Sample records for ubiquitin-selective aaa atpase

  1. AAA-ATPases in Protein Degradation

    PubMed Central

    Yedidi, Ravikiran S.; Wendler, Petra; Enenkel, Cordula

    2017-01-01

    Proteolytic machineries containing multisubunit protease complexes and AAA-ATPases play a key role in protein quality control and the regulation of protein homeostasis. In these protein degradation machineries, the proteolytically active sites are formed by either threonines or serines which are buried inside interior cavities of cylinder-shaped complexes. In eukaryotic cells, the proteasome is the most prominent protease complex harboring AAA-ATPases. To degrade protein substrates, the gates of the axial entry ports of the protease need to be open. Gate opening is accomplished by AAA-ATPases, which form a hexameric ring flanking the entry ports of the protease. Protein substrates with unstructured domains can loop into the entry ports without the assistance of AAA-ATPases. However, folded proteins require the action of AAA-ATPases to unveil an unstructured terminus or domain. Cycles of ATP binding/hydrolysis fuel the unfolding of protein substrates which are gripped by loops lining up the central pore of the AAA-ATPase ring. The AAA-ATPases pull on the unfolded polypeptide chain for translocation into the proteolytic cavity of the protease. Conformational changes within the AAA-ATPase ring and the adjacent protease chamber create a peristaltic movement for substrate degradation. The review focuses on new technologies toward the understanding of the function and structure of AAA-ATPases to achieve substrate recognition, unfolding and translocation into proteasomes in yeast and mammalian cells and into proteasome-equivalent proteases in bacteria and archaea. PMID:28676851

  2. AAA-ATPases in Protein Degradation.

    PubMed

    Yedidi, Ravikiran S; Wendler, Petra; Enenkel, Cordula

    2017-01-01

    Proteolytic machineries containing multisubunit protease complexes and AAA-ATPases play a key role in protein quality control and the regulation of protein homeostasis. In these protein degradation machineries, the proteolytically active sites are formed by either threonines or serines which are buried inside interior cavities of cylinder-shaped complexes. In eukaryotic cells, the proteasome is the most prominent protease complex harboring AAA-ATPases. To degrade protein substrates, the gates of the axial entry ports of the protease need to be open. Gate opening is accomplished by AAA-ATPases, which form a hexameric ring flanking the entry ports of the protease. Protein substrates with unstructured domains can loop into the entry ports without the assistance of AAA-ATPases. However, folded proteins require the action of AAA-ATPases to unveil an unstructured terminus or domain. Cycles of ATP binding/hydrolysis fuel the unfolding of protein substrates which are gripped by loops lining up the central pore of the AAA-ATPase ring. The AAA-ATPases pull on the unfolded polypeptide chain for translocation into the proteolytic cavity of the protease. Conformational changes within the AAA-ATPase ring and the adjacent protease chamber create a peristaltic movement for substrate degradation. The review focuses on new technologies toward the understanding of the function and structure of AAA-ATPases to achieve substrate recognition, unfolding and translocation into proteasomes in yeast and mammalian cells and into proteasome-equivalent proteases in bacteria and archaea.

  3. Moyamoya disease-associated protein mysterin/RNF213 is a novel AAA+ ATPase, which dynamically changes its oligomeric state

    NASA Astrophysics Data System (ADS)

    Morito, Daisuke; Nishikawa, Kouki; Hoseki, Jun; Kitamura, Akira; Kotani, Yuri; Kiso, Kazumi; Kinjo, Masataka; Fujiyoshi, Yoshinori; Nagata, Kazuhiro

    2014-03-01

    Moyamoya disease is an idiopathic human cerebrovascular disorder that is characterized by progressive stenosis and abnormal collateral vessels. We recently identified mysterin/RNF213 as its first susceptibility gene, which encodes a 591-kDa protein containing enzymatically active P-loop ATPase and ubiquitin ligase domains and is involved in proper vascular development in zebrafish. Here we demonstrate that mysterin further contains two tandem AAA+ ATPase modules and forms huge ring-shaped oligomeric complex. AAA+ ATPases are known to generally mediate various biophysical and mechanical processes with the characteristic ring-shaped structure. Fluorescence correlation spectroscopy and biochemical evaluation suggested that mysterin dynamically changes its oligomeric forms through ATP/ADP binding and hydrolysis cycles. Thus, the moyamoya disease-associated gene product is a unique protein that functions as ubiquitin ligase and AAA+ ATPase, which possibly contributes to vascular development through mechanical processes in the cell.

  4. Moyamoya disease-associated protein mysterin/RNF213 is a novel AAA+ ATPase, which dynamically changes its oligomeric state

    PubMed Central

    Morito, Daisuke; Nishikawa, Kouki; Hoseki, Jun; Kitamura, Akira; Kotani, Yuri; Kiso, Kazumi; Kinjo, Masataka; Fujiyoshi, Yoshinori; Nagata, Kazuhiro

    2014-01-01

    Moyamoya disease is an idiopathic human cerebrovascular disorder that is characterized by progressive stenosis and abnormal collateral vessels. We recently identified mysterin/RNF213 as its first susceptibility gene, which encodes a 591-kDa protein containing enzymatically active P-loop ATPase and ubiquitin ligase domains and is involved in proper vascular development in zebrafish. Here we demonstrate that mysterin further contains two tandem AAA+ ATPase modules and forms huge ring-shaped oligomeric complex. AAA+ ATPases are known to generally mediate various biophysical and mechanical processes with the characteristic ring-shaped structure. Fluorescence correlation spectroscopy and biochemical evaluation suggested that mysterin dynamically changes its oligomeric forms through ATP/ADP binding and hydrolysis cycles. Thus, the moyamoya disease-associated gene product is a unique protein that functions as ubiquitin ligase and AAA+ ATPase, which possibly contributes to vascular development through mechanical processes in the cell. PMID:24658080

  5. The AAA+ ATPase p97, a cellular multitool

    PubMed Central

    Stach, Lasse

    2017-01-01

    The AAA+ (ATPases associated with diverse cellular activities) ATPase p97 is essential to a wide range of cellular functions, including endoplasmic reticulum-associated degradation, membrane fusion, NF-κB (nuclear factor kappa-light-chain-enhancer of activated B cells) activation and chromatin-associated processes, which are regulated by ubiquitination. p97 acts downstream from ubiquitin signaling events and utilizes the energy from ATP hydrolysis to extract its substrate proteins from cellular structures or multiprotein complexes. A multitude of p97 cofactors have evolved which are essential to p97 function. Ubiquitin-interacting domains and p97-binding domains combine to form bi-functional cofactors, whose complexes with p97 enable the enzyme to interact with a wide range of ubiquitinated substrates. A set of mutations in p97 have been shown to cause the multisystem proteinopathy inclusion body myopathy associated with Paget's disease of bone and frontotemporal dementia. In addition, p97 inhibition has been identified as a promising approach to provoke proteotoxic stress in tumors. In this review, we will describe the cellular processes governed by p97, how the cofactors interact with both p97 and its ubiquitinated substrates, p97 enzymology and the current status in developing p97 inhibitors for cancer therapy. PMID:28819009

  6. The peroxisomal AAA ATPase complex prevents pexophagy and development of peroxisome biogenesis disorders

    PubMed Central

    Law, Kelsey B.; Bronte-Tinkew, Dana; Di Pietro, Erminia; Snowden, Ann; Jones, Richard O.; Moser, Ann; Brumell, John H.; Braverman, Nancy

    2017-01-01

    ABSTRACT Peroxisome biogenesis disorders (PBDs) are metabolic disorders caused by the loss of peroxisomes. The majority of PBDs result from mutation in one of 3 genes that encode for the peroxisomal AAA ATPase complex (AAA-complex) required for cycling PEX5 for peroxisomal matrix protein import. Mutations in these genes are thought to result in a defect in peroxisome assembly by preventing the import of matrix proteins. However, we show here that loss of the AAA-complex does not prevent matrix protein import, but instead causes an upregulation of peroxisome degradation by macroautophagy, or pexophagy. The loss of AAA-complex function in cells results in the accumulation of ubiquitinated PEX5 on the peroxisomal membrane that signals pexophagy. Inhibiting autophagy by genetic or pharmacological approaches rescues peroxisome number, protein import and function. Our findings suggest that the peroxisomal AAA-complex is required for peroxisome quality control, whereas its absence results in the selective degradation of the peroxisome. Thus the loss of peroxisomes in PBD patients with mutations in their peroxisomal AAA-complex is a result of increased pexophagy. Our study also provides a framework for the development of novel therapeutic treatments for PBDs. PMID:28521612

  7. The peroxisomal AAA ATPase complex prevents pexophagy and development of peroxisome biogenesis disorders.

    PubMed

    Law, Kelsey B; Bronte-Tinkew, Dana; Di Pietro, Erminia; Snowden, Ann; Jones, Richard O; Moser, Ann; Brumell, John H; Braverman, Nancy; Kim, Peter K

    2017-05-04

    Peroxisome biogenesis disorders (PBDs) are metabolic disorders caused by the loss of peroxisomes. The majority of PBDs result from mutation in one of 3 genes that encode for the peroxisomal AAA ATPase complex (AAA-complex) required for cycling PEX5 for peroxisomal matrix protein import. Mutations in these genes are thought to result in a defect in peroxisome assembly by preventing the import of matrix proteins. However, we show here that loss of the AAA-complex does not prevent matrix protein import, but instead causes an upregulation of peroxisome degradation by macroautophagy, or pexophagy. The loss of AAA-complex function in cells results in the accumulation of ubiquitinated PEX5 on the peroxisomal membrane that signals pexophagy. Inhibiting autophagy by genetic or pharmacological approaches rescues peroxisome number, protein import and function. Our findings suggest that the peroxisomal AAA-complex is required for peroxisome quality control, whereas its absence results in the selective degradation of the peroxisome. Thus the loss of peroxisomes in PBD patients with mutations in their peroxisomal AAA-complex is a result of increased pexophagy. Our study also provides a framework for the development of novel therapeutic treatments for PBDs.

  8. A Non-Competitive Inhibitor of VCP/p97 and VPS4 Reveals Conserved Allosteric Circuits in Type I and II AAA ATPases.

    PubMed

    Pöhler, Robert; Krahn, Jan H; van den Boom, Johannes; Dobrynin, Grzegorz; Kaschani, Farnusch; Eggenweiler, Hans-Michael; Zenke, Frank T; Kaiser, Markus; Meyer, Hemmo

    2018-02-05

    AAA ATPases have pivotal functions in diverse cellular processes essential for survival and proliferation. Revealing strategies for chemical inhibition of this class of enzymes is therefore of great interest for the development of novel chemotherapies or chemical tools. Here, we characterize the compound MSC1094308 as a reversible, allosteric inhibitor of the type II AAA ATPase human ubiquitin-directed unfoldase (VCP)/p97 and the type I AAA ATPase VPS4B. Subsequent proteomic, genetic and biochemical studies indicate that MSC1094308 binds to a previously characterized drugable hotspot of p97, thereby inhibiting the D2 ATPase activity. Our results furthermore indicate that a similar allosteric site exists in VPS4B, suggesting conserved allosteric circuits and drugable sites in both type I and II AAA ATPases. Our results may thus guide future chemical tool and drug discovery efforts for the biomedically relevant AAA ATPases. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Meiotic Clade AAA ATPases: Protein Polymer Disassembly Machines.

    PubMed

    Monroe, Nicole; Hill, Christopher P

    2016-05-08

    Meiotic clade AAA ATPases (ATPases associated with diverse cellular activities), which were initially grouped on the basis of phylogenetic classification of their AAA ATPase cassette, include four relatively well characterized family members, Vps4, spastin, katanin and fidgetin. These enzymes all function to disassemble specific polymeric protein structures, with Vps4 disassembling the ESCRT-III polymers that are central to the many membrane-remodeling activities of the ESCRT (endosomal sorting complexes required for transport) pathway and spastin, katanin p60 and fidgetin affecting multiple aspects of cellular dynamics by severing microtubules. They share a common domain architecture that features an N-terminal MIT (microtubule interacting and trafficking) domain followed by a single AAA ATPase cassette. Meiotic clade AAA ATPases function as hexamers that can cycle between the active assembly and inactive monomers/dimers in a regulated process, and they appear to disassemble their polymeric substrates by translocating subunits through the central pore of their hexameric ring. Recent studies with Vps4 have shown that nucleotide-induced asymmetry is a requirement for substrate binding to the pore loops and that recruitment to the protein lattice via MIT domains also relieves autoinhibition and primes the AAA ATPase cassettes for substrate binding. The most striking, unifying feature of meiotic clade AAA ATPases may be their MIT domain, which is a module that is found in a wide variety of proteins that localize to ESCRT-III polymers. Spastin also displays an adjacent microtubule binding sequence, and the presence of both ESCRT-III and microtubule binding elements may underlie the recent findings that the ESCRT-III disassembly function of Vps4 and the microtubule-severing function of spastin, as well as potentially katanin and fidgetin, are highly coordinated. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. The AAA protein spastin possesses two levels of basal ATPase activity.

    PubMed

    Fan, Xiangyu; Lin, Zhijie; Fan, Guanghui; Lu, Jing; Hou, Yongfei; Habai, Gulijiazi; Sun, Linyue; Yu, Pengpeng; Shen, Yuequan; Wen, Maorong; Wang, Chunguang

    2018-05-01

    The AAA ATPase spastin is a microtubule-severing enzyme that plays important roles in various cellular events including axon regeneration. Herein, we found that the basal ATPase activity of spastin is negatively regulated by spastin concentration. By determining a spastin crystal structure, we demonstrate the necessity of intersubunit interactions between spastin AAA domains. Neutralization of the positive charges in the microtubule-binding domain (MTBD) of spastin dramatically decreases the ATPase activity at low concentration, although the ATP-hydrolyzing potential is not affected. These results demonstrate that, in addition to the AAA domain, the MTBD region of spastin is also involved in regulating ATPase activity, making interactions between spastin protomers more complicated than expected. © 2018 Federation of European Biochemical Societies.

  11. A conserved inter-domain communication mechanism regulates the ATPase activity of the AAA-protein Drg1.

    PubMed

    Prattes, Michael; Loibl, Mathias; Zisser, Gertrude; Luschnig, Daniel; Kappel, Lisa; Rössler, Ingrid; Grassegger, Manuela; Hromic, Altijana; Krieger, Elmar; Gruber, Karl; Pertschy, Brigitte; Bergler, Helmut

    2017-03-17

    AAA-ATPases fulfil essential roles in different cellular pathways and often act in form of hexameric complexes. Interaction with pathway-specific substrate and adaptor proteins recruits them to their targets and modulates their catalytic activity. This substrate dependent regulation of ATP hydrolysis in the AAA-domains is mediated by a non-catalytic N-terminal domain. The exact mechanisms that transmit the signal from the N-domain and coordinate the individual AAA-domains in the hexameric complex are still the topic of intensive research. Here, we present the characterization of a novel mutant variant of the eukaryotic AAA-ATPase Drg1 that shows dysregulation of ATPase activity and altered interaction with Rlp24, its substrate in ribosome biogenesis. This defective regulation is the consequence of amino acid exchanges at the interface between the regulatory N-domain and the adjacent D1 AAA-domain. The effects caused by these mutations strongly resemble those of pathological mutations of the AAA-ATPase p97 which cause the hereditary proteinopathy IBMPFD (inclusion body myopathy associated with Paget's disease of the bone and frontotemporal dementia). Our results therefore suggest well conserved mechanisms of regulation between structurally, but not functionally related members of the AAA-family.

  12. An AAA Motor-Driven Mechanical Switch in Rpn11 Controls Deubiquitination at the 26S Proteasome.

    PubMed

    Worden, Evan J; Dong, Ken C; Martin, Andreas

    2017-09-07

    Poly-ubiquitin chains direct protein substrates to the 26S proteasome, where they are removed by the deubiquitinase Rpn11 during ATP-dependent substrate degradation. Rapid deubiquitination is required for efficient degradation but must be restricted to committed substrates that are engaged with the ATPase motor to prevent premature ubiquitin chain removal and substrate escape. Here we reveal the ubiquitin-bound structure of Rpn11 from S. cerevisiae and the mechanisms for mechanochemical coupling of substrate degradation and deubiquitination. Ubiquitin binding induces a conformational switch of Rpn11's Insert-1 loop from an inactive closed state to an active β hairpin. This switch is rate-limiting for deubiquitination and strongly accelerated by mechanical substrate translocation into the AAA+ motor. Deubiquitination by Rpn11 and ubiquitin unfolding by the ATPases are in direct competition. The AAA+ motor-driven acceleration of Rpn11 is therefore important to ensure that poly-ubiquitin chains are removed only from committed substrates and fast enough to prevent their co-degradation. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Inter-ring rotations of AAA ATPase p97 revealed by electron cryomicroscopy

    PubMed Central

    Yeung, Heidi O.; Förster, Andreas; Bebeacua, Cecilia; Niwa, Hajime; Ewens, Caroline; McKeown, Ciarán; Zhang, Xiaodong; Freemont, Paul S.

    2014-01-01

    The type II AAA+ protein p97 is involved in numerous cellular activities, including endoplasmic reticulum-associated degradation, transcription activation, membrane fusion and cell-cycle control. These activities are at least in part regulated by the ubiquitin system, in which p97 is thought to target ubiquitylated protein substrates within macromolecular complexes and assist in their extraction or disassembly. Although ATPase activity is essential for p97 function, little is known about how ATP binding or hydrolysis is coupled with p97 conformational changes and substrate remodelling. Here, we have used single-particle electron cryomicroscopy (cryo-EM) to study the effect of nucleotides on p97 conformation. We have identified conformational heterogeneity within the cryo-EM datasets from which we have resolved two major p97 conformations. A comparison of conformations reveals inter-ring rotations upon nucleotide binding and hydrolysis that may be linked to the remodelling of target protein complexes. PMID:24598262

  14. Ubiquitinated Proteins Activate the Proteasomal ATPases by Binding to Usp14 or Uch37 Homologs*

    PubMed Central

    Peth, Andreas; Kukushkin, Nikolay; Bossé, Marc; Goldberg, Alfred L.

    2013-01-01

    Degradation of ubiquitinated proteins by 26 S proteasomes requires ATP hydrolysis, but it is unclear how the proteasomal ATPases are regulated and how proteolysis, substrate deubiquitination, degradation, and ATP hydrolysis are coordinated. Polyubiquitinated proteins were shown to stimulate ATP hydrolysis by purified proteasomes, but only if the proteins contain a loosely folded domain. If they were not ubiquitinated, such proteins did not increase ATPase activity. However, they did so upon addition of ubiquitin aldehyde, which mimics the ubiquitin chain and binds to 26 S-associated deubiquitinating enzymes (DUBs): in yeast to Ubp6, which is essential for the ATPase activation, and in mammalian 26 S to the Ubp6 homolog, Usp14, and Uch37. Occupancy of either DUB by a ubiquitin conjugate leads to ATPase stimulation, thereby coupling deubiquitination and ATP hydrolysis. Thus, ubiquitinated loosely folded proteins, after becoming bound to the 26 S, interact with Ubp6/Usp14 or Uch37 to activate ATP hydrolysis and enhance their own destruction. PMID:23341450

  15. Structural Insights into the Unusually Strong ATPase Activity of the AAA Domain of the Caenorhabditis elegans Fidgetin-like 1 (FIGL-1) Protein*

    PubMed Central

    Peng, Wentao; Lin, Zhijie; Li, Weirong; Lu, Jing; Shen, Yuequan; Wang, Chunguang

    2013-01-01

    The FIGL-1 (fidgetin like-1) protein is a homolog of fidgetin, a protein whose mutation leads to multiple developmental defects. The FIGL-1 protein contains an AAA (ATPase associated with various activities) domain and belongs to the AAA superfamily. However, the biological functions and developmental implications of this protein remain unknown. Here, we show that the AAA domain of the Caenorhabditis elegans FIGL-1 protein (CeFIGL-1-AAA), in clear contrast to homologous AAA domains, has an unusually high ATPase activity and forms a hexamer in solution. By determining the crystal structure of CeFIGL-1-AAA, we found that the loop linking helices α9 and α10 folds into the short helix α9a, which has an acidic surface and interacts with a positively charged surface of the neighboring subunit. Disruption of this charge interaction by mutagenesis diminishes both the ATPase activity and oligomerization capacity of the protein. Interestingly, the acidic residues in helix α9a of CeFIGL-1-AAA are not conserved in other homologous AAA domains that have relatively low ATPase activities. These results demonstrate that the sequence of CeFIGL-1-AAA has adapted to establish an intersubunit charge interaction, which contributes to its strong oligomerization and ATPase activity. These unique properties of CeFIGL-1-AAA distinguish it from other homologous proteins, suggesting that CeFIGL-1 may have a distinct biological function. PMID:23979136

  16. Structural insights into the unusually strong ATPase activity of the AAA domain of the Caenorhabditis elegans fidgetin-like 1 (FIGL-1) protein.

    PubMed

    Peng, Wentao; Lin, Zhijie; Li, Weirong; Lu, Jing; Shen, Yuequan; Wang, Chunguang

    2013-10-11

    The FIGL-1 (fidgetin like-1) protein is a homolog of fidgetin, a protein whose mutation leads to multiple developmental defects. The FIGL-1 protein contains an AAA (ATPase associated with various activities) domain and belongs to the AAA superfamily. However, the biological functions and developmental implications of this protein remain unknown. Here, we show that the AAA domain of the Caenorhabditis elegans FIGL-1 protein (CeFIGL-1-AAA), in clear contrast to homologous AAA domains, has an unusually high ATPase activity and forms a hexamer in solution. By determining the crystal structure of CeFIGL-1-AAA, we found that the loop linking helices α9 and α10 folds into the short helix α9a, which has an acidic surface and interacts with a positively charged surface of the neighboring subunit. Disruption of this charge interaction by mutagenesis diminishes both the ATPase activity and oligomerization capacity of the protein. Interestingly, the acidic residues in helix α9a of CeFIGL-1-AAA are not conserved in other homologous AAA domains that have relatively low ATPase activities. These results demonstrate that the sequence of CeFIGL-1-AAA has adapted to establish an intersubunit charge interaction, which contributes to its strong oligomerization and ATPase activity. These unique properties of CeFIGL-1-AAA distinguish it from other homologous proteins, suggesting that CeFIGL-1 may have a distinct biological function.

  17. Ubiquitin-Like Proteasome System Represents a Eukaryotic-Like Pathway for Targeted Proteolysis in Archaea

    DOE PAGES

    Fu, Xian; Liu, Rui; Sanchez, Iona; ...

    2016-05-17

    The molecular mechanisms of targeted proteolysis in archaea are poorly understood, yet they may have deep evolutionary roots shared with the ubiquitin-proteasome system of eukaryotic cells. Here, we demonstrate in archaea that TBP2, a TATA-binding protein (TBP) modified by ubiquitin-like isopeptide bonds, is phosphorylated and targeted for degradation by proteasomes. Rapid turnover of TBP2 required the functions of UbaA (the E1/MoeB/ThiF homolog of archaea), AAA ATPases (Cdc48/p97 and Rpt types), a type 2 JAB1/MPN/MOV34 metalloenzyme (JAMM/MPN+) homolog (JAMM2), and 20S proteasomes. The ubiquitin-like protein modifier small archaeal modifier protein 2 (SAMP2) stimulated the degradation of TBP2, but SAMP2 itself wasmore » not degraded. Analysis of the TBP2 fractions that were not modified by ubiquitin-like linkages revealed that TBP2 had multiple N termini, including Met1-Ser2, Ser2, and Met1-Ser2(p) [where (p) represents phosphorylation]. The evidence suggested that the Met1-Ser2(p) form accumulated in cells that were unable to degrade TBP2. We propose a model in archaea in which the attachment of ubiquitin-like tags can target proteins for degradation by proteasomes and be controlled by N-terminal degrons. In support of a proteolytic mechanism that is energy dependent and recycles the ubiquitin-like protein tags, we find that a network of AAA ATPases and a JAMM/MPN+ metalloprotease are required, in addition to 20S proteasomes, for controlled intracellular proteolysis. IMPORTANCEThis study advances the fundamental knowledge of signal-guided proteolysis in archaea and sheds light on components that are related to the ubiquitin-proteasome system of eukaryotes. In archaea, the ubiquitin-like proteasome system is found to require function of an E1/MoeB/ThiF homolog, a type 2 JAMM/MPN+ metalloprotease, and a network of AAA ATPases for the targeted destruction of proteins. We provide evidence that the attachment of the ubiquitin-like protein is controlled by an N

  18. Sequential Actions of the AAA-ATPase Valosin-containing Protein (VCP)/p97 and the Proteasome 19 S Regulatory Particle in Sterol-accelerated, Endoplasmic Reticulum (ER)-associated Degradation of 3-Hydroxy-3-methylglutaryl-coenzyme A Reductase*

    PubMed Central

    Morris, Lindsey L.; Hartman, Isamu Z.; Jun, Dong-Jae; Seemann, Joachim; DeBose-Boyd, Russell A.

    2014-01-01

    Accelerated endoplasmic reticulum (ER)-associated degradation (ERAD) of the cholesterol biosynthetic enzyme 3-hydroxy-3-methylglutaryl-coenzyme A reductase results from its sterol-induced binding to ER membrane proteins called Insig-1 and Insig-2. This binding allows for subsequent ubiquitination of reductase by Insig-associated ubiquitin ligases. Once ubiquitinated, reductase becomes dislocated from ER membranes into the cytosol for degradation by 26 S proteasomes through poorly defined reactions mediated by the AAA-ATPase valosin-containing protein (VCP)/p97 and augmented by the nonsterol isoprenoid geranylgeraniol. Here, we report that the oxysterol 25-hydroxycholesterol and geranylgeraniol combine to trigger extraction of reductase across ER membranes prior to its cytosolic release. This conclusion was drawn from studies utilizing a novel assay that measures membrane extraction of reductase by determining susceptibility of a lumenal epitope in the enzyme to in vitro protease digestion. Susceptibility of the lumenal epitope to protease digestion and thus membrane extraction of reductase were tightly regulated by 25-hydroxycholesterol and geranylgeraniol. The reaction was inhibited by RNA interference-mediated knockdown of either Insigs or VCP/p97. In contrast, reductase continued to become membrane-extracted, but not cytosolically dislocated, in cells deficient for AAA-ATPases of the proteasome 19 S regulatory particle. These findings establish sequential roles for VCP/p97 and the 19 S regulatory particle in the sterol-accelerated ERAD of reductase that may be applicable to the ERAD of other substrates. PMID:24860107

  19. Structure and Function of p97 and Pex1/6 Type II AAA+ Complexes.

    PubMed

    Saffert, Paul; Enenkel, Cordula; Wendler, Petra

    2017-01-01

    Protein complexes of the Type II AAA+ (ATPases associated with diverse cellular activities) family are typically hexamers of 80-150 kDa protomers that harbor two AAA+ ATPase domains. They form double ring assemblies flanked by associated domains, which can be N-terminal, intercalated or C-terminal to the ATPase domains. Most prominent members of this family include NSF (N-ethyl-maleimide sensitive factor), p97/VCP (valosin-containing protein), the Pex1/Pex6 complex and Hsp104 in eukaryotes and ClpB in bacteria. Tremendous efforts have been undertaken to understand the conformational dynamics of protein remodeling type II AAA+ complexes. A uniform mode of action has not been derived from these works. This review focuses on p97/VCP and the Pex1/6 complex, which both structurally remodel ubiquitinated substrate proteins. P97/VCP plays a role in many processes, including ER- associated protein degradation, and the Pex1/Pex6 complex dislocates and recycles the transport receptor Pex5 from the peroxisomal membrane during peroxisomal protein import. We give an introduction into existing knowledge about the biochemical and cellular activities of the complexes before discussing structural information. We particularly emphasize recent electron microscopy structures of the two AAA+ complexes and summarize their structural differences.

  20. Analysis of the cooperative ATPase cycle of the AAA+ chaperone ClpB from Thermus thermophilus by using ordered heterohexamers with an alternating subunit arrangement.

    PubMed

    Yamasaki, Takashi; Oohata, Yukiko; Nakamura, Toshiki; Watanabe, Yo-hei

    2015-04-10

    The ClpB/Hsp104 chaperone solubilizes and reactivates protein aggregates in cooperation with DnaK/Hsp70 and its cofactors. The ClpB/Hsp104 protomer has two AAA+ modules, AAA-1 and AAA-2, and forms a homohexamer. In the hexamer, these modules form a two-tiered ring in which each tier consists of homotypic AAA+ modules. By ATP binding and its hydrolysis at these AAA+ modules, ClpB/Hsp104 exerts the mechanical power required for protein disaggregation. Although ATPase cycle of this chaperone has been studied by several groups, an integrated understanding of this cycle has not been obtained because of the complexity of the mechanism and differences between species. To improve our understanding of the ATPase cycle, we prepared many ordered heterohexamers of ClpB from Thermus thermophilus, in which two subunits having different mutations were cross-linked to each other and arranged alternately and measured their nucleotide binding, ATP hydrolysis, and disaggregation abilities. The results indicated that the ATPase cycle of ClpB proceeded as follows: (i) the 12 AAA+ modules randomly bound ATP, (ii) the binding of four or more ATP to one AAA+ ring was sensed by a conserved Arg residue and converted another AAA+ ring into the ATPase-active form, and (iii) ATP hydrolysis occurred cooperatively in each ring. We also found that cooperative ATP hydrolysis in at least one ring was needed for the disaggregation activity of ClpB. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  1. Structural Basis of ATP Hydrolysis and Intersubunit Signaling in the AAA+ ATPase p97.

    PubMed

    Hänzelmann, Petra; Schindelin, Hermann

    2016-01-05

    p97 belongs to the superfamily of AAA+ ATPases and is characterized by a tandem AAA module, an N-terminal domain involved in substrate and cofactor interactions, and a functionally important unstructured C-terminal tail. The ATPase activity is controlled by an intradomain communication within the same protomer and an interdomain communication between neighboring protomers. Here, we present for the first time crystal structures in which the physiologically relevant p97 hexamer constitutes the content of the asymmetric unit, namely in the apo state without nucleotide in either the D1 or D2 module and in the pre-activated state with ATPγS bound to both modules. The structures provide new mechanistic insights into the interdomain communication mediated by conformational changes of the C terminus as well as an intersubunit signaling network, which couples the nucleotide state to the conformation of the central putative substrate binding pore. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Structural basis of protein translocation by the Vps4-Vta1 AAA ATPase

    PubMed Central

    Monroe, Nicole; Han, Han; Shen, Peter S; Sundquist, Wesley I; Hill, Christopher P

    2017-01-01

    Many important cellular membrane fission reactions are driven by ESCRT pathways, which culminate in disassembly of ESCRT-III polymers by the AAA ATPase Vps4. We report a 4.3 Å resolution cryo-EM structure of the active Vps4 hexamer with its cofactor Vta1, ADP·BeFx, and an ESCRT-III substrate peptide. Four Vps4 subunits form a helix whose interfaces are consistent with ATP binding, is stabilized by Vta1, and binds the substrate peptide. The fifth subunit approximately continues this helix but appears to be dissociating. The final Vps4 subunit completes a notched-washer configuration as if transitioning between the ends of the helix. We propose that ATP binding propagates growth at one end of the helix while hydrolysis promotes disassembly at the other end, so that Vps4 ‘walks’ along ESCRT-III until it encounters the ordered N-terminal domain to destabilize the ESCRT-III lattice. This model may be generally applicable to other protein-translocating AAA ATPases. DOI: http://dx.doi.org/10.7554/eLife.24487.001 PMID:28379137

  3. TRIP13 is a protein-remodeling AAA+ ATPase that catalyzes MAD2 conformation switching

    DOE PAGES

    Ye, Qiaozhen; Rosenberg, Scott C.; Moeller, Arne; ...

    2015-04-28

    The AAA+ family ATPase TRIP13 is a key regulator of meiotic recombination and the spindle assembly checkpoint, acting on signaling proteins of the conserved HORMA domain family. Here we present the structure of the Caenorhabditis elegans TRIP13 ortholog PCH-2, revealing a new family of AAA+ ATPase protein remodelers. PCH-2 possesses a substrate-recognition domain related to those of the protein remodelers NSF and p97, while its overall hexameric architecture and likely structural mechanism bear close similarities to the bacterial protein unfoldase ClpX. We find that TRIP13, aided by the adapter protein p31(comet), converts the HORMA-family spindle checkpoint protein MAD2 from amore » signaling-active ‘closed’ conformer to an inactive ‘open’ conformer. We propose that TRIP13 and p31(comet) collaborate to inactivate the spindle assembly checkpoint through MAD2 conformational conversion and disassembly of mitotic checkpoint complexes. A parallel HORMA protein disassembly activity likely underlies TRIP13's critical regulatory functions in meiotic chromosome structure and recombination.« less

  4. Mechanism of the AAA+ ATPases pontin and reptin in the biogenesis of H/ACA RNPs.

    PubMed

    Machado-Pinilla, Rosario; Liger, Dominique; Leulliot, Nicolas; Meier, U Thomas

    2012-10-01

    The AAA+ ATPases pontin and reptin function in a staggering array of cellular processes including chromatin remodeling, transcriptional regulation, DNA damage repair, and assembly of macromolecular complexes, such as RNA polymerase II and small nucleolar (sno) RNPs. However, the molecular mechanism for all of these AAA+ ATPase associated activities is unknown. Here we document that, during the biogenesis of H/ACA RNPs (including telomerase), the assembly factor SHQ1 holds the pseudouridine synthase NAP57/dyskerin in a viselike grip, and that pontin and reptin (as components of the R2TP complex) are required to pry NAP57 from SHQ1. Significantly, the NAP57 domain captured by SHQ1 harbors most mutations underlying X-linked dyskeratosis congenita (X-DC) implicating the interface between the two proteins as a target of this bone marrow failure syndrome. Homing in on the essential first steps of H/ACA RNP biogenesis, our findings provide the first insight into the mechanism of action of pontin and reptin in the assembly of macromolecular complexes.

  5. Mechanism of the AAA+ ATPases pontin and reptin in the biogenesis of H/ACA RNPs

    PubMed Central

    Machado-Pinilla, Rosario; Liger, Dominique; Leulliot, Nicolas; Meier, U. Thomas

    2012-01-01

    The AAA+ ATPases pontin and reptin function in a staggering array of cellular processes including chromatin remodeling, transcriptional regulation, DNA damage repair, and assembly of macromolecular complexes, such as RNA polymerase II and small nucleolar (sno) RNPs. However, the molecular mechanism for all of these AAA+ ATPase associated activities is unknown. Here we document that, during the biogenesis of H/ACA RNPs (including telomerase), the assembly factor SHQ1 holds the pseudouridine synthase NAP57/dyskerin in a viselike grip, and that pontin and reptin (as components of the R2TP complex) are required to pry NAP57 from SHQ1. Significantly, the NAP57 domain captured by SHQ1 harbors most mutations underlying X-linked dyskeratosis congenita (X-DC) implicating the interface between the two proteins as a target of this bone marrow failure syndrome. Homing in on the essential first steps of H/ACA RNP biogenesis, our findings provide the first insight into the mechanism of action of pontin and reptin in the assembly of macromolecular complexes. PMID:22923768

  6. The AAA-ATPase molecular chaperone Cdc48/p97 disassembles sumoylated centromeres, decondenses heterochromatin, and activates ribosomal RNA genes.

    PubMed

    Mérai, Zsuzsanna; Chumak, Nina; García-Aguilar, Marcelina; Hsieh, Tzung-Fu; Nishimura, Toshiro; Schoft, Vera K; Bindics, János; Slusarz, Lucyna; Arnoux, Stéphanie; Opravil, Susanne; Mechtler, Karl; Zilberman, Daniel; Fischer, Robert L; Tamaru, Hisashi

    2014-11-11

    Centromeres mediate chromosome segregation and are defined by the centromere-specific histone H3 variant (CenH3)/centromere protein A (CENP-A). Removal of CenH3 from centromeres is a general property of terminally differentiated cells, and the persistence of CenH3 increases the risk of diseases such as cancer. However, active mechanisms of centromere disassembly are unknown. Nondividing Arabidopsis pollen vegetative cells, which transport engulfed sperm by extended tip growth, undergo loss of CenH3; centromeric heterochromatin decondensation; and bulk activation of silent rRNA genes, accompanied by their translocation into the nucleolus. Here, we show that these processes are blocked by mutations in the evolutionarily conserved AAA-ATPase molecular chaperone, CDC48A, homologous to yeast Cdc48 and human p97 proteins, both of which are implicated in ubiquitin/small ubiquitin-like modifier (SUMO)-targeted protein degradation. We demonstrate that CDC48A physically associates with its heterodimeric cofactor UFD1-NPL4, known to bind ubiquitin and SUMO, as well as with SUMO1-modified CenH3 and mutations in NPL4 phenocopy cdc48a mutations. In WT vegetative cell nuclei, genetically unlinked ribosomal DNA (rDNA) loci are uniquely clustered together within the nucleolus and all major rRNA gene variants, including those rDNA variants silenced in leaves, are transcribed. In cdc48a mutant vegetative cell nuclei, however, these rDNA loci frequently colocalized with condensed centromeric heterochromatin at the external periphery of the nucleolus. Our results indicate that the CDC48A(NPL4) complex actively removes sumoylated CenH3 from centromeres and disrupts centromeric heterochromatin to release bulk rRNA genes into the nucleolus for ribosome production, which fuels single nucleus-driven pollen tube growth and is essential for plant reproduction.

  7. The AAA-ATPase molecular chaperone Cdc48/p97 disassembles sumoylated centromeres, decondenses heterochromatin, and activates ribosomal RNA genes

    PubMed Central

    Mérai, Zsuzsanna; Chumak, Nina; García-Aguilar, Marcelina; Hsieh, Tzung-Fu; Nishimura, Toshiro; Schoft, Vera K.; Bindics, János; Ślusarz, Lucyna; Arnoux, Stéphanie; Opravil, Susanne; Mechtler, Karl; Zilberman, Daniel; Fischer, Robert L.; Tamaru, Hisashi

    2014-01-01

    Centromeres mediate chromosome segregation and are defined by the centromere-specific histone H3 variant (CenH3)/centromere protein A (CENP-A). Removal of CenH3 from centromeres is a general property of terminally differentiated cells, and the persistence of CenH3 increases the risk of diseases such as cancer. However, active mechanisms of centromere disassembly are unknown. Nondividing Arabidopsis pollen vegetative cells, which transport engulfed sperm by extended tip growth, undergo loss of CenH3; centromeric heterochromatin decondensation; and bulk activation of silent rRNA genes, accompanied by their translocation into the nucleolus. Here, we show that these processes are blocked by mutations in the evolutionarily conserved AAA-ATPase molecular chaperone, CDC48A, homologous to yeast Cdc48 and human p97 proteins, both of which are implicated in ubiquitin/small ubiquitin-like modifier (SUMO)-targeted protein degradation. We demonstrate that CDC48A physically associates with its heterodimeric cofactor UFD1-NPL4, known to bind ubiquitin and SUMO, as well as with SUMO1-modified CenH3 and mutations in NPL4 phenocopy cdc48a mutations. In WT vegetative cell nuclei, genetically unlinked ribosomal DNA (rDNA) loci are uniquely clustered together within the nucleolus and all major rRNA gene variants, including those rDNA variants silenced in leaves, are transcribed. In cdc48a mutant vegetative cell nuclei, however, these rDNA loci frequently colocalized with condensed centromeric heterochromatin at the external periphery of the nucleolus. Our results indicate that the CDC48ANPL4 complex actively removes sumoylated CenH3 from centromeres and disrupts centromeric heterochromatin to release bulk rRNA genes into the nucleolus for ribosome production, which fuels single nucleus-driven pollen tube growth and is essential for plant reproduction. PMID:25344531

  8. WRNIP1 accumulates at laser light irradiated sites rapidly via its ubiquitin-binding zinc finger domain and independently from its ATPase domain

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nomura, Hironoshin; Yoshimura, Akari, E-mail: akari_yo@musashino-u.ac.jp; Edo, Takato

    2012-01-27

    Highlights: Black-Right-Pointing-Pointer WRNIP1 accumulates in laser light irradiated sites very rapidly via UBZ domain. Black-Right-Pointing-Pointer The ATPase domain of WRNIP1 is dispensable for its accumulation. Black-Right-Pointing-Pointer The accumulation of WRNIP1 seems not to be dependent on the interaction with WRN. -- Abstract: WRNIP1 (Werner helicase-interacting protein 1) was originally identified as a protein that interacts with the Werner syndrome responsible gene product. WRNIP1 contains a ubiquitin-binding zinc-finger (UBZ) domain in the N-terminal region and two leucine zipper motifs in the C-terminal region. In addition, it possesses an ATPase domain in the middle of the molecule and the lysine residues servingmore » as ubiquitin acceptors in the entire of the molecule. Here, we report that WRNIP1 accumulates in laser light irradiated sites very rapidly via its ubiquitin-binding zinc finger domain, which is known to bind polyubiquitin and to be involved in ubiquitination of WRNIP1 itself. The accumulation of WRNIP1 in laser light irradiated sites also required the C-terminal region containing two leucine zippers, which is reportedly involved in the oligomerization of WRNIP1. Mutated WRNIP1 with a deleted ATPase domain or with mutations in lysine residues, which serve as ubiquitin acceptors, accumulated in laser light irradiated sites, suggesting that the ATPase domain of WRNIP1 and ubiquitination of WRNIP1 are dispensable for the accumulation.« less

  9. The Multivesicular Bodies (MVBs)-Localized AAA ATPase LRD6-6 Inhibits Immunity and Cell Death Likely through Regulating MVBs-Mediated Vesicular Trafficking in Rice

    PubMed Central

    Liang, Sihui; Liang, Ruihong; Zhou, Xiaogang; Chen, Zhixiong; Zhao, Wen; Wang, Jing; Li, Weitao; He, Min; Yuan, Can; Miyamoto, Koji; Ma, Bingtian; Wang, Jichun; Qin, Peng; Chen, Weilan; Wang, Yuping; Wang, Wenming; Wu, Xianjun; Yamane, Hisakazu; Zhu, Lihuang; Li, Shigui; Chen, Xuewei

    2016-01-01

    Previous studies have shown that multivesicular bodies (MVBs)/endosomes-mediated vesicular trafficking may play key roles in plant immunity and cell death. However, the molecular regulation is poorly understood in rice. Here we report the identification and characterization of a MVBs-localized AAA ATPase LRD6-6 in rice. Disruption of LRD6-6 leads to enhanced immunity and cell death in rice. The ATPase activity and homo-dimerization of LRD6-6 is essential for its regulation on plant immunity and cell death. An ATPase inactive mutation (LRD6-6E315Q) leads to dominant-negative inhibition in plants. The LRD6-6 protein co-localizes with the MVBs marker protein RabF1/ARA6 and interacts with ESCRT-III components OsSNF7 and OsVPS2. Further analysis reveals that LRD6-6 is required for MVBs-mediated vesicular trafficking and inhibits the biosynthesis of antimicrobial compounds. Collectively, our study shows that the AAA ATPase LRD6-6 inhibits plant immunity and cell death most likely through modulating MVBs-mediated vesicular trafficking in rice. PMID:27618555

  10. Assessing heterogeneity in oligomeric AAA+ machines.

    PubMed

    Sysoeva, Tatyana A

    2017-03-01

    ATPases Associated with various cellular Activities (AAA+ ATPases) are molecular motors that use the energy of ATP binding and hydrolysis to remodel their target macromolecules. The majority of these ATPases form ring-shaped hexamers in which the active sites are located at the interfaces between neighboring subunits. Structural changes initiate in an active site and propagate to distant motor parts that interface and reshape the target macromolecules, thereby performing mechanical work. During the functioning cycle, the AAA+ motor transits through multiple distinct states. Ring architecture and placement of the catalytic sites at the intersubunit interfaces allow for a unique level of coordination among subunits of the motor. This in turn results in conformational differences among subunits and overall asymmetry of the motor ring as it functions. To date, a large amount of structural information has been gathered for different AAA+ motors, but even for the most characterized of them only a few structural states are known and the full mechanistic cycle cannot be yet reconstructed. Therefore, the first part of this work will provide a broad overview of what arrangements of AAA+ subunits have been structurally observed focusing on diversity of ATPase oligomeric ensembles and heterogeneity within the ensembles. The second part of this review will concentrate on methods that assess structural and functional heterogeneity among subunits of AAA+ motors, thus bringing us closer to understanding the mechanism of these fascinating molecular motors.

  11. Fundamental Characteristics of AAA+ Protein Family Structure and Function

    PubMed Central

    2016-01-01

    Many complex cellular events depend on multiprotein complexes known as molecular machines to efficiently couple the energy derived from adenosine triphosphate hydrolysis to the generation of mechanical force. Members of the AAA+ ATPase superfamily (ATPases Associated with various cellular Activities) are critical components of many molecular machines. AAA+ proteins are defined by conserved modules that precisely position the active site elements of two adjacent subunits to catalyze ATP hydrolysis. In many cases, AAA+ proteins form a ring structure that translocates a polymeric substrate through the central channel using specialized loops that project into the central channel. We discuss the major features of AAA+ protein structure and function with an emphasis on pivotal aspects elucidated with archaeal proteins. PMID:27703410

  12. Fundamental Characteristics of AAA+ Protein Family Structure and Function.

    PubMed

    Miller, Justin M; Enemark, Eric J

    2016-01-01

    Many complex cellular events depend on multiprotein complexes known as molecular machines to efficiently couple the energy derived from adenosine triphosphate hydrolysis to the generation of mechanical force. Members of the AAA+ ATPase superfamily (ATPases Associated with various cellular Activities) are critical components of many molecular machines. AAA+ proteins are defined by conserved modules that precisely position the active site elements of two adjacent subunits to catalyze ATP hydrolysis. In many cases, AAA+ proteins form a ring structure that translocates a polymeric substrate through the central channel using specialized loops that project into the central channel. We discuss the major features of AAA+ protein structure and function with an emphasis on pivotal aspects elucidated with archaeal proteins.

  13. Binding-induced Folding of Prokaryotic Ubiquitin-like Protein on the Mycobacterium Proteasomal ATPase Targets Substrates for Degradation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    T Wang; K Heran Darwin; H Li

    2011-12-31

    Mycobacterium tuberculosis uses a proteasome system that is analogous to the eukaryotic ubiquitin-proteasome pathway and is required for pathogenesis. However, the bacterial analog of ubiquitin, prokaryotic ubiquitin-like protein (Pup), is an intrinsically disordered protein that bears little sequence or structural resemblance to the highly structured ubiquitin. Thus, it was unknown how pupylated proteins were recruited to the proteasome. Here, we show that the Mycobacterium proteasomal ATPase (Mpa) has three pairs of tentacle-like coiled coils that recognize Pup. Mpa bound unstructured Pup through hydrophobic interactions and a network of hydrogen bonds, leading to the formation of an {alpha}-helix in Pup. Ourmore » work describes a binding-induced folding recognition mechanism in the Pup-proteasome system that differs mechanistically from substrate recognition in the ubiquitin-proteasome system. This key difference between the prokaryotic and eukaryotic systems could be exploited for the development of a small molecule-based treatment for tuberculosis.« less

  14. Binding-induced folding of prokaryotic ubiquitin-like protein on the mycobacterium proteasomal ATPase targets substrates for degradation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, T.; Li, H.; Darwin, K. H.

    2010-11-01

    Mycobacterium tuberculosis uses a proteasome system that is analogous to the eukaryotic ubiquitin-proteasome pathway and is required for pathogenesis. However, the bacterial analog of ubiquitin, prokaryotic ubiquitin-like protein (Pup), is an intrinsically disordered protein that bears little sequence or structural resemblance to the highly structured ubiquitin. Thus, it was unknown how pupylated proteins were recruited to the proteasome. Here, we show that the Mycobacterium proteasomal ATPase (Mpa) has three pairs of tentacle-like coiled coils that recognize Pup. Mpa bound unstructured Pup through hydrophobic interactions and a network of hydrogen bonds, leading to the formation of an {alpha}-helix in Pup. Ourmore » work describes a binding-induced folding recognition mechanism in the Pup-proteasome system that differs mechanistically from substrate recognition in the ubiquitin-proteasome system. This key difference between the prokaryotic and eukaryotic systems could be exploited for the development of a small molecule-based treatment for tuberculosis.« less

  15. Structural Insights into the Allosteric Operation of the Lon AAA+ Protease.

    PubMed

    Lin, Chien-Chu; Su, Shih-Chieh; Su, Ming-Yuan; Liang, Pi-Hui; Feng, Chia-Cheng; Wu, Shih-Hsiung; Chang, Chung-I

    2016-05-03

    The Lon AAA+ protease (LonA) is an evolutionarily conserved protease that couples the ATPase cycle into motion to drive substrate translocation and degradation. A hallmark feature shared by AAA+ proteases is the stimulation of ATPase activity by substrates. Here we report the structure of LonA bound to three ADPs, revealing the first AAA+ protease assembly where the six protomers are arranged alternately in nucleotide-free and bound states. Nucleotide binding induces large coordinated movements of conserved pore loops from two pairs of three non-adjacent protomers and shuttling of the proteolytic groove between the ATPase site and a previously unknown Arg paddle. Structural and biochemical evidence supports the roles of the substrate-bound proteolytic groove in allosteric stimulation of ATPase activity and the conserved Arg paddle in driving substrate degradation. Altogether, this work provides a molecular framework for understanding how ATP-dependent chemomechanical movements drive allosteric processes for substrate degradation in a major protein-destruction machine. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Role of AAA(+)-proteins in peroxisome biogenesis and function.

    PubMed

    Grimm, Immanuel; Erdmann, Ralf; Girzalsky, Wolfgang

    2016-05-01

    Mutations in the PEX1 gene, which encodes a protein required for peroxisome biogenesis, are the most common cause of the Zellweger spectrum diseases. The recognition that Pex1p shares a conserved ATP-binding domain with p97 and NSF led to the discovery of the extended family of AAA+-type ATPases. So far, four AAA+-type ATPases are related to peroxisome function. Pex6p functions together with Pex1p in peroxisome biogenesis, ATAD1/Msp1p plays a role in membrane protein targeting and a member of the Lon-family of proteases is associated with peroxisomal quality control. This review summarizes the current knowledge on the AAA+-proteins involved in peroxisome biogenesis and function.

  17. Selective autophagy: ubiquitin-mediated recognition and beyond.

    PubMed

    Kraft, Claudine; Peter, Matthias; Hofmann, Kay

    2010-09-01

    Eukaryotic cells use autophagy and the ubiquitin-proteasome system as their major protein degradation pathways. Whereas the ubiquitin-proteasome system is involved in the rapid degradation of proteins, autophagy pathways can selectively remove protein aggregates and damaged or excess organelles. Proteasome-mediated degradation requires previous ubiquitylation of the cargo, which is then recognized by ubiquitin receptors directing it to 26S proteasomes. Although autophagy has long been viewed as a random cytoplasmic degradation system, the involvement of ubiquitin as a specificity factor for selective autophagy is rapidly emerging. Recent evidence also suggests active crosstalk between proteasome-mediated degradation and selective autophagy. Here, we discuss the molecular mechanisms that link autophagy and the proteasome system, as well as the emerging roles of ubiquitin and ubiquitin-binding proteins in selective autophagy. On the basis of the evolutionary history of autophagic ubiquitin receptors, we propose a common origin for metazoan ubiquitin-dependent autophagy and the cytoplasm-to-vacuole targeting pathway of yeast.

  18. Engagement of Arginine Finger to ATP Triggers Large Conformational Changes in NtrC1 AAA+ ATPase for Remodeling Bacterial RNA Polymerase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Baoyu; Sysoeva, Tatyana A.; Chowdhury, Saikat

    The NtrC-like AAA+ ATPases control virulence and other important bacterial activities through delivering mechanical work to {sigma}54-RNA polymerase to activate transcription from {sigma}54-dependent genes. We report the first crystal structure for such an ATPase, NtrC1 of Aquifex aeolicus, in which the catalytic arginine engages the {gamma}-phosphate of ATP. Comparing the new structure with those previously known for apo and ADP-bound states supports a rigid-body displacement model that is consistent with large-scale conformational changes observed by low-resolution methods. First, the arginine finger induces rigid-body roll, extending surface loops above the plane of the ATPase ring to bind {sigma}54. Second, ATP hydrolysismore » permits Pi release and retraction of the arginine with a reversed roll, remodeling {sigma}54-RNAP. This model provides a fresh perspective on how ATPase subunits interact within the ring-ensemble to promote transcription, directing attention to structural changes on the arginine-finger side of an ATP-bound interface.« less

  19. Unique ATPase site architecture triggers cis-mediated synchronized ATP binding in heptameric AAA+-ATPase domain of flagellar regulatory protein FlrC.

    PubMed

    Dey, Sanjay; Biswas, Maitree; Sen, Udayaditya; Dasgupta, Jhimli

    2015-04-03

    Bacterial enhancer-binding proteins (bEBPs) oligomerize through AAA(+) domains and use ATP hydrolysis-driven energy to isomerize the RNA polymerase-σ(54) complex during transcriptional initiation. Here, we describe the first structure of the central AAA(+) domain of the flagellar regulatory protein FlrC (FlrC(C)), a bEBP that controls flagellar synthesis in Vibrio cholerae. Our results showed that FlrC(C) forms heptamer both in nucleotide (Nt)-free and -bound states without ATP-dependent subunit remodeling. Unlike the bEBPs such as NtrC1 or PspF, a novel cis-mediated "all or none" ATP binding occurs in the heptameric FlrC(C), because constriction at the ATPase site, caused by loop L3 and helix α7, restricts the proximity of the trans-protomer required for Nt binding. A unique "closed to open" movement of Walker A, assisted by trans-acting "Glu switch" Glu-286, facilitates ATP binding and hydrolysis. Fluorescence quenching and ATPase assays on FlrC(C) and mutants revealed that although Arg-349 of sensor II, positioned by trans-acting Glu-286 and Tyr-290, acts as a key residue to bind and hydrolyze ATP, Arg-319 of α7 anchors ribose and controls the rate of ATP hydrolysis by retarding the expulsion of ADP. Heptameric state of FlrC(C) is restored in solution even with the transition state mimicking ADP·AlF3. Structural results and pulldown assays indicated that L3 renders an in-built geometry to L1 and L2 causing σ(54)-FlrC(C) interaction independent of Nt binding. Collectively, our results underscore a novel mechanism of ATP binding and σ(54) interaction that strives to understand the transcriptional mechanism of the bEBPs, which probably interact directly with the RNA polymerase-σ(54) complex without DNA looping. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  20. Crystal Structure and Biochemical Characterization of a Mycobacterium smegmatis AAA-Type Nucleoside Triphosphatase Phosphohydrolase (Msm0858).

    PubMed

    Unciuleac, Mihaela-Carmen; Smith, Paul C; Shuman, Stewart

    2016-05-15

    AAA proteins (ATPases associated with various cellular activities) use the energy of ATP hydrolysis to drive conformational changes in diverse macromolecular targets. Here, we report the biochemical characterization and 2.5-Å crystal structure of a Mycobacterium smegmatis AAA protein Msm0858, the ortholog of Mycobacterium tuberculosis Rv0435c. Msm0858 is a magnesium-dependent ATPase and is active with all nucleoside triphosphates (NTPs) and deoxynucleoside triphosphates (dNTPs) as substrates. The Msm0858 structure comprises (i) an N-terminal domain (amino acids [aa] 17 to 201) composed of two β-barrel modules and (ii) two AAA domains, D1 (aa 212 to 473) and D2 (aa 476 to 744), each of which has ADP in the active site. Msm0858-ADP is a monomer in solution and in crystallized form. Msm0858 domains are structurally homologous to the corresponding modules of mammalian p97. However, the position of the N-domain modules relative to the AAA domains in the Msm0858-ADP tertiary structure is different and would impede the formation of a p97-like hexameric quaternary structure. Mutational analysis of the A-box and B-box motifs indicated that the D1 and D2 AAA domains are both capable of ATP hydrolysis. Simultaneous mutations of the D1 and D2 active-site motifs were required to abolish ATPase activity. ATPase activity was effaced by mutation of the putative D2 arginine finger, suggesting that Msm0858 might oligomerize during the ATPase reaction cycle. A truncated variant Msm0858 (aa 212 to 745) that lacks the N domain was characterized as a catalytically active homodimer. Recent studies have underscored the importance of AAA proteins (ATPases associated with various cellular activities) in the physiology of mycobacteria. This study reports the ATPase activity and crystal structure of a previously uncharacterized mycobacterial AAA protein, Msm0858. Msm0858 consists of an N-terminal β-barrel domain and two AAA domains, each with ADP bound in the active site. Msm0858 is a

  1. Conformational changes in the AAA ATPase p97–p47 adaptor complex

    PubMed Central

    Beuron, Fabienne; Dreveny, Ingrid; Yuan, Xuemei; Pye, Valerie E; Mckeown, Ciaran; Briggs, Louise C; Cliff, Matthew J; Kaneko, Yayoi; Wallis, Russell; Isaacson, Rivka L; Ladbury, John E; Matthews, Steve J; Kondo, Hisao; Zhang, Xiaodong; Freemont, Paul S

    2006-01-01

    The AAA+ATPase p97/VCP, helped by adaptor proteins, exerts its essential role in cellular events such as endoplasmic reticulum-associated protein degradation or the reassembly of Golgi, ER and the nuclear envelope after mitosis. Here, we report the three-dimensional cryo-electron microscopy structures at ∼20 Å resolution in two nucleotide states of the endogenous hexameric p97 in complex with a recombinant p47 trimer, one of the major p97 adaptor proteins involved in membrane fusion. Depending on the nucleotide state, we observe the p47 trimer to be in two distinct arrangements on top of the p97 hexamer. By combining the EM data with NMR and other biophysical measurements, we propose a model of ATP-dependent p97(N) domain motions that lead to a rearrangement of p47 domains, which could result in the disassembly of target protein complexes. PMID:16601695

  2. Peroxisomal monoubiquitinated PEX5 interacts with the AAA ATPases PEX1 and PEX6 and is unfolded during its dislocation into the cytosol.

    PubMed

    Pedrosa, Ana G; Francisco, Tânia; Bicho, Diana; Dias, Ana F; Barros-Barbosa, Aurora; Hagmann, Vera; Dodt, Gabriele; Rodrigues, Tony A; Azevedo, Jorge E

    2018-06-08

    PEX1 and PEX6 are two members of the ATPases Associated with diverse cellular Activities (AAA) family and the core components of the receptor export module (REM) of the peroxisomal matrix protein import machinery. Their role is to extract monoubiquitinated PEX5, the peroxisomal protein shuttling receptor, from the peroxisomal membrane docking/translocation module (DTM), so that a new cycle of protein transportation can start. Recent data have shown that PEX1 and PEX6 form a heterohexameric complex which unfolds substrates by processive threading. However, whether the natural substrate of the PEX1.PEX6 complex is monoubiquitinated PEX5 (Ub-PEX5) itself or some Ub-PEX5-interacting component(s) of the DTM remains unknown. In this work, we used an established cell-free in vitro system coupled with photoaffinity crosslinking and protein PEGylation assays to address this problem. We provide evidence suggesting that DTM-embedded Ub-PEX5 interacts directly with both PEX1 and PEX6 through its ubiquitin moiety and that the PEX5 polypeptide chain is globally unfolded during the ATP-dependent extraction event. These findings strongly suggest that DTM-embedded Ub-PEX5 is a bona fide substrate of the PEX1.PEX6 complex. Published under license by The American Society for Biochemistry and Molecular Biology, Inc.

  3. BOT-4-one attenuates NLRP3 inflammasome activation: NLRP3 alkylation leading to the regulation of its ATPase activity and ubiquitination.

    PubMed

    Shim, Do-Wan; Shin, Woo-Young; Yu, Sang-Hyeun; Kim, Byung-Hak; Ye, Sang-Kyu; Koppula, Sushruta; Won, Hyung-Sik; Kang, Tae-Bong; Lee, Kwang-Ho

    2017-11-08

    The ATPase activity of NLRP3 has pivotal role in inflammasome activation and is recognized as a good target for the development of the NLRP3 inflammasome-specific inhibitor. However, signals in the vicinity of the ATPase activity of NLRP3 have not been fully elucidated. Here, we demonstrate NLRP3 inflammasome-specific action of a benzoxathiole derivative, BOT-4-one. BOT-4-one exhibited an inhibition of NLRP3 inflammasome activation, which was attributable to its alkylating capability to NLRP3. In particular, the NLRP3 alkylation by BOT-4-one led to an impaired ATPase activity of NLRP3, thereby obstructing the assembly of the NLRP3 inflammasome. Additionally, we found that NLRP3 alkylators, including BOT-4-one, enhance the ubiquitination level of NLRP3, which might also contribute to the inhibition of NLRP3 inflammasome activation. Finally, BOT-4-one appeared to be superior to other known NLRP3 alkylators in inhibiting the functionality of the NLRP3 inflammasome and its resulting anti-inflammatory activity was confirmed in vivo using a monosodium urate-induced peritonitis mouse model. Collectively, the results suggest that NLRP3 alkylators function by inhibiting ATPase activity and increasing the ubiquitination level of NLRP3, and BOT-4-one could be the type of NLRP3 inhibitor that may be potentially useful for the novel development of a therapeutic agent in controlling NLRP3 inflammasome-related diseases.

  4. A Fragment-Based Ligand Screen Against Part of a Large Protein Machine: The ND1 Domains of the AAA+ ATPase p97/VCP.

    PubMed

    Chimenti, Michael S; Bulfer, Stacie L; Neitz, R Jeffrey; Renslo, Adam R; Jacobson, Matthew P; James, Thomas L; Arkin, Michelle R; Kelly, Mark J S

    2015-07-01

    The ubiquitous AAA+ ATPase p97 functions as a dynamic molecular machine driving several cellular processes. It is essential in regulating protein homeostasis, and it represents a potential drug target for cancer, particularly when there is a greater reliance on the endoplasmic reticulum-associated protein degradation pathway and ubiquitin-proteasome pathway to degrade an overabundance of secreted proteins. Here, we report a case study for using fragment-based ligand design approaches against this large and dynamic hexamer, which has multiple potential binding sites for small molecules. A screen of a fragment library was conducted by surface plasmon resonance (SPR) and followed up by nuclear magnetic resonance (NMR), two complementary biophysical techniques. Virtual screening was also carried out to examine possible binding sites for the experimental hits and evaluate the potential utility of fragment docking for this target. Out of this effort, 13 fragments were discovered that showed reversible binding with affinities between 140 µM and 1 mM, binding stoichiometries of 1:1 or 2:1, and good ligand efficiencies. Structural data for fragment-protein interactions were obtained with residue-specific [U-(2)H] (13)CH3-methyl-labeling NMR strategies, and these data were compared to poses from docking. The combination of virtual screening, SPR, and NMR enabled us to find and validate a number of interesting fragment hits and allowed us to gain an understanding of the structural nature of fragment binding. © 2015 Society for Laboratory Automation and Screening.

  5. The AAA+ proteins Pontin and Reptin enter adult age: from understanding their basic biology to the identification of selective inhibitors

    PubMed Central

    Matias, Pedro M.; Baek, Sung Hee; Bandeiras, Tiago M.; Dutta, Anindya; Houry, Walid A.; Llorca, Oscar; Rosenbaum, Jean

    2015-01-01

    Pontin and Reptin are related partner proteins belonging to the AAA+ (ATPases Associated with various cellular Activities) family. They are implicated in multiple and seemingly unrelated processes encompassing the regulation of gene transcription, the remodeling of chromatin, DNA damage sensing and repair, and the assembly of protein and ribonucleoprotein complexes, among others. The 2nd International Workshop on Pontin and Reptin took place at the Instituto de Tecnologia Química e Biológica António Xavier in Oeiras, Portugal on October 10–12, 2014, and reported significant new advances on the mechanisms of action of these two AAA+ ATPases. The major points under discussion were related to the mechanisms through which these proteins regulate gene transcription, their roles as co-chaperones, and their involvement in pathophysiology, especially in cancer and ciliary biology and disease. Finally, they may become anticancer drug targets since small chemical inhibitors were shown to produce anti-tumor effects in animal models. PMID:25988184

  6. The AAA+ proteins Pontin and Reptin enter adult age: from understanding their basic biology to the identification of selective inhibitors.

    PubMed

    Matias, Pedro M; Baek, Sung Hee; Bandeiras, Tiago M; Dutta, Anindya; Houry, Walid A; Llorca, Oscar; Rosenbaum, Jean

    2015-01-01

    Pontin and Reptin are related partner proteins belonging to the AAA+ (ATPases Associated with various cellular Activities) family. They are implicated in multiple and seemingly unrelated processes encompassing the regulation of gene transcription, the remodeling of chromatin, DNA damage sensing and repair, and the assembly of protein and ribonucleoprotein complexes, among others. The 2nd International Workshop on Pontin and Reptin took place at the Instituto de Tecnologia Química e Biológica António Xavier in Oeiras, Portugal on October 10-12, 2014, and reported significant new advances on the mechanisms of action of these two AAA+ ATPases. The major points under discussion were related to the mechanisms through which these proteins regulate gene transcription, their roles as co-chaperones, and their involvement in pathophysiology, especially in cancer and ciliary biology and disease. Finally, they may become anticancer drug targets since small chemical inhibitors were shown to produce anti-tumor effects in animal models.

  7. Structural Elements Regulating AAA+ Protein Quality Control Machines.

    PubMed

    Chang, Chiung-Wen; Lee, Sukyeong; Tsai, Francis T F

    2017-01-01

    Members of the ATPases Associated with various cellular Activities (AAA+) superfamily participate in essential and diverse cellular pathways in all kingdoms of life by harnessing the energy of ATP binding and hydrolysis to drive their biological functions. Although most AAA+ proteins share a ring-shaped architecture, AAA+ proteins have evolved distinct structural elements that are fine-tuned to their specific functions. A central question in the field is how ATP binding and hydrolysis are coupled to substrate translocation through the central channel of ring-forming AAA+ proteins. In this mini-review, we will discuss structural elements present in AAA+ proteins involved in protein quality control, drawing similarities to their known role in substrate interaction by AAA+ proteins involved in DNA translocation. Elements to be discussed include the pore loop-1, the Inter-Subunit Signaling (ISS) motif, and the Pre-Sensor I insert (PS-I) motif. Lastly, we will summarize our current understanding on the inter-relationship of those structural elements and propose a model how ATP binding and hydrolysis might be coupled to polypeptide translocation in protein quality control machines.

  8. K11- and K48-Linked Ubiquitin Chains Interact with p97 during Endoplasmic Reticulum-Associated Degradation

    PubMed Central

    Locke, Matthew; Toth, Julia I.; Petroski, Matthew D.

    2014-01-01

    The AAA+ ATPase p97 has a critical function in the cytoplasmic degradation of proteins misfolded in the endoplasmic reticulum through a mechanism known as ER-associated degradation (ERAD). During this process, p97 binds polyubiquitinated ERAD substrates and couples ATP hydrolysis to their dislocation from the ER as a prerequisite to destruction by the proteasome. The ubiquitin signals important for this process are not fully understood. Here we report that p97 interacts with lysine 11 (K11) and K48-linked ubiquitin polymers, but not those containing K63 linkages. Disruption of p97 through siRNA-mediated depletion, dominant negative over-expression, or chemical inhibition results in the accumulation of K11 and K48 ubiquitin chains predominantly at the ER membrane, and is associated with ER stress induction. We show that a catalytically inactive deubiquitinating enzyme and p97 cofactor YOD1 enhances the accumulation of K11- and K48-linked polyubiquitin in the cytoplasm, at the ER membrane, and bound to p97. In addition to general effects on p97-associated ubiquitin polymers, the ERAD substrate CD3δ is modified with both K11- and K48-ubiquitin chains prior to p97-dependent dislocation. Collectively, our data are consistent with a major role for p97 in the recognition of K11 and K48 polyubiquitinated proteins prior to their degradation by the proteasome. PMID:24417208

  9. Roles of conserved arginines in ATP-binding domains of AAA+ chaperone ClpB from Thermus thermophilus.

    PubMed

    Yamasaki, Takashi; Nakazaki, Yosuke; Yoshida, Masasuke; Watanabe, Yo-hei

    2011-07-01

    ClpB, a member of the expanded superfamily of ATPases associated with diverse cellular activities (AAA+), forms a ring-shaped hexamer and cooperates with the DnaK chaperone system to reactivate aggregated proteins in an ATP-dependent manner. The ClpB protomer consists of an N-terminal domain, an AAA+ module (AAA-1), a middle domain, and a second AAA+ module (AAA-2). Each AAA+ module contains highly conserved WalkerA and WalkerB motifs, and two arginines (AAA-1) or one arginine (AAA-2). Here, we investigated the roles of these arginines (Arg322, Arg323, and Arg747) of ClpB from Thermus thermophilus in the ATPase cycle and chaperone function by alanine substitution. These mutations did not affect nucleotide binding, but did inhibit the hydrolysis of the bound ATP and slow the threading of the denatured protein through the central pore of the T. thermophilus ClpB ring, which severely impaired the chaperone functions. Previously, it was demonstrated that ATP binding to the AAA-1 module induced motion of the middle domain and stabilized the ClpB hexamer. However, the arginine mutations of the AAA-1 module destabilized the ClpB hexamer, even though ATP-induced motion of the middle domain was not affected. These results indicated that the three arginines are crucial for ATP hydrolysis and chaperone activity, but not for ATP binding. In addition, the two arginines in AAA-1 and the ATP-induced motion of the middle domain independently contribute to the stabilization of the hexamer. © 2011 The Authors Journal compilation © 2011 FEBS.

  10. The major-effect quantitative trait locus CsARN6.1 encodes an AAA ATPase domain-containing protein that is associated with waterlogging stress tolerance by promoting adventitious root formation.

    PubMed

    Xu, Xuewen; Ji, Jing; Xu, Qiang; Qi, Xiaohua; Weng, Yiqun; Chen, Xuehao

    2018-03-01

    In plants, the formation of hypocotyl-derived adventitious roots (ARs) is an important morphological acclimation to waterlogging stress; however, its genetic basis remains fragmentary. Here, through combined use of bulked segregant analysis-based whole-genome sequencing, SNP haplotyping and fine genetic mapping, we identified a candidate gene for a major-effect QTL, ARN6.1, that was responsible for waterlogging tolerance due to increased AR formation in the cucumber line Zaoer-N. Through multiple lines of evidence, we show that CsARN6.1 is the most possible candidate for ARN6.1 which encodes an AAA ATPase. The increased formation of ARs under waterlogging in Zaoer-N could be attributed to a non-synonymous SNP in the coiled-coil domain region of this gene. CsARN6.1 increases the number of ARs via its ATPase activity. Ectopic expression of CsARN6.1 in Arabidopsis resulted in better rooting ability and lateral root development in transgenic plants. Transgenic cucumber expressing the CsARN6.1 Asp allele from Zaoer-N exhibited a significant increase in number of ARs compared with the wild type expressing the allele from Pepino under waterlogging conditions. Taken together, these data support that the AAA ATPase gene CsARN6.1 has an important role in increasing cucumber AR formation and waterlogging tolerance. © 2018 The Authors The Plant Journal © 2018 John Wiley & Sons Ltd.

  11. Asymmetric processing of a substrate protein in sequential allosteric cycles of AAA+ nanomachines

    NASA Astrophysics Data System (ADS)

    Kravats, Andrea N.; Tonddast-Navaei, Sam; Bucher, Ryan J.; Stan, George

    2013-09-01

    Essential protein quality control includes mechanisms of substrate protein (SP) unfolding and translocation performed by powerful ring-shaped AAA+ (ATPases associated with various cellular activities) nanomachines. These SP remodeling actions are effected by mechanical forces imparted by AAA+ loops that protrude into the central channel. Sequential intra-ring allosteric motions, which underlie repetitive SP-loop interactions, have been proposed to comprise clockwise (CW), counterclockwise (CCW), or random (R) conformational transitions of individual AAA+ subunits. To probe the effect of these allosteric mechanisms on unfoldase and translocase functions, we perform Langevin dynamics simulations of a coarse-grained model of an all-alpha SP processed by the single-ring ClpY ATPase or by the double-ring p97 ATPase. We find that, in all three allosteric mechanisms, the SP undergoes conformational transitions along a common set of pathways, which reveals that the active work provided by the ClpY machine involves single loop-SP interactions. Nevertheless, the rates and yields of SP unfolding and translocation are controlled by mechanism-dependent loop-SP binding events, as illustrated by faster timescales of SP processing in CW allostery compared with CCW and R allostery. The distinct efficacy of allosteric mechanisms is due to the asymmetric collaboration of adjacent subunits, which involves CW-biased structural motions of AAA+ loops and results in CW-compatible torque applied onto the SP. Additional simulations of mutant ClpY rings, which render a subset of subunits catalytically-defective or reduce their SP binding affinity, reveal that subunit-based conformational transitions play the major role in SP remodeling. Based on these results we predict that the minimally functional AAA+ ring includes three active subunits, only two of which are adjacent.

  12. The AAA+ ATPase TRIP13 remodels HORMA domains through N-terminal engagement and unfolding

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ye, Qiaozhen; Kim, Dong Hyun; Dereli, Ihsan

    Proteins of the conserved HORMA domain family, including the spindle assembly checkpoint protein MAD2 and the meiotic HORMADs, assemble into signaling complexes by binding short peptides termed “closure motifs”. The AAA+ ATPase TRIP13 regulates both MAD2 and meiotic HORMADs by disassembling these HORMA domain–closure motif complexes, but its mechanisms of substrate recognition and remodeling are unknown. Here, we combine X-ray crystallography and crosslinking mass spectrometry to outline how TRIP13 recognizes MAD2 with the help of the adapter protein p31comet. We show that p31comet binding to the TRIP13 N-terminal domain positions the disordered MAD2 N-terminus for engagement by the TRIP13 “poremore » loops”, which then unfold MAD2 in the presence of ATP. N-terminal truncation of MAD2 renders it refractory to TRIP13 action in vitro, and in cells causes spindle assembly checkpoint defects consistent with loss of TRIP13 function. Similar truncation of HORMAD1 in mouse spermatocytes compromises its TRIP13-mediated removal from meiotic chromosomes, highlighting a conserved mechanism for recognition and disassembly of HORMA domain–closure motif complexes by TRIP13.« less

  13. Role of mitochondrial processing peptidase and AAA proteases in processing of the yeast acetohydroxyacid synthase precursor.

    PubMed

    Dasari, Suvarna; Kölling, Ralf

    2016-07-01

    We studied presequence processing of the mitochondrial-matrix targeted acetohydroxyacid synthase (Ilv2). C-terminal 3HA-tagging altered the cleavage pattern from a single step to sequential two-step cleavage, giving rise to two Ilv2-3HA forms (A and B). Both cleavage events were dependent on the mitochondrial processing peptidase (MPP). We present evidence for the involvement of three AAA ATPases, m- and i-AAA proteases, and Mcx1, in Ilv2-3HA processing. Both, precursor to A-form and A-form to B-form cleavage were strongly affected in a ∆yme1 mutant. These defects could be suppressed by overexpression of MPP, suggesting that MPP activity is limiting in the ∆yme1 mutant. Our data suggest that for some substrates AAA ATPases could play an active role in the translocation of matrix-targeted proteins.

  14. A structural analysis of the AAA+ domains in Saccharomyces cerevisiae cytoplasmic dynein

    PubMed Central

    Gleave, Emma S.; Schmidt, Helgo; Carter, Andrew P.

    2014-01-01

    Dyneins are large protein complexes that act as microtubule based molecular motors. The dynein heavy chain contains a motor domain which is a member of the AAA+ protein family (ATPases Associated with diverse cellular Activities). Proteins of the AAA+ family show a diverse range of functionalities, but share a related core AAA+ domain, which often assembles into hexameric rings. Dynein is unusual because it has all six AAA+ domains linked together, in one long polypeptide. The dynein motor domain generates movement by coupling ATP driven conformational changes in the AAA+ ring to the swing of a motile element called the linker. Dynein binds to its microtubule track via a long antiparallel coiled-coil stalk that emanates from the AAA+ ring. Recently the first high resolution structures of the dynein motor domain were published. Here we provide a detailed structural analysis of the six AAA+ domains using our Saccharomycescerevisiae crystal structure. We describe how structural similarities in the dynein AAA+ domains suggest they share a common evolutionary origin. We analyse how the different AAA+ domains have diverged from each other. We discuss how this is related to the function of dynein as a motor protein and how the AAA+ domains of dynein compare to those of other AAA+ proteins. PMID:24680784

  15. Point Mutations in the Stem Region and the Fourth AAA Domain of Cytoplasmic Dynein Heavy Chain Partially Suppress the Phenotype of NUDF/LIS1 Loss in Aspergillus nidulans

    PubMed Central

    Zhuang, Lei; Zhang, Jun; Xiang, Xin

    2007-01-01

    Cytoplasmic dynein performs multiple cellular tasks but its regulation remains unclear. The dynein heavy chain has a N-terminal stem that binds to other subunits and a C-terminal motor unit that contains six AAA (ATPase associated with cellular activities) domains and a microtubule-binding site located between AAA4 and AAA5. In Aspergillus nidulans, NUDF (a LIS1 homolog) functions in the dynein pathway, and two nudF6 partial suppressors were mapped to the nudA dynein heavy chain locus. Here we identified these two mutations. The nudAL1098F mutation resides in the stem region, and nudAR3086C is in the end of AAA4. These mutations partially suppress the phenotype of nudF deletion but do not suppress the phenotype exhibited by mutants of dynein intermediate chain and Arp1. Surprisingly, the stronger ΔnudF suppressor, nudAR3086C, causes an obvious decrease in the basal level of dynein's ATPase activity and an increase in dynein's distribution along microtubules. Thus, suppression of the ΔnudF phenotype may result from mechanisms other than simply the enhancement of dynein's ATPase activity. The fact that a mutation in the end of AAA4 negatively regulates dynein's ATPase activity but partially compensates for NUDF loss indicates the importance of the AAA4 domain in dynein regulation in vivo. PMID:17237507

  16. The Rice AAA-ATPase OsFIGNL1 Is Essential for Male Meiosis

    PubMed Central

    Zhang, Peipei; Zhang, Yingxin; Sun, Lianping; Sinumporn, Sittipun; Yang, Zhengfu; Sun, Bin; Xuan, Dandan; Li, Zihe; Yu, Ping; Wu, Weixun; Wang, Kejian; Cao, Liyong; Cheng, Shihua

    2017-01-01

    Meiosis is crucial in reproduction of plants and ensuring genetic diversity. Although several genes involved in homologous recombination and DNA repair have been reported, their functions in rice (Oryza sativa) male meiosis remain poorly understood. Here, we isolated and characterized the rice OsFIGNL1 (OsFidgetin-like 1) gene, encoding a conserved AAA-ATPase, and explored its function and importance in male meiosis and pollen formation. The rice Osfignl1 mutant exhibited normal vegetative growth, but failed to produce seeds and displayed pollen abortion phenotype. Phenotypic comparisons between the wild-type and Osfignl1 mutant demonstrated that OsFIGNL1 is required for anther development, and that the recessive mutation of this gene causes male sterility in rice. Complementation and CRISPR/Cas9 experiments demonstrated that wild-type OsFIGNL1 is responsible for the male sterility phenotype. Subcellular localization showed that OsFIGNL1-green fluorescent protein was exclusively localized in the nucleus of rice protoplasts. Male meiosis in the Osfignl1 mutant exhibited abnormal chromosome behavior, including chromosome bridges and multivalent chromosomes at diakinesis, lagging chromosomes, and chromosome fragments during meiosis. Yeast two-hybrid assays demonstrated OsFIGNL1 could interact with RAD51A1, RAD51A2, DMC1A, DMC1B, and these physical interactions were further confirmed by BiFC assay. Taken together, our results suggest that OsFIGNL1 plays an important role in regulation of male meiosis and anther development. PMID:29021797

  17. A structural analysis of the AAA+ domains in Saccharomyces cerevisiae cytoplasmic dynein.

    PubMed

    Gleave, Emma S; Schmidt, Helgo; Carter, Andrew P

    2014-06-01

    Dyneins are large protein complexes that act as microtubule based molecular motors. The dynein heavy chain contains a motor domain which is a member of the AAA+ protein family (ATPases Associated with diverse cellular Activities). Proteins of the AAA+ family show a diverse range of functionalities, but share a related core AAA+ domain, which often assembles into hexameric rings. Dynein is unusual because it has all six AAA+ domains linked together, in one long polypeptide. The dynein motor domain generates movement by coupling ATP driven conformational changes in the AAA+ ring to the swing of a motile element called the linker. Dynein binds to its microtubule track via a long antiparallel coiled-coil stalk that emanates from the AAA+ ring. Recently the first high resolution structures of the dynein motor domain were published. Here we provide a detailed structural analysis of the six AAA+ domains using our Saccharomycescerevisiae crystal structure. We describe how structural similarities in the dynein AAA+ domains suggest they share a common evolutionary origin. We analyse how the different AAA+ domains have diverged from each other. We discuss how this is related to the function of dynein as a motor protein and how the AAA+ domains of dynein compare to those of other AAA+ proteins. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  18. The pupylation machinery is involved in iron homeostasis by targeting the iron storage protein ferritin.

    PubMed

    Küberl, Andreas; Polen, Tino; Bott, Michael

    2016-04-26

    The balance of sufficient iron supply and avoidance of iron toxicity by iron homeostasis is a prerequisite for cellular metabolism and growth. Here we provide evidence that, in Actinobacteria, pupylation plays a crucial role in this process. Pupylation is a posttranslational modification in which the prokaryotic ubiquitin-like protein Pup is covalently attached to a lysine residue in target proteins, thus resembling ubiquitination in eukaryotes. Pupylated proteins are recognized and unfolded by a dedicated AAA+ ATPase (Mycobacterium proteasomal AAA+ ATPase; ATPase forming ring-shaped complexes). In Mycobacteria, degradation of pupylated proteins by the proteasome serves as a protection mechanism against several stress conditions. Other bacterial genera capable of pupylation such as Corynebacterium lack a proteasome, and the fate of pupylated proteins is unknown. We discovered that Corynebacterium glutamicum mutants lacking components of the pupylation machinery show a strong growth defect under iron limitation, which was caused by the absence of pupylation and unfolding of the iron storage protein ferritin. Genetic and biochemical data support a model in which the pupylation machinery is responsible for iron release from ferritin independent of degradation.

  19. The pupylation machinery is involved in iron homeostasis by targeting the iron storage protein ferritin

    PubMed Central

    Küberl, Andreas; Polen, Tino; Bott, Michael

    2016-01-01

    The balance of sufficient iron supply and avoidance of iron toxicity by iron homeostasis is a prerequisite for cellular metabolism and growth. Here we provide evidence that, in Actinobacteria, pupylation plays a crucial role in this process. Pupylation is a posttranslational modification in which the prokaryotic ubiquitin-like protein Pup is covalently attached to a lysine residue in target proteins, thus resembling ubiquitination in eukaryotes. Pupylated proteins are recognized and unfolded by a dedicated AAA+ ATPase (Mycobacterium proteasomal AAA+ ATPase; ATPase forming ring-shaped complexes). In Mycobacteria, degradation of pupylated proteins by the proteasome serves as a protection mechanism against several stress conditions. Other bacterial genera capable of pupylation such as Corynebacterium lack a proteasome, and the fate of pupylated proteins is unknown. We discovered that Corynebacterium glutamicum mutants lacking components of the pupylation machinery show a strong growth defect under iron limitation, which was caused by the absence of pupylation and unfolding of the iron storage protein ferritin. Genetic and biochemical data support a model in which the pupylation machinery is responsible for iron release from ferritin independent of degradation. PMID:27078093

  20. Suppressor of K+ transport growth defect 1 (SKD1) interacts with RING-type ubiquitin ligase and sucrose non-fermenting 1-related protein kinase (SnRK1) in the halophyte ice plant

    PubMed Central

    Chiang, Chih-Pin; Li, Chang-Hua; Jou, Yingtzy; Chen, Yu-Chan; Lin, Ya-Chung; Yang, Fang-Yu; Huang, Nu-Chuan; Yen, Hungchen Emilie

    2013-01-01

    SKD1 (suppressor of K+ transport growth defect 1) is an AAA-type ATPase that functions as a molecular motor. It was previously shown that SKD1 accumulates in epidermal bladder cells of the halophyte Mesembryanthemum crystallinum. SKD1 knock-down Arabidopsis mutants showed an imbalanced Na+/K+ ratio under salt stress. Two enzymes involved in protein post-translational modifications that physically interacted with McSKD1 were identified. McCPN1 (copine 1), a RING-type ubiquitin ligase, has an N-terminal myristoylation site that links to the plasma membrane, a central copine domain that interacts with McSKD1, and a C-terminal RING domain that catalyses protein ubiquitination. In vitro ubiquitination assay demonstrated that McCPN1 was capable of mediating ubiquitination of McSKD1. McSnRK1 (sucrose non-fermenting 1-related protein kinase) is a Ser/Thr protein kinase that contains an N-terminal STKc catalytic domain to phosphorylate McSKD1, and C-terminal UBA and KA1 domains to interact with McSKD1. The transcript and protein levels of McSnRK1 increased as NaCl concentrations increased. The formation of an SKD1–SnRK1–CPN1 ternary complex was demonstrated by yeast three-hybrid and bimolecular fluorescence complementation. It was found that McSKD1 preferentially interacts with McSnRK1 in the cytosol, and salt induced the re-distribution of McSKD1 and McSnRK1 towards the plasma membrane via the microtubule cytoskeleton and subsequently interacted with RING-type E3 McCPN1. The potential effects of ubiquitination and phosphorylation on McSKD1, such as changes in the ATPase activity and cellular localization, and how they relate to the functions of SKD1 in the maintenance of Na+/K+ homeostasis under salt stress, are discussed. PMID:23580756

  1. Suppressor of K+ transport growth defect 1 (SKD1) interacts with RING-type ubiquitin ligase and sucrose non-fermenting 1-related protein kinase (SnRK1) in the halophyte ice plant.

    PubMed

    Chiang, Chih-Pin; Li, Chang-Hua; Jou, Yingtzy; Chen, Yu-Chan; Lin, Ya-Chung; Yang, Fang-Yu; Huang, Nu-Chuan; Yen, Hungchen Emilie

    2013-05-01

    SKD1 (suppressor of K+ transport growth defect 1) is an AAA-type ATPase that functions as a molecular motor. It was previously shown that SKD1 accumulates in epidermal bladder cells of the halophyte Mesembryanthemum crystallinum. SKD1 knock-down Arabidopsis mutants showed an imbalanced Na+/K+ ratio under salt stress. Two enzymes involved in protein post-translational modifications that physically interacted with McSKD1 were identified. McCPN1 (copine 1), a RING-type ubiquitin ligase, has an N-terminal myristoylation site that links to the plasma membrane, a central copine domain that interacts with McSKD1, and a C-terminal RING domain that catalyses protein ubiquitination. In vitro ubiquitination assay demonstrated that McCPN1 was capable of mediating ubiquitination of McSKD1. McSnRK1 (sucrose non-fermenting 1-related protein kinase) is a Ser/Thr protein kinase that contains an N-terminal STKc catalytic domain to phosphorylate McSKD1, and C-terminal UBA and KA1 domains to interact with McSKD1. The transcript and protein levels of McSnRK1 increased as NaCl concentrations increased. The formation of an SKD1-SnRK1-CPN1 ternary complex was demonstrated by yeast three-hybrid and bimolecular fluorescence complementation. It was found that McSKD1 preferentially interacts with McSnRK1 in the cytosol, and salt induced the re-distribution of McSKD1 and McSnRK1 towards the plasma membrane via the microtubule cytoskeleton and subsequently interacted with RING-type E3 McCPN1. The potential effects of ubiquitination and phosphorylation on McSKD1, such as changes in the ATPase activity and cellular localization, and how they relate to the functions of SKD1 in the maintenance of Na+/K+ homeostasis under salt stress, are discussed.

  2. The Pch2 AAA+ ATPase promotes phosphorylation of the Hop1 meiotic checkpoint adaptor in response to synaptonemal complex defects

    PubMed Central

    Herruzo, Esther; Ontoso, David; González-Arranz, Sara; Cavero, Santiago; Lechuga, Ana; San-Segundo, Pedro A.

    2016-01-01

    Meiotic cells possess surveillance mechanisms that monitor critical events such as recombination and chromosome synapsis. Meiotic defects resulting from the absence of the synaptonemal complex component Zip1 activate a meiosis-specific checkpoint network resulting in delayed or arrested meiotic progression. Pch2 is an evolutionarily conserved AAA+ ATPase required for the checkpoint-induced meiotic block in the zip1 mutant, where Pch2 is only detectable at the ribosomal DNA array (nucleolus). We describe here that high levels of the Hop1 protein, a checkpoint adaptor that localizes to chromosome axes, suppress the checkpoint defect of a zip1 pch2 mutant restoring Mek1 activity and meiotic cell cycle delay. We demonstrate that the critical role of Pch2 in this synapsis checkpoint is to sustain Mec1-dependent phosphorylation of Hop1 at threonine 318. We also show that the ATPase activity of Pch2 is essential for its checkpoint function and that ATP binding to Pch2 is required for its localization. Previous work has shown that Pch2 negatively regulates Hop1 chromosome abundance during unchallenged meiosis. Based on our results, we propose that, under checkpoint-inducing conditions, Pch2 also possesses a positive action on Hop1 promoting its phosphorylation and its proper distribution on unsynapsed chromosome axes. PMID:27257060

  3. The Pch2 AAA+ ATPase promotes phosphorylation of the Hop1 meiotic checkpoint adaptor in response to synaptonemal complex defects.

    PubMed

    Herruzo, Esther; Ontoso, David; González-Arranz, Sara; Cavero, Santiago; Lechuga, Ana; San-Segundo, Pedro A

    2016-09-19

    Meiotic cells possess surveillance mechanisms that monitor critical events such as recombination and chromosome synapsis. Meiotic defects resulting from the absence of the synaptonemal complex component Zip1 activate a meiosis-specific checkpoint network resulting in delayed or arrested meiotic progression. Pch2 is an evolutionarily conserved AAA+ ATPase required for the checkpoint-induced meiotic block in the zip1 mutant, where Pch2 is only detectable at the ribosomal DNA array (nucleolus). We describe here that high levels of the Hop1 protein, a checkpoint adaptor that localizes to chromosome axes, suppress the checkpoint defect of a zip1 pch2 mutant restoring Mek1 activity and meiotic cell cycle delay. We demonstrate that the critical role of Pch2 in this synapsis checkpoint is to sustain Mec1-dependent phosphorylation of Hop1 at threonine 318. We also show that the ATPase activity of Pch2 is essential for its checkpoint function and that ATP binding to Pch2 is required for its localization. Previous work has shown that Pch2 negatively regulates Hop1 chromosome abundance during unchallenged meiosis. Based on our results, we propose that, under checkpoint-inducing conditions, Pch2 also possesses a positive action on Hop1 promoting its phosphorylation and its proper distribution on unsynapsed chromosome axes. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  4. The Role of the N-Domain in the ATPase Activity of the Mammalian AAA ATPase p97/VCP*

    PubMed Central

    Niwa, Hajime; Ewens, Caroline A.; Tsang, Chun; Yeung, Heidi O.; Zhang, Xiaodong; Freemont, Paul S.

    2012-01-01

    p97/valosin-containing protein (VCP) is a type II ATPase associated with various cellular activities that forms a homohexamer with each protomer containing an N-terminal domain (N-domain); two ATPase domains, D1 and D2; and a disordered C-terminal region. Little is known about the role of the N-domain or the C-terminal region in the p97 ATPase cycle. In the p97-associated human disease inclusion body myopathy associated with Paget disease of bone and frontotemporal dementia, the majority of missense mutations are located at the N-domain D1 interface. Structure-based predictions suggest that such mutations affect the interaction of the N-domain with D1. Here we have tested ten major inclusion body myopathy associated with Paget disease of bone and frontotemporal dementia-linked mutants for ATPase activity and found that all have increased activity over the wild type, with one mutant, p97A232E, having three times higher activity. Further mutagenesis of p97A232E shows that the increase in ATPase activity is mediated through D2 and requires both the N-domain and a flexible ND1 linker. A disulfide mutation that locks the N-domain to D1 in a coplanar position reversibly abrogates ATPase activity. A cryo-EM reconstruction of p97A232E suggests that the N-domains are flexible. Removal of the C-terminal region also reduces ATPase activity. Taken together, our data suggest that the conformation of the N-domain in relation to the D1-D2 hexamer is directly linked to ATP hydrolysis and that the C-terminal region is required for hexamer stability. This leads us to propose a model where the N-domain adopts either of two conformations: a flexible conformation compatible with ATP hydrolysis or a coplanar conformation that is inactive. PMID:22270372

  5. Structure and evolution of N-domains in AAA metalloproteases.

    PubMed

    Scharfenberg, Franka; Serek-Heuberger, Justyna; Coles, Murray; Hartmann, Marcus D; Habeck, Michael; Martin, Jörg; Lupas, Andrei N; Alva, Vikram

    2015-02-27

    Metalloproteases of the AAA (ATPases associated with various cellular activities) family play a crucial role in protein quality control within the cytoplasmic membrane of bacteria and the inner membrane of eukaryotic organelles. These membrane-anchored hexameric enzymes are composed of an N-terminal domain with one or two transmembrane helices, a central AAA ATPase module, and a C-terminal Zn(2+)-dependent protease. While the latter two domains have been well studied, so far, little is known about the N-terminal regions. Here, in an extensive bioinformatic and structural analysis, we identified three major, non-homologous groups of N-domains in AAA metalloproteases. By far, the largest one is the FtsH-like group of bacteria and eukaryotic organelles. The other two groups are specific to Yme1: one found in plants, fungi, and basal metazoans and the other one found exclusively in animals. Using NMR and crystallography, we determined the subunit structure and hexameric assembly of Escherichia coli FtsH-N, exhibiting an unusual α+β fold, and the conserved part of fungal Yme1-N from Saccharomyces cerevisiae, revealing a tetratricopeptide repeat fold. Our bioinformatic analysis showed that, uniquely among these proteins, the N-domain of Yme1 from the cnidarian Hydra vulgaris contains both the tetratricopeptide repeat region seen in basal metazoans and a region of homology to the N-domains of animals. Thus, it is a modern-day representative of an intermediate in the evolution of animal Yme1 from basal eukaryotic precursors. Copyright © 2015. Published by Elsevier Ltd.

  6. ATPase-deficient mitochondrial inner membrane protein ATAD3A disturbs mitochondrial dynamics in dominant hereditary spastic paraplegia

    PubMed Central

    Cooper, Helen M.; Yang, Yang; Ylikallio, Emil; Khairullin, Rafil; Woldegebriel, Rosa; Lin, Kai-Lan; Euro, Liliya; Palin, Eino; Wolf, Alexander; Trokovic, Ras; Isohanni, Pirjo; Kaakkola, Seppo; Auranen, Mari; Lönnqvist, Tuula; Wanrooij, Sjoerd

    2017-01-01

    Abstract De novo mutations in ATAD3A (ATPase family AAA-domain containing protein 3A) were recently found to cause a neurological syndrome with developmental delay, hypotonia, spasticity, optic atrophy, axonal neuropathy, and hypertrophic cardiomyopathy. Using whole-exome sequencing, we identified a dominantly inherited heterozygous variant c.1064G > A (p.G355D) in ATAD3A in a mother presenting with hereditary spastic paraplegia (HSP) and axonal neuropathy and her son with dyskinetic cerebral palsy, both with disease onset in childhood. HSP is a clinically and genetically heterogeneous disorder of the upper motor neurons. Symptoms beginning in early childhood may resemble spastic cerebral palsy. The function of ATAD3A, a mitochondrial inner membrane AAA ATPase, is yet undefined. AAA ATPases form hexameric rings, which are catalytically dependent on the co-operation of the subunits. The dominant-negative patient mutation affects the Walker A motif, which is responsible for ATP binding in the AAA module of ATAD3A, and we show that the recombinant mutant ATAD3A protein has a markedly reduced ATPase activity. We further show that overexpression of the mutant ATAD3A fragments the mitochondrial network and induces lysosome mass. Similarly, we observed altered dynamics of the mitochondrial network and increased lysosomes in patient fibroblasts and neurons derived through differentiation of patient-specific induced pluripotent stem cells. These alterations were verified in patient fibroblasts to associate with upregulated basal autophagy through mTOR inactivation, resembling starvation. Mutations in ATAD3A can thus be dominantly inherited and underlie variable neurological phenotypes, including HSP, with intrafamiliar variability. This finding extends the group of mitochondrial inner membrane AAA proteins associated with spasticity. PMID:28158749

  7. NASA Airborne Astronomy Ambassadors (AAA)

    NASA Astrophysics Data System (ADS)

    Backman, D. E.; Harman, P. K.; Clark, C.

    2016-12-01

    NASA's Airborne Astronomy Ambassadors (AAA) is a three-part professional development (PD) program for high school physics and astronomy teachers. The AAA experience consists of: (1) blended-learning professional development composed of webinars, asynchronous content learning, and a series of hands-on workshops (2) a STEM immersion experience at NASA Armstrong Flight Research Center's B703 science research aircraft facility in Palmdale, California, and (3) ongoing participation in the AAA community of practice (CoP) connecting participants with astrophysics and planetary science Subject Matter Experts (SMEs). The SETI Institute (SI) is partnering with school districts in Santa Clara and Los Angeles Counties during the AAA program's "incubation" period, calendar years 2016 through 2018. AAAs will be selected by the school districts based on criteria developed during spring 2016 focus group meetings led by the program's external evaluator, WestEd.. Teachers with 3+ years teaching experience who are assigned to teach at least 2 sections in any combination of the high school courses Physics (non-AP), Physics of the Universe (California integrated model), Astronomy, or Earth & Space Sciences are eligible. Partner districts will select at least 48 eligible applicants with SI oversight. WestEd will randomly assign selected AAAs to group A or group B. Group A will complete PD in January - June of 2017 and then participate in SOFIA science flights during fall 2017 (SOFIA Cycle 5). Group B will act as a control during the 2017-18 school year. Group B will then complete PD in January - June of 2018 and participate in SOFIA science flights in fall 2018 (Cycle 6). Under the current plan, opportunities for additional districts to seek AAA partnerships with SI will be offered in 2018 or 2019. A nominal two-week AAA curriculum component will be developed by SI for classroom delivery that will be aligned with selected California Draft Science Framework Disciplinary Core Ideas

  8. Arresting a Torsin ATPase Reshapes the Endoplasmic Reticulum*

    PubMed Central

    Rose, April E.; Zhao, Chenguang; Turner, Elizabeth M.; Steyer, Anna M.; Schlieker, Christian

    2014-01-01

    Torsins are membrane-tethered AAA+ ATPases residing in the nuclear envelope (NE) and endoplasmic reticulum (ER). Here, we show that the induction of a conditional, dominant-negative TorsinB variant provokes a profound reorganization of the endomembrane system into foci containing double membrane structures that are derived from the ER. These double-membrane sinusoidal structures are formed by compressing the ER lumen to a constant width of 15 nm, and are highly enriched in the ATPase activator LULL1. Further, we define an important role for a highly conserved aromatic motif at the C terminus of Torsins. Mutations in this motif perturb LULL1 binding, reduce ATPase activity, and profoundly limit the induction of sinusoidal structures. PMID:24275647

  9. Evaluation of Selected Binding Domains for the Analysis of Ubiquitinated Proteomes

    NASA Astrophysics Data System (ADS)

    Nakayasu, Ernesto S.; Ansong, Charles; Brown, Joseph N.; Yang, Feng; Lopez-Ferrer, Daniel; Qian, Wei-Jun; Smith, Richard D.; Adkins, Joshua N.

    2013-08-01

    Ubiquitination is an abundant post-translational modification that consists of covalent attachment of ubiquitin to lysine residues or the N-terminus of proteins. Mono- and polyubiquitination have been shown to be involved in many critical eukaryotic cellular functions and are often disrupted by intracellular bacterial pathogens. Affinity enrichment of ubiquitinated proteins enables global analysis of this key modification. In this context, the use of ubiquitin-binding domains is a promising but relatively unexplored alternative to more broadly used immunoaffinity or tagged affinity enrichment methods. In this study, we evaluated the application of eight ubiquitin-binding domains that have differing affinities for ubiquitination states. Small-scale proteomics analysis identified ~200 ubiquitinated protein candidates per ubiquitin-binding domain pull-down experiment. Results from subsequent Western blot analyses that employed anti-ubiquitin or monoclonal antibodies against polyubiquitination at lysine 48 and 63 suggest that ubiquitin-binding domains from Dsk2 and ubiquilin-1 have the broadest specificity in that they captured most types of ubiquitination, whereas the binding domain from NBR1 was more selective to polyubiquitination. These data demonstrate that with optimized purification conditions, ubiquitin-binding domains can be an alternative tool for proteomic applications. This approach is especially promising for the analysis of tissues or cells resistant to transfection, of which the overexpression of tagged ubiquitin is a major hurdle.

  10. Evaluation of selected binding domains for the analysis of ubiquitinated proteomes

    PubMed Central

    Nakayasu, Ernesto S.; Ansong, Charles; Brown, Joseph N.; Yang, Feng; Lopez-Ferrer, Daniel; Qian, Wei-Jun; Smith, Richard D.; Adkins, Joshua N.

    2013-01-01

    Ubiquitination is an abundant post-translational modification that consists of covalent attachment of ubiquitin to lysine residues or the N-terminus of proteins. Mono and polyubiquitination have been shown to be involved in many critical eukaryotic cellular functions and are often disrupted by intracellular bacterial pathogens. Affinity enrichment of ubiquitinated proteins enables global analysis of this key modification. In this context, the use of ubiquitin-binding domains is a promising, but relatively unexplored alternative to more broadly used immunoaffinity or tagged affinity enrichment methods. In this study, we evaluated the application of eight ubiquitin-binding domains that have differing affinities for ubiquitination states. Small-scale proteomics analysis identified ∼200 ubiquitinated protein candidates per ubiquitin-binding domain pull-down experiment. Results from subsequent Western blot analyses that employed anti-ubiquitin or monoclonal antibodies against polyubiquitination at lysine 48 and 63 suggest that ubiquitin-binding domains from Dsk2 and ubiquilin-1 have the broadest specificity in that they captured most types of ubiquitination, whereas the binding domain from NBR1 was more selective to polyubiquitination. These data demonstrate that with optimized purification conditions, ubiquitin-binding domains can be an alternative tool for proteomic applications. This approach is especially promising for the analysis of tissues or cells resistant to transfection, of which the overexpression of tagged ubiquitin is a major hurdle. PMID:23649778

  11. Electron cryomicroscopy structure of a membrane-anchored mitochondrial AAA protease.

    PubMed

    Lee, Sukyeong; Augustin, Steffen; Tatsuta, Takashi; Gerdes, Florian; Langer, Thomas; Tsai, Francis T F

    2011-02-11

    FtsH-related AAA proteases are conserved membrane-anchored, ATP-dependent molecular machines, which mediate the processing and turnover of soluble and membrane-embedded proteins in eubacteria, mitochondria, and chloroplasts. Homo- and hetero-oligomeric proteolytic complexes exist, which are composed of homologous subunits harboring an ATPase domain of the AAA family and an H41 metallopeptidase domain. Mutations in subunits of mitochondrial m-AAA proteases have been associated with different neurodegenerative disorders in human, raising questions on the functional differences between homo- and hetero-oligomeric AAA proteases. Here, we have analyzed the hetero-oligomeric yeast m-AAA protease composed of homologous Yta10 and Yta12 subunits. We combined genetic and structural approaches to define the molecular determinants for oligomer assembly and to assess functional similarities between Yta10 and Yta12. We demonstrate that replacement of only two amino acid residues within the metallopeptidase domain of Yta12 allows its assembly into homo-oligomeric complexes. To provide a molecular explanation, we determined the 12 Å resolution structure of the intact yeast m-AAA protease with its transmembrane domains by electron cryomicroscopy (cryo-EM) and atomic structure fitting. The full-length m-AAA protease has a bipartite structure and is a hexamer in solution. We found that residues in Yta12, which facilitate homo-oligomerization when mutated, are located at the interface between neighboring protomers in the hexamer ring. Notably, the transmembrane and intermembrane space domains are separated from the main body, creating a passage on the matrix side, which is wide enough to accommodate unfolded but not folded polypeptides. These results suggest a mechanism regarding how proteins are recognized and degraded by m-AAA proteases.

  12. Selective Intra-procedural AAA sac Embolization During EVAR Reduces the Rate of Type II Endoleak.

    PubMed

    Mascoli, C; Freyrie, A; Gargiulo, M; Gallitto, E; Pini, R; Faggioli, G; Serra, C; De Molo, C; Stella, A

    2016-05-01

    The pre-treatment presence of at least six efferent patent vessels (EPV) from the AAA sac and/or AAA thrombus volume ratio (VR%) <40% are considered to be positive predictive factors for persistent type II endoleak (ELIIp). The aim of the present study was to evaluate the effectiveness of sac embolization during EVAR in patients with pre-operative morphological risk factors (p-MRF) for ELIIp. Patients undergoing EVAR and intra-procedural AAA sac embolization (Group A, 2012-2013) were retrospectively selected and compared with a control group of patients with the same p-MRF, who underwent EVAR without intra-procedural sac embolization (Group B, 2008-2010). The presence of ELIIp was evaluated by duplex ultrasound at 0 and 6 months, and by contrast enhanced ultrasound at 12 months. The association between AAA diameter, age, COPD, smoking, anticoagulant therapy, and AAA sac embolization with ELIIp was evaluated using multiple logistic regression. The primary endpoint was the effectiveness of the intra-procedural AAA sac embolization for ELIIp prevention. Secondary endpoints were AAA sac evolution and freedom from ELIIp and embolization related re-interventions at 6-12 months. Seventy patients were analyzed: 26 Group A and 44 Group B; the groups were homogeneous for clinical/morphological characteristics. In Group A the median number of coils positioned in AAA sac was 4.1 (IQR 1). There were no complications related to the embolization procedures. A significantly lower number of ELIIp was detected in Group A than in Group B (8/26 vs. 33/44, respectively, p < .001) at discharge, and this was confirmed at 6-12 months (7/26 vs. 30/44 respectively, p = .001, and 5/25 vs. 32/44, respectively, p < .001). On multivariate analysis, intra-procedural AAA sac embolization was the only factor independently associated with freedom from ELIIp at 6 (OR 0.196, 95% CI 0.06-0.63; p = .007) and 12 months (OR 0.098, 95% CI 0.02-0.35; p < .001). No differences in median AAA sac

  13. Loss of Drosophila i-AAA protease, dYME1L, causes abnormal mitochondria and apoptotic degeneration.

    PubMed

    Qi, Y; Liu, H; Daniels, M P; Zhang, G; Xu, H

    2016-02-01

    Mitochondrial AAA (ATPases Associated with diverse cellular Activities) proteases i-AAA (intermembrane space-AAA) and m-AAA (matrix-AAA) are closely related and have major roles in inner membrane protein homeostasis. Mutations of m-AAA proteases are associated with neuromuscular disorders in humans. However, the role of i-AAA in metazoans is poorly understood. We generated a deletion affecting Drosophila i-AAA, dYME1L (dYME1L(del)). Mutant flies exhibited premature aging, progressive locomotor deficiency and neurodegeneration that resemble some key features of m-AAA diseases. dYME1L(del) flies displayed elevated mitochondrial unfolded protein stress and irregular cristae. Aged dYME1L(del) flies had reduced complex I (NADH/ubiquinone oxidoreductase) activity, increased level of reactive oxygen species (ROS), severely disorganized mitochondrial membranes and increased apoptosis. Furthermore, inhibiting apoptosis by targeting dOmi (Drosophila Htra2/Omi) or DIAP1, or reducing ROS accumulation suppressed retinal degeneration. Our results suggest that i-AAA is essential for removing unfolded proteins and maintaining mitochondrial membrane architecture. Loss of i-AAA leads to the accumulation of oxidative damage and progressive deterioration of membrane integrity, which might contribute to apoptosis upon the release of proapoptotic molecules such as dOmi. Containing ROS level could be a potential strategy to manage mitochondrial AAA protease deficiency.

  14. Ubiquitin ligase gp78 increases solubility and facilitates degradation of the Z variant of {alpha}-1-antitrypsin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shen Yuxian; Medical Biotechnology Center, University of Maryland Biotechnology Institute, Baltimore, MD; Ballar, Petek

    2006-11-03

    Deficiency of circulating {alpha}-1-antitrypsin (AAT) is the most widely recognized abnormality of a proteinase inhibitor that causes lung disease. AAT-deficiency is caused by mutations of the AAT gene that lead to AAT protein retention in the endoplasmic reticulum (ER). Moreover, the mutant AAT accumulated in the ER predisposes the homozygote to severe liver injuries, such as neonatal hepatitis, juvenile cirrhosis, and hepatocellular carcinoma. Despite the fact that mutant AAT protein is subject to ER-associated degradation (ERAD), yeast genetic studies have determined that the ubiquitination machinery, Hrd1/Der3p-cue1p-Ubc7/6p, which plays a prominent role in ERAD, is not involved in degradation of mutantmore » AAT. Here we report that gp78, a ubiquitin ligase (E3) pairing with mammalian Ubc7 for ERAD, ubiquitinates and facilitates degradation of ATZ, the classic deficiency variant of AAT having a Z mutation (Glu 342 Lys). Unexpectedly, gp78 over-expression also significantly increases ATZ solubility. p97/VCP, an AAA ATPase essential for retrotranslocation of misfolded proteins from the ER during ERAD, is involved in gp78-mediated degradation of ATZ. Surprisingly, unlike other ERAD substrates that cause ER stress leading to apoptosis when accumulated in the ER, ATZ, in fact, increases cell proliferation when over-expressed in cells. This effect can be partially inhibited by gp78 over-expression. These data indicate that gp78 assumes multiple unique quality control roles over ATZ, including the facilitation of degradation and inhibition of aggregation of ATZ.« less

  15. Structural basis for the ATP-independent proteolytic activity of LonB proteases and reclassification of their AAA+ modules.

    PubMed

    An, Young Jun; Na, Jung-Hyun; Kim, Myung-Il; Cha, Sun-Shin

    2015-10-01

    Lon proteases degrade defective or denature proteins as well as some folded proteins for the control of cellular protein quality. There are two types of Lon proteases, LonA and LonB. Each consists of two functional components: a protease component and an ATPase associated with various cellular activities (AAA+ module). Here, we report the 2.03 -resolution crystal structure of the isolated AAA+ module (iAAA+ module) of LonB from Thermococcus onnurineus NA1 (TonLonB). The iAAA+ module, having no bound nucleotide, adopts a conformation virtually identical to the ADP-bound conformation of AAA+ modules in the hexameric structure of TonLonB; this provides insights into the ATP-independent proteolytic activity observed in a LonB protease. Structural comparison of AAA+ modules between LonA and LonB revealed that the AAA+ modules of Lon proteases are separated into two distinct clades depending on their structural features. The AAA+ module of LonB belongs to the -H2 & Ins1 insert clade (HINS clade)- defined for the first time in this study, while the AAA+ module of LonA is a member of the HCLR clade.

  16. Poliovirus 2C protein forms homo-oligomeric structures required for ATPase activity.

    PubMed

    Adams, Peter; Kandiah, Eaazhisai; Effantin, Grégory; Steven, Alasdair C; Ehrenfeld, Ellie

    2009-08-14

    The poliovirus protein 2C plays an essential role in viral RNA replication, although its precise biochemical activities or structural requirements have not been elucidated. The protein has several distinctive properties, including ATPase activity and membrane and RNA binding, that are conserved among orthologs of many positive-strand RNA viruses. Sequence alignments have placed these proteins in the SF3 helicase family, a subset of the AAA+ ATPase superfamily. A feature common to AAA+ proteins is the formation of oligomeric rings that are essential for their catalytic functions. Here we show that a recombinant protein, MBP-2C, in which maltose-binding protein was fused to 2C, formed soluble oligomers and that ATPase activity was restricted to oligomer-containing fractions from gel-filtration chromatography. The active fraction was visualized by negative-staining electron microscopy as ring-like particles composed of 5-8 protomers. This conclusion was confirmed by mass measurements obtained by scanning transmission electron microscopy. Mutation of amino acid residues in the 2C nucleotide-binding domain demonstrated that loss of the ability to bind or hydrolyze ATP did not affect oligomerization. Co-expression of active MBP-2C and inactive mutant proteins generated mixed oligomers that exhibited little ATPase activity, suggesting that incorporation of inactive subunits eliminates the function of the entire particle. Finally, deletion of the N-terminal 38 amino acids blocked oligomerization of the fusion protein and eliminated ATPase activity, despite retention of an unaltered nucleotide-binding domain.

  17. Poliovirus 2C Protein Forms Homo-oligomeric Structures Required for ATPase Activity*

    PubMed Central

    Adams, Peter; Kandiah, Eaazhisai; Effantin, Grégory; Steven, Alasdair C.; Ehrenfeld, Ellie

    2009-01-01

    The poliovirus protein 2C plays an essential role in viral RNA replication, although its precise biochemical activities or structural requirements have not been elucidated. The protein has several distinctive properties, including ATPase activity and membrane and RNA binding, that are conserved among orthologs of many positive-strand RNA viruses. Sequence alignments have placed these proteins in the SF3 helicase family, a subset of the AAA+ ATPase superfamily. A feature common to AAA+ proteins is the formation of oligomeric rings that are essential for their catalytic functions. Here we show that a recombinant protein, MBP-2C, in which maltose-binding protein was fused to 2C, formed soluble oligomers and that ATPase activity was restricted to oligomer-containing fractions from gel-filtration chromatography. The active fraction was visualized by negative-staining electron microscopy as ring-like particles composed of 5–8 protomers. This conclusion was confirmed by mass measurements obtained by scanning transmission electron microscopy. Mutation of amino acid residues in the 2C nucleotide-binding domain demonstrated that loss of the ability to bind or hydrolyze ATP did not affect oligomerization. Co-expression of active MBP-2C and inactive mutant proteins generated mixed oligomers that exhibited little ATPase activity, suggesting that incorporation of inactive subunits eliminates the function of the entire particle. Finally, deletion of the N-terminal 38 amino acids blocked oligomerization of the fusion protein and eliminated ATPase activity, despite retention of an unaltered nucleotide-binding domain. PMID:19520852

  18. AAA+ Machines of Protein Destruction in Mycobacteria.

    PubMed

    Alhuwaider, Adnan Ali H; Dougan, David A

    2017-01-01

    The bacterial cytosol is a complex mixture of macromolecules (proteins, DNA, and RNA), which collectively are responsible for an enormous array of cellular tasks. Proteins are central to most, if not all, of these tasks and as such their maintenance (commonly referred to as protein homeostasis or proteostasis) is vital for cell survival during normal and stressful conditions. The two key aspects of protein homeostasis are, (i) the correct folding and assembly of proteins (coupled with their delivery to the correct cellular location) and (ii) the timely removal of unwanted or damaged proteins from the cell, which are performed by molecular chaperones and proteases, respectively. A major class of proteins that contribute to both of these tasks are the AAA+ (ATPases associated with a variety of cellular activities) protein superfamily. Although much is known about the structure of these machines and how they function in the model Gram-negative bacterium Escherichia coli , we are only just beginning to discover the molecular details of these machines and how they function in mycobacteria. Here we review the different AAA+ machines, that contribute to proteostasis in mycobacteria. Primarily we will focus on the recent advances in the structure and function of AAA+ proteases, the substrates they recognize and the cellular pathways they control. Finally, we will discuss the recent developments related to these machines as novel drug targets.

  19. Unfolding the mechanism of the AAA+ unfoldase VAT by a combined cryo-EM, solution NMR study.

    PubMed

    Huang, Rui; Ripstein, Zev A; Augustyniak, Rafal; Lazniewski, Michal; Ginalski, Krzysztof; Kay, Lewis E; Rubinstein, John L

    2016-07-19

    The AAA+ (ATPases associated with a variety of cellular activities) enzymes play critical roles in a variety of homeostatic processes in all kingdoms of life. Valosin-containing protein-like ATPase of Thermoplasma acidophilum (VAT), the archaeal homolog of the ubiquitous AAA+ protein Cdc48/p97, functions in concert with the 20S proteasome by unfolding substrates and passing them on for degradation. Here, we present electron cryomicroscopy (cryo-EM) maps showing that VAT undergoes large conformational rearrangements during its ATP hydrolysis cycle that differ dramatically from the conformational states observed for Cdc48/p97. We validate key features of the model with biochemical and solution methyl-transverse relaxation optimized spectroscopY (TROSY) NMR experiments and suggest a mechanism for coupling the energy of nucleotide hydrolysis to substrate unfolding. These findings illustrate the unique complementarity between cryo-EM and solution NMR for studies of molecular machines, showing that the structural properties of VAT, as well as the population distributions of conformers, are similar in the frozen specimens used for cryo-EM and in the solution phase where NMR spectra are recorded.

  20. From AAA to Acuros XB-clinical implications of selecting either Acuros XB dose-to-water or dose-to-medium.

    PubMed

    Zifodya, Jackson M; Challens, Cameron H C; Hsieh, Wen-Long

    2016-06-01

    When implementing Acuros XB (AXB) as a substitute for anisotropic analytic algorithm (AAA) in the Eclipse Treatment Planning System, one is faced with a dilemma of reporting either dose to medium, AXB-Dm or dose to water, AXB-Dw. To assist with decision making on selecting either AXB-Dm or AXB-Dw for dose reporting, a retrospective study of treated patients for head & neck (H&N), prostate, breast and lung is presented. Ten patients, previously treated using AAA plans, were selected for each site and re-planned with AXB-Dm and AXB-Dw. Re-planning was done with fixed monitor units (MU) as well as non-fixed MUs. Dose volume histograms (DVH) of targets and organs at risk (OAR), were analyzed in conjunction with ICRU-83 recommended dose reporting metrics. Additionally, comparisons of plan homogeneity indices (HI) and MUs were done to further highlight the differences between the algorithms. Results showed that, on average AAA overestimated dose to the target volume and OARs by less than 2.0 %. Comparisons between AXB-Dw and AXB-Dm, for all sites, also showed overall dose differences to be small (<1.5 %). However, in non-water biological media, dose differences between AXB-Dw and AXB-Dm, as large as 4.6 % were observed. AXB-Dw also tended to have unexpectedly high 3D maximum dose values (>135 % of prescription dose) for target volumes with high density materials. Homogeneity indices showed that AAA planning and optimization templates would need to be adjusted only for the H&N and Lung sites. MU comparison showed insignificant differences between AXB-Dw relative to AAA and between AXB-Dw relative to AXB-Dm. However AXB-Dm MUs relative to AAA, showed an average difference of about 1.3 % signifying an underdosage by AAA. In conclusion, when dose is reported as AXB-Dw, the effect that high density structures in the PTV has on the dose distribution should be carefully considered. As the results show overall small dose differences between the algorithms, when

  1. The deubiquitinating enzyme USP36 controls selective autophagy activation by ubiquitinated proteins.

    PubMed

    Taillebourg, Emmanuel; Gregoire, Isabel; Viargues, Perrine; Jacomin, Anne-Claire; Thevenon, Dominique; Faure, Mathias; Fauvarque, Marie-Odile

    2012-05-01

    Initially described as a nonspecific degradation process induced upon starvation, autophagy is now known also to be involved in the degradation of specific ubiquitinated substrates such as mitochondria, bacteria and aggregated proteins, ensuring crucial functions in cell physiology and immunity. We report here that the deubiquitinating enzyme USP36 controls selective autophagy activation in Drosophila and in human cells. We show that dUsp36 loss of function autonomously inhibits cell growth while activating autophagy. Despite the phenotypic similarity, dUSP36 is not part of the TOR signaling pathway. Autophagy induced by dUsp36 loss of function depends on p62/SQSTM1, an adaptor for delivering cargo marked by polyubiquitin to autophagosomes. Consistent with p62 requirement, dUsp36 mutant cells display nuclear aggregates of ubiquitinated proteins, including Histone H2B, and cytoplasmic ubiquitinated proteins; the latter are eliminated by autophagy. Importantly, USP36 function in p62-dependent selective autophagy is conserved in human cells. Our work identifies a novel, crucial role for a deubiquitinating enzyme in selective autophagy.

  2. The E3 ubiquitin ligase and RNA-binding protein ZNF598 orchestrates ribosome quality control of premature polyadenylated mRNAs

    PubMed Central

    Garzia, Aitor; Jafarnejad, Seyed Mehdi; Meyer, Cindy; Chapat, Clément; Gogakos, Tasos; Morozov, Pavel; Amiri, Mehdi; Shapiro, Maayan; Molina, Henrik; Tuschl, Thomas; Sonenberg, Nahum

    2017-01-01

    Cryptic polyadenylation within coding sequences (CDS) triggers ribosome-associated quality control (RQC), followed by degradation of the aberrant mRNA and polypeptide, ribosome disassembly and recycling. Although ribosomal subunit dissociation and nascent peptide degradation are well-understood, the molecular sensors of aberrant mRNAs and their mechanism of action remain unknown. We studied the Zinc Finger Protein 598 (ZNF598) using PAR-CLIP and revealed that it cross-links to tRNAs, mRNAs and rRNAs, thereby placing the protein on translating ribosomes. Cross-linked reads originating from AAA-decoding tRNALys(UUU) were 10-fold enriched over its cellular abundance, and poly-lysine encoded by poly(AAA) induced RQC in a ZNF598-dependent manner. Encounter with translated polyA segments by ZNF598 triggered ubiquitination of several ribosomal proteins, requiring the E2 ubiquitin ligase UBE2D3 to initiate RQC. Considering that human CDS are devoid of >4 consecutive AAA codons, sensing of prematurely placed polyA tails by a specialized RNA-binding protein is a novel nucleic-acid-based surveillance mechanism of RQC. PMID:28685749

  3. The E3 ubiquitin ligase and RNA-binding protein ZNF598 orchestrates ribosome quality control of premature polyadenylated mRNAs.

    PubMed

    Garzia, Aitor; Jafarnejad, Seyed Mehdi; Meyer, Cindy; Chapat, Clément; Gogakos, Tasos; Morozov, Pavel; Amiri, Mehdi; Shapiro, Maayan; Molina, Henrik; Tuschl, Thomas; Sonenberg, Nahum

    2017-07-07

    Cryptic polyadenylation within coding sequences (CDS) triggers ribosome-associated quality control (RQC), followed by degradation of the aberrant mRNA and polypeptide, ribosome disassembly and recycling. Although ribosomal subunit dissociation and nascent peptide degradation are well-understood, the molecular sensors of aberrant mRNAs and their mechanism of action remain unknown. We studied the Zinc Finger Protein 598 (ZNF598) using PAR-CLIP and revealed that it cross-links to tRNAs, mRNAs and rRNAs, thereby placing the protein on translating ribosomes. Cross-linked reads originating from AAA-decoding tRNA Lys (UUU) were 10-fold enriched over its cellular abundance, and poly-lysine encoded by poly(AAA) induced RQC in a ZNF598-dependent manner. Encounter with translated polyA segments by ZNF598 triggered ubiquitination of several ribosomal proteins, requiring the E2 ubiquitin ligase UBE2D3 to initiate RQC. Considering that human CDS are devoid of >4 consecutive AAA codons, sensing of prematurely placed polyA tails by a specialized RNA-binding protein is a novel nucleic-acid-based surveillance mechanism of RQC.

  4. Methionine Sulfoxide Reductase A (MsrA) and Its Function in Ubiquitin-Like Protein Modification in Archaea

    DOE PAGES

    Fu, Xian; Adams, Zachary; Liu, Rui; ...

    2017-09-05

    Methionine sulfoxide reductase A (MsrA) is an antioxidant enzyme found in all domains of life that catalyzes the reduction of methionine-S-sulfoxide (MSO) to methionine in proteins and free amino acids. We demonstrate that archaeal MsrA has a ubiquitin-like (Ubl) protein modification activity that is distinct from its stereospecific reduction of MSO residues. MsrA catalyzes this Ubl modification activity, with the Ubl-activating E1 UbaA, in the presence of the mild oxidant dimethyl sulfoxide (DMSO) and in the absence of reductant. In contrast, the MSO reductase activity of MsrA is inhibited by DMSO and requires reductant. Liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysismore » reveals that MsrA-dependent Ubl conjugates are associated with DNA replication, protein remodeling, and oxidative stress and include the Ubl-modified MsrA, Orc3 (Orc1/Cdc6), and Cdc48d (Cdc48/p97 AAA+ ATPase). Overall, we found archaeal MsrA to have opposing MSO reductase and Ubl modifying activities that are associated with oxidative stress responses and controlled by exposure to mild oxidant.« less

  5. Methionine Sulfoxide Reductase A (MsrA) and Its Function in Ubiquitin-Like Protein Modification in Archaea

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fu, Xian; Adams, Zachary; Liu, Rui

    Methionine sulfoxide reductase A (MsrA) is an antioxidant enzyme found in all domains of life that catalyzes the reduction of methionine-S-sulfoxide (MSO) to methionine in proteins and free amino acids. We demonstrate that archaeal MsrA has a ubiquitin-like (Ubl) protein modification activity that is distinct from its stereospecific reduction of MSO residues. MsrA catalyzes this Ubl modification activity, with the Ubl-activating E1 UbaA, in the presence of the mild oxidant dimethyl sulfoxide (DMSO) and in the absence of reductant. In contrast, the MSO reductase activity of MsrA is inhibited by DMSO and requires reductant. Liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysismore » reveals that MsrA-dependent Ubl conjugates are associated with DNA replication, protein remodeling, and oxidative stress and include the Ubl-modified MsrA, Orc3 (Orc1/Cdc6), and Cdc48d (Cdc48/p97 AAA+ ATPase). Overall, we found archaeal MsrA to have opposing MSO reductase and Ubl modifying activities that are associated with oxidative stress responses and controlled by exposure to mild oxidant.« less

  6. Ubiquitin dynamics in complexes reveal molecular recognition mechanisms beyond induced fit and conformational selection.

    PubMed

    Peters, Jan H; de Groot, Bert L

    2012-01-01

    Protein-protein interactions play an important role in all biological processes. However, the principles underlying these interactions are only beginning to be understood. Ubiquitin is a small signalling protein that is covalently attached to different proteins to mark them for degradation, regulate transport and other functions. As such, it interacts with and is recognised by a multitude of other proteins. We have conducted molecular dynamics simulations of ubiquitin in complex with 11 different binding partners on a microsecond timescale and compared them with ensembles of unbound ubiquitin to investigate the principles of their interaction and determine the influence of complex formation on the dynamic properties of this protein. Along the main mode of fluctuation of ubiquitin, binding in most cases reduces the conformational space available to ubiquitin to a subspace of that covered by unbound ubiquitin. This behaviour can be well explained using the model of conformational selection. For lower amplitude collective modes, a spectrum of zero to almost complete coverage of bound by unbound ensembles was observed. The significant differences between bound and unbound structures are exclusively situated at the binding interface. Overall, the findings correspond neither to a complete conformational selection nor induced fit scenario. Instead, we introduce a model of conformational restriction, extension and shift, which describes the full range of observed effects.

  7. Interaction between the AAA ATPase p97/VCP and a concealed UBX domain in the copper transporter ATP7A is associated with motor neuron degeneration.

    PubMed

    Yi, Ling; Kaler, Stephen G

    2018-05-18

    The copper-transporting ATPase ATP7A contains eight transmembrane domains and is required for normal human copper homeostasis. Mutations in the ATP7A gene may lead to infantile-onset cerebral degeneration (Menkes disease); occipital horn syndrome (OHS), a related but much milder illness; or an adult-onset isolated distal motor neuropathy. The ATP7A missense mutation T994I is located in the sixth transmembrane domain of ATP7A, represents one of the variants associated with the latter phenotype, and is associated with an abnormal interaction with p97/valosin-containing protein (VCP), a hexameric AAA ATPase (ATPase associated with diverse cellular activities) with multiple biological functions. In this study, we further characterized this interaction and discovered a concealed UBX domain in the third lumenal loop of ATP7A, between its fifth and sixth transmembrane domains. We show that the T994I substitution results in conformational exposure of the UBX domain, which then binds the N-terminal domain of p97/VCP. We also show that this abnormal interaction occurs at or near the cell plasma membrane. The UBX domain has a conserved hydrophobic FP (Phe-Pro) motif, and substitution with di-alanine abrogated the interaction and restored the proper intracellular localization of ATP7A in the trans -Golgi network. Using protein MS, we identified potential coordinating components of the ATP7A T994I -p97 complex, including NSFL1 cofactor (NSF1C or p47) that may be relevant to the pathophysiology and clinical effects associated with ATP7A T994I Our study represents the first report of p97/VCP binding to a UBX domain that is not normally exposed, resulting in an aberrant protein-protein interaction leading to motor neuron degeneration.

  8. Subunit-Specific Labeling of Ubiquitin Chains by Using Sortase: Insights into the Selectivity of Deubiquitinases.

    PubMed

    Crowe, Sean O; Pham, Grace H; Ziegler, Jacob C; Deol, Kirandeep K; Guenette, Robert G; Ge, Ying; Strieter, Eric R

    2016-08-17

    Information embedded in different ubiquitin chains is transduced by proteins with ubiquitin-binding domains (UBDs) and erased by a set of hydrolytic enzymes referred to as deubiquitinases (DUBs). Understanding the selectivity of UBDs and DUBs is necessary for decoding the functions of different ubiquitin chains. Critical to these efforts is the access to chemically defined ubiquitin chains bearing site-specific fluorescent labels. One approach toward constructing such molecules involves peptide ligation by sortase (SrtA), a bacterial transpeptidase responsible for covalently attaching cell surface proteins to the cell wall. Here, we demonstrate the utility of SrtA in modifying individual subunits of ubiquitin chains. Using ubiquitin derivatives in which an N-terminal glycine is unveiled after protease-mediated digestion, we synthesized ubiquitin dimers, trimers, and tetramers with different isopeptide linkages. SrtA was then used in combination with fluorescent depsipeptide substrates to effect the modification of each subunit in a chain. By constructing branched ubiquitin chains with individual subunits tagged with a fluorophore, we provide evidence that the ubiquitin-specific protease USP15 prefers ubiquitin trimers but has little preference for a particular isopeptide linkage. Our results emphasize the importance of subunit-specific labeling of ubiquitin chains when studying how DUBs process these chains. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Phospho-ubiquitin: upending the PINK–Parkin–ubiquitin cascade

    PubMed Central

    Matsuda, Noriyuki

    2016-01-01

    Mitochondria with decreased membrane potential are characterized by defects in protein import into the matrix and impairments in high-efficiency synthesis of ATP. These low-quality mitochondria are marked with ubiquitin for selective degradation. Key factors in this mechanism are PTEN-induced putative kinase 1 (PINK1, a mitochondrial kinase) and Parkin (a ubiquitin ligase), disruption of which has been implicated in predisposition to Parkinson’s disease. Previously, the clearance of damaged mitochondria had been thought to be the end result of a simple cascading reaction of PINK1–Parkin–ubiquitin. However, in the past year, several research groups including ours unexpectedly revealed that Parkin regulation is mediated by PINK1-dependent phosphorylation of ubiquitin. These results overturned the simple hierarchy that posited PINK1 and ubiquitin as the upstream and downstream factors of Parkin, respectively. Although ubiquitylation is well-known as a post-translational modification, it has recently become clear that ubiquitin itself can be modified, and that this modification unexpectedly converts ubiquitin to a factor that functions in retrograde signalling. PMID:26839319

  10. Unfolding the mechanism of the AAA+ unfoldase VAT by a combined cryo-EM, solution NMR study

    PubMed Central

    Huang, Rui; Ripstein, Zev A.; Augustyniak, Rafal; Lazniewski, Michal; Ginalski, Krzysztof; Kay, Lewis E.; Rubinstein, John L.

    2016-01-01

    The AAA+ (ATPases associated with a variety of cellular activities) enzymes play critical roles in a variety of homeostatic processes in all kingdoms of life. Valosin-containing protein-like ATPase of Thermoplasma acidophilum (VAT), the archaeal homolog of the ubiquitous AAA+ protein Cdc48/p97, functions in concert with the 20S proteasome by unfolding substrates and passing them on for degradation. Here, we present electron cryomicroscopy (cryo-EM) maps showing that VAT undergoes large conformational rearrangements during its ATP hydrolysis cycle that differ dramatically from the conformational states observed for Cdc48/p97. We validate key features of the model with biochemical and solution methyl-transverse relaxation optimized spectroscopY (TROSY) NMR experiments and suggest a mechanism for coupling the energy of nucleotide hydrolysis to substrate unfolding. These findings illustrate the unique complementarity between cryo-EM and solution NMR for studies of molecular machines, showing that the structural properties of VAT, as well as the population distributions of conformers, are similar in the frozen specimens used for cryo-EM and in the solution phase where NMR spectra are recorded. PMID:27402735

  11. Structural insights into the Escherichia coli lysine decarboxylases and molecular determinants of interaction with the AAA+ ATPase RavA

    PubMed Central

    Kandiah, Eaazhisai; Carriel, Diego; Perard, Julien; Malet, Hélène; Bacia, Maria; Liu, Kaiyin; Chan, Sze W. S.; Houry, Walid A.; Ollagnier de Choudens, Sandrine; Elsen, Sylvie; Gutsche, Irina

    2016-01-01

    The inducible lysine decarboxylase LdcI is an important enterobacterial acid stress response enzyme whereas LdcC is its close paralogue thought to play mainly a metabolic role. A unique macromolecular cage formed by two decamers of the Escherichia coli LdcI and five hexamers of the AAA+ ATPase RavA was shown to counteract acid stress under starvation. Previously, we proposed a pseudoatomic model of the LdcI-RavA cage based on its cryo-electron microscopy map and crystal structures of an inactive LdcI decamer and a RavA monomer. We now present cryo-electron microscopy 3D reconstructions of the E. coli LdcI and LdcC, and an improved map of the LdcI bound to the LARA domain of RavA, at pH optimal for their enzymatic activity. Comparison with each other and with available structures uncovers differences between LdcI and LdcC explaining why only the acid stress response enzyme is capable of binding RavA. We identify interdomain movements associated with the pH-dependent enzyme activation and with the RavA binding. Multiple sequence alignment coupled to a phylogenetic analysis reveals that certain enterobacteria exert evolutionary pressure on the lysine decarboxylase towards the cage-like assembly with RavA, implying that this complex may have an important function under particular stress conditions. PMID:27080013

  12. Selective inhibition of K(+)-stimulation of Na,K-ATPase by bretylium.

    PubMed Central

    Tiku, P. E.; Nowell, P. T.

    1991-01-01

    1. The effects of bretylium were investigated on purified Na,K-ATPase from guinea-pig heart and on the Na/K pump in trout erythrocytes, with a view to further identifying the mechanism(s) associated with its antiarrhythmic effects. 2. Na,K-ATPase activity of the thiocyanate-dispersed enzyme was determined by the measurement of inorganic phosphate produced by ATP hydrolysis. 3. When the concentrations of each of the Na,K-ATPase activating components were varied in turn, bretylium (1-5 mmol l-1) exhibited competitive-type effects against K+ with a Ki of 1.4 mmol l-1 and noncompetitive-type effects against Na+, Mg2+ and ATP. 4. In K+ influx studies in trout erythrocytes with 86Rb+ used as the marker, the inhibition of total influx observed with bretylium (5 and 10 mmol l-1) was attributable to the bretylium cation selectively inhibiting the Na/K pump-mediated influx with the associated tosylate anion inhibiting Na/K cotransport. 5. The observed inhibition kinetics indicated that the bretylium cation (2-15 mmol l-1) competitively inhibited K+ stimulation of the Na/K pump at 6 and 1.25 mmol l-1 external K+ with a mean K1 of 2.3 mmol l-1. 6. The effects demonstrated on the functioning Na/K pump in erythrocytes confirmed the Na,K-ATPase findings, with bretylium selectively inhibiting K+ stimulation of the pump mechanism in both cases. 7. It is suggested that Na,K-ATPase inhibition may contribute to the antiarrhythmic and positive inotropic effects of bretylium with the cardiac accumulation of bretylium also possibly being a further important factor. PMID:1667290

  13. VCP/p97 cooperates with YOD1, UBXD1 and PLAA to drive clearance of ruptured lysosomes by autophagy.

    PubMed

    Papadopoulos, Chrisovalantis; Kirchner, Philipp; Bug, Monika; Grum, Daniel; Koerver, Lisa; Schulze, Nina; Poehler, Robert; Dressler, Alina; Fengler, Sven; Arhzaouy, Khalid; Lux, Vanda; Ehrmann, Michael; Weihl, Conrad C; Meyer, Hemmo

    2017-01-17

    Rupture of endosomes and lysosomes is a major cellular stress condition leading to cell death and degeneration. Here, we identified an essential role for the ubiquitin-directed AAA-ATPase, p97, in the clearance of damaged lysosomes by autophagy. Upon damage, p97 translocates to lysosomes and there cooperates with a distinct set of cofactors including UBXD1, PLAA, and the deubiquitinating enzyme YOD1, which we term ELDR components for Endo-Lysosomal Damage Response. Together, they act downstream of K63-linked ubiquitination and p62 recruitment, and selectively remove K48-linked ubiquitin conjugates from a subpopulation of damaged lysosomes to promote autophagosome formation. Lysosomal clearance is also compromised in MEFs harboring a p97 mutation that causes inclusion body myopathy and neurodegeneration, and damaged lysosomes accumulate in affected patient tissue carrying the mutation. Moreover, we show that p97 helps clear late endosomes/lysosomes ruptured by endocytosed tau fibrils. Thus, our data reveal an important mechanism of how p97 maintains lysosomal homeostasis, and implicate the pathway as a modulator of degenerative diseases. © 2016 The Authors.

  14. The E3 ubiquitin ligase CHIP selectively regulates mutant epidermal growth factor receptor by ubiquitination and degradation.

    PubMed

    Chung, Chaeuk; Yoo, Geon; Kim, Tackhoon; Lee, Dahye; Lee, Choong-Sik; Cha, Hye Rim; Park, Yeon Hee; Moon, Jae Young; Jung, Sung Soo; Kim, Ju Ock; Lee, Jae Cheol; Kim, Sun Young; Park, Hee Sun; Park, Myoungrin; Park, Dong Il; Lim, Dae-Sik; Jang, Kang Won; Lee, Jeong Eun

    2016-10-14

    Somatic mutation in the tyrosine kinase domain of epidermal growth factor receptor (EGFR) is a decisive factor for the therapeutic response to EGFR tyrosine kinase inhibitors (EGFR-TKIs) in lung adenocarcinoma. The stability of mutant EGFR is maintained by various regulators, including heat shock protein 90 (Hsp90). The C terminus of Hsc70-interacting protein (CHIP) is a Hsp70/Hsp90 co-chaperone and exhibits E3 ubiquitin ligase activity. The high-affinity Hsp90-CHIP complex recognizes and selectively regulates their client proteins. CHIP also works with its own E3 ligase activity independently of Hsp70/Hsp90. Here, we investigated the role of CHIP in regulating EGFR in lung adenocarcinoma and also evaluated the specificity of CHIP's effects on mutant EGFR. In HEK 293T cells transfected with either WT EGFR or EGFR mutants, the overexpression of CHIP selectively decreased the expression of certain EGFR mutants (G719S, L747_E749del A750P and L858R) but not WT EGFR. In a pull-down assay, CHIP selectively interacted with EGFR mutants and simultaneously induced their ubiquitination and proteasomal degradation. The expressions of mutant EGFR in PC9 and H1975 were diminished by CHIP, while the expression of WT EGFR in A549 was nearly not affected. In addition, CHIP overexpression inhibited cell proliferation and xenograft's tumor growth of EGFR mutant cell lines, but not WT EGFR cell lines. EGFR mutant specific ubiquitination by CHIP may provide a crucial regulating mechanism for EGFR in lung adenocarcinoma. Our results suggest that CHIP can be novel therapeutic target for overcoming the EGFR TKI resistance. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Phospho-ubiquitin: upending the PINK-Parkin-ubiquitin cascade.

    PubMed

    Matsuda, Noriyuki

    2016-04-01

    Mitochondria with decreased membrane potential are characterized by defects in protein import into the matrix and impairments in high-efficiency synthesis of ATP. These low-quality mitochondria are marked with ubiquitin for selective degradation. Key factors in this mechanism are PTEN-induced putative kinase 1 (PINK1, a mitochondrial kinase) and Parkin (a ubiquitin ligase), disruption of which has been implicated in predisposition to Parkinson's disease. Previously, the clearance of damaged mitochondria had been thought to be the end result of a simple cascading reaction of PINK1-Parkin-ubiquitin. However, in the past year, several research groups including ours unexpectedly revealed that Parkin regulation is mediated by PINK1-dependent phosphorylation of ubiquitin. These results overturned the simple hierarchy that posited PINK1 and ubiquitin as the upstream and downstream factors of Parkin, respectively. Although ubiquitylation is well-known as a post-translational modification, it has recently become clear that ubiquitin itself can be modified, and that this modification unexpectedly converts ubiquitin to a factor that functions in retrograde signalling. © The Authors 2016. Published by Oxford University Press on behalf of the Japanese Biochemical Society. All rights reserved.

  16. Regulatory coiled-coil domains promote head-to-head assemblies of AAA+ chaperones essential for tunable activity control.

    PubMed

    Carroni, Marta; Franke, Kamila B; Maurer, Michael; Jäger, Jasmin; Hantke, Ingo; Gloge, Felix; Linder, Daniela; Gremer, Sebastian; Turgay, Kürşad; Bukau, Bernd; Mogk, Axel

    2017-11-22

    Ring-forming AAA+ chaperones exert ATP-fueled substrate unfolding by threading through a central pore. This activity is potentially harmful requiring mechanisms for tight repression and substrate-specific activation. The AAA+ chaperone ClpC with the peptidase ClpP forms a bacterial protease essential to virulence and stress resistance. The adaptor MecA activates ClpC by targeting substrates and stimulating ClpC ATPase activity. We show how ClpC is repressed in its ground state by determining ClpC cryo-EM structures with and without MecA. ClpC forms large two-helical assemblies that associate via head-to-head contacts between coiled-coil middle domains (MDs). MecA converts this resting state to an active planar ring structure by binding to MD interaction sites. Loss of ClpC repression in MD mutants causes constitutive activation and severe cellular toxicity. These findings unravel an unexpected regulatory concept executed by coiled-coil MDs to tightly control AAA+ chaperone activity.

  17. Molecular insights into the m-AAA protease-mediated dislocation of transmembrane helices in the mitochondrial inner membrane.

    PubMed

    Lee, Seoeun; Lee, Hunsang; Yoo, Suji; Kim, Hyun

    2017-12-08

    Protein complexes involved in respiration, ATP synthesis, and protein import reside in the mitochondrial inner membrane; thus, proper regulation of these proteins is essential for cell viability. The m -AAA protease, a conserved hetero-hexameric AAA (ATPase associated with diverse cellular activities) protease, composed of the Yta10 and Yta12 proteins, regulates mitochondrial proteostasis by mediating protein maturation and degradation. It also recognizes and mediates the dislocation of membrane-embedded substrates, including foreign transmembrane (TM) segments, but the molecular mechanism involved in these processes remains elusive. This study investigated the role of the TM domains in the m -AAA protease by systematic replacement of one TM domain at a time in yeast. Our data indicated that replacement of the Yta10 TM2 domain abolishes membrane dislocation for only a subset of substrates, whereas replacement of the Yta12 TM2 domain impairs membrane dislocation for all tested substrates, suggesting different roles of the TM domains in each m -AAA protease subunit. Furthermore, m -AAA protease-mediated membrane dislocation was impaired in the presence of a large downstream hydrophilic moiety in a membrane substrate. This finding suggested that the m -AAA protease cannot dislocate large hydrophilic domains across the membrane, indicating that the membrane dislocation probably occurs in a lipid environment. In summary, this study highlights previously underappreciated biological roles of TM domains of the m -AAA proteases in mediating the recognition and dislocation of membrane-embedded substrates. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  18. NASA Airborne Astronomy Ambassadors (AAA) Professional Development and NASA Connections

    NASA Astrophysics Data System (ADS)

    Backman, D. E.; Clark, C.; Harman, P. K.

    2017-12-01

    NASA's Airborne Astronomy Ambassadors (AAA) program is a three-part professional development (PD) experience for high school physics, astronomy, and earth science teachers. AAA PD consists of: (1) blended learning via webinars, asynchronous content learning, and in-person workshops, (2) a STEM immersion experience at NASA Armstrong's B703 science research aircraft facility in Palmdale, California, and (3) ongoing opportunities for connection with NASA astrophysics and planetary science Subject Matter Experts (SMEs). AAA implementation in 2016-18 involves partnerships between the SETI Institute and seven school districts in northern and southern California. AAAs in the current cohort were selected by the school districts based on criteria developed by AAA program staff working with WestEd evaluation consultants. The selected teachers were then randomly assigned by WestEd to a Group A or B to support controlled testing of student learning. Group A completed their PD during January - August 2017, then participated in NASA SOFIA science flights during fall 2017. Group B will act as a control during the 2017-18 school year, then will complete their professional development and SOFIA flights during 2018. A two-week AAA electromagnetic spectrum and multi-wavelength astronomy curriculum aligned with the Science Framework for California Public Schools and Next Generation Science Standards was developed by program staff for classroom delivery. The curriculum (as well as the AAA's pre-flight PD) capitalizes on NASA content by using "science snapshot" case studies regarding astronomy research conducted by SOFIA. AAAs also interact with NASA SMEs during flight weeks and will translate that interaction into classroom content. The AAA program will make controlled measurements of student gains in standards-based learning plus changes in student attitudes towards STEM, and observe & record the AAAs' implementation of curricular changes. Funded by NASA: NNX16AC51

  19. PKC-Dependent GlyT1 Ubiquitination Occurs Independent of Phosphorylation: Inespecificity in Lysine Selection for Ubiquitination

    PubMed Central

    Barrera, Susana P.; Castrejon-Tellez, Vicente; Trinidad, Margarita; Robles-Escajeda, Elisa; Vargas-Medrano, Javier; Varela-Ramirez, Armando; Miranda, Manuel

    2015-01-01

    Neurotransmitter transporter ubiquitination is emerging as the main mechanism for endocytosis and sorting of cargo into lysosomes. In this study, we demonstrate PKC-dependent ubiquitination of three different isoforms of the glycine transporter 1 (GlyT1). Incubation of cells expressing transporter with the PKC activator phorbol ester induced a dramatic, time-dependent increase in GlyT1 ubiquitination, followed by accumulation of GlyT1 in EEA1 positive early endosomes. This occurred via a mechanism that was abolished by inhibition of PKC. GlyT1 endocytosis was confirmed in both retinal sections and primary cultures of mouse amacrine neurons. Replacement of only all lysines in the N-and C-termini to arginines prevented ubiquitination and endocytosis, displaying redundancy in the mechanism of ubiquitination. Interestingly, a 40–50% reduction in glycine uptake was detected in phorbol-ester stimulated cells expressing the WT-GlyT1, whereas no significant change was for the mutant protein, demonstrating that endocytosis participates in the reduction of uptake. Consistent with previous findings for the dopamine transporter DAT, ubiquitination of GlyT1 tails functions as sorting signal to deliver transporter into the lysosome and removal of ubiquitination sites dramatically attenuated the rate of GlyT1 degradation. Finally, we showed for the first time that PKC-dependent GlyT1 phosphorylation was not affected by removal of ubiquitination sites, suggesting separate PKC-dependent signaling events for these posttranslational modifications. PMID:26418248

  20. Risk of abdominal aortic aneurysm (AAA) among male and female relatives of AAA patients.

    PubMed

    van de Luijtgaarden, Koen M; Rouwet, Ellen V; Hoeks, Sanne E; Stolker, Robert J; Verhagen, Hence Jm; Majoor-Krakauer, Danielle

    2017-04-01

    Sex affects the presentation, treatment, and outcomes of abdominal aortic aneurysm (AAA). Although AAAs are less prevalent in women, at least in the general population, women with an AAA have a poorer prognosis in comparison to men. Sex differences in the genetic predisposition for aneurysm disease remain to be established. In this study we investigated the familial risk of AAA for women compared to men. All living AAA patients included in a 2004-2012 prospective database were invited to the multidisciplinary vascular/genetics outpatient clinic between 2009 and 2012 for assessment of family history using detailed questionnaires. AAA risk for male and female relatives was calculated separately and stratified by sex of the AAA patients. Families of 568 AAA patients were investigated and 22.5% of the patients had at least one affected relative. Female relatives had a 2.8-fold and male relatives had a 1.7-fold higher risk than the estimated sex-specific population risk. Relatives of female AAA patients had a higher aneurysm risk than relatives of male patients (9.0 vs 5.9%, p = 0.022), corresponding to 5.5- and 2.0-fold increases in aneurysm risk in the female and male relatives, respectively. The risk for aortic aneurysm in relatives of AAA patients is higher than expected from population risk. The excess risk is highest for the female relatives of AAA patients and for the relatives of female AAA patients. These findings endorse targeted AAA family screening for female and male relatives of all AAA patients.

  1. Structural Insights on the Mycobacterium tuberculosis Proteasomal ATPase Mpa

    PubMed Central

    Wang, Tao; Li, Hua; Lin, Gang; Tang, Chunyan; Li, Dongyang; Nathan, Carl; Darwin, K. Heran; Li, Huilin

    2009-01-01

    Summary Proteasome-mediated protein turnover in all domains of life is an energy-dependent process that requires ATPase activity. Mycobacterium tuberculosis (Mtb) was recently shown to possess a ubiquitin-like proteasome pathway that plays an essential role in Mtb resistance to killing by products of host macrophages. Here we report our structural and biochemical investigation of Mpa, the presumptive Mtb proteasomal ATPase. We demonstrate that Mpa binds to the Mtb proteasome in the presence of ATPγS, providing the physical evidence that Mpa is the proteasomal ATPase. X-ray crystallographic determination of the conserved inter-domain showed a five-stranded double β-barrel structure containing a Greek key motif. The structure and mutagenesis indicate a major role of the inter-domain for Mpa hexamerization. Our mutational and functional studies further suggest that the central channel in the Mpa hexamer is involved in protein substrate translocation and degradation. These studies provide insights into how a bacterial proteasomal ATPase interacts with and facilitates protein degradation by the proteasome. PMID:19836337

  2. Compensatory Internalization of Pma1 in V-ATPase Mutants in Saccharomyces cerevisiae Requires Calcium- and Glucose-Sensitive Phosphatases.

    PubMed

    Velivela, Swetha Devi; Kane, Patricia M

    2018-02-01

    Loss of V-ATPase activity in organelles, whether through V-ATPase inhibition or V-ATPase ( vma ) mutations, triggers a compensatory downregulation of the essential plasma membrane proton pump Pma1 in Saccharomyces cerevisiae We have previously determined that the α-arrestin Rim8 and ubiquitin ligase Rsp5 are essential for Pma1 ubiquination and endocytosis in response to loss of V-ATPase activity. Here, we show that Pma1 endocytosis in V-ATPase mutants does not require Rim101 pathway components upstream and downstream of Rim8, indicating that Rim8 is acting independently in Pma1 internalization. We find that two phosphatases, the calcium-responsive phosphatase calcineurin and the glucose-sensitive phosphatase Glc7 (PP1), and one of the Glc7 regulatory subunits Reg1, exhibit negative synthetic genetic interactions with vma mutants, and demonstrate that both phosphatases are essential for ubiquitination and endocytic downregulation of Pma1 in these mutants. Although both acute and chronic loss of V-ATPase activity trigger the internalization of ∼50% of surface Pma1, a comparable reduction in Pma1 expression in a pma1-007 mutant neither compensates for loss of V-ATPase activity nor stops further Pma1 endocytosis. The results indicate that the cell surface level of Pma1 is not directly sensed and that internalized Pma1 may play a role in compensating for loss of V-ATPase-dependent acidification. Taken together, these results provide new insights into cross talk between two major proton pumps central to cellular pH control. Copyright © 2018 by the Genetics Society of America.

  3. Valosin-containing protein VCP/p97 is essential for the intracellular development of Leishmania and its survival under heat stress.

    PubMed

    Guedes Aguiar, Bruno; Padmanabhan, Prasad K; Dumas, Carole; Papadopoulou, Barbara

    2018-06-12

    Valosin-containing protein (VCP)/p97/Cdc48 is one of the best-characterised type II cytosolic AAA+ ATPases most known for their role in ubiquitin-dependent protein quality control. Here, we provide functional insights into the role of the Leishmania VCP/p97 homologue (LiVCP) in the parasite intracellular development. We demonstrate that although LiVCP is an essential gene, Leishmania infantum promastigotes can grow with less VCP. In contrast, growth of axenic and intracellular amastigotes is dramatically affected upon decreased LiVCP levels in heterozygous and temperature sensitive (ts) LiVCP mutants or the expression of dominant negative mutants known to specifically target the second conserved VCP ATPase domain, a major contributor of the VCP overall ATPase activity. Interestingly, these VCP mutants are also unable to survive heat stress, and a ts VCP mutant is defective in amastigote growth. Consistent with LiVCP's essential function in amastigotes, LiVCP messenger ribonucleic acid undergoes 3'Untranslated Region (UTR)-mediated developmental regulation, resulting in higher VCP expression in amastigotes. Furthermore, we show that parasite mutant lines expressing lower VCP levels or dominant negative VCP forms exhibit high accumulation of polyubiquitinated proteins and increased sensitivity to proteotoxic stress, supporting the ubiquitin-selective chaperone function of LiVCP. Together, these results emphasise the crucial role LiVCP plays under heat stress and during the parasite intracellular development. © 2018 John Wiley & Sons Ltd.

  4. Deviation of the typical AAA substrate-threading pore prevents fatal protein degradation in yeast Cdc48.

    PubMed

    Esaki, Masatoshi; Islam, Md Tanvir; Tani, Naoki; Ogura, Teru

    2017-07-14

    Yeast Cdc48 is a well-conserved, essential chaperone of ATPases associated with diverse cellular activity (AAA) proteins, which recognizes substrate proteins and modulates their conformations to carry out many cellular processes. However, the fundamental mechanisms underlying the diverse pivotal roles of Cdc48 remain unknown. Almost all AAA proteins form a ring-shaped structure with a conserved aromatic amino acid residue that is essential for proper function. The threading mechanism hypothesis suggests that this residue guides the intrusion of substrate proteins into a narrow pore of the AAA ring, thereby becoming unfolded. By contrast, the aromatic residue in one of the two AAA rings of Cdc48 has been eliminated through evolution. Here, we show that artificial retrieval of this aromatic residue in Cdc48 is lethal, and essential features to support the threading mechanism are required to exhibit the lethal phenotype. In particular, genetic and biochemical analyses of the Cdc48 lethal mutant strongly suggested that when in complex with the 20S proteasome, essential proteins are abnormally forced to thread through the Cdc48 pore to become degraded, which was not detected in wild-type Cdc48. Thus, the widely applicable threading model is less effective for wild-type Cdc48; rather, Cdc48 might function predominantly through an as-yet-undetermined mechanism.

  5. Essential function of VCP/p97 in infection cycle of the nucleopolyhedrovirus AcMNPV in Spodoptera frugiperda Sf9 cells.

    PubMed

    Lyupina, Yulia V; Erokhov, Pavel A; Kravchuk, Oksana I; Finoshin, Alexander D; Abaturova, Svetlana B; Orlova, Olga V; Beljelarskaya, Svetlana N; Kostyuchenko, Margarita V; Mikhailov, Victor S

    2018-06-08

    The protein VCP/p97 (also named CDC48 and TER94) belongs to a type II subfamily of the AAA+ATPases and controls cellular proteostasis by acting upstream of proteasomes in the ubiquitin-proteasome protein degradation pathway. The function of VCP/p97 in the baculovirus infection cycle in insect cells remains unknown. Here, we identified VCP/p97 in the fall armyworm Spodoptera frugiperda (Sf9) cells and analyzed the replication of the Autographa californica multiple nucleopolyhedrovirus, AcMNPV, in Sf9 cells in which the VCP/p97 function was inhibited. The specific allosteric inhibitor of the VCP/p97 ATPase activity, NMS-873, did not deplete VCP/p97 in infected cells but caused a dose-dependent inhibition of viral DNA synthesis and efficiently suppressed expression of viral proteins and production of budded virions. NMS-873 caused accumulation of ubiquitinated proteins in a manner similar to the inhibitor of proteasome activity, Bortezomib. This suggests the essential function of VCP/p97 in the baculovirus infection cycle might be associated, at least in part, with the ubiquitin-proteasome system. Copyright © 2018 Elsevier B.V. All rights reserved.

  6. Divergence in Ubiquitin Interaction and Catalysis among the Ubiquitin-Specific Protease Family Deubiquitinating Enzymes.

    PubMed

    Tencer, Adam H; Liang, Qin; Zhuang, Zhihao

    2016-08-23

    Deubiquitinating enzymes (DUBs) are responsible for reversing mono- and polyubiquitination of proteins and play essential roles in numerous cellular processes. Close to 100 human DUBs have been identified and are classified into five families, with the ubiquitin-specific protease (USP) family being the largest (>50 members). The binding of ubiquitin (Ub) to USP is strikingly different from that observed for the DUBs in the ubiquitin C-terminal hydrolase (UCH) and ovarian tumor domain protease (OTU) families. We generated a panel of mutant ubiquitins and used them to probe the ubiquitin's interaction with a number of USPs. Our results revealed a remarkable divergence of USP-Ub interactions among the USP catalytic domains. Our double-mutant cycle analysis targeting the ubiquitin residues located in the tip, the central body, and the tail of ubiquitin also demonstrated different crosstalk among the USP-Ub interactions. This work uncovered intriguing divergence in the ubiquitin-binding mode in the USP family DUBs and raised the possibility of targeting the ubiquitin-binding hot spots on USPs for selective inhibition of USPs by small molecule antagonists.

  7. Mitochondrial AAA proteases--towards a molecular understanding of membrane-bound proteolytic machines.

    PubMed

    Gerdes, Florian; Tatsuta, Takashi; Langer, Thomas

    2012-01-01

    Mitochondrial AAA proteases play an important role in the maintenance of mitochondrial proteostasis. They regulate and promote biogenesis of mitochondrial proteins by acting as processing enzymes and ensuring the selective turnover of misfolded proteins. Impairment of AAA proteases causes pleiotropic defects in various organisms including neurodegeneration in humans. AAA proteases comprise ring-like hexameric complexes in the mitochondrial inner membrane and are functionally conserved from yeast to man, but variations are evident in the subunit composition of orthologous enzymes. Recent structural and biochemical studies revealed how AAA proteases degrade their substrates in an ATP dependent manner. Intersubunit coordination of the ATP hydrolysis leads to an ordered ATP hydrolysis within the AAA ring, which ensures efficient substrate dislocation from the membrane and translocation to the proteolytic chamber. In this review, we summarize recent findings on the molecular mechanisms underlying the versatile functions of mitochondrial AAA proteases and their relevance to those of the other AAA+ machines. Copyright © 2011 Elsevier B.V. All rights reserved.

  8. AAA Foundation for Traffic Safety

    MedlinePlus

    ... of Top Deadly Mistakes Made by Teen Drivers -- AAA AAA: Road debris causes avoidable crashes, deaths Save the ... and 500 deaths! Foundation News Stay Tuned New AAA Foundation for Traffic Safety website coming Fall 2017 ...

  9. An Interaction Landscape of Ubiquitin Signaling.

    PubMed

    Zhang, Xiaofei; Smits, Arne H; van Tilburg, Gabrielle B A; Jansen, Pascal W T C; Makowski, Matthew M; Ovaa, Huib; Vermeulen, Michiel

    2017-03-02

    Intracellular signaling via the covalent attachment of different ubiquitin linkages to protein substrates is fundamental to many cellular processes. Although linkage-selective ubiquitin interactors have been studied on a case-by-case basis, proteome-wide analyses have not been conducted yet. Here, we present ubiquitin interactor affinity enrichment-mass spectrometry (UbIA-MS), a quantitative interaction proteomics method that makes use of chemically synthesized diubiquitin to enrich and identify ubiquitin linkage interactors from crude cell lysates. UbIA-MS reveals linkage-selective diubiquitin interactions in multiple cell types. For example, we identify TAB2 and TAB3 as novel K6 diubiquitin interactors and characterize UCHL3 as a K27-linkage selective interactor that regulates K27 polyubiquitin chain formation in cells. Additionally, we show a class of monoubiquitin and K6 diubiquitin interactors whose binding is induced by DNA damage. We expect that our proteome-wide diubiquitin interaction landscape and established workflows will have broad applications in the ongoing efforts to decipher the complex language of ubiquitin signaling. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. LMIP/AAA: Local Authentication, Authorization and Accounting (AAA) Protocol for Mobile IP

    NASA Astrophysics Data System (ADS)

    Chenait, Manel

    Mobile IP represents a simple and scalable global mobility solution. However, it inhibits various vulnerabilities to malicious attacks and, therefore, requires the integration of appropriate security services. In this paper, we discuss two authentication schemes suggested for Mobile IP: standard authentication and Mobile IP/AAA authentication. In order to provide Mobile IP roaming services including identity verication, we propose an improvement to Mobile/AAA authentication scheme by applying a local politic key management in each domain, hence we reduce hando latency by avoiding the involvement of AAA infrastructure during mobile node roaming.

  11. Terminating protein ubiquitination: Hasta la vista, ubiquitin.

    PubMed

    Stringer, Daniel K; Piper, Robert C

    2011-09-15

    Ubiquitination is a post-translational modification that generally directs proteins for degradation by the proteasome or by lysosomes. However, ubiquitination has been implicated in many other cellular processes, including transcriptional regulation, DNA repair, regulation of protein-protein interactions and association with ubiquitin-binding scaffolds. Ubiquitination is a dynamic process. Ubiquitin is added to proteins by E3 ubiquitin ligases as a covalent modification to one or multiple lysine residues as well as non-lysine amino acids. Ubiquitin itself contains seven lysines, each of which can also be ubiquitinated, leading to polyubiquitin chains that are best characterized for linkages occurring through K48 and K63. Ubiquitination can also be reversed by the action of deubiquitination enzymes (DUbs). Like E3 ligases, DUbs play diverse and critical roles in cells. ( 1) Ubiquitin is expressed as a fusion protein, as a linear repeat or as a fusion to ribosomal subunits, and DUbs are necessary to liberate free ubiquitin, making them the first enzyme of the ubiquitin cascade. Proteins destined for degradation by the proteasome or by lysosomes are deubiquitinated prior to their degradation, which allows ubiquitin to be recycled by the cell, contributing to the steady-state pool of free ubiquitin. Proteins destined for degradation by lysosomes are also acted upon by both ligases and DUbs. Deubiquitination can also act as a means to prevent protein degradation, and many proteins are thought to undergo rounds of ubiquitination and deubiquitination, ultimately resulting in either the degradation or stabilization of those proteins. Despite years of study, examining the effects of the ubiquitination of proteins remains quite challenging. This is because the methods that are currently being employed to study ubiquitination are limiting. Here, we briefly examine current strategies to study the effects of ubiquitination and describe an additional novel approach that we have

  12. The I domain of the AAA+ HslUV protease coordinates substrate binding, ATP hydrolysis, and protein degradation

    PubMed Central

    Sundar, Shankar; Baker, Tania A; Sauer, Robert T

    2012-01-01

    In the AAA+ HslUV protease, substrates are bound and unfolded by a ring hexamer of HslU, before translocation through an axial pore and into the HslV degradation chamber. Here, we show that the N-terminal residues of an Arc substrate initially bind in the HslU axial pore, with key contacts mediated by a pore loop that is highly conserved in all AAA+ unfoldases. Disordered loops from the six intermediate domains of the HslU hexamer project into a funnel-shaped cavity above the pore and are positioned to contact protein substrates. Mutations in these I-domain loops increase KM and decrease Vmax for degradation, increase the mobility of bound substrates, and prevent substrate stimulation of ATP hydrolysis. HslU-ΔI has negligible ATPase activity. Thus, the I domain plays an active role in coordinating substrate binding, ATP hydrolysis, and protein degradation by the HslUV proteolytic machine. PMID:22102327

  13. Mutant Analysis Reveals Allosteric Regulation of ClpB Disaggregase

    PubMed Central

    Franke, Kamila B.; Bukau, Bernd; Mogk, Axel

    2017-01-01

    The members of the hexameric AAA+ disaggregase of E. coli and S. cerevisiae, ClpB, and Hsp104, cooperate with the Hsp70 chaperone system in the solubilization of aggregated proteins. Aggregate solubilization relies on a substrate threading activity of ClpB/Hsp104 fueled by ATP hydrolysis in both ATPase rings (AAA-1, AAA-2). ClpB/Hsp104 ATPase activity is controlled by the M-domains, which associate to the AAA-1 ring to downregulate ATP hydrolysis. Keeping M-domains displaced from the AAA-1 ring by association with Hsp70 increases ATPase activity due to enhanced communication between protomers. This communication involves conserved arginine fingers. The control of ClpB/Hsp104 activity is crucial, as hyperactive mutants with permanently dissociated M-domains exhibit cellular toxicity. Here, we analyzed AAA-1 inter-ring communication in relation to the M-domain mediated ATPase regulation, by subjecting a conserved residue of the AAA-1 domain subunit interface of ClpB (A328) to mutational analysis. While all A328X mutants have reduced disaggregation activities, their ATPase activities strongly differed. ClpB-A328I/L mutants have reduced ATPase activity and when combined with the hyperactive ClpB-K476C M-domain mutation, suppress cellular toxicity. This underlines that ClpB ATPase activation by M-domain dissociation relies on increased subunit communication. The ClpB-A328V mutant in contrast has very high ATPase activity and exhibits cellular toxicity on its own, qualifying it as novel hyperactive ClpB mutant. ClpB-A328V hyperactivity is however, different from that of M-domain mutants as M-domains stay associated with the AAA-1 ring. The high ATPase activity of ClpB-A328V primarily relies on the AAA-2 ring and correlates with distinct conformational changes in the AAA-2 catalytic site. These findings characterize the subunit interface residue A328 as crucial regulatory element to control ATP hydrolysis in both AAA rings. PMID:28275610

  14. AAA+ ATPases Reptin and Pontin as potential diagnostic and prognostic biomarkers in salivary gland cancer - a short report.

    PubMed

    Mikesch, Jan-Henrik; Hartmann, Wolfgang; Angenendt, Linus; Huber, Otmar; Schliemann, Christoph; Arteaga, Maria Francisca; Wardelmann, Eva; Rudack, Claudia; Berdel, Wolfgang E; Stenner, Markus; Grünewald, Inga

    2018-06-05

    Salivary gland cancer (SGC) is a rare and heterogeneous disease with significant differences in recurrence and metastasis characteristics. As yet, little is known about the mechanisms underlying the initiation and/or progression of these diverse tumors. In recent years, the AAA+ ATPase family members Pontin (RuvBL1, Tip49a) and Reptin (RuvBL2, Tip49b) have been implicated in various processes, including transcription regulation, chromatin remodeling and DNA damage repair, that are frequently deregulated in cancer. The aim of this study was to assess the clinical and functional significance of Reptin and Pontin expression in SGC. Immunohistochemical staining of Pontin, Reptin, β-catenin, Cyclin D1, TP53 and MIB-1 was performed on a collection of 94 SGC tumor samples comprising 13 different histological subtypes using tissue microarrays. We found that Reptin and Pontin were expressed in the majority of SGC samples across all histological subtypes. Patients with a high Reptin expression showed a significantly inferior 5-year overall survival rate compared to patients with a low Reptin expression (47.7% versus 78.3%; p = 0.033), whereas no such difference was observed for Pontin. A high Reptin expression strongly correlated with a high expression of the proliferation marker MIB-1 (p = 0.003), the cell cycle regulator Cyclin D1 (p = 0.006), accumulation of TP53 as a surrogate p53 mutation marker (p = 0.042) and cytoplasmic β-catenin expression (p = 0.002). Increased Pontin expression was found to significantly correlate with both cytoplasmic and nuclear β-catenin expression (p = 0.037 and p = 0.018, respectively), which is indicative for its oncogenic function. Our results suggest a role of Reptin and Pontin in SGC tumor progression and/or patient survival. Therefore, SGC patients exhibiting a high Reptin expression may benefit from more aggressive therapeutic regimens. Future studies should clarify whether such patients may be considered

  15. Downregulation of Aquaporins (AQP1 and AQP5) and Na,K-ATPase in Porcine Reproductive and Respiratory Syndrome Virus-Infected Pig Lungs.

    PubMed

    Zhang, Jianping; Yan, Meiping; Gu, Wei; Chen, Ao; Liu, Jie; Li, Lexing; Zhang, Songlin; Liu, Guoquan

    2018-06-01

    Aquaporins (AQPs) and Na,K-ATPase control water transport across the air space-capillary barrier in the distal lung and play an important role in the formation and resolution of lung edema. Porcine reproductive and respiratory syndrome virus (PRRSV) infection usually causes pulmonary inflammation and edema in the infected pig lungs. To investigate the possibility that PRRSV infection may cause altered expression of AQPs and Na,K-ATPase messenger RNA (mRNA) levels and protein expression of AQP1, AQP5, and Na,K-ATPase in the PRRSV-infected pig lungs were detected. Quantitative real-time PCR (qRT-PCR) analysis showed markedly decreased mRNA levels of AQP1 and AQP5 and Na,K-ATPase in the PRRSV-infected pig lungs compared to those of uninfected pig lungs. Western blot studies also revealed significantly reduced levels of AQP1, AQP5, and Na,K-ATPase proteins in the PRRSV-infected pig lungs. In addition, immunohistochemical (IHC) analysis showed decreased protein expression of AQP1 and AQP5 in the endothelial cells of the capillaries and venules and secretory cells of terminal bronchiole and the alveolar type I cells, respectively. The expression of Na,K-ATPase in the basolateral membrane of alveolar type II cells presented great reduction in the PRRSV-infected pig lungs. To further understand the reduction of these proteins, the ubiquitination of AQP1 and Na,K-ATPase was examined in uninfected and PRRSV-infected pig lungs. The results showed that there is no difference of ubiquitination for these proteins. Thus, our results suggest that PRRSV infection may induce downregulation of these proteins and cause impairment of edema resolution by failed water clearance in the infected pig lungs.

  16. A novel deficiency of mitochondrial ATPase of nuclear origin.

    PubMed

    Houstek, J; Klement, P; Floryk, D; Antonická, H; Hermanská, J; Kalous, M; Hansíková, H; Hout'ková, H; Chowdhury, S K; Rosipal, T; Kmoch, S; Stratilová, L; Zeman, J

    1999-10-01

    We report a new type of fatal mitochondrial disorder caused by selective deficiency of mitochondrial ATP synthase (ATPase). A hypotrophic newborn from a consanguineous marriage presented severe lactic acidosis, cardiomegaly and hepatomegaly and died from heart failure after 2 days. The activity of oligomycin-sensitive ATPase was only 31-34% of the control, both in muscle and heart, but the activities of cytochrome c oxidase, citrate synthase and pyruvate dehydrogenase were normal. Electrophoretic and western blot analysis revealed selective reduction of ATPase complex but normal levels of the respiratory chain complexes I, III and IV. The same selective deficiency of ATPase was found in cultured skin fibroblasts which showed similar decreases in ATPase content, ATPase hydrolytic activity and level of substrate-dependent ATP synthesis (20-25, 18 and 29-33% of the control, respectively). Pulse-chase labelling of patient fibroblasts revealed low incorporation of [(35)S]methionine into assembled ATPase complexes, but increased incorporation into immunoprecipitated ATPase subunit beta, which had a very short half-life. In contrast, no difference was found in the size and subunit composition of the assembled and newly produced ATPase complex. Transmitochondrial cybrids prepared from enucleated fibroblasts of the patient and rho degrees cells derived from 143B. TK(-)human osteosarcoma cells fully restored the ATPase activity, ATP synthesis and ATPase content, when compared with control cybrids. Likewise, the pattern of [(35)S]methionine labelling of ATPase was found to be normal in patient cybrids. We conclude that the generalized deficiency of mitochondrial ATPase described is of nuclear origin and is caused by altered biosynthesis of the enzyme.

  17. Ubiquitin modifications

    PubMed Central

    Swatek, Kirby N; Komander, David

    2016-01-01

    Protein ubiquitination is a dynamic multifaceted post-translational modification involved in nearly all aspects of eukaryotic biology. Once attached to a substrate, the 76-amino acid protein ubiquitin is subjected to further modifications, creating a multitude of distinct signals with distinct cellular outcomes, referred to as the 'ubiquitin code'. Ubiquitin can be ubiquitinated on seven lysine (Lys) residues or on the N-terminus, leading to polyubiquitin chains that can encompass complex topologies. Alternatively or in addition, ubiquitin Lys residues can be modified by ubiquitin-like molecules (such as SUMO or NEDD8). Finally, ubiquitin can also be acetylated on Lys, or phosphorylated on Ser, Thr or Tyr residues, and each modification has the potential to dramatically alter the signaling outcome. While the number of distinctly modified ubiquitin species in cells is mind-boggling, much progress has been made to characterize the roles of distinct ubiquitin modifications, and many enzymes and receptors have been identified that create, recognize or remove these ubiquitin modifications. We here provide an overview of the various ubiquitin modifications present in cells, and highlight recent progress on ubiquitin chain biology. We then discuss the recent findings in the field of ubiquitin acetylation and phosphorylation, with a focus on Ser65-phosphorylation and its role in mitophagy and Parkin activation. PMID:27012465

  18. Crystal Structure of the Ubiquitin-associated (UBA) Domain of p62 and Its Interaction with Ubiquitin*

    PubMed Central

    Isogai, Shin; Morimoto, Daichi; Arita, Kyohei; Unzai, Satoru; Tenno, Takeshi; Hasegawa, Jun; Sou, Yu-shin; Komatsu, Masaaki; Tanaka, Keiji; Shirakawa, Masahiro; Tochio, Hidehito

    2011-01-01

    p62/SQSTM1/A170 is a multimodular protein that is found in ubiquitin-positive inclusions associated with neurodegenerative diseases. Recent findings indicate that p62 mediates the interaction between ubiquitinated proteins and autophagosomes, leading these proteins to be degraded via the autophagy-lysosomal pathway. This ubiquitin-mediated selective autophagy is thought to begin with recognition of the ubiquitinated proteins by the C-terminal ubiquitin-associated (UBA) domain of p62. We present here the crystal structure of the UBA domain of mouse p62 and the solution structure of its ubiquitin-bound form. The p62 UBA domain adopts a novel dimeric structure in crystals, which is distinctive from those of other UBA domains. NMR analyses reveal that in solution the domain exists in equilibrium between the dimer and monomer forms, and binding ubiquitin shifts the equilibrium toward the monomer to form a 1:1 complex between the UBA domain and ubiquitin. The dimer-to-monomer transition is associated with a structural change of the very C-terminal end of the p62 UBA domain, although the UBA fold itself is essentially maintained. Our data illustrate that dimerization and ubiquitin binding of the p62 UBA domain are incompatible with each other. These observations reveal an autoinhibitory mechanism in the p62 UBA domain and suggest that autoinhibition plays a role in the function of p62. PMID:21715324

  19. An ubiquitin-binding molecule can work as an inhibitor of ubiquitin processing enzymes and ubiquitin receptors.

    PubMed

    Nguyen, Thanh; Ho, Minh; Ghosh, Ambarnil; Kim, Truc; Yun, Sun Il; Lee, Seung Seo; Kim, Kyeong Kyu

    2016-10-07

    The ubiquitin pathway plays a critical role in regulating diverse biological processes, and its dysregulation is associated with various diseases. Therefore, it is important to have a tool that can control the ubiquitin pathway in order to improve understanding of this pathway and to develop therapeutics against relevant diseases. We found that Chicago Sky Blue 6B binds directly to the β-groove, a major interacting surface of ubiquitin. Hence, it could successfully inhibit the enzymatic activity of ubiquitin processing enzymes and the binding of ubiquitin to the CXCR4, a cell surface ubiquitin receptor. Furthermore, we demonstrated that this ubiquitin binding chemical could effectively suppress the ubiquitin induced cancer cell migration by blocking ubiquitin-CXCR4 interaction. Current results suggest that ubiquitin binding molecules can be developed as inhibitors of ubiquitin-protein interactions, which will have the value not only in unveiling the biological role of ubiquitin but also in treating related diseases. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. ADPase activity of recombinantly expressed thermotolerant ATPases may be caused by copurification of adenylate kinase of Escherichia coli

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Baoyu; Sysoeva, Tatyana A.; Chowdhury, Saikat

    2009-10-06

    Except for apyrases, ATPases generally target only the {gamma}-phosphate of a nucleotide. Some non-apyrase ATPases from thermophilic microorganisms are reported to hydrolyze ADP as well as ATP, which has been described as a novel property of the ATPases from extreme thermophiles. Here, we describe an apparent ADP hydrolysis by highly purified preparations of the AAA+ ATPase NtrC1 from an extremely thermophilic bacterium, Aquifex aeolicus. This activity is actually a combination of the activities of the ATPase and contaminating adenylate kinase (AK) from Escherichia coli, which is present at 1/10 000 of the level of the ATPase. AK catalyzes conversion ofmore » two molecules of ADP into AMP and ATP, the latter being a substrate for the ATPase. We raise concern that the observed thermotolerance of E. coli AK and its copurification with thermostable proteins by commonly used methods may confound studies of enzymes that specifically catalyze hydrolysis of nucleoside diphosphates or triphosphates. For example, contamination with E. coli AK may be responsible for reported ADPase activities of the ATPase chaperonins from Pyrococcus furiosus, Pyrococcus horikoshii, Methanococcus jannaschii and Thermoplasma acidophilum; the ATP/ADP-dependent DNA ligases from Aeropyrum pernix K1 and Staphylothermus marinus; or the reported ATP-dependent activities of ADP-dependent phosphofructokinase of P. furiosus. Purification methods developed to separate NtrC1 ATPase from AK also revealed two distinct forms of the ATPase. One is tightly bound to ADP or GDP and able to bind to Q but not S ion exchange matrixes. The other is nucleotide-free and binds to both Q and S ion exchange matrixes.« less

  1. The AAA protein Msp1 mediates clearance of excess tail-anchored proteins from the peroxisomal membrane

    PubMed Central

    Weir, Nicholas R; Kamber, Roarke A; Martenson, James S

    2017-01-01

    Msp1 is a conserved AAA ATPase in budding yeast localized to mitochondria where it prevents accumulation of mistargeted tail-anchored (TA) proteins, including the peroxisomal TA protein Pex15. Msp1 also resides on peroxisomes but it remains unknown how native TA proteins on mitochondria and peroxisomes evade Msp1 surveillance. We used live-cell quantitative cell microscopy tools and drug-inducible gene expression to dissect Msp1 function. We found that a small fraction of peroxisomal Pex15, exaggerated by overexpression, is turned over by Msp1. Kinetic measurements guided by theoretical modeling revealed that Pex15 molecules at mitochondria display age-independent Msp1 sensitivity. By contrast, Pex15 molecules at peroxisomes are rapidly converted from an initial Msp1-sensitive to an Msp1-resistant state. Lastly, we show that Pex15 interacts with the peroxisomal membrane protein Pex3, which shields Pex15 from Msp1-dependent turnover. In sum, our work argues that Msp1 selects its substrates on the basis of their solitary membrane existence. PMID:28906250

  2. Multifunctional Mitochondrial AAA Proteases

    PubMed Central

    Glynn, Steven E.

    2017-01-01

    Mitochondria perform numerous functions necessary for the survival of eukaryotic cells. These activities are coordinated by a diverse complement of proteins encoded in both the nuclear and mitochondrial genomes that must be properly organized and maintained. Misregulation of mitochondrial proteostasis impairs organellar function and can result in the development of severe human diseases. ATP-driven AAA+ proteins play crucial roles in preserving mitochondrial activity by removing and remodeling protein molecules in accordance with the needs of the cell. Two mitochondrial AAA proteases, i-AAA and m-AAA, are anchored to either face of the mitochondrial inner membrane, where they engage and process an array of substrates to impact protein biogenesis, quality control, and the regulation of key metabolic pathways. The functionality of these proteases is extended through multiple substrate-dependent modes of action, including complete degradation, partial processing, or dislocation from the membrane without proteolysis. This review discusses recent advances made toward elucidating the mechanisms of substrate recognition, handling, and degradation that allow these versatile proteases to control diverse activities in this multifunctional organelle. PMID:28589125

  3. Multifunctional Mitochondrial AAA Proteases.

    PubMed

    Glynn, Steven E

    2017-01-01

    Mitochondria perform numerous functions necessary for the survival of eukaryotic cells. These activities are coordinated by a diverse complement of proteins encoded in both the nuclear and mitochondrial genomes that must be properly organized and maintained. Misregulation of mitochondrial proteostasis impairs organellar function and can result in the development of severe human diseases. ATP-driven AAA+ proteins play crucial roles in preserving mitochondrial activity by removing and remodeling protein molecules in accordance with the needs of the cell. Two mitochondrial AAA proteases, i-AAA and m-AAA, are anchored to either face of the mitochondrial inner membrane, where they engage and process an array of substrates to impact protein biogenesis, quality control, and the regulation of key metabolic pathways. The functionality of these proteases is extended through multiple substrate-dependent modes of action, including complete degradation, partial processing, or dislocation from the membrane without proteolysis. This review discusses recent advances made toward elucidating the mechanisms of substrate recognition, handling, and degradation that allow these versatile proteases to control diverse activities in this multifunctional organelle.

  4. A methodology for developing anisotropic AAA phantoms via additive manufacturing.

    PubMed

    Ruiz de Galarreta, Sergio; Antón, Raúl; Cazón, Aitor; Finol, Ender A

    2017-05-24

    An Abdominal Aortic Aneurysm (AAA) is a permanent focal dilatation of the abdominal aorta at least 1.5 times its normal diameter. The criterion of maximum diameter is still used in clinical practice, although numerical studies have demonstrated the importance of biomechanical factors for rupture risk assessment. AAA phantoms could be used for experimental validation of the numerical studies and for pre-intervention testing of endovascular grafts. We have applied multi-material 3D printing technology to manufacture idealized AAA phantoms with anisotropic mechanical behavior. Different composites were fabricated and the phantom specimens were characterized by biaxial tensile tests while using a constitutive model to fit the experimental data. One composite was chosen to manufacture the phantom based on having the same mechanical properties as those reported in the literature for human AAA tissue; the strain energy and anisotropic index were compared to make this choice. The materials for the matrix and fibers of the selected composite are, respectively, the digital materials FLX9940 and FLX9960 developed by Stratasys. The fiber proportion for the composite is equal to 0.15. The differences between the composite behavior and the AAA tissue are small, with a small difference in the strain energy (0.4%) and a maximum difference of 12.4% in the peak Green strain ratio. This work represents a step forward in the application of 3D printing technology for the manufacturing of AAA phantoms with anisotropic mechanical behavior. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Analysis of a Typical Chinese High School Biology Textbook Using the AAAS Textbook Standards

    ERIC Educational Resources Information Center

    Liang, Ye; Cobern, William W.

    2013-01-01

    The purpose of this study was to evaluate a typical Chinese high school biology textbook using the textbook standards of the American Association for the Advancement of Science (AAAS). The data were composed of three chapters selected from the textbook. Each chapter was analyzed and rated using the AAAS textbook standards. Pearson correlations…

  6. USP7 small-molecule inhibitors interfere with ubiquitin binding.

    PubMed

    Kategaya, Lorna; Di Lello, Paola; Rougé, Lionel; Pastor, Richard; Clark, Kevin R; Drummond, Jason; Kleinheinz, Tracy; Lin, Eva; Upton, John-Paul; Prakash, Sumit; Heideker, Johanna; McCleland, Mark; Ritorto, Maria Stella; Alessi, Dario R; Trost, Matthias; Bainbridge, Travis W; Kwok, Michael C M; Ma, Taylur P; Stiffler, Zachary; Brasher, Bradley; Tang, Yinyan; Jaishankar, Priyadarshini; Hearn, Brian R; Renslo, Adam R; Arkin, Michelle R; Cohen, Frederick; Yu, Kebing; Peale, Frank; Gnad, Florian; Chang, Matthew T; Klijn, Christiaan; Blackwood, Elizabeth; Martin, Scott E; Forrest, William F; Ernst, James A; Ndubaku, Chudi; Wang, Xiaojing; Beresini, Maureen H; Tsui, Vickie; Schwerdtfeger, Carsten; Blake, Robert A; Murray, Jeremy; Maurer, Till; Wertz, Ingrid E

    2017-10-26

    The ubiquitin system regulates essential cellular processes in eukaryotes. Ubiquitin is ligated to substrate proteins as monomers or chains and the topology of ubiquitin modifications regulates substrate interactions with specific proteins. Thus ubiquitination directs a variety of substrate fates including proteasomal degradation. Deubiquitinase enzymes cleave ubiquitin from substrates and are implicated in disease; for example, ubiquitin-specific protease-7 (USP7) regulates stability of the p53 tumour suppressor and other proteins critical for tumour cell survival. However, developing selective deubiquitinase inhibitors has been challenging and no co-crystal structures have been solved with small-molecule inhibitors. Here, using nuclear magnetic resonance-based screening and structure-based design, we describe the development of selective USP7 inhibitors GNE-6640 and GNE-6776. These compounds induce tumour cell death and enhance cytotoxicity with chemotherapeutic agents and targeted compounds, including PIM kinase inhibitors. Structural studies reveal that GNE-6640 and GNE-6776 non-covalently target USP7 12 Å distant from the catalytic cysteine. The compounds attenuate ubiquitin binding and thus inhibit USP7 deubiquitinase activity. GNE-6640 and GNE-6776 interact with acidic residues that mediate hydrogen-bond interactions with the ubiquitin Lys48 side chain, suggesting that USP7 preferentially interacts with and cleaves ubiquitin moieties that have free Lys48 side chains. We investigated this idea by engineering di-ubiquitin chains containing differential proximal and distal isotopic labels and measuring USP7 binding by nuclear magnetic resonance. This preferential binding protracted the depolymerization kinetics of Lys48-linked ubiquitin chains relative to Lys63-linked chains. In summary, engineering compounds that inhibit USP7 activity by attenuating ubiquitin binding suggests opportunities for developing other deubiquitinase inhibitors and may be a strategy

  7. Noncovalent Ubiquitin Interactions Regulate the Catalytic Activity of Ubiquitin Writers.

    PubMed

    Wright, Joshua D; Mace, Peter D; Day, Catherine L

    2016-11-01

    Covalent modification of substrate proteins with ubiquitin is the end result of an intricate network of protein-protein interactions. The inherent ability of the E1, E2, and E3 proteins of the ubiquitylation cascade (the ubiquitin writers) to interact with ubiquitin facilitates this process. Importantly, contact between ubiquitin and the E2/E3 writers is required for catalysis and the assembly of chains of a given linkage. However, ubiquitin is also an activator of ubiquitin-writing enzymes, with many recent studies highlighting the ability of ubiquitin to regulate activity and substrate modification. Here, we review the interactions between ubiquitin-writing enzymes and regulatory ubiquitin molecules that promote activity, and highlight the potential of these interactions to promote processive ubiquitin transfer. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Ubiquitin conjugating enzyme E2-N and sequestosome-1 (p62) are components of the ubiquitination process mediated by the malin-laforin E3-ubiquitin ligase complex.

    PubMed

    Sánchez-Martín, Pablo; Romá-Mateo, Carlos; Viana, Rosa; Sanz, Pascual

    2015-12-01

    Lafora disease (LD, OMIM254780, ORPHA501) is a rare neurodegenerative form of epilepsy related to mutations in two proteins: laforin, a dual specificity phosphatase, and malin, an E3-ubiquitin ligase. Both proteins form a functional complex, where laforin recruits specific substrates to be ubiquitinated by malin. However, little is known about the mechanism driving malin-laforin mediated ubiquitination of its substrates. In this work we present evidence indicating that the malin-laforin complex interacts physically and functionally with the ubiquitin conjugating enzyme E2-N (UBE2N). This binding determines the topology of the chains that the complex is able to promote in the corresponding substrates (mainly K63-linked polyubiquitin chains). In addition, we demonstrate that the malin-laforin complex interacts with the selective autophagy adaptor sequestosome-1 (p62). Binding of p62 to the malin-laforin complex allows its recognition by LC3, a component of the autophagosomal membrane. In addition, p62 enhances the ubiquitinating activity of the malin-laforin E3-ubiquitin ligase complex. These data enrich our knowledge on the mechanism of action of the malin-laforin complex as an E3-ubiquitin ligase and reinforces the role of this complex in targeting substrates toward the autophagy pathway. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Structure of the active form of human origin recognition complex and its ATPase motor module

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tocilj, Ante; On, Kin Fan; Yuan, Zuanning

    Binding of the Origin Recognition Complex (ORC) to origins of replication marks the first step in the initiation of replication of the genome in all eukaryotic cells. Here, we report the structure of the active form of human ORC determined by X-ray crystallography and cryo-electron microscopy. The complex is composed of an ORC1/4/5 motor module lobe in an organization reminiscent of the DNA polymerase clamp loader complexes. A second lobe contains the ORC2/3 subunits. The complex is organized as a double-layered shallow corkscrew, with the AAA+ and AAA+-like domains forming one layer, and the winged-helix domains (WHDs) forming a topmore » layer. CDC6 fits easily between ORC1 and ORC2, completing the ring and the DNA-binding channel, forming an additional ATP hydrolysis site. Analysis of the ATPase activity of the complex provides a basis for understanding ORC activity as well as molecular defects observed in Meier-Gorlin Syndrome mutations.« less

  10. Proteasome subunit Rpn13 is a novel ubiquitin receptor

    PubMed Central

    Husnjak, Koraljka; Elsasser, Suzanne; Zhang, Naixia; Chen, Xiang; Randles, Leah; Shi, Yuan; Hofmann, Kay; Walters, Kylie; Finley, Daniel; Dikic, Ivan

    2010-01-01

    Proteasomal receptors that recognize ubiquitin chains attached to substrates are key mediators of selective protein degradation in eukaryotes. Here we report the identification of a new ubiquitin receptor, Rpn13/ARM1, a known component of the proteasome. Rpn13 binds ubiquitin via a conserved N-terminal region termed the Pru domain (Pleckstrin-like receptor for ubiquitin), which binds K48-linked diubiquitin with an affinity of ∼90 nM. Like proteasomal ubiquitin receptor Rpn10/S5a, Rpn13 also binds ubiquitin-like domains of the UBL/UBA family of ubiquitin receptors. A synthetic phenotype results in yeast when specific mutations of the ubiquitin binding sites of Rpn10 and Rpn13 are combined, indicating functional linkage between these ubiquitin receptors. Since Rpn13 is also the proteasomal receptor for Uch37, a deubiquitinating enzyme, our findings suggest a coupling of chain recognition and disassembly at the proteasome. PMID:18497817

  11. The AAA-ATPase NVL2 is a component of pre-ribosomal particles that interacts with the DExD/H-box RNA helicase DOB1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nagahama, Masami; Yamazoe, Takeshi; Hara, Yoshimitsu

    2006-08-04

    Nuclear VCP/p97-like protein 2 (NVL2) is a member of the chaperone-like AAA-ATPase family with two conserved ATP-binding modules. Our previous studies have shown that NVL2 is localized to the nucleolus by interacting with ribosomal protein L5 and may participate in ribosome synthesis, a process involving various non-ribosomal factors including chaperones and RNA helicases. Here, we show that NVL2 is associated with pre-ribosomal particles in the nucleus. Moreover, we used yeast two-hybrid and co-immunoprecipitation assays to identify an NVL2-interacting protein that could yield insights into NVL2 function in ribosome biogenesis. We found that NVL2 interacts with DOB1, a DExD/H-box RNA helicase,more » whose yeast homologue functions in a late stage of the 60S subunit synthesis. DOB1 can interact with a second ATP-binding module mutant of NVL2, which shows a dominant negative effect on ribosome synthesis. In contrast, it cannot interact with a first ATP-binding module mutant, which does not show the dominant negative effect. When the dominant negative mutant of NVL2 was overexpressed in cells, DOB1 appeared to remain associated with nuclear pre-ribosomal particles. Such accumulation was not observed upon overexpression of wild-type NVL2 or a nondominant-negative mutant. Taken together, our results suggest that NVL2 might regulate the association/dissociation reaction of DOB1 with pre-ribosomal particles by acting as a molecular chaperone.« less

  12. Pathophysiology of AAA: heredity vs environment.

    PubMed

    Björck, Martin; Wanhainen, Anders

    2013-01-01

    Abdominal aortic aneurysm (AAA) has a complex pathophysiology, in which both environmental and genetic factors play important roles, the most important being smoking. The recently reported falling prevalence rates of AAA in northern Europe and Australia/New Zeeland are largely explained by healthier smoking habits. Dietary factors and obesity, in particular abdominal obesity, are also of importance. A family history of AAA among first-degree relatives is present in approximately 13% of incident cases. The probability that a monozygotic twin of a person with an AAA has the disease is 24%, 71 times higher than that for a monozygotic twin of a person without AAA. Approximately 1000 SNPs in 100 candidate genes have been studied, and three genome-wide association studies were published, identifying different diverse weak associations. An example of interaction between environmental and genetic factors is the effect of cholesterol, where genetic and dietary factors affect levels of both HDL and LDL. True epigenetic studies have not yet been published. Copyright © 2013 Elsevier Inc. All rights reserved.

  13. The Ubiquitin Code in the Ubiquitin-Proteasome System and Autophagy.

    PubMed

    Kwon, Yong Tae; Ciechanover, Aaron

    2017-11-01

    The conjugation of the 76 amino acid protein ubiquitin to other proteins can alter the metabolic stability or non-proteolytic functions of the substrate. Once attached to a substrate (monoubiquitination), ubiquitin can itself be ubiquitinated on any of its seven lysine (Lys) residues or its N-terminal methionine (Met1). A single ubiquitin polymer may contain mixed linkages and/or two or more branches. In addition, ubiquitin can be conjugated with ubiquitin-like modifiers such as SUMO or small molecules such as phosphate. The diverse ways to assemble ubiquitin chains provide countless means to modulate biological processes. We overview here the complexity of the ubiquitin code, with an emphasis on the emerging role of linkage-specific degradation signals (degrons) in the ubiquitin-proteasome system (UPS) and the autophagy-lysosome system (hereafter autophagy). Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Sperm Na+, K+-ATPase and Ca2+-ATPase activity: A preliminary study of comparison of swim up and density gradient centrifugation methods for sperm preparation

    NASA Astrophysics Data System (ADS)

    Lestari, Silvia W.; Larasati, Manggiasih D.; Asmarinah, Mansur, Indra G.

    2018-02-01

    As one of the treatment for infertility, the success rate of Intrauterine Insemination (IUI) is still relatively low. Several sperm preparation methods, swim-up (SU) and the density-gradient centrifugation (DGC) are frequently used to select for better sperm quality which also contribute to IUI failure. Sperm selection methods mainly separate the motile from the immotile sperm, eliminating the seminal plasma. The sperm motility involves the structure and function of sperm membrane in maintaining the balance of ion transport system which is regulated by the Na+, K+-ATPase, and Ca2+-ATPase enzymes. This study aims to re-evaluate the efficiency of these methods in selecting for sperm before being used for IUI and based the evaluation on sperm Na+,K+-ATPase and Ca2+-ATPase activities. Fourteen infertile men from couples who underwent IUI were involved in this study. The SU and DGC methods were used for the sperm preparation. Semen analysis was performed based on the reference value of World Health Organization (WHO) 2010. After isolating the membrane fraction of sperms, the Na+, K+-ATPase activity was defined as the difference in the released inorganic phosphate (Pi) with and without the existence of 10 mM ouabain in the reaction, while the Ca2+-ATPase was determined as the difference in Pi contents with and without the existence of 55 µm CaCl2. The prepared sperm demonstrated a higher percentage of motile sperm compared to sperm from the whole semen. Additionally, the percentage of motile sperm of post-DGC showed higher result than the sperm from post-SU. The velocity of sperm showed similar pattern with the percentage of motile sperm, in which the velocity of prepared sperm was higher than the sperm from whole semen. Furthermore, the sperm velocity of post-DGC was higher compared to the sperm from post-SU. The Na+, K+-ATPase activity of prepared sperm was higher compared to whole semen, whereas Na+, K+-ATPase activity in the post DGC was higher than post SU. The Ca2

  15. Synthetic and semi-synthetic strategies to study ubiquitin signaling.

    PubMed

    van Tilburg, Gabriëlle Ba; Elhebieshy, Angela F; Ovaa, Huib

    2016-06-01

    The post-translational modification ubiquitin can be attached to the ɛ-amino group of lysine residues or to a protein's N-terminus as a mono ubiquitin moiety. Via its seven intrinsic lysine residues and its N-terminus, it can also form ubiquitin chains on substrates in many possible ways. To study ubiquitin signals, many synthetic and semi-synthetic routes have been developed for generation of ubiquitin-derived tools and conjugates. The strength of these methods lies in their ability to introduce chemo-selective ligation handles at sites that currently cannot be enzymatically modified. Here, we review the different synthetic and semi-synthetic methods available for ubiquitin conjugate synthesis and their contribution to how they have helped investigating conformational diversity of diubiquitin signals. Next, we discuss how these methods help understanding the ubiquitin conjugation-deconjugation system by recent advances in ubiquitin ligase probes and diubiquitin-based DUB probes. Lastly, we discuss how these methods help studying post-translational modification of ubiquitin itself. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Genetic analysis of abdominal aortic aneurysms (AAA)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    St. Jean, P.L.; Hart, B.K.; Zhang, X.C.

    1994-09-01

    The association between AAA and gender, smoking (SM), hypertension (HTN) and inguinal herniation (IH) was examined in 141 AAA probands and 139 of their 1st degree relatives with aortic exam (36 affected, 103 unaffected). There was no significant difference between age at diagnosis of affecteds and age at exam of unaffecteds. Of 181 males, 142 had AAA; of 99 females, 35 had AAA. Using log-linear modeling AAA was significantly associated at the 5% level with gender, SM and HTN but not IH. The association of AAA with SM and HTN held when males and females were analyzed separately. HTN wasmore » -1.5 times more common in both affected males and females, while SM was 1.5 and 2 times more common in affected males and females, respectively. Tests of association and linkage analyses were performed with relevant candidate genes: 3 COL3A1 polymorphisms (C/T, ALA/THR, AvaII), 2 ELN polymorphisms (SER/GLY, (CA)n), FBN1(TAAA)n, 2 APOB polymorphisms (Xbal,Ins/Del), CLB4B (CA)n, PI and markers D1S243 (CA)n, HPR (CA)n and MFD23(CA)n. The loci were genotyped in > 100 AAA probands and > 95 normal controls. No statistically significant evidence of association at the 5% level was obtained for any of the loci using chi-square test of association. 28 families with 2 or more affecteds were analyzed using the affected pedigree member method (APM) and lod-score analyses. There was no evidence for linkage with any loci using APM. Lod-score analysis under an autosomal recessive model resulted in excluding linkage (lod score < -2) of all loci to AAA at {theta}=0.0. Under an autosomal dominant model, linkage was excluded at {theta}=0.0 to ELN, APOB, CLG4B, D1S243, HPR and MFD23. The various genes previously proposed in AAA pathogenesis are neither associated nor casually related in our study population.« less

  17. Genome-wide analysis of wheat calcium ATPases and potential role of selected ACAs and ECAs in calcium stress.

    PubMed

    Aslam, Roohi; Williams, Lorraine E; Bhatti, Muhammad Faraz; Virk, Nasar

    2017-10-27

    P 2 - type calcium ATPases (ACAs-auto inhibited calcium ATPases and ECAs-endoplasmic reticulum calcium ATPases) belong to the P- type ATPase family of active membrane transporters and are significantly involved in maintaining accurate levels of Ca 2+ , Mn 2+ and Zn 2+ in the cytosol as well as playing a very important role in stress signaling, stomatal opening and closing and pollen tube growth. Here we report the identification and possible role of some of these ATPases from wheat. In this study, ACA and ECA sequences of six species (belonging to Poaceae) were retrieved from different databases and a phylogenetic tree was constructed. A high degree of evolutionary relatedness was observed among P 2 sequences characterized in this study. Members of the respective groups from different plant species were observed to fall under the same clade. This pattern highlights the common ancestry of P 2- type calcium ATPases. Furthermore, qRT-PCR was used to analyse the expression of selected ACAs and ECAs from Triticum aestivum (wheat) under calcium toxicity and calcium deficiency. The data indicated that expression of ECAs is enhanced under calcium stress, suggesting possible roles of these ATPases in calcium homeostasis in wheat. Similarly, the expression of ACAs was significantly different in plants grown under calcium stress as compared to plants grown under control conditions. This gives clues to the role of ACAs in signal transduction during calcium stress in wheat. Here we concluded that wheat genome consists of nine P 2B and three P 2A -type calcium ATPases. Moreover, gene loss events in wheat ancestors lead to the loss of a particular homoeolog of a gene in wheat. To elaborate the role of these wheat ATPases, qRT-PCR was performed. The results indicated that when plants are exposed to calcium stress, both P 2A and P 2B gene expression get enhanced. This further gives clues about the possible role of these ATPases in wheat in calcium management. These findings can be

  18. Structural Basis for Disassembly of Katanin Heterododecamers.

    PubMed

    Nithianantham, Stanley; McNally, Francis J; Al-Bassam, Jawdat

    2018-05-11

    The reorganization of microtubules in mitosis, meiosis and development requires the microtubule-severing activity of katanin.  Katanin is a heterodimer composed of an ATPase Associated with diverse cellular Activities (AAA) subunit and a regulatory subunit. Microtubule severing requires ATP hydrolysis by katanin's conserved AAA ATPase domains. Whereas other AAA ATPases form stable hexamers, we show that katanin only forms monomer or dimers of heterodimers in solution.  Katanin oligomers consistent with hexamers of heterodimers or heterododecamers were only observed for an ATP hydrolysis deficient mutant in the presence of ATP.  X-ray structures of katanin's AAA ATPase in monomeric nucleotide-free and pseudo-oligomeric ADP-bound states reveal conformational changes in AAA subdomains that explained the structural basis for instability of katanin heterododecamer.  We propose that the rapid dissociation of katanin AAA oligomers may lead to an auto-inhibited state that prevents inappropriate microtubule severing, or that cyclical disassembly into heterodimers may critically contribute to the microtubule-severing mechanism. Published under license by The American Society for Biochemistry and Molecular Biology, Inc.

  19. Auto-ubiquitination of Mdm2 Enhances Its Substrate Ubiquitin Ligase Activity*

    PubMed Central

    Ranaweera, Ruchira S.; Yang, Xiaolu

    2013-01-01

    The RING domain E3 ubiquitin ligase Mdm2 is the master regulator of the tumor suppressor p53. It targets p53 for proteasomal degradation, restraining the potent activity of p53 and enabling cell survival and proliferation. Like most E3 ligases, Mdm2 can also ubiquitinate itself. How Mdm2 auto-ubiquitination may influence its substrate ubiquitin ligase activity is undefined. Here we show that auto-ubiquitination of Mdm2 is an activating event. Mdm2 that has been conjugated to polyubiquitin chains, but not to single ubiquitins, exhibits substantially enhanced activity to polyubiquitinate p53. Mechanistically, auto-ubiquitination of Mdm2 facilitates the recruitment of the E2 ubiquitin-conjugating enzyme. This occurs through noncovalent interactions between the ubiquitin chains on Mdm2 and the ubiquitin binding domain on E2s. Mutations that diminish the noncovalent interactions render auto-ubiquitination unable to stimulate Mdm2 substrate E3 activity. These results suggest a model in which polyubiquitin chains on an E3 increase the local concentration of E2 enzymes and permit the processivity of substrate ubiquitination. They also support the notion that autocatalysis may be a prevalent mode for turning on the activity of latent enzymes. PMID:23671280

  20. Selective Transgenic Expression of Mutant Ubiquitin in Purkinje Cell Stripes in the Cerebellum.

    PubMed

    Verheijen, Bert M; Gentier, Romina J G; Hermes, Denise J H P; van Leeuwen, Fred W; Hopkins, David A

    2017-06-01

    The ubiquitin-proteasome system (UPS) is one of the major mechanisms for protein breakdown in cells, targeting proteins for degradation by enzymatically conjugating them to ubiquitin molecules. Intracellular accumulation of ubiquitin-B +1 (UBB +1 ), a frameshift mutant of ubiquitin-B, is indicative of a dysfunctional UPS and has been implicated in several disorders, including neurodegenerative disease. UBB +1 -expressing transgenic mice display widespread labeling for UBB +1 in brain and exhibit behavioral deficits. Here, we show that UBB +1 is specifically expressed in a subset of parasagittal stripes of Purkinje cells in the cerebellar cortex of a UBB +1 -expressing mouse model. This expression pattern is reminiscent of that of the constitutively expressed Purkinje cell antigen HSP25, a small heat shock protein with neuroprotective properties.

  1. Structural and functional characterization of a ubiquitin variant engineered for tight and specific binding to an alpha-helical ubiquitin interacting motif.

    PubMed

    Manczyk, Noah; Yates, Bradley P; Veggiani, Gianluca; Ernst, Andreas; Sicheri, Frank; Sidhu, Sachdev S

    2017-05-01

    Ubiquitin interacting motifs (UIMs) are short α-helices found in a number of eukaryotic proteins. UIMs interact weakly but specifically with ubiquitin conjugated to other proteins, and in so doing, mediate specific cellular signals. Here we used phage display to generate ubiquitin variants (UbVs) targeting the N-terminal UIM of the yeast Vps27 protein. Selections yielded UbV.v27.1, which recognized the cognate UIM with high specificity relative to other yeast UIMs and bound with an affinity more than two orders of magnitude higher than that of ubiquitin. Structural and mutational studies of the UbV.v27.1-UIM complex revealed the molecular details for the enhanced affinity and specificity of UbV.v27.1, and underscored the importance of changes at the binding interface as well as at positions that do not contact the UIM. Our study highlights the power of the phage display approach for selecting UbVs with unprecedented affinity and high selectivity for particular α-helical UIM domains within proteomes, and it establishes a general approach for the development of inhibitors targeting interactions of this type. © 2017 The Protein Society.

  2. A pivotal role of vacuolar H(+)-ATPase in regulation of lipid production in Phaeodactylum tricornutum.

    PubMed

    Zhang, Huiying; Zeng, Rensen; Chen, Daoyi; Liu, Jian

    2016-08-08

    Microalgal lipids have been considered as a promising source for biodiesel production. Alkaline pH can induce neutral lipid accumulation in microalgae cells. However, whether and how proton pumps, especially vacuolar H(+)-ATPase (V-ATPase), function in these processes is not well known. In this study, we treated Phaeodactylum tricornutum with V-ATPase specific inhibitor bafilomycin A1 (BFA1) to determine its role in lipid production. Firstly, V-ATPase activity was increased in the latter phase of microalgae growth. BFA1 treatment decreased the cell density and lipid contents. Further analysis showed that BFA1 treatment reduced the number and size of oil bodies. GC-MS analysis showed that lipid components were not affected by BFA1 treatment. Intracellular pH was decreased and nitrogen depletion was delayed after BFA1 treatment. RNA-Seq analysis showed that expression of genes involved in calcium signaling, sulfur metabolism, cell cycle, glycolysis, pentose phosphate pathway, porphyrin, chlorophyll metabolism and lipid catabolic metabolism were upregulated, while expression of genes involved in ion transmembrane transport, ubiquitin mediated proteolysis, SNARE interactions in vesicular transport, fatty acid biosynthesis were downregulated under BFA1 treatment. Our findings provided insights into the molecular mechanisms underlying lipid accumulation and the key genes involved in lipid metabolism in Phaeodactylum tricornutum in response to BFA1.

  3. Structure of Lmaj006129AAA, a hypothetical protein from Leishmania major

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arakaki, Tracy; Le Trong, Isolde; Structural Genomics of Pathogenic Protozoa

    2006-03-01

    The crystal structure of a conserved hypothetical protein from L. major, Pfam sequence family PF04543, structural genomics target ID Lmaj006129AAA, has been determined at a resolution of 1.6 Å. The gene product of structural genomics target Lmaj006129 from Leishmania major codes for a 164-residue protein of unknown function. When SeMet expression of the full-length gene product failed, several truncation variants were created with the aid of Ginzu, a domain-prediction method. 11 truncations were selected for expression, purification and crystallization based upon secondary-structure elements and disorder. The structure of one of these variants, Lmaj006129AAH, was solved by multiple-wavelength anomalous diffraction (MAD)more » using ELVES, an automatic protein crystal structure-determination system. This model was then successfully used as a molecular-replacement probe for the parent full-length target, Lmaj006129AAA. The final structure of Lmaj006129AAA was refined to an R value of 0.185 (R{sub free} = 0.229) at 1.60 Å resolution. Structure and sequence comparisons based on Lmaj006129AAA suggest that proteins belonging to Pfam sequence families PF04543 and PF01878 may share a common ligand-binding motif.« less

  4. The Crystal Structure of the Ubiquitin-like Domain of Ribosome Assembly Factor Ytm1 and Characterization of Its Interaction with the AAA-ATPase Midasin*

    PubMed Central

    Romes, Erin M.; Sobhany, Mack; Stanley, Robin E.

    2016-01-01

    The synthesis of eukaryotic ribosomes is a complex, energetically demanding process requiring the aid of numerous non-ribosomal factors, such as the PeBoW complex. The mammalian PeBoW complex, composed of Pes1, Bop1, and WDR12, is essential for the processing of the 32S preribosomal RNA. Previous work in Saccharomyces cerevisiae has shown that release of the homologous proteins in this complex (Nop7, Erb1, and Ytm1, respectively) from preribosomal particles requires Rea1 (midasin or MDN1 in humans), a large dynein-like protein. Midasin contains a C-terminal metal ion-dependent adhesion site (MIDAS) domain that interacts with the N-terminal ubiquitin-like (UBL) domain of Ytm1/WDR12 as well as the UBL domain of Rsa4/Nle1 in a later step in the ribosome maturation pathway. Here we present the crystal structure of the UBL domain of the WDR12 homologue from S. cerevisiae at 1.7 Å resolution and demonstrate that human midasin binds to WDR12 as well as Nle1 through their respective UBL domains. Midasin contains a well conserved extension region upstream of the MIDAS domain required for binding WDR12 and Nle1, and the interaction is dependent upon metal ion coordination because removal of the metal or mutation of residues that coordinate the metal ion diminishes the interaction. Mammalian WDR12 displays prominent nucleolar localization that is dependent upon active ribosomal RNA transcription. Based upon these results, we propose that release of the PeBoW complex and subsequent release of Nle1 by midasin is a well conserved step in the ribosome maturation pathway in both yeast and mammalian cells. PMID:26601951

  5. A Perturbed Ubiquitin Landscape Distinguishes Between Ubiquitin in Trafficking and in Proteolysis*

    PubMed Central

    Ziv, Inbal; Matiuhin, Yulia; Kirkpatrick, Donald S.; Erpapazoglou, Zoi; Leon, Sebastien; Pantazopoulou, Marina; Kim, Woong; Gygi, Steven P.; Haguenauer-Tsapis, Rosine; Reis, Noa; Glickman, Michael H.; Kleifeld, Oded

    2011-01-01

    Any of seven lysine residues on ubiquitin can serve as the base for chain-extension, resulting in a sizeable spectrum of ubiquitin modifications differing in chain length or linkage type. By optimizing a procedure for rapid lysis, we charted the profile of conjugated cellular ubiquitin directly from whole cell extract. Roughly half of conjugated ubiquitin (even at high molecular weights) was nonextended, consisting of monoubiquitin modifications and chain terminators (endcaps). Of extended ubiquitin, the primary linkages were via Lys48 and Lys63. All other linkages were detected, contributing a relatively small portion that increased at lower molecular weights. In vivo expression of lysineless ubiquitin (K0 Ub) perturbed the ubiquitin landscape leading to elevated levels of conjugated ubiquitin, with a higher mono-to-poly ratio. Affinity purification of these trapped conjugates identified a comprehensive list of close to 900 proteins including novel targets. Many of the proteins enriched by K0 ubiquitination were membrane-associated, or involved in cellular trafficking. Prime among them are components of the ESCRT machinery and adaptors of the Rsp5 E3 ubiquitin ligase. Ubiquitin chains associated with these substrates were enriched for Lys63 linkages over Lys48, indicating that K0 Ub is unevenly distributed throughout the ubiquitinome. Biological assays validated the interference of K0 Ub with protein trafficking and MVB sorting, minimally affecting Lys48-dependent turnover of proteasome substrates. We conclude that despite the shared use of the ubiquitin molecule, the two branches of the ubiquitin machinery—the ubiquitin-proteasome system and the ubiquitin trafficking system—were unevenly perturbed by expression of K0 ubiquitin. PMID:21427232

  6. Ubiquitin-proteasome pathway and cellular responses to oxidative stress

    USDA-ARS?s Scientific Manuscript database

    The ubiquitin-proteasome pathway (UPP) is the primary cytosolic proteolytic machinery for the selective degradation of various forms of damaged proteins. Thus, the UPP is an important protein quality control mechanism. In the canonical UPP, both ubiquitin and the 26S proteasome are involved. Subs...

  7. Structure of the active form of human origin recognition complex and its ATPase motor module

    PubMed Central

    Tocilj, Ante; On, Kin Fan; Yuan, Zuanning; Sun, Jingchuan; Elkayam, Elad; Li, Huilin; Stillman, Bruce; Joshua-Tor, Leemor

    2017-01-01

    Binding of the Origin Recognition Complex (ORC) to origins of replication marks the first step in the initiation of replication of the genome in all eukaryotic cells. Here, we report the structure of the active form of human ORC determined by X-ray crystallography and cryo-electron microscopy. The complex is composed of an ORC1/4/5 motor module lobe in an organization reminiscent of the DNA polymerase clamp loader complexes. A second lobe contains the ORC2/3 subunits. The complex is organized as a double-layered shallow corkscrew, with the AAA+ and AAA+-like domains forming one layer, and the winged-helix domains (WHDs) forming a top layer. CDC6 fits easily between ORC1 and ORC2, completing the ring and the DNA-binding channel, forming an additional ATP hydrolysis site. Analysis of the ATPase activity of the complex provides a basis for understanding ORC activity as well as molecular defects observed in Meier-Gorlin Syndrome mutations. DOI: http://dx.doi.org/10.7554/eLife.20818.001 PMID:28112645

  8. Phosphorylated ubiquitin chain is the genuine Parkin receptor

    PubMed Central

    Okatsu, Kei; Koyano, Fumika; Kimura, Mayumi; Kosako, Hidetaka; Saeki, Yasushi

    2015-01-01

    PINK1 selectively recruits Parkin to depolarized mitochondria for quarantine and removal of damaged mitochondria via ubiquitylation. Dysfunction of this process predisposes development of familial recessive Parkinson’s disease. Although various models for the recruitment process have been proposed, none of them adequately explain the accumulated data, and thus the molecular basis for PINK1 recruitment of Parkin remains to be fully elucidated. In this study, we show that a linear ubiquitin chain of phosphomimetic tetra-ubiquitin(S65D) recruits Parkin to energized mitochondria in the absence of PINK1, whereas a wild-type tetra-ubiquitin chain does not. Under more physiologically relevant conditions, a lysosomal phosphorylated polyubiquitin chain recruited phosphomimetic Parkin to the lysosome. A cellular ubiquitin replacement system confirmed that ubiquitin phosphorylation is indeed essential for Parkin translocation. Furthermore, physical interactions between phosphomimetic Parkin and phosphorylated polyubiquitin chain were detected by immunoprecipitation from cells and in vitro reconstitution using recombinant proteins. We thus propose that the phosphorylated ubiquitin chain functions as the genuine Parkin receptor for recruitment to depolarized mitochondria. PMID:25847540

  9. The General Definition of the p97/Valosin-containing Protein (VCP)-interacting Motif (VIM) Delineates a New Family of p97 Cofactors*

    PubMed Central

    Stapf, Christopher; Cartwright, Edward; Bycroft, Mark; Hofmann, Kay; Buchberger, Alexander

    2011-01-01

    Cellular functions of the essential, ubiquitin-selective AAA ATPase p97/valosin-containing protein (VCP) are controlled by regulatory cofactors determining substrate specificity and fate. Most cofactors bind p97 through a ubiquitin regulatory X (UBX) or UBX-like domain or linear sequence motifs, including the hitherto ill defined p97/VCP-interacting motif (VIM). Here, we present the new, minimal consensus sequence RX5AAX2R as a general definition of the VIM that unites a novel family of known and putative p97 cofactors, among them UBXD1 and ZNF744/ANKZF1. We demonstrate that this minimal VIM consensus sequence is necessary and sufficient for p97 binding. Using NMR chemical shift mapping, we identified several residues of the p97 N-terminal domain (N domain) that are critical for VIM binding. Importantly, we show that cellular stress resistance conferred by the yeast VIM-containing cofactor Vms1 depends on the physical interaction between its VIM and the critical N domain residues of the yeast p97 homolog, Cdc48. Thus, the VIM-N domain interaction characterized in this study is required for the physiological function of Vms1 and most likely other members of the newly defined VIM family of cofactors. PMID:21896481

  10. Recognition and Cleavage of Related to Ubiquitin 1 (Rub1) and Rub1-Ubiquitin Chains by Components of the Ubiquitin-Proteasome System*

    PubMed Central

    Singh, Rajesh K.; Zerath, Sylvia; Kleifeld, Oded; Scheffner, Martin; Glickman, Michael H.; Fushman, David

    2012-01-01

    Of all ubiquitin-like proteins, Rub1 (Nedd8 in mammals) is the closest kin of ubiquitin. We show via NMR that structurally, Rub1 and ubiquitin are fundamentally similar as well. Despite these profound similarities, the prevalence of Rub1/Nedd8 and of ubiquitin as modifiers of the proteome is starkly different, and their attachments to specific substrates perform different functions. Recently, some proteins, including p53, p73, EGFR, caspase-7, and Parkin, have been shown to be modified by both Rub1/Nedd8 and ubiquitin within cells. To understand whether and how it might be possible to distinguish among the same target protein modified by Rub1 or ubiquitin or both, we examined whether ubiquitin receptors can differentiate between Rub1 and ubiquitin. Surprisingly, Rub1 interacts with proteasome ubiquitin-shuttle proteins comparably to ubiquitin but binds more weakly to a proteasomal ubiquitin receptor Rpn10. We identified Rub1-ubiquitin heteromers in yeast and Nedd8-Ub heteromers in human cells. We validate that in human cells and in vitro, human Rub1 (Nedd8) forms chains with ubiquitin where it acts as a chain terminator. Interestingly, enzymatically assembled K48-linked Rub1-ubiquitin heterodimers are recognized by various proteasomal ubiquitin shuttles and receptors comparably to K48-linked ubiquitin homodimers. Furthermore, these heterologous chains are cleaved by COP9 signalosome or 26S proteasome. A derubylation function of the proteasome expands the repertoire of its enzymatic activities. In contrast, Rub1 conjugates may be somewhat resilient to the actions of other canonical deubiquitinating enzymes. Taken together, these findings suggest that once Rub1/Nedd8 is channeled into ubiquitin pathways, it is recognized essentially like ubiquitin. PMID:23105008

  11. Identification of a Degradation Signal Sequence within Substrates of the Mitochondrial i-AAA Protease.

    PubMed

    Rampello, Anthony J; Glynn, Steven E

    2017-03-24

    The i-AAA protease is a component of the mitochondrial quality control machinery that regulates respiration, mitochondrial dynamics, and protein import. The protease is required to select specific substrates for degradation from among the diverse complement of proteins present in mitochondria, yet the rules that govern this selection are unclear. Here, we reconstruct the yeast i-AAA protease, Yme1p, to examine the in vitro degradation of two intermembrane space chaperone subunits, Tim9 and Tim10. Yme1p degrades Tim10 more rapidly than Tim9 despite high sequence and structural similarity, and loss of Tim10 is accelerated by the disruption of conserved disulfide bonds within the substrate. An unstructured N-terminal region of Tim10 is necessary and sufficient to target the substrate to the protease through recognition of a short phenylalanine-rich motif, and the presence of similar motifs in other small Tim proteins predicts robust degradation by the protease. Together, these results identify the first specific degron sequence within a native i-AAA protease substrate. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. P-type ATPases as drug targets: tools for medicine and science.

    PubMed

    Yatime, Laure; Buch-Pedersen, Morten J; Musgaard, Maria; Morth, J Preben; Lund Winther, Anne-Marie; Pedersen, Bjørn P; Olesen, Claus; Andersen, Jens Peter; Vilsen, Bente; Schiøtt, Birgit; Palmgren, Michael G; Møller, Jesper V; Nissen, Poul; Fedosova, Natalya

    2009-04-01

    P-type ATPases catalyze the selective active transport of ions like H+, Na+, K+, Ca2+, Zn2+, and Cu2+ across diverse biological membrane systems. Many members of the P-type ATPase protein family, such as the Na+,K+-, H+,K+-, Ca2+-, and H+-ATPases, are involved in the development of pathophysiological conditions or provide critical function to pathogens. Therefore, they seem to be promising targets for future drugs and novel antifungal agents and herbicides. Here, we review the current knowledge about P-type ATPase inhibitors and their present use as tools in science, medicine, and biotechnology. Recent structural information on a variety of P-type ATPase family members signifies that all P-type ATPases can be expected to share a similar basic structure and a similar basic machinery of ion transport. The ion transport pathway crossing the membrane lipid bilayer is constructed of two access channels leading from either side of the membrane to the ion binding sites at a central cavity. The selective opening and closure of the access channels allows vectorial access/release of ions from the binding sites. Recent structural information along with new homology modeling of diverse P-type ATPases in complex with known ligands demonstrate that the most proficient way for the development of efficient and selective drugs is to target their ion transport pathway.

  13. Lis1 acts as a "clutch" between the ATPase and microtubule-binding domains of the dynein motor.

    PubMed

    Huang, Julie; Roberts, Anthony J; Leschziner, Andres E; Reck-Peterson, Samara L

    2012-08-31

    The lissencephaly protein Lis1 has been reported to regulate the mechanical behavior of cytoplasmic dynein, the primary minus-end-directed microtubule motor. However, the regulatory mechanism remains poorly understood. Here, we address this issue using purified proteins from Saccharomyces cerevisiae and a combination of techniques, including single-molecule imaging and single-particle electron microscopy. We show that rather than binding to the main ATPase site within dynein's AAA+ ring or its microtubule-binding stalk directly, Lis1 engages the interface between these elements. Lis1 causes individual dynein motors to remain attached to microtubules for extended periods, even during cycles of ATP hydrolysis that would canonically induce detachment. Thus, Lis1 operates like a "clutch" that prevents dynein's ATPase domain from transmitting a detachment signal to its track-binding domain. We discuss how these findings provide a conserved mechanism for dynein functions in living cells that require prolonged microtubule attachments. Copyright © 2012 Elsevier Inc. All rights reserved.

  14. Protein quality control in organelles - AAA/FtsH story.

    PubMed

    Janska, Hanna; Kwasniak, Malgorzata; Szczepanowska, Joanna

    2013-02-01

    This review focuses on organellar AAA/FtsH proteases, whose proteolytic and chaperone-like activity is a crucial component of the protein quality control systems of mitochondrial and chloroplast membranes. We compare the AAA/FtsH proteases from yeast, mammals and plants. The nature of the complexes formed by AAA/FtsH proteases and the current view on their involvement in degradation of non-native organellar proteins or assembly of membrane complexes are discussed. Additional functions of AAA proteases not directly connected with protein quality control found in yeast and mammals but not yet in plants are also described shortly. Following an overview of the molecular functions of the AAA/FtsH proteases we discuss physiological consequences of their inactivation in yeast, mammals and plants. The molecular basis of phenotypes associated with inactivation of the AAA/FtsH proteases is not fully understood yet, with the notable exception of those observed in m-AAA protease-deficient yeast cells, which are caused by impaired maturation of mitochondrial ribosomal protein. Finally, examples of cytosolic events affecting protein quality control in mitochondria and chloroplasts are given. This article is part of a Special Issue entitled: Protein Import and Quality Control in Mitochondria and Plastids. Copyright © 2012 Elsevier B.V. All rights reserved.

  15. Updates on AAA screening and surveillance

    PubMed

    Theivendran, Mayo; Chuen, Jason

    2018-05-01

    Screening and diagnostic surveillance of latent conditions have a profound impact on public healthcare expenditure and clinical outcomes. Abdominal aortic aneurysm (AAA) remains one of the hallmark pathologies in vascular surgery and an area of intense research interest. This article is the second of two that will outline current areas of controversy and research in AAA disease in order to support a more detailed understanding of issues in managing patients with this condition, and inform the development of Australasian clinical guidelines and health policy. Screening and surveillance of AAA should be evidence-based and follow clinical guidelines; however, advances in treatment technology and epidemiological data have influenced results. Goals of care and cost‑effectiveness should play central parts in screening and surveillance strategies.

  16. A VCP inhibitor substrate trapping approach (VISTA) enables proteomic profiling of endogenous ERAD substrates.

    PubMed

    Huang, Edmond Y; To, Milton; Tran, Erica; Dionisio, Lorraine T Ador; Cho, Hyejin J; Baney, Katherine L M; Pataki, Camille I; Olzmann, James A

    2018-05-01

    Endoplasmic reticulum (ER)-associated degradation (ERAD) mediates the proteasomal clearance of proteins from the early secretory pathway. In this process, ubiquitinated substrates are extracted from membrane-embedded dislocation complexes by the AAA ATPase VCP and targeted to the cytosolic 26S proteasome. In addition to its well-established role in the degradation of misfolded proteins, ERAD also regulates the abundance of key proteins such as enzymes involved in cholesterol synthesis. However, due to the lack of generalizable methods, our understanding of the scope of proteins targeted by ERAD remains limited. To overcome this obstacle, we developed a VCP inhibitor substrate trapping approach (VISTA) to identify endogenous ERAD substrates. VISTA exploits the small-molecule VCP inhibitor CB5083 to trap ERAD substrates in a membrane-associated, ubiquitinated form. This strategy, coupled with quantitative ubiquitin proteomics, identified previously validated (e.g., ApoB100, Insig2, and DHCR7) and novel (e.g., SCD1 and RNF5) ERAD substrates in cultured human hepatocellular carcinoma cells. Moreover, our results indicate that RNF5 autoubiquitination on multiple lysine residues targets it for ubiquitin and VCP--dependent clearance. Thus, VISTA provides a generalizable discovery method that expands the available toolbox of strategies to elucidate the ERAD substrate landscape.

  17. Molecular mechanism of ER stress-induced pre-emptive quality control involving association of the translocon, Derlin-1, and HRD1.

    PubMed

    Kadowaki, Hisae; Satrimafitrah, Pasjan; Takami, Yasunari; Nishitoh, Hideki

    2018-05-09

    The maintenance of endoplasmic reticulum (ER) homeostasis is essential for cell function. ER stress-induced pre-emptive quality control (ERpQC) helps alleviate the burden to a stressed ER by limiting further protein loading. We have previously reported the mechanisms of ERpQC, which includes a rerouting step and a degradation step. Under ER stress conditions, Derlin family proteins (Derlins), which are components of ER-associated degradation, reroute specific ER-targeting proteins to the cytosol. Newly synthesized rerouted polypeptides are degraded via the cytosolic chaperone Bag6 and the AAA-ATPase p97 in the ubiquitin-proteasome system. However, the mechanisms by which ER-targeting proteins are rerouted from the ER translocation pathway to the cytosolic degradation pathway and how the E3 ligase ubiquitinates ERpQC substrates remain unclear. Here, we show that ERpQC substrates are captured by the carboxyl-terminus region of Derlin-1 and ubiquitinated by the HRD1 E3 ubiquitin ligase prior to degradation. Moreover, HRD1 forms a large ERpQC-related complex composed of Sec61α and Derlin-1 during ER stress. These findings indicate that the association of the degradation factor HRD1 with the translocon and the rerouting factor Derlin-1 may be necessary for the smooth and effective clearance of ERpQC substrates.

  18. The Function of V-ATPases in Cancer

    PubMed Central

    Stransky, Laura; Cotter, Kristina

    2016-01-01

    The vacuolar ATPases (V-ATPases) are a family of proton pumps that couple ATP hydrolysis to proton transport into intracellular compartments and across the plasma membrane. They function in a wide array of normal cellular processes, including membrane traffic, protein processing and degradation, and the coupled transport of small molecules, as well as such physiological processes as urinary acidification and bone resorption. The V-ATPases have also been implicated in a number of disease processes, including viral infection, renal disease, and bone resorption defects. This review is focused on the growing evidence for the important role of V-ATPases in cancer. This includes functions in cellular signaling (particularly Wnt, Notch, and mTOR signaling), cancer cell survival in the highly acidic environment of tumors, aiding the development of drug resistance, as well as crucial roles in tumor cell invasion, migration, and metastasis. Of greatest excitement is evidence that at least some tumors express isoforms of V-ATPase subunits whose disruption is not lethal, leading to the possibility of developing anti-cancer therapeutics that selectively target V-ATPases that function in cancer cells. PMID:27335445

  19. Lis1 Acts as a “Clutch” between the ATPase and Microtubule-Binding Domains of the Dynein Motor

    PubMed Central

    Huang, Julie; Roberts, Anthony J.; Leschziner, Andres E.; Reck-Peterson, Samara L.

    2012-01-01

    Summary The lissencephaly protein Lis1 has been reported to regulate the mechanical behavior of cytoplasmic dynein, the primary minus-end-directed microtubule motor. However, the regulatory mechanism remains poorly understood. Here, we address this issue using purified proteins from Saccharomyces cerevisiae and a combination of techniques, including single-molecule imaging and single-particle electron microscopy. We show that rather than binding to the main ATPase site within dynein's AAA+ ring or its microtubule-binding stalk directly, Lis1 engages the interface between these elements. Lis1 causes individual dynein motors to remain attached to microtubules for extended periods, even during cycles of ATP hydrolysis that would canonically induce detachment. Thus, Lis1 operates like a “clutch” that prevents dynein's ATPase domain from transmitting a detachment signal to its track-binding domain. We discuss how these findings provide a conserved mechanism for dynein functions in living cells that require prolonged microtubule attachments. PMID:22939623

  20. Correlation between ubiquitination and defects of bull spermatozoa and removal of defective spermatozoa using anti-ubiquitin antibody-coated magnetized beads.

    PubMed

    Zhang, Jian; Su, Jie; Hu, Shuxiang; Zhang, Jindun; Ding, Rui; Guo, Jitong; Cao, Guifang; Li, Rongfeng; Sun, Qing-Yuan; Li, Xihe

    2018-05-01

    Ubiquitination is an important cellular process in spermatogenesis and involves the regulation of spermatid differentiation and spermiogenesis. In the current study, the correlation between bull sperm ubiquitination and sperm defects was analyzed, and the feasibility using anti-ubiquitin specific antibody immobilized magnetic beads to remove the spermatozoa with defects was assessed. A total of nine bulls were examined, and the amount of sperm ubiquitination ranged from 55 to 151. Correspondingly, the percentage of sperm deformity ranged from 9.3% to 28.1%. The coefficient of correlation was r = 0.92, indicating a significant correlation between the percentage of sperm deformity and the amount of ubiquitination (P < 0.05). The results from use of fluorescence staining and single-channel flow cytometry indicated there was a significant correlation between the sperm deformity and amount of ubiquitination (r = 0.86, P < 0.05). Results gained by use of the TUNEL and ubiquitination assays by double-channel flow cytometry indicated that the proportion of genetically defective spermatozoa with ubiquitination in Q3 and Q2 quartiles was markedly greater than that of spermatozoa with ubiquitination in Q1 and Q4 quartiles (82.1% compared with 17.9%). All these results confirmed that sperm ubiquitination is associated with genetic DNA defects (P < 0.01). Furthermore, nine semen samples with sperm motility of less than 50% (minimal motility), 50% to 70% (moderate motility) and greater than 70% (greatest motility) were selected for sorting defective spermatozoa using anti-ubiquitin specific antibody-coated magnetic beads. Strikingly, the percentage of sperm deformity significantly decreased from 18.8%, 19.0% and 17.1% to 11.7%, 11.0% and 11.0%, respectively (P < 0.05), suggesting that this method might be a feasible technology to improve the productivity via removal of the defective spermatozoa from bull semen. Copyright © 2018 Elsevier B.V. All rights

  1. m-AAA and i-AAA complexes coordinate to regulate OMA1, the stress-activated supervisor of mitochondrial dynamics.

    PubMed

    Consolato, Francesco; Maltecca, Francesca; Tulli, Susanna; Sambri, Irene; Casari, Giorgio

    2018-04-09

    The proteolytic processing of dynamin-like GTPase OPA1, mediated by the activity of both YME1L1 [intermembrane (i)-AAA protease complex] and OMA1, is a crucial step in the regulation of mitochondrial dynamics. OMA1 is a zinc metallopeptidase of the inner mitochondrial membrane that undergoes pre-activating proteolytic and auto-proteolytic cleavage after mitochondrial import. Here, we identify AFG3L2 [matrix (m) - AAA complex] as the major protease mediating this event, which acts by maturing the 60 kDa pre-pro-OMA1 to the 40 kDa pro-OMA1 form by severing the N-terminal portion without recognizing a specific consensus sequence. Therefore, m - AAA and i - AAA complexes coordinately regulate OMA1 processing and turnover, and consequently control which OPA1 isoforms are present, thus adding new information on the molecular mechanisms of mitochondrial dynamics and neurodegenerative diseases affected by these phenomena.This article has an associated First Person interview with the first author of the paper. © 2018. Published by The Company of Biologists Ltd.

  2. The E3 ubiquitin ligase ZNRF2 is a substrate of mTORC1 and regulates its activation by amino acids

    PubMed Central

    Hoxhaj, Gerta; Caddye, Edward; Najafov, Ayaz; Houde, Vanessa P; Johnson, Catherine; Dissanayake, Kumara; Toth, Rachel; Campbell, David G; Prescott, Alan R; MacKintosh, Carol

    2016-01-01

    The mechanistic Target of Rapamycin complex 1 (mTORC1) senses intracellular amino acid levels through an intricate machinery, which includes the Rag GTPases, Ragulator and vacuolar ATPase (V-ATPase). The membrane-associated E3 ubiquitin ligase ZNRF2 is released into the cytosol upon its phosphorylation by Akt. In this study, we show that ZNRF2 interacts with mTOR on membranes, promoting the amino acid-stimulated translocation of mTORC1 to lysosomes and its activation in human cells. ZNRF2 also interacts with the V-ATPase and preserves lysosomal acidity. Moreover, knockdown of ZNRF2 decreases cell size and cell proliferation. Upon growth factor and amino acid stimulation, mTORC1 phosphorylates ZNRF2 on Ser145, and this phosphosite is dephosphorylated by protein phosphatase 6. Ser145 phosphorylation stimulates vesicle-to-cytosol translocation of ZNRF2 and forms a novel negative feedback on mTORC1. Our findings uncover ZNRF2 as a component of the amino acid sensing machinery that acts upstream of Rag-GTPases and the V-ATPase to activate mTORC1. DOI: http://dx.doi.org/10.7554/eLife.12278.001 PMID:27244671

  3. A Novel Strategy to Isolate Ubiquitin Conjugates Reveals Wide Role for Ubiquitination during Neural Development*

    PubMed Central

    Franco, Maribel; Seyfried, Nicholas T.; Brand, Andrea H.; Peng, Junmin; Mayor, Ugo

    2011-01-01

    Ubiquitination has essential roles in neuronal development and function. Ubiquitin proteomics studies on yeast and HeLa cells have proven very informative, but there still is a gap regarding neuronal tissue-specific ubiquitination. In an organism context, direct evidence for the ubiquitination of neuronal proteins is even scarcer. Here, we report a novel proteomics strategy based on the in vivo biotinylation of ubiquitin to isolate ubiquitin conjugates from the neurons of Drosophila melanogaster embryos. We confidently identified 48 neuronal ubiquitin substrates, none of which was yet known to be ubiquitinated. Earlier proteomics and biochemical studies in non-neuronal cell types had identified orthologs to some of those but not to others. The identification here of novel ubiquitin substrates, those with no known ubiquitinated ortholog, suggests that proteomics studies must be performed on neuronal cells to identify ubiquitination pathways not shared by other cell types. Importantly, several of those newly found neuronal ubiquitin substrates are key players in synaptogenesis. Mass spectrometry results were validated by Western blotting to confirm that those proteins are indeed ubiquitinated in the Drosophila embryonic nervous system and to elucidate whether they are mono- or polyubiquitinated. In addition to the ubiquitin substrates, we also identified the ubiquitin carriers that are active during synaptogenesis. Identifying endogenously ubiquitinated proteins in specific cell types, at specific developmental stages, and within the context of a living organism will allow understanding how the tissue-specific function of those proteins is regulated by the ubiquitin system. PMID:20861518

  4. E2 enzyme inhibition by stabilization of a low affinity interface with ubiquitin

    PubMed Central

    St-Cyr, Daniel J.; Ziemba, Amy; Garg, Pankaj; Plamondon, Serge; Auer, Manfred; Sidhu, Sachdev; Marinier, Anne; Kleiger, Gary; Tyers, Mike; Sicheri, Frank

    2014-01-01

    Weak protein interactions between ubiquitin and the ubiquitin-proteasome system (UPS) enzymes that mediate its covalent attachment to substrates serve to position ubiquitin for optimal catalytic transfer. We show that a small molecule inhibitor of the E2 ubiquitin conjugating enzyme Cdc34A, called CC0651, acts by trapping a weak interaction between ubiquitin and the E2 donor ubiquitin binding site. A structure of the ternary CC0651-Cdc34A-ubiquitin complex reveals that the inhibitor engages a composite binding pocket formed from Cdc34A and ubiquitin. CC0651 also suppresses the spontaneous hydrolysis rate of the Cdc34A-ubiquitin thioester, without overtly affecting the interaction between Cdc34A and the RING domain subunit of the E3 enzyme. Stabilization of the numerous other weak interactions between ubiquitin and UPS enzymes by small molecules may be a feasible strategy to selectively inhibit different UPS activities. PMID:24316736

  5. HIF and HOIL-1L-mediated PKCζ degradation stabilizes plasma membrane Na,K-ATPase to protect against hypoxia-induced lung injury.

    PubMed

    Magnani, Natalia D; Dada, Laura A; Queisser, Markus A; Brazee, Patricia L; Welch, Lynn C; Anekalla, Kishore R; Zhou, Guofei; Vagin, Olga; Misharin, Alexander V; Budinger, G R Scott; Iwai, Kazuhiro; Ciechanover, Aaron J; Sznajder, Jacob I

    2017-11-21

    Organisms have evolved adaptive mechanisms in response to stress for cellular survival. During acute hypoxic stress, cells down-regulate energy-consuming enzymes such as Na,K-ATPase. Within minutes of alveolar epithelial cell (AEC) exposure to hypoxia, protein kinase C zeta (PKCζ) phosphorylates the α 1 -Na,K-ATPase subunit and triggers it for endocytosis, independently of the hypoxia-inducible factor (HIF). However, the Na,K-ATPase activity is essential for cell homeostasis. HIF induces the heme-oxidized IRP2 ubiquitin ligase 1L (HOIL-1L), which leads to PKCζ degradation. Here we report a mechanism of prosurvival adaptation of AECs to prolonged hypoxia where PKCζ degradation allows plasma membrane Na,K-ATPase stabilization at ∼50% of normoxic levels, preventing its excessive down-regulation and cell death. Mice lacking HOIL-1L in lung epithelial cells ( Cre SPC /HOIL-1L fl/fl ) were sensitized to hypoxia because they express higher levels of PKCζ and, consequently, lower plasma membrane Na,K-ATPase levels, which increased cell death and worsened lung injury. In AECs, expression of an α 1 -Na,K-ATPase construct bearing an S18A (α 1 -S18A) mutation, which precludes PKCζ phosphorylation, stabilized the Na,K-ATPase at the plasma membrane and prevented hypoxia-induced cell death even in the absence of HOIL-1L. Adenoviral overexpression of the α 1 -S18A mutant Na,K-ATPase in vivo rescued the enhanced sensitivity of Cre SPC/ HOIL-1L fl/fl mice to hypoxic lung injury. These data suggest that stabilization of Na,K-ATPase during severe hypoxia is a HIF-dependent process involving PKCζ degradation. Accordingly, we provide evidence of an important adaptive mechanism to severe hypoxia, whereby halting the exaggerated down-regulation of plasma membrane Na,K-ATPase prevents cell death and lung injury.

  6. Prior Radiological Investigations in 65-Year-Old Men Screened for AAA.

    PubMed

    Meecham, Lewis; Summerour, Virginia; Hobbs, Simon; Newman, Jeremy; Wall, Michael L

    2018-05-01

    The National Health Service abdominal aortic aneurysm screening programme (NAAASP) is now fully operational. Those who have previously been formally investigated for abdominal aortic aneurysm (AAA) are excluded; however, many patients undergo radiological investigation of the abdomen for other reasons. Such practices may find incidental AAA which may be eroding the performance of the NAAASP. We investigated the rates of preinvestigation before invitation to screening in our local AAA screening programme. Electronic patient records were retrospectively reviewed for all patients called between March 2013 and February 2016 in 1 local AAA screening programme. Their records were interrogated to identify any abdominal imaging within 5 years of their invitation to screening. Two thousand six hundred thirty-eight men were invited for screening; of these, 563 (21.3%) had been "prescreened". Median time between prescreening and screening was 19 months (0-60 months). Ultrasound abdomen was the most prevalent at 248 (44.0%). Two thousand two hundred forty-three (85.0%) men attended screening, and 6 (0.27%) were excluded for known AAA. Prevalence of AAA was 1.8% (n = 41). Of these, 15 (36.6%) had prior investigation with 6 (40.0%) having AAA diagnosed. Therefore, 9 (22.0%) had potential missed AAA on "prescreening" (mean diameter 35 mm [30-45], mean time lapse between investigation and screening 21.1 months [1-49]). Incidence of missed aneurysm in the "prescreened" cohort was 1.6% (9/563). Large numbers of men invited for AAA screening have undergone preinvestigation of their abdominal aorta, with 60% of the present AAA being missed. Reliance on incidental detection of AAA would leave many patients undiagnosed in the community-at risk of future rupture. Copyright © 2018 Elsevier Inc. All rights reserved.

  7. Ubiquitin turnover and endocytic trafficking in yeast are regulated by Ser57 phosphorylation of ubiquitin

    PubMed Central

    Lee, Sora; Tumolo, Jessica M; Ehlinger, Aaron C; Jernigan, Kristin K; Qualls-Histed, Susan J; Hsu, Pi-Chiang; McDonald, W Hayes; Chazin, Walter J

    2017-01-01

    Despite its central role in protein degradation little is known about the molecular mechanisms that sense, maintain, and regulate steady state concentration of ubiquitin in the cell. Here, we describe a novel mechanism for regulation of ubiquitin homeostasis that is mediated by phosphorylation of ubiquitin at the Ser57 position. We find that loss of Ppz phosphatase activity leads to defects in ubiquitin homeostasis that are at least partially attributable to elevated levels of Ser57 phosphorylated ubiquitin. Phosphomimetic mutation at the Ser57 position of ubiquitin conferred increased rates of endocytic trafficking and ubiquitin turnover. These phenotypes are associated with bypass of recognition by endosome-localized deubiquitylases - including Doa4 which is critical for regulation of ubiquitin recycling. Thus, ubiquitin homeostasis is significantly impacted by the rate of ubiquitin flux through the endocytic pathway and by signaling pathways that converge on ubiquitin itself to determine whether it is recycled or degraded in the vacuole. PMID:29130884

  8. Relationship of the Membrane ATPase from Halobacterium saccharovorum to Vacuolar ATPases

    NASA Technical Reports Server (NTRS)

    Stan-Lotter, Helga; Bowman, Emma J.; Hochstein, Lawrence I.

    1991-01-01

    Polyclonal antiserum against subunit A (67 kDa) of the vacuolar ATPase from Neurospora crassa reacted with subunit I (87 kDa) from a membrane ATPase of the extremely halophilic archaebacterium Halobacterium saccharovorum. The halobacterial ATPase was inhibited by nitrate and N-ethylmaleimide; the extent of the latter inhibition was diminished in the presence of adenosine di- or triphosphates. 4-Chloro-7-nitrobenzofurazan in- hibited the hatobacterial ATPase also in a nucleotide- protectable manner; the bulk of inhibitor was associated with subunit II (60 kDa). The data suggested that this halobacterial ATPase may have conserved structural features from both the vacuotar and the F-type ATPases.

  9. Species-specific serine-threonine protein kinase Pkb2 of Bifidobacterium longum subsp. longum: Genetic environment and substrate specificity.

    PubMed

    Nezametdinova, V Z; Mavletova, D A; Alekseeva, M G; Chekalina, M S; Zakharevich, N V; Danilenko, V N

    2018-06-01

    The objective of this study was to determine for phosphorylated substrates of the species-specific serine-threonine protein kinase (STPK) Pkb2 from Bifidobacterium longum subsp. longum GT15. Two approaches were employed: analyses of phosphorylated membrane vesicles protein spectra following kinase reactions and analyses of the genes surrounding pkb2. A bioinformatics analysis of the genes surrounding pkb2 found a species-specific gene cluster PFNA in the genomes of 34 different bifidobacterial species. The identified cluster consisted of 5-8 genes depending on the species. The first five genes are characteristic for all considered species. These are the following genes encoding serine-threonine protein kinase (pkb2), fibronectin type III domain-containing protein (fn3), AAA-ATPase (aaa-atp), hypothetical protein with DUF58 domain (duf58) and transglutaminase (tgm). The sixth (protein phosphatase, prpC), seventh (hypothetical protein, BLGT_RS02790), and eighth (FHA domain-containing protein, fha) genes are included in this cluster, but they are not found in all species. The operon organization of the PFNA gene cluster was confirmed with transcriptional analysis. AAA-ATPase, which is encoded by a gene of the PFNA gene cluster, was found to be a substrate of the STPK Pkb2. Fourteen AAA-ATPase sites (seven serine, six threonine, and one tyrosine) phosphorylated by STPK Pkb2 were revealed. Analysis of the spectra of phosphorylated membrane vesicles proteins allowed us to identify eleven proteins that were considered as possible Pkb2 substrates. They belong to several functional classes: proteins involved in transcription and translation; proteins of the F1-domain of the FoF1-ATPase; ABC-transporters; molecular chaperone GroEL; and glutamine synthase, GlnA1. All identified proteins were considered moonlighting proteins. Three out of 11 proteins (glutamine synthetase GlnA1 and FoF1-ATPase alpha and beta subunits) were selected for further in vitro phosphorylation assays

  10. AAA-DDD triple hydrogen bond complexes.

    PubMed

    Blight, Barry A; Camara-Campos, Amaya; Djurdjevic, Smilja; Kaller, Martin; Leigh, David A; McMillan, Fiona M; McNab, Hamish; Slawin, Alexandra M Z

    2009-10-07

    Experiment and theory both suggest that the AAA-DDD pattern of hydrogen bond acceptors (A) and donors (D) is the arrangement of three contiguous hydrogen bonding centers that results in the strongest association between two species. Murray and Zimmerman prepared the first example of such a system (complex 3*2) and determined the lower limit of its association constant (K(a)) in CDCl(3) to be 10(5) M(-1) by (1)H NMR spectroscopy (Murray, T. J. and Zimmerman, S. C. J. Am. Chem. Soc. 1992, 114, 4010-4011). The first cationic AAA-DDD pair (3*4(+)) was described by Bell and Anslyn (Bell, D. A. and Anslyn, E. A. Tetrahedron 1995, 51, 7161-7172), with a K(a) > 5 x 10(5) M(-1) in CH(2)Cl(2) as determined by UV-vis spectroscopy. We were recently able to quantify the strength of a neutral AAA-DDD arrangement using a more chemically stable AAA-DDD system, 6*2, which has an association constant of 2 x 10(7) M(-1) in CH(2)Cl(2) (Djurdjevic, S., Leigh, D. A., McNab, H., Parsons, S., Teobaldi, G. and Zerbetto, F. J. Am. Chem. Soc. 2007, 129, 476-477). Here we report on further AA(A) and DDD partners, together with the first precise measurement of the association constant of a cationic AAA-DDD species. Complex 6*10(+)[B(3,5-(CF(3))(2)C(6)H(3))(4)(-)] has a K(a) = 3 x 10(10) M(-1) at RT in CH(2)Cl(2), by far the most strongly bound triple hydrogen bonded system measured to date. The X-ray crystal structure of 6*10(+) with a BPh(4)(-) counteranion shows a planar array of three short (NH...N distances 1.95-2.15 A), parallel (but staggered rather than strictly linear; N-H...N angles 165.4-168.8 degrees), primary hydrogen bonds. These are apparently reinforced, as theory predicts, by close electrostatic interactions (NH-*-N distances 2.78-3.29 A) between each proton and the acceptor atoms of the adjacent primary hydrogen bonds.

  11. Persistent type II endoleak after EVAR: the predictive value of the AAA thrombus volume.

    PubMed

    Gallitto, Enrico; Gargiulo, Mauro; Mascoli, Chiara; Freyrie, Antonio; DE Matteis, Massimo; Serra, Carla; Bianchini Massoni, Claudio; Faggioli, Gianluca; Stella, Andrea

    2018-02-01

    Persistent type II endoleaks (ELIIp, ≥6 months) after an endovascular aneurysm repair (EVAR) can be associated with adverse outcomes. The aims of this study are the evaluation of the incidence of ELIIp, their preoperative morphological predictive features (PMF) and the post-EVAR abdominal aortic aneurysm (AAA) evolution in the presence of ELIIp. Patients underwent EVAR between 2008 and 2010 were prospectively collected. Cases with ELIIp (group A: AG) were identified. A control group without ELIIp (group B: BG), homogeneous for clinical characteristics, follow-up timing and methods (CTA and/or CEUS at 6.12 months and yearly thereafter) was retrospectively selected. The PMF evaluated by computed-tomography-angiography (CTA) were: AAA-diameter, number and diameter of AAA efferent patent vessels (EPV), AAA-total volume (TV), AAA-thrombus volume (THV) and TV/THV rate (%VR). Volumes were calculated by the dedicated vessels analysis software. AG and BG were compared. The primary endpoint was to evaluate the incidence of ELIIp. Secondary endpoints were to analyze the relation between PMF and ELIIp and to assess the post-EVAR AAA-evolution in the presence of ELIIp. Between 2008 and 2010, 200 patients underwent EVAR to treat AAA electively. An ELIIp was detected in 35cases (17.5%) (AG). Twenty-seven patients (13.5%) were included in BG. An overall of 62 patients (GA+GB) were analyzed. The mean pre-operative AAA diameter and EPV were 58±11.6 mm and 5.5±1.8 mm, respectively. The mean TV and THV were 187±111.5 cc and 82±75 cc, respectively. The median %VR was 42.3%. ELIIp was correlated to EPV≥6 (χ2, p=.015) and %VR <40% (logistic regression, P=0.032). The mean follow-up was 22±9 months. Seven (20%) ELIIp spontaneously sealed and 6 (17%) required reinterventions (2 conversions to OR). There were not PMF associated to ELIIp evolution and AAA growth post-EVAR. ELIIp is a not rare complication and it could require re-interventions. Our data suggest that VEP≥6 or %VT<40

  12. Quantitation and immunocytochemical localization of ubiquitin conjugates within rat red and white skeletal muscles

    NASA Technical Reports Server (NTRS)

    Riley, Danny A.; Bain, James L. W.; Haas, Arthur L.; Ellis, Stanley

    1988-01-01

    Solid-phase immunochemical methods were employed to probe the dynamics of ubiquitin pools within selected rat skeletal muscles. The total ubiquitin content of red muscles was greater than that of white muscles, even though the fractional conjugation was similar for both types of muscles. The specificity for conjugated ubiquitin in solid-phase applications, previously demonstrated for an affinity-purified antibody against SDS-denatured ubiquitin, was retained when used as a probe for ubiquitin-protein adducts in tissue sections. Immunohistochemical localization revealed that differences in ubiquitin pools derived from the relative content of red (oxidative) vs white (glycolytic) fibers, with the former exhibiting a higher content of ubiquitin conjugates. Subsequent immunogold labeling demonstrated statistically significant enhanced localization of ubiquitin conjugates to the Z-lines in both red and white muscle fiber types.

  13. Molecular basis of ubiquitin recognition by the autophagy receptor CALCOCO2

    PubMed Central

    Xie, Xingqiao; Li, Faxiang; Wang, Yuanyuan; Wang, Yingli; Lin, Zhijie; Cheng, Xiaofang; Liu, Jianping; Chen, Changbin; Pan, Lifeng

    2015-01-01

    The autophagy receptor CALCOCO2/NDP52 functions as a bridging adaptor and plays an essential role in the selective autophagic degradation of invading pathogens by specifically recognizing ubiquitin-coated intracellular pathogens and subsequently targeting them to the autophagic machinery; thereby it is required for innate immune defense against a range of infectious pathogens in mammals. However, the mechanistic basis underlying CALCOCO2-mediated specific recognition of ubiqutinated pathogens is still unknown. Here, using biochemical and structural analyses, we demonstrated that the cargo-binding region of CALCOCO2 contains a dynamic unconventional zinc finger as well as a C2H2-type zinc-finger, and only the C2H2-type zinc finger specifically recognizes mono-ubiquitin or poly-ubiquitin chains. In addition to elucidating the specific ubiquitin recognition mechanism of CALCOCO2, the structure of the CALCOCO2 C2H2-type zinc finger in complex with mono-ubiquitin also uncovers a unique zinc finger-binding mode for ubiquitin. Our findings provide mechanistic insight into how CALCOCO2 targets ubiquitin-decorated pathogens for autophagic degradations. PMID:26506893

  14. Molecular architecture of the 26S proteasome holocomplex determined by an integrative approach

    PubMed Central

    Lasker, Keren; Förster, Friedrich; Bohn, Stefan; Walzthoeni, Thomas; Villa, Elizabeth; Unverdorben, Pia; Beck, Florian; Aebersold, Ruedi; Sali, Andrej; Baumeister, Wolfgang

    2012-01-01

    The 26S proteasome is at the executive end of the ubiquitin-proteasome pathway for the controlled degradation of intracellular proteins. While the structure of its 20S core particle (CP) has been determined by X-ray crystallography, the structure of the 19S regulatory particle (RP), which recruits substrates, unfolds them, and translocates them to the CP for degradation, has remained elusive. Here, we describe the molecular architecture of the 26S holocomplex determined by an integrative approach based on data from cryoelectron microscopy, X-ray crystallography, residue-specific chemical cross-linking, and several proteomics techniques. The “lid” of the RP (consisting of Rpn3/5/6/7/8/9/11/12) is organized in a modular fashion. Rpn3/5/6/7/9/12 form a horseshoe-shaped heterohexamer, which connects to the CP and roofs the AAA-ATPase module, positioning the Rpn8/Rpn11 heterodimer close to its mouth. Rpn2 is rigid, supporting the lid, while Rpn1 is conformationally variable, positioned at the periphery of the ATPase ring. The ubiquitin receptors Rpn10 and Rpn13 are located in the distal part of the RP, indicating that they were recruited to the complex late in its evolution. The modular structure of the 26S proteasome provides insights into the sequence of events prior to the degradation of ubiquitylated substrates. PMID:22307589

  15. Biomarkers for AAA: Encouraging steps but clinical relevance still to be delivered.

    PubMed

    Htun, Nay Min; Peter, Karlheinz

    2014-10-01

    Potential biomarkers have been investigated using proteomic studies in a variety of diseases. Some biomarkers have central roles in both diagnosis and monitoring of various disorders in clinical medicine, such as troponins, brain natriuretic peptide, and C-reactive protein. Although several biomarkers have been suggested in human abdominal aortic aneurysm (AAA), reliable markers have been lacking. In this issue, Moxon et al. [Proteomics Clin Appl. 2014, 8, 762-772] undertook a broad and systematic proteomic approach toward identification of biomarkers in a commonly used AAA mouse model (AAA created by angiotensin-II infusion). In this mouse model, apolipoprotein C1 and matrix metalloproteinase-9 were identified as novel biomarkers of stable AAA. This finding represents an important step forward, toward a clinically relevant role of biomarkers in AAA. This also encourages for further studies toward the identification of biomarkers (or their combinations) that can predict AAA progression and rupture, which would represent a major progress in AAA management and would establish an AAA biomarker as a much anticipated clinical tool. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Conformational Landscape of the p28-Bound Human Proteasome Regulatory Particle.

    PubMed

    Lu, Ying; Wu, Jiayi; Dong, Yuanchen; Chen, Shuobing; Sun, Shuangwu; Ma, Yong-Bei; Ouyang, Qi; Finley, Daniel; Kirschner, Marc W; Mao, Youdong

    2017-07-20

    The proteasome holoenzyme is activated by its regulatory particle (RP) consisting of two subcomplexes, the lid and the base. A key event in base assembly is the formation of a heterohexameric ring of AAA-ATPases, which is guided by at least four RP assembly chaperones in mammals: PAAF1, p28/gankyrin, p27/PSMD9, and S5b. Using cryogenic electron microscopy, we analyzed the non-AAA structure of the p28-bound human RP at 4.5 Å resolution and determined seven distinct conformations of the Rpn1-p28-AAA subcomplex within the p28-bound RP at subnanometer resolutions. Remarkably, the p28-bound AAA ring does not form a channel in the free RP and spontaneously samples multiple "open" and "closed" topologies at the Rpt2-Rpt6 and Rpt3-Rpt4 interfaces. Our analysis suggests that p28 assists the proteolytic core particle to select a specific conformation of the ATPase ring for RP engagement and is released in a shoehorn-like fashion in the last step of the chaperone-mediated proteasome assembly. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. SU-F-T-413: Calculation Accuracy of AAA and Acuros Using Cerrobend Blocks for TBI at 400cm

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lamichhane, N; Studenski, M

    2016-06-15

    Purpose: It is essential to assess the lung dose during TBI to reduce toxicity. Here we characterize the accuracy of the AAA and Acuros algorithms when using cerrobend lung shielding blocks at an extended distance for TBI. Methods: We positioned a 30×30×30 cm3 solid water slab phantom at 400 cm SSD and measured PDDs (Exradin A12 and PTW parallel plate ion chambers). A 2 cm thick, 10×10 cm2 cerrobend block was hung 2 cm in front of the phantom. This geometry was reproduced in the planning system for both AAA and Acuros. In AAA, the mass density of the cerrobendmore » block was forced to 9.38 g/cm3 and in Acuros it was forced to 8.0 g/cm3 (limited to selecting stainless steel). Three different relative electron densities (RED) were tested for each algorithm; 4.97, 6.97, and 8.97. Results: PDDs from both Acuros and AAA underestimated the delivered dose. AAA calculated that depth dose was higher for RED of 4.97 as compared to 6.97 and 8.97 but still lower than measured. There was no change in the percent depth dose with changing relative electron densities for Acuros. Conclusion: Care should be taken before using AAA or Acuros with cerrobend blocks as the planning system underestimates dose. Acuros limits the ability to modify RED when compared to AAA.« less

  18. SOFIA Technology: The NASA Airborne Astronomy Ambassador (AAA) Experience and Online Resources

    NASA Astrophysics Data System (ADS)

    Clark, C.; Harman, P. K.; Backman, D. E.

    2016-12-01

    SOFIA, an 80/20 partnership of NASA and the German Aerospace Center (DLR), consists of a modified Boeing 747SP carrying a reflecting telescope with an effective diameter of 2.5 meters. SOFIA is the largest airborne observatory in the world, capable of observations impossible for even the largest and highest ground-based telescopes. The SOFIA Program Office is at NASA ARC, Moffett Field, CA; the aircraft is based in Palmdale, CA. During its planned 20-year lifetime, SOFIA will foster development of new scientific instrumentation and inspire the education of young scientists and engineers. Astrophysicists are awarded time on SOFIA to study many kinds of astronomical objects and phenomena. Among the most interesting are: Star birth, evolution, and death Formation of new planetary systems Chemistry of complex molecules in space Planet and exoplanet atmospheres Galactic gas & dust "ecosystems" Environments around supermassive black holes SOFIA currently has eight instruments, five US-made and three German. The instruments — cameras, spectrometers, and a photometer,— operate at near-, mid- and far-infrared wavelengths, each spectral range being best suited to studying particular celestial phenomena. NASA's Airborne Astronomy Ambassadors' (AAAs) experience includes a STEM immersion component. AAAs are onboard during two overnight SOFIA flights that provide insight into the acquisition of scientific data as well as the interfaces between the telescope, instrument, & aircraft. AAAs monitor system performance and view observation targets from their dedicated workstation during flights. Future opportunities for school district partnerships leading to selection of future AAA cohorts will be offered in 2018-19. AAAs may access public archive data via the SOFIA Data Cycle System (DCS) https://dcs.sofia.usra.edu/. Additional SOFIA science and other resources are available at: www.sofia.usra.edu, including lessons that use photovoltaic circuits, and other technology for the

  19. AAAS: Politics. . . and Science

    ERIC Educational Resources Information Center

    Science News, 1978

    1978-01-01

    Reviews topics discussed during the American Association for the Advancement of Science (AAAS) meeting held in Washington, D.C. Topics included: the equal rights amendment, laetrile, nuclear radiation hazards, sociobiology, and various science topics. (SL)

  20. The BiP Molecular Chaperone Plays Multiple Roles during the Biogenesis of TorsinA, an AAA+ ATPase Associated with the Neurological Disease Early-onset Torsion Dystonia*

    PubMed Central

    Zacchi, Lucía F.; Wu, Hui-Chuan; Bell, Samantha L.; Millen, Linda; Paton, Adrienne W.; Paton, James C.; Thomas, Philip J.; Zolkiewski, Michal; Brodsky, Jeffrey L.

    2014-01-01

    Early-onset torsion dystonia (EOTD) is a neurological disorder characterized by involuntary and sustained muscle contractions that can lead to paralysis and abnormal posture. EOTD is associated with the deletion of a glutamate (ΔE) in torsinA, an endoplasmic reticulum (ER) resident AAA+ ATPase. To date, the effect of ΔE on torsinA and the reason that this mutation results in EOTD are unclear. Moreover, there are no specific therapeutic options to treat EOTD. To define the underlying biochemical defects associated with torsinAΔE and to uncover factors that might be targeted to offset defects associated with torsinAΔE, we developed a yeast torsinA expression system and tested the roles of ER chaperones in mediating the folding and stability of torsinA and torsinAΔE. We discovered that the ER lumenal Hsp70, BiP, an associated Hsp40, Scj1, and a nucleotide exchange factor, Lhs1, stabilize torsinA and torsinAΔE. BiP also maintained torsinA and torsinAΔE solubility. Mutations predicted to compromise specific torsinA functional motifs showed a synthetic interaction with the ΔE mutation and destabilized torsinAΔE, suggesting that the ΔE mutation predisposes torsinA to defects in the presence of secondary insults. In this case, BiP was required for torsinAΔE degradation, consistent with data that specific chaperones exhibit either pro-degradative or pro-folding activities. Finally, using two independent approaches, we established that BiP stabilizes torsinA and torsinAΔE in mammalian cells. Together, these data define BiP as the first identified torsinA chaperone, and treatments that modulate BiP might improve symptoms associated with EOTD. PMID:24627482

  1. m-AAA proteases, mitochondrial calcium homeostasis and neurodegeneration

    PubMed Central

    Patron, Maria; Sprenger, Hans-Georg; Langer, Thomas

    2018-01-01

    The function of mitochondria depends on ubiquitously expressed and evolutionary conserved m-AAA proteases in the inner membrane. These ATP-dependent peptidases form hexameric complexes built up of homologous subunits. AFG3L2 subunits assemble either into homo-oligomeric isoenzymes or with SPG7 (paraplegin) subunits into hetero-oligomeric proteolytic complexes. Mutations in AFG3L2 are associated with dominant spinocerebellar ataxia (SCA28) characterized by the loss of Purkinje cells, whereas mutations in SPG7 cause a recessive form of hereditary spastic paraplegia (HSP7) with motor neurons of the cortico-spinal tract being predominantly affected. Pleiotropic functions have been assigned to m-AAA proteases, which act as quality control and regulatory enzymes in mitochondria. Loss of m-AAA proteases affects mitochondrial protein synthesis and respiration and leads to mitochondrial fragmentation and deficiencies in the axonal transport of mitochondria. Moreover m-AAA proteases regulate the assembly of the mitochondrial calcium uniporter (MCU) complex. Impaired degradation of the MCU subunit EMRE in AFG3L2-deficient mitochondria results in the formation of deregulated MCU complexes, increased mitochondrial calcium uptake and increased vulnerability of neurons for calcium-induced cell death. A reduction of calcium influx into the cytosol of Purkinje cells rescues ataxia in an AFG3L2-deficient mouse model. In this review, we discuss the relationship between the m-AAA protease and mitochondrial calcium homeostasis and its relevance for neurodegeneration and describe a novel mouse model lacking MCU specifically in Purkinje cells. Our results pledge for a novel view on m-AAA proteases that integrates their pleiotropic functions in mitochondria to explain the pathogenesis of associated neurodegenerative disorders. PMID:29451229

  2. m-AAA proteases, mitochondrial calcium homeostasis and neurodegeneration.

    PubMed

    Patron, Maria; Sprenger, Hans-Georg; Langer, Thomas

    2018-03-01

    The function of mitochondria depends on ubiquitously expressed and evolutionary conserved m-AAA proteases in the inner membrane. These ATP-dependent peptidases form hexameric complexes built up of homologous subunits. AFG3L2 subunits assemble either into homo-oligomeric isoenzymes or with SPG7 (paraplegin) subunits into hetero-oligomeric proteolytic complexes. Mutations in AFG3L2 are associated with dominant spinocerebellar ataxia (SCA28) characterized by the loss of Purkinje cells, whereas mutations in SPG7 cause a recessive form of hereditary spastic paraplegia (HSP7) with motor neurons of the cortico-spinal tract being predominantly affected. Pleiotropic functions have been assigned to m-AAA proteases, which act as quality control and regulatory enzymes in mitochondria. Loss of m-AAA proteases affects mitochondrial protein synthesis and respiration and leads to mitochondrial fragmentation and deficiencies in the axonal transport of mitochondria. Moreover m-AAA proteases regulate the assembly of the mitochondrial calcium uniporter (MCU) complex. Impaired degradation of the MCU subunit EMRE in AFG3L2-deficient mitochondria results in the formation of deregulated MCU complexes, increased mitochondrial calcium uptake and increased vulnerability of neurons for calcium-induced cell death. A reduction of calcium influx into the cytosol of Purkinje cells rescues ataxia in an AFG3L2-deficient mouse model. In this review, we discuss the relationship between the m-AAA protease and mitochondrial calcium homeostasis and its relevance for neurodegeneration and describe a novel mouse model lacking MCU specifically in Purkinje cells. Our results pledge for a novel view on m-AAA proteases that integrates their pleiotropic functions in mitochondria to explain the pathogenesis of associated neurodegenerative disorders.

  3. PolyUbiquitin Chain Linkage Topology Selects the Functions from the Underlying Binding Landscape

    PubMed Central

    Wang, Yong; Tang, Chun; Wang, Erkang; Wang, Jin

    2014-01-01

    Ubiquitin (Ub) can generate versatile molecular signals and lead to different celluar fates. The functional poly-valence of Ub is believed to be resulted from its ability to form distinct polymerized chains with eight linkage types. To provide a full picture of ubiquitin code, we explore the binding landscape of two free Ub monomers and also the functional landscapes of of all eight linkage types by theoretical modeling. Remarkably, we found that most of the compact structures of covalently connected dimeric Ub chains (diUbs) pre-exist on the binding landscape. These compact functional states were subsequently validated by corresponding linkage models. This leads to the proposal that the folding architecture of Ub monomer has encoded all functional states into its binding landscape, which is further selected by different topologies of polymeric Ub chains. Moreover, our results revealed that covalent linkage leads to symmetry breaking of interfacial interactions. We further propose that topological constraint not only limits the conformational space for effective switching between functional states, but also selects the local interactions for realizing the corresponding biological function. Therefore, the topological constraint provides a way for breaking the binding symmetry and reaching the functional specificity. The simulation results also provide several predictions that qualitatively and quantitatively consistent with experiments. Importantly, the K48 linkage model successfully predicted intermediate states. The resulting multi-state energy landscape was further employed to reconcile the seemingly contradictory experimental data on the conformational equilibrium of K48-diUb. Our results further suggest that hydrophobic interactions are dominant in the functional landscapes of K6-, K11-, K33- and K48 diUbs, while electrostatic interactions play a more important role in the functional landscapes of K27, K29, K63 and linear linkages. PMID:24992446

  4. PolyUbiquitin chain linkage topology selects the functions from the underlying binding landscape.

    PubMed

    Wang, Yong; Tang, Chun; Wang, Erkang; Wang, Jin

    2014-07-01

    Ubiquitin (Ub) can generate versatile molecular signals and lead to different celluar fates. The functional poly-valence of Ub is believed to be resulted from its ability to form distinct polymerized chains with eight linkage types. To provide a full picture of ubiquitin code, we explore the binding landscape of two free Ub monomers and also the functional landscapes of of all eight linkage types by theoretical modeling. Remarkably, we found that most of the compact structures of covalently connected dimeric Ub chains (diUbs) pre-exist on the binding landscape. These compact functional states were subsequently validated by corresponding linkage models. This leads to the proposal that the folding architecture of Ub monomer has encoded all functional states into its binding landscape, which is further selected by different topologies of polymeric Ub chains. Moreover, our results revealed that covalent linkage leads to symmetry breaking of interfacial interactions. We further propose that topological constraint not only limits the conformational space for effective switching between functional states, but also selects the local interactions for realizing the corresponding biological function. Therefore, the topological constraint provides a way for breaking the binding symmetry and reaching the functional specificity. The simulation results also provide several predictions that qualitatively and quantitatively consistent with experiments. Importantly, the K48 linkage model successfully predicted intermediate states. The resulting multi-state energy landscape was further employed to reconcile the seemingly contradictory experimental data on the conformational equilibrium of K48-diUb. Our results further suggest that hydrophobic interactions are dominant in the functional landscapes of K6-, K11-, K33- and K48 diUbs, while electrostatic interactions play a more important role in the functional landscapes of K27, K29, K63 and linear linkages.

  5. Tandem UIMs confer Lys48 ubiquitin chain substrate preference to deubiquitinase USP25

    PubMed Central

    Kawaguchi, Kohei; Uo, Kazune; Tanaka, Toshiaki; Komada, Masayuki

    2017-01-01

    Ubiquitin-specific protease (USP) 25, belonging to the USP family of deubiquitinases, harbors two tandem ubiquitin-interacting motifs (UIMs), a ~20-amino-acid α-helical stretch that binds to ubiquitin. However, the role of the UIMs in USP25 remains unclear. Here we show that the tandem UIM region binds to Lys48-, but not Lys63-, linked ubiquitin chains, where the two UIMs played a critical and cooperative role. Purified USP25 exhibited higher ubiquitin isopeptidase activity to Lys48-, than to Lys63-, linked ubiquitin chains. Mutations that disrupted the ubiquitin-binding ability of the tandem UIMs resulted in a reduced ubiquitin isopeptidase activity of USP25, suggesting a role for the UIMs in exerting the full catalytic activity of USP25. Moreover, when mutations that convert the binding preference from Lys48- to Lys63-linked ubiquitin chains were introduced into the tandem UIM region, the USP25 mutants acquired elevated and reduced isopeptidase activity toward Lys63- and Lys48-linked ubiquitin chains, respectively. These results suggested that the binding preference of the tandem UIMs toward Lys48-linked ubiquitin chains contributes not only to the full catalytic activity but also to the ubiquitin chain substrate preference of USP25, possibly by selectively holding the Lys48-linked ubiquitin chain substrates in the proximity of the catalytic core. PMID:28327663

  6. LRRK2 phosphorylates pre-synaptic N-ethylmaleimide sensitive fusion (NSF) protein enhancing its ATPase activity and SNARE complex disassembling rate.

    PubMed

    Belluzzi, Elisa; Gonnelli, Adriano; Cirnaru, Maria-Daniela; Marte, Antonella; Plotegher, Nicoletta; Russo, Isabella; Civiero, Laura; Cogo, Susanna; Carrion, Maria Perèz; Franchin, Cinzia; Arrigoni, Giorgio; Beltramini, Mariano; Bubacco, Luigi; Onofri, Franco; Piccoli, Giovanni; Greggio, Elisa

    2016-01-13

    Lrrk2, a gene linked to Parkinson's disease, encodes a large scaffolding protein with kinase and GTPase activities implicated in vesicle and cytoskeletal-related processes. At the presynaptic site, LRRK2 associates with synaptic vesicles through interaction with a panel of presynaptic proteins. Here, we show that LRRK2 kinase activity influences the dynamics of synaptic vesicle fusion. We therefore investigated whether LRRK2 phosphorylates component(s) of the exo/endocytosis machinery. We have previously observed that LRRK2 interacts with NSF, a hexameric AAA+ ATPase that couples ATP hydrolysis to the disassembling of SNARE proteins allowing them to enter another fusion cycle during synaptic exocytosis. Here, we demonstrate that NSF is a substrate of LRRK2 kinase activity. LRRK2 phosphorylates full-length NSF at threonine 645 in the ATP binding pocket of D2 domain. Functionally, NSF phosphorylated by LRRK2 displays enhanced ATPase activity and increased rate of SNARE complex disassembling. Substitution of threonine 645 with alanine abrogates LRRK2-mediated increased ATPase activity. Given that the most common Parkinson's disease LRRK2 G2019S mutation displays increased kinase activity, our results suggest that mutant LRRK2 may impair synaptic vesicle dynamics via aberrant phosphorylation of NSF.

  7. Integrated regulation of PIKK-mediated stress responses by AAA+ proteins RUVBL1 and RUVBL2

    PubMed Central

    Izumi, Natsuko; Yamashita, Akio; Ohno, Shigeo

    2012-01-01

    Proteins of the phosphatidylinositol 3-kinase-related protein kinase (PIKK) family are activated by various cellular stresses, including DNA damage, premature termination codon and nutritional status, and induce appropriate cellular responses. The importance of PIKK functions in the maintenance of genome integrity, accurate gene expression and the proper control of cell growth/proliferation is established. Recently, ATPase associated diverse cellular activities (AAA+) proteins RUVBL1 and RUVBL2 (RUVBL1/2) have been shown to be common regulators of PIKKs. The RUVBL1/2 complex regulates PIKK-mediated stress responses through physical interactions with PIKKs and by controlling PIKK mRNA levels. In this review, the functions of PIKKs in stress responses are outlined and the physiological significance of the integrated regulation of PIKKs by the RUVBL1/2 complex is presented. We also discuss a putative “PIKK regulatory chaperone complex” including other PIKK regulators, Hsp90 and the Tel2 complex. PMID:22540023

  8. Ubiquitin ligase parkin promotes Mdm2-arrestin interaction but inhibits arrestin ubiquitination

    PubMed Central

    Ahmed, M. Rafiuddin; Zhan, Xuanzhi; Song, Xiufeng; Kook, Seunghyi; Gurevich, Vsevolod V.; Gurevich, Eugenia V.

    2011-01-01

    Numerous mutations in E3 ubiquitin ligase parkin were shown to associate with familial Parkinson's disease. Here we show that parkin binds arrestins, versatile regulators of cell signaling. Arrestin-parkin interaction was demonstrated by coimmuno-precipitation of endogenous proteins from brain tissue, and shown to be direct using purified proteins. Parkin binding enhances arrestin interactions with another E3 ubiquitin ligase, Mdm2, apparently by shifting arrestin conformational equilibrium to the basal state preferred by Mdm2. Although Mdm2 was reported to ubiquitinate arrestins, parkin-dependent increase in Mdm2 binding dramatically reduces the ubiquitination of both non-visual arrestins, basal and stimulated by receptor activation, without affecting receptor internalization. Several disease-associated parkin mutations differentially affect the stimulation of Mdm2 binding. All parkin mutants tested effectively suppress arrestin ubiquitination, suggesting that bound parkin shields arrestin lysines targeted by Mdm2. Parkin binding to arrestins along with its effects on arrestin interaction with Mdm2 and ubiquitination is a novel function of this protein with implications for Parkinson's disease pathology. PMID:21466165

  9. Ubiquitin ligase parkin promotes Mdm2-arrestin interaction but inhibits arrestin ubiquitination.

    PubMed

    Ahmed, M Rafiuddin; Zhan, Xuanzhi; Song, Xiufeng; Kook, Seunghyi; Gurevich, Vsevolod V; Gurevich, Eugenia V

    2011-05-10

    Numerous mutations in E3 ubiquitin ligase parkin were shown to associate with familial Parkinson's disease. Here we show that parkin binds arrestins, versatile regulators of cell signaling. Arrestin-parkin interaction was demonstrated by coimmunoprecipitation of endogenous proteins from brain tissue and shown to be direct using purified proteins. Parkin binding enhances arrestin interactions with another E3 ubiquitin ligase, Mdm2, apparently by shifting arrestin conformational equilibrium to the basal state preferred by Mdm2. Although Mdm2 was reported to ubiquitinate arrestins, parkin-dependent increase in Mdm2 binding dramatically reduces the ubiquitination of both nonvisual arrestins, basal and stimulated by receptor activation, without affecting receptor internalization. Several disease-associated parkin mutations differentially affect the stimulation of Mdm2 binding. All parkin mutants tested effectively suppress arrestin ubiquitination, suggesting that bound parkin shields arrestin lysines targeted by Mdm2. Parkin binding to arrestins along with its effects on arrestin interaction with Mdm2 and ubiquitination is a novel function of this protein with implications for Parkinson's disease pathology.

  10. Mechanism of Enzyme Repair by the AAA+ Chaperone Rubisco Activase.

    PubMed

    Bhat, Javaid Y; Miličić, Goran; Thieulin-Pardo, Gabriel; Bracher, Andreas; Maxwell, Andrew; Ciniawsky, Susanne; Mueller-Cajar, Oliver; Engen, John R; Hartl, F Ulrich; Wendler, Petra; Hayer-Hartl, Manajit

    2017-09-07

    How AAA+ chaperones conformationally remodel specific target proteins in an ATP-dependent manner is not well understood. Here, we investigated the mechanism of the AAA+ protein Rubisco activase (Rca) in metabolic repair of the photosynthetic enzyme Rubisco, a complex of eight large (RbcL) and eight small (RbcS) subunits containing eight catalytic sites. Rubisco is prone to inhibition by tight-binding sugar phosphates, whose removal is catalyzed by Rca. We engineered a stable Rca hexamer ring and analyzed its functional interaction with Rubisco. Hydrogen/deuterium exchange and chemical crosslinking showed that Rca structurally destabilizes elements of the Rubisco active site with remarkable selectivity. Cryo-electron microscopy revealed that Rca docks onto Rubisco over one active site at a time, positioning the C-terminal strand of RbcL, which stabilizes the catalytic center, for access to the Rca hexamer pore. The pulling force of Rca is fine-tuned to avoid global destabilization and allow for precise enzyme repair. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Functional characterization of rpn3 uncovers a distinct 19S proteasomal subunit requirement for ubiquitin-dependent proteolysis of cell cycle regulatory proteins in budding yeast.

    PubMed

    Bailly, E; Reed, S I

    1999-10-01

    By selectively eliminating ubiquitin-conjugated proteins, the 26S proteasome plays a pivotal role in a large variety of cellular regulatory processes, particularly in the control of cell cycle transitions. Access of ubiquitinated substrates to the inner catalytic chamber within the 20S core particle is mediated by the 19S regulatory particle (RP), whose subunit composition in budding yeast has been recently elucidated. In this study, we have investigated the cell cycle defects resulting from conditional inactivation of one of these RP components, the essential non-ATPase Rpn3/Sun2 subunit. Using temperature-sensitive mutant alleles, we show that rpn3 mutations do not prevent the G(1)/S transition but cause a metaphase arrest, indicating that the essential Rpn3 function is limiting for mitosis. rpn3 mutants appear severely compromised in the ubiquitin-dependent proteolysis of several physiologically important proteasome substrates. Thus, RPN3 function is required for the degradation of the G(1)-phase cyclin Cln2 targeted by SCF; the S-phase cyclin Clb5, whose ubiquitination is likely to involve a combination of E3 (ubiquitin protein ligase) enzymes; and anaphase-promoting complex targets, such as the B-type cyclin Clb2 and the anaphase inhibitor Pds1. Our results indicate that the Pds1 degradation defect of the rpn3 mutants most likely accounts for the metaphase arrest phenotype observed. Surprisingly, but consistent with the lack of a G(1) arrest phenotype in thermosensitive rpn3 strains, the Cdk inhibitor Sic1 exhibits a short half-life regardless of the RPN3 genotype. In striking contrast, Sic1 turnover is severely impaired by a temperature-sensitive mutation in RPN12/NIN1, encoding another essential RP subunit. While other interpretations are possible, these data strongly argue for the requirement of distinct RP subunits for efficient proteolysis of specific cell cycle regulators. The potential implications of these data are discussed in the context of possible

  12. Advanced, Analytic, Automated (AAA) Measurement of Engagement During Learning

    PubMed Central

    D’Mello, Sidney; Dieterle, Ed; Duckworth, Angela

    2017-01-01

    It is generally acknowledged that engagement plays a critical role in learning. Unfortunately, the study of engagement has been stymied by a lack of valid and efficient measures. We introduce the advanced, analytic, and automated (AAA) approach to measure engagement at fine-grained temporal resolutions. The AAA measurement approach is grounded in embodied theories of cognition and affect, which advocate a close coupling between thought and action. It uses machine-learned computational models to automatically infer mental states associated with engagement (e.g., interest, flow) from machine-readable behavioral and physiological signals (e.g., facial expressions, eye tracking, click-stream data) and from aspects of the environmental context. We present15 case studies that illustrate the potential of the AAA approach for measuring engagement in digital learning environments. We discuss strengths and weaknesses of the AAA approach, concluding that it has significant promise to catalyze engagement research. PMID:29038607

  13. Advanced, Analytic, Automated (AAA) Measurement of Engagement During Learning.

    PubMed

    D'Mello, Sidney; Dieterle, Ed; Duckworth, Angela

    2017-01-01

    It is generally acknowledged that engagement plays a critical role in learning. Unfortunately, the study of engagement has been stymied by a lack of valid and efficient measures. We introduce the advanced, analytic, and automated (AAA) approach to measure engagement at fine-grained temporal resolutions. The AAA measurement approach is grounded in embodied theories of cognition and affect, which advocate a close coupling between thought and action. It uses machine-learned computational models to automatically infer mental states associated with engagement (e.g., interest, flow) from machine-readable behavioral and physiological signals (e.g., facial expressions, eye tracking, click-stream data) and from aspects of the environmental context. We present15 case studies that illustrate the potential of the AAA approach for measuring engagement in digital learning environments. We discuss strengths and weaknesses of the AAA approach, concluding that it has significant promise to catalyze engagement research.

  14. The Weekend Effect in AAA Repair.

    PubMed

    O'Donnell, Thomas F X; Li, Chun; Swerdlow, Nicholas J; Liang, Patric; Pothof, Alexander B; Patel, Virendra I; Giles, Kristina A; Malas, Mahmoud B; Schermerhorn, Marc L

    2018-04-18

    Conflicting reports exist regarding whether patients undergoing surgery on the weekend or later in the week experience worse outcomes. We identified patients undergoing abdominal aortic aneurysm (AAA) repair in the Vascular Quality Initiative between 2009 and 2017 [n = 38,498; 30,537 endovascular aneurysm repair (EVAR) and 7961 open repair]. We utilized mixed effects logistic regression to compare adjusted rates of perioperative mortality based on the day of repair. Tuesday was the most common day for elective repair (22%), Friday for symptomatic repairs (20%), and ruptured aneurysms were evenly distributed. Patients with ruptured aneurysms experienced similar adjusted mortality whether they underwent repair during the week or on weekends. Transfers of ruptured AAA were more common over the weekend. However, patients transferred on the weekend experienced higher adjusted mortality than those transferred during the week (28% vs 21%, P = 0.02), despite the fact that during the week, transferred patients actually experienced lower adjusted mortality than patients treated at the index hospital (21% vs 31%, P < 0.01). Among symptomatic patients, adjusted mortality was higher for those undergoing repair over the weekend than those whose surgeries were delayed until a weekday (7.9% vs 3.1%, P = 0.02). Adjusted mortality in elective cases did not vary across the days of the week. Results were consistent between open and EVAR patients. We found no evidence of a weekend effect for ruptured or symptomatic AAA repair. However, patients with ruptured AAA transferred on the weekend experienced higher mortality than those transferred during the week, suggesting a need for improvement in weekend transfer processes.

  15. Regulation of T cell receptor complex-mediated signaling by ubiquitin and ubiquitin-like modifications.

    PubMed

    Friend, Samantha F; Deason-Towne, Francina; Peterson, Lisa K; Berger, Allison J; Dragone, Leonard L

    2014-01-01

    Post-translational protein modifications are a dynamic method of regulating protein function in response to environmental signals. As with any cellular process, T cell receptor (TCR) complex-mediated signaling is highly regulated, since the strength and duration of TCR-generated signals governs T cell development and activation. While regulation of TCR complex-mediated signaling by phosphorylation has been well studied, regulation by ubiquitin and ubiquitin-like modifiers is still an emerging area of investigation. This review will examine how ubiquitin, E3 ubiquitin ligases, and other ubiquitin-like modifications such as SUMO and NEDD8 regulate TCR complex-mediated signaling.

  16. Regulation of T cell receptor complex-mediated signaling by ubiquitin and ubiquitin-like modifications

    PubMed Central

    Friend, Samantha F; Deason-Towne, Francina; Peterson, Lisa K; Berger, Allison J; Dragone, Leonard L

    2014-01-01

    Post-translational protein modifications are a dynamic method of regulating protein function in response to environmental signals. As with any cellular process, T cell receptor (TCR) complex-mediated signaling is highly regulated, since the strength and duration of TCR-generated signals governs T cell development and activation. While regulation of TCR complex-mediated signaling by phosphorylation has been well studied, regulation by ubiquitin and ubiquitin-like modifiers is still an emerging area of investigation. This review will examine how ubiquitin, E3 ubiquitin ligases, and other ubiquitin-like modifications such as SUMO and NEDD8 regulate TCR complex-mediated signaling. PMID:25628960

  17. Structural Characterization of a Newly Identified Component of α-Carboxysomes: The AAA+ Domain Protein CsoCbbQ

    DOE PAGES

    Sutter, Markus; Roberts, Evan W.; Gonzalez, Raul C.; ...

    2015-11-05

    Carboxysomes are bacterial microcompartments that enhance carbon fixation by concentrating ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO) and its substrate CO 2 within a proteinaceous shell. They are found in all cyanobacteria, some purple photoautotrophs and many chemoautotrophic bacteria. Carboxysomes consist of a protein shell that encapsulates several hundred molecules of RuBisCO, and contain carbonic anhydrase and other accessory proteins. Genes coding for carboxysome shell components and the encapsulated proteins are typically found together in an operon. The α-carboxysome operon is embedded in a cluster of additional, conserved genes that are presumably related to its function. In many chemoautotrophs, products of the expanded carboxysomemore » locus include CbbO and CbbQ, a member of the AAA+ domain superfamily. We bioinformatically identified subtypes of CbbQ proteins and show that their genes frequently co-occur with both Form IA and Form II RuBisCO. The α-carboxysome-associated ortholog, CsoCbbQ, from Halothiobacillus neapolitanus forms a hexamer in solution and hydrolyzes ATP. The crystal structure shows that CsoCbbQ is a hexamer of the typical AAA+ domain; the additional C-terminal domain, diagnostic of the CbbQ subfamily, structurally fills the inter-monomer gaps, resulting in a distinctly hexagonal shape. Finally, we show that CsoCbbQ interacts with CsoCbbO and is a component of the carboxysome shell, the first example of ATPase activity associated with a bacterial microcompartment.« less

  18. Tetrahydrocarbazoles are a novel class of potent P-type ATPase inhibitors with antifungal activity

    PubMed Central

    Bublitz, Maike; Kjellerup, Lasse; Cohrt, Karen O’Hanlon; Gordon, Sandra; Mortensen, Anne Louise; Clausen, Johannes D.; Pallin, Thomas David; Hansen, John Bondo; Fuglsang, Anja Thoe; Dalby-Brown, William

    2018-01-01

    We have identified a series of tetrahydrocarbazoles as novel P-type ATPase inhibitors. Using a set of rationally designed analogues, we have analyzed their structure-activity relationship using functional assays, crystallographic data and computational modeling. We found that tetrahydrocarbazoles inhibit adenosine triphosphate (ATP) hydrolysis of the fungal H+-ATPase, depolarize the fungal plasma membrane and exhibit broad-spectrum antifungal activity. Comparative inhibition studies indicate that many tetrahydrocarbazoles also inhibit the mammalian Ca2+-ATPase (SERCA) and Na+,K+-ATPase with an even higher potency than Pma1. We have located the binding site for this compound class by crystallographic structure determination of a SERCA-tetrahydrocarbazole complex to 3.0 Å resolution, finding that the compound binds to a region above the ion inlet channel of the ATPase. A homology model of the Candida albicans H+-ATPase based on this crystal structure, indicates that the compounds could bind to the same pocket and identifies pocket extensions that could be exploited for selectivity enhancement. The results of this study will aid further optimization towards selective H+-ATPase inhibitors as a new class of antifungal agents. PMID:29293507

  19. The Mitochondrial m-AAA Protease Prevents Demyelination and Hair Greying.

    PubMed

    Wang, Shuaiyu; Jacquemyn, Julie; Murru, Sara; Martinelli, Paola; Barth, Esther; Langer, Thomas; Niessen, Carien M; Rugarli, Elena I

    2016-12-01

    The m-AAA protease preserves proteostasis of the inner mitochondrial membrane. It ensures a functional respiratory chain, by controlling the turnover of respiratory complex subunits and allowing mitochondrial translation, but other functions in mitochondria are conceivable. Mutations in genes encoding subunits of the m-AAA protease have been linked to various neurodegenerative diseases in humans, such as hereditary spastic paraplegia and spinocerebellar ataxia. While essential functions of the m-AAA protease for neuronal survival have been established, its role in adult glial cells remains enigmatic. Here, we show that deletion of the highly expressed subunit AFG3L2 in mature mouse oligodendrocytes provokes early-on mitochondrial fragmentation and swelling, as previously shown in neurons, but causes only late-onset motor defects and myelin abnormalities. In contrast, total ablation of the m-AAA protease, by deleting both Afg3l2 and its paralogue Afg3l1, triggers progressive motor dysfunction and demyelination, owing to rapid oligodendrocyte cell death. Surprisingly, the mice showed premature hair greying, caused by progressive loss of melanoblasts that share a common developmental origin with Schwann cells and are targeted in our experiments. Thus, while both neurons and glial cells are dependant on the m-AAA protease for survival in vivo, complete ablation of the complex is necessary to trigger death of oligodendrocytes, hinting to cell-autonomous thresholds of vulnerability to m-AAA protease deficiency.

  20. Regulation of synaptic structure by ubiquitin C-terminal hydrolase L1.

    PubMed

    Cartier, Anna E; Djakovic, Stevan N; Salehi, Afshin; Wilson, Scott M; Masliah, Eliezer; Patrick, Gentry N

    2009-06-17

    Ubiquitin C-terminal hydrolase L1 (UCH-L1) is a deubiquitinating enzyme that is selectively and abundantly expressed in the brain, and its activity is required for normal synaptic function. Here, we show that UCH-L1 functions in maintaining normal synaptic structure in hippocampal neurons. We found that UCH-L1 activity is rapidly upregulated by NMDA receptor activation, which leads to an increase in the levels of free monomeric ubiquitin. Conversely, pharmacological inhibition of UCH-L1 significantly reduces monomeric ubiquitin levels and causes dramatic alterations in synaptic protein distribution and spine morphology. Inhibition of UCH-L1 activity increases spine size while decreasing spine density. Furthermore, there is a concomitant increase in the size of presynaptic and postsynaptic protein clusters. Interestingly, however, ectopic expression of ubiquitin restores normal synaptic structure in UCH-L1-inhibited neurons. These findings point to a significant role of UCH-L1 in synaptic remodeling, most likely by modulating free monomeric ubiquitin levels in an activity-dependent manner.

  1. Chemotherapy inhibits skeletal muscle ubiquitin-proteasome-dependent proteolysis.

    PubMed

    Tilignac, Thomas; Temparis, Sandrine; Combaret, Lydie; Taillandier, Daniel; Pouch, Marie-Noëlle; Cervek, Matjaz; Cardenas, Diana M; Le Bricon, Thierry; Debiton, Eric; Samuels, Susan E; Madelmont, Jean-Claude; Attaix, Didier

    2002-05-15

    Chemotherapy has cachectic effects, but it is unknown whether cytostatic agents alter skeletal muscle proteolysis. We hypothesized that chemotherapy-induced alterations in protein synthesis should result in the increased incidence of abnormal proteins, which in turn should stimulate ubiquitin-proteasome-dependent proteolysis. The effects of the nitrosourea cystemustine were investigated in skeletal muscles from both healthy and colon 26 adenocarcinoma-bearing mice, an appropriate model for testing the impact of cytostatic agents. Muscle wasting was seen in both groups of mice 4 days after a single cystemustine injection, and the drug further increased the loss of muscle proteins already apparent in tumor-bearing animals. Cystemustine cured the tumor-bearing mice with 100% efficacy. Surprisingly, within 11 days of treatment, rates of muscle proteolysis progressively decreased below basal levels observed in healthy control mice and contributed to the cessation of muscle wasting. Proteasome-dependent proteolysis was inhibited by mechanisms that include reduced mRNA levels for 20S and 26S proteasome subunits, decreased protein levels of 20S proteasome subunits and the S14 non-ATPase subunit of the 26S proteasome, and impaired chymotrypsin- and trypsin-like activities of the enzyme. A combination of cisplatin and ifosfamide, two drugs that are widely used in the treatment of cancer patients, also depressed the expression of proteasomal subunits in muscles from rats bearing the MatB adenocarcinoma below basal levels. Thus, a down-regulation of ubiquitin-proteasome-dependent proteolysis is observed with various cytostatic agents and contributes to reverse the chemotherapy-induced muscle wasting.

  2. The emerging complexity of ubiquitin architecture.

    PubMed

    Ohtake, Fumiaki; Tsuchiya, Hikaru

    2017-02-01

    Ubiquitylation is an essential post-translational modification (PTM) of proteins with diverse cellular functions. Polyubiquitin chains with different topologies have different cellular roles, and are referred to as a 'ubiquitin code'. Recent studies have begun to reveal that more complex ubiquitin architectures function as important signals in several biological pathways. These include PTMs of ubiquitin itself, such as acetylated ubiquitin and phospho-ubiquitin. Moreover, important roles for heterogeneous polyubiquitin chains, such as mixed or branched chains, have been reported, which significantly increase the diversity of the ubiquitin code. In this review, we describe mass spectrometry-based methods to characterize the ubiquitin signal. We also describe recent advances in our understanding of complex ubiquitin architectures, including our own findings concerning ubiquitin acetylation and branching within polyubiquitin chains. © The Authors 2016. Published by Oxford University Press on behalf of the Japanese Biochemical Society. All rights reserved.

  3. APC-PCI complex levels for screening of AAA in patients with peripheral atherosclerosis.

    PubMed

    Zarrouk, Moncef; Keshavarz, Kave; Lindblad, Bengt; Gottsäter, Anders

    2013-11-01

    To evaluate the use of activated protein C-protein C inhibitor (APC-PCI) complex levels for detection of abdominal aortic aneurysm (AAA) in patients with peripheral atherosclerotic disease (PAD). APC-PCI levels and aortic diameter evaluated in 511 PAD patients without previously known AAA followed-up concerning survival for 4.8(0.5) years. AAA was found in 13% of patients. Aortic diameter correlated (r = 0.138; p = 0.002) with APC-PCI levels which were higher (0.40[0.45] vs. 0.30[0.49] μg/l; p = 0.004) in patients with AAA. This difference persisted in multivariate analysis (p = 0.029). A threshold value of APC-PCI ≥0.15 μg/L showed a specificity of 11%, a sensitivity of 97% and a negative predictive value of 96% for an AAA diagnosis. APC-PCI levels were higher in patients with AAA, and showed high sensitivity but low specificity for the diagnosis and can therefore not be considered as a screening tool in PAD patients. An AAA prevalence of 13% in patients with PAD indicates a need for AAA screening within this population.

  4. Inhibition of early AAA formation by aortic intraluminal pentagalloyl glucose (PGG) infusion in a novel porcine AAA model.

    PubMed

    Kloster, Brian O; Lund, Lars; Lindholt, Jes S

    2016-05-01

    The vast majority of abdominal aortic aneurysms found in screening programs are small, and as no effective treatment exits, many will expand until surgery is indicated. Therefore, it remains intriguing to develop a safe and low cost treatment of these small aneurysms, that is able to prevent or delay their expansion. In this study, we investigated whether intraluminal delivered pentagalloyl glucose (PGG) can impair the early AAA development in a porcine model. The infrarenal aorta was exposed in thirty pigs. Twenty underwent an elastase based AAA inducing procedure and ten of these received an additional intraluminal PGG infusion. The final 10 were sham operated and served as controls. All pigs who only had an elastase infusion developed macroscopically expanding AAAs. In pigs treated with an additional PGG infusion the growth rate of the AP-diameter rapidly returned to physiological values as seen in the control group. In the elastase group, histology revealed more or less complete resolution of the elastic lamellae in the media while they were more abundant, coherent and structurally organized in the PGG group. The control group displayed normal physiological growth and histology. In our model, intraluminal delivered PGG is able to penetrate the aortic wall from the inside and impair the early AAA development by stabilizing the elastic lamellae and preserving their integrity. The principle holds a high clinical potential if it can be translated to human conditions, since it, if so, potentially could represent a new drug for stabilizing small abdominal aneurysms.

  5. Characterization of the modular design of the autolysin/adhesin Aaa from Staphylococcus aureus.

    PubMed

    Hirschhausen, Nina; Schlesier, Tim; Peters, Georg; Heilmann, Christine

    2012-01-01

    Staphylococcus aureus is a frequent cause of serious and life-threatening infections, such as endocarditis, osteomyelitis, pneumonia, and sepsis. Its adherence to various host structures is crucial for the establishment of diseases. Adherence may be mediated by a variety of adhesins, among them the autolysin/adhesins Atl and Aaa. Aaa is composed of three N-terminal repeated sequences homologous to a lysin motif (LysM) that can confer cell wall attachment and a C-terminally located cysteine, histidine-dependent amidohydrolase/peptidase (CHAP) domain having bacteriolytic activity in many proteins. Here, we show by surface plasmon resonance that the LysM domain binds to fibrinogen, fibronectin, and vitronectin respresenting a novel adhesive function for this domain. Moreover, we demonstrated that the CHAP domain not only mediates the bacteriolytic activity, but also adherence to fibrinogen, fibronectin, and vitronectin, thus demonstrating for the first time an adhesive function for this domain. Adherence of an S. aureus aaa mutant and the complemented aaa mutant is slightly decreased and increased, respectively, to vitronectin, but not to fibrinogen and fibronectin, which might at least in part result from an increased expression of atl in the aaa mutant. Furthermore, an S. aureus atl mutant that showed enhanced adherence to fibrinogen, fibronectin, and endothelial cells also demonstrated increased aaa expression and production of Aaa. Thus, the redundant functions of Aaa and Atl might at least in part be interchangeable. Lastly, RT-PCR and zymographic analysis revealed that aaa is negatively regulated by the global virulence gene regulators agr and SarA. We identified novel functions for two widely distributed protein domains, LysM and CHAP, i.e. the adherence to the extracellular matrix proteins fibrinogen, fibronectin, and vitronectin. The adhesive properties of Aaa might promote S. aureus colonization of host extracellular matrix and tissue, suggesting a role for

  6. Lys48 ubiquitination during the intraerythrocytic cycle of the rodent malaria parasite, Plasmodium chabaudi.

    PubMed

    González-López, Lorena; Carballar-Lejarazú, Rebeca; Arrevillaga Boni, Gerardo; Cortés-Martínez, Leticia; Cázares-Raga, Febe Elena; Trujillo-Ocampo, Abel; Rodríguez, Mario H; James, Anthony A; Hernández-Hernández, Fidel de la Cruz

    2017-01-01

    Ubiquitination tags proteins for different functions within the cell. One of the most abundant and studied ubiquitin modification is the Lys48 polyubiquitin chain that modifies proteins for their destruction by proteasome. In Plasmodium is proposed that post-translational regulation is fundamental for parasite development during its complex life-cycle; thus, the objective of this work was to analyze the ubiquitination during Plasmodium chabaudi intraerythrocytic stages. Ubiquitinated proteins were detected during intraerythrocytic stages of Plasmodium chabaudi by immunofluorescent microscopy, bidimensional electrophoresis (2-DE) combined with immunoblotting and mass spectrometry. All the studied stages presented protein ubiquitination and Lys48 polyubiquitination with more abundance during the schizont stage. Three ubiquitinated proteins were identified for rings, five for trophozoites and twenty for schizonts. Only proteins detected with a specific anti- Lys48 polyubiquitin antibody were selected for Mass Spectrometry analysis and two of these identified proteins were selected in order to detect the specific amino acid residues where ubiquitin is placed. Ubiquitinated proteins during the ring and trophozoite stages were related with the invasion process and in schizont proteins were related with nucleic acid metabolism, glycolysis and protein biosynthesis. Most of the ubiquitin detection was during the schizont stage and the Lys48 polyubiquitination during this stage was related to proteins that are expected to be abundant during the trophozoite stage. The evidence that these Lys48 polyubiquitinated proteins are tagged for destruction by the proteasome complex suggests that this type of post-translational modification is important in the regulation of protein abundance during the life-cycle and may also contribute to the parasite cell-cycle progression.

  7. Solution Dependence of the Collisional Activation of Ubiquitin [M+7H]7+ Ions

    PubMed Central

    Shi, Huilin; Atlasevich, Natalya; Merenbloom, Samuel I.; Clemmer, David E.

    2014-01-01

    The solution dependence of gas-phase unfolding for ubiquitin [M+7H]7+ ions has been studied by ion mobility spectrometry-mass spectrometry (IMS-MS). Different acidic water:methanol solutions are used to favor the native (N), more helical (A), or unfolded (U) solution states of ubiquitin. Unfolding of gas-phase ubiquitin ions is achieved by collisional heating and newly formed structures are examined by IMS. With an activation voltage of 100 V, a selected distribution of compact structures unfolds, forming three resolvable elongated states (E1-E3). The relative populations of these elongated structures depend strongly on the solution composition. Activation of compact ions from aqueous solutions known to favor N-state ubiquitin produces mostly the E1 type elongated state, whereas, activation of compact ions from methanol containing solutions that populate A-state ubiquitin favors the E3 elongated state. Presumably, this difference arises because of differences in precursor ion structures emerging from solution. Thus, it appears that information about solution populations can be retained after ionization, selection, and activation to produce the elongated states. These data as well as others are discussed. PMID:24658799

  8. Ubiquitination in Periodontal Disease: A Review.

    PubMed

    Tsuchida, Sachio; Satoh, Mamoru; Takiwaki, Masaki; Nomura, Fumio

    2017-07-10

    Periodontal disease (periodontitis) is a chronic inflammatory condition initiated by microbial infection that leads to gingival tissue destruction and alveolar bone resorption. The periodontal tissue's response to dental plaque is characterized by the accumulation of polymorphonuclear leukocytes, macrophages, and lymphocytes, all of which release inflammatory mediators and cytokines to orchestrate the immunopathogenesis of periodontal disease. Ubiquitination is achieved by a mechanism that involves a number of factors, including an ubiquitin-activating enzyme, ubiquitin-conjugating enzyme, and ubiquitin-protein ligase. Ubiquitination is a post-translational modification restricted to eukaryotes that are involved in essential host processes. The ubiquitin system has been implicated in the immune response, development, and programmed cell death. Increasing numbers of recent reports have provided evidence that many approaches are delivering promising reports for discovering the relationship between ubiquitination and periodontal disease. The scope of this review was to investigate recent progress in the discovery of ubiquitinated protein in diseased periodontium and to discuss the ubiquitination process in periodontal diseases.

  9. Non-degradative Ubiquitination of Protein Kinases

    PubMed Central

    Ball, K. Aurelia; Johnson, Jeffrey R.; Lewinski, Mary K.; Guatelli, John; Verschueren, Erik; Krogan, Nevan J.; Jacobson, Matthew P.

    2016-01-01

    Growing evidence supports other regulatory roles for protein ubiquitination in addition to serving as a tag for proteasomal degradation. In contrast to other common post-translational modifications, such as phosphorylation, little is known about how non-degradative ubiquitination modulates protein structure, dynamics, and function. Due to the wealth of knowledge concerning protein kinase structure and regulation, we examined kinase ubiquitination using ubiquitin remnant immunoaffinity enrichment and quantitative mass spectrometry to identify ubiquitinated kinases and the sites of ubiquitination in Jurkat and HEK293 cells. We find that, unlike phosphorylation, ubiquitination most commonly occurs in structured domains, and on the kinase domain, ubiquitination is concentrated in regions known to be important for regulating activity. We hypothesized that ubiquitination, like other post-translational modifications, may alter the conformational equilibrium of the modified protein. We chose one human kinase, ZAP-70, to simulate using molecular dynamics with and without a monoubiquitin modification. In Jurkat cells, ZAP-70 is ubiquitinated at several sites that are not sensitive to proteasome inhibition and thus may have other regulatory roles. Our simulations show that ubiquitination influences the conformational ensemble of ZAP-70 in a site-dependent manner. When monoubiquitinated at K377, near the C-helix, the active conformation of the ZAP-70 C-helix is disrupted. In contrast, when monoubiquitinated at K476, near the kinase hinge region, an active-like ZAP-70 C-helix conformation is stabilized. These results lead to testable hypotheses that ubiquitination directly modulates kinase activity, and that ubiquitination is likely to alter structure, dynamics, and function in other protein classes as well. PMID:27253329

  10. A MUB E2 structure reveals E1 selectivity between cognate ubiquitin E2s in eukaryotes

    NASA Astrophysics Data System (ADS)

    Lu, Xiaolong; Malley, Konstantin R.; Brenner, Caitlin C.; Koroleva, Olga; Korolev, Sergey; Downes, Brian P.

    2016-08-01

    Ubiquitin (Ub) is a protein modifier that controls processes ranging from protein degradation to endocytosis, but early-acting regulators of the three-enzyme ubiquitylation cascade are unknown. Here we report that the prenylated membrane-anchored ubiquitin-fold protein (MUB) is an early-acting regulator of subfamily-specific E2 activation. An AtMUB3:AtUBC8 co-crystal structure defines how MUBs inhibit E2~Ub formation using a combination of E2 backside binding and a MUB-unique lap-bar loop to block E1 access. Since MUBs tether Arabidopsis group VI E2 enzymes (related to HsUbe2D and ScUbc4/5) to the plasma membrane, and inhibit E2 activation at physiological concentrations, they should function as potent plasma membrane localized regulators of Ub chain synthesis in eukaryotes. Our findings define a biochemical function for MUB, a family of highly conserved Ub-fold proteins, and provide an example of selective activation between cognate Ub E2s, previously thought to be constitutively activated by E1s.

  11. Ubiquitin in Motion: Structural Studies of the Ubiquitin-Conjugating Enzyme~Ubiquitin Conjugate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pruneda, Jonathan N.; Stoll, Kate E.; Bolton, Laura J.

    2011-03-15

    Ubiquitination of proteins provides a powerful and versatile post-translational signal in the eukaryotic cell. The formation of a thioester bond between ubiquitin (Ub) and the active site of a ubiquitin-conjugating enzyme (E2) is critical for the transfer of Ub to substrates. Assembly of a functional ubiquitin ligase (E3) complex poised for Ub transfer involves recognition and binding of an E2~Ub conjugate. Therefore, full characterization of the structure and dynamics of E2~Ub conjugates is required for further mechanistic understanding of Ub transfer reactions. Here we present characterization of the dynamic behavior of E2~Ub conjugates of two human enzymes, UbcH5c~Ub and Ubc13~Ub,more » in solution as determined by nuclear magnetic resonance and small-angle X-ray scattering. Within each conjugate, Ub retains great flexibility with respect to the E2, indicative of highly dynamic species that adopt manifold orientations. The population distribution of Ub conformations is dictated by the identity of the E2: the UbcH5c~Ub conjugate populates an array of extended conformations, and the population of Ubc13~Ub conjugates favors a closed conformation in which the hydrophobic surface of Ub faces helix 2 of Ubc13. Finally, we propose that the varied conformations adopted by Ub represent available binding modes of the E2~Ub species and thus provide insight into the diverse E2~Ub protein interactome, particularly with regard to interaction with Ub ligases.« less

  12. Ubiquitin-specific Protease 11 (USP11) Deubiquitinates Hybrid Small Ubiquitin-like Modifier (SUMO)-Ubiquitin Chains to Counteract RING Finger Protein 4 (RNF4)*

    PubMed Central

    Hendriks, Ivo A.; Schimmel, Joost; Eifler, Karolin; Olsen, Jesper V.; Vertegaal, Alfred C. O.

    2015-01-01

    Ring finger protein 4 (RNF4) is a SUMO-targeted ubiquitin E3 ligase with a pivotal function in the DNA damage response (DDR). SUMO interaction motifs (SIMs) in the N-terminal part of RNF4 tightly bind to SUMO polymers, and RNF4 can ubiquitinate these polymers in vitro. Using a proteomic approach, we identified the deubiquitinating enzyme ubiquitin-specific protease 11 (USP11), a known DDR-component, as a functional interactor of RNF4. USP11 can deubiquitinate hybrid SUMO-ubiquitin chains to counteract RNF4. SUMO-enriched nuclear bodies are stabilized by USP11, which functions downstream of RNF4 as a counterbalancing factor. In response to DNA damage induced by methyl methanesulfonate, USP11 could counteract RNF4 to inhibit the dissolution of nuclear bodies. Thus, we provide novel insight into cross-talk between ubiquitin and SUMO and uncover USP11 and RNF4 as a balanced SUMO-targeted ubiquitin ligase/protease pair with a role in the DDR. PMID:25969536

  13. AAA (2010) CAPD clinical practice guidelines: need for an update.

    PubMed

    DeBonis, David A

    2017-09-01

    Review and critique of the clinical value of the AAA CAPD guidance document in light of criteria for credible and useful guidance documents, as discussed by Field and Lohr. A qualitative review of the of the AAA CAPD guidelines using a framework by Field and Lohr to assess their relative value in supporting the assessment and management of CAPD referrals. Relevant literature available through electronic search tools and published texts were used along with the AAA CAPD guidance document and the chapter by Field and Lohr. The AAA document does not meet many of the key requirements discussed by Field and Lohr. It does not reflect the current literature, fails to help clinicians understand for whom auditory processing testing and intervention would be most useful, includes contradictory suggestions which reduce clarity and appears to avoid conclusions that might cast the CAPD construct in a negative light. It also does not include input from diverse affected groups. All of these reduce the document's credibility. The AAA CAPD guidance document will need to be updated and re-conceptualised in order to provide meaningful guidance for clinicians.

  14. Advanced, Analytic, Automated (AAA) Measurement of Engagement during Learning

    ERIC Educational Resources Information Center

    D'Mello, Sidney; Dieterle, Ed; Duckworth, Angela

    2017-01-01

    It is generally acknowledged that engagement plays a critical role in learning. Unfortunately, the study of engagement has been stymied by a lack of valid and efficient measures. We introduce the advanced, analytic, and automated (AAA) approach to measure engagement at fine-grained temporal resolutions. The AAA measurement approach is grounded in…

  15. Inhibition of the ubiquitin-proteasome system by natural products for cancer therapy.

    PubMed

    Tsukamoto, Sachiko; Yokosawa, Hideyoshi

    2010-08-01

    The ubiquitin-proteasome system plays a critical role in selective protein degradation and regulates almost all cellular events such as cell cycle progression, signal transduction, cell death, immune responses, metabolism, protein quality control, development, and neuronal function. The recent approval of bortezomib, a synthetic proteasome inhibitor, for the treatment of relapsed multiple myeloma has opened the way to the discovery of drugs targeting the proteasome and ubiquitinating and deubiquitinating enzymes as well as the delivery system. To date, various synthetic and natural products have been reported to inhibit the components of the ubiquitin-proteasome system. Here, we review natural products targeting the ubiquitin-proteasome system as well as synthetic compounds with potent inhibitory effects. Georg Thieme Verlag KG Stuttgart-New York.

  16. Molecularly Defined Nanostructures Based on a Novel AAA-DDD Triple Hydrogen-Bonding Motif.

    PubMed

    Papmeyer, Marcus; Vuilleumier, Clément A; Pavan, Giovanni M; Zhurov, Konstantin O; Severin, Kay

    2016-01-26

    A facile and flexible method for the synthesis of a new AAA-DDD triple hydrogen-bonding motif is described. Polytopic supramolecular building blocks with precisely oriented AAA and DDD groups are thus accessible in few steps. These building blocks were used for the assembly of large macrocycles featuring four AAA-DDD interactions and a macrobicyclic complex with a total of six AAA-DDD interactions. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. The m-AAA Protease Associated with Neurodegeneration Limits MCU Activity in Mitochondria.

    PubMed

    König, Tim; Tröder, Simon E; Bakka, Kavya; Korwitz, Anne; Richter-Dennerlein, Ricarda; Lampe, Philipp A; Patron, Maria; Mühlmeister, Mareike; Guerrero-Castillo, Sergio; Brandt, Ulrich; Decker, Thorsten; Lauria, Ines; Paggio, Angela; Rizzuto, Rosario; Rugarli, Elena I; De Stefani, Diego; Langer, Thomas

    2016-10-06

    Mutations in subunits of mitochondrial m-AAA proteases in the inner membrane cause neurodegeneration in spinocerebellar ataxia (SCA28) and hereditary spastic paraplegia (HSP7). m-AAA proteases preserve mitochondrial proteostasis, mitochondrial morphology, and efficient OXPHOS activity, but the cause for neuronal loss in disease is unknown. We have determined the neuronal interactome of m-AAA proteases in mice and identified a complex with C2ORF47 (termed MAIP1), which counteracts cell death by regulating the assembly of the mitochondrial Ca 2+ uniporter MCU. While MAIP1 assists biogenesis of the MCU subunit EMRE, the m-AAA protease degrades non-assembled EMRE and ensures efficient assembly of gatekeeper subunits with MCU. Loss of the m-AAA protease results in accumulation of constitutively active MCU-EMRE channels lacking gatekeeper subunits in neuronal mitochondria and facilitates mitochondrial Ca 2+ overload, mitochondrial permeability transition pore opening, and neuronal death. Together, our results explain neuronal loss in m-AAA protease deficiency by deregulated mitochondrial Ca 2+ homeostasis. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. An AAA-DDD triply hydrogen-bonded complex easily accessible for supramolecular polymers.

    PubMed

    Han, Yi-Fei; Chen, Wen-Qiang; Wang, Hong-Bo; Yuan, Ying-Xue; Wu, Na-Na; Song, Xiang-Zhi; Yang, Lan

    2014-12-15

    For a complementary hydrogen-bonded complex, when every hydrogen-bond acceptor is on one side and every hydrogen-bond donor is on the other, all secondary interactions are attractive and the complex is highly stable. AAA-DDD (A=acceptor, D=donor) is considered to be the most stable among triply hydrogen-bonded sequences. The easily synthesized and further derivatized AAA-DDD system is very desirable for hydrogen-bonded functional materials. In this case, AAA and DDD, starting from 4-methoxybenzaldehyde, were synthesized with the Hantzsch pyridine synthesis and Friedländer annulation reaction. The association constant determined by fluorescence titration in chloroform at room temperature is 2.09×10(7)  M(-1) . The AAA and DDD components are not coplanar, but form a V shape in the solid state. Supramolecular polymers based on AAA-DDD triply hydrogen bonded have also been developed. This work may make AAA-DDD triply hydrogen-bonded sequences easily accessible for stimuli-responsive materials. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Ubiquitin vinyl methyl ester binding orients the misaligned active site of the ubiquitin hydrolase UCHL1 into productive conformation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boudreaux, David A.; Maiti, Tushar K.; Davies, Christopher W.

    Ubiquitin carboxy-terminal hydrolase L1 (UCHL1) is a Parkinson disease-associated, putative cysteine protease found abundantly and selectively expressed in neurons. The crystal structure of apo UCHL1 showed that the active-site residues are not aligned in a canonical form, with the nucleophilic cysteine being 7.7 {angstrom} from the general base histidine, an arrangement consistent with an inactive form of the enzyme. Here we report the crystal structures of the wild type and two Parkinson disease-associated variants of the enzyme, S18Y and I93M, bound to a ubiquitin-based suicide substrate, ubiquitin vinyl methyl ester. These structures reveal that ubiquitin vinyl methyl ester binds primarilymore » at two sites on the enzyme, with its carboxy terminus at the active site and with its amino-terminal {beta}-hairpin at the distal site - a surface-exposed hydrophobic crevice 17 {angstrom} away from the active site. Binding at the distal site initiates a cascade of side-chain movements in the enzyme that starts at a highly conserved, surface-exposed phenylalanine and is relayed to the active site resulting in the reorientation and proximal placement of the general base within 4 {angstrom} of the catalytic cysteine, an arrangement found in productive cysteine proteases. Mutation of the distal-site, surface-exposed phenylalanine to alanine reduces ubiquitin binding and severely impairs the catalytic activity of the enzyme. These results suggest that the activity of UCHL1 may be regulated by its own substrate.« less

  20. Ubiquitin in health and disease.

    PubMed

    Mayer, R J; Arnold, J; László, L; Landon, M; Lowe, J

    1991-06-13

    Studies in recent years have shown that ubiquitin has increasingly important functions in eukaryotic cells; roles which were previously not suspected in healthy and diseased cells. The interplay between molecular pathological and molecular cell biological findings has indicated that ubiquitin may be pivotal in the cell stress response in chronic degenerative and viral diseases. Furthermore, the studies have led to the notion that ubiquitination may not only serve as a signal for nonlysosomal protein degradation but may be a unifying covalent protein modification for the major intracellular protein catabolic systems; these can act to identify proteins for cytosolic proteinases or direct intact and fragmented proteins into the lysosome system for breakdown to amino acids. This unifying role could explain why ubiquitin is restricted to eukaryotic cells, which possess extensive endomembrane systems in addition to a nuclear envelope. Protein ubiquitination is a feature of most filamentous inclusions and certain other intracellular conglomerates that are found in some degenerative and viral diseases. The detection of ubiquitin-protein conjugates is not of great diagnostic importance in these diseases. Protein ubiquitination is not only essential for the normal physiological turnover of proteins but appears to have been adapted as part of an intracellular surveillance system that can be activated by altered, damaged, or foreign proteins and organelles. The purpose of this system is to isolate and eliminate these noxious structures from the cell: as a cytoprotective mechanism this appears to have evolved in the cell akin perhaps to an 'intracellular immune system'. Other heat shock proteins such as hsp 70 may be involved in this process. It is apparent that ubiquitin has a role in embryonic development. Protein ubiquitination is presumably involved in the reorganisation of cytoplasm that accompanies cell differentiation. Ubiquitin is also necessary for the gross

  1. Characterization of the Modular Design of the Autolysin/Adhesin Aaa from Staphylococcus Aureus

    PubMed Central

    Hirschhausen, Nina; Schlesier, Tim; Peters, Georg; Heilmann, Christine

    2012-01-01

    Background Staphylococcus aureus is a frequent cause of serious and life-threatening infections, such as endocarditis, osteomyelitis, pneumonia, and sepsis. Its adherence to various host structures is crucial for the establishment of diseases. Adherence may be mediated by a variety of adhesins, among them the autolysin/adhesins Atl and Aaa. Aaa is composed of three N-terminal repeated sequences homologous to a lysin motif (LysM) that can confer cell wall attachment and a C-terminally located cysteine, histidine-dependent amidohydrolase/peptidase (CHAP) domain having bacteriolytic activity in many proteins. Methodology/Principal Findings Here, we show by surface plasmon resonance that the LysM domain binds to fibrinogen, fibronectin, and vitronectin respresenting a novel adhesive function for this domain. Moreover, we demonstrated that the CHAP domain not only mediates the bacteriolytic activity, but also adherence to fibrinogen, fibronectin, and vitronectin, thus demonstrating for the first time an adhesive function for this domain. Adherence of an S. aureus aaa mutant and the complemented aaa mutant is slightly decreased and increased, respectively, to vitronectin, but not to fibrinogen and fibronectin, which might at least in part result from an increased expression of atl in the aaa mutant. Furthermore, an S. aureus atl mutant that showed enhanced adherence to fibrinogen, fibronectin, and endothelial cells also demonstrated increased aaa expression and production of Aaa. Thus, the redundant functions of Aaa and Atl might at least in part be interchangeable. Lastly, RT-PCR and zymographic analysis revealed that aaa is negatively regulated by the global virulence gene regulators agr and SarA. Conclusions/Significance We identified novel functions for two widely distributed protein domains, LysM and CHAP, i.e. the adherence to the extracellular matrix proteins fibrinogen, fibronectin, and vitronectin. The adhesive properties of Aaa might promote S. aureus

  2. Ubiquitin-specific Protease 7 Regulates Nucleotide Excision Repair through Deubiquitinating XPC Protein and Preventing XPC Protein from Undergoing Ultraviolet Light-induced and VCP/p97 Protein-regulated Proteolysis*

    PubMed Central

    He, Jinshan; Zhu, Qianzheng; Wani, Gulzar; Sharma, Nidhi; Han, Chunhua; Qian, Jiang; Pentz, Kyle; Wang, Qi-en; Wani, Altaf A.

    2014-01-01

    Ubiquitin specific protease 7 (USP7) is a known deubiquitinating enzyme for tumor suppressor p53 and its downstream regulator, E3 ubiquitin ligase Mdm2. Here we report that USP7 regulates nucleotide excision repair (NER) via deubiquitinating xeroderma pigmentosum complementation group C (XPC) protein, a critical damage recognition factor that binds to helix-distorting DNA lesions and initiates NER. XPC is ubiquitinated during the early stage of NER of UV light-induced DNA lesions. We demonstrate that transiently compromising cellular USP7 by siRNA and chemical inhibition leads to accumulation of ubiquitinated forms of XPC, whereas complete USP7 deficiency leads to rapid ubiquitin-mediated XPC degradation upon UV irradiation. We show that USP7 physically interacts with XPC in vitro and in vivo. Overexpression of wild-type USP7, but not its catalytically inactive or interaction-defective mutants, reduces the ubiquitinated forms of XPC. Importantly, USP7 efficiently deubiquitinates XPC-ubiquitin conjugates in deubiquitination assays in vitro. We further show that valosin-containing protein (VCP)/p97 is involved in UV light-induced XPC degradation in USP7-deficient cells. VCP/p97 is readily recruited to DNA damage sites and colocalizes with XPC. Chemical inhibition of the activity of VCP/p97 ATPase causes an increase in ubiquitinated XPC on DNA-damaged chromatin. Moreover, USP7 deficiency severely impairs the repair of cyclobutane pyrimidine dimers and, to a lesser extent, affects the repair of 6-4 photoproducts. Taken together, our findings uncovered an important role of USP7 in regulating NER via deubiquitinating XPC and by preventing its VCP/p97-regulated proteolysis. PMID:25118285

  3. Ubiquitination in Periodontal Disease: A Review

    PubMed Central

    Tsuchida, Sachio; Satoh, Mamoru; Takiwaki, Masaki; Nomura, Fumio

    2017-01-01

    Periodontal disease (periodontitis) is a chronic inflammatory condition initiated by microbial infection that leads to gingival tissue destruction and alveolar bone resorption. The periodontal tissue’s response to dental plaque is characterized by the accumulation of polymorphonuclear leukocytes, macrophages, and lymphocytes, all of which release inflammatory mediators and cytokines to orchestrate the immunopathogenesis of periodontal disease. Ubiquitination is achieved by a mechanism that involves a number of factors, including an ubiquitin-activating enzyme, ubiquitin-conjugating enzyme, and ubiquitin–protein ligase. Ubiquitination is a post-translational modification restricted to eukaryotes that are involved in essential host processes. The ubiquitin system has been implicated in the immune response, development, and programmed cell death. Increasing numbers of recent reports have provided evidence that many approaches are delivering promising reports for discovering the relationship between ubiquitination and periodontal disease. The scope of this review was to investigate recent progress in the discovery of ubiquitinated protein in diseased periodontium and to discuss the ubiquitination process in periodontal diseases. PMID:28698506

  4. Diggin’ on U(biquitin): A Novel Method for the Identification of Physiological E3 Ubiquitin Ligase Substrates

    PubMed Central

    Rubel, Carrie E.; Schisler, Jonathan C.; Hamlett, Eric D.; DeKroon, Robert M.; Gautel, Mathias; Alzate, Oscar; Patterson, Cam

    2013-01-01

    The ubiquitin-proteasome system (UPS) plays a central role in maintaining protein homeostasis, emphasized by a myriad of diseases that are associated with altered UPS function such as cancer, muscle-wasting, and neurodegeneration. Protein ubiquitination plays a central role in both the promotion of proteasomal degradation as well as cellular signaling through regulation of the stability of transcription factors and other signaling molecules. Substrate specificity is a critical regulatory step of ubiquitination and is mediated by ubiquitin ligases. Recent studies implicate ubiquitin ligases in multiple models of cardiac diseases such as cardiac hypertrophy, atrophy, and ischemia/reperfusion injury, both in a cardioprotective and maladaptive role. Therefore, identifying physiological substrates of cardiac ubiquitin ligases provides both mechanistic insights into heart disease as well as possible therapeutic targets. Current methods identifying substrates for ubiquitin ligases rely heavily upon non-physiologic in vitro methods, impeding the unbiased discovery of physiological substrates in relevant model systems. Here we describe a novel method for identifying ubiquitin ligase substrates utilizing Tandem Ubiquitin Binding Entities (TUBE) technology, two-dimensional differential in gel electrophoresis (2-D DIGE), and mass spectrometry, validated by the identification of both known and novel physiological substrates of the ubiquitin ligase MuRF1 in primary cardiomyocytes. This method can be applied to any ubiquitin ligase, both in normal and disease model systems, in order to identify relevant physiological substrates under various biological conditions, opening the door to a clearer mechanistic understanding of ubiquitin ligase function and broadening their potential as therapeutic targets. PMID:23695782

  5. Natural products inhibiting the ubiquitin-proteasome proteolytic pathway, a target for drug development.

    PubMed

    Tsukamoto, Sachiko; Yokosawa, Hideyoshi

    2006-01-01

    The ubiquitin-proteasome proteolytic pathway plays a major role in selective protein degradation and regulates various cellular events including cell cycle progression, transcription, DNA repair, signal transduction, and immune response. Ubiquitin, a highly conserved small protein in eukaryotes, attaches to a target protein prior to degradation. The polyubiquitin chain tagged to the target protein is recognized by the 26S proteasome, a high-molecular-mass protease subunit complex, and the protein portion is degraded by the 26S proteasome. The potential of specific proteasome inhibitors, which act as anti-cancer agents, is now under intensive investigation, and bortezomib (PS-341), a proteasome inhibitor, has been recently approved by FDA for multiple myeloma treatment. Since ubiquitination of proteins requires the sequential action of three enzymes, ubiquitin-activating enzyme (E1), ubiquitin-conjugating enzyme (E2), and ubiquitin-protein ligase (E3), and polyubiquitination is a prerequisite for proteasome-mediated protein degradation, inhibitors of E1, E2, and E3 are reasonably thought to be drug candidates for treatment of diseases related to ubiquitination. Recently, various compounds inhibiting the ubiquitin-proteasome pathway have been isolated from natural resources. We also succeeded in isolating inhibitors against the proteasome and E1 enzyme from marine natural resources. In this review, we summarize the structures and biological activities of natural products that inhibit the ubiquitin-proteasome proteolytic pathway.

  6. UUCD: a family-based database of ubiquitin and ubiquitin-like conjugation.

    PubMed

    Gao, Tianshun; Liu, Zexian; Wang, Yongbo; Cheng, Han; Yang, Qing; Guo, Anyuan; Ren, Jian; Xue, Yu

    2013-01-01

    In this work, we developed a family-based database of UUCD (http://uucd.biocuckoo.org) for ubiquitin and ubiquitin-like conjugation, which is one of the most important post-translational modifications responsible for regulating a variety of cellular processes, through a similar E1 (ubiquitin-activating enzyme)-E2 (ubiquitin-conjugating enzyme)-E3 (ubiquitin-protein ligase) enzyme thioester cascade. Although extensive experimental efforts have been taken, an integrative data resource is still not available. From the scientific literature, 26 E1s, 105 E2s, 1003 E3s and 148 deubiquitination enzymes (DUBs) were collected and classified into 1, 3, 19 and 7 families, respectively. To computationally characterize potential enzymes in eukaryotes, we constructed 1, 1, 15 and 6 hidden Markov model (HMM) profiles for E1s, E2s, E3s and DUBs at the family level, separately. Moreover, the ortholog searches were conducted for E3 and DUB families without HMM profiles. Then the UUCD database was developed with 738 E1s, 2937 E2s, 46 631 E3s and 6647 DUBs of 70 eukaryotic species. The detailed annotations and classifications were also provided. The online service of UUCD was implemented in PHP + MySQL + JavaScript + Perl.

  7. Regulation of vacuolar H{sup +}-ATPase in microglia by RANKL

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Serrano, Eric M.; Ricofort, Ryan D.; Zuo, Jian

    2009-11-06

    Vacuolar H{sup +}-ATPases (V-ATPases) are large electrogenic proton pumps composed of numerous subunits that play vital housekeeping roles in the acidification of compartments of the endocytic pathway. Additionally, V-ATPases play specialized roles in certain cell types, a capacity that is linked to cell type selective expression of isoforms of some of the subunits. We detected low levels of the a3 isoform of the a-subunit in mouse brain extracts. Examination of various brain-derived cell types by immunoblotting showed a3 was expressed in the N9 microglia cell line and in primary microglia, but not in other cell types. The expression of a3more » in osteoclasts requires stimulation by Receptor Activator of Nuclear Factor {kappa}B-ligand (RANKL). We found that Receptor Activator of Nuclear Factor {kappa}B (RANK) was expressed by microglia. Stimulation of microglia with RANKL triggered increased expression of a3. V-ATPases in microglia were shown to bind microfilaments, and stimulation with RANKL increased the proportion of V-ATPase associated with the detergent-insoluble cytoskeletal fraction and with actin. In summary, microglia express the a3-subunit of V-ATPase. The expression of a3 and the interaction between V-ATPases and microfilaments was modulated by RANKL. These data suggest a novel molecular pathway for regulating microglia.« less

  8. DNA-damage-inducible 1 protein (Ddi1) contains an uncharacteristic ubiquitin-like domain that binds ubiquitin

    PubMed Central

    Nowicka, Urszula; Zhang, Daoning; Walker, Olivier; Krutauz, Daria; Castañeda, Carlos A.; Chaturvedi, Apurva; Chen, Tony Y.; Reis, Noa; Glickman, Michael H.; Fushman, David

    2015-01-01

    SUMMARY Ddi1 belongs to a family of shuttle proteins targeting polyubiquitinated substrates for proteasomal degradation. Unlike the other proteasomal shuttles, Rad23 and Dsk2, Ddi1 remains an enigma: its function is not fully understood and structural properties are poorly characterized. We determined the structure and binding properties of the ubiquitin-like (UBL) and ubiquitin-associated (UBA) domains of Ddi1 from Saccharomyces cerevisiae. We found that, while Ddi1UBA forms a characteristic UBA:ubiquitin complex, Ddi1UBL has entirely uncharacteristic binding preferences. Despite having a ubiquitin-like fold, Ddi1UBL does not interact with typical UBL-receptors but, unexpectedly, binds ubiquitin, forming a unique interface mediated by hydrophobic contacts and by salt-bridges between oppositely-charged residues of Ddi1UBL and ubiquitin. In stark contrast with ubiquitin and other UBLs, the β-sheet surface of Ddi1UBL is negatively charged and, therefore, is recognized in a completely different way. The dual functionality of Ddi1UBL, capable of binding both ubiquitin and proteasome, suggests a novel mechanism for Ddi1 as a proteasomal shuttle. PMID:25703377

  9. A Hierarchical Mechanism of RIG-I Ubiquitination Provides Sensitivity, Robustness and Synergy in Antiviral Immune Responses.

    PubMed

    Sun, Xiaoqiang; Xian, Huifang; Tian, Shuo; Sun, Tingzhe; Qin, Yunfei; Zhang, Shoutao; Cui, Jun

    2016-07-08

    RIG-I is an essential receptor in the initiation of the type I interferon (IFN) signaling pathway upon viral infection. Although K63-linked ubiquitination plays an important role in RIG-I activation, the optimal modulation of conjugated and unanchored ubiquitination of RIG-I as well as its functional implications remains unclear. In this study, we determined that, in contrast to the RIG-I CARD domain, full-length RIG-I must undergo K63-linked ubiquitination at multiple sites to reach full activity. A systems biology approach was designed based on experiments using full-length RIG-I. Model selection for 7 candidate mechanisms of RIG-I ubiquitination inferred a hierarchical architecture of the RIG-I ubiquitination mode, which was then experimentally validated. Compared with other mechanisms, the selected hierarchical mechanism exhibited superior sensitivity and robustness in RIG-I-induced type I IFN activation. Furthermore, our model analysis and experimental data revealed that TRIM4 and TRIM25 exhibited dose-dependent synergism. These results demonstrated that the hierarchical mechanism of multi-site/type ubiquitination of RIG-I provides an efficient, robust and optimal synergistic regulatory module in antiviral immune responses.

  10. A Hierarchical Mechanism of RIG-I Ubiquitination Provides Sensitivity, Robustness and Synergy in Antiviral Immune Responses

    PubMed Central

    Sun, Xiaoqiang; Xian, Huifang; Tian, Shuo; Sun, Tingzhe; Qin, Yunfei; Zhang, Shoutao; Cui, Jun

    2016-01-01

    RIG-I is an essential receptor in the initiation of the type I interferon (IFN) signaling pathway upon viral infection. Although K63-linked ubiquitination plays an important role in RIG-I activation, the optimal modulation of conjugated and unanchored ubiquitination of RIG-I as well as its functional implications remains unclear. In this study, we determined that, in contrast to the RIG-I CARD domain, full-length RIG-I must undergo K63-linked ubiquitination at multiple sites to reach full activity. A systems biology approach was designed based on experiments using full-length RIG-I. Model selection for 7 candidate mechanisms of RIG-I ubiquitination inferred a hierarchical architecture of the RIG-I ubiquitination mode, which was then experimentally validated. Compared with other mechanisms, the selected hierarchical mechanism exhibited superior sensitivity and robustness in RIG-I-induced type I IFN activation. Furthermore, our model analysis and experimental data revealed that TRIM4 and TRIM25 exhibited dose-dependent synergism. These results demonstrated that the hierarchical mechanism of multi-site/type ubiquitination of RIG-I provides an efficient, robust and optimal synergistic regulatory module in antiviral immune responses. PMID:27387525

  11. A Hierarchical Mechanism of RIG-I Ubiquitination Provides Sensitivity, Robustness and Synergy in Antiviral Immune Responses

    NASA Astrophysics Data System (ADS)

    Sun, Xiaoqiang; Xian, Huifang; Tian, Shuo; Sun, Tingzhe; Qin, Yunfei; Zhang, Shoutao; Cui, Jun

    2016-07-01

    RIG-I is an essential receptor in the initiation of the type I interferon (IFN) signaling pathway upon viral infection. Although K63-linked ubiquitination plays an important role in RIG-I activation, the optimal modulation of conjugated and unanchored ubiquitination of RIG-I as well as its functional implications remains unclear. In this study, we determined that, in contrast to the RIG-I CARD domain, full-length RIG-I must undergo K63-linked ubiquitination at multiple sites to reach full activity. A systems biology approach was designed based on experiments using full-length RIG-I. Model selection for 7 candidate mechanisms of RIG-I ubiquitination inferred a hierarchical architecture of the RIG-I ubiquitination mode, which was then experimentally validated. Compared with other mechanisms, the selected hierarchical mechanism exhibited superior sensitivity and robustness in RIG-I-induced type I IFN activation. Furthermore, our model analysis and experimental data revealed that TRIM4 and TRIM25 exhibited dose-dependent synergism. These results demonstrated that the hierarchical mechanism of multi-site/type ubiquitination of RIG-I provides an efficient, robust and optimal synergistic regulatory module in antiviral immune responses.

  12. X-ray Crystal Structures of the Type IVb Secretion System DotB ATPases.

    PubMed

    Prevost, Marie S; Waksman, Gabriel

    2018-05-17

    Human infections by the intracellular bacterial pathogen Legionella pneumophila result in a severe form of pneumonia, the Legionnaire's disease. L. pneumophila utilises a type IVb secretion (T4bS) system termed "dot/icm" to secrete protein effectors to the host cytoplasm. The dot/icm system is powered at least in part by a functionally critical AAA+ ATPase, a protein called DotB, thought to belong to the VirB11 family of proteins. Here we present the crystal structure of DotB at 3.19 Å resolution, in its hexameric form. We observe that DotB is in fact a structural intermediate between VirB11 and PilT family proteins, with a PAS-like N-terminal domain coupled to a RecA-like C-terminal domain. It also shares critical structural elements only found in PilT. The structure also reveals two conformers, termed α and β, with an αβαβαβ configuration. The existence of α and β conformers in this class of proteins was confirmed by solving the structure of DotB from another bacterial pathogen, Yersinia, where, intriguingly, we observed an ααβααβ configuration. The two conformers co-exist regardless of the nucleotide-bound states of the proteins. Our investigation therefore reveals that these ATPases can adopt a wider range of conformational states than was known before, shedding new light on the extraordinary spectrum of conformations these ATPases can access to carry out their function. Overall, the structure of DotB provides a template for further rational drug-design to develop more specific antibiotics to tackle Legionnaire's disease. This article is protected by copyright. All rights reserved. © 2018 The Protein Society.

  13. Ubiquitin enzymes in the regulation of immune responses.

    PubMed

    Ebner, Petra; Versteeg, Gijs A; Ikeda, Fumiyo

    2017-08-01

    Ubiquitination plays a central role in the regulation of various biological functions including immune responses. Ubiquitination is induced by a cascade of enzymatic reactions by E1 ubiquitin activating enzyme, E2 ubiquitin conjugating enzyme, and E3 ubiquitin ligase, and reversed by deubiquitinases. Depending on the enzymes, specific linkage types of ubiquitin chains are generated or hydrolyzed. Because different linkage types of ubiquitin chains control the fate of the substrate, understanding the regulatory mechanisms of ubiquitin enzymes is central. In this review, we highlight the most recent knowledge of ubiquitination in the immune signaling cascades including the T cell and B cell signaling cascades as well as the TNF signaling cascade regulated by various ubiquitin enzymes. Furthermore, we highlight the TRIM ubiquitin ligase family as one of the examples of critical E3 ubiquitin ligases in the regulation of immune responses.

  14. Targeting ubiquitination for cancer therapies.

    PubMed

    Morrow, John Kenneth; Lin, Hui-Kuan; Sun, Shao-Cong; Zhang, Shuxing

    2015-01-01

    Ubiquitination, the structured degradation and turnover of cellular proteins, is regulated by the ubiquitin-proteasome system (UPS). Most proteins that are critical for cellular regulations and functions are targets of the process. Ubiquitination is comprised of a sequence of three enzymatic steps, and aberrations in the pathway can lead to tumor development and progression as observed in many cancer types. Recent evidence indicates that targeting the UPS is effective for certain cancer treatment, but many more potential targets might have been previously overlooked. In this review, we will discuss the current state of small molecules that target various elements of ubiquitination. Special attention will be given to novel inhibitors of E3 ubiquitin ligases, especially those in the SCF family.

  15. Multi-Centre Study on Cardiovascular Risk Management on Patients Undergoing AAA Surveillance.

    PubMed

    Saratzis, A; Dattani, N; Brown, A; Shalhoub, J; Bosanquet, D; Sidloff, D; Stather, P

    2017-07-01

    The risk of cardiovascular events and death in patients with abdominal aortic aneurysms (AAA) is high. Screening has been introduced to reduce AAA related mortality; however, after AAA diagnosis, cardiovascular modification may be as important to patient outcomes as surveillance. The aim of this study was to assess cardiovascular risk reduction in patients with small AAA. Institutional approval was granted for The Vascular and Endovascular Research Network (VERN) to retrospectively collect data pertaining to cardiovascular risk reduction from four tertiary vascular units in England. Patients with small AAA (January 2013-December 2015) were included. Demographic details, postcode, current medications, and smoking status were recorded using a bespoke electronic database and analysed. In a secondary analysis VERN contacted all AAA screening units in England and Wales to assess their current protocols relating to CV protection. In total, 1053 patients were included (mean age 74 ± 9 years, all men). Of these, 745 patients (70.8%) had been prescribed an antiplatelet agent and 787 (74.7%) a statin. Overall, only 666 patients (63.2%) were prescribed both a statin and antiplatelet. Two hundred and sixty eight patients (32.1%) were current smokers and the proportion of patients who continued to smoke decreased with age. Overall, only 401 patients (48.1%) were prescribed a statin, antiplatelet, and had stopped smoking. In the secondary analysis 38 AAA screening units (84% national coverage) replied. Thirty-one units (82%) suggest changes to the patient's prescription; however, none monitor compliance with these recommendations or assess whether the general practitioner has been made aware of the AAA diagnosis or prescription advice. Many patients with small AAA are not prescribed an antiplatelet/statin, and still smoke cigarettes, and therefore remain at high risk of cardiovascular morbidity and mortality. National guidance to ensure this high risk group of patients is

  16. Ubiquitin Ligases: Structure, Function, and Regulation.

    PubMed

    Zheng, Ning; Shabek, Nitzan

    2017-06-20

    Ubiquitin E3 ligases control every aspect of eukaryotic biology by promoting protein ubiquitination and degradation. At the end of a three-enzyme cascade, ubiquitin ligases mediate the transfer of ubiquitin from an E2 ubiquitin-conjugating enzyme to specific substrate proteins. Early investigations of E3s of the RING (really interesting new gene) and HECT (homologous to the E6AP carboxyl terminus) types shed light on their enzymatic activities, general architectures, and substrate degron-binding modes. Recent studies have provided deeper mechanistic insights into their catalysis, activation, and regulation. In this review, we summarize the current progress in structure-function studies of ubiquitin ligases as well as exciting new discoveries of novel classes of E3s and diverse substrate recognition mechanisms. Our increased understanding of ubiquitin ligase function and regulation has provided the rationale for developing E3-targeting therapeutics for the treatment of human diseases.

  17. Ubiquitin enzymes in the regulation of immune responses

    PubMed Central

    Ebner, Petra; Versteeg, Gijs A.; Ikeda, Fumiyo

    2017-01-01

    Abstract Ubiquitination plays a central role in the regulation of various biological functions including immune responses. Ubiquitination is induced by a cascade of enzymatic reactions by E1 ubiquitin activating enzyme, E2 ubiquitin conjugating enzyme, and E3 ubiquitin ligase, and reversed by deubiquitinases. Depending on the enzymes, specific linkage types of ubiquitin chains are generated or hydrolyzed. Because different linkage types of ubiquitin chains control the fate of the substrate, understanding the regulatory mechanisms of ubiquitin enzymes is central. In this review, we highlight the most recent knowledge of ubiquitination in the immune signaling cascades including the T cell and B cell signaling cascades as well as the TNF signaling cascade regulated by various ubiquitin enzymes. Furthermore, we highlight the TRIM ubiquitin ligase family as one of the examples of critical E3 ubiquitin ligases in the regulation of immune responses. PMID:28524749

  18. A single ubiquitin is sufficient for cargo protein entry into MVBs in the absence of ESCRT ubiquitination

    PubMed Central

    Stringer, Daniel K.

    2011-01-01

    ESCRTs (endosomal sorting complexes required for transport) bind and sequester ubiquitinated membrane proteins and usher them into multivesicular bodies (MVBs). As Ubiquitin (Ub)-binding proteins, ESCRTs themselves become ubiquitinated. However, it is unclear whether this regulates a critical aspect of their function or is a nonspecific consequence of their association with the Ub system. We investigated whether ubiquitination of the ESCRTs was required for their ability to sort cargo into the MVB lumen. Although we found that Rsp5 was the main Ub ligase responsible for ubiquitination of ESCRT-0, elimination of Rsp5 or elimination of the ubiquitinatable lysines within ESCRT-0 did not affect MVB sorting. Moreover, by fusing the catalytic domain of deubiquitinating peptidases onto ESCRTs, we could block ESCRT ubiquitination and the sorting of proteins that undergo Rsp5-dependent ubiquitination. Yet, proteins fused to a single Ub moiety were efficiently delivered to the MVB lumen, which strongly indicates that a single Ub is sufficient in sorting MVBs in the absence of ESCRT ubiquitination. PMID:21242292

  19. How Chemical Synthesis of Ubiquitin Conjugates Helps To Understand Ubiquitin Signal Transduction.

    PubMed

    Hameed, Dharjath S; Sapmaz, Aysegul; Ovaa, Huib

    2017-03-15

    Ubiquitin (Ub) is a small post-translational modifier protein involved in a myriad of biochemical processes including DNA damage repair, proteasomal proteolysis, and cell cycle control. Ubiquitin signaling pathways have not been completely deciphered due to the complex nature of the enzymes involved in ubiquitin conjugation and deconjugation. Hence, probes and assay reagents are important to get a better understanding of this pathway. Recently, improvements have been made in synthesis procedures of Ub derivatives. In this perspective, we explain various research reagents available and how chemical synthesis has made an important contribution to Ub research.

  20. Cryo-EM of the pathogenic VCP variant R155P reveals long-range conformational changes in the D2 ATPase ring

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mountassif, Driss; Fabre, Lucien; Zaid, Younes

    Single amino acid mutations in valosin containing protein (VCP/p97), a highly conserved member of the ATPases associated with diverse cellular activities (AAA) family of ATPases has been linked to a severe degenerative disease affecting brain, muscle and bone tissue. Previous studies have demonstrated the role of VCP mutations in altering the ATPase activity of the D2 ring; however the structural consequences of these mutations remain unclear. In this study, we report the three-dimensional (3D) map of the pathogenic VCP variant, R155P, as revealed by single-particle Cryo-Electron Microscopy (EM) analysis at 14 Å resolution. We show that the N-terminal R155P mutation inducesmore » a large structural reorganisation of the D2 ATPase ring. Results from docking studies using crystal structure data of available wild-type VCP in the EM density maps indicate that the major difference is localized at the interface between two protomers within the D2 ring. Consistent with a conformational change, the VCP R155P variant shifted the isoelectric point of the protein and reduced its interaction with its well-characterized cofactor, nuclear protein localization-4 (Npl4). Together, our results demonstrate that a single amino acid substitution in the N-terminal domain can relay long-range conformational changes to the distal D2 ATPase ring. Our results provide the first structural clues of how VCP mutations may influence the activity and function of the D2 ATPase ring. - Highlights: • p97{sub R155P} and p97{sub A232E} decrease the ability of p97 to bind to its co-factor Npl4. • p97{sub R155P} has a different isoelectric point than that of p97{sub R95G}, p97{sub A232E} and p97{sub WT}. • Mutation R155P changes principally the conformation of the D2 ring. • Mutation R155P modifies the interface between two protomers within the D2 ring.« less

  1. Dynamic survey of mitochondria by ubiquitin

    PubMed Central

    Escobar-Henriques, Mafalda; Langer, Thomas

    2014-01-01

    Ubiquitin is a post-translational modifier with proteolytic and non-proteolytic roles in many biological processes. At mitochondria, it performs regulatory homeostatic functions and contributes to mitochondrial quality control. Ubiquitin is essential for mitochondrial fusion, regulates mitochondria-ER contacts, and participates in maternal mtDNA inheritance. Under stress, mitochondrial dysfunction induces ubiquitin-dependent responses that involve mitochondrial proteome remodeling and culminate in organelle removal by mitophagy. In addition, many ubiquitin-dependent mechanisms have been shown to regulate innate immune responses and xenophagy. Here, we review the emerging roles of ubiquitin at mitochondria. PMID:24569520

  2. Combination of endovascular graft exclusion and drug therapy in AAA with hypertension or hyperglycemia.

    PubMed

    Wang, Dile; Qu, Bihui; He, Tao

    2017-08-01

    The objective of the present study was to evaluate the efficacy of combination of endovascular graft exclusion and drugs for hypertension/hyperglycemia for the treatment of abdominal aortic aneurysm (AAA). We analyzed 156 patients with AAA. Eighty-four patients were hypertensive and 72 were hyperglycemic. After endovascular graft exclusion, hypertensive patients were divided into four groups and treated with cyclopenthiazide, reserpine, propranolol, and placebo respectively. Hyperglycemic patients were divided into three groups and treated with metformin, insulin, and placebo respectively. Body temperature and peripheral blood leukocytes were measured at day 1, 2, 7, and 14 after endovascular graft exclusion. Size of AAAs, blood pressure, and blood sugar were measured again after 1 year. In hypertensive patients, the size of AAAs reduced after endovascular graft exclusion, while the combined treatments with cyclopenthiazide, reserpine, or propranolol helped to reduce blood pressure (blood pressure decrease <10 mmHg (18/21), <10 mmHg (12/21), <10 mmHg (8/21), and <10 mmHg (10/21) in the control group, cyclopenthiazide group, reserpine group, and propranolol group, respectively. AAA size decreased in the control group (P<0.001) and in the other three groups (P<0.0001). Similar results were obtained in hyperglycemic patients. The size of AAAs reduced after endovascular graft exclusion. Combined treatment with Metformin and Insulin reduced blood sugar (control, blood sugar >7.8 mmol/L (22/24), AAA size (P<0.001); metformin, blood sugar >7.8 mmol/L (14/24), AAA size (P<0.0001); insulin, blood sugar >7.8 mmol/L (11/24), AAA size (P<0.0001). Combination of endovascular graft exclusion with medicine is more effective than the former treatment alone for AAA therapy.

  3. Iron overload impact on P-ATPases.

    PubMed

    Sousa, Leilismara; Pessoa, Marco Tulio C; Costa, Tamara G F; Cortes, Vanessa F; Santos, Herica L; Barbosa, Leandro Augusto

    2018-03-01

    Iron is a chemical element that is active in the fundamental physiological processes for human life, but its burden can be toxic to the body, mainly because of the stimulation of membrane lipid peroxidation. For this reason, the action of iron on many ATPases has been studied, especially on P-ATPases, such as the Na + ,K + -ATPase and the Ca 2+ -ATPase. On the Fe 2+ -ATPase activity, the free iron acts as an activator, decreasing the intracellular Fe 2+ and playing a protection role for the cell. On the Ca 2+ -ATPase activity, the iron overload decreases the enzyme activity, raising the cytoplasmic Ca 2+ and decreasing the sarco/endoplasmic reticulum and the Golgi apparatus Ca 2+ concentrations, which could promote an enzyme oxidation, nitration, and fragmentation. However, the iron overload effect on the Na + ,K + -ATPase may change according to the tissue expressions. On the renal cells, as well as on the brain and the heart, iron promotes an enzyme inactivation, whereas its effect on the erythrocytes seems to be the opposite, directly stimulating the ATPase activity, or stimulating it by signaling pathways involving ROS and PKC. Modulations in the ATPase activity may impair the ionic transportation, which is essential for cell viability maintenance, inducing irreversible damage to the cell homeostasis. Here, we will discuss about the iron overload effect on the P-ATPases, such as the Na + ,K + -ATPase, the Ca 2+ -ATPase, and the Fe 2+ -ATPase.

  4. Ubiquitin--conserved protein or selfish gene?

    PubMed

    Catic, André; Ploegh, Hidde L

    2005-11-01

    The posttranslational modifier ubiquitin is encoded by a multigene family containing three primary members, which yield the precursor protein polyubiquitin and two ubiquitin moieties, Ub(L40) and Ub(S27), that are fused to the ribosomal proteins L40 and S27, respectively. The gene encoding polyubiquitin is highly conserved and, until now, those encoding Ub(L40) and Ub(S27) have been generally considered to be equally invariant. The evolution of the ribosomal ubiquitin moieties is, however, proving to be more dynamic. It seems that the genes encoding Ub(L40) and Ub(S27) are actively maintained by homologous recombination with the invariant polyubiquitin locus. Failure to recombine leads to deterioration of the sequence of the ribosomal ubiquitin moieties in several phyla, although this deterioration is evidently constrained by the structural requirements of the ubiquitin fold. Only a few amino acids in ubiquitin are vital for its function, and we propose that conservation of all three ubiquitin genes is driven not only by functional properties of the ubiquitin protein, but also by the propensity of the polyubiquitin locus to act as a 'selfish gene'.

  5. Organochlorine insecticide, herbicide and polychlorinated biphenyl (PCB) inhibition of NaK-ATPase in rainbow trout

    USGS Publications Warehouse

    Davis, Paul W.; Friedhoff, Jacqueline M.; Wedemeyer, Gary A.

    1972-01-01

    The current widespread presence of chlorinated insecticides, polychlorinated biphenyls (PCB's) and herbicides in world waterways has elicited much interest in the mechanisms of their toxicity in fishes. Inhibition of Na+,K+-activated adenosinetriphosphatase (NaK-ATPase) and Mg++-dependent ATPase (Mg-ATPase) by DDT, endosulfan and dicofol has been demonstrated in gill, brain and kidney microsomes of rainbow trout (1,2). Intestinal and gill ATPases in marine teleosts were recently reported to be sensitive to organochlorines (3). CutkonTp et al (4) noted inhibition of NaK-ATPase and Mg-ATPase in bluegill brain, liver, muscle and kidney by DDT and related chlorinated hydrocarbons. Inhibition of ATPases by PCB's has been recently shown in bluegill kidney, brain and liver (5). In the present study, we have further examined the NaK-ATPase enzyme system in trout gill as a site for the possible toxicity of selected organopolychlors, i.e., chlorinated insecticides, herbicides and PCB's.

  6. RING-type E3 ligases: Master manipulators of E2 ubiquitin-conjugating enzymes and ubiquitination

    PubMed Central

    Metzger, Meredith B.; Pruneda, Jonathan N.; Klevit, Rachel E.; Weissman, Allan M.

    2013-01-01

    RING finger domain and RING finger-like ubiquitin ligases (E3s), such as U-box proteins, constitute the vast majority of known E3s. RING-type E3s function together with ubiquitin-conjugating enzymes (E2s) to mediate ubiquitination and are implicated in numerous cellular processes. In part because of their importance in human physiology and disease, these proteins and their cellular functions represent an intense area of study. Here we review recent advances in RING-type E3 recognition of substrates, their cellular regulation, and their varied architecture. Additionally, recent structural insights into RING-type E3 function, with a focus on important interactions with E2s and ubiquitin, are reviewed. This article is part of a Special Issue entitled: Ubiquitin-Proteasome System. PMID:23747565

  7. Ovine cardiac Na,K-ATPase: isolation by means of selective solubilization in Lubrol and the effect of 1 alpha,2 alpha-epoxyscillirosidin on this enzyme.

    PubMed

    Venter, P A; Naudé, R J; Oelofsen, W; Swan, G E

    1997-01-01

    The inhibition of cardiac Na,K-ATPase by 1 alpha,2 alpha-epoxyscillirosidin is the principal cause of poisoning of cattle by the tulip, Homeria pallida. The ultimate goals of this study were to study the interaction between 1 alpha,2 alpha-epoxyscillirosidin and ovine Na,K-ATPase by means of inhibition and displacement binding studies. Ovine cardiac Na,K-ATPase was isolated in membrane-bound form by means of deoxycholate treatment, high-speed ultracentrifugation, NaI treatment and selective solubilization in Lubrol. The inhibition of ovine cardiac and commercial porcine cerebral cortex Na,K-ATPase by 1 alpha,2 alpha-epoxyscilirosidin and ouabain was studied using a discontinuous Na,K-ATPase assay. The binding of 1 alpha,2 alpha-epoxyscillirosidin, ouabain and digoxin to the above enzymes was compared using a displacement binding assay with [3H] oubain. The Lubrol-solubilized ovine cardiac Na,K-ATPase showed a specific activity of 0.3 U/mg with no ouabain insensitive activity. I50 values of 2.1 x 10(-8) and 2.7 x 10(-8) were obtained for the inhibition of this enzyme by 1 alpha,2 alpha-epoxyscillirosidin and ouabain, respectively. 1 alpha,2 alpha-Epoxyscillirosidin has a much higher KD value (1.5 x 10(-7) M), however, than ouabain (9.5 x 10(-9) M) and digoxin (1.7 x 10(-8) M) in displacement binding studies with [3H]ouabain. 1 alpha,2 alpha-Epoxyscillirosidin is a potent inhibitor of ovine cardiac Na,K-ATPase and is a slightly stronger inhibitor of the enzyme than ouabain. The anomalous result for the displacement of 1 alpha,2 alpha-epoxyscillirosidin from its receptor is either a result of different affinities that K+ has for the enzyme ouabain and enzyme-1 alpha,2 alpha-epoxyscillirosidin complexes or because of different complex stabilities of these complexes.

  8. Ubiquitin acetylation inhibits polyubiquitin chain elongation

    PubMed Central

    Ohtake, Fumiaki; Saeki, Yasushi; Sakamoto, Kensaku; Ohtake, Kazumasa; Nishikawa, Hiroyuki; Tsuchiya, Hikaru; Ohta, Tomohiko; Tanaka, Keiji; Kanno, Jun

    2015-01-01

    Ubiquitylation is a versatile post-translational modification (PTM). The diversity of ubiquitylation topologies, which encompasses different chain lengths and linkages, underlies its widespread cellular roles. Here, we show that endogenous ubiquitin is acetylated at lysine (K)-6 (AcK6) or K48. Acetylated ubiquitin does not affect substrate monoubiquitylation, but inhibits K11-, K48-, and K63-linked polyubiquitin chain elongation by several E2 enzymes in vitro. In cells, AcK6-mimetic ubiquitin stabilizes the monoubiquitylation of histone H2B—which we identify as an endogenous substrate of acetylated ubiquitin—and of artificial ubiquitin fusion degradation substrates. These results characterize a mechanism whereby ubiquitin, itself a PTM, is subject to another PTM to modulate mono- and polyubiquitylation, thus adding a new regulatory layer to ubiquitin biology. PMID:25527407

  9. Regulation of Synaptic Structure by the Ubiquitin C-terminal Hydrolase UCH-L1

    PubMed Central

    Cartier, Anna E.; Djakovic, Stevan N.; Salehi, Afshin; Wilson, Scott M.; Masliah, Eliezer; Patrick, Gentry N.

    2009-01-01

    UCH-L1 is a de-ubiquitinating enzyme that is selectively and abundantly expressed in the brain, and its activity is required for normal synaptic function. Here, we show that UCH-L1 functions in maintaining normal synaptic structure in hippocampal neurons. We have found that UCH-L1 activity is rapidly up-regulated by NMDA receptor activation which leads to an increase in the levels of free monomeric ubiquitin. Conversely, pharmacological inhibition of UCH-L1 significantly reduces monomeric ubiquitin levels and causes dramatic alterations in synaptic protein distribution and spine morphology. Inhibition of UCH-L1 activity increases spine size while decreasing spine density. Furthermore, there is a concomitant increase in the size of pre and postsynaptic protein clusters. Interestingly, however, ectopic expression of ubiquitin restores normal synaptic structure in UCH-L1 inhibited neurons. These findings point to a significant role of UCH-L1 in synaptic remodeling most likely by modulating free monomeric ubiquitin levels in an activity-dependent manner. PMID:19535597

  10. Cytolethal Distending Toxins Require Components of the ER-Associated Degradation Pathway for Host Cell Entry

    PubMed Central

    Eshraghi, Aria; Dixon, Shandee D.; Tamilselvam, Batcha; Kim, Emily Jin-Kyung; Gargi, Amandeep; Kulik, Julia C.; Damoiseaux, Robert; Blanke, Steven R.; Bradley, Kenneth A.

    2014-01-01

    Intracellular acting protein exotoxins produced by bacteria and plants are important molecular determinants that drive numerous human diseases. A subset of these toxins, the cytolethal distending toxins (CDTs), are encoded by several Gram-negative pathogens and have been proposed to enhance virulence by allowing evasion of the immune system. CDTs are trafficked in a retrograde manner from the cell surface through the Golgi apparatus and into the endoplasmic reticulum (ER) before ultimately reaching the host cell nucleus. However, the mechanism by which CDTs exit the ER is not known. Here we show that three central components of the host ER associated degradation (ERAD) machinery, Derlin-2 (Derl2), the E3 ubiquitin-protein ligase Hrd1, and the AAA ATPase p97, are required for intoxication by some CDTs. Complementation of Derl2-deficient cells with Derl2:Derl1 chimeras identified two previously uncharacterized functional domains in Derl2, the N-terminal 88 amino acids and the second ER-luminal loop, as required for intoxication by the CDT encoded by Haemophilus ducreyi (Hd-CDT). In contrast, two motifs required for Derlin-dependent retrotranslocation of ERAD substrates, a conserved WR motif and an SHP box that mediates interaction with the AAA ATPase p97, were found to be dispensable for Hd-CDT intoxication. Interestingly, this previously undescribed mechanism is shared with the plant toxin ricin. These data reveal a requirement for multiple components of the ERAD pathway for CDT intoxication and provide insight into a Derl2-dependent pathway exploited by retrograde trafficking toxins. PMID:25078082

  11. Cytolethal distending toxins require components of the ER-associated degradation pathway for host cell entry.

    PubMed

    Eshraghi, Aria; Dixon, Shandee D; Tamilselvam, Batcha; Kim, Emily Jin-Kyung; Gargi, Amandeep; Kulik, Julia C; Damoiseaux, Robert; Blanke, Steven R; Bradley, Kenneth A

    2014-07-01

    Intracellular acting protein exotoxins produced by bacteria and plants are important molecular determinants that drive numerous human diseases. A subset of these toxins, the cytolethal distending toxins (CDTs), are encoded by several Gram-negative pathogens and have been proposed to enhance virulence by allowing evasion of the immune system. CDTs are trafficked in a retrograde manner from the cell surface through the Golgi apparatus and into the endoplasmic reticulum (ER) before ultimately reaching the host cell nucleus. However, the mechanism by which CDTs exit the ER is not known. Here we show that three central components of the host ER associated degradation (ERAD) machinery, Derlin-2 (Derl2), the E3 ubiquitin-protein ligase Hrd1, and the AAA ATPase p97, are required for intoxication by some CDTs. Complementation of Derl2-deficient cells with Derl2:Derl1 chimeras identified two previously uncharacterized functional domains in Derl2, the N-terminal 88 amino acids and the second ER-luminal loop, as required for intoxication by the CDT encoded by Haemophilus ducreyi (Hd-CDT). In contrast, two motifs required for Derlin-dependent retrotranslocation of ERAD substrates, a conserved WR motif and an SHP box that mediates interaction with the AAA ATPase p97, were found to be dispensable for Hd-CDT intoxication. Interestingly, this previously undescribed mechanism is shared with the plant toxin ricin. These data reveal a requirement for multiple components of the ERAD pathway for CDT intoxication and provide insight into a Derl2-dependent pathway exploited by retrograde trafficking toxins.

  12. Readily functionalized AAA-DDD triply hydrogen-bonded motifs.

    PubMed

    Tong, Feng; Linares-Mendez, Iamnica J; Han, Yi-Fei; Wisner, James A; Wang, Hong-Bo

    2018-04-25

    Herein we present a new, readily functionalized AAA-DDD hydrogen bond array. A novel AAA monomeric unit (3a-b) was obtained from a two-step synthetic procedure starting with 2-aminonicotinaldehyde via microwave radiation (overall yield of 52-66%). 1H NMR and fluorescence spectroscopy confirmed the complexation event with a calculated association constant of 1.57 × 107 M-1. Likewise, the usefulness of this triple hydrogen bond motif in supramolecular polymerization was demonstrated through viscosity measurements in a crosslinked supramolecular alternating copolymer.

  13. p62/SQSTM1 promotes rapid ubiquitin conjugation to target proteins after endosome rupture during xenophagy.

    PubMed

    Tsuchiya, Megumi; Ogawa, Hidesato; Koujin, Takako; Mori, Chie; Osakada, Hiroko; Kobayashi, Shouhei; Hiraoka, Yasushi; Haraguchi, Tokuko

    2018-03-01

    Autophagy is a bulk degradation pathway, and selective autophagy to remove foreign entities is called xenophagy. The conjugation of ubiquitin to target pathogens is an important process in xenophagy but when and where this ubiquitination occurs remains unclear. Here, we analyzed the temporal sequence and subcellular location of ubiquitination during xenophagy using time-lapse observations, with polystyrene beads mimicking invading pathogens. Results revealed accumulation of a ubiquitination marker around the beads within 3 min after endosome rupture. Recruitment of ubiquitin to the beads was significantly delayed in p62-knockout murine embryonic fibroblast cells, and this delay was rescued by ectopic p62 expression. Ectopic expression of a phosphorylation-mimicking p62 mutated at serine residue 405 (equivalent to human serine residue 403) rescued this delay, but its unphosphorylated form did not. These results indicate that ubiquitination mainly occurs after endosome rupture and suggest that p62, specifically the phosphorylated form, promotes ubiquitin conjugation to target proteins in xenophagy.

  14. Central catalytic domain of BRAP (RNF52) recognizes the types of ubiquitin chains and utilizes oligo-ubiquitin for ubiquitylation.

    PubMed

    Shoji, Shisako; Hanada, Kazuharu; Ohsawa, Noboru; Shirouzu, Mikako

    2017-09-07

    Really interesting new gene (RING)-finger protein 52 (RNF52), an E3 ubiquitin ligase, is found in eukaryotes from yeast to humans. Human RNF52 is known as breast cancer type 1 susceptibility protein (BRCA1)-associated protein 2 (BRAP or BRAP2). The central catalytic domain of BRAP comprises four subdomains: nucleotide-binding α/β plait (NBP), really interesting new gene (RING) zinc finger, ubiquitin-specific protease (UBP)-like zinc finger (ZfUBP), and coiled-coil (CC). This domain architecture is conserved in RNF52 orthologs; however, the domain's function in the ubiquitin system has not been delineated. In the present study, we discovered that the RNF52 domain, comprising NBP-RING-ZfUBP-CC, binds to ubiquitin chains (oligo-ubiquitin) but not to the ubiquitin monomers, and can utilize various ubiquitin chains for ubiquitylation and auto-ubiquitylation. The RNF52 domain preferentially bound to M1- and K63-linked di-ubiquitin chains, weakly to K27-linked chains, but not to K6-, K11-, or K48-linked chains. The binding preferences of the RNF52 domain for ubiquitin-linkage types corresponded to ubiquitin usage in the ubiquitylation reaction, except for K11-, K29-, and K33-linked chains. Additionally, the RNF52 domain directly ligated the intact M1-linked, tri-, and tetra-ubiquitin chains and recognized the structural alterations caused by the phosphomimetic mutation of these ubiquitin chains. Full-length BRAP had nearly the same specificity for the ubiquitin-chain types as the RNF52 domain alone. Mass spectrometry analysis of oligomeric ubiquitylation products, mediated by the RNF52 domain, revealed that the ubiquitin-linkage types and auto-ubiquitylation sites depend on the length of ubiquitin chains. Here, we propose a model for the oligomeric ubiquitylation process, controlled by the RNF52 domain, which is not a sequential assembly process involving monomers. © 2017 The Author(s). Published by Portland Press Limited on behalf of the Biochemical Society.

  15. Central catalytic domain of BRAP (RNF52) recognizes the types of ubiquitin chains and utilizes oligo-ubiquitin for ubiquitylation

    PubMed Central

    Hanada, Kazuharu; Ohsawa, Noboru

    2017-01-01

    Really interesting new gene (RING)-finger protein 52 (RNF52), an E3 ubiquitin ligase, is found in eukaryotes from yeast to humans. Human RNF52 is known as breast cancer type 1 susceptibility protein (BRCA1)-associated protein 2 (BRAP or BRAP2). The central catalytic domain of BRAP comprises four subdomains: nucleotide-binding α/β plait (NBP), really interesting new gene (RING) zinc finger, ubiquitin-specific protease (UBP)-like zinc finger (ZfUBP), and coiled-coil (CC). This domain architecture is conserved in RNF52 orthologs; however, the domain's function in the ubiquitin system has not been delineated. In the present study, we discovered that the RNF52 domain, comprising NBP–RING–ZfUBP–CC, binds to ubiquitin chains (oligo-ubiquitin) but not to the ubiquitin monomers, and can utilize various ubiquitin chains for ubiquitylation and auto-ubiquitylation. The RNF52 domain preferentially bound to M1- and K63-linked di-ubiquitin chains, weakly to K27-linked chains, but not to K6-, K11-, or K48-linked chains. The binding preferences of the RNF52 domain for ubiquitin-linkage types corresponded to ubiquitin usage in the ubiquitylation reaction, except for K11-, K29-, and K33-linked chains. Additionally, the RNF52 domain directly ligated the intact M1-linked, tri-, and tetra-ubiquitin chains and recognized the structural alterations caused by the phosphomimetic mutation of these ubiquitin chains. Full-length BRAP had nearly the same specificity for the ubiquitin-chain types as the RNF52 domain alone. Mass spectrometry analysis of oligomeric ubiquitylation products, mediated by the RNF52 domain, revealed that the ubiquitin-linkage types and auto-ubiquitylation sites depend on the length of ubiquitin chains. Here, we propose a model for the oligomeric ubiquitylation process, controlled by the RNF52 domain, which is not a sequential assembly process involving monomers. PMID:28768733

  16. Snakes exhibit tissue-specific variation in cardiotonic steroid sensitivity of Na+/K+-ATPase.

    PubMed

    Mohammadi, Shabnam; Petschenka, Georg; French, Susannah S; Mori, Akira; Savitzky, Alan H

    2018-03-01

    Toads are among several groups of organisms chemically defended with lethal concentrations of cardiotonic steroids. As a result, most predators that prey on amphibians avoid toads. However, several species of snakes have gained resistance-conferring mutations of Na + /K + -ATPase, the molecular target of cardiotonic steroids, and can feed on toads readily. Despite recent advances in our understanding of this adaptation at the genetic level, we have lacked functional evidence for how mutations of Na + /K + -ATPase account for cardiotonic steroid resistance in snake tissues. To address this issue, it is necessary to determine how the Na + /K + -ATPases of snakes react to the toxins. Some tissues might have Na + /K + -ATPases that are more susceptible than others and can thus provide clues about how the toxins influence organismal function. Here we provide a mechanistic link between observed Na + /K + -ATPase substitutions and observed resistance using actual snake Na + /K + -ATPases. We used an in vitro approach to determine the tissue-specific levels of sensitivity to cardiotonic steroids in select resistant and non-resistant snakes. We compared the sensitivities of select tissues within and between species. Our results suggest that resistant snakes contain highly resistant Na + /K + -ATPases in their heart and kidney, both of which rely heavily on the enzymes to function, whereas tissues that do not rely as heavily on Na + /K + -ATPases or might be protected from cardiotonic steroids by other means (liver, gut, and brain) contain non-resistant forms of the enzyme. This study reveals functional evidence that tissue-level target-site insensitivity to cardiotonic steroids varies not only among species but also across tissues within resistant taxa. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Deciphering the Ubiquitin Code.

    PubMed

    Dittmar, Gunnar; Selbach, Matthias

    2017-03-02

    In this issue of Molecular Cell, Zhang et al. (2017) systematically identify proteins interacting with all possible di-ubiquitin linkages, thus providing a catalog of readers of the ubiquitin code. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Two ATPases

    PubMed Central

    Senior, Alan E.

    2012-01-01

    In this article, I reflect on research on two ATPases. The first is F1F0-ATPase, also known as ATP synthase. It is the terminal enzyme in oxidative phosphorylation and famous as a nanomotor. Early work on mitochondrial enzyme involved purification in large amount, followed by deduction of subunit composition and stoichiometry and determination of molecular sizes of holoenzyme and individual subunits. Later work on Escherichia coli enzyme utilized mutagenesis and optical probes to reveal the molecular mechanism of ATP hydrolysis and detailed facets of catalysis. The second ATPase is P-glycoprotein, which confers multidrug resistance, notably to anticancer drugs, in mammalian cells. Purification of the protein in large quantity allowed detailed characterization of catalysis, formulation of an alternating sites mechanism, and recently, advances in structural characterization. PMID:22822068

  19. Regionalization of Emergent Vascular Surgery for Patients With Ruptured AAA Improves Outcomes.

    PubMed

    Warner, Courtney J; Roddy, Sean P; Chang, Benjamin B; Kreienberg, Paul B; Sternbach, Yaron; Taggert, John B; Ozsvath, Kathleen J; Stain, Steven C; Darling, R Clement

    2016-09-01

    Safe and efficient endovascular aneurysm repair (EVAR) for ruptured abdominal aortic aneurysm (r-AAA) requires advanced infrastructure and surgical expertise not available at all US hospitals. The objective was to assess the impact of regionalizing r-AAA care to centers equipped for both open surgical repair (r-OSR) and EVAR (r-EVAR) by vascular surgeons. A retrospective review of all patients with r-AAA undergoing open or endovascular repair in a 12-hospital region. Patient demographics, transfer status, type of repair, and intraoperative variables were recorded. Outcomes included perioperative morbidity and mortality. Four hundred fifty-one patients with r-AAA were treated from 2002 to 2015. Three hundred twenty-one patients (71%) presented initially to community hospitals (CHs) and 130 (29%) presented to the tertiary medical center (MC). Of the 321 patients presenting to CH, 133 (41%) were treated locally (131 OSR; 2 EVAR) and 188 (59%) were transferred to the MC. In total, 318 patients were treated at the MC (122 OSR; 196 EVAR). At the MC, r-EVAR was associated with a lower mortality rate than r-OSR (20% vs 37%, P = 0.001). Transfer did not influence r-EVAR mortality (20% in r-EVAR presenting to MC vs 20% in r-EVAR transferred, P > 0.2). Overall, r-AAA mortality at the MC was 20% lower than CH (27% vs 46%, P < 0.001). Regionalization of r-AAA repair to centers equipped for both r-EVAR and r-OSR decreased mortality by approximately 20%. Transfer did not impact the mortality of r-EVAR at the tertiary center. Care of r-AAA in the US should be centralized to centers equipped with available technology and vascular surgeons.

  20. On the Impact of Intraluminal Thrombus Mechanical Behavior in AAA Passive Mechanics.

    PubMed

    Riveros, Fabián; Martufi, Giampaolo; Gasser, T Christian; Rodriguez-Matas, Jose F

    2015-09-01

    Intraluminal thrombus (ILT) is a pseudo-tissue that develops from coagulated blood, and is found in most abdominal aortic aneurysms (AAAs) of clinically relevant size. A number of studies have suggested that ILT mechanical characteristics may be related to AAA risk of rupture, even though there is still great controversy in this regard. ILT is isotropic and inhomogeneous and may appear as a soft (single-layered) or stiff (multilayered fibrotic) tissue. This paper aims to investigate how ILT constitution and topology influence the magnitude and location of peak wall stress (PWS). In total 21 patient-specific AAAs (diameter 4.2-5.4 cm) were reconstructed from computer tomography images and biomechanically analyzed using state-of-the-art modeling assumptions. Results indicated that PWS correlated stronger with ILT volume (ρ = 0.44, p = 0.05) and minimum thickness of ILT layer (ρ = 0.73, p = 0.001) than with maximum AAA diameter (ρ = 0.05, p = 0.82). On average PWS was 20% (SD 12%) higher for FE models that used soft instead of stiff ILT models (p < 0.001). PWS location strongly correlated with sites of minimum ILT thickness in the section of maximum AAA diameter and was independent from ILT stiffness. In addition, ILT heterogeneity, i.e., the spatial composition of soft and stiff thrombus tissue, can considerably influence stress in the AAA wall. The present study is limited to identification of influential biomechanical factors, and how its findings translate to an AAA rupture risk assessment remains to be explored by clinical studies.

  1. E3 Ubiquitin Ligase CHIP and NBR1-Mediated Selective Autophagy Protect Additively against Proteotoxicity in Plant Stress Responses

    PubMed Central

    Qi, Jingxia; Chi, Yingjin; Fan, Baofang; Yu, Jing-Quan; Chen, Zhixiang

    2014-01-01

    Plant stress responses require both protective measures that reduce or restore stress-inflicted damage to cellular structures and mechanisms that efficiently remove damaged and toxic macromolecules, such as misfolded and damaged proteins. We have recently reported that NBR1, the first identified plant autophagy adaptor with a ubiquitin-association domain, plays a critical role in plant stress tolerance by targeting stress-induced, ubiquitinated protein aggregates for degradation by autophagy. Here we report a comprehensive genetic analysis of CHIP, a chaperone-associated E3 ubiquitin ligase from Arabidopsis thaliana implicated in mediating degradation of nonnative proteins by 26S proteasomes. We isolated two chip knockout mutants and discovered that they had the same phenotypes as the nbr1 mutants with compromised tolerance to heat, oxidative and salt stresses and increased accumulation of insoluble proteins under heat stress. To determine their functional interactions, we generated chip nbr1 double mutants and found them to be further compromised in stress tolerance and in clearance of stress-induced protein aggregates, indicating additive roles of CHIP and NBR1. Furthermore, stress-induced protein aggregates were still ubiquitinated in the chip mutants. Through proteomic profiling, we systemically identified heat-induced protein aggregates in the chip and nbr1 single and double mutants. These experiments revealed that highly aggregate-prone proteins such as Rubisco activase and catalases preferentially accumulated in the nbr1 mutant while a number of light-harvesting complex proteins accumulated at high levels in the chip mutant after a relatively short period of heat stress. With extended heat stress, aggregates for a large number of intracellular proteins accumulated in both chip and nbr1 mutants and, to a greater extent, in the chip nbr1 double mutant. Based on these results, we propose that CHIP and NBR1 mediate two distinct but complementary anti

  2. Ubiquitination-Related MdBT Scaffold Proteins Target a bHLH Transcription Factor for Iron Homeostasis1[OPEN

    PubMed Central

    Zhao, Qiang; Wang, Qing-Jie; Wang, Xiao-Fei; You, Chun-Xiang

    2016-01-01

    Iron (Fe) homeostasis is crucial for plant growth and development. A network of basic helix-loop-helix (bHLH) transcription factors positively regulates Fe uptake during iron deficiency. However, their up-regulation or overexpression leads to Fe overload and reactive oxygen species generation, thereby damaging the plants. Here, we found that two BTB/TAZ proteins, MdBT1 and MdBT2, interact with the MbHLH104 protein in apple. In addition, the function of MdBT2 was characterized as a regulator of MdbHLH104 degradation via ubiquitination and the 26S proteasome pathway, thereby controlling the activity of plasma membrane H+-ATPases and the acquisition of iron. Furthermore, MdBT2 interacted with MdCUL3 proteins, which were required for the MdBT2-mediated ubiquitination modification of MdbHLH104 and its degradation. In sum, our findings demonstrate that MdBT proteins interact with MdCUL3 to bridge the formation of the MdBTsMdCUL3 complex, which negatively modulates the degradation of the MdbHLH104 protein in response to changes in Fe status to maintain iron homeostasis in plants. PMID:27660166

  3. Selective Assembly of Na,K-ATPase α2β2 Heterodimers in the Heart: DISTINCT FUNCTIONAL PROPERTIES AND ISOFORM-SELECTIVE INHIBITORS.

    PubMed

    Habeck, Michael; Tokhtaeva, Elmira; Nadav, Yotam; Ben Zeev, Efrat; Ferris, Sean P; Kaufman, Randal J; Bab-Dinitz, Elizabeta; Kaplan, Jack H; Dada, Laura A; Farfel, Zvi; Tal, Daniel M; Katz, Adriana; Sachs, George; Vagin, Olga; Karlish, Steven J D

    2016-10-28

    The Na,K-ATPase α 2 subunit plays a key role in cardiac muscle contraction by regulating intracellular Ca 2+ , whereas α 1 has a more conventional role of maintaining ion homeostasis. The β subunit differentially regulates maturation, trafficking, and activity of α-β heterodimers. It is not known whether the distinct role of α 2 in the heart is related to selective assembly with a particular one of the three β isoforms. We show here by immunofluorescence and co-immunoprecipitation that α 2 is preferentially expressed with β 2 in T-tubules of cardiac myocytes, forming α 2 β 2 heterodimers. We have expressed human α 1 β 1 , α 2 β 1 , α 2 β 2 , and α 2 β 3 in Pichia pastoris, purified the complexes, and compared their functional properties. α 2 β 2 and α 2 β 3 differ significantly from both α 2 β 1 and α 1 β 1 in having a higher K 0.5 K + and lower K 0.5 Na + for activating Na,K-ATPase. These features are the result of a large reduction in binding affinity for extracellular K + and shift of the E 1 P-E 2 P conformational equilibrium toward E 1 P. A screen of perhydro-1,4-oxazepine derivatives of digoxin identified several derivatives (e.g. cyclobutyl) with strongly increased selectivity for inhibition of α 2 β 2 and α 2 β 3 over α 1 β 1 (range 22-33-fold). Molecular modeling suggests a possible basis for isoform selectivity. The preferential assembly, specific T-tubular localization, and low K + affinity of α 2 β 2 could allow an acute response to raised ambient K + concentrations in physiological conditions and explain the importance of α 2 β 2 for cardiac muscle contractility. The high sensitivity of α 2 β 2 to digoxin derivatives explains beneficial effects of cardiac glycosides for treatment of heart failure and potential of α 2 β 2 -selective digoxin derivatives for reducing cardiotoxicity. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  4. Ubiquitinated Proteome: Ready for Global?*

    PubMed Central

    Shi, Yi; Xu, Ping; Qin, Jun

    2011-01-01

    Ubiquitin (Ub) is a small and highly conserved protein that can covalently modify protein substrates. Ubiquitination is one of the major post-translational modifications that regulate a broad spectrum of cellular functions. The advancement of mass spectrometers as well as the development of new affinity purification tools has greatly expedited proteome-wide analysis of several post-translational modifications (e.g. phosphorylation, glycosylation, and acetylation). In contrast, large-scale profiling of lysine ubiquitination remains a challenge. Most recently, new Ub affinity reagents such as Ub remnant antibody and tandem Ub binding domains have been developed, allowing for relatively large-scale detection of several hundreds of lysine ubiquitination events in human cells. Here we review different strategies for the identification of ubiquitination site and discuss several issues associated with data analysis. We suggest that careful interpretation and orthogonal confirmation of MS spectra is necessary to minimize false positive assignments by automatic searching algorithms. PMID:21339389

  5. Ubiquitin-specific protease 14 regulates cell proliferation and apoptosis in oral squamous cell carcinoma.

    PubMed

    Chen, Xiangyun; Wu, Jingjing; Chen, Yitian; Ye, Dongxia; Lei, Hu; Xu, Hanzhang; Yang, Li; Wu, Yingli; Gu, Wenli

    2016-10-01

    Ubiquitin-specific protease 14, a deubiquitinating enzyme, has been implicated in the tumorigenesis and progression of several cancers, but its role in oral squamous cell carcinoma remains to be elucidated. The aim of this study was to explore the expression pattern and roles of Ubiquitin-specific protease 14 in the occurrence and development of oral squamous cell carcinoma. Interestingly, Ubiquitin-specific protease 14 was overexpressed in oral cancer tissues and cell lines at both mRNA and protein levels. b-AP15, a specific inhibitor of Ubiquitin-specific protease 14, significantly inhibited the growth of cancer cells and increased cell apoptosis in a dose-dependent manner. Moreover, knockdown of Ubiquitin-specific protease 14 by shRNA significantly inhibited the proliferation and migration of cancer cells in vitro. Finally, using a xenograft mouse model of oral squamous cell carcinoma, knockdown of Ubiquitin-specific protease 14 markedly inhibited tumor growth and triggered the cancer cell apoptosis in vivo, supporting previous results. In conclusion, for the first time we have demonstrated the expression pattern of Ubiquitin-specific protease 14 in oral squamous cell carcinoma and verified a relationship with tumor growth and metastasis. These results may highlight new therapeutic strategies for tumor treatment, application of Ubiquitin-specific protease 14 selective inhibitor, such as b-AP15, or knockdown by shRNA. Collectively, Ubiquitin-specific protease 14 could be a potential therapeutic target for oral squamous cell carcinoma patients. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Identifying patients with AAA with the highest risk following endovascular repair.

    PubMed

    Cadili, Ali; Turnbull, Robert; Hervas-Malo, Marilou; Ghosh, Sunita; Chyczij, Harold

    2012-08-01

    It has been demonstrated that endovascular repair of arterial disease results in reduced perioperative morbidity and mortality compared to open surgical repair. The rates of complications and need for reinterventions, however, have been found to be higher than that in open repair. The purpose of this study was to identify the predictors of endograft complications and mortality in patients undergoing endovascular abdominal aortic aneurysm (AAA) repair; specifically, our aim was to identify a subset of patients with AAA whose risk of periprocedure mortality was so high that they should not be offered endovascular repair. We undertook a prospective review of patients with AAA receiving endovascular therapy at a single institution. Collected variables included age, gender, date of procedure, indication for procedure, size of aneurysm (where applicable), type of endograft used, presence of rupture, American Society of Anesthesiologists (ASA) class, major medical comorbidities, type of anesthesia (general, epidural, or local), length of intensive care unit (ICU) stay, and length of hospital stay. These factors were correlated with the study outcomes (overall mortality, graft complications, morbidity, and reintervention) using univariate and multivariate logistic regression. A total of 199 patients underwent endovascular AAA repair during the study period. The ICU stay, again, was significantly correlated with the primary outcomes (death and graft complications). In addition, length of hospital stay greater than 3 days, also emerged as a statistically significant predictor of graft complications in this subgroup (P = .024). Survival analysis for patients with AAA revealed that age over 85 years and ICU stay were predictive of decreased survival. Statistical analysis for other subgroups of patients (inflammatory AAA or dissection) was not performed due to the small numbers in these subgroups. Patients with AAA greater than 85 years of age are at a greater risk of mortality

  7. Ubiquitin-coated nanodiamonds bind to autophagy receptors for entry into the selective autophagy pathway.

    PubMed

    Liu, Kuang-Kai; Qiu, Wei-Ru; Naveen Raj, Emmanuel; Liu, Huei-Fang; Huang, Hou-Syun; Lin, Yu-Wei; Chang, Chien-Jen; Chen, Ting-Hua; Chen, Chinpiao; Chang, Huan-Cheng; Hwang, Jenn-Kang; Chao, Jui-I

    2017-01-02

    Selective macroautophagy/autophagy plays a pivotal role in the processing of foreign pathogens and cellular components to maintain homeostasis in human cells. To date, numerous studies have demonstrated the uptake of nanoparticles by cells, but their intracellular processing through selective autophagy remains unclear. Here we show that carbon-based nanodiamonds (NDs) coated with ubiquitin (Ub) bind to autophagy receptors (SQSTM1 [sequestosome 1], OPTN [optineurin], and CALCOCO2/NDP52 [calcium binding and coiled-coil domain 2]) and are then linked to MAP1LC3/LC3 (microtubule-associated protein 1 light chain 3) for entry into the selective autophagy pathway. NDs are ultimately delivered to lysosomes. Ectopically expressed SQSTM1-green fluorescence protein (GFP) could bind to the Ub-coated NDs. By contrast, the Ub-associated domain mutant of SQSTM1 (ΔUBA)-GFP did not bind to the Ub-coated NDs. Chloroquine, an autophagy inhibitor, prevented the ND-containing autophagosomes from fusing with lysosomes. Furthermore, autophagy receptors OPTN and CALCOCO2/NDP52, involved in the processing of bacteria, were found to be involved in the selective autophagy of NDs. However, ND particles located in the lysosomes of cells did not induce mitotic blockage, senescence, or cell death. Single ND clusters in the lysosomes of cells were observed in the xenografted human lung tumors of nude mice. This study demonstrated for the first time that Ub-coated nanoparticles bind to autophagy receptors for entry into the selective autophagy pathway, facilitating their delivery to lysosomes.

  8. Mass spectrometry techniques for studying the ubiquitin system.

    PubMed

    Heap, Rachel E; Gant, Megan S; Lamoliatte, Frederic; Peltier, Julien; Trost, Matthias

    2017-10-15

    Post-translational control of proteins through covalent attachment of ubiquitin plays important roles in all eukaryotic cell functions. The ubiquitin system in humans consists of 2 E1, 35 E2 and >600 E3 ubiquitin ligases as well as hundreds of deubiquitylases, which reverse ubiquitin attachment. Moreover, there are hundreds of proteins with ubiquitin-binding domains that bind one of the eight possible polyubiquitin chains. Dysfunction of the ubiquitin system is associated with many diseases such as cancer, autoimmunity and neurodegeneration, demonstrating the importance of ubiquitylation. Therefore, enzymes of the ubiquitin system are considered highly attractive drug targets. In recent years, mass spectrometry (MS)-based techniques have become increasingly important in the deciphering of the ubiquitin system. This short review addresses the state-of-the-art MS techniques for the identification of ubiquitylated proteins and their ubiquitylation sites. We also discuss the identification and quantitation of ubiquitin chain topologies and highlight how the activity of enzymes in the ubiquitin pathway can be measured. Finally, we present current MS tools that can be used for drug discovery in the ubiquitin space. © 2017 The Author(s). Published by Portland Press Limited on behalf of the Biochemical Society.

  9. It's all about talking: two-way communication between proteasomal and lysosomal degradation pathways via ubiquitin.

    PubMed

    Liebl, Martina P; Hoppe, Thorsten

    2016-08-01

    Selective degradation of proteins requires a fine-tuned coordination of the two major proteolytic pathways, the ubiquitin-proteasome system (UPS) and autophagy. Substrate selection and proteolytic activity are defined by a plethora of regulatory cofactors influencing each other. Both proteolytic pathways are initiated by ubiquitylation to mark substrate proteins for degradation, although the size and/or topology of the modification are different. In this context E3 ubiquitin ligases, ensuring the covalent attachment of activated ubiquitin to the substrate, are of special importance. The regulation of E3 ligase activity, competition between different E3 ligases for binding E2 conjugation enzymes and substrates, as well as their interplay with deubiquitylating enzymes (DUBs) represent key events in the cross talk between the UPS and autophagy. The coordination between both degradation routes is further influenced by heat shock factors and ubiquitin-binding proteins (UBPs) such as p97, p62, or optineurin. Mutations in enzymes and ubiquitin-binding proteins or a general decline of both proteolytic systems during aging result in accumulation of damaged and aggregated proteins. Thus further mechanistic understanding of how UPS and autophagy communicate might allow therapeutic intervention especially against age-related diseases. Copyright © 2016 the American Physiological Society.

  10. Integration of cellular ubiquitin and membrane traffic systems: focus on deubiquitylases.

    PubMed

    Clague, Michael J; Urbé, Sylvie

    2017-06-01

    The cell is comprised of integrated multilevel protein networks or systems. The ubiquitin, protein homeostasis and membrane trafficking systems are highly integrated. Here, we look at the influence of reversible ubiquitylation on membrane trafficking and organelle dynamics. We review the regulation of endocytic sorting, selective autophagy and the secretory pathway by ubiquitin signals, with a particular focus on detailing the contribution of deubiquitylating enzymes. © 2017 The Authors. The FEBS Journal published by John Wiley & Sons Ltd on behalf of Federation of European Biochemical Societies.

  11. Electron impact action spectroscopy of mass/charge selected macromolecular ions: Inner-shell excitation of ubiquitin protein

    NASA Astrophysics Data System (ADS)

    Ranković, Miloš Lj.; Giuliani, Alexandre; Milosavljević, Aleksandar R.

    2016-02-01

    We have performed inner-shell electron impact action spectroscopy of mass and charge selected macromolecular ions. For this purpose, we have coupled a focusing electron gun with a linear quadrupole ion trap mass spectrometer. This experiment represents a proof of principle that an energy-tunable electron beam can be used in combination with radio frequency traps as an activation method in tandem mass spectrometry (MS2) and allows performing action spectroscopy. Electron impact MS2 spectra of multiply protonated ubiquitin protein ion have been recorded at incident electron energies around the carbon 1 s excitation. Both MS2 and single ionization energy dependence spectra are compared with literature data obtained using the soft X-ray activation conditions.

  12. The Abdominal Aortic Aneurysm Statistically Corrected Operative Risk Evaluation (AAA SCORE) for predicting mortality after open and endovascular interventions.

    PubMed

    Ambler, Graeme K; Gohel, Manjit S; Mitchell, David C; Loftus, Ian M; Boyle, Jonathan R

    2015-01-01

    Accurate adjustment of surgical outcome data for risk is vital in an era of surgeon-level reporting. Current risk prediction models for abdominal aortic aneurysm (AAA) repair are suboptimal. We aimed to develop a reliable risk model for in-hospital mortality after intervention for AAA, using rigorous contemporary statistical techniques to handle missing data. Using data collected during a 15-month period in the United Kingdom National Vascular Database, we applied multiple imputation methodology together with stepwise model selection to generate preoperative and perioperative models of in-hospital mortality after AAA repair, using two thirds of the available data. Model performance was then assessed on the remaining third of the data by receiver operating characteristic curve analysis and compared with existing risk prediction models. Model calibration was assessed by Hosmer-Lemeshow analysis. A total of 8088 AAA repair operations were recorded in the National Vascular Database during the study period, of which 5870 (72.6%) were elective procedures. Both preoperative and perioperative models showed excellent discrimination, with areas under the receiver operating characteristic curve of .89 and .92, respectively. This was significantly better than any of the existing models (area under the receiver operating characteristic curve for best comparator model, .84 and .88; P < .001 and P = .001, respectively). Discrimination remained excellent when only elective procedures were considered. There was no evidence of miscalibration by Hosmer-Lemeshow analysis. We have developed accurate models to assess risk of in-hospital mortality after AAA repair. These models were carefully developed with rigorous statistical methodology and significantly outperform existing methods for both elective cases and overall AAA mortality. These models will be invaluable for both preoperative patient counseling and accurate risk adjustment of published outcome data. Copyright © 2015 Society

  13. Role of ubiquitin and the HPV E6 oncoprotein in E6AP-mediated ubiquitination

    PubMed Central

    Mortensen, Franziska; Schneider, Daniel; Barbic, Tanja; Sladewska-Marquardt, Anna; Kühnle, Simone; Marx, Andreas; Scheffner, Martin

    2015-01-01

    Deregulation of the ubiquitin ligase E6 associated protein (E6AP) encoded by the UBE3A gene has been associated with three different clinical pictures. Hijacking of E6AP by the E6 oncoprotein of distinct human papillomaviruses (HPV) contributes to the development of cervical cancer, whereas loss of E6AP expression or function is the cause of Angelman syndrome, a neurodevelopmental disorder, and increased expression of E6AP has been involved in autism spectrum disorders. Although these observations indicate that the activity of E6AP has to be tightly controlled, only little is known about how E6AP is regulated at the posttranslational level. Here, we provide evidence that the hydrophobic patch of ubiquitin comprising Leu-8 and Ile-44 is important for E6AP-mediated ubiquitination, whereas it does not affect the catalytic properties of the isolated catalytic HECT domain of E6AP. Furthermore, we show that the HPV E6 oncoprotein rescues the disability of full-length E6AP to use a respective hydrophobic patch mutant of ubiquitin for ubiquitination and that it stimulates E6AP-mediated ubiquitination of Ring1B, a known substrate of E6AP, in vitro and in cells. Based on these data, we propose that E6AP exists in at least two different states, an active and a less active or latent one, and that the activity of E6AP is controlled by noncovalent interactions with ubiquitin and allosteric activators such as the HPV E6 oncoprotein. PMID:26216987

  14. Assessment of the accuracy of AortaScan for detection of abdominal aortic aneurysm (AAA).

    PubMed

    Abbas, A; Smith, A; Cecelja, M; Waltham, M

    2012-02-01

    AortaScan AMI 9700 is a portable 3D ultrasound device that automatically measures the maximum diameter of the abdominal aorta without the need for a trained sonographer. It is designed to rapidly diagnose or exclude an AAA and may have particular use in screening programs. Our objective was to determine its accuracy to detect AAA. Subjects from our AAA screening and surveillance programs were examined. The aorta was scanned using the AortaScan and computed tomography (CT). Ninety-one subjects underwent imaging (44 AAA on conventional ultrasound surveillance and 47 controls). The largest measurement obtained by AortaScan was compared against the CT-aortic measurement. The mean aortic diameter was 2.8 cm. The CT scan confirmed the diagnosis of AAA in 43 subjects. There was one false positive measurement on conventional ultrasound. AortaScan missed the diagnosis of AAA in eight subjects. There were thirteen false positive measurements. The sensitivity, specificity, positive and negative predictive values were 81%, 72%, 72% and 81% respectively. A device to detect AAA without the need for a trained operator would have potential in a community-based screening programme. The AortaScan, however, lacks adequate sensitivity and significant technical improvement is necessary before it could be considered a replacement for trained screening personnel. Copyright © 2011 European Society for Vascular Surgery. Published by Elsevier Ltd. All rights reserved.

  15. Ubiquitin in Influenza Virus Entry and Innate Immunity.

    PubMed

    Rudnicka, Alina; Yamauchi, Yohei

    2016-10-24

    Viruses are obligatory cellular parasites. Their mission is to enter a host cell, to transfer the viral genome, and to replicate progeny whilst diverting cellular immunity. The role of ubiquitin is to regulate fundamental cellular processes such as endocytosis, protein degradation, and immune signaling. Many viruses including influenza A virus (IAV) usurp ubiquitination and ubiquitin-like modifications to establish infection. In this focused review, we discuss how ubiquitin and unanchored ubiquitin regulate IAV host cell entry, and how histone deacetylase 6 (HDAC6), a cytoplasmic deacetylase with ubiquitin-binding activity, mediates IAV capsid uncoating. We also discuss the roles of ubiquitin in innate immunity and its implications in the IAV life cycle.

  16. Ubiquitin in Influenza Virus Entry and Innate Immunity

    PubMed Central

    Rudnicka, Alina; Yamauchi, Yohei

    2016-01-01

    Viruses are obligatory cellular parasites. Their mission is to enter a host cell, to transfer the viral genome, and to replicate progeny whilst diverting cellular immunity. The role of ubiquitin is to regulate fundamental cellular processes such as endocytosis, protein degradation, and immune signaling. Many viruses including influenza A virus (IAV) usurp ubiquitination and ubiquitin-like modifications to establish infection. In this focused review, we discuss how ubiquitin and unanchored ubiquitin regulate IAV host cell entry, and how histone deacetylase 6 (HDAC6), a cytoplasmic deacetylase with ubiquitin-binding activity, mediates IAV capsid uncoating. We also discuss the roles of ubiquitin in innate immunity and its implications in the IAV life cycle. PMID:27783058

  17. Characterization and Structural Studies of the Plasmodium falciparum Ubiquitin and Nedd8 Hydrolase UCHL3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Artavanis-Tsakonas, Katerina; Weihofen, Wilhelm A.; Antos, John M.

    Like their human hosts, Plasmodium falciparum parasites rely on the ubiquitin-proteasome system for survival. We previously identified PfUCHL3, a deubiquitinating enzyme, and here we characterize its activity and changes in active site architecture upon binding to ubiquitin. We find strong evidence that PfUCHL3 is essential to parasite survival. The crystal structures of both PfUCHL3 alone and in complex with the ubiquitin-based suicide substrate UbVME suggest a rather rigid active site crossover loop that likely plays a role in restricting the size of ubiquitin adduct substrates. Molecular dynamics simulations of the structures and a model of the PfUCHL3-PfNedd8 complex allowed themore » identification of shared key interactions of ubiquitin and PfNedd8 with PfUCHL3, explaining the dual specificity of this enzyme. Distinct differences observed in ubiquitin binding between PfUCHL3 and its human counterpart make it likely that the parasitic DUB can be selectively targeted while leaving the human enzyme unaffected.« less

  18. Autographa californica Nucleopolyhedrovirus AC141 (Exon0), a Potential E3 Ubiquitin Ligase, Interacts with Viral Ubiquitin and AC66 To Facilitate Nucleocapsid Egress.

    PubMed

    Biswas, Siddhartha; Willis, Leslie G; Fang, Minggang; Nie, Yingchao; Theilmann, David A

    2018-02-01

    molecular mechanisms that enable the selection of nucleocapsids for nuclear export instead of being retained within the nucleus, where they would become ODV. Our data show that ubiquitination, a universal cellular process, specifically tags nucleocapsids of BV, but not those found in ODV, using a virus-encoded ubiquitin (vUbi). Therefore, ubiquitination may be the molecular signal that determines if a nucleocapsid is destined to form a BV, thus ensuring lethal infection of the host. © Crown copyright 2018.

  19. A novel effect of thalidomide and its analogs: suppression of cereblon ubiquitination enhances ubiquitin ligase function

    PubMed Central

    Liu, Yaobin; Huang, Xiangao; He, Xian; Zhou, Yanqing; Jiang, Xiaogang; Chen-Kiang, Selina; Jaffrey, Samie R.; Xu, Guoqiang

    2015-01-01

    The immunomodulatory drug (IMiD) thalidomide and its structural analogs lenalidomide and pomalidomide are highly effective in treating clinical indications. Thalidomide binds to cereblon (CRBN), a substrate receptor of the cullin-4 really interesting new gene (RING) E3 ligase complex. Here, we examine the effect of thalidomide and its analogs on CRBN ubiquitination and its functions in human cell lines. We find that the ubiquitin modification of CRBN includes K48-linked polyubiquitin chains and that thalidomide blocks the formation of CRBN-ubiquitin conjugates. Furthermore, we show that ubiquitinated CRBN is targeted for proteasomal degradation. Treatment of human myeloma cell lines such as MM1.S, OPM2, and U266 with thalidomide (100 μM) and its structural analog lenalidomide (10 μM) results in stabilization of CRBN and elevation of CRBN protein levels. This in turn leads to the reduced level of CRBN target proteins and enhances the sensitivity of human multiple myeloma cells to IMiDs. Our results reveal a novel mechanism by which thalidomide and its analogs modulate the CRBN function in cells. Through inhibition of CRBN ubiquitination, thalidomide and its analogs allow CRBN to accumulate, leading to the increased cullin-4 RING E3 ligase-mediated degradation of target proteins.—Liu, Y., Huang, X., He, X., Zhou, Y., Jiang, X., Chen-Kiang, S., Jaffrey, S. R., Xu, G. A novel effect of thalidomide and its analogs: suppression of cereblon ubiquitination enhances ubiquitin ligase function. PMID:26231201

  20. OGLE16aaa - a signature of a hungry supermassive black hole

    NASA Astrophysics Data System (ADS)

    Wyrzykowski, Łukasz; Zieliński, M.; Kostrzewa-Rutkowska, Z.; Hamanowicz, A.; Jonker, P. G.; Arcavi, I.; Guillochon, J.; Brown, P. J.; Kozłowski, S.; Udalski, A.; Szymański, M. K.; Soszyński, I.; Poleski, R.; Pietrukowicz, P.; Skowron, J.; Mróz, P.; Ulaczyk, K.; Pawlak, M.; Rybicki, K. A.; Greiner, J.; Krühler, T.; Bolmer, J.; Smartt, S. J.; Maguire, K.; Smith, K.

    2017-02-01

    We present the discovery and first three months of follow-up observations of a currently on-going unusual transient detected by the Optical Gravitational Lensing Experiment (OGLE-IV) survey, located in the centre of a galaxy at redshift z = 0.1655. The long rise to absolute magnitude of -20.5 mag, slow decline, very broad He and H spectral features make OGLE16aaa similar to other optical/UV tidal disruption events (TDEs). Weak narrow emission lines in the spectrum and archival photometric observations suggest the host galaxy is a weak-line active galactic nucleus, which has been accreting at higher rate in the past. OGLE16aaa, along with SDSS J0748, seems to form a sub-class of TDEs by weakly or recently active supermassive black holes (SMBHs). This class might bridge the TDEs by quiescent SMBHs and flares observed as `changing-look quasars', if we interpret the latter as TDEs. If this picture is true, the previously applied requirement for identifying a flare as a TDE that it had to come from an inactive nucleus, could be leading to observational bias in TDE selection, thus affecting TDE-rate estimations.

  1. Direct Ubiquitin Independent Recognition and Degradation of a Folded Protein by the Eukaryotic Proteasomes-Origin of Intrinsic Degradation Signals

    PubMed Central

    Singh Gautam, Amit Kumar; Balakrishnan, Satish; Venkatraman, Prasanna

    2012-01-01

    Eukaryotic 26S proteasomes are structurally organized to recognize, unfold and degrade globular proteins. However, all existing model substrates of the 26S proteasome in addition to ubiquitin or adaptor proteins require unstructured regions in the form of fusion tags for efficient degradation. We report for the first time that purified 26S proteasome can directly recognize and degrade apomyoglobin, a globular protein, in the absence of ubiquitin, extrinsic degradation tags or adaptor proteins. Despite a high affinity interaction, absence of a ligand and presence of only helices/loops that follow the degradation signal, apomyoglobin is degraded slowly by the proteasome. A short floppy F-helix exposed upon ligand removal and in conformational equilibrium with a disordered structure is mandatory for recognition and initiation of degradation. Holomyoglobin, in which the helix is buried, is neither recognized nor degraded. Exposure of the floppy F-helix seems to sensitize the proteasome and primes the substrate for degradation. Using peptide panning and competition experiments we speculate that initial encounters through the floppy helix and additional strong interactions with N-terminal helices anchors apomyoglobin to the proteasome. Stabilizing helical structure in the floppy F-helix slows down degradation. Destabilization of adjacent helices accelerates degradation. Unfolding seems to follow the mechanism of helix unraveling rather than global unfolding. Our findings while confirming the requirement for unstructured regions in degradation offers the following new insights: a) origin and identification of an intrinsic degradation signal in the substrate, b) identification of sequences in the native substrate that are likely to be responsible for direct interactions with the proteasome, and c) identification of critical rate limiting steps like exposure of the intrinsic degron and destabilization of an unfolding intermediate that are presumably catalyzed by the ATPases

  2. Activation of the Slx5–Slx8 Ubiquitin Ligase by Poly-small Ubiquitin-like Modifier Conjugates*S⃞

    PubMed Central

    Mullen, Janet R.; Brill, Steven J.

    2008-01-01

    Protein sumoylation is a regulated process that is important for the health of human and yeast cells. In budding yeast, a subset of sumoylated proteins is targeted for ubiquitination by a conserved heterodimeric ubiquitin (Ub) ligase, Slx5–Slx8, which is needed to suppress the accumulation of high molecular weight small ubiquitin-like modifier (SUMO) conjugates. Structure-function analysis indicates that the Slx5–Slx8 complex contains multiple SUMO-binding domains that are collectively required for in vivo function. To determine the specificity of Slx5–Slx8, we assayed its Ub ligase activity using sumoylated Siz2 as an in vitro substrate. In contrast to unsumoylated or multisumoylated Siz2, substrates containing poly-SUMO conjugates were efficiently ubiquitinated by Slx5–Slx8. Although Siz2 itself was ubiquitinated, the bulk of the Ub was conjugated to SUMO residues. Slx5–Slx8 primarily mono-ubiquitinated the N-terminal SUMO moiety of the chain. These data indicate that the Slx5–Slx8 Ub ligase is stimulated by poly-SUMO conjugates and that it can ubiquitinate a poly-SUMO chain. PMID:18499666

  3. Dosimetric comparison of peripheral NSCLC SBRT using Acuros XB and AAA calculation algorithms.

    PubMed

    Ong, Chloe C H; Ang, Khong Wei; Soh, Roger C X; Tin, Kah Ming; Yap, Jerome H H; Lee, James C L; Bragg, Christopher M

    2017-01-01

    There is a concern for dose calculation in highly heterogenous environments such as the thorax region. This study compares the quality of treatment plans of peripheral non-small cell lung cancer (NSCLC) stereotactic body radiation therapy (SBRT) using 2 calculation algorithms, namely, Eclipse Anisotropic Analytical Algorithm (AAA) and Acuros External Beam (AXB), for 3-dimensional conformal radiation therapy (3DCRT) and volumetric-modulated arc therapy (VMAT). Four-dimensional computed tomography (4DCT) data from 20 anonymized patients were studied using Varian Eclipse planning system, AXB, and AAA version 10.0.28. A 3DCRT plan and a VMAT plan were generated using AAA and AXB with constant plan parameters for each patient. The prescription and dose constraints were benchmarked against Radiation Therapy Oncology Group (RTOG) 0915 protocol. Planning parameters of the plan were compared statistically using Mann-Whitney U tests. Results showed that 3DCRT and VMAT plans have a lower target coverage up to 8% when calculated using AXB as compared with AAA. The conformity index (CI) for AXB plans was 4.7% lower than AAA plans, but was closer to unity, which indicated better target conformity. AXB produced plans with global maximum doses which were, on average, 2% hotter than AAA plans. Both 3DCRT and VMAT plans were able to achieve D95%. VMAT plans were shown to be more conformal (CI = 1.01) and were at least 3.2% and 1.5% lower in terms of PTV maximum and mean dose, respectively. There was no statistically significant difference for doses received by organs at risk (OARs) regardless of calculation algorithms and treatment techniques. In general, the difference in tissue modeling for AXB and AAA algorithm is responsible for the dose distribution between the AXB and the AAA algorithms. The AXB VMAT plans could be used to benefit patients receiving peripheral NSCLC SBRT. Copyright © 2017 American Association of Medical Dosimetrists. Published by Elsevier Inc. All rights

  4. Ubiquitin-coated nanodiamonds bind to autophagy receptors for entry into the selective autophagy pathway

    PubMed Central

    Liu, Kuang-Kai; Qiu, Wei-Ru; Naveen Raj, Emmanuel; Liu, Huei-Fang; Huang, Hou-Syun; Lin, Yu-Wei; Chang, Chien-Jen; Chen, Ting-Hua; Chen, Chinpiao; Chang, Huan-Cheng; Hwang, Jenn-Kang; Chao, Jui-I

    2017-01-01

    ABSTRACT Selective macroautophagy/autophagy plays a pivotal role in the processing of foreign pathogens and cellular components to maintain homeostasis in human cells. To date, numerous studies have demonstrated the uptake of nanoparticles by cells, but their intracellular processing through selective autophagy remains unclear. Here we show that carbon-based nanodiamonds (NDs) coated with ubiquitin (Ub) bind to autophagy receptors (SQSTM1 [sequestosome 1], OPTN [optineurin], and CALCOCO2/NDP52 [calcium binding and coiled-coil domain 2]) and are then linked to MAP1LC3/LC3 (microtubule-associated protein 1 light chain 3) for entry into the selective autophagy pathway. NDs are ultimately delivered to lysosomes. Ectopically expressed SQSTM1-green fluorescence protein (GFP) could bind to the Ub-coated NDs. By contrast, the Ub-associated domain mutant of SQSTM1 (ΔUBA)-GFP did not bind to the Ub-coated NDs. Chloroquine, an autophagy inhibitor, prevented the ND-containing autophagosomes from fusing with lysosomes. Furthermore, autophagy receptors OPTN and CALCOCO2/NDP52, involved in the processing of bacteria, were found to be involved in the selective autophagy of NDs. However, ND particles located in the lysosomes of cells did not induce mitotic blockage, senescence, or cell death. Single ND clusters in the lysosomes of cells were observed in the xenografted human lung tumors of nude mice. This study demonstrated for the first time that Ub-coated nanoparticles bind to autophagy receptors for entry into the selective autophagy pathway, facilitating their delivery to lysosomes. PMID:27846374

  5. Linear ubiquitin chains: enzymes, mechanisms and biology

    PubMed Central

    2017-01-01

    Ubiquitination is a versatile post-translational modification that regulates a multitude of cellular processes. Its versatility is based on the ability of ubiquitin to form multiple types of polyubiquitin chains, which are recognized by specific ubiquitin receptors to induce the required cellular response. Linear ubiquitin chains are linked through Met 1 and have been established as important players of inflammatory signalling and apoptotic cell death. These chains are generated by a ubiquitin E3 ligase complex called the linear ubiquitin chain assembly complex (LUBAC) that is thus far the only E3 ligase capable of forming linear ubiquitin chains. The complex consists of three subunits, HOIP, HOIL-1L and SHARPIN, each of which have specific roles in the observed biological functions of LUBAC. Furthermore, LUBAC has been found to be associated with OTULIN and CYLD, deubiquitinases that disassemble linear chains and counterbalance the E3 ligase activity of LUBAC. Gene mutations in HOIP, HOIL-1L and OTULIN are found in human patients who suffer from autoimmune diseases, and HOIL-1L mutations are also found in myopathy patients. In this paper, we discuss the mechanisms of linear ubiquitin chain generation and disassembly by their respective enzymes and review our current understanding of their biological functions and association with human diseases. PMID:28446710

  6. Rotary ATPases

    PubMed Central

    Stewart, Alastair G.; Sobti, Meghna; Harvey, Richard P.; Stock, Daniela

    2013-01-01

    Rotary ATPases are molecular rotary motors involved in biological energy conversion. They either synthesize or hydrolyze the universal biological energy carrier adenosine triphosphate. Recent work has elucidated the general architecture and subunit compositions of all three sub-types of rotary ATPases. Composite models of the intact F-, V- and A-type ATPases have been constructed by fitting high-resolution X-ray structures of individual subunits or sub-complexes into low-resolution electron densities of the intact enzymes derived from electron cryo-microscopy. Electron cryo-tomography has provided new insights into the supra-molecular arrangement of eukaryotic ATP synthases within mitochondria and mass-spectrometry has started to identify specifically bound lipids presumed to be essential for function. Taken together these molecular snapshots show that nano-scale rotary engines have much in common with basic design principles of man made machines from the function of individual “machine elements” to the requirement of the right “fuel” and “oil” for different types of motors. PMID:23369889

  7. Functional Characterization of Ice Plant SKD1, an AAA-Type ATPase Associated with the Endoplasmic Reticulum-Golgi Network, and Its Role in Adaptation to Salt Stress1[W

    PubMed Central

    Jou, Yingtzy; Chiang, Chih-Pin; Jauh, Guang-Yuh; Yen, Hungchen Emilie

    2006-01-01

    A salt-induced gene mcSKD1 (suppressor of K+ transport growth defect) able to facilitate K+ uptake has previously been identified from the halophyte ice plant (Mesembryanthemum crystallinum). The sequence of mcSKD1 is homologous to vacuolar protein sorting 4, an ATPase associated with a variety of cellular activities-type ATPase that participates in the sorting of vacuolar proteins into multivesicular bodies in yeast (Saccharomyces cerevisiae). Recombinant mcSKD1 exhibited ATP hydrolytic activities in vitro with a half-maximal rate at an ATP concentration of 1.25 mm. Point mutations on active site residues abolished its ATPase activity. ADP is both a product and a strong inhibitor of the reaction. ADP-binding form of mcSDK1 greatly reduced its catalytic activity. The mcSKD1 protein accumulated ubiquitously in both vegetative and reproductive parts of plants. Highest accumulation was observed in cells actively engaging in the secretory processes, such as bladder cells of leaf epidermis. Membrane fractionation and double-labeling immunofluorescence showed the predominant localization of mcSKD1 in the endoplasmic reticulum-Golgi network. Immunoelectron microscopy identified the formation of mcSKD1 proteins into small aggregates in the cytosol and associated with membrane continuum within the endomembrane compartments. These results indicated that this ATPase participates in the endoplasmic reticulum-Golgi mediated protein sorting machinery for both housekeeping function and compartmentalization of excess Na+ under high salinity. PMID:16581876

  8. Functional assessment of ubiquitin-depended processes under microgravity conditions

    NASA Astrophysics Data System (ADS)

    Zhabereva, Anastasia; Shenkman, Boris S.; Gainullin, Murat; Gurev, Eugeny; Kondratieva, Ekaterina; Kopylov, Arthur

    Ubiquitylation, a widespread and important posttranslational modification of eukaryotic proteins, controls a multitude of critical cellular processes, both in normal and pathological conditions. The present work aims to study involvement of ubiquitin-dependent regulation in adaptive response to the external stimuli. Experiments were carried out on C57BL/6 mice. The microgravity state under conditions of real spaceflight on the biosatellite “BION-M1” was used as a model of stress impact. Additionally, number of control series including the vivarium control and experiments in Ground-based analog were also studied. The aggregate of endogenously ubiquitylated proteins was selected as specific feature of ubiquitin-dependent processes. Dynamic changes of modification pattern were characterized in liver tissue by combination of some methods, particularly by specific isolation of explicit protein pool, followed by immunodetection and/or mass spectrometry-based identification. The main approach includes specific extraction of proteins, modified by multiubiquitin chains of different length and topology. For this purpose two techniques were applied: 1) immunoprecipitation with antibodies against ubiquitin and/or multiubiquitin chains; 2) pull-down using synthetic protein construct termed Tandem Ubiquitin Binding Entities (TUBE, LifeSensors). TUBE represents fusion protein, composed of well characterized ubiquitin-binding domains, and thereby allows specific high-affinity binding and extraction of ubiquitylated proteins. Resulting protein fractions were analyzed by immunoblotting with antibodies against different types of multiubiquitin chains. Using this method we mapped endogenously modified proteins involved in two different types of ubiquitin-dependent processes, namely catabolic and non-catabolic ubiquitylation, in liver tissues, obtained from both control as well as experimental groups of animals, mentioned above. Then, isolated fractions of ubiquitylated proteins

  9. Selective inhibition of tumor cell associated Vacuolar-ATPase 'a2' isoform overcomes cisplatin resistance in ovarian cancer cells.

    PubMed

    Kulshrestha, Arpita; Katara, Gajendra K; Ginter, Jordyn; Pamarthy, Sahithi; Ibrahim, Safaa A; Jaiswal, Mukesh K; Sandulescu, Corina; Periakaruppan, Ramayee; Dolan, James; Gilman-Sachs, Alice; Beaman, Kenneth D

    2016-06-01

    Development of resistance to platinum compounds significantly hinders successful ovarian cancer (OVCA) treatment. In tumor cells, dysregulated pH gradient across cell membranes is a key physiological mechanism of metastasis/chemo-resistance. These pH alterations are mediated by aberrant activation of key multi-subunit proton pumps, Vacuolar-ATPases (V-ATPases). In tumor cells, its 'a2' isoform (V-ATPase-V0a2) is a component of functional plasma-membrane complex and promotes tumor invasion through tumor-acidification and immuno-modulation. Its involvement in chemo-resistance has not been studied. Here, we show that V-ATPase-V0a2 is over-expressed in acquired-cisplatin resistant OVCA cells (cis-A2780/cis-TOV112D). Of all the 'a' subunit isoforms, V-ATPase-V0a2 exhibited an elevated expression on plasma membrane of cisplatin-resistant cells compared to sensitive counterparts. Immuno-histochemistry revealed V-ATPase-V0a2 expression in both low grade (highly drug-resistant) and high grade (highly recurrent) human OVCA tissues indicating its role in a centralized mechanism of tumor resistance. In cisplatin resistant cells, shRNA mediated inhibition of V-ATPase-V0a2 enhanced sensitivity towards both cisplatin and carboplatin. This improved cytotoxicity was mediated by enhanced cisplatin-DNA-adduct formation and suppressed DNA-repair pathway, leading to enhanced apoptosis. Suppression of V0a2 activity strongly reduced cytosolic pH in resistant tumor cells, which is known to enhance platinum-associated DNA-damage. As an indicator of reduced metastasis and chemo-resistance, in contrast to plasma membrane localization, a diffused cytoplasmic localization of acidic vacuoles was observed in V0a2-knockdown resistant cells. Interestingly, pre-treatment with monoclonal V0a2-inhibitory antibody enhanced cisplatin cytotoxicity in resistant cells. Taken together, our findings suggest that the isoform specific inhibition of V-ATPase-V0a2 could serve as a therapeutic strategy for chemo

  10. Hyperthyroidism increases the uncoupled ATPase activity and heat production by the sarcoplasmic reticulum Ca2+-ATPase.

    PubMed

    Arruda, Ana Paula; Da-Silva, Wagner S; Carvalho, Denise P; De Meis, Leopoldo

    2003-11-01

    The sarcoplasmic reticulum Ca2+-ATPase is able to modulate the distribution of energy released during ATP hydrolysis, so that a portion of energy is used for Ca2+ transport (coupled ATPase activity) and a portion is converted into heat (uncoupled ATPase activity). In this report it is shown that T4 administration to rabbits promotes an increase in the rates of both the uncoupled ATPase activity and heat production in sarcoplasmic reticulum vesicles, and that the degree of activation varies depending on the muscle type used. In white muscles hyperthyroidism promotes a 0.8-fold increase of the uncoupled ATPase activity and in red muscle a 4-fold increase. The yield of vesicles from hyperthyroid muscles is 3-4-fold larger than that obtained from normal muscles; thus the rate of heat production by the Ca2+-ATPase expressed in terms of g of muscle in hyperthyroidism is increased by a factor of 3.6 in white muscles and 12.0 in red muscles. The data presented suggest that the Ca2+-ATPase uncoupled activity may represent one of the heat sources that contributes to the enhanced thermogenesis noted in hyperthyroidism.

  11. New Insights Into Roles of Ubiquitin Modification in Regulating Plastids and Other Endosymbiotic Organelles.

    PubMed

    Broad, W; Ling, Q; Jarvis, P

    2016-01-01

    Recent findings have revealed important and diverse roles for the ubiquitin modification of proteins in the regulation of endosymbiotic organelles, which include the primary plastids of plants as well as complex plastids: the secondary endosymbiotic organelles of cryptophytes, alveolates, stramenopiles, and haptophytes. Ubiquitin modifications have a variety of potential consequences, both to the modified protein itself and to cellular regulation. The ubiquitin-proteasome system (UPS) can target individual proteins for selective degradation by the cytosolic 26S proteasome. Ubiquitin modifications can also signal the removal of whole endosymbiotic organelles, for example, via autophagy as has been well characterized in mitochondria. As plastids must import over 90% of their proteins from the cytosol, the observation that the UPS selectively targets the plastid protein import machinery is particularly significant. In this way, the UPS may influence the development and interconversions of different plastid types, as well as plastid responses to stress, by reconfiguring the organellar proteome. In complex plastids, the Symbiont-derived ERAD-Like Machinery (SELMA) has coopted the protein transport capabilities of the ER-Associated Degradation (ERAD) system, whereby misfolded proteins are retrotranslocated from ER for proteasomal degradation, uncoupling them from proteolysis: SELMA components have been retargeted to the second outermost plastid membrane to mediate protein import. In spite of this wealth of new information, there still remain a large number of unanswered questions and a need to define the roles of ubiquitin modification further in the regulation of plastids. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. Functional Diversity of AAA+ Protease Complexes in Bacillus subtilis

    PubMed Central

    Elsholz, Alexander K. W.; Birk, Marlene S.; Charpentier, Emmanuelle; Turgay, Kürşad

    2017-01-01

    Here, we review the diverse roles and functions of AAA+ protease complexes in protein homeostasis, control of stress response and cellular development pathways by regulatory and general proteolysis in the Gram-positive model organism Bacillus subtilis. We discuss in detail the intricate involvement of AAA+ protein complexes in controlling sporulation, the heat shock response and the role of adaptor proteins in these processes. The investigation of these protein complexes and their adaptor proteins has revealed their relevance for Gram-positive pathogens and their potential as targets for new antibiotics. PMID:28748186

  13. Functional Diversity of AAA+ Protease Complexes in Bacillus subtilis.

    PubMed

    Elsholz, Alexander K W; Birk, Marlene S; Charpentier, Emmanuelle; Turgay, Kürşad

    2017-01-01

    Here, we review the diverse roles and functions of AAA+ protease complexes in protein homeostasis, control of stress response and cellular development pathways by regulatory and general proteolysis in the Gram-positive model organism Bacillus subtilis . We discuss in detail the intricate involvement of AAA+ protein complexes in controlling sporulation, the heat shock response and the role of adaptor proteins in these processes. The investigation of these protein complexes and their adaptor proteins has revealed their relevance for Gram-positive pathogens and their potential as targets for new antibiotics.

  14. Proteostasis regulation by the ubiquitin system.

    PubMed

    Bett, John S

    2016-10-15

    Cells have developed an evolutionary obligation to survey and maintain proteome fidelity and avoid the possible toxic consequences of protein misfolding and aggregation. Disturbances to protein homoeostasis (proteostasis) can result in severe cellular phenotypes and are closely linked with the accumulation of microscopically visible deposits of aggregated proteins. These include inclusion bodies found in AD (Alzheimer's disease), HD (Huntington's disease) and ALS (amyotrophic lateral sclerosis) patient neurons. Protein aggregation is intimately linked with the ubiquitin and ubiquitin-like post-translational modifier system, which manages cellular protein folding stress and promotes the restoration of proteostasis. This is achieved in large part through the action of the UPS (ubiquitin-proteasome system), which is responsible for directing the proteasomal destruction of misfolded and damaged proteins tagged with ubiquitin chains. There are other less well understood ways in which ubiquitin family members can help to maintain proteostasis that complement, but are independent of, the UPS. This article discusses our current understanding of how the ubiquitin family regulates the protein misfolding pathways that threaten proteome fidelity, and how this is achieved by the key players in this process. © 2016 The Author(s). Published by Portland Press Limited on behalf of the Biochemical Society.

  15. On archaebacterial ATPase from Halobacterium saccharovorum

    NASA Technical Reports Server (NTRS)

    Kristjansson, H.; Ponnamperuma, C.; Hochstein, L.; Altekar, W.

    1984-01-01

    The energy transducing ATPase from Halobacterium saccharovorum was studied in order to define the origin of energy transducing systems. The ATPase required high salt concentration (4M NaCl) for activity; activity was rapidly lost when NaCl was below 1 Molar. At low salt concentration, the membrane bound ATPase activity could be stabilized in presence of spermine. However, following solubilization spermine was ineffective. Furthermore, F1 ATPase activity was stabilized by ammonium sulfate even when the NaCl concentration was less than 1 Molar. These studies suggest that stabilization by hydrophobic interactions preceded ionic ones in the evolution of the energy transducing ATPases.

  16. Chain Assembly and Disassembly Processes Differently Affect the Conformational Space of Ubiquitin Chains.

    PubMed

    Kniss, Andreas; Schuetz, Denise; Kazemi, Sina; Pluska, Lukas; Spindler, Philipp E; Rogov, Vladimir V; Husnjak, Koraljka; Dikic, Ivan; Güntert, Peter; Sommer, Thomas; Prisner, Thomas F; Dötsch, Volker

    2018-02-06

    Ubiquitination is the most versatile posttranslational modification. The information is encoded by linkage type as well as chain length, which are translated by ubiquitin binding domains into specific signaling events. Chain topology determines the conformational space of a ubiquitin chain and adds an additional regulatory layer to this ubiquitin code. In particular, processes that modify chain length will be affected by chain conformations as they require access to the elongation or cleavage sites. We investigated conformational distributions in the context of chain elongation and disassembly using pulsed electron-electron double resonance spectroscopy in combination with molecular modeling. Analysis of the conformational space of diubiquitin revealed conformational selection or remodeling as mechanisms for chain recognition during elongation or hydrolysis, respectively. Chain elongation to tetraubiquitin increases the sampled conformational space, suggesting that a high intrinsic flexibility of K48-linked chains may contribute to efficient proteasomal degradation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Electron impact action spectroscopy of mass/charge selected macromolecular ions: Inner-shell excitation of ubiquitin protein

    DOE PAGES

    Rankovic, Milos Lj.; Giuliani, Alexandre; Milosavljevic, Aleksandar R.

    2016-02-11

    In this study, we have performed inner-shell electron impact action spectroscopy of mass and charge selected macromolecular ions. For this purpose, we have coupled a focusing electron gun with a linear quadrupole ion trap mass spectrometer. This experiment represents a proof of principle that an energy-tunable electron beam can be used in combination with radio frequency traps as an activation method in tandem mass spectrometry (MS 2) and allows performing action spectroscopy. Electron impact MS 2 spectra of multiply protonated ubiquitin protein ion have been recorded at incident electron energies around the carbon 1s excitation. Both MS 2 and singlemore » ionization energy dependence spectra are compared with literature data obtained using the soft X-ray activation conditions.« less

  18. Electron impact action spectroscopy of mass/charge selected macromolecular ions: Inner-shell excitation of ubiquitin protein

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rankovic, Milos Lj.; Giuliani, Alexandre; Milosavljevic, Aleksandar R.

    In this study, we have performed inner-shell electron impact action spectroscopy of mass and charge selected macromolecular ions. For this purpose, we have coupled a focusing electron gun with a linear quadrupole ion trap mass spectrometer. This experiment represents a proof of principle that an energy-tunable electron beam can be used in combination with radio frequency traps as an activation method in tandem mass spectrometry (MS 2) and allows performing action spectroscopy. Electron impact MS 2 spectra of multiply protonated ubiquitin protein ion have been recorded at incident electron energies around the carbon 1s excitation. Both MS 2 and singlemore » ionization energy dependence spectra are compared with literature data obtained using the soft X-ray activation conditions.« less

  19. The HIP2~Ubiquitin Conjugate Forms a Non-Compact Monomeric Thioester during Di-Ubiquitin Synthesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cook, Benjamin W.; Barber, Kathryn R.; Shilton, Brian H.

    2015-03-23

    Polyubiquitination is a post-translational event used to control the degradation of damaged or unwanted proteins by modifying the target protein with a chain of ubiquitin molecules. One potential mechanism for the assembly of polyubiquitin chains involves the dimerization of an E2 conjugating enzyme allowing conjugated ubiquitin molecules to be put into close proximity to assist reactivity. HIP2 (UBE2K) and Ubc1 (yeast homolog of UBE2K) are unique E2 conjugating enzymes that each contain a C-terminal UBA domain attached to their catalytic domains, and they have basal E3-independent polyubiquitination activity. Although the isolated enzymes are monomeric, polyubiquitin formation activity assays show thatmore » both can act as ubiquitin donors or ubiquitin acceptors when in the activated thioester conjugate suggesting dimerization of the E2-ubiquitin conjugates. Stable disulfide complexes, analytical ultracentrifugation and small angle x-ray scattering were used to show that the HIP2-Ub and Ubc1-Ub thioester complexes remain predominantly monomeric in solution. Models of the HIP2-Ub complex derived from SAXS data show the complex is not compact but instead forms an open or backbent conformation similar to UbcH5b~Ub or Ubc13~Ub where the UBA domain and covalently attached ubiquitin reside on opposite ends of the catalytic domain. Activity assays showed that full length HIP2 exhibited a five-fold increase in the formation rate of di-ubiquitin compared to a HIP2 lacking the UBA domain. This difference was not observed for Ubc1 and may be attributed to the closer proximity of the UBA domain in HIP2 to the catalytic core than for Ubc1.« less

  20. Specificity and disease in the ubiquitin system

    PubMed Central

    Chaugule, Viduth K.; Walden, Helen

    2016-01-01

    Post-translational modification (PTM) of proteins by ubiquitination is an essential cellular regulatory process. Such regulation drives the cell cycle and cell division, signalling and secretory pathways, DNA replication and repair processes and protein quality control and degradation pathways. A huge range of ubiquitin signals can be generated depending on the specificity and catalytic activity of the enzymes required for attachment of ubiquitin to a given target. As a consequence of its importance to eukaryotic life, dysfunction in the ubiquitin system leads to many disease states, including cancers and neurodegeneration. This review takes a retrospective look at our progress in understanding the molecular mechanisms that govern the specificity of ubiquitin conjugation. PMID:26862208

  1. Linear ubiquitin chains: enzymes, mechanisms and biology.

    PubMed

    Rittinger, Katrin; Ikeda, Fumiyo

    2017-04-01

    Ubiquitination is a versatile post-translational modification that regulates a multitude of cellular processes. Its versatility is based on the ability of ubiquitin to form multiple types of polyubiquitin chains, which are recognized by specific ubiquitin receptors to induce the required cellular response. Linear ubiquitin chains are linked through Met 1 and have been established as important players of inflammatory signalling and apoptotic cell death. These chains are generated by a ubiquitin E3 ligase complex called the linear ubiquitin chain assembly complex (LUBAC) that is thus far the only E3 ligase capable of forming linear ubiquitin chains. The complex consists of three subunits, HOIP, HOIL-1L and SHARPIN, each of which have specific roles in the observed biological functions of LUBAC. Furthermore, LUBAC has been found to be associated with OTULIN and CYLD, deubiquitinases that disassemble linear chains and counterbalance the E3 ligase activity of LUBAC. Gene mutations in HOIP, HOIL-1L and OTULIN are found in human patients who suffer from autoimmune diseases, and HOIL-1L mutations are also found in myopathy patients. In this paper, we discuss the mechanisms of linear ubiquitin chain generation and disassembly by their respective enzymes and review our current understanding of their biological functions and association with human diseases. © 2017 The Authors.

  2. Targeted Delivery of Ubiquitin-Conjugated BH3 Peptide-Based Mcl-1 Inhibitors into Cancer Cells

    PubMed Central

    2015-01-01

    BH3 peptides are key mediators of apoptosis and have served as the lead structures for the development of anticancer therapeutics. Previously, we reported the application of a simple cysteine-based side chain cross-linking chemistry to NoxaBH3 peptides that led to the generation of the cross-linked NoxaBH3 peptides with increased cell permeability and higher inhibitory activity against Mcl-1 (Muppidi, A., Doi, K., Edwardraja, S., Drake, E. J., Gulick, A. M., Wang, H.-G., Lin, Q. (2012) J. Am. Chem. Soc.134, 1473422920569). To deliver cross-linked NoxaBH3 peptides selectively into cancer cells for enhanced efficacy and reduced systemic toxicity, here we report the conjugation of the NoxaBH3 peptides with the extracellular ubiquitin, a recently identified endogenous ligand for CXCR4, a chemokine receptor overexpressed in cancer cells. The resulting ubiquitin-NoxaBH3 peptide conjugates showed increased inhibitory activity against Mcl-1 and selective killing of the CXCR4-expressing cancer cells. The successful delivery of the NoxaBH3 peptides by ubiquitin into cancer cells suggests that the ubiquitin/CXCR4 axis may serve as a general route for the targeted delivery of anticancer agents. PMID:24410055

  3. Stabilization of the H,K-ATPase M5M6 membrane hairpin by K+ ions. Mechanistic significance for p2-type atpases.

    PubMed

    Gatto, C; Lutsenko, S; Shin, J M; Sachs, G; Kaplan, J H

    1999-05-14

    The integral membrane protein, the gastric H,K-ATPase, is an alpha-beta heterodimer, with 10 putative transmembrane segments in the alpha-subunit and one such segment in the beta-subunit. All transmembrane segments remain within the membrane domain following trypsinization of the intact gastric H,K-ATPase in the presence of K+ ions, identified as M1M2, M3M4, M5M6, and M7, M8, M9, and M10. Removal of K+ ions from this digested preparation results in the selective loss of the M5M6 hairpin from the membrane. The release of the M5M6 fragment is directed to the extracellular phase as evidenced by the accumulation of the released M5M6 hairpin inside the sealed inside out vesicles. The stabilization of the M5M6 hairpin in the membrane phase by the transported cation as well as loss to the aqueous phase in the absence of the transported cation has been previously observed for another P2-type ATPase, the Na, K-ATPase (Lutsenko, S., Anderko, R., and Kaplan, J. H. (1995) Proc. Natl. Acad. Sci. U. S. A. 92, 7936-7940). Thus, the effects of the counter-transported cation on retention of the M5M6 segment in the membrane as compared with the other membrane pairs may be a general feature of P2-ATPase ion pumps, reflecting a flexibility of this region that relates to the mechanism of transport.

  4. Vacuolar ATPase in Phagosome-Lysosome Fusion

    PubMed Central

    Kissing, Sandra; Hermsen, Christina; Repnik, Urska; Nesset, Cecilie Kåsi; von Bargen, Kristine; Griffiths, Gareth; Ichihara, Atsuhiro; Lee, Beth S.; Schwake, Michael; De Brabander, Jef; Haas, Albert; Saftig, Paul

    2015-01-01

    The vacuolar H+-ATPase (v-ATPase) complex is instrumental in establishing and maintaining acidification of some cellular compartments, thereby ensuring their functionality. Recently it has been proposed that the transmembrane V0 sector of v-ATPase and its a-subunits promote membrane fusion in the endocytic and exocytic pathways independent of their acidification functions. Here, we tested if such a proton-pumping independent role of v-ATPase also applies to phagosome-lysosome fusion. Surprisingly, endo(lyso)somes in mouse embryonic fibroblasts lacking the V0 a3 subunit of the v-ATPase acidified normally, and endosome and lysosome marker proteins were recruited to phagosomes with similar kinetics in the presence or absence of the a3 subunit. Further experiments used macrophages with a knockdown of v-ATPase accessory protein 2 (ATP6AP2) expression, resulting in a strongly reduced level of the V0 sector of the v-ATPase. However, acidification appeared undisturbed, and fusion between latex bead-containing phagosomes and lysosomes, as analyzed by electron microscopy, was even slightly enhanced, as was killing of non-pathogenic bacteria by V0 mutant macrophages. Pharmacologically neutralized lysosome pH did not affect maturation of phagosomes in mouse embryonic cells or macrophages. Finally, locking the two large parts of the v-ATPase complex together by the drug saliphenylhalamide A did not inhibit in vitro and in cellulo fusion of phagosomes with lysosomes. Hence, our data do not suggest a fusion-promoting role of the v-ATPase in the formation of phagolysosomes. PMID:25903133

  5. Vacuolar ATPase in phagosome-lysosome fusion.

    PubMed

    Kissing, Sandra; Hermsen, Christina; Repnik, Urska; Nesset, Cecilie Kåsi; von Bargen, Kristine; Griffiths, Gareth; Ichihara, Atsuhiro; Lee, Beth S; Schwake, Michael; De Brabander, Jef; Haas, Albert; Saftig, Paul

    2015-05-29

    The vacuolar H(+)-ATPase (v-ATPase) complex is instrumental in establishing and maintaining acidification of some cellular compartments, thereby ensuring their functionality. Recently it has been proposed that the transmembrane V0 sector of v-ATPase and its a-subunits promote membrane fusion in the endocytic and exocytic pathways independent of their acidification functions. Here, we tested if such a proton-pumping independent role of v-ATPase also applies to phagosome-lysosome fusion. Surprisingly, endo(lyso)somes in mouse embryonic fibroblasts lacking the V0 a3 subunit of the v-ATPase acidified normally, and endosome and lysosome marker proteins were recruited to phagosomes with similar kinetics in the presence or absence of the a3 subunit. Further experiments used macrophages with a knockdown of v-ATPase accessory protein 2 (ATP6AP2) expression, resulting in a strongly reduced level of the V0 sector of the v-ATPase. However, acidification appeared undisturbed, and fusion between latex bead-containing phagosomes and lysosomes, as analyzed by electron microscopy, was even slightly enhanced, as was killing of non-pathogenic bacteria by V0 mutant macrophages. Pharmacologically neutralized lysosome pH did not affect maturation of phagosomes in mouse embryonic cells or macrophages. Finally, locking the two large parts of the v-ATPase complex together by the drug saliphenylhalamide A did not inhibit in vitro and in cellulo fusion of phagosomes with lysosomes. Hence, our data do not suggest a fusion-promoting role of the v-ATPase in the formation of phagolysosomes. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  6. The emerging structure of vacuolar ATPases.

    PubMed

    Drory, Omri; Nelson, Nathan

    2006-10-01

    Bioenergetics and physiology of primary pumps have been revitalized by new insights into the mechanism of energizing biomembranes. Structural information is becoming available, and the three-dimensional structure of F-ATPase is being resolved. The growing understanding of the fundamental mechanism of energy coupling may revolutionize our view of biological processes. The F- and V-ATPases (vacuolar-type ATPase) exhibit a common mechanical design in which nucleotide-binding on the catalytic sector, through a cycle of conformation changes, drives the transmembrane passage of protons by turning a membrane-embedded rotor. This motor can run in forward or reverse directions, hydrolyzing ATP as it pumps protons uphill or creating ATP as protons flow downhill. In contrast to F-ATPases, whose primary function in eukaryotic cells is to form ATP at the expense of the proton-motive force (pmf), V-ATPases function exclusively as an ATP-dependent proton pump. The pmf generated by V-ATPases in organelles and membranes of eukaryotic cells is utilized as a driving force for numerous secondary transport processes. V- and F-ATPases have similar structure and mechanism of action, and several of their subunits evolved from common ancestors. Electron microscopy studies of V-ATPase revealed its general structure at low resolution. Recently, several structures of V-ATPase subunits, solved by X-ray crystallography with atomic resolution, were published. This, together with electron microscopy low-resolution maps of the whole complex, and biochemistry cross-linking experiments, allows construction of a structural model for a part of the complex that may be used as a working hypothesis for future research.

  7. Ubiquitin phosphorylated at Ser57 hyper-activates parkin.

    PubMed

    George, Susanna; Wang, Sabrina M; Bi, Yumin; Treidlinger, Margot; Barber, Kathryn R; Shaw, Gary S; O'Donoghue, Patrick

    2017-11-01

    Malfunction of the ubiquitin (Ub) E3 ligase, parkin, leads to defects in mitophagy and protein quality control linked to Parkinson's disease. Parkin activity is stimulated by phosphorylation of Ub at Ser65 (pUb S65 ). Since the upstream kinase is only known for Ser65 (PINK1), the biochemical function of other phosphorylation sites on Ub remain largely unknown. We used fluorescently labelled and site-specifically phosphorylated Ub substrates to quantitatively relate the position and stoichiometry of Ub phosphorylation to parkin activation. Fluorescence measurements show that pUb S65 -stimulated parkin is 5-fold more active than auto-inhibited and un-stimulated parkin, which catalyzes a basal level of auto-ubiquitination. We consistently observed a low but detectable level of parkin activity with pUb S12 . Strikingly, pUb S57 hyper-activates parkin, and our data demonstrate that parkin is able to selectively synthesize poly-pUb S57 chains, even when 90% of the Ub in the reaction is un-phosphorylated. We further found that parkin ubiquitinates its physiological substrate Miro-1 with chains solely composed of pUb S65 and more efficiently with pUb S57 chains. Parkin hyper-activation by pUb S57 demonstrates the first PINK1-independent route to active parkin, revealing the roles of multiple ubiquitin phosphorylation sites in governing parkin stimulation and catalytic activity. This article is part of a Special Issue entitled "Biochemistry of Synthetic Biology - Recent Developments" Guest Editor: Dr. Ilka Heinemann and Dr. Patrick O'Donoghue. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Cellular localization of Na(+), K(+)-ATPase in the mammalian vestibular system

    NASA Technical Reports Server (NTRS)

    Kerr, T. P.

    1984-01-01

    Two different, but complementary, procedures for cellular localization of Na+, K+-ATPase in the guinea pig vestibular system were employed. One of these techniques, devised by Stirling, depends upon the well documented ability of the specific inhibitor ouabain to bind selectively to Na+,K+-ATPase, blocking catalytic activity. Microdisected vestibular tissues are incubated with tritium-labelled (3H-) ouabain, and regions with a high concentration of Na+,K+-ATPase are subsequently identified by light microscope autoradiography. A second method, originated by Ernst, detects inorganic phosphate released from an artificial substrate (nitrophenyl phosphate) by catalytic activity of the enzyme. In the presence of strontium ion, phosphate is precipitated near regions of high activity, then converted to a product which may finally be visualized in the electron microscope. This cytochemical enzymatic reaction is inhibited by ouabain.

  9. Ubiquitin-like and ubiquitin-associated domain proteins: significance in proteasomal degradation

    PubMed Central

    Lau, Alan F.

    2009-01-01

    The ubiquitin–proteasome pathway of protein degradation is one of the major mechanisms that are involved in the maintenance of the proper levels of cellular proteins. The regulation of proteasomal degradation thus ensures proper cell functions. The family of proteins containing ubiquitin-like (UbL) and ubiquitin-associated (UBA) domains has been implicated in proteasomal degradation. UbL–UBA domain containing proteins associate with substrates destined for degradation as well as with subunits of the proteasome, thus regulating the proper turnover of proteins. PMID:19468686

  10. Molecular dynamics of zinc-finger ubiquitin binding domains: a comparative study of histone deacetylase 6 and ubiquitin-specific protease 5.

    PubMed

    Dos Santos Passos, Carolina; Simões-Pires, Claudia A; Carrupt, Pierre-Alain; Nurisso, Alessandra

    2016-12-01

    HDAC6 is a unique cytoplasmic histone deacetylase characterized by two deacetylase domains, and by a zinc-finger ubiquitin binding domain (ZnF-UBP) able to recognize ubiquitin (Ub). The latter has recently been demonstrated to be involved in the progression of neurodegenerative diseases and in mediating infection by the influenza A virus. Nowadays, understanding the dynamic and energetic features of HDAC6 ZnF-UBP-Ub recognition is considered as a crucial step for the conception of HDAC6 potential modulators. In this study, the atomic, solvent-related, and thermodynamic features behind HDAC6 ZnF-UBP-Ub recognition have been analyzed through molecular dynamics simulations. The behavior was then compared to the prototypical ZnF-UBP from ubiquitin-specific protease 5 (USP5) in order to spot relevant differences useful for selective drug design. Principal component analysis highlighted flapping motions of the L2A loop which were lowered down upon Ub binding in both systems. While polar and nonpolar interactions involving Ub G75 and G76 residues were also common features stabilizing both complexes, salt bridges showed a different pattern, more significant in HDAC6 ZnF-UBP-Ub, whose energetic contribution in USP5 ZnF-UBP-Ub was compensated by the presence of a more stable bridging water molecule. Whereas molecular mechanics/Poisson-Boltzmann surface area (MM-PBSA) free energies of binding were comparable for both systems, in agreement with experiments, computational alanine scanning and free energy decomposition data revealed that HDAC6 E1141 and D1178 are potential hotspots for the design of selective HDAC6 modulators.

  11. Rates of ubiquitin conjugation increase when muscles atrophy, largely through activation of the N-end rule pathway

    NASA Technical Reports Server (NTRS)

    Solomon, V.; Baracos, V.; Sarraf, P.; Goldberg, A. L.

    1998-01-01

    The rapid loss of muscle mass that accompanies many disease states, such as cancer or sepsis, is primarily a result of increased protein breakdown in muscle, and several observations have suggested an activation of the ubiquitin-proteasome system. Accordingly, in extracts of atrophying muscles from tumor-bearing or septic rats, rates of 125I-ubiquitin conjugation to endogenous proteins were found to be higher than in control extracts. On the other hand, in extracts of muscles from hypothyroid rats, where overall proteolysis is reduced below normal, the conjugation of 125I-ubiquitin to soluble proteins decreased by 50%, and treatment with triiodothyronine (T3) restored ubiquitination to control levels. Surprisingly, the N-end rule pathway, which selectively degrades proteins with basic or large hydrophobic N-terminal residues, was found to be responsible for most of these changes in ubiquitin conjugation. Competitive inhibitors of this pathway that specifically block the ubiquitin ligase, E3alpha, suppressed most of the increased ubiquitin conjugation in the muscle extracts from tumor-bearing and septic rats. These inhibitors also suppressed ubiquitination in normal extracts toward levels in hypothyroid extracts, which showed little E3alpha-dependent ubiquitination. Thus, the inhibitors eliminated most of the differences in ubiquitination under these different pathological conditions. Moreover, 125I-lysozyme, a model N-end rule substrate, was ubiquitinated more rapidly in extracts from tumor-bearing and septic rats, and more slowly in those from hypothyroid rats, than in controls. Thus, the rate of ubiquitin conjugation increases in atrophying muscles, and these hormone- and cytokine-dependent responses are in large part due to activation of the N-end rule pathway.

  12. Ubiquitin is part of the retrovirus budding machinery

    NASA Astrophysics Data System (ADS)

    Patnaik, Akash; Chau, Vincent; Wills, John W.

    2000-11-01

    Retroviruses contain relatively large amounts of ubiquitin, but the significance of this finding has been unknown. Here, we show that drugs that are known to reduce the level of free ubiquitin in the cell dramatically reduced the release of Rous sarcoma virus, an avian retrovirus. This effect was suppressed by overexpressing ubiquitin and also by directly fusing ubiquitin to the C terminus of Gag, the viral protein that directs budding and particle release. The block to budding was found to be at the plasma membrane, and electron microscopy revealed that the reduced level of ubiquitin results in a failure of mature virus particles to separate from each other and from the plasma membrane during budding. These data indicate that ubiquitin is actually part of the budding machinery.

  13. Transcriptional regulators of Na,K-ATPase subunits

    PubMed Central

    Li, Zhiqin; Langhans, Sigrid A.

    2015-01-01

    The Na,K-ATPase classically serves as an ion pump creating an electrochemical gradient across the plasma membrane that is essential for transepithelial transport, nutrient uptake and membrane potential. In addition, Na,K-ATPase also functions as a receptor, a signal transducer and a cell adhesion molecule. With such diverse roles, it is understandable that the Na,K-ATPase subunits, the catalytic α-subunit, the β-subunit and the FXYD proteins, are controlled extensively during development and to accommodate physiological needs. The spatial and temporal expression of Na,K-ATPase is partially regulated at the transcriptional level. Numerous transcription factors, hormones, growth factors, lipids, and extracellular stimuli modulate the transcription of the Na,K-ATPase subunits. Moreover, epigenetic mechanisms also contribute to the regulation of Na,K-ATPase expression. With the ever growing knowledge about diseases associated with the malfunction of Na,K-ATPase, this review aims at summarizing the best-characterized transcription regulators that modulate Na,K-ATPase subunit levels. As abnormal expression of Na,K-ATPase subunits has been observed in many carcinoma, we will also discuss transcription factors that are associated with epithelial-mesenchymal transition, a crucial step in the progression of many tumors to malignant disease. PMID:26579519

  14. Receptor Tyrosine Kinase Ubiquitination and De-Ubiquitination in Signal Transduction and Receptor Trafficking

    PubMed Central

    Critchley, William R.; Pellet-Many, Caroline; Ringham-Terry, Benjamin; Zachary, Ian C.; Ponnambalam, Sreenivasan

    2018-01-01

    Receptor tyrosine kinases (RTKs) are membrane-based sensors that enable rapid communication between cells and their environment. Evidence is now emerging that interdependent regulatory mechanisms, such as membrane trafficking, ubiquitination, proteolysis and gene expression, have substantial effects on RTK signal transduction and cellular responses. Different RTKs exhibit both basal and ligand-stimulated ubiquitination, linked to trafficking through different intracellular compartments including the secretory pathway, plasma membrane, endosomes and lysosomes. The ubiquitin ligase superfamily comprising the E1, E2 and E3 enzymes are increasingly implicated in this post-translational modification by adding mono- and polyubiquitin tags to RTKs. Conversely, removal of these ubiquitin tags by proteases called de-ubiquitinases (DUBs) enables RTK recycling for another round of ligand sensing and signal transduction. The endocytosis of basal and activated RTKs from the plasma membrane is closely linked to controlled proteolysis after trafficking and delivery to late endosomes and lysosomes. Proteolytic RTK fragments can also have the capacity to move to compartments such as the nucleus and regulate gene expression. Such mechanistic diversity now provides new opportunities for modulating RTK-regulated cellular responses in health and disease states. PMID:29543760

  15. Ubiquitin-Modifying Enzymes and Regulation of the Inflammasome.

    PubMed

    Kattah, Michael G; Malynn, Barbara A; Ma, Averil

    2017-11-10

    Ubiquitin and ubiquitin-modifying enzymes play critical roles in a wide variety of intracellular signaling pathways. Inflammatory signaling cascades downstream of TNF, TLR agonists, antigen receptor cross-linking, and cytokine receptors, all rely on ubiquitination events to direct subsequent immune responses. In the past several years, inflammasome activation and subsequent signal transduction have emerged as an excellent example of how ubiquitin signals control inflammatory responses. Inflammasomes are multiprotein signaling complexes that ultimately lead to caspase activation and release of the interleukin-1 (IL-1) family members, IL-1β and IL-18. Inflammasome activation is critical for the host's defense against pathogens, but dysregulation of inflammasomes may contribute to the pathogenesis of multiple diseases. Ultimately, understanding how various ubiquitin interacting proteins control inflammatory signaling cascades could provide new pathways for therapeutic intervention. Here we review specific ubiquitin-modifying enzymes and ubiquitination events that orchestrate inflammatory responses, with an emphasis on the NLRP3 inflammasome. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Pathological Heterogeneity of Frontotemporal Lobar Degeneration with Ubiquitin-Positive Inclusions Delineated by Ubiquitin Immunohistochemistry and Novel Monoclonal Antibodies

    PubMed Central

    Sampathu, Deepak M.; Neumann, Manuela; Kwong, Linda K.; Chou, Thomas T.; Micsenyi, Matthew; Truax, Adam; Bruce, Jennifer; Grossman, Murray; Trojanowski, John Q.; Lee, Virginia M.-Y.

    2006-01-01

    Frontotemporal lobar degeneration with ubiquitin-positive inclusions (FTLD-U) is a common neuropathological subtype of frontotemporal dementia. Although this subtype of frontotemporal dementia is defined by the presence of ubiquitin-positive but tau- and α-synuclein-negative inclusions, it is unclear whether all cases of FTLD-U have the same underlying pathogenesis. Examination of tissue sections from FTLD-U brains stained with anti-ubiquitin antibodies revealed heterogeneity in the morphological characteristics of pathological inclusions among subsets of cases. Three types of FTLD-U were delineated based on morphology and distribution of ubiquitin-positive inclusions. To address the hypothesis that FTLD-U is pathologically heterogeneous, novel monoclonal antibodies (mAbs) were generated by immunization of mice with high molecular mass (Mr > 250 kd) insoluble material prepared by biochemical fractionation of FTLD-U brains. Novel mAbs were identified that immunolabeled all of the ubiquitin-positive inclusions in one subset of FTLD-U cases, whereas other mAbs stained the ubiquitin-positive inclusions in a second subset of cases. These novel mAbs did not stain inclusions in other neurodegenerative disorders, including tauopathies and α-synucleinopathies. Therefore, ubiquitin immunohistochemistry and the immunostaining properties of the novel mAbs generated here suggest that FTLD-U is pathologically he-terogeneous. Identification of the disease proteins recognized by these mAbs will further advance understanding of molecular substrates of FTLD-U neurodegenerative pathways. PMID:17003490

  17. [Incidence and risk factors of ischemic colitis after AAA repair in our cohort of patients from 2005 through 2009].

    PubMed

    Biros, E; Staffa, R

    2011-12-01

    Using retrospective analysis, we sought to investigate the incidence, risk factors and therapeutic outcomes of ischemic colitis in patients after surgical and endovascular repair of abdominal aortic aneurysms (AAA). The complete inpatient and outpatient medical records of all patients undergoing surgical or endovascular AAA repair in our Department from January 2005 to December 2009 were retrospectively reviewed. We selected all patients who had developed an acute or chronic form of postoperative large or small bowel ischemia. We carried out data analysis and focused on determining the incidence and risk factors of this complication and the outcomes of its treatment. Two hundred and seven AAA repairs were performed in the 2nd Department of Surgery of St. Anne's University Hospital in Brno and the Faculty of Medicine of Masaryk University in Brno during the studied period. This number includes endovascular AAA repairs (13 patients; 6.3%) as well as one robot-assisted operation, and also the whole clinical spectrum of AAA manifestations, from non-symptomatic forms to ruptured aneurysm forms. The rest of the patients underwent open operation. Bowel ischemia developed in a total of 11 patients (5.3 %), who all underwent open AAA repair. Six of these patients presented with non-ruptured AAA and the remaining 5 with ruptured AAA. In 3 patients, bowel ischemia was diagnosed with a delay of several months from the original revascularization operation in the clinical form of postischemic stricture of the large bowel (2 patients) or postischemic colitis (1 patient). 8 patients were diagnosed with acute ischemic colitis affecting an isolated segment of the small bowel in one patient, extended segments of the large bowel (descending colon + sigmoid colon + rectum) in 2 patients, and typically the descending and sigmoid colon in 5 patients. None of the three patients with late manifestation of ischemic colitis died. Of the 8 patients with acute presentation, resection of the

  18. Abdominal aorta aneurysm (AAA): Is there a role for prevention and therapy using antioxidants?

    PubMed

    Pincemail, Joël; Defraigne, Jean-Olivier; Courtois, Audrey; Albert, Adelin; Cheramy-Bien, Jean-Paul; Sakalihasan, Natzi

    2017-09-18

    Abdominal aortic aneurysm (AAA) is a degenerative disease that cause mortality in people aged > 65 years. Increased reactive oxygen species (ROS) and oxidative stress seems to play a pivotal role in AAA pathogenesis. Several sources of ROS have been identified in aortic tissues using experimental models: inflammation, increased activity of NAD(P)H or NOX, over-expression of inducible nitric oxide synthase (iNOS), uncoupled endothelial nitric oxide synthase (eNOS), platelets activation and iron release from hemoglobin. Reducing oxidative stress by antioxidants has been shown to be a potential strategy for limiting AAA development. Human studies confirmed that oxidative stress and endothelial dysfunction are well associated with AAA development. Unfortunately, there is currently no evidence showing that strategies using low molecular weight antioxidants (vitamins C and E, β-carotene) as target for ROS is effective to reduce human AAA progression. However, recent epidemiological data have highlighted the positive role of a diet enriched in fruits which contain high amounts of antioxidant polyphenols. By their ability to restore endothelial function but also their capacity to stimulate enzymatic antioxidants trough activation of the Keap1/Nrf2/ARE pathway, polyphenols can represent a promising treatment target for reducing human AAA progression. Clinical studies are therefore urgently necessary to confirm such a suggestion. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  19. Decoding the patterns of ubiquitin recognition by ubiquitin-associated domains from free energy simulations.

    PubMed

    Bouvier, Benjamin

    2014-01-07

    Ubiquitin is a highly conserved, highly represented protein acting as a regulating signal in numerous cellular processes. It leverages a single hydrophobic binding patch to recognize and bind a large variety of protein domains with remarkable specificity, but can also self-assemble into chains of poly-diubiquitin units in which these interfaces are sequestered, profoundly altering the individual monomers' recognition characteristics. Despite numerous studies, the origins of this varied specificity and the competition between substrates for the binding of the ubiquitin interface patch remain under heated debate. This study uses enhanced sampling all-atom molecular dynamics to simulate the unbinding of complexes of mono- or K48-linked diubiquitin bound to several ubiquitin-associated domains, providing insights into the mechanism and free energetics of ubiquitin recognition and binding. The implications for the subtle tradeoff between the stability of the polyubiquitin signal and its easy recognition by target protein assemblies are discussed, as is the enhanced affinity of the latter for long polyubiquitin chains compared to isolated mono- or diubiquitin.

  20. Ubiquitination dynamics in the early-branching eukaryote Giardia intestinalis

    PubMed Central

    Niño, Carlos A; Chaparro, Jenny; Soffientini, Paolo; Polo, Simona; Wasserman, Moises

    2013-01-01

    Ubiquitination is a highly dynamic and versatile posttranslational modification that regulates protein function, stability, and interactions. To investigate the roles of ubiquitination in a primitive eukaryotic lineage, we utilized the early-branching eukaryote Giardia intestinalis. Using a combination of biochemical, immunofluorescence-based, and proteomics approaches, we assessed the ubiquitination status during the process of differentiation in Giardia. We observed that different types of ubiquitin modifications present specific cellular and temporal distribution throughout the Giardia life cycle from trophozoites to cyst maturation. Ubiquitin signal was detected in the wall of mature cysts, and enzymes implicated in cyst wall biogenesis were identified as substrates for ubiquitination. Interestingly, inhibition of proteasome activity did not affect trophozoite replication and differentiation, while it caused a decrease in cyst viability, arguing for proteasome involvement in cyst wall maturation. Using a proteomics approach, we identified around 200 high-confidence ubiquitinated candidates that vary their ubiquitination status during differentiation. Our results indicate that ubiquitination is critical for several cellular processes in this primitive eukaryote. PMID:23613346

  1. Ubiquitin facilitates a quality-control pathway that removes damaged chloroplasts

    DOE PAGES

    Woodson, Jesse D.; Joens, Matthew S.; Sinson, Andrew B.; ...

    2015-10-23

    Energy production by chloroplasts and mitochondria causes constant oxidative damage. A functioning photosynthetic cell requires quality-control mechanisms to turn over and degrade chloroplasts damaged by reactive oxygen species (ROS). Here in this study, we generated a conditionally lethal Arabidopsis mutant that accumulated excess protoporphyrin IX in the chloroplast and produced singlet oxygen. Damaged chloroplasts were subsequently ubiquitinated and selectively degraded. A genetic screen identified the plant U-box 4 (PUB4) E3 ubiquitin ligase as being necessary for this process. pub4-6 mutants had defects in stress adaptation and longevity. As a result, we have identified a signal that leads to the targetedmore » removal of ROS-overproducing chloroplasts.« less

  2. Proteolysis targeting peptide (PROTAP) strategy for protein ubiquitination and degradation.

    PubMed

    Zheng, Jing; Tan, Chunyan; Xue, Pengcheng; Cao, Jiakun; Liu, Feng; Tan, Ying; Jiang, Yuyang

    2016-02-19

    Ubiquitination proteasome pathway (UPP) is the most important and selective way to degrade proteins in vivo. Here, a novel proteolysis targeting peptide (PROTAP) strategy, composed of a target protein binding peptide, a linker and a ubiquitin E3 ligase recognition peptide, was designed to recruit both target protein and E3 ligase and then induce polyubiquitination and degradation of the target protein through UPP. In our study, the PROTAP strategy was proved to be a general method with high specificity using Bcl-xL protein as model target in vitro and in cells, which indicates that the strategy has great potential for in vivo application. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Ubiquitin facilitates a quality-control pathway that removes damaged chloroplasts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Woodson, Jesse D.; Joens, Matthew S.; Sinson, Andrew B.

    Energy production by chloroplasts and mitochondria causes constant oxidative damage. A functioning photosynthetic cell requires quality-control mechanisms to turn over and degrade chloroplasts damaged by reactive oxygen species (ROS). Here in this study, we generated a conditionally lethal Arabidopsis mutant that accumulated excess protoporphyrin IX in the chloroplast and produced singlet oxygen. Damaged chloroplasts were subsequently ubiquitinated and selectively degraded. A genetic screen identified the plant U-box 4 (PUB4) E3 ubiquitin ligase as being necessary for this process. pub4-6 mutants had defects in stress adaptation and longevity. As a result, we have identified a signal that leads to the targetedmore » removal of ROS-overproducing chloroplasts.« less

  4. The Airborne Astronomy Ambassadors (AAA) Program and NASA Astrophysics Connections

    NASA Astrophysics Data System (ADS)

    Backman, Dana Edward; Clark, Coral; Harman, Pamela

    2018-01-01

    The NASA Airborne Astronomy Ambassadors (AAA) program is a three-part professional development (PD) experience for high school physics, astronomy, and earth science teachers. AAA PD consists of: (1) blended learning via webinars, asynchronous content delivery, and in-person workshops, (2) a STEM immersion experience at NASA Armstrong’s B703 science research aircraft facility in Palmdale, California, including interactions with NASA astrophysics & planetary science Subject Matter Experts (SMEs) during science flights on SOFIA, and (3) continuing post-flight opportunities for teacher & student connections with SMEs.

  5. ATP Binding to p97/VCP D1 Domain Regulates Selective Recruitment of Adaptors to Its Proximal N-Domain

    PubMed Central

    Chia, Wei Sheng; Chia, Diana Xueqi; Rao, Feng; Bar Nun, Shoshana; Geifman Shochat, Susana

    2012-01-01

    p97/Valosin-containing protein (VCP) is a member of the AAA-ATPase family involved in many cellular processes including cell division, intracellular trafficking and extraction of misfolded proteins in endoplasmic reticulum-associated degradation (ERAD). It is a homohexamer with each subunit containing two tandem D1 and D2 ATPase domains and N- and C-terminal regions that function as adaptor protein binding domains. p97/VCP is directed to its many different functional pathways by associating with various adaptor proteins. The regulation of the recruitment of the adaptor proteins remains unclear. Two adaptor proteins, Ufd1/Npl4 and p47, which bind exclusively to the p97/VCP N-domain and direct p97/VCP to either ERAD-related processes or homotypic fusion of Golgi fragments, were studied here. Surface plasmon resonance biosensor-based assays allowed the study of binding kinetics in real time. In competition experiments, it was observed that in the presence of ATP, Ufd1/Npl4 was able to compete more effectively with p47 for binding to p97/VCP. By using non-hydrolysable ATP analogues and the hexameric truncated p97/N-D1 fragment, it was shown that binding rather than hydrolysis of ATP to the proximal D1 domain strengthened the Ufd1/Npl4 association with the N-domain, thus regulating the recruitment of either Ufd1/Npl4 or p47. This novel role of ATP and an assigned function to the D1 AAA-ATPase domain link the multiple functions of p97/VCP to the metabolic status of the cell. PMID:23226521

  6. ATP binding to p97/VCP D1 domain regulates selective recruitment of adaptors to its proximal N-domain.

    PubMed

    Chia, Wei Sheng; Chia, Diana Xueqi; Rao, Feng; Bar Nun, Shoshana; Geifman Shochat, Susana

    2012-01-01

    p97/Valosin-containing protein (VCP) is a member of the AAA-ATPase family involved in many cellular processes including cell division, intracellular trafficking and extraction of misfolded proteins in endoplasmic reticulum-associated degradation (ERAD). It is a homohexamer with each subunit containing two tandem D1 and D2 ATPase domains and N- and C-terminal regions that function as adaptor protein binding domains. p97/VCP is directed to its many different functional pathways by associating with various adaptor proteins. The regulation of the recruitment of the adaptor proteins remains unclear. Two adaptor proteins, Ufd1/Npl4 and p47, which bind exclusively to the p97/VCP N-domain and direct p97/VCP to either ERAD-related processes or homotypic fusion of Golgi fragments, were studied here. Surface plasmon resonance biosensor-based assays allowed the study of binding kinetics in real time. In competition experiments, it was observed that in the presence of ATP, Ufd1/Npl4 was able to compete more effectively with p47 for binding to p97/VCP. By using non-hydrolysable ATP analogues and the hexameric truncated p97/N-D1 fragment, it was shown that binding rather than hydrolysis of ATP to the proximal D1 domain strengthened the Ufd1/Npl4 association with the N-domain, thus regulating the recruitment of either Ufd1/Npl4 or p47. This novel role of ATP and an assigned function to the D1 AAA-ATPase domain link the multiple functions of p97/VCP to the metabolic status of the cell.

  7. A Review on Ubiquitination of Neurotrophin Receptors: Facts and Perspectives

    PubMed Central

    Sánchez-Sánchez, Julia; Arévalo, Juan Carlos

    2017-01-01

    Ubiquitination is a reversible post-translational modification involved in a plethora of different physiological functions. Among the substrates that are ubiquitinated, neurotrophin receptors (TrkA, TrkB, TrkC, and p75NTR) have been studied recently. TrkA is the most studied receptor in terms of its ubiquitination, and different E3 ubiquitin ligases and deubiquitinases have been implicated in its ubiquitination, whereas not much is known about the other neurotrophin receptors aside from their ubiquitination. Additional studies are needed that focus on the ubiquitination of TrkB, TrkC, and p75NTR in order to further understand the role of ubiquitination in their physiological and pathological functions. Here we review what is currently known regarding the ubiquitination of neurotrophin receptors and its physiological and pathological relevance. PMID:28335430

  8. Inhibitors of ubiquitin E3 ligase as potential new antimalarial drug leads.

    PubMed

    Jain, Jagrati; Jain, Surendra K; Walker, Larry A; Tekwani, Babu L

    2017-06-02

    Protein ubiquitylation is an important post-translational regulation, which has been shown to be necessary for life cycle progression and survival of Plasmodium falciparum. Ubiquitin is a highly conserved 76 amino acid polypeptide, which attaches covalently to target proteins through combined action of three classes of enzymes namely, the ubiquitin-activating enzyme (E1), ubiquitin-conjugating enzyme (E2) and ubiquitin-protein ligase (E3). Ubiquitin E1 and E2 are highly conserved within eukaryotes. However, the P. falciparum E3 ligase is substantially variable and divergent compared to the homologs from other eukaryotes, which make the E3 ligase a parasite-specific target. A set of selected E3 ubiquitin ligase inhibitors was tested in vitro against a chloroquine-sensitive P. falciparum D6 strain (PfD6) and a chloroquine-resistant P. falciparum W2 strain (PfW2). The inhibitors were also tested against Vero and transformed THP1 cells for cytotoxicity. The lead antimalarial E3 ubiquitin ligase inhibitors were further evaluated for the stage-specific antimalarial action and effects on cellular development of P. falciparum in vitro. Statistics analysis was done by two-way ANOVA followed by Tukey and Sidak multiple comparison test using GraphPad Prism 6. E3 ligase inhibitors namely, JNJ 26854165, HLI 373 and Nutlin 3 showed prominent antimalarial activity against PfD6 and PfW2. These inhibitors were considerably less cytotoxic to mammalian Vero cells. JNJ 26854165, HLI 373 and Nutlin 3 blocked the development of P. falciparum parasite at the trophozoite and schizont stages, resulting in accumulation of distorted trophozoites and immature schizonts. Interruption of trophozoites and schizont maturation by the antimalarial E3 ligase inhibitors suggest the role of ubiquitin/proteasome functions in the intraerythrocytic development of malaria parasite. The ubiquitin/proteasome functions may be critical for schizont maturation. Further investigations on the lead E3 ligase

  9. Improved Resident Adherence to AAA Screening Guidelines via an Electronic Reminder.

    PubMed

    Sypert, David; Van Dyke, Kenneth; Dhillon, Namrata; Elliott, John O; Jordan, Kim

    The 2014 United States Preventive Services Task Force systematic review found abdominal aortic aneurysm (AAA) screening decreased related mortality by close to half. Despite the simplicity of screening, research suggests poor adherence to the recommended AAA screening guidelines. Using the quality improvement plan-study-do-act cycle, we retrospectively established poor adherence to AAA screening and poor documentation of smoking history in our resident clinic. An electronic reminder was prospectively implemented into our electronic medical record (EMR) with the goal of improving screening rates. After 1 year, a retrospective chart review was conducted. Comparisons of the pre- and post-electronic reminder intervention data were made using chi-square tests and odds ratios (OR). The purposeful AAA screening rate improved 27.8% during the intervention, 40.3% (95% confidence interval [CI]: 28.6-52.0%) versus 12.5% (95% CI: 3.1-21.9%), p = .002, suggesting patients were more likely to be screened as a result of the electronic reminder, OR = 4.73 (95% CI: 1.77-12.65). This improvement translates to a large effect size, Cohen's d = 0.86 (95% CI: 0.31-1.40). Electronic reminders are a simple EMR addition that can provide evidence-based education while improving adherence rates with preventive health screening measures.

  10. Ubiquitination of specific mitochondrial matrix proteins

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lehmann, Gilad; Ziv, Tamar; Braten, Ori

    2016-06-17

    Several protein quality control systems in bacteria and/or mitochondrial matrix from lower eukaryotes are absent in higher eukaryotes. These are transfer-messenger RNA (tmRNA), The N-end rule ATP-dependent protease ClpAP, and two more ATP-dependent proteases, HslUV and ClpXP (in yeast). The lost proteases resemble the 26S proteasome and the role of tmRNA and the N-end rule in eukaryotic cytosol is performed by the ubiquitin proteasome system (UPS). Therefore, we hypothesized that the UPS might have substituted these systems – at least partially – in the mitochondrial matrix of higher eukaryotes. Using three independent experimental approaches, we demonstrated the presence of ubiquitinatedmore » proteins in the matrix of isolated yeast mitochondria. First, we show that isolated mitochondria contain ubiquitin (Ub) conjugates, which remained intact after trypsin digestion. Second, we demonstrate that the mitochondrial soluble fraction contains Ub-conjugates, several of which were identified by mass spectrometry and are localized to the matrix. Third, using immunoaffinity enrichment by specific antibodies recognizing digested ubiquitinated peptides, we identified a group of Ub-modified matrix proteins. The modification was further substantiated by separation on SDS-PAGE and immunoblots. Last, we attempted to identify the ubiquitin ligase(s) involved, and identified Dma1p as a trypsin-resistant protein in our mitochondrial preparations. Taken together, these data suggest a yet undefined role for the UPS in regulation of the mitochondrial matrix proteins. -- Highlights: •Mitochondrial matrix contains ubiquitinated proteins. •Ubiquitination occurs most probably in the matrix. •Dma1p is a ubiquitin ligase present in mitochondrial preparations.« less

  11. Vfa1 binds to the N-terminal microtubule-interacting and trafficking (MIT) domain of Vps4 and stimulates its ATPase activity.

    PubMed

    Vild, Cody J; Xu, Zhaohui

    2014-04-11

    The endosomal sorting complexes required for transport (ESCRT) are responsible for multivesicular body biogenesis, membrane abscission during cytokinesis, and retroviral budding. They function as transiently assembled molecular complexes on the membrane, and their disassembly requires the action of the AAA-ATPase Vps4. Vps4 is regulated by a multitude of ESCRT and ESCRT-related proteins. Binding of these proteins to Vps4 is often mediated via the microtubule-interacting and trafficking (MIT) domain of Vps4. Recently, a new Vps4-binding protein Vfa1 was identified in a yeast genetic screen, where overexpression of Vfa1 caused defects in vacuolar morphology. However, the function of Vfa1 and its role in vacuolar biology were largely unknown. Here, we provide the first detailed biochemical and biophysical study of Vps4-Vfa1 interaction. The MIT domain of Vps4 binds to the C-terminal 17 residues of Vfa1. This interaction is of high affinity and greatly stimulates the ATPase activity of Vps4. The crystal structure of the Vps4-Vfa1 complex shows that Vfa1 adopts a canonical MIT-interacting motif 2 structure that has been observed previously in other Vps4-ESCRT interactions. These findings suggest that Vfa1 is a novel positive regulator of Vps4 function.

  12. Vfa1 Binds to the N-terminal Microtubule-interacting and Trafficking (MIT) Domain of Vps4 and Stimulates Its ATPase Activity*

    PubMed Central

    Vild, Cody J.; Xu, Zhaohui

    2014-01-01

    The endosomal sorting complexes required for transport (ESCRT) are responsible for multivesicular body biogenesis, membrane abscission during cytokinesis, and retroviral budding. They function as transiently assembled molecular complexes on the membrane, and their disassembly requires the action of the AAA-ATPase Vps4. Vps4 is regulated by a multitude of ESCRT and ESCRT-related proteins. Binding of these proteins to Vps4 is often mediated via the microtubule-interacting and trafficking (MIT) domain of Vps4. Recently, a new Vps4-binding protein Vfa1 was identified in a yeast genetic screen, where overexpression of Vfa1 caused defects in vacuolar morphology. However, the function of Vfa1 and its role in vacuolar biology were largely unknown. Here, we provide the first detailed biochemical and biophysical study of Vps4-Vfa1 interaction. The MIT domain of Vps4 binds to the C-terminal 17 residues of Vfa1. This interaction is of high affinity and greatly stimulates the ATPase activity of Vps4. The crystal structure of the Vps4-Vfa1 complex shows that Vfa1 adopts a canonical MIT-interacting motif 2 structure that has been observed previously in other Vps4-ESCRT interactions. These findings suggest that Vfa1 is a novel positive regulator of Vps4 function. PMID:24567329

  13. Rates of ubiquitin conjugation increase when muscles atrophy, largely through activation of the N-end rule pathway

    PubMed Central

    Solomon, Vered; Baracos, Vickie; Sarraf, Pasha; Goldberg, Alfred L.

    1998-01-01

    The rapid loss of muscle mass that accompanies many disease states, such as cancer or sepsis, is primarily a result of increased protein breakdown in muscle, and several observations have suggested an activation of the ubiquitin–proteasome system. Accordingly, in extracts of atrophying muscles from tumor-bearing or septic rats, rates of 125I-ubiquitin conjugation to endogenous proteins were found to be higher than in control extracts. On the other hand, in extracts of muscles from hypothyroid rats, where overall proteolysis is reduced below normal, the conjugation of 125I-ubiquitin to soluble proteins decreased by 50%, and treatment with triiodothyronine (T3) restored ubiquitination to control levels. Surprisingly, the N-end rule pathway, which selectively degrades proteins with basic or large hydrophobic N-terminal residues, was found to be responsible for most of these changes in ubiquitin conjugation. Competitive inhibitors of this pathway that specifically block the ubiquitin ligase, E3α, suppressed most of the increased ubiquitin conjugation in the muscle extracts from tumor-bearing and septic rats. These inhibitors also suppressed ubiquitination in normal extracts toward levels in hypothyroid extracts, which showed little E3α-dependent ubiquitination. Thus, the inhibitors eliminated most of the differences in ubiquitination under these different pathological conditions. Moreover, 125I-lysozyme, a model N-end rule substrate, was ubiquitinated more rapidly in extracts from tumor-bearing and septic rats, and more slowly in those from hypothyroid rats, than in controls. Thus, the rate of ubiquitin conjugation increases in atrophying muscles, and these hormone- and cytokine-dependent responses are in large part due to activation of the N-end rule pathway. PMID:9770532

  14. Covalent ISG15 conjugation positively regulates the ubiquitin E3 ligase activity of parkin

    PubMed Central

    Im, Eunju; Yoo, Lang; Hyun, Minju; Shin, Woo Hyun

    2016-01-01

    Parkinson's disease (PD) is characterized by selective loss of dopaminergic neurons in the pars compacta of the substantia nigra and accumulation of ubiquitinated proteins in aggregates called Lewy bodies. Several mutated genes have been found in familial PD patients, including SNCA (α-synuclein), PARK2 (parkin), PINK1, PARK7 (DJ-1), LRRK2 and ATP13A2. Many pathogenic mutations of PARK2, which encodes the ubiquitin E3 ligase parkin, result in loss of function, leading to accumulation of parkin substrates and consequently contributing to dopaminergic cell death. ISG15 is a member of the ubiquitin-like modifier family and is induced by stimulation with type I interferons. Similar to ubiquitin and ubiquitination, covalent conjugation of ISG15 to target proteins (ISGylation) regulates their biochemical properties. In this study, we identified parkin as a novel target of ISGylation specifically mediated by the ISG15-E3 ligase HERC5. In addition, we identified two ISGylation sites, Lys-349 and Lys-369, in the in-between-ring domain of parkin. ISGylation of these sites promotes parkin's ubiquitin E3 ligase activity by suppressing the intramolecular interaction that maintains its autoinhibited conformation and increases its cytoprotective effect. In conclusion, covalent ISG15 conjugation is a novel mode of modulating parkin activity, and alteration in this pathway may be associated with PD pathogenesis. PMID:27534820

  15. Covalent ISG15 conjugation positively regulates the ubiquitin E3 ligase activity of parkin.

    PubMed

    Im, Eunju; Yoo, Lang; Hyun, Minju; Shin, Woo Hyun; Chung, Kwang Chul

    2016-08-01

    Parkinson's disease (PD) is characterized by selective loss of dopaminergic neurons in the pars compacta of the substantia nigra and accumulation of ubiquitinated proteins in aggregates called Lewy bodies. Several mutated genes have been found in familial PD patients, including SNCA (α-synuclein), PARK2 (parkin), PINK1, PARK7 (DJ-1), LRRK2 and ATP13A2 Many pathogenic mutations of PARK2, which encodes the ubiquitin E3 ligase parkin, result in loss of function, leading to accumulation of parkin substrates and consequently contributing to dopaminergic cell death. ISG15 is a member of the ubiquitin-like modifier family and is induced by stimulation with type I interferons. Similar to ubiquitin and ubiquitination, covalent conjugation of ISG15 to target proteins (ISGylation) regulates their biochemical properties. In this study, we identified parkin as a novel target of ISGylation specifically mediated by the ISG15-E3 ligase HERC5. In addition, we identified two ISGylation sites, Lys-349 and Lys-369, in the in-between-ring domain of parkin. ISGylation of these sites promotes parkin's ubiquitin E3 ligase activity by suppressing the intramolecular interaction that maintains its autoinhibited conformation and increases its cytoprotective effect. In conclusion, covalent ISG15 conjugation is a novel mode of modulating parkin activity, and alteration in this pathway may be associated with PD pathogenesis. © 2016 The Authors.

  16. [Preparation and application of monoclonal antibodies against DR region of Na+-K+-ATPase α1 subunit].

    PubMed

    Yan, Xiaofei; Wu, Litao; DU, Xiaojuan; Li, Jing; Zhang, Fujun; Han, Yan; Lyu, Shemin; Li, Dongmin

    2016-12-01

    Objective To prepare monoclonal antibodies against DR region (897DVEDSYGQQWTYEQR911) of Na + -K + -ATPase α1 subunit and identify their properties. Methods BALB/c mice were immunized with DR-keyholelimpet hemocyanin (KLH). Splenocytes from the immunized mice were collected and subsequently fused with SP2/0 mouse myeloma cells. Positive hybridoma clones were obtained after cell fusion and selection. ELISA was used to detect DR antibody titer in the cell supernatants. DR region-specific monoclonal antibodies were analyzed by dot blotting, Western blotting and immunofluorescence assay. Na + -K + -ATPase activity was detected by SensoLyte R FDP Protein Phosphatase Assay Kit and the protective effect of the monoclonal antibody against high glucose-induced cell injury was assessed in H9c2 cells. Results Three hybridoma cell lines which secreted stable DR monoclonal antibody were obtained. The strongest positive cell line, named DRm217, was selected to prepare ascites. Dot blotting, Western blotting and immunofluorescence assay showed that DRm217 recognized specially DR region of Na + -K + -ATPase and bound on H9c2 cell membranes. DRm217 stimulated Na + -K + -ATPase activity and alleviated high glucose-induced H9c2 cells injury. Conclusion The monoclonal antibodies against DR region of Na + -K + -ATPase α1 subunit is prepared.

  17. The evolving role of ubiquitin modification in endoplasmic reticulum-associated degradation

    PubMed Central

    Preston, G. Michael; Brodsky, Jeffrey L.

    2017-01-01

    The endoplasmic reticulum (ER) serves as a warehouse for factors that augment and control the biogenesis of nascent proteins entering the secretory pathway. In turn, this compartment also harbors the machinery that responds to the presence of misfolded proteins by targeting them for proteolysis via a process known as ER-associated degradation (ERAD). During ERAD, substrates are selected, modified with ubiquitin, removed from the ER, and then degraded by the cytoplasmic 26S proteasome. While integral membrane proteins can directly access the ubiquitination machinery that resides in the cytoplasm or on the cytoplasmic face of the ER membrane, soluble ERAD substrates within the lumen must be retrotranslocated from this compartment. In either case, nearly all ERAD substrates are tagged with a polyubiquitin chain, a modification that represents a commitment step to degrade aberrant proteins. However, increasing evidence indicates that the polyubiquitin chain on ERAD substrates can be further modified, serves to recruit ERAD-requiring factors, and may regulate the ERAD machinery. Amino acid side chains other than lysine on ERAD substrates can also be modified with ubiquitin, and post-translational modifications that affect substrate ubiquitination have been observed. Here, we summarize these data and provide an overview of questions driving this field of research. PMID:28159894

  18. The importance of regulatory ubiquitination in cancer and metastasis

    PubMed Central

    Gallo, L. H.; Ko, J.; Donoghue, D. J.

    2017-01-01

    ABSTRACT Ubiquitination serves as a degradation mechanism of proteins, but is involved in additional cellular processes such as activation of NFκB inflammatory response and DNA damage repair. We highlight the E2 ubiquitin conjugating enzymes, E3 ubiquitin ligases and Deubiquitinases that support the metastasis of a plethora of cancers. E3 ubiquitin ligases also modulate pluripotent cancer stem cells attributed to chemotherapy resistance. We further describe mutations in E3 ubiquitin ligases that support tumor proliferation and adaptation to hypoxia. Thus, this review describes how tumors exploit members of the vast ubiquitin signaling pathways to support aberrant oncogenic signaling for survival and metastasis. PMID:28166483

  19. Is the Paracoccus halodenitrificans ATPase a chimeric enzyme?

    NASA Technical Reports Server (NTRS)

    Hochstein, L. I.

    1996-01-01

    Membranes from Paracoccus halodenitrificans contain an ATPase that is most active in the absence of NaCl. The most unusual characteristic of the enzyme is its pattern of sensitivity to various inhibitors. Azide and rhodamine 6G, inhibitors of F1F0-ATPases, inhibit ATP hydrolysis as do bafilomycin A1, concanamycin A (folimycin), N-ethylmaleimide, and p-chloromercuriphenylsulfonate which are inhibitors of vacuolar ATPases. This indiscriminate sensitivity suggests that this ATPase may be a hybrid and that caution should be exercised when using inhibition as a diagnostic for distinguishing between F1F0-ATPases and vacuolar ATPases.

  20. Amino Acid Availability Modulates Vacuolar H+-ATPase Assembly*

    PubMed Central

    Stransky, Laura A.; Forgac, Michael

    2015-01-01

    The vacuolar H+-ATPase (V-ATPase) is an ATP-dependent proton pump composed of a peripheral ATPase domain (V1) and a membrane-integral proton-translocating domain (V0) and is involved in many normal and disease processes. An important mechanism of regulating V-ATPase activity is reversible assembly of the V1 and V0 domains. Increased assembly in mammalian cells occurs under various conditions and has been shown to involve PI3K. The V-ATPase is necessary for amino acid-induced activation of mechanistic target of rapamycin complex 1 (mTORC1), which is important in controlling cell growth in response to nutrient availability and growth signals. The V-ATPase undergoes amino acid-dependent interactions with the Ragulator complex, which is involved in recruitment of mTORC1 to the lysosomal membrane during amino acid sensing. We hypothesized that changes in the V-ATPase/Ragulator interaction might involve amino acid-dependent changes in V-ATPase assembly. To test this, we measured V-ATPase assembly by cell fractionation in HEK293T cells treated with and without amino acids. V-ATPase assembly increases upon amino acid starvation, and this effect is reversed upon readdition of amino acids. Lysosomes from amino acid-starved cells possess greater V-ATPase-dependent proton transport, indicating that assembled pumps are catalytically active. Amino acid-dependent changes in both V-ATPase assembly and activity are independent of PI3K and mTORC1 activity, indicating the involvement of signaling pathways distinct from those implicated previously in controlling assembly. By contrast, lysosomal neutralization blocks the amino acid-dependent change in assembly and reactivation of mTORC1 after amino acid starvation. These results identify an important new stimulus for controlling V-ATPase assembly. PMID:26378229

  1. Decoding the Ubiquitin-Mediated Pathway of Arthropod Disease Vectors

    PubMed Central

    Choy, Anthony; Severo, Maiara S.; Sun, Ruobai; Girke, Thomas; Gillespie, Joseph J.; Pedra, Joao H. F.

    2013-01-01

    Protein regulation by ubiquitin has been extensively described in model organisms. However, characterization of the ubiquitin machinery in disease vectors remains mostly unknown. This fundamental gap in knowledge presents a concern because new therapeutics are needed to control vector-borne diseases, and targeting the ubiquitin machinery as a means for disease intervention has been already adopted in the clinic. In this study, we employed a bioinformatics approach to uncover the ubiquitin-mediated pathway in the genomes of Anopheles gambiae, Aedes aegypti, Culex quinquefasciatus, Ixodes scapularis, Pediculus humanus and Rhodnius prolixus. We observed that (1) disease vectors encode a lower percentage of ubiquitin-related genes when compared to Drosophila melanogaster, Mus musculus and Homo sapiens but not Saccharomyces cerevisiae; (2) overall, there are more proteins categorized as E3 ubiquitin ligases when compared to E2-conjugating or E1-activating enzymes; (3) the ubiquitin machinery within the three mosquito genomes is highly similar; (4) ubiquitin genes are more than doubled in the Chagas disease vector (R. prolixus) when compared to other arthropod vectors; (5) the deer tick I. scapularis and the body louse (P. humanus) genomes carry low numbers of E1-activating enzymes and HECT-type E3 ubiquitin ligases; (6) R. prolixus have low numbers of RING-type E3 ubiquitin ligases; and (7) C. quinquefasciatus present elevated numbers of predicted F-box E3 ubiquitin ligases, JAB and UCH deubiquitinases. Taken together, these findings provide novel opportunities to study the interaction between a pathogen and an arthropod vector. PMID:24205097

  2. Statins: the holy grail of Abdominal Aortic Aneurysm (AAA) growth attenuation? A systematic review of the literature.

    PubMed

    Dunne, Jonathan A; Bailey, Marc A; Griffin, Kathryn J; Sohrabi, Soroush; Coughlin, Patrick A; Scott, D Julian A

    2014-01-01

    In the era of Abdominal Aortic Aneurysm (AAA) screening, pharmacotherapies to attenuate AAA growth are sought. HMG Co-A reductase inhibitors (statins) have pleiotropic actions independent of their lipid lowering effects and have been suggested as potential treatment for small AAAs. We systematically review the clinical evidence for this effect. Medline, EMBASE and the Cochrane Central Register of Controlled Trials (1950-2011) were searched for studies reporting data on the role of statin therapy on AAA growth rate. No language restrictions were placed on the search. References of retrieved articles and pertinent journals were hand searched. Included studies were reviewed by 2 independent observers. The search retrieved 164 papers, 100 were irrelevant based on their title, 47 were reviews and 1 was a letter. 8 studies were excluded based on review of their abstract leaving 8 for inclusion in the study. Eight observational clinical studies with a total of 4,466 patients were reviewed. Four studies demonstrated reduced AAA expansion in statin users while 4 studies failed to demonstrate this effect. The method of determining AAA growth rates varied significantly between the studies and the ability of many studies to control for misclassification bias was poor. The claim that statins attenuate AAA growth remains questionable. Further prospective studies with stringent identification and verification of statin usage and a standardised method of estimating AAA growth rates are required. Statin type and dose also merit consideration.

  3. The ubiquitin ligase SEVEN IN ABSENTIA (SINA) ubiquitinates a defense-related NAC transcription factor and is involved in defense signaling.

    PubMed

    Miao, Min; Niu, Xiangli; Kud, Joanna; Du, Xinran; Avila, Julian; Devarenne, Timothy P; Kuhl, Joseph C; Liu, Yongsheng; Xiao, Fangming

    2016-07-01

    We recently identified a defense-related tomato (Solanum lycopersicum) NAC (NAM, ATAF1,2, CUC2) transcription factor, NAC1, that is subjected to ubiquitin-proteasome system-dependent degradation in plant cells. In this study, we identified a tomato ubiquitin ligase (termed SEVEN IN ABSENTIA3; SINA3) that ubiquitinates NAC1, promoting its degradation. We conducted coimmunoprecipitation and bimolecular fluorescence complementation to determine that SINA3 specifically interacts with the NAC1 transcription factor in the nucleus. Moreover, we found that SINA3 ubiquitinates NAC1 in vitro and promotes NAC1 degradation via polyubiquitination in vivo, indicating that SINA3 is a ubiquitin ligase that ubiquitinates NAC1, promoting its degradation. Our real-time PCR analysis indicated that, in contrast to our previous finding that NAC1 mRNA abundance increases upon Pseudomonas infection, the SINA3 mRNA abundance decreases in response to Pseudomonas infection. Moreover, using Agrobacterium-mediated transient expression, we found that overexpression of SINA3 interferes with the hypersensitive response cell death triggered by multiple plant resistance proteins. These results suggest that SINA3 ubiquitinates a defense-related NAC transcription factor for degradation and plays a negative role in defense signaling. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.

  4. Puromycin induces SUMO and ubiquitin redistribution upon proteasome inhibition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matsumoto, Hotaru; Saitoh, Hisato, E-mail: hisa@kumamoto-u.ac.jp; Department of Biological Sciences, Graduate School of Science and Technology, Kumamoto University, Kumamoto

    2016-07-29

    We have previously reported the co-localization of O-propargyl-puromycin (OP-Puro) with SUMO-2/3 and ubiquitin at promyelocytic leukemia-nuclear bodies (PML-NBs) in the presence of the proteasome inhibitor MG132, implying a role for the ubiquitin family in sequestering OP-puromycylated immature polypeptides to the nucleus during impaired proteasome activity. Here, we found that as expected puromycin induced SUMO-1/2/3 accumulation with ubiquitin at multiple nuclear foci in HeLa cells when co-exposed to MG132. Co-administration of puromycin and MG132 also facilitated redistribution of PML and the SUMO-targeted ubiquitin ligase RNF4 concurrently with SUMO-2/3. As removal of the drugs from the medium led to disappearance of themore » SUMO-2/3-ubiquitin nuclear foci, our findings indicated that nuclear assembly/disassembly of SUMO-2/3 and ubiquitin was pharmacologically manipulable, supporting our previous observation on OP-Puro, which predicted the ubiquitin family function in sequestrating aberrant proteins to the nucleus. -- Highlights: •Puromycin exhibits the O-propargyl-puromycin effect. •Puromycin induces SUMO redistribution upon proteasome inhibition. •Ubiquitin and RNF4 accumulate at PML-nuclear bodies with SUMO-2/3. •The ubiquitin family may function in nuclear sequestration of immature proteins.« less

  5. The Ubiquitin Ligase CHIP Prevents SirT6 Degradation through Noncanonical Ubiquitination

    PubMed Central

    Ronnebaum, Sarah M.; Wu, Yaxu; McDonough, Holly

    2013-01-01

    The ubiquitin ligase CHIP (carboxyl terminus of Hsp70-interacting protein) regulates protein quality control, and CHIP deletion accelerates aging and reduces the life span in mice. Here, we reveal a mechanism for CHIP's influence on longevity by demonstrating that CHIP stabilizes the sirtuin family member SirT6, a lysine deacetylase/ADP ribosylase involved in DNA repair, metabolism, and longevity. In CHIP-deficient cells, SirT6 protein half-life is substantially reduced due to increased proteasome-mediated degradation, but CHIP overexpression in these cells increases SirT6 protein expression without affecting SirT6 transcription. CHIP noncanonically ubiquitinates SirT6 at K170, which stabilizes SirT6 and prevents SirT6 canonical ubiquitination by other ubiquitin ligases. In CHIP-depleted cells, SirT6 K170 mutation increases SirT6 half-life and prevents proteasome-mediated degradation. The global decrease in SirT6 expression in the absence of CHIP is associated with decreased SirT6 promoter occupancy, which increases histone acetylation and promotes downstream gene transcription in CHIP-depleted cells. Cells lacking CHIP are hypersensitive to DNA-damaging agents, but DNA repair and cell viability are rescued by enforced expression of SirT6. The discovery of this CHIP-SirT6 interaction represents a novel protein-stabilizing mechanism and defines an intersection between protein quality control and epigenetic regulation to influence pathways that regulate the biology of aging. PMID:24043303

  6. Prevalence of abdominal aortic aneurysm (AAA) in a population undergoing computed tomography colonography in Canterbury, New Zealand.

    PubMed

    Khashram, M; Jones, G T; Roake, J A

    2015-08-01

    There is compelling level 1 evidence in support of screening men for abdominal aortic aneurysm (AAA) to reduce AAA mortality. However, New Zealand (NZ) lacks data on AAA prevalence, and national screening has not been implemented. The aim of this study was to determine the prevalence of AAA in a population undergoing a computed tomography colonography (CTC) for gastrointestinal symptoms. This was an observational study; all consecutive CTCs performed in three regions of the South Island of NZ over a 4 year period were reviewed. Data on abdominal and thoracic aorta diameters ≥30 mm, and iliac and femoral aneurysms ≥20 mm were recorded. Previous aortic surgical grafts or endovascular stents were also documented. Demographics, survival, and AAA related outcomes were collected and used for analysis. Included were 4,893 scans on 4,644 patients (1,933 men [41.6%], 2,711 women [58.4%]) with a median age of 69.3 years (range 17.0-97.0 years). There were 309 scans on 289 patients (75.4% men) who had either an aneurysm or a previous aortic graft with a median age of 79.6 years (range 57.0-96.0 years). Of these, 223 had a native AAA ≥30 mm. The prevalence of AAA rose with age from 1.3% in men aged 55-64 years, to 9.1% in 65-74 year olds, 16.8% in 75-84 year olds, and 22.0% in ≥85 year olds. The corresponding figures in women were 0.4%, 2%, 3.9%, and 6.2%, respectively. In this observational study, the prevalence of AAA was high and warrants further evaluation. The results acquired help to define a population that may benefit from a national AAA screening programme. Copyright © 2015 European Society for Vascular Surgery. Published by Elsevier Ltd. All rights reserved.

  7. Protein tyrosine kinase regulation by ubiquitination: Critical roles of Cbl-family ubiquitin ligases

    PubMed Central

    Mohapatra, Bhopal; Ahmad, Gulzar; Nadeau, Scott; Zutshi, Neha; An, Wei; Scheffe, Sarah; Dong, Lin; Feng, Dan; Goetz, Benjamin; Arya, Priyanka; Bailey, Tameka A.; Palermo, Nicholas; Borgstahl, Gloria E.O.; Natarajan, Amarnath; Raja, Srikumar M.; Naramura, Mayumi; Band, Vimla; Band, Hamid

    2012-01-01

    Protein tyrosine kinases (PTKs) coordinate a broad spectrum of cellular responses to extracellular stimuli and cell–cell interactions during development, tissue homeostasis, and responses to environmental challenges. Thus, an understanding of the regulatory mechanisms that ensure physiological PTK function and potential aberrations of these regulatory processes during diseases such as cancer are of broad interest in biology and medicine. Aside from the expected role of phospho-tyrosine phosphatases, recent studies have revealed a critical role of covalent modification of activated PTKs with ubiquitin as a critical mechanism of their negative regulation. Members of the Cbl protein family (Cbl, Cbl-b and Cbl-c in mammals) have emerged as dominant “activated PTK-selective” ubiquitin ligases. Structural, biochemical and cell biological studies have established that Cbl protein-dependent ubiquitination targets activated PTKs for degradation either by facilitating their endocytic sorting into lysosomes or by promoting their proteasomal degradation. This mechanism also targets PTK signaling intermediates that become associated with Cbl proteins in a PTK activation-dependent manner. Cellular and animal studies have established that the relatively broadly expressed mammalian Cbl family members Cbl and Cbl-b play key physiological roles, including their critical functions to prevent the transition of normal immune responses into autoimmune disease and as tumor suppressors; the latter function has received validation from human studies linking mutations in Cbl to human leukemia. These newer insights together with embryonic lethality seen in mice with a combined deletion of Cbl and Cbl-b genes suggest an unappreciated role of the Cbl family proteins, and by implication the ubiquitin-dependent control of activated PTKs, in stem/progenitor cell maintenance. Future studies of existing and emerging animal models and their various cell lineages should help test the broader

  8. Peak AAA fatty acid homolog contaminants present in the dietary supplement l-Tryptophan associated with the onset of eosinophilia-myalgia syndrome.

    PubMed

    Klarskov, Klaus; Gagnon, Hugo; Racine, Mathieu; Boudreault, Pierre-Luc; Normandin, Chad; Marsault, Eric; Gleich, Gerald J; Naylor, Stephen

    2018-05-22

    The eosinophilia-myalgia syndrome (EMS) outbreak that occurred in the USA and elsewhere in 1989 was caused by the ingestion of Showa Denko K.K. (SD) L-tryptophan (L-Trp). "Six compounds" detected in the L-Trp were reported as case-associated contaminants. Recently the final and most statistically significant contaminant, "Peak AAA" was structurally characterized. The "compound" was actually shown to be two structural isomers resulting from condensation reactions of L-Trp with fatty acids derived from the bacterial cell membrane. They were identified as the indole C-2 anteiso (AAA 1 -343) and linear (AAA 2 -343) aliphatic chain isomers. Based on those findings, we utilized a combination of on-line HPLC-electrospray ionization mass spectrometry (LC-MS), as well as both precursor and product ion tandem mass spectrometry (MS/MS) to facilitate identification of a homologous family of condensation products related to AAA 1 -343 and AAA 2 -343. We structurally characterized eight new AAA 1 -XXX/AAA 2 -XXX contaminants, where XXX represents the integer molecular ions of all the related homologs, differing by aliphatic chain length and isomer configuration. The contaminants were derived from the following fatty acids of the bacterial cell membrane, 5-methylheptanoic acid (anteiso-C8:0) for AAA 1 -315; n-octanoic acid (n-C8:0) for AAA 2 -315; 6-methyloctanoic acid (anteiso-C9:0) for AAA 1 -329; n-nonanoic acid (n-C9:0) for AAA 2 -329; 10-methyldodecanoic acid (anteiso-C13:0) for AAA 1 -385; n-tridecanoic acid (n-C13:0) for AAA 2 -385; 11-methyltridecanoic acid (anteiso-C14:0) for AAA 1 -399; and n-tetradecanoic acid (n-C14:0) for AAA 2 -399. The concentration levels for these contaminants were estimated to be 0.1-7.9 μg / 500 mg of an individual SD L-Trp tablet or capsule The structural similarity of these homologs to case-related contaminants of Spanish Toxic Oil Syndrome (TOS) is discussed. Copyright © 2018 Elsevier B.V. All rights reserved.

  9. Multibands tunneling in AAA-stacked trilayer graphene

    NASA Astrophysics Data System (ADS)

    Redouani, Ilham; Jellal, Ahmed; Bahaoui, Abdelhadi; Bahlouli, Hocine

    2018-04-01

    We study the electronic transport through np and npn junctions for AAA-stacked trilayer graphene. Two kinds of gates are considered where the first is a single gate and the second is a double gate. After obtaining the solutions for the energy spectrum, we use the transfer matrix method to determine the three transmission probabilities for each individual cone τ = 0 , ± 1 . We show that the quasiparticles in AAA-stacked trilayer graphene are not only chiral but also labeled by an additional cone index τ. The obtained bands are composed of three Dirac cones that depend on the chirality indexes. We show that there is perfect transmission for normal or near normal incidence, which is a manifestation of the Klein tunneling effect. We analyze also the corresponding total conductance, which is defined as the sum of the conductance channels in each individual cone. Our results are numerically discussed and compared with those obtained for ABA- and ABC-stacked trilayer graphene.

  10. [Ubiquitin-proteasome system and sperm DNA repair: An update].

    PubMed

    Zhang, Guo-Wei; Cai, Hong-Cai; Shang, Xue-Jun

    2016-09-01

    The ubiquitin-proteasome system (UPS) is a proteasome system widely present in the human body, which is composed of ubiquitin (Ub), ubiquitin activating enzymes (E1), ubiquitin conjugating enzymes (E2), ubiquitin protein ligases (E3), 26S proteasome, and deubiquitinating enzymes (DUBs) and involved in cell cycle regulation, immune response, signal transduction, DNA repair as well as protein degradation. Sperm DNA is vulnerable to interference or damage in the progression of chromosome association and homologous recombination. Recent studies show that UPS participates in DNA repair in spermatogenesis by modulating DNA repair enzymes via ubiquitination, assisting in the identification of DNA damage sites, raising damage repair-related proteins, initiating the DNA repair pathway, maintaining chromosome stability, and ensuring the normal process of spermatogenesis.

  11. SU-E-T-538: Evaluation of IMRT Dose Calculation Based on Pencil-Beam and AAA Algorithms.

    PubMed

    Yuan, Y; Duan, J; Popple, R; Brezovich, I

    2012-06-01

    To evaluate the accuracy of dose calculation for intensity modulated radiation therapy (IMRT) based on Pencil Beam (PB) and Analytical Anisotropic Algorithm (AAA) computation algorithms. IMRT plans of twelve patients with different treatment sites, including head/neck, lung and pelvis, were investigated. For each patient, dose calculation with PB and AAA algorithms using dose grid sizes of 0.5 mm, 0.25 mm, and 0.125 mm, were compared with composite-beam ion chamber and film measurements in patient specific QA. Discrepancies between the calculation and the measurement were evaluated by percentage error for ion chamber dose and γ〉l failure rate in gamma analysis (3%/3mm) for film dosimetry. For 9 patients, ion chamber dose calculated with AAA-algorithms is closer to ion chamber measurement than that calculated with PB algorithm with grid size of 2.5 mm, though all calculated ion chamber doses are within 3% of the measurements. For head/neck patients and other patients with large treatment volumes, γ〉l failure rate is significantly reduced (within 5%) with AAA-based treatment planning compared to generally more than 10% with PB-based treatment planning (grid size=2.5 mm). For lung and brain cancer patients with medium and small treatment volumes, γ〉l failure rates are typically within 5% for both AAA and PB-based treatment planning (grid size=2.5 mm). For both PB and AAA-based treatment planning, improvements of dose calculation accuracy with finer dose grids were observed in film dosimetry of 11 patients and in ion chamber measurements for 3 patients. AAA-based treatment planning provides more accurate dose calculation for head/neck patients and other patients with large treatment volumes. Compared with film dosimetry, a γ〉l failure rate within 5% can be achieved for AAA-based treatment planning. © 2012 American Association of Physicists in Medicine.

  12. Enzymatic production of mono-ubiquitinated proteins for structural studies: The example of the Josephin domain of ataxin-3☆

    PubMed Central

    Faggiano, Serena; Menon, Rajesh P.; Kelly, Geoff P.; McCormick, John; Todi, Sokol V.; Scaglione, K. Matthew; Paulson, Henry L.; Pastore, Annalisa

    2013-01-01

    Protein ubiquitination occurs through formation of an isopeptide bond between the C-terminal glycine of ubiquitin (Ub) and the ɛ-amino group of a substrate lysine residue. This post-translational modification, which occurs through the attachment of single and/or multiple copies of mono-ubiquitin and poly-ubiquitin chains, is involved in crucial cellular events such as protein degradation, cell-cycle regulation and DNA repair. The abnormal functioning of ubiquitin pathways is also implicated in the pathogenesis of several human diseases ranging from cancer to neurodegeneration. However, despite the undoubted biological importance, understanding the molecular basis of how ubiquitination regulates different pathways has up to now been strongly limited by the difficulty of producing the amounts of highly homogeneous samples that are needed for a structural characterization by X-ray crystallography and/or NMR. Here, we report on the production of milligrams of highly pure Josephin mono-ubiquitinated on lysine 117 through large scale in vitro enzymatic ubiquitination. Josephin is the catalytic domain of ataxin-3, a protein responsible for spinocerebellar ataxia type 3. Ataxin-3 is the first deubiquitinating enzyme (DUB) reported to be activated by mono-ubiquitination. We demonstrate that the samples produced with the described method are correctly folded and suitable for structural studies. The protocol allows facile selective labelling of the components. Our results provide an important proof-of-concept that may pave the way to new approaches to the in vitro study of ubiquitinated proteins. PMID:24251111

  13. Activity-based probes for the ubiquitin conjugation-deconjugation machinery: new chemistries, new tools, and new insights.

    PubMed

    Hewings, David S; Flygare, John A; Bogyo, Matthew; Wertz, Ingrid E

    2017-05-01

    The reversible post-translational modification of proteins by ubiquitin and ubiquitin-like proteins regulates almost all cellular processes, by affecting protein degradation, localization, and complex formation. Deubiquitinases (DUBs) are proteases that remove ubiquitin modifications or cleave ubiquitin chains. Most DUBs are cysteine proteases, which makes them well suited for study by activity-based probes. These DUB probes report on deubiquitinase activity by reacting covalently with the active site in an enzyme-catalyzed manner. They have proven to be important tools to study DUB selectivity and proteolytic activity in different settings, to identify novel DUBs, and to characterize deubiquitinase inhibitors. Inspired by the efficacy of activity-based probes for DUBs, several groups have recently reported probes for the ubiquitin conjugation machinery (E1, E2, and E3 enzymes). Many of these enzymes, while not proteases, also posses active site cysteine residues and can be targeted by covalent probes. In this review, we will discuss how features of the probe (cysteine-reactive group, recognition element, and reporter tag) affect reactivity and suitability for certain experimental applications. We will also review the diverse applications of the current probes, and discuss the need for new probe types to study emerging aspects of ubiquitin biology. © 2017 Federation of European Biochemical Societies.

  14. Role of Lactobacillus plantarum MTCC1325 in membrane-bound transport ATPases system in Alzheimer’s disease-induced rat brain

    PubMed Central

    Mallikarjuna, Nimgampalle; Praveen, Kukkarasapalli; Yellamma, Kuna

    2016-01-01

    Introduction: Alzheimer’s disease (AD) is a neurodegenerative disorder, clinically characterized by memory dysfunction and progressive loss of cognition. No curative therapeutic or drug is available for the complete cure of this disease. The present study was aimed to evaluate the efficacy of Lactobacillus plantarum MTCC1325 in ATPases activity in the selected brain regions of rats induced with Alzheimer’s. Methods: For the study, 48 healthy Wistar rats were divided into four groups: group I as control group, group II as AD model (AD induced by intraperitoneal injection of D-Galactose, 120 mg/kg body weight for 6 weeks), group III as normal control rats which were orally administered only with L. plantarum MTCC1325 for 60 days, and group IV where the AD-induced rats simultaneously received oral treatment of L. plantarum MTCC1325 (10ml/kg body weight, 12×108 CFU/mL) for 60 days. The well known membrane bound transport enzymes including Na+, K+-ATPases, Ca2+-ATPases, and Mg2+-ATPases were assayed in the selected brain regions of hippocampus and cerebral cortex in all four groups of rats at selected time intervals. Results: Chronic injection of D-Galactose caused lipid peroxidation, oxidative stress, and mitochondrial dysfunction leading to the damage of neurons in the brain, finally bringing a significant decrease (-20%) in the brain total membrane bound ATPases over the controls. Contrary to this, treatment of AD-induced rats with L. plantarum MTCC1325 reverted all the constituents of ATPase enzymes to near normal levels within 30 days. Conclusion: Lactobacillus plantarum MTCC1325 exerted a beneficial action on the entire ATPases system in AD-induced rat brain by delaying neurodegeneration. PMID:28265536

  15. A unique deubiquitinase that deconjugates phosphoribosyl-linked protein ubiquitination

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qiu, Jiazhang; Yu, Kaiwen; Fei, Xiaowen

    Ubiquitination regulates many aspects of host immunity and thus is a common target for infectious agents. Recent studies revealed that members of the SidE effector family of the bacterial pathogen Legionella pneumophila attacked several small GTPases associated with the endoplasmic reticulum by a novel ubiquitination mechanism that does not require the E1 and E2 enzymes of the host ubiquitination machinery. Following ubiquitin activation by ADP- ribosylation via a mono-ADP-ribosylation motif, ADP-ribosylated ubiquitin is cleaved by a phosphodiesterasedomainwithinSdeA,whichisconcomitantwiththelinkof phosphoribosylated ubiquitin to serine residues in the substrate. Here we demonstrate that the activity of SidEs is regulated by SidJ, another effector encodedmore » by a gene situated in the locus coding for three members of the SidE family (SdeC, SdeB and SdeA). SidJ functions to remove ubiquitin from SidEs-modified substrates by cleaving the phosphodiester bond that links phosphoribosylated ubiquitin to protein substrates. Further, the deubiquitinase activity of SidJ is essential for its role in L. pneumophila infection. Finally, the activity of SidJ is required for efficiently reducing the abundance of ubiquitinated Rab33b in infected cells within a few hours after bacterial uptake. Our results establish SidJ as a deubiquitinase that functions to impose temporal regulation of the activity of the SidE effectors. The identification of SidJ may shed light on future study of signaling cascades mediated by this unique ubiquitination that also potentially regulates cellular processes in eukaryotic cells.« less

  16. Molecular determinants of origin discrimination by Orc1 initiators in archaea.

    PubMed

    Dueber, Erin C; Costa, Alessandro; Corn, Jacob E; Bell, Stephen D; Berger, James M

    2011-05-01

    Unlike bacteria, many eukaryotes initiate DNA replication from genomic sites that lack apparent sequence conservation. These loci are identified and bound by the origin recognition complex (ORC), and subsequently activated by a cascade of events that includes recruitment of an additional factor, Cdc6. Archaeal organisms generally possess one or more Orc1/Cdc6 homologs, belonging to the Initiator clade of ATPases associated with various cellular activities (AAA(+)) superfamily; however, these proteins recognize specific sequences within replication origins. Atomic resolution studies have shown that archaeal Orc1 proteins contact double-stranded DNA through an N-terminal AAA(+) domain and a C-terminal winged-helix domain (WHD), but use remarkably few base-specific contacts. To investigate the biochemical effects of these associations, we mutated the DNA-interacting elements of the Orc1-1 and Orc1-3 paralogs from the archaeon Sulfolobus solfataricus, and tested their effect on origin binding and deformation. We find that the AAA(+) domain has an unpredicted role in controlling the sequence selectivity of DNA binding, despite an absence of base-specific contacts to this region. Our results show that both the WHD and ATPase region influence origin recognition by Orc1/Cdc6, and suggest that not only DNA sequence, but also local DNA structure help define archaeal initiator binding sites. © The Author(s) 2011. Published by Oxford University Press.

  17. Structural determinants of ubiquitin-CXC chemokine receptor 4 interaction.

    PubMed

    Saini, Vikas; Marchese, Adriano; Tang, Wei-Jen; Majetschak, Matthias

    2011-12-23

    Ubiquitin, a post-translational protein modifier inside the cell, functions as a CXC chemokine receptor (CXCR) 4 agonist outside the cell. However, the structural determinants of the interaction between extracellular ubiquitin and CXCR4 remain unknown. Utilizing C-terminal truncated ubiquitin and ubiquitin mutants, in which surface residues that are known to interact with ubiquitin binding domains in interacting proteins are mutated (Phe-4, Leu-8, Ile-44, Asp-58, Val-70), we provide evidence that the ubiquitin-CXCR4 interaction follows a two-site binding mechanism in which the hydrophobic surfaces surrounding Phe-4 and Val-70 are important for receptor binding, whereas the flexible C terminus facilitates receptor activation. Based on these findings and the available crystal structures, we then modeled the ubiquitin-CXCR4 interface with the RosettaDock software followed by small manual adjustments, which were guided by charge complementarity and anticipation of a conformational switch of CXCR4 upon activation. This model suggests three residues of CXCR4 (Phe-29, Phe-189, Lys-271) as potential interaction sites. Binding studies with HEK293 cells overexpressing wild type and CXCR4 after site-directed mutagenesis confirm that these residues are important for ubiquitin binding but that they do not contribute to the binding of stromal cell-derived factor 1α. Our findings suggest that the structural determinants of the CXCR4 agonist activity of ubiquitin mimic the typical structure-function relationship of chemokines. Furthermore, we provide evidence for separate and specific ligand binding sites on CXCR4. As exogenous ubiquitin has been shown to possess therapeutic potential, our findings are expected to facilitate the structure-based design of new compounds with ubiquitin-mimetic actions on CXCR4.

  18. A pull-back algorithm to determine the unloaded vascular geometry in anisotropic hyperelastic AAA passive mechanics.

    PubMed

    Riveros, Fabián; Chandra, Santanu; Finol, Ender A; Gasser, T Christian; Rodriguez, Jose F

    2013-04-01

    Biomechanical studies on abdominal aortic aneurysms (AAA) seek to provide for better decision criteria to undergo surgical intervention for AAA repair. More accurate results can be obtained by using appropriate material models for the tissues along with accurate geometric models and more realistic boundary conditions for the lesion. However, patient-specific AAA models are generated from gated medical images in which the artery is under pressure. Therefore, identification of the AAA zero pressure geometry would allow for a more realistic estimate of the aneurysmal wall mechanics. This study proposes a novel iterative algorithm to find the zero pressure geometry of patient-specific AAA models. The methodology allows considering the anisotropic hyperelastic behavior of the aortic wall, its thickness and accounts for the presence of the intraluminal thrombus. Results on 12 patient-specific AAA geometric models indicate that the procedure is computational tractable and efficient, and preserves the global volume of the model. In addition, a comparison of the peak wall stress computed with the zero pressure and CT-based geometries during systole indicates that computations using CT-based geometric models underestimate the peak wall stress by 59 ± 64 and 47 ± 64 kPa for the isotropic and anisotropic material models of the arterial wall, respectively.

  19. Mitochondrial Ubiquitin Ligase in Cardiovascular Disorders.

    PubMed

    Yu, Tao; Zhang, Yinfeng; Li, Pei-Feng

    2017-01-01

    Mitochondrial dynamics play a critical role in cellular responses and physiological process. However, their dysregulation leads to a functional degradation, which results in a diverse array of common disorders, including cardiovascular disease. In this background, the mitochondrial ubiquitin ligase has been attracting substantial research interest in recent years. Mitochondrial ubiquitin ligase is localized in the mitochondrial outer membrane, where it plays an essential role in the regulation of mitochondrial dynamics and apoptosis. In this chapter, we provide a comprehensive overview of the functions of mitochondrial ubiquitin ligases identified hitherto, with a special focus on cardiovascular disorders.

  20. Atomic-level description of ubiquitin folding

    PubMed Central

    Piana, Stefano; Lindorff-Larsen, Kresten; Shaw, David E.

    2013-01-01

    Equilibrium molecular dynamics simulations, in which proteins spontaneously and repeatedly fold and unfold, have recently been used to help elucidate the mechanistic principles that underlie the folding of fast-folding proteins. The extent to which the conclusions drawn from the analysis of such proteins, which fold on the microsecond timescale, apply to the millisecond or slower folding of naturally occurring proteins is, however, unclear. As a first attempt to address this outstanding issue, we examine here the folding of ubiquitin, a 76-residue-long protein found in all eukaryotes that is known experimentally to fold on a millisecond timescale. Ubiquitin folding has been the subject of many experimental studies, but its slow folding rate has made it difficult to observe and characterize the folding process through all-atom molecular dynamics simulations. Here we determine the mechanism, thermodynamics, and kinetics of ubiquitin folding through equilibrium atomistic simulations. The picture emerging from the simulations is in agreement with a view of ubiquitin folding suggested from previous experiments. Our findings related to the folding of ubiquitin are also consistent, for the most part, with the folding principles derived from the simulation of fast-folding proteins, suggesting that these principles may be applicable to a wider range of proteins. PMID:23503848

  1. Histone ubiquitination: a tagging tail unfolds?

    PubMed

    Jason, Laure J M; Moore, Susan C; Lewis, John D; Lindsey, George; Ausió, Juan

    2002-02-01

    Despite the fact that histone H2A ubiquitination affects about 10-15% of this histone in most eukaryotic cells, histone ubiquitination is among one of the less-well-characterized post-translational histone modifications. Nevertheless, some important observations have been made in recent years. Whilst several enzymes had been known to ubiquitinate histones in vitro, recent studies in yeast have led to the unequivocal identification of the enzyme responsible for this post-translational modification in this organism. A strong functional co-relation to meiosis and spermiogenesis has also now been well documented, although its participation in other functional aspects of chromatin metabolism, such as transcription or DNA repair, still remains rather speculative and controversial. Because of its nature, histone ubiquitination represents the most bulky structural change to histones and as such it would be expected to exert an important effect on chromatin structure. Past and recent structural studies, however, indicate a surprising lack of effect of (H2A/H2B) ubiquitination on nucleosome architecture and of uH2A on chromatin folding. These results suggest that this modification may serve as a signal for recognition by functionally relevant trans-acting factors and/or operate synergistically in conjunction with other post-translational modifications such as for instance acetylation. Copyright 2002 Wiley Periodicals, Inc.

  2. Ubiquitin over-expression phenotypes and ubiquitin gene molecular misreading during aging in Drosophila melanogaster

    PubMed Central

    Hoe, Nicholas; Huang, Chung M.; Landis, Gary; Verhage, Marian; Ford, Daniel; Yang, Junsheng; van Leeuwen, Fred W.; Tower, John

    2011-01-01

    Molecular Misreading (MM) is the inaccurate conversion of genomic information into aberrant proteins. For example, when RNA polymerase II transcribes a GAGAG motif it synthesizes at low frequency RNA with a two-base deletion. If the deletion occurs in a coding region, translation will result in production of misframed proteins. During mammalian aging, misframed versions of human amyloid precursor protein (hApp) and ubiquitin (hUbb) accumulate in the aggregates characteristic of neurodegenerative diseases, suggesting dysfunctional degradation or clearance. Here cDNA clones encoding wild-type hUbb and the frame-shifted version hUbb+1 were expressed in transgenic Drosophila using the doxycycline-regulated system. Misframed proteins were abundantly produced, both from the transgenes and from endogenous Drosophila ubiquitin-encoding genes, and their abundance increased during aging in whole-fly extracts. Over-expression of wild-type hUbb, but not hUbb+1, was toxic during fly development. In contrast, when over-expressed specifically in adult flies, hUbb+1 caused small decreases in life span, whereas hUbb was associated with small increases, preferentially in males. The data suggest that MM occurs in Drosophila and that the resultant misframed proteins accumulate with age. MM of the ubiquitin gene can produce alternative ubiquitin gene products with different and sometimes opposing phenotypic effects. PMID:21415465

  3. The evolving role of ubiquitin modification in endoplasmic reticulum-associated degradation.

    PubMed

    Preston, G Michael; Brodsky, Jeffrey L

    2017-02-15

    The endoplasmic reticulum (ER) serves as a warehouse for factors that augment and control the biogenesis of nascent proteins entering the secretory pathway. In turn, this compartment also harbors the machinery that responds to the presence of misfolded proteins by targeting them for proteolysis via a process known as ER-associated degradation (ERAD). During ERAD, substrates are selected, modified with ubiquitin, removed from the ER, and then degraded by the cytoplasmic 26S proteasome. While integral membrane proteins can directly access the ubiquitination machinery that resides in the cytoplasm or on the cytoplasmic face of the ER membrane, soluble ERAD substrates within the lumen must be retrotranslocated from this compartment. In either case, nearly all ERAD substrates are tagged with a polyubiquitin chain, a modification that represents a commitment step to degrade aberrant proteins. However, increasing evidence indicates that the polyubiquitin chain on ERAD substrates can be further modified, serves to recruit ERAD-requiring factors, and may regulate the ERAD machinery. Amino acid side chains other than lysine on ERAD substrates can also be modified with ubiquitin, and post-translational modifications that affect substrate ubiquitination have been observed. Here, we summarize these data and provide an overview of questions driving this field of research. © 2017 The Author(s); published by Portland Press Limited on behalf of the Biochemical Society.

  4. Rubisco Activases: AAA+ Chaperones Adapted to Enzyme Repair

    PubMed Central

    Bhat, Javaid Y.; Thieulin-Pardo, Gabriel; Hartl, F. Ulrich; Hayer-Hartl, Manajit

    2017-01-01

    Ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco), the key enzyme of the Calvin-Benson-Bassham cycle of photosynthesis, requires conformational repair by Rubisco activase for efficient function. Rubisco mediates the fixation of atmospheric CO2 by catalyzing the carboxylation of the five-carbon sugar ribulose-1,5-bisphosphate (RuBP). It is a remarkably inefficient enzyme, and efforts to increase crop yields by bioengineering Rubisco remain unsuccessful. This is due in part to the complex cellular machinery required for Rubisco biogenesis and metabolic maintenance. To function, Rubisco must undergo an activation process that involves carboxylation of an active site lysine by a non-substrate CO2 molecule and binding of a Mg2+ ion. Premature binding of the substrate RuBP results in an inactive enzyme. Moreover, Rubisco can also be inhibited by a range of sugar phosphates, some of which are “misfire” products of its multistep catalytic reaction. The release of the inhibitory sugar molecule is mediated by the AAA+ protein Rubisco activase (Rca), which couples hydrolysis of ATP to the structural remodeling of Rubisco. Rca enzymes are found in the vast majority of photosynthetic organisms, from bacteria to higher plants. They share a canonical AAA+ domain architecture and form six-membered ring complexes but are diverse in sequence and mechanism, suggesting their convergent evolution. In this review, we discuss recent advances in understanding the structure and function of this important group of client-specific AAA+ proteins. PMID:28443288

  5. Rubisco Activases: AAA+ Chaperones Adapted to Enzyme Repair.

    PubMed

    Bhat, Javaid Y; Thieulin-Pardo, Gabriel; Hartl, F Ulrich; Hayer-Hartl, Manajit

    2017-01-01

    Ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco), the key enzyme of the Calvin-Benson-Bassham cycle of photosynthesis, requires conformational repair by Rubisco activase for efficient function. Rubisco mediates the fixation of atmospheric CO 2 by catalyzing the carboxylation of the five-carbon sugar ribulose-1,5-bisphosphate (RuBP). It is a remarkably inefficient enzyme, and efforts to increase crop yields by bioengineering Rubisco remain unsuccessful. This is due in part to the complex cellular machinery required for Rubisco biogenesis and metabolic maintenance. To function, Rubisco must undergo an activation process that involves carboxylation of an active site lysine by a non-substrate CO 2 molecule and binding of a Mg 2+ ion. Premature binding of the substrate RuBP results in an inactive enzyme. Moreover, Rubisco can also be inhibited by a range of sugar phosphates, some of which are "misfire" products of its multistep catalytic reaction. The release of the inhibitory sugar molecule is mediated by the AAA+ protein Rubisco activase (Rca), which couples hydrolysis of ATP to the structural remodeling of Rubisco. Rca enzymes are found in the vast majority of photosynthetic organisms, from bacteria to higher plants. They share a canonical AAA+ domain architecture and form six-membered ring complexes but are diverse in sequence and mechanism, suggesting their convergent evolution. In this review, we discuss recent advances in understanding the structure and function of this important group of client-specific AAA+ proteins.

  6. Materials Related Forensic Analysis and Special Testing : Drying Shrinkage Evaluation of Bridge Decks with Class AAA and Class W/WD Type K Cement

    DOT National Transportation Integrated Search

    2001-07-01

    This work pertains to preparation of concrete drying shrinkage data for proposed concrete mixtures during normal concrete : trial batch verification. Selected concrete mixtures will include PennDOT Classes AAA and AA and will also include the use of ...

  7. Determining the influence of calcification on the failure properties of abdominal aortic aneurysm (AAA) tissue.

    PubMed

    O'Leary, Siobhan A; Mulvihill, John J; Barrett, Hilary E; Kavanagh, Eamon G; Walsh, Michael T; McGloughlin, Tim M; Doyle, Barry J

    2015-02-01

    Varying degrees of calcification are present in most abdominal aortic aneurysms (AAAs). However, their impact on AAA failure properties and AAA rupture risk is unclear. The aim of this work is evaluate and compare the failure properties of partially calcified and predominantly fibrous AAA tissue and investigate the potential reasons for failure. Uniaxial mechanical testing was performed on AAA samples harvested from 31 patients undergoing open surgical repair. Individual tensile samples were divided into two groups: fibrous (n=31) and partially calcified (n=38). The presence of calcification was confirmed by fourier transform infrared spectroscopy (FTIR). A total of 69 mechanical tests were performed and the failure stretch (λf), failure stress (σf) and failure tension (Tf) were recorded for each test. Following mechanical testing, the failure sites of a subset of both tissue types were examined using scanning electron microscopy (SEM)/energy dispersive X-ray spectroscopy (EDS) to investigate the potential reasons for failure. It has been shown that the failure properties of partially calcified tissue are significantly reduced compared to fibrous tissue and SEM and EDS results suggest that the junction between a calcification deposit and the fibrous matrix is highly susceptible to failure. This study implicates the presence of calcification as a key player in AAA rupture risk and provides further motivation for the development of non-invasive methods of measuring calcification. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Secondary Structures of Ubiquitin Ions Soft-Landed onto Self-Assembled Monolayer Surfaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hu, Qichi; Laskin, Julia

    2016-06-09

    The secondary structures of multiply charged ubiquitin ions soft-landed onto self-assembled monolayer (SAM) surfaces were studied using in situ infrared reflection-absorption spectroscopy (IRRAS). Two charge states of ubiquitin, 5+ and 13+, were mass selected separately from a mixture of different charge states produced by electrospray ionization (ESI). The low 5+ charge state represents a native-like folded state of ubiquitin, while the high 13+ charge state assumes an extended, almost linear conformation. Each of the two charge states was soft-landed onto a CH 3- and COOH-terminated SAM of alkylthiols on gold (HSAM and COOH-SAM). HSAM is a hydrophobic surface known tomore » stabilize helical conformations of soft-landed protonated peptides, whereas COOH-SAM is a hydrophilic surface that preferentially stabilizes β-sheet conformations. IRRAS spectra of the soft-landed ubiquitin ions were acquired as a function of time during and after ion soft-landing. Similar to smaller peptide ions, helical conformations of ubiquitin are found to be more abundant on HSAM, while the relative abundance of β-sheet conformations increases on COOH-SAM. The initial charge state of ubiquitin also has a pronounced effect on its conformation on the surface. Specifically, on both surfaces, a higher relative abundance of helical conformations and lower relative abundance of β-sheet conformations is observed for the 13+ charge state compared to the 5+ charge state. Time-resolved experiments indicate that the α-helical band in the spectrum of the 13+ charge state slowly increases with time on the HSAM surface and decreases in the spectrum of the 13+ charge state on COOH-SAM. These results further support the preference of the hydrophobic HSAM surface toward helical conformations and demonstrate that soft-landed protein ions may undergo slow conformational changes during and after deposition.« less

  9. A structural basis for the regulatory inactivation of DnaA.

    PubMed

    Xu, Qingping; McMullan, Daniel; Abdubek, Polat; Astakhova, Tamara; Carlton, Dennis; Chen, Connie; Chiu, Hsiu-Ju; Clayton, Thomas; Das, Debanu; Deller, Marc C; Duan, Lian; Elsliger, Marc-Andre; Feuerhelm, Julie; Hale, Joanna; Han, Gye Won; Jaroszewski, Lukasz; Jin, Kevin K; Johnson, Hope A; Klock, Heath E; Knuth, Mark W; Kozbial, Piotr; Sri Krishna, S; Kumar, Abhinav; Marciano, David; Miller, Mitchell D; Morse, Andrew T; Nigoghossian, Edward; Nopakun, Amanda; Okach, Linda; Oommachen, Silvya; Paulsen, Jessica; Puckett, Christina; Reyes, Ron; Rife, Christopher L; Sefcovic, Natasha; Trame, Christine; van den Bedem, Henry; Weekes, Dana; Hodgson, Keith O; Wooley, John; Deacon, Ashley M; Godzik, Adam; Lesley, Scott A; Wilson, Ian A

    2009-01-16

    Regulatory inactivation of DnaA is dependent on Hda (homologous to DnaA), a protein homologous to the AAA+ (ATPases associated with diverse cellular activities) ATPase region of the replication initiator DnaA. When bound to the sliding clamp loaded onto duplex DNA, Hda can stimulate the transformation of active DnaA-ATP into inactive DnaA-ADP. The crystal structure of Hda from Shewanella amazonensis SB2B at 1.75 A resolution reveals that Hda resembles typical AAA+ ATPases. The arrangement of the two subdomains in Hda (residues 1-174 and 175-241) differs dramatically from that of DnaA. A CDP molecule anchors the Hda domains in a conformation that promotes dimer formation. The Hda dimer adopts a novel oligomeric assembly for AAA+ proteins in which the arginine finger, crucial for ATP hydrolysis, is fully exposed and available to hydrolyze DnaA-ATP through a typical AAA+ type of mechanism. The sliding clamp binding motifs at the N-terminus of each Hda monomer are partially buried and combine to form an antiparallel beta-sheet at the dimer interface. The inaccessibility of the clamp binding motifs in the CDP-bound structure of Hda suggests that conformational changes are required for Hda to form a functional complex with the clamp. Thus, the CDP-bound Hda dimer likely represents an inactive form of Hda.

  10. Protein Knockdown Technology: Application of Ubiquitin Ligase to Cancer Therapy.

    PubMed

    Ohoka, Nobumichi; Shibata, Norihito; Hattori, Takayuki; Naito, Mikihiko

    2016-01-01

    Selective degradation of pathogenic proteins by small molecules in cells is a novel approach for development of therapeutic agents against various diseases, including cancer. We and others have developed a protein knockdown technology with a series of hybrid small compounds, called SNIPERs (Specific and Nongenetic IAP-dependent Protein ERasers); and peptidic chimeric molecules, called PROTACs (proteolysis-targeting chimeric molecules), which induce selective degradation of target proteins via the ubiquitin-proteasome pathway. These compounds include two different ligands connected by a linker; one is a ligand for a ubiquitin ligase and the other is a ligand for the target protein, which are expected to crosslink these proteins in cells. Theoretically, any cytosolic protein can be targeted for degradation by this technology. To date, several SNIPERs and PROTACs against various oncogenic proteins have been developed, which specifically induce polyubiquitylation and proteasomal degradation of the oncogenic proteins, resulting in cell death, growth arrest, or impaired migration of cancer cells. Thus, this protein knockdown technology has a great potential for cancer therapy.

  11. VCP-dependent muscle degeneration is linked to defects in a dynamic tubular lysosomal network in vivo

    PubMed Central

    Johnson, Alyssa E; Shu, Huidy; Hauswirth, Anna G; Tong, Amy; Davis, Graeme W

    2015-01-01

    Lysosomes are classically viewed as vesicular structures to which cargos are delivered for degradation. Here, we identify a network of dynamic, tubular lysosomes that extends throughout Drosophila muscle, in vivo. Live imaging reveals that autophagosomes merge with tubular lysosomes and that lysosomal membranes undergo extension, retraction, fusion and fission. The dynamics and integrity of this tubular lysosomal network requires VCP, an AAA-ATPase that, when mutated, causes degenerative diseases of muscle, bone and neurons. We show that human VCP rescues the defects caused by loss of Drosophila VCP and overexpression of disease relevant VCP transgenes dismantles tubular lysosomes, linking tubular lysosome dysfunction to human VCP-related diseases. Finally, disruption of tubular lysosomes correlates with impaired autophagosome-lysosome fusion, increased cytoplasmic poly-ubiquitin aggregates, lipofuscin material, damaged mitochondria and impaired muscle function. We propose that VCP sustains sarcoplasmic proteostasis, in part, by controlling the integrity of a dynamic tubular lysosomal network. DOI: http://dx.doi.org/10.7554/eLife.07366.001 PMID:26167652

  12. Puromycin induces SUMO and ubiquitin redistribution upon proteasome inhibition.

    PubMed

    Matsumoto, Hotaru; Saitoh, Hisato

    2016-07-29

    We have previously reported the co-localization of O-propargyl-puromycin (OP-Puro) with SUMO-2/3 and ubiquitin at promyelocytic leukemia-nuclear bodies (PML-NBs) in the presence of the proteasome inhibitor MG132, implying a role for the ubiquitin family in sequestering OP-puromycylated immature polypeptides to the nucleus during impaired proteasome activity. Here, we found that as expected puromycin induced SUMO-1/2/3 accumulation with ubiquitin at multiple nuclear foci in HeLa cells when co-exposed to MG132. Co-administration of puromycin and MG132 also facilitated redistribution of PML and the SUMO-targeted ubiquitin ligase RNF4 concurrently with SUMO-2/3. As removal of the drugs from the medium led to disappearance of the SUMO-2/3-ubiquitin nuclear foci, our findings indicated that nuclear assembly/disassembly of SUMO-2/3 and ubiquitin was pharmacologically manipulable, supporting our previous observation on OP-Puro, which predicted the ubiquitin family function in sequestrating aberrant proteins to the nucleus. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Structural Basis for the Ubiquitin-Linkage Specificity and deISGylating Activity of SARS-CoV Papain-Like Protease

    PubMed Central

    Ratia, Kiira; Kilianski, Andrew; Baez-Santos, Yahira M.; Baker, Susan C.; Mesecar, Andrew

    2014-01-01

    Severe acute respiratory syndrome coronavirus (SARS-CoV) encodes a papain-like protease (PLpro) with both deubiquitinating (DUB) and deISGylating activities that are proposed to counteract the post-translational modification of signaling molecules that activate the innate immune response. Here we examine the structural basis for PLpro's ubiquitin chain and interferon stimulated gene 15 (ISG15) specificity. We present the X-ray crystal structure of PLpro in complex with ubiquitin-aldehyde and model the interaction of PLpro with other ubiquitin-chain and ISG15 substrates. We show that PLpro greatly prefers K48- to K63-linked ubiquitin chains, and ISG15-based substrates to those that are mono-ubiquitinated. We propose that PLpro's higher affinity for K48-linked ubiquitin chains and ISG15 stems from a bivalent mechanism of binding, where two ubiquitin-like domains prefer to bind in the palm domain of PLpro with the most distal ubiquitin domain interacting with a “ridge” region of the thumb domain. Mutagenesis of residues within this ridge region revealed that these mutants retain viral protease activity and the ability to catalyze hydrolysis of mono-ubiquitin. However, a select number of these mutants have a significantly reduced ability to hydrolyze the substrate ISG15-AMC, or be inhibited by K48-linked diubuiquitin. For these latter residues, we found that PLpro antagonism of the nuclear factor kappa-light-chain-enhancer of activated B-cells (NFκB) signaling pathway is abrogated. This identification of key and unique sites in PLpro required for recognition and processing of diubiquitin and ISG15 versus mono-ubiquitin and protease activity provides new insight into ubiquitin-chain and ISG15 recognition and highlights a role for PLpro DUB and deISGylase activity in antagonism of the innate immune response. PMID:24854014

  14. National dosimetric audit network finds discrepancies in AAA lung inhomogeneity corrections.

    PubMed

    Dunn, Leon; Lehmann, Joerg; Lye, Jessica; Kenny, John; Kron, Tomas; Alves, Andrew; Cole, Andrew; Zifodya, Jackson; Williams, Ivan

    2015-07-01

    This work presents the Australian Clinical Dosimetry Service's (ACDS) findings of an investigation of systematic discrepancies between treatment planning system (TPS) calculated and measured audit doses. Specifically, a comparison between the Anisotropic Analytic Algorithm (AAA) and other common dose-calculation algorithms in regions downstream (≥2cm) from low-density material in anthropomorphic and slab phantom geometries is presented. Two measurement setups involving rectilinear slab-phantoms (ACDS Level II audit) and anthropomorphic geometries (ACDS Level III audit) were used in conjunction with ion chamber (planar 2D array and Farmer-type) measurements. Measured doses were compared to calculated doses for a variety of cases, with and without the presence of inhomogeneities and beam-modifiers in 71 audits. Results demonstrate a systematic AAA underdose with an average discrepancy of 2.9 ± 1.2% when the AAA algorithm is implemented in regions distal from lung-tissue interfaces, when lateral beams are used with anthropomorphic phantoms. This systemic discrepancy was found for all Level III audits of facilities using the AAA algorithm. This discrepancy is not seen when identical measurements are compared for other common dose-calculation algorithms (average discrepancy -0.4 ± 1.7%), including the Acuros XB algorithm also available with the Eclipse TPS. For slab phantom geometries (Level II audits), with similar measurement points downstream from inhomogeneities this discrepancy is also not seen. Crown Copyright © 2015. Published by Elsevier Ltd. All rights reserved.

  15. Effect of thyroid status on the development of the different molecular forms of Na+,K+-ATPase in rat brain.

    PubMed

    Atterwill, C K; Reid, J; Athayde, C M

    1985-05-01

    The effect of thyroid status on the postnatal development of the two molecular forms of Na+,K+-ATPase, distinguished kinetically on the basis of their ouabain sensitivity, was examined in rat brain. Hypothyroidism induced by PTU from day 1 postnatally significantly reduced the Na+,K+-ATPase activity in cerebellum (22-30 days) but not forebrain, whereas hyperthyroidism (T4 treatment from day 1) had no effect. The hypothyroidism-induced reduction in cerebellum was reflected by a 20-45% reduction in the activity of the alpha(+) form of Na+,K+-ATPase (high ouabain affinity) against control brains compared to a 60-70% reduction in the activity of the alpha form (low ouabain affinity). These results show that neonatally induced hypothyroidism leads to a selectively greater impairment of the ontogenesis of the activity of cerebellar alpha form of Na+,K+-ATPase. This may possibly reflect a retarded development of a selective cerebellar cell population containing predominantly the alpha form of the enzyme.

  16. Evidence for rotation of V1-ATPase

    PubMed Central

    Imamura, Hiromi; Nakano, Masahiro; Noji, Hiroyuki; Muneyuki, Eiro; Ohkuma, Shoji; Yoshida, Masasuke; Yokoyama, Ken

    2003-01-01

    VoV1-ATPase is responsible for acidification of eukaryotic intracellular compartments and ATP synthesis of Archaea and some eubacteria. From the similarity to FoF1-ATP synthase, VoV1-ATPase has been assumed to be a rotary motor, but to date there are no experimental data to support this. Here we visualized the rotation of single molecules of V1-ATPase, a catalytic subcomplex of VoV1-ATPase. V1-ATPase from Thermus thermophilus was immobilized onto a glass surface, and a bead was attached to the D or F subunit through the biotin-streptavidin linkage. In both cases we observed ATP-dependent rotations of beads, the direction of which was always counterclockwise viewed from the membrane side. Given that three ATP molecules are hydrolyzed per one revolution, rates of rotation agree consistently with rates of ATP hydrolysis at saturating ATP concentrations. This study provides experimental evidence that VoV1-ATPase is a rotary motor and that both D and F subunits constitute a rotor shaft. PMID:12598655

  17. Parkin mediates the ubiquitination of VPS35 and modulates retromer-dependent endosomal sorting.

    PubMed

    Williams, Erin T; Glauser, Liliane; Tsika, Elpida; Jiang, Haisong; Islam, Shariful; Moore, Darren J

    2018-06-11

    Mutations in a number of genes cause familial forms of Parkinson's disease (PD), including mutations in the vacuolar protein sorting 35 ortholog (VPS35) and parkin genes. In this study, we identify a novel functional interaction between parkin and VPS35. We demonstrate that parkin interacts with and robustly ubiquitinates VPS35 in human neural cells. Familial parkin mutations are impaired in their ability to ubiquitinate VPS35. Parkin mediates the attachment of an atypical poly-ubiquitin chain to VPS35 with three lysine residues identified within the C-terminal region of VPS35 that are covalently modified by ubiquitin. Notably, parkin-mediated VPS35 ubiquitination does not promote the proteasomal degradation of VPS35. Furthermore, parkin does not influence the steady-state levels or turnover of VPS35 in neural cells and VPS35 levels are normal in the brains of parkin knockout mice. These data suggest that ubiquitination of VPS35 by parkin may instead serve a non-degradative cellular function potentially by regulating retromer-dependent sorting. Accordingly, we find that components of the retromer-associated WASH complex are markedly decreased in the brain of parkin knockout mice, suggesting that parkin may modulate WASH complex-dependent retromer sorting. Parkin gene silencing in primary cortical neurons selectively disrupts the vesicular sorting of the autophagy receptor ATG9A, a WASH-dependent retromer cargo. Parkin is not required for dopaminergic neurodegeneration induced by the expression of PD-linked D620N VPS35 in mice, consistent with VPS35 being located downstream of parkin function. Our data reveal a novel functional interaction of parkin with VPS35 that may be important for retromer-mediated endosomal sorting and PD.

  18. Adipocytes and abdominal aortic aneurysm: Putative potential role of adipocytes in the process of AAA development.

    PubMed

    Kugo, Hirona; Moriyama, Tatsuya; Zaima, Nobuhiro

    2018-01-15

    Background Adipose tissue plays a role in the storage of excess energy as triglycerides (TGs). Excess fat accumulation causes various metabolic and cardiovascular diseases. It has been reported that ectopic fat deposition and excess TG accumulation in non-adipose tissue might be important predictors of cardiometabolic and vascular risk. For example, ectopic fat in perivascular tissue promotes atherosclerotic plaque formation in the arterial wall. Objective Recently, it has been reported that ectopic fat (adipocyte) in the vascular wall of an abdominal aortic aneurysm (AAA) is present in both human and experimental animal models. The pathological significance of adipocytes in the AAA wall has not been fully understood. In this review, we summarized the functions of adipocytes and discussed potential new drugs that target vascular adipocytes for AAA treatment. Result Previous studies suggest that adipocytes in vascular wall play an important role in the development of AAA. Conclusion Adipocytes in the vascular wall could be novel targets for the development of AAA therapeutic drugs. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  19. Regulation of Vacuolar H+-ATPase (V-ATPase) Reassembly by Glycolysis Flow in 6-Phosphofructo-1-kinase (PFK-1)-deficient Yeast Cells*

    PubMed Central

    Chan, Chun-Yuan; Dominguez, Dennis; Parra, Karlett J.

    2016-01-01

    Yeast 6-phosphofructo-1-kinase (PFK-1) has two subunits, Pfk1p and Pfk2p. Deletion of Pfk2p alters glucose-dependent V-ATPase reassembly and vacuolar acidification (Chan, C. Y., and Parra, K. J. (2014) Yeast phosphofructokinase-1 subunit Pfk2p is necessary for pH homeostasis and glucose-dependent vacuolar ATPase reassembly. J. Biol. Chem. 289, 19448–19457). This study capitalized on the mechanisms suppressing vacuolar H+-ATPase (V-ATPase) in pfk2Δ to gain new knowledge of the mechanisms underlying glucose-dependent V-ATPase regulation. Because V-ATPase is fully assembled in pfk2Δ, and glycolysis partially suppressed at steady state, we manipulated glycolysis and assessed its direct involvement on V-ATPase function. At steady state, the ratio of proton transport to ATP hydrolysis increased 24% after increasing the glucose concentration from 2% to 4% to enhance the glycolysis flow in pfk2Δ. Tighter coupling restored vacuolar pH when glucose was abundant and glycolysis operated below capacity. After readdition of glucose to glucose-deprived cells, glucose-dependent V1Vo reassembly was proportional to the glycolysis flow. Readdition of 2% glucose to pfk2Δ cells, which restored 62% of ethanol concentration, led to equivalent 60% V1Vo reassembly levels. Steady-state level of assembly (100% reassembly) was reached at 4% glucose when glycolysis reached a threshold in pfk2Δ (≥40% the wild-type flow). At 4% glucose, the level of Pfk1p co-immunoprecipitated with V-ATPase decreased 58% in pfk2Δ, suggesting that Pfk1p binding to V-ATPase may be inhibitory in the mutant. We concluded that V-ATPase activity at steady state and V-ATPase reassembly after readdition of glucose to glucose-deprived cells are controlled by the glycolysis flow. We propose a new mechanism by which glucose regulates V-ATPase catalytic activity that occurs at steady state without changing V1Vo assembly. PMID:27226568

  20. The mechanism of OTUB1-mediated inhibition of ubiquitination

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wiener, Reuven; Zhang, Xiangbin; Wang, Tao

    2013-04-08

    Histones are ubiquitinated in response to DNA double-strand breaks (DSB), promoting recruitment of repair proteins to chromatin. UBC13 (also known as UBE2N) is a ubiquitin-conjugating enzyme (E2) that heterodimerizes with UEV1A (also known as UBE2V1) and synthesizes K63-linked polyubiquitin (K63Ub) chains at DSB sites in concert with the ubiquitin ligase (E3), RNF168 (ref. 3). K63Ub synthesis is regulated in a non-canonical manner by the deubiquitinating enzyme, OTUB1 (OTU domain-containing ubiquitin aldehyde-binding protein 1), which binds preferentially to the UBC13-Ub thiolester. Residues amino-terminal to the OTU domain, which had been implicated in ubiquitin binding, are required for binding to UBC13-Ub andmore » inhibition of K63Ub synthesis. Here we describe structural and biochemical studies elucidating how OTUB1 inhibits UBC13 and other E2 enzymes. We unexpectedly find that OTUB1 binding to UBC13-Ub is allosterically regulated by free ubiquitin, which binds to a second site in OTUB1 and increases its affinity for UBC13-Ub, while at the same time disrupting interactions with UEV1A in a manner that depends on the OTUB1 N terminus. Crystal structures of an OTUB1-UBC13 complex and of OTUB1 bound to ubiquitin aldehyde and a chemical UBC13-Ub conjugate show that binding of free ubiquitin to OTUB1 triggers conformational changes in the OTU domain and formation of a ubiquitin-binding helix in the N terminus, thus promoting binding of the conjugated donor ubiquitin in UBC13-Ub to OTUB1. The donor ubiquitin thus cannot interact with the E2 enzyme, which has been shown to be important for ubiquitin transfer. The N-terminal helix of OTUB1 is positioned to interfere with UEV1A binding to UBC13, as well as with attack on the thiolester by an acceptor ubiquitin, thereby inhibiting K63Ub synthesis. OTUB1 binding also occludes the RING E3 binding site on UBC13, thus providing a further component of inhibition. The general features of the inhibition mechanism explain how

  1. Human Papillomavirus Type 16 E6 Induces Self-Ubiquitination of the E6AP Ubiquitin-Protein Ligase

    PubMed Central

    Kao, Wynn H.; Beaudenon, Sylvie L.; Talis, Andrea L.; Huibregtse, Jon M.; Howley, Peter M.

    2000-01-01

    The E6 protein of the high-risk human papillomaviruses (HPVs) and the cellular ubiquitin-protein ligase E6AP form a complex which causes the ubiquitination and degradation of p53. We show here that HPV16 E6 promotes the ubiquitination and degradation of E6AP itself. The half-life of E6AP is shorter in HPV-positive cervical cancer cells than in HPV-negative cervical cancer cells, and E6AP is stabilized in HPV-positive cancer cells when expression of the viral oncoproteins is repressed. Expression of HPV16 E6 in cells results in a threefold decrease in the half-life of transfected E6AP. E6-mediated degradation of E6AP requires (i) the binding of E6 to E6AP, (ii) the catalytic activity of E6AP, and (iii) activity of the 26S proteasome, suggesting that E6-E6AP interaction results in E6AP self-ubiquitination and degradation. In addition, both in vitro and in vivo experiments indicate that E6AP self-ubiquitination results primarily from an intramolecular transfer of ubiquitin from the active-site cysteine to one or more lysine residues; however, intermolecular transfer can also occur in the context of an E6-mediated E6AP multimer. Finally, we demonstrate that an E6 mutant that is able to immortalize human mammary epithelial cells but is unable to degrade p53 retains its ability to bind and degrade E6AP, raising the possibility that E6-mediated degradation of E6AP contributes to its ability to transform mammalian cells. PMID:10864652

  2. Dengue Virus Genome Uncoating Requires Ubiquitination

    PubMed Central

    Byk, Laura A.; Iglesias, Néstor G.; De Maio, Federico A.; Gebhard, Leopoldo G.; Rossi, Mario

    2016-01-01

    ABSTRACT The process of genome release or uncoating after viral entry is one of the least-studied steps in the flavivirus life cycle. Flaviviruses are mainly arthropod-borne viruses, including emerging and reemerging pathogens such as dengue, Zika, and West Nile viruses. Currently, dengue virus is one of the most significant human viral pathogens transmitted by mosquitoes and is responsible for about 390 million infections every year around the world. Here, we examined for the first time molecular aspects of dengue virus genome uncoating. We followed the fate of the capsid protein and RNA genome early during infection and found that capsid is degraded after viral internalization by the host ubiquitin-proteasome system. However, proteasome activity and capsid degradation were not necessary to free the genome for initial viral translation. Unexpectedly, genome uncoating was blocked by inhibiting ubiquitination. Using different assays to bypass entry and evaluate the first rounds of viral translation, a narrow window of time during infection that requires ubiquitination but not proteasome activity was identified. In this regard, ubiquitin E1-activating enzyme inhibition was sufficient to stabilize the incoming viral genome in the cytoplasm of infected cells, causing its retention in either endosomes or nucleocapsids. Our data support a model in which dengue virus genome uncoating requires a nondegradative ubiquitination step, providing new insights into this crucial but understudied viral process. PMID:27353759

  3. RNF185, a Novel Mitochondrial Ubiquitin E3 Ligase, Regulates Autophagy through Interaction with BNIP1

    PubMed Central

    Tang, Fei; Wang, Bin; Li, Na; Wu, Yanfang; Jia, Junying; Suo, Talin; Chen, Quan; Liu, Yong-Jun; Tang, Jie

    2011-01-01

    Autophagy is an evolutionarily conserved catabolic process that allows recycling of cytoplasmic organelles, such as mitochondria, to offer a bioenergetically efficient pathway for cell survival. Considerable progress has been made in characterizing mitochondrial autophagy. However, the dedicated ubiquitin E3 ligases targeting mitochondria for autophagy have not been revealed. Here we show that human RNF185 is a mitochondrial ubiquitin E3 ligase that regulates selective mitochondrial autophagy in cultured cells. The two C-terminal transmembrane domains of human RNF185 mediate its localization to mitochondrial outer membrane. RNF185 stimulates LC3II accumulation and the formation of autophagolysosomes in human cell lines. We further identified the Bcl-2 family protein BNIP1 as one of the substrates for RNF185. Human BNIP1 colocalizes with RNF185 at mitochondria and is polyubiquitinated by RNF185 through K63-based ubiquitin linkage in vivo. The polyubiquitinated BNIP1 is capable of recruiting autophagy receptor p62, which simultaneously binds both ubiquitin and LC3 to link ubiquitination and autophagy. Our study might reveal a novel RNF185-mediated mechanism for modulating mitochondrial homeostasis through autophagy. PMID:21931693

  4. Biochemical function of typical and variant Arabidopsis thaliana U-box E3 ubiquitin-protein ligases.

    PubMed

    Wiborg, Jakob; O'Shea, Charlotte; Skriver, Karen

    2008-08-01

    The variance of the U-box domain in 64 Arabidopsis thaliana (thale cress) E3s (ubiquitin-protein ligases) was used to examine the interactions between E3s and E2s (ubiquitin-conjugating enzymes). E2s and E3s are components of the ubiquitin protein degradation pathway. Seven U-box proteins were analysed for their ability to ubiquitinate proteins in vitro in co-operation with different E2s. All U-box domains exhibited ubiquitination activity and interacted productively with UBC4/5-type E2s. Three and four of the U-box domains mediated ubiquitin addition in the presence of UBC13 and UBC7 E2s respectively, but no productive interaction was observed with the UBC15 E2 tested. The activity of AtPUB54 [Arabidopsis thaliana (thale cress) plant U-box 54 protein] was dependent on Trp(266) in the E2-binding cleft, and the E2 selectivity was changed by substitution of this position. The function of the distant U-box protein, AtPUB49, representing a large family of eukaryotic proteins containing a U-box linked to a cyclophilin-like peptidyl-prolyl cis-trans isomerase domain, was characterized biochemically. AtPUB49 functioned both as a prolyl isomerase and a chaperone by catalysing cis-trans isomerization of peptidyl-prolyl bonds and dissolving protein aggregates. In conclusion, both typical and atypical Arabidopsis U-box proteins were active E3s. The overlap in the E3/E2 selectivity suggests that in vivo specificity is not determined only by the E3-E2 interactions, but also by other parameters, e.g. co-existence or interactions with additional domains. The biochemical functions of AtPUB49 suggest that the protein can be involved in folding or degradation of protein substrates. Similar functions can also be retained within a protein complex with separate chaperone and U-box proteins.

  5. Lysine Ubiquitination and Acetylation of Human Cardiac 20S Proteasomes

    PubMed Central

    Lau, Edward; Choi, Howard JH; Ng, Dominic CM; Meyer, David; Fang, Caiyun; Li, Haomin; Wang, Ding; Zelaya, Ivette M; Yates, John R; Lam, Maggie PY

    2016-01-01

    Purpose Altered proteasome functions are associated with multiple cardiomyopathies. While the proteasome targets poly-ubiquitinated proteins for destruction, it itself is modifiable by ubiquitination. We aim to identify the exact ubiquitination sites on cardiac proteasomes and examine whether they are also subject to acetylations. Experimental design Assembled cardiac 20S proteasome complexes were purified from five human hearts with ischemic cardiomyopathy, then analyzed by high-resolution MS to identify ubiquitination and acetylation sites. We developed a library search strategy that may be used to complement database search in identifying PTM in different samples. Results We identified 63 ubiquitinated lysines from intact human cardiac 20S proteasomes. In parallel, 65 acetylated residues were also discovered, 39 of which shared with ubiquitination sites. Conclusion and clinical relevance This is the most comprehensive characterization of cardiac proteasome ubiquitination to-date. There are significant overlaps between the discovered ubiquitination and acetylation sites, permitting potential crosstalk in regulating proteasome functions. The information presented here will aid future therapeutic strategies aimed at regulating the functions of cardiac proteasomes. PMID:24957502

  6. Increased AAA-TOB3 correlates with lymph node metastasis and advanced stage of lung adenocarcinoma.

    PubMed

    Liu, Yanfeng; Bu, Lina; Li, Wei; Wu, Wei; Wang, Shengyu; Diao, Xin; Zhou, Jing; Chen, Guoan; Yang, Shuanying

    2017-07-24

    This study was to investigate the differential mitochondrial protein expressions in human lung adenocarcinoma and provide preliminary data for further exploration of the carcinogenic mechanism. Total proteins of A549 and 16HBE mitochondria were extracted through 2D polyacrylamide gel electrophoresis (2-DE). The differential mitochondria proteins were identified by liquid chromatography-tandem mass spectrometry (LC-MS/MS) and were further confirmed by Western blot, immunoelectron microscopy and immunohistochemistry (IHC) in A549 cells as well as lung adenocarcinoma tissues. A total of 41 differentially expressed protein spots were found in A549 mitochondria. Of them, 15 proteins were highly expressed and 26 proteins were lowly expressed in the mitochondria of A549 (by more than 1.5 times). Among the 15 more highly expressed proteins, AAA-TOB3 (by more than 3 times) was highly expressed in the mitochondria of A549 compared with the 16HBE, by LC-MS/MS identification. High electron density and clear circular colloidal gold-marked AAA-TOB3 particles were observed in the A549 cells via immunoelectron microscopy. Besides, AAA-TOB3 was confirmed to be elevated in lung adenocarcinoma by Western blot and IHC. Moreover, increased AAA-TOB3 correlated with lymph node metastasis and advanced stage of lung adenocarcinoma (p<0.05). AAA-TOB3 was highly expressed in lung adenocarcinoma, and the up-regulation of AAA-TOB3 correlated with lymph node metastasis and advanced stage of lung adenocarcinoma, which suggested that it could serve as a potential molecular marker for lung adenocarcinoma.

  7. Clinical implementation of AXB from AAA for breast: Plan quality and subvolume analysis.

    PubMed

    Guebert, Alexandra; Conroy, Leigh; Weppler, Sarah; Alghamdi, Majed; Conway, Jessica; Harper, Lindsay; Phan, Tien; Olivotto, Ivo A; Smith, Wendy L; Quirk, Sarah

    2018-05-01

    Two dose calculation algorithms are available in Varian Eclipse software: Anisotropic Analytical Algorithm (AAA) and Acuros External Beam (AXB). Many Varian Eclipse-based centers have access to AXB; however, a thorough understanding of how it will affect plan characteristics and, subsequently, clinical practice is necessary prior to implementation. We characterized the difference in breast plan quality between AXB and AAA for dissemination to clinicians during implementation. Locoregional irradiation plans were created with AAA for 30 breast cancer patients with a prescription dose of 50 Gy to the breast and 45 Gy to the regional node, in 25 fractions. The internal mammary chain (IMC CTV ) nodes were covered by 80% of the breast dose. AXB, both dose-to-water and dose-to-medium reporting, was used to recalculate plans while maintaining constant monitor units. Target coverage and organ-at-risk doses were compared between the two algorithms using dose-volume parameters. An analysis to assess location-specific changes was performed by dividing the breast into nine subvolumes in the superior-inferior and left-right directions. There were minimal differences found between the AXB and AAA calculated plans. The median difference between AXB and AAA for breast CTV V 95% , was <2.5%. For IMC CTV , the median differences V 95% , and V 80% were <5% and 0%, respectively; indicating IMC CTV coverage only decreased when marginally covered. Mean superficial dose increased by a median of 3.2 Gy. In the subvolume analysis, the medial subvolumes were "hotter" when recalculated with AXB and the lateral subvolumes "cooler" with AXB; however, all differences were within 2 Gy. We observed minimal difference in magnitude and spatial distribution of dose when comparing the two algorithms. The largest observable differences occurred in superficial dose regions. Therefore, clinical implementation of AXB from AAA for breast radiotherapy is not expected to result in changes in clinical

  8. Engineering Silicone Rubbers for In vitro Studies: Creating AAA Models and ILT Analogues with Physiological Properties

    PubMed Central

    Corbett, T.J.; Doyle, B.J.; Callanan, A.; Walsh, M.T.; McGloughlin, T.M

    2010-01-01

    Background In vitro studies of abdominal aortic aneurysm (AAA) have been widely reported. Frequently mock artery models with intraluminal thrombus (ILT) analogues are used to mimic the AAA in vivo. While the models used may be physiological, their properties are frequently either not reported or investigated. Method of Approach This study is concerned with the testing and characterisation of previously used vessel analogue materials and the development of new materials for the manufacture of AAA models. These materials were used in conjunction with a previously validated injection moulding technique to manufacture AAA models of ideal geometry. To determine the model properties (stiffness (β) and compliance) the diameter change of each AAA model was investigated under incrementally increasing internal pressures and compared to published in vivo studies to determine if the models behaved physiologically. A FEA study was implemented to determine if the pressure – diameter change behaviour of the models could be predicted numerically. ILT analogues were also manufactured and characterised. Ideal models were manufactured with ILT analogue internal to the aneurysm region and the effect of the ILT analogue on the model compliance and stiffness was investigated. Results The wall materials had similar properties to aortic tissue at physiological pressures (Einit 2.22MPa and 1.57MPa (aortic tissue: 1.8MPa)). ILT analogues had similar Young’s modulus to the medial layer of ILT (0.24 and 0.33MPa (ILT: 0.28MPa)). All models had aneurysm sac compliance in the physiological range (2.62 – 8.01×10-4/mmHg (AAA in vivo: 1.8 – 9.4×10-4/mmHg)). The necks of our AAA models had similar stiffness to healthy aortas (20.44 – 29.83 (healthy aortas in vivo: 17.5±5.5)). Good agreement was seen between the diameter changes due to pressurisation in the experimental and FEA wall models with a maximum error of 7.3% at 120mmHg. It was also determined that the inclusion of ILT analogue

  9. Crystal Structure of a Ube2S-Ubiquitin Conjugate

    PubMed Central

    Lorenz, Sonja; Bhattacharyya, Moitrayee; Feiler, Christian; Rape, Michael; Kuriyan, John

    2016-01-01

    Protein ubiquitination occurs through the sequential formation and reorganization of specific protein-protein interfaces. Ubiquitin-conjugating (E2) enzymes, such as Ube2S, catalyze the formation of an isopeptide linkage between the C-terminus of a “donor” ubiquitin and a primary amino group of an “acceptor” ubiquitin molecule. This reaction involves an intermediate, in which the C-terminus of the donor ubiquitin is thioester-bound to the active site cysteine of the E2 and a functionally important interface is formed between the two proteins. A docked model of a Ube2S-donor ubiquitin complex was generated previously, based on chemical shift mapping by NMR, and predicted contacts were validated in functional studies. We now present the crystal structure of a covalent Ube2S-ubiquitin complex. The structure contains an interface between Ube2S and ubiquitin in trans that resembles the earlier model in general terms, but differs in detail. The crystallographic interface is more hydrophobic than the earlier model and is stable in molecular dynamics (MD) simulations. Remarkably, the docked Ube2S-donor complex converges readily to the configuration seen in the crystal structure in 3 out of 8 MD trajectories. Since the crystallographic interface is fully consistent with mutational effects, this indicates that the structure provides an energetically favorable representation of the functionally critical Ube2S-donor interface. PMID:26828794

  10. Mechanisms of Ubiquitin-Nucleosome Recognition and Regulation of 53BP1 Chromatin Recruitment by RNF168/169 and RAD18

    PubMed Central

    Hu, Qi; Botuyan, Maria Victoria; Cui, Gaofeng; Zhao, Debiao

    2017-01-01

    Summary The protein 53BP1 plays a central regulatory role in DNA double-strand break repair. 53BP1 relocates to chromatin by recognizing RNF168-mediated mono-ubiquitylation of histone H2A Lys15 in the nucleosome core particle dimethylated at histone H4 Lys20 (NCP-ubme). 53BP1 relocation is terminated by ubiquitin ligases RNF169 and RAD18 via unknown mechanisms. Using NMR spectroscopy and biochemistry, we show that RNF169 bridges ubiquitin and histone surfaces, stabilizing a pre-existing ubiquitin orientation in NCP-ubme to form a high-affinity complex. This conformational selection mechanism contrasts with the low-affinity binding mode of 53BP1 and ensures 53BP1 displacement by RNF169 from NCP-ubme. We also show that RAD18 binds tightly to NCP-ubme through a ubiquitin-binding domain that contacts ubiquitin and nucleosome surfaces accessed by 53BP1. Our work uncovers diverse ubiquitin recognition mechanisms in the nucleosome, explaining how RNF168, RNF169 and RAD18 regulate 53BP1 chromatin recruitment and how specificity can be achieved in the recognition of a ubiquitin-modified substrate. PMID:28506460

  11. Ubiquitin Linkage-Specific Affimers Reveal Insights into K6-Linked Ubiquitin Signaling.

    PubMed

    Michel, Martin A; Swatek, Kirby N; Hospenthal, Manuela K; Komander, David

    2017-10-05

    Several ubiquitin chain types have remained unstudied, mainly because tools and techniques to detect these posttranslational modifications are scarce. Linkage-specific antibodies have shaped our understanding of the roles and dynamics of polyubiquitin signals but are available for only five out of eight linkage types. We here characterize K6- and K33-linkage-specific "affimer" reagents as high-affinity ubiquitin interactors. Crystal structures of affimers bound to their cognate chain types reveal mechanisms of specificity and a K11 cross-reactivity in the K33 affimer. Structure-guided improvements yield superior affinity reagents suitable for western blotting, confocal fluorescence microscopy and pull-down applications. This allowed us to identify RNF144A and RNF144B as E3 ligases that assemble K6-, K11-, and K48-linked polyubiquitin in vitro. A protocol to enrich K6-ubiquitinated proteins from cells identifies HUWE1 as a main E3 ligase for this chain type, and we show that mitofusin-2 is modified with K6-linked polyubiquitin in a HUWE1-dependent manner. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  12. Ubiquitin Proteasome System in Parkinson Disease: a keeper or a witness?

    PubMed Central

    Martins-Branco, Diogo; Esteves, Ana R.; Santos, Daniel; Arduino, Daniela M.; Swerdlow, Russell H.; Oliveira, Catarina R.; Januario, Cristina; Cardoso, Sandra M.

    2014-01-01

    Objective The aim of this work was to evaluate the role of Ubiquitin-Proteasome System (UPS) on mitochondrial-driven alpha-synuclein (aSN) clearance in in vitro, ex vivo and in vivo Parkinson disease (PD) cellular models. Method We used SH-SY5Y ndufa2 knock-down (KD) cells, PD cybrids and peripheral blood mononuclear cells (PBMC) from patients meeting the diagnostic criteria for PD. We quantified aSN aggregation, proteasome activity and protein ubiquitination levels. In PBMC of PD patients population we evaluated aSN levels in plasma and the influence of several demographic characteristics in the above mentioned determinations. Results We found that ubiquitin-independent proteasome activity was up-regulated in SH-SY5Y ndufa2 KD cells while a down regulation was observed in PD cybrids and PBMC. Moreover, we observed an increase in protein ubiquitination that correlates with a decrease in ubiquitin-dependent proteasome activity. Accordingly, proteasome inhibition prevented ubiquitin-dependent aSN clearance. Ubiquitin-independent proteasome activity was positively correlated with ubiquitination in PBMC. We also report a negative correlation of chymotrypsin-like activity with age in control and late-onset PD groups. Total ubiquitin content is positively correlated with aSN oligomers levels, which leads to an age-dependent increase of aSN ubiquitination in LOPD. Moreover, aSN levels are increased in the plasma of PD patients. Interpretation aSN oligomers are ubiquitinated and we identified an ubiquitin-dependent clearance insufficiency with accumulation of both aSN and ubiquitin. However, SH-SY5Y ndufa2 KD cells showed a significant up-regulation of ubiquitin-independent proteasomal enzymatic activity that could mean a cell rescue attempt. Moreover, we identified that UPS function is age-dependent in PBMC. PMID:22921536

  13. Ubiquitin proteasome system in Parkinson's disease: a keeper or a witness?

    PubMed

    Martins-Branco, Diogo; Esteves, Ana R; Santos, Daniel; Arduino, Daniela M; Swerdlow, Russell H; Oliveira, Catarina R; Januario, Cristina; Cardoso, Sandra M

    2012-12-01

    The aim of this work was to evaluate the role of ubiquitin-proteasome system (UPS) on mitochondrial-driven alpha-synuclein (aSN) clearance in in vitro, ex vivo and in vivo Parkinson's disease (PD) cellular models. We used SH-SY5Y ndufa2 knock-down (KD) cells, PD cybrids and peripheral blood mononuclear cells (PBMC) from patients meeting the diagnostic criteria for PD. We quantified aSN aggregation, proteasome activity and protein ubiquitination levels. In PBMC of PD patient population we evaluated the aSN levels in the plasma and the influence of several demographic characteristics in the above mentioned determinations. We found that ubiquitin-independent proteasome activity was up-regulated in SH-SY5Y ndufa2 KD cells while a downregulation was observed in PD cybrids and PBMC. Moreover, we observed an increase in protein ubiquitination that correlates with a decrease in ubiquitin-dependent proteasome activity. Accordingly, proteasome inhibition prevented ubiquitin-dependent aSN clearance. Ubiquitin-independent proteasome activity was positively correlated with ubiquitination in PBMC. We also report a negative correlation of chymotrypsin-like activity with age in control and late-onset PD groups. Total ubiquitin content is positively correlated with aSN oligomer levels, which leads to an age-dependent increase of aSN ubiquitination in LOPD. Moreover, aSN levels are increased in the plasma of PD patients. aSN oligomers are ubiquitinated and we identified a ubiquitin-dependent clearance insufficiency with the accumulation of both aSN and ubiquitin. However, SH-SY5Y ndufa2 KD cells showed a significant up-regulation of ubiquitin-independent proteasomal enzymatic activity that could mean a cell rescue attempt. Moreover, we identified that UPS function is age-dependent in PBMC. Copyright © 2012 Elsevier Inc. All rights reserved.

  14. Introducing AAA-MS, a rapid and sensitive method for amino acid analysis using isotope dilution and high-resolution mass spectrometry.

    PubMed

    Louwagie, Mathilde; Kieffer-Jaquinod, Sylvie; Dupierris, Véronique; Couté, Yohann; Bruley, Christophe; Garin, Jérôme; Dupuis, Alain; Jaquinod, Michel; Brun, Virginie

    2012-07-06

    Accurate quantification of pure peptides and proteins is essential for biotechnology, clinical chemistry, proteomics, and systems biology. The reference method to quantify peptides and proteins is amino acid analysis (AAA). This consists of an acidic hydrolysis followed by chromatographic separation and spectrophotometric detection of amino acids. Although widely used, this method displays some limitations, in particular the need for large amounts of starting material. Driven by the need to quantify isotope-dilution standards used for absolute quantitative proteomics, particularly stable isotope-labeled (SIL) peptides and PSAQ proteins, we developed a new AAA assay (AAA-MS). This method requires neither derivatization nor chromatographic separation of amino acids. It is based on rapid microwave-assisted acidic hydrolysis followed by high-resolution mass spectrometry analysis of amino acids. Quantification is performed by comparing MS signals from labeled amino acids (SIL peptide- and PSAQ-derived) with those of unlabeled amino acids originating from co-hydrolyzed NIST standard reference materials. For both SIL peptides and PSAQ standards, AAA-MS quantification results were consistent with classical AAA measurements. Compared to AAA assay, AAA-MS was much faster and was 100-fold more sensitive for peptide and protein quantification. Finally, thanks to the development of a labeled protein standard, we also extended AAA-MS analysis to the quantification of unlabeled proteins.

  15. Inhibition of Canonical NF-κB Signaling by a Small Molecule Targeting NEMO-Ubiquitin Interaction

    PubMed Central

    Vincendeau, Michelle; Hadian, Kamyar; Messias, Ana C.; Brenke, Jara K.; Halander, Jenny; Griesbach, Richard; Greczmiel, Ute; Bertossi, Arianna; Stehle, Ralf; Nagel, Daniel; Demski, Katrin; Velvarska, Hana; Niessing, Dierk; Geerlof, Arie; Sattler, Michael; Krappmann, Daniel

    2016-01-01

    The IκB kinase (IKK) complex acts as the gatekeeper of canonical NF-κB signaling, thereby regulating immunity, inflammation and cancer. It consists of the catalytic subunits IKKα and IKKβ and the regulatory subunit NEMO/IKKγ. Here, we show that the ubiquitin binding domain (UBAN) in NEMO is essential for IKK/NF-κB activation in response to TNFα, but not IL-1β stimulation. By screening a natural compound library we identified an anthraquinone derivative that acts as an inhibitor of NEMO-ubiquitin binding (iNUB). Using biochemical and NMR experiments we demonstrate that iNUB binds to NEMOUBAN and competes for interaction with methionine-1-linked linear ubiquitin chains. iNUB inhibited NF-κB activation upon UBAN-dependent TNFα and TCR/CD28, but not UBAN-independent IL-1β stimulation. Moreover, iNUB was selectively killing lymphoma cells that are addicted to chronic B-cell receptor triggered IKK/NF-κB activation. Thus, iNUB disrupts the NEMO-ubiquitin protein-protein interaction interface and thereby inhibits physiological and pathological NF-κB signaling. PMID:26740240

  16. The roles of ubiquitin modifying enzymes in neoplastic disease.

    PubMed

    Kumari, Nishi; Jaynes, Patrick William; Saei, Azad; Iyengar, Prasanna Vasudevan; Richard, John Lalith Charles; Eichhorn, Pieter Johan Adam

    2017-12-01

    The initial experiments performed by Rose, Hershko, and Ciechanover describing the identification of a specific degradation signal in short-lived proteins paved the way to the discovery of the ubiquitin mediated regulation of numerous physiological functions required for cellular homeostasis. Since their discovery of ubiquitin and ubiquitin function over 30years ago it has become wholly apparent that ubiquitin and their respective ubiquitin modifying enzymes are key players in tumorigenesis. The human genome encodes approximately 600 putative E3 ligases and 80 deubiquitinating enzymes and in the majority of cases these enzymes exhibit specificity in sustaining either pro-tumorigenic or tumour repressive responses. In this review, we highlight the known oncogenic and tumour suppressive effects of ubiquitin modifying enzymes in cancer relevant pathways with specific focus on PI3K, MAPK, TGFβ, WNT, and YAP pathways. Moreover, we discuss the capacity of targeting DUBs as a novel anticancer therapeutic strategy. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Ubiquitin Utilizes an Acidic Surface Patch to Alter Chromatin Structure

    PubMed Central

    Debelouchina, Galia T.; Gerecht, Karola; Muir, Tom W.

    2016-01-01

    Ubiquitylation of histone H2B, associated with gene activation, leads to chromatin decompaction through an unknown mechanism. We used a hydrogen-deuterium exchange strategy coupled with nuclear magnetic resonance spectroscopy to map the ubiquitin surface responsible for its structural effects on chromatin. Our studies revealed that a previously uncharacterized acidic patch on ubiquitin comprising residues Glu16 and Glu18 is essential for decompaction. These residues mediate promiscuous electrostatic interactions with the basic histone proteins, potentially positioning the ubiquitin moiety as a dynamic “wedge” that prevents the intimate association of neighboring nucleosomes. Using two independent cross-linking strategies and an oligomerization assay, we also showed that ubiquitin-ubiquitin contacts occur in the chromatin environment and are important for the solubilization of the chromatin polymers. Our work highlights a novel, chromatin-related aspect of the “ubiquitin code”, and sheds light on how the information rich ubiquitin modification can orchestrate different biochemical outcomes using different surface features. PMID:27870837

  18. Cloning of ubiquitin-activating enzyme and ubiquitin-conjugating enzyme genes from Gracilaria lemaneiformis and their activity under heat shock.

    PubMed

    Li, Guang-Qi; Zang, Xiao-Nan; Zhang, Xue-Cheng; Lu, Ning; Ding, Yan; Gong, Le; Chen, Wen-Chao

    2014-03-15

    To study the response of Gracilaria lemaneiformis to heat stress, two key enzymes - ubiquitin-activating enzyme (E1) and ubiquitin-conjugating enzyme (E2) - of the Ubiquitin/26S proteasome pathway (UPP) were studied in three strains of G. lemaneiformis-wild type, heat-tolerant cultivar 981 and heat-tolerant cultivar 07-2. The full length DNA sequence of E1 contained only one exon. The open reading frame (ORF) sequence was 981 nucleotides encoding 326 amino acids, which contained conserved ATP binding sites (LYDRQIRLWGLE, ELAKNVLLAGV, LKEMN, VVCAI) and the ubiquitin-activating domains (VVCAI…LMTEAC, VFLDLGDEYSYQ, AIVGGMWGRE). The gene sequence of E2 contained four exons and three introns. The sum of the four exons gave an open reading frame sequence of 444 nucleotides encoding 147 amino acids, which contained a conserved ubiquitin-activating domain (GSICLDIL), ubiquitin-conjugating domains (RIYHPNIN, KVLLSICSLL, DDPLV) and ubiquitin-ligase (E3) recognition sites (KRI, YPF, WSP). Real-time-PCR analysis of transcription levels of E1 and E2 under heat shock conditions (28°C and 32°C) showed that in wild type, transcriptions of E1 and E2 were up-regulated at 28°C, while at 32°C, transcriptions of the two enzymes were below the normal level. In cultivar 981 and cultivar 07-2 of G. lemaneiformis, the transcription levels of the two enzymes were up-regulated at 32°C, and transcription level of cultivar 07-2 was even higher than that of cultivar 981. These results suggest that the UPP plays an important role in high temperature resistance of G. lemaneiformis and the bioactivity of UPP is directly related to the heat-resistant ability of G. lemaneiformis. Copyright © 2013 Elsevier B.V. All rights reserved.

  19. A New Scheme to Characterize and Identify Protein Ubiquitination Sites.

    PubMed

    Nguyen, Van-Nui; Huang, Kai-Yao; Huang, Chien-Hsun; Lai, K Robert; Lee, Tzong-Yi

    2017-01-01

    Protein ubiquitination, involving the conjugation of ubiquitin on lysine residue, serves as an important modulator of many cellular functions in eukaryotes. Recent advancements in proteomic technology have stimulated increasing interest in identifying ubiquitination sites. However, most computational tools for predicting ubiquitination sites are focused on small-scale data. With an increasing number of experimentally verified ubiquitination sites, we were motivated to design a predictive model for identifying lysine ubiquitination sites for large-scale proteome dataset. This work assessed not only single features, such as amino acid composition (AAC), amino acid pair composition (AAPC) and evolutionary information, but also the effectiveness of incorporating two or more features into a hybrid approach to model construction. The support vector machine (SVM) was applied to generate the prediction models for ubiquitination site identification. Evaluation by five-fold cross-validation showed that the SVM models learned from the combination of hybrid features delivered a better prediction performance. Additionally, a motif discovery tool, MDDLogo, was adopted to characterize the potential substrate motifs of ubiquitination sites. The SVM models integrating the MDDLogo-identified substrate motifs could yield an average accuracy of 68.70 percent. Furthermore, the independent testing result showed that the MDDLogo-clustered SVM models could provide a promising accuracy (78.50 percent) and perform better than other prediction tools. Two cases have demonstrated the effective prediction of ubiquitination sites with corresponding substrate motifs.

  20. Ubiquitin and Proteasomes in Transcription

    PubMed Central

    Geng, Fuqiang; Wenzel, Sabine; Tansey, William P.

    2013-01-01

    Regulation of gene transcription is vitally important for the maintenance of normal cellular homeostasis. Failure to correctly regulate gene expression, or to deal with problems that arise during the transcription process, can lead to cellular catastrophe and disease. One of the ways cells cope with the challenges of transcription is by making extensive use of the proteolytic and nonproteolytic activities of the ubiquitin-proteasome system (UPS). Here, we review recent evidence showing deep mechanistic connections between the transcription and ubiquitin-proteasome systems. Our goal is to leave the reader with a sense that just about every step in transcription—from transcription initiation through to export of mRNA from the nucleus—is influenced by the UPS and that all major arms of the system—from the first step in ubiquitin (Ub) conjugation through to the proteasome—are recruited into transcriptional processes to provide regulation, directionality, and deconstructive power. PMID:22404630

  1. SU-F-T-609: Impact of Dosimetric Variation for Prescription Dose Using Analytical Anisotropic Algorithm (AAA) in Lung SBRT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kawai, D; Takahashi, R; Kamima, T

    Purpose: Actual irradiated prescription dose to patients cannot be verified. Thus, independent dose verification and second treatment planning system are used as the secondary check. AAA dose calculation engine has contributed to lung SBRT. We conducted a multi-institutional study to assess variation of prescription dose for lung SBRT when using AAA in reference to using Acuros XB and Clarkson algorithm. Methods: Six institutes in Japan participated in this study. All SBRT treatments were planed using AAA in Eclipse and Adaptive Convolve (AC) in Pinnacle3. All of the institutes used a same independent dose verification software program (Simple MU Analysis: SMU,more » Triangle Product, Ishikawa, Japan), which implemented a Clarkson-based dose calculation algorithm using CT image dataset. A retrospective analysis for lung SBRT plans (73 patients) was performed to compute the confidence limit (CL, Average±2SD) in dose between the AAA and the SMU. In one of the institutes, a additional analysis was conducted to evaluate the variations between the AAA and the Acuros XB (AXB). Results: The CL for SMU shows larger systematic and random errors of 8.7±9.9 % for AAA than the errors of 5.7±4.2 % for AC. The variations of AAA correlated with the mean CT values in the voxels of PTV (a correlation coefficient : −0.7) . The comparison of AXB vs. AAA shows smaller systematic and random errors of −0.7±1.7%. The correlation between dose variations for AXB and the mean CT values in PTV was weak (0.4). However, there were several plans with more than 2% deviation of AAPM TG114 (Maximum: −3.3 %). Conclusion: In comparison for AC, prescription dose calculated by AAA may be more variable in lung SBRT patient. Even AXB comparison shows unexpected variation. Care should be taken for the use of AAA in lung SBRT. This research is partially supported by Japan Agency for Medical Research and Development (AMED)« less

  2. Ubiquitin-mediated modulation of the cytoplasmic viral RNA sensor RIG-I.

    PubMed

    Oshiumi, Hiroyuki; Matsumoto, Misako; Seya, Tsukasa

    2012-01-01

    RIG-I-like receptors, including RIG-I, MDA5 and LGP2, recognize cytoplasmic viral RNA. The RIG-I protein consists of N-terminal CARDs, central RNA helicase and C-terminal domains. RIG-I activation is regulated by ubiquitination. Three ubiquitin ligases target the RIG-I protein. TRIM25 and Riplet ubiquitin ligases are positive regulators of RIG-I and deliver the K63-linked polyubiquitin moiety to RIG-I CARDs and the C-terminal domain. RNF125, another ubiquitin ligase, is a negative regulator of RIG-I and mediates K48-linked polyubiquitination of RIG-I, leading to the degradation of the RIG-I protein by proteasomes. The K63-linked polyubiquitin chains of RIG-I are removed by a deubiquitin enzyme, CYLD. Thus, CYLD is a negative regulator of RIG-I. Furthermore, TRIM25 itself is regulated by ubiquitination. HOIP and HOIL proteins are ubiquitin ligases and are also known as linear ubiquitin assembly complexes (LUBACs). The TRIM25 protein is ubiquitinated by LUBAC and then degraded by proteasomes. The splice variant of RIG-I encodes a protein that lacks the first CARD of RIG-I, and the variant RIG-I protein is not ubiquitinated by TRIM25. Therefore, ubiquitin is the key regulator of the cytoplasmic viral RNA sensor RIG-I.

  3. Increased galectin-3 levels are associated with abdominal aortic aneurysm progression and inhibition of galectin-3 decreases elastase-induced AAA development.

    PubMed

    Fernandez-García, Carlos-Ernesto; Tarin, Carlos; Roldan-Montero, Raquel; Martinez-Lopez, Diego; Torres-Fonseca, Monica; Lindhot, Jes S; Vega de Ceniga, Melina; Egido, Jesus; Lopez-Andres, Natalia; Blanco-Colio, Luis-Miguel; Martín-Ventura, Jose-Luis

    2017-11-15

    Abdominal aortic aneurysm (AAA) evolution is unpredictable and no specific treatment exists for AAA, except surgery to prevent aortic rupture. Galectin-3 has been previously associated with CVD, but its potential role in AAA has not been addressed. Galectin-3 levels were increased in the plasma of AAA patients ( n =225) compared with the control group ( n =100). In addition, galectin-3 concentrations were associated with the need for surgical repair, independently of potential confounding factors. Galectin-3 mRNA and protein expression were increased in human AAA samples compared with healthy aortas. Experimental AAA in mice was induced via aortic elastase perfusion. Mice were treated intravenously with the galectin-3 inhibitor modified citrus pectin (MCP, 10 mg/kg, every other day) or saline. Similar to humans, galectin-3 serum and aortic mRNA levels were also increased in elastase-induced AAA mice compared with control mice. Mice treated with MCP showed decreased aortic dilation, as well as elastin degradation, vascular smooth muscle cell (VSMC) loss, and macrophage content at day 14 postelastase perfusion compared with control mice. The underlying mechanism(s) of the protective effect of MCP was associated with a decrease in galectin-3 and cytokine (mainly CCL5) mRNA and protein expression. Interestingly, galectin-3 induced CCL5 expression by a mechanism involving STAT3 activation in VSMC. Accordingly, MCP treatment decreased STAT3 phosphorylation in elastase-induced AAA. In conclusion, increased galectin-3 levels are associated with AAA progression, while galectin-3 inhibition decreased experimental AAA development. Our data suggest the potential role of galectin-3 as a therapeutic target in AAA. © 2017 The Author(s). Published by Portland Press Limited on behalf of the Biochemical Society.

  4. Prevalence of previously undiagnosed abdominal aortic aneurysms in the area of Como: the ComoCuore "looking for AAA" ultrasonography screening.

    PubMed

    Corrado, Giovanni; Durante, Alessandro; Genchi, Vincenzo; Trabattoni, Loris; Beretta, Sandro; Rovelli, Enza; Foglia-Manzillo, Giovanni; Ferrari, Giovanni

    2016-08-01

    The prognosis for abdominal aortic aneurysm (AAA) rupture is poor. Long-term follow-up of population-based randomized trials has demonstrated that ultrasound (US) screening for abdominal aortic aneurysms (AAAs) measuring 3 cm or greater decreases AAA-related mortality rates and is cost-effective. We though to prospectively perform during a 26-month period a limited US examination of the infrarenal aorta in volunteers of both gender aged 60-85 years without history of AAA living in the area of Como, Italy. From September 2010 to November 2013 ComoCuore, a no-profit nongovernmental association, enrolled 1555 people (aged 68.8 ± 6.8 years; 48.6 % males). Clinical data and a US imaging of the aorta were collected for each participant. AAA was found in 22 volunteers (1.4 %) mainly males (2.5 % in males vs. 0.4 % in females p = 0.005). Overall, the prevalence of cardiovascular risk factors was higher in patients with vs. without AAA (mean 2.9 ± 3.0 vs. 1.4 ± 1.0 respectively, p < 0.0001). Independent predictors of AAA on multivariate analysis were age (OR 1.14, 1.06-1.22; p < 0.0001), male gender (OR 8.23, 1.79-37.91; p = 0.007), and both current (OR 4.98, 1.57-15.79; p = 0.007) and previous smoking (OR 2.76, 1.12-8.94; p = 0.03). Our study confirms the feasibility of one time US screening for AAA in a large cohort of asymptomatic people. Independent predictors of AAA were male sex, older age and a history of smoking. Accordingly to recent data the prevalence of AAA seems to be declining, maybe due to a reduction of smoking in Italy.

  5. The elusive structural role of ubiquitinated histones.

    PubMed

    Moore, Susan C; Jason, Laure; Ausió, Juan

    2002-01-01

    It is increasingly apparent that histone posttranslational modifications are important in chromatin structure and dynamics. However, histone ubiquitination has received little attention. Histones H1, H3, H2A, and H2B can be ubiquitinated in vivo, but the most prevalent are uH2A and uH2B. The size of this modification suggests some sort of structural impact. Physiological observations suggest that ubiquitinated histones may have multiple functions and structural effects. Ubiquitinated histones have been correlated with transcriptionally active DNA, implying that it may prevent chromatin folding or help maintain an open conformation. Also, in some organisms during spermiogenesis, a process involving extensive chromatin remodeling, uH2A levels increase just prior to histone replacement by protamines. Determination of chromatin's structural changes resulting from histone ubiquitination is therefore important. Recent work using reconstituted nucleosomes and chromatin fibers containing uH2A indicate that in the absence of linker histones, ubiquitination has little structural impact. DNase I digests and analytical ultracentrifugation of reconstituted ubiquitinated nucleosomes show no structural differences. Solubility assays using reconstituted chromatin fibers in the presence of divalent ions demonstrate that uH2A fibers are slightly more prone to aggregation than controls, and analytical ultracentrifugation results with different MgCl2 and NaCl concentrations determined that chromatin folding is not affected by this modification. Additional work to assess possible synergistic affects with histone acetylation also precludes any structural implications. Protamine displacement experiments concluded that the presence of uH2A does not significantly affect the ability of the protamines to displace histones. In addition, uH2A does not interfere with histone H1 binding to the nucleosome. While work with uH2B remains insufficient to come to any definitive conclusions about its

  6. The dynamic stator stalk of rotary ATPases

    PubMed Central

    Stewart, Alastair G.; Lee, Lawrence K.; Donohoe, Mhairi; Chaston, Jessica J.; Stock, Daniela

    2012-01-01

    Rotary ATPases couple ATP hydrolysis/synthesis with proton translocation across biological membranes and so are central components of the biological energy conversion machinery. Their peripheral stalks are essential components that counteract torque generated by rotation of the central stalk during ATP synthesis or hydrolysis. Here we present a 2.25-Å resolution crystal structure of the peripheral stalk from Thermus thermophilus A-type ATPase/synthase. We identify bending and twisting motions inherent within the structure that accommodate and complement a radial wobbling of the ATPase headgroup as it progresses through its catalytic cycles, while still retaining azimuthal stiffness necessary to counteract rotation of the central stalk. The conformational freedom of the peripheral stalk is dictated by its unusual right-handed coiled-coil architecture, which is in principle conserved across all rotary ATPases. In context of the intact enzyme, the dynamics of the peripheral stalks provides a potential mechanism for cooperativity between distant parts of rotary ATPases. PMID:22353718

  7. Ubiquitylation of p62/sequestosome1 activates its autophagy receptor function and controls selective autophagy upon ubiquitin stress

    PubMed Central

    Peng, Hong; Yang, Jiao; Li, Guangyi; You, Qing; Han, Wen; Li, Tianrang; Gao, Daming; Xie, Xiaoduo; Lee, Byung-Hoon; Du, Juan; Hou, Jian; Zhang, Tao; Rao, Hai; Huang, Ying; Li, Qinrun; Zeng, Rong; Hui, Lijian; Wang, Hongyan; Xia, Qin; Zhang, Xuemin; He, Yongning; Komatsu, Masaaki; Dikic, Ivan; Finley, Daniel; Hu, Ronggui

    2017-01-01

    Alterations in cellular ubiquitin (Ub) homeostasis, known as Ub stress, feature and affect cellular responses in multiple conditions, yet the underlying mechanisms are incompletely understood. Here we report that autophagy receptor p62/sequestosome-1 interacts with E2 Ub conjugating enzymes, UBE2D2 and UBE2D3. Endogenous p62 undergoes E2-dependent ubiquitylation during upregulation of Ub homeostasis, a condition termed as Ub+ stress, that is intrinsic to Ub overexpression, heat shock or prolonged proteasomal inhibition by bortezomib, a chemotherapeutic drug. Ubiquitylation of p62 disrupts dimerization of the UBA domain of p62, liberating its ability to recognize polyubiquitylated cargoes for selective autophagy. We further demonstrate that this mechanism might be critical for autophagy activation upon Ub+ stress conditions. Delineation of the mechanism and regulatory roles of p62 in sensing Ub stress and controlling selective autophagy could help to understand and modulate cellular responses to a variety of endogenous and environmental challenges, potentially opening a new avenue for the development of therapeutic strategies against autophagy-related maladies. PMID:28322253

  8. The yeast Alix homolog, Bro1, functions as a ubiquitin receptor for protein sorting into multivesicular endosomes

    PubMed Central

    Pashkova, Natasha; Gakhar, Lokesh; Winistorfer, Stanley; Sunshine, Anna B.; Rich, Matthew; Dunham, Maitreya J.; Yu, Liping; Piper, Robert

    2013-01-01

    SUMMARY Sorting of ubiquitinated membrane proteins into lumenal vesicles of multivesicular bodies is mediated by the ESCRT apparatus and accessory proteins such as Bro1, which recruits the deubiquitinating enzyme Doa4 to remove ubiquitin from cargo. Here we propose that Bro1 works as a receptor for the selective sorting of ubiquitinated cargos. We found synthetic genetic interactions between BRO1 and ESCRT-0, suggesting Bro1 functions similarly to ESCRT-0. Multiple structural approaches demonstrated that Bro1 binds ubiquitin via the N-terminal trihelical arm of its middle V domain. Mutants of Bro1 that lack the ability to bind Ub were dramatically impaired in their ability to sort Ub-cargo membrane proteins, but only when combined with hypomorphic alleles of ESCRT-0. These data suggest that Bro1 and other Bro1 family members function in parallel with ESCRT-0 to recognize and sort Ub-cargos. PMID:23726974

  9. Purification and Properties of an ATPase from Sulfolobus solfataricus

    NASA Technical Reports Server (NTRS)

    Hochstein, Lawrence I.; Stan-Lotter, Helga

    1992-01-01

    A sulfite-activated ATPase isolated from Sulfolobus solfataricus had a relative molecular mass of 370,000. It was composed of three subunits whose relative molecular masses were 63,000, 48,000, and 24,000. The enzyme was inhibited by the vacuolar ATPase inhibitors nitrate and N-ethylmaleimide; 4-chloro-7-nitrobenzo-furazan (NBD-Cl) was also inhibitory. N-Ethylmaleimide was predominately bound to the largest subunit while NBD-CL was bound to both subunits. ATPase activity was inhibited by low concentrations of p-chloromercuri-phenyl sulfonate and the inhibition was reversed by cysteine which suggested that thiol groups were essential for activity. While the ATPase from S. solfataricus shared several properties with the ATPase from S. acidocaldarius there were significant differences. The latter enzyme was activated by sulfate and chloride and was unaffected by N-ethylmaleimide, whereas the S. solfataricus ATPase was inhibited by these anions as well as N-ethyimaleimide. These differences as well as differences that occur in other vacuolar-like ATPases isolated from the methanogenic and the extremely halophilic bacteria suggest the existence of several types of archaeal ATPases, none of which have been demonstrated to synthesize ATP.

  10. The Diverse AAA+ Machines that Repair Inhibited Rubisco Active Sites

    PubMed Central

    Mueller-Cajar, Oliver

    2017-01-01

    Gaseous carbon dioxide enters the biosphere almost exclusively via the active site of the enzyme ribulose 1,5-bisphosphate carboxylase/oxygenase (Rubisco). This highly conserved catalyst has an almost universal propensity to non-productively interact with its substrate ribulose 1,5-bisphosphate, leading to the formation of dead-end inhibited complexes. In diverse autotrophic organisms this tendency has been counteracted by the recruitment of dedicated AAA+ (ATPases associated with various cellular activities) proteins that all use the energy of ATP hydrolysis to remodel inhibited Rubisco active sites leading to release of the inhibitor. Three evolutionarily distinct classes of these Rubisco activases (Rcas) have been discovered so far. Green and red-type Rca are mostly found in photosynthetic eukaryotes of the green and red plastid lineage respectively, whereas CbbQO is associated with chemoautotrophic bacteria. Ongoing mechanistic studies are elucidating how the various motors are utilizing both similar and contrasting strategies to ultimately perform their common function of cracking the inhibited Rubisco active site. The best studied mechanism utilized by red-type Rca appears to involve transient threading of the Rubisco large subunit C-terminal peptide, reminiscent of the action performed by Clp proteases. As well as providing a fascinating example of convergent molecular evolution, Rca proteins can be considered promising crop-improvement targets. Approaches aiming to replace Rubisco in plants with improved enzymes will need to ensure the presence of a compatible Rca protein. The thermolability of the Rca protein found in crop plants provides an opportunity to fortify photosynthesis against high temperature stress. Photosynthesis also appears to be limited by Rca when light conditions are fluctuating. Synthetic biology strategies aiming to enhance the autotrophic CO2 fixation machinery will need to take into consideration the requirement for Rubisco activases

  11. Ubiquitin B in Cervical Cancer: Critical for the Maintenance of Cancer Stem-Like Cell Characters

    PubMed Central

    Wang, Yingying; Ji, Teng; Sun, Shujuan; Mo, Qingqing; Chen, Pingbo; Fang, Yong; Liu, Jia; Wang, Beibei; Zhou, Jianfeng; Ma, Ding; Wu, Peng

    2013-01-01

    Cervical cancer cells exhibit an increased requirement for ubiquitin-dependent protein degradation associated with an elevated metabolic turnover rate. Ubiquitin, which is a small, highly conserved protein expressed in all eukaryotic cells, can be covalently linked to certain target proteins to mark them for degradation by the ubiquitin-proteasome system. Previous studies highlight the essential role of Ubiquitin B (UbB) and UbB-dependent proteasomal protein degradation in histone deacetylase inhibitor (HDACi) -induced tumor selectivity. We hypothesized that UbB plays a critical role in the function of cervical cancer stem cells. We measured endogenous UbB levels in mammospheres in vitro by real-time PCR and Western blotting. The function of UbB in cancer stem-like cells was assessed after knockdown of UbB expression in prolonged Trichostatin A-selected HeLa cells (HeLa/TSA) by measuring in vitro cell proliferation, cell apoptosis, invasion, and chemotherapy resistance as well as by measuring in vivo growth in an orthotopic model of cervical cancer. We also assessed the cancer stem cell frequency, tumorsphere formation, and in vivo growth of human cervical cancer xenografts after UbB silencing. We found that HeLa/TSA were resistant to chemotherapy, highly expressed the UbB gene and the stem cell markers Sox2, Oct4 and Nanog. These cells also displayed induced differentiation abilities, including enhanced migration/invasion/malignancy capabilities in vitro and in vivo. Furthermore, an elevated expression of UbB was shown in the tumor samples of chemotherapy patients. Silencing of UbB inhibited tumorsphere formation, lowered the expression of stem cell markers and decreased cervical xenograft growth. Our results demonstrate that UbB was significantly increased in prolonged Trichostatin A-selected HeLa cells and it played a key role in the maintenance of cervical cancer stem-like cells. PMID:24367661

  12. Ubiquitin-dependent Regulation of Phospho-AKT Dynamics by the Ubiquitin E3 Ligase, NEDD4-1, in the Insulin-like Growth Factor-1 Response*

    PubMed Central

    Fan, Chuan-Dong; Lum, Michelle A.; Xu, Chao; Black, Jennifer D.; Wang, Xinjiang

    2013-01-01

    AKT is a critical effector kinase downstream of the PI3K pathway that regulates a plethora of cellular processes including cell growth, death, differentiation, and migration. Mechanisms underlying activated phospho-AKT (pAKT) translocation to its action sites remain unclear. Here we show that NEDD4-1 is a novel E3 ligase that specifically regulates ubiquitin-dependent trafficking of pAKT in insulin-like growth factor (IGF)-1 signaling. NEDD4-1 physically interacts with AKT and promotes HECT domain-dependent ubiquitination of exogenous and endogenous AKT. NEDD4-1 catalyzes K63-type polyubiquitin chain formation on AKT in vitro. Plasma membrane binding is the key step for AKT ubiquitination by NEDD4-1 in vivo. Ubiquitinated pAKT translocates to perinuclear regions, where it is released into the cytoplasm, imported into the nucleus, or coupled with proteasomal degradation. IGF-1 signaling specifically stimulates NEDD4-1-mediated ubiquitination of pAKT, without altering total AKT ubiquitination. A cancer-derived plasma membrane-philic mutant AKT(E17K) is more effectively ubiquitinated by NEDD4-1 and more efficiently trafficked into the nucleus compared with wild type AKT. This study reveals a novel mechanism by which a specific E3 ligase is required for ubiquitin-dependent control of pAKT dynamics in a ligand-specific manner. PMID:23195959

  13. Lysine ubiquitination and acetylation of human cardiac 20S proteasomes.

    PubMed

    Zong, Nobel; Ping, Peipei; Lau, Edward; Choi, Howard Jh; Ng, Dominic Cm; Meyer, David; Fang, Caiyun; Li, Haomin; Wang, Ding; Zelaya, Ivette M; Yates, John R; Lam, Maggie Py

    2014-08-01

    Altered proteasome functions are associated with multiple cardiomyopathies. While the proteasome targets polyubiquitinated proteins for destruction, it itself is modifiable by ubiquitination. We aim to identify the exact ubiquitination sites on cardiac proteasomes and examine whether they are also subject to acetylations. Assembled cardiac 20S proteasome complexes were purified from five human hearts with ischemic cardiomyopathy, then analyzed by high-resolution MS to identify ubiquitination and acetylation sites. We developed a library search strategy that may be used to complement database search in identifying PTM in different samples. We identified 63 ubiquitinated lysines from intact human cardiac 20S proteasomes. In parallel, 65 acetylated residues were also discovered, 39 of which shared with ubiquitination sites. This is the most comprehensive characterization of cardiac proteasome ubiquitination to date. There are significant overlaps between the discovered ubiquitination and acetylation sites, permitting potential crosstalk in regulating proteasome functions. The information presented here will aid future therapeutic strategies aimed at regulating the functions of cardiac proteasomes. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. The two faces of hydrogen-bond strength on triple AAA-DDD arrays.

    PubMed

    Lopez, Alfredo Henrique Duarte; Caramori, Giovanni Finoto; Coimbra, Daniel Fernando; Parreira, Renato Luis Tame; da Silva, Éder Henrique

    2013-12-02

    Systems that are connected through multiple hydrogen bonds are the cornerstone of molecular recognition processes in biology, and they are increasingly being employed in supramolecular chemistry, specifically in molecular self-assembly processes. For this reason, the effects of different substituents (NO2, CN, F, Cl, Br, OCH3 and NH2) on the electronic structure, and consequently on the magnitude of hydrogen bonds in triple AAA-DDD arrays (A=acceptor, D=donor) were evaluated in the light of topological [electron localization function (ELF) and quantum theory of atoms in molecules (QTAIM)], energetic [Su-Li energy-decomposition analysis (EDA) and natural bond orbital analysis (NBO)], and geometrical analysis. The results based on local H-bond descriptors (geometries, QTAIM, ELF, and NBO) indicate that substitutions with electron-withdrawing groups on the AAA module tend to strengthen, whereas electron-donating substituents tend to weaken the covalent character of the AAA-DDD intermolecular H-bonds, and also indicate that the magnitude of the effect is dependent on the position of substitution. In contrast, Su-Li EDA results show an opposite behavior when compared to local H-bond descriptors, indicating that electron-donating substituents tend to increase the magnitude of H-bonds in AAA-DDD arrays, and thus suggesting that the use of local H-bond descriptors describes the nature of H bonds only partially, not providing enough insight about the strength of such H bonds. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. The Host E3-Ubiquitin Ligase TRIM6 Ubiquitinates the Ebola Virus VP35 Protein and Promotes Virus Replication.

    PubMed

    Bharaj, Preeti; Atkins, Colm; Luthra, Priya; Giraldo, Maria Isabel; Dawes, Brian E; Miorin, Lisa; Johnson, Jeffrey R; Krogan, Nevan J; Basler, Christopher F; Freiberg, Alexander N; Rajsbaum, Ricardo

    2017-09-15

    Ebola virus (EBOV), a member of the Filoviridae family, is a highly pathogenic virus that causes severe hemorrhagic fever in humans and is responsible for epidemics throughout sub-Saharan, central, and West Africa. The EBOV genome encodes VP35, an important viral protein involved in virus replication by acting as an essential cofactor of the viral polymerase as well as a potent antagonist of the host antiviral type I interferon (IFN-I) system. By using mass spectrometry analysis and coimmunoprecipitation assays, we show here that VP35 is ubiquitinated on lysine 309 (K309), a residue located on its IFN antagonist domain. We also found that VP35 interacts with TRIM6, a member of the E3-ubiquitin ligase tripartite motif (TRIM) family. We recently reported that TRIM6 promotes the synthesis of unanchored K48-linked polyubiquitin chains, which are not covalently attached to any protein, to induce efficient antiviral IFN-I-mediated responses. Consistent with this notion, VP35 also associated noncovalently with polyubiquitin chains and inhibited TRIM6-mediated IFN-I induction. Intriguingly, we also found that TRIM6 enhances EBOV polymerase activity in a minigenome assay and TRIM6 knockout cells have reduced replication of infectious EBOV, suggesting that VP35 hijacks TRIM6 to promote EBOV replication through ubiquitination. Our work provides evidence that TRIM6 is an important host cellular factor that promotes EBOV replication, and future studies will focus on whether TRIM6 could be targeted for therapeutic intervention against EBOV infection. IMPORTANCE EBOV belongs to a family of highly pathogenic viruses that cause severe hemorrhagic fever in humans and other mammals with high mortality rates (40 to 90%). Because of its high pathogenicity and lack of licensed antivirals and vaccines, EBOV is listed as a tier 1 select-agent risk group 4 pathogen. An important mechanism for the severity of EBOV infection is its suppression of innate immune responses. The EBOV VP35

  16. The Host E3-Ubiquitin Ligase TRIM6 Ubiquitinates the Ebola Virus VP35 Protein and Promotes Virus Replication

    PubMed Central

    Bharaj, Preeti; Atkins, Colm; Luthra, Priya; Giraldo, Maria Isabel; Dawes, Brian E.; Miorin, Lisa; Johnson, Jeffrey R.; Krogan, Nevan J.; Basler, Christopher F.; Freiberg, Alexander N.

    2017-01-01

    ABSTRACT Ebola virus (EBOV), a member of the Filoviridae family, is a highly pathogenic virus that causes severe hemorrhagic fever in humans and is responsible for epidemics throughout sub-Saharan, central, and West Africa. The EBOV genome encodes VP35, an important viral protein involved in virus replication by acting as an essential cofactor of the viral polymerase as well as a potent antagonist of the host antiviral type I interferon (IFN-I) system. By using mass spectrometry analysis and coimmunoprecipitation assays, we show here that VP35 is ubiquitinated on lysine 309 (K309), a residue located on its IFN antagonist domain. We also found that VP35 interacts with TRIM6, a member of the E3-ubiquitin ligase tripartite motif (TRIM) family. We recently reported that TRIM6 promotes the synthesis of unanchored K48-linked polyubiquitin chains, which are not covalently attached to any protein, to induce efficient antiviral IFN-I-mediated responses. Consistent with this notion, VP35 also associated noncovalently with polyubiquitin chains and inhibited TRIM6-mediated IFN-I induction. Intriguingly, we also found that TRIM6 enhances EBOV polymerase activity in a minigenome assay and TRIM6 knockout cells have reduced replication of infectious EBOV, suggesting that VP35 hijacks TRIM6 to promote EBOV replication through ubiquitination. Our work provides evidence that TRIM6 is an important host cellular factor that promotes EBOV replication, and future studies will focus on whether TRIM6 could be targeted for therapeutic intervention against EBOV infection. IMPORTANCE EBOV belongs to a family of highly pathogenic viruses that cause severe hemorrhagic fever in humans and other mammals with high mortality rates (40 to 90%). Because of its high pathogenicity and lack of licensed antivirals and vaccines, EBOV is listed as a tier 1 select-agent risk group 4 pathogen. An important mechanism for the severity of EBOV infection is its suppression of innate immune responses. The EBOV VP

  17. Effects of doping and bias voltage on the screening in AAA-stacked trilayer graphene

    NASA Astrophysics Data System (ADS)

    Mohammadi, Yawar; Moradian, Rostam; Shirzadi Tabar, Farzad

    2014-09-01

    We calculate the static polarization of AAA-stacked trilayer graphene (TLG) and study its screening properties within the random phase approximation (RPA) in all undoped, doped and biased regimes. We find that the static polarization of undoped AAA-stacked TLG is a combination of the doped and undoped single-layer graphene static polarization. This leads to an enhancement of the dielectric background constant along a Thomas-Fermi screening with the Thomas-Fermi wave vector which is independent of carrier concentrations and a 1/r3 power law decay for the long-distance behavior of the screened Coulomb potential. We show that effects of a bias voltage can be taken into account by a renormalization of the interlayer hopping energy to a new bias-voltage-dependent value, indicating screening properties of AAA-stacked TLG can be tuned electrically. We also find that screening properties of doped AAA-stacked TLG, when μ exceeds √{2}γ, are similar to that of doped SLG only depending on doping. While for μ<√{2}γ, its screening properties are combination of SLG and AA-stacked bilayer graphene screening properties and they are determined by doping and the interlayer hopping energy.

  18. Mechanisms of Ubiquitin-Nucleosome Recognition and Regulation of 53BP1 Chromatin Recruitment by RNF168/169 and RAD18.

    PubMed

    Hu, Qi; Botuyan, Maria Victoria; Cui, Gaofeng; Zhao, Debiao; Mer, Georges

    2017-05-18

    The protein 53BP1 plays a central regulatory role in DNA double-strand break repair. 53BP1 relocates to chromatin by recognizing RNF168-mediated mono-ubiquitylation of histone H2A Lys15 in the nucleosome core particle dimethylated at histone H4 Lys20 (NCP-ubme). 53BP1 relocation is terminated by ubiquitin ligases RNF169 and RAD18 via unknown mechanisms. Using nuclear magnetic resonance (NMR) spectroscopy and biochemistry, we show that RNF169 bridges ubiquitin and histone surfaces, stabilizing a pre-existing ubiquitin orientation in NCP-ubme to form a high-affinity complex. This conformational selection mechanism contrasts with the low-affinity binding mode of 53BP1, and it ensures 53BP1 displacement by RNF169 from NCP-ubme. We also show that RAD18 binds tightly to NCP-ubme through a ubiquitin-binding domain that contacts ubiquitin and nucleosome surfaces accessed by 53BP1. Our work uncovers diverse ubiquitin recognition mechanisms in the nucleosome, explaining how RNF168, RNF169, and RAD18 regulate 53BP1 chromatin recruitment and how specificity can be achieved in the recognition of a ubiquitin-modified substrate. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. The Ubiquitin Ligase RNF125 Targets Innate Immune Adaptor Protein TRIM14 for Ubiquitination and Degradation.

    PubMed

    Jia, Xue; Zhou, Hongli; Wu, Chao; Wu, Qiankun; Ma, Shichao; Wei, Congwen; Cao, Ye; Song, Jingdong; Zhong, Hui; Zhou, Zhuo; Wang, Jianwei

    2017-06-15

    Tripartite motif-containing 14 (TRIM14) is a mitochondrial adaptor that facilitates innate immune signaling. Upon virus infection, the expression of TRIM14 is significantly induced, which stimulates the production of type-I IFNs and proinflammatory cytokines. As excessive immune responses lead to harmful consequences, TRIM14-mediated signaling needs to be tightly balanced. In this study, we identify really interesting new gene-type zinc finger protein 125 (RNF125) as a negative regulator of TRIM14 in the innate antiviral immune response. Overexpression of RNF125 inhibits TRIM14-mediated antiviral response, whereas knockdown of RNF125 has the opposite effect. RNF125 interacts with TRIM14 and acts as an E3 ubiquitin ligase that catalyzes TRIM14 ubiquitination. RNF125 promotes K48-linked polyubiquitination of TRIM14 and mediates its degradation via the ubiquitin-proteasome pathway. Consequently, wild-type mouse embryonic fibroblasts show significantly reduced TRIM14 protein levels in late time points of viral infection, whereas TRIM14 protein is retained in RNF125-deficient mouse embryonic fibroblasts. Collectively, our data suggest that RNF125 plays a new role in innate immune response by regulating TRIM14 ubiquitination and degradation. Copyright © 2017 by The American Association of Immunologists, Inc.

  20. Genome-wide screen identifies a novel p97/CDC-48-dependent pathway regulating ER-stress-induced gene transcription.

    PubMed

    Marza, Esther; Taouji, Saïd; Barroso, Kim; Raymond, Anne-Aurélie; Guignard, Léo; Bonneu, Marc; Pallares-Lupon, Néstor; Dupuy, Jean-William; Fernandez-Zapico, Martin E; Rosenbaum, Jean; Palladino, Francesca; Dupuy, Denis; Chevet, Eric

    2015-03-01

    The accumulation of misfolded proteins in the endoplasmic reticulum (ER) activates the Unfolded Protein Response (UPR(ER)) to restore ER homeostasis. The AAA(+) ATPase p97/CDC-48 plays key roles in ER stress by promoting both ER protein degradation and transcription of UPR(ER) genes. Although the mechanisms associated with protein degradation are now well established, the molecular events involved in the regulation of gene transcription by p97/CDC-48 remain unclear. Using a reporter-based genome-wide RNAi screen in combination with quantitative proteomic analysis in Caenorhabditis elegans, we have identified RUVB-2, a AAA(+) ATPase, as a novel repressor of a subset of UPR(ER) genes. We show that degradation of RUVB-2 by CDC-48 enhances expression of ER stress response genes through an XBP1-dependent mechanism. The functional interplay between CDC-48 and RUVB-2 in controlling transcription of select UPR(ER) genes appears conserved in human cells. Together, these results describe a novel role for p97/CDC-48, whereby its role in protein degradation is integrated with its role in regulating expression of ER stress response genes. © 2015 The Authors.

  1. Genome-wide screen identifies a novel p97/CDC-48-dependent pathway regulating ER-stress-induced gene transcription

    PubMed Central

    Marza, Esther; Taouji, Saïd; Barroso, Kim; Raymond, Anne-Aurélie; Guignard, Léo; Bonneu, Marc; Pallares-Lupon, Néstor; Dupuy, Jean-William; Fernandez-Zapico, Martin E; Rosenbaum, Jean; Palladino, Francesca; Dupuy, Denis; Chevet, Eric

    2015-01-01

    The accumulation of misfolded proteins in the endoplasmic reticulum (ER) activates the Unfolded Protein Response (UPRER) to restore ER homeostasis. The AAA+ ATPase p97/CDC-48 plays key roles in ER stress by promoting both ER protein degradation and transcription of UPRER genes. Although the mechanisms associated with protein degradation are now well established, the molecular events involved in the regulation of gene transcription by p97/CDC-48 remain unclear. Using a reporter-based genome-wide RNAi screen in combination with quantitative proteomic analysis in Caenorhabditis elegans, we have identified RUVB-2, a AAA+ ATPase, as a novel repressor of a subset of UPRER genes. We show that degradation of RUVB-2 by CDC-48 enhances expression of ER stress response genes through an XBP1-dependent mechanism. The functional interplay between CDC-48 and RUVB-2 in controlling transcription of select UPRER genes appears conserved in human cells. Together, these results describe a novel role for p97/CDC-48, whereby its role in protein degradation is integrated with its role in regulating expression of ER stress response genes. PMID:25652260

  2. The N Termini of a-Subunit Isoforms Are Involved in Signaling between Vacuolar H+-ATPase (V-ATPase) and Cytohesin-2*

    PubMed Central

    Hosokawa, Hiroyuki; Dip, Phat Vinh; Merkulova, Maria; Bakulina, Anastasia; Zhuang, Zhenjie; Khatri, Ashok; Jian, Xiaoying; Keating, Shawn M.; Bueler, Stephanie A.; Rubinstein, John L.; Randazzo, Paul A.; Ausiello, Dennis A.; Grüber, Gerhard; Marshansky, Vladimir

    2013-01-01

    Previously, we reported an acidification-dependent interaction of the endosomal vacuolar H+-ATPase (V-ATPase) with cytohesin-2, a GDP/GTP exchange factor (GEF), suggesting that it functions as a pH-sensing receptor. Here, we have studied the molecular mechanism of signaling between the V-ATPase, cytohesin-2, and Arf GTP-binding proteins. We found that part of the N-terminal cytosolic tail of the V-ATPase a2-subunit (a2N), corresponding to its first 17 amino acids (a2N(1–17)), potently modulates the enzymatic GDP/GTP exchange activity of cytohesin-2. Moreover, this peptide strongly inhibits GEF activity via direct interaction with the Sec7 domain of cytohesin-2. The structure of a2N(1–17) and its amino acids Phe5, Met10, and Gln14 involved in interaction with Sec7 domain were determined by NMR spectroscopy analysis. In silico docking experiments revealed that part of the V-ATPase formed by its a2N(1–17) epitope competes with the switch 2 region of Arf1 and Arf6 for binding to the Sec7 domain of cytohesin-2. The amino acid sequence alignment and GEF activity studies also uncovered the conserved character of signaling between all four (a1–a4) a-subunit isoforms of mammalian V-ATPase and cytohesin-2. Moreover, the conserved character of this phenomenon was also confirmed in experiments showing binding of mammalian cytohesin-2 to the intact yeast V-ATPase holo-complex. Thus, here we have uncovered an evolutionarily conserved function of the V-ATPase as a novel cytohesin-signaling receptor. PMID:23288846

  3. Cdk5 regulates PSD-95 ubiquitination in neurons

    PubMed Central

    Bianchetta, Michael J.; Lam, TuKiet T.; Jones, Stephen N.; Morabito, Maria A.

    2011-01-01

    The kinase Cdk5 and its activator p35 have been implicated in drug addiction, neurodegenerative diseases such as Alzheimer’s, learning and memory, and synapse maturation and plasticity. However the molecular mechanisms by which Cdk5 regulates synaptic plasticity are still unclear. PSD-95 is a major postsynaptic scaffolding protein of glutamatergic synapses that regulates synaptic strength and plasticity. PSD-95 is ubiquitinated by the Ubiquitin E3 Ligase Mdm2, and rapid and transient PSD-95 ubiquitination has been implicated in NMDA receptor-induced AMPA receptor endocytosis. Here we demonstrate that genetic or pharmacological reduction of Cdk5 activity increases the interaction of Mdm2 with PSD-95 and enhances PSD-95 ubiquitination without affecting PSD-95 protein levels in vivo in mice, suggesting a non-proteolytic function of ubiquitinated PSD-95 at synapses. We show that PSD-95 ubiquitination correlates with increased interaction with β-adaptin, a subunit of the clathrin adaptor protein complex AP-2. This interaction is increased by genetic reduction of Cdk5 activity or NMDA receptor stimulation and is dependent on Mdm2. Together these results support a function for Cdk5 in regulating PSD-95 ubiqutination and its interaction with AP-2 and suggest a mechanism by which PSD-95 may regulate NMDA receptor-induced AMPA receptor endocytosis. PMID:21849563

  4. Structure and energetics of pairwise interactions between proteasome subunits RPN2, RPN13, and ubiquitin clarify a substrate recruitment mechanism

    DOE PAGES

    VanderLinden, Ryan T.; Hemmis, Casey W.; Yao, Tingting; ...

    2017-04-25

    This work presents that the 26S proteasome is a large cellular assembly that mediates the selective degradation of proteins in the nucleus and cytosol and is an established target for anticancer therapeutics. Protein substrates are typically targeted to the proteasome through modification with a polyubiquitin chain, which can be recognized by several proteasome-associated ubiquitin receptors. One of these receptors, RPN13/ADRM1, is recruited to the proteasome through direct interaction with the large scaffolding protein RPN2 within the 19S regulatory particle. To better understand the interactions between RPN13, RPN2, and ubiquitin, we used human proteins to map the RPN13-binding epitope to themore » C-terminal 14 residues of RPN2, which, like ubiquitin, binds the N-terminal pleckstrin-like receptor of ubiquitin (PRU) domain of RPN13. We also report the crystal structures of the RPN13 PRU domain in complex with peptides corresponding to the RPN2 C terminus and ubiquitin. Through mutational analysis, we validated the RPN2-binding interface revealed by our structures and quantified binding interactions with surface plasmon resonance and fluorescence polarization. In contrast to a previous report, we find that RPN13 binds ubiquitin with an affinity similar to that of other proteasome-associated ubiquitin receptors and that RPN2, ubiquitin, and the deubiquitylase UCH37 bind to RPN13 with independent energetics. In conclusion, these findings provide a detailed characterization of interactions that are important for proteasome function, indicate ubiquitin affinities that are consistent with the role of RPN13 as a proteasomal ubiquitin receptor, and have major implications for the development of novel anticancer therapeutics.« less

  5. Structure and energetics of pairwise interactions between proteasome subunits RPN2, RPN13, and ubiquitin clarify a substrate recruitment mechanism.

    PubMed

    VanderLinden, Ryan T; Hemmis, Casey W; Yao, Tingting; Robinson, Howard; Hill, Christopher P

    2017-06-09

    The 26S proteasome is a large cellular assembly that mediates the selective degradation of proteins in the nucleus and cytosol and is an established target for anticancer therapeutics. Protein substrates are typically targeted to the proteasome through modification with a polyubiquitin chain, which can be recognized by several proteasome-associated ubiquitin receptors. One of these receptors, RPN13/ADRM1, is recruited to the proteasome through direct interaction with the large scaffolding protein RPN2 within the 19S regulatory particle. To better understand the interactions between RPN13, RPN2, and ubiquitin, we used human proteins to map the RPN13-binding epitope to the C-terminal 14 residues of RPN2, which, like ubiquitin, binds the N-terminal pleckstrin-like receptor of ubiquitin (PRU) domain of RPN13. We also report the crystal structures of the RPN13 PRU domain in complex with peptides corresponding to the RPN2 C terminus and ubiquitin. Through mutational analysis, we validated the RPN2-binding interface revealed by our structures and quantified binding interactions with surface plasmon resonance and fluorescence polarization. In contrast to a previous report, we find that RPN13 binds ubiquitin with an affinity similar to that of other proteasome-associated ubiquitin receptors and that RPN2, ubiquitin, and the deubiquitylase UCH37 bind to RPN13 with independent energetics. These findings provide a detailed characterization of interactions that are important for proteasome function, indicate ubiquitin affinities that are consistent with the role of RPN13 as a proteasomal ubiquitin receptor, and have major implications for the development of novel anticancer therapeutics. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  6. TRIM41-Mediated Ubiquitination of Nucleoprotein Limits Influenza A Virus Infection.

    PubMed

    Patil, Girish; Zhao, Mengmeng; Song, Kun; Hao, Wenzhuo; Bouchereau, Daniel; Wang, Lingyan; Li, Shitao

    2018-06-13

    Influenza A virus (IAV) is a highly transmissible respiratory pathogen and a major cause of morbidity and mortality around the world. Nucleoprotein (NP) is an abundant IAV protein essential for multiple steps of viral life cycle. Our recent proteomic study of the IAV-host interaction network found that the tripartite motif containing 41 (TRIM41), a ubiquitin E3 ligase, interacted with NP. However, the role of TRIM41 in IAV infection is unknown. Here, we report that TRIM41 interacts with NP through its SPRY domain. Furthermore, TRIM41 is constitutively expressed in lung epithelial cells and overexpression of TRIM41 inhibits IAV infection. Conversely, RNA interference (RNAi) and knockout of TRIM41 increase host susceptibility to IAV infection. As a ubiquitin E3 ligase, TRIM41 ubiquitinates NP in vitro and in cells. The TRIM41 mutant lacking E3 ligase activity fails to inhibit IAV infection, suggesting that the E3 ligase activity is indispensable for TRIM41 antiviral function. Mechanistic analysis further revealed that the polyubiquitination leads to NP protein degradation and viral inhibition. Taken together, TRIM41 is a constitutively expressed intrinsic IAV restriction factor that targets NP for ubiquitination and protein degradation. IMPORTANCE Influenza control strategies rely on annual immunization and require frequent updates of the vaccine, which are not always a foolproof process. Furthermore, the current antivirals are also losing effectiveness as new viral strains are often refractory to conventional treatments. Thus, there is an urgent need to find new antiviral mechanisms and develop therapeutic drugs based on these mechanisms. Targeting the virus-host interface is an emerging new strategy because host factors controlling viral replication activity will be ideal candidates and cellular proteins are less likely to mutate under drug-mediated selective pressure. Here, we show that the ubiquitin E3 ligase TRIM41 is an intrinsic host restriction factor to IAV

  7. Tributyltin sensitivity of vacuolar-type Na(+)-transporting ATPase from Enterococcus hirae.

    PubMed

    Chardwiriyapreecha, Soracom; Inoue, Tomohiro; Sugimoto, Naoko; Sekito, Takayuki; Yamato, Ichiro; Murata, Takeshi; Homma, Michio; Kakinuma, Yoshimi

    2009-10-01

    Tributyltin chloride (TBT), an environmental pollutant, is toxic to a variety of eukaryotic and prokaryotic organisms. Some members of F-ATP synthase (F-ATPase)/vacuolar type ATPase (V-ATPase) superfamily have been identified as the molecular target of this compound. TBT inhibited the activities of H(+)-transporting or Na(+)-transporting F-ATPase as well as H(+)-transporting V-ATPase originated from various organisms. However, the sensitivity to TBT of Na(+)-transporting V-ATPase has not been investigated. We examined the effect of TBT on Na(+)-transporting V-ATPase from an eubacterium Enterococus hirae. The ATP hydrolytic activity of E. hirae V-ATPase in purified form as well as in membrane-bound form was little inhibited by less than 10 microM TBT; IC50 for TBT inhibition of purified enzyme was estimated to be about 35 microM. Active sodium transport by E. hirae cells, indicating the in vivo activity of this V-ATPase, was not inhibited by 20 microM TBT. By contrast, IC50 of H(+)-transporting V-ATPase of the vacuolar membrane vesicles from Saccharomyces cerevisiae was about 0.2 microM. E. hirae V-ATPase is thus extremely less sensitive to TBT.

  8. High Performance Liquid Chromatography Resolution of Ubiquitin Pathway Enzymes from Wheat Germ 1

    PubMed Central

    Sullivan, Michael L.; Callis, Judy; Vierstra, Richard D.

    1990-01-01

    The highly conserved protein ubiquitin is involved in several cellular processes in eukaryotes as a result of its covalent ligation to a variety of target proteins. Here, we describe the purification of several enzymatic activities involved in ubiquitin-protein conjugate formation and disassembly from wheat germ (Triticum vulgare) by a combination of ubiquitin affinity chromatography and anion-exchange high performance liquid chromatography. Using this procedure, ubiquitin activating enzyme (E1), several distinct ubiquitin carrier proteins (E2s) with molecular masses of 16, 20, 23, 23.5, and 25 kilodaltons, and a ubiquitin-protein hydrolase (isopeptidase) were isolated. Purified E1 formed a thiol ester linkage with 125I-ubiquitin in an ATP-dependent manner and transferred bound ubiquitin to the various purified E2s. The ubiquitin protein hydrolase fraction was sensitive to hemin, and in an ATP-independent reaction, was capable of removing the ubiquitin moiety from both ubiquitin 125I-lysozyme conjugates (ε-amino or isopeptide linkage) and the ubiquitin 52-amino acid extension protein fusion (α-amino or peptide linkage). Using this procedure, wheat germ represents an inexpensive source from which enzymes involved in the ubiquitin pathway may be isolated. Images Figure 1 Figure 2 Figure 3 Figure 4 PMID:16667769

  9. Ubiquitination in the antiviral immune response.

    PubMed

    Davis, Meredith E; Gack, Michaela U

    2015-05-01

    Ubiquitination has long been known to regulate fundamental cellular processes through the induction of proteasomal degradation of target proteins. More recently, 'atypical' non-degradative types of polyubiquitin chains have been appreciated as important regulatory moieties by modulating the activity or subcellular localization of key signaling proteins. Intriguingly, many of these non-degradative types of ubiquitination regulate the innate sensing pathways initiated by pattern recognition receptors (PRRs), ultimately coordinating an effective antiviral immune response. Here we discuss recent advances in understanding the functional roles of degradative and atypical types of ubiquitination in innate immunity to viral infections, with a specific focus on the signaling pathways triggered by RIG-I-like receptors, Toll-like receptors, and the intracellular viral DNA sensor cGAS. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. Ubiquitination as an efficient molecular strategy employed in salmonella infection

    USDA-ARS?s Scientific Manuscript database

    The ubiquitin modification has various functions in the host innate immune system in response to the bacterial infection. To counteract the host immunity, Salmonella can specifically target ubiquitin pathways by its effector proteins. In this review, we describe the multiple facets of ubiquitin func...

  11. Promoters active in interphase are bookmarked during mitosis by ubiquitination

    PubMed Central

    Arora, Mansi; Zhang, Jie; Heine, George F.; Ozer, Gulcin; Liu, Hui-wen; Huang, Kun; Parvin, Jeffrey D.

    2012-01-01

    We analyzed modification of chromatin by ubiquitination in human cells and whether this mark changes through the cell cycle. HeLa cells were synchronized at different stages and regions of the genome with ubiquitinated chromatin were identified by affinity purification coupled with next-generation sequencing. During interphase, ubiquitin marked the chromatin on the transcribed regions of ∼70% of highly active genes and deposition of this mark was sensitive to transcriptional inhibition. Promoters of nearly half of the active genes were highly ubiquitinated specifically during mitosis. The ubiquitination at the coding regions in interphase but not at promoters during mitosis was enriched for ubH2B and dependent on the presence of RNF20. Ubiquitin labeling of both promoters during mitosis and transcribed regions during interphase, correlated with active histone marks H3K4me3 and H3K36me3 but not a repressive histone modification, H3K27me3. The high level of ubiquitination at the promoter chromatin during mitosis was transient and was removed within 2 h after the cells exited mitosis and entered the next cell cycle. These results reveal that the ubiquitination of promoter chromatin during mitosis is a bookmark identifying active genes during chromosomal condensation in mitosis, and we suggest that this process facilitates transcriptional reactivation post-mitosis. PMID:22941662

  12. The Ubiquitin-Proteasome Pathway and Synaptic Plasticity

    ERIC Educational Resources Information Center

    Hegde, Ashok N.

    2010-01-01

    Proteolysis by the ubiquitin-proteasome pathway (UPP) has emerged as a new molecular mechanism that controls wide-ranging functions in the nervous system, including fine-tuning of synaptic connections during development and synaptic plasticity in the adult organism. In the UPP, attachment of a small protein, ubiquitin, tags the substrates for…

  13. Analysis of Structural Features Contributing to Weak Affinities of Ubiquitin/Protein Interactions.

    PubMed

    Cohen, Ariel; Rosenthal, Eran; Shifman, Julia M

    2017-11-10

    Ubiquitin is a small protein that enables one of the most common post-translational modifications, where the whole ubiquitin molecule is attached to various target proteins, forming mono- or polyubiquitin conjugations. As a prototypical multispecific protein, ubiquitin interacts non-covalently with a variety of proteins in the cell, including ubiquitin-modifying enzymes and ubiquitin receptors that recognize signals from ubiquitin-conjugated substrates. To enable recognition of multiple targets and to support fast dissociation from the ubiquitin modifying enzymes, ubiquitin/protein interactions are characterized with low affinities, frequently in the higher μM and lower mM range. To determine how structure encodes low binding affinity of ubiquitin/protein complexes, we analyzed structures of more than a hundred such complexes compiled in the Ubiquitin Structural Relational Database. We calculated various structure-based features of ubiquitin/protein binding interfaces and compared them to the same features of general protein-protein interactions (PPIs) with various functions and generally higher affinities. Our analysis shows that ubiquitin/protein binding interfaces on average do not differ in size and shape complementarity from interfaces of higher-affinity PPIs. However, they contain fewer favorable hydrogen bonds and more unfavorable hydrophobic/charge interactions. We further analyzed how binding interfaces change upon affinity maturation of ubiquitin toward its target proteins. We demonstrate that while different features are improved in different experiments, the majority of the evolved complexes exhibit better shape complementarity and hydrogen bond pattern compared to wild-type complexes. Our analysis helps to understand how low-affinity PPIs have evolved and how they could be converted into high-affinity PPIs. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Manipulation of ubiquitin/SUMO pathways in human herpesviruses infection.

    PubMed

    Gan, Jin; Qiao, Niu; Strahan, Roxanne; Zhu, Caixia; Liu, Lei; Verma, Subhash C; Wei, Fang; Cai, Qiliang

    2016-11-01

    Post-translational modification of proteins with ubiquitin/small ubiquitin-like modifier (SUMO) molecules triggers multiple signaling pathways that are critical for many aspects of cellular physiology. Given that viruses hijack the biosynthetic and degradative systems of their host, it is not surprising that viruses encode proteins to manipulate the host's cellular machinery for ubiquitin/SUMO modification at multiple levels. Infection with a herpesvirus, among the most ubiquitous human DNA viruses, has been linked to many human diseases, including cancers. The interplay between human herpesviruses and the ubiquitylation/SUMOylation modification system has been extensively investigated in the past decade. In this review, we present an overview of recent advances to address how the ubiquitin/SUMO-modified system alters the latency and lytic replication of herpesvirus and how herpesviruses usurp the ubiquitin/SUMO pathways against the host's intrinsic and innate immune response to favor their pathogenesis. Copyright © 2016 John Wiley & Sons, Ltd.

  15. Viral Ubiquitin Ligase Stimulates Selective Host MicroRNA Expression by Targeting ZEB Transcriptional Repressors

    PubMed Central

    Kim, Ju Youn; Leader, Andrew; Stoller, Michelle L.; Coen, Donald M.; Wilson, Angus C.

    2017-01-01

    Infection with herpes simplex virus-1 (HSV-1) brings numerous changes in cellular gene expression. Levels of most host mRNAs are reduced, limiting synthesis of host proteins, especially those involved in antiviral defenses. The impact of HSV-1 on host microRNAs (miRNAs), an extensive network of short non-coding RNAs that regulate mRNA stability/translation, remains largely unexplored. Here we show that transcription of the miR-183 cluster (miR-183, miR-96, and miR-182) is selectively induced by HSV-1 during productive infection of primary fibroblasts and neurons. ICP0, a viral E3 ubiquitin ligase expressed as an immediate-early protein, is both necessary and sufficient for this induction. Nuclear exclusion of ICP0 or removal of the RING (really interesting new gene) finger domain that is required for E3 ligase activity prevents induction. ICP0 promotes the degradation of numerous host proteins and for the most part, the downstream consequences are unknown. Induction of the miR-183 cluster can be mimicked by depletion of host transcriptional repressors zinc finger E-box binding homeobox 1 (ZEB1)/δ-crystallin enhancer binding factor 1 (δEF1) and zinc finger E-box binding homeobox 2 (ZEB2)/Smad-interacting protein 1 (SIP1), which we establish as new substrates for ICP0-mediated degradation. Thus, HSV-1 selectively stimulates expression of the miR-183 cluster by ICP0-mediated degradation of ZEB transcriptional repressors. PMID:28783105

  16. SU-F-T-600: Influence of Acuros XB and AAA Dose Calculation Algorithms On Plan Quality Metrics and Normal Lung Doses in Lung SBRT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yaparpalvi, R; Mynampati, D; Kuo, H

    Purpose: To study the influence of superposition-beam model (AAA) and determinant-photon transport-solver (Acuros XB) dose calculation algorithms on the treatment plan quality metrics and on normal lung dose in Lung SBRT. Methods: Treatment plans of 10 Lung SBRT patients were randomly selected. Patients were prescribed to a total dose of 50-54Gy in 3–5 fractions (10?5 or 18?3). Doses were optimized accomplished with 6-MV using 2-arcs (VMAT). Doses were calculated using AAA algorithm with heterogeneity correction. For each plan, plan quality metrics in the categories- coverage, homogeneity, conformity and gradient were quantified. Repeat dosimetry for these AAA treatment plans was performedmore » using AXB algorithm with heterogeneity correction for same beam and MU parameters. Plan quality metrics were again evaluated and compared with AAA plan metrics. For normal lung dose, V{sub 20} and V{sub 5} to (Total lung- GTV) were evaluated. Results: The results are summarized in Supplemental Table 1. PTV volume was mean 11.4 (±3.3) cm{sup 3}. Comparing RTOG 0813 protocol criteria for conformality, AXB plans yielded on average, similar PITV ratio (individual PITV ratio differences varied from −9 to +15%), reduced target coverage (−1.6%) and increased R50% (+2.6%). Comparing normal lung doses, the lung V{sub 20} (+3.1%) and V{sub 5} (+1.5%) were slightly higher for AXB plans compared to AAA plans. High-dose spillage ((V105%PD - PTV)/ PTV) was slightly lower for AXB plans but the % low dose spillage (D2cm) was similar between the two calculation algorithms. Conclusion: AAA algorithm overestimates lung target dose. Routinely adapting to AXB for dose calculations in Lung SBRT planning may improve dose calculation accuracy, as AXB based calculations have been shown to be closer to Monte Carlo based dose predictions in accuracy and with relatively faster computational time. For clinical practice, revisiting dose-fractionation in Lung SBRT to correct for dose

  17. Characterization of the plasma membrane H+-ATPase in the liverwort Marchantia polymorpha.

    PubMed

    Okumura, Masaki; Inoue, Shin-ichiro; Takahashi, Koji; Ishizaki, Kimitsune; Kohchi, Takayuki; Kinoshita, Toshinori

    2012-06-01

    The plasma membrane H(+)-ATPase generates an electrochemical gradient of H(+) across the plasma membrane that provides the driving force for solute transport and regulates pH homeostasis and membrane potential in plant cells. Recent studies have demonstrated that phosphorylation of the penultimate threonine in H(+)-ATPase and subsequent binding of a 14-3-3 protein is the major common activation mechanism for H(+)-ATPase in vascular plants. However, there is very little information on the plasma membrane H(+)-ATPase in nonvascular plant bryophytes. Here, we show that the liverwort Marchantia polymorpha, which is the most basal lineage of extant land plants, expresses both the penultimate threonine-containing H(+)-ATPase (pT H(+)-ATPase) and non-penultimate threonine-containing H(+)-ATPase (non-pT H(+)-ATPase) as in the green algae and that pT H(+)-ATPase is regulated by phosphorylation of its penultimate threonine. A search in the expressed sequence tag database of M. polymorpha revealed eight H(+)-ATPase genes, designated MpHA (for M. polymorpha H(+)-ATPase). Four isoforms are the pT H(+)-ATPase; the remaining isoforms are non-pT H(+)-ATPase. An apparent 95-kD protein was recognized by anti-H(+)-ATPase antibodies against an Arabidopsis (Arabidopsis thaliana) isoform and was phosphorylated on the penultimate threonine in response to the fungal toxin fusicoccin in thalli, indicating that the 95-kD protein contains pT H(+)-ATPase. Furthermore, we found that the pT H(+)-ATPase in thalli is phosphorylated in response to light, sucrose, and osmotic shock and that light-induced phosphorylation depends on photosynthesis. Our results define physiological signals for the regulation of pT H(+)-ATPase in the liverwort M. polymorpha, which is one of the earliest plants to acquire pT H(+)-ATPase.

  18. Dosimetric comparison of Acuros XB, AAA, and XVMC in stereotactic body radiotherapy for lung cancer.

    PubMed

    Tsuruta, Yusuke; Nakata, Manabu; Nakamura, Mitsuhiro; Matsuo, Yukinori; Higashimura, Kyoji; Monzen, Hajime; Mizowaki, Takashi; Hiraoka, Masahiro

    2014-08-01

    To compare the dosimetric performance of Acuros XB (AXB), anisotropic analytical algorithm (AAA), and x-ray voxel Monte Carlo (XVMC) in heterogeneous phantoms and lung stereotactic body radiotherapy (SBRT) plans. Water- and lung-equivalent phantoms were combined to evaluate the percentage depth dose and dose profile. The radiation treatment machine Novalis (BrainLab AG, Feldkirchen, Germany) with an x-ray beam energy of 6 MV was used to calculate the doses in the composite phantom at a source-to-surface distance of 100 cm with a gantry angle of 0°. Subsequently, the clinical lung SBRT plans for the 26 consecutive patients were transferred from the iPlan (ver. 4.1; BrainLab AG) to the Eclipse treatment planning systems (ver. 11.0.3; Varian Medical Systems, Palo Alto, CA). The doses were then recalculated with AXB and AAA while maintaining the XVMC-calculated monitor units and beam arrangement. Then the dose-volumetric data obtained using the three different radiation dose calculation algorithms were compared. The results from AXB and XVMC agreed with measurements within ± 3.0% for the lung-equivalent phantom with a 6 × 6 cm(2) field size, whereas AAA values were higher than measurements in the heterogeneous zone and near the boundary, with the greatest difference being 4.1%. AXB and XVMC agreed well with measurements in terms of the profile shape at the boundary of the heterogeneous zone. For the lung SBRT plans, AXB yielded lower values than XVMC in terms of the maximum doses of ITV and PTV; however, the differences were within ± 3.0%. In addition to the dose-volumetric data, the dose distribution analysis showed that AXB yielded dose distribution calculations that were closer to those with XVMC than did AAA. Means ± standard deviation of the computation time was 221.6 ± 53.1 s (range, 124-358 s), 66.1 ± 16.0 s (range, 42-94 s), and 6.7 ± 1.1 s (range, 5-9 s) for XVMC, AXB, and AAA, respectively. In the phantom evaluations, AXB and XVMC agreed better with

  19. Ubiquitination independent of E1 and E2 enzymes by bacterial effectors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qiu, Jiazhang; Sheedlo, Michael J.; Yu, Kaiwen

    Signaling by ubiquitination regulates virtually every cellular process in eukaryotes. Covalent attachment of ubiquitin to a substrate is catalyzed by the E1, E2 and E3 three-enzyme cascade 1, which links the C terminus of ubiquitin via an isopeptide bond mostly to the ε-amino group of a lysine of the substrate. Given the essential roles of ubiquitination in the regulation of the immune system, it is not surprising that the ubiquitination network is a common target for diverse infectious agents 2. For example, many bacterial pathogens exploit ubiquitin signaling using virulence factors that function as E3 ligases, deubiquitinases 3 or asmore » enzymes that directly attack ubiquitin 4. The bacterial pathogen Legionella pneumophila utilizes approximately 300 effectors that modulate diverse host processes to create a niche permissive for its replication in phagocytes 5. Here we demonstrate that members of the SidE effector family (SidEs) of L. pneumophila ubiquitinate multiple Rab small GTPases associated with the endoplasmic reticulum (ER). Moreover, we show that these proteins are capable of catalyzing ubiquitination without the need for the E1 and E2 enzymes. The E1/E2-independent ubiquitination catalyzed by these enzymes requires NAD but not ATP and Mg2+. A putative mono ADP-ribosyltransferase (mART) motif critical for the ubiquitination activity is also essential for the role of SidEs in intracellular bacterial replication in a protozoan host. These results establish that ubiquitination can be catalyzed by a single enzyme.« less

  20. The ubiquitin-proteasome system is required for African swine fever replication.

    PubMed

    Barrado-Gil, Lucía; Galindo, Inmaculada; Martínez-Alonso, Diego; Viedma, Sergio; Alonso, Covadonga

    2017-01-01

    Several viruses manipulate the ubiquitin-proteasome system (UPS) to initiate a productive infection. Determined viral proteins are able to change the host's ubiquitin machinery and some viruses even encode their own ubiquitinating or deubiquitinating enzymes. African swine fever virus (ASFV) encodes a gene homologous to the E2 ubiquitin conjugating (UBC) enzyme. The viral ubiquitin-conjugating enzyme (UBCv1) is expressed throughout ASFV infection and accumulates at late times post infection. UBCv is also present in the viral particle suggesting that the ubiquitin-proteasome pathway could play an important role at early ASFV infection. We determined that inhibition of the final stage of the ubiquitin-proteasome pathway blocked a post-internalization step in ASFV replication in Vero cells. Under proteasome inhibition, ASF viral genome replication, late gene expression and viral production were severely reduced. Also, ASFV enhanced proteasome activity at late times and the accumulation of polyubiquitinated proteins surrounding viral factories. Core-associated and/or viral proteins involved in DNA replication may be targets for the ubiquitin-proteasome pathway that could possibly assist virus uncoating at final core breakdown and viral DNA release. At later steps, polyubiquitinated proteins at viral factories could exert regulatory roles in cell signaling.

  1. Structure determination of disease associated peak AAA from l-Tryptophan implicated in the eosinophilia-myalgia syndrome.

    PubMed

    Klarskov, Klaus; Gagnon, Hugo; Boudreault, Pierre-Luc; Normandin, Chad; Plancq, Baptiste; Marsault, Eric; Gleich, Gerald J; Naylor, Stephen

    2018-01-05

    The eosinophilia-myalgia syndrome (EMS) outbreak of 1989 that occurred in the USA and elsewhere was caused by the ingestion of l-Tryptophan (L-Trp) solely manufactured by the Japanese company Showa Denko K.K. (SD). Six compounds present in the SD L-Trp were reported to be case-associated contaminants. However, "one" of these compounds, Peak AAA has remained structurally uncharacterized, despite the fact that it was described as "the only statistically significant (p=0.0014) contaminant". Here, we employ on-line microcapillary-high performance liquid chromatography-electrospray ionization mass spectrometry (LC-MS), and tandem mass spectrometry (MS/MS) to determine that Peak AAA is in fact two structurally related isomers. Peak AAA 1 and Peak AAA 2 differed in LC retention times, and were determined by accurate mass-LC-MS to both have a protonated molecular ion (MH +) of mass 343.239Da (Da), corresponding to a molecular formula of C 21 H 30 N 2 O 2, and possessing eight degrees of unsaturation (DoU) for the non-protonated molecule. By comparing the LC-MS and LC-MS-MS retention times and spectra with authentic synthetic standards, Peak AAA 1 was identified as the intermolecular condensation product of L-Trp with anteiso 7-methylnonanoic acid, to afford (S)-2-amino-3-(2-((S,E)-7-methylnon-1-en-1-yl)-1H-indol-3-yl)propanoic acid. Peak AAA 2 was determined to be a condensation product of L-Trp with decanoic acid, which produced (S)-2-amino-3-(2-((E)-dec-1-en-1-yl)-1H-indol-3-yl)propanoic acid. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Structural dynamics of the MecA-ClpC complex: a type II AAA+ protein unfolding machine.

    PubMed

    Liu, Jing; Mei, Ziqing; Li, Ningning; Qi, Yutao; Xu, Yanji; Shi, Yigong; Wang, Feng; Lei, Jianlin; Gao, Ning

    2013-06-14

    The MecA-ClpC complex is a bacterial type II AAA(+) molecular machine responsible for regulated unfolding of substrates, such as transcription factors ComK and ComS, and targeting them to ClpP for degradation. The six subunits of the MecA-ClpC complex form a closed barrel-like structure, featured with three stacked rings and a hollow passage, where substrates are threaded and translocated through successive pores. Although the general concepts of how polypeptides are unfolded and translocated by internal pore loops of AAA(+) proteins have long been conceived, the detailed mechanistic model remains elusive. With cryoelectron microscopy, we captured four different structures of the MecA-ClpC complexes. These complexes differ in the nucleotide binding states of the two AAA(+) rings and therefore might presumably reflect distinctive, representative snapshots from a dynamic unfolding cycle of this hexameric complex. Structural analysis reveals that nucleotide binding and hydrolysis modulate the hexameric complex in a number of ways, including the opening of the N-terminal ring, the axial and radial positions of pore loops, the compactness of the C-terminal ring, as well as the relative rotation between the two nucleotide-binding domain rings. More importantly, our structural and biochemical data indicate there is an active allosteric communication between the two AAA(+) rings and suggest that concerted actions of the two AAA(+) rings are required for the efficiency of the substrate unfolding and translocation. These findings provide important mechanistic insights into the dynamic cycle of the MecA-ClpC unfoldase and especially lay a foundation toward the complete understanding of the structural dynamics of the general type II AAA(+) hexamers.

  3. Degradation signals for ubiquitin system proteolysis in Saccharomyces cerevisiae.

    PubMed Central

    Gilon, T; Chomsky, O; Kulka, R G

    1998-01-01

    Combinations of different ubiquitin-conjugating (Ubc) enzymes and other factors constitute subsidiary pathways of the ubiquitin system, each of which ubiquitinates a specific subset of proteins. There is evidence that certain sequence elements or structural motifs of target proteins are degradation signals which mark them for ubiquitination by a particular branch of the ubiquitin system and for subsequent degradation. Our aim was to devise a way of searching systematically for degradation signals and to determine to which ubiquitin system subpathways they direct the proteins. We have constructed two reporter gene libraries based on the lacZ or URA3 genes which, in Saccharomyces cerevisiae, express fusion proteins with a wide variety of C-terminal extensions. From these, we have isolated clones producing unstable fusion proteins which are stabilized in various ubc mutants. Among these are 10 clones whose products are stabilized in ubc6, ubc7 or ubc6ubc7 double mutants. The C-terminal extensions of these clones, which vary in length from 16 to 50 amino acid residues, are presumed to contain degradation signals channeling proteins for degradation via the UBC6 and/or UBC7 subpathways of the ubiquitin system. Some of these C-terminal tails share similar sequence motifs, and a feature common to almost all of these sequences is a highly hydrophobic region such as is usually located inside globular proteins or inserted into membranes. PMID:9582269

  4. Models for the a subunits of the Thermus thermophilus V/A-ATPase and Saccharomyces cerevisiae V-ATPase enzymes by cryo-EM and evolutionary covariance

    PubMed Central

    Schep, Daniel G.; Rubinstein, John L.

    2016-01-01

    Rotary ATPases couple ATP synthesis or hydrolysis to proton translocation across a membrane. However, understanding proton translocation has been hampered by a lack of structural information for the membrane-embedded a subunit. The V/A-ATPase from the eubacterium Thermus thermophilus is similar in structure to the eukaryotic V-ATPase but has a simpler subunit composition and functions in vivo to synthesize ATP rather than pump protons. We determined the T. thermophilus V/A-ATPase structure by cryo-EM at 6.4 Å resolution. Evolutionary covariance analysis allowed tracing of the a subunit sequence within the map, providing a complete model of the rotary ATPase. Comparing the membrane-embedded regions of the T. thermophilus V/A-ATPase and eukaryotic V-ATPase from Saccharomyces cerevisiae allowed identification of the α-helices that belong to the a subunit and revealed the existence of previously unknown subunits in the eukaryotic enzyme. Subsequent evolutionary covariance analysis enabled construction of a model of the a subunit in the S. cerevisae V-ATPase that explains numerous biochemical studies of that enzyme. Comparing the two a subunit structures determined here with a structure of the distantly related a subunit from the bovine F-type ATP synthase revealed a conserved pattern of residues, suggesting a common mechanism for proton transport in all rotary ATPases. PMID:26951669

  5. Photosynthesis Activates Plasma Membrane H+-ATPase via Sugar Accumulation.

    PubMed

    Okumura, Masaki; Inoue, Shin-Ichiro; Kuwata, Keiko; Kinoshita, Toshinori

    2016-05-01

    Plant plasma membrane H(+)-ATPase acts as a primary transporter via proton pumping and regulates diverse physiological responses by controlling secondary solute transport, pH homeostasis, and membrane potential. Phosphorylation of the penultimate threonine and the subsequent binding of 14-3-3 proteins in the carboxyl terminus of the enzyme are required for H(+)-ATPase activation. We showed previously that photosynthesis induces phosphorylation of the penultimate threonine in the nonvascular bryophyte Marchantia polymorpha However, (1) whether this response is conserved in vascular plants and (2) the process by which photosynthesis regulates H(+)-ATPase phosphorylation at the plasma membrane remain unresolved issues. Here, we report that photosynthesis induced the phosphorylation and activation of H(+)-ATPase in Arabidopsis (Arabidopsis thaliana) leaves via sugar accumulation. Light reversibly phosphorylated leaf H(+)-ATPase, and this process was inhibited by pharmacological and genetic suppression of photosynthesis. Immunohistochemical and biochemical analyses indicated that light-induced phosphorylation of H(+)-ATPase occurred autonomously in mesophyll cells. We also show that the phosphorylation status of H(+)-ATPase and photosynthetic sugar accumulation in leaves were positively correlated and that sugar treatment promoted phosphorylation. Furthermore, light-induced phosphorylation of H(+)-ATPase was strongly suppressed in a double mutant defective in ADP-glucose pyrophosphorylase and triose phosphate/phosphate translocator (adg1-1 tpt-2); these mutations strongly inhibited endogenous sugar accumulation. Overall, we show that photosynthesis activated H(+)-ATPase via sugar production in the mesophyll cells of vascular plants. Our work provides new insight into signaling from chloroplasts to the plasma membrane ion transport mechanism. © 2016 American Society of Plant Biologists. All Rights Reserved.

  6. Direct interaction of the Golgi V-ATPase a-subunit isoform with PI(4)P drives localization of Golgi V-ATPases in yeast.

    PubMed

    Banerjee, Subhrajit; Kane, Patricia M

    2017-09-15

    Luminal pH and phosphoinositide content are fundamental features of organelle identity. Vacuolar H + -ATPases (V-ATPases) drive organelle acidification in all eukaryotes, and membrane-bound a-subunit isoforms of the V-ATPase are implicated in organelle-specific targeting and regulation. Earlier work demonstrated that the endolysosomal lipid PI(3,5)P 2 activates V-ATPases containing the vacuolar a-subunit isoform in Saccharomyces cerevisiae Here we demonstrate that PI(4)P, the predominant Golgi phosphatidylinositol (PI) species, directly interacts with the cytosolic amino terminal (NT) domain of the yeast Golgi V-ATPase a-isoform Stv1. Lysine-84 of Stv1NT is essential for interaction with PI(4)P in vitro and in vivo, and interaction with PI(4)P is required for efficient localization of Stv1-containing V-ATPases. The cytosolic NT domain of the human V-ATPase a2 isoform specifically interacts with PI(4)P in vitro, consistent with its Golgi localization and function. We propose that NT domains of V o a-subunit isoforms interact specifically with PI lipids in their organelles of residence. These interactions can transmit organelle-specific targeting or regulation information to V-ATPases. © 2017 Banerjee and Kane. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  7. Proteomic snapshot of the EGF-induced ubiquitin network

    PubMed Central

    Argenzio, Elisabetta; Bange, Tanja; Oldrini, Barbara; Bianchi, Fabrizio; Peesari, Raghunath; Mari, Sara; Di Fiore, Pier Paolo; Mann, Matthias; Polo, Simona

    2011-01-01

    The activity, localization and fate of many cellular proteins are regulated through ubiquitination, a process whereby one or more ubiquitin (Ub) monomers or chains are covalently attached to target proteins. While Ub-conjugated and Ub-associated proteomes have been described, we lack a high-resolution picture of the dynamics of ubiquitination in response to signaling. In this study, we describe the epidermal growth factor (EGF)-regulated Ubiproteome, as obtained by two complementary purification strategies coupled to quantitative proteomics. Our results unveil the complex impact of growth factor signaling on Ub-based intracellular networks to levels that extend well beyond what might have been expected. In addition to endocytic proteins, the EGF-regulated Ubiproteome includes a large number of signaling proteins, ubiquitinating and deubiquitinating enzymes, transporters and proteins involved in translation and transcription. The Ub-based signaling network appears to intersect both housekeeping and regulatory circuitries of cellular physiology. Finally, as proof of principle of the biological relevance of the EGF-Ubiproteome, we demonstrated that EphA2 is a novel, downstream ubiquitinated target of epidermal growth factor receptor (EGFR), critically involved in EGFR biological responses. PMID:21245847

  8. Differential ubiquitination in NETs regulates macrophage responses in systemic lupus erythematosus.

    PubMed

    Barrera-Vargas, Ana; Gómez-Martín, Diana; Carmona-Rivera, Carmelo; Merayo-Chalico, Javier; Torres-Ruiz, Jiram; Manna, Zerai; Hasni, Sarfaraz; Alcocer-Varela, Jorge; Kaplan, Mariana J

    2018-06-01

    To assess if ubiquitinated proteins potentially present in neutrophil extracellular traps (NETs) can modify cellular responses and induce inflammatory mechanisms in patients with systemic lupus erythematosus (SLE) and healthy subjects. We studied 74 subjects with SLE and 77 healthy controls. Neutrophils and low-density granulocytes were isolated, and NETs were induced. Ubiquitin content was quantified in NETs by western blot analysis, ELISA and immunofluorescence microscopy, while ubiquitination of NET proteins was assessed by immunoprecipitation. Monocyte-derived macrophages from SLE and controls were isolated and stimulated with NETs or ubiquitin. Calcium flux and cytokine synthesis were measured following these stimuli. NETs contain ubiquitinated proteins, with a lower expression of polyubiquitinated proteins in subjects with SLE than in controls. Myeloperoxidase (MPO) is present in ubiquitinated form in NETs. Patients with SLE develop antiubiquitinated MPO antibodies, and titres positively correlate with Systemic Lupus Erythematosus Disease Activity Index (SLEDAI) score (P<0.01), and negatively correlate with complement components (P<0.01). Stimulation of monocyte-derived macrophages with NETs or with ubiquitin led to enhanced calcium flux. In addition, stimulation with NETs led to enhanced cytokine (tumour necrosis factor-α and interleukin-10) production in macrophages from patients with SLE when compared with controls, which was hampered by inhibition of NET internalisation by macrophages. This is the first study to find ubiquitinated proteins in NETs, and evidence for adaptive immune responses directed towards ubiquitinated NET proteins in SLE. The distinct differences in ubiquitin species profile in NETs compared with healthy controls may contribute to dampened anti-inflammatory responses observed in SLE. These results also support a role for extracellular ubiquitin in inflammation in SLE. © Article author(s) (or their employer(s) unless otherwise stated

  9. Comparison of Acuros (AXB) and Anisotropic Analytical Algorithm (AAA) for dose calculation in treatment of oesophageal cancer: effects on modelling tumour control probability.

    PubMed

    Padmanaban, Sriram; Warren, Samantha; Walsh, Anthony; Partridge, Mike; Hawkins, Maria A

    2014-12-23

    To investigate systematic changes in dose arising when treatment plans optimised using the Anisotropic Analytical Algorithm (AAA) are recalculated using Acuros XB (AXB) in patients treated with definitive chemoradiotherapy (dCRT) for locally advanced oesophageal cancers. We have compared treatment plans created using AAA with those recalculated using AXB. Although the Anisotropic Analytical Algorithm (AAA) is currently more widely used in clinical routine, Acuros XB (AXB) has been shown to more accurately calculate the dose distribution, particularly in heterogeneous regions. Studies to predict clinical outcome should be based on modelling the dose delivered to the patient as accurately as possible. CT datasets from ten patients were selected for this retrospective study. VMAT (Volumetric modulated arc therapy) plans with 2 arcs, collimator rotation ± 5-10° and dose prescription 50 Gy / 25 fractions were created using Varian Eclipse (v10.0). The initial dose calculation was performed with AAA, and AXB plans were created by re-calculating the dose distribution using the same number of monitor units (MU) and multileaf collimator (MLC) files as the original plan. The difference in calculated dose to organs at risk (OAR) was compared using dose-volume histogram (DVH) statistics and p values were calculated using the Wilcoxon signed rank test. The potential clinical effect of dosimetric differences in the gross tumour volume (GTV) was evaluated using three different TCP models from the literature. PTV Median dose was apparently 0.9 Gy lower (range: 0.5 Gy - 1.3 Gy; p < 0.05) for VMAT AAA plans re-calculated with AXB and GTV mean dose was reduced by on average 1.0 Gy (0.3 Gy -1.5 Gy; p < 0.05). An apparent difference in TCP of between 1.2% and 3.1% was found depending on the choice of TCP model. OAR mean dose was lower in the AXB recalculated plan than the AAA plan (on average, dose reduction: lung 1.7%, heart 2.4%). Similar trends were seen for CRT plans

  10. Conditions of activation of yeast plasma membrane ATPase.

    PubMed

    Sychrová, H; Kotyk, A

    1985-04-08

    The in vivo activation of the H+-ATPase of baker's yeast plasma membrane found by Serrano in 1983 was demonstrated with D-glucose aerobically and anaerobically (as well as in a respiration-deficient mutant) and, after suitable induction, with maltose, trehalose, and galactose. The activated but not the control ATPase was sensitive to oligomycin. No activation was possible in a cell-free extract with added glucose. The ATPase was not activated in yeast protoplasts which may account for the absence of glucose-stimulated secondary active transports in these wall-less cells and provide support for a microscopic coupling between ATPase activity and these transports in yeast cells.

  11. Regulation of transcriptional activators by DNA-binding domain ubiquitination

    PubMed Central

    Landré, Vivien; Revi, Bhindu; Mir, Maria Gil; Verma, Chandra; Hupp, Ted R; Gilbert, Nick; Ball, Kathryn L

    2017-01-01

    Ubiquitin is a key component of the regulatory network that maintains gene expression in eukaryotes, yet the molecular mechanism(s) by which non-degradative ubiquitination modulates transcriptional activator (TA) function is unknown. Here endogenous p53, a stress-activated transcription factor required to maintain health, is stably monoubiquitinated, following pathway activation by IR or Nutlin-3 and localized to the nucleus where it becomes tightly associated with chromatin. Comparative structure–function analysis and in silico modelling demonstrate a direct role for DNA-binding domain (DBD) monoubiquitination in TA activation. When attached to the DBD of either p53, or a second TA IRF-1, ubiquitin is orientated towards, and makes contact with, the DNA. The contact is made between a predominantly cationic surface on ubiquitin and the anionic DNA. Our data demonstrate an unexpected role for ubiquitin in the mechanism of TA-activity enhancement and provides insight into a new level of transcriptional regulation. PMID:28362432

  12. Regulation of E2s: A Role for Additional Ubiquitin Binding Sites?

    PubMed

    Middleton, Adam J; Wright, Joshua D; Day, Catherine L

    2017-11-10

    Attachment of ubiquitin to proteins relies on a sophisticated enzyme cascade that is tightly regulated. The machinery of ubiquitylation responds to a range of signals, which remarkably includes ubiquitin itself. Thus, ubiquitin is not only the central player in the ubiquitylation cascade but also a key regulator. The ubiquitin E3 ligases provide specificity to the cascade and often bind the substrate, while the ubiquitin-conjugating enzymes (E2s) have a pivotal role in determining chain linkage and length. Interaction of ubiquitin with the E2 is important for activity, but the weak nature of these contacts has made them hard to identify and study. By reviewing available crystal structures, we identify putative ubiquitin binding sites on E2s, which may enhance E2 processivity and the assembly of chains of a defined linkage. The implications of these new sites are discussed in the context of known E2-ubiquitin interactions. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. SMYD2 promoter DNA methylation is associated with abdominal aortic aneurysm (AAA) and SMYD2 expression in vascular smooth muscle cells.

    PubMed

    Toghill, Bradley J; Saratzis, Athanasios; Freeman, Peter J; Sylvius, Nicolas; Bown, Matthew J

    2018-01-01

    Abdominal aortic aneurysm (AAA) is a deadly cardiovascular disease characterised by the gradual, irreversible dilation of the abdominal aorta. AAA is a complex genetic disease but little is known about the role of epigenetics. Our objective was to determine if global DNA methylation and CpG-specific methylation at known AAA risk loci is associated with AAA, and the functional effects of methylation changes. We assessed global methylation in peripheral blood mononuclear cell DNA from 92 individuals with AAA and 93 controls using enzyme-linked immunosorbent assays, identifying hyper-methylation in those with large AAA and a positive linear association with AAA diameter ( P  < 0.0001, R 2  = 0.3175).We then determined CpG methylation status of regulatory regions in genes located at AAA risk loci identified in genome-wide association studies, using bisulphite next-generation sequencing (NGS) in vascular smooth muscle cells (VSMCs) taken from aortic tissues of 44 individuals (24 AAAs and 20 controls). In IL6R , 2 CpGs were hyper-methylated ( P  = 0.0145); in ERG , 13 CpGs were hyper-methylated ( P  = 0.0005); in SERPINB9 , 6 CpGs were hypo-methylated ( P  = 0.0037) and 1 CpG was hyper-methylated ( P  = 0.0098); and in SMYD2 , 4 CpGs were hypo-methylated ( P  = 0.0012).RT-qPCR was performed for each differentially methylated gene on mRNA from the same VSMCs and compared with methylation. This analysis revealed downregulation of SMYD2 and SERPINB9 in AAA, and a direct linear relationship between SMYD2 promoter methylation and SMYD2 expression ( P  = 0.038). Furthermore, downregulation of SMYD2 at the site of aneurysm in the aortic wall was further corroborated in 6 of the same samples used for methylation and gene expression analysis with immunohistochemistry. This study is the first to assess DNA methylation in VSMCs from individuals with AAA using NGS, and provides further evidence there is an epigenetic basis to AAA. Our study shows that

  14. Arrestins and Spinophilin Competitively Regulate Na+,K+-ATPase Trafficking through Association with a Large Cytoplasmic Loop of the Na+,K+-ATPase

    PubMed Central

    Kimura, Tohru; Allen, Patrick B.; Nairn, Angus C.

    2007-01-01

    The activity and trafficking of the Na+,K+-ATPase are regulated by several hormones, including dopamine, vasopressin, and adrenergic hormones through the action of G-protein–coupled receptors (GPCRs). Arrestins, GPCR kinases (GRKs), 14-3-3 proteins, and spinophilin interact with GPCRs and modulate the duration and magnitude of receptor signaling. We have found that arrestin 2 and 3, GRK 2 and 3, 14-3-3 ε, and spinophilin directly associate with the Na+,K+-ATPase and that the associations with arrestins, GRKs, or 14-3-3 ε are blocked in the presence of spinophilin. In COS cells that overexpressed arrestin, the Na+,K+-ATPase was redistributed to intracellular compartments. This effect was not seen in mock-transfected cells or in cells expressing spinophilin. Furthermore, expression of spinophilin appeared to slow, whereas overexpression of β-arrestins accelerated internalization of the Na+,K+-ATPase endocytosis. We also find that GRKs phosphorylate the Na+,K+-ATPase in vitro on its large cytoplasmic loop. Taken together, it appears that association with arrestins, GRKs, 14-3-3 ε, and spinophilin may be important modulators of Na+,K+-ATPase trafficking. PMID:17804821

  15. Biochemical characterization of P-type copper ATPases

    PubMed Central

    Inesi, Giuseppe; Pilankatta, Rajendra; Tadini-Buoninsegni, Francesco

    2014-01-01

    Copper ATPases, in analogy with other members of the P-ATPase superfamily, contain a catalytic headpiece including an aspartate residue reacting with ATP to form a phosphoenzyme intermediate, and transmembrane helices containing cation-binding sites [TMBS (transmembrane metal-binding sites)] for catalytic activation and cation translocation. Following phosphoenzyme formation by utilization of ATP, bound copper undergoes displacement from the TMBS to the lumenal membrane surface, with no H+ exchange. Although PII-type ATPases sustain active transport of alkali/alkali-earth ions (i.e. Na+, Ca2+) against electrochemical gradients across defined membranes, PIB-type ATPases transfer transition metal ions (i.e. Cu+) from delivery to acceptor proteins and, prominently in mammalian cells, undergo trafficking from/to various membrane compartments. A specific component of copper ATPases is the NMBD (N-terminal metal-binding domain), containing up to six copper-binding sites in mammalian (ATP7A and ATP7B) enzymes. Copper occupancy of NMBD sites and interaction with the ATPase headpiece are required for catalytic activation. Furthermore, in the presence of copper, the NMBD allows interaction with protein kinase D, yielding phosphorylation of serine residues, ATP7B trafficking and protection from proteasome degradation. A specific feature of ATP7A is glycosylation and stabilization on plasma membranes. Cisplatin, a platinum-containing anti-cancer drug, binds to copper sites of ATP7A and ATP7B, and undergoes vectorial displacement in analogy with copper. PMID:25242165

  16. Active Site Gate Dynamics Modulate the Catalytic Activity of the Ubiquitination Enzyme E2-25K.

    PubMed

    Rout, Manoj K; Lee, Brian L; Lin, Aiyang; Xiao, Wei; Spyracopoulos, Leo

    2018-05-03

    The ubiquitin proteasome system (UPS) signals for degradation of proteins through attachment of K48-linked polyubiquitin chains, or alterations in protein-protein recognition through attachment of K63-linked chains. Target proteins are ubiquitinated in three sequential chemical steps by a three-component enzyme system. Ubiquitination, or E2 enzymes, catalyze the central step by facilitating reaction of a target protein lysine with the C-terminus of Ub that is attached to the active site cysteine of the E2 through a thioester bond. E2 reactivity is modulated by dynamics of an active site gate, whose central residue packs against the active site cysteine in a closed conformation. Interestingly, for the E2 Ubc13, which specifically catalyzes K63-linked ubiquitination, the central gate residue adopts an open conformation. We set out to determine if active site gate dynamics play a role in catalysis for E2-25K, which adopts the canonical, closed gate conformation, and which selectively synthesizes K48-linked ubiquitin chains. Gate dynamics were characterized using mutagenesis of key residues, combined with enzyme kinetics measurements, and main chain NMR relaxation. The experimental data were interpreted with all atom MD simulations. The data indicate that active site gate opening and closing rates for E2-25K are precisely balanced.

  17. Molecular dynamics simulations of human E3 ubiquitin ligase Parkin

    PubMed Central

    Qiu, Shi; Zhu, Shun; Xu, Shan; Han, Yanyan; Liu, Wen; Zuo, Ji

    2017-01-01

    Human E3 ubiquitin protein ligase parkin (Parkin) mediates mitophagy to maintain mitochondrial homeostasis. Parkin mutations are common genetic causes of early onset familial Parkinson's disease. The molecular mechanism of Parkin activation has been widely studied with emerging evidence suggesting an essential role of the phosphorylated (phospho)-ubiquitin interaction. However, the underlying mechanism of the phospho-ubiquitin interaction remains elusive. In the present study, replica exchange molecular dynamics simulations were performed to examine the conformational dynamics of Parkin in monomer and phospho-ubiquitin-bound states. In the Parkin monomer state, high structural flexibilities were observed in the majority of regions of Parkin particularly in the loop domain between the ubiquitin-like (UBL) and really interesting new gene (RING)0 domain. Binding of phospho-ubiquitin stabilizes the RING1/RING in between RING interface but destabilizes the RING1-UBL interface. Furthermore, using steered molecular dynamics simulations of Parkin mutations, it was demonstrated that salt bridge interactions contribute significantly to the interdomain interactions between the RING1 and UBL domain. Taken together, the results of the present study revealed the conformational dynamics of human full-length Parkin in monomer and phospho-ubiquitin-bound states, providing insights into designing potential therapeutics against Parkinson's disease. PMID:28765939

  18. Newborn mouse lens proteome and its alteration by lysine 6 mutant ubiquitin

    USDA-ARS?s Scientific Manuscript database

    Ubiquitin is a tag that often initiates degradation of proteins by the proteasome in the ubiquitin proteasome system. Targeted expression of K6W mutant ubiquitin (K6W-Ub) in the lens results in defects in lens development and cataract formation, suggesting critical functions for ubiquitin in lens. T...

  19. Purification and properties of an ATPase from Sulfolobus solfataricus

    NASA Technical Reports Server (NTRS)

    Hochstein, Lawrence I.; Stan-Lotter, Helga

    1992-01-01

    The paper reports properties of a sulfite-activated ATPase from Sulfolobus solfataricus, purified using ammonium sulfate precipitation, column chromatography on UltraGel and Sepharose 6B, and SDS-PAGE. The 92-fold purified enzyme had a relative molecular mass of 370,000. It could be dissociated into three subunits with respective molecular masses of 63,000, 48,000, and 24,000. The ATPase activity was found to be inhibitable by nitrate, N-ethylmaleimide (which bound predominantly to the largest subunit), and 4-chloro 7-nitrobenzofurazan, but not by azide, quercetin, or vanadate. While the ATPase from S. solfataricus shared a number of properties with the S. acidocaldarius ATPase, there were also significant differences suggesting the existence of several types of archaeal ATPases.

  20. The Adult Asperger Assessment (AAA): A Diagnostic Method

    ERIC Educational Resources Information Center

    Baron-Cohen, Simon; Wheelwright, Sally; Robinson, Janine; Woodbury-Smith, Marc

    2005-01-01

    At the present time there are a large number of adults who have "suspected" Asperger syndrome (AS). In this paper we describe a new instrument, the Adult Asperger Assessment (AAA), developed in our clinic for adults with AS. The need for a new instrument relevant to the diagnosis of AS in adulthood arises because existing instruments are designed…

  1. Dengue Virus Genome Uncoating Requires Ubiquitination.

    PubMed

    Byk, Laura A; Iglesias, Néstor G; De Maio, Federico A; Gebhard, Leopoldo G; Rossi, Mario; Gamarnik, Andrea V

    2016-06-28

    The process of genome release or uncoating after viral entry is one of the least-studied steps in the flavivirus life cycle. Flaviviruses are mainly arthropod-borne viruses, including emerging and reemerging pathogens such as dengue, Zika, and West Nile viruses. Currently, dengue virus is one of the most significant human viral pathogens transmitted by mosquitoes and is responsible for about 390 million infections every year around the world. Here, we examined for the first time molecular aspects of dengue virus genome uncoating. We followed the fate of the capsid protein and RNA genome early during infection and found that capsid is degraded after viral internalization by the host ubiquitin-proteasome system. However, proteasome activity and capsid degradation were not necessary to free the genome for initial viral translation. Unexpectedly, genome uncoating was blocked by inhibiting ubiquitination. Using different assays to bypass entry and evaluate the first rounds of viral translation, a narrow window of time during infection that requires ubiquitination but not proteasome activity was identified. In this regard, ubiquitin E1-activating enzyme inhibition was sufficient to stabilize the incoming viral genome in the cytoplasm of infected cells, causing its retention in either endosomes or nucleocapsids. Our data support a model in which dengue virus genome uncoating requires a nondegradative ubiquitination step, providing new insights into this crucial but understudied viral process. Dengue is the most significant arthropod-borne viral infection in humans. Although the number of cases increases every year, there are no approved therapeutics available for the treatment of dengue infection, and many basic aspects of the viral biology remain elusive. After entry, the viral membrane must fuse with the endosomal membrane to deliver the viral genome into the cytoplasm for translation and replication. A great deal of information has been obtained in the last decade

  2. Structure of PINK1 in complex with its substrate ubiquitin

    PubMed Central

    Schubert, Alexander F.; Gladkova, Christina; Pardon, Els; Wagstaff, Jane L.; Freund, Stefan M.V.; Steyaert, Jan; Maslen, Sarah L.; Komander, David

    2018-01-01

    Autosomal recessive juvenile Parkinsonism (AR-JP) is caused by mutations in a number of PARK genes, in particular in the E3 ubiquitin ligase Parkin (PARK2), and in its upstream protein kinase PINK1 (PARK6). PINK1 phosphorylates ubiquitin and the Parkin ubiquitin-like domain on structurally protected Ser65 to trigger mitophagy. We here report a crystal structure of a nanobody stabilised complex between Pediculus humanus corporis (Ph)PINK1 bound to ubiquitin in the ‘C-terminally retracted’ (Ub-CR) conformation. The structure reveals many peculiarities of PINK1, including the architecture of the C-terminal region, and reveals how the PINK1 N-lobe binds ubiquitin via a unique insertion. The flexible Ser65-loop in the Ub-CR conformation reaches the activation segment, facilitating placement of Ser65 in a phosphate accepting position. The structure also explains how autophosphorylation in the N-lobe stabilises structurally and functionally important insertions, and reveals the molecular basis for AR-JP causing mutations, some of which disrupt ubiquitin binding. PMID:29160309

  3. Structure of PINK1 in complex with its substrate ubiquitin.

    PubMed

    Schubert, Alexander F; Gladkova, Christina; Pardon, Els; Wagstaff, Jane L; Freund, Stefan M V; Steyaert, Jan; Maslen, Sarah L; Komander, David

    2017-12-07

    Autosomal-recessive juvenile Parkinsonism (AR-JP) is caused by mutations in a number of PARK genes, in particular the genes encoding the E3 ubiquitin ligase Parkin (PARK2, also known as PRKN) and its upstream protein kinase PINK1 (also known as PARK6). PINK1 phosphorylates both ubiquitin and the ubiquitin-like domain of Parkin on structurally protected Ser65 residues, triggering mitophagy. Here we report a crystal structure of a nanobody-stabilized complex containing Pediculus humanus corporis (Ph)PINK1 bound to ubiquitin in the 'C-terminally retracted' (Ub-CR) conformation. The structure reveals many peculiarities of PINK1, including the architecture of the C-terminal region, and reveals how the N lobe of PINK1 binds ubiquitin via a unique insertion. The flexible Ser65 loop in the Ub-CR conformation contacts the activation segment, facilitating placement of Ser65 in a phosphate-accepting position. The structure also explains how autophosphorylation in the N lobe stabilizes structurally and functionally important insertions, and reveals the molecular basis of AR-JP-causing mutations, some of which disrupt ubiquitin binding.

  4. Na(+), K(+)-ATPase: the new face of an old player in pathogenesis and apoptotic/hybrid cell death.

    PubMed

    Yu, Shan Ping

    2003-10-15

    The Na(+), K(+)-ATPase is a ubiquitous membrane transport protein in mammalian cells, responsible for establishing and maintaining high K(+) and low Na(+) in the cytoplasm required for normal resting membrane potentials and various cellular activities. The ionic homeostasis maintained by the Na(+), K(+)-ATPase is also critical for cell growth, differentiation, and cell survival. Although the toxic effects of blocking the Na(+), K(+)-ATPase by ouabain and other selective inhibitors have been known for years, the mechanism of action remained unclear. Recent progress in two areas has significantly advanced our understanding of the role and mechanism of Na(+), K(+)-ATPase in cell death. Along with increased recognition of apoptosis in a wide range of disease states, Na(+), K(+)-ATPase deficiency has been identified as a contributor to apoptosis and pathogenesis. More importantly, accumulating evidence now endorses a close relationship between ionic homeostasis and apoptosis, namely the regulation of apoptosis by K(+) homeostasis. Since Na(+), K(+)-ATPase is the primary system for K(+) uptake, dysfunction of the transport enzyme and resultant disruption of ionic homeostasis have been re-evaluated for their critical roles in apoptosis and apoptosis-related diseases. In this review, instead of giving a detailed description of the structure and regulation of Na(+), K(+)-ATPase, the author will focus on the most recent evidence indicating the unique role of Na(+), K(+)-ATPase in cell death, including apoptosis and the newly recognized "hybrid death" of concurrent apoptosis and necrosis in the same cells. It is also hoped that discussion of some seemingly conflicting reports will inspire further debate and benefit future investigation in this important research field.

  5. Characterization of the binding specificity of Anguilla anguilla agglutinin (AAA) in comparison to Ulex europaeus agglutinin I (UEA-I).

    PubMed

    Baldus, S E; Thiele, J; Park, Y O; Hanisch, F G; Bara, J; Fischer, R

    1996-08-01

    Using immunochemical and immunohistochemical methods, the binding site of Anguilla anguilla agglutinin (AAA) was characterized and compared with the related fucose-specific lectin from Ulex europaeus (UEA-I). In solid-phase enzyme-linked immunoassays, the two lectins recognized Fuc alpha 1-2Gal beta-HSA. AAA additionally cross-reacted with neoglycolipids bearing lacto-N-fucopentaose (LNFP) I [H type 1] and II [Le(a)] and lactodifucotetraose (LDFT) as glycan moieties. UEA-I, on the other hand, bound to a LDFT-derived neoglycolipid but not to the other neoglycolipids tested. Binding of AAA to gastric mucin was competitively neutralized by Le(a)-specific monoclonal antibodies. UEA-I binding, on the other hand, was reduced after co-incubation with H type 2- and Le(y)-specific monoclonal antibodies. According to our results, AAA reacts with fucosylated type 1 chain antigens, whereas UEA-I binds only to the alpha 1-2-fucosylated LDFT-derived neoglycolipid. In immunohistochemical studies, the reactivity of AAA and UEA-I in normal pyloric mucosa from individuals with known Lewis and secretor status was analysed. AAA showed a broad reaction in the superficial pyloric mucosa from secretors and non-secretors, but AAA reactivity was more pronounced in Le(a+b-) individuals. On the other hand, UEA-I stained the superficial pyloric mucosa only from secretor individuals. A staining of deep mucous glands by the lectins was found in all specimens. Both reacted with most human carcinomas of different origin. Slight differences in their binding pattern were observed and may be explained by the different fine-specificities of the lectins.

  6. Family Members of Patients with Abdominal Aortic Aneurysms are at Increased Risk for Aneurysms: Analysis of 618 Probands and their Families from the Liège AAA Family Study

    PubMed Central

    Sakalihasan, Natzi; Defraigne, Jean-Olivier; Kerstenne, Marie-Ange; Cheramy-Bien, Jean-Paul; Smelser, Diane T.; Tromp, Gerard; Kuivaniemi, Helena

    2014-01-01

    Background The objectives were to answer the following questions using a well-characterized population in Liège, Belgium: 1) what percentage of abdominal aortic aneurysm (AAA) patients have a positive family history for AAA, 2) what is the prevalence of AAAs among relatives of AAA patients; and 3) do familial and sporadic AAA cases differ in clinical characteristics. Methods and Results Unrelated AAA patients diagnosed at the Cardiovascular Surgery Department, University Hospital of Liège, Belgium, between 1999 and 2012 were invited to the study. A detailed family history was obtained in interviews and recorded using Progeny software. In the initial interview 62 (10%) of the 618 AAA patients reported a positive family history for AAA. We divided the 618 patients into two study groups: Group I: 296 AAA patients (268; 91% males) were followed up with computerized tomography combined with positron emission tomography, and Group II: 322 AAA patients (295; 92% males) whose families were invited to ultrasonography screening. Ultrasonography screening identified 24 new AAAs among 186 relatives (≥ 50 years) of 144 families yielding a prevalence of 13%. The highest prevalence (25%) was found among brothers. By combining the number of AAAs found by ultrasonography screening with those diagnosed previously the observed lifetime prevalence of AAA was estimated to be 32% in brothers. The familial AAA cases were more likely to have a ruptured AAA than the sporadic cases (8% vs. 2.4%; P<0.0001). Conclusions The findings confirm previously found high prevalence of AAA among brothers, support genetic contribution to AAA pathogenesis and provide rationale for targeted screening of relatives of AAA patients. PMID:24365082

  7. Coupling of tandem Smad ubiquitination regulatory factor (Smurf) WW domains modulates target specificity.

    PubMed

    Chong, P Andrew; Lin, Hong; Wrana, Jeffrey L; Forman-Kay, Julie D

    2010-10-26

    Smad ubiquitination regulatory factor 2 (Smurf2) is an E3 ubiquitin ligase that participates in degradation of TGF-β receptors and other targets. Smurf2 WW domains recognize PPXY (PY) motifs on ubiquitin ligase target proteins or on adapters, such as Smad7, that bind to E3 target proteins. We previously demonstrated that the isolated WW3 domain of Smurf2, but not the WW2 domain, can directly bind to a Smad7 PY motif. We show here that the WW2 augments this interaction by binding to the WW3 and making auxiliary contacts with the PY motif and a novel E/D-S/T-P motif, which is N-terminal to all Smad PY motifs. The WW2 likely enhances the selectivity of Smurf2 for the Smad proteins. NMR titrations confirm that Smad1 and Smad2 are bound by Smurf2 with the same coupled WW domain arrangement used to bind Smad7. The analogous WW domains in the short isoform of Smurf1 recognize the Smad7 PY peptide using the same coupled mechanism. However, a longer Smurf1 isoform, which has an additional 26 residues in the inter-WW domain linker, is only partially able to use the coupled WW domain binding mechanism. The longer linker results in a decrease in affinity for the Smad7 peptide. Interdomain coupling of WW domains enhances selectivity and enables the tuning of interactions by isoform switching.

  8. Coupling of tandem Smad ubiquitination regulatory factor (Smurf) WW domains modulates target specificity

    PubMed Central

    Chong, P. Andrew; Lin, Hong; Wrana, Jeffrey L.; Forman-Kay, Julie D.

    2010-01-01

    Smad ubiquitination regulatory factor 2 (Smurf2) is an E3 ubiquitin ligase that participates in degradation of TGF-β receptors and other targets. Smurf2 WW domains recognize PPXY (PY) motifs on ubiquitin ligase target proteins or on adapters, such as Smad7, that bind to E3 target proteins. We previously demonstrated that the isolated WW3 domain of Smurf2, but not the WW2 domain, can directly bind to a Smad7 PY motif. We show here that the WW2 augments this interaction by binding to the WW3 and making auxiliary contacts with the PY motif and a novel E/D-S/T-P motif, which is N-terminal to all Smad PY motifs. The WW2 likely enhances the selectivity of Smurf2 for the Smad proteins. NMR titrations confirm that Smad1 and Smad2 are bound by Smurf2 with the same coupled WW domain arrangement used to bind Smad7. The analogous WW domains in the short isoform of Smurf1 recognize the Smad7 PY peptide using the same coupled mechanism. However, a longer Smurf1 isoform, which has an additional 26 residues in the inter-WW domain linker, is only partially able to use the coupled WW domain binding mechanism. The longer linker results in a decrease in affinity for the Smad7 peptide. Interdomain coupling of WW domains enhances selectivity and enables the tuning of interactions by isoform switching. PMID:20937913

  9. The role of red blood cell deformability and Na,K-ATPase function in selected risk factors of cardiovascular diseases in humans: focus on hypertension, diabetes mellitus and hypercholesterolemia.

    PubMed

    Radosinska, J; Vrbjar, N

    2016-09-19

    Deformability of red blood cells (RBC) is the ability of RBC to change their shape in order to pass through narrow capillaries in circulation. Deterioration in deformability of RBC contributes to alterations in microcirculatory blood flow and delivery of oxygen to tissues. Several factors are responsible for maintenance of RBC deformability. One of them is the Na,K-ATPase known as crucial enzyme in maintenance of intracellular ionic homeostasis affecting thus regulation of cellular volume and consequently RBC deformability. Decreased deformability of RBC has been found to be the marker of adverse outcomes in cardiovascular diseases (CVD) and the presence of cardiovascular risk factors influences rheological properties of the blood. This review summarizes knowledge concerning the RBC deformability in connection with selected risk factors of CVD, including hypertension, hyperlipidemia, and diabetes mellitus, based exclusively on papers from human studies. We attempted to provide an update on important issues regarding the role of Na,K-ATPase in RBC deformability. In patients suffering from hypertension as well as diabetes mellitus the Na,K-ATPase appears to be responsible for the changes leading to alterations in RBC deformability. The triggering factor for changes of RBC deformability during hypercholesterolemia seems to be the increased content of cholesterol in erythrocyte membranes.

  10. The ubiquitin-proteasome system in spongiform degenerative disorders

    PubMed Central

    Whatley, Brandi R.; Li, Lian; Chin, Lih-Shen

    2008-01-01

    Summary Spongiform degeneration is characterized by vacuolation in nervous tissue accompanied by neuronal death and gliosis. Although spongiform degeneration is a hallmark of prion diseases, this pathology is also present in the brains of patients suffering from Alzheimer's disease, diffuse Lewy body disease, human immunodeficiency virus (HIV) infection, and Canavan's spongiform leukodystrophy. The shared outcome of spongiform degeneration in these diverse diseases suggests that common cellular mechanisms must underlie the processes of spongiform change and neurodegeneration in the central nervous system. Immunohistochemical analysis of brain tissues reveals increased ubiquitin immunoreactivity in and around areas of spongiform change, suggesting the involvement of ubiquitin-proteasome system dysfunction in the pathogenesis of spongiform neurodegeneration. The link between aberrant ubiquitination and spongiform neurodegeneration has been strengthened by the discovery that a null mutation in the E3 ubiquitin-protein ligase mahogunin ring finger-1 (Mgrn1) causes an autosomal recessively inherited form of spongiform neurodegeneration in animals. Recent studies have begun to suggest that abnormal ubiquitination may alter intracellular signaling and cell functions via proteasome-dependent and proteasome-independent mechanisms, leading to spongiform degeneration and neuronal cell death. Further elucidation of the pathogenic pathways involved in spongiform neurodegeneration should facilitate the development of novel rational therapies for treating prion diseases, HIV infection, and other spongiform degenerative disorders. PMID:18790052

  11. PINK1 autophosphorylation is required for ubiquitin recognition.

    PubMed

    Rasool, Shafqat; Soya, Naoto; Truong, Luc; Croteau, Nathalie; Lukacs, Gergely L; Trempe, Jean-François

    2018-04-01

    Mutations in PINK1 cause autosomal recessive Parkinson's disease (PD), a neurodegenerative movement disorder. PINK1 is a kinase that acts as a sensor of mitochondrial damage and initiates Parkin-mediated clearance of the damaged organelle. PINK1 phosphorylates Ser65 in both ubiquitin and the ubiquitin-like (Ubl) domain of Parkin, which stimulates its E3 ligase activity. Autophosphorylation of PINK1 is required for Parkin activation, but how this modulates the ubiquitin kinase activity is unclear. Here, we show that autophosphorylation of Tribolium castaneum PINK1 is required for substrate recognition. Using enzyme kinetics and NMR spectroscopy, we reveal that PINK1 binds the Parkin Ubl with a 10-fold higher affinity than ubiquitin via a conserved interface that is also implicated in RING1 and SH3 binding. The interaction requires phosphorylation at Ser205, an invariant PINK1 residue (Ser228 in human). Using mass spectrometry, we demonstrate that PINK1 rapidly autophosphorylates in trans at Ser205. Small-angle X-ray scattering and hydrogen-deuterium exchange experiments provide insights into the structure of the PINK1 catalytic domain. Our findings suggest that multiple PINK1 molecules autophosphorylate first prior to binding and phosphorylating ubiquitin and Parkin. © 2018 The Authors.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hood, Iris V.; Berger, James M.

    Replisome assembly requires the loading of replicative hexameric helicases onto origins by AAA+ ATPases. How loader activity is appropriately controlled remains unclear. Here, we use structural and biochemical analyses to establish how an antimicrobial phage protein interferes with the function of theStaphylococcus aureusreplicative helicase loader, DnaI. The viral protein binds to the loader’s AAA+ ATPase domain, allowing binding of the host replicative helicase but impeding loader self-assembly and ATPase activity. Close inspection of the complex highlights an unexpected locus for the binding of an interdomain linker element in DnaI/DnaC-family proteins. We find that the inhibitor protein is genetically coupled tomore » a phage-encoded homolog of the bacterial helicase loader, which we show binds to the host helicase but not to the inhibitor itself. These findings establish a new approach by which viruses can hijack host replication processes and explain how loader activity is internally regulated to prevent aberrant auto-association.« less

  13. Family members of patients with abdominal aortic aneurysms are at increased risk for aneurysms: analysis of 618 probands and their families from the Liège AAA Family Study.

    PubMed

    Sakalihasan, Natzi; Defraigne, Jean-Olivier; Kerstenne, Marie-Ange; Cheramy-Bien, Jean-Paul; Smelser, Diane T; Tromp, Gerard; Kuivaniemi, Helena

    2014-05-01

    The objectives were to answer the following questions with the help of a well-characterized population in Liège, Belgium: 1) what percentage of patients with abdominal aortic aneurysm (AAA) have a positive family history for AAA? 2) what is the prevalence of AAAs among relatives of patients with AAA? and 3) do familial and sporadic AAA cases differ in clinical characteristics? Patients with unrelated AAA diagnosed at the Cardiovascular Surgery Department, University Hospital of Liège, Belgium, between 1999 and 2012 were invited to the study. A detailed family history was obtained in interviews and recorded using Progeny software. We divided the 618 patients into 2 study groups: group I, 296 patients with AAA (268; 91% men) were followed up with computerized tomography combined with positron emission tomography; and group II, 322 patients with AAA (295; 92% men) whose families were invited to ultrasonographic screening. In the initial interview, 62 (10%) of the 618 patients with AAA reported a positive family history for AAA. Ultrasonographic screening identified 24 new AAAs among 186 relatives (≥50 years) of 144 families yielding a prevalence of 13%. The highest prevalence (25%) was found among brothers. By combining the number of AAAs found by ultrasonographic screening with those diagnosed previously the observed lifetime prevalence of AAA was estimated to be 32% in brothers. The familial AAA cases were more likely to have a ruptured AAA than the sporadic cases (8% vs. 2.4%; P < 0.0001). The findings confirm previously found high prevalence of AAA among brothers, support genetic contribution to AAA pathogenesis, and provide rationale for targeted screening of relatives of patients with AAA. Copyright © 2014 Elsevier Inc. All rights reserved.

  14. Ubiquitin-protein ligases in muscle wasting: multiple parallel pathways?

    NASA Technical Reports Server (NTRS)

    Lecker, Stewart H.; Goldberg, A. L. (Principal Investigator)

    2003-01-01

    PURPOSE OF REVIEW: Studies in a wide variety of animal models of muscle wasting have led to the concept that increased protein breakdown via the ubiquitin-proteasome pathway is responsible for the loss of muscle mass seen as muscle atrophy. The complexity of the ubiquitination apparatus has hampered our understanding of how this pathway is activated in atrophying muscles and which ubiquitin-conjugating enzymes in muscle are responsible. RECENT FINDINGS: Recent experiments have shown that two newly identified ubiquitin-protein ligases (E3s), atrogin-1/MAFbx and MURF-1, are critical in the development of muscle atrophy. Other in-vitro studies also implicated E2(14k) and E3alpha, of the N-end rule pathway, as playing an important role in the process. SUMMARY: It seems likely that multiple pathways of ubiquitin conjugation are activated in parallel in atrophying muscle, perhaps to target for degradation specific classes of muscle proteins. The emerging challenge will be to define the protein targets for, as well as inhibitors of, these E3s.

  15. Substituent effects in double-helical hydrogen-bonded AAA-DDD complexes.

    PubMed

    Wang, Hong-Bo; Mudraboyina, Bhanu P; Wisner, James A

    2012-01-27

    Two series of DDD and AAA hydrogen-bond arrays were synthesized that form triply-hydrogen-bonded double-helical complexes when combined in CDCl(3) solution. Derivatization of the DDD arrays with electron-withdrawing groups increases the complex association constants by up to a factor of 30 in those arrays examined. Derivatization of the AAA arrays with electron donating substituents reveals a similar magnitude effect on the complex stabilities. The effect of substitution on both types of arrays are modeled quite satisfactorily (R(2) > 0.96 in all cases) as free energy relationships with respect to the sums of their Hammett substituent constants. In all, the complex stabilities can be manipulated over more than three orders of magnitude (>20 kJ mol(-1)) using this type of modification. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. CNOT4-Mediated Ubiquitination of Influenza A Virus Nucleoprotein Promotes Viral RNA Replication

    PubMed Central

    Lin, Yu-Chen; Jeng, King-Song

    2017-01-01

    ABSTRACT Influenza A virus (IAV) RNA segments are individually packaged with viral nucleoprotein (NP) and RNA polymerases to form a viral ribonucleoprotein (vRNP) complex. We previously reported that NP is a monoubiquitinated protein which can be deubiquitinated by a cellular ubiquitin protease, USP11. In this study, we identified an E3 ubiquitin ligase, CNOT4 (Ccr4-Not transcription complex subunit 4), which can ubiquitinate NP. We found that the levels of viral RNA, protein, viral particles, and RNA polymerase activity in CNOT4 knockdown cells were lower than those in the control cells upon IAV infection. Conversely, overexpression of CNOT4 rescued viral RNP activity. In addition, CNOT4 interacted with the NP in the cell. An in vitro ubiquitination assay also showed that NP could be ubiquitinated by in vitro-translated CNOT4, but ubiquitination did not affect the protein stability of NP. Significantly, CNOT4 increased NP ubiquitination, whereas USP11 decreased it. Mass spectrometry analysis of ubiquitinated NP revealed multiple ubiquitination sites on the various lysine residues of NP. Three of these, K184, K227, and K273, are located on the RNA-binding groove of NP. Mutations of these sites to arginine reduced viral RNA replication. These results indicate that CNOT4 is a ubiquitin ligase of NP, and ubiquitination of NP plays a positive role in viral RNA replication. PMID:28536288

  17. Ubiquitin-dependent and independent roles of SUMO in proteostasis.

    PubMed

    Liebelt, Frauke; Vertegaal, Alfred C O

    2016-08-01

    Cellular proteomes are continuously undergoing alterations as a result of new production of proteins, protein folding, and degradation of proteins. The proper equilibrium of these processes is known as proteostasis, implying that proteomes are in homeostasis. Stress conditions can affect proteostasis due to the accumulation of misfolded proteins as a result of overloading the degradation machinery. Proteostasis is affected in neurodegenerative diseases like Alzheimer's disease, Parkinson's disease, and multiple polyglutamine disorders including Huntington's disease. Owing to a lack of proteostasis, neuronal cells build up toxic protein aggregates in these diseases. Here, we review the role of the ubiquitin-like posttranslational modification SUMO in proteostasis. SUMO alone contributes to protein homeostasis by influencing protein signaling or solubility. However, the main contribution of SUMO to proteostasis is the ability to cooperate with, complement, and balance the ubiquitin-proteasome system at multiple levels. We discuss the identification of enzymes involved in the interplay between SUMO and ubiquitin, exploring the complexity of this crosstalk which regulates proteostasis. These enzymes include SUMO-targeted ubiquitin ligases and ubiquitin proteases counteracting these ligases. Additionally, we review the role of SUMO in brain-related diseases, where SUMO is primarily investigated because of its role during formation of aggregates, either independently or in cooperation with ubiquitin. Detailed understanding of the role of SUMO in these diseases could lead to novel treatment options. Copyright © 2016 the American Physiological Society.

  18. Immune defects caused by mutations in the ubiquitin system.

    PubMed

    Etzioni, Amos; Ciechanover, Aaron; Pikarsky, Eli

    2017-03-01

    The importance of the ubiquitin system in health and disease has been widely recognized in recent decades, with better understanding of the various components of the system and their function. Ubiquitination, which is essential to almost all biological processes in eukaryotes, was also found to play an important role in innate and adaptive immune responses. Thus it is not surprising that mutations in genes coding for components of the ubiquitin system cause immune dysregulation. The first defect in the system was described 30 years ago and is due to mutations in the nuclear factor κB (NF-κB) essential modulator, a key regulator of the NF-κB pathway. With use of novel sequencing techniques, many additional mutations in different genes involved in ubiquitination and related to immune system function were identified. This can be clearly illustrated in mutations in the different activation pathways of NF-κB, which result in aberrations in production of various proinflammatory cytokines. The inherited diseases typically manifest with immunodeficiency, autoimmunity, or autoinflammation. In this perspective we provide a short description of the ubiquitin system, with specific emphasis given to its role in the immune system. The various immunodeficiency conditions identified thus far in association with defective ubiquitination are discussed in more detail. Copyright © 2017 American Academy of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.

  19. Substrate specificity of the ubiquitin and Ubl proteases

    PubMed Central

    Ronau, Judith A; Beckmann, John F; Hochstrasser, Mark

    2016-01-01

    Conjugation and deconjugation of ubiquitin and ubiquitin-like proteins (Ubls) to cellular proteins are highly regulated processes integral to cellular homeostasis. Most often, the C-termini of these small polypeptides are attached to lysine side chains of target proteins by an amide (isopeptide) linkage. Deubiquitinating enzymes (DUBs) and Ubl-specific proteases (ULPs) comprise a diverse group of proteases that recognize and remove ubiquitin and Ubls from their substrates. How DUBs and ULPs distinguish among different modifiers, or different polymeric forms of these modifiers, remains poorly understood. The specificity of ubiquitin/Ubl-deconjugating enzymes for particular substrates depends on multiple factors, ranging from the topography of specific substrate features, as in different polyubiquitin chain types, to structural elements unique to each enzyme. Here we summarize recent structural and biochemical studies that provide insights into mechanisms of substrate specificity among various DUBs and ULPs. We also discuss the unexpected specificities of non-eukaryotic proteases in these families. PMID:27012468

  20. Regulation of Ubiquitination-Mediated Protein Degradation by Survival Kinases in Cancer

    PubMed Central

    Yamaguchi, Hirohito; Hsu, Jennifer L.; Hung, Mien-Chie

    2011-01-01

    The ubiquitin–proteasome system is essential for multiple physiological processes via selective degradation of target proteins and has been shown to plays a critical role in human cancer. Activation of oncogenic factors and inhibition of tumor suppressors have been shown to be essential for cancer development, and protein ubiquitination has been linked to the regulation of oncogenic factors and tumor suppressors. Three kinases, AKT, extracellular signal-regulated kinase, and IκB kinase, we refer to as oncokinases, are activated in multiple human cancers. We and others have identified several key downstream targets that are commonly regulated by these oncokinases, some of which are regulated directly or indirectly via ubiquitin-mediated proteasome degradation, including FOXO3, β-catenin, myeloid cell leukemia-1, and Snail. In this review, we summarize these findings from our and other groups and discuss potential future studies and applications in the clinic. PMID:22649777

  1. Crystal Structure of the Cul2-Rbx1-EloBC-VHL Ubiquitin Ligase Complex.

    PubMed

    Cardote, Teresa A F; Gadd, Morgan S; Ciulli, Alessio

    2017-06-06

    Cullin RING E3 ubiquitin ligases (CRLs) function in the ubiquitin proteasome system to catalyze the transfer of ubiquitin from E2 conjugating enzymes to specific substrate proteins. CRLs are large dynamic complexes and attractive drug targets for the development of small-molecule inhibitors and chemical inducers of protein degradation. The atomic details of whole CRL assembly and interactions that dictate subunit specificity remain elusive. Here we present the crystal structure of a pentameric CRL2 VHL complex, composed of Cul2, Rbx1, Elongin B, Elongin C, and pVHL. The structure traps a closed state of full-length Cul2 and a new pose of Rbx1 in a trajectory from closed to open conformation. We characterize hotspots and binding thermodynamics at the interface between Cul2 and pVHL-EloBC and identify mutations that contribute toward a selectivity switch for Cul2 versus Cul5 recognition. Our findings provide structural and biophysical insights into the whole Cul2 complex that could aid future drug targeting. Copyright © 2017 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  2. The effect of acetaminophen on ubiquitin homeostasis in Saccharomyces cerevisiae.

    PubMed

    Huseinovic, Angelina; van Leeuwen, Jolanda S; van Welsem, Tibor; Stulemeijer, Iris; van Leeuwen, Fred; Vermeulen, Nico P E; Kooter, Jan M; Vos, J Chris

    2017-01-01

    Acetaminophen (APAP), although considered a safe drug, is one of the major causes of acute liver failure by overdose, and therapeutic chronic use can cause serious health problems. Although the reactive APAP metabolite N-acetyl-p-benzoquinoneimine (NAPQI) is clearly linked to liver toxicity, toxicity of APAP is also found without drug metabolism of APAP to NAPQI. To get more insight into mechanisms of APAP toxicity, a genome-wide screen in Saccharomyces cerevisiae for APAP-resistant deletion strains was performed. In this screen we identified genes related to the DNA damage response. Next, we investigated the link between genotype and APAP-induced toxicity or resistance by performing a more detailed screen with a library containing mutants of 1522 genes related to nuclear processes, like DNA repair and chromatin remodelling. We identified 233 strains that had an altered growth rate relative to wild type, of which 107 showed increased resistance to APAP and 126 showed increased sensitivity. Gene Ontology analysis identified ubiquitin homeostasis, regulation of transcription of RNA polymerase II genes, and the mitochondria-to-nucleus signalling pathway to be associated with APAP resistance, while histone exchange and modification, and vesicular transport were connected to APAP sensitivity. Indeed, we observed a link between ubiquitin levels and APAP resistance, whereby ubiquitin deficiency conferred resistance to APAP toxicity while ubiquitin overexpression resulted in sensitivity. The toxicity profile of various chemicals, APAP, and its positional isomer AMAP on a series of deletion strains with ubiquitin deficiency showed a unique resistance pattern for APAP. Furthermore, exposure to APAP increased the level of free ubiquitin and influenced the ubiquitination of proteins. Together, these results uncover a role for ubiquitin homeostasis in APAP-induced toxicity.

  3. Inflammatory cell phenotypes in AAAs: their role and potential as targets for therapy.

    PubMed

    Dale, Matthew A; Ruhlman, Melissa K; Baxter, B Timothy

    2015-08-01

    Abdominal aortic aneurysms (AAAs) are characterized by chronic inflammatory cell infiltration. AAA is typically an asymptomatic disease and caused ≈15 000 deaths annually in the United States. Previous studies have examined both human and murine aortic tissue for the presence of various inflammatory cell types. Studies show that in both human and experimental AAAs, prominent inflammatory cell infiltration, such as CD4(+) T cells and macrophages, occurs in the damaged aortic wall. These cells have the ability to undergo phenotypic modulation based on microenvironmental cues, potentially influencing disease progression. Proinflammatory CD4(+) T cells and classically activated macrophages dominate the landscape of aortic infiltrates. The skew to proinflammatory phenotypes alters disease progression and plays a role in causing chronic inflammation. The local cytokine production and presence of inflammatory mediators, such as extracellular matrix breakdown products, influence the uneven balance of the inflammatory infiltrate phenotypes. Understanding and developing new strategies that target the proinflammatory phenotype could provide useful therapeutic targets for a disease with no current pharmacological intervention. © 2015 American Heart Association, Inc.

  4. 26 CFR 1.1368-2 - Accumulated adjustments account (AAA).

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... TAX (CONTINUED) INCOME TAXES (CONTINUED) Small Business Corporations and Their Shareholders § 1.1368-2... earnings and profits or previously taxed income pursuant to an election made under section 1368(e)(3) and... AAA for redemptions and distributions in the year of a redemption. (c) Distribution of money and loss...

  5. 26 CFR 1.1368-2 - Accumulated adjustments account (AAA).

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... TAX (CONTINUED) INCOME TAXES (CONTINUED) Small Business Corporations and Their Shareholders § 1.1368-2... earnings and profits or previously taxed income pursuant to an election made under section 1368(e)(3) and... AAA for redemptions and distributions in the year of a redemption. (c) Distribution of money and loss...

  6. 26 CFR 1.1368-2 - Accumulated adjustments account (AAA).

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... TAX (CONTINUED) INCOME TAXES (CONTINUED) Small Business Corporations and Their Shareholders § 1.1368-2... earnings and profits or previously taxed income pursuant to an election made under section 1368(e)(3) and... AAA for redemptions and distributions in the year of a redemption. (c) Distribution of money and loss...

  7. 26 CFR 1.1368-2 - Accumulated adjustments account (AAA).

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... TAX (CONTINUED) INCOME TAXES Small Business Corporations and Their Shareholders § 1.1368-2 Accumulated... earnings and profits or previously taxed income pursuant to an election made under section 1368(e)(3) and... AAA for redemptions and distributions in the year of a redemption. (c) Distribution of money and loss...

  8. 26 CFR 1.1368-2 - Accumulated adjustments account (AAA).

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... TAX (CONTINUED) INCOME TAXES (CONTINUED) Small Business Corporations and Their Shareholders § 1.1368-2... earnings and profits or previously taxed income pursuant to an election made under section 1368(e)(3) and... AAA for redemptions and distributions in the year of a redemption. (c) Distribution of money and loss...

  9. Effects of aqueous extract of Hibiscus sabdariffa on renal Na(+)-K(+)-ATPase and Ca(2+)-Mg(2+)-ATPase activities in Wistar rats.

    PubMed

    Olatunji, Lawrence A; Usman, Taofeek O; Adebayo, Joseph O; Olatunji, Victoria A

    2012-09-01

    To investigate the effects of oral administration of aqueous extract of Hibiscus sabdariffa on renal Na(+)-K(+)-ATPase and Ca(2+)-Mg(2+)-ATPase activities in rats. The 25 and 50 mg/(kg·d) of aqueous extracts of H. sabdariffa were respectively given to rats in the experimental groups for 28 d, and rats in the control group received an appropriate volume of distilled water as vehicle. Na(+)-K(+)-ATPase and Ca(2+)-Mg(2+)-ATPase activities in the kidney were assayed by spectrophotometric method. Administrations of 25 and 50 mg/(kg·d) of aqueous extract of H. sabdariffa significantly decreased the Ca(2+)-Mg(2+)-ATPase activity in the kidney of rats (P<0.05). However, the renal Na(+)-K(+)-ATPase activity of the experimental rats was not affected by either dose of the extract. And the plasma Na(+), K(+) and Ca(2+) levels of the experimental rats had no significant changes. Administration of either dose of the extract did not result in any significant changes in body and kidney weights, the concentrations of plasma albumin and total protein, and alkaline phosphatase, aspartate aminotransferase and alanine aminotransferase activities. However, concentrations of creatinine and urea were significantly reduced by 50 mg/kg of the extract (P<0.05). The present study indicates that oral administration of aqueous extract of H. sabdariffa may preserve the renal function despite a decreased renal Ca(2+)-Mg(2+)-ATPase activity.

  10. Effects of exogenous ubiquitin in a polytrauma model with blunt chest trauma

    PubMed Central

    Baker, Todd A.; Romero, Jacqueline; Bach, Harold H.; Strom, Joel A.; Gamelli, Richard L.; Majetschak, Matthias

    2013-01-01

    Objective To determine whether treatment with the CXC chemokine receptor (CXCR) 4 agonist ubiquitin results in beneficial effects in a polytrauma model consisting of bilateral femur fractures plus blunt chest trauma (Injury Severity Score 18-25). Design Treatment study. Setting Research Laboratory. Subjects Seventeen Yorkshire pigs. Interventions Intravenous (i.v.) injection of 1.5 mg/kg ubiquitin or albumin (=control) at 60 min after polytrauma. Measurements and Main Results Anesthetized, mechanically ventilated pigs underwent polytrauma, followed by a simulated 60 min shock phase. At the end of the shock phase ubiquitin or albumin were administered and animals were resuscitated to a mean arterial blood pressure of 70 mmHg until t = 420 min. After i.v. ubiquitin, ubiquitin plasma concentrations increased sixteen-fold to 2870 ± 1015 ng/mL at t = 90 min and decreased with t1/2 = 60 min. Endogenous plasma ubiquitin increased two-fold in the albumin group with peak levels of 359 ± 210 ng/mL. Plasma levels of the cognate CXCR4 ligand stromal cell-derived factor (SDF)-1α were unchanged in both groups. Ubiquitin treatment reduced arterial lactate levels and prevented a continuous decrease in arterial oxygenation, which occurred in the albumin group during resuscitation. Wet weight to dry weight ratios of the lung contralateral from the injury, heart, spleen and jejunum were lower with ubiquitin. With ubiquitin treatment, tissue levels of IL-8, IL-10, TNFα and SDF-1α were reduced in the injured lung and of IL-8 in the contralateral lung, respectively. Conclusions Administration of exogenous ubiquitin modulates the local inflammatory response, improves resuscitation, reduces fluid shifts into tissues and preserves arterial oxygenation after blunt polytrauma with lung injury. This study further supports the notion that ubiquitin is a promising protein therapeutic and implies CXCR4 as a drug target after polytrauma. PMID:22622399

  11. Ubiquitin Chains Modified by the Bacterial Ligase SdeA Are Protected from Deubiquitinase Hydrolysis.

    PubMed

    Puvar, Kedar; Zhou, Yiyang; Qiu, Jiazhang; Luo, Zhao-Qing; Wirth, Mary J; Das, Chittaranjan

    2017-09-12

    The SidE family of Legionella pneumophila effectors is a unique group of ubiquitin-modifying enzymes. Along with catalyzing NAD + -dependent ubiquitination of certain host proteins independent of the canonical E1/E2/E3 pathway, they have also been shown to produce phosphoribosylated free ubiquitin. This modified ubiquitin product is incompatible with conventional E1/E2/E3 ubiquitination processes, with the potential to lock down various cellular functions that are dependent on ubiquitin signaling. Here, we show that in addition to free ubiquitin, Lys63-, Lys48-, Lys11-, and Met1-linked diubiquitin chains are also modified by SdeA in a similar fashion. Both the proximal and distal ubiquitin moieties are targeted in the phosphoribosylation reaction. Furthermore, this renders the ubiquitin chains unable to be processed by a variety of deubiquitinating enzymes. These observations broaden the scope of SdeA's modulatory functions during Legionella infection.

  12. The pineal gland: A model for adrenergic modulation of ubiquitin ligases.

    PubMed

    Vriend, Jerry; Liu, Wenjun; Reiter, Russel J

    2017-01-01

    A recent study of the pineal gland of the rat found that the expression of more than 3000 genes showed significant day/night variations (The Hartley dataset). The investigators of this report made available a supplemental table in which they tabulated the expression of many genes that they did not discuss, including those coding for components of the ubiquitin proteasome system. Herein we identify the genes of the ubiquitin proteasome system whose expression were significantly influenced by environmental lighting in the Hartley dataset, those that were stimulated by DBcAMP in pineal glands in culture, and those that were stimulated by norepinephrine. Using the Ubiquitin and Ubiquitin-like Conjugation Database (UUCA) we identified ubiquitin ligases and conjugases, and deubiquitinases in the Hartley dataset for the purpose of determining whether expression of genes of the ubiquitin proteasome pathway were significantly influenced by day/night variations and if these variations were regulated by autonomic innervation of the pineal gland from the superior cervical ganglia. In the Hartley experiments pineal glands groups of rats sacrificed during the day and groups sacrificed during the night were examined for gene expression. Additional groups of rats had their superior cervical ganglia removed surgically or surgically decentralized and the pineal glands likewise examined for gene expression. The genes with at least a 2-fold day/night significant difference in expression included genes for 5 ubiquitin conjugating enzymes, genes for 58 ubiquitin E3 ligases and genes for 6 deubiquitinases. A 35-fold day/night difference was noted in the expression of the gene Sik1, which codes for a protein containing both an ubiquitin binding domain (UBD) and an ubiquitin-associated (UBA) domain. Most of the significant differences in these genes were prevented by surgical removal, or disconnection, of the superior cervical ganglia, and most were responsive, in vitro, to treatment with

  13. The pineal gland: A model for adrenergic modulation of ubiquitin ligases

    PubMed Central

    Liu, Wenjun; Reiter, Russel J.

    2017-01-01

    Introduction A recent study of the pineal gland of the rat found that the expression of more than 3000 genes showed significant day/night variations (The Hartley dataset). The investigators of this report made available a supplemental table in which they tabulated the expression of many genes that they did not discuss, including those coding for components of the ubiquitin proteasome system. Herein we identify the genes of the ubiquitin proteasome system whose expression were significantly influenced by environmental lighting in the Hartley dataset, those that were stimulated by DBcAMP in pineal glands in culture, and those that were stimulated by norepinephrine. Purpose Using the Ubiquitin and Ubiquitin-like Conjugation Database (UUCA) we identified ubiquitin ligases and conjugases, and deubiquitinases in the Hartley dataset for the purpose of determining whether expression of genes of the ubiquitin proteasome pathway were significantly influenced by day/night variations and if these variations were regulated by autonomic innervation of the pineal gland from the superior cervical ganglia. Methods In the Hartley experiments pineal glands groups of rats sacrificed during the day and groups sacrificed during the night were examined for gene expression. Additional groups of rats had their superior cervical ganglia removed surgically or surgically decentralized and the pineal glands likewise examined for gene expression. Results The genes with at least a 2-fold day/night significant difference in expression included genes for 5 ubiquitin conjugating enzymes, genes for 58 ubiquitin E3 ligases and genes for 6 deubiquitinases. A 35-fold day/night difference was noted in the expression of the gene Sik1, which codes for a protein containing both an ubiquitin binding domain (UBD) and an ubiquitin-associated (UBA) domain. Most of the significant differences in these genes were prevented by surgical removal, or disconnection, of the superior cervical ganglia, and most were

  14. Parkin is activated by PINK1-dependent phosphorylation of ubiquitin at Ser65

    PubMed Central

    Kazlauskaite, Agne; Kondapalli, Chandana; Gourlay, Robert; Campbell, David G.; Ritorto, Maria Stella; Hofmann, Kay; Alessi, Dario R.; Knebel, Axel; Trost, Matthias; Muqit, Miratul M. K.

    2014-01-01

    We have previously reported that the Parkinson's disease-associated kinase PINK1 (PTEN-induced putative kinase 1) is activated by mitochondrial depolarization and stimulates the Parkin E3 ligase by phosphorylating Ser65 within its Ubl (ubiquitin-like) domain. Using phosphoproteomic analysis, we identified a novel ubiquitin phosphopeptide phosphorylated at Ser65 that was enriched 14-fold in HEK (human embryonic kidney)-293 cells overexpressing wild-type PINK1 stimulated with the mitochondrial uncoupling agent CCCP (carbonyl cyanide m-chlorophenylhydrazone), to activate PINK1, compared with cells expressing kinase-inactive PINK1. Ser65 in ubiquitin lies in a similar motif to Ser65 in the Ubl domain of Parkin. Remarkably, PINK1 directly phosphorylates Ser65 of ubiquitin in vitro. We undertook a series of experiments that provide striking evidence that Ser65-phosphorylated ubiquitin (ubiquitinPhospho−Ser65) functions as a critical activator of Parkin. First, we demonstrate that a fragment of Parkin lacking the Ubl domain encompassing Ser65 (ΔUbl-Parkin) is robustly activated by ubiquitinPhospho−Ser65, but not by non-phosphorylated ubiquitin. Secondly, we find that the isolated Parkin Ubl domain phosphorylated at Ser65 (UblPhospho−Ser65) can also activate ΔUbl-Parkin similarly to ubiquitinPhospho−Ser65. Thirdly, we establish that ubiquitinPhospho−Ser65, but not non-phosphorylated ubiquitin or UblPhospho−Ser65, activates full-length wild-type Parkin as well as the non-phosphorylatable S65A Parkin mutant. Fourthly, we provide evidence that optimal activation of full-length Parkin E3 ligase is dependent on PINK1-mediated phosphorylation of both Parkin at Ser65 and ubiquitin at Ser65, since only mutation of both proteins at Ser65 completely abolishes Parkin activation. In conclusion, the findings of the present study reveal that PINK1 controls Parkin E3 ligase activity not only by phosphorylating Parkin at Ser65, but also by phosphorylating ubiquitin at Ser65

  15. Mechanistic insights into c-di-GMP–dependent control of the biofilm regulator FleQ from Pseudomonas aeruginosa

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matsuyama, Bruno Y.; Krasteva, Petya V.; Baraquet, Claudine

    Bacterial biofilm formation during chronic infections confers increased fitness, antibiotic tolerance, and cytotoxicity. In many pathogens, the transition from a planktonic lifestyle to collaborative, sessile biofilms represents a regulated process orchestrated by the intracellular second-messenger c-di-GMP. A main effector for c-di-GMP signaling in the opportunistic pathogen Pseudomonas aeruginosa is the transcription regulator FleQ. FleQ is a bacterial enhancer-binding protein (bEBP) with a central AAA+ ATPase σ 54-interaction domain, flanked by a C-terminal helix-turn-helix DNA-binding motif and a divergent N-terminal receiver domain. Together with a second ATPase, FleN, FleQ regulates the expression of flagellar and exopolysaccharide biosynthesis genes in response tomore » cellular c-di-GMP. Here we report structural and functional data that reveal an unexpected mode of c-di-GMP recognition that is associated with major conformational rearrangements in FleQ. Crystal structures of FleQ’s AAA+ ATPase domain in its apo-state or bound to ADP or ATP-γ-S show conformations reminiscent of the activated ring-shaped assemblies of other bEBPs. As revealed by the structure of c-di-GMP–complexed FleQ, the second messenger interacts with the AAA+ ATPase domain at a site distinct from the ATP binding pocket. c-di-GMP interaction leads to active site obstruction, hexameric ring destabilization, and discrete quaternary structure transitions. Solution and cell-based studies confirm coupling of the ATPase active site and c-di-GMP binding, as well as the functional significance of crystallographic interprotomer interfaces. Taken together, our data offer unprecedented insight into conserved regulatory mechanisms of gene expression under direct c-di-GMP control via FleQ and FleQ-like bEBPs.« less

  16. Mechanistic insights into c-di-GMP–dependent control of the biofilm regulator FleQ from Pseudomonas aeruginosa

    PubMed Central

    Matsuyama, Bruno Y.; Krasteva, Petya V.; Baraquet, Claudine; Harwood, Caroline S.; Sondermann, Holger; Navarro, Marcos V. A. S.

    2016-01-01

    Bacterial biofilm formation during chronic infections confers increased fitness, antibiotic tolerance, and cytotoxicity. In many pathogens, the transition from a planktonic lifestyle to collaborative, sessile biofilms represents a regulated process orchestrated by the intracellular second-messenger c-di-GMP. A main effector for c-di-GMP signaling in the opportunistic pathogen Pseudomonas aeruginosa is the transcription regulator FleQ. FleQ is a bacterial enhancer-binding protein (bEBP) with a central AAA+ ATPase σ54-interaction domain, flanked by a C-terminal helix-turn-helix DNA-binding motif and a divergent N-terminal receiver domain. Together with a second ATPase, FleN, FleQ regulates the expression of flagellar and exopolysaccharide biosynthesis genes in response to cellular c-di-GMP. Here we report structural and functional data that reveal an unexpected mode of c-di-GMP recognition that is associated with major conformational rearrangements in FleQ. Crystal structures of FleQ’s AAA+ ATPase domain in its apo-state or bound to ADP or ATP-γ-S show conformations reminiscent of the activated ring-shaped assemblies of other bEBPs. As revealed by the structure of c-di-GMP–complexed FleQ, the second messenger interacts with the AAA+ ATPase domain at a site distinct from the ATP binding pocket. c-di-GMP interaction leads to active site obstruction, hexameric ring destabilization, and discrete quaternary structure transitions. Solution and cell-based studies confirm coupling of the ATPase active site and c-di-GMP binding, as well as the functional significance of crystallographic interprotomer interfaces. Taken together, our data offer unprecedented insight into conserved regulatory mechanisms of gene expression under direct c-di-GMP control via FleQ and FleQ-like bEBPs. PMID:26712005

  17. Mechanistic insights into c-di-GMP–dependent control of the biofilm regulator FleQ from Pseudomonas aeruginosa

    DOE PAGES

    Matsuyama, Bruno Y.; Krasteva, Petya V.; Baraquet, Claudine; ...

    2015-12-28

    Bacterial biofilm formation during chronic infections confers increased fitness, antibiotic tolerance, and cytotoxicity. In many pathogens, the transition from a planktonic lifestyle to collaborative, sessile biofilms represents a regulated process orchestrated by the intracellular second-messenger c-di-GMP. A main effector for c-di-GMP signaling in the opportunistic pathogen Pseudomonas aeruginosa is the transcription regulator FleQ. FleQ is a bacterial enhancer-binding protein (bEBP) with a central AAA+ ATPase σ 54-interaction domain, flanked by a C-terminal helix-turn-helix DNA-binding motif and a divergent N-terminal receiver domain. Together with a second ATPase, FleN, FleQ regulates the expression of flagellar and exopolysaccharide biosynthesis genes in response tomore » cellular c-di-GMP. Here we report structural and functional data that reveal an unexpected mode of c-di-GMP recognition that is associated with major conformational rearrangements in FleQ. Crystal structures of FleQ’s AAA+ ATPase domain in its apo-state or bound to ADP or ATP-γ-S show conformations reminiscent of the activated ring-shaped assemblies of other bEBPs. As revealed by the structure of c-di-GMP–complexed FleQ, the second messenger interacts with the AAA+ ATPase domain at a site distinct from the ATP binding pocket. c-di-GMP interaction leads to active site obstruction, hexameric ring destabilization, and discrete quaternary structure transitions. Solution and cell-based studies confirm coupling of the ATPase active site and c-di-GMP binding, as well as the functional significance of crystallographic interprotomer interfaces. Taken together, our data offer unprecedented insight into conserved regulatory mechanisms of gene expression under direct c-di-GMP control via FleQ and FleQ-like bEBPs.« less

  18. AAAS: Automated Affirmative Action System. General Description, Phase 1.

    ERIC Educational Resources Information Center

    Institute for Services to Education, Inc., Washington, DC. TACTICS Management Information Systems Directorate.

    This document describes phase 1 of the Automated Affirmative Action System (AAAS) of the Tuskegee Institute, which was designed to organize an inventory of any patterns of job classification and assignment identifiable by sex or minority group; any job classification or organizational unit where women and minorities are not employed or are…

  19. Systematic VCP-UBXD Adaptor Network Proteomics Identifies a Role for UBXN10 in Regulating Ciliogenesis

    PubMed Central

    Raman, Malavika; Sergeev, Mikhail; Garnaas, Maija; Lydeard, John R.; Huttlin, Edward L.; Goessling, Wolfram; Shah, Jagesh V.; Harper, J. Wade

    2015-01-01

    The AAA-ATPase VCP (also known as p97 or CDC48) uses ATP hydrolysis to “segregate” ubiquitinated proteins from their binding partners. VCP acts via UBX-domain containing adaptors that provide target specificity, but targets and functions of UBXD proteins remain poorly understood. Through systematic proteomic analysis of UBXD proteins in human cells, we reveal a network of over 195 interacting proteins, implicating VCP in diverse cellular pathways. We have explored one such complex between an unstudied adaptor UBXN10 and the intraflagellar transport B (IFT-B) complex, which regulates anterograde transport into cilia. UBXN10 localizes to cilia in a VCP-dependent manner and both VCP and UBXN10 are required for ciliogenesis. Pharmacological inhibition of VCP destabilized the IFT-B complex and increased trafficking rates. Depletion of UBXN10 in zebrafish embryos causes defects in left-right asymmetry, which depends on functional cilia. This study provides a resource for exploring the landscape of UBXD proteins in biology and identifies an unexpected requirement for VCP-UBXN10 in ciliogenesis. PMID:26389662

  20. Ubiquitin and Parkinson's disease through the looking glass of genetics.

    PubMed

    Walden, Helen; Muqit, Miratul M K

    2017-04-13

    Biochemical alterations found in the brains of Parkinson's disease (PD) patients indicate that cellular stress is a major driver of dopaminergic neuronal loss. Oxidative stress, mitochondrial dysfunction, and ER stress lead to impairment of the homeostatic regulation of protein quality control pathways with a consequent increase in protein misfolding and aggregation and failure of the protein degradation machinery. Ubiquitin signalling plays a central role in protein quality control; however, prior to genetic advances, the detailed mechanisms of how impairment in the ubiquitin system was linked to PD remained mysterious. The discovery of mutations in the α-synuclein gene, which encodes the main protein misfolded in PD aggregates, together with mutations in genes encoding ubiquitin regulatory molecules, including PTEN-induced kinase 1 (PINK1), Parkin, and FBX07, has provided an opportunity to dissect out the molecular basis of ubiquitin signalling disruption in PD, and this knowledge will be critical for developing novel therapeutic strategies in PD that target the ubiquitin system. © 2017 The Author(s).