogo; Esteves, Ana R; Santos, Daniel; Arduino, Daniela M; Swerdlow, Russell H; Oliveira, Catarina R; Januario, Cristina; Cardoso, Sandra M

    2012-12-01

    The aim of this work was to evaluate the role of ubiquitin-proteasome system (UPS) on mitochondrial-driven alpha-synuclein (aSN) clearance in in vitro, ex vivo and in vivo Parkinson's disease (PD) cellular models. We used SH-SY5Y ndufa2 knock-down (KD) cells, PD cybrids and peripheral blood mononuclear cells (PBMC) from patients meeting the diagnostic criteria for PD. We quantified aSN aggregation, proteasome activity and protein ubiquitination levels. In PBMC of PD patient population we evaluated the aSN levels in the plasma and the influence of several demographic characteristics in the above mentioned determinations. We found that ubiquitin-independent proteasome activity was up-regulated in SH-SY5Y ndufa2 KD cells while a downregulation was observed in PD cybrids and PBMC. Moreover, we observed an increase in protein ubiquitination that correlates with a decrease in ubiquitin-dependent proteasome activity. Accordingly, proteasome inhibition prevented ubiquitin-dependent aSN clearance. Ubiquitin-independent proteasome activity was positively correlated with ubiquitination in PBMC. We also report a negative correlation of chymotrypsin-like activity with age in control and late-onset PD groups. Total ubiquitin content is positively correlated with aSN oligomer levels, which leads to an age-dependent increase of aSN ubiquitination in LOPD. Moreover, aSN levels are increased in the plasma of PD patients. aSN oligomers are ubiquitinated and we identified a ubiquitin-dependent clearance insufficiency with the accumulation of both aSN and ubiquitin. However, SH-SY5Y ndufa2 KD cells showed a significant up-regulation of ubiquitin-independent proteasomal enzymatic activity that could mean a cell rescue attempt. Moreover, we identified that UPS function is age-dependent in PBMC. Copyright © 2012 Elsevier Inc. All rights reserved.

  10. Ubiquitin Proteasome System in Parkinson Disease: a keeper or a witness?

    PubMed Central

    Martins-Branco, Diogo; Esteves, Ana R.; Santos, Daniel; Arduino, Daniela M.; Swerdlow, Russell H.; Oliveira, Catarina R.; Januario, Cristina; Cardoso, Sandra M.

    2014-01-01

    Objective The aim of this work was to evaluate the role of Ubiquitin-Proteasome System (UPS) on mitochondrial-driven alpha-synuclein (aSN) clearance in in vitro, ex vivo and in vivo Parkinson disease (PD) cellular models. Method We used SH-SY5Y ndufa2 knock-down (KD) cells, PD cybrids and peripheral blood mononuclear cells (PBMC) from patients meeting the diagnostic criteria for PD. We quantified aSN aggregation, proteasome activity and protein ubiquitination levels. In PBMC of PD patients population we evaluated aSN levels in plasma and the influence of several demographic characteristics in the above mentioned determinations. Results We found that ubiquitin-independent proteasome activity was up-regulated in SH-SY5Y ndufa2 KD cells while a down regulation was observed in PD cybrids and PBMC. Moreover, we observed an increase in protein ubiquitination that correlates with a decrease in ubiquitin-dependent proteasome activity. Accordingly, proteasome inhibition prevented ubiquitin-dependent aSN clearance. Ubiquitin-independent proteasome activity was positively correlated with ubiquitination in PBMC. We also report a negative correlation of chymotrypsin-like activity with age in control and late-onset PD groups. Total ubiquitin content is positively correlated with aSN oligomers levels, which leads to an age-dependent increase of aSN ubiquitination in LOPD. Moreover, aSN levels are increased in the plasma of PD patients. Interpretation aSN oligomers are ubiquitinated and we identified an ubiquitin-dependent clearance insufficiency with accumulation of both aSN and ubiquitin. However, SH-SY5Y ndufa2 KD cells showed a significant up-regulation of ubiquitin-independent proteasomal enzymatic activity that could mean a cell rescue attempt. Moreover, we identified that UPS function is age-dependent in PBMC. PMID:22921536

  11. A novel effect of thalidomide and its analogs: suppression of cereblon ubiquitination enhances ubiquitin ligase function

    PubMed Central

    Liu, Yaobin; Huang, Xiangao; He, Xian; Zhou, Yanqing; Jiang, Xiaogang; Chen-Kiang, Selina; Jaffrey, Samie R.; Xu, Guoqiang

    2015-01-01

    The immunomodulatory drug (IMiD) thalidomide and its structural analogs lenalidomide and pomalidomide are highly effective in treating clinical indications. Thalidomide binds to cereblon (CRBN), a substrate receptor of the cullin-4 really interesting new gene (RING) E3 ligase complex. Here, we examine the effect of thalidomide and its analogs on CRBN ubiquitination and its functions in human cell lines. We find that the ubiquitin modification of CRBN includes K48-linked polyubiquitin chains and that thalidomide blocks the formation of CRBN-ubiquitin conjugates. Furthermore, we show that ubiquitinated CRBN is targeted for proteasomal degradation. Treatment of human myeloma cell lines such as MM1.S, OPM2, and U266 with thalidomide (100 μM) and its structural analog lenalidomide (10 μM) results in stabilization of CRBN and elevation of CRBN protein levels. This in turn leads to the reduced level of CRBN target proteins and enhances the sensitivity of human multiple myeloma cells to IMiDs. Our results reveal a novel mechanism by which thalidomide and its analogs modulate the CRBN function in cells. Through inhibition of CRBN ubiquitination, thalidomide and its analogs allow CRBN to accumulate, leading to the increased cullin-4 RING E3 ligase-mediated degradation of target proteins.—Liu, Y., Huang, X., He, X., Zhou, Y., Jiang, X., Chen-Kiang, S., Jaffrey, S. R., Xu, G. A novel effect of thalidomide and its analogs: suppression of cereblon ubiquitination enhances ubiquitin ligase function. PMID:26231201

  12. Parkin is activated by PINK1-dependent phosphorylation of ubiquitin at Ser65

    PubMed Central

    Kazlauskaite, Agne; Kondapalli, Chandana; Gourlay, Robert; Campbell, David G.; Ritorto, Maria Stella; Hofmann, Kay; Alessi, Dario R.; Knebel, Axel; Trost, Matthias; Muqit, Miratul M. K.

    2014-01-01

    We have previously reported that the Parkinson's disease-associated kinase PINK1 (PTEN-induced putative kinase 1) is activated by mitochondrial depolarization and stimulates the Parkin E3 ligase by phosphorylating Ser65 within its Ubl (ubiquitin-like) domain. Using phosphoproteomic analysis, we identified a novel ubiquitin phosphopeptide phosphorylated at Ser65 that was enriched 14-fold in HEK (human embryonic kidney)-293 cells overexpressing wild-type PINK1 stimulated with the mitochondrial uncoupling agent CCCP (carbonyl cyanide m-chlorophenylhydrazone), to activate PINK1, compared with cells expressing kinase-inactive PINK1. Ser65 in ubiquitin lies in a similar motif to Ser65 in the Ubl domain of Parkin. Remarkably, PINK1 directly phosphorylates Ser65 of ubiquitin in vitro. We undertook a series of experiments that provide striking evidence that Ser65-phosphorylated ubiquitin (ubiquitinPhospho−Ser65) functions as a critical activator of Parkin. First, we demonstrate that a fragment of Parkin lacking the Ubl domain encompassing Ser65 (ΔUbl-Parkin) is robustly activated by ubiquitinPhospho−Ser65, but not by non-phosphorylated ubiquitin. Secondly, we find that the isolated Parkin Ubl domain phosphorylated at Ser65 (UblPhospho−Ser65) can also activate ΔUbl-Parkin similarly to ubiquitinPhospho−Ser65. Thirdly, we establish that ubiquitinPhospho−Ser65, but not non-phosphorylated ubiquitin or UblPhospho−Ser65, activates full-length wild-type Parkin as well as the non-phosphorylatable S65A Parkin mutant. Fourthly, we provide evidence that optimal activation of full-length Parkin E3 ligase is dependent on PINK1-mediated phosphorylation of both Parkin at Ser65 and ubiquitin at Ser65, since only mutation of both proteins at Ser65 completely abolishes Parkin activation. In conclusion, the findings of the present study reveal that PINK1 controls Parkin E3 ligase activity not only by phosphorylating Parkin at Ser65, but also by phosphorylating ubiquitin at Ser65

  13. Ubiquitin turnover and endocytic trafficking in yeast are regulated by Ser57 phosphorylation of ubiquitin

    PubMed Central

    Lee, Sora; Tumolo, Jessica M; Ehlinger, Aaron C; Jernigan, Kristin K; Qualls-Histed, Susan J; Hsu, Pi-Chiang; McDonald, W Hayes; Chazin, Walter J

    2017-01-01

    Despite its central role in protein degradation little is known about the molecular mechanisms that sense, maintain, and regulate steady state concentration of ubiquitin in the cell. Here, we describe a novel mechanism for regulation of ubiquitin homeostasis that is mediated by phosphorylation of ubiquitin at the Ser57 position. We find that loss of Ppz phosphatase activity leads to defects in ubiquitin homeostasis that are at least partially attributable to elevated levels of Ser57 phosphorylated ubiquitin. Phosphomimetic mutation at the Ser57 position of ubiquitin conferred increased rates of endocytic trafficking and ubiquitin turnover. These phenotypes are associated with bypass of recognition by endosome-localized deubiquitylases - including Doa4 which is critical for regulation of ubiquitin recycling. Thus, ubiquitin homeostasis is significantly impacted by the rate of ubiquitin flux through the endocytic pathway and by signaling pathways that converge on ubiquitin itself to determine whether it is recycled or degraded in the vacuole. PMID:29130884

  14. A Review on Ubiquitination of Neurotrophin Receptors: Facts and Perspectives

    PubMed Central

    Sánchez-Sánchez, Julia; Arévalo, Juan Carlos

    2017-01-01

    Ubiquitination is a reversible post-translational modification involved in a plethora of different physiological functions. Among the substrates that are ubiquitinated, neurotrophin receptors (TrkA, TrkB, TrkC, and p75NTR) have been studied recently. TrkA is the most studied receptor in terms of its ubiquitination, and different E3 ubiquitin ligases and deubiquitinases have been implicated in its ubiquitination, whereas not much is known about the other neurotrophin receptors aside from their ubiquitination. Additional studies are needed that focus on the ubiquitination of TrkB, TrkC, and p75NTR in order to further understand the role of ubiquitination in their physiological and pathological functions. Here we review what is currently known regarding the ubiquitination of neurotrophin receptors and its physiological and pathological relevance. PMID:28335430

  15. HIV-1 Vif can directly inhibit apolipoprotein B mRNA-editing enzyme catalytic polypeptide-like 3G-mediated cytidine deamination by using a single amino acid interaction and without protein degradation.

    PubMed

    Santa-Marta, Mariana; da Silva, Frederico Aires; Fonseca, Ana Margarida; Goncalves, Joao

    2005-03-11

    The human apolipoprotein B mRNA-editing enzyme catalytic polypeptide-like 3G (APOBEC3G), also known as CEM-15, is a host-cell factor involved in innate resistance to retroviral infection. HIV-1 viral infectivity factor (Vif) protein was shown to protect the virus from APOBEC3G-mediated viral cDNA hypermutation. The mechanism proposed for protection of the virus by HIV-1 Vif is mediated by APOBEC3G degradation through ubiquitination and the proteasomal pathway. Here we show that in Escherichia coli the APOBEC3G-induced cytidine deamination is inhibited by expression of Vif without depletion of deaminase. Moreover, inhibition of deaminase-mediated bacterial hypermutation is dependent on a single amino acid substitution D128K that renders APOBEC3G resistant to Vif inhibition. This single amino acid was elegantly proven by other authors to determine species-specific sensitivity. Our results show that in bacteria this single amino acid substitution controls Vif-dependent blocking of APOBEC3G that is dependent on a strong protein interaction. The C-terminal region of Vif is responsible for this strong protein-protein interaction. In conclusion, our experiments suggest a complement to the model of Vif-induced degradation of APOBEC3G by bringing to relevance that deaminase inhibition can also result from a direct interaction with Vif protein.

  16. Multisite Phosphorylation of Human Liver Cytochrome P450 3A4 Enhances Its gp78- and CHIP-mediated Ubiquitination

    PubMed Central

    Wang, YongQiang; Guan, Shenheng; Acharya, Poulomi; Liu, Yi; Thirumaran, Ranjit K.; Brandman, Relly; Schuetz, Erin G.; Burlingame, Alma L.; Correia, Maria Almira

    2012-01-01

    CYP3A4, an integral endoplasmic reticulum (ER)-anchored protein, is the major human liver cytochrome P450 enzyme responsible for the disposition of over 50% of clinically relevant drugs. Alterations of its protein turnover can influence drug metabolism, drug-drug interactions, and the bioavailability of chemotherapeutic drugs. Such CYP3A4 turnover occurs via a classical ER-associated degradation (ERAD) process involving ubiquitination by both UBC7/gp78 and UbcH5a/CHIP E2-E3 complexes for 26 S proteasomal targeting. These E3 ligases act sequentially and cooperatively in CYP3A4 ERAD because RNA interference knockdown of each in cultured hepatocytes results in the stabilization of a functionally active enzyme. We have documented that UBC7/gp78-mediated CYP3A4 ubiquitination requires protein phosphorylation by protein kinase (PK) A and PKC and identified three residues (Ser-478, Thr-264, and Ser-420) whose phosphorylation is required for intracellular CYP3A4 ERAD. We document herein that of these, Ser-478 plays a pivotal role in UBC7/gp78-mediated CYP3A4 ubiquitination, which is accelerated and enhanced on its mutation to the phosphomimetic Asp residue but attenuated on its Ala mutation. Intriguingly, CYP3A5, a polymorphically expressed human liver CYP3A4 isoform (containing Asp-478) is ubiquitinated but not degraded to a greater extent than CYP3A4 in HepG2 cells. This suggests that although Ser-478 phosphorylation is essential for UBC7/gp78-mediated CYP3A4 ubiquitination, it is not sufficient for its ERAD. Additionally, we now report that CYP3A4 protein phosphorylation by PKA and/or PKC at sites other than Ser-478, Thr-264, and Ser-420 also enhances UbcH5a/CHIP-mediated ubiquitination. Through proteomic analyses, we identify (i) 12 additional phosphorylation sites that may be involved in CHIP-CYP3A4 interactions and (ii) 8 previously unidentified CYP3A4 ubiquitination sites within spatially associated clusters of Asp/Glu and phosphorylatable Ser/Thr residues that may

  17. The nucleolar ubiquitin-specific protease USP36 deubiquitinates and stabilizes c-Myc

    PubMed Central

    Sun, Xiao-Xin; He, Xia; Yin, Li; Komada, Masayuki; Sears, Rosalie C.; Dai, Mu-Shui

    2015-01-01

    c-Myc protein stability and activity are tightly regulated by the ubiquitin-proteasome system. Aberrant stabilization of c-Myc contributes to many human cancers. c-Myc is ubiquitinated by SCFFbw7 (a SKP1-cullin-1-F-box complex that contains the F-box and WD repeat domain-containing 7, Fbw7, as the F-box protein) and several other ubiquitin ligases, whereas it is deubiquitinated and stabilized by ubiquitin-specific protease (USP) 28. The bulk of c-Myc degradation appears to occur in the nucleolus. However, whether c-Myc is regulated by deubiquitination in the nucleolus is not known. Here, we report that the nucleolar deubiquitinating enzyme USP36 is a novel c-Myc deubiquitinase. USP36 interacts with and deubiquitinates c-Myc in cells and in vitro, leading to the stabilization of c-Myc. This USP36 regulation of c-Myc occurs in the nucleolus. Interestingly, USP36 interacts with the nucleolar Fbw7γ but not the nucleoplasmic Fbw7α. However, it abolished c-Myc degradation mediated both by Fbw7γ and by Fbw7α. Consistently, knockdown of USP36 reduces the levels of c-Myc and suppresses cell proliferation. We further show that USP36 itself is a c-Myc target gene, suggesting that USP36 and c-Myc form a positive feedback regulatory loop. High expression levels of USP36 are found in a subset of human breast and lung cancers. Altogether, these results identified USP36 as a crucial and bono fide deubiquitinating enzyme controlling c-Myc’s nucleolar degradation pathway. PMID:25775507

  18. Drosophila BRUCE inhibits apoptosis through non-lysine ubiquitination of the IAP-antagonist REAPER

    PubMed Central

    Domingues, C; Ryoo, H D

    2012-01-01

    Active caspases execute apoptosis to eliminate superfluous or harmful cells in animals. In Drosophila, living cells prevent uncontrolled caspase activation through an inhibitor of apoptosis protein (IAP) family member, dIAP1, and apoptosis is preceded by the expression of IAP-antagonists, such as Reaper, Hid and Grim. Strong genetic modifiers of this pathway include another IAP family gene encoding an E2 ubiquitin conjugating enzyme domain, dBruce. Although the genetic effects of dBruce mutants are well documented, molecular targets of its encoded protein have remained elusive. Here, we report that dBruce targets Reaper for ubiquitination through an unconventional mechanism. Specifically, we show that dBruce physically interacts with Reaper, dependent upon Reaper's IAP-binding (IBM) and GH3 motifs. Consistently, Reaper levels were elevated in a dBruce −/− background. Unexpectedly, we found that dBruce also affects the levels of a mutant form of Reaper without any internal lysine residues, which normally serve as conventional ubiquitin acceptor sites. Furthermore, we were able to biochemically detect ubiquitin conjugation on lysine-deficient Reaper proteins, and knockdown of dBruce significantly reduced the extent of this ubiquitination. Our results indicate that dBruce inhibits apoptosis by promoting IAP-antagonist ubiquitination on unconventional acceptor sites. PMID:21886178

  19. Tuning BRCA1 and BARD1 activity to investigate RING ubiquitin ligase mechanisms.

    PubMed

    Stewart, Mikaela D; Duncan, Emily D; Coronado, Ernesto; DaRosa, Paul A; Pruneda, Jonathan N; Brzovic, Peter S; Klevit, Rachel E

    2017-03-01

    The tumor-suppressor protein BRCA1 works with BARD1 to catalyze the transfer of ubiquitin onto protein substrates. The N-terminal regions of BRCA1 and BARD1 that contain their RING domains are responsible for dimerization and ubiquitin ligase activity. This activity is a common feature among hundreds of human RING domain-containing proteins. RING domains bind and activate E2 ubiquitin-conjugating enzymes to promote ubiquitin transfer to substrates. We show that the identity of residues at specific positions in the RING domain can tune activity levels up or down. We report substitutions that create a structurally intact BRCA1/BARD1 heterodimer that is inactive in vitro with all E2 enzymes. Other substitutions in BRCA1 or BARD1 RING domains result in hyperactivity, revealing that both proteins have evolved attenuated activity. Loss of attenuation results in decreased product specificity, providing a rationale for why nature has tuned BRCA1 activity. The ability to tune BRCA1 provides powerful tools for understanding its biological functions and provides a basis to assess mechanisms for rescuing the activity of cancer-associated variations. Beyond the applicability to BRCA1, we show the identity of residues at tuning positions that can be used to predict and modulate the activity of an unrelated RING E3 ligase. These findings provide valuable insights into understanding the mechanism and function of RING E3 ligases like BRCA1. © 2017 The Protein Society.

  20. High Levels of Serum Ubiquitin and Proteasome in a Case of HLA-B27 Uveitis.

    PubMed

    Rossi, Settimio; Gesualdo, Carlo; Maisto, Rosa; Trotta, Maria Consiglia; Di Carluccio, Nadia; Brigida, Annalisa; Di Iorio, Valentina; Testa, Francesco; Simonelli, Francesca; D'Amico, Michele; Di Filippo, Clara

    2017-02-26

    In this paper, the authors describe a case of high serum levels of ubiquitin and proteasome in a woman under an acute attack of autoimmune uveitis. The woman was 52 years old, diagnosed as positive for the Human leukocyte antigen-B27 gene, and came to our observation in January 2013 claiming a severe uveitis attack that involved the right eye. During the acute attack of uveitis, this woman had normal serum biochemical parameters but higher levels of serum ubiquitin and proteasome 20S subunit, with respect to a healthy volunteer matched for age and sex. These levels correlated well with the clinical score attributed to uveitis. After the patient was admitted to therapy, she received oral prednisone in a de-escalation protocol (doses from 50 to 5 mg/day) for four weeks. Following this therapy, she had an expected reduction of clinical signs and score for uveitis, but concomitantly she had a reduction of the serum levels of ubiquitin, poliubiquitinated proteins (MAb-FK1) and proteasome 20S activity. Therefore, a role for ubiquitin and proteasome in the development of human autoimmune uveitis has been hypothesized.

  1. H2O2 Regulates Lung Epithelial Sodium Channel (ENaC) via Ubiquitin-like Protein Nedd8

    PubMed Central

    Downs, Charles A.; Kumar, Amrita; Kreiner, Lisa H.; Johnson, Nicholle M.; Helms, My N.

    2013-01-01

    Redundancies in both the ubiquitin and epithelial sodium transport pathways allude to their importance of proteolytic degradation and ion transport in maintaining normal cell function. The classical pathway implicated in ubiquitination of the epithelial sodium channel (ENaC) involves Nedd4-2 regulation of sodium channel subunit expression and has been studied extensively studied. However, less attention has been given to the role of the ubiquitin-like protein Nedd8. Here we show that Nedd8 plays an important role in the ubiquitination of ENaC in alveolar epithelial cells. We report that the Nedd8 pathway is redox-sensitive and that under oxidizing conditions Nedd8 conjugation to Cullin-1 is attenuated, resulting in greater surface expression of α-ENaC. This observation was confirmed in our electrophysiology studies in which we inhibited Nedd8-activating enzyme using MLN4924 (a specific Nedd8-activating enzyme inhibitor) and observed a marked increase in ENaC activity (measured as the product of the number of channels (N) and the open probability (Po) of a channel). These results suggest that ubiquitination of lung ENaC is redox-sensitive and may have significant implications for our understanding of the role of ENaC in pulmonary conditions where oxidative stress occurs, such as pulmonary edema and acute lung injury. PMID:23362276

  2. Determination of the pKa of the N-terminal amino group of ubiquitin by NMR

    PubMed Central

    Oregioni, Alain; Stieglitz, Benjamin; Kelly, Geoffrey; Rittinger, Katrin; Frenkiel, Tom

    2017-01-01

    Ubiquitination regulates nearly every aspect of cellular life. It is catalysed by a cascade of three enzymes and results in the attachment of the C-terminal carboxylate of ubiquitin to a lysine side chain in the protein substrate. Chain extension occurs via addition of subsequent ubiquitin molecules to either one of the seven lysine residues of ubiquitin, or via its N-terminal α-amino group to build linear ubiquitin chains. The pKa of lysine side chains is around 10.5 and hence E3 ligases require a mechanism to deprotonate the amino group at physiological pH to produce an effective nucleophile. In contrast, the pKa of N-terminal α-amino groups of proteins can vary significantly, with reported values between 6.8 and 9.1, raising the possibility that linear chain synthesis may not require a general base. In this study we use NMR spectroscopy to determine the pKa for the N-terminal α-amino group of methionine1 of ubiquitin for the first time. We show that it is 9.14, one of the highest pKa values ever reported for this amino group, providing a rational for the observed need for a general base in the E3 ligase HOIP, which synthesizes linear ubiquitin chains. PMID:28252051

  3. Dengue Virus Genome Uncoating Requires Ubiquitination.

    PubMed

    Byk, Laura A; Iglesias, Néstor G; De Maio, Federico A; Gebhard, Leopoldo G; Rossi, Mario; Gamarnik, Andrea V

    2016-06-28

    The process of genome release or uncoating after viral entry is one of the least-studied steps in the flavivirus life cycle. Flaviviruses are mainly arthropod-borne viruses, including emerging and reemerging pathogens such as dengue, Zika, and West Nile viruses. Currently, dengue virus is one of the most significant human viral pathogens transmitted by mosquitoes and is responsible for about 390 million infections every year around the world. Here, we examined for the first time molecular aspects of dengue virus genome uncoating. We followed the fate of the capsid protein and RNA genome early during infection and found that capsid is degraded after viral internalization by the host ubiquitin-proteasome system. However, proteasome activity and capsid degradation were not necessary to free the genome for initial viral translation. Unexpectedly, genome uncoating was blocked by inhibiting ubiquitination. Using different assays to bypass entry and evaluate the first rounds of viral translation, a narrow window of time during infection that requires ubiquitination but not proteasome activity was identified. In this regard, ubiquitin E1-activating enzyme inhibition was sufficient to stabilize the incoming viral genome in the cytoplasm of infected cells, causing its retention in either endosomes or nucleocapsids. Our data support a model in which dengue virus genome uncoating requires a nondegradative ubiquitination step, providing new insights into this crucial but understudied viral process. Dengue is the most significant arthropod-borne viral infection in humans. Although the number of cases increases every year, there are no approved therapeutics available for the treatment of dengue infection, and many basic aspects of the viral biology remain elusive. After entry, the viral membrane must fuse with the endosomal membrane to deliver the viral genome into the cytoplasm for translation and replication. A great deal of information has been obtained in the last decade

  4. Crystal Structure of a Josephin-Ubiquitin Complex: Evolutionary Restraints on Ataxin-3 Deubiquitinating Activity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    S Weeks; K Grasty; L Hernandez-Cuebas

    2011-12-31

    The Josephin domain is a conserved cysteine protease domain found in four human deubiquitinating enzymes: ataxin-3, the ataxin-3-like protein (ATXN3L), Josephin-1, and Josephin-2. Josephin domains from these four proteins were purified and assayed for their ability to cleave ubiquitin substrates. Reaction rates differed markedly both among the different proteins and for different substrates with a given protein. The ATXN3L Josephin domain is a significantly more efficient enzyme than the ataxin-3 domain despite their sharing 85% sequence identity. To understand the structural basis of this difference, the 2.6 {angstrom} x-ray crystal structure of the ATXN3L Josephin domain in complex with ubiquitinmore » was determined. Although ataxin-3 and ATXN3L adopt similar folds, they bind ubiquitin in different, overlapping sites. Mutations were made in ataxin-3 at selected positions, introducing the corresponding ATXN3L residue. Only three such mutations are sufficient to increase the catalytic activity of the ataxin-3 domain to levels comparable with that of ATXN3L, suggesting that ataxin-3 has been subject to evolutionary restraints that keep its deubiquitinating activity in check.« less

  5. Automated NMR structure determination of stereo-array isotope labeled ubiquitin from minimal sets of spectra using the SAIL-FLYA system.

    PubMed

    Ikeya, Teppei; Takeda, Mitsuhiro; Yoshida, Hitoshi; Terauchi, Tsutomu; Jee, Jun-Goo; Kainosho, Masatsune; Güntert, Peter

    2009-08-01

    Stereo-array isotope labeling (SAIL) has been combined with the fully automated NMR structure determination algorithm FLYA to determine the three-dimensional structure of the protein ubiquitin from different sets of input NMR spectra. SAIL provides a complete stereo- and regio-specific pattern of stable isotopes that results in sharper resonance lines and reduced signal overlap, without information loss. Here we show that as a result of the superior quality of the SAIL NMR spectra, reliable, fully automated analyses of the NMR spectra and structure calculations are possible using fewer input spectra than with conventional uniformly 13C/15N-labeled proteins. FLYA calculations with SAIL ubiquitin, using a single three-dimensional "through-bond" spectrum (and 2D HSQC spectra) in addition to the 13C-edited and 15N-edited NOESY spectra for conformational restraints, yielded structures with an accuracy of 0.83-1.15 A for the backbone RMSD to the conventionally determined solution structure of SAIL ubiquitin. NMR structures can thus be determined almost exclusively from the NOESY spectra that yield the conformational restraints, without the need to record many spectra only for determining intermediate, auxiliary data of the chemical shift assignments. The FLYA calculations for this report resulted in 252 ubiquitin structure bundles, obtained with different input data but identical structure calculation and refinement methods. These structures cover the entire range from highly accurate structures to seriously, but not trivially, wrong structures, and thus constitute a valuable database for the substantiation of structure validation methods.

  6. Compendium of fruit fly host information (CoFFHI), edition 2.0

    USDA-ARS?s Scientific Manuscript database

    The Compendium of Fruit Fly Host Information (CoFFHI), edition 2.0, developed through collaborative efforts of scientists in USDA-APHIS, USDA-ARS, and the Center for Integrated Pest Management (CIPM) of North Carolina State University (NCSU), provides centralized online documentation of what is know...

  7. What do we really know about the ubiquitin-proteasome pathway in muscle atrophy?

    PubMed

    Jagoe, R T; Goldberg, A L

    2001-05-01

    Studies of many different rodent models of muscle wasting have indicated that accelerated proteolysis via the ubiquitin-proteasome pathway is the principal cause of muscle atrophy induced by fasting, cancer cachexia, metabolic acidosis, denervation, disuse, diabetes, sepsis, burns, hyperthyroidism and excess glucocorticoids. However, our understanding about how muscle proteins are degraded, and how the ubiquitin-proteasome pathway is activated in muscle under these conditions, is still very limited. The identities of the important ubiquitin-protein ligases in skeletal muscle, and the ways in which they recognize substrates are still largely unknown. Recent in-vitro studies have suggested that one set of ubquitination enzymes, E2(14K) and E3(alpha), which are responsible for the 'N-end rule' system of ubiquitination, plays an important role in muscle, especially in catabolic states. However, their functional significance in degrading different muscle proteins is still unclear. This review focuses on the many gaps in our understanding of the functioning of the ubiquitin-proteasome pathway in muscle atrophy, and highlights the strengths and limitations of the different experimental approaches used in such studies.

  8. What do we really know about the ubiquitin-proteasome pathway in muscle atrophy?

    NASA Technical Reports Server (NTRS)

    Jagoe, R. T.; Goldberg, A. L.

    2001-01-01

    Studies of many different rodent models of muscle wasting have indicated that accelerated proteolysis via the ubiquitin-proteasome pathway is the principal cause of muscle atrophy induced by fasting, cancer cachexia, metabolic acidosis, denervation, disuse, diabetes, sepsis, burns, hyperthyroidism and excess glucocorticoids. However, our understanding about how muscle proteins are degraded, and how the ubiquitin-proteasome pathway is activated in muscle under these conditions, is still very limited. The identities of the important ubiquitin-protein ligases in skeletal muscle, and the ways in which they recognize substrates are still largely unknown. Recent in-vitro studies have suggested that one set of ubquitination enzymes, E2(14K) and E3(alpha), which are responsible for the 'N-end rule' system of ubiquitination, plays an important role in muscle, especially in catabolic states. However, their functional significance in degrading different muscle proteins is still unclear. This review focuses on the many gaps in our understanding of the functioning of the ubiquitin-proteasome pathway in muscle atrophy, and highlights the strengths and limitations of the different experimental approaches used in such studies.

  9. Structural and Functional Investigations of the N-Terminal Ubiquitin Binding Region of Usp25.

    PubMed

    Yang, Yuanyuan; Shi, Li; Ding, Yiluan; Shi, Yanhong; Hu, Hong-Yu; Wen, Yi; Zhang, Naixia

    2017-05-23

    Ubiquitin-specific protease 25 (Usp25) is a deubiquitinase that is involved in multiple biological processes. The N-terminal ubiquitin-binding region (UBR) of Usp25 contains one ubiquitin-associated domain, one small ubiquitin-like modifier (SUMO)-interacting motif and two ubiquitin-interacting motifs. Previous studies suggest that the covalent sumoylation in the UBR of Usp25 impairs its enzymatic activity. Here, we raise the hypothesis that non-covalent binding of SUMO, a prerequisite for efficient sumoylation, will impair Usp25's catalytic activity as well. To test our hypothesis and elucidate the underlying molecular mechanism, we investigated the structure and function of the Usp25 N-terminal UBR. The solution structure of Usp25 1-146 is obtained, and the key residues responsible for recognition of ubiquitin and SUMO2 are identified. Our data suggest inhibition of Usp25's catalytic activity upon the non-covalent binding of SUMO2 to the Usp25 SUMO-interacting motif. We also find that SUMO2 can competitively block the interaction between the Usp25 UBR and its ubiquitin substrates. Based on our findings, we have proposed a working model to depict the regulatory role of the Usp25 UBR in the functional display of the enzyme. Copyright © 2017 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  10. Tandem UIMs confer Lys48 ubiquitin chain substrate preference to deubiquitinase USP25

    PubMed Central

    Kawaguchi, Kohei; Uo, Kazune; Tanaka, Toshiaki; Komada, Masayuki

    2017-01-01

    Ubiquitin-specific protease (USP) 25, belonging to the USP family of deubiquitinases, harbors two tandem ubiquitin-interacting motifs (UIMs), a ~20-amino-acid α-helical stretch that binds to ubiquitin. However, the role of the UIMs in USP25 remains unclear. Here we show that the tandem UIM region binds to Lys48-, but not Lys63-, linked ubiquitin chains, where the two UIMs played a critical and cooperative role. Purified USP25 exhibited higher ubiquitin isopeptidase activity to Lys48-, than to Lys63-, linked ubiquitin chains. Mutations that disrupted the ubiquitin-binding ability of the tandem UIMs resulted in a reduced ubiquitin isopeptidase activity of USP25, suggesting a role for the UIMs in exerting the full catalytic activity of USP25. Moreover, when mutations that convert the binding preference from Lys48- to Lys63-linked ubiquitin chains were introduced into the tandem UIM region, the USP25 mutants acquired elevated and reduced isopeptidase activity toward Lys63- and Lys48-linked ubiquitin chains, respectively. These results suggested that the binding preference of the tandem UIMs toward Lys48-linked ubiquitin chains contributes not only to the full catalytic activity but also to the ubiquitin chain substrate preference of USP25, possibly by selectively holding the Lys48-linked ubiquitin chain substrates in the proximity of the catalytic core. PMID:28327663

  11. The APC/C Ubiquitin Ligase: From Cell Biology to Tumorigenesis

    PubMed Central

    Penas, Clara; Ramachandran, Vimal; Ayad, Nagi George

    2011-01-01

    The ubiquitin proteasome system (UPS) is required for normal cell proliferation, vertebrate development, and cancer cell transformation. The UPS consists of multiple proteins that work in concert to target a protein for degradation via the 26S proteasome. Chains of an 8.5-kDa protein called ubiquitin are attached to substrates, thus allowing recognition by the 26S proteasome. Enzymes called ubiquitin ligases or E3s mediate specific attachment to substrates. Although there are over 600 different ubiquitin ligases, the Skp1–Cullin–F-box (SCF) complexes and the anaphase promoting complex/cyclosome (APC/C) are the most studied. SCF involvement in cancer has been known for some time while APC/C’s cancer role has recently emerged. In this review we will discuss the importance of APC/C to normal cell proliferation and development, underscoring its possible contribution to transformation. We will also examine the hypothesis that modulating a specific interaction of the APC/C may be therapeutically attractive in specific cancer subtypes. Finally, given that the APC/C pathway is relatively new as a cancer target, therapeutic interventions affecting APC/C activity may be beneficial in cancers that are resistant to classical chemotherapy. PMID:22655255

  12. RavN is a member of a previously unrecognized group of Legionella pneumophila E3 ubiquitin ligases

    PubMed Central

    Lin, Yi-Han; Evans, Timothy R.; Doms, Alexandra G.; Beauchene, Nicole A.; Hierro, Aitor

    2018-01-01

    The eukaryotic ubiquitylation machinery catalyzes the covalent attachment of the small protein modifier ubiquitin to cellular target proteins in order to alter their fate. Microbial pathogens exploit this post-translational modification process by encoding molecular mimics of E3 ubiquitin ligases, eukaryotic enzymes that catalyze the final step in the ubiquitylation cascade. Here, we show that the Legionella pneumophila effector protein RavN belongs to a growing class of bacterial proteins that mimic host cell E3 ligases to exploit the ubiquitylation pathway. The E3 ligase activity of RavN was located within its N-terminal region and was dependent upon interaction with a defined subset of E2 ubiquitin-conjugating enzymes. The crystal structure of the N-terminal region of RavN revealed a U-box-like motif that was only remotely similar to other U-box domains, indicating that RavN is an E3 ligase relic that has undergone significant evolutionary alteration. Substitution of residues within the predicted E2 binding interface rendered RavN inactive, indicating that, despite significant structural changes, the mode of E2 recognition has remained conserved. Using hidden Markov model-based secondary structure analyses, we identified and experimentally validated four additional L. pneumophila effectors that were not previously recognized to possess E3 ligase activity, including Lpg2452/SdcB, a new paralog of SidC. Our study provides strong evidence that L. pneumophila is dedicating a considerable fraction of its effector arsenal to the manipulation of the host ubiquitylation pathway. PMID:29415051

  13. Promoters active in interphase are bookmarked during mitosis by ubiquitination

    PubMed Central

    Arora, Mansi; Zhang, Jie; Heine, George F.; Ozer, Gulcin; Liu, Hui-wen; Huang, Kun; Parvin, Jeffrey D.

    2012-01-01

    We analyzed modification of chromatin by ubiquitination in human cells and whether this mark changes through the cell cycle. HeLa cells were synchronized at different stages and regions of the genome with ubiquitinated chromatin were identified by affinity purification coupled with next-generation sequencing. During interphase, ubiquitin marked the chromatin on the transcribed regions of ∼70% of highly active genes and deposition of this mark was sensitive to transcriptional inhibition. Promoters of nearly half of the active genes were highly ubiquitinated specifically during mitosis. The ubiquitination at the coding regions in interphase but not at promoters during mitosis was enriched for ubH2B and dependent on the presence of RNF20. Ubiquitin labeling of both promoters during mitosis and transcribed regions during interphase, correlated with active histone marks H3K4me3 and H3K36me3 but not a repressive histone modification, H3K27me3. The high level of ubiquitination at the promoter chromatin during mitosis was transient and was removed within 2 h after the cells exited mitosis and entered the next cell cycle. These results reveal that the ubiquitination of promoter chromatin during mitosis is a bookmark identifying active genes during chromosomal condensation in mitosis, and we suggest that this process facilitates transcriptional reactivation post-mitosis. PMID:22941662

  14. Deficient RNA-editing enzyme ADAR2 in an amyotrophic lateral sclerosis patient with a FUS(P525L) mutation.

    PubMed

    Aizawa, Hitoshi; Hideyama, Takuto; Yamashita, Takenari; Kimura, Takashi; Suzuki, Naoki; Aoki, Masashi; Kwak, Shin

    2016-10-01

    Mutations in the fused in sarcoma (FUS) gene can cause amyotrophic lateral sclerosis (ALS), and FUS gene mutations have been reported in sporadic ALS patients with basophilic cytoplasmic inclusions. Deficiency of adenosine deaminase acting on RNA 2 (ADAR2), an enzyme that specifically catalyzes GluA2 Q/R site-editing, has been reported in considerable proportions of spinal motor neurons of the majority of sporadic ALS patients. We describe the relationship between GluA2 Q/R site-editing efficiency and FUS-positive inclusions in a patient with FUS(P525L). A 24-year-old woman with ALS presented with basophilic cytoplasmic inclusions, significantly reduced GluA2 Q/R site-editing efficiency in the spinal motor neurons, and markedly decreased ADAR2 mRNA levels. Neuropathologic examination showed that not all spinal motor neurons expressed ADAR2 and revealed FUS-positive cytoplasmic inclusions in motor neurons irrespective of ADAR2 immunoreactivity. There were no phosphorylated transactive response (TAR) DNA-binding protein 43 kDa (TDP-43)-positive inclusions, indicating that there was no tight correlation between ADAR2 deficiency and TDP-43 deposition. ADAR2 deficiency can occur in ALS patients with a FUS(P525L) mutation and is unrelated to the presence of FUS-positive inclusions. FUS-associated ALS may share neurodegenerative characteristics with classical sporadic ALS. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. The Rewiring of Ubiquitination Targets in a Pathogenic Yeast Promotes Metabolic Flexibility, Host Colonization and Virulence

    PubMed Central

    Childers, Delma S.; Raziunaite, Ingrida; Mol Avelar, Gabriela; Mackie, Joanna; Budge, Susan; Stead, David; Gow, Neil A. R.; Lenardon, Megan D.; Ballou, Elizabeth R.; MacCallum, Donna M.; Brown, Alistair J. P.

    2016-01-01

    Efficient carbon assimilation is critical for microbial growth and pathogenesis. The environmental yeast Saccharomyces cerevisiae is “Crabtree positive”, displaying a rapid metabolic switch from the assimilation of alternative carbon sources to sugars. Following exposure to sugars, this switch is mediated by the transcriptional repression of genes (carbon catabolite repression) and the turnover (catabolite inactivation) of enzymes involved in the assimilation of alternative carbon sources. The pathogenic yeast Candida albicans is Crabtree negative. It has retained carbon catabolite repression mechanisms, but has undergone posttranscriptional rewiring such that gluconeogenic and glyoxylate cycle enzymes are not subject to ubiquitin-mediated catabolite inactivation. Consequently, when glucose becomes available, C. albicans can continue to assimilate alternative carbon sources alongside the glucose. We show that this metabolic flexibility promotes host colonization and virulence. The glyoxylate cycle enzyme isocitrate lyase (CaIcl1) was rendered sensitive to ubiquitin-mediated catabolite inactivation in C. albicans by addition of a ubiquitination site. This mutation, which inhibits lactate assimilation in the presence of glucose, reduces the ability of C. albicans cells to withstand macrophage killing, colonize the gastrointestinal tract and cause systemic infections in mice. Interestingly, most S. cerevisiae clinical isolates we examined (67%) have acquired the ability to assimilate lactate in the presence of glucose (i.e. they have become Crabtree negative). These S. cerevisiae strains are more resistant to macrophage killing than Crabtree positive clinical isolates. Moreover, Crabtree negative S. cerevisiae mutants that lack Gid8, a key component of the Glucose-Induced Degradation complex, are more resistant to macrophage killing and display increased virulence in immunocompromised mice. Thus, while Crabtree positivity might impart a fitness advantage for

  16. Progressive engineering of a homing endonuclease genome editing reagent for the murine X-linked immunodeficiency locus

    PubMed Central

    Wang, Yupeng; Khan, Iram F.; Boissel, Sandrine; Jarjour, Jordan; Pangallo, Joseph; Thyme, Summer; Baker, David; Scharenberg, Andrew M.; Rawlings, David J.

    2014-01-01

    LAGLIDADG homing endonucleases (LHEs) are compact endonucleases with 20–22 bp recognition sites, and thus are ideal scaffolds for engineering site-specific DNA cleavage enzymes for genome editing applications. Here, we describe a general approach to LHE engineering that combines rational design with directed evolution, using a yeast surface display high-throughput cleavage selection. This approach was employed to alter the binding and cleavage specificity of the I-Anil LHE to recognize a mutation in the mouse Bruton tyrosine kinase (Btk) gene causative for mouse X-linked immunodeficiency (XID)—a model of human X-linked agammaglobulinemia (XLA). The required re-targeting of I-AniI involved progressive resculpting of the DNA contact interface to accommodate nine base differences from the native cleavage sequence. The enzyme emerging from the progressive engineering process was specific for the XID mutant allele versus the wild-type (WT) allele, and exhibited activity equivalent to WT I-AniI in vitro and in cellulo reporter assays. Fusion of the enzyme to a site-specific DNA binding domain of transcription activator-like effector (TALE) resulted in a further enhancement of gene editing efficiency. These results illustrate the potential of LHE enzymes as specific and efficient tools for therapeutic genome engineering. PMID:24682825

  17. A to I editing in disease is not fake news.

    PubMed

    Bajad, Prajakta; Jantsch, Michael F; Keegan, Liam; O'Connell, Mary

    2017-09-02

    Adenosine deaminases acting on RNA (ADARs) are zinc-containing enzymes that deaminate adenosine bases to inosines within dsRNA regions in transcripts. In short, structured dsRNA hairpins individual adenosine bases may be targeted specifically and edited with up to one hundred percent efficiency, leading to the production of alternative protein variants. However, the majority of editing events occur within longer stretches of dsRNA formed by pairing of repetitive sequences. Here, many different adenosine bases are potential targets but editing efficiency is usually much lower. Recent work shows that ADAR-mediated RNA editing is also required to prevent aberrant activation of antiviral innate immune sensors that detect viral dsRNA in the cytoplasm. Missense mutations in the ADAR1 RNA editing enzyme cause a fatal auto-inflammatory disease, Aicardi-Goutières syndrome (AGS) in affected children. In addition RNA editing by ADARs has been observed to increase in many cancers and also can contribute to vascular disease. Thus the role of RNA editing in the progression of various diseases can no longer be ignored. The ability of ADARs to alter the sequence of RNAs has also been used to artificially target model RNAs in vitro and in cells for RNA editing. Potentially this approach may be used to repair genetic defects and to alter genetic information at the RNA level. In this review we focus on the role of ADARs in disease development and progression and on their potential use to artificially modify RNAs in a targeted manner.

  18. Cell fate determination by ubiquitin-dependent regulation of translation

    PubMed Central

    Werner, Achim; Iwasaki, Shintaro; McGourty, Colleen; Medina-Ruiz, Sofia; Teerikorpi, Nia; Fedrigo, Indro; Ingolia, Nicholas T.; Rape, Michael

    2015-01-01

    Metazoan development depends on accurate execution of differentiation programs that allow pluripotent stem cells to adopt specific fates 1. Differentiation requires changes to chromatin architecture and transcriptional networks, yet whether other regulatory events support cell fate determination is less well understood. Here, we have identified the vertebrate-specific ubiquitin ligase CUL3KBTBD8 as an essential regulator of neural crest specification. CUL3KBTBD8 monoubiquitylates NOLC1 and its paralog TCOF1, whose mutation underlies the neurocristopathy Treacher Collins Syndrome 2,3. Ubiquitylation drives formation of a TCOF1-NOLC1 platform that connects RNA polymerase I with ribosome modification enzymes and remodels the translational program of differentiating cells in favor of neural crest specification. We conclude that ubiquitin-dependent regulation of translation is an important feature of cell fate determination. PMID:26399832

  19. Ubiquitin ligase parkin promotes Mdm2-arrestin interaction but inhibits arrestin ubiquitination

    PubMed Central

    Ahmed, M. Rafiuddin; Zhan, Xuanzhi; Song, Xiufeng; Kook, Seunghyi; Gurevich, Vsevolod V.; Gurevich, Eugenia V.

    2011-01-01

    Numerous mutations in E3 ubiquitin ligase parkin were shown to associate with familial Parkinson's disease. Here we show that parkin binds arrestins, versatile regulators of cell signaling. Arrestin-parkin interaction was demonstrated by coimmuno-precipitation of endogenous proteins from brain tissue, and shown to be direct using purified proteins. Parkin binding enhances arrestin interactions with another E3 ubiquitin ligase, Mdm2, apparently by shifting arrestin conformational equilibrium to the basal state preferred by Mdm2. Although Mdm2 was reported to ubiquitinate arrestins, parkin-dependent increase in Mdm2 binding dramatically reduces the ubiquitination of both non-visual arrestins, basal and stimulated by receptor activation, without affecting receptor internalization. Several disease-associated parkin mutations differentially affect the stimulation of Mdm2 binding. All parkin mutants tested effectively suppress arrestin ubiquitination, suggesting that bound parkin shields arrestin lysines targeted by Mdm2. Parkin binding to arrestins along with its effects on arrestin interaction with Mdm2 and ubiquitination is a novel function of this protein with implications for Parkinson's disease pathology. PMID:21466165

  20. Ubiquitin ligase parkin promotes Mdm2-arrestin interaction but inhibits arrestin ubiquitination.

    PubMed

    Ahmed, M Rafiuddin; Zhan, Xuanzhi; Song, Xiufeng; Kook, Seunghyi; Gurevich, Vsevolod V; Gurevich, Eugenia V

    2011-05-10

    Numerous mutations in E3 ubiquitin ligase parkin were shown to associate with familial Parkinson's disease. Here we show that parkin binds arrestins, versatile regulators of cell signaling. Arrestin-parkin interaction was demonstrated by coimmunoprecipitation of endogenous proteins from brain tissue and shown to be direct using purified proteins. Parkin binding enhances arrestin interactions with another E3 ubiquitin ligase, Mdm2, apparently by shifting arrestin conformational equilibrium to the basal state preferred by Mdm2. Although Mdm2 was reported to ubiquitinate arrestins, parkin-dependent increase in Mdm2 binding dramatically reduces the ubiquitination of both nonvisual arrestins, basal and stimulated by receptor activation, without affecting receptor internalization. Several disease-associated parkin mutations differentially affect the stimulation of Mdm2 binding. All parkin mutants tested effectively suppress arrestin ubiquitination, suggesting that bound parkin shields arrestin lysines targeted by Mdm2. Parkin binding to arrestins along with its effects on arrestin interaction with Mdm2 and ubiquitination is a novel function of this protein with implications for Parkinson's disease pathology.

  1. A MUB E2 structure reveals E1 selectivity between cognate ubiquitin E2s in eukaryotes

    NASA Astrophysics Data System (ADS)

    Lu, Xiaolong; Malley, Konstantin R.; Brenner, Caitlin C.; Koroleva, Olga; Korolev, Sergey; Downes, Brian P.

    2016-08-01

    Ubiquitin (Ub) is a protein modifier that controls processes ranging from protein degradation to endocytosis, but early-acting regulators of the three-enzyme ubiquitylation cascade are unknown. Here we report that the prenylated membrane-anchored ubiquitin-fold protein (MUB) is an early-acting regulator of subfamily-specific E2 activation. An AtMUB3:AtUBC8 co-crystal structure defines how MUBs inhibit E2~Ub formation using a combination of E2 backside binding and a MUB-unique lap-bar loop to block E1 access. Since MUBs tether Arabidopsis group VI E2 enzymes (related to HsUbe2D and ScUbc4/5) to the plasma membrane, and inhibit E2 activation at physiological concentrations, they should function as potent plasma membrane localized regulators of Ub chain synthesis in eukaryotes. Our findings define a biochemical function for MUB, a family of highly conserved Ub-fold proteins, and provide an example of selective activation between cognate Ub E2s, previously thought to be constitutively activated by E1s.

  2. Ubiquitin-specific protease 8 deubiquitinates Sec31A and decreases large COPII carriers and collagen IV secretion.

    PubMed

    Kawaguchi, Kohei; Endo, Akinori; Fukushima, Toshiaki; Madoka, Yuka; Tanaka, Toshiaki; Komada, Masayuki

    2018-05-15

    Nascent cargo proteins in the endoplasmic reticulum are transported to the Golgi by COPII carriers. Typical COPII vesicles are 60-70 nm in diameter, and much larger macromolecules, such as procollagen, are transported by atypical large COPII carriers in mammalian cells. The formation of large COPII carriers is enhanced by Cul3 ubiquitin ligase, which mono-ubiquitinates Sec31A, a COPII coat protein. However, the deubiquitinating enzyme for Sec31A was unclear. Here, we show that the deubiquitinating enzyme USP8 interacts with and deubiquitinates Sec31A. The interaction was mediated by the adaptor protein STAM1. USP8 overexpression inhibited the formation of large COPII carriers. By contrast, USP8 knockdown caused the accumulation of COPII coat proteins around the cis-Golgi, promoted the intracellular trafficking of procollagen IV from the endoplasmic reticulum to the Golgi, and increased collagen IV secretion. We concluded that USP8 deubiquitinates Sec31A and inhibits the formation of large COPII carriers, thereby suppressing collagen IV secretion. Copyright © 2018 Elsevier Inc. All rights reserved.

  3. Regulation of T cell receptor complex-mediated signaling by ubiquitin and ubiquitin-like modifications.

    PubMed

    Friend, Samantha F; Deason-Towne, Francina; Peterson, Lisa K; Berger, Allison J; Dragone, Leonard L

    2014-01-01

    Post-translational protein modifications are a dynamic method of regulating protein function in response to environmental signals. As with any cellular process, T cell receptor (TCR) complex-mediated signaling is highly regulated, since the strength and duration of TCR-generated signals governs T cell development and activation. While regulation of TCR complex-mediated signaling by phosphorylation has been well studied, regulation by ubiquitin and ubiquitin-like modifiers is still an emerging area of investigation. This review will examine how ubiquitin, E3 ubiquitin ligases, and other ubiquitin-like modifications such as SUMO and NEDD8 regulate TCR complex-mediated signaling.

  4. Regulation of T cell receptor complex-mediated signaling by ubiquitin and ubiquitin-like modifications

    PubMed Central

    Friend, Samantha F; Deason-Towne, Francina; Peterson, Lisa K; Berger, Allison J; Dragone, Leonard L

    2014-01-01

    Post-translational protein modifications are a dynamic method of regulating protein function in response to environmental signals. As with any cellular process, T cell receptor (TCR) complex-mediated signaling is highly regulated, since the strength and duration of TCR-generated signals governs T cell development and activation. While regulation of TCR complex-mediated signaling by phosphorylation has been well studied, regulation by ubiquitin and ubiquitin-like modifiers is still an emerging area of investigation. This review will examine how ubiquitin, E3 ubiquitin ligases, and other ubiquitin-like modifications such as SUMO and NEDD8 regulate TCR complex-mediated signaling. PMID:25628960

  5. Regulation of HTLV-1 Tax Stability, Cellular Trafficking and NF-κB Activation by the Ubiquitin-Proteasome Pathway

    PubMed Central

    Lavorgna, Alfonso; Harhaj, Edward William

    2014-01-01

    Human T-cell leukemia virus type 1 (HTLV-1) is a complex retrovirus that infects CD4+ T cells and causes adult T-cell leukemia/lymphoma (ATLL) in 3%–5% of infected individuals after a long latent period. HTLV-1 Tax is a trans-activating protein that regulates viral gene expression and also modulates cellular signaling pathways to enhance T-cell proliferation and cell survival. The Tax oncoprotein promotes T-cell transformation, in part via constitutive activation of the NF-κB transcription factor; however, the underlying mechanisms remain unknown. Ubiquitination is a type of post-translational modification that occurs in a three-step enzymatic cascade mediated by E1, E2 and E3 enzymes and regulates protein stability as well as signal transduction, protein trafficking and the DNA damage response. Emerging studies indicate that Tax hijacks the ubiquitin machinery to activate ubiquitin-dependent kinases and downstream NF-κB signaling. Tax interacts with the E2 conjugating enzyme Ubc13 and is conjugated on C-terminal lysine residues with lysine 63-linked polyubiquitin chains. Tax K63-linked polyubiquitination may serve as a platform for signaling complexes since this modification is critical for interactions with NEMO and IKK. In addition to NF-κB signaling, mono- and polyubiquitination of Tax also regulate its subcellular trafficking and stability. Here, we review recent advances in the diverse roles of ubiquitin in Tax function and how Tax usurps the ubiquitin-proteasome pathway to promote oncogenesis. PMID:25341660

  6. The CreB deubiquitinating enzyme does not directly target the CreA repressor protein in Aspergillus nidulans.

    PubMed

    Alam, Md Ashiqul; Kamlangdee, Niyom; Kelly, Joan M

    2017-08-01

    Ubiquitination/deubiquitination pathways are now recognized as key components of gene regulatory mechanisms in eukaryotes. The major transcriptional repressor for carbon catabolite repression in Aspergillus nidulans is CreA, and mutational analysis led to the suggestion that a regulatory ubiquitination/deubiquitination pathway is involved. A key unanswered question is if and how this pathway, comprising CreB (deubiquitinating enzyme) and HulA (ubiquitin ligase) and other proteins, is involved in the regulatory mechanism. Previously, missense alleles of creA and creB were analysed for genetic interactions, and here we extended this to complete loss-of-function alleles of creA and creB, and compared morphological and biochemical phenotypes, which confirmed genetic interaction between the genes. We investigated whether CreA, or a protein in a complex with it, is a direct target of the CreB deubiquitination enzyme, using co-purifications of CreA and CreB, first using strains that overexpress the proteins and then using strains that express the proteins from their native promoters. The Phos-tag system was used to show that CreA is a phosphorylated protein, but no ubiquitination was detected using anti-ubiquitin antibodies and Western analysis. These findings were confirmed using mass spectrometry, which confirmed that CreA was differentially phosphorylated but not ubiquitinated. Thus, CreA is not a direct target of CreB, and nor are proteins that form part of a stable complex with CreA a target of CreB. These results open up new questions regarding the molecular mechanism of CreA repressing activity, and how the ubiquitination pathway involving CreB interacts with this regulatory network.

  7. Degradation of the human mitotic checkpoint kinase Mps1 is cell cycle-regulated by APC-cCdc20 and APC-cCdh1 ubiquitin ligases.

    PubMed

    Cui, Yongping; Cheng, Xiaolong; Zhang, Ce; Zhang, Yanyan; Li, Shujing; Wang, Chuangui; Guadagno, Thomas M

    2010-10-22

    Mps1 is a dual specificity protein kinase with key roles in regulating the spindle assembly checkpoint and chromosome-microtubule attachments. Consistent with these mitotic functions, Mps1 protein levels fluctuate during the cell cycle, peaking at early mitosis and abruptly declining during mitotic exit and progression into the G(1) phase. Although evidence in budding yeast indicates that Mps1 is targeted for degradation at anaphase by the anaphase-promoting complex (APC)-c(Cdc20) complex, little is known about the regulatory mechanisms that govern Mps1 protein levels in human cells. Here, we provide evidence for the ubiquitin ligase/proteosome pathway in regulating human Mps1 levels during late mitosis through G(1) phase. First, we showed that treatment of HEK 293T cells with the proteosome inhibitor MG132 resulted in an increase in both the polyubiquitination and the accumulation of Mps1 protein levels. Next, Mps1 was shown to co-precipitate with APC and its activators Cdc20 and Cdh1 in a cell cycle-dependent manner. Consistent with this, overexpression of Cdc20 or Cdh1 led to a marked reduction of endogenous Mps1 levels during anaphase or G(1) phase, respectively. In contrast, depletion of Cdc20 or Cdh1 by RNAi treatment both led to the stabilization of Mps1 protein during mitosis or G(1) phase, respectively. Finally, we identified a single D-box motif in human Mps1 that is required for its ubiquitination and degradation. Failure to appropriately degrade Mps1 is sufficient to trigger centrosome amplification and mitotic abnormalities in human cells. Thus, our results suggest that the sequential actions of the APC-c(Cdc20) and APC-c(Cdh1) ubiquitin ligases regulate the clearance of Mps1 levels and are critical for Mps1 functions during the cell cycle in human cells.

  8. UbMES and UbFluor: Novel probes for ring-between-ring (RBR) E3 ubiquitin ligase PARKIN.

    PubMed

    Park, Sungjin; Foote, Peter K; Krist, David T; Rice, Sarah E; Statsyuk, Alexander V

    2017-10-06

    Ring-between-ring (RBR) E3 ligases have been implicated in autoimmune disorders and neurodegenerative diseases. The functions of many RBR E3s are poorly defined, and their regulation is complex, involving post-translational modifications and allosteric regulation with other protein partners. The functional complexity of RBRs, coupled with the complexity of the native ubiquitination reaction that requires ATP and E1 and E2 enzymes, makes it difficult to study these ligases for basic research and therapeutic purposes. To address this challenge, we developed novel chemical probes, ubiquitin C-terminal fluorescein thioesters UbMES and UbFluor, to qualitatively and quantitatively assess the activity of the RBR E3 ligase PARKIN in a simple experimental setup and in real time using fluorescence polarization. First, we confirmed that PARKIN does not require an E2 enzyme for substrate ubiquitination, lysine selection, and polyubiquitin chain formation. Second, we confirmed that UbFluor quantitatively detects naturally occurring activation states of PARKIN caused by Ser 65 phosphorylation (pPARKIN) and phosphorylated ubiquitin (pUb). Third, we showed that both pUb and the ubiquitin-accepting substrate contribute to maximal pPARKIN ubiquitin conjugation turnover. pUb enhances the transthiolation step, whereas the substrate clears the pPARKIN∼Ub thioester intermediate. Finally, we established that UbFluor can quantify activation or inhibition of PARKIN by structural mutations. These results demonstrate the feasibility of using UbFluor for quantitative studies of the biochemistry of RBR E3s and for high-throughput screening of small-molecule activators or inhibitors of PARKIN and other RBR E3 ligases. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  9. Single-stranded DNA cleavage by divergent CRISPR-Cas9 enzymes

    PubMed Central

    Ma, Enbo; Harrington, Lucas B.; O’Connell, Mitchell R.; Zhou, Kaihong; Doudna, Jennifer A.

    2015-01-01

    Summary Double-stranded DNA (dsDNA) cleavage by Cas9 is a hallmark of type II CRISPR-Cas immune systems. Cas9–guide RNA complexes recognize 20-base-pair sequences in DNA and generate a site-specific double-strand break, a robust activity harnessed for genome editing. DNA recognition by all studied Cas9 enzymes requires a protospacer adjacent motif (PAM) next to the target site. We show that Cas9 enzymes from evolutionarily divergent bacteria can recognize and cleave single-stranded DNA (ssDNA) by an RNA-guided, PAM-independent recognition mechanism. Comparative analysis shows that in contrast to the type II-A S. pyogenes Cas9 that is widely used for genome engineering, the smaller type II-C Cas9 proteins have limited dsDNA binding and unwinding activity and promiscuous guide-RNA specificity. These results indicate that inefficiency of type II-C Cas9 enzymes for genome editing results from a limited ability to cleave dsDNA, and suggest that ssDNA cleavage was an ancestral function of the Cas9 enzyme family. PMID:26545076

  10. H2A-DUBbing the mammalian epigenome: expanding frontiers for histone H2A deubiquitinating enzymes in cell biology and physiology.

    PubMed

    Belle, Jad I; Nijnik, Anastasia

    2014-05-01

    Posttranslational modifications of histone H2A through the attachment of ubiquitin or poly-ubiquitin conjugates are common in mammalian genomes and play an important role in the regulation of chromatin structure, gene expression, and DNA repair. Histone H2A deubiquitinases (H2A-DUBs) are a group of structurally diverse enzymes that catalyze the removal ubiquitin from histone H2A. In this review we provide a concise summary of the mechanisms that mediate histone H2A ubiquitination in mammalian cells, and review our current knowledge of mammalian H2A-DUBs, their biochemical activities, and recent developments in our understanding of their functions in mammalian physiology. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Non-degradative Ubiquitination of Protein Kinases

    PubMed Central

    Ball, K. Aurelia; Johnson, Jeffrey R.; Lewinski, Mary K.; Guatelli, John; Verschueren, Erik; Krogan, Nevan J.; Jacobson, Matthew P.

    2016-01-01

    Growing evidence supports other regulatory roles for protein ubiquitination in addition to serving as a tag for proteasomal degradation. In contrast to other common post-translational modifications, such as phosphorylation, little is known about how non-degradative ubiquitination modulates protein structure, dynamics, and function. Due to the wealth of knowledge concerning protein kinase structure and regulation, we examined kinase ubiquitination using ubiquitin remnant immunoaffinity enrichment and quantitative mass spectrometry to identify ubiquitinated kinases and the sites of ubiquitination in Jurkat and HEK293 cells. We find that, unlike phosphorylation, ubiquitination most commonly occurs in structured domains, and on the kinase domain, ubiquitination is concentrated in regions known to be important for regulating activity. We hypothesized that ubiquitination, like other post-translational modifications, may alter the conformational equilibrium of the modified protein. We chose one human kinase, ZAP-70, to simulate using molecular dynamics with and without a monoubiquitin modification. In Jurkat cells, ZAP-70 is ubiquitinated at several sites that are not sensitive to proteasome inhibition and thus may have other regulatory roles. Our simulations show that ubiquitination influences the conformational ensemble of ZAP-70 in a site-dependent manner. When monoubiquitinated at K377, near the C-helix, the active conformation of the ZAP-70 C-helix is disrupted. In contrast, when monoubiquitinated at K476, near the kinase hinge region, an active-like ZAP-70 C-helix conformation is stabilized. These results lead to testable hypotheses that ubiquitination directly modulates kinase activity, and that ubiquitination is likely to alter structure, dynamics, and function in other protein classes as well. PMID:27253329

  12. The emerging complexity of ubiquitin architecture.

    PubMed

    Ohtake, Fumiaki; Tsuchiya, Hikaru

    2017-02-01

    Ubiquitylation is an essential post-translational modification (PTM) of proteins with diverse cellular functions. Polyubiquitin chains with different topologies have different cellular roles, and are referred to as a 'ubiquitin code'. Recent studies have begun to reveal that more complex ubiquitin architectures function as important signals in several biological pathways. These include PTMs of ubiquitin itself, such as acetylated ubiquitin and phospho-ubiquitin. Moreover, important roles for heterogeneous polyubiquitin chains, such as mixed or branched chains, have been reported, which significantly increase the diversity of the ubiquitin code. In this review, we describe mass spectrometry-based methods to characterize the ubiquitin signal. We also describe recent advances in our understanding of complex ubiquitin architectures, including our own findings concerning ubiquitin acetylation and branching within polyubiquitin chains. © The Authors 2016. Published by Oxford University Press on behalf of the Japanese Biochemical Society. All rights reserved.

  13. The prokaryotic antecedents of the ubiquitin-signaling system and the early evolution of ubiquitin-like β-grasp domains

    PubMed Central

    Iyer, Lakshminarayan M; Burroughs, A Maxwell; Aravind, L

    2006-01-01

    Background Ubiquitin (Ub)-mediated signaling is one of the hallmarks of all eukaryotes. Prokaryotic homologs of Ub (ThiS and MoaD) and E1 ligases have been studied in relation to sulfur incorporation reactions in thiamine and molybdenum/tungsten cofactor biosynthesis. However, there is no evidence for entire protein modification systems with Ub-like proteins and deconjugation by deubiquitinating enzymes in prokaryotes. Hence, the evolutionary assembly of the eukaryotic Ub-signaling apparatus remains unclear. Results We systematically analyzed prokaryotic Ub-related β-grasp fold proteins using sensitive sequence profile searches and structural analysis. Consequently, we identified novel Ub-related proteins beyond the characterized ThiS, MoaD, TGS, and YukD domains. To understand their functional associations, we sought and recovered several conserved gene neighborhoods and domain architectures. These included novel associations involving diverse sulfur metabolism proteins, siderophore biosynthesis and the gene encoding the transfer mRNA binding protein SmpB, as well as domain fusions between Ub-like domains and PIN-domain related RNAses. Most strikingly, we found conserved gene neighborhoods in phylogenetically diverse bacteria combining genes for JAB domains (the primary de-ubiquitinating isopeptidases of the proteasomal complex), along with E1-like adenylating enzymes and different Ub-related proteins. Further sequence analysis of other conserved genes in these neighborhoods revealed several Ub-conjugating enzyme/E2-ligase related proteins. Genes for an Ub-like protein and a JAB domain peptidase were also found in the tail assembly gene cluster of certain caudate bacteriophages. Conclusion These observations imply that members of the Ub family had already formed strong functional associations with E1-like proteins, UBC/E2-related proteins, and JAB peptidases in the bacteria. Several of these Ub-like proteins and the associated protein families are likely to

  14. The ubiquitin ligase SEVEN IN ABSENTIA (SINA) ubiquitinates a defense-related NAC transcription factor and is involved in defense signaling.

    PubMed

    Miao, Min; Niu, Xiangli; Kud, Joanna; Du, Xinran; Avila, Julian; Devarenne, Timothy P; Kuhl, Joseph C; Liu, Yongsheng; Xiao, Fangming

    2016-07-01

    We recently identified a defense-related tomato (Solanum lycopersicum) NAC (NAM, ATAF1,2, CUC2) transcription factor, NAC1, that is subjected to ubiquitin-proteasome system-dependent degradation in plant cells. In this study, we identified a tomato ubiquitin ligase (termed SEVEN IN ABSENTIA3; SINA3) that ubiquitinates NAC1, promoting its degradation. We conducted coimmunoprecipitation and bimolecular fluorescence complementation to determine that SINA3 specifically interacts with the NAC1 transcription factor in the nucleus. Moreover, we found that SINA3 ubiquitinates NAC1 in vitro and promotes NAC1 degradation via polyubiquitination in vivo, indicating that SINA3 is a ubiquitin ligase that ubiquitinates NAC1, promoting its degradation. Our real-time PCR analysis indicated that, in contrast to our previous finding that NAC1 mRNA abundance increases upon Pseudomonas infection, the SINA3 mRNA abundance decreases in response to Pseudomonas infection. Moreover, using Agrobacterium-mediated transient expression, we found that overexpression of SINA3 interferes with the hypersensitive response cell death triggered by multiple plant resistance proteins. These results suggest that SINA3 ubiquitinates a defense-related NAC transcription factor for degradation and plays a negative role in defense signaling. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.

  15. A New Scheme to Characterize and Identify Protein Ubiquitination Sites.

    PubMed

    Nguyen, Van-Nui; Huang, Kai-Yao; Huang, Chien-Hsun; Lai, K Robert; Lee, Tzong-Yi

    2017-01-01

    Protein ubiquitination, involving the conjugation of ubiquitin on lysine residue, serves as an important modulator of many cellular functions in eukaryotes. Recent advancements in proteomic technology have stimulated increasing interest in identifying ubiquitination sites. However, most computational tools for predicting ubiquitination sites are focused on small-scale data. With an increasing number of experimentally verified ubiquitination sites, we were motivated to design a predictive model for identifying lysine ubiquitination sites for large-scale proteome dataset. This work assessed not only single features, such as amino acid composition (AAC), amino acid pair composition (AAPC) and evolutionary information, but also the effectiveness of incorporating two or more features into a hybrid approach to model construction. The support vector machine (SVM) was applied to generate the prediction models for ubiquitination site identification. Evaluation by five-fold cross-validation showed that the SVM models learned from the combination of hybrid features delivered a better prediction performance. Additionally, a motif discovery tool, MDDLogo, was adopted to characterize the potential substrate motifs of ubiquitination sites. The SVM models integrating the MDDLogo-identified substrate motifs could yield an average accuracy of 68.70 percent. Furthermore, the independent testing result showed that the MDDLogo-clustered SVM models could provide a promising accuracy (78.50 percent) and perform better than other prediction tools. Two cases have demonstrated the effective prediction of ubiquitination sites with corresponding substrate motifs.

  16. Ubiquitin in health and disease.

    PubMed

    Mayer, R J; Arnold, J; László, L; Landon, M; Lowe, J

    1991-06-13

    Studies in recent years have shown that ubiquitin has increasingly important functions in eukaryotic cells; roles which were previously not suspected in healthy and diseased cells. The interplay between molecular pathological and molecular cell biological findings has indicated that ubiquitin may be pivotal in the cell stress response in chronic degenerative and viral diseases. Furthermore, the studies have led to the notion that ubiquitination may not only serve as a signal for nonlysosomal protein degradation but may be a unifying covalent protein modification for the major intracellular protein catabolic systems; these can act to identify proteins for cytosolic proteinases or direct intact and fragmented proteins into the lysosome system for breakdown to amino acids. This unifying role could explain why ubiquitin is restricted to eukaryotic cells, which possess extensive endomembrane systems in addition to a nuclear envelope. Protein ubiquitination is a feature of most filamentous inclusions and certain other intracellular conglomerates that are found in some degenerative and viral diseases. The detection of ubiquitin-protein conjugates is not of great diagnostic importance in these diseases. Protein ubiquitination is not only essential for the normal physiological turnover of proteins but appears to have been adapted as part of an intracellular surveillance system that can be activated by altered, damaged, or foreign proteins and organelles. The purpose of this system is to isolate and eliminate these noxious structures from the cell: as a cytoprotective mechanism this appears to have evolved in the cell akin perhaps to an 'intracellular immune system'. Other heat shock proteins such as hsp 70 may be involved in this process. It is apparent that ubiquitin has a role in embryonic development. Protein ubiquitination is presumably involved in the reorganisation of cytoplasm that accompanies cell differentiation. Ubiquitin is also necessary for the gross

  17. Role of SKP1-CUL1-F-Box-Protein (SCF) E3 Ubiquitin Ligases in Skin Cancer

    PubMed Central

    Xie, Chuan-Ming; Wei, Wenyi; Sun, Yi

    2013-01-01

    Many biological processes such as cell proliferation, differentiation, and cell death depend precisely on the timely synthesis and degradation of key regulatory proteins. While protein synthesis can be regulated at multiple levels, protein degradation is mainly controlled by the ubiquitin—proteasome system (UPS), which consists of two distinct steps: (1) ubiquitylation of targeted protein by E1 ubiquitin-activating enzyme, E2 ubiquitin-conjugating enzyme and E3 ubiquitin ligase, and (2) subsequent degradation by the 26S proteasome. Among all E3 ubiquitin ligases, the SCF (SKP1-CUL1-F-box protein) E3 ligases are the largest family and are responsible for the turnover of many key regulatory proteins. Aberrant regulation of SCF E3 ligases is associated with various human diseases, such as cancers, including skin cancer. In this review, we provide a comprehensive overview of all currently published data to define a promoting role of SCF E3 ligases in the development of skin cancer. The future directions in this area of research are also discussed with an ultimate goal to develop small molecule inhibitors of SCF E3 ligases as a novel approach for the treatment of human skin cancer. Furthermore, altered components or substrates of SCF E3 ligases may also be developed as the biomarkers for early diagnosis or predicting prognosis. PMID:23522382

  18. DNA-damage-inducible 1 protein (Ddi1) contains an uncharacteristic ubiquitin-like domain that binds ubiquitin

    PubMed Central

    Nowicka, Urszula; Zhang, Daoning; Walker, Olivier; Krutauz, Daria; Castañeda, Carlos A.; Chaturvedi, Apurva; Chen, Tony Y.; Reis, Noa; Glickman, Michael H.; Fushman, David

    2015-01-01

    SUMMARY Ddi1 belongs to a family of shuttle proteins targeting polyubiquitinated substrates for proteasomal degradation. Unlike the other proteasomal shuttles, Rad23 and Dsk2, Ddi1 remains an enigma: its function is not fully understood and structural properties are poorly characterized. We determined the structure and binding properties of the ubiquitin-like (UBL) and ubiquitin-associated (UBA) domains of Ddi1 from Saccharomyces cerevisiae. We found that, while Ddi1UBA forms a characteristic UBA:ubiquitin complex, Ddi1UBL has entirely uncharacteristic binding preferences. Despite having a ubiquitin-like fold, Ddi1UBL does not interact with typical UBL-receptors but, unexpectedly, binds ubiquitin, forming a unique interface mediated by hydrophobic contacts and by salt-bridges between oppositely-charged residues of Ddi1UBL and ubiquitin. In stark contrast with ubiquitin and other UBLs, the β-sheet surface of Ddi1UBL is negatively charged and, therefore, is recognized in a completely different way. The dual functionality of Ddi1UBL, capable of binding both ubiquitin and proteasome, suggests a novel mechanism for Ddi1 as a proteasomal shuttle. PMID:25703377

  19. Structural model of the hUbA1-UbcH10 quaternary complex: in silico and experimental analysis of the protein-protein interactions between E1, E2 and ubiquitin.

    PubMed

    Correale, Stefania; de Paola, Ivan; Morgillo, Carmine Marco; Federico, Antonella; Zaccaro, Laura; Pallante, Pierlorenzo; Galeone, Aldo; Fusco, Alfredo; Pedone, Emilia; Luque, F Javier; Catalanotti, Bruno

    2014-01-01

    UbcH10 is a component of the Ubiquitin Conjugation Enzymes (Ubc; E2) involved in the ubiquitination cascade controlling the cell cycle progression, whereby ubiquitin, activated by E1, is transferred through E2 to the target protein with the involvement of E3 enzymes. In this work we propose the first three dimensional model of the tetrameric complex formed by the human UbA1 (E1), two ubiquitin molecules and UbcH10 (E2), leading to the transthiolation reaction. The 3D model was built up by using an experimentally guided incremental docking strategy that combined homology modeling, protein-protein docking and refinement by means of molecular dynamics simulations. The structural features of the in silico model allowed us to identify the regions that mediate the recognition between the interacting proteins, revealing the active role of the ubiquitin crosslinked to E1 in the complex formation. Finally, the role of these regions involved in the E1-E2 binding was validated by designing short peptides that specifically interfere with the binding of UbcH10, thus supporting the reliability of the proposed model and representing valuable scaffolds for the design of peptidomimetic compounds that can bind selectively to Ubcs and inhibit the ubiquitylation process in pathological disorders.

  20. Crystal Structure of the Ubiquitin-associated (UBA) Domain of p62 and Its Interaction with Ubiquitin*

    PubMed Central

    Isogai, Shin; Morimoto, Daichi; Arita, Kyohei; Unzai, Satoru; Tenno, Takeshi; Hasegawa, Jun; Sou, Yu-shin; Komatsu, Masaaki; Tanaka, Keiji; Shirakawa, Masahiro; Tochio, Hidehito

    2011-01-01

    p62/SQSTM1/A170 is a multimodular protein that is found in ubiquitin-positive inclusions associated with neurodegenerative diseases. Recent findings indicate that p62 mediates the interaction between ubiquitinated proteins and autophagosomes, leading these proteins to be degraded via the autophagy-lysosomal pathway. This ubiquitin-mediated selective autophagy is thought to begin with recognition of the ubiquitinated proteins by the C-terminal ubiquitin-associated (UBA) domain of p62. We present here the crystal structure of the UBA domain of mouse p62 and the solution structure of its ubiquitin-bound form. The p62 UBA domain adopts a novel dimeric structure in crystals, which is distinctive from those of other UBA domains. NMR analyses reveal that in solution the domain exists in equilibrium between the dimer and monomer forms, and binding ubiquitin shifts the equilibrium toward the monomer to form a 1:1 complex between the UBA domain and ubiquitin. The dimer-to-monomer transition is associated with a structural change of the very C-terminal end of the p62 UBA domain, although the UBA fold itself is essentially maintained. Our data illustrate that dimerization and ubiquitin binding of the p62 UBA domain are incompatible with each other. These observations reveal an autoinhibitory mechanism in the p62 UBA domain and suggest that autoinhibition plays a role in the function of p62. PMID:21715324

  1. Enzymatic production of mono-ubiquitinated proteins for structural studies: The example of the Josephin domain of ataxin-3☆

    PubMed Central

    Faggiano, Serena; Menon, Rajesh P.; Kelly, Geoff P.; McCormick, John; Todi, Sokol V.; Scaglione, K. Matthew; Paulson, Henry L.; Pastore, Annalisa

    2013-01-01

    Protein ubiquitination occurs through formation of an isopeptide bond between the C-terminal glycine of ubiquitin (Ub) and the ɛ-amino group of a substrate lysine residue. This post-translational modification, which occurs through the attachment of single and/or multiple copies of mono-ubiquitin and poly-ubiquitin chains, is involved in crucial cellular events such as protein degradation, cell-cycle regulation and DNA repair. The abnormal functioning of ubiquitin pathways is also implicated in the pathogenesis of several human diseases ranging from cancer to neurodegeneration. However, despite the undoubted biological importance, understanding the molecular basis of how ubiquitination regulates different pathways has up to now been strongly limited by the difficulty of producing the amounts of highly homogeneous samples that are needed for a structural characterization by X-ray crystallography and/or NMR. Here, we report on the production of milligrams of highly pure Josephin mono-ubiquitinated on lysine 117 through large scale in vitro enzymatic ubiquitination. Josephin is the catalytic domain of ataxin-3, a protein responsible for spinocerebellar ataxia type 3. Ataxin-3 is the first deubiquitinating enzyme (DUB) reported to be activated by mono-ubiquitination. We demonstrate that the samples produced with the described method are correctly folded and suitable for structural studies. The protocol allows facile selective labelling of the components. Our results provide an important proof-of-concept that may pave the way to new approaches to the in vitro study of ubiquitinated proteins. PMID:24251111

  2. Cell-fate determination by ubiquitin-dependent regulation of translation.

    PubMed

    Werner, Achim; Iwasaki, Shintaro; McGourty, Colleen A; Medina-Ruiz, Sofia; Teerikorpi, Nia; Fedrigo, Indro; Ingolia, Nicholas T; Rape, Michael

    2015-09-24

    Metazoan development depends on the accurate execution of differentiation programs that allow pluripotent stem cells to adopt specific fates. Differentiation requires changes to chromatin architecture and transcriptional networks, yet whether other regulatory events support cell-fate determination is less well understood. Here we identify the ubiquitin ligase CUL3 in complex with its vertebrate-specific substrate adaptor KBTBD8 (CUL3(KBTBD8)) as an essential regulator of human and Xenopus tropicalis neural crest specification. CUL3(KBTBD8) monoubiquitylates NOLC1 and its paralogue TCOF1, the mutation of which underlies the neurocristopathy Treacher Collins syndrome. Ubiquitylation drives formation of a TCOF1-NOLC1 platform that connects RNA polymerase I with ribosome modification enzymes and remodels the translational program of differentiating cells in favour of neural crest specification. We conclude that ubiquitin-dependent regulation of translation is an important feature of cell-fate determination.

  3. Downregulation of Ubiquitin-conjugating Enzyme UBE2D3 Promotes Telomere Maintenance and Radioresistance of Eca-109 Human Esophageal Carcinoma Cells

    PubMed Central

    Yang, Hui; Wu, Lin; Ke, Shaobo; Wang, Wenbo; Yang, Lei; Gao, Xiaojia; Fang, Hongyan; Yu, Haijun; Zhong, Yahua; Xie, Conghua; Zhou, Fuxiang; Zhou, Yunfeng

    2016-01-01

    Ubiquitin-conjugating enzyme UBE2D3 is an important member of the ubiquitin-proteasome pathways. Our previous study showed that the expression of UBE2D3 was negatively related to human telomerase reverse transcriptase (hTERT) and radioresistance in human breast cancer cells. However, in esophageal carcinoma, the exact effects and mechanisms of UBE2D3 in radioresistance remain unclear. This study shows that UBE2D3 knockdown was associated with significant increases in radioresistance to X-rays, telomerase activity, telomere length, and telomere shelterins. UBE2D3 knockdown-mediated radioresistance was related to a decrease in the spontaneous and ionizing radiation-induced apoptosis, resulting from a decrease in the Bax/Bcl-2 ratio. Furthermore, UBE2D3 downregulation was associated with increased G1-S phase transition and prolonged IR-induced G2/M arrest through over expression of cyclin D1, decrease of CDC25A expression and promotion of the ATM/ATR-Chk1-CDC25C pathway. Moreover, UBE2D3 downregulation reduced spontaneous DNA double-strand breaks and accelerated the repair of DNA damage induced by IR. The current data thus demonstrate that UBE2D3 downregulation enhances radioresistance by increased telomere homeostasis and prolonged IR-induced G2/M arrest, but decreases the IR-induced apoptosis and the number of DNA damage foci. These results suggest that UBE2D3 might be a potential molecular target to improve radiotherapy effects in esophageal carcinoma. PMID:27326259

  4. Role of the ubiquitin-proteasome system in brain ischemia: friend or foe?

    PubMed

    Caldeira, Margarida V; Salazar, Ivan L; Curcio, Michele; Canzoniero, Lorella M T; Duarte, Carlos B

    2014-01-01

    The ubiquitin-proteasome system (UPS) is a catalytic machinery that targets numerous cellular proteins for degradation, thus being essential to control a wide range of basic cellular processes and cell survival. Degradation of intracellular proteins via the UPS is a tightly regulated process initiated by tagging a target protein with a specific ubiquitin chain. Neurons are particularly vulnerable to any change in protein composition, and therefore the UPS is a key regulator of neuronal physiology. Alterations in UPS activity may induce pathological responses, ultimately leading to neuronal cell death. Brain ischemia triggers a complex series of biochemical and molecular mechanisms, such as an inflammatory response, an exacerbated production of misfolded and oxidized proteins, due to oxidative stress, and the breakdown of cellular integrity mainly mediated by excitotoxic glutamatergic signaling. Brain ischemia also damages protein degradation pathways which, together with the overproduction of damaged proteins and consequent upregulation of ubiquitin-conjugated proteins, contribute to the accumulation of ubiquitin-containing proteinaceous deposits. Despite recent advances, the factors leading to deposition of such aggregates after cerebral ischemic injury remain poorly understood. This review discusses the current knowledge on the role of the UPS in brain function and the molecular mechanisms contributing to UPS dysfunction in brain ischemia with consequent accumulation of ubiquitin-containing proteins. Chemical inhibitors of the proteasome and small molecule inhibitors of deubiquitinating enzymes, which promote the degradation of proteins by the proteasome, were both shown to provide neuroprotection in brain ischemia, and this apparent contradiction is also discussed in this review. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. Targeting ubiquitination for cancer therapies.

    PubMed

    Morrow, John Kenneth; Lin, Hui-Kuan; Sun, Shao-Cong; Zhang, Shuxing

    2015-01-01

    Ubiquitination, the structured degradation and turnover of cellular proteins, is regulated by the ubiquitin-proteasome system (UPS). Most proteins that are critical for cellular regulations and functions are targets of the process. Ubiquitination is comprised of a sequence of three enzymatic steps, and aberrations in the pathway can lead to tumor development and progression as observed in many cancer types. Recent evidence indicates that targeting the UPS is effective for certain cancer treatment, but many more potential targets might have been previously overlooked. In this review, we will discuss the current state of small molecules that target various elements of ubiquitination. Special attention will be given to novel inhibitors of E3 ubiquitin ligases, especially those in the SCF family.

  6. Rines E3 ubiquitin ligase regulates MAO-A levels and emotional responses.

    PubMed

    Kabayama, Miyuki; Sakoori, Kazuto; Yamada, Kazuyuki; Ornthanalai, Veravej G; Ota, Maya; Morimura, Naoko; Katayama, Kei-ichi; Murphy, Niall P; Aruga, Jun

    2013-08-07

    Monoamine oxidase A (MAO-A), the catabolic enzyme of norepinephrine and serotonin, plays a critical role in emotional and social behavior. However, the control and impact of endogenous MAO-A levels in the brain remains unknown. Here we show that the RING finger-type E3 ubiquitin ligase Rines/RNF180 regulates brain MAO-A subset, monoamine levels, and emotional behavior. Rines interacted with MAO-A and promoted its ubiquitination and degradation. Rines knock-out mice displayed impaired stress responses, enhanced anxiety, and affiliative behavior. Norepinephrine and serotonin levels were altered in the locus ceruleus, prefrontal cortex, and amygdala in either stressed or resting conditions, and MAO-A enzymatic activity was enhanced in the locus ceruleus in Rines knock-out mice. Treatment of Rines knock-out mice with MAO inhibitors showed genotype-specific effects on some of the abnormal affective behaviors. These results indicated that the control of emotional behavior by Rines is partly due to the regulation of MAO-A levels. These findings verify that Rines is a critical regulator of the monoaminergic system and emotional behavior and identify a promising candidate drug target for treating diseases associated with emotion.

  7. Ubiquitin--conserved protein or selfish gene?

    PubMed

    Catic, André; Ploegh, Hidde L

    2005-11-01

    The posttranslational modifier ubiquitin is encoded by a multigene family containing three primary members, which yield the precursor protein polyubiquitin and two ubiquitin moieties, Ub(L40) and Ub(S27), that are fused to the ribosomal proteins L40 and S27, respectively. The gene encoding polyubiquitin is highly conserved and, until now, those encoding Ub(L40) and Ub(S27) have been generally considered to be equally invariant. The evolution of the ribosomal ubiquitin moieties is, however, proving to be more dynamic. It seems that the genes encoding Ub(L40) and Ub(S27) are actively maintained by homologous recombination with the invariant polyubiquitin locus. Failure to recombine leads to deterioration of the sequence of the ribosomal ubiquitin moieties in several phyla, although this deterioration is evidently constrained by the structural requirements of the ubiquitin fold. Only a few amino acids in ubiquitin are vital for its function, and we propose that conservation of all three ubiquitin genes is driven not only by functional properties of the ubiquitin protein, but also by the propensity of the polyubiquitin locus to act as a 'selfish gene'.

  8. Nitric oxide prodrug JS-K inhibits ubiquitin E1 and kills tumor cells retaining wild-type p53.

    PubMed

    Kitagaki, J; Yang, Y; Saavedra, J E; Colburn, N H; Keefer, L K; Perantoni, A O

    2009-01-29

    Nitric oxide (NO) is a major effector molecule in cancer prevention. A number of studies have shown that NO prodrug JS-K (O(2)-(2,4-dinitrophenyl) 1-[(4-ethoxycarbonyl)piperazin-1-yl]diazen-1-ium-1,2-diolate) induces apoptotic cell death in vitro and in vivo, indicating that it is a promising new therapeutic for cancer. However, the mechanism of its tumor-killing activity remains unclear. Ubiquitin plays an important role in the regulation of tumorigenesis and cell apoptosis. Our earlier report has shown that inactivation of the ubiquitin system through blocking E1 (ubiquitin-activating enzyme) activity preferentially induces apoptosis in p53-expressing transformed cells. As E1 has an active cysteine residue that could potentially interact with NO, we hypothesized that JS-K could inactivate E1 activity. E1 activity was evaluated by detecting ubiquitin-E1 conjugates through immunoblotting. JS-K strikingly inhibits the ubiquitin-E1 thioester formation in cells in a dose-dependent manner with an IC(50) of approximately 2 microM, whereas a JS-K analog that cannot release NO did not affect these levels in cells. Moreover, JS-K decreases total ubiquitylated proteins and increases p53 levels, which is mainly regulated by ubiquitin and proteasomal degradation. Furthermore, JS-K preferentially induces cell apoptosis in p53-expressing transformed cells. These findings indicate that JS-K inhibits E1 activity and kills transformed cells harboring wild-type p53.

  9. Dynamic survey of mitochondria by ubiquitin

    PubMed Central

    Escobar-Henriques, Mafalda; Langer, Thomas

    2014-01-01

    Ubiquitin is a post-translational modifier with proteolytic and non-proteolytic roles in many biological processes. At mitochondria, it performs regulatory homeostatic functions and contributes to mitochondrial quality control. Ubiquitin is essential for mitochondrial fusion, regulates mitochondria-ER contacts, and participates in maternal mtDNA inheritance. Under stress, mitochondrial dysfunction induces ubiquitin-dependent responses that involve mitochondrial proteome remodeling and culminate in organelle removal by mitophagy. In addition, many ubiquitin-dependent mechanisms have been shown to regulate innate immune responses and xenophagy. Here, we review the emerging roles of ubiquitin at mitochondria. PMID:24569520

  10. Dissecting the function of Cullin-RING ubiquitin ligase complex genes in planarian regeneration.

    PubMed

    Strand, Nicholas S; Allen, John M; Ghulam, Mahjoobah; Taylor, Matthew R; Munday, Roma K; Carrillo, Melissa; Movsesyan, Artem; Zayas, Ricardo M

    2018-01-15

    The ubiquitin system plays a role in nearly every aspect of eukaryotic cell biology. The enzymes responsible for transferring ubiquitin onto specific substrates are the E3 ubiquitin ligases, a large and diverse family of proteins, for which biological roles and target substrates remain largely undefined. Studies using model organisms indicate that ubiquitin signaling mediates key steps in developmental processes and tissue regeneration. Here, we used the freshwater planarian, Schmidtea mediterranea, to investigate the role of Cullin-RING ubiquitin ligase (CRL) complexes in stem cell regulation during regeneration. We identified six S. mediterranea cullin genes, and used RNAi to uncover roles for homologs of Cullin-1, -3 and -4 in planarian regeneration. The cullin-1 RNAi phenotype included defects in blastema formation, organ regeneration, lesions, and lysis. To further investigate the function of cullin-1-mediated cellular processes in planarians, we examined genes encoding the adaptor protein Skp1 and F-box substrate-recognition proteins that are predicted to partner with Cullin-1. RNAi against skp1 resulted in phenotypes similar to cullin-1 RNAi, and an RNAi screen of the F-box genes identified 19 genes that recapitulated aspects of cullin-1 RNAi, including ones that in mammals are involved in stem cell regulation and cancer biology. Our data provides evidence that CRLs play discrete roles in regenerative processes and provide a platform to investigate how CRLs regulate stem cells in vivo. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. The many faces of ubiquitinated histone H2A: insights from the DUBs

    PubMed Central

    Vissers, Joseph HA; Nicassio, Francesco; van Lohuizen, Maarten; Di Fiore, Pier Paolo; Citterio, Elisabetta

    2008-01-01

    Monoubiquitination of H2A is a major histone modification in mammalian cells. Understanding how monoubiquitinated H2A (uH2A) regulates DNA-based processes in the context of chromatin is a challenging question. Work in the past years linked uH2A to transcriptional repression by the Polycomb group proteins of developmental regulators. Recently, a number of mammalian deubiquitinating enzymes (DUBs) that catalyze the removal of ubiquitin from H2A have been discovered. These studies provide convincing evidence that H2A deubiquitination is connected with gene activation. In addition, uH2A regulatory enzymes have crucial roles in the cellular response to DNA damage and in cell cycle progression. In this review we will discuss new insights into uH2A biology, with emphasis on the H2A DUBs. PMID:18430235

  12. The Linear ubiquitin chain assembly complex acts as a liver tumor suppressor and inhibits hepatocyte apoptosis and hepatitis.

    PubMed

    Shimizu, Yutaka; Peltzer, Nieves; Sevko, Alexandra; Lafont, Elodie; Sarr, Aida; Draberova, Helena; Walczak, Henning

    2017-06-01

    Linear ubiquitination is a key posttranslational modification that regulates immune signaling and cell death pathways, notably tumor necrosis factor receptor 1 (TNFR1) signaling. The only known enzyme complex capable of forming linear ubiquitin chains under native conditions to date is the linear ubiquitin chain assembly complex, of which the catalytic core component is heme-oxidized iron regulatory protein 2 ubiquitin ligase-1-interacting protein (HOIP). To understand the underlying mechanisms of maintenance of liver homeostasis and the role of linear ubiquitination specifically in liver parenchymal cells, we investigated the physiological role of HOIP in the liver parenchyma. To do so, we created mice harboring liver parenchymal cell-specific deletion of HOIP (Hoip Δhep mice) by crossing Hoip-floxed mice with albumin-Cre mice. HOIP deficiency in liver parenchymal cells triggered tumorigenesis at 18 months of age preceded by spontaneous hepatocyte apoptosis and liver inflammation within the first month of life. In line with the emergence of inflammation, Hoip Δhep mice displayed enhanced liver regeneration and DNA damage. In addition, consistent with increased apoptosis, HOIP-deficient hepatocytes showed enhanced caspase activation and endogenous formation of a death-inducing signaling complex which activated caspase-8. Unexpectedly, exacerbated caspase activation and apoptosis were not dependent on TNFR1, whereas ensuing liver inflammation and tumorigenesis were promoted by TNFR1 signaling. The linear ubiquitin chain assembly complex serves as a previously undescribed tumor suppressor in the liver, restraining TNFR1-independent apoptosis in hepatocytes which, in its absence, is causative of TNFR1-mediated inflammation, resulting in hepatocarcinogenesis. (Hepatology 2017;65:1963-1978). © 2017 The Authors. Hepatology published by Wiley Periodicals, Inc., on behalf of the American Association for the Study of Liver Diseases.

  13. Human coding RNA editing is generally nonadaptive

    PubMed Central

    Xu, Guixia; Zhang, Jianzhi

    2014-01-01

    Impairment of RNA editing at a handful of coding sites causes severe disorders, prompting the view that coding RNA editing is highly advantageous. Recent genomic studies have expanded the list of human coding RNA editing sites by more than 100 times, raising the question of how common advantageous RNA editing is. Analyzing 1,783 human coding A-to-G editing sites, we show that both the frequency and level of RNA editing decrease as the importance of a site or gene increases; that during evolution, edited As are more likely than unedited As to be replaced with Gs but not with Ts or Cs; and that among nonsynonymously edited As, those that are evolutionarily least conserved exhibit the highest editing levels. These and other observations reveal the overall nonadaptive nature of coding RNA editing, despite the presence of a few sites in which editing is clearly beneficial. We propose that most observed coding RNA editing results from tolerable promiscuous targeting by RNA editing enzymes, the original physiological functions of which remain elusive. PMID:24567376

  14. Dynamic ubiquitin signaling in cell cycle regulation

    PubMed Central

    Gilberto, Samuel

    2017-01-01

    The cell division cycle is driven by a collection of enzymes that coordinate DNA duplication and separation, ensuring that genomic information is faithfully and perpetually maintained. The activity of the effector proteins that perform and coordinate these biological processes oscillates by regulated expression and/or posttranslational modifications. Ubiquitylation is a cardinal cellular modification and is long known for driving cell cycle transitions. In this review, we emphasize emerging concepts of how ubiquitylation brings the necessary dynamicity and plasticity that underlie the processes of DNA replication and mitosis. New studies, often focusing on the regulation of chromosomal proteins like DNA polymerases or kinetochore kinases, are demonstrating that ubiquitylation is a versatile modification that can be used to fine-tune these cell cycle events, frequently through processes that do not involve proteasomal degradation. Understanding how the increasing variety of identified ubiquitin signals are transduced will allow us to develop a deeper mechanistic perception of how the multiple factors come together to faithfully propagate genomic information. Here, we discuss these and additional conceptual challenges that are currently under study toward understanding how ubiquitin governs cell cycle regulation. PMID:28684425

  15. Dynamic ubiquitin signaling in cell cycle regulation.

    PubMed

    Gilberto, Samuel; Peter, Matthias

    2017-08-07

    The cell division cycle is driven by a collection of enzymes that coordinate DNA duplication and separation, ensuring that genomic information is faithfully and perpetually maintained. The activity of the effector proteins that perform and coordinate these biological processes oscillates by regulated expression and/or posttranslational modifications. Ubiquitylation is a cardinal cellular modification and is long known for driving cell cycle transitions. In this review, we emphasize emerging concepts of how ubiquitylation brings the necessary dynamicity and plasticity that underlie the processes of DNA replication and mitosis. New studies, often focusing on the regulation of chromosomal proteins like DNA polymerases or kinetochore kinases, are demonstrating that ubiquitylation is a versatile modification that can be used to fine-tune these cell cycle events, frequently through processes that do not involve proteasomal degradation. Understanding how the increasing variety of identified ubiquitin signals are transduced will allow us to develop a deeper mechanistic perception of how the multiple factors come together to faithfully propagate genomic information. Here, we discuss these and additional conceptual challenges that are currently under study toward understanding how ubiquitin governs cell cycle regulation. © 2017 Gilberto and Peter.

  16. DNA and RNA editing of retrotransposons accelerate mammalian genome evolution.

    PubMed

    Knisbacher, Binyamin A; Levanon, Erez Y

    2015-04-01

    Genome evolution is commonly viewed as a gradual process that is driven by random mutations that accumulate over time. However, DNA- and RNA-editing enzymes have been identified that can accelerate evolution by actively modifying the genomically encoded information. The apolipoprotein B mRNA editing enzymes, catalytic polypeptide-like (APOBECs) are potent restriction factors that can inhibit retroelements by cytosine-to-uridine editing of retroelement DNA after reverse transcription. In some cases, a retroelement may successfully integrate into the genome despite being hypermutated. Such events introduce unique sequences into the genome and are thus a source of genomic innovation. adenosine deaminases that act on RNA (ADARs) catalyze adenosine-to-inosine editing in double-stranded RNA, commonly formed by oppositely oriented retroelements. The RNA editing confers plasticity to the transcriptome by generating many transcript variants from a single genomic locus. If the editing produces a beneficial variant, the genome may maintain the locus that produces the RNA-edited transcript for its novel function. Here, we discuss how these two powerful editing mechanisms, which both target inserted retroelements, facilitate expedited genome evolution. © 2015 New York Academy of Sciences.

  17. Deciphering the Ubiquitin Code.

    PubMed

    Dittmar, Gunnar; Selbach, Matthias

    2017-03-02

    In this issue of Molecular Cell, Zhang et al. (2017) systematically identify proteins interacting with all possible di-ubiquitin linkages, thus providing a catalog of readers of the ubiquitin code. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Selective autophagy: ubiquitin-mediated recognition and beyond.

    PubMed

    Kraft, Claudine; Peter, Matthias; Hofmann, Kay

    2010-09-01

    Eukaryotic cells use autophagy and the ubiquitin-proteasome system as their major protein degradation pathways. Whereas the ubiquitin-proteasome system is involved in the rapid degradation of proteins, autophagy pathways can selectively remove protein aggregates and damaged or excess organelles. Proteasome-mediated degradation requires previous ubiquitylation of the cargo, which is then recognized by ubiquitin receptors directing it to 26S proteasomes. Although autophagy has long been viewed as a random cytoplasmic degradation system, the involvement of ubiquitin as a specificity factor for selective autophagy is rapidly emerging. Recent evidence also suggests active crosstalk between proteasome-mediated degradation and selective autophagy. Here, we discuss the molecular mechanisms that link autophagy and the proteasome system, as well as the emerging roles of ubiquitin and ubiquitin-binding proteins in selective autophagy. On the basis of the evolutionary history of autophagic ubiquitin receptors, we propose a common origin for metazoan ubiquitin-dependent autophagy and the cytoplasm-to-vacuole targeting pathway of yeast.

  19. Central catalytic domain of BRAP (RNF52) recognizes the types of ubiquitin chains and utilizes oligo-ubiquitin for ubiquitylation.

    PubMed

    Shoji, Shisako; Hanada, Kazuharu; Ohsawa, Noboru; Shirouzu, Mikako

    2017-09-07

    Really interesting new gene (RING)-finger protein 52 (RNF52), an E3 ubiquitin ligase, is found in eukaryotes from yeast to humans. Human RNF52 is known as breast cancer type 1 susceptibility protein (BRCA1)-associated protein 2 (BRAP or BRAP2). The central catalytic domain of BRAP comprises four subdomains: nucleotide-binding α/β plait (NBP), really interesting new gene (RING) zinc finger, ubiquitin-specific protease (UBP)-like zinc finger (ZfUBP), and coiled-coil (CC). This domain architecture is conserved in RNF52 orthologs; however, the domain's function in the ubiquitin system has not been delineated. In the present study, we discovered that the RNF52 domain, comprising NBP-RING-ZfUBP-CC, binds to ubiquitin chains (oligo-ubiquitin) but not to the ubiquitin monomers, and can utilize various ubiquitin chains for ubiquitylation and auto-ubiquitylation. The RNF52 domain preferentially bound to M1- and K63-linked di-ubiquitin chains, weakly to K27-linked chains, but not to K6-, K11-, or K48-linked chains. The binding preferences of the RNF52 domain for ubiquitin-linkage types corresponded to ubiquitin usage in the ubiquitylation reaction, except for K11-, K29-, and K33-linked chains. Additionally, the RNF52 domain directly ligated the intact M1-linked, tri-, and tetra-ubiquitin chains and recognized the structural alterations caused by the phosphomimetic mutation of these ubiquitin chains. Full-length BRAP had nearly the same specificity for the ubiquitin-chain types as the RNF52 domain alone. Mass spectrometry analysis of oligomeric ubiquitylation products, mediated by the RNF52 domain, revealed that the ubiquitin-linkage types and auto-ubiquitylation sites depend on the length of ubiquitin chains. Here, we propose a model for the oligomeric ubiquitylation process, controlled by the RNF52 domain, which is not a sequential assembly process involving monomers. © 2017 The Author(s). Published by Portland Press Limited on behalf of the Biochemical Society.

  20. Central catalytic domain of BRAP (RNF52) recognizes the types of ubiquitin chains and utilizes oligo-ubiquitin for ubiquitylation

    PubMed Central

    Hanada, Kazuharu; Ohsawa, Noboru

    2017-01-01

    Really interesting new gene (RING)-finger protein 52 (RNF52), an E3 ubiquitin ligase, is found in eukaryotes from yeast to humans. Human RNF52 is known as breast cancer type 1 susceptibility protein (BRCA1)-associated protein 2 (BRAP or BRAP2). The central catalytic domain of BRAP comprises four subdomains: nucleotide-binding α/β plait (NBP), really interesting new gene (RING) zinc finger, ubiquitin-specific protease (UBP)-like zinc finger (ZfUBP), and coiled-coil (CC). This domain architecture is conserved in RNF52 orthologs; however, the domain's function in the ubiquitin system has not been delineated. In the present study, we discovered that the RNF52 domain, comprising NBP–RING–ZfUBP–CC, binds to ubiquitin chains (oligo-ubiquitin) but not to the ubiquitin monomers, and can utilize various ubiquitin chains for ubiquitylation and auto-ubiquitylation. The RNF52 domain preferentially bound to M1- and K63-linked di-ubiquitin chains, weakly to K27-linked chains, but not to K6-, K11-, or K48-linked chains. The binding preferences of the RNF52 domain for ubiquitin-linkage types corresponded to ubiquitin usage in the ubiquitylation reaction, except for K11-, K29-, and K33-linked chains. Additionally, the RNF52 domain directly ligated the intact M1-linked, tri-, and tetra-ubiquitin chains and recognized the structural alterations caused by the phosphomimetic mutation of these ubiquitin chains. Full-length BRAP had nearly the same specificity for the ubiquitin-chain types as the RNF52 domain alone. Mass spectrometry analysis of oligomeric ubiquitylation products, mediated by the RNF52 domain, revealed that the ubiquitin-linkage types and auto-ubiquitylation sites depend on the length of ubiquitin chains. Here, we propose a model for the oligomeric ubiquitylation process, controlled by the RNF52 domain, which is not a sequential assembly process involving monomers. PMID:28768733

  1. PKC-Dependent GlyT1 Ubiquitination Occurs Independent of Phosphorylation: Inespecificity in Lysine Selection for Ubiquitination

    PubMed Central

    Barrera, Susana P.; Castrejon-Tellez, Vicente; Trinidad, Margarita; Robles-Escajeda, Elisa; Vargas-Medrano, Javier; Varela-Ramirez, Armando; Miranda, Manuel

    2015-01-01

    Neurotransmitter transporter ubiquitination is emerging as the main mechanism for endocytosis and sorting of cargo into lysosomes. In this study, we demonstrate PKC-dependent ubiquitination of three different isoforms of the glycine transporter 1 (GlyT1). Incubation of cells expressing transporter with the PKC activator phorbol ester induced a dramatic, time-dependent increase in GlyT1 ubiquitination, followed by accumulation of GlyT1 in EEA1 positive early endosomes. This occurred via a mechanism that was abolished by inhibition of PKC. GlyT1 endocytosis was confirmed in both retinal sections and primary cultures of mouse amacrine neurons. Replacement of only all lysines in the N-and C-termini to arginines prevented ubiquitination and endocytosis, displaying redundancy in the mechanism of ubiquitination. Interestingly, a 40–50% reduction in glycine uptake was detected in phorbol-ester stimulated cells expressing the WT-GlyT1, whereas no significant change was for the mutant protein, demonstrating that endocytosis participates in the reduction of uptake. Consistent with previous findings for the dopamine transporter DAT, ubiquitination of GlyT1 tails functions as sorting signal to deliver transporter into the lysosome and removal of ubiquitination sites dramatically attenuated the rate of GlyT1 degradation. Finally, we showed for the first time that PKC-dependent GlyT1 phosphorylation was not affected by removal of ubiquitination sites, suggesting separate PKC-dependent signaling events for these posttranslational modifications. PMID:26418248

  2. Ubiquitinated Proteome: Ready for Global?*

    PubMed Central

    Shi, Yi; Xu, Ping; Qin, Jun

    2011-01-01

    Ubiquitin (Ub) is a small and highly conserved protein that can covalently modify protein substrates. Ubiquitination is one of the major post-translational modifications that regulate a broad spectrum of cellular functions. The advancement of mass spectrometers as well as the development of new affinity purification tools has greatly expedited proteome-wide analysis of several post-translational modifications (e.g. phosphorylation, glycosylation, and acetylation). In contrast, large-scale profiling of lysine ubiquitination remains a challenge. Most recently, new Ub affinity reagents such as Ub remnant antibody and tandem Ub binding domains have been developed, allowing for relatively large-scale detection of several hundreds of lysine ubiquitination events in human cells. Here we review different strategies for the identification of ubiquitination site and discuss several issues associated with data analysis. We suggest that careful interpretation and orthogonal confirmation of MS spectra is necessary to minimize false positive assignments by automatic searching algorithms. PMID:21339389

  3. Dynamic landscape and regulation of RNA editing in mammals

    PubMed Central

    Tan, Meng How; Li, Qin; Shanmugam, Raghuvaran; Piskol, Robert; Kohler, Jennefer; Young, Amy N.; Liu, Kaiwen Ivy; Zhang, Rui; Ramaswami, Gokul; Ariyoshi, Kentaro; Gupte, Ankita; Keegan, Liam P.; George, Cyril X.; Ramu, Avinash; Huang, Ni; Pollina, Elizabeth A.; Leeman, Dena S.; Rustighi, Alessandra; Sharon Goh, Y. P.; Chawla, Ajay; Del Sal, Giannino; Peltz, Gary; Brunet, Anne; Conrad, Donald F.; Samuel, Charles E.; O’Connell, Mary A.; Walkley, Carl R.; Nishikura, Kazuko; Li, Jin Billy

    2017-01-01

    Adenosine-to-inosine (A-to-I) RNA editing is a conserved post-transcriptional mechanism mediated by ADAR enzymes that diversifies the transcriptome by altering selected nucleotides in RNA molecules1. Although many editing sites have recently been discovered2–7, the extent to which most sites are edited and how the editing is regulated in different biological contexts are not fully understood8–10. Here we report dynamic spatiotemporal patterns and new regulators of RNA editing, discovered through an extensive profiling of A-to-I RNA editing in 8,551 human samples (representing 53 body sites from 552 individuals) from the Genotype-Tissue Expression (GTEx) project and in hundreds of other primate and mouse samples. We show that editing levels in non-repetitive coding regions vary more between tissues than editing levels in repetitive regions. Globally, ADAR1 is the primary editor of repetitive sites and ADAR2 is the primary editor of non-repetitive coding sites, whereas the catalytically inactive ADAR3 predominantly acts as an inhibitor of editing. Cross-species analysis of RNA editing in several tissues revealed that species, rather than tissue type, is the primary determinant of editing levels, suggesting stronger cis-directed regulation of RNA editing for most sites, although the small set of conserved coding sites is under stronger trans-regulation. In addition, we curated an extensive set of ADAR1 and ADAR2 targets and showed that many editing sites display distinct tissue-specific regulation by the ADAR enzymes in vivo. Further analysis of the GTEx data revealed several potential regulators of editing, such as AIMP2, which reduces editing in muscles by enhancing the degradation of the ADAR proteins. Collectively, our work provides insights into the complex cis- and trans-regulation of A-to-I editing. PMID:29022589

  4. Dynamic landscape and regulation of RNA editing in mammals.

    PubMed

    Tan, Meng How; Li, Qin; Shanmugam, Raghuvaran; Piskol, Robert; Kohler, Jennefer; Young, Amy N; Liu, Kaiwen Ivy; Zhang, Rui; Ramaswami, Gokul; Ariyoshi, Kentaro; Gupte, Ankita; Keegan, Liam P; George, Cyril X; Ramu, Avinash; Huang, Ni; Pollina, Elizabeth A; Leeman, Dena S; Rustighi, Alessandra; Goh, Y P Sharon; Chawla, Ajay; Del Sal, Giannino; Peltz, Gary; Brunet, Anne; Conrad, Donald F; Samuel, Charles E; O'Connell, Mary A; Walkley, Carl R; Nishikura, Kazuko; Li, Jin Billy

    2017-10-11

    Adenosine-to-inosine (A-to-I) RNA editing is a conserved post-transcriptional mechanism mediated by ADAR enzymes that diversifies the transcriptome by altering selected nucleotides in RNA molecules. Although many editing sites have recently been discovered, the extent to which most sites are edited and how the editing is regulated in different biological contexts are not fully understood. Here we report dynamic spatiotemporal patterns and new regulators of RNA editing, discovered through an extensive profiling of A-to-I RNA editing in 8,551 human samples (representing 53 body sites from 552 individuals) from the Genotype-Tissue Expression (GTEx) project and in hundreds of other primate and mouse samples. We show that editing levels in non-repetitive coding regions vary more between tissues than editing levels in repetitive regions. Globally, ADAR1 is the primary editor of repetitive sites and ADAR2 is the primary editor of non-repetitive coding sites, whereas the catalytically inactive ADAR3 predominantly acts as an inhibitor of editing. Cross-species analysis of RNA editing in several tissues revealed that species, rather than tissue type, is the primary determinant of editing levels, suggesting stronger cis-directed regulation of RNA editing for most sites, although the small set of conserved coding sites is under stronger trans-regulation. In addition, we curated an extensive set of ADAR1 and ADAR2 targets and showed that many editing sites display distinct tissue-specific regulation by the ADAR enzymes in vivo. Further analysis of the GTEx data revealed several potential regulators of editing, such as AIMP2, which reduces editing in muscles by enhancing the degradation of the ADAR proteins. Collectively, our work provides insights into the complex cis- and trans-regulation of A-to-I editing.

  5. Activity Based Profiling of Deubiquitylating Enzymes and Inhibitors in Animal Tissues.

    PubMed

    McLellan, Lauren; Forder, Cassie; Cranston, Aaron; Harrigan, Jeanine; Jacq, Xavier

    2016-01-01

    The attachment of ubiquitin or ubiquitin-like modifiers to proteins is an important signal for the regulation of a variety of biological processes including the targeting of substrates for degradation, receptor internalization, regulation of gene expression, and DNA repair. Posttranslational modification of proteins by ubiquitin controls many cellular processes, and aberrant ubiquitylation can contribute to cancer, immunopathologies, and neurodegeneration. Thus, deubiquitylating enzymes (DUBs) that remove ubiquitin from proteins have become attractive therapeutic targets. Monitoring the activity of DUBs in cells or in tissues is critical for understanding the biological function of DUBs in particular pathways and is essential for determining the physiological specificity and potency of small-molecule DUB inhibitors. Here, we describe a method for the homogenization of animal tissues and incubation of tissue lysates with ubiquitin-based activity probes to monitor DUB activity in mouse tissues and target engagement following treatment of animals with small-molecule DUB inhibitors.

  6. Development of a genome editing technique using the CRISPR/Cas9 system in the industrial filamentous fungus Aspergillus oryzae.

    PubMed

    Katayama, Takuya; Tanaka, Yuki; Okabe, Tomoya; Nakamura, Hidetoshi; Fujii, Wataru; Kitamoto, Katsuhiko; Maruyama, Jun-Ichi

    2016-04-01

    To develop a genome editing method using the CRISPR/Cas9 system in Aspergillus oryzae, the industrial filamentous fungus used in Japanese traditional fermentation and for the production of enzymes and heterologous proteins. To develop the CRISPR/Cas9 system as a genome editing technique for A. oryzae, we constructed plasmids expressing the gene encoding Cas9 nuclease and single guide RNAs for the mutagenesis of target genes. We introduced these into an A. oryzae strain and obtained transformants containing mutations within each target gene that exhibited expected phenotypes. The mutational rates ranged from 10 to 20 %, and 1 bp deletions or insertions were the most commonly induced mutations. We developed a functional and versatile genome editing method using the CRISPR/Cas9 system in A. oryzae. This technique will contribute to the use of efficient targeted mutagenesis in many A. oryzae industrial strains.

  7. Functional characterization of rpn3 uncovers a distinct 19S proteasomal subunit requirement for ubiquitin-dependent proteolysis of cell cycle regulatory proteins in budding yeast.

    PubMed

    Bailly, E; Reed, S I

    1999-10-01

    By selectively eliminating ubiquitin-conjugated proteins, the 26S proteasome plays a pivotal role in a large variety of cellular regulatory processes, particularly in the control of cell cycle transitions. Access of ubiquitinated substrates to the inner catalytic chamber within the 20S core particle is mediated by the 19S regulatory particle (RP), whose subunit composition in budding yeast has been recently elucidated. In this study, we have investigated the cell cycle defects resulting from conditional inactivation of one of these RP components, the essential non-ATPase Rpn3/Sun2 subunit. Using temperature-sensitive mutant alleles, we show that rpn3 mutations do not prevent the G(1)/S transition but cause a metaphase arrest, indicating that the essential Rpn3 function is limiting for mitosis. rpn3 mutants appear severely compromised in the ubiquitin-dependent proteolysis of several physiologically important proteasome substrates. Thus, RPN3 function is required for the degradation of the G(1)-phase cyclin Cln2 targeted by SCF; the S-phase cyclin Clb5, whose ubiquitination is likely to involve a combination of E3 (ubiquitin protein ligase) enzymes; and anaphase-promoting complex targets, such as the B-type cyclin Clb2 and the anaphase inhibitor Pds1. Our results indicate that the Pds1 degradation defect of the rpn3 mutants most likely accounts for the metaphase arrest phenotype observed. Surprisingly, but consistent with the lack of a G(1) arrest phenotype in thermosensitive rpn3 strains, the Cdk inhibitor Sic1 exhibits a short half-life regardless of the RPN3 genotype. In striking contrast, Sic1 turnover is severely impaired by a temperature-sensitive mutation in RPN12/NIN1, encoding another essential RP subunit. While other interpretations are possible, these data strongly argue for the requirement of distinct RP subunits for efficient proteolysis of specific cell cycle regulators. The potential implications of these data are discussed in the context of possible

  8. Mutant Potential Ubiquitination Sites in Dur3p Enhance the Urea and Ethyl Carbamate Reduction in a Model Rice Wine System.

    PubMed

    Zhang, Peng; Du, Guocheng; Zou, Huijun; Xie, Guangfa; Chen, Jian; Shi, Zhongping; Zhou, Jingwen

    2017-03-01

    Ubiquitination can significantly affect the endocytosis and degradation of plasma membrane proteins. Here, the ubiquitination of a Saccharomyces cerevisiae urea plasma membrane transporter (Dur3p) was altered. Two potential ubiquitination sites, lysine residues K556 and K571, of Dur3p were predicted and replaced by arginine, and the effects of these mutations on urea utilization and formation under different nitrogen conditions were investigated. Compared with Dur3p, the Dur3p K556R mutant showed a 20.1% decrease in ubiquitination level in yeast nitrogen base medium containing urea and glutamine. It also exhibited a >75.8% decrease in urea formation in yeast extract-peptone-dextrose medium and 41.3 and 55.4% decreases in urea and ethyl carbamate formation (a known carcinogen), respectively, in a model rice wine system. The results presented here show that the mutation of Dur3p ubiquitination sites could significantly affect urea utilization and formation. Modifying the ubiquitination of specific transporters might have promising applications in rationally engineering S. cerevisiae strains to efficiently use specific nitrogen sources.

  9. Ft1, a novel gene related to ubiquitin-conjugating enzymes, is deleted in the Fused toes mouse mutation.

    PubMed

    Lesche, R; Peetz, A; van der Hoeven, F; Rüther, U

    1997-12-01

    The dominant mouse mutation Fused toes is characterized by partial syndactyly of the limbs and thymic hyperplasia. Both morphological abnormalities were shown to be related to impaired regulation of programmed cell death. Ft/Ft embryos die in midgestation showing severe malformations of fore- and midbrain as well as randomized situs. In Ft mice a large chromosomal deletion (about 300 kb) occurred after insertional mutagenesis. In this report we describe the identification of the first gene that has been mutated by Fused toes. The expression of the novel gene Ft1 is reduced in Ft/+ mice and completely absent in Ft/Ft embryos. Analysis of the Ft1 cDNA revealed an open reading frame that could code for a 32-kDa protein with similarities to ubiquitin-conjugating enzymes. Ft1 transcripts with alternative 5' UTR sequences as well as differential usage of polyadenylation sites were found. Interestingly, the 3' parts of the longest Ft1 transcripts are identical to the reverse complement of the 3'-most sequences of the Rb-related p130 gene. Both genes are transcribed in opposite directions and overlap in their 3' UTRs. Despite the close linkage, p130 expression appeared not to be affected by the Ft mutation. In wild type mice, Ft1 expression levels were found to be high in brain, kidney, and testes and detectable in all other adult organs and throughout embryonic development. Finally, we show that Ft1 is conserved among mammals and identify the human homolog.

  10. The ADAR RNA editing enzyme controls neuronal excitability in Drosophila melanogaster

    PubMed Central

    Li, Xianghua; Overton, Ian M.; Baines, Richard A.; Keegan, Liam P.; O’Connell, Mary A.

    2014-01-01

    RNA editing by deamination of specific adenosine bases to inosines during pre-mRNA processing generates edited isoforms of proteins. Recoding RNA editing is more widespread in Drosophila than in vertebrates. Editing levels rise strongly at metamorphosis, and Adar5G1 null mutant flies lack editing events in hundreds of CNS transcripts; mutant flies have reduced viability, severely defective locomotion and age-dependent neurodegeneration. On the other hand, overexpressing an adult dADAR isoform with high enzymatic activity ubiquitously during larval and pupal stages is lethal. Advantage was taken of this to screen for genetic modifiers; Adar overexpression lethality is rescued by reduced dosage of the Rdl (Resistant to dieldrin), gene encoding a subunit of inhibitory GABA receptors. Reduced dosage of the Gad1 gene encoding the GABA synthetase also rescues Adar overexpression lethality. Drosophila Adar5G1 mutant phenotypes are ameliorated by feeding GABA modulators. We demonstrate that neuronal excitability is linked to dADAR expression levels in individual neurons; Adar-overexpressing larval motor neurons show reduced excitability whereas Adar5G1 null mutant or targeted Adar knockdown motor neurons exhibit increased excitability. GABA inhibitory signalling is impaired in human epileptic and autistic conditions, and vertebrate ADARs may have a relevant evolutionarily conserved control over neuronal excitability. PMID:24137011

  11. CNOT4-Mediated Ubiquitination of Influenza A Virus Nucleoprotein Promotes Viral RNA Replication

    PubMed Central

    Lin, Yu-Chen; Jeng, King-Song

    2017-01-01

    ABSTRACT Influenza A virus (IAV) RNA segments are individually packaged with viral nucleoprotein (NP) and RNA polymerases to form a viral ribonucleoprotein (vRNP) complex. We previously reported that NP is a monoubiquitinated protein which can be deubiquitinated by a cellular ubiquitin protease, USP11. In this study, we identified an E3 ubiquitin ligase, CNOT4 (Ccr4-Not transcription complex subunit 4), which can ubiquitinate NP. We found that the levels of viral RNA, protein, viral particles, and RNA polymerase activity in CNOT4 knockdown cells were lower than those in the control cells upon IAV infection. Conversely, overexpression of CNOT4 rescued viral RNP activity. In addition, CNOT4 interacted with the NP in the cell. An in vitro ubiquitination assay also showed that NP could be ubiquitinated by in vitro-translated CNOT4, but ubiquitination did not affect the protein stability of NP. Significantly, CNOT4 increased NP ubiquitination, whereas USP11 decreased it. Mass spectrometry analysis of ubiquitinated NP revealed multiple ubiquitination sites on the various lysine residues of NP. Three of these, K184, K227, and K273, are located on the RNA-binding groove of NP. Mutations of these sites to arginine reduced viral RNA replication. These results indicate that CNOT4 is a ubiquitin ligase of NP, and ubiquitination of NP plays a positive role in viral RNA replication. PMID:28536288

  12. A Deubiquitinating Enzyme Ubp14 Is Required for Development, Stress Response, Nutrient Utilization, and Pathogenesis of Magnaporthe oryzae.

    PubMed

    Wang, Zhao; Zhang, Hong; Liu, Caiyun; Xing, Junjie; Chen, Xiao-Lin

    2018-01-01

    Ubiquitination is an essential protein modification in eukaryotic cells, which is reversible. Deubiquitinating enzymes (DUBs) catalyze deubiquitination process to reverse ubiquitination, maintain ubiquitin homeostasis or promote protein degradation by recycling ubiquitins. In order to investigate effects of deubiquitination process in plant pathogenic fungus Magnaporthe oryzae , we generated deletion mutants of MoUBP14 . Ortholog of MoUbp14 was reported to play general roles in ubiquitin-mediated protein degradation in Saccharomyces cerevisiae . The Δ Moubp14 mutant lost its pathogenicity and was severely reduced in mycelial growth, sporulation, carbon source utilization, and increased in sensitivity to distinct stresses. The mutant was blocked in penetration, which could due to defect in turgor generation. It is also blocked in invasive growth, which could due to reduction in stress tolerance and nutrient utilization. Deletion of UBP14 also led to accumulation of free polyubiquitin chains. Pulldown assay identified some proteins related to carbohydrate metabolism and stress response may putatively interact with MoUbp14, including two key rate-limiting enzymes of gluconeogenesis, MoFbp1 and MoPck1. These two proteins were degraded when the glucose was supplied to M. oryzae grown in low glucose media for a short period of time (∼12 h), and this process required MoUbp14. In summary, pleiotropic phenotypes of the deletion mutants indicated that MoUbp14 is required for different developments and pathogenicity of M. oryzae .

  13. Role of ubiquitin and the HPV E6 oncoprotein in E6AP-mediated ubiquitination

    PubMed Central

    Mortensen, Franziska; Schneider, Daniel; Barbic, Tanja; Sladewska-Marquardt, Anna; Kühnle, Simone; Marx, Andreas; Scheffner, Martin

    2015-01-01

    Deregulation of the ubiquitin ligase E6 associated protein (E6AP) encoded by the UBE3A gene has been associated with three different clinical pictures. Hijacking of E6AP by the E6 oncoprotein of distinct human papillomaviruses (HPV) contributes to the development of cervical cancer, whereas loss of E6AP expression or function is the cause of Angelman syndrome, a neurodevelopmental disorder, and increased expression of E6AP has been involved in autism spectrum disorders. Although these observations indicate that the activity of E6AP has to be tightly controlled, only little is known about how E6AP is regulated at the posttranslational level. Here, we provide evidence that the hydrophobic patch of ubiquitin comprising Leu-8 and Ile-44 is important for E6AP-mediated ubiquitination, whereas it does not affect the catalytic properties of the isolated catalytic HECT domain of E6AP. Furthermore, we show that the HPV E6 oncoprotein rescues the disability of full-length E6AP to use a respective hydrophobic patch mutant of ubiquitin for ubiquitination and that it stimulates E6AP-mediated ubiquitination of Ring1B, a known substrate of E6AP, in vitro and in cells. Based on these data, we propose that E6AP exists in at least two different states, an active and a less active or latent one, and that the activity of E6AP is controlled by noncovalent interactions with ubiquitin and allosteric activators such as the HPV E6 oncoprotein. PMID:26216987

  14. The role of spartin and its novel ubiquitin binding region in DALIS occurrence

    PubMed Central

    Karlsson, Amelia B.; Washington, Jacqueline; Dimitrova, Valentina; Hooper, Christopher; Shekhtman, Alexander; Bakowska, Joanna C.

    2014-01-01

    Troyer syndrome is an autosomal recessive hereditary spastic paraplegia (HSP) caused by frameshift mutations in the SPG20 gene that results in a lack of expression of the truncated protein. Spartin is a multifunctional protein, yet only two conserved domains—a microtubule-interacting and trafficking domain and a plant-related senescence domain involved in cytokinesis and mitochondrial physiology, respectively—have been defined. We have shown that overexpressed spartin binds to the Ile44 hydrophobic pocket of ubiquitin, suggesting spartin might contain a ubiquitin-binding domain. In the present study, we demonstrate that spartin contributes to the formation of dendritic aggresome-like induced structures (DALIS) through a unique ubiquitin-binding region (UBR). Using short hairpin RNA, we knocked down spartin in RAW264.7 cells and found that DALIS frequency decreased; conversely, overexpression of spartin increased the percentage of cells containing DALIS. Using nuclear magnetic resonance spectroscopy, we characterized spartin's UBR and defined the UBR's amino acids that are key for ubiquitin binding. We also found that spartin, via the UBR, binds Lys-63–linked ubiquitin chains but does not bind Lys-48–linked ubiquitin chains. Finally, we demonstrate that spartin's role in DALIS formation depends on key residues within its UBR. PMID:24523286

  15. Effects of exogenous ubiquitin in a polytrauma model with blunt chest trauma

    PubMed Central

    Baker, Todd A.; Romero, Jacqueline; Bach, Harold H.; Strom, Joel A.; Gamelli, Richard L.; Majetschak, Matthias

    2013-01-01

    Objective To determine whether treatment with the CXC chemokine receptor (CXCR) 4 agonist ubiquitin results in beneficial effects in a polytrauma model consisting of bilateral femur fractures plus blunt chest trauma (Injury Severity Score 18-25). Design Treatment study. Setting Research Laboratory. Subjects Seventeen Yorkshire pigs. Interventions Intravenous (i.v.) injection of 1.5 mg/kg ubiquitin or albumin (=control) at 60 min after polytrauma. Measurements and Main Results Anesthetized, mechanically ventilated pigs underwent polytrauma, followed by a simulated 60 min shock phase. At the end of the shock phase ubiquitin or albumin were administered and animals were resuscitated to a mean arterial blood pressure of 70 mmHg until t = 420 min. After i.v. ubiquitin, ubiquitin plasma concentrations increased sixteen-fold to 2870 ± 1015 ng/mL at t = 90 min and decreased with t1/2 = 60 min. Endogenous plasma ubiquitin increased two-fold in the albumin group with peak levels of 359 ± 210 ng/mL. Plasma levels of the cognate CXCR4 ligand stromal cell-derived factor (SDF)-1α were unchanged in both groups. Ubiquitin treatment reduced arterial lactate levels and prevented a continuous decrease in arterial oxygenation, which occurred in the albumin group during resuscitation. Wet weight to dry weight ratios of the lung contralateral from the injury, heart, spleen and jejunum were lower with ubiquitin. With ubiquitin treatment, tissue levels of IL-8, IL-10, TNFα and SDF-1α were reduced in the injured lung and of IL-8 in the contralateral lung, respectively. Conclusions Administration of exogenous ubiquitin modulates the local inflammatory response, improves resuscitation, reduces fluid shifts into tissues and preserves arterial oxygenation after blunt polytrauma with lung injury. This study further supports the notion that ubiquitin is a promising protein therapeutic and implies CXCR4 as a drug target after polytrauma. PMID:22622399

  16. Ubiquitin in Influenza Virus Entry and Innate Immunity.

    PubMed

    Rudnicka, Alina; Yamauchi, Yohei

    2016-10-24

    Viruses are obligatory cellular parasites. Their mission is to enter a host cell, to transfer the viral genome, and to replicate progeny whilst diverting cellular immunity. The role of ubiquitin is to regulate fundamental cellular processes such as endocytosis, protein degradation, and immune signaling. Many viruses including influenza A virus (IAV) usurp ubiquitination and ubiquitin-like modifications to establish infection. In this focused review, we discuss how ubiquitin and unanchored ubiquitin regulate IAV host cell entry, and how histone deacetylase 6 (HDAC6), a cytoplasmic deacetylase with ubiquitin-binding activity, mediates IAV capsid uncoating. We also discuss the roles of ubiquitin in innate immunity and its implications in the IAV life cycle.

  17. Ubiquitin in Influenza Virus Entry and Innate Immunity

    PubMed Central

    Rudnicka, Alina; Yamauchi, Yohei

    2016-01-01

    Viruses are obligatory cellular parasites. Their mission is to enter a host cell, to transfer the viral genome, and to replicate progeny whilst diverting cellular immunity. The role of ubiquitin is to regulate fundamental cellular processes such as endocytosis, protein degradation, and immune signaling. Many viruses including influenza A virus (IAV) usurp ubiquitination and ubiquitin-like modifications to establish infection. In this focused review, we discuss how ubiquitin and unanchored ubiquitin regulate IAV host cell entry, and how histone deacetylase 6 (HDAC6), a cytoplasmic deacetylase with ubiquitin-binding activity, mediates IAV capsid uncoating. We also discuss the roles of ubiquitin in innate immunity and its implications in the IAV life cycle. PMID:27783058

  18. A-to-I RNA editing promotes developmental stage–specific gene and lncRNA expression

    PubMed Central

    Goldstein, Boaz; Agranat-Tamir, Lily; Light, Dean; Ben-Naim Zgayer, Orna; Fishman, Alla; Lamm, Ayelet T.

    2017-01-01

    A-to-I RNA editing is a conserved widespread phenomenon in which adenosine (A) is converted to inosine (I) by adenosine deaminases (ADARs) in double-stranded RNA regions, mainly noncoding. Mutations in ADAR enzymes in Caenorhabditis elegans cause defects in normal development but are not lethal as in human and mouse. Previous studies in C. elegans indicated competition between RNA interference (RNAi) and RNA editing mechanisms, based on the observation that worms that lack both mechanisms do not exhibit defects, in contrast to the developmental defects observed when only RNA editing is absent. To study the effects of RNA editing on gene expression and function, we established a novel screen that enabled us to identify thousands of RNA editing sites in nonrepetitive regions in the genome. These include dozens of genes that are edited at their 3′ UTR region. We found that these genes are mainly germline and neuronal genes, and that they are down-regulated in the absence of ADAR enzymes. Moreover, we discovered that almost half of these genes are edited in a developmental-specific manner, indicating that RNA editing is a highly regulated process. We found that many pseudogenes and other lncRNAs are also extensively down-regulated in the absence of ADARs in the embryo but not in the fourth larval (L4) stage. This down-regulation is not observed upon additional knockout of RNAi. Furthermore, levels of siRNAs aligned to pseudogenes in ADAR mutants are enhanced. Taken together, our results suggest a role for RNA editing in normal growth and development by regulating silencing via RNAi. PMID:28031250

  19. A-to-I RNA editing promotes developmental stage-specific gene and lncRNA expression.

    PubMed

    Goldstein, Boaz; Agranat-Tamir, Lily; Light, Dean; Ben-Naim Zgayer, Orna; Fishman, Alla; Lamm, Ayelet T

    2017-03-01

    A-to-I RNA editing is a conserved widespread phenomenon in which adenosine (A) is converted to inosine (I) by adenosine deaminases (ADARs) in double-stranded RNA regions, mainly noncoding. Mutations in ADAR enzymes in Caenorhabditis elegans cause defects in normal development but are not lethal as in human and mouse. Previous studies in C. elegans indicated competition between RNA interference (RNAi) and RNA editing mechanisms, based on the observation that worms that lack both mechanisms do not exhibit defects, in contrast to the developmental defects observed when only RNA editing is absent. To study the effects of RNA editing on gene expression and function, we established a novel screen that enabled us to identify thousands of RNA editing sites in nonrepetitive regions in the genome. These include dozens of genes that are edited at their 3' UTR region. We found that these genes are mainly germline and neuronal genes, and that they are down-regulated in the absence of ADAR enzymes. Moreover, we discovered that almost half of these genes are edited in a developmental-specific manner, indicating that RNA editing is a highly regulated process. We found that many pseudogenes and other lncRNAs are also extensively down-regulated in the absence of ADARs in the embryo but not in the fourth larval (L4) stage. This down-regulation is not observed upon additional knockout of RNAi. Furthermore, levels of siRNAs aligned to pseudogenes in ADAR mutants are enhanced. Taken together, our results suggest a role for RNA editing in normal growth and development by regulating silencing via RNAi. © 2017 Goldstein et al.; Published by Cold Spring Harbor Laboratory Press.

  20. Oligophrenin-1 (OPHN1), a Gene Involved in X-Linked Intellectual Disability, Undergoes RNA Editing and Alternative Splicing during Human Brain Development

    PubMed Central

    Athanasiadis, Alekos; Galeano, Federica; Locatelli, Franco; Bertini, Enrico; Zanni, Ginevra; Gallo, Angela

    2014-01-01

    Oligophrenin-1 (OPHN1) encodes for a Rho-GTPase-activating protein, important for dendritic morphogenesis and synaptic function. Mutations in this gene have been identified in patients with X-linked intellectual disability associated with cerebellar hypoplasia. ADAR enzymes are responsible for A-to-I RNA editing, an essential post-transcriptional RNA modification contributing to transcriptome and proteome diversification. Specifically, ADAR2 activity is essential for brain development and function. Herein, we show that the OPHN1 transcript undergoes post-transcriptional modifications such as A-to-I RNA editing and alternative splicing in human brain and other tissues. We found that OPHN1 editing is detectable already at the 18th week of gestation in human brain with a boost of editing at weeks 20 to 33, concomitantly with OPHN1 expression increase and the appearance of a novel OPHN1 splicing isoform. Our results demonstrate that multiple post-transcriptional events occur on OPHN1, a gene playing an important role in brain function and development. PMID:24637888

  1. Oligophrenin-1 (OPHN1), a gene involved in X-linked intellectual disability, undergoes RNA editing and alternative splicing during human brain development.

    PubMed

    Barresi, Sabina; Tomaselli, Sara; Athanasiadis, Alekos; Galeano, Federica; Locatelli, Franco; Bertini, Enrico; Zanni, Ginevra; Gallo, Angela

    2014-01-01

    Oligophrenin-1 (OPHN1) encodes for a Rho-GTPase-activating protein, important for dendritic morphogenesis and synaptic function. Mutations in this gene have been identified in patients with X-linked intellectual disability associated with cerebellar hypoplasia. ADAR enzymes are responsible for A-to-I RNA editing, an essential post-transcriptional RNA modification contributing to transcriptome and proteome diversification. Specifically, ADAR2 activity is essential for brain development and function. Herein, we show that the OPHN1 transcript undergoes post-transcriptional modifications such as A-to-I RNA editing and alternative splicing in human brain and other tissues. We found that OPHN1 editing is detectable already at the 18th week of gestation in human brain with a boost of editing at weeks 20 to 33, concomitantly with OPHN1 expression increase and the appearance of a novel OPHN1 splicing isoform. Our results demonstrate that multiple post-transcriptional events occur on OPHN1, a gene playing an important role in brain function and development.

  2. Integrate Web 2.0 Technology to Facilitate Online Professional Community: EMI Special Editing Experiences

    ERIC Educational Resources Information Center

    Tu, Chih-Hsiung; Blocher, Michael; Ntoruru, Joshua

    2008-01-01

    This article reports on the collaborative journal review of an online professional community that was established to prepare this special edition for publication. The focus is on how Web 2.0 technology can be used to support a professional journal review community and to enhance active social interaction among reviewers. The theme of this special…

  3. A High-Throughput Screening Method for Identification of Inhibitors of the Deubiquitinating Enzyme USP14

    PubMed Central

    Lee, Byung-Hoon; Finley, Daniel; King, Randall W.

    2013-01-01

    Deubiquitinating enzymes (DUBs) reverse the process of ubiquitination, and number nearly 100 in humans. In principle, DUBs represent promising drug targets, as several of the enzymes have been implicated in human diseases. The isopeptidase activity of DUBs can be selectively inhibited by targeting the catalytic site with drug-like compounds. Notably, the mammalian 26S proteasome is associated with three major DUBs: RPN11, UCH37 and USP14. Because the ubiquitin ‘chain-trimming’ activity of USP14 can inhibit proteasome function, inhibitors of USP14 can stimulate proteasomal degradation. We recently established a high-throughput screening (HTS) method to discover small-molecule inhibitors specific for USP14. The protocols in this article cover the necessary procedures for preparing assay reagents, performing HTS for USP14 inhibitors, and carrying out post-HTS analysis. PMID:23788557

  4. Crystal Structure of the Cul2-Rbx1-EloBC-VHL Ubiquitin Ligase Complex.

    PubMed

    Cardote, Teresa A F; Gadd, Morgan S; Ciulli, Alessio

    2017-06-06

    Cullin RING E3 ubiquitin ligases (CRLs) function in the ubiquitin proteasome system to catalyze the transfer of ubiquitin from E2 conjugating enzymes to specific substrate proteins. CRLs are large dynamic complexes and attractive drug targets for the development of small-molecule inhibitors and chemical inducers of protein degradation. The atomic details of whole CRL assembly and interactions that dictate subunit specificity remain elusive. Here we present the crystal structure of a pentameric CRL2 VHL complex, composed of Cul2, Rbx1, Elongin B, Elongin C, and pVHL. The structure traps a closed state of full-length Cul2 and a new pose of Rbx1 in a trajectory from closed to open conformation. We characterize hotspots and binding thermodynamics at the interface between Cul2 and pVHL-EloBC and identify mutations that contribute toward a selectivity switch for Cul2 versus Cul5 recognition. Our findings provide structural and biophysical insights into the whole Cul2 complex that could aid future drug targeting. Copyright © 2017 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  5. The Vps27/Hrs/STAM (VHS) Domain of the Signal-transducing Adaptor Molecule (STAM) Directs Associated Molecule with the SH3 Domain of STAM (AMSH) Specificity to Longer Ubiquitin Chains and Dictates the Position of Cleavage*

    PubMed Central

    Baiady, Nardeen; Padala, Prasanth; Mashahreh, Bayan; Cohen-Kfir, Einav; Todd, Emily A.; Du Pont, Kelly E.; Berndsen, Christopher E.; Wiener, Reuven

    2016-01-01

    The deubiquitinating enzyme associated molecule with the SH3 domain of STAM (AMSH) is crucial for the removal of ubiquitin molecules during receptor-mediated endocytosis and lysosomal receptor sorting. AMSH interacts with signal transducing adapter molecule (STAM) 1 or 2, which enhances the activity of AMSH through an unknown mechanism. This stimulation is dependent on the ubiquitin-interacting motif of STAM. Here we investigate the specific mechanism of AMSH stimulation by STAM proteins and the role of the STAM Vps27/Hrs/STAM domain. We show that, in the presence of STAM, the length of the ubiquitin chains affects the apparent cleavage rate. Through measurement of the chain cleavage kinetics, we found that, although the kcat of Lys63-linked ubiquitin chain cleavage was comparable for di- and tri-ubiquitin, the Km value was lower for tri-ubiquitin. This increased affinity for longer chains was dependent on the Vps27/Hrs/STAM domain of STAM and required that the substrate ubiquitin chain contain homogenous Lys63-linkages. In addition, STAM directed AMSH cleavage toward the distal isopeptide bond in tri-ubiquitin chains. Finally, we generated a structural model of AMSH-STAM to show how the complex binds Lys63-linked ubiquitin chains and cleaves at the distal end. These data show how a deubiquitinating enzyme-interacting protein dictates the efficiency and specificity of substrate cleavage. PMID:26601948

  6. Activation of the Slx5–Slx8 Ubiquitin Ligase by Poly-small Ubiquitin-like Modifier Conjugates*S⃞

    PubMed Central

    Mullen, Janet R.; Brill, Steven J.

    2008-01-01

    Protein sumoylation is a regulated process that is important for the health of human and yeast cells. In budding yeast, a subset of sumoylated proteins is targeted for ubiquitination by a conserved heterodimeric ubiquitin (Ub) ligase, Slx5–Slx8, which is needed to suppress the accumulation of high molecular weight small ubiquitin-like modifier (SUMO) conjugates. Structure-function analysis indicates that the Slx5–Slx8 complex contains multiple SUMO-binding domains that are collectively required for in vivo function. To determine the specificity of Slx5–Slx8, we assayed its Ub ligase activity using sumoylated Siz2 as an in vitro substrate. In contrast to unsumoylated or multisumoylated Siz2, substrates containing poly-SUMO conjugates were efficiently ubiquitinated by Slx5–Slx8. Although Siz2 itself was ubiquitinated, the bulk of the Ub was conjugated to SUMO residues. Slx5–Slx8 primarily mono-ubiquitinated the N-terminal SUMO moiety of the chain. These data indicate that the Slx5–Slx8 Ub ligase is stimulated by poly-SUMO conjugates and that it can ubiquitinate a poly-SUMO chain. PMID:18499666

  7. Real Estate in the DNA Damage Response: Ubiquitin and SUMO Ligases Home in on DNA Double-Strand Breaks.

    PubMed

    Dantuma, Nico P; Pfeiffer, Annika

    2016-01-01

    Ubiquitin and the ubiquitin-like modifier SUMO are intimately connected with the cellular response to various types of DNA damage. A striking feature is the local accumulation of these proteinaceous post-translational modifications in the direct vicinity to DNA double-strand breaks, which plays a critical role in the formation of ionizing radiation-induced foci. The functional significance of these modifications is the coordinated recruitment and removal of proteins involved in DNA damage signaling and repair in a timely manner. The central orchestrators of these processes are the ubiquitin and SUMO ligases that are responsible for accurately tagging a broad array of chromatin and chromatin-associated proteins thereby changing their behavior or destination. Despite many differences in the mode of action of these enzymes, they share some striking features that are of direct relevance for their function in the DNA damage response. In this review, we outline the molecular mechanisms that are responsible for the recruitment of ubiquitin and SUMO ligases and discuss the importance of chromatin proximity in this process.

  8. Structure and catalytic activation of the TRIM23 RING E3 ubiquitin ligase: DAWIDZIAK et al.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dawidziak, Daria M.; Sanchez, Jacint G.; Wagner, Jonathan M.

    Tripartite motif (TRIM) proteins comprise a large family of RING-type ubiquitin E3 ligases that regulate important biological processes. An emerging general model is that TRIMs form elongated antiparallel coiled-coil dimers that prevent interaction of the two attendant RING domains. The RING domains themselves bind E2 conjugating enzymes as dimers, implying that an active TRIM ligase requires higher-order oligomerization of the basal coiled-coil dimers. Here, we report crystal structures of the TRIM23 RING domain in isolation and in complex with an E2–ubiquitin conjugate. Our results indicate that TRIM23 enzymatic activity requires RING dimerization, consistent with the general model of TRIM activation.

  9. A decrease in ubiquitination and resulting prolonged life-span of KIT underlies the KIT overexpression-mediated imatinib resistance of KIT mutation-driven canine mast cell tumor cells.

    PubMed

    Kobayashi, Masato; Kuroki, Shiori; Kurita, Sena; Miyamoto, Ryo; Tani, Hiroyuki; Tamura, Kyoichi; Bonkobara, Makoto

    2017-10-01

    Overexpression of KIT is one of the mechanisms that contributes to imatinib resistance in KIT mutation-driven tumors. Here, the mechanism underlying this overexpression of KIT was investigated using an imatinib-sensitive canine mast cell tumor (MCT) line CoMS, which has an activating mutation in KIT exon 11. A KIT-overexpressing imatinib-resistant subline, rCoMS1, was generated from CoMS cells by their continuous exposure to increasing concentrations of imatinib. Neither a secondary mutation nor upregulated transcription of KIT was detected in rCoMS1 cells. A decrease in KIT ubiquitination, a prolonged KIT life-span, and KIT overexpression were found in rCoMS1 cells. These events were suppressed by withdrawal of imatinib and were re-induced by re‑treatment with imatinib. These findings suggest that imatinib elicited overexpression of KIT via suppression of its ubiquitination. These results also indicated that imatinib-induced overexpression of KIT in rCoMS1 cells was not a permanently acquired feature but was a reversible response of the cells. Moreover, the pan deubiquitinating enzyme inhibitor PR619 prevented imatinib induction of KIT overexpression, suggesting that the imatinib-induced decrease in KIT ubiquitination could be mediated by upregulation and/or activation of deubiquitinating enzyme(s). It may be possible that a similar mechanism of KIT overexpression underlies the acquisition of imatinib resistance in some human tumors that are driven by KIT mutation.

  10. The Role of RUB (related to ubiquitin) Family of Proteins in the Hormone Response. Final Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Callis, Judy

    2013-03-22

    The Rub pathway is a conserved protein modification pathway. RUB (called Rubp1 in budding yeast, Nedd8 in animals and RUB in plants) is a ubiquitin-like 76-amino acid protein. It covalently attaches to protein using an enzymatic machinery analogous to the enzymes that attach ubiquitin to its substrate proteins. However, the nature of the complement of Rub-modified proteins in organisms was not clear. From bioinformatics analyses, one can identify a Rub activating enzymes and Rub conjugating enzymes. However, in many cases, their biochemical properties were not described. In DOE-funded work, we made major advances in our understanding of the Rub pathwaymore » in yeast and plants, work that is applicable to other organisms as well. There is a multi-subunit enzyme called SCF in all eukaryotes. The SCF consists of several subunits that serve as a scaffold (the cullin, SKP and RBX subunits) and one subunit that interacts with the substrate. This cullin protein (called Cdc53p in yeast and CULLIN 1 in plants and animals) was a known Rub target. In this work, we identified additional Rub targets in yeast as the other cullin-like proteins Cul3p and Rtt101p. Additionally we described the conservation of the Rub pathway because plant RUB1 can conjugated to yeast Cdc53p- in yeast. In the model plant Arabidopsis thaliana, we characterized the Rub activating enzymes and showed that they are not biochemically equivalent. We also showed that the Rub pathway is essential in plants and characterized plants with reduced levels of rub proteins. These plants are affected in multiple developmental processes. We discovered that they over-produce ethylene as dark-grown seedlings. We characterized a mutant allele of CULLIN1 in Arabidopsis with impaired interaction with RBX and showed that it is unstable in vivo. We used our knowledge of monitoring protein degradation to map the degradation determinants in a plant transcription factor. Finally, we took a mass spectrometric approach to

  11. Genetic Architectures of Quantitative Variation in RNA Editing Pathways

    PubMed Central

    Gu, Tongjun; Gatti, Daniel M.; Srivastava, Anuj; Snyder, Elizabeth M.; Raghupathy, Narayanan; Simecek, Petr; Svenson, Karen L.; Dotu, Ivan; Chuang, Jeffrey H.; Keller, Mark P.; Attie, Alan D.; Braun, Robert E.; Churchill, Gary A.

    2016-01-01

    RNA editing refers to post-transcriptional processes that alter the base sequence of RNA. Recently, hundreds of new RNA editing targets have been reported. However, the mechanisms that determine the specificity and degree of editing are not well understood. We examined quantitative variation of site-specific editing in a genetically diverse multiparent population, Diversity Outbred mice, and mapped polymorphic loci that alter editing ratios globally for C-to-U editing and at specific sites for A-to-I editing. An allelic series in the C-to-U editing enzyme Apobec1 influences the editing efficiency of Apob and 58 additional C-to-U editing targets. We identified 49 A-to-I editing sites with polymorphisms in the edited transcript that alter editing efficiency. In contrast to the shared genetic control of C-to-U editing, most of the variable A-to-I editing sites were determined by local nucleotide polymorphisms in proximity to the editing site in the RNA secondary structure. Our results indicate that RNA editing is a quantitative trait subject to genetic variation and that evolutionary constraints have given rise to distinct genetic architectures in the two canonical types of RNA editing. PMID:26614740

  12. Genetic mapping uncovers cis-regulatory landscape of RNA editing.

    PubMed

    Ramaswami, Gokul; Deng, Patricia; Zhang, Rui; Anna Carbone, Mary; Mackay, Trudy F C; Li, Jin Billy

    2015-09-16

    Adenosine-to-inosine (A-to-I) RNA editing, catalysed by ADAR enzymes conserved in metazoans, plays an important role in neurological functions. Although the fine-tuning mechanism provided by A-to-I RNA editing is important, the underlying rules governing ADAR substrate recognition are not well understood. We apply a quantitative trait loci (QTL) mapping approach to identify genetic variants associated with variability in RNA editing. With very accurate measurement of RNA editing levels at 789 sites in 131 Drosophila melanogaster strains, here we identify 545 editing QTLs (edQTLs) associated with differences in RNA editing. We demonstrate that many edQTLs can act through changes in the local secondary structure for edited dsRNAs. Furthermore, we find that edQTLs located outside of the edited dsRNA duplex are enriched in secondary structure, suggesting that distal dsRNA structure beyond the editing site duplex affects RNA editing efficiency. Our work will facilitate the understanding of the cis-regulatory code of RNA editing.

  13. Smad3 recruits the anaphase-promoting complex for ubiquitination and degradation of SnoN

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stroschein, Shannon L.; Bonni, Shirin; Wrana, Jeffrey L.

    2001-09-11

    Smad proteins mediate transforming growth factor-b signaling to regulate cell growth and differentiation. SnoN is an important negative regulator of TGFb signaling that functions to maintain the repressed state of TGFb target genes in the absence of ligand. Upon TGFb stimulation, Smad3 and Smad2 translocate into the nucleus and induce a rapid degradation of SnoN, allowing activation of TGFb target genes. Here we show that Smad2- or Smad3-induced degradation of SnoN requires the ubiquitin-dependent proteasome and can be mediated by the anaphase promoting complex (APC) and the UbcH5 family of ubiquitin conjugating enzymes. Smad3 and to a lesser extent, Smad2,more » interact with both the APC and SnoN, resulting in the recruitment of the APC to SnoN and subsequent ubiquitination of SnoN in a destruction box-dependent manner. In addition to the destruction box, efficient degradation of SnoN also requires the Smad3 binding site in SnoN as well as key lysine residues necessary for ubiquitin attachment. Mutation of either the Smad3 binding site or lysine residues results in stabilization of SnoN and in enhanced antagonism of TGFb signaling. Our studies elucidate an important pathway for the degradation of SnoN and reveal a novel role of the APC in regulation of TGFb signaling.« less

  14. UFD4 lacking the proteasome-binding region catalyses ubiquitination but is impaired in proteolysis.

    PubMed

    Xie, Youming; Varshavsky, Alexander

    2002-12-01

    The ubiquitin system recognizes degradation signals of protein substrates through E3-E2 ubiquitin ligases, which produce a substrate-linked multi-ubiquitin chain. Ubiquitinated substrates are degraded by the 26S proteasome, which consists of the 20S protease and two 19S particles. We previously showed that UBR1 and UFD4, two E3 ligases of the yeast Saccharomyces cerevisiae, interact with specific proteasomal subunits. Here we advance this analysis for UFD4 and show that it interacts with RPT4 and RPT6, two subunits of the 19S particle. The 201-residue amino-terminal region of UFD4 is essential for its binding to RPT4 and RPT6. UFD4(DeltaN), which lacks this N-terminal region, adds ubiquitin to test substrates with apparently wild-type activity, but is impaired in conferring short half-lives on these substrates. We propose that interaction of a targeted substrate with the 26S proteasome involves contacts of specific proteasomal subunits with the substrate-bound ubiquitin ligase, with the substrate-linked multi-ubiquitin chain and with the substrate itself. This multiple-site binding may function to slow down dissociation of the substrate from the proteasome and to facilitate the unfolding of substrate through ATP-dependent movements of the chaperone subunits of the 19S particle.

  15. An inhibitor of ubiquitin conjugation and aggresome formation† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c5sc01351h Click here for additional data file.

    PubMed Central

    An, Heeseon

    2015-01-01

    Proteasome inhibitors have revolutionized the treatment of multiple myeloma, and validated the therapeutic potential of the ubiquitin proteasome system (UPS). It is believed that in part, proteasome inhibitors elicit their therapeutic effect by inhibiting the degradation of misfolded proteins, which is proteotoxic and causes cell death. In spite of these successes, proteasome inhibitors are not effective against solid tumors, thus necessitating the need to explore alternative approaches. Furthermore, proteasome inhibitors lead to the formation of aggresomes that clear misfolded proteins via the autophagy–lysosome degradation pathway. Importantly, aggresome formation depends on the presence of polyubiquitin tags on misfolded proteins. We therefore hypothesized that inhibitors of ubiquitin conjugation should inhibit both degradation of misfolded proteins, and ubiquitin dependent aggresome formation, thus outlining the path forward toward more effective anticancer therapeutics. To explore the therapeutic potential of targeting the UPS to treat solid cancers, we have developed an inhibitor of ubiquitin conjugation (ABP A3) that targets ubiquitin and Nedd8 E1 enzymes, enzymes that are required to maintain the activity of the entire ubiquitin system. We have shown that ABP A3 inhibits conjugation of ubiquitin to intracellular proteins and prevents the formation of cytoprotective aggresomes in A549 lung cancer cells. Furthermore, ABP A3 induces activation of the unfolded protein response and apoptosis. Thus, similar to proteasome inhibitors MG132, bortezomib, and carfilzomib, ABP A3 can serve as a novel probe to explore the therapeutic potential of the UPS in solid and hematological malignancies. PMID:28717502

  16. Expression cloning of a gibberellin 20-oxidase, a multifunctional enzyme involved in gibberellin biosynthesis.

    PubMed Central

    Lange, T; Hedden, P; Graebe, J E

    1994-01-01

    In the biosynthetic pathway to the gibberellins (GAs), carbon-20 is removed by oxidation to give the C19-GAs, which include the biologically active plant hormones. We report the isolation of a cDNA clone encoding a GA 20-oxidase [gibberellin, 2-oxoglutarate:oxygen oxidoreductase (20-hydroxylating, oxidizing) EC 1.14.11.-] by screening a cDNA library from developing cotyledons of pumpkin (Cucurbita maxima L.) for expression of this enzyme. When mRNA from either the cotyledons or the endosperm was translated in vitro using rabbit reticulocyte lysates, the products contained GA12 20-oxidase activity. A polyclonal antiserum was raised against the amino acid sequence of a peptide released by tryptic digestion of purified GA 20-oxidase from the endosperm. A cDNA expression library in lambda gt11 was prepared from cotyledon mRNA and screened with the antiserum. The identity of positive clones was confirmed by the demonstration of GA12 20-oxidase activity in single bacteriophage plaques. Recombinant protein from a selected clone catalyzed the three-step conversions of GA12 to GA25 and of GA53 to GA17, as well as the formation of the C19-GAs, GA1, GA9, and GA20, from their respective aldehyde precursors, GA23, GA24, and GA19. The nucleotide sequence of the cDNA insert contains an open reading frame of 1158 nt encoding a protein of 386 amino acid residues. The predicted M(r) (43,321) and pI (5.3) are similar to those determined experimentally for the native GA 20-oxidase. Furthermore, the derived amino acid sequence includes sequences obtained from the N terminus and two tryptic peptides from the native enzyme. It also contains regions that are highly conserved in a group of non-heme Fe-containing dioxygenases. Images PMID:8078921

  17. Identification of Substances for Ubiquitin-Dependent Proteolysis During Breast Tumor Progression

    DTIC Science & Technology

    2008-10-01

    incubated in media containing 10 μM of proteasome inhibitor MG132 for 4-6 hrs to stabilize ubiquitylated intermediates. The cells were then lysed in 1... inhibitor p27Kip1 (6, 8). This reaction is molecularly complex and requires: 1) substrate phosphorylation; 2) association of the substrate with cyclin...effect on PTM conjugation activity. Furthermore, the addition of inhibitors of de-conjugating enzymes (e.g. ubiquitin-aldehyde) was found to increase

  18. Effect of ionizing radiation exposure on Trypanosoma cruzi ubiquitin-proteasome system.

    PubMed

    Cerqueira, Paula G; Passos-Silva, Danielle G; Vieira-da-Rocha, João P; Mendes, Isabela Cecilia; de Oliveira, Karla A; Oliveira, Camila F B; Vilela, Liza F F; Nagem, Ronaldo A P; Cardoso, Joseane; Nardelli, Sheila C; Krieger, Marco A; Franco, Glória R; Macedo, Andrea M; Pena, Sérgio D J; Schenkman, Sérgio; Gomes, Dawidson A; Guerra-Sá, Renata; Machado, Carlos R

    2017-03-01

    In recent years, proteasome involvement in the damage response induced by ionizing radiation (IR) became evident. However, whether proteasome plays a direct or indirect role in IR-induced damage response still unclear. Trypanosoma cruzi is a human parasite capable of remarkable high tolerance to IR, suggesting a highly efficient damage response system. Here, we investigate the role of T. cruzi proteasome in the damage response induced by IR. We exposed epimastigotes to high doses of gamma ray and we analyzed the expression and subcellular localization of several components of the ubiquitin-proteasome system. We show that proteasome inhibition increases IR-induced cell growth arrest and proteasome-mediated proteolysis is altered after parasite exposure. We observed nuclear accumulation of 19S and 20S proteasome subunits in response to IR treatments. Intriguingly, the dynamic of 19S particle nuclear accumulation was more similar to the dynamic observed for Rad51 nuclear translocation than the observed for 20S. In the other hand, 20S increase and nuclear translocation could be related with an increase of its regulator PA26 and high levels of proteasome-mediated proteolysis in vitro. The intersection between the opposed peaks of 19S and 20S protein levels was marked by nuclear accumulation of both 20S and 19S together with Ubiquitin, suggesting a role of ubiquitin-proteasome system in the nuclear protein turnover at the time. Our results revealed the importance of proteasome-mediated proteolysis in T. cruzi IR-induced damage response suggesting that proteasome is also involved in T. cruzi IR tolerance. Moreover, our data support the possible direct/signaling role of 19S in DNA damage repair. Based on these results, we speculate that spatial and temporal differences between the 19S particle and 20S proteasome controls proteasome multiple roles in IR damage response. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. The plant homeodomain fingers of fission yeast Msc1 exhibit E3 ubiquitin ligase activity.

    PubMed

    Dul, Barbara E; Walworth, Nancy C

    2007-06-22

    The DNA damage checkpoint pathway governs how cells regulate cell cycle progression in response to DNA damage. A screen for suppressors of a fission yeast chk1 mutant defective in the checkpoint pathway identified a novel Schizosaccharomyces pombe protein, Msc1. Msc1 contains 3 plant homeodomain (PHD) finger motifs, characteristically defined by a C4HC3 consensus similar to RING finger domains. PHD finger domains in viral proteins and in the cellular protein kinase MEKK1 (mitogen-activated protein kinase/extracellular signal-regulated kinase kinase kinase 1) have been implicated as ubiquitin E3 protein ligases that affect protein stability. The close structural relationship of PHD fingers to RING fingers suggests that other PHD domain-containing proteins might share this activity. We show that each of the three PHD fingers of Msc1 can act as ubiquitin E3 ligases, reporting for the first time that PHD fingers from a nuclear protein exhibit E3 ubiquitin ligase activity. The function of the PHD fingers of Msc1 is needed to rescue the DNA damage sensitivity of a chk1Delta strain. Msc1 co-precipitates Rhp6, the S. pombe homologue of the human ubiquitin-conjugating enzyme Ubc2. Strikingly, deletion of msc1 confers complete suppression of the slow growth phenotype, UV and hydroxyurea sensitivities of an rhp6 deletion strain and restores deficient histone H3 methylation observed in the rhp6Delta mutant. We speculate that the target of the E3 ubiquitin ligase activity of Msc1 is likely to be a chromatin-associated protein.

  20. Decoding the patterns of ubiquitin recognition by ubiquitin-associated domains from free energy simulations.

    PubMed

    Bouvier, Benjamin

    2014-01-07

    Ubiquitin is a highly conserved, highly represented protein acting as a regulating signal in numerous cellular processes. It leverages a single hydrophobic binding patch to recognize and bind a large variety of protein domains with remarkable specificity, but can also self-assemble into chains of poly-diubiquitin units in which these interfaces are sequestered, profoundly altering the individual monomers' recognition characteristics. Despite numerous studies, the origins of this varied specificity and the competition between substrates for the binding of the ubiquitin interface patch remain under heated debate. This study uses enhanced sampling all-atom molecular dynamics to simulate the unbinding of complexes of mono- or K48-linked diubiquitin bound to several ubiquitin-associated domains, providing insights into the mechanism and free energetics of ubiquitin recognition and binding. The implications for the subtle tradeoff between the stability of the polyubiquitin signal and its easy recognition by target protein assemblies are discussed, as is the enhanced affinity of the latter for long polyubiquitin chains compared to isolated mono- or diubiquitin.

  1. Metabolic adaptation via regulated enzyme degradation in the pathogenic yeast Candida albicans.

    PubMed

    Ting, S Y; Ishola, O A; Ahmed, M A; Tabana, Y M; Dahham, S; Agha, M T; Musa, S F; Muhammed, R; Than, L T L; Sandai, D

    2017-03-01

    The virulence of Candida albicans is dependent upon fitness attributes as well as virulence factors. These attributes include robust stress responses and metabolic flexibility. The assimilation of carbon sources is important for growth and essential for the establishment of infections by C. albicans. Previous studies showed that the C. albicans ICL1 genes, which encode the glyoxylate cycle enzymes isocitratelyase are required for growth on non-fermentable carbon sources such as lactate and oleic acid and were repressed by 2% glucose. In contrast to S. cerevsiae, the enzyme CaIcl1 was not destabilised by glucose, resulting with its metabolite remaining at high levels. Further glucose addition has caused CaIcl1 to lose its signal and mechanisms that trigger destabilization in response to glucose. Another purpose of this study was to test the stability of the Icl1 enzyme in response to the dietary sugars, fructose, and galactose. In the present study, the ICL1 mRNAs expression was quantified using Quantitative Real Time PCR, whereby the stability of protein was measured and quantified using Western blot and phosphoimager, and the replacing and cloning of ICL1 ORF by gene recombination and ubiquitin binding was conducted via co-immuno-precipitation. Following an analogous experimental approach, the analysis was repeated using S. cerevisiaeas a control. Both galactose and fructose were found to trigger the degradation of the ICL1 transcript in C. albicans. The Icl1 enzyme was stable following galactose addition but was degraded in response to fructose. C. albicans Icl1 (CaIcl1) was also subjected to fructose-accelerated degradation when expressed in S. cerevisiae, indicating that, although it lacks a ubiquitination site, CaIcl1 is sensitive to fructose-accelerated protein degradation. The addition of an ubiquitination site to CaIcl1 resulted in this enzyme becoming sensitive to galactose-accelerated degradation and increases its rate of degradation in the

  2. Polyubiquitin-Photoactivatable Crosslinking Reagents for Mapping Ubiquitin Interactome Identify Rpn1 as a Proteasome Ubiquitin-Associating Subunit.

    PubMed

    Chojnacki, Michal; Mansour, Wissam; Hameed, Dharjath S; Singh, Rajesh K; El Oualid, Farid; Rosenzweig, Rina; Nakasone, Mark A; Yu, Zanlin; Glaser, Fabian; Kay, Lewis E; Fushman, David; Ovaa, Huib; Glickman, Michael H

    2017-04-20

    Ubiquitin (Ub) signaling is a diverse group of processes controlled by covalent attachment of small protein Ub and polyUb chains to a range of cellular protein targets. The best documented Ub signaling pathway is the one that delivers polyUb proteins to the 26S proteasome for degradation. However, studies of molecular interactions involved in this process have been hampered by the transient and hydrophobic nature of these interactions and the lack of tools to study them. Here, we develop Ub-phototrap (Ub PT ), a synthetic Ub variant containing a photoactivatable crosslinking side chain. Enzymatic polymerization into chains of defined lengths and linkage types provided a set of reagents that led to identification of Rpn1 as a third proteasome ubiquitin-associating subunit that coordinates docking of substrate shuttles, unloading of substrates, and anchoring of polyUb conjugates. Our work demonstrates the value of Ub PT , and we expect that its future uses will help define and investigate the ubiquitin interactome. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. An Interaction Landscape of Ubiquitin Signaling.

    PubMed

    Zhang, Xiaofei; Smits, Arne H; van Tilburg, Gabrielle B A; Jansen, Pascal W T C; Makowski, Matthew M; Ovaa, Huib; Vermeulen, Michiel

    2017-03-02

    Intracellular signaling via the covalent attachment of different ubiquitin linkages to protein substrates is fundamental to many cellular processes. Although linkage-selective ubiquitin interactors have been studied on a case-by-case basis, proteome-wide analyses have not been conducted yet. Here, we present ubiquitin interactor affinity enrichment-mass spectrometry (UbIA-MS), a quantitative interaction proteomics method that makes use of chemically synthesized diubiquitin to enrich and identify ubiquitin linkage interactors from crude cell lysates. UbIA-MS reveals linkage-selective diubiquitin interactions in multiple cell types. For example, we identify TAB2 and TAB3 as novel K6 diubiquitin interactors and characterize UCHL3 as a K27-linkage selective interactor that regulates K27 polyubiquitin chain formation in cells. Additionally, we show a class of monoubiquitin and K6 diubiquitin interactors whose binding is induced by DNA damage. We expect that our proteome-wide diubiquitin interaction landscape and established workflows will have broad applications in the ongoing efforts to decipher the complex language of ubiquitin signaling. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Pathological Heterogeneity of Frontotemporal Lobar Degeneration with Ubiquitin-Positive Inclusions Delineated by Ubiquitin Immunohistochemistry and Novel Monoclonal Antibodies

    PubMed Central

    Sampathu, Deepak M.; Neumann, Manuela; Kwong, Linda K.; Chou, Thomas T.; Micsenyi, Matthew; Truax, Adam; Bruce, Jennifer; Grossman, Murray; Trojanowski, John Q.; Lee, Virginia M.-Y.

    2006-01-01

    Frontotemporal lobar degeneration with ubiquitin-positive inclusions (FTLD-U) is a common neuropathological subtype of frontotemporal dementia. Although this subtype of frontotemporal dementia is defined by the presence of ubiquitin-positive but tau- and α-synuclein-negative inclusions, it is unclear whether all cases of FTLD-U have the same underlying pathogenesis. Examination of tissue sections from FTLD-U brains stained with anti-ubiquitin antibodies revealed heterogeneity in the morphological characteristics of pathological inclusions among subsets of cases. Three types of FTLD-U were delineated based on morphology and distribution of ubiquitin-positive inclusions. To address the hypothesis that FTLD-U is pathologically heterogeneous, novel monoclonal antibodies (mAbs) were generated by immunization of mice with high molecular mass (Mr > 250 kd) insoluble material prepared by biochemical fractionation of FTLD-U brains. Novel mAbs were identified that immunolabeled all of the ubiquitin-positive inclusions in one subset of FTLD-U cases, whereas other mAbs stained the ubiquitin-positive inclusions in a second subset of cases. These novel mAbs did not stain inclusions in other neurodegenerative disorders, including tauopathies and α-synucleinopathies. Therefore, ubiquitin immunohistochemistry and the immunostaining properties of the novel mAbs generated here suggest that FTLD-U is pathologically he-terogeneous. Identification of the disease proteins recognized by these mAbs will further advance understanding of molecular substrates of FTLD-U neurodegenerative pathways. PMID:17003490

  5. A C2HC zinc finger is essential for the RING-E2 interaction of the ubiquitin ligase RNF125

    PubMed Central

    Bijlmakers, Marie-José; Teixeira, João M. C.; Boer, Roeland; Mayzel, Maxim; Puig-Sàrries, Pilar; Karlsson, Göran; Coll, Miquel; Pons, Miquel; Crosas, Bernat

    2016-01-01

    The activity of RING ubiquitin ligases (E3s) depends on an interaction between the RING domain and ubiquitin conjugating enzymes (E2), but posttranslational events or additional structural elements, yet largely undefined, are frequently required to enhance or regulate activity. Here, we show for the ubiquitin ligase RNF125 that, in addition to the RING domain, a C2HC Zn finger (ZnF) is crucial for activity, and a short linker sequence (Li2120-128) enhances activity. The contribution of these regions was first shown with truncated proteins, and the essential role of the ZnF was confirmed with mutations at the Zn chelating Cys residues. Using NMR, we established that the C2HC ZnF/Li2120-128 region is crucial for binding of the RING domain to the E2 UbcH5a. The partial X-ray structure of RNF125 revealed the presence of extensive intramolecular interactions between the RING and C2HC ZnF. A mutation at one of the contact residues in the C2HC ZnF, a highly conserved M112, resulted in the loss of ubiquitin ligase activity. Thus, we identified the structural basis for an essential role of the C2HC ZnF and conclude that this domain stabilizes the RING domain, and is therefore required for binding of RNF125 to an E2. PMID:27411375

  6. Isolation and Characterization of a Ubiquitin-Like Ribonuclease from the Cultured Deep Root Mushroom, Oudemansiella radicata (Higher Basidiomycetes).

    PubMed

    Liu, Qin; Chen, Hao; Wang, Hexiang; Ng, Tzi Bun

    2015-01-01

    The isolation of a novel 13.5-kDa ribonuclease, displaying a ubiquitin-like inner peptide sequence, from dried fruiting bodies of the cultured mushroom Oudemansiella radicata (Relhan: Fr.) Singer (=Xerula radicata) is reported. The purification protocol deployed encompassed sequentially, cation/anion exchange chromatography on CM-cellulose, DEAE-cellulose and SP-Sepharose, and FPLC-gel filtration on a Superdex 75 column. The purified enzyme manifested optimum activity at 70 °C and pH 4.6, respectively. The activity of the RNase was inhibited by the majority of metal ions tested, especially Al3+, Hg2+, and Cd2+ ions, but was promoted by K+ ions. It exhibited the highest ribonucleolytic activity toward poly (C), lower activity toward poly (G), and negligible activity toward poly (U) and poly (A). Compared with mushroom ubiquitin-like RNases reported earlier, O. radicata RNase possesses a larger molecular mass, distinctive chromatographic behavior on DEAE-cellulose, a lower optimum pH, and a unique polyhomoribonucleotide specificity.

  7. Ubiquitin is part of the retrovirus budding machinery

    NASA Astrophysics Data System (ADS)

    Patnaik, Akash; Chau, Vincent; Wills, John W.

    2000-11-01

    Retroviruses contain relatively large amounts of ubiquitin, but the significance of this finding has been unknown. Here, we show that drugs that are known to reduce the level of free ubiquitin in the cell dramatically reduced the release of Rous sarcoma virus, an avian retrovirus. This effect was suppressed by overexpressing ubiquitin and also by directly fusing ubiquitin to the C terminus of Gag, the viral protein that directs budding and particle release. The block to budding was found to be at the plasma membrane, and electron microscopy revealed that the reduced level of ubiquitin results in a failure of mature virus particles to separate from each other and from the plasma membrane during budding. These data indicate that ubiquitin is actually part of the budding machinery.

  8. From Bioengineering to CRISPR/Cas9 – A Personal Retrospective of 20 Years of Research in Programmable Genome Targeting

    PubMed Central

    Jeltsch, Albert

    2018-01-01

    Genome targeting of restriction enzymes and DNA methyltransferases has many important applications including genome and epigenome editing. 15–20 years ago, my group was involved in the development of approaches for programmable genome targeting, aiming to connect enzymes with an oligodeoxynucleotide (ODN), which could form a sequence-specific triple helix at the genomic target site. Importantly, the target site of such enzyme-ODN conjugate could be varied simply by altering the ODN sequence promising great applicative values. However, this approach was facing many problems including the preparation and purification of the enzyme-ODN conjugates, their efficient delivery into cells, slow kinetics of triple helix formation and the requirement of a poly-purine target site sequence. Hence, for several years genome and epigenome editing approaches mainly were based on Zinc fingers and TAL proteins as targeting devices. More recently, CRISPR/Cas systems were discovered, which use a bound RNA for genome targeting that forms an RNA/DNA duplex with one DNA strand of the target site. These systems combine all potential advantages of the once imagined enzyme-ODN conjugates and avoid all main disadvantageous. Consequently, the application of CRISPR/Cas in genome and epigenome editing has exploded in recent years. We can draw two important conclusions from this example of research history. First, evolution still is the better bioengineer than humans and, whenever tested in parallel, natural solutions outcompete engineered ones. Second, CRISPR/Cas system were discovered in pure, curiosity driven, basic research, highlighting that it is basic, bottom-up research paving the way for fundamental innovation. PMID:29434619

  9. TRIM5α requires Ube2W to anchor Lys63-linked ubiquitin chains and restrict reverse transcription

    PubMed Central

    Fletcher, Adam J; Christensen, Devin E; Nelson, Chad; Tan, Choon Ping; Schaller, Torsten; Lehner, Paul J; Sundquist, Wesley I; Towers, Greg J

    2015-01-01

    TRIM5α is an antiviral, cytoplasmic, E3 ubiquitin (Ub) ligase that assembles on incoming retroviral capsids and induces their premature dissociation. It inhibits reverse transcription of the viral genome and can also synthesize unanchored polyubiquitin (polyUb) chains to stimulate innate immune responses. Here, we show that TRIM5α employs the E2 Ub-conjugating enzyme Ube2W to anchor the Lys63-linked polyUb chains in a process of TRIM5α auto-ubiquitination. Chain anchoring is initiated, in cells and in vitro, through Ube2W-catalyzed monoubiquitination of TRIM5α. This modification serves as a substrate for the elongation of anchored Lys63-linked polyUb chains, catalyzed by the heterodimeric E2 enzyme Ube2N/Ube2V2. Ube2W targets multiple TRIM5α internal lysines with Ub especially lysines 45 and 50, rather than modifying the N-terminal amino group, which is instead αN-acetylated in cells. E2 depletion or Ub mutation inhibits TRIM5α ubiquitination in cells and restores restricted viral reverse transcription, but not infection. Our data indicate that the stepwise formation of anchored Lys63-linked polyUb is a critical early step in the TRIM5α restriction mechanism and identify the E2 Ub-conjugating cofactors involved. PMID:26101372

  10. Synthetic and semi-synthetic strategies to study ubiquitin signaling.

    PubMed

    van Tilburg, Gabriëlle Ba; Elhebieshy, Angela F; Ovaa, Huib

    2016-06-01

    The post-translational modification ubiquitin can be attached to the ɛ-amino group of lysine residues or to a protein's N-terminus as a mono ubiquitin moiety. Via its seven intrinsic lysine residues and its N-terminus, it can also form ubiquitin chains on substrates in many possible ways. To study ubiquitin signals, many synthetic and semi-synthetic routes have been developed for generation of ubiquitin-derived tools and conjugates. The strength of these methods lies in their ability to introduce chemo-selective ligation handles at sites that currently cannot be enzymatically modified. Here, we review the different synthetic and semi-synthetic methods available for ubiquitin conjugate synthesis and their contribution to how they have helped investigating conformational diversity of diubiquitin signals. Next, we discuss how these methods help understanding the ubiquitin conjugation-deconjugation system by recent advances in ubiquitin ligase probes and diubiquitin-based DUB probes. Lastly, we discuss how these methods help studying post-translational modification of ubiquitin itself. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Correlation between ubiquitination and defects of bull spermatozoa and removal of defective spermatozoa using anti-ubiquitin antibody-coated magnetized beads.

    PubMed

    Zhang, Jian; Su, Jie; Hu, Shuxiang; Zhang, Jindun; Ding, Rui; Guo, Jitong; Cao, Guifang; Li, Rongfeng; Sun, Qing-Yuan; Li, Xihe

    2018-05-01

    Ubiquitination is an important cellular process in spermatogenesis and involves the regulation of spermatid differentiation and spermiogenesis. In the current study, the correlation between bull sperm ubiquitination and sperm defects was analyzed, and the feasibility using anti-ubiquitin specific antibody immobilized magnetic beads to remove the spermatozoa with defects was assessed. A total of nine bulls were examined, and the amount of sperm ubiquitination ranged from 55 to 151. Correspondingly, the percentage of sperm deformity ranged from 9.3% to 28.1%. The coefficient of correlation was r = 0.92, indicating a significant correlation between the percentage of sperm deformity and the amount of ubiquitination (P < 0.05). The results from use of fluorescence staining and single-channel flow cytometry indicated there was a significant correlation between the sperm deformity and amount of ubiquitination (r = 0.86, P < 0.05). Results gained by use of the TUNEL and ubiquitination assays by double-channel flow cytometry indicated that the proportion of genetically defective spermatozoa with ubiquitination in Q3 and Q2 quartiles was markedly greater than that of spermatozoa with ubiquitination in Q1 and Q4 quartiles (82.1% compared with 17.9%). All these results confirmed that sperm ubiquitination is associated with genetic DNA defects (P < 0.01). Furthermore, nine semen samples with sperm motility of less than 50% (minimal motility), 50% to 70% (moderate motility) and greater than 70% (greatest motility) were selected for sorting defective spermatozoa using anti-ubiquitin specific antibody-coated magnetic beads. Strikingly, the percentage of sperm deformity significantly decreased from 18.8%, 19.0% and 17.1% to 11.7%, 11.0% and 11.0%, respectively (P < 0.05), suggesting that this method might be a feasible technology to improve the productivity via removal of the defective spermatozoa from bull semen. Copyright © 2018 Elsevier B.V. All rights

  12. Differential Gene Expression in Explanted Human Retinal Pigment Epithelial Cells 12-Hours Post-Exposure to 532 nm, 120 ps Pulsed Laser Light

    DTIC Science & Technology

    2004-04-01

    cycling, anaerobic enzymes and kinase enzymes as well as specific cellular channel or receptor components. However, the most striking revelation of the...degradation. Most notably up-regulated were the genes for the enzymes essential in the ubiquitin-proteoasome pathway (UPP) shown to be up-regulated in response...to oxidative stress in eye tissue (1). These were ubiquitin [2.0], 3 ubiquitin-conjugating enzyme genes E2 [2.3], E2D2 [2.3] and E2D3 [2.8]. Also up

  13. Ubiquitination of specific mitochondrial matrix proteins

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lehmann, Gilad; Ziv, Tamar; Braten, Ori

    2016-06-17

    Several protein quality control systems in bacteria and/or mitochondrial matrix from lower eukaryotes are absent in higher eukaryotes. These are transfer-messenger RNA (tmRNA), The N-end rule ATP-dependent protease ClpAP, and two more ATP-dependent proteases, HslUV and ClpXP (in yeast). The lost proteases resemble the 26S proteasome and the role of tmRNA and the N-end rule in eukaryotic cytosol is performed by the ubiquitin proteasome system (UPS). Therefore, we hypothesized that the UPS might have substituted these systems – at least partially – in the mitochondrial matrix of higher eukaryotes. Using three independent experimental approaches, we demonstrated the presence of ubiquitinatedmore » proteins in the matrix of isolated yeast mitochondria. First, we show that isolated mitochondria contain ubiquitin (Ub) conjugates, which remained intact after trypsin digestion. Second, we demonstrate that the mitochondrial soluble fraction contains Ub-conjugates, several of which were identified by mass spectrometry and are localized to the matrix. Third, using immunoaffinity enrichment by specific antibodies recognizing digested ubiquitinated peptides, we identified a group of Ub-modified matrix proteins. The modification was further substantiated by separation on SDS-PAGE and immunoblots. Last, we attempted to identify the ubiquitin ligase(s) involved, and identified Dma1p as a trypsin-resistant protein in our mitochondrial preparations. Taken together, these data suggest a yet undefined role for the UPS in regulation of the mitochondrial matrix proteins. -- Highlights: •Mitochondrial matrix contains ubiquitinated proteins. •Ubiquitination occurs most probably in the matrix. •Dma1p is a ubiquitin ligase present in mitochondrial preparations.« less

  14. Ubiquitin-conjugating enzyme E2-like gene associated to pathogen response in Concholepas concholepas: SNP identification and transcription expression.

    PubMed

    Núñez-Acuña, Gustavo; Aguilar-Espinoza, Andrea; Chávez-Mardones, Jacqueline; Gallardo-Escárate, Cristian

    2012-10-01

    Ubiquitin-conjugated E2 enzyme (UBE2) is one of the main components of the proteasome degradation cascade. Previous studies have shown an increase of expression levels in individuals challenged to some pathogen organism such as virus and bacteria. The study was to characterize the immune response of UBE2 gene in the gastropod Concholepas concholepas through expression analysis and single nucleotide polymorphisms (SNP) discovery. Hence, UBE2 was identified from a cDNA library by 454 pyrosequencing, while SNP identification and validation were performed using De novo assembly and high resolution melting analysis. Challenge trials with Vibrio anguillarum was carried out to evaluate the relative transcript abundance of UBE2 gene from two to thirty-three hours post-treatment. The results showed a partial UBE2 sequence of 889 base pair (bp) with a partial coding region of 291 bp. SNP variation (A/C) was observed at the 546th position. Individuals challenged by V. anguillarum showed an overexpression of the UBE2 gene, the expression being significantly higher in homozygous individuals (AA) than (CC) or heterozygous individuals (A/C). This study contributes useful information relating to the UBE2 gene and its association with innate immune response in marine invertebrates. Copyright © 2012 Elsevier Ltd. All rights reserved.

  15. Deficiency of UBE2T, the E2 Ubiquitin Ligase Necessary for FANCD2 and FANCI Ubiquitination, Causes FA-T Subtype of Fanconi Anemia.

    PubMed

    Rickman, Kimberly A; Lach, Francis P; Abhyankar, Avinash; Donovan, Frank X; Sanborn, Erica M; Kennedy, Jennifer A; Sougnez, Carrie; Gabriel, Stacey B; Elemento, Olivier; Chandrasekharappa, Settara C; Schindler, Detlev; Auerbach, Arleen D; Smogorzewska, Agata

    2015-07-07

    Fanconi anemia (FA) is a rare bone marrow failure and cancer predisposition syndrome resulting from pathogenic mutations in genes encoding proteins participating in the repair of DNA interstrand crosslinks (ICLs). Mutations in 17 genes (FANCA-FANCS) have been identified in FA patients, defining 17 complementation groups. Here, we describe an individual presenting with typical FA features who is deficient for the ubiquitin-conjugating enzyme (E2), UBE2T. UBE2T is known to interact with FANCL, the E3 ubiquitin-ligase component of the multiprotein FA core complex, and is necessary for the monoubiquitination of FANCD2 and FANCI. Proband fibroblasts do not display FANCD2 and FANCI monoubiquitination, do not form FANCD2 foci following treatment with mitomycin C, and are hypersensitive to crosslinking agents. These cellular defects are complemented by expression of wild-type UBE2T, demonstrating that deficiency of the protein UBE2T can lead to Fanconi anemia. UBE2T gene gains an alias of FANCT. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  16. K11- and K48-Linked Ubiquitin Chains Interact with p97 during Endoplasmic Reticulum-Associated Degradation

    PubMed Central

    Locke, Matthew; Toth, Julia I.; Petroski, Matthew D.

    2014-01-01

    The AAA+ ATPase p97 has a critical function in the cytoplasmic degradation of proteins misfolded in the endoplasmic reticulum through a mechanism known as ER-associated degradation (ERAD). During this process, p97 binds polyubiquitinated ERAD substrates and couples ATP hydrolysis to their dislocation from the ER as a prerequisite to destruction by the proteasome. The ubiquitin signals important for this process are not fully understood. Here we report that p97 interacts with lysine 11 (K11) and K48-linked ubiquitin polymers, but not those containing K63 linkages. Disruption of p97 through siRNA-mediated depletion, dominant negative over-expression, or chemical inhibition results in the accumulation of K11 and K48 ubiquitin chains predominantly at the ER membrane, and is associated with ER stress induction. We show that a catalytically inactive deubiquitinating enzyme and p97 cofactor YOD1 enhances the accumulation of K11- and K48-linked polyubiquitin in the cytoplasm, at the ER membrane, and bound to p97. In addition to general effects on p97-associated ubiquitin polymers, the ERAD substrate CD3δ is modified with both K11- and K48-ubiquitin chains prior to p97-dependent dislocation. Collectively, our data are consistent with a major role for p97 in the recognition of K11 and K48 polyubiquitinated proteins prior to their degradation by the proteasome. PMID:24417208

  17. Proteostasis regulation by the ubiquitin system.

    PubMed

    Bett, John S

    2016-10-15

    Cells have developed an evolutionary obligation to survey and maintain proteome fidelity and avoid the possible toxic consequences of protein misfolding and aggregation. Disturbances to protein homoeostasis (proteostasis) can result in severe cellular phenotypes and are closely linked with the accumulation of microscopically visible deposits of aggregated proteins. These include inclusion bodies found in AD (Alzheimer's disease), HD (Huntington's disease) and ALS (amyotrophic lateral sclerosis) patient neurons. Protein aggregation is intimately linked with the ubiquitin and ubiquitin-like post-translational modifier system, which manages cellular protein folding stress and promotes the restoration of proteostasis. This is achieved in large part through the action of the UPS (ubiquitin-proteasome system), which is responsible for directing the proteasomal destruction of misfolded and damaged proteins tagged with ubiquitin chains. There are other less well understood ways in which ubiquitin family members can help to maintain proteostasis that complement, but are independent of, the UPS. This article discusses our current understanding of how the ubiquitin family regulates the protein misfolding pathways that threaten proteome fidelity, and how this is achieved by the key players in this process. © 2016 The Author(s). Published by Portland Press Limited on behalf of the Biochemical Society.

  18. Mojo Hand, a TALEN design tool for genome editing applications.

    PubMed

    Neff, Kevin L; Argue, David P; Ma, Alvin C; Lee, Han B; Clark, Karl J; Ekker, Stephen C

    2013-01-16

    Recent studies of transcription activator-like (TAL) effector domains fused to nucleases (TALENs) demonstrate enormous potential for genome editing. Effective design of TALENs requires a combination of selecting appropriate genetic features, finding pairs of binding sites based on a consensus sequence, and, in some cases, identifying endogenous restriction sites for downstream molecular genetic applications. We present the web-based program Mojo Hand for designing TAL and TALEN constructs for genome editing applications (http://www.talendesign.org). We describe the algorithm and its implementation. The features of Mojo Hand include (1) automatic download of genomic data from the National Center for Biotechnology Information, (2) analysis of any DNA sequence to reveal pairs of binding sites based on a user-defined template, (3) selection of restriction-enzyme recognition sites in the spacer between the TAL monomer binding sites including options for the selection of restriction enzyme suppliers, and (4) output files designed for subsequent TALEN construction using the Golden Gate assembly method. Mojo Hand enables the rapid identification of TAL binding sites for use in TALEN design. The assembly of TALEN constructs, is also simplified by using the TAL-site prediction program in conjunction with a spreadsheet management aid of reagent concentrations and TALEN formulation. Mojo Hand enables scientists to more rapidly deploy TALENs for genome editing applications.

  19. Two Closely Related Ubiquitin C-Terminal Hydrolase Isozymes Function as Reciprocal Modulators of Germ Cell Apoptosis in Cryptorchid Testis

    PubMed Central

    Kwon, Jungkee; Wang, Yu-Lai; Setsuie, Rieko; Sekiguchi, Satoshi; Sato, Yae; Sakurai, Mikako; Noda, Mami; Aoki, Shunsuke; Yoshikawa, Yasuhiro; Wada, Keiji

    2004-01-01

    The experimentally induced cryptorchid mouse model is useful for elucidating the in vivo molecular mechanism of germ cell apoptosis. Apoptosis, in general, is thought to be partly regulated by the ubiquitin-proteasome system. Here, we analyzed the function of two closely related members of the ubiquitin C-terminal hydrolase (UCH) family in testicular germ cell apoptosis experimentally induced by cryptorchidism. The two enzymes, UCH-L1 and UCH-L3, deubiquitinate ubiquitin-protein conjugates and control the cellular balance of ubiquitin. The testes of gracile axonal dystrophy (gad) mice, which lack UCH-L1, were resistant to cryptorchid stress-related injury and had reduced ubiquitin levels. The level of both anti-apoptotic (Bcl-2 family and XIAP) and prosurvival (pCREB and BDNF) proteins was significantly higher in gad mice after cryptorchid stress. In contrast, Uchl3 knockout mice showed profound testicular atrophy and apoptotic germ cell loss after cryptorchid injury. Ubiquitin level was not significantly different between wild-type and Uchl3 knockout mice, whereas the levels of Nedd8 and the apoptotic proteins p53, Bax, and caspase3 were elevated in Uchl3 knockout mice. These results demonstrate that UCH-L1 and UCH-L3 function differentially to regulate the cellular levels of anti-apoptotic, prosurvival, and apoptotic proteins during testicular germ cell apoptosis. PMID:15466400

  20. Lead discovery and chemical biology approaches targeting the ubiquitin proteasome system.

    PubMed

    Akinjiyan, Favour A; Carbonneau, Seth; Ross, Nathan T

    2017-10-15

    Protein degradation is critical for proteostasis, and the addition of polyubiquitin chains to a substrate is necessary for its recognition by the 26S proteasome. Therapeutic intervention in the ubiquitin proteasome system has implications ranging from cancer to neurodegeneration. Novel screening methods and chemical biology tools for targeting E1-activating, E2-conjugating and deubiquitinating enzymes will be discussed in this review. Approaches for targeting E3 ligase-substrate interactions as well as the proteasome will also be covered, with a focus on recently described approaches. Copyright © 2017. Published by Elsevier Ltd.

  1. Transcript Levels of Androgen Receptor Variant 7 and Ubiquitin-Conjugating Enzyme 2C in Hormone Sensitive Prostate Cancer and Castration-Resistant Prostate Cancer.

    PubMed

    Lee, Chan Ho; Ku, Ja Yoon; Ha, Jung Min; Bae, Sun Sik; Lee, Jeong Zoo; Kim, Choung-Soo; Ha, Hong Koo

    2017-01-01

    This study is designed to identify the androgen receptor variant 7 (AR-V7) status, clinical significance of AR-V7 in hormone sensitive prostate cancer (HSPC). Then, we evaluated AR-V7 and changes of its target gene, ubiquitin-conjugating enzyme E2C (UBE2C) which is an anaphase-promoting complex/cyclosome (APC/C)-specific ubiquitin-conjugating enzyme, in castration-resistant prostate cancer (CRPC) in serial tumor biopsies from patients receiving androgen deprivation therapy. We used RT-PCR and Q-PCR assay to evaluate AR-V7, androgen receptor full length (AR-FL), and UBE2C in tumor biopsies from patients with HSPC and CRPC. We examined associations between mRNA expression of AR-V7 and clinicopathologic factors. Furthermore, to identify other potential genes involved in the development of CRPC, RNA sequencing was conducted, using paired prostate cancer (PCa) tissues obtained immediately prior to treatment and at the time of therapeutic resistance. A total of 13 HSPC patients and three CRPC patients were enrolled. Neither a high Gleason score (score of 8 and 9) nor a high risk of PCa (a high risk of locally advanced PCa according to NCCN guidelines) was correlated with mRNA expression of AR-V7 in HSPC (P = 0.153 and P = 0.215). The mRNA expression of AR-FL, but not AR-V7, was significantly associated with the mRNA expression of UBE2C level in HSPC (P = 0.007). However, increased expression of AR-V7, not AR-FL, paralleled increased expression of UBE2C in the CRPC specimens (P = 0.03). AR-V7 expression status before ADT was likely related to shorter CRPC development in patients treating ADT. The result of the RNA-sequencing analysis using serial samples from the same patient before and after castration demonstrated an increased level of the PI3K regulatory subunit 1 (P = 0.018). Our study revealed the role of UBE2C as a marker of the androgen signaling pathway in PCa. Differential gene expression analysis using serial samples from the same patient

  2. Hydrogen peroxide stimulates ubiquitin-conjugating activity and expression of genes for specific E2 and E3 proteins in skeletal muscle myotubes

    NASA Technical Reports Server (NTRS)

    Li, Yi-Ping; Chen, Yuling; Li, Andrew S.; Reid, Michael B.

    2003-01-01

    Reactive oxygen species (ROS) are thought to promote muscle atrophy in chronic wasting diseases, but the underlying mechanism has not been determined. Here we show that H2O2 stimulates ubiquitin conjugation to muscle proteins through transcriptional regulation of the enzymes (E2 and E3 proteins) that conjugate ubiquitin to muscle proteins. Incubation of C2C12 myotubes with 100 microM H2O2 increased the rate of 125I-labeled ubiquitin conjugation to muscle proteins in whole cell extracts. This response required at least 4-h exposure to H2O2 and persisted for at least 24 h. Preincubating myotubes with cycloheximide or actinomycin D blocked H2O2 stimulation of ubiquitin-conjugating activity, suggesting that gene transcription is required. Northern blot analyses revealed that H2O2 upregulates expression of specific E3 and E2 proteins that are thought to regulate muscle catabolism, including atrogin1/MAFbx, MuRF1, and E214k. These results suggest that ROS stimulate protein catabolism in skeletal muscle by upregulating the ubiquitin conjugation system.

  3. RNF38 encodes a nuclear ubiquitin protein ligase that modifies p53

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sheren, Jamie E.; Kassenbrock, C. Kenneth, E-mail: ken.kassenbrock@ucdenver.edu; Department of Biology, Colorado State University, Fort Collins, CO 80523-1878

    2013-11-01

    Highlights: •RNF38 is shown to be a nuclear protein with a bipartite nuclear localization signal. •RNF38 protein is purified and shown to have ubiquitin protein ligase (E3) activity. •We show that RNF38 binds p53 and can ubiquitinate p53 in vitro. •Overexpression of RNF38 increases p53 ubiquitination in HEK293T cells. •Overexpression of RNF38 in HEK293T cells alters p53 localization. -- Abstract: The RNF38 gene encodes a RING finger protein of unknown function. Here we demonstrate that RNF38 is a functional ubiquitin protein ligase (E3). We show that RNF38 isoform 1 is localized to the nucleus by a bipartite nuclear localization sequencemore » (NLS). We confirm that RNF38 is a binding partner of p53 and demonstrate that RNF38 can ubiquitinate p53 in vitro and in vivo. Finally, we show that overexpression of RNF38 in HEK293T cells results in relocalization of p53 to discrete foci associated with PML nuclear bodies. These results suggest RNF38 is an E3 ubiquitin ligase that may play a role in regulating p53.« less

  4. Protein tyrosine kinase regulation by ubiquitination: Critical roles of Cbl-family ubiquitin ligases

    PubMed Central

    Mohapatra, Bhopal; Ahmad, Gulzar; Nadeau, Scott; Zutshi, Neha; An, Wei; Scheffe, Sarah; Dong, Lin; Feng, Dan; Goetz, Benjamin; Arya, Priyanka; Bailey, Tameka A.; Palermo, Nicholas; Borgstahl, Gloria E.O.; Natarajan, Amarnath; Raja, Srikumar M.; Naramura, Mayumi; Band, Vimla; Band, Hamid

    2012-01-01

    Protein tyrosine kinases (PTKs) coordinate a broad spectrum of cellular responses to extracellular stimuli and cell–cell interactions during development, tissue homeostasis, and responses to environmental challenges. Thus, an understanding of the regulatory mechanisms that ensure physiological PTK function and potential aberrations of these regulatory processes during diseases such as cancer are of broad interest in biology and medicine. Aside from the expected role of phospho-tyrosine phosphatases, recent studies have revealed a critical role of covalent modification of activated PTKs with ubiquitin as a critical mechanism of their negative regulation. Members of the Cbl protein family (Cbl, Cbl-b and Cbl-c in mammals) have emerged as dominant “activated PTK-selective” ubiquitin ligases. Structural, biochemical and cell biological studies have established that Cbl protein-dependent ubiquitination targets activated PTKs for degradation either by facilitating their endocytic sorting into lysosomes or by promoting their proteasomal degradation. This mechanism also targets PTK signaling intermediates that become associated with Cbl proteins in a PTK activation-dependent manner. Cellular and animal studies have established that the relatively broadly expressed mammalian Cbl family members Cbl and Cbl-b play key physiological roles, including their critical functions to prevent the transition of normal immune responses into autoimmune disease and as tumor suppressors; the latter function has received validation from human studies linking mutations in Cbl to human leukemia. These newer insights together with embryonic lethality seen in mice with a combined deletion of Cbl and Cbl-b genes suggest an unappreciated role of the Cbl family proteins, and by implication the ubiquitin-dependent control of activated PTKs, in stem/progenitor cell maintenance. Future studies of existing and emerging animal models and their various cell lineages should help test the broader

  5. Reduced levels of protein recoding by A-to-I RNA editing in Alzheimer's disease

    PubMed Central

    Khermesh, Khen; D'Erchia, Anna Maria; Barak, Michal; Annese, Anita; Wachtel, Chaim; Levanon, Erez Y.; Picardi, Ernesto; Eisenberg, Eli

    2016-01-01

    Adenosine to inosine (A-to-I) RNA editing, catalyzed by the ADAR enzyme family, acts on dsRNA structures within pre-mRNA molecules. Editing of the coding part of the mRNA may lead to recoding, amino acid substitution in the resulting protein, possibly modifying its biochemical and biophysical properties. Altered RNA editing patterns have been observed in various neurological pathologies. Here, we present a comprehensive study of recoding by RNA editing in Alzheimer's disease (AD), the most common cause of irreversible dementia. We have used a targeted resequencing approach supplemented by a microfluidic-based high-throughput PCR coupled with next-generation sequencing to accurately quantify A-to-I RNA editing levels in a preselected set of target sites, mostly located within the coding sequence of synaptic genes. Overall, editing levels decreased in AD patients’ brain tissues, mainly in the hippocampus and to a lesser degree in the temporal and frontal lobes. Differential RNA editing levels were observed in 35 target sites within 22 genes. These results may shed light on a possible association between the neurodegenerative processes typical for AD and deficient RNA editing. PMID:26655226

  6. The Ubiquitin Ligase CHIP Prevents SirT6 Degradation through Noncanonical Ubiquitination

    PubMed Central

    Ronnebaum, Sarah M.; Wu, Yaxu; McDonough, Holly

    2013-01-01

    The ubiquitin ligase CHIP (carboxyl terminus of Hsp70-interacting protein) regulates protein quality control, and CHIP deletion accelerates aging and reduces the life span in mice. Here, we reveal a mechanism for CHIP's influence on longevity by demonstrating that CHIP stabilizes the sirtuin family member SirT6, a lysine deacetylase/ADP ribosylase involved in DNA repair, metabolism, and longevity. In CHIP-deficient cells, SirT6 protein half-life is substantially reduced due to increased proteasome-mediated degradation, but CHIP overexpression in these cells increases SirT6 protein expression without affecting SirT6 transcription. CHIP noncanonically ubiquitinates SirT6 at K170, which stabilizes SirT6 and prevents SirT6 canonical ubiquitination by other ubiquitin ligases. In CHIP-depleted cells, SirT6 K170 mutation increases SirT6 half-life and prevents proteasome-mediated degradation. The global decrease in SirT6 expression in the absence of CHIP is associated with decreased SirT6 promoter occupancy, which increases histone acetylation and promotes downstream gene transcription in CHIP-depleted cells. Cells lacking CHIP are hypersensitive to DNA-damaging agents, but DNA repair and cell viability are rescued by enforced expression of SirT6. The discovery of this CHIP-SirT6 interaction represents a novel protein-stabilizing mechanism and defines an intersection between protein quality control and epigenetic regulation to influence pathways that regulate the biology of aging. PMID:24043303

  7. Autographa californica Nucleopolyhedrovirus AC141 (Exon0), a Potential E3 Ubiquitin Ligase, Interacts with Viral Ubiquitin and AC66 To Facilitate Nucleocapsid Egress.

    PubMed

    Biswas, Siddhartha; Willis, Leslie G; Fang, Minggang; Nie, Yingchao; Theilmann, David A

    2018-02-01

    During the infection cycle of Autographa californica multiple nucleopolyhedrovirus (AcMNPV), two forms of virions are produced, budded virus (BV) and occlusion-derived virus (ODV). Nucleocapsids that form BV have to egress from the nucleus, whereas nucleocapsids that form ODV remain inside the nucleus. The molecular mechanism that determines whether nucleocapsids remain inside or egress from the nucleus is unknown. AC141 (a predicted E3 ubiquitin ligase) and viral ubiquitin (vUbi) have both been shown to be required for efficient BV production. In this study, it was hypothesized that vUbi interacts with AC141, and in addition, that this interaction was required for BV production. Deletion of both ac141 and vubi restricted viral infection to a single cell, and BV production was completely eliminated. AC141 was ubiquitinated by either vUbi or cellular Ubi, and this interaction was required for optimal BV production. Nucleocapsids in BV, but not ODV, were shown to be specifically ubiquitinated by vUbi, including a 100-kDa protein, as well as high-molecular-weight conjugates. The viral ubiquitinated 100-kDa BV-specific nucleocapsid protein was identified as AC66, which is known to be required for BV production and was shown by coimmunoprecipitation and mass spectrometry to interact with AC141. Confocal microscopy also showed that AC141, AC66, and vUbi interact at the nuclear periphery. These results suggest that ubiquitination of nucleocapsid proteins by vUbi functions as a signal to determine if a nucleocapsid will egress from the nucleus and form BV or remain in the nucleus to form ODV. IMPORTANCE Baculoviruses produce two types of virions called occlusion-derived virus (ODV) and budded virus (BV). ODVs are required for oral infection, whereas BV enables the systemic spread of virus to all host tissues, which is critical for killing insects. One of the important steps for BV production is the export of nucleocapsids out of the nucleus. This study investigated the

  8. Mitochondrial Ubiquitin Ligase in Cardiovascular Disorders.

    PubMed

    Yu, Tao; Zhang, Yinfeng; Li, Pei-Feng

    2017-01-01

    Mitochondrial dynamics play a critical role in cellular responses and physiological process. However, their dysregulation leads to a functional degradation, which results in a diverse array of common disorders, including cardiovascular disease. In this background, the mitochondrial ubiquitin ligase has been attracting substantial research interest in recent years. Mitochondrial ubiquitin ligase is localized in the mitochondrial outer membrane, where it plays an essential role in the regulation of mitochondrial dynamics and apoptosis. In this chapter, we provide a comprehensive overview of the functions of mitochondrial ubiquitin ligases identified hitherto, with a special focus on cardiovascular disorders.

  9. Ubiquitin-like and ubiquitin-associated domain proteins: significance in proteasomal degradation

    PubMed Central

    Lau, Alan F.

    2009-01-01

    The ubiquitin–proteasome pathway of protein degradation is one of the major mechanisms that are involved in the maintenance of the proper levels of cellular proteins. The regulation of proteasomal degradation thus ensures proper cell functions. The family of proteins containing ubiquitin-like (UbL) and ubiquitin-associated (UBA) domains has been implicated in proteasomal degradation. UbL–UBA domain containing proteins associate with substrates destined for degradation as well as with subunits of the proteasome, thus regulating the proper turnover of proteins. PMID:19468686

  10. RNA Editing, ADAR1, and the Innate Immune Response.

    PubMed

    Wang, Qingde; Li, Xiaoni; Qi, Ruofan; Billiar, Timothy

    2017-01-18

    RNA editing, particularly A-to-I RNA editing, has been shown to play an essential role in mammalian embryonic development and tissue homeostasis, and is implicated in the pathogenesis of many diseases including skin pigmentation disorder, autoimmune and inflammatory tissue injury, neuron degeneration, and various malignancies. A-to-I RNA editing is carried out by a small group of enzymes, the adenosine deaminase acting on RNAs (ADARs). Only three members of this protein family, ADAR1-3, exist in mammalian cells. ADAR3 is a catalytically null enzyme and the most significant function of ADAR2 was found to be in editing on the neuron receptor GluR-B mRNA. ADAR1, however, has been shown to play more significant roles in biological and pathological conditions. Although there remains much that is not known about how ADAR1 regulates cellular function, recent findings point to regulation of the innate immune response as an important function of ADAR1. Without appropriate RNA editing by ADAR1, endogenous RNA transcripts stimulate cytosolic RNA sensing receptors and therefore activate the IFN-inducing signaling pathways. Overactivation of innate immune pathways can lead to tissue injury and dysfunction. However, obvious gaps in our knowledge persist as to how ADAR1 regulates innate immune responses through RNA editing. Here, we review critical findings from ADAR1 mechanistic studies focusing on its regulatory function in innate immune responses and identify some of the important unanswered questions in the field.

  11. UBE4B Protein Couples Ubiquitination and Sorting Machineries to Enable Epidermal Growth Factor Receptor (EGFR) Degradation*

    PubMed Central

    Sirisaengtaksin, Natalie; Gireud, Monica; Yan, Qing; Kubota, Yoshihisa; Meza, Denisse; Waymire, Jack C.; Zage, Peter E.; Bean, Andrew J.

    2014-01-01

    The signaling of plasma membrane proteins is tuned by internalization and sorting in the endocytic pathway prior to recycling or degradation in lysosomes. Ubiquitin modification allows recognition and association of cargo with endosomally associated protein complexes, enabling sorting of proteins to be degraded from those to be recycled. The mechanism that provides coordination between the cellular machineries that mediate ubiquitination and endosomal sorting is unknown. We report that the ubiquitin ligase UBE4B is recruited to endosomes in response to epidermal growth factor receptor (EGFR) activation by binding to Hrs, a key component of endosomal sorting complex required for transport (ESCRT) 0. We identify the EGFR as a substrate for UBE4B, establish UBE4B as a regulator of EGFR degradation, and describe a mechanism by which UBE4B regulates endosomal sorting, affecting cellular levels of the EGFR and its downstream signaling. We propose a model in which the coordinated action of UBE4B, ESCRT-0, and the deubiquitinating enzyme USP8 enable the endosomal sorting and lysosomal degradation of the EGFR. PMID:24344129

  12. Impairment of social behavior and communication in mice lacking the Uba6-dependent ubiquitin activation system.

    PubMed

    Lee, Ji Yeon; Kwak, Minseok; Lee, Peter C W

    2015-03-15

    The Uba6-Use1 ubiquitin enzyme cascade is a poorly understood arm of the ubiquitin-proteasome system required for mouse development. Recently, we reported that Uba6 brain-specific knockout (termed NKO) mice display abnormal social behavior and neuronal development due to a decreased spine density and accumulation of Ube3a and Shank3. To better characterize a potential role for NKO mice in autism spectrum disorders (ASDs), we performed a comprehensive behavioral characterization of the social behavior and communication of NKO mice. Our behavioral results confirmed that NKO mice display social impairments, as indicated by fewer vocalizations and decreased social interaction. We conclude that UBA6 NKO mice represent a novel ASD mouse model of anti-social and less verbal behavioral symptoms. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Structural basis of ubiquitin modification by the Legionella effector SdeA.

    PubMed

    Dong, Yanan; Mu, Yajuan; Xie, Yongchao; Zhang, Yupeng; Han, Youyou; Zhou, Yu; Wang, Wenhe; Liu, Zihe; Wu, Mei; Wang, Hao; Pan, Man; Xu, Ning; Xu, Cong-Qiao; Yang, Maojun; Fan, Shilong; Deng, Haiteng; Tan, Tianwei; Liu, Xiaoyun; Liu, Lei; Li, Jun; Wang, Jiawei; Fang, Xianyang; Feng, Yue

    2018-05-01

    Protein ubiquitination is a multifaceted post-translational modification that controls almost every process in eukaryotic cells. Recently, the Legionella effector SdeA was reported to mediate a unique phosphoribosyl-linked ubiquitination through successive modifications of the Arg42 of ubiquitin (Ub) by its mono-ADP-ribosyltransferase (mART) and phosphodiesterase (PDE) domains. However, the mechanisms of SdeA-mediated Ub modification and phosphoribosyl-linked ubiquitination remain unknown. Here we report the structures of SdeA in its ligand-free, Ub-bound and Ub-NADH-bound states. The structures reveal that the mART and PDE domains of SdeA form a catalytic domain over its C-terminal region. Upon Ub binding, the canonical ADP-ribosyltransferase toxin turn-turn (ARTT) and phosphate-nicotinamide (PN) loops in the mART domain of SdeA undergo marked conformational changes. The Ub Arg72 might act as a 'probe' that interacts with the mART domain first, and then movements may occur in the side chains of Arg72 and Arg42 during the ADP-ribosylation of Ub. Our study reveals the mechanism of SdeA-mediated Ub modification and provides a framework for further investigations into the phosphoribosyl-linked ubiquitination process.

  14. Atomic-level description of ubiquitin folding

    PubMed Central

    Piana, Stefano; Lindorff-Larsen, Kresten; Shaw, David E.

    2013-01-01

    Equilibrium molecular dynamics simulations, in which proteins spontaneously and repeatedly fold and unfold, have recently been used to help elucidate the mechanistic principles that underlie the folding of fast-folding proteins. The extent to which the conclusions drawn from the analysis of such proteins, which fold on the microsecond timescale, apply to the millisecond or slower folding of naturally occurring proteins is, however, unclear. As a first attempt to address this outstanding issue, we examine here the folding of ubiquitin, a 76-residue-long protein found in all eukaryotes that is known experimentally to fold on a millisecond timescale. Ubiquitin folding has been the subject of many experimental studies, but its slow folding rate has made it difficult to observe and characterize the folding process through all-atom molecular dynamics simulations. Here we determine the mechanism, thermodynamics, and kinetics of ubiquitin folding through equilibrium atomistic simulations. The picture emerging from the simulations is in agreement with a view of ubiquitin folding suggested from previous experiments. Our findings related to the folding of ubiquitin are also consistent, for the most part, with the folding principles derived from the simulation of fast-folding proteins, suggesting that these principles may be applicable to a wider range of proteins. PMID:23503848

  15. Quantitative regulation of histone variant H2A.Z during cell cycle by ubiquitin proteasome system and SUMO-targeted ubiquitin ligases.

    PubMed

    Takahashi, Daisuke; Orihara, Yuki; Kitagawa, Saho; Kusakabe, Masayuki; Shintani, Takahiro; Oma, Yukako; Harata, Masahiko

    2017-08-01

    Quantitative control of histones and histone variants during cell cycle is relevant to their epigenetic functions. We found that the level of yeast histone variant H2A.Z in the G2/M-phase is actively kept low by the ubiquitin proteasome system and SUMO-targeted ubiquitin ligases. Overexpression of H2A.Z induced defects in mitotic progression, suggesting functional importance of this quantitative control.

  16. The ubiquitin family meets the Fanconi anemia proteins.

    PubMed

    Renaudin, Xavier; Koch Lerner, Leticia; Menck, Carlos Frederico Martins; Rosselli, Filippo

    2016-01-01

    Fanconi anaemia (FA) is a hereditary disorder characterized by bone marrow failure, developmental defects, predisposition to cancer and chromosomal abnormalities. FA is caused by biallelic mutations that inactivate genes encoding proteins involved in replication stress-associated DNA damage responses. The 20 FANC proteins identified to date constitute the FANC pathway. A key event in this pathway involves the monoubiquitination of the FANCD2-FANCI heterodimer by the collective action of at least 10 different proteins assembled in the FANC core complex. The FANC core complex-mediated monoubiquitination of FANCD2-FANCI is essential to assemble the heterodimer in subnuclear, chromatin-associated, foci and to regulate the process of DNA repair as well as the rescue of stalled replication forks. Several recent works have demonstrated that the activity of the FANC pathway is linked to several other protein post-translational modifications from the ubiquitin-like family, including SUMO and NEDD8. These modifications are related to DNA damage responses but may also affect other cellular functions potentially related to the clinical phenotypes of the syndrome. This review summarizes the interplay between the ubiquitin and ubiquitin-like proteins and the FANC proteins that constitute a major pathway for the surveillance of the genomic integrity and addresses the implications of their interactions in maintaining genome stability. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Docking-dependent Ubiquitination of the Interferon Regulatory Factor-1 Tumor Suppressor Protein by the Ubiquitin Ligase CHIP*

    PubMed Central

    Narayan, Vikram; Pion, Emmanuelle; Landré, Vivien; Müller, Petr; Ball, Kathryn L.

    2011-01-01

    Characteristically for a regulatory protein, the IRF-1 tumor suppressor turns over rapidly with a half-life of between 20–40 min. This allows IRF-1 to reach new steady state protein levels swiftly in response to changing environmental conditions. Whereas CHIP (C terminus of Hsc70-interacting protein), appears to chaperone IRF-1 in unstressed cells, formation of a stable IRF-1·CHIP complex is seen under specific stress conditions. Complex formation, in heat- or heavy metal-treated cells, is accompanied by a decrease in IRF-1 steady state levels and an increase in IRF-1 ubiquitination. CHIP binds directly to an intrinsically disordered domain in the central region of IRF-1 (residues 106–140), and this site is sufficient to form a stable complex with CHIP in cells and to compete in trans with full-length IRF-1, leading to a reduction in its ubiquitination. The study reveals a complex relationship between CHIP and IRF-1 and highlights the role that direct binding or “docking” of CHIP to its substrate(s) can play in its mechanism of action as an E3 ligase. PMID:20947504

  18. Structural determinants of ubiquitin-CXC chemokine receptor 4 interaction.

    PubMed

    Saini, Vikas; Marchese, Adriano; Tang, Wei-Jen; Majetschak, Matthias

    2011-12-23

    Ubiquitin, a post-translational protein modifier inside the cell, functions as a CXC chemokine receptor (CXCR) 4 agonist outside the cell. However, the structural determinants of the interaction between extracellular ubiquitin and CXCR4 remain unknown. Utilizing C-terminal truncated ubiquitin and ubiquitin mutants, in which surface residues that are known to interact with ubiquitin binding domains in interacting proteins are mutated (Phe-4, Leu-8, Ile-44, Asp-58, Val-70), we provide evidence that the ubiquitin-CXCR4 interaction follows a two-site binding mechanism in which the hydrophobic surfaces surrounding Phe-4 and Val-70 are important for receptor binding, whereas the flexible C terminus facilitates receptor activation. Based on these findings and the available crystal structures, we then modeled the ubiquitin-CXCR4 interface with the RosettaDock software followed by small manual adjustments, which were guided by charge complementarity and anticipation of a conformational switch of CXCR4 upon activation. This model suggests three residues of CXCR4 (Phe-29, Phe-189, Lys-271) as potential interaction sites. Binding studies with HEK293 cells overexpressing wild type and CXCR4 after site-directed mutagenesis confirm that these residues are important for ubiquitin binding but that they do not contribute to the binding of stromal cell-derived factor 1α. Our findings suggest that the structural determinants of the CXCR4 agonist activity of ubiquitin mimic the typical structure-function relationship of chemokines. Furthermore, we provide evidence for separate and specific ligand binding sites on CXCR4. As exogenous ubiquitin has been shown to possess therapeutic potential, our findings are expected to facilitate the structure-based design of new compounds with ubiquitin-mimetic actions on CXCR4.

  19. Structural and functional characterization of a ubiquitin variant engineered for tight and specific binding to an alpha-helical ubiquitin interacting motif.

    PubMed

    Manczyk, Noah; Yates, Bradley P; Veggiani, Gianluca; Ernst, Andreas; Sicheri, Frank; Sidhu, Sachdev S

    2017-05-01

    Ubiquitin interacting motifs (UIMs) are short α-helices found in a number of eukaryotic proteins. UIMs interact weakly but specifically with ubiquitin conjugated to other proteins, and in so doing, mediate specific cellular signals. Here we used phage display to generate ubiquitin variants (UbVs) targeting the N-terminal UIM of the yeast Vps27 protein. Selections yielded UbV.v27.1, which recognized the cognate UIM with high specificity relative to other yeast UIMs and bound with an affinity more than two orders of magnitude higher than that of ubiquitin. Structural and mutational studies of the UbV.v27.1-UIM complex revealed the molecular details for the enhanced affinity and specificity of UbV.v27.1, and underscored the importance of changes at the binding interface as well as at positions that do not contact the UIM. Our study highlights the power of the phage display approach for selecting UbVs with unprecedented affinity and high selectivity for particular α-helical UIM domains within proteomes, and it establishes a general approach for the development of inhibitors targeting interactions of this type. © 2017 The Protein Society.

  20. Puromycin induces SUMO and ubiquitin redistribution upon proteasome inhibition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matsumoto, Hotaru; Saitoh, Hisato, E-mail: hisa@kumamoto-u.ac.jp; Department of Biological Sciences, Graduate School of Science and Technology, Kumamoto University, Kumamoto

    2016-07-29

    We have previously reported the co-localization of O-propargyl-puromycin (OP-Puro) with SUMO-2/3 and ubiquitin at promyelocytic leukemia-nuclear bodies (PML-NBs) in the presence of the proteasome inhibitor MG132, implying a role for the ubiquitin family in sequestering OP-puromycylated immature polypeptides to the nucleus during impaired proteasome activity. Here, we found that as expected puromycin induced SUMO-1/2/3 accumulation with ubiquitin at multiple nuclear foci in HeLa cells when co-exposed to MG132. Co-administration of puromycin and MG132 also facilitated redistribution of PML and the SUMO-targeted ubiquitin ligase RNF4 concurrently with SUMO-2/3. As removal of the drugs from the medium led to disappearance of themore » SUMO-2/3-ubiquitin nuclear foci, our findings indicated that nuclear assembly/disassembly of SUMO-2/3 and ubiquitin was pharmacologically manipulable, supporting our previous observation on OP-Puro, which predicted the ubiquitin family function in sequestrating aberrant proteins to the nucleus. -- Highlights: •Puromycin exhibits the O-propargyl-puromycin effect. •Puromycin induces SUMO redistribution upon proteasome inhibition. •Ubiquitin and RNF4 accumulate at PML-nuclear bodies with SUMO-2/3. •The ubiquitin family may function in nuclear sequestration of immature proteins.« less

  1. Phosphorylated ubiquitin chain is the genuine Parkin receptor

    PubMed Central

    Okatsu, Kei; Koyano, Fumika; Kimura, Mayumi; Kosako, Hidetaka; Saeki, Yasushi

    2015-01-01

    PINK1 selectively recruits Parkin to depolarized mitochondria for quarantine and removal of damaged mitochondria via ubiquitylation. Dysfunction of this process predisposes development of familial recessive Parkinson’s disease. Although various models for the recruitment process have been proposed, none of them adequately explain the accumulated data, and thus the molecular basis for PINK1 recruitment of Parkin remains to be fully elucidated. In this study, we show that a linear ubiquitin chain of phosphomimetic tetra-ubiquitin(S65D) recruits Parkin to energized mitochondria in the absence of PINK1, whereas a wild-type tetra-ubiquitin chain does not. Under more physiologically relevant conditions, a lysosomal phosphorylated polyubiquitin chain recruited phosphomimetic Parkin to the lysosome. A cellular ubiquitin replacement system confirmed that ubiquitin phosphorylation is indeed essential for Parkin translocation. Furthermore, physical interactions between phosphomimetic Parkin and phosphorylated polyubiquitin chain were detected by immunoprecipitation from cells and in vitro reconstitution using recombinant proteins. We thus propose that the phosphorylated ubiquitin chain functions as the genuine Parkin receptor for recruitment to depolarized mitochondria. PMID:25847540

  2. Ubiquitin over-expression phenotypes and ubiquitin gene molecular misreading during aging in Drosophila melanogaster

    PubMed Central

    Hoe, Nicholas; Huang, Chung M.; Landis, Gary; Verhage, Marian; Ford, Daniel; Yang, Junsheng; van Leeuwen, Fred W.; Tower, John

    2011-01-01

    Molecular Misreading (MM) is the inaccurate conversion of genomic information into aberrant proteins. For example, when RNA polymerase II transcribes a GAGAG motif it synthesizes at low frequency RNA with a two-base deletion. If the deletion occurs in a coding region, translation will result in production of misframed proteins. During mammalian aging, misframed versions of human amyloid precursor protein (hApp) and ubiquitin (hUbb) accumulate in the aggregates characteristic of neurodegenerative diseases, suggesting dysfunctional degradation or clearance. Here cDNA clones encoding wild-type hUbb and the frame-shifted version hUbb+1 were expressed in transgenic Drosophila using the doxycycline-regulated system. Misframed proteins were abundantly produced, both from the transgenes and from endogenous Drosophila ubiquitin-encoding genes, and their abundance increased during aging in whole-fly extracts. Over-expression of wild-type hUbb, but not hUbb+1, was toxic during fly development. In contrast, when over-expressed specifically in adult flies, hUbb+1 caused small decreases in life span, whereas hUbb was associated with small increases, preferentially in males. The data suggest that MM occurs in Drosophila and that the resultant misframed proteins accumulate with age. MM of the ubiquitin gene can produce alternative ubiquitin gene products with different and sometimes opposing phenotypic effects. PMID:21415465

  3. Human T Cell Leukemia Virus Type 2 Tax-Mediated NF-κB Activation Involves a Mechanism Independent of Tax Conjugation to Ubiquitin and SUMO

    PubMed Central

    Journo, Chloé; Bonnet, Amandine; Favre-Bonvin, Arnaud; Turpin, Jocelyn; Vinera, Jennifer; Côté, Emilie; Chevalier, Sébastien Alain; Kfoury, Youmna; Bazarbachi, Ali

    2013-01-01

    Permanent activation of the NF-κB pathway by the human T cell leukemia virus type 1 (HTLV-1) Tax (Tax1) viral transactivator is a key event in the process of HTLV-1-induced T lymphocyte immortalization and leukemogenesis. Although encoding a Tax transactivator (Tax2) that activates the canonical NF-κB pathway, HTLV-2 does not cause leukemia. These distinct pathological outcomes might be related, at least in part, to distinct NF-κB activation mechanisms. Tax1 has been shown to be both ubiquitinated and SUMOylated, and these two modifications were originally proposed to be required for Tax1-mediated NF-κB activation. Tax1 ubiquitination allows recruitment of the IKK-γ/NEMO regulatory subunit of the IKK complex together with Tax1 into centrosome/Golgi-associated cytoplasmic structures, followed by activation of the IKK complex and RelA/p65 nuclear translocation. Herein, we compared the ubiquitination, SUMOylation, and acetylation patterns of Tax2 and Tax1. We show that, in contrast to Tax1, Tax2 conjugation to endogenous ubiquitin and SUMO is barely detectable while both proteins are acetylated. Importantly, Tax2 is neither polyubiquitinated on lysine residues nor ubiquitinated on its N-terminal residue. Consistent with these observations, Tax2 conjugation to ubiquitin and Tax2-mediated NF-κB activation is not affected by overexpression of the E2 conjugating enzyme Ubc13. We further demonstrate that a nonubiquitinable, non-SUMOylable, and nonacetylable Tax2 mutant retains a significant ability to activate transcription from a NF-κB-dependent promoter after partial activation of the IKK complex and induction of RelA/p65 nuclear translocation. Finally, we also show that Tax2 does not interact with TRAF6, a protein that was shown to positively regulate Tax1-mediated activation of the NF-κB pathway. PMID:23135727

  4. Biochemical function of typical and variant Arabidopsis thaliana U-box E3 ubiquitin-protein ligases.

    PubMed

    Wiborg, Jakob; O'Shea, Charlotte; Skriver, Karen

    2008-08-01

    The variance of the U-box domain in 64 Arabidopsis thaliana (thale cress) E3s (ubiquitin-protein ligases) was used to examine the interactions between E3s and E2s (ubiquitin-conjugating enzymes). E2s and E3s are components of the ubiquitin protein degradation pathway. Seven U-box proteins were analysed for their ability to ubiquitinate proteins in vitro in co-operation with different E2s. All U-box domains exhibited ubiquitination activity and interacted productively with UBC4/5-type E2s. Three and four of the U-box domains mediated ubiquitin addition in the presence of UBC13 and UBC7 E2s respectively, but no productive interaction was observed with the UBC15 E2 tested. The activity of AtPUB54 [Arabidopsis thaliana (thale cress) plant U-box 54 protein] was dependent on Trp(266) in the E2-binding cleft, and the E2 selectivity was changed by substitution of this position. The function of the distant U-box protein, AtPUB49, representing a large family of eukaryotic proteins containing a U-box linked to a cyclophilin-like peptidyl-prolyl cis-trans isomerase domain, was characterized biochemically. AtPUB49 functioned both as a prolyl isomerase and a chaperone by catalysing cis-trans isomerization of peptidyl-prolyl bonds and dissolving protein aggregates. In conclusion, both typical and atypical Arabidopsis U-box proteins were active E3s. The overlap in the E3/E2 selectivity suggests that in vivo specificity is not determined only by the E3-E2 interactions, but also by other parameters, e.g. co-existence or interactions with additional domains. The biochemical functions of AtPUB49 suggest that the protein can be involved in folding or degradation of protein substrates. Similar functions can also be retained within a protein complex with separate chaperone and U-box proteins.

  5. The co-crystal structure of ubiquitin carboxy-terminal hydrolase L1 (UCHL1) with a tripeptide fluoromethyl ketone (Z-VAE(OMe)-FMK)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Davies, Christopher W.; Chaney, Joseph; Korbel, Gregory

    2012-07-25

    UCHL1 is a 223 amino acid member of the UCH family of deubiquitinating enzymes (DUBs), found abundantly and exclusively expressed in neurons and the testis in normal tissues. Two naturally occurring variants of UCHL1 are directly involved in Parkinson's disease (PD). Not only has UCHL1 been linked to PD, but it has oncogenic properties, having been found abnormally expressed in lung, pancreatic, and colorectal cancers. Although inhibitors of UCHL1 have been described previously the co-crystal structure of the enzyme bound to any inhibitor has not been reported. Herein, we report the X-ray structure of UCHL1 co-crystallized with a peptide-based fluoromethylketonemore » inhibitor, Z-VAE(OMe)-FMK (VAEFMK) at 2.35 {angstrom} resolution. The co-crystal structure reveals that the inhibitor binds in the active-site cleft, irreversibly modifying the active-site cysteine; however, the catalytic histidine is still misaligned as seen in the native structure, suggesting that the inhibitor binds to an inactive form of the enzyme. Our structure also reveals that the inhibitor approaches the active-site cleft from the opposite side of the crossover loop as compared to the direction of approach of ubiquitin's C-terminal tail, thereby occupying the P1{prime} (leaving group) site, a binding site perhaps used by the unknown C-terminal extension of ubiquitin in the actual in vivo substrate(s) of UCHL1. This structure provides a view of molecular contacts at the active-site cleft between the inhibitor and the enzyme as well as furnishing structural information needed to facilitate further design of inhibitors targeted to UCHL1 with high selectivity and potency.« less

  6. Evaluation of Selected Binding Domains for the Analysis of Ubiquitinated Proteomes

    NASA Astrophysics Data System (ADS)

    Nakayasu, Ernesto S.; Ansong, Charles; Brown, Joseph N.; Yang, Feng; Lopez-Ferrer, Daniel; Qian, Wei-Jun; Smith, Richard D.; Adkins, Joshua N.

    2013-08-01

    Ubiquitination is an abundant post-translational modification that consists of covalent attachment of ubiquitin to lysine residues or the N-terminus of proteins. Mono- and polyubiquitination have been shown to be involved in many critical eukaryotic cellular functions and are often disrupted by intracellular bacterial pathogens. Affinity enrichment of ubiquitinated proteins enables global analysis of this key modification. In this context, the use of ubiquitin-binding domains is a promising but relatively unexplored alternative to more broadly used immunoaffinity or tagged affinity enrichment methods. In this study, we evaluated the application of eight ubiquitin-binding domains that have differing affinities for ubiquitination states. Small-scale proteomics analysis identified ~200 ubiquitinated protein candidates per ubiquitin-binding domain pull-down experiment. Results from subsequent Western blot analyses that employed anti-ubiquitin or monoclonal antibodies against polyubiquitination at lysine 48 and 63 suggest that ubiquitin-binding domains from Dsk2 and ubiquilin-1 have the broadest specificity in that they captured most types of ubiquitination, whereas the binding domain from NBR1 was more selective to polyubiquitination. These data demonstrate that with optimized purification conditions, ubiquitin-binding domains can be an alternative tool for proteomic applications. This approach is especially promising for the analysis of tissues or cells resistant to transfection, of which the overexpression of tagged ubiquitin is a major hurdle.

  7. Evaluation of selected binding domains for the analysis of ubiquitinated proteomes

    PubMed Central

    Nakayasu, Ernesto S.; Ansong, Charles; Brown, Joseph N.; Yang, Feng; Lopez-Ferrer, Daniel; Qian, Wei-Jun; Smith, Richard D.; Adkins, Joshua N.

    2013-01-01

    Ubiquitination is an abundant post-translational modification that consists of covalent attachment of ubiquitin to lysine residues or the N-terminus of proteins. Mono and polyubiquitination have been shown to be involved in many critical eukaryotic cellular functions and are often disrupted by intracellular bacterial pathogens. Affinity enrichment of ubiquitinated proteins enables global analysis of this key modification. In this context, the use of ubiquitin-binding domains is a promising, but relatively unexplored alternative to more broadly used immunoaffinity or tagged affinity enrichment methods. In this study, we evaluated the application of eight ubiquitin-binding domains that have differing affinities for ubiquitination states. Small-scale proteomics analysis identified ∼200 ubiquitinated protein candidates per ubiquitin-binding domain pull-down experiment. Results from subsequent Western blot analyses that employed anti-ubiquitin or monoclonal antibodies against polyubiquitination at lysine 48 and 63 suggest that ubiquitin-binding domains from Dsk2 and ubiquilin-1 have the broadest specificity in that they captured most types of ubiquitination, whereas the binding domain from NBR1 was more selective to polyubiquitination. These data demonstrate that with optimized purification conditions, ubiquitin-binding domains can be an alternative tool for proteomic applications. This approach is especially promising for the analysis of tissues or cells resistant to transfection, of which the overexpression of tagged ubiquitin is a major hurdle. PMID:23649778

  8. 53BP1 is a reader of the DNA damage-induced H2A Lys15 ubiquitin mark

    PubMed Central

    Fradet-Turcotte, Amélie; Canny, Marella D.; Escribano-Díaz, Cristina; Orthwein, Alexandre; Leung, Charles C.Y.; Huang, Hao; Landry, Marie-Claude; Kitevski-LeBlanc, Julianne; Noordermeer, Sylvie M.; Sicheri, Frank; Durocher, Daniel

    2014-01-01

    53BP1 (TP53BP1) is a chromatin-associated factor that promotes immunoglobulin class switching and DNA double-strand break (DSB) repair by non-homologous end joining. To accomplish its function in DNA repair, 53BP1 accumulates at DSB sites downstream of the RNF168 ubiquitin ligase. How ubiquitin recruits 53BP1 to break sites remains enigmatic since its relocalization involves recognition of H4 Lys20 (H4K20) methylation by its Tudor domain. Here we elucidate how 53BP1 is recruited to the chromatin that flanks DSB sites. We show that 53BP1 recognizes mono-nucleosomes containing dimethylated H4K20 (H4K20me2) and H2A ubiquitylated on Lys15 (H2AK15ub), the latter being a product of RNF168 action on chromatin. 53BP1 binds to nucleosomes minimally as a dimer using its previously characterized methyl-lysine-binding Tudor domain and a C-terminal extension, termed the ubiquitylation-dependent recruitment (UDR) motif, which interacts with the epitope formed by H2AK15ub and its surrounding residues on the H2A tail. 53BP1 is therefore a bivalent histone modification reader that recognizes a histone “code” produced by DSB signaling. PMID:23760478

  9. A simple and efficient method to visualize and quantify the efficiency of chromosomal mutations from genome editing

    PubMed Central

    Fu, Liezhen; Wen, Luan; Luu, Nga; Shi, Yun-Bo

    2016-01-01

    Genome editing with designer nucleases such as TALEN and CRISPR/Cas enzymes has broad applications. Delivery of these designer nucleases into organisms induces various genetic mutations including deletions, insertions and nucleotide substitutions. Characterizing those mutations is critical for evaluating the efficacy and specificity of targeted genome editing. While a number of methods have been developed to identify the mutations, none other than sequencing allows the identification of the most desired mutations, i.e., out-of-frame insertions/deletions that disrupt genes. Here we report a simple and efficient method to visualize and quantify the efficiency of genomic mutations induced by genome-editing. Our approach is based on the expression of a two-color fusion protein in a vector that allows the insertion of the edited region in the genome in between the two color moieties. We show that our approach not only easily identifies developing animals with desired mutations but also efficiently quantifies the mutation rate in vivo. Furthermore, by using LacZα and GFP as the color moieties, our approach can even eliminate the need for a fluorescent microscope, allowing the analysis with simple bright field visualization. Such an approach will greatly simplify the screen for effective genome-editing enzymes and identify the desired mutant cells/animals. PMID:27748423

  10. A Versatile Strategy for the Semisynthetic Production of Ser65 Phosphorylated Ubiquitin and Its Biochemical and Structural Characterisation

    PubMed Central

    Han, Cong; Pao, Kuan-Chuan; Kazlauskaite, Agne; Muqit, Miratul M K; Virdee, Satpal

    2015-01-01

    Ubiquitin phosphorylation is emerging as an important regulatory layer in the ubiquitin system. This is exemplified by the phosphorylation of ubiquitin on Ser65 by the Parkinson's disease-associated kinase PINK1, which mediates the activation of the E3 ligase Parkin. Additional phosphorylation sites on ubiquitin might also have important cellular roles. Here we report a versatile strategy for preparing phosphorylated ubiquitin. We biochemically and structurally characterise semisynthetic phospho-Ser65-ubiquitin. Unexpectedly, we observed disulfide bond formation between ubiquitin molecules, and hence a novel crystal form. The method outlined provides a direct approach to study the combinatorial effects of phosphorylation on ubiquitin function. Our analysis also suggests that disulfide engineering of ubiquitin could be a useful strategy for obtaining alternative crystal forms of ubiquitin species thereby facilitating structural validation. PMID:26010437

  11. RNA Editing and Its Molecular Mechanism in Plant Organelles

    PubMed Central

    Ichinose, Mizuho; Sugita, Mamoru

    2016-01-01

    RNA editing by cytidine (C) to uridine (U) conversions is widespread in plant mitochondria and chloroplasts. In some plant taxa, “reverse” U-to-C editing also occurs. However, to date, no instance of RNA editing has yet been reported in green algae and the complex thalloid liverworts. RNA editing may have evolved in early land plants 450 million years ago. However, in some plant species, including the liverwort, Marchantia polymorpha, editing may have been lost during evolution. Most RNA editing events can restore the evolutionarily conserved amino acid residues in mRNAs or create translation start and stop codons. Therefore, RNA editing is an essential process to maintain genetic information at the RNA level. Individual RNA editing sites are recognized by plant-specific pentatricopeptide repeat (PPR) proteins that are encoded in the nuclear genome. These PPR proteins are characterized by repeat elements that bind specifically to RNA sequences upstream of target editing sites. In flowering plants, non-PPR proteins also participate in multiple RNA editing events as auxiliary factors. C-to-U editing can be explained by cytidine deamination. The proteins discovered to date are important factors for RNA editing but a bona fide RNA editing enzyme has yet to be identified. PMID:28025543

  12. The Ubiquitin-Conjugating Enzyme Gene Family in Longan (Dimocarpus longan Lour.): Genome-Wide Identification and Gene Expression during Flower Induction and Abiotic Stress Responses.

    PubMed

    Jue, Dengwei; Sang, Xuelian; Liu, Liqin; Shu, Bo; Wang, Yicheng; Xie, Jianghui; Liu, Chengming; Shi, Shengyou

    2018-03-15

    Ubiquitin-conjugating enzymes (E2s or UBC enzymes) play vital roles in plant development and combat various biotic and abiotic stresses. Longan ( Dimocarpus longan Lour.) is an important fruit tree in the subtropical region of Southeast Asia and Australia; however the characteristics of the UBC gene family in longan remain unknown. In this study, 40 D. longan UBC genes ( DlUBCs ), which were classified into 15 groups, were identified in the longan genome. An RNA-seq based analysis showed that DlUBCs showed distinct expression in nine longan tissues. Genome-wide RNA-seq and qRT-PCR based gene expression analysis revealed that 11 DlUBCs were up- or down-regualted in the cultivar "Sijimi" (SJ), suggesting that these genes may be important for flower induction. Finally, qRT-PCR analysis showed that the mRNA levels of 13 DlUBCs under SA (salicylic acid) treatment, seven under methyl jasmonate (MeJA) treatment, 27 under heat treatment, and 16 under cold treatment were up- or down-regulated, respectively. These results indicated that the DlUBCs may play important roles in responses to abiotic stresses. Taken together, our results provide a comprehensive insight into the organization, phylogeny, and expression patterns of the longan UBC genes, and therefore contribute to the greater understanding of their biological roles in longan.

  13. Mechanisms of Ubiquitin-Nucleosome Recognition and Regulation of 53BP1 Chromatin Recruitment by RNF168/169 and RAD18

    PubMed Central

    Hu, Qi; Botuyan, Maria Victoria; Cui, Gaofeng; Zhao, Debiao

    2017-01-01

    Summary The protein 53BP1 plays a central regulatory role in DNA double-strand break repair. 53BP1 relocates to chromatin by recognizing RNF168-mediated mono-ubiquitylation of histone H2A Lys15 in the nucleosome core particle dimethylated at histone H4 Lys20 (NCP-ubme). 53BP1 relocation is terminated by ubiquitin ligases RNF169 and RAD18 via unknown mechanisms. Using NMR spectroscopy and biochemistry, we show that RNF169 bridges ubiquitin and histone surfaces, stabilizing a pre-existing ubiquitin orientation in NCP-ubme to form a high-affinity complex. This conformational selection mechanism contrasts with the low-affinity binding mode of 53BP1 and ensures 53BP1 displacement by RNF169 from NCP-ubme. We also show that RAD18 binds tightly to NCP-ubme through a ubiquitin-binding domain that contacts ubiquitin and nucleosome surfaces accessed by 53BP1. Our work uncovers diverse ubiquitin recognition mechanisms in the nucleosome, explaining how RNF168, RNF169 and RAD18 regulate 53BP1 chromatin recruitment and how specificity can be achieved in the recognition of a ubiquitin-modified substrate. PMID:28506460

  14. Ring finger protein 145 (RNF145) is a ubiquitin ligase for sterol-induced degradation of HMG-CoA reductase.

    PubMed

    Jiang, Lu-Yi; Jiang, Wei; Tian, Na; Xiong, Yan-Ni; Liu, Jie; Wei, Jian; Wu, Kai-Yue; Luo, Jie; Shi, Xiong-Jie; Song, Bao-Liang

    2018-03-16

    Cholesterol biosynthesis is tightly regulated in the cell. For example, high sterol concentrations can stimulate degradation of the rate-limiting cholesterol biosynthetic enzyme 3-hydroxy-3-methylglutaryl-coenzyme A reductase (HMG-CoA reductase, HMGCR). HMGCR is broken down by the endoplasmic reticulum membrane-associated protein complexes consisting of insulin-induced genes (Insigs) and the E3 ubiquitin ligase gp78. Here we found that HMGCR degradation is partially blunted in Chinese hamster ovary (CHO) cells lacking gp78 ( gp78 -KO). To identify other ubiquitin ligase(s) that may function together with gp78 in triggering HMGCR degradation, we performed a small-scale short hairpin RNA-based screening targeting endoplasmic reticulum-localized E3s. We found that knockdown of both ring finger protein 145 ( Rnf145 ) and gp78 genes abrogates sterol-induced degradation of HMGCR in CHO cells. We also observed that RNF145 interacts with Insig-1 and -2 proteins and ubiquitinates HMGCR. Moreover, the tetrapeptide sequence YLYF in the sterol-sensing domain and the Cys-537 residue in the RING finger domain were essential for RNF145 binding to Insigs and RNF145 E3 activity, respectively. Of note, amino acid substitutions in the YLYF or of Cys-537 completely abolished RNF145-mediated HMGCR degradation. In summary, our study reveals that RNF145, along with gp78, promotes HMGCR degradation in response to elevated sterol levels and identifies residues essential for RNF145 function. © 2018 by The American Society for Biochemistry and Molecular Biology, Inc.

  15. Ubiquitin Linkage-Specific Affimers Reveal Insights into K6-Linked Ubiquitin Signaling.

    PubMed

    Michel, Martin A; Swatek, Kirby N; Hospenthal, Manuela K; Komander, David

    2017-10-05

    Several ubiquitin chain types have remained unstudied, mainly because tools and techniques to detect these posttranslational modifications are scarce. Linkage-specific antibodies have shaped our understanding of the roles and dynamics of polyubiquitin signals but are available for only five out of eight linkage types. We here characterize K6- and K33-linkage-specific "affimer" reagents as high-affinity ubiquitin interactors. Crystal structures of affimers bound to their cognate chain types reveal mechanisms of specificity and a K11 cross-reactivity in the K33 affimer. Structure-guided improvements yield superior affinity reagents suitable for western blotting, confocal fluorescence microscopy and pull-down applications. This allowed us to identify RNF144A and RNF144B as E3 ligases that assemble K6-, K11-, and K48-linked polyubiquitin in vitro. A protocol to enrich K6-ubiquitinated proteins from cells identifies HUWE1 as a main E3 ligase for this chain type, and we show that mitofusin-2 is modified with K6-linked polyubiquitin in a HUWE1-dependent manner. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  16. Direct observation of a single nanoparticle-ubiquitin corona formation

    NASA Astrophysics Data System (ADS)

    Ding, Feng; Radic, Slaven; Chen, Ran; Chen, Pengyu; Geitner, Nicholas K.; Brown, Jared M.; Ke, Pu Chun

    2013-09-01

    The advancement of nanomedicine and the increasing applications of nanoparticles in consumer products have led to administered biological exposure and unintentional environmental accumulation of nanoparticles, causing concerns over the biocompatibility and sustainability of nanotechnology. Upon entering physiological environments, nanoparticles readily assume the form of a nanoparticle-protein corona that dictates their biological identity. Consequently, understanding the structure and dynamics of a nanoparticle-protein corona is essential for predicting the fate, transport, and toxicity of nanomaterials in living systems and for enabling the vast applications of nanomedicine. Here we combined multiscale molecular dynamics simulations and complementary experiments to characterize the silver nanoparticle-ubiquitin corona formation. Notably, ubiquitins competed with citrates for the nanoparticle surface, governed by specific electrostatic interactions. Under a high protein/nanoparticle stoichiometry, ubiquitins formed a multi-layer corona on the particle surface. The binding exhibited an unusual stretched-exponential behavior, suggesting a rich binding kinetics. Furthermore, the binding destabilized the α-helices while increasing the β-sheet content of the proteins. This study revealed the atomic and molecular details of the structural and dynamic characteristics of nanoparticle-protein corona formation.The advancement of nanomedicine and the increasing applications of nanoparticles in consumer products have led to administered biological exposure and unintentional environmental accumulation of nanoparticles, causing concerns over the biocompatibility and sustainability of nanotechnology. Upon entering physiological environments, nanoparticles readily assume the form of a nanoparticle-protein corona that dictates their biological identity. Consequently, understanding the structure and dynamics of a nanoparticle-protein corona is essential for predicting the fate

  17. Puromycin induces SUMO and ubiquitin redistribution upon proteasome inhibition.

    PubMed

    Matsumoto, Hotaru; Saitoh, Hisato

    2016-07-29

    We have previously reported the co-localization of O-propargyl-puromycin (OP-Puro) with SUMO-2/3 and ubiquitin at promyelocytic leukemia-nuclear bodies (PML-NBs) in the presence of the proteasome inhibitor MG132, implying a role for the ubiquitin family in sequestering OP-puromycylated immature polypeptides to the nucleus during impaired proteasome activity. Here, we found that as expected puromycin induced SUMO-1/2/3 accumulation with ubiquitin at multiple nuclear foci in HeLa cells when co-exposed to MG132. Co-administration of puromycin and MG132 also facilitated redistribution of PML and the SUMO-targeted ubiquitin ligase RNF4 concurrently with SUMO-2/3. As removal of the drugs from the medium led to disappearance of the SUMO-2/3-ubiquitin nuclear foci, our findings indicated that nuclear assembly/disassembly of SUMO-2/3 and ubiquitin was pharmacologically manipulable, supporting our previous observation on OP-Puro, which predicted the ubiquitin family function in sequestrating aberrant proteins to the nucleus. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Identification and characterization of a novel ISG15-ubiquitin mixed chain and its role in regulating protein homeostasis

    PubMed Central

    Fan, Jun-Bao; Arimoto, Kei-lchiro; Motamedchaboki, Khatereh; Yan, Ming; Wolf, Dieter A.; Zhang, Dong-Er

    2015-01-01

    As a ubiquitin-like modifier, ISG15 is conjugated to many cellular proteins in a process termed protein ISGylation. However, the crosstalk between protein ISGylation and the ubiquitin proteasome system is not fully understood. Here, we report that cellular ubiquitin is a substrate of ISG15 and Lys 29 on ubiquitin is the major ISG15 acceptor site. Using a model substrate, we demonstrate that ISG15 can modify ubiquitin, which is immobilized on its substrate, to form ISG15-ubiquitin mixed chains. Furthermore, our results indicate that ISG15-ubiquitin mixed chains do not serve as degradation signals for a ubiquitin fusion degradation substrate. Accordingly, an ISG15-ubiquitin fusion protein, which mimics an ISG15-ubiquitin mixed chain, negatively regulates cellular turnover of ubiquitylated proteins. In addition, ISG15-ubiquitin mixed chains, which are detectable on endogenously ubiquitylated proteins, dampen cellular turnover of these proteins. Thus, our studies unveil an unanticipated interplay between two protein modification systems and highlight its role in coordinating protein homeostasis. PMID:26226047

  19. Ubiquitin Utilizes an Acidic Surface Patch to Alter Chromatin Structure

    PubMed Central

    Debelouchina, Galia T.; Gerecht, Karola; Muir, Tom W.

    2016-01-01

    Ubiquitylation of histone H2B, associated with gene activation, leads to chromatin decompaction through an unknown mechanism. We used a hydrogen-deuterium exchange strategy coupled with nuclear magnetic resonance spectroscopy to map the ubiquitin surface responsible for its structural effects on chromatin. Our studies revealed that a previously uncharacterized acidic patch on ubiquitin comprising residues Glu16 and Glu18 is essential for decompaction. These residues mediate promiscuous electrostatic interactions with the basic histone proteins, potentially positioning the ubiquitin moiety as a dynamic “wedge” that prevents the intimate association of neighboring nucleosomes. Using two independent cross-linking strategies and an oligomerization assay, we also showed that ubiquitin-ubiquitin contacts occur in the chromatin environment and are important for the solubilization of the chromatin polymers. Our work highlights a novel, chromatin-related aspect of the “ubiquitin code”, and sheds light on how the information rich ubiquitin modification can orchestrate different biochemical outcomes using different surface features. PMID:27870837

  20. Human Papillomavirus Type 16 E6 Induces Self-Ubiquitination of the E6AP Ubiquitin-Protein Ligase

    PubMed Central

    Kao, Wynn H.; Beaudenon, Sylvie L.; Talis, Andrea L.; Huibregtse, Jon M.; Howley, Peter M.

    2000-01-01

    The E6 protein of the high-risk human papillomaviruses (HPVs) and the cellular ubiquitin-protein ligase E6AP form a complex which causes the ubiquitination and degradation of p53. We show here that HPV16 E6 promotes the ubiquitination and degradation of E6AP itself. The half-life of E6AP is shorter in HPV-positive cervical cancer cells than in HPV-negative cervical cancer cells, and E6AP is stabilized in HPV-positive cancer cells when expression of the viral oncoproteins is repressed. Expression of HPV16 E6 in cells results in a threefold decrease in the half-life of transfected E6AP. E6-mediated degradation of E6AP requires (i) the binding of E6 to E6AP, (ii) the catalytic activity of E6AP, and (iii) activity of the 26S proteasome, suggesting that E6-E6AP interaction results in E6AP self-ubiquitination and degradation. In addition, both in vitro and in vivo experiments indicate that E6AP self-ubiquitination results primarily from an intramolecular transfer of ubiquitin from the active-site cysteine to one or more lysine residues; however, intermolecular transfer can also occur in the context of an E6-mediated E6AP multimer. Finally, we demonstrate that an E6 mutant that is able to immortalize human mammary epithelial cells but is unable to degrade p53 retains its ability to bind and degrade E6AP, raising the possibility that E6-mediated degradation of E6AP contributes to its ability to transform mammalian cells. PMID:10864652

  1. The elusive structural role of ubiquitinated histones.

    PubMed

    Moore, Susan C; Jason, Laure; Ausió, Juan

    2002-01-01

    It is increasingly apparent that histone posttranslational modifications are important in chromatin structure and dynamics. However, histone ubiquitination has received little attention. Histones H1, H3, H2A, and H2B can be ubiquitinated in vivo, but the most prevalent are uH2A and uH2B. The size of this modification suggests some sort of structural impact. Physiological observations suggest that ubiquitinated histones may have multiple functions and structural effects. Ubiquitinated histones have been correlated with transcriptionally active DNA, implying that it may prevent chromatin folding or help maintain an open conformation. Also, in some organisms during spermiogenesis, a process involving extensive chromatin remodeling, uH2A levels increase just prior to histone replacement by protamines. Determination of chromatin's structural changes resulting from histone ubiquitination is therefore important. Recent work using reconstituted nucleosomes and chromatin fibers containing uH2A indicate that in the absence of linker histones, ubiquitination has little structural impact. DNase I digests and analytical ultracentrifugation of reconstituted ubiquitinated nucleosomes show no structural differences. Solubility assays using reconstituted chromatin fibers in the presence of divalent ions demonstrate that uH2A fibers are slightly more prone to aggregation than controls, and analytical ultracentrifugation results with different MgCl2 and NaCl concentrations determined that chromatin folding is not affected by this modification. Additional work to assess possible synergistic affects with histone acetylation also precludes any structural implications. Protamine displacement experiments concluded that the presence of uH2A does not significantly affect the ability of the protamines to displace histones. In addition, uH2A does not interfere with histone H1 binding to the nucleosome. While work with uH2B remains insufficient to come to any definitive conclusions about its

  2. RNA editing: trypanosomes rewrite the genetic code.

    PubMed

    Stuart, K

    1998-01-01

    The understanding of how genetic information is stored and expressed has advanced considerably since the "central dogma" asserted that genetic information flows from the nucleotide sequence of DNA to that of messenger RNA (mRNA) which in turn specifies the amino acid sequence of a protein. It was found that genetic information can be stored as RNA (e.g. in RNA viruses) and can flow from RNA to DNA by reverse transcriptase enzyme activity. In addition, some genes contain introns, nucleotide sequences that are removed from their RNA (by RNA splicing) and thus are not represented in the resultant protein. Furthermore, alternative splicing was found to produce variant proteins from a single gene. More recently, the study of trypanosome parasites revealed an unexpected and indeed counter-intuitive genetic complexity. Genetic information for a single protein can be dispersed among several (DNA) genes in these organisms. One of these genes specifies an encrypted precursor mRNA that is converted to a functional mRNA by a process called RNA editing that inserts and deletes uridylate nucleotides. The sequence of the edited mRNA is specified by multiple small RNAs, named guide RNAs, (gRNAs) each of which is encoded in a separate gene. Thus, edited mRNA sequences are assembled from multiple genes by the transfer of information from one type of RNA to another. The existence of editing was surprising but has stimulated the discovery of other types of RNA editing. The Stuart laboratory has been exploring RNA editing in trypanosomes from the time of its discovery. They found dramatic differences between the mitochondrial gene sequences and those of the corresponding mRNAs, which indicated editing by the insertion and deletion of uridylates. Some editing was modest; simply eliminating shifts in sequence register of minimally extending the protein coding sequence. However, editing of many mRNAs was startingly extensive. The RNA sequence was essentially entirely remodeled with its

  3. Identification of HECT E3 ubiquitin ligase family genes involved in stem cell regulation and regeneration in planarians.

    PubMed

    Henderson, Jordana M; Nisperos, Sean V; Weeks, Joi; Ghulam, Mahjoobah; Marín, Ignacio; Zayas, Ricardo M

    2015-08-15

    E3 ubiquitin ligases constitute a large family of enzymes that modify specific proteins by covalently attaching ubiquitin polypeptides. This post-translational modification can serve to regulate protein function or longevity. In spite of their importance in cell physiology, the biological roles of most ubiquitin ligases remain poorly understood. Here, we analyzed the function of the HECT domain family of E3 ubiquitin ligases in stem cell biology and tissue regeneration in planarians. Using bioinformatic searches, we identified 17 HECT E3 genes that are expressed in the Schmidtea mediterranea genome. Whole-mount in situ hybridization experiments showed that HECT genes were expressed in diverse tissues and most were expressed in the stem cell population (neoblasts) or in their progeny. To investigate the function of all HECT E3 ligases, we inhibited their expression using RNA interference (RNAi) and determined that orthologs of huwe1, wwp1, and trip12 had roles in tissue regeneration. We show that huwe1 RNAi knockdown led to a significant expansion of the neoblast population and death by lysis. Further, our experiments showed that wwp1 was necessary for both neoblast and intestinal tissue homeostasis as well as uncovered an unexpected role of trip12 in posterior tissue specification. Taken together, our data provide insights into the roles of HECT E3 ligases in tissue regeneration and demonstrate that planarians will be a useful model to evaluate the functions of E3 ubiquitin ligases in stem cell regulation. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. Ubiquitin-like domains can target to the proteasome but proteolysis requires a disordered region.

    PubMed

    Yu, Houqing; Kago, Grace; Yellman, Christopher M; Matouschek, Andreas

    2016-07-15

    Ubiquitin and some of its homologues target proteins to the proteasome for degradation. Other ubiquitin-like domains are involved in cellular processes unrelated to the proteasome, and proteins containing these domains remain stable in the cell. We find that the 10 yeast ubiquitin-like domains tested bind to the proteasome, and that all 11 identified domains can target proteins for degradation. Their apparent proteasome affinities are not directly related to their stabilities or functions. That is, ubiquitin-like domains in proteins not part of the ubiquitin proteasome system may bind the proteasome more tightly than domains in proteins that are bona fide components. We propose that proteins with ubiquitin-like domains have properties other than proteasome binding that confer stability. We show that one of these properties is the absence of accessible disordered regions that allow the proteasome to initiate degradation. In support of this model, we find that Mdy2 is degraded in yeast when a disordered region in the protein becomes exposed and that the attachment of a disordered region to Ubp6 leads to its degradation. © 2016 The Authors.

  5. Identification of candidate substrates of ubiquitin-specific protease 13 using 2D-DIGE

    PubMed Central

    Wang, Jianmin; Liu, Yingli; Tang, Lijuan; Qi, Sufen; Mi, Yingjun; Liu, Dianwu; Tian, Qingbao

    2017-01-01

    The present study aimed to identify candidate substrates of ubiquitin-specific protease (USP)13 using two-dimensional fluorescence difference gel electrophoresis (2D-DIGE). USP13 is a well-characterized member of the USP family, which regulates diverse cellular functions by cleaving ubiquitin from ubiquitinated protein substrates. However, existing studies indicate that USP13 has no detectable hydrolytic activity in vitro. This finding implies that USP13 likely has different substrate specificity. In this study, a USP cleavage assay was performed using two different types of model substrates (glutathione S-transferase-Ub52 and ubiquitin-β-galactosidase) to detect the deubiquitinating enzyme (DUB) activity of USP13. In addition, a proteomic approach was taken by using 2D-DIGE to detect cellular proteins whose expressoin is significantly altered in 293T cell lines following the overexpression of USP13 or its C345S mutant (the catalytically inactive form). The data indicated that USP13 still has no detectable DUB activity in vitro nor does C345S. The results of 2D-DIGE demonstrated that the expression of several proteins increased or decreased significantly in 293T cells following the overexpression of USP13. Mass spec troscopy analysis of gel spots identified 7 proteins, including 4 proteins with an increased expression, namely vinculin, thimet oligopeptidase, cleavage and polyadenylation specific factor 3, and methylosome protein 50, and 3 proteins with a decreased expression, namely adenylosuccinate synthetase, annexin and phosphoglycerate mutase. In addition, in the samples of 293T cell lines after the overexpression of USP13 and USP13 C345S, vinculin exhibited an increased expression, suggesting that it may be a candidate substrate of USP13. However, sufficient follow-up validation studies are required in order to determine whether vinculin protein directly interacts with USP13. PMID:28498477

  6. In Vivo Regulation of NGF-Mediated Functions by Nedd4-2 Ubiquitination of TrkA

    PubMed Central

    Yu, Tao; Calvo, Laura; Anta, Begoña; López-Benito, Saray; López-Bellido, Roger; Vicente-García, Cristina; Tessarollo, Lino; Rodriguez, Raquel E.

    2014-01-01

    Trk neurotrophin receptor ubiquitination in response to ligand activation regulates signaling, trafficking, and degradation of the receptors. However, the in vivo consequences of Trk ubiquitination remain to be addressed. We have developed a mouse model with a mutation in the TrkA neurotrophin receptor (P782S) that results in reduced ubiquitination due to a lack of binding to the E3 ubiquitin ligase, Nedd4-2. In vivo analyses of TrkAP782S indicate that defective ubiquitination of the TrkA mutant results in an altered trafficking and degradation of the receptor that affects the survival of sensory neurons. The dorsal root ganglia from the TrkAP782S knock-in mice display an increased number of neurons expressing CGRP and substance P. Moreover, the mutant mice show enhanced sensitivity to thermal and inflammatory pain. Our results indicate that the ubiquitination of the TrkA neurotrophin receptor plays a critical role in NGF-mediated functions, such as neuronal survival and sensitivity to pain. PMID:24760869

  7. The Mediator subunit MED23 couples H2B mono-ubiquitination to transcriptional control and cell fate determination.

    PubMed

    Yao, Xiao; Tang, Zhanyun; Fu, Xing; Yin, Jingwen; Liang, Yan; Li, Chonghui; Li, Huayun; Tian, Qing; Roeder, Robert G; Wang, Gang

    2015-12-02

    The Mediator complex orchestrates multiple transcription factors with the Pol II apparatus for precise transcriptional control. However, its interplay with the surrounding chromatin remains poorly understood. Here, we analyze differential histone modifications between WT and MED23(-/-) (KO) cells and identify H2B mono-ubiquitination at lysine 120 (H2Bub) as a MED23-dependent histone modification. Using tandem affinity purification and mass spectrometry, we find that MED23 associates with the RNF20/40 complex, the enzyme for H2Bub, and show that this association is critical for the recruitment of RNF20/40 to chromatin. In a cell-free system, Mediator directly and substantially increases H2Bub on recombinant chromatin through its cooperation with RNF20/40 and the PAF complex. Integrative genome-wide analyses show that MED23 depletion specifically reduces H2Bub on a subset of MED23-controlled genes. Importantly, MED23-coupled H2Bub levels are oppositely regulated during myogenesis and lung carcinogenesis. In sum, these results establish a mechanistic link between the Mediator complex and a critical chromatin modification in coordinating transcription with cell growth and differentiation. © 2015 The Authors.

  8. Ubiquitin-dependent Regulation of Phospho-AKT Dynamics by the Ubiquitin E3 Ligase, NEDD4-1, in the Insulin-like Growth Factor-1 Response*

    PubMed Central

    Fan, Chuan-Dong; Lum, Michelle A.; Xu, Chao; Black, Jennifer D.; Wang, Xinjiang

    2013-01-01

    AKT is a critical effector kinase downstream of the PI3K pathway that regulates a plethora of cellular processes including cell growth, death, differentiation, and migration. Mechanisms underlying activated phospho-AKT (pAKT) translocation to its action sites remain unclear. Here we show that NEDD4-1 is a novel E3 ligase that specifically regulates ubiquitin-dependent trafficking of pAKT in insulin-like growth factor (IGF)-1 signaling. NEDD4-1 physically interacts with AKT and promotes HECT domain-dependent ubiquitination of exogenous and endogenous AKT. NEDD4-1 catalyzes K63-type polyubiquitin chain formation on AKT in vitro. Plasma membrane binding is the key step for AKT ubiquitination by NEDD4-1 in vivo. Ubiquitinated pAKT translocates to perinuclear regions, where it is released into the cytoplasm, imported into the nucleus, or coupled with proteasomal degradation. IGF-1 signaling specifically stimulates NEDD4-1-mediated ubiquitination of pAKT, without altering total AKT ubiquitination. A cancer-derived plasma membrane-philic mutant AKT(E17K) is more effectively ubiquitinated by NEDD4-1 and more efficiently trafficked into the nucleus compared with wild type AKT. This study reveals a novel mechanism by which a specific E3 ligase is required for ubiquitin-dependent control of pAKT dynamics in a ligand-specific manner. PMID:23195959

  9. Phosphorylation and activation of ubiquitin-specific protease-14 by Akt regulates the ubiquitin-proteasome system

    PubMed Central

    Xu, Daichao; Shan, Bing; Lee, Byung-Hoon; Zhu, Kezhou; Zhang, Tao; Sun, Huawang; Liu, Min; Shi, Linyu; Liang, Wei; Qian, Lihui; Xiao, Juan; Wang, Lili; Pan, Lifeng; Finley, Daniel; Yuan, Junying

    2015-01-01

    Regulation of ubiquitin-proteasome system (UPS), which controls the turnover of short-lived proteins in eukaryotic cells, is critical in maintaining cellular proteostasis. Here we show that USP14, a major deubiquitinating enzyme that regulates the UPS, is a substrate of Akt, a serine/threonine-specific protein kinase critical in mediating intracellular signaling transducer for growth factors. We report that Akt-mediated phosphorylation of USP14 at Ser432, which normally blocks its catalytic site in the inactive conformation, activates its deubiquitinating activity in vitro and in cells. We also demonstrate that phosphorylation of USP14 is critical for Akt to regulate proteasome activity and consequently global protein degradation. Since Akt can be activated by a wide range of growth factors and is under negative control by phosphoinosotide phosphatase PTEN, we suggest that regulation of UPS by Akt-mediated phosphorylation of USP14 may provide a common mechanism for growth factors to control global proteostasis and for promoting tumorigenesis in PTEN-negative cancer cells. DOI: http://dx.doi.org/10.7554/eLife.10510.001 PMID:26523394

  10. Structure, inhibition, and regulation of essential lipid A enzymes.

    PubMed

    Zhou, Pei; Zhao, Jinshi

    2017-11-01

    The Raetz pathway of lipid A biosynthesis plays a vital role in the survival and fitness of Gram-negative bacteria. Research efforts in the past three decades have identified individual enzymes of the pathway and have provided a mechanistic understanding of the action and regulation of these enzymes at the molecular level. This article reviews the discovery, biochemical and structural characterization, and regulation of the essential lipid A enzymes, as well as continued efforts to develop novel antibiotics against Gram-negative pathogens by targeting lipid A biosynthesis. This article is part of a Special Issue entitled: Bacterial Lipids edited by Russell E. Bishop. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Mechanisms of Ubiquitin-Nucleosome Recognition and Regulation of 53BP1 Chromatin Recruitment by RNF168/169 and RAD18.

    PubMed

    Hu, Qi; Botuyan, Maria Victoria; Cui, Gaofeng; Zhao, Debiao; Mer, Georges

    2017-05-18

    The protein 53BP1 plays a central regulatory role in DNA double-strand break repair. 53BP1 relocates to chromatin by recognizing RNF168-mediated mono-ubiquitylation of histone H2A Lys15 in the nucleosome core particle dimethylated at histone H4 Lys20 (NCP-ubme). 53BP1 relocation is terminated by ubiquitin ligases RNF169 and RAD18 via unknown mechanisms. Using nuclear magnetic resonance (NMR) spectroscopy and biochemistry, we show that RNF169 bridges ubiquitin and histone surfaces, stabilizing a pre-existing ubiquitin orientation in NCP-ubme to form a high-affinity complex. This conformational selection mechanism contrasts with the low-affinity binding mode of 53BP1, and it ensures 53BP1 displacement by RNF169 from NCP-ubme. We also show that RAD18 binds tightly to NCP-ubme through a ubiquitin-binding domain that contacts ubiquitin and nucleosome surfaces accessed by 53BP1. Our work uncovers diverse ubiquitin recognition mechanisms in the nucleosome, explaining how RNF168, RNF169, and RAD18 regulate 53BP1 chromatin recruitment and how specificity can be achieved in the recognition of a ubiquitin-modified substrate. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Inhibition of Ubiquitin-specific Peptidase 8 Suppresses Adrenocorticotropic Hormone Production and Tumorous Corticotroph Cell Growth in AtT20 Cells

    PubMed Central

    Jian, Fang-Fang; Li, Yun-Feng; Chen, Yu-Fan; Jiang, Hong; Chen, Xiao; Zheng, Li-Li; Zhao, Yao; Wang, Wei-Qing; Ning, Guang; Bian, Liu-Guan; Sun, Qing-Fang

    2016-01-01

    Background: Two recent whole-exome sequencing researches identifying somatic mutations in the ubiquitin-specific protease 8 (USP8) gene in pituitary corticotroph adenomas provide exciting advances in this field. These mutations drive increased epidermal growth factor receptor (EGFR) signaling and promote adrenocorticotropic hormone (ACTH) production. This study was to investigate whether the inhibition of USP8 activity could be a strategy for the treatment of Cushing's disease (CD). Methods: The anticancer effect of USP8 inhibitor was determined by testing cell viability, colony formation, apoptosis, and ACTH secretion. The immunoblotting and quantitative reverse transcription polymerase chain reaction were conducted to explore the signaling pathway by USP8 inhibition. Results: Inhibition of USP8-induced degradation of receptor tyrosine kinases including EGFR, EGFR-2 (ERBB2), and Met leading to a suppression of AtT20 cell growth and ACTH secretion. Moreover, treatment with USP8 inhibitor markedly induced AtT20 cells apoptosis. Conclusions: Inhibition of USP8 activity could be an effective strategy for CD. It might provide a novel pharmacological approach for the treatment of CD. PMID:27569239

  13. Ubiquitin and Proteasomes in Transcription

    PubMed Central

    Geng, Fuqiang; Wenzel, Sabine; Tansey, William P.

    2013-01-01

    Regulation of gene transcription is vitally important for the maintenance of normal cellular homeostasis. Failure to correctly regulate gene expression, or to deal with problems that arise during the transcription process, can lead to cellular catastrophe and disease. One of the ways cells cope with the challenges of transcription is by making extensive use of the proteolytic and nonproteolytic activities of the ubiquitin-proteasome system (UPS). Here, we review recent evidence showing deep mechanistic connections between the transcription and ubiquitin-proteasome systems. Our goal is to leave the reader with a sense that just about every step in transcription—from transcription initiation through to export of mRNA from the nucleus—is influenced by the UPS and that all major arms of the system—from the first step in ubiquitin (Ub) conjugation through to the proteasome—are recruited into transcriptional processes to provide regulation, directionality, and deconstructive power. PMID:22404630

  14. Liver Cytochrome P450 3A Ubiquitination in Vivo by gp78/Autocrine Motility Factor Receptor and C Terminus of Hsp70-interacting Protein (CHIP) E3 Ubiquitin Ligases

    PubMed Central

    Kim, Sung-Mi; Acharya, Poulomi; Engel, Juan C.; Correia, Maria Almira

    2010-01-01

    CYP3A4 is a dominant human liver cytochrome P450 enzyme engaged in the metabolism and disposition of >50% of clinically relevant drugs and held responsible for many adverse drug-drug interactions. CYP3A4 and its mammalian liver CYP3A orthologs are endoplasmic reticulum (ER)-anchored monotopic proteins that undergo ubiquitin (Ub)-dependent proteasomal degradation (UPD) in an ER-associated degradation (ERAD) process. These integral ER proteins are ubiquitinated in vivo, and in vitro studies have identified the ER-integral gp78 and the cytosolic co-chaperone, CHIP (C terminus of Hsp70-interacting protein), as the relevant E3 Ub-ligases, along with their cognate E2 Ub-conjugating enzymes UBC7 and UbcH5a, respectively. Using lentiviral shRNA templates targeted against each of these Ub-ligases, we now document that both E3s are indeed physiologically involved in CYP3A ERAD/UPD in cultured rat hepatocytes. Accordingly, specific RNAi resulted in ≈80% knockdown of each hepatic Ub-ligase, with a corresponding ≈2.5-fold CYP3A stabilization. Surprisingly, however, such stabilization resulted in increased levels of functionally active CYP3A, thereby challenging the previous notion that E3 recognition and subsequent ERAD of CYP3A proteins required ab initio their structural and/or functional inactivation. Furthermore, coexpression in HepG2 cells of both CYP3A4 and gp78, but not its functionally inactive RING-finger mutant, resulted in enhanced CYP3A4 loss greater than that in corresponding cells expressing only CYP3A4. Stabilization of a functionally active CYP3A after RNAi knockdown of either of the E3s, coupled with the increased CYP3A4 loss on gp78 or CHIP coexpression, suggests that ERAD-associated E3 Ub-ligases can influence clinically relevant drug metabolism by effectively regulating the physiological CYP3A content and consequently its function. PMID:20819951

  15. Dynamic hyper-editing underlies temperature adaptation in Drosophila

    PubMed Central

    Ashwal-Fluss, Reut; Pandey, Varun; Levanon, Erez Y.; Kadener, Sebastian

    2017-01-01

    In Drosophila, A-to-I editing is prevalent in the brain, and mutations in the editing enzyme ADAR correlate with specific behavioral defects. Here we demonstrate a role for ADAR in behavioral temperature adaptation in Drosophila. Although there is a higher level of editing at lower temperatures, at 29°C more sites are edited. These sites are less evolutionarily conserved, more disperse, less likely to be involved in secondary structures, and more likely to be located in exons. Interestingly, hypomorph mutants for ADAR display a weaker transcriptional response to temperature changes than wild-type flies and a highly abnormal behavioral response upon temperature increase. In sum, our data shows that ADAR is essential for proper temperature adaptation, a key behavior trait that is essential for survival of flies in the wild. Moreover, our results suggest a more general role of ADAR in regulating RNA secondary structures in vivo. PMID:28746393

  16. [Advances in genome editing technologies for treating muscular dystrophy.

    PubMed

    Makita, Yukimasa; Hozumi, Hiroyuki; Hotta, Akitsu

    Recent advances in genome editing technologies have opened the possibility for treating genetic diseases, such as Duchenne muscular dystrophy(DMD), by correcting the causing gene mutations in dystrophin gene. In fact, there are several reports that demonstrated the restoration of the mutated dystrophin gene in DMD patient-derived iPS cell or functional recovery of forelimb grip strength in DMD model mice. For future clinical applications, there are several aspects that need to be taken into consideration:efficient delivery of the genome editing components, risk of off-target mutagenesis and immunogenicity against genome editing enzyme. In this review, we summarize the current status and future prospective of the research in applying genome editing technologies to DMD.

  17. Cdk5 regulates PSD-95 ubiquitination in neurons

    PubMed Central

    Bianchetta, Michael J.; Lam, TuKiet T.; Jones, Stephen N.; Morabito, Maria A.

    2011-01-01

    The kinase Cdk5 and its activator p35 have been implicated in drug addiction, neurodegenerative diseases such as Alzheimer’s, learning and memory, and synapse maturation and plasticity. However the molecular mechanisms by which Cdk5 regulates synaptic plasticity are still unclear. PSD-95 is a major postsynaptic scaffolding protein of glutamatergic synapses that regulates synaptic strength and plasticity. PSD-95 is ubiquitinated by the Ubiquitin E3 Ligase Mdm2, and rapid and transient PSD-95 ubiquitination has been implicated in NMDA receptor-induced AMPA receptor endocytosis. Here we demonstrate that genetic or pharmacological reduction of Cdk5 activity increases the interaction of Mdm2 with PSD-95 and enhances PSD-95 ubiquitination without affecting PSD-95 protein levels in vivo in mice, suggesting a non-proteolytic function of ubiquitinated PSD-95 at synapses. We show that PSD-95 ubiquitination correlates with increased interaction with β-adaptin, a subunit of the clathrin adaptor protein complex AP-2. This interaction is increased by genetic reduction of Cdk5 activity or NMDA receptor stimulation and is dependent on Mdm2. Together these results support a function for Cdk5 in regulating PSD-95 ubiqutination and its interaction with AP-2 and suggest a mechanism by which PSD-95 may regulate NMDA receptor-induced AMPA receptor endocytosis. PMID:21849563

  18. Sequence editing by Apolipoprotein B RNA-editing catalytic component-B and epidemiological surveillance of transmitted HIV-1 drug resistance

    PubMed Central

    Gifford, Robert J.; Rhee, Soo-Yon; Eriksson, Nicolas; Liu, Tommy F.; Kiuchi, Mark; Das, Amar K.; Shafer, Robert W.

    2008-01-01

    Design Promiscuous guanine (G) to adenine (A) substitutions catalysed by apolipoprotein B RNA-editing catalytic component (APOBEC) enzymes are observed in a proportion of HIV-1 sequences in vivo and can introduce artifacts into some genetic analyses. The potential impact of undetected lethal editing on genotypic estimation of transmitted drug resistance was assessed. Methods Classifiers of lethal, APOBEC-mediated editing were developed by analysis of lentiviral pol gene sequence variation and evaluated using control sets of HIV-1 sequences. The potential impact of sequence editing on genotypic estimation of drug resistance was assessed in sets of sequences obtained from 77 studies of 25 or more therapy-naive individuals, using mixture modelling approaches to determine the maximum likelihood classification of sequences as lethally edited as opposed to viable. Results Analysis of 6437 protease and reverse transcriptase sequences from therapy-naive individuals using a novel classifier of lethal, APOBEC3G-mediated sequence editing, the polypeptide-like 3G (APOBEC3G)-mediated defectives (A3GD) index’, detected lethal editing in association with spurious ‘transmitted drug resistance’ in nearly 3% of proviral sequences obtained from whole blood and 0.2% of samples obtained from plasma. Conclusion Screening for lethally edited sequences in datasets containing a proportion of proviral DNA, such as those likely to be obtained for epidemiological surveillance of transmitted drug resistance in the developing world, can eliminate rare but potentially significant errors in genotypic estimation of transmitted drug resistance. PMID:18356601

  19. The ubiquitin-conjugating enzyme E2-EPF is overexpressed in primary breast cancer and modulates sensitivity to topoisomerase II inhibition.

    PubMed

    Tedesco, Donato; Zhang, Jianhuan; Trinh, Lan; Lalehzadeh, Guita; Meisner, Rene; Yamaguchi, Ken D; Ruderman, Daniel L; Dinter, Harald; Zajchowski, Deborah A

    2007-07-01

    We identified the ubiquitin-conjugating enzyme E2-EPF mRNA as differentially expressed in breast tumors relative to normal tissues and performed studies to elucidate its putative role in cancer. We demonstrated that overexpression of E2-EPF protein correlated with estrogen receptor (ER) negativity in breast cancer specimens and that its expression is cell cycle-regulated, suggesting a potential function for E2-EPF in cell cycle progression. However, reduction of E2-EPF protein levels by > 80% using RNAi had no significant effects on the proliferation of HeLa cervical cancer cells or ER(-) MDA-MB-231 or MDA-MB-453 breast cancer cells. Because E2-EPF protein levels were elevated during the G(2)/M phase of the cell cycle and because E2-EPF mRNA in tumor specimens was frequently coexpressed with genes involved in cell cycle control, spindle assembly, and mitotic surveillance, the possibility that E2-EPF might have a function in the cellular response to agents that induce a G(2) checkpoint or an M checkpoint was investigated. E2-EPF knockdown sensitized HeLa cells to the topoisomerase (topo) II inhibitors etoposide and doxorubicin and also increased topo IIalpha protein levels. These data suggest that combined administration of topo II-directed drugs and E2-EPF inhibitors may enhance their clinical effectiveness.

  20. Crystal Structures of Lys-63-linked tri- and di-ubiquitin Reveal a Highly Extended Chain Architecture

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weeks, S.; Grasty, K; Hernandez-Cuebas, L

    2009-01-01

    The covalent attachment of different types of poly-ubiquitin chains signal different outcomes for the proteins so targeted. For example, a protein modified with Lys-48-linked poly-ubiquitin chains is targeted for proteasomal degradation, whereas Lys-63-linked chains encode nondegradative signals. The structural features that enable these different types of chains to encode different signals have not yet been fully elucidated. We report here the X-ray crystal structures of Lys-63-linked tri- and di-ubiquitin at resolutions of 2.3 and 1.9 {angstrom}, respectively. The tri- and di-ubiquitin species adopt essentially identical structures. In both instances, the ubiquitin chain assumes a highly extended conformation with a left-handedmore » helical twist; the helical chain contains four ubiquitin monomers per turn and has a repeat length of {approx}110 {angstrom}. Interestingly, Lys-48 ubiquitin chains also adopt a left-handed helical structure with a similar repeat length. However, the Lys-63 architecture is much more open than that of Lys-48 chains and exposes much more of the ubiquitin surface for potential recognition events. These new crystal structures are consistent with the results of solution studies of Lys-63 chain conformation, and reveal the structural basis for differential recognition of Lys-63 versus Lys-48 chains.« less

  1. The Ubiquitin Ligase RNF125 Targets Innate Immune Adaptor Protein TRIM14 for Ubiquitination and Degradation.

    PubMed

    Jia, Xue; Zhou, Hongli; Wu, Chao; Wu, Qiankun; Ma, Shichao; Wei, Congwen; Cao, Ye; Song, Jingdong; Zhong, Hui; Zhou, Zhuo; Wang, Jianwei

    2017-06-15

    Tripartite motif-containing 14 (TRIM14) is a mitochondrial adaptor that facilitates innate immune signaling. Upon virus infection, the expression of TRIM14 is significantly induced, which stimulates the production of type-I IFNs and proinflammatory cytokines. As excessive immune responses lead to harmful consequences, TRIM14-mediated signaling needs to be tightly balanced. In this study, we identify really interesting new gene-type zinc finger protein 125 (RNF125) as a negative regulator of TRIM14 in the innate antiviral immune response. Overexpression of RNF125 inhibits TRIM14-mediated antiviral response, whereas knockdown of RNF125 has the opposite effect. RNF125 interacts with TRIM14 and acts as an E3 ubiquitin ligase that catalyzes TRIM14 ubiquitination. RNF125 promotes K48-linked polyubiquitination of TRIM14 and mediates its degradation via the ubiquitin-proteasome pathway. Consequently, wild-type mouse embryonic fibroblasts show significantly reduced TRIM14 protein levels in late time points of viral infection, whereas TRIM14 protein is retained in RNF125-deficient mouse embryonic fibroblasts. Collectively, our data suggest that RNF125 plays a new role in innate immune response by regulating TRIM14 ubiquitination and degradation. Copyright © 2017 by The American Association of Immunologists, Inc.

  2. Activity-Dependent Ubiquitination of GluA1 Mediates a Distinct AMPAR Endocytosis and Sorting Pathway

    PubMed Central

    Schwarz, Lindsay A.; Hall, Benjamin J.; Patrick, Gentry N.

    2010-01-01

    The accurate trafficking of AMPA receptors (AMPARs) to and from the synapse is a critical component of learning and memory in the brain, while dysfunction of AMPAR trafficking is hypothesized to be an underlying mechanism of Alzheimer’s disease. Previous work has shown that ubiquitination of integral membrane proteins is a common post-translational modification used to mediate endocytosis and endocytic sorting of surface proteins in eukaryotic cells. Here we report that mammalian AMPARs become ubiquitinated in response to their activation. Using a mutant of GluA1 that is unable to be ubiquitinated at lysines on its carboxy-terminus, we demonstrate that ubiquitination is required for internalization of surface AMPARs and their trafficking to the lysosome in response to the AMPAR agonist AMPA, but not for internalization of AMPARs in response to the NMDA receptor (NMDAR) agonist NMDA. Through over-expression or RNAi-mediated knockdown, we identify that a specific E3 ligase, Nedd4-1, is necessary for this process. Finally, we show that ubiquitination of GluA1 by Nedd4-1 becomes more prevalent as neurons mature. Together, these data show that ubiquitination of GluA1-containing AMPARs by Nedd4-1 mediates their endocytosis and trafficking to the lysosome. Furthermore, these results provide insight into how hippocampal neurons regulate AMPAR trafficking and degradation with high specificity in response to differing neuronal signaling cues, and suggest that changes to this pathway may occur as neurons mature. PMID:21148011

  3. Small RNA and A-to-I Editing in Autism Spectrum Disorders

    NASA Astrophysics Data System (ADS)

    Eran, Alal

    One in every 88 children is diagnosed with Autism Spectrum Disorders (ASDs), a set of neurodevelopmental conditions characterized by social impairments, communication deficits, and repetitive behavior. ASDs have a substantial genetic component, but the specific cause of most cases remains unknown. Understanding gene-environment interactions underlying ASD is essential for improving early diagnosis and identifying critical targets for intervention and prevention. Towards this goal, we surveyed adenosine-to-inosine (A-to-I) RNA editing in autistic brains. A-to-I editing is an epigenetic mechanism that fine-tunes synaptic function in response to environmental stimuli, shown to modulate complex behavior in animals. We used ultradeep sequencing to quantify A-to-I receding of candidate synaptic genes in postmortem cerebella from individuals with ASD and neurotypical controls. We found unexpectedly wide distributions of human A-to-I editing levels, whose extremes were consistently populated by individuals with ASD. We correlated A-to-I editing with isoform usage, identified clusters of correlated sites, and examined differential editing patterns. Importantly, we found that individuals with ASD commonly use a dysfunctional form of the editing enzyme ADARB1. We next profiled small RNAs thought to regulate A-to-I editing, which originate from one of the most commonly altered loci in ASD, 15q11. Deep targeted sequencing of SNORD115 and SNORD116 transcripts enabled their high-resolution detection in human brains, and revealed a strong gender bias underlying their expression. The consistent 2-fold upregulation of 15q11 small RNAs in male vs. female cerebella could be important in delineating the role of this locus in ASD, a male dominant disorder. Overall, these studies provide an accurate population-level view of small RNA and A-to-I editing in human cerebella, and suggest that A-to-I editing of synaptic genes may be informative for assessing the epigenetic risk for autism

  4. Chapter Seven - When Phosphorylation Encounters Ubiquitination: A Balanced Perspective on IGF-1R Signaling.

    PubMed

    Girnita, L; Takahashi, S-I; Crudden, C; Fukushima, T; Worrall, C; Furuta, H; Yoshihara, H; Hakuno, F; Girnita, A

    2016-01-01

    Cell-surface receptors govern the critical information passage from outside to inside the cell and hence control important cellular decisions such as survival, growth, and differentiation. These receptors, structurally grouped into different families, utilize common intracellular signaling-proteins and pathways, yet promote divergent biological consequences. In rapid processing of extracellular signals to biological outcomes, posttranslational modifications offer a repertoire of protein processing options. Protein ubiquitination was originally identified as a signal for protein degradation through the proteasome system. It is now becoming increasingly recognized that both ubiquitin and ubiquitin-like proteins, all evolved from a common ubiquitin structural superfold, are used extensively by the cell and encompass signal tags for many different cellular fates. In this chapter we examine the current understanding of the ubiquitin regulation surrounding the insulin-like growth factor and insulin signaling systems, major members of the larger family of receptor tyrosine kinases (RTKs) and key regulators of fundamental physiological and pathological states. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. The Ubiquitin-Proteasome Pathway and Synaptic Plasticity

    ERIC Educational Resources Information Center

    Hegde, Ashok N.

    2010-01-01

    Proteolysis by the ubiquitin-proteasome pathway (UPP) has emerged as a new molecular mechanism that controls wide-ranging functions in the nervous system, including fine-tuning of synaptic connections during development and synaptic plasticity in the adult organism. In the UPP, attachment of a small protein, ubiquitin, tags the substrates for…

  6. Targeting Cullin–RING E3 ubiquitin ligases for drug discovery: structure, assembly and small-molecule modulation

    PubMed Central

    Bulatov, Emil; Ciulli, Alessio

    2015-01-01

    In the last decade, the ubiquitin–proteasome system has emerged as a valid target for the development of novel therapeutics. E3 ubiquitin ligases are particularly attractive targets because they confer substrate specificity on the ubiquitin system. CRLs [Cullin–RING (really interesting new gene) E3 ubiquitin ligases] draw particular attention, being the largest family of E3s. The CRLs assemble into functional multisubunit complexes using a repertoire of substrate receptors, adaptors, Cullin scaffolds and RING-box proteins. Drug discovery targeting CRLs is growing in importance due to mounting evidence pointing to significant roles of these enzymes in diverse biological processes and human diseases, including cancer, where CRLs and their substrates often function as tumour suppressors or oncogenes. In the present review, we provide an account of the assembly and structure of CRL complexes, and outline the current state of the field in terms of available knowledge of small-molecule inhibitors and modulators of CRL activity. A comprehensive overview of the reported crystal structures of CRL subunits, components and full-size complexes, alone or with bound small molecules and substrate peptides, is included. This information is providing increasing opportunities to aid the rational structure-based design of chemical probes and potential small-molecule therapeutics targeting CRLs. PMID:25886174

  7. Evidence for Two New Solution States of Ubiquitin by IMS–MS Analysis

    PubMed Central

    2015-01-01

    Ion mobility spectrometry coupled with mass spectrometry (IMS–MS) is used to investigate the populations of different states for ubiquitin in water:methanol solutions. In these experiments, ubiquitin is electrosprayed from 20 water:methanol (100:0 to 5:95, pH = 2) solutions, ranging from native to denaturing conditions. With an increased percentage of methanol in solution, ubiquitin ions ([M + 7H]7+ to [M + 12H]12+) show substantial variations in both charge state distributions and ion mobility distributions. Analysis of these data provides evidence for the existence of five ubiquitin states in solution: the native N state, favored in solutions of 100:0 to 70:30 water:methanol for the +7 and +8 charge states; the more helical A state and a new closely related A′ state, favored in solutions of 70:30 to 5:95 water:methanol for the +9 to +12 charge states; the unfolded U state, populated in 40:60 to 5:95 water:methanol solutions for the +8 to +10 and +12 charge states; and a new low-abundance state termed the B state, observed for 100:0 to 70:30 water:methanol solutions in the +8 to +10 and +12 charge states. The relative abundances for different states in different solutions are determined. The analysis presented here provides insight into how solution structures evolve into anhydrous conformations and demonstrates the utility of IMS–MS methods as a means of characterizing populations of conformers for proteins in solution. PMID:24625065

  8. Regulation of transcriptional activators by DNA-binding domain ubiquitination

    PubMed Central

    Landré, Vivien; Revi, Bhindu; Mir, Maria Gil; Verma, Chandra; Hupp, Ted R; Gilbert, Nick; Ball, Kathryn L

    2017-01-01

    Ubiquitin is a key component of the regulatory network that maintains gene expression in eukaryotes, yet the molecular mechanism(s) by which non-degradative ubiquitination modulates transcriptional activator (TA) function is unknown. Here endogenous p53, a stress-activated transcription factor required to maintain health, is stably monoubiquitinated, following pathway activation by IR or Nutlin-3 and localized to the nucleus where it becomes tightly associated with chromatin. Comparative structure–function analysis and in silico modelling demonstrate a direct role for DNA-binding domain (DBD) monoubiquitination in TA activation. When attached to the DBD of either p53, or a second TA IRF-1, ubiquitin is orientated towards, and makes contact with, the DNA. The contact is made between a predominantly cationic surface on ubiquitin and the anionic DNA. Our data demonstrate an unexpected role for ubiquitin in the mechanism of TA-activity enhancement and provides insight into a new level of transcriptional regulation. PMID:28362432

  9. Profiling RNA editing in human tissues: towards the inosinome Atlas

    PubMed Central

    Picardi, Ernesto; Manzari, Caterina; Mastropasqua, Francesca; Aiello, Italia; D’Erchia, Anna Maria; Pesole, Graziano

    2015-01-01

    Adenine to Inosine RNA editing is a widespread co- and post-transcriptional mechanism mediated by ADAR enzymes acting on double stranded RNA. It has a plethora of biological effects, appears to be particularly pervasive in humans with respect to other mammals, and is implicated in a number of diverse human pathologies. Here we present the first human inosinome atlas comprising 3,041,422 A-to-I events identified in six tissues from three healthy individuals. Matched directional total-RNA-Seq and whole genome sequence datasets were generated and analysed within a dedicated computational framework, also capable of detecting hyper-edited reads. Inosinome profiles are tissue specific and edited gene sets consistently show enrichment of genes involved in neurological disorders and cancer. Overall frequency of editing also varies, but is strongly correlated with ADAR expression levels. The inosinome database is available at: http://srv00.ibbe.cnr.it/editing/. PMID:26449202

  10. Involvement of a eukaryotic-like ubiquitin-related modifier in the proteasome pathway of the archaeon Sulfolobus acidocaldarius

    NASA Astrophysics Data System (ADS)

    Anjum, Rana S.; Bray, Sian M.; Blackwood, John K.; Kilkenny, Mairi L.; Coelho, Matthew A.; Foster, Benjamin M.; Li, Shurong; Howard, Julie A.; Pellegrini, Luca; Albers, Sonja-Verena; Deery, Michael J.; Robinson, Nicholas P.

    2015-09-01

    In eukaryotes, the covalent attachment of ubiquitin chains directs substrates to the proteasome for degradation. Recently, ubiquitin-like modifications have also been described in the archaeal domain of life. It has subsequently been hypothesized that ubiquitin-like proteasomal degradation might also operate in these microbes, since all archaeal species utilize homologues of the eukaryotic proteasome. Here we perform a structural and biochemical analysis of a ubiquitin-like modification pathway in the archaeon Sulfolobus acidocaldarius. We reveal that this modifier is homologous to the eukaryotic ubiquitin-related modifier Urm1, considered to be a close evolutionary relative of the progenitor of all ubiquitin-like proteins. Furthermore we demonstrate that urmylated substrates are recognized and processed by the archaeal proteasome, by virtue of a direct interaction with the modifier. Thus, the regulation of protein stability by Urm1 and the proteasome in archaea is likely representative of an ancient pathway from which eukaryotic ubiquitin-mediated proteolysis has evolved.

  11. Ubiquitination in the antiviral immune response.

    PubMed

    Davis, Meredith E; Gack, Michaela U

    2015-05-01

    Ubiquitination has long been known to regulate fundamental cellular processes through the induction of proteasomal degradation of target proteins. More recently, 'atypical' non-degradative types of polyubiquitin chains have been appreciated as important regulatory moieties by modulating the activity or subcellular localization of key signaling proteins. Intriguingly, many of these non-degradative types of ubiquitination regulate the innate sensing pathways initiated by pattern recognition receptors (PRRs), ultimately coordinating an effective antiviral immune response. Here we discuss recent advances in understanding the functional roles of degradative and atypical types of ubiquitination in innate immunity to viral infections, with a specific focus on the signaling pathways triggered by RIG-I-like receptors, Toll-like receptors, and the intracellular viral DNA sensor cGAS. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. Role of Growth Arrest and DNA Damage–inducible α in Akt Phosphorylation and Ubiquitination after Mechanical Stress-induced Vascular Injury

    PubMed Central

    Mitra, Sumegha; Sammani, Saad; Wang, Ting; Boone, David L.; Meyer, Nuala J.; Dudek, Steven M.; Moreno-Vinasco, Liliana; Garcia, Joe G. N.

    2011-01-01

    Rationale: The stress-induced growth arrest and DNA damage–inducible α (GADD45a) gene is up-regulated by mechanical stress with GADD45a knockout (GADD45a−/−) mice demonstrating both increased susceptibility to ventilator-induced lung injury (VILI) and reduced levels of the cell survival and vascular permeability signaling effector (Akt). However, the functional role of GADD45a in the pathogenesis of VILI is unknown. Objectives: We sought to define the role of GADD45a in the regulation of Akt activation induced by mechanical stress. Methods: VILI-challenged GADD45a−/− mice were administered a constitutively active Akt1 vector and injury was assessed by bronchoalveolar lavage cell counts and protein levels. Human pulmonary artery endothelial cells (EC) were exposed to 18% cyclic stretch (CS) under conditions of GADD45a silencing and used for immunoprecipitation, Western blotting or immunofluoresence. EC were also transfected with mutant ubiquitin vectors to characterize site-specific Akt ubiquitination. DNA methylation was measured using methyl-specific polymerase chain reaction assay. Measurements and Main Results: Studies exploring the linkage of GADD45a with mechanical stress and Akt regulation revealed VILI-challenged GADD45a−/− mice to have significantly reduced lung injury on overexpression of Akt1 transgene. Increased mechanical stress with 18% CS in EC induced Akt phosphorylation via E3 ligase tumor necrosis factor receptor–associated factor 6 (TRAF6)–mediated Akt K63 ubiquitination resulting in Akt trafficking and activation at the membrane. GADD45a is essential to this process because GADD45a-silenced endothelial cells and GADD45a−/− mice exhibited increased Akt K48 ubiquitination leading to proteasomal degradation. These events involve loss of ubiquitin carboxyl terminal hydrolase 1 (UCHL1), a deubiquitinating enzyme that normally removes K48 polyubiquitin chains bound to Akt thus promoting Akt K63 ubiquitination. Loss of GADD45a

  13. Manipulation of ubiquitin/SUMO pathways in human herpesviruses infection.

    PubMed

    Gan, Jin; Qiao, Niu; Strahan, Roxanne; Zhu, Caixia; Liu, Lei; Verma, Subhash C; Wei, Fang; Cai, Qiliang

    2016-11-01

    Post-translational modification of proteins with ubiquitin/small ubiquitin-like modifier (SUMO) molecules triggers multiple signaling pathways that are critical for many aspects of cellular physiology. Given that viruses hijack the biosynthetic and degradative systems of their host, it is not surprising that viruses encode proteins to manipulate the host's cellular machinery for ubiquitin/SUMO modification at multiple levels. Infection with a herpesvirus, among the most ubiquitous human DNA viruses, has been linked to many human diseases, including cancers. The interplay between human herpesviruses and the ubiquitylation/SUMOylation modification system has been extensively investigated in the past decade. In this review, we present an overview of recent advances to address how the ubiquitin/SUMO-modified system alters the latency and lytic replication of herpesvirus and how herpesviruses usurp the ubiquitin/SUMO pathways against the host's intrinsic and innate immune response to favor their pathogenesis. Copyright © 2016 John Wiley & Sons, Ltd.

  14. Phosphorylation Regulates the Ubiquitin-independent Degradation of Yeast Pah1 Phosphatidate Phosphatase by the 20S Proteasome*

    PubMed Central

    Hsieh, Lu-Sheng; Su, Wen-Min; Han, Gil-Soo; Carman, George M.

    2015-01-01

    Saccharomyces cerevisiae Pah1 phosphatidate phosphatase, which catalyzes the conversion of phosphatidate to diacylglycerol for triacylglycerol synthesis and simultaneously controls phosphatidate levels for phospholipid synthesis, is subject to the proteasome-mediated degradation in the stationary phase of growth. In this study, we examined the mechanism for its degradation using purified Pah1 and isolated proteasomes. Pah1 expressed in S. cerevisiae or Escherichia coli was not degraded by the 26S proteasome, but by its catalytic 20S core particle, indicating that its degradation is ubiquitin-independent. The degradation of Pah1 by the 20S proteasome was dependent on time and proteasome concentration at the pH optimum of 7.0. The 20S proteasomal degradation was conserved for human lipin 1 phosphatidate phosphatase. The degradation analysis using Pah1 truncations and its fusion with GFP indicated that proteolysis initiates at the N- and C-terminal unfolded regions. The folded region of Pah1, in particular the haloacid dehalogenase-like domain containing the DIDGT catalytic sequence, was resistant to the proteasomal degradation. The structural change of Pah1, as reflected by electrophoretic mobility shift, occurs through its phosphorylation by Pho85-Pho80, and the phosphorylation sites are located within its N- and C-terminal unfolded regions. Phosphorylation of Pah1 by Pho85-Pho80 inhibited its degradation, extending its half-life by ∼2-fold. The dephosphorylation of endogenously phosphorylated Pah1 by the Nem1-Spo7 protein phosphatase, which is highly specific for the sites phosphorylated by Pho85-Pho80, stimulated the 20S proteasomal degradation and reduced its half-life by 2.6-fold. These results indicate that the proteolysis of Pah1 by the 20S proteasome is controlled by its phosphorylation state. PMID:25809482

  15. Cyclophilin A-regulated ubiquitination is critical for RIG-I-mediated antiviral immune responses.

    PubMed

    Liu, Wei; Li, Jing; Zheng, Weinan; Shang, Yingli; Zhao, Zhendong; Wang, Shanshan; Bi, Yuhai; Zhang, Shuang; Xu, Chongfeng; Duan, Ziyuan; Zhang, Lianfeng; Wang, Yue L; Jiang, Zhengfan; Liu, Wenjun; Sun, Lei

    2017-06-08

    RIG-I is a key cytosolic pattern recognition receptor that interacts with MAVS to induce type I interferons (IFNs) against RNA virus infection. In this study, we found that cyclophilin A (CypA), a peptidyl-prolyl cis/trans isomerase, functioned as a critical positive regulator of RIG-I-mediated antiviral immune responses. Deficiency of CypA impaired RIG-I-mediated type I IFN production and promoted viral replication in human cells and mice. Upon Sendai virus infection, CypA increased the interaction between RIG-I and its E3 ubiquitin ligase TRIM25, leading to enhanced TRIM25-mediated K63-linked ubiquitination of RIG-I that facilitated recruitment of RIG-I to MAVS. In addition, CypA and TRIM25 competitively interacted with MAVS, thereby inhibiting TRIM25-induced K48-linked ubiquitination of MAVS. Taken together, our findings reveal an essential role of CypA in boosting RIG-I-mediated antiviral immune responses by controlling the ubiquitination of RIG-I and MAVS.

  16. Molecular basis of ubiquitin recognition by the autophagy receptor CALCOCO2

    PubMed Central

    Xie, Xingqiao; Li, Faxiang; Wang, Yuanyuan; Wang, Yingli; Lin, Zhijie; Cheng, Xiaofang; Liu, Jianping; Chen, Changbin; Pan, Lifeng

    2015-01-01

    The autophagy receptor CALCOCO2/NDP52 functions as a bridging adaptor and plays an essential role in the selective autophagic degradation of invading pathogens by specifically recognizing ubiquitin-coated intracellular pathogens and subsequently targeting them to the autophagic machinery; thereby it is required for innate immune defense against a range of infectious pathogens in mammals. However, the mechanistic basis underlying CALCOCO2-mediated specific recognition of ubiqutinated pathogens is still unknown. Here, using biochemical and structural analyses, we demonstrated that the cargo-binding region of CALCOCO2 contains a dynamic unconventional zinc finger as well as a C2H2-type zinc-finger, and only the C2H2-type zinc finger specifically recognizes mono-ubiquitin or poly-ubiquitin chains. In addition to elucidating the specific ubiquitin recognition mechanism of CALCOCO2, the structure of the CALCOCO2 C2H2-type zinc finger in complex with mono-ubiquitin also uncovers a unique zinc finger-binding mode for ubiquitin. Our findings provide mechanistic insight into how CALCOCO2 targets ubiquitin-decorated pathogens for autophagic degradations. PMID:26506893

  17. Structure of PINK1 in complex with its substrate ubiquitin

    PubMed Central

    Schubert, Alexander F.; Gladkova, Christina; Pardon, Els; Wagstaff, Jane L.; Freund, Stefan M.V.; Steyaert, Jan; Maslen, Sarah L.; Komander, David

    2018-01-01

    Autosomal recessive juvenile Parkinsonism (AR-JP) is caused by mutations in a number of PARK genes, in particular in the E3 ubiquitin ligase Parkin (PARK2), and in its upstream protein kinase PINK1 (PARK6). PINK1 phosphorylates ubiquitin and the Parkin ubiquitin-like domain on structurally protected Ser65 to trigger mitophagy. We here report a crystal structure of a nanobody stabilised complex between Pediculus humanus corporis (Ph)PINK1 bound to ubiquitin in the ‘C-terminally retracted’ (Ub-CR) conformation. The structure reveals many peculiarities of PINK1, including the architecture of the C-terminal region, and reveals how the PINK1 N-lobe binds ubiquitin via a unique insertion. The flexible Ser65-loop in the Ub-CR conformation reaches the activation segment, facilitating placement of Ser65 in a phosphate accepting position. The structure also explains how autophosphorylation in the N-lobe stabilises structurally and functionally important insertions, and reveals the molecular basis for AR-JP causing mutations, some of which disrupt ubiquitin binding. PMID:29160309

  18. Structure of PINK1 in complex with its substrate ubiquitin.

    PubMed

    Schubert, Alexander F; Gladkova, Christina; Pardon, Els; Wagstaff, Jane L; Freund, Stefan M V; Steyaert, Jan; Maslen, Sarah L; Komander, David

    2017-12-07

    Autosomal-recessive juvenile Parkinsonism (AR-JP) is caused by mutations in a number of PARK genes, in particular the genes encoding the E3 ubiquitin ligase Parkin (PARK2, also known as PRKN) and its upstream protein kinase PINK1 (also known as PARK6). PINK1 phosphorylates both ubiquitin and the ubiquitin-like domain of Parkin on structurally protected Ser65 residues, triggering mitophagy. Here we report a crystal structure of a nanobody-stabilized complex containing Pediculus humanus corporis (Ph)PINK1 bound to ubiquitin in the 'C-terminally retracted' (Ub-CR) conformation. The structure reveals many peculiarities of PINK1, including the architecture of the C-terminal region, and reveals how the N lobe of PINK1 binds ubiquitin via a unique insertion. The flexible Ser65 loop in the Ub-CR conformation contacts the activation segment, facilitating placement of Ser65 in a phosphate-accepting position. The structure also explains how autophosphorylation in the N lobe stabilizes structurally and functionally important insertions, and reveals the molecular basis of AR-JP-causing mutations, some of which disrupt ubiquitin binding.

  19. Resveratrol induces cellular senescence with attenuated mono-ubiquitination of histone H2B in glioma cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gao, Zhen; Xu, Michael S.; Barnett, Tamara L.

    2011-04-08

    Research highlights: {yields} Resveratrol induces cellular senescence in glioma cell. {yields} Resveratrol inhibits mono-ubiquitination of histone H2B at K120. {yields} Depletion of RNF20, phenocopies the inhibitory effects of resveratrol. {yields} Mono-ubiquitination of histone H2B at K120 is a novel target of resveratrol. {yields} RNF20 inhibits cellular senescence in proliferating glioma cells. -- Abstract: Resveratrol (3,4',5-trihydroxy-trans-stilbene), a polyphenol naturally occurring in grapes and other plants, has cancer chemo-preventive effects and therapeutic potential. Although resveratrol modulates multiple pathways in tumor cells, how resveratrol or its affected pathways converge on chromatin to mediate its effects is not known. Using glioma cells as amore » model, we showed here that resveratrol inhibited cell proliferation and induced cellular hypertrophy by transforming spindle-shaped cells to enlarged, irregular and flatten-shaped ones. We further showed that resveratrol-induced hypertrophic cells expressed senescence-associated-{beta}-galactosidase, suggesting that resveratrol-induced cellular senescence in glioma cells. Consistent with these observations, we demonstrated that resveratrol inhibited clonogenic efficiencies in vitro and tumor growth in a xenograft model. Furthermore, we found that acute treatment of resveratrol inhibited mono-ubiquitination of histone H2B at K120 (uH2B) in breast, prostate, pancreatic, lung, brain tumor cells as well as primary human cells. Chronic treatment with low doses of resveratrol also inhibited uH2B in the resveratrol-induced senescent glioma cells. Moreover, we showed that depletion of RNF20, a ubiquitin ligase of histone H2B, inhibited uH2B and induced cellular senescence in glioma cells in vitro, thereby recapitulated the effects of resveratrol. Taken together, our results suggest that uH2B is a novel direct or indirect chromatin target of resveratrol and RNF20 plays an important role in inhibiting

  20. Structural Motifs Involved in Ubiquitin-Mediated Processing of the NF-κB Precursor p105: Roles of the Glycine-Rich Region and a Downstream Ubiquitination Domain

    PubMed Central

    Orian, Amir; Schwartz, Alan L.; Israël, Alain; Whiteside, Simon; Kahana, Chaim; Ciechanover, Aaron

    1999-01-01

    The ubiquitin proteolytic system plays a major role in a variety of basic cellular processes. In the majority of these processes, the target proteins are completely degraded. In one exceptional case, generation of the p50 subunit of the transcriptional regulator NF-κB, the precursor protein p105 is processed in a limited manner: the N-terminal domain yields the p50 subunit, whereas the C-terminal domain is degraded. The identity of the mechanisms involved in this unique process have remained elusive. It has been shown that a Gly-rich region (GRR) at the C-terminal domain of p50 is an important processing signal. Here we show that the GRR does not interfere with conjugation of ubiquitin to p105 but probably does interfere with the processing of the ubiquitin-tagged precursor by the 26S proteasome. Structural analysis reveals that a short sequence containing a few Gly residues and a single essential Ala is sufficient to generate p50. Mechanistically, the presence of the GRR appears to stop further degradation of p50 and to stabilize the molecule. It appears that the localization of the GRR within p105 plays an important role in directing processing: transfer of the GRR within p105 or insertion of the GRR into homologous or heterologous proteins is not sufficient to promote processing in most cases, which is probably due to the requirement for an additional specific ubiquitination and/or recognition domain(s). Indeed, we have shown that amino acid residues 441 to 454 are important for processing. In particular, both Lys 441 and Lys 442 appear to serve as major ubiquitination targets, while residues 446 to 454 are independently important for processing and may serve as the ubiquitin ligase recognition motif. PMID:10207090

  1. Alternative Splicing of STAT3 Is Affected by RNA Editing.

    PubMed

    Goldberg, Lior; Abutbul-Amitai, Mor; Paret, Gideon; Nevo-Caspi, Yael

    2017-05-01

    A-to-I RNA editing, carried out by adenosine deaminase acting on RNA (ADAR) enzymes, is an epigenetic phenomenon of posttranscriptional modifications on pre-mRNA. RNA editing in intronic sequences may influence alternative splicing of flanking exons. We have previously shown that conditions that induce editing result in elevated expression of signal transducer and activator of transcription 3 (STAT3), preferentially the alternatively-spliced STAT3β isoform. Mechanisms regulating alternative splicing of STAT3 have not been elucidated. STAT3 undergoes A-to-I RNA editing in an intron residing in proximity to the alternatively spliced exon. We hypothesized that RNA editing plays a role in regulating alternative splicing toward STAT3β. In this study we extend our observation connecting RNA editing to the preferential induction of STAT3β expression. We study the involvement of ADAR1 in STAT3 editing and reveal the connection between editing and alternative splicing of STAT3. Deferoaxamine treatment caused the induction in STAT3 RNA editing and STAT3β expression. Silencing ADAR1 caused a decrease in STAT3 editing and expression with a preferential decrease in STAT3β. Cells transfected with a mutated minigene showed preferential splicing toward the STAT3β transcript. Editing in the STAT3 intron is performed by ADAR1 and affects STAT3 alternative splicing. These results suggest that RNA editing is one of the molecular mechanisms regulating the expression of STAT3β.

  2. Coordination of the recruitment of the FANCD2 and PALB2 Fanconi anemia proteins by an ubiquitin signaling network.

    PubMed

    Bick, Gregory; Zhang, Fan; Meetei, A Ruhikanta; Andreassen, Paul R

    2017-06-01

    Fanconi anemia (FA) is a chromosome instability syndrome and the 20 identified FA proteins are organized into two main arms which are thought to function at distinct steps in the repair of DNA interstrand crosslinks (ICLs). These two arms include the upstream FA pathway, which culminates in the monoubiquitination of FANCD2 and FANCI, and downstream breast cancer (BRCA)-associated proteins that interact in protein complexes. How, and whether, these two groups of FA proteins are integrated is unclear. Here, we show that FANCD2 and PALB2, as indicators of the upstream and downstream arms, respectively, colocalize independently of each other in response to DNA damage induced by mitomycin C (MMC). We also show that ubiquitin chains are induced by MMC and colocalize with both FANCD2 and PALB2. Our finding that the RNF8 E3 ligase has a role in recruiting FANCD2 and PALB2 also provides support for the hypothesis that the two branches of the FA-BRCA pathway are coordinated by ubiquitin signaling. Interestingly, we find that the RNF8 partner, MDC1, as well as the ubiquitin-binding protein, RAP80, specifically recruit PALB2, while a different ubiquitin-binding protein, FAAP20, functions only in the recruitment of FANCD2. Thus, FANCD2 and PALB2 are not recruited in a single linear pathway, rather we define how their localization is coordinated and integrated by a network of ubiquitin-related proteins. We propose that such regulation may enable upstream and downstream FA proteins to act at distinct steps in the repair of ICLs.

  3. Ubiquitin promoter-terminator cassette promotes genetically stable expression of the taste-modifying protein miraculin in transgenic lettuce.

    PubMed

    Hirai, Tadayoshi; Shohael, Abdullah Mohammad; Kim, You-Wang; Yano, Megumu; Ezura, Hiroshi

    2011-12-01

    Lettuce is a commercially important leafy vegetable that is cultivated worldwide, and it is also a target crop for plant factories. In this study, lettuce was selected as an alternative platform for recombinant miraculin production because of its fast growth, agronomic value, and wide availability. The taste-modifying protein miraculin is a glycoprotein extracted from the red berries of the West African native shrub Richadella dulcifica. Because of its limited natural availability, many attempts have been made to produce this protein in suitable alternative hosts. We produced transgenic lettuce with miraculin gene driven either by the ubiquitin promoter/terminator cassette from lettuce or a 35S promoter/nos terminator cassette. Miraculin gene expression and miraculin accumulation in both cassettes were compared by quantitative real-time PCR analysis, Western blotting, and enzyme-linked immunosorbent assay. The expression level of the miraculin gene and protein in transgenic lettuce was higher and more genetically stable in the ubiquitin promoter/terminator cassette than in the 35S promoter/nos terminator cassette. These results demonstrated that the ubiquitin promoter/terminator cassette is an efficient platform for the genetically stable expression of the miraculin protein in lettuce and hence this platform is of benefit for recombinant miraculin production on a commercial scale.

  4. Modification of ubiquitin-C-terminal hydrolase-L1 by cyclopentenone prostaglandins exacerbates hypoxic injury

    PubMed Central

    Liu, Hao; Li, Wenjin; Ahmad, Muzamil; Miller, Tricia M.; Rose, Marie E.; Poloyac, Samuel M.; Uechi, Guy; Balasubramani, Manimalha; Hickey, Robert W.; Graham, Steven H.

    2010-01-01

    Cyclopentenone prostaglandins (CyPGs), such as 15-deoxy-Δ12,14-prostaglandin J2 (15d-PGJ2), are active prostaglandin metabolites exerting a variety of biological effects that may be important in the pathogenesis of neurological diseases. Ubiquitin-C-terminal hydrolase L1 (UCH-L1) is a brain specific deubiquitinating enzyme whose aberrant function has been linked to neurodegenerative disorders. We report that [15d-PGJ2] detected by quadrapole mass spectrometry (MS) increases in rat brain after temporary focal ischemia, and that treatment with 15d-PGJ2 induces accumulation of ubiquitinated proteins and exacerbates cell death in normoxic and hypoxic primary neurons. 15d-PGJ2 covalently modifies UCH-L1 and inhibits its hydrolase activity. Pharmacologic inhibition of UCH-L1 exacerbates hypoxic neuronal death while transduction with a TAT-UCH-L1 fusion protein protects neurons from hypoxia. These studies indicate UCH-L1 function is important in hypoxic neuronal death and excessive production of CyPGs after stroke may exacerbate ischemic injury by modification and inhibition of UCH-L1. PMID:20933087

  5. Ubiquitinated proteins enriched from tumor cells by a ubiquitin binding protein Vx3(A7) as a potent cancer vaccine.

    PubMed

    Aldarouish, Mohanad; Wang, Huzhan; Zhou, Meng; Hu, Hong-Ming; Wang, Li-Xin

    2015-04-16

    Our previous studies have demonstrated that autophagosome-enriched vaccine (named DRibbles: DRiPs-containing blebs) induce a potent anti-tumor efficacy in different murine tumor models, in which DRibble-containing ubiquitinated proteins are efficient tumor-specific antigen source for the cross-presentation after being loaded onto dendritic cells. In this study, we sought to detect whether ubiquitinated proteins enriched from tumor cells could be used directly as a novel cancer vaccine. The ubiquitin binding protein Vx3(A7) was used to isolate ubiquitinated proteins from EL4 and B16-F10 tumor cells after blocking their proteasomal degradation pathway. C57BL/6 mice were vaccinated with different doses of Ub-enriched proteins via inguinal lymph nodes or subcutaneous injection and with DRibbles, Ub-depleted proteins and whole cell lysate as comparison groups, respectively. The lymphocytes from the vaccinated mice were re-stimulated with inactivated tumor cells and the levels of IFN-γ in the supernatant were detected by ELISA. Anti-tumor efficacy of Ub-enriched proteins vaccine was evaluated by monitoring tumor growth in established tumor mice models. Graphpad Prism 5.0 was used for all statistical analysis. We found that after stimulation with inactivated tumor cells, the lymphocytes from the Ub-enriched proteins-vaccinated mice secreted high level of IFN-γ in dose dependent manner, in which the priming vaccination via inguinal lymph nodes injection induced higher IFN-γ level than that via subcutaneous injection. Moreover, the level of secreted IFN-γ in the Ub-enriched proteins group was markedly higher than that in the whole cell lysate and Ub-depleted proteins. Interestingly, the lymphocytes from mice vaccinated with Ub-enriched proteins, but not Ub-depleted proteins and whole cell lysates, isolated from EL4 or B16-F10 tumor cells also produced an obvious level of IFN-γ when stimulated alternately with inactivated B16-F10 or EL4 tumor cells. Furthermore, Ub

  6. Guanine nucleotide-binding protein (Gα) endocytosis by a cascade of ubiquitin binding domain proteins is required for sustained morphogenesis and proper mating in yeast.

    PubMed

    Dixit, Gauri; Baker, Rachael; Sacks, Carly M; Torres, Matthew P; Dohlman, Henrik G

    2014-05-23

    Heterotrimeric G proteins are well known to transmit signals from cell surface receptors to intracellular effector proteins. There is growing appreciation that G proteins are also present at endomembrane compartments, where they can potentially interact with a distinct set of signaling proteins. Here, we examine the cellular trafficking function of the G protein α subunit in yeast, Gpa1. Gpa1 contains a unique 109-amino acid insert within the α-helical domain that undergoes a variety of posttranslational modifications. Among these is monoubiquitination, catalyzed by the NEDD4 family ubiquitin ligase Rsp5. Using a newly optimized method for G protein purification together with biophysical measures of structure and function, we show that the ubiquitination domain does not influence enzyme activity. By screening a panel of 39 gene deletion mutants, each lacking a different ubiquitin binding domain protein, we identify seven that are necessary to deliver Gpa1 to the vacuole compartment including four proteins (Ede1, Bul1, Ddi1, and Rup1) previously not known to be involved in this process. Finally, we show that proper endocytosis of the G protein is needed for sustained cellular morphogenesis and mating in response to pheromone stimulation. We conclude that a cascade of ubiquitin-binding proteins serves to deliver the G protein to its final destination within the cell. In this instance and in contrast to the previously characterized visual system, endocytosis from the plasma membrane is needed for proper signal transduction rather than for signal desensitization. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  7. Differential ubiquitination in NETs regulates macrophage responses in systemic lupus erythematosus.

    PubMed

    Barrera-Vargas, Ana; Gómez-Martín, Diana; Carmona-Rivera, Carmelo; Merayo-Chalico, Javier; Torres-Ruiz, Jiram; Manna, Zerai; Hasni, Sarfaraz; Alcocer-Varela, Jorge; Kaplan, Mariana J

    2018-06-01

    To assess if ubiquitinated proteins potentially present in neutrophil extracellular traps (NETs) can modify cellular responses and induce inflammatory mechanisms in patients with systemic lupus erythematosus (SLE) and healthy subjects. We studied 74 subjects with SLE and 77 healthy controls. Neutrophils and low-density granulocytes were isolated, and NETs were induced. Ubiquitin content was quantified in NETs by western blot analysis, ELISA and immunofluorescence microscopy, while ubiquitination of NET proteins was assessed by immunoprecipitation. Monocyte-derived macrophages from SLE and controls were isolated and stimulated with NETs or ubiquitin. Calcium flux and cytokine synthesis were measured following these stimuli. NETs contain ubiquitinated proteins, with a lower expression of polyubiquitinated proteins in subjects with SLE than in controls. Myeloperoxidase (MPO) is present in ubiquitinated form in NETs. Patients with SLE develop antiubiquitinated MPO antibodies, and titres positively correlate with Systemic Lupus Erythematosus Disease Activity Index (SLEDAI) score (P<0.01), and negatively correlate with complement components (P<0.01). Stimulation of monocyte-derived macrophages with NETs or with ubiquitin led to enhanced calcium flux. In addition, stimulation with NETs led to enhanced cytokine (tumour necrosis factor-α and interleukin-10) production in macrophages from patients with SLE when compared with controls, which was hampered by inhibition of NET internalisation by macrophages. This is the first study to find ubiquitinated proteins in NETs, and evidence for adaptive immune responses directed towards ubiquitinated NET proteins in SLE. The distinct differences in ubiquitin species profile in NETs compared with healthy controls may contribute to dampened anti-inflammatory responses observed in SLE. These results also support a role for extracellular ubiquitin in inflammation in SLE. © Article author(s) (or their employer(s) unless otherwise stated

  8. Newborn mouse lens proteome and its alteration by lysine 6 mutant ubiquitin

    USDA-ARS?s Scientific Manuscript database

    Ubiquitin is a tag that often initiates degradation of proteins by the proteasome in the ubiquitin proteasome system. Targeted expression of K6W mutant ubiquitin (K6W-Ub) in the lens results in defects in lens development and cataract formation, suggesting critical functions for ubiquitin in lens. T...

  9. Patterns of developmental expression of the RNA editing enzyme rADAR2.

    PubMed

    Paupard M-C; O'Connell, M A; Gerber, A P; Zukin, R S

    2000-01-01

    To date, two structurally related RNA-editing enzymes with adenosine deaminase activity have been identified in mammalian tissue: ADAR1 and ADAR2 [Bass B. I. et al. (1997) RNA 3, 947-949]. In rodents, ADAR2 undergoes alternative RNA splicing, giving rise to two splice variants that differ by the presence or absence of a 10-amino-acid insert in the carboxy-terminal catalytic domain. However, the physiological significance of the splicing and its regional and developmental regulation are as yet unknown. The present study examined spatial and temporal patterns of ADAR2 gene transcripts within specific neuronal populations of rat brain. The two rodent ADAR2 isoforms were expressed at comparable levels at all ages examined. rADAR2 messenger RNA expression was first detectable in the thalamic nuclei formation at embryonic day E19. The rADAR2b insert and rADAR2a splice probes produced images similar to that of the rADAR2 pan probe. At birth, rADAR2a messenger RNA splice variants were abundantly expressed in the thalamic nuclei. No signal for any probe was detectable in other brain regions, including neocortex, hippocampus, striatum and cerebellum at this stage of development. During the first week of postnatal life, rADAR2 messenger RNA expression (detected with the pan probe) increased gradually in several brain regions, with low expression detected at postnatal day P7 in the olfactory bulb, inferior colliculus, and within the pyramidal and granule cell layers of the hippocampus. Hybridization patterns of the rADAR2a variant probe reached peak expression at about the second week of life, while peak expression of the rADAR2b probe was reached at about the third week of life. At the end of the first week of life (P7), expression of both splice variants was strongest in the thalamic nuclei. By P14, rADAR2 messenger RNA expression was more consolidated in the deeper structures, including the thalamic nuclei and the granule cell layer of the cerebellum. By P21, maximal levels

  10. TRIM41-Mediated Ubiquitination of Nucleoprotein Limits Influenza A Virus Infection.

    PubMed

    Patil, Girish; Zhao, Mengmeng; Song, Kun; Hao, Wenzhuo; Bouchereau, Daniel; Wang, Lingyan; Li, Shitao

    2018-06-13

    Influenza A virus (IAV) is a highly transmissible respiratory pathogen and a major cause of morbidity and mortality around the world. Nucleoprotein (NP) is an abundant IAV protein essential for multiple steps of viral life cycle. Our recent proteomic study of the IAV-host interaction network found that the tripartite motif containing 41 (TRIM41), a ubiquitin E3 ligase, interacted with NP. However, the role of TRIM41 in IAV infection is unknown. Here, we report that TRIM41 interacts with NP through its SPRY domain. Furthermore, TRIM41 is constitutively expressed in lung epithelial cells and overexpression of TRIM41 inhibits IAV infection. Conversely, RNA interference (RNAi) and knockout of TRIM41 increase host susceptibility to IAV infection. As a ubiquitin E3 ligase, TRIM41 ubiquitinates NP in vitro and in cells. The TRIM41 mutant lacking E3 ligase activity fails to inhibit IAV infection, suggesting that the E3 ligase activity is indispensable for TRIM41 antiviral function. Mechanistic analysis further revealed that the polyubiquitination leads to NP protein degradation and viral inhibition. Taken together, TRIM41 is a constitutively expressed intrinsic IAV restriction factor that targets NP for ubiquitination and protein degradation. IMPORTANCE Influenza control strategies rely on annual immunization and require frequent updates of the vaccine, which are not always a foolproof process. Furthermore, the current antivirals are also losing effectiveness as new viral strains are often refractory to conventional treatments. Thus, there is an urgent need to find new antiviral mechanisms and develop therapeutic drugs based on these mechanisms. Targeting the virus-host interface is an emerging new strategy because host factors controlling viral replication activity will be ideal candidates and cellular proteins are less likely to mutate under drug-mediated selective pressure. Here, we show that the ubiquitin E3 ligase TRIM41 is an intrinsic host restriction factor to IAV

  11. Apolipoprotein B mRNA-editing enzyme, catalytic polypeptide-like 3G: a possible role in the resistance to HIV of HIV-exposed seronegative individuals.

    PubMed

    Biasin, Mara; Piacentini, Luca; Lo Caputo, Sergio; Kanari, Yasuyoshi; Magri, Giuliana; Trabattoni, Daria; Naddeo, Valentina; Lopalco, Lucia; Clivio, Alberto; Cesana, Eugenio; Fasano, Francesca; Bergamaschi, Cristina; Mazzotta, Francesco; Miyazawa, Masaaki; Clerici, Mario

    2007-04-01

    Apolipoprotein B mRNA-editing enzyme, catalytic polypeptide-like 3G (APOBEC3G), a human cytidine deaminase, is a potent inhibitor of HIV replication. To explore a possible role of this protein in modulating in vivo susceptibility to HIV infection, we analyzed APOBEC3G expression in HIV-exposed seronegative individuals, HIV-seropositive patients, and healthy control subjects. The results showed that the expression of APOBEC3G is significantly increased in peripheral blood mononuclear cells (PBMCs)--mainly CD14(+) cells--and in cervical tissues of HIV-exposed seronegative individuals. Higher APOBEC3G expression correlated with a reduced susceptibility of PBMCs to in vitro infection with the HIV-1(Ba-L) R5 strain. APOBEC3G could be important in modulating in vivo susceptibility to sexually transmitted HIV infection.

  12. Activity-dependent ubiquitination of GluA1 mediates a distinct AMPA receptor endocytosis and sorting pathway.

    PubMed

    Schwarz, Lindsay A; Hall, Benjamin J; Patrick, Gentry N

    2010-12-08

    The accurate trafficking of AMPA receptors (AMPARs) to and from the synapse is a critical component of learning and memory in the brain, whereas dysfunction of AMPAR trafficking is hypothesized to be an underlying mechanism of Alzheimer's disease. Previous work has shown that ubiquitination of integral membrane proteins is a common posttranslational modification used to mediate endocytosis and endocytic sorting of surface proteins in eukaryotic cells. Here we report that mammalian AMPARs become ubiquitinated in response to their activation. Using a mutant of GluA1 that is unable to be ubiquitinated at lysines on its C-terminus, we demonstrate that ubiquitination is required for internalization of surface AMPARs and their trafficking to the lysosome in response to the AMPAR agonist AMPA but not for internalization of AMPARs in response to the NMDA receptor agonist NMDA. Through overexpression or RNA interference-mediated knockdown, we identify that a specific E3 ligase, Nedd4-1 (neural-precursor cell-expressed developmentally downregulated gene 4-1), is necessary for this process. Finally, we show that ubiquitination of GluA1 by Nedd4-1 becomes more prevalent as neurons mature. Together, these data show that ubiquitination of GluA1-containing AMPARs by Nedd4-1 mediates their endocytosis and trafficking to the lysosome. Furthermore, these results provide insight into how hippocampal neurons regulate AMPAR trafficking and degradation with high specificity in response to differing neuronal signaling cues and suggest that changes to this pathway may occur as neurons mature.

  13. The Ubiquitin-Conjugating Enzyme E2-EPF Is Overexpressed in Primary Breast Cancer and Modulates Sensitivity to Topoisomerase II Inhibition1

    PubMed Central

    Tedesco, Donato; Zhang, Jianhuan; Trinh, Lan; Lalehzadeh, Guita; Meisner, Rene; Yamaguchi, Ken D; Ruderman, Daniel L; Dinter, Harald; Zajchowski, Deborah A

    2007-01-01

    We identified the ubiquitin-conjugating enzyme E2-EPF mRNA as differentially expressed in breast tumors relative to normal tissues and performed studies to elucidate its putative role in cancer. We demonstrated that overexpression of E2-EPF protein correlated with estrogen receptor (ER) negativity in breast cancer specimens and that its expression is cell cycle-regulated, suggesting a potential function for E2-EPF in cell cycle progression. However, reduction of E2-EPF protein levels by > 80% using RNAi had no significant effects on the proliferation of HeLa cervical cancer cells or ER- MDA-MB-231 or MDA-MB-453 breast cancer cells. Because E2-EPF protein levels were elevated during the G2/M phase of the cell cycle and because E2-EPF mRNA in tumor specimens was frequently coexpressed with genes involved in cell cycle control, spindle assembly, and mitotic surveillance, the possibility that E2-EPF might have a function in the cellular response to agents that induce a G2 checkpoint or an M checkpoint was investigated. E2-EPF knockdown sensitized HeLa cells to the topoisomerase (topo) II inhibitors etoposide and doxorubicin and also increased topo IIα protein levels. These data suggest that combined administration of topo II-directed drugs and E2-EPF inhibitors may enhance their clinical effectiveness. PMID:17710163

  14. Probes of Ubiquitin E3 ligases distinguish different stages of Parkin activation

    PubMed Central

    Pao, Kuan-Chuan; Stanley, Mathew; Han, Cong; Lai, Yu-Chiang; Murphy, Paul; Balk, Kristin; Wood, Nicola T.; Corti, Olga; Corvol, Jean-Christophe; Muqit, Miratul M.K.; Virdee, Satpal

    2016-01-01

    E3 ligases represent an important class of enzymes, yet there are currently no chemical probes to profile their activity. We develop a new class of activity-based probe by reengineering of a ubiquitin-charged E2 conjugating enzyme and demonstrate their utility by profiling the transthiolation activity of the RING-in-between-RING (RBR) E3 ligase Parkin in vitro and in cellular extracts. Our study provides valuable insight into the roles, and cellular hierarchy, of distinct phosphorylation events in Parkin activation. We also profile Parkin patient disease-associated mutations and strikingly demonstrate that they largely mediate their effect by altering transthiolation activity. Furthermore, our probes enable direct and quantitative measurement of endogenous Parkin activity revealing that endogenous Parkin is activated in neuronal cell lines (≥75 %) in response to mitochondrial depolarization. This new technology also holds promise as a novel biomarker of PINK1-Parkin signalling as demonstrated by compatibility with Parkinson’s disease patient-derived samples. PMID:26928937

  15. Structural changes induced by L50P and I61T single mutations of ubiquitin affect cell cycle progression while impairing its regulatory and degradative functions in Saccharomyces cerevisiae.

    PubMed

    Doshi, Ankita; Sharma, Mrinal; Prabha, C Ratna

    2017-06-01

    Posttranslational conjugation of ubiquitin to proteins either regulates their function directly or concentration through ubiquitination dependent degradation. High degree of conservation of ubiquitin's sequence implies structural and functional importance of the conserved residues. Ubiquitin gene of Saccharomyces cerevisiae was evolved in vitro by us to study the significance of conserved residues. Present study investigates the structural changes in the protein resulting from the single mutations UbS20F, UbA46S, UbL50P, UbI61T and their functional consequences in the SUB60 strain of S. cerevisiae. Expression of UbL50P and UbI61T decreased Cdc28 protein kinase, enhanced Fus3 levels, caused dosage dependent lethality and at sublethal level produced drastic effects on stress tolerance, protein sorting, protein degradation by ubiquitin fusion degradation pathway and by lysosomes. UbS20F and UbA46S produced insignificant effects over the cells. All four mutations of ubiquitin were incorporated into polyubiquitin. However, polyubiquitination with K63 linkage decreased significantly in cells expressing UbL50P and UbI61T. Structural studies on UbL50P and UbI61T revealed distorted structure with greatly reduced α-helical and elevated β-sheet contents, while UbS20F and UbA46S show mild structural alterations. Our results on functional efficacy of ubiquitin in relation to structural integrity may be useful for designing inhibitors to investigate and modulate eukaryotic cellular dynamics. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. The effect of acetaminophen on ubiquitin homeostasis in Saccharomyces cerevisiae.

    PubMed

    Huseinovic, Angelina; van Leeuwen, Jolanda S; van Welsem, Tibor; Stulemeijer, Iris; van Leeuwen, Fred; Vermeulen, Nico P E; Kooter, Jan M; Vos, J Chris

    2017-01-01

    Acetaminophen (APAP), although considered a safe drug, is one of the major causes of acute liver failure by overdose, and therapeutic chronic use can cause serious health problems. Although the reactive APAP metabolite N-acetyl-p-benzoquinoneimine (NAPQI) is clearly linked to liver toxicity, toxicity of APAP is also found without drug metabolism of APAP to NAPQI. To get more insight into mechanisms of APAP toxicity, a genome-wide screen in Saccharomyces cerevisiae for APAP-resistant deletion strains was performed. In this screen we identified genes related to the DNA damage response. Next, we investigated the link between genotype and APAP-induced toxicity or resistance by performing a more detailed screen with a library containing mutants of 1522 genes related to nuclear processes, like DNA repair and chromatin remodelling. We identified 233 strains that had an altered growth rate relative to wild type, of which 107 showed increased resistance to APAP and 126 showed increased sensitivity. Gene Ontology analysis identified ubiquitin homeostasis, regulation of transcription of RNA polymerase II genes, and the mitochondria-to-nucleus signalling pathway to be associated with APAP resistance, while histone exchange and modification, and vesicular transport were connected to APAP sensitivity. Indeed, we observed a link between ubiquitin levels and APAP resistance, whereby ubiquitin deficiency conferred resistance to APAP toxicity while ubiquitin overexpression resulted in sensitivity. The toxicity profile of various chemicals, APAP, and its positional isomer AMAP on a series of deletion strains with ubiquitin deficiency showed a unique resistance pattern for APAP. Furthermore, exposure to APAP increased the level of free ubiquitin and influenced the ubiquitination of proteins. Together, these results uncover a role for ubiquitin homeostasis in APAP-induced toxicity.

  17. Involvement of Parkin in the ubiquitin proteasome system-mediated degradation of N-type voltage-gated Ca2+ channels.

    PubMed

    Grimaldo, Lizbeth; Sandoval, Alejandro; Garza-López, Edgar; Felix, Ricardo

    2017-01-01

    N-type calcium (CaV2.2) channels are widely expressed in the brain and the peripheral nervous system, where they play important roles in the regulation of transmitter release. Although CaV2.2 channel expression levels are precisely regulated, presently little is known regarding the molecules that mediate its synthesis and degradation. Previously, by using a combination of biochemical and functional analyses, we showed that the complex formed by the light chain 1 of the microtubule-associated protein 1B (LC1-MAP1B) and the ubiquitin-proteasome system (UPS) E2 enzyme UBE2L3, may interact with the CaV2.2 channels promoting ubiquitin-mediated degradation. The present report aims to gain further insights into the possible mechanism of degradation of the neuronal CaV2.2 channel by the UPS. First, we identified the enzymes UBE3A and Parkin, members of the UPS E3 ubiquitin ligase family, as novel CaV2.2 channel binding partners, although evidence to support a direct protein-protein interaction is not yet available. Immunoprecipitation assays confirmed the interaction between UBE3A and Parkin with CaV2.2 channels heterologously expressed in HEK-293 cells and in neural tissues. Parkin, but not UBE3A, overexpression led to a reduced CaV2.2 protein level and decreased current density. Electrophysiological recordings performed in the presence of MG132 prevented the actions of Parkin suggesting enhanced channel proteasomal degradation. Together these results unveil a novel functional coupling between Parkin and the CaV2.2 channels and provide a novel insight into the basic mechanisms of CaV channels protein quality control and functional expression.

  18. The ubiquitin-proteasome system in spongiform degenerative disorders

    PubMed Central

    Whatley, Brandi R.; Li, Lian; Chin, Lih-Shen

    2008-01-01

    Summary Spongiform degeneration is characterized by vacuolation in nervous tissue accompanied by neuronal death and gliosis. Although spongiform degeneration is a hallmark of prion diseases, this pathology is also present in the brains of patients suffering from Alzheimer's disease, diffuse Lewy body disease, human immunodeficiency virus (HIV) infection, and Canavan's spongiform leukodystrophy. The shared outcome of spongiform degeneration in these diverse diseases suggests that common cellular mechanisms must underlie the processes of spongiform change and neurodegeneration in the central nervous system. Immunohistochemical analysis of brain tissues reveals increased ubiquitin immunoreactivity in and around areas of spongiform change, suggesting the involvement of ubiquitin-proteasome system dysfunction in the pathogenesis of spongiform neurodegeneration. The link between aberrant ubiquitination and spongiform neurodegeneration has been strengthened by the discovery that a null mutation in the E3 ubiquitin-protein ligase mahogunin ring finger-1 (Mgrn1) causes an autosomal recessively inherited form of spongiform neurodegeneration in animals. Recent studies have begun to suggest that abnormal ubiquitination may alter intracellular signaling and cell functions via proteasome-dependent and proteasome-independent mechanisms, leading to spongiform degeneration and neuronal cell death. Further elucidation of the pathogenic pathways involved in spongiform neurodegeneration should facilitate the development of novel rational therapies for treating prion diseases, HIV infection, and other spongiform degenerative disorders. PMID:18790052

  19. Cyclophilin A-regulated ubiquitination is critical for RIG-I-mediated antiviral immune responses

    PubMed Central

    Liu, Wei; Li, Jing; Zheng, Weinan; Shang, Yingli; Zhao, Zhendong; Wang, Shanshan; Bi, Yuhai; Zhang, Shuang; Xu, Chongfeng; Duan, Ziyuan; Zhang, Lianfeng; Wang, Yue L; Jiang, Zhengfan; Liu, Wenjun; Sun, Lei

    2017-01-01

    RIG-I is a key cytosolic pattern recognition receptor that interacts with MAVS to induce type I interferons (IFNs) against RNA virus infection. In this study, we found that cyclophilin A (CypA), a peptidyl-prolyl cis/trans isomerase, functioned as a critical positive regulator of RIG-I-mediated antiviral immune responses. Deficiency of CypA impaired RIG-I-mediated type I IFN production and promoted viral replication in human cells and mice. Upon Sendai virus infection, CypA increased the interaction between RIG-I and its E3 ubiquitin ligase TRIM25, leading to enhanced TRIM25-mediated K63-linked ubiquitination of RIG-I that facilitated recruitment of RIG-I to MAVS. In addition, CypA and TRIM25 competitively interacted with MAVS, thereby inhibiting TRIM25-induced K48-linked ubiquitination of MAVS. Taken together, our findings reveal an essential role of CypA in boosting RIG-I-mediated antiviral immune responses by controlling the ubiquitination of RIG-I and MAVS. DOI: http://dx.doi.org/10.7554/eLife.24425.001 PMID:28594325

  20. Phospho-ubiquitin-PARK2 complex as a marker for mitophagy defects.

    PubMed

    Callegari, Sylvie; Oeljeklaus, Silke; Warscheid, Bettina; Dennerlein, Sven; Thumm, Michael; Rehling, Peter; Dudek, Jan

    2017-01-02

    The E3 ubiquitin ligase PARK2 and the mitochondrial protein kinase PINK1 are required for the initiation of mitochondrial damage-induced mitophagy. Together, PARK2 and PINK1 generate a phospho-ubiquitin signal on outer mitochondrial membrane proteins that triggers recruitment of the autophagy machinery. This paper describes the detection of a defined 500-kDa phospho-ubiquitin-rich PARK2 complex that accumulates on mitochondria upon treatment with the membrane uncoupler CCCP. Formation of this complex is dependent on the presence of PINK1 and is absent in mutant forms of PARK2, whereby mitophagy is also arrested. These results signify a functional signaling complex that is essential for the progression of mitophagy. The visualization of the PARK2 signaling complex represents a novel marker for this critical step in mitophagy and can be used to monitor mitophagy progression in PARK2 mutants and to uncover additional upstream factors required for PARK2-mediated mitophagy signaling.

  1. Ubiquitination as an efficient molecular strategy employed in salmonella infection

    USDA-ARS?s Scientific Manuscript database

    The ubiquitin modification has various functions in the host innate immune system in response to the bacterial infection. To counteract the host immunity, Salmonella can specifically target ubiquitin pathways by its effector proteins. In this review, we describe the multiple facets of ubiquitin func...

  2. Non-Linear Editing for the Smaller College-Level Production Program, Rev. 2.0.

    ERIC Educational Resources Information Center

    Tetzlaff, David

    This paper focuses on a specific topic and contention: Non-linear editing earns its place in a liberal arts setting because it is a superior tool to teach the concepts of how moving picture discourse is constructed through editing. The paper first points out that most students at small liberal arts colleges are not going to wind up working…

  3. Immune defects caused by mutations in the ubiquitin system.

    PubMed

    Etzioni, Amos; Ciechanover, Aaron; Pikarsky, Eli

    2017-03-01

    The importance of the ubiquitin system in health and disease has been widely recognized in recent decades, with better understanding of the various components of the system and their function. Ubiquitination, which is essential to almost all biological processes in eukaryotes, was also found to play an important role in innate and adaptive immune responses. Thus it is not surprising that mutations in genes coding for components of the ubiquitin system cause immune dysregulation. The first defect in the system was described 30 years ago and is due to mutations in the nuclear factor κB (NF-κB) essential modulator, a key regulator of the NF-κB pathway. With use of novel sequencing techniques, many additional mutations in different genes involved in ubiquitination and related to immune system function were identified. This can be clearly illustrated in mutations in the different activation pathways of NF-κB, which result in aberrations in production of various proinflammatory cytokines. The inherited diseases typically manifest with immunodeficiency, autoimmunity, or autoinflammation. In this perspective we provide a short description of the ubiquitin system, with specific emphasis given to its role in the immune system. The various immunodeficiency conditions identified thus far in association with defective ubiquitination are discussed in more detail. Copyright © 2017 American Academy of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.

  4. The effect of acetaminophen on ubiquitin homeostasis in Saccharomyces cerevisiae

    PubMed Central

    Huseinovic, Angelina; van Leeuwen, Jolanda S.; van Welsem, Tibor; Stulemeijer, Iris; van Leeuwen, Fred; Vermeulen, Nico P. E.; Kooter, Jan M.; Vos, J. Chris

    2017-01-01

    Acetaminophen (APAP), although considered a safe drug, is one of the major causes of acute liver failure by overdose, and therapeutic chronic use can cause serious health problems. Although the reactive APAP metabolite N-acetyl-p-benzoquinoneimine (NAPQI) is clearly linked to liver toxicity, toxicity of APAP is also found without drug metabolism of APAP to NAPQI. To get more insight into mechanisms of APAP toxicity, a genome-wide screen in Saccharomyces cerevisiae for APAP-resistant deletion strains was performed. In this screen we identified genes related to the DNA damage response. Next, we investigated the link between genotype and APAP-induced toxicity or resistance by performing a more detailed screen with a library containing mutants of 1522 genes related to nuclear processes, like DNA repair and chromatin remodelling. We identified 233 strains that had an altered growth rate relative to wild type, of which 107 showed increased resistance to APAP and 126 showed increased sensitivity. Gene Ontology analysis identified ubiquitin homeostasis, regulation of transcription of RNA polymerase II genes, and the mitochondria-to-nucleus signalling pathway to be associated with APAP resistance, while histone exchange and modification, and vesicular transport were connected to APAP sensitivity. Indeed, we observed a link between ubiquitin levels and APAP resistance, whereby ubiquitin deficiency conferred resistance to APAP toxicity while ubiquitin overexpression resulted in sensitivity. The toxicity profile of various chemicals, APAP, and its positional isomer AMAP on a series of deletion strains with ubiquitin deficiency showed a unique resistance pattern for APAP. Furthermore, exposure to APAP increased the level of free ubiquitin and influenced the ubiquitination of proteins. Together, these results uncover a role for ubiquitin homeostasis in APAP-induced toxicity. PMID:28291796

  5. A MARCH6 and IDOL E3 Ubiquitin Ligase Circuit Uncouples Cholesterol Synthesis from Lipoprotein Uptake in Hepatocytes

    PubMed Central

    Loregger, Anke; Cook, Emma Claire Laura; Nelson, Jessica Kristin; Moeton, Martina; Sharpe, Laura Jane; Engberg, Susanna; Karimova, Madina; Lambert, Gilles; Brown, Andrew John

    2015-01-01

    Cholesterol synthesis and lipoprotein uptake are tightly coordinated to ensure that the cellular level of cholesterol is adequately maintained. Hepatic dysregulation of these processes is associated with pathological conditions, most notably cardiovascular disease. Using a genetic approach, we have recently identified the E3 ubiquitin ligase MARCH6 as a regulator of cholesterol biosynthesis, owing to its ability to promote degradation of the rate-limiting enzymes 3-hydroxy-3-methyl-glutaryl coenzyme A reductase (HMGCR) and squalene epoxidase (SQLE). Here, we present evidence for MARCH6 playing a multifaceted role in the control of cholesterol homeostasis in hepatocytes. We identify MARCH6 as an endogenous inhibitor of the sterol regulatory element binding protein (SREBP) transcriptional program. Accordingly, loss of MARCH6 increases expression of SREBP-regulated genes involved in cholesterol biosynthesis and lipoprotein uptake. Unexpectedly, this is associated with a decrease in cellular lipoprotein uptake, induced by enhanced lysosomal degradation of the low-density lipoprotein receptor (LDLR). Finally, we provide evidence that induction of the E3 ubiquitin ligase IDOL represents the molecular mechanism underlying this MARCH6-induced phenotype. Our study thus highlights a MARCH6-dependent mechanism to direct cellular cholesterol accretion that relies on uncoupling of cholesterol synthesis from lipoprotein uptake. PMID:26527619

  6. Ubiquitin-specific Protease 7 Regulates Nucleotide Excision Repair through Deubiquitinating XPC Protein and Preventing XPC Protein from Undergoing Ultraviolet Light-induced and VCP/p97 Protein-regulated Proteolysis*

    PubMed Central

    He, Jinshan; Zhu, Qianzheng; Wani, Gulzar; Sharma, Nidhi; Han, Chunhua; Qian, Jiang; Pentz, Kyle; Wang, Qi-en; Wani, Altaf A.

    2014-01-01

    Ubiquitin specific protease 7 (USP7) is a known deubiquitinating enzyme for tumor suppressor p53 and its downstream regulator, E3 ubiquitin ligase Mdm2. Here we report that USP7 regulates nucleotide excision repair (NER) via deubiquitinating xeroderma pigmentosum complementation group C (XPC) protein, a critical damage recognition factor that binds to helix-distorting DNA lesions and initiates NER. XPC is ubiquitinated during the early stage of NER of UV light-induced DNA lesions. We demonstrate that transiently compromising cellular USP7 by siRNA and chemical inhibition leads to accumulation of ubiquitinated forms of XPC, whereas complete USP7 deficiency leads to rapid ubiquitin-mediated XPC degradation upon UV irradiation. We show that USP7 physically interacts with XPC in vitro and in vivo. Overexpression of wild-type USP7, but not its catalytically inactive or interaction-defective mutants, reduces the ubiquitinated forms of XPC. Importantly, USP7 efficiently deubiquitinates XPC-ubiquitin conjugates in deubiquitination assays in vitro. We further show that valosin-containing protein (VCP)/p97 is involved in UV light-induced XPC degradation in USP7-deficient cells. VCP/p97 is readily recruited to DNA damage sites and colocalizes with XPC. Chemical inhibition of the activity of VCP/p97 ATPase causes an increase in ubiquitinated XPC on DNA-damaged chromatin. Moreover, USP7 deficiency severely impairs the repair of cyclobutane pyrimidine dimers and, to a lesser extent, affects the repair of 6-4 photoproducts. Taken together, our findings uncovered an important role of USP7 in regulating NER via deubiquitinating XPC and by preventing its VCP/p97-regulated proteolysis. PMID:25118285

  7. A Snapshot of Photo Editing Options

    ERIC Educational Resources Information Center

    Bolkan, J.V.

    2004-01-01

    Plenty of digital imaging professionals claim that Adobe's Photoshop CS is the best photo editing application money can buy. This document reviews Adobe's Photoshop CS and its worthy competitors. In addition to Adobe, the following programs are reviewed in this document: (1) Adobe Photoshop Elements 2.0; (2) Arcsoft PhotoImpression; (3) Jasc Paint…

  8. Ubiquitin and Parkinson's disease through the looking glass of genetics.

    PubMed

    Walden, Helen; Muqit, Miratul M K

    2017-04-13

    Biochemical alterations found in the brains of Parkinson's disease (PD) patients indicate that cellular stress is a major driver of dopaminergic neuronal loss. Oxidative stress, mitochondrial dysfunction, and ER stress lead to impairment of the homeostatic regulation of protein quality control pathways with a consequent increase in protein misfolding and aggregation and failure of the protein degradation machinery. Ubiquitin signalling plays a central role in protein quality control; however, prior to genetic advances, the detailed mechanisms of how impairment in the ubiquitin system was linked to PD remained mysterious. The discovery of mutations in the α-synuclein gene, which encodes the main protein misfolded in PD aggregates, together with mutations in genes encoding ubiquitin regulatory molecules, including PTEN-induced kinase 1 (PINK1), Parkin, and FBX07, has provided an opportunity to dissect out the molecular basis of ubiquitin signalling disruption in PD, and this knowledge will be critical for developing novel therapeutic strategies in PD that target the ubiquitin system. © 2017 The Author(s).

  9. Defining the human deubiquitinating enzyme interaction landscape.

    PubMed

    Sowa, Mathew E; Bennett, Eric J; Gygi, Steven P; Harper, J Wade

    2009-07-23

    Deubiquitinating enzymes (Dubs) function to remove covalently attached ubiquitin from proteins, thereby controlling substrate activity and/or abundance. For most Dubs, their functions, targets, and regulation are poorly understood. To systematically investigate Dub function, we initiated a global proteomic analysis of Dubs and their associated protein complexes. This was accomplished through the development of a software platform called CompPASS, which uses unbiased metrics to assign confidence measurements to interactions from parallel nonreciprocal proteomic data sets. We identified 774 candidate interacting proteins associated with 75 Dubs. Using Gene Ontology, interactome topology classification, subcellular localization, and functional studies, we link Dubs to diverse processes, including protein turnover, transcription, RNA processing, DNA damage, and endoplasmic reticulum-associated degradation. This work provides the first glimpse into the Dub interaction landscape, places previously unstudied Dubs within putative biological pathways, and identifies previously unknown interactions and protein complexes involved in this increasingly important arm of the ubiquitin-proteasome pathway.

  10. Defining the Human Deubiquitinating Enzyme Interaction Landscape

    PubMed Central

    Sowa, Mathew E.; Bennett, Eric J.; Gygi, Steven P.; Harper, J. Wade

    2009-01-01

    Summary Deubiquitinating enzymes (Dubs) function to remove covalently attached ubiquitin from proteins, thereby controlling substrate activity and/or abundance. For most Dubs, their functions, targets, and regulation are poorly understood. To systematically investigate Dub function, we initiated a global proteomic analysis of Dubs and their associated protein complexes. This was accomplished through the development of a software platform, called CompPASS, which uses unbiased metrics to assign confidence measurements to interactions from parallel non-reciprocal proteomic datasets. We identified 774 candidate interacting proteins associated with 75 Dubs. Using Gene Ontology, interactome topology classification, sub-cellular localization and functional studies, we link Dubs to diverse processes, including protein turnover, transcription, RNA processing, DNA damage, and endoplasmic reticulum-associated degradation. This work provides the first glimpse into the Dub interaction landscape, places previously unstudied Dubs within putative biological pathways, and identifies previously unknown interactions and protein complexes involved in this increasingly important arm of the ubiquitin-proteasome pathway. PMID:19615732

  11. A-to-I RNA editing is developmentally regulated and generally adaptive for sexual reproduction in Neurospora crassa

    PubMed Central

    Li, Yang; Chen, Daipeng; Qi, Zhaomei; Wang, Qinhu; Wang, Jianhua; Jiang, Cong; Xu, Jin-Rong

    2017-01-01

    Although fungi lack adenosine deaminase acting on RNA (ADAR) enzymes, adenosine to inosine (A-to-I) RNA editing was reported recently in Fusarium graminearum during sexual reproduction. In this study, we profiled the A-to-I editing landscape and characterized its functional and adaptive properties in the model filamentous fungus Neurospora crassa. A total of 40,677 A-to-I editing sites were identified, and approximately half of them displayed stage-specific editing or editing levels at different sexual stages. RNA-sequencing analysis with the Δstc-1 and Δsad-1 mutants confirmed A-to-I editing occurred before ascus development but became more prevalent during ascosporogenesis. Besides fungal-specific sequence and secondary structure preference, 63.5% of A-to-I editing sites were in the coding regions and 81.3% of them resulted in nonsynonymous recoding, resulting in a significant increase in the proteome complexity. Many genes involved in RNA silencing, DNA methylation, and histone modifications had extensive recoding, including sad-1, sms-3, qde-1, and dim-2. Fifty pseudogenes harbor premature stop codons that require A-to-I editing to encode full-length proteins. Unlike in humans, nonsynonymous editing events in N. crassa are generally beneficial and favored by positive selection. Almost half of the nonsynonymous editing sites in N. crassa are conserved and edited in Neurospora tetrasperma. Furthermore, hundreds of them are conserved in F. graminearum and had higher editing levels. Two unknown genes with editing sites conserved between Neurospora and Fusarium were experimentally shown to be important for ascosporogenesis. This study comprehensively analyzed A-to-I editing in N. crassa and showed that RNA editing is stage-specific and generally adaptive, and may be functionally related to repeat induced point mutation and meiotic silencing by unpaired DNA. PMID:28847945

  12. Hepatitis D virus RNA editing is inhibited by a GFP fusion protein containing a C-terminally deleted delta antigen.

    PubMed

    Shih, Ko-Nien; Chuang, Ya-Ting; Liu, Hsuan; Lo, Szecheng J

    2004-04-01

    During its life cycle, hepatitis D virus (HDV) produces two forms of delta antigen (HDAg), small delta antigen (SDAg) and large delta antigen (LDAg), which differ in their C-terminal 19 amino acids. Host enzymes termed ADARs (adenosine deaminases that act on double-stranded RNA) are required for LDAg production. These enzymes change the stop codon (UAG) of SDAg to a tryptophan codon (UGG). However, the temporal and spatial regulation of HDV RNA editing is largely unknown. In this study, we constructed three GFP fusion proteins containing different lengths of SDAg and characterized their cellular localization and effects on HDV replication. One of these fusion proteins, designated D(1-88)-GFP, inhibited LDAg but not SDAg production, suggesting that D(1-88)-GFP inhibits HDV RNA editing. Two experiments further supported this supposition: (i). RT-PCR analysis combined with NcoI restriction enzyme digestion revealed that HDV RNA editing was reduced by 42% in HeLa-D(1-88)-GFP when compared with HeLa cells; and (ii). the ratio of SDAg/LDAg production from the reporter RNAs was reduced in cells co-transfected with ADAR-expressing and reporter plasmids in the presence of D(1-88)-GFP. Double fluorescence microscopy found that D(1-88)-GFP was either associated with SC-35 or was adjacent to PML (premyelocytic leukaemia antigen) at nuclear speckles, but D(1-88)-GFP was not co-localized with ADAR, which was mainly located in the nucleolus. In situ hybridization showing co-localization of HDV RNA with D(1-88)-GFP at nuclear speckles suggested that HDV RNA editing might occur in the nuclear speckles and require other nuclear factor(s), in addition to ADAR.

  13. A-to-I RNA Editing Up-regulates Human Dihydrofolate Reductase in Breast Cancer.

    PubMed

    Nakano, Masataka; Fukami, Tatsuki; Gotoh, Saki; Nakajima, Miki

    2017-03-24

    Dihydrofolate reductase (DHFR) plays a key role in folate metabolism and is a target molecule of methotrexate. An increase in the cellular expression level of DHFR is one of the mechanisms of tumor resistance to methotrexate. The present study investigated the possibility that adenosine-to-inosine RNA editing, which causes nucleotide conversion by adenosine deaminase acting on RNA (ADAR) enzymes, might modulate DHFR expression. In human breast adenocarcinoma-derived MCF-7 cells, 26 RNA editing sites were identified in the 3'-UTR of DHFR. Knockdown of ADAR1 decreased the RNA editing levels of DHFR and resulted in a decrease in the DHFR mRNA and protein levels, indicating that ADAR1 up-regulates DHFR expression. Using a computational analysis, miR-25-3p and miR-125a-3p were predicted to bind to the non-edited 3'-UTR of DHFR but not to the edited sequence. The decrease in DHFR expression by the knockdown of ADAR1 was restored by transfection of antisense oligonucleotides for these miRNAs, suggesting that RNA editing mediated up-regulation of DHFR requires the function of these miRNAs. Interestingly, we observed that the knockdown of ADAR1 decreased cell viability and increased the sensitivity of MCF-7 cells to methotrexate. ADAR1 expression levels and the RNA editing levels in the 3'-UTR of DHFR in breast cancer tissues were higher than those in adjacent normal tissues. Collectively, the present study demonstrated that ADAR1 positively regulates the expression of DHFR by editing the miR-25-3p and miR-125a-3p binding sites in the 3'-UTR of DHFR, enhancing cellular proliferation and resistance to methotrexate. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  14. Identification of a novel K311 ubiquitination site critical for androgen receptor transcriptional activity

    PubMed Central

    Cork, David M.W.; Darby, Steven; Ryan-Munden, Claudia A.; Nakjang, Sirintra; Mendes Côrtes, Leticia; Treumann, Achim; Gaughan, Luke

    2017-01-01

    Abstract The androgen receptor (AR) is the main driver of prostate cancer (PC) development and progression, and the primary therapeutic target in PC. To date, two functional ubiquitination sites have been identified on AR, both located in its C-terminal ligand binding domain (LBD). Recent reports highlight the emergence of AR splice variants lacking the LBD that can arise during disease progression and contribute to castrate resistance. Here, we report a novel N-terminal ubiquitination site at lysine 311. Ubiquitination of this site plays a role in AR stability and is critical for its transcriptional activity. Inactivation of this site causes AR to accumulate on chromatin and inactivates its transcriptional function as a consequence of inability to bind to p300. Additionally, mutation at lysine 311 affects cellular transcriptome altering the expression of genes involved in chromatin organization, signaling, adhesion, motility, development and metabolism. Even though this site is present in clinically relevant AR-variants it can only be ubiquitinated in cells when AR retains LBD suggesting a role for AR C-terminus in E2/E3 substrate recognition. We report that as a consequence AR variants lacking the LBD cannot be ubiquitinated in the cellular environment and their protein turnover must be regulated via an alternate pathway. PMID:27903893

  15. COPI mediates recycling of an exocytic SNARE by recognition of a ubiquitin sorting signal

    PubMed Central

    Xu, Peng; Hankins, Hannah M; MacDonald, Chris; Erlinger, Samuel J; Frazier, Meredith N; Diab, Nicholas S; Piper, Robert C; Jackson, Lauren P; MacGurn, Jason A

    2017-01-01

    The COPI coat forms transport vesicles from the Golgi complex and plays a poorly defined role in endocytic trafficking. Here we show that COPI binds K63-linked polyubiquitin and this interaction is crucial for trafficking of a ubiquitinated yeast SNARE (Snc1). Snc1 is a v-SNARE that drives fusion of exocytic vesicles with the plasma membrane, and then recycles through the endocytic pathway to the Golgi for reuse in exocytosis. Removal of ubiquitin from Snc1, or deletion of a β'-COP subunit propeller domain that binds K63-linked polyubiquitin, disrupts Snc1 recycling causing aberrant accumulation in internal compartments. Moreover, replacement of the β'-COP propeller domain with unrelated ubiquitin-binding domains restores Snc1 recycling. These results indicate that ubiquitination, a modification well known to target membrane proteins to the lysosome or vacuole for degradation, can also function as recycling signal to sort a SNARE into COPI vesicles in a non-degradative pathway. PMID:29058666

  16. RNF8 E3 Ubiquitin Ligase Stimulates Ubc13 E2 Conjugating Activity That Is Essential for DNA Double Strand Break Signaling and BRCA1 Tumor Suppressor Recruitment

    DOE PAGES

    Hodge, Curtis D.; Ismail, Ismail H.; Edwards, Ross A.; ...

    2016-02-22

    DNA double strand break (DSB) responses depend on the sequential actions of the E3 ubiquitin ligases RNF8 and RNF168 plus E2 ubiquitin-conjugating enzyme Ubc13 to specifically generate histone Lys-63-linked ubiquitin chains in DSB signaling. In this paper, we defined the activated RNF8-Ubc13~ubiquitin complex by x-ray crystallography and its functional solution conformations by x-ray scattering, as tested by separation-of-function mutations imaged in cells by immunofluorescence. The collective results show that the RING E3 RNF8 targets E2 Ubc13 to DSB sites and plays a critical role in damage signaling by stimulating polyubiquitination through modulating conformations of ubiquitin covalently linked to the Ubc13more » active site. Structure-guided separation-of-function mutations show that the RNF8 E2 stimulating activity is essential for DSB signaling in mammalian cells and is necessary for downstream recruitment of 53BP1 and BRCA1. Chromatin-targeted RNF168 rescues 53BP1 recruitment involved in non-homologous end joining but not BRCA1 recruitment for homologous recombination. Finally, these findings suggest an allosteric approach to targeting the ubiquitin-docking cleft at the E2-E3 interface for possible interventions in cancer and chronic inflammation, and moreover, they establish an independent RNF8 role in BRCA1 recruitment.« less

  17. The E3 ubiquitin-ligase SEVEN IN ABSENTIA like 7 mono-ubiquitinates glyceraldehyde-3-phosphate dehydrogenase 1 isoform in vitro and is required for its nuclear localization in Arabidopsis thaliana.

    PubMed

    Peralta, Diego A; Araya, Alejandro; Busi, Maria V; Gomez-Casati, Diego F

    2016-01-01

    The E3 ubiquitin-protein ligases are associated to various processes such as cell cycle control and diverse developmental pathways. Arabidopsis thaliana SEVEN IN ABSENTIA like 7, which has ubiquitin ligase activity, is located in the nucleus and cytosol and is expressed at several stages in almost all plant tissues suggesting an important role in plant functions. However, the mechanism underlying the regulation of this protein is unknown. Since we found that the SEVEN IN ABSENTIA like 7 gene expression is altered in plants with impaired mitochondria, and in plants deficient in the glycolytic enzyme glyceraldehyde-3-phosphate dehydrogenase 1, we decided to study the possible interactions between both proteins as potential partners in plant signaling functions. We found that SEVEN IN ABSENTIA like 7 is able to interact in vitro with glyceraldehyde-3-phosphate dehydrogenase and that the Lys231 residue of the last is essential for this function. Following the interaction, a concomitant increase in the glyceraldehyde-3-phosphate dehydrogenase catalytic activity was observed. However, when SEVEN IN ABSENTIA like 7 was supplemented with E1 and E2 proteins to form a complete E1-E2-E3 modifier complex, we observed the mono-ubiquitination of glyceraldehyde-3-phosphate dehydrogenase 1 at the Lys76 residue and a dramatic decrease of its catalytic activity. Moreover, we found that localization of glyceraldehyde-3-phosphate dehydrogenase 1 in the nucleus is dependent on the expression SEVEN IN ABSENTIA like 7. These observations suggest that the association of both proteins might result in different biological consequences in plants either through affecting the glycolytic flux or via cytoplasm-nucleus relocation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Alu elements shape the primate transcriptome by cis-regulation of RNA editing

    PubMed Central

    2014-01-01

    Background RNA editing by adenosine to inosine deamination is a widespread phenomenon, particularly frequent in the human transcriptome, largely due to the presence of inverted Alu repeats and their ability to form double-stranded structures – a requisite for ADAR editing. While several hundred thousand editing sites have been identified within these primate-specific repeats, the function of Alu-editing has yet to be elucidated. Results We show that inverted Alu repeats, expressed in the primate brain, can induce site-selective editing in cis on sites located several hundred nucleotides from the Alu elements. Furthermore, a computational analysis, based on available RNA-seq data, finds that site-selective editing occurs significantly closer to edited Alu elements than expected. These targets are poorly edited upon deletion of the editing inducers, as well as in homologous transcripts from organisms lacking Alus. Sequences surrounding sites near edited Alus in UTRs, have been subjected to a lesser extent of evolutionary selection than those far from edited Alus, indicating that their editing generally depends on cis-acting Alus. Interestingly, we find an enrichment of primate-specific editing within encoded sequence or the UTRs of zinc finger-containing transcription factors. Conclusions We propose a model whereby primate-specific editing is induced by adjacent Alu elements that function as recruitment elements for the ADAR editing enzymes. The enrichment of site-selective editing with potentially functional consequences on the expression of transcription factors indicates that editing contributes more profoundly to the transcriptomic regulation and repertoire in primates than previously thought. PMID:24485196

  19. Quantitation and immunocytochemical localization of ubiquitin conjugates within rat red and white skeletal muscles

    NASA Technical Reports Server (NTRS)

    Riley, Danny A.; Bain, James L. W.; Haas, Arthur L.; Ellis, Stanley

    1988-01-01

    Solid-phase immunochemical methods were employed to probe the dynamics of ubiquitin pools within selected rat skeletal muscles. The total ubiquitin content of red muscles was greater than that of white muscles, even though the fractional conjugation was similar for both types of muscles. The specificity for conjugated ubiquitin in solid-phase applications, previously demonstrated for an affinity-purified antibody against SDS-denatured ubiquitin, was retained when used as a probe for ubiquitin-protein adducts in tissue sections. Immunohistochemical localization revealed that differences in ubiquitin pools derived from the relative content of red (oxidative) vs white (glycolytic) fibers, with the former exhibiting a higher content of ubiquitin conjugates. Subsequent immunogold labeling demonstrated statistically significant enhanced localization of ubiquitin conjugates to the Z-lines in both red and white muscle fiber types.

  20. Binding to Syntenin-1 Protein Defines a New Mode of Ubiquitin-based Interactions Regulated by Phosphorylation*

    PubMed Central

    Rajesh, Sundaresan; Bago, Ružica; Odintsova, Elena; Muratov, Gayrat; Baldwin, Gouri; Sridhar, Pooja; Rajesh, Sandya; Overduin, Michael; Berditchevski, Fedor

    2011-01-01

    Syntenin-1 is a PDZ domain-containing adaptor that controls trafficking of transmembrane proteins including those associated with tetraspanin-enriched microdomains. We describe the interaction of syntenin-1 with ubiquitin through a novel binding site spanning the C terminus of ubiquitin, centered on Arg72, Leu73, and Arg74. A conserved LYPSL sequence in the N terminus, as well as the C-terminal region of syntenin-1, are essential for binding to ubiquitin. We present evidence for the regulation of this interaction through syntenin-1 dimerization. We have also established that syntenin-1 is phosphorylated downstream of Ulk1, a serine/threonine kinase that plays a critical role in autophagy and regulates endocytic trafficking. Importantly, Ulk1-dependent phosphorylation of Ser6 in the LYPSL prevents the interaction of syntenin-1 with ubiquitin. These results define an unprecedented ubiquitin-dependent pathway involving syntenin-1 that is regulated by Ulk1. PMID:21949238

  1. From Agrobacterium to viral vectors: genome modification of plant cells by rare cutting restriction enzymes.

    PubMed

    Marton, Ira; Honig, Arik; Omid, Ayelet; De Costa, Noam; Marhevka, Elena; Cohen, Barry; Zuker, Amir; Vainstein, Alexander

    2013-01-01

    Researchers and biotechnologists require methods to accurately modify the genome of higher eukaryotic cells. Such modifications include, but are not limited to, site-specific mutagenesis, site-specific insertion of foreign DNA, and replacement and deletion of native sequences. Accurate genome modifications in plant species have been rather limited, with only a handful of plant species and genes being modified through the use of early genome-editing techniques. The development of rare-cutting restriction enzymes as a tool for the induction of site-specific genomic double-strand breaks and their introduction as a reliable tool for genome modification in animals, animal cells and human cell lines have paved the way for the adaptation of rare-cutting restriction enzymes to genome editing in plant cells. Indeed, the number of plant species and genes which have been successfully edited using zinc finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs) and engineered homing endonucleases is on the rise. In our review, we discuss the basics of rare-cutting restriction enzyme-mediated genome-editing technology with an emphasis on its application in plant species.

  2. A Hierarchical Mechanism of RIG-I Ubiquitination Provides Sensitivity, Robustness and Synergy in Antiviral Immune Responses.

    PubMed

    Sun, Xiaoqiang; Xian, Huifang; Tian, Shuo; Sun, Tingzhe; Qin, Yunfei; Zhang, Shoutao; Cui, Jun

    2016-07-08

    RIG-I is an essential receptor in the initiation of the type I interferon (IFN) signaling pathway upon viral infection. Although K63-linked ubiquitination plays an important role in RIG-I activation, the optimal modulation of conjugated and unanchored ubiquitination of RIG-I as well as its functional implications remains unclear. In this study, we determined that, in contrast to the RIG-I CARD domain, full-length RIG-I must undergo K63-linked ubiquitination at multiple sites to reach full activity. A systems biology approach was designed based on experiments using full-length RIG-I. Model selection for 7 candidate mechanisms of RIG-I ubiquitination inferred a hierarchical architecture of the RIG-I ubiquitination mode, which was then experimentally validated. Compared with other mechanisms, the selected hierarchical mechanism exhibited superior sensitivity and robustness in RIG-I-induced type I IFN activation. Furthermore, our model analysis and experimental data revealed that TRIM4 and TRIM25 exhibited dose-dependent synergism. These results demonstrated that the hierarchical mechanism of multi-site/type ubiquitination of RIG-I provides an efficient, robust and optimal synergistic regulatory module in antiviral immune responses.

  3. A Hierarchical Mechanism of RIG-I Ubiquitination Provides Sensitivity, Robustness and Synergy in Antiviral Immune Responses

    PubMed Central

    Sun, Xiaoqiang; Xian, Huifang; Tian, Shuo; Sun, Tingzhe; Qin, Yunfei; Zhang, Shoutao; Cui, Jun

    2016-01-01

    RIG-I is an essential receptor in the initiation of the type I interferon (IFN) signaling pathway upon viral infection. Although K63-linked ubiquitination plays an important role in RIG-I activation, the optimal modulation of conjugated and unanchored ubiquitination of RIG-I as well as its functional implications remains unclear. In this study, we determined that, in contrast to the RIG-I CARD domain, full-length RIG-I must undergo K63-linked ubiquitination at multiple sites to reach full activity. A systems biology approach was designed based on experiments using full-length RIG-I. Model selection for 7 candidate mechanisms of RIG-I ubiquitination inferred a hierarchical architecture of the RIG-I ubiquitination mode, which was then experimentally validated. Compared with other mechanisms, the selected hierarchical mechanism exhibited superior sensitivity and robustness in RIG-I-induced type I IFN activation. Furthermore, our model analysis and experimental data revealed that TRIM4 and TRIM25 exhibited dose-dependent synergism. These results demonstrated that the hierarchical mechanism of multi-site/type ubiquitination of RIG-I provides an efficient, robust and optimal synergistic regulatory module in antiviral immune responses. PMID:27387525

  4. A Hierarchical Mechanism of RIG-I Ubiquitination Provides Sensitivity, Robustness and Synergy in Antiviral Immune Responses

    NASA Astrophysics Data System (ADS)

    Sun, Xiaoqiang; Xian, Huifang; Tian, Shuo; Sun, Tingzhe; Qin, Yunfei; Zhang, Shoutao; Cui, Jun

    2016-07-01

    RIG-I is an essential receptor in the initiation of the type I interferon (IFN) signaling pathway upon viral infection. Although K63-linked ubiquitination plays an important role in RIG-I activation, the optimal modulation of conjugated and unanchored ubiquitination of RIG-I as well as its functional implications remains unclear. In this study, we determined that, in contrast to the RIG-I CARD domain, full-length RIG-I must undergo K63-linked ubiquitination at multiple sites to reach full activity. A systems biology approach was designed based on experiments using full-length RIG-I. Model selection for 7 candidate mechanisms of RIG-I ubiquitination inferred a hierarchical architecture of the RIG-I ubiquitination mode, which was then experimentally validated. Compared with other mechanisms, the selected hierarchical mechanism exhibited superior sensitivity and robustness in RIG-I-induced type I IFN activation. Furthermore, our model analysis and experimental data revealed that TRIM4 and TRIM25 exhibited dose-dependent synergism. These results demonstrated that the hierarchical mechanism of multi-site/type ubiquitination of RIG-I provides an efficient, robust and optimal synergistic regulatory module in antiviral immune responses.

  5. Molecular dynamics simulations of human E3 ubiquitin ligase Parkin

    PubMed Central

    Qiu, Shi; Zhu, Shun; Xu, Shan; Han, Yanyan; Liu, Wen; Zuo, Ji

    2017-01-01

    Human E3 ubiquitin protein ligase parkin (Parkin) mediates mitophagy to maintain mitochondrial homeostasis. Parkin mutations are common genetic causes of early onset familial Parkinson's disease. The molecular mechanism of Parkin activation has been widely studied with emerging evidence suggesting an essential role of the phosphorylated (phospho)-ubiquitin interaction. However, the underlying mechanism of the phospho-ubiquitin interaction remains elusive. In the present study, replica exchange molecular dynamics simulations were performed to examine the conformational dynamics of Parkin in monomer and phospho-ubiquitin-bound states. In the Parkin monomer state, high structural flexibilities were observed in the majority of regions of Parkin particularly in the loop domain between the ubiquitin-like (UBL) and really interesting new gene (RING)0 domain. Binding of phospho-ubiquitin stabilizes the RING1/RING in between RING interface but destabilizes the RING1-UBL interface. Furthermore, using steered molecular dynamics simulations of Parkin mutations, it was demonstrated that salt bridge interactions contribute significantly to the interdomain interactions between the RING1 and UBL domain. Taken together, the results of the present study revealed the conformational dynamics of human full-length Parkin in monomer and phospho-ubiquitin-bound states, providing insights into designing potential therapeutics against Parkinson's disease. PMID:28765939

  6. Combining Zebrafish and Mouse Models to Test the Function of Deubiquitinating Enzyme (Dubs) Genes in Development: Role of USP45 in the Retina.

    PubMed

    Toulis, Vasileios; Garanto, Alejandro; Marfany, Gemma

    2016-01-01

    Ubiquitination is a dynamic and reversible posttranslational modification. Much effort has been devoted to characterize the function of ubiquitin pathway genes in the cell context, but much less is known on their functional role in the development and maintenance of organs and tissues in the organism. In fact, several ubiquitin ligases and deubiquitinating enzymes (DUBs) are implicated in human pathological disorders, from cancer to neurodegeneration. The aim of our work is to explore the relevance of DUBs in retinal function in health and disease, particularly since some genes related to the ubiquitin or SUMO pathways cause retinal dystrophies, a group of rare diseases that affect 1:3000 individuals worldwide. We propose zebrafish as an extremely useful and informative genetic model to characterize the function of any particular gene in the retina, and thus complement the expression data from mouse. A preliminary characterization of gene expression in mouse retinas (RT-PCR and in situ hybridization) was performed to select particularly interesting genes, and we later replicated the experiments in zebrafish. As a proof of concept, we selected ups45 to be knocked down by morpholino injection in zebrafish embryos. Morphant phenotypic analysis showed moderate to severe eye morphological defects, with a defective formation of the retinal structures, therefore supporting the relevance of DUBs in the formation and differentiation of the vertebrate retina, and suggesting that genes encoding ubiquitin pathway enzymes are good candidates for causing hereditary retinal dystrophies.

  7. Ubiquitination of exposed glycoproteins by SCFFBXO27 directs damaged lysosomes for autophagy

    PubMed Central

    Yoshida, Yukiko; Yasuda, Sayaka; Fujita, Toshiharu; Hamasaki, Maho; Murakami, Arisa; Kawawaki, Junko; Iwai, Kazuhiro; Saeki, Yasushi; Yoshimori, Tamotsu; Matsuda, Noriyuki; Tanaka, Keiji

    2017-01-01

    Ubiquitination functions as a signal to recruit autophagic machinery to damaged organelles and induce their clearance. Here, we report the characterization of FBXO27, a glycoprotein-specific F-box protein that is part of the SCF (SKP1/CUL1/F-box protein) ubiquitin ligase complex, and demonstrate that SCFFBXO27 ubiquitinates glycoproteins in damaged lysosomes to regulate autophagic machinery recruitment. Unlike F-box proteins in other SCF complexes, FBXO27 is subject to N-myristoylation, which localizes it to membranes, allowing it to accumulate rapidly around damaged lysosomes. We also screened for proteins that are ubiquitinated upon lysosomal damage, and identified two SNARE proteins, VAMP3 and VAMP7, and five lysosomal proteins, LAMP1, LAMP2, GNS, PSAP, and TMEM192. Ubiquitination of all glycoproteins identified in this screen increased upon FBXO27 overexpression. We found that the lysosomal protein LAMP2, which is ubiquitinated preferentially on lysosomal damage, enhances autophagic machinery recruitment to damaged lysosomes. Thus, we propose that SCFFBXO27 ubiquitinates glycoproteins exposed upon lysosomal damage to induce lysophagy. PMID:28743755

  8. Dual RING E3 Architectures Regulate Multiubiquitination and Ubiquitin Chain Elongation by APC/C.

    PubMed

    Brown, Nicholas G; VanderLinden, Ryan; Watson, Edmond R; Weissmann, Florian; Ordureau, Alban; Wu, Kuen-Phon; Zhang, Wei; Yu, Shanshan; Mercredi, Peter Y; Harrison, Joseph S; Davidson, Iain F; Qiao, Renping; Lu, Ying; Dube, Prakash; Brunner, Michael R; Grace, Christy R R; Miller, Darcie J; Haselbach, David; Jarvis, Marc A; Yamaguchi, Masaya; Yanishevski, David; Petzold, Georg; Sidhu, Sachdev S; Kuhlman, Brian; Kirschner, Marc W; Harper, J Wade; Peters, Jan-Michael; Stark, Holger; Schulman, Brenda A

    2016-06-02

    Protein ubiquitination involves E1, E2, and E3 trienzyme cascades. E2 and RING E3 enzymes often collaborate to first prime a substrate with a single ubiquitin (UB) and then achieve different forms of polyubiquitination: multiubiquitination of several sites and elongation of linkage-specific UB chains. Here, cryo-EM and biochemistry show that the human E3 anaphase-promoting complex/cyclosome (APC/C) and its two partner E2s, UBE2C (aka UBCH10) and UBE2S, adopt specialized catalytic architectures for these two distinct forms of polyubiquitination. The APC/C RING constrains UBE2C proximal to a substrate and simultaneously binds a substrate-linked UB to drive processive multiubiquitination. Alternatively, during UB chain elongation, the RING does not bind UBE2S but rather lures an evolving substrate-linked UB to UBE2S positioned through a cullin interaction to generate a Lys11-linked chain. Our findings define mechanisms of APC/C regulation, and establish principles by which specialized E3-E2-substrate-UB architectures control different forms of polyubiquitination. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. A Discrete Ubiquitin-Mediated Network Regulates the Strength of NOD2 Signaling

    PubMed Central

    Tigno-Aranjuez, Justine T.; Bai, Xiaodong

    2013-01-01

    Dysregulation of NOD2 signaling is implicated in the pathology of various inflammatory diseases, including Crohn's disease, asthma, and sarcoidosis, making signaling proteins downstream of NOD2 potential therapeutic targets. Inhibitor-of-apoptosis (IAP) proteins, particularly cIAP1, are essential mediators of NOD2 signaling, and in this work, we describe a molecular mechanism for cIAP1's regulation in the NOD2 signaling pathway. While cIAP1 promotes RIP2's tyrosine phosphorylation and subsequent NOD2 signaling, this positive regulation is countered by another E3 ubiquitin ligase, ITCH, through direct ubiquitination of cIAP1. This ITCH-mediated ubiquitination leads to cIAP1's lysosomal degradation. Pharmacologic inhibition of cIAP1 expression in ITCH−/− macrophages attenuates heightened ITCH−/− macrophage muramyl dipeptide-induced responses. Transcriptome analysis, combined with pharmacologic inhibition of cIAP1, further defines specific pathways within the NOD2 signaling pathway that are targeted by cIAP1. This information provides genetic signatures that may be useful in repurposing cIAP1-targeted therapies to correct NOD2-hyperactive states and identifies a ubiquitin-regulated signaling network centered on ITCH and cIAP1 that controls the strength of NOD2 signaling. PMID:23109427

  10. Structure and catalytic regulatory function of ubiquitin specific protease 11 N-terminal and ubiquitin-like domains.

    PubMed

    Harper, Stephen; Gratton, Hayley E; Cornaciu, Irina; Oberer, Monika; Scott, David J; Emsley, Jonas; Dreveny, Ingrid

    2014-05-13

    The ubiquitin specific protease 11 (USP11) is implicated in DNA repair, viral RNA replication, and TGFβ signaling. We report the first characterization of the USP11 domain architecture and its role in regulating the enzymatic activity. USP11 consists of an N-terminal "domain present in USPs" (DUSP) and "ubiquitin-like" (UBL) domain, together referred to as DU domains, and the catalytic domain harboring a second UBL domain. Crystal structures of the DU domains show a tandem arrangement with a shortened β-hairpin at the two-domain interface and altered surface characteristics compared to the homologues USP4 and USP15. A conserved VEVY motif is a signature feature at the two-domain interface that shapes a potential protein interaction site. Small angle X-ray scattering and gel filtration experiments are consistent with the USP11DU domains and full-length USP11 being monomeric. Unexpectedly, we reveal, through kinetic assays of a series of deletion mutants, that the catalytic activity of USP11 is not regulated through intramolecular autoinhibition or activation by the N-terminal DU or UBL domains. Moreover, ubiquitin chain cleavage assays with all eight linkages reveal a preference for Lys(63)-, Lys(6)-, Lys(33)-, and Lys(11)-linked chains over Lys(27)-, Lys(29)-, and Lys(48)-linked and linear chains consistent with USP11's function in DNA repair pathways that is mediated by the protease domain. Our data support a model whereby USP11 domains outside the catalytic core domain serve as protein interaction or trafficking modules rather than a direct regulatory function of the proteolytic activity. This highlights the diversity of USPs in substrate recognition and regulation of ubiquitin deconjugation.

  11. The deubiquitinating enzyme DUBAI stabilizes DIAP1 to suppress Drosophila apoptosis

    PubMed Central

    Yang, C-S; Sinenko, S A; Thomenius, M J; Robeson, A C; Freel, C D; Horn, S R; Kornbluth, S

    2014-01-01

    Deubiquitinating enzymes (DUBs) counteract ubiquitin ligases to modulate the ubiquitination and stability of target signaling molecules. In Drosophila, the ubiquitin–proteasome system has a key role in the regulation of apoptosis, most notably, by controlling the abundance of the central apoptotic regulator DIAP1. Although the mechanism underlying DIAP1 ubiquitination has been extensively studied, the precise role of DUB(s) in controlling DIAP1 activity has not been fully investigated. Here we report the identification of a DIAP1-directed DUB using two complementary approaches. First, a panel of putative Drosophila DUBs was expressed in S2 cells to determine whether DIAP1 could be stabilized, despite treatment with death-inducing stimuli that would induce DIAP1 degradation. In addition, RNAi fly lines were used to detect modifiers of DIAP1 antagonist-induced cell death in the developing eye. Together, these approaches identified a previously uncharacterized protein encoded by CG8830, which we named DeUBiquitinating-Apoptotic-Inhibitor (DUBAI), as a novel DUB capable of preserving DIAP1 to dampen Drosophila apoptosis. DUBAI interacts with DIAP1 in S2 cells, and the putative active site of its DUB domain (C367) is required to rescue DIAP1 levels following apoptotic stimuli. DUBAI, therefore, represents a novel locus of apoptotic regulation in Drosophila, antagonizing cell death signals that would otherwise result in DIAP1 degradation. PMID:24362437

  12. Conformational and chemical selection by a trans-acting editing domain

    PubMed Central

    Danhart, Eric M.; Bakhtina, Marina; Cantara, William A.; Kuzmishin, Alexandra B.; Ma, Xiao; Sanford, Brianne L.; Vargas-Rodriguez, Oscar; Košutić, Marija; Goto, Yuki; Suga, Hiroaki; Nakanishi, Kotaro; Micura, Ronald; Musier-Forsyth, Karin

    2017-01-01

    Molecular sieves ensure proper pairing of tRNAs and amino acids during aminoacyl-tRNA biosynthesis, thereby avoiding detrimental effects of mistranslation on cell growth and viability. Mischarging errors are often corrected through the activity of specialized editing domains present in some aminoacyl-tRNA synthetases or via single-domain trans-editing proteins. ProXp-ala is a ubiquitous trans-editing enzyme that edits Ala-tRNAPro, the product of Ala mischarging by prolyl-tRNA synthetase, although the structural basis for discrimination between correctly charged Pro-tRNAPro and mischarged Ala-tRNAAla is unclear. Deacylation assays using substrate analogs reveal that size discrimination is only one component of selectivity. We used NMR spectroscopy and sequence conservation to guide extensive site-directed mutagenesis of Caulobacter crescentus ProXp-ala, along with binding and deacylation assays to map specificity determinants. Chemical shift perturbations induced by an uncharged tRNAPro acceptor stem mimic, microhelixPro, or a nonhydrolyzable mischarged Ala-microhelixPro substrate analog identified residues important for binding and deacylation. Backbone 15N NMR relaxation experiments revealed dynamics for a helix flanking the substrate binding site in free ProXp-ala, likely reflecting sampling of open and closed conformations. Dynamics persist on binding to the uncharged microhelix, but are attenuated when the stably mischarged analog is bound. Computational docking and molecular dynamics simulations provide structural context for these findings and predict a role for the substrate primary α-amine group in substrate recognition. Overall, our results illuminate strategies used by a trans-editing domain to ensure acceptance of only mischarged Ala-tRNAPro, including conformational selection by a dynamic helix, size-based exclusion, and optimal positioning of substrate chemical groups. PMID:28768811

  13. Site-specific Interaction Mapping of Phosphorylated Ubiquitin to Uncover Parkin Activation*♦

    PubMed Central

    Yamano, Koji; Queliconi, Bruno B.; Koyano, Fumika; Saeki, Yasushi; Hirokawa, Takatsugu; Tanaka, Keiji; Matsuda, Noriyuki

    2015-01-01

    Damaged mitochondria are eliminated through autophagy machinery. A cytosolic E3 ubiquitin ligase Parkin, a gene product mutated in familial Parkinsonism, is essential for this pathway. Recent progress has revealed that phosphorylation of both Parkin and ubiquitin at Ser65 by PINK1 are crucial for activation and recruitment of Parkin to the damaged mitochondria. However, the mechanism by which phosphorylated ubiquitin associates with and activates phosphorylated Parkin E3 ligase activity remains largely unknown. Here, we analyze interactions between phosphorylated forms of both Parkin and ubiquitin at a spatial resolution of the amino acid residue by site-specific photo-crosslinking. We reveal that the in-between-RING (IBR) domain along with RING1 domain of Parkin preferentially binds to ubiquitin in a phosphorylation-dependent manner. Furthermore, another approach, the Fluoppi (fluorescent-based technology detecting protein-protein interaction) assay, also showed that pathogenic mutations in these domains blocked interactions with phosphomimetic ubiquitin in mammalian cells. Molecular modeling based on the site-specific photo-crosslinking interaction map combined with mass spectrometry strongly suggests that a novel binding mechanism between Parkin and ubiquitin leads to a Parkin conformational change with subsequent activation of Parkin E3 ligase activity. PMID:26260794

  14. Ubiquitin-Dependent Degradation of Mitochondrial Proteins Regulates Energy Metabolism.

    PubMed

    Lavie, Julie; De Belvalet, Harmony; Sonon, Sessinou; Ion, Ana Madalina; Dumon, Elodie; Melser, Su; Lacombe, Didier; Dupuy, Jean-William; Lalou, Claude; Bénard, Giovanni

    2018-06-05

    The ubiquitin proteasome system (UPS) regulates many cellular functions by degrading key proteins. Notably, the role of UPS in regulating mitochondrial metabolic functions is unclear. Here, we show that ubiquitination occurs in different mitochondrial compartments, including the inner mitochondrial membrane, and that turnover of several metabolic proteins is UPS dependent. We specifically detailed mitochondrial ubiquitination and subsequent UPS-dependent degradation of succinate dehydrogenase subunit A (SDHA), which occurred when SDHA was minimally involved in mitochondrial energy metabolism. We demonstrate that SDHA ubiquitination occurs inside the organelle. In addition, we show that the specific inhibition of SDHA degradation by UPS promotes SDHA-dependent oxygen consumption and increases ATP, malate, and citrate levels. These findings suggest that the mitochondrial metabolic machinery is also regulated by the UPS. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  15. DNA-binding regulates site-specific ubiquitination of IRF-1.

    PubMed

    Landré, Vivien; Pion, Emmanuelle; Narayan, Vikram; Xirodimas, Dimitris P; Ball, Kathryn L

    2013-02-01

    Understanding the determinants for site-specific ubiquitination by E3 ligase components of the ubiquitin machinery is proving to be a challenge. In the present study we investigate the role of an E3 ligase docking site (Mf2 domain) in an intrinsically disordered domain of IRF-1 [IFN (interferon) regulatory factor-1], a short-lived IFNγ-regulated transcription factor, in ubiquitination of the protein. Ubiquitin modification of full-length IRF-1 by E3 ligases such as CHIP [C-terminus of the Hsc (heat-shock cognate) 70-interacting protein] and MDM2 (murine double minute 2), which dock to the Mf2 domain, was specific for lysine residues found predominantly in loop structures that extend from the DNA-binding domain, whereas no modification was detected in the more conformationally flexible C-terminal half of the protein. The E3 docking site was not available when IRF-1 was in its DNA-bound conformation and cognate DNA-binding sequences strongly suppressed ubiquitination, highlighting a strict relationship between ligase binding and site-specific modification at residues in the DNA-binding domain. Hyperubiquitination of a non-DNA-binding mutant supports a mechanism where an active DNA-bound pool of IRF-1 is protected from polyubiquitination and degradation.

  16. Temperature effect on CRISPR-Cas9 mediated genome editing.

    PubMed

    Xiang, Guanghai; Zhang, Xingying; An, Chenrui; Cheng, Chen; Wang, Haoyi

    2017-04-20

    Zinc-finger nuclease (ZFN), transcription activator-like effector nuclease (TALEN), and clustered regularly interspaced short palindromic repeats/CRISPR-associated protein 9 (CRISPR-Cas9) are the most commonly used genome editing tools. Previous studies demonstrated that hypothermia treatment increased the mutation rates induced by ZFNs and TALENs in mammalian cells. Here, we characterize the effect of different culture temperatures on CRISPR-Cas9 mediated genome editing and find that the genome editing efficiency of CRISPR-Cas9 is significantly hampered by hypothermia treatment, unlike ZFN and TALEN. In addition, hyperthermia culture condition enhances genome editing by CRISPR-Cas9 in some cell lines, due to the higher enzyme activity and sgRNA expression level at higher temperature. Our study has implications on CRISPR-Cas9 applications in a broad spectrum of species, many of which do not live at 37°C. Copyright © 2017 Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, and Genetics Society of China. Published by Elsevier Ltd. All rights reserved.

  17. Ubiquitin facilitates a quality-control pathway that removes damaged chloroplasts

    DOE PAGES

    Woodson, Jesse D.; Joens, Matthew S.; Sinson, Andrew B.; ...

    2015-10-23

    Energy production by chloroplasts and mitochondria causes constant oxidative damage. A functioning photosynthetic cell requires quality-control mechanisms to turn over and degrade chloroplasts damaged by reactive oxygen species (ROS). Here in this study, we generated a conditionally lethal Arabidopsis mutant that accumulated excess protoporphyrin IX in the chloroplast and produced singlet oxygen. Damaged chloroplasts were subsequently ubiquitinated and selectively degraded. A genetic screen identified the plant U-box 4 (PUB4) E3 ubiquitin ligase as being necessary for this process. pub4-6 mutants had defects in stress adaptation and longevity. As a result, we have identified a signal that leads to the targetedmore » removal of ROS-overproducing chloroplasts.« less

  18. Ubiquitin facilitates a quality-control pathway that removes damaged chloroplasts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Woodson, Jesse D.; Joens, Matthew S.; Sinson, Andrew B.

    Energy production by chloroplasts and mitochondria causes constant oxidative damage. A functioning photosynthetic cell requires quality-control mechanisms to turn over and degrade chloroplasts damaged by reactive oxygen species (ROS). Here in this study, we generated a conditionally lethal Arabidopsis mutant that accumulated excess protoporphyrin IX in the chloroplast and produced singlet oxygen. Damaged chloroplasts were subsequently ubiquitinated and selectively degraded. A genetic screen identified the plant U-box 4 (PUB4) E3 ubiquitin ligase as being necessary for this process. pub4-6 mutants had defects in stress adaptation and longevity. As a result, we have identified a signal that leads to the targetedmore » removal of ROS-overproducing chloroplasts.« less

  19. The ubiquitin ligase Siah2 regulates obesity-induced adipose tissue inflammation.

    PubMed

    Kilroy, Gail; Carter, Lauren E; Newman, Susan; Burk, David H; Manuel, Justin; Möller, Andreas; Bowtell, David D; Mynatt, Randall L; Ghosh, Sujoy; Floyd, Z Elizabeth

    2015-11-01

    Chronic, low-grade adipose tissue inflammation associated with adipocyte hypertrophy is an important link in the relationship between obesity and insulin resistance. Although ubiquitin ligases regulate inflammatory processes, the role of these enzymes in metabolically driven adipose tissue inflammation is relatively unexplored. Herein, the effect of the ubiquitin ligase Siah2 on obesity-related adipose tissue inflammation was examined. Wild-type and Siah2KO mice were fed a low- or high-fat diet for 16 weeks. Indirect calorimetry, body composition, and glucose and insulin tolerance were assayed along with glucose and insulin levels. Gene and protein expression, immunohistochemistry, adipocyte size distribution, and lipolysis were also analyzed. Enlarged adipocytes in obese Siah2KO mice were not associated with obesity-induced insulin resistance. Proinflammatory gene expression, stress kinase signaling, fibrosis, and crown-like structures were reduced in the Siah2KO adipose tissue, and Siah2KO adipocytes were more responsive to insulin-dependent inhibition of lipolysis. Loss of Siah2 increased expression of PPARγ target genes involved in lipid metabolism and decreased expression of proinflammatory adipokines regulated by PPARγ. Siah2 links adipocyte hypertrophy with adipocyte dysfunction and recruitment of proinflammatory immune cells to adipose tissue. Selective regulation of PPARγ activity is a Siah2-mediated mechanism contributing to obesity-induced adipose tissue inflammation. © 2015 The Obesity Society.

  20. FANCL ubiquitinates β-catenin and enhances its nuclear function

    PubMed Central

    Rotelli, Michael D.; Petersen, Curtis L.; Kaech, Stefanie; Nelson, Whitney D.; Yates, Jane E.; Hanlon Newell, Amy E.; Olson, Susan B.; Druker, Brian J.; Bagby, Grover C.

    2012-01-01

    Bone marrow failure is a nearly universal complication of Fanconi anemia. The proteins encoded by FANC genes are involved in DNA damage responses through the formation of a multisubunit nuclear complex that facilitates the E3 ubiquitin ligase activity of FANCL. However, it is not known whether loss of E3 ubiquitin ligase activity accounts for the hematopoietic stem cell defects characteristic of Fanconi anemia. Here we provide evidence that FANCL increases the activity and expression of β-catenin, a key pluripotency factor in hematopoietic stem cells. We show that FANCL ubiquitinates β-catenin with atypical ubiquitin chain extension known to have nonproteolytic functions. Specifically, β-catenin modified with lysine-11 ubiquitin chain extension efficiently activates a lymphocyte enhancer-binding factor-T cell factor reporter. We also show that FANCL-deficient cells display diminished capacity to activate β-catenin leading to reduced transcription of Wnt-responsive targets c-Myc and Cyclin D1. Suppression of FANCL expression in normal human CD34+ stem and progenitor cells results in fewer β-catenin active cells and inhibits expansion of multilineage progenitors. Together, these results suggest that diminished Wnt/β-catenin signaling may be an underlying molecular defect in FANCL-deficient hematopoietic stem cells leading to their accelerated loss. PMID:22653977

  1. FANCL ubiquitinates β-catenin and enhances its nuclear function.

    PubMed

    Dao, Kim-Hien T; Rotelli, Michael D; Petersen, Curtis L; Kaech, Stefanie; Nelson, Whitney D; Yates, Jane E; Hanlon Newell, Amy E; Olson, Susan B; Druker, Brian J; Bagby, Grover C

    2012-07-12

    Bone marrow failure is a nearly universal complication of Fanconi anemia. The proteins encoded by FANC genes are involved in DNA damage responses through the formation of a multisubunit nuclear complex that facilitates the E3 ubiquitin ligase activity of FANCL. However, it is not known whether loss of E3 ubiquitin ligase activity accounts for the hematopoietic stem cell defects characteristic of Fanconi anemia. Here we provide evidence that FANCL increases the activity and expression of β-catenin, a key pluripotency factor in hematopoietic stem cells. We show that FANCL ubiquitinates β-catenin with atypical ubiquitin chain extension known to have nonproteolytic functions. Specifically, β-catenin modified with lysine-11 ubiquitin chain extension efficiently activates a lymphocyte enhancer-binding factor-T cell factor reporter. We also show that FANCL-deficient cells display diminished capacity to activate β-catenin leading to reduced transcription of Wnt-responsive targets c-Myc and Cyclin D1. Suppression of FANCL expression in normal human CD34(+) stem and progenitor cells results in fewer β-catenin active cells and inhibits expansion of multilineage progenitors. Together, these results suggest that diminished Wnt/β-catenin signaling may be an underlying molecular defect in FANCL-deficient hematopoietic stem cells leading to their accelerated loss.

  2. Methods and Applications of CRISPR-Mediated Base Editing in Eukaryotic Genomes.

    PubMed

    Hess, Gaelen T; Tycko, Josh; Yao, David; Bassik, Michael C

    2017-10-05

    The past several years have seen an explosion in development of applications for the CRISPR-Cas9 system, from efficient genome editing, to high-throughput screening, to recruitment of a range of DNA and chromatin-modifying enzymes. While homology-directed repair (HDR) coupled with Cas9 nuclease cleavage has been used with great success to repair and re-write genomes, recently developed base-editing systems present a useful orthogonal strategy to engineer nucleotide substitutions. Base editing relies on recruitment of cytidine deaminases to introduce changes (rather than double-stranded breaks and donor templates) and offers potential improvements in efficiency while limiting damage and simplifying the delivery of editing machinery. At the same time, these systems enable novel mutagenesis strategies to introduce sequence diversity for engineering and discovery. Here, we review the different base-editing platforms, including their deaminase recruitment strategies and editing outcomes, and compare them to other CRISPR genome-editing technologies. Additionally, we discuss how these systems have been applied in therapeutic, engineering, and research settings. Lastly, we explore future directions of this emerging technology. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Structural basis for ubiquitin-mediated antiviral signal activation by RIG-I.

    PubMed

    Peisley, Alys; Wu, Bin; Xu, Hui; Chen, Zhijian J; Hur, Sun

    2014-05-01

    Ubiquitin (Ub) has important roles in a wide range of intracellular signalling pathways. In the conventional view, ubiquitin alters the signalling activity of the target protein through covalent modification, but accumulating evidence points to the emerging role of non-covalent interaction between ubiquitin and the target. In the innate immune signalling pathway of a viral RNA sensor, RIG-I, both covalent and non-covalent interactions with K63-linked ubiquitin chains (K63-Ubn) were shown to occur in its signalling domain, a tandem caspase activation and recruitment domain (hereafter referred to as 2CARD). Non-covalent binding of K63-Ubn to 2CARD induces its tetramer formation, a requirement for downstream signal activation. Here we report the crystal structure of the tetramer of human RIG-I 2CARD bound by three chains of K63-Ub2. 2CARD assembles into a helical tetramer resembling a 'lock-washer', in which the tetrameric surface serves as a signalling platform for recruitment and activation of the downstream signalling molecule, MAVS. Ubiquitin chains are bound along the outer rim of the helical trajectory, bridging adjacent subunits of 2CARD and stabilizing the 2CARD tetramer. The combination of structural and functional analyses reveals that binding avidity dictates the K63-linkage and chain-length specificity of 2CARD, and that covalent ubiquitin conjugation of 2CARD further stabilizes the Ub-2CARD interaction and thus the 2CARD tetramer. Our work provides unique insights into the novel types of ubiquitin-mediated signal-activation mechanism, and previously unexpected synergism between the covalent and non-covalent ubiquitin interaction modes.

  4. Magnesium-dependent association and folding of oligonucleosomes reconstituted with ubiquitinated H2A.

    PubMed

    Jason, L J; Moore, S C; Ausio, J; Lindsey, G

    2001-05-04

    The MgCl2-induced folding of defined 12-mer nucleosomal arrays, in which ubiquitinated histone H2A (uH2A) replaced H2A, was analyzed by quantitative agarose gel electrophoresis and analytical centrifugation. Both types of analysis showed that uH2A arrays attained a degree of compaction similar to that of control arrays in 2 mM MgCl2. These results indicate that attachment of ubiquitin to H2A has little effect on the ability of nucleosomal arrays to form higher order folded structures in the ionic conditions tested. In contrast, uH2A arrays were found to oligomerize at lower MgCl2 concentrations than control nucleosomal arrays, suggesting that histone ubiquitination may play a role in nucleosomal fiber association.

  5. Prediction of constitutive A-to-I editing sites from human transcriptomes in the absence of genomic sequences

    PubMed Central

    2013-01-01

    Background Adenosine-to-inosine (A-to-I) RNA editing is recognized as a cellular mechanism for generating both RNA and protein diversity. Inosine base pairs with cytidine during reverse transcription and therefore appears as guanosine during sequencing of cDNA. Current approaches of RNA editing identification largely depend on the comparison between transcriptomes and genomic DNA (gDNA) sequencing datasets from the same individuals, and it has been challenging to identify editing candidates from transcriptomes in the absence of gDNA information. Results We have developed a new strategy to accurately predict constitutive RNA editing sites from publicly available human RNA-seq datasets in the absence of relevant genomic sequences. Our approach establishes new parameters to increase the ability to map mismatches and to minimize sequencing/mapping errors and unreported genome variations. We identified 695 novel constitutive A-to-I editing sites that appear in clusters (named “editing boxes”) in multiple samples and which exhibit spatial and dynamic regulation across human tissues. Some of these editing boxes are enriched in non-repetitive regions lacking inverted repeat structures and contain an extremely high conversion frequency of As to Is. We validated a number of editing boxes in multiple human cell lines and confirmed that ADAR1 is responsible for the observed promiscuous editing events in non-repetitive regions, further expanding our knowledge of the catalytic substrate of A-to-I RNA editing by ADAR enzymes. Conclusions The approach we present here provides a novel way of identifying A-to-I RNA editing events by analyzing only RNA-seq datasets. This method has allowed us to gain new insights into RNA editing and should also aid in the identification of more constitutive A-to-I editing sites from additional transcriptomes. PMID:23537002

  6. ExpEdit: a webserver to explore human RNA editing in RNA-Seq experiments.

    PubMed

    Picardi, Ernesto; D'Antonio, Mattia; Carrabino, Danilo; Castrignanò, Tiziana; Pesole, Graziano

    2011-05-01

    ExpEdit is a web application for assessing RNA editing in human at known or user-specified sites supported by transcript data obtained by RNA-Seq experiments. Mapping data (in SAM/BAM format) or directly sequence reads [in FASTQ/short read archive (SRA) format] can be provided as input to carry out a comparative analysis against a large collection of known editing sites collected in DARNED database as well as other user-provided potentially edited positions. Results are shown as dynamic tables containing University of California, Santa Cruz (UCSC) links for a quick examination of the genomic context. ExpEdit is freely available on the web at http://www.caspur.it/ExpEdit/.

  7. Characterization and identification of ubiquitin conjugation sites with E3 ligase recognition specificities.

    PubMed

    Nguyen, Van-Nui; Huang, Kai-Yao; Huang, Chien-Hsun; Chang, Tzu-Hao; Bretaña, Neil; Lai, K; Weng, Julia; Lee, Tzong-Yi

    2015-01-01

    In eukaryotes, ubiquitin-conjugation is an important mechanism underlying proteasome-mediated degradation of proteins, and as such, plays an essential role in the regulation of many cellular processes. In the ubiquitin-proteasome pathway, E3 ligases play important roles by recognizing a specific protein substrate and catalyzing the attachment of ubiquitin to a lysine (K) residue. As more and more experimental data on ubiquitin conjugation sites become available, it becomes possible to develop prediction models that can be scaled to big data. However, no development that focuses on the investigation of ubiquitinated substrate specificities has existed. Herein, we present an approach that exploits an iteratively statistical method to identify ubiquitin conjugation sites with substrate site specificities. In this investigation, totally 6259 experimentally validated ubiquitinated proteins were obtained from dbPTM. After having filtered out homologous fragments with 40% sequence identity, the training data set contained 2658 ubiquitination sites (positive data) and 5532 non-ubiquitinated sites (negative data). Due to the difficulty in characterizing the substrate site specificities of E3 ligases by conventional sequence logo analysis, a recursively statistical method has been applied to obtain significant conserved motifs. The profile hidden Markov model (profile HMM) was adopted to construct the predictive models learned from the identified substrate motifs. A five-fold cross validation was then used to evaluate the predictive model, achieving sensitivity, specificity, and accuracy of 73.07%, 65.46%, and 67.93%, respectively. Additionally, an independent testing set, completely blind to the training data of the predictive model, was used to demonstrate that the proposed method could provide a promising accuracy (76.13%) and outperform other ubiquitination site prediction tool. A case study demonstrated the effectiveness of the characterized substrate motifs for

  8. RFWD3-Dependent Ubiquitination of RPA Regulates Repair at Stalled Replication Forks.

    PubMed

    Elia, Andrew E H; Wang, David C; Willis, Nicholas A; Boardman, Alexander P; Hajdu, Ildiko; Adeyemi, Richard O; Lowry, Elizabeth; Gygi, Steven P; Scully, Ralph; Elledge, Stephen J

    2015-10-15

    We have used quantitative proteomics to profile ubiquitination in the DNA damage response (DDR). We demonstrate that RPA, which functions as a protein scaffold in the replication stress response, is multiply ubiquitinated upon replication fork stalling. Ubiquitination of RPA occurs on chromatin, involves sites outside its DNA binding channel, does not cause proteasomal degradation, and increases under conditions of fork collapse, suggesting a role in repair at stalled forks. We demonstrate that the E3 ligase RFWD3 mediates RPA ubiquitination. RFWD3 is necessary for replication fork restart, normal repair kinetics during replication stress, and homologous recombination (HR) at stalled replication forks. Mutational analysis suggests that multisite ubiquitination of the entire RPA complex is responsible for repair at stalled forks. Multisite protein group sumoylation is known to promote HR in yeast. Our findings reveal a similar requirement for multisite protein group ubiquitination during HR at stalled forks in mammalian cells. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. Distinct Ubiquitin Binding Modes Exhibited by SH3 Domains: Molecular Determinants and Functional Implications

    PubMed Central

    Ortega Roldan, Jose L.; Casares, Salvador; Ringkjøbing Jensen, Malene; Cárdenes, Nayra; Bravo, Jerónimo; Blackledge, Martin; Azuaga, Ana I.; van Nuland, Nico A. J.

    2013-01-01

    SH3 domains constitute a new type of ubiquitin-binding domains. We previously showed that the third SH3 domain (SH3-C) of CD2AP binds ubiquitin in an alternative orientation. We have determined the structure of the complex between first CD2AP SH3 domain and ubiquitin and performed a structural and mutational analysis to decipher the determinants of the SH3-C binding mode to ubiquitin. We found that the Phe-to-Tyr mutation in CD2AP and in the homologous CIN85 SH3-C domain does not abrogate ubiquitin binding, in contrast to previous hypothesis and our findings for the first two CD2AP SH3 domains. The similar alternative binding mode of the SH3-C domains of these related adaptor proteins is characterised by a higher affinity to C-terminal extended ubiquitin molecules. We conclude that CD2AP/CIN85 SH3-C domain interaction with ubiquitin constitutes a new ubiquitin-binding mode involved in a different cellular function and thus changes the previously established mechanism of EGF-dependent CD2AP/CIN85 mono-ubiquitination. PMID:24039852

  10. Proteomic analysis of ubiquitination-associated proteins in a cisplatin-resistant human lung adenocarcinoma cell line.

    PubMed

    Qin, Xia; Chen, Shizhi; Qiu, Zongyin; Zhang, Yuan; Qiu, Feng

    2012-05-01

    The objective of this study was to screen for ubiquitination-associated proteins involved in cisplatin resistance in a human lung adenocarcinoma cell strain using a comparative proteomic strategy. We employed 1D SDS-PAGE to separate ubiquitinated proteins isolated and enriched from A549 and A549/CDDP lysates via affinity chromatography. The differentially expressed bands between 45-85 kDa were subsequently hydrolyzed by trypsin and subjected to HPLC-CHIP-MS/MS analysis. Of the 11 proteins identified, 7 proteins were monoubiquitinated or polyubiquitinated substrates and 4 proteins were E3 ubiquitin ligase-associated proteins. The results of western blotting and confocal laser scanning microscopy indicated that the expression levels of the E3 ubiquitin ligases RNF6, LRSAM1 and TRIM25 in A549 cells were significantly lower than those in the A549/CDDP cell line. The expression levels of the above three ubiquitin ligases in both cell lines were significantly decreased upon treatment with cis-diamminedichloroplatinum (CDDP), and the expression in the A549/CDDP cell after the treatment with CDDP decreased to a lesser extent. The expression of the substrate PKM2 in the A549 cell was higher than that in the A549/CDDP cells. Moreover, the expression of PKM2 increased in the A549 cell line and decreased in the A549/CDDP cell line upon CDDP treatment. This study suggests that drug resistance is closely correlated with changes in the ubiquitination process at the protein level in a human lung adenocarcinoma cell line.

  11. DENEDDYLASE1 Protein Counters Automodification of Neddylating Enzymes to Maintain NEDD8 Protein Homeostasis in Arabidopsis.

    PubMed

    Mergner, Julia; Kuster, Bernhard; Schwechheimer, Claus

    2017-03-03

    In eukaryotes, the conjugation of the ubiquitin-like protein NEDD8 onto protein targets is an important post-translational modification. The best understood neddylation targets are the cullins, scaffold subunits of E3 ubiquitin ligases, where neddylation as well as deneddylation, facilitated by the protease activity of the CSN ( C OP9 s ig n alosome), are required to control ubiquitin ligase assembly, function, and ultimately substrate degradation. Little is known about the role of other deneddylating enzymes besides CSN and the role of neddylation and deneddylation of their substrates. We previously characterized Arabidopsis thaliana mutants with defects in the conserved NEDD8-specific protease DEN1 ( DENEDDYLASE 1). These mutants display only subtle growth phenotypes despite the strong accumulation of a broad range of neddylated proteins. Specifically, we identified AXR1 (AUXIN-RESISTANT1), a subunit of the heterodimeric NAE (E1 NEDD8-ACTIVATING ENZYME), as highly neddylated in den1 mutants. Here, we examined the mechanism and consequences of AXR1 neddylation in more detail. We find that AXR1 as well as other neddylation enzymes are autoneddylated at multiple lysines. NAE autoneddylation can be linked to reduced NCE (E2 NEDD8-CONJUGATING ENZYME) NEDD8 thioester levels, either by critically reducing the pool of free NEDD8 or by reducing NAE activity. In planta , increasing NEDD8 gene dosage is sufficient to suppress den1 mutant phenotypes. We therefore suggest that DEN1 serves to recover diverted NEDD8 moieties from autoneddylated NAE subunits, and possibly also other neddylated proteins, to maintain NEDD8 pathway activity toward other NEDD8-dependent processes such as cullin E3 ligase regulation. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  12. Epitranscriptomic profiling across cell types reveals associations between APOBEC1-mediated RNA editing, gene expression outcomes, and cellular function.

    PubMed

    Rayon-Estrada, Violeta; Harjanto, Dewi; Hamilton, Claire E; Berchiche, Yamina A; Gantman, Emily Conn; Sakmar, Thomas P; Bulloch, Karen; Gagnidze, Khatuna; Harroch, Sheila; McEwen, Bruce S; Papavasiliou, F Nina

    2017-12-12

    Epitranscriptomics refers to posttranscriptional alterations on an mRNA sequence that are dynamic and reproducible, and affect gene expression in a similar way to epigenetic modifications. However, the functional relevance of those modifications for the transcript, the cell, and the organism remain poorly understood. Here, we focus on RNA editing and show that Apolipoprotein B mRNA-editing enzyme, catalytic polypeptide-1 (APOBEC1), together with its cofactor RBM47, mediates robust editing in different tissues. The majority of editing events alter the sequence of the 3'UTR of targeted transcripts, and we focus on one cell type (monocytes) and on a small set of highly edited transcripts within it to show that editing alters gene expression by modulating translation (but not RNA stability or localization). We further show that specific cellular processes (phagocytosis and transendothelial migration) are enriched for transcripts that are targets of editing and that editing alters their function. Finally, we survey bone marrow progenitors and demonstrate that common monocyte progenitor cells express high levels of APOBEC1 and are susceptible to loss of the editing enzyme. Overall, APOBEC1-mediated transcriptome diversification is required for the fine-tuning of protein expression in monocytes, suggesting an epitranscriptomic mechanism for the proper maintenance of homeostasis in innate immune cells. Copyright © 2017 the Author(s). Published by PNAS.

  13. Determination of the Ubiquitin Fitness Landscape under Seventeen Chemical Conditions in a Classroom Setting

    ERIC Educational Resources Information Center

    Mavor, David Carl

    2017-01-01

    Ubiquitin is essential for eukaryotic life and varies in only 3 amino acid positions between yeast and humans. However, recent deep sequencing studies indicate that ubiquitin is highly tolerant to single mutations. We hypothesized that this tolerance would be reduced by chemically induced physiologic perturbations. To test this hypothesis, a class…

  14. Rictor forms a complex with Cullin-1 to promote SGK1 ubiquitination and destruction

    PubMed Central

    Gao, Daming; Wan, Lixin; Inuzuka, Hiroyuki; Berg, Anders H.; Tseng, Alan; Zhai, Bo; Shaik, Shavali; Bennett, Eric; Tron, Adriana E.; Gasser, Jessica A.; Lau, Alan; Gygi, Steven; Harper, J. Wade; DeCaprio, James A.; Toker, Alex; Wei, Wenyi

    2010-01-01

    Summary The Rictor/mTOR complex (also known as mTORC2) plays a critical role in cellular homeostasis by phosphorylating AGC kinases such as Akt and SGK at their hydrophobic motifs to activate downstream signaling. However, the regulation of mTORC2 and whether it has additional function(s), remains largely unknown. Here we report that Rictor associates with Cullin-1 to form a functional E3 ubiquitin ligase. Rictor, but not Raptor or mTOR alone promotes SGK1 ubiquitination. Loss of Rictor/Cullin-1-mediated ubiquitination leads to increased SGK1 protein levels as detected in Rictor null cells. Moreover, as part of a feedback mechanism, phosphorylation of Rictor at T1135 by multiple AGC kinases disrupts the interaction between Rictor and Cullin-1 to impair SGK1 ubiquitination. These findings indicate that the Rictor/Cullin-1 E3 ligase activity is regulated by a specific signal relay cascade and that misregulation of this mechanism may contribute to the frequent overexpression of SGK1 in various human cancers. PMID:20832730

  15. Novel Phosphorylation and Ubiquitination Sites Regulate Reactive Oxygen Species-dependent Degradation of Anti-apoptotic c-FLIP Protein*

    PubMed Central

    Wilkie-Grantham, Rachel P.; Matsuzawa, Shu-Ichi; Reed, John C.

    2013-01-01

    The cytosolic protein c-FLIP (cellular Fas-associated death domain-like interleukin 1β-converting enzyme inhibitory protein) is an inhibitor of death receptor-mediated apoptosis that is up-regulated in a variety of cancers, contributing to apoptosis resistance. Several compounds found to restore sensitivity of cancer cells to TRAIL, a TNF family death ligand with promising therapeutic potential, act by targeting c-FLIP ubiquitination and degradation by the proteasome. The generation of reactive oxygen species (ROS) has been implicated in c-FLIP protein degradation. However, the mechanism by which ROS post-transcriptionally regulate c-FLIP protein levels is not well understood. We show here that treatment of prostate cancer PPC-1 cells with the superoxide generators menadione, paraquat, or buthionine sulfoximine down-regulates c-FLIP long (c-FLIPL) protein levels, which is prevented by the proteasome inhibitor MG132. Furthermore, pretreatment of PPC-1 cells with a ROS scavenger prevented ubiquitination and loss of c-FLIPL protein induced by menadione or paraquat. We identified lysine 167 as a novel ubiquitination site of c-FLIPL important for ROS-dependent degradation. We also identified threonine 166 as a novel phosphorylation site and demonstrate that Thr-166 phosphorylation is required for ROS-induced Lys-167 ubiquitination. The mutation of either Thr-166 or Lys-167 was sufficient to stabilize c-FLIP protein levels in PPC-1, HEK293T, and HeLa cancer cells treated with menadione or paraquat. Accordingly, expression of c-FLIP T166A or K167R mutants protected cells from ROS-mediated sensitization to TRAIL-induced cell death. Our findings reveal novel ROS-dependent post-translational modifications of the c-FLIP protein that regulate its stability, thus impacting sensitivity of cancer cells to TRAIL. PMID:23519470

  16. Novel phosphorylation and ubiquitination sites regulate reactive oxygen species-dependent degradation of anti-apoptotic c-FLIP protein.

    PubMed

    Wilkie-Grantham, Rachel P; Matsuzawa, Shu-Ichi; Reed, John C

    2013-05-03

    The cytosolic protein c-FLIP (cellular Fas-associated death domain-like interleukin 1β-converting enzyme inhibitory protein) is an inhibitor of death receptor-mediated apoptosis that is up-regulated in a variety of cancers, contributing to apoptosis resistance. Several compounds found to restore sensitivity of cancer cells to TRAIL, a TNF family death ligand with promising therapeutic potential, act by targeting c-FLIP ubiquitination and degradation by the proteasome. The generation of reactive oxygen species (ROS) has been implicated in c-FLIP protein degradation. However, the mechanism by which ROS post-transcriptionally regulate c-FLIP protein levels is not well understood. We show here that treatment of prostate cancer PPC-1 cells with the superoxide generators menadione, paraquat, or buthionine sulfoximine down-regulates c-FLIP long (c-FLIP(L)) protein levels, which is prevented by the proteasome inhibitor MG132. Furthermore, pretreatment of PPC-1 cells with a ROS scavenger prevented ubiquitination and loss of c-FLIP(L) protein induced by menadione or paraquat. We identified lysine 167 as a novel ubiquitination site of c-FLIP(L) important for ROS-dependent degradation. We also identified threonine 166 as a novel phosphorylation site and demonstrate that Thr-166 phosphorylation is required for ROS-induced Lys-167 ubiquitination. The mutation of either Thr-166 or Lys-167 was sufficient to stabilize c-FLIP protein levels in PPC-1, HEK293T, and HeLa cancer cells treated with menadione or paraquat. Accordingly, expression of c-FLIP T166A or K167R mutants protected cells from ROS-mediated sensitization to TRAIL-induced cell death. Our findings reveal novel ROS-dependent post-translational modifications of the c-FLIP protein that regulate its stability, thus impacting sensitivity of cancer cells to TRAIL.

  17. Qualitative ubiquitome unveils the potential significances of protein lysine ubiquitination in hyphal growth of Aspergillus nidulans.

    PubMed

    Chu, Xin-Ling; Feng, Ming-Guang; Ying, Sheng-Hua

    2016-02-01

    Protein ubiquitination is an evolutionarily conserved post-translational modification process in eukaryotes, and it plays an important role in many biological processes. Aspergillus nidulans, a model filamentous fungus, contributes to our understanding of cellular physiology, metabolism and genetics, but its ubiquitination is not completely revealed. In this study, the ubiquitination sites in the proteome of A. nidulans were identified using a highly sensitive mass spectrometry combined with immuno-affinity enrichment of the ubiquitinated peptides. The 4816 ubiquitination sites were identified in 1913 ubiquitinated proteins, accounting for 18.1% of total proteins in A. nidulans. Bioinformatic analysis suggested that the ubiquitinated proteins associated with a number of biological functions and displayed various sub-cellular localisations. Meanwhile, seven motifs were revealed from the ubiquitinated peptides, and significantly over-presented in the different pathways. Comparison of the enriched functional catalogues indicated that the ubiquitination functions divergently during growth of A. nidulans and Saccharomyces cerevisiae. Additionally, the proteins in A. nidulans-specific sub-category (cell growth/morphogenesis) were subjected to the protein interaction analysis which demonstrated that ubiquitination is involved in the comprehensive protein interactions. This study presents a first proteomic view of ubiquitination in the filamentous fungus, and provides an initial framework for exploring the physiological roles of ubiquitination in A. nidulans.

  18. Roles of mono-ubiquitinated Smad4 in the formation of Smad transcriptional complexes.

    PubMed

    Wang, Bei; Suzuki, Hiroyuki; Kato, Mitsuyasu

    2008-11-14

    TGF-beta activates receptor-regulated Smad (R-Smad) through phosphorylation by type I receptors. Activated R-Smad binds to Smad4 and the complex translocates into the nucleus and stimulates the transcription of target genes through association with co-activators including p300. It is not clear, however, how activated Smad complexes are removed from target genes. In this study, we show that TGF-beta enhances the mono-ubiquitination of Smad4. Smad4 mono-ubiquitination was promoted by p300 and suppressed by the c-Ski co-repressor. Smad4 mono-ubiquitination disrupted the interaction with Smad2 in the presence of constitutively active TGF-beta type I receptor. Furthermore, mono-ubiquitinated Smad4 was not found in DNA-binding Smad complexes. A Smad4-Ubiquitin fusion protein, which mimics mono-ubiquitinated Smad4, enhanced localization to the cytoplasm. These results suggest that mono-ubiquitination of Smad4 occurs in the transcriptional activator complex and facilitates the turnover of Smad complexes at target genes.

  19. Ubiquitin-conjugating enzyme complex Uev1A-Ubc13 promotes breast cancer metastasis through nuclear factor-кB mediated matrix metalloproteinase-1 gene regulation

    PubMed Central

    2014-01-01

    Introduction UEV1A encodes a ubiquitin-conjugating enzyme variant (Ubc13), which is required for Ubc13-catalyzed Lys63-linked polyubiquitination of target proteins and nuclear factor κB (NF-кB) activation. Previous reports have correlated the level of UEV1A expression with tumorigenesis; however, the detailed molecular events leading to tumors particularly breast cancer and metastasis are unclear. This study is to investigate roles of different UEV1 splicing variants, and its close homolog MMS2, in promoting tumorigenesis and metastasis in breast cancer cells. Methods We experimentally manipulated the UEV1 and MMS2 levels in MDA-MB-231 breast cancer cells and monitored their effects on cell invasion and migration, as well as tumor formation and metastasis in xenograft mice. The underlying molecular mechanisms leading to metastasis were also examined. Results It was found that overexpression of UEV1A alone, but not UEV1C or MMS2, is sufficient to induce cell invasion in vitro and metastasis in vivo. This process is mediated by NF-κB activation and requires functional Ubc13. Our experimental data establish that among NF-κB target genes, UEV1A-regulated matrix metalloproteinase-1 (MMP1) expression plays a critical role in cell invasion and metastasis. Interestingly, experimental depletion of UEV1 in MDA-MB-231 cells reduces MMP1 expression and prevents tumor formation and metastasis in a xenograft mouse model, while overexpression of MMP1 overrides the metastasis effects in UEV1-depleted cells. Conclusions These results identify UEV1A as a potential therapeutic target in the treatment of metastasic breast cancers. PMID:25022892

  20. Substrate-Specific Differential Gene Expression and RNA editing in the Brown Rot Fungus Fomitopsis pinicola.

    PubMed

    Wu, Baojun; Gaskell, Jill; Held, Benjamin W; Toapanta, Cristina; Vuong, Thu; Ahrendt, Steven; Lipzen, Anna; Zhang, Jiwei; Schilling, Jonathan S; Master, Emma; Grigoriev, Igor V; Blanchette, Robert A; Cullen, Dan; Hibbett, David S

    2018-06-08

    Wood-decaying fungi tend to have characteristic substrate ranges that partly define their ecological niche. Fomitopsis pinicola is a brown rot species of Polyporales that is reported on 82 species of softwoods and 42 species of hardwoods. We analyzed gene expression levels and RNA editing profiles of F. pinicola from submerged cultures with ground wood powder (sampled at five days) or solid wood wafers (sampled at ten and thirty days), using aspen, pine, and spruce substrates (aspen was used only in submerged cultures). Fomitopsis pinicola expressed similar sets of wood-degrading enzymes typical of brown rot fungi across all culture conditions and timepoints. Nevertheless, differential gene expression and RNA editing were observed across all pairwise comparisons of substrates and timepoints. Genes exhibiting differential expression and RNA editing encode diverse enzymes with known or potential function in brown rot decay, including laccase, benzoquinone reductase, aryl alcohol oxidase, cytochrome P450s, and various glycoside hydrolases. There was no overlap between differentially expressed and differentially edited genes, suggesting that these may provide F. pinicola with independent mechanisms for responding to different conditions. Comparing transcriptomes from submerged cultures and wood wafers, we found that culture conditions had a greater impact on global expression profiles than substrate wood species. In contrast, the suites of genes subject to RNA editing were much less affected by culture conditions. These findings highlight the need for standardization of culture conditions in studies of gene expression in wood-decaying fungi. IMPORTANCE All species of wood-decaying fungi occur on a characteristic range of substrates (host plants), which may be broad or narrow. Understanding the mechanisms that allow fungi to grow on particular substrates is important for both fungal ecology and applied uses of different feedstocks in industrial processes. We grew the